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ABSTRACT

Next-generation sequencing (NGS) technologies have provided opportunities for developing
personalized treatments for patients. Given the rapid advances in technology and computational
complexity, there may be gaps in best practices and guidelines to support the current challenges
facing Clinical Laboratory Improvement Amendments (CLIA) laboratories. Whole-genome
sequencing (WGS), an NGS technology, allows for the exponential generation of human
sequencing data. Bioinformatics and computational pipelines have taken advantage of these data
to generate new mechanisms to aid in predicting patient treatment responses and adjusting
treatments accordingly. We highlight the potential of NGS-based bioinformatics pipelines in
precision breast oncology treatments and the challenges of standardization given the historical
lack of consensus on pipeline development and validation standards. This is seen as a critical
issue given the need for standardization to ensure pipeline accuracy, appropriateness, and
efficacy, and those to protect patient safety and ensure quality patient care. We conducted a
literature review to assess current best practices for CLIA bioinformatics pipelines and identified
potential gaps, and assessed the use case of determining an appropriate reference background
distributions for expression signatures for clinical usage. We emphasize the complexity and
heterogeneity of NGS-based clinical assays that often necessitates context specific validation of
pipelines and reference distributions.



INTRODUCTION

AIM 1. LITERATURE REVIEW TO ASSESS CURRENT BEST PRACTICES FOR
CLINICAL LABORATORY IMPROVEMENT AMENDMENTS (CLIA)
BIOINFORMATICS PIPELINES.

LITERATURE REVIEW: HISTORY AND BACKGROUND

Based on the first part of our literature review, we briefly summarize the history of CLIA and
highlight how sequencing technologies have been incorporated into laboratory testing, as well
the accompanying bioinformatics workflows needed to analyze and process the data.

Clinical Laboratory Improvement Amendments (CLIA) Background

In November 1987, a Wall Street Journal article was published, “Lax Laboratories: The Pap Test
Misses Much Cervical Cancer Through Labs’ Errors,” highlighting how patients were receiving
incorrect results in routine cancer screening (Bogdanovich 1987). This situation indicated why
there needed to be more guidance and regulations for clinical laboratories. In response to
growing concerns regarding clinical laboratory testing, and to expand federal oversight to all
laboratories conducting testing on human specimens for disease diagnosis and treatment
improvement (Schwartz 1999), Clinical Laboratory Improvements Amendments (CLIA) was
established in 1988. To ensure standards for laboratories generating clinical tests and analyzing
human specimens, the United States federal government mandated that laboratories performing
tests on human specimens must meet the guidelines entailed in CLIA (Lyon and Segal 2013). If a
laboratory wishes to genetically test samples from human specimens and construct an assay for
research purposes, the laboratory must obtain CLIA certification. CLIA certification certifies
“that the laboratory has developed a validated clinical assay that is reproducible, precise, and
accurate with established sensitivity and specificity” (Gaerig 2012).

Review of the FDA database highlights how assays evolved in complexity with the incorporation
of next-generation sequencing (NGS). In the early 1990s, approved tests included ELISA (such
as cytomegalovirus (CMV) ELISA, Rubella ELISA or Lyme ELISA tests) or antigen-based tests,
such as Cancer antigen 125 (CA 125). In 2006, there was draft guidance on in vitro diagnostic
multivariate index assays (IVDMIA). IVDMIAs are more complex diagnostics and consist of
clinical data, an algorithm, and a threshold provided by the test developer to interpret the result.
The 1st IVDMIA, MammaPrint® was approved in 2007. This is a gene expression based
signature that can determine which breast cancer patients are at risk of distant recurrence
following surgery (providing oncologists with a risk classification based on the patient sample).
NGS provides the advantages of broader sequencing coverage and increased identification of
biomarkers, but also has additional considerations with regard to cost, data storage, and compute



power (Sboner and Elemento 2016). NGS has enhanced genomics research in areas such as
sequencing quality and data production (Behjati and Tarpey 2013). Massively parallel or deep
sequencing can be used for an unbiased transcriptomic analysis of mRNAs, small RNAs,
noncoding RNAs, genome-wide methylation assays, and high-throughput chromatin
immunoprecipitation assays (Reis-Filho 2009). To be CLIA-certified, the laboratory has to
maintain data management systems for the generated sequencing and other data types, entailing
accurate and quality record keeping (Gaerig 2012). Data maintenance needs to be accurate and
ensure governance in a clinical setting (Zhang et al. 2020). NGS data relies heavily on
bioinformatic pipelines to uncover genetic variations or expression differences in patient
samples. This entails additional emphasis on data infrastructure, algorithm implementation,
evaluation and maintenance to support the processing and interpretation of the sequencing data.

Next-Generation Sequencing (NGS) Overview and Whole Genome Sequencing (WGS)

As precision medicine transitions from research to clinical settings, careful consideration must be
given to clinical genomics application standards. NGS technologies are key in constructing
pipelines that could revolutionize patient care, creating more affordable and efficacious
treatments. Using parallel computing, NGS-based whole-genome sequencing (WGS) can
sequence the entirety of the human genome rapidly, proving to be a powerful tool for assessing
human variation. NGS has shown to be quicker and more accurate than Sanger sequencing
(Straiton et al.). Millions of small fragments are sequenced in parallel, and bioinformatic
analyses map the fragments to the human genome (Behjati and Tarpey 2013). The sequencing
data obtained from NGS can aid in uncovering genetic mutations and markers of various
diseases. Mutations include insertions, deletions, substitutions, and translocations with DNA
sequence bases. Sanger sequencing is limited to substitutions, small insertions, and deletions
(Behjati and Tarpey 2013). Capillary-based cancer sequencing has been utilized for more than a
decade and has been limited to a few samples and a few candidate genes (Behjati and Tarpey
2013).This type of sequencing is dependent on prior knowledge of the gene or locus being
investigated. In contrast, NGS can be genome-wide (i.e., WGS) allowing for unbiased discovery
of disease-associated variants. With increased genome coverage and decreased sequencing time,
an individual patient’s genome can be sequenced and analyzed to support personalized
treatments (precision medicine), with the hope that more individualized treatments can provide
more effective treatments.

WGS is a powerful tool for identifying biomarkers and their roles in diseases. This tool has aided
researchers in understanding the intricate details of a patient’s genome, providing new avenues
for personalized medicine, and predictions for how individual patients may respond to changes in
therapy. There have also been international efforts to understand and characterize the diversity in
human genetic variation, such as the 1000 Genomes Project which sequenced individuals from
Europe, East Asia, South Asia, West Africa, and the Americas (Siva 2008). Overall, WGS has



contributed to better monitoring of mutations and disease detection, and improvements in
treatments. NGS is highly dependent on complex computational data analysis infrastructure,
which is part of the reason why Sanger sequencing and other sequencing technologies are widely
utilized for the validation of NGS results (Roy et al. 2018).

Bioinformatics: Background, Pipelines, and Usage in Next-Generation Sequencing (NGS)

Bioinformatics integrates biology, computer science, and statistics, to handle large amounts of
data. Bioinformatics algorithms executed in a predefined sequence are known as pipelines, such
as the algorithms used to process NGS results (Roy et al. 2018). Pipelines are often run in an
automated or batch mode, meaning the pipeline implementation and results need to be accurate
and valid. Bioinformatics pipelines in a clinical setting that fail to meet standards and have been
improperly validated can detrimentally impact the health and well-being of patients. NGS results
are completely reliant on bioinformatics pipelines for processing and analysis. An NGS
bioinformatics pipeline to assess genetic variants (one of the most commonly conducted in
clinical laboratories) generally consists of the following steps: sequence generation, sequence
alignment, variant calling, variant filtering, variant annotation, and variant prioritization (Roy et
al. 2018).

Sequence Generation and Alignment. Sequence generation is the process of identifying
sequences of nucleotides from short DNA fragments, also known as raw reads, from a sample
(Roy et al. 2018). There are currently three widely platforms for massively parallel DNA
sequencing read production: (1) the Roche/454 FLX (Margulies et al. 2005), (2) the
Illumina/Solexa Genome Analyzer (Bentley et al. 2006), and (3) the Applied Biosystems
SOLiDTM System (Pandey et al. 2008). Each DNA sequencing technology aims to amplify single
strands of a fragment library and then perform sequencing reactions on the amplified strands
(Mardis 2008). Each nucleotide sequence sequenced in the raw reads is given a platform-specific
Phred-like quality score (Roy et al. 2018). Reads with low Phred scores are filtered out.
Platforms have different thresholds for the Phred scores; thresholds too high or too low may
cause loss of data or introduction of errors (Liao et al. 2017). Generated sequences and
associated Phred scores are stored in a FASTQ file (Roy et al. 2018). Sequence alignment
involves aligning short DNA sequence reads (< 250 base pairs) with a reference genome. This
process assigns a Phread-scale mapping quality score to the reads. The higher the score, the more
confidence in the alignment process. Sequence alignments are stored in binary alignment map
(BAM) file format (Roy et al. 2018).

Variant Calling, Filtering, Annotation, and Prioritization. Variant calling is a process in NGS
sequencing that identifies variants from sequencing data. Accurate variant calling is essential in
downstream analyses of NGS data, and is dependent on the quality of bases and aligned reads.
The input for variant calling is a set of aligned reads stored in BAM or similar format. This is



given to the variant caller to identify sequence variants between the sample and the reference
genome sequence. In variant calling, single-nucleotide variants (SNVs), small insertions and
deletions (indels), copy number alterations, and large structural alterations such as insertions,
inversions, and translocations are utilized (Roy et al. 2018). Koboldt 2020 discusses the current
“best practices” for variant calling in clinical sequencing for germline analysis in family trios and
somatic analysis of tumor-normal pairs were discussed. The choice of sequencing strategy, NGS
read alignment and preprocessing, the combination of multiple variant calling tools, and filtering
to remove false positives, are important in accurate execution of NGS pipelines and further
analyses. As discussed by Koboldt (2020), the choice between single- or multi-gene panels for
sequencing strategy have impacts on cost-effectiveness. Differences in depth and breadth of
sequencing coverage impact variant calling. Higher sequence depth in panel and exome
sequencing may add to more sensitive detection of variants at low allele frequencies (Koboldt
2020). For alignment, raw sequence data in the form of a FASTQ file are aligned to the reference
sequence using an aligner. Alignment results are stored in a binary alignment/map (BAM) file.
Samtools is used to work with BAM files. The accuracy of the alignments and associated
annotations impacts the quality of the pipeline outcome. When evaluating the accuracy of variant
calls, there needs to be access to benchmark datasets where the true variants are known. For
instance, Genome in a Bottle (GIAB) (Zook et al. 2014) and the Platinum Genome (Eberle et al.
2017) dataset are often utilized.

Another component in NGS pipelines is variant filtering. Variant filtering involves the flagging
and filtering of variants that represent false-positive artifacts of NGS pipelines. Filtering is done
based on sequence alignment and variant calling metadata, such as mapping quality and
base-calling quality (Roy et al. 2018). With the production of massive amounts of sequencing
data, it can be difficult to filter out variants. Since there is no set approach to filtering variants,
logical assumptions have to be made about them. Variant annotation can have implications in
determining which variants are significant (Sefid Dashti et al. 2017).

Variant annotation involves queries against sequence and variant databases to characterize
variants with metadata. The metadata associated with the variants are used to prioritize and filter
variants for candidate selection, analysis, and interpretation (Roy et al. 2018). One of which is
ANNOVAR, also known as ANNOtate VARiation. ANNOVAR is a software to facilitate variant
annotations, involving gene-based, region-based, and filter-based annotations on a variant call
format (VCF) file. Oftentimes, the outputs of NGS pipelines are numerous variants. The
challenge is determining which variants are clinically relevant and what information is used to
make this determination. Clinically insignificant variants are typically flagged on the basis of
synonymous, deep intronic variants, and established benign polymorphisms (Roy et al. 2018).
While the variant prioritization tools are beneficial, there should not be full reliance on the tool
to make prioritization decisions.



Clinical Laboratory Improvement Amendments (CLIA) Genomics

Clinical genomics is a dynamic process as annotation is constantly being updated. Advances in
large-scale genomic analyses in individualized care have promising benefits, but due to the lack
of consensus about the proper environment and regulatory mechanisms in which clinical genome
sequencing and interpretation should be performed, there has not yet been a transition to clinical
research. There is an ongoing shift from research discoveries to participant-focused analysis. In
response, several CLIA-certified exome sequencing tests have been made to ensure high
standards in genetics laboratories. One of the recommendations for maintaining standards is to
perform all whole genome sequencing in CLIA-certified laboratories. To lessen concerns with
storing and transferring genetic data, producing sequencing data within the CLIA-certified
laboratory would help to ensure the generation of high-quality data. Another concern regarding
the feasibility of clinical sequencing is cost. The average cost for a CLIA-certified exome is two
to three fold higher than what it costs for a typical research exome at the same sequencing depth
(Lyon and Segal 2013). Additionally, researchers are not permitted to release non-CLIA-certified
results to participants or physicians that will impact diagnosis or management. New samples can
be sent to CLIA-certified laboratories for confirmation at about $300 per variant (based on Lyon
and Segal 2013). Following CLIA regulations can help to lead towards executing clinical
genomics on a large scale (Lyon and Segal 2013).

College of American Pathologists (CAP) Accreditation

A laboratory can choose to be accredited by the approved accrediting organizations including:
the American Association of Blood Banks (AABB), the American Osteopathic Association
(AOA), the American Society of Histocompatibility and Immunogenetics (ASHI), the College of
American Pathologists (CAP), the Commission on Office Laboratory Accreditation (COLA), and
the Joint Commission on Accreditation of Healthcare Organizations (JCAHO). After a laboratory
meets CLIA requirements, it is issued a certificate of compliance (COC) or a certificate of
accreditation (COA) from the chosen accrediting organization to perform complex or moderate
testing. Moderate or high complexity testing involves the laboratory to monitor patient tests, to
conduct quality assurance and control processes, assess qualifications, and pay required fees
(Rivers et al. 2005). In 1961, the CAP created the accreditation program, highlighting standards
that are highly important for quality control in clinical laboratories (Lawson and Howanitz
1997). The CAP accreditation program ensures clinical assays are properly validated to ensure
the health and safety of patients, and the health of the population as a whole. The goal of the
program was to develop standards to evaluate how efficient a clinical laboratory is, and how
accurate their assays are. The CAP accreditation program is the first program to evaluate clinical
laboratory performance on a national scale (Hamlin and Duckworth 1997). The accreditation
program expects laboratories under accreditation consideration to demonstrate their compliance
with the Standards for Laboratory Accreditation and CLIA of 1988 regulatory requirements. The



program expects that laboratories are continually making the efforts required to identify and
correct areas that may be lacking, as well as efforts to enhance the performance of their clinical
assays (Hamlin 1999). The program also allows laboratories to routinely evaluate their
performance and their methods.

The CAP Laboratory Accreditation Program has four main standards for accrediting laboratories:
evaluation of the laboratory directory, physical facility and safety, quality control, performance
improvement, and inspection requirements (AbdelWareth et al. 2018, Hamlin 1999). These
standards are from the Standards for Laboratory Accreditation (Hamlin 1999). Laboratory
assessment is based on 18 section-specific checklists. The accreditation process follows the All
Common Checklist, Team Leader Assessment of Director & Quality, and Laboratory General
Checklists (AbdelWareth et al. 2018). The checklists contain questions marked by “yes”, “no”, or
“not applicable”. The questions are periodically reviewed at least once each year. Checklist
questions are not standards but are tools for inspectors and directors to ensure the laboratory
meets the Standards for Laboratory Accreditation. All laboratories that undergo the CAP
accreditation process have access to these checklists to routinely and voluntarily check if the
laboratory is meeting the quality checks. For the official check, the checklists are used during
accreditation inspection every two years. Unmet checklist items are considered “deficiencies”
and have to be corrected within 30 days, and documentation of the correction needs to be
submitted (Hamlin 1999).

Recommendations for Clinical Laboratories: Association of Molecular Pathology (AMP) with
the College of American Pathologists (CAP) and the American Medical Informatics
Association (AMIA)

In 2012, five years after the first approved IVDMIA, the Institute of Medicine developed a report
on the evolution of translational omics (Omenn et al. 2012) in response to a serious issue of
scientific misconduct involving omics-based assays to determine therapy. Researchers at Duke
University claimed that they had achieved a genomic technology that could predict with up to
90% accuracy which early stage lung cancer patients were likely to have a recurrence, and would
therefore benefit from chemotherapy. When investigators at MD Anderson cancer center
attempted to reproduce the results to validate it, they discovered that data was falsified, there
were numerous issues in the implementation of the algorithm, all of which led to misassignment
of patients in a clinical trial (Barbash 2015). Due to concerns regarding the premature
advancement of omics-based tests in clinical trials, the Institute of Medicine conducted a review
of the omics field (Omenn et al. 2012), forming the Committee on the Review of Omics-Based
Tests for Predicting Patient Outcomes in Clinical Trials (McShane et al. 2013).

The Institute of Medicine report was followed up in 2013 by more guidelines by the United
States National Cancer Institute (NCI), with scientists in multiple areas of expertise related to



‘omics’-based test development. They developed criteria that can be used to determine the
readiness of omics-based tests in clinical trials for patient treatment decisions (McShane et al.
2013).

To address the need of properly establishing and validating clinical NGS bioinformatics
pipelines, the Association of Molecular Pathology (AMP) with organizational representation
from the College of American Pathologists (CAP) and the American Medical Informatics
Association (AMIA), developed 17 best practices regarding the design, development, and
operation of the pipelines (Roy et al. 2018). Analytical validation of NGS tests have been
published in medical literature, but there is still a lack of clarity on requirements for NGS assay
validation, especially in NGS bioinformatics pipelines (Roy et al. 2018). Kanagal-Shamanna et
al. 2016 summarized NGS-based testing recommendations from organizations such as the
American College of Medical Genetics, Centers for Disease Control and Prevention, and CAP
The study presents the principles of analytical validation and implementation of NGS-based
testing in a CLIA-certified laboratory. The focus is on oncologic testing. Under CLIA, each
laboratory needs to determine analytical performance characteristics for a test
(Kanagal-Shamanna et al. 2016). NGS-based testing consists of two steps: 1) analytical
wet-bench and 2) bioinformatics, also called dry-bench. Validation needs to be independently
performed on both of the steps (Kanagal-Shamanna et al. 2016, Gargis et al,. 2012, Aziz et al.
2015, Rehm et al. 2013).

Key Considerations in Research versus Clinical Laboratory Improvement Amendments
(CLIA)

The ongoing topic of transitioning from bench to bedside illustrates the importance of
establishing a consensus on the guidelines and standards for computational framework
development. At the “bench”, known conditions can be controlled, predicted, tested, and
validated. At the “bedside,” situations may not be able to be predicted or controlled. This
indicates why code and pipelines need to be properly and thoroughly tested for code accuracy. In
the case of bioinformatics and computational pipelines, the accuracy of the code is a key
consideration. For instance, if the code written to support the pipeline produced an inaccurate
prediction of how a patient would respond to treatment, adjustments to the treatment could be
detrimental to the patient’s health. The safety of the patient and providing the best patient care
are of utmost importance. Similarly, the pipeline implementation is expected to work and
produce the intended results. In a research setting, pipelines can be tested under known
conditions. On the other hand, in a clinical setting, conditions may be unforeseen, making the
validation of these workflows even more challenging, especially in evaluating the performance
and robustness. This becomes a more crucial point when we consider how rapidly clinical
sequencing is evolving. In 2014, a technology review was published that highlighted the rapid
shift to clinical sequencing (Curnutte et al. 2014). Companies had been providing support under



the categories of consumables and arrays, supplying sequencing instruments, and sequencing. As
clinical sequencing became more utilized, companies started providing bioinformatics support
through alignment and annotation, interpretation and reporting, and data storage and bundling
-further highlighting the tight coupling of omics assays and bioinformatics workflows (Curnutte
et al. 2014). Proprietary software and pipelines are often “black box” (i.e, no transparency on
methods, evaluation etc) which further complicates the issue.

A motivating example: Bioinformatics Advances in Breast Cancer

There is a clear synergy between research and CLIA with the desire to move promising results
and assays to the clinical setting. There is a tremendous amount of heterogeneity in the types of
omic-based signatures being developed which can make translation of them for clinical use
difficult. We briefly highlight some recent findings in breast cancer (noting this is not
exhaustive).

Breast cancer is a heterogeneous disease impacting a large population of women in the United
States. Continued efforts for improving current treatments and treatment specificity are needed.
It is crucial to continue to develop better treatments for patients and to develop improved
techniques for the early detection of breast cancer. Advanced omics technologies have provided
researchers with more opportunities to tackle the challenge of developing detection and treatment
methods for patients with advanced stages of breast cancer. The goal of using omics methods is
to identify potential biomarkers to be utilized or targeted in new treatment developments. One of
the challenges to drug development is identifying the appropriate biomarkers using methods that
are time-efficient and accurate. Bioinformatics methods have helped with screening the genes
and signaling pathways involved in the prognosis of triple-negative breast cancer (TNBC). These
new methods have identified and provided reliable biomarkers for the better diagnosis and
treatment of TNBC. Methods to identify new biomarkers vary dramatically and include
identifying differentially expressed (DE) genes, enrichment via gene ontology or pathways,
network inference, classification and machine learning etc. Ma et al. 2022 computationally
identified five hub genes, TOP2A, CCNA2, PCNA, MSH2, and CDK6 that are unique to TNBC
and that they considered as prognostic features. Due to the specificity of these biomarkers to
TNBC, they have the potential to be therapeutic targets.

In another study, Alam et al. (2022) identified 190 differentially expressed genes (DEGs)
between breast cancer and control samples. They then prioritized this to 13 key genes using
protein-protein interaction network analysis. For instance, AKR1C1 and AKR1C2 are expressed
in carcinoma cells and stromal fibroblasts, having positive correlation and prevalence in primary
breast cancer patients (Alam et al. 2022). Prior work had suggested the loss of AKR1C1 and
AKR1C2 in breast cancer results in decreased progesterone catabolism. In combination with
increased progesterone receptor expression, it can strengthen progesterone signaling by its



nuclear receptors (Ji et al. 2004). Progesterone metabolism is suggested to be involved in the
promotion of breast cancer (Singh et al. 2017). Another candidate, NT5E is regulated
epigenetically in breast cancer and its status influences metastasis and clinical outcome (Alam et
al. 2022). Prior work by Lo Nigro et al. (2012) found NT5E expression is regulated in breast
cancer and NT5E methylation is an indicator of favorable clinical outcome. Alam et al. (2022)
additional analysis suggested the use of the key genes in seven candidate drugs, NVP-BHG712,
Nilotinib, GSK2126458, YM201636, TG-02, CX-5461, and AP-24534. This could lead to the
development of a companion diagnostic for therapeutic stratification.

As more biomarkers are found to have potential for breast cancer treatment targeting, an
important aspect to consider is how to adjust treatment for individual breast cancer patients at
various disease stages. Bioinformatics tools can aid in improving the discovery rate for
therapeutic targets. New targets can also be beneficial for vaccine development. Vaccine
development for breast cancer has been attractive for treatment. Vaccines can target the use of an
individual’s immune system, providing the benefit of little to no adverse side effects. Despite the
promising impact, using computational methods to develop vaccines, and deploying the use of
vaccines in clinical settings has not been approved (Chiang et al. 2013, Parvizpour et al. 2018).
This further highlights the challenges in moving these complex assays and their computational
pipelines to a clinical setting.

LITERATURE REVIEW: Clinical Bioinformatics, Clinical Genomics, Medical Genomics

The second part of our literature review focused on understanding the use of genomics and
bioinformatics in a clinical setting. We began with two related searches of interest, “clinical
bioinformatics” and “clinical genomics.” There has been a tremendous increase in research in
these areas based on the proportion of Pubmed Citations. In 2021, there were 889 results per
100,000 for “clinical bioinformatics”; and 1,836 per 100,000 for “clinical genomics” (Figure 1).
The two search terms cover a broad range, due to this, we began to narrow the search to terms
and results relevant to this study. However, the search results for both these terms seemed low.
We utilized the search term “medical genetics” (see Appendix 1), which provided a much larger
and more relevant corpus for our review (Figure 1).



Figure 1. Visualization of Pubmed results for “Clinical Bioinformatics” compared to
“Clinical Genomics” per 100,000 citations in Pubmed (Proportion for each search by year
1945 to 2022) (Top); “Medical Genetics” compared to “Clinical Genomics” (Bottom). Note:
Y axes are not to the same scale due to difference in magnitude for Medical Genetics.

Given our interest in the literature related to clinical laboratory tests, we evaluated PubMed for
“Clinical Laboratory Improvement Amendments” and its acronym, “CLIA”. This resulted in a
smaller corpus with surprisingly low overlap (18.5%). Inspection of the literature indicated that
CLIA was also used as an acronym for chemiluminescent immunoassay at a much higher
frequency (30.5%) (Figure 2). A review of the CLIA literature not associated with these two
terms found that in the majority of cases, the acronym was not defined in the title or abstract
suggesting this term would need to be carefully reviewed if used.



Figure 2. Assessment of literature. Assessment of the literature for the acronym “CLIA” (1595
results) found it was utilized not only for Clinical Laboratory Improvement Amendments
(optimized as “Clinical Laboratory Improvement Amend*” with 294 overlapping PubMed
results) but also for chemiluminescent immunoassay (optimized as ("chemiluminescent
immunoassay" OR "chemiluminescence immunoassay" OR "chemiluminescent immunoassays"
OR "chemiluminescence immunoassays") with 487 overlapping citations.

Clinical Bioinformatics

Clinical bioinformatics combines clinical informatics, bioinformatics, medical informatics,
information technology, mathematics, and omics science. The field has a large role in clinical
applications, such as omics technology, metabolic and signaling pathways, biomarker discovery
and development, and computational biology. Clinical bioinformatics differentiates from other
types of bioinformatics by its greater focus on clinical informatics (Wang and Liotta 2011).
Clinical informatics entails the storage of patient-related information, such as history, clinical
symptoms and signs, and vitals (Wang and Liotta 2011, Degoulet and Fieschi 2012). Wang and
Liotta 2011 highlights the need for clinical bioinformatics to have integrated analyses, clinical
descriptions, and measurements. There is also a need for a communication platform between
clinicians and bioinformaticians to improve the quality of patient care (Wang and Liotta 2011).
In some instances, large amounts of data can be generated, but can be difficult for
bioinformaticians to work with. To help mitigate this problem, analytical platforms have been
developed, such as MG-RAST (Keegan et al. 2016), IMG/M (Markowitz et al. 2007), and Qiita
(Gonzalez et al. 2018). There is a need to have a comprehensive data processing platform as a
majority of the developed platforms are specialized (Shen et al. 2022). MG-RAST, an
abbreviation for metagenomics RAST, rapid annotation using subsystems technology, is a
metagenomics service for analysis of microbial community structure and function (Keegan et al.



2016). IMG/M, also known as Integrated Microbial Genomics, is a data management and
analysis system for microbial community genomes (metagenomes). The database is hosted at the
Department of Energy’s (DOE) Joint Genome Institute (JGI), and consists of metagenome data
integrated with isolated microbial genomes from the IMG system. IGM/M consists of analysis
tools for metagenomic data (Markowitz et al. 2007). Qiita is a web-enabled microbiome analysis
platform (Gonzalez et al. 2018). In light of the need for a less specialized data analysis platform,
Shen et al. 2022 developed Sangerbox 3.0, a web-based user-friendly platform that can be used
for pathway enrichment analysis, correlation analysis, among others. The field of clinical
bioinformatics provides benefits due to the high volume of biological information obtained and
its potential to be utilized in the healthcare system. The field will also aid in moving towards
personalized medicine in clinical care (Chang 2005).

Clinical Genomics

Clinical genomics utilizes genomic data to assess and study clinical outcomes. One of the main
challenges with clinical genomics is reliably interpreting the multiple and novel variants that can
be found through genome sequencing. Genomics offers a large volume of information, and to
maximize the benefits, we need to adapt our approaches to analyzing and storing the data.
Clinical genetic testing methodologies, such as Sanger gene sequencing, Southern blot, and
WES/WGS, are evaluated for validity based on their ability to detect a genetic or genomic
variant. To assess this ability, sensitivity, measured as a false-negative rate, and analytical
specificity, measured as a false-positive rate, are utilized. Clinical validity is the ability of a test
to predict whether or not a clinical condition is present or absent (Katsanis 2013). Vijay et al.
2016 discusses several improvement opportunities in clinical genomics: electronic health records
(EHR) data, genomics and chronic illnesses, personalized healthcare and direct-to-consumer
genomics, genomics and cancer, genomics and neurobiology, and national and international
personalized medicine initiatives. Machine learning and data mining methods have leveraged
EHR data as it provides access to large sample sizes and diverse patient cohorts. Transitioning
EHR to clinical genomics can help to move towards personalized care. Additionally, genomics
data and approaches are beneficial to manage and prevent chronic illnesses and cancer. In the
past, cancer had been categorized by the tissue type it affects, but currently, it is increasingly
being defined by genetic alterations. Statistical models incorporating family history, age, and
other genomic features have contributed to developing personalized care. Along the same lines,
the development of consumer genomics has empowered individuals to learn more about their
genetics and improve their health. On a broader scale, there is now increased funding for national
and international personalized medicine initiatives (Vijay et al. 2016).



Medical Genomics

Medical genomics entails utilizing an individual’s genomic information to aid in their clinical
care. This field involves translating high throughput genetic methods towards clinical usage
(Quintáns et al. 2014). Data sequencing efficiency, and computational and mathematical tools
have allowed for the development of tools to understand the functional and regulatory networks
of biological systems. This field also contributes to the development of personalized medicine.
Medical genomics is evolving from the context of systems biology to systems medicine. This
evolution has the potential to work with disease complexity, using molecular diagnostics of
patients and diseases (Auffray et al. 2009). A challenge within the field is the interpretation of
clinical significance for a single patient, and for patients on a broader scale (Quintáns et al.
2014).

CASE STUDIES OF BIOINFORMATICS WORKFLOWS

From the literature review, we highlight two case studies which each address key considerations
for clinical NGS workflows.

Case Study 1: Use of semantic workflows to enhance transparency and reproducibility in
clinical omics

With the challenges involved in setting pipeline standards, only a few published preclinical
omics studies had been translated to a clinical setting (Zheng et al. 2015). Transparency and
reproducibility are main components in transitioning an omics analysis pipeline for use in a
clinical setting. Within the field of omics analyses, workflow platforms such as Galaxy and
Taverna have increased the use, transparency, and reproducibility of omics analysis pipelines
(Zheng et al. 2015). Galaxy is an interactive system that utilizes existing genome annotation
databases to allow users to search remote resources, combine data from queries, and visualize the
outputs (Giardine et al. 2005). Taverna enables users to create and enact scientific workflows
(Oinn et al. 2004). Taverna Omics analysis pipelines can contribute to the development of
precision medicines. Like many other computationally-based pipelines, omic analysis pipelines
can be highly valuable in a clinical setting.

The challenge is that efforts to make omics analysis pipelines more transparent and reproducible
are still in the early stages (Zheng et al. 2015). Transparency and reproducibility involve
providing all the data used for the project, documentation on the data used for the project, and all
the required software downloads to run the pipeline code. Having a clear and direct outline of
how the pipeline works and how the pipeline should be run should be available publicly for all
users. Addressing how to enhance the transparency and reproducibility of clinical omics



pipelines, they emphasized the use of a checklist , indicating what every pipeline development
study should include in their published works. This includes:

● Exact input data used for the analysis.
● Key intermediate data generated from the analysis.
● Third party data (i.e., data from external sources).
● Output data.
● Provenance of all data used.
● All code/software used in the analysis.
● Provenance of all code used.
● Documentation of the computing environment used.
● Veracity checks to ensure analytical validity.
● High-level flow diagram describing the analysis.

Without transparency in the data used, how the pipeline was developed, and how the pipeline
should be used, users may find it difficult to get the pipeline to produce the desired results.
Having a clear explanation of what data the pipeline can handle as input, and how to obtain the
appropriate data type for pipeline usage should be included in the pipeline documentation.
Guidelines in output data interpretation should also be included, as in some cases, the pipeline’s
output might not be clear to the user. In a clinical setting, with users of various backgrounds,
computational versus no computational background, it is crucial to have a user-friendly pipeline.
Reproducibility is not only in the usage sense, but in the development sense. In the development
sense, other researchers may want to understand how the pipeline was constructed. Assistance in
running the pipeline, or pipeline troubleshooting, should be easily accessible to the user. With
Galaxy and Tavera, “exact input, key intermediate, final output, and relevant external data are all
preserved” (Zheng et al. 2015). Galaxy and Taverna also provide high level flow diagrams to
guide the users through how to run the workflow (Zheng et al. 2015).

Another challenge is that pipelines and the incorporation of workflow platforms require domain
knowledge in the field of translational and clinical omics, making it difficult to transfer an omics
analysis pipeline from the research setting to a clinical setting. Without domain knowledge,
pipelines can be incorrectly used and negatively impact the patient’s care and treatment plan.
Users of semantic workflows do not necessarily have to have domain knowledge to utilize the
workflow. With semantic enforcement of all datasets, and user-defined methods and constraints,
users are guided through each workflow run. The guidance aids in increasing the validity of the
workflow, and contributes to patient safety (Zheng et al. 2015). They analyzed the effectiveness
of semantic workflows in the fields of translational and clinical omics, and implemented a
clinical omics pipeline to annotate DNA sequence variants identified through NGS technologies.
Their implementation of a clinical omics pipeline through a semantic workflow allowed for the
pipeline to provide transparency, reproducibility, and support analytical validity. They leveraged



the Workflow Instance Generation and Specialization (WINGS) semantic workflow platform.
They found that within a semantic framework, using multi-step omics analysis methods resulted
in a transparent, reproducible, and semantically validated analysis framework. They suggest
semantic workflows have the potential to be beneficial in clinical omics. Unlike other workflow
systems, semantic workflow systems can generate semantically validated workflow runs. In
these generations, domain knowledge can be embedded with constraints defined by the user.
These constraints are then enforced, which helps guide users through running the workflow
(Zheng et al. 2015). Zheng et al. 2015 also notes that utilizing the WINGS system addresses four
needs in clinical omics analyses:

1) Frequent updates of molecular life science databases.
2) Heterogeneity/consistency of biological data.
3) Rapid development of omics software tools.
4) Processing of large omics data sets.

Analysis of omics data often relies on information in public databases. As biological knowledge
increases on a frequent basis, the databases are and must be frequently updated. In clinical
settings, having the most updated databases is important and crucial for the best patient care.
Analysis also relies on heterogeneous sets of biological data. For instance, RNA-seq analysis
protocols typically involve: the genomic sequence used for the alignment of the RNA-seq reads,
and the annotated transcript models used for expression quantification (Zheng et al. 2015).
Different data types in biological data must be consistent with one another. With rapidly
advancing omics software tools, workflow systems need to be able to adapt to the integration of
updated and new software tools. Workflow must be able to store and process these large amounts
of data. WINGS has the ability to work with frequently updated biological databases, can
predefine and constrain the types of datasets, can handle the addition of new, alternative tools, or
updated tools, and can execute workflows in a variety of modes, i.e. clusters or cloud (Zheng et
al. 2015).

This case study emphasizes that transparency and reproducibility contributes to increasing rigor
and reducing errors in pipelines.

Case Study 2: A cloud-compatible bioinformatics pipeline for ultrarapid pathogen
identification from next-generation sequencing of clinical samples

Utilizing metagenomic (NGS) data from 237 clinical samples, in a clinical microbiology
laboratory setting, Naccache et al. constructed a cloud-compatible bioinformatics pipeline,
Sequence-based Ultrarapid Pathogen Identification (SURPI), for ultrarapid comprehensive
pathogen identification. NGS technologies have allowed for the development of computational
approaches to maintain public health, investigate disease outbreaks, and to diagnose infectious



diseases (Naccache et al. 2014). While NGS has applicability potential in these areas, using these
technologies in a clinical setting is difficult due to integration, accuracy, and time efficiency.
SURPI utilizes Scalable Nucleotide Alignment Program (SNAP) (Zaharia et al. 2011) and
RAPSearch (Ye et al. 2011), two state-of-the-art aligners for accelerated analysis. SURPI
consists of two modes, fast and comprehensive. In fast mode, viruses and bacteria are detected
by scanning datasets of 7-500 million reads in 11 minutes to 5 hours. In comprehensive mode, all
known microorganisms are identified, and de novo assembly and protein homology search for
divergent viruses in 50 minutes to 16 hours (Naccache et al. 2014). SURPI addresses the valued
time efficiency component in the development of bioinformatics pipelines case study. While a
pipeline may be fast in providing results, the pipeline must also be accurate. In the development
of unbiased NGS-based clinical assays for combating infectious diseases, rapid turnaround times
are in high demand (Naccache et al. 2014). There is high demand for rapid turnaround times
when treating infectious diseases as delayed detection and treatment leads to continued
transmission, and in some cases uncontrollable transmission, detrimental effects on patient
treatment, and increased mortality rates. Metrics that are highly important in the development of
aligners for the treatment of infectious diseases are time, sensitivity, accuracy, and throughput
(Naccache et al. 2014).

With the development of any bioinformatics pipelines, there are challenges. As listed by
Naccache et al. 2014,

(1) Alignment/classification algorithms must contend with massive amounts of sequence
data.

(2) Only a small fraction of short NGS reads in clinical metagenomic data corresponds to
pathogens.

(3) Novel microorganisms with divergent genomes are not well represented in existing
reference databases.

The key challenges can be summarized as the following: volume/scalability, sparsity, and
representativeness. NGS technologies can produce > 100 gigabases (Gb) of sequencing reads in a
single day (Loman et al. 2012, Naccache et al. 2014). Large amounts of data need to be properly
maintained and interpreted. To obtain variants from NGS data, several aligners and variant
callers have been developed and incorporated into pipelines. The aligner maps the sequencing
reads to a reference genome, and the variant caller identifies variant sites and assigns genotypes
(Serrati et al. 2016). With massive amounts of data, various aligners and variant callers, the
challenges are, how to maintain this data, which aligners and variant callers should be used, how
they should be used in the pipelines, and how the data should be interpreted. In terms of sparsity,
Naccache et al. 2014 highlights the needle-in-a-haystack problem with the NGS data, which is
also addressed by Kostic et al. 2012, Wylie et al. 2012, and Yu et al. 2012. The problem is only a
small fraction of short NGS reads in clinical metagenomic data corresponds to pathogens. The
reads must be classified accurately to ensure the data is usable. Even though NGS technologies



produce massive amounts of data, only a small amount of data is usable; relating to how in
clinical genomics, there exists the issue of only having a certain amount of variants that can be
used for clinical care. In the context of representation in data sets, novel microorganisms with
divergent genomes are not well represented in the existing reference databases. Less
representation leads to less accurate interpretation of the data. Often, these microorganisms can
only be identified through remote amino acid homology (Naccache et al. 2014, Xu et al. 2011,
Grard et al. 2012).

The study’s cloud-based pipeline, SURPI, begins with raw sequencing reads, goes through
preprocessing, SNAP nucleotide alignment to a human reference database, and then branches off
based on whether fast or comprehensive mode is chosen. The fast mode involves SNAP
nucleotide alignment to a bacterial reference database and SNAP nucleotide alignment to a viral
reference database. The comprehensive mode involves SNAP nucleotide alignment to the
National Center for Biotechnology Information (NCBI) nucleotide database, followed by de
novo contig assembly with ABySS and Minimo, and RAPSearch translated nucleotide alignment
to the viral protein or NCBI nucleotide database (Naccache et al. 2014).

To address the problems, SURPI was developed to provide extensive classification of sequencing
reads. On the issue of speed, Naccache et al. 2014 compared the computational speed of SNAP,
one of the aligners used in SURPI, to BLASTn, BT2, and BWA. Larger in silico query data sets
of 1.25 million, 25 million, 125 million, and 1.25 billion reads were used for testing. With the
1.25 million reads data set, all of the mentioned aligners performed similarly; with the larger data
sets SNAP was 23-87 times faster than BWA and BT2 (Naccache et al. 2014). SURPI’s
processing times were analyzed with NGS metagenomic data corresponding to 15 data sets
ranging from 6.7 to 509 million reads. For SURPI’s fast mode, processing times were from 11
minutes to 5 hours; the time increased proportionally to the number of reads. For SURPI’s
comprehensive mode, processing times were from 59 minutes to 16 hours. To test SURPI’s
feasibility in real-time clinical analysis, an acute serum sample from a 20-yr-old female patient
presenting with a three-day fever to 101.5°C, myalgias, and a headache was utilized. The patient
had been exposed to a region of Australia that had mosquito-borne alphaviruses (Knope et al.
2013, Naccache et al. 2014). Within a 13 minute SURPI analysis computational time, sequences
that span the genome of human herpesvirus 7 (HHV-7) were detected. SURPI was also tested on
various clinical sample types that well represent a variety of infectious diseases (Naccache et al.
2014). The study addresses some of the key challenges when trying to transition a computational
pipeline towards CLIA certification. For consideration of usage in a clinical setting, a
computational pipeline must be accurate, be well-maintained and well-tested, carry out the
intended actions, be sensitive enough to produce the desired outcomes, and meet quality
laboratory standards.



This case study illustrates the importance of a pipeline to be both accurate and efficient, and
addresses the challenge of sensitivity and false-negatives.

Summary of the Identified Gaps in Pipeline Validation and Development

For the last part of the literature review, we were interested in focusing on the literature since
2018, when the 17 best practices regarding the design, development, and operation of the clinical
bioinformatics pipelines (Roy et al. 2018) were published. That paper had emphasized the
importance of training and validation. We focused our literature review on the search terms
“clinical”, “Bioinformatics” and “validation”. We observed that there are still challenges in
validation which we summarize as three classes of implementations.

For the implementation of existing methods, validation studies were primarily case studies and
use case reports. We found tremendous heterogeneity in how algorithms were validated. In some
instances, publications were utilized as “surrogates” for actual validation with no in-house
validation being reported.

For the implementations where there were no pre-existing methods or workflows, a primary
challenge was the lack of gold standards and appropriate reference distributions. This makes
evaluation and validation difficult. It was unclear why this is not viewed as a key criteria for
assessing if an approach is suitable for translation to the clinic. The lack of gold standards and
appropriate reference was the area we had the opportunity to investigate in Aim 2.

For the implementation of artificial intelligence and machine learning, there is a lack of
explainability and interpretability, especially for deep learning. There are also training and
operational site differences which can be an issue if validation was based on the training site
results. Finally there is the issue of distributional drifts (such as data drift), which also impacts
the result of the model over time and can be difficult to detect.

AIM 2. USE CASE: DETERMINING BACKGROUND DISTRIBUTIONS FOR
EXPRESSION SIGNATURES FOR POTENTIAL CLINICAL USAGE

BACKGROUND

An Ideal Reference/Null Distribution

As noted in Aim 1, a key challenge has been the lack of gold standards and appropriate reference
or null distributions. For evaluation of a test or to determine treatment effects, an appropriate
reference or null distribution is needed to determine if the difference is significant. For example,
if we are assessing gene expression differences pre- and on-treatment, it is crucial to have a null



reference distribution to provide a comparator for when there is no change in gene expression.
The differences in gene expression for a null distribution would be due to sample-to-sample
variation, and not treatment effects. The goal is to have an appropriate distribution in order to
assess outliers due to real treatment effects. We identified four key characteristics for an optimal
reference/null distribution:

● The sample gene expression distributions should be appropriate for the disease type.
● There is biological variability sample-to-sample, but is not due to technical artifacts.
● Large enough distribution to avoid sampling error.
● Pairwise differences among samples should reflect normal biological variability, but be

less than actual treatment effects, if present.
The gene expression distribution captured by the null reference distribution should
well-represent the studied disease type. There should also be biological variability
sample-to-sample, however, there should not be batch effects. Not only should the genes
appropriately capture the expression distribution for the disease type, but there should be enough
genes and samples in the distribution to avoid sampling error. In addition, differences among
samples should reflect normal biological validity and be less than the differences observed by
actual treatment effects, if there are any present. This would allow us to identify significant
changes caused by therapy.

Universal Human Reference (UHR) Replicates

Our use case is to assess the usage of Universal Human References (UHR) replicates as a null
reference distribution for assessing differences in gene expression between pre-treatment and
on-treatment breast cancer samples. The premise is that UHR replicates can provide appropriate
null distributions to assess significant pre- and post-treatment changes. The UHRs are cost
effective and consist of multiple cancer cell lines. However, it is noted that they are not
exhaustive for all cancer types and that they are not actual patient samples.

Breast Cancer

Breast cancer is one of the more prevalent diseases in the United States and is one of the leading
causes of death in the human female population. The 5-year survival rate of breast cancer
patients is above 80% due to early prevention (Sun et al. 2017). Approximately 2,261,419 newly
diagnosed cases and 684,996 death cases were reported in 2020 (Sung et al. 2021). While
advances in breast cancer research and treatment are being made, the disease remains a global
health problem, highlighting the great need for treatments to be further improved and
individualized. Breast cancer is curable for approximately 70-80% of patients with the early,
non-metastatic stage of breast cancer, but there is currently no cure for patients with advanced
breast cancer. The heterogeneity of breast cancer has contributed to the difficulties in treatment
efficacy (Harbeck et al. 2022). In transitioning countries, the breast cancer incidence rate is



increasing. By 2040, there will be an increase of 3 million new cases and 1 million deaths from
breast cancer, solely due to population growth and aging (Arnold et al. 2022).

Breast tumors develop into benign tumors or metastatic carcinomas through constant stimulation
from carcinogenic factors. Breast cancer initiation and progression are theorized through two
hypotheses, the cancer stem cell theory and the stochastic theory (Sun et al. 2017). The cancer
stem cell theory describes tumor growth as being driven by cancer stem cells (Yoo and Hatfield
2008). The theory hypothesizes that tumors originate from a single cell that accumulated
mutations and proliferative potential (Polyak 2007). The theory posits that tumor heterogeneity
results from an intrinsic hierarchy of cells, not random mutation and clonal evolution. The
hierarchy has cancer stem cells at the top (Fábián et al. 2013). The theory also states that cancer
stem cells share features with normal stem cells, but traits such as self-renewal, tumor initiation,
and maintenance potential, are solely for the cancer stem cells (Reya et al. 2001, Fábián et al.
2013). The second theory, the stochastic theory, as known as the clonal evolution model,
hypothesizes that transformation originates from random mutations in breast epithelial cells, such
as stem cells, progenitors, or differentiated cells. Additional genetic and epigenetic changes lead
to cellular heterogeneity in a tumor (Sgroi 2010).

Current Breast Cancer Therapy

In current breast cancer therapies, with the increased knowledge of biology and understanding of
breast cancer, targeted therapies have been developed or are in development. The targets include
receptor and non receptor tyrosine kinase inhibitors, intracellular signaling pathways, and DNA
repair controls (Alvarez 2010). In a broad sense, there are two types of cancer, non-metastatic
and metastatic. Non-metastatic cancer is cancer that has not spread from the primary disease site;
metastatic cancer is cancer that has spread from the primary site to other tissues. The goal of
non-metastatic cancer therapy is to eradicate the tumor from the breast and regional lymph
nodes. The hope is for the prevention of metastatic recurrence. Surgical resection, sampling or
removal of axillary lymph nodes, and postoperative radiation are involved in non-metastatic
cancer treatment (Waks and Winer 2019). For metastatic cancer, patients are treated according to
metastatic cancer subtypes. Ultimately, the goals are to prolong the patient’s life, and to provide
relief to the patient (Waks and Winer 2019). Current developments have been guided by targeting
multiple cells or tissues with receptors for a particular drug. Combining these targets with
traditional drugs has great promise for the future of breast cancer therapies.

An approach to breast cancer treatment is radiation. The mammary gland is sensitive to
radiation-associated carcinogenesis. Exposure to radiation therapy can be harmful to patients of
any age (Ronckers et al. 2004). Utilizing the Surveillance, Epidemiology, and End Results
(SEER) Medicare database from January 1st, 1992 through December 31st, 1999 to identify
8724 women aged 70 years and above that were treated for breast cancer, a model was used to



assess the effectiveness of radiation therapy. For older women with early stages of breast cancer,
radiation therapy was associated with a lower risk of second ipsilateral breast cancer. It is
suggested that radiation therapy may benefit younger breast cancer patients more than older.
Patients aged 70-79 with less advanced stages of breast cancer would benefit from radiation
therapy, but older patients with more advanced stages of breast cancer would have a lower
benefit (Smith et al. 2006). Radiation therapy can pose health problems, such as the risk for other
types of diseases or damage to organs (Kamiya et al. 2015).

Another current approach to breast cancer treatment is surgery. Persistent pain post-surgery has
been prevalent in 10% to 50% of patients. The pain can be associated with nerve damage or
sensory disturbances due to surgery. Gärtner et al. 2009 conducted a questionnaire and database
analysis to examine the prevalence of factors associated with persistent pain after breast cancer
surgery. The questionnaire involved 3754 women from the ages of 18 through 70 who received
primary breast cancer surgery and adjuvant therapy in Denmark. The surgeries were carried out
between January 1st, 2005 to December 31st, 2006. The questionnaire was sent between January
and April 2008. Of the women who responded to the questionnaire, persistent pain and sensory
disturbances post-surgery were found to be clinically significant.

The Move Towards Precision Oncology

Precision medicine follows the concept that since every patient is unique, their cancer is unique.
It is the utilization of a patient’s molecular and biological features to optimize therapy and drugs
that target oncogenic mechanisms. As outlined by Khodadaian et al. 2020, many treatments have
been designed for patients with the sample disease, but the following may be observed:

● Symptoms of disease may be reduced (Miyasaki et al. 2002, Patrono et al. 2001)
● Expected responses may fail to occur (Hameed et al. 2018, Wang et al. 2021)
● Side effects may arise (Patrono et al. 2001, Group 1977)

Precision medicine illustrates the move towards studying gene expression in specific organs,
tissues, or tumors. With precision medicine, it is important to understand the differences in gene
expression between patients, and within patients, pre- and on therapy.

Hallmarks of Cancer

aHanahan et al (2000) indicated that there six key traits that are associated with all cancers:
sustaining proliferative signaling, evading growth suppressors, activating invasion and
metastasis, enabling replicative immortality, inducing angiogenesis, and resisting cell death.
These traits are known as the Hallmarks of Cancer, and are essential to cancer biology. The
Hallmarks were updated in 2011, adding two more hallmarks, reprogramming of energy
metabolism and evading immune destruction. The update reported that tumors contain a
repertoire of cells that contribute to the hallmarks by constructing the tumor microenvironment



(Hanahan et al 2011). The hallmarks were updated again in 2022, stating that phenotypic
plasticity and disrupted differentiation are discrete hallmark capabilities. They also state that
non-mutational epigenetic reprogramming and polymorphic microbiomes both contribute to
hallmark acquisition (Hanahan et al. 2022).

These hallmarks have been translated into representative gene sets. Enrichment and other
methods allow evaluation of the gene expression of these hallmarks in a given patient. For the
purposes of this use case, the genes to be evaluated for UHR gene expression were restricted to
relevant hallmarks. Given overlapping and complementary gene sets, there are a total of 50 gene
sets from the Molecular Signatures Database (MSigDB) that represent the hallmarks (Liberzon et
al. 2015). Further refinement by clinical collaborators prioritized 27 of the hallmark gene sets as
they are related to breast cancer and breast cancer modeling in clinical trials.

The 27 gene sets are: Androgen Response, Angiogenesis, Apoptosis, Bile Acid Metabolism,
DNA Repair, E2F Targets, Epithelial Mesenchymal Transition, Estrogen Response Early,
Estrogen Response Late, G2-M Checkpoint, Hypoxia, Interleukin-2 (IL2) Signal Transducer and
Activator of Transcription 5 (STAT5) Signaling, Interleukin-6 (IL6) Janus Kinase (JAK) Signal
Transducer and Activator of Transcription 3 (STAT3) Signaling, Inflammatory Response,
Interferon Alpha Response, Interferon Gamma Response, Kras Signaling Downregulated, Kras
Signaling Upregulated, Mitotic Spindle, mammalian Target of Rapamycin Complex 1
(mTORC1) Signaling, Myc Targets Version 1, Myc Targets Version 2, Oxidative
Phosphorylation, P53 Pathway, Phosphatidylinositol-3-kinase (PI3K) Protein Kinase B (AKT)
MTOR Signaling, Transforming Growth Factor beta (TGF-β) Signaling, and Tumor Necrosis
Factor alpha (TNFA) Signaling via NFKB.

Gene Set 1: Androgen Response

The androgen receptor (AR) is expressed in more than 70% of breast cancers. When unbound,
the AR interacts with chaperone proteins. When bound by a ligand, the AR dissociates from
chaperon proteins, forms a homodimer that translocates to the nucleus, and induces a cascade of
molecular events. This process results in the activation of target gene transcription. The AR is
prevalent in breast tissue and tumors. Androgen signaling pathways have a role in breast cancer
development (Gucalp and Traina 2010).

The transcriptional modulation of the cyclin D1 gene (CCND1), a mitogen-regulated cell-cycle
control element, has an important role in the growth and progression of breast cancer. An
androgen, 5-α-dihydrotestosterone (DHT) inhibits endogenous cyclin D1 expression. DHT is
associated with a reduction in cyclin D1 mRNA and protein levels and a decrease in
CCND1-promoter activity in MCF-7 cells (Lanzino et al. 2010). MCF-7 cells are the most
studied human breast cancer cell line and have contributed greatly to our understanding of the



estrogen response in breast cancer (Lee et al. 2015). MCF-7 cells are used in research for
estrogen receptor (ER)-positive breast cancer cell experiments (Comsa et al. 2015). The
DHT-dependent inhibition of CCND1 activity requires the involvement of the androgen receptor
(AR) DNA-binding domain (Lanzino et al. 2010).

Androgens are commonly associated with males but are expressed in both males and females. In
females, androgens are secreted by the adrenal and ovary. Females also secrete higher amounts
of androgen, in comparison to estrogen. Mainly, circulating androgens in females are
dehydroepiandrosterone sulfate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione
(A), testosterone (T), and dihydrotestosterone, listed in descending order of serum concentration.
T and dihydrotestosterone bind to the androgen receptor (Burger 2002). In circulation, androgens
bind to the steroid hormone-binding globulin (SHBG). This binding controls the availability of
hormones to the breast and various tissues. Circulating androgens are risk factors for breast
cancer (McNamara et al. 2014).

Gene Set 2: Angiogenesis

Angiogenesis is a main step for breast cancer progression and dissemination (Filho et al. 2010).
Tumor growth is known to be dependent on the growth and formation of blood vessels. Pioneer
Judah Folkman, was the first to note the association of angiogenesis and cancer (Filho et al.
2010, Folkman et al. 1971). Developing treatments that block angiogenic growth has been
supported by oncologists to treat cancer. Tumors have limited capacity to grow without the
formation and development of blood vessels, as the vessels provide tumors with the essential
nutrients required for tumor growth (Filho et al. 2010). In ongoing clinical trials, an
antiangiogenic agent, bevacizumab, has shown promising results. In combination with paclitaxel,
in patients with previously untreated metastatic breast cancer, the treatment can improve
progression-free survival. Bevacizumab was developed by Genentech in San Francisco,
California. It is administered intravenously and is directed against vascular endothelial growth
factor A (VEGFA) (Filho et al. 2010). Angiogenesis relies on VEGFA-driven responses
(Claesson-Welsh and Welsh 2013).

Gene Set 3: Apoptosis

Apoptosis is defined as normal and controlled cell death. In normal cases, controlled apoptosis is
a part of an organism’s growth. As outlined by Parton et al. 2001,

● Increased apoptosis with increased proliferation is associated with malignant tumors.
● Breast tumors with increased apoptosis are more likely to be high grade and negative for

oestrogen receptors.
● High levels of apoptosis in a breast tumor seem to predict worse survival.
● Measurable increases in apoptosis occur within 24 hours of the start of chemotherapy.



Without apoptotic control, cancers can survive longer and increase in invasiveness due to the
increased accumulation of mutations. Tumor growth is a result of uncontrolled proliferation and
reduced apoptosis (Parton et al. 2001). More aggressive tumors have higher rates of apoptosis.
Under normal conditions, apoptosis occurs to maintain cell populations, and acts as a defense
mechanism in immune reactions (Norbury and Hickson 2001). Current cancer treatments act by
inducing apoptosis and observing apoptosis to increase treatment efficacy (Parton et al. 2001).
The detection of apoptosis in situ has been assessed by electron microscopy or light microscopy,
with the assessment of key features such as chromatin condensation and nuclear fragmentation
(Parton et al. 2001, Kerr et al. 1994).

Gene Set 4: Bile Acid Metabolism

In regards to metabolism’s role in breast cancer, Schramm et al. 2010 indicated that the
down-regulation of the bile acid pathway and up-regulation of cholesterol biosynthesis may
support steroid biosynthesis, which may support estrogen mediated tumorigenesis of breast
cancer cells. The application of large-scale metabolomics, absolute quantification, and a
machine-learning based feature selection using Least Absolute Shrinkage and Selection Operator
(LASSO) identified metabolites that have an association with tumor development and disease
outcomes. LASSO identified the association of tumor glycochenodeoxycholate levels with
improved breast cancer survival. Absolute quantification of bile acids revealed the accumulation
of bile acids in breast tumors. The studied bile acids indicated an inverse association with
proliferation scores in tumors and expression of G2-M checkpoint genes. The findings suggested
bile acids may interfere with hormonal pathways in the breast (Tang et al. 2019).

Gene Set 5: DNA Repair

External and internal stressors can cause reversible and irreversible damage to the cells’ DNA.
DNA damage involves insertions, deletions, DNA mismatch, cross-linking, single-stranded and
double-stranded breaks (Hosoya and Miyagawa 2014). Cells respond to DNA damage through
cell cycle checkpoints and repair machinery. Cells can either eliminate the damage or trigger
apoptosis (Majidinia and Yousefi 2017). DNA repair can be beneficial to developing breast
cancer therapeutics. Majidinia and Yousefi 2017 outlines several DNA repair machinery in breast
cancer; homologous recombination (HR) pathway, the non-homologous end joining (NHEJ)
pathway, the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway,
and the DNA mismatch repair (MMR) pathway. The HR pathway is involved in the reparation of
double-stranded breaks. The HR pathway utilizes the sister chromatid as an undamaged
homologous template to repair the double-stranded breaks. The NHEJ pathway also works to
eliminate double-stranded breaks. NHEJ does not utilize a homologous template for reparations
and involves fewer proteins. NHEJ machinery binds the damaged DNA ends without the use of a



homologous template. However, the NHEJ pathway may result in more errors, and in turn,
chromosomal damage. Prior studies have indicated the importance of double-stranded break
repair mechanisms in breast tumorigenesis (Majidinia and Yousefi 2017). Aside from
double-stranded break repair mechanisms, the BER pathway repairs oxidized, alkylated, and
deaminated bases (Majidinia and Yousefi 2017, Krokan and Bjørås 2013). DNA glycosylases
remove the damaged base by cleaving the N-glycosidic bond (Majidinia and Yousefi 2017,
Wallace 2014). BER efficiency is thought to be a determinant of breast cancer risk (Majidinia
and Yousefi 2017). NER is another DNA repair pathway, dealing with a variety of DNA
helix-distorting lesions. NER factors impact cell metabolism and cell cycle progression (Costa et
al. 2003). The deficiency of NER and its potential role in breast cancer development was
investigated by Latimer et al. 2010 (Majidinia and Yousefi 2017). It was observed that NER
deficiencies were present in stage I breast tumors and that polymorphisms in NER genes may be
an indicator of breast cancer risk (Latimer et al. 2010). The MMR pathway is another DNA
repair mechanism. The pathway recognizes and eliminates bases that were incorporated
incorrectly during replication and recombination. Similar to the NER pathway, polymorphisms in
MMR genes may be an indicator of breast cancer risk (Majidinia and Yousefi 2017).

Gene Set 6: E2F Targets

E2F transcription factors have a role in controlling the cell cycle (Hollern et al. 2014). E2F
transcription factors have been studied to have biological functions in cancer, but less is known
about their function in breast cancer. To further the understanding of the role of E2F transcription
factors in breast cancer, Li et al. 2018 conducted a study to analyze the mRNA expression
patterns of E2F utilizing the Oncomine and The Cancer Genome Atlas data. The study results
indicate factors E2F1, E2F2, E2F3, E2F5, E2F7, and E2F8 were overpressed in patients with
breast cancer. The results from the study indicate that E2F targets have the potential to be
biomarkers for breast cancer therapeutics. In another study, E2F function was analyzed in mice.
Hollern et al. 2014 interbred MMTV-PyMT mice with E2F1, E2F2, or E2F3 knockout mice to
test their hypothesis that E2Fs function to regulate tumor development and metastasis. Their
results indicate a reduction in metastatic capacity in E2F1 and E2F2 knockouts. With additional
gene expression analysis, Hollern et al. 2014 showed the role of E2F factors in tumor
development and metastasis.

Gene Set 7: Epithelial Mesenchymal Transition

Epithelial Mesenchymal Transition (EMT) is the transdifferentiation of epithelial cells into
motile mesenchymal cells, and has pathological contributions to cancer progression (Lamouille
and Derynck 2014). EMT allows a polarized epithelial cell to go through biochemical changes to
allow it assume a mesenchymal cell phenotype. Typically, a polarized epithelial cell interacts
with the basement membrane through its basal surface. With the mesenchymal cell phenotype,



the cell has increased resistance to apoptosis and increased production of extracellular matrix
components (Kalluri and Neilson 2003). EMT is associated with increased aggressiveness and
invasiveness in carcinoma cells (Sarrió et al. 2008). Sarrió et al. 2008 conducted a study to assess
EMT’s presence in human breast tumors by conducting a tissue microarray-based
immunohistochemical study in 479 invasive breast carcinomas and 12 carcinosarcomas using 28
different markers. Utilizing unsupervised hierarchical clustering of the tumors, Sarrió et al. 2008
found that up-regulation of EMT markers, vimentin smooth-muscle-actin, N-cadherin, and
cadherin-11, along with overexpression of proteins related to extracellular matrix remodeling and
invasion, SPARC, laminin, and fascin, occur in breast tumors. The findings from Sarrió et al.
2008 suggest EMT may have relations to breast tumor aggressiveness and progression.

Gene Sets 8 and 9: Estrogen Response Early and Late

Estrogen has an important role in the development of breast cancer. Blocking estrogen receptors
is one of the targets of developing therapies. Estrogen is essential in the development of breast
cancer. Gustafsson and Warner 2000 conducted a rodent mammary gland study in which they
found an estrogen receptor, ERβ, is expressed in approximately 70% of epithelial cells in rodent
breast cancer. During pregnancy, they found higher expression of ERβ compared to ERα. Their
findings from the rodent mammary gland study suggested the presence of estrogen receptors in
epithelial cells to prevent their proliferation, or estrogen has an indirect effect on the breast,
possibly taking effect through the immune system. Gustafsson and Warner 2000 suggest the
presence of ERβ may not have prognostic value in breast cancer. The overexpression of ERα is
observed in early stages of breast cancer, especially in the development of breast cancer tumors.
Further understanding the mechanisms of ERα gene expression is beneficial for the development
of tools to detect breast cancer early. ERβ is expressed in ERα-positive breast cancers, and ERα
and ERβ can be coexpressed in human breast cancer. Suppression of ERα can allow for hormone
resistance, but suppression mechanisms are not well understood. Through cell line studies, ERβ
was found to result in the inhibition of the growth of ERα-positive breast cancer cells (Hayashi et
al. 2003). Studying estrogen receptors gives better insight into understanding the mechanisms in
the progression of breast cancer. Early estrogen response may be associated with patient survival
and endocrine therapy response in ER-positive breast cancer. Through the usage of a Gene Set
Enrichment Analysis (GSEA) algorithm, it was found that estrogen response early scores can be
useful in predicting a primary and metastatic breast cancer patient’s response to endocrine
therapy. Oshi et al. utilized estrogen response early gene sets to obtain gene set enrichment
algorithm scores. They hypothesized the score could aid in predicting the response to endocrine
therapy and patient survival rates. A low score was found to be significantly associated with a
worse response to endocrine therapy and with worse survival in primary and metastatic breast
cancer patients (Oshi et al. 2020). Utilizing gene sets entailing genes involved in early and late
estrogen responses can help to further understand estrogen reactivity in breast cancer.



Gene Set 10: G2-M Checkpoint

The cell cycle consists of the G1, S, G2, and M stages. The G1, gap 1, stage is where the cell’s
size increases; the S, synthesis, stage is where the cell’s DNA is copied; the G2, gap 2, stage is
where the cell undergoes preparation to divide; and the M, mitosis, stage is where the cell
divides. The cell cycle contains checkpoints to detect DNA damage. DNA damage response
pathways can be used to assess cancer risk. When a single double strand break occurs,
damage-induced cell cycle checkpoints are activated, however, the G2-M checkpoint can handle
10-20 double stranded breaks. The G2-M checkpoint has implications in cancer risk (Lobrich
2007). If the damage response pathways were to become abnormal, there is increased risk of
developing cancerous cells. Translocations, a type of DNA damage, can be involved in the
initiation of carcinogenesis. Translations can be undetected by the damage response mechanisms
(Lobrich 2007). As mentioned before, the cell cycle consists of checkpoints at the most crucial
cell cycle stages: entry into the S phase, also known as the G1-S checkpoint, entry into the M
phase, also known as the G2-M checkpoint, and during replication, also known as the intra-S
checkpoints. At these checkpoints, if aberrations are detected, the cell cycle is arrested, and the
damage is repaired before moving forward with the cell cycle (Lobrich 2007). BRCA1, the
breast cancer tumor-suppressor gene, encodes a protein with a BRCT domain, a feature found in
many proteins and is implicated in DNA damage response and in genome stability (Yarden et al.
2002). The role of BRCA1 in DNA damage response has been unclear, Yarden et al. 2002
proposed BRCA1 is involved in Chk1 kinase activation in induced G2-M arrest. Their study
indicated BRCA1 controls two proteins essential in the G2-M transition, Cdc25C and
Cdc2/cyclin B kinase (Yarden et al. 2002). In 2000, MacLachlan et al. 2000 demonstrated the
introduction of BRCA1 in different types of cell lines resulted in the increase of cells with G2-M
phase DNA content (MacLachlan et al. 2000, Somasundaram 2003). The implications of BRCA1
with the G2-M checkpoint is an important target in developing breast cancer treatments.

Gene Set 11: Hypoxia

Hypoxia, the decreased availability of oxygen, is a key feature of solid tumors (Brahimi-Horn et
al. 2007). Hypoxia makes solid tumors resistant to therapies involving ionizing radiation, some
types of chemotherapy, and photodynamic therapy (Vaupel et al. 2005). Hypoxia is involved in
poor prognosis of various types of cancers, including breast cancer (Favaro et al. 2011). Hypoxia
has been shown to increase patient treatment resistance and contribute to tumor progression. The
decreased supply of oxygen induces the hypoxia-inducible transcription factor, which regulates
genes that are utilized by tumor cells for survival, treatment resistance, and escape from a
nutrient-deprived environment (Brahimi-Horn et al,. 2007). Hypoxia in tumors can be caused by
an increase in diffusion distances (> 70 μm), wherein cells receive less oxygen and nutrients. In
response to hypoxia, cells reduce their protein synthesis, which leads to cell death (Vaupel et al.
2005). The expression of hypoxia-inducible factor alpha (HIF-1α) and its targets are indicators of



breast cancer prognosis. High HIF-1α expression has been seen with poorer breast cancer
prognosis (Favaro et al. 2011).

Gene Set 12: Interleukin-2 (IL2) Signal Transducer and Activator of Transcription 5 (STAT5)
Signaling

Interleukin-2 (IL2) is a cytokine that controls the proliferation and differentiation of cells in the
immune system (Gesbert et al. 1998). Regulatory T cells require IL2 for homeostasis as it
impacts proliferation, survival, and activation (Moro et al. 2022). The IL2 signaling pathway
consists of the activation of tyrosine kinases, which leads to the activation of the Jak-STAT
pathway, the Ras-MAPK pathway, and the PI3-kinase pathway (Gesbert et al. 1998). The
Jak-STAT pathway has been known as a rapid membrane to nuclear signaling pathway (Imada
2000) and controls gene transcription (Gesbert et al. 1998). The Ras-MAPK pathway is a signal
transduction pathway, transducing signals for the activation of cell growth, division, and
differentiation (Molina and Adjei 2006). The PI3-kinase pathway is involved in cell growth,
protein translation, survival, and metabolism. It is also one of the most activated pathways in
cancer (Hassan et al. 2013). IL2 binds to specific receptors, IL2R, on the surface of responsive
cells, to mediate its activities. IL2R has three subunits, α, β, and γ. IL2R also has various
subdomains. One of which, IL2Rβ C-terminal region functions in STAT5 activation (Gesbert et
al. 1998). STAT5 is induced by cytokines and growth factors and results in the transcriptional
activity of target genes (Buitenhuis et al. 2004). Cytokines control cell survival, death, and
differentiation (Atenzi and Sarzi-Puttini 2013). STAT5 is involved with cell proliferation,
differentiation, and apoptosis (Buitenhuis et al. 2004). STAT5, under normal conditions, is
regulated by prolactin signaling with JAK2/ELF5, EGF signaling networks, and progesterone
signaling pathways. Repka et al. 2003 investigated if IL2, in combination with trastuzumab, can
increase treatment efficacy. Trastuzumab has clinical activity in metastatic breast cancer. The
experiment utilized 10 patients with HER2-overexpression metastatic breast cancer. Each patient
was treated with IL2 for 7 weeks and trastuzumab for 6 weeks. In vitro immune and clinical
responses were assessed. As a result, in vitro immune assays showed NK cell expansion, and
trastuzumab-mediated increased natural killer cell killing of breast cancer targets. However, there
was no correlation with clinical responses (Repka et al. 2003).

Gene Set 13: Interleukin-6 (IL6) Janus Kinase (JAK) Signal Transducer and Activator of
Transcription 3 (STAT3) Signaling

IL6 is a cytokine with tumor-promoting and tumor-inhibitory activity. Knüpfer et al. 2007
studied the role of IL6 in in vitro studies of breast tumor cells and indicated its potential as a
prognostic indicator in breast cancer patients. Through a literature search, IL6 may be a negative
prognosticator in breast tumor patients (Knüpfer et al. 2007). Berishaj et al. 2007 investigated
IL6 levels in primary breast tumors and Signal Transducer and Activator of Transcription 3



(STAT3) activation mechanisms. STAT3 is present in approximately 50% of primary breast
carcinomas. STAT3 activation can be triggered through abnormal activation of receptor tyrosine
kinases, Src, and Jaks, which have all been involved in breast cancer. Through analyses of six
breast cancer-derived cell lines with high or low levels of tyrosine-phosphorylated STAT3
(pSTAT3), the study found a position correlation between pSTAT3 and IL6 expression (Berishaj
et al. 2007). IL6 is capable of having tumor-promoting effects through STAT3, and invasion and
metastasis through the JACK/STAT3 and PI3K/AKT pathways (Martínez-Pérez et al. 2021,
Johnson et al. 2018, Tawara et al. 2019, Lapeire et al. 2014, Tawara et al. 2019, Winship et al.
2016, Li et al. 2014, Yue et al. 2016, Junk et al. 2017). Siersbæk et al. 2020 showed
IL6-activated STAT3 promotes metastasis through ER-FOXA1-STAT3 enhancers. Their results
indicate a clinical potential for targeting the IL6/STAT3 pathway in estrogen receptor alpha (ER)
positive breast cancer. IL6 and STAT3 have been thought to be connected to ER in breast cancer.
Siersbæk et al. 2020 indicate that STAT3 hijacks a subset of ER enhances to drive specific
transcriptional activity.

Gene Set 14: Inflammatory Response

Breast cancer can metastasize to the skeleton, as the environment allows for the growth and
development of breast cancer cells. Growth factors in the bone are degraded to support tumor
cell growth, in a continuing cycle of bone degradation and breast cancer progression. Two
important cell types involved with bone development are osteoclasts and osteoblasts. Metastatic
breast cancer cells suppress osteoblast differentiation and increase apoptosis. In a study
conducted by Kinder et al. 2008, they observed osteoblasts undergo an inflammatory stress
response when in the presence of breast cancer cells. Another study indicated sixty-nine percent
of patients dying from breast cancer had bone metastases, with the median survival being 24
months in those with the disease, and 85% having widespread skeletal involvement (Coleman
and Rubens 1987). Through their findings, they suggest metastatic breast cancer cells can
directly induce osteoblasts to express increased levels of inflammatory stress response molecules
(Kinder et al. 2008).

Gene Set 15: Interferon Alpha Response

Recent studies have shown that the interaction between autonomous signaling and cytokine
networks have implications in inflammatory breast cancer. Type I interferon, more specifically,
the interferon alpha signature, has been identified as being upregulated in inflammatory breast
cancer. Upregulation is related to apoptosis and cell senescence (Provance and Lewis-Wambi
2019). Interferons are cytokines that affect biological responses. The pathway involved is the
Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. The
pathway involves the interferons and their corresponding receptors, and results in the
phosphorylation and activation of STAT1 and STAT2 (Ogony et al. 2016). STAT1 and STAT2



regulate the type I interferon pathway, and are activated after binding to the pathway receptors
(Qadir et al. 2020). STAT1 activation has been reported as being tumor suppressive (Qadir et al.
2020, Chan et al. 2012, Schneckenleithner et al. 2011), however in recent studies, STAT1 could
also have tumor promotive attributes (Qadir et al. 2020, Khodarev et al. 2010, Greenwood et al.
2012, Tymoszuk et al. 2014, Hix et al. 2013). Bertucci et al. 2014 compared inflammatory breast
cancer and non-inflammatory breast cancer groups for pathway and transcription factor
activation signatures. Through their analysis of 19 pathways, they found 8 pathways more
activated in inflammatory breast cancer, with the interferon alpha response being one of those
pathways (Bertucci et al. 2014). Inflammatory breast cancer may have an interferon alpha
signature due to chromosomal instability (Provance and Lewis-Wambi 2019). Currently, the
interferon alpha response is used in anti-tumor treatment for advanced breast cancer to promote
hormone sensitivity and/or to stimulate cellular immunity (Nicolini et al. 2006).

Gene Set 16: Interferon Gamma Response

The interferon gamma response is an inflammatory cytokine. The CCRL2 gene is expressed in
breast cancer cells and increased amounts were found in breast tumor tissues with high immune
infiltration. Expression of CCRL2 is upregulated by the interferon gamma response. In addition,
an alternative transcript of CCRL2, CRAM-A, is expressed under the interferon gamma
response. The upregulation of CRAM-A may be a marker of immune response (Sarmadi et al.
2015). García-Tuñón et al. 2007 studied the expression patterns of the interferon gamma
response and its receptors through Western blot and immunohistochemistry. Using three breast
groups, fibrocystic lesions, in situ tumors, and infiltrating tumors, an immunohistochemical and
semiquantitative study of interferon gamma response was carried out. The study found within the
three groups, the interferon gamma response could be a potential tool in breast cancer. Through
Western Blot, they found that the optical density to the interferon gamma response was higher in
in situ carcinoma than in benign and infiltrating tumors. Additionally, in breast cancer cell lines,
treatment involving the interferon gamma response increases p21 (García-Tuñón et al. 2007).
p21 has been studied as a factor in breast cancer. p53, the most studied factor in the cancer,
transcriptionally upregulates p21 (Elledge and Allred 1998). They discuss the possibility of the
interferon gamma response being non-functional and unable to activate p21 to stop the cell cycle
(García-Tuñón et al. 2007).

Gene Sets 17 and 18: Kras Signaling Downregulated and Upregulated

KRAS belongs to the RAS superfamilies and small-guanosine triphosphate (GTP) binding
proteins. KRAS undergoes its inactive state by binding to guanosine diphosphate (GDP), and its
active state by binding to GTP, in the cell membrane. The KRAS protein is maintained in
oncogenesis. Uprety and Adjei 2020 highlights three rationales for targeting KRAS in cancer
therapy:



1. KRAS has a distinct role in tumorigenesis.
2. KRAS mutant cancer cells are KRAS dependent. Preclinical prevention of mutant KRAS

inhibits tumor growth.
3. KRAS mutant cancers represent approximately 30% of all human cancers.

Upregulation of KRAS signaling is seen in cancers with higher KRAS mutation rates, such as
pancreatic cancer and non-small cell lung cancer. However, less than 2% of breast cancers have
mutated KRAS. Mutated KRAS functions as an immune suppressor in other types of cancer, but
its effects on the tumor immune microenvironment (TIME) in breast cancer is unknown
(Tokumaru et al. 2020). Through the utilization of patient cohorts from the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas,
Tokumaru et al. 2020 hypothesized that KRAS signaling is associated with reduced patient
survival and the TIME in triple negative breast cancer.

Gene Set 19: Mitotic Spindle

The mitotic spindle begins to form in prophase of mitosis. In a single cell, two centrosomes will
move toward opposite poles during prophase. Then, microtubules will form, connecting the
centrosomes. This is the mitotic spindle. The mitotic spindle is a highly dynamic molecular
machine that is composed of tubulin, motors, and other molecules. Its purpose is to distribute the
duplicated genome to the daughter cells during mitosis (Karsenti and Vernos 2001). Utilizing
flow cytometry, Yoon et al. 2002 evaluated the potential role of a defective mitotic spindle
checkpoint as the cause of chromosomal instability, a key component of cancers. The study
monitored the response of cells to nocodazole-induced mitotic spindle damage. Yoon et al. 2002
indicated that all cell lines with high levels of chromosomal instability have defective mitotic
spindle checkpoints, and cell lines with moderate levels of chromosomal instability arrest at the
G2 checkpoint of the cell cycle when induced by nocodazole. The study indicated that high
levels of chromosomal instability are related to defective mitotic spindle checkpoints (Yoon et al.
2002).

Gene Set 20: Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling

The mechanistic target of rapamycin (mTOR), which is part of mTORC1 (mTOR complex 1), is
involved with metabolic processes for cell growth. mTORC1 is implicated in cancer, as it has a
role between signals that control cell growth and metabolic processes associated with growth.
mTORC1 can switch between catabolic and anabolic processes; catabolic processes convert
macromolecules into nutrients and energy, and anabolic processes convert nutrients and energy
into macromolecules (Ben-Sahra and Manning 2017). Preclinical trials have supported inhibition
of the PI3K/Akt/mTOR pathway in breast cancer treatments. Phase I to III trials are currently
being conducted in solid tumors and breast cancer. mTOR, a serine/threonine protein kinase, is
composed of mTORC1 and mTORC2. mTORC1 is attributed to anabolic cell growth, and



mTORC2 is attributed to cellular actin cytoskeleton organization and regulation of AKT
phosphorylation (Lee et al. 2015).

Gene Sets 21 and 22: Myc Targets v1 and v2

Myc is an oncogene that is found in most types of cancers. Myc bypasses genetic and
epigenetically controlled checkpoint mechanisms when activated. It is also involved in the
enforcement of the hallmarks of cancer (Gabay et al. 2014). Myc targets involve genes
associated with mitochondrial replication and biogenesis, for instance, POLG, POLG2, and
NRF1 (Kim et al. 2008). Rare missense mutations in POLG have been associated with inherited
predisposition to breast cancer (Tervasmäki et al. 2018). POLG2 is an accessory subunit of
POLG (Singh et al. 2009). Ramos et al. 2020 studied NRF1 activity on molecular signature of
breast cancer in Black, White, Asian, and Hispanic women. NRF1 has an important role in
estrogen-dependent breast tumorigenesis. Their findings showed that high expressor NRF1
triple-negative breast tumors had an unfavorable prognosis with a high risk of breast cancer
mortality in White women, and NRF1’s transcriptional activity coupled with target gene
signatures contribute to racial differences in breast cancer (Ramos et al. 2020).

Myc targets v1 and Myc targets v2 are obtained from the Molecular Signatures Database
Hallmark gene sets (Liberzon et al. 2015). Schulze et al. 2020 utilized Myc targets v1 and Myc
targets v2 for gene set variation analysis. The study hypothesized that scores correlate with tumor
aggressiveness and survival outcomes. As a result, in estrogen receptor-positive breast cancer,
high Myc targets v1 was associated with high mutation load, and high Myc targets v1 and v2
scores were associated with increased infiltration of pro- and anti-cancerous immune cells
(Schulze et al. 2020).

Gene Set 23: Oxidative Phosphorylation

Oxidative phosphorylation is where ATP synthesis is coupled to electron movement in the
electron transport chain. Cancer cells typically have reduced oxidative phosphorylation in the
mitochondria due to reduced flux in the tricarboxylic acid and/or respiration (Solanini et al.
2011). Cancer cells have upregulated glycolysis, leading to the understanding that oxidative
phosphorylation is downregulated in all cancers. However, oxidative phosphorylation can be
upregulated in some types of cancers. The upregulation of oxidative phosphorylation can be used
to alleviate adverse tumor hypoxia and to be a therapeutic target in cancers. In an analysis of
gene expression data from 2,000 patients with breast cancer, Whitaker-Menezes et al. 2011
indicated a significant transcriptional upregulation and oxidative phosphorylation. Marizomib, a
proteasome inhibitor, has displayed anti-cancer activity. Marizomib, also known as Mzb, inhibits
complex II-dependent mitochondrial respiration, which leads to reduced oxidative



phosphorylation. Mzb reduces primary tumor growth and induces apoptosis in human
triple-negative breast cancer cell line xenografts (Raninga et al. 2020).

Gene Set 24: p53 Pathway

The p53 pathway is involved in neoplasia. Numerous studies have been conducted on the p53
pathway and have highlighted the p53 transcription factor as a critical point of changes in
cellular responses. Under normal conditions, p53 regulates downstream genes involved in
cellular responses. Due to p53’s critical role in cellular regulation, many diverse regulatory
mechanisms control p53. DNA damage activates p53 to carry out processes such as growth arrest
and apoptosis. Mutations cause p53 to lose its function, which contributes to the genesis of some
tumors and aids in the growth of tumors (Prives and Hall 1999). The p53 pathway is associated
with more aggressive breast cancer and low chances of survival. Genetic and epigenetic changes
have been identified in regulators of p53 activity (Gasco et al. 2002). Due to the association of
p53 with breast cancer, research on p53 provides valuable insight on how to combat breast
cancer.

Gene Set 25: Phosphatidylinositol-3-kinase (PI3K) Protein Kinase B (AKT) Mammalian Target
of Rapamycin (mTOR) Signaling

The PI3Ks are in a family of lipid kinases involved in the phosphorylation of the 3'-hydroxyl
group of phosphoinositides. Phosphatidylinositol-3,4,5-trisphosphate, PIP3, is a product of the
phosphorylation reaction, and a critical second messenger involved in growth and proliferation
activation, and survival signaling (Yuan et al. 2016). The dysregulation of the
phosphatidylinositol-3-kinase (PI3K) protein kinase B (AKT) mammalian target of rapamycin
(mTOR) signaling is involved in cancer growth and progression (Khan et al. 2016). PI3K
inhibitors arose due to the high frequency of PI3K pathway alterations in cancer. Tumors can
become reliant on PI3K. Genetic alterations in the enzymes involved in the PI3K pathway have
made the pathway one of the most frequently dysregulated pathways in cancer (Yuan and
Cantley 2008). The PI3K-Akt pathway has been researched in the development of cancer
treatments. Serra et al. 2008 researched NVP-BEZ235, a dual inhibitor of the PI3K and the
downstream mammalian target of rapamycin (mTOR). They found that this dual inhibitor
inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in
breast cancer cells. They also found that the inhibitor inhibited PI3K signaling and had antitumor
activity (Serra et al. 2008). In another study, Zhang et al. 2020 studied effective specific inhibits
for PI3Kα mutants. The study’s main focus was PIK3CA, a gene that encodes the p100α
catalytic subunit of PI3Kα. PI3Kα contains two subunits, catalytic and inhibitory. PIK3CA is
mutated in cancer. The dysregulation of PI3Kα signaling is associated with tumorigenesis and
drug resistance (Zhang et al. 2020). Akt inhibitors have been validated as a therapeutic target,
and are activated in several types of cancers. Targeting the pathway with drug inhibitors may



result in more effective anticancer treatments (Nitulescu et al. 2016). The Akt signaling cascade
is also known to be associated with tumor aggressiveness (Chautard et al. 2014). Inhibitors that
inhibit the catalytic activity of mTORC1 and mTORC2 have been developed for anti-tumor
activity (Feldman et al. 2009, Hua et al. 2019).

Gene Set 26: Transforming Growth Factor Beta (TGF-β) Signaling

The transforming growth factor beta (TGF-β) signaling regulates tumorigenesis and its
associated signaling pathways are modified during tumor progression (Bierie and Moses 2006).
TGF-β signaling is controlled extracellularly (Tzavlaki and Moustakas 2020). Studies have
shown that TGF-β mediated stromal-epithelial interactions have significantly improved our
understanding of cancer regulation. Diverse populations of cell types responding to TGF-β in the
tumor microenvironment result in the regulation of cancer initiation, progression, and metastasis
(Bierie and Moses 2006). In 1987, Silberstein and Daniel were the first to associate TGF-β with
mammary epithelial development (Moses and Barcellos-Hoff 2011). They show that TGF-β can
stimulate or inhibit the growth of cells (Silberstein and Daniel 1987). TGF-β is a growth
inhibitor, so abnormalities in the signaling pathway result in carcinogenesis. TGF-β is a regulator
of epithelial-mesenchymal transition (EMT). EMT has roles in cell motility and cancer cell
invasiveness. Due to this, TGF-β signaling may be involved in breast cancer stem cell regulation
(Imamura et al. 2012).

Gene Set 27: Tumor Necrosis Factor Alpha (TNFA) Signaling via Nuclear Factor Kappa B
(NFKB)

Tumor necrosis factor alpha (TNFA) is involved in inflammatory and immune system responses
(Strieter et al. 1993). The immune system is composed of cytokines and tumor necrosis factors,
among others. The TNF cytokine family has the ability to induce apoptotic cell death.
Sheen-Chen et al. 1997 studied serum TNFA concentration in patients with malignancy. There
are increased concentrations in patients with malignancy. The study was designed to evaluate any
correlation between the serum TNFA and clinical pathological features. Utilizing 40 patients
with invasive breast cancer undergoing radical mastectomy, data pertaining to tumor size, age,
estrogen receptor status, lymph node status, and TNM staging was obtained (Sheen-Chen et al.
1997). TNM is a staging system for cancer registries, where T indicates the Tumor, N indicates
the Node, and M indicates Metastasis (Piñeros et al. 2019). As a result, the study found that
preoperative evaluation of serum TNFA has the potential to be a valuable parameter for
evaluating the severity of staging for invasive breast cancer (Sheen-Chen et al. 1997). In a more
recent study, Cruceriu et al. 2020 also evaluated the potential of TNFA as a parameter. The tumor
microenvironment has a role in breast cancer progression and evolution. Within the tumor
microenvironment is TNFA. The study analyzed the correlation between TNFA expression levels
at the tumor site and in the plasma or serum of breast cancer patients. They also evaluated the



role of TNFA signaling in estrogen-positive and -negative breast cancer cells. Lastly, they
highlighted TNFA’s role in epithelial-to-mesenchymal transition and breast cancer cell
metastasis. As a result of their analyses, they discuss how TNFA can be a target and a drug when
developing breast cancer therapies (Cruceriu et al. 2020). It has been studied that
dichloroisocoumarin (DCI) and other serine protease inhibitors are known to block TNFA
production (McGeehan et al. 1994). These inhibitors block NFKB, a transcription factor, and
subsequent cytokine gene activation (McGeehan et al. 1994).

Increasing Interest in the Application of the Hallmarks

There has been increasing interest in the application of the hallmarks. We identified a variety of
applications (see Table 1) and highlighted a few here. In 2018, Cooperberg et al. 2018 analyzed
tumor biology and gene expression patterns among men with clinically low-risk prostate cancer.
They utilized hallmark gene sets such as Myc targets, G2M checkpoint, and E2F targets.
Cooperberg et al. 2018 determined average genomic risk from the hallmark gene sets. They
found that genomic risk scores were associated with worse pathology findings, and were
associated with prostate-specific antigen recurrence after surgery. They also observed greater
genomic diversity among low-risk patients. In addition, they conducted cluster analysis from the
hallmark gene sets, identifying 3 main subtypes of prostate cancer. In 2020, Liu et al. (2020)
conducted molecular profiling analysis on clinical patient samples. They identified three
enriched pathways in relapsed mantle cell lymphoma pathogenesis from hallmarks gene set
analysis. As evidenced by these examples and Table 1, the hallmarks are viewed as informative
readouts of patient status and response.



Table 1. Studies regarding the 27 hallmarks of cancers in CLIA-certified laboratories.

Hallmark Study Year Disease Type Summary of Usage

Androgen Response Analytical Validation
of Androgen Receptor
Splice Variant 7
Detection in a Clinical
Laboratory
Improvement
Amendments (CLIA)
Laboratory Setting
(Lokhandwala et al.
2017)

2017 Prostate Cancer ● Patients with
castration-resistant
prostate cancer can be
treated with drugs
targeting the androgen
receptor (AR)
ligand-binding
domain.

● Active AR splice
variant 7 (AR-V7)
lacks the
ligand-binding
domain.

● Validation of an
AR-V7 assay in a
CLIA-certified
laboratory.

Clinical Utility of
CLIA-Grade AR-V7
Testing in Patients
With Metastatic
Castration-Resistant
Prostate Cancer
(Markowski et al.
2017)

2017 Prostate Cancer ● Analytical validation
of AR-V7 assay in a
CLIA-certified
laboratory.

Androgen Receptor
Immunohistochemistr
y as a Companion
Diagnostic Approach
to Predict Clinical
Response to
Enzalutamide in
Triple-Negative Breast
Cancer (Kumar et al.
2017)

2017 Breast Cancer ● Comparative analysis
of breast carcinoma
tissue samples and a
validated Clarient
CLIA AR
Immunohistochemistr
y (IHC) protocol for
AR441 (an AR
monoclonal antibody).

Angiogenesis Circulating baseline
plasma cytokines and
angiogenic factors
(CAF) as markers of
tumor burden and
therapeutic response in
a phase III study of
pazopanib for
metastatic renal cell
carcinoma (mRCC)
(Liu et al. 2011)

2011 Renal Cell
Carcinoma

● Plasma were analyzed
for CAFs by
SearchLight multiplex
assays in a
CLIA-certified
laboratory.

Angiogenic and
T-effector subgroups

2021 Clear Cell Renal
Cell Carcinoma

● Whole transcriptome
sequencing was



identified by gene
expression profiling
(GEP) and propensity
for PBRM1 and BAP1
alterations in clear cell
renal cell carcinoma
(ccRCC) (Barata et al.
2021)

performed for ccRCC
patient samples
submitted to a
commercial
CLIA-certified
laboratory.

In vivo imaging of
eribulin-induced
reoxygenation in
advanced breast
cancer patients: a
comparison to
bevacizumab (Ueda et
al. 2016)

2016 Breast Cancer ● Utilization of a
CLIA-certified
multiplex protein
array from Luminex
Multiplex Assays
Human Cytokine
Magnetic 30-Plex.

Apoptosis MYC and MCL1
Cooperatively
Promote
Chemotherapy-Resista
nt Breast Cancer Stem
Cells via Regulation
of Mitochondrial
Oxidative
Phosphorylation (Lee
et al. 2017)

2017 Breast Cancer ● Genomic profiling in
a CLIA-certified,
CAP-accredited
reference laboratory.

A Phase II Trial of
Neoadjuvant
MK-2206, an AKT
Inhibitor, with
Anastrozole in
Clinical Stage II or III
PIK3CA-Mutant
ER-Positive and
HER2-Negative
Breast Cancer (Ma et
al. 2017)

2017 Breast Cancer ● After DNA extraction
from tumor biopsies,
specific exons were
PCR amplified and
sequenced at a
CLIA-certified
laboratory using
Sanger technology.

Presence of anaplastic
lymphoma kinase in
inflammatory breast
cancer (Robertson et
al. 2013)

2013 Breast Cancer ● Patient tumor samples
were analyzed using
the FDA approved in
situ hybridization
(FISH) detection
method in a
CLIA-certified
Genzyme Genetics
Laboratory.

Bile Acid
Metabolism

Alpha-methylacyl-Co
A racemase
(AMACR) protein is
upregulated in early

2022 Breast Cancer ● AMACR is an
enzyme involved in
the branched-chain
fatty acid and bile



proliferative lesions of
the breast irrespective
of apocrine
differentiation
(Gatalica et al. 2022)

acid metabolism.
● Whole-transcript

RNA-Seq was
performed. RNA-Seq,
also referred to as the
Caris WTS (Whole
Transcriptome
Sequencing) assay is
CAP/CLIA validated.

Intrahepatic
Cholestasis of
Pregnancy and Serum
Bile Acids in
HIV-Infected Pregnant
Women (Weinberg et
al. 2015)

2015 HIV ● Bile acid
measurements.

● All assays were
conducted in CLIA-
and CAP-certified
clinical laboratories
using FDA-approved
methods.

Bile Acid Profiling
Reveals Distinct
Signatures in
Undernourished
Children with
Environmental Enteric
Dysfunction (Zhao et
al. 2021)

2021 Enteric
Dysfunction

● Bile acid profiling
using
ultra-performance
liquid-chromatograph
y coupled with
tandem mass
spectrometry.

DNA Repair Genomic alterations in
DNA repair and
chromatin remodeling
genes in estrogen
receptor-positive
metastatic breast
cancer patients with
exceptional responses
to capecitabine (Levin
et al. 2015)

2015 Breast Cancer ● Targeted NGS and
phosphoprotein
analysis using a
reversed phase protein
microarray (RPMA)
platform at a
CLIA-certified
laboratory.

Estrogen
receptor-positive
(ER+) metastatic
breast cancer (MBC)
patients (pts) with
extreme responses
(ERs) to capecitabine
having tumors with
genomic alterations in
DNA repair and
chromatin remodeling
genes (Levin et al.
2014)

2014 Breast Cancer ● Targeted NGS was
performed on
patients’
formalin-fixed
paraffin-embedded
primary breast cancer
specimens at a
CLIA-certified
laboratory.

A phase II clinical trial
of talazoparib

2021 Breast Cancer ● Assessed the objective
response rate (ORR)



monotherapy for
PALB2
mutation-associated
advanced breast
cancer (Gruber et al.
2021)

of talazoparib
monotherapy in
patients with PALB2
mutation-associated
advanced breast
cancer.

● Eligible patients had a
deleterious or
suspected deleterious
mutation in PALB2 on
a CLIA-approved
commercial germline
or next generation
sequencing tumor
assay.

E2F Targets Interrogation of
Dysregulated
Pathways Enables
Precision Medicine in
Mantle Cell
Lymphoma (Liu et al.
2020)

2020 Lymphoma ● Molecular profiling
analysis was done on
clinical patient
samples.

● Hallmarks of cancer
such as aberrant
apoptosis pathway
and E2F targets were
identified in patient
samples.

Transcriptomic
profiling of patients
(pts) with de-novo
metastatic
castration-sensitive
prostate cancer
(DN-mCSPC) versus
those with mCSPC
that have relapsed
from prior localized
therapy (PLT-mCSPC)
(Sayegh et al. 2022)

2022 Prostate Cancer ● Comparison of
patients with de-novo
metastatic
castration-sensitive
prostate cancer
(DN-mCSPC) and
patients with mCSPC.

● RNAseq profiling was
performed by a
CLIA-certified
laboratory.

● Hallmarks of cancers
such as E2F Targets,
G2-M Checkpoint,
Androgen Response,
Inflammatory
Response, and TNFA
Signaling via NFKB
were analyzed.

NeoPalAna:
Neoadjuvant
Palbociclib, a
Cyclin-Dependent
Kinase 4/6 Inhibitor,
and Anastrozole for
Clinical Stage 2 or 3
Estrogen

2017 Breast Cancer ● Single-arm phase II
neoadjuvant trial
(NeoPalAna) to assess
the antiproliferative
activity of the
CDK4/6 inhibitor
palbociclib in primary
breast cancer.



Receptor-Positive
Breast Cancer (Ma et
al. 2017)

● Analysis of
expression of E2F
targets in tumor
subsets.

Epithelial
Mesenchymal
Transition

TOPO1 expression in
primary and metastatic
GI cancers (Castro et
al. 2016)

2016 Gastrointestinal
Cancers

● Proposed that TOPO1
overexpression is
related to metastatic
disease as part of the
epithelial-mesenchym
al-transition (EMT)
seen in metastatic
phenotypes.

● Colorectal (CRC),
pancreatic, gastric,
and small bowel
adenocarcinoma
(SBA) patients were
tested at a CLIA
laboratory.

Can Patients with
Muscle-invasive
Bladder Cancer and
Fibroblast Growth
Factor Receptor-3
Alterations Still Be
Considered for
Neoadjuvant
Pembrolizumab? A
Comprehensive
Assessment from the
Updated Results of the
PURE-01 Study
(Necchi et al. 2021)

2021 Muscle-Invasive
Bladder Cancer

● The PURE-01 study
looked at patients
with muscle-invasive
bladder cancer
(MIBC) who had
tumor features
indicating that
immunity may
promote response.

● Cases involved
patients with low
epithelial-mesenchym
al transition and
immune signature
scores.

Estrogen Response
Early and Late

Estrogen
receptor-positive
(ER+) metastatic
breast cancer (MBC)
patients (pts) with
extreme responses
(ERs) to capecitabine
having tumors with
genomic alterations in
DNA repair and
chromatin remodeling
genes (Levin et al.
2014)

2014 Breast Cancer ● Analyzed the genomic
alterations in tumors
of metastatic breast
cancer patients who
had responses to
capecitabine.

● Targeted NGS was
performed on
patients’ FFPE
primary breast cancer
or metastatic breast
cancer specimens.

Metastatic Breast
Cancer with ESR1
Mutation: Clinical
Management

2016 Breast Cancer ● Reviewed the key
considerations
involved in clinical
decision making.



Considerations From
the Molecular and
Precision Medicine
(MAP) Tumor Board
at Massachusetts
General Hospital
(Bardia et al. 2016)

● Molecular profiling
was performed by an
institutional
laboratory-developed
test, Snapshot-NGS
assay
(Snapshot-NGS).

● The assay was
performed in a
CLIA-certified
laboratory.

Neratinib Efficacy and
Circulating Tumor
DNA Detection of
HER2 Mutations in
HER2 Nonamplified
Metastatic Breast
Cancer (Ma et al.
2017)

2017 Breast Cancer ● Conducted a
single-arm phase II
trial for the
assessment of the
clinical benefit rate
(CBR) of neratinib in
HER2mut nonamplified
metastatic breast
cancer.

● DNA sequencing of
primary and
metastatic tumors
were performed at a
CLIA-certified
laboratory.

● HER2 mutation
testing was conducted
at a CLIA laboratory.

G2-M Checkpoint The Diverse Genomic
Landscape of
Clinically Low-risk
Prostate Cancer
(Cooperberg et al.
2018)

2018 Prostate Cancer ● Analyzed the tumor
biology among men
with clinically
low-risk prostate
cancer.

● Analyzed the gene
expression patterns

● Utilized hallmark
gene sets such as Myc
targets, G2-M
checkpoint, and E2F
targets.

Molecular Subsets in
Renal Cancer
Determine Outcome to
Checkpoint and
Angiogenesis
Blockade (Motzer et
al. 2020)

2020 Renal Cancer ● Conducted an
integrated
multi-omics
evaluation of tumor
specimens from
advanced renal cell
carcinoma patients.

● Identified molecular
subsets associated
with differential
clinical outcomes to



angiogenesis blockade
or with a checkpoint
inhibitor.

● Comprehensive
genomic profiling was
done in a
CLIA-certified
laboratory.

Loss of function JAK1
mutations occur at
high frequency in
cancers with
microsatellite
instability and are
suggestive of immune
evasion (Albacker et
al. 2017)

2017 Common and
rare cancers

● Indicated that loss of
function frameshift
mutations in JAK1
may have a role in
immune evasion.

● Clinical samples were
evaluated in a
CLIA-certified and
CAP-accredited
laboratory.

Hypoxia Phase I study of the
Antiangiogenic
Antibody
Bevacizumab and the
mTOR/Hypoxia-Induc
ible Factor Inhibitor
Temsirolimus
Combined with
Liposomal
Doxorubicin:
Tolerance and
Biological Activity
(Moroney et al. 2012)

2012 Advanced
malignancies
including breast,
epithelial
ovarian, and
colorectal cancer

● Testing for genetic
aberrations was
conducted in a
CLIA-certified
molecular diagnostic
laboratory.

Phase 1 study of ARQ
761, a β-lapachone
analogue that
promotes
NQO1-mediated
programmed cancer
cell necrosis (Gerber
et al. 2018)

2018 Advanced solid
tumor cancers

● Developed a
CLIA-certified IHC
assay for the
assessment of
potential study
candidates.

Clinical proteomics
for prostate cancer:
understanding prostate
cancer pathology and
protein biomarkers for
improved disease
management (Tonry et
al. 2020)

2020 Prostate Cancer ● Assays utilized were
conducted in a
CLIA-certified
laboratory.

Interleukin-2 (IL2)
Signal Transducer
and Activator of

Rapamycin/Il-2
Combination Therapy
in Patients with Type 1

2013 Type 1 Diabetes ● Phase 1 clinical trial
testing
rapamycin/IL-2



Transcription 5
(STAT5) Signaling

Diabetes Augments
Tregs yet Transiently
Impairs β-Cell
Function (Long et al.
2013)

combination therapy
in type 1 diabetic
(T1D) patients.

● Measured serum
cytokine levels in a
CLIA-certified
contract laboratory.
Serum analytes tested:
IFN-γ, IL-4, IL-5,
IL-6, IL-8, IL-10,
IL-1β, IL-1Rα, IL-2,
etc.

Inflammatory
Response

Immune response
profiling of patients
with spondyloarthritis
reveals signaling
networks mediating
TNF-blocker function
in vivo (Menegatti et
al. 2021)

2021 Spondyloarthritis ● Analyzed induced
immune responses to
define mechanisms of
TNF blockers in
spondyloarthritis.

● Measured cytokine
and chemokines in a
CLIA-certified
laboratory.

Interferon Alpha
Response/ Interferon
Gamma Response

Large-scale analysis of
KMT2 mutations
defines a distinctive
molecular subset with
treatment implication
in gastric cancer
(Wang et al. 2021)

2021 Gastric Cancer ● Investigated the
distinct molecular
features between
KMT2-mutant and
KMT2-wild-type
gastric cancers.

● Compared the distinct
molecular features
between KMT2-MT
and KMT2-WT
gastric cancers.

● Datasets utilized were
obtained by a
commercial
CLIA-certified
laboratory.

● Study findings were
validated with the
TCGA cohort.

● Analyzed the
interferon alpha
response.

Kras Signaling
Downregulated and
Upregulated

Comparison of KRAS
mutation analysis of
colorectal cancer
samples by standard
testing and
next-generation
sequencing (Kothari et
al. 2014)

2014 Colorectal
Cancer

● Utilized a colorectal
cancer patient
population.

● Compared KRAS
testing done in
CLIA-approved
laboratories.



Whole-exome
sequencing of
pancreatic cancer
defines genetic
diversity and
therapeutic targets
(Witkiewicz et al.
2015)

2015 Pancreatic
Cancer

● Micro-dissected
pancreatic ductal
adenocarcinoma cases
underwent
whole-exome
sequencing.

● Indicated that
environmental stress
and alterations in
DNA repair genes
associate with distinct
mutation spectra.

KRAS G12C
mutations in Asia: a
landscape analysis of
11,951 Chinese tumor
samples (Loong et al.
2020)

2020 Various types of
cancer

● Sequencing data of
tumor samples were
analyzed for the
KRAS mutation.

● Samples were
analyzed by NGS
conducted in a
CAP-/CLIA-Accredit
ed Laboratory.

Mitotic Spindle Functional Precision
Medicine Identifies
Novel Druggable
Targets and
Therapeutic Options in
Head and Neck
Cancer (Xu et al.
2018)

2018 Head and Neck
Cancer

● Tumor cell culture
underwent
whole-exome
sequencing, RNA
sequencing,
comparative genome
hybridization, and
high-throughput
phenotyping.

● The SEngine
Precision Medicine
CLIA PARIS test and
the CLIA approved
UWOnoPlex test were
both utilized on the
samples.

PTEN mutations
predict benefit from
tumor treating fields
(TTFields) therapy in
patients with recurrent
glioblastoma (Dono et
al. 2021)

2021 Glioblastoma ● Retrospective review
of patients with
infiltrating gliomas.

● Tumors were
evaluated with NGS.

● The FoundationOne
assay was performed
in a CLIA-certified
laboratory.

Small cell lung cancer:
Where do we go from
here? (Byers et al
2014)

2014 Small Cell Lung
Cancer

● Review of the current
state of small cell lung
cancer treatment.

● Discussion of mitotic
spindle assembly.



Mammalian Target
of Rapamycin
Complex 1
(mTORC1)
Signaling

Morphoproteomic
Profiling of the
Mammalian Target of
Rapamycin (mTOR)
Signaling Pathway in
Desmoplastic Small
Round Cell Tumor
(EWS/WT1), Ewing’s
Sarcoma (EWS/FLI1)
and Wilms’ Tumor
(WT1) (Subbiah et al.
2013)

2013 Desmoplastic
Small Round
Cell Tumor
(EWS/WT1),
Ewing’s Sarcoma
(EWS/FLI1), and
Wilms’ Tumor
(WT1)

● Assessed patients with
DSRCT, Wilms’
tumor and Ewing’s
sarcoma.

● Detected p-mTOR,
p-Akt, p-ERK1/2,
p-STAT3, and
cell-cycle related
analytes.

Myc Targets v1 and
v2

Comprehensive
genomic profiling of
inflammatory breast
cancer cases reveals a
high frequency of
clinical relevant
genomic alterations
(Ross et al. 2015)

2015 Breast Cancer ● Conducted
comprehensive
genomic profiling on
specimens using the
hybrid capture-based
FoundationOne assay.

● Assays were
conducted at a
CLIA-certified and a
CAP-accredited
laboratory.

Distinct
clinicopathological
characteristics,
genomic alteration and
prognosis in breast
cancer with concurrent
TP53 mutation and
MYC amplification
(Lin et al. 2022)

2022 Breast Cancer ● Analyzed breast
cancer specimens to
discuss the clinical
values of concurrent
TP53 mutations and
MYC alterations.

Oxidative
Phosphorylation

Importance of
glycolysis and
oxidative
phosphorylation in
advanced melanoma
(Ho et al. 2012)

2012 Melanoma ● Utilized analysis of
monocarboxylate
transporters (MCT) 1
and 4 expression to
determine if in
advanced melanoma,
there exists a link
between glycolysis
and the oxidative
phosphorylation
pathways.

● All assays were
conducted in a
CLIA-certified
laboratory.

Therapy resistance:
opportunities created
by adaptive responses
to targeted therapies in

2022 Cancer ● Assessed challenges
associated with tumor
heterogeneity.

● CLIA assays are



cancer (Labrie et al.
2022)

performed to establish
the baseline tumor
phenotype and
genotype of the tumor.

P53 Pathway Comprehensive
characterization of
malignant phyllodes
tumor by whole
genomic and
proteomic analysis:
biological implications
for targeted therapy
opportunities (Jardim
et al. 2013)

2013 Breast cancer ● Comprehensive
molecular analysis of
metastatic malignant
phyllodes tumor
(uncommon breast
tumors) in
CLIA-certified
laboratories.

Next generation
sequencing of
carcinoma of unknown
primary reveals novel
combinatorial
strategies in a
heterogeneous
mutational landscape
(Subbiah et al. 2017)

2017 Carcinoma ● Identified therapeutic
strategies through an
exploratory analysis
of NGS on relapsed
and refractory
advanced carcinoma
of unknown primary
(CUP).

Novel chromatin
modifying gene
alterations and
significant survival
association of ATM
and P53 in mantle cell
lymphoma (Wang et
al. 2014)

2014 Lymphoma ● Captured DNA-Seq
and RNA-Seq
libraries were
sequenced to high
depth in a
CLIA-certified and
CAP-accredited
laboratory.

Phosphatidylinositol
-3-kinase (PI3K)
Protein Kinase B
(AKT) Mammalian
Target of Rapamycin
(mTOR) Signaling

Molecular
determinants of
outcome with
mammalian target of
rapamycin inhibition
in endometrial cancer
(Mackay et al. 2014)

2014 Endometrial
Cancer

● Identification of
molecular markers
associated with
mTOR inhibitor
activity in women
with metastatic
endometrial cancer.

● Assays were
conducted in
CAP/CLIA-certified
laboratories.

The PI3K/Akt/mTOR
pathways in ovarian
cancer: therapeutic
opportunities and
challenges (Cheaib et
al. 2015)

2015 Ovarian Cancer ● Analyzed the PI3K
pathway in ovarian
cancer.

● Provided a review of
clinical trials of novel
PI3K inhibitors and
inhibitors in
combination with



cytotoxics and ovarian
cancer therapies.

● Molecular screening
was done with a
CLIA-approved
targeted sequencing
test.

Landscape of
Phosphatidylinositol-3
-Kinase Pathway
Alterations Across
19,784 Diverse Solid
Tumors (Millis et al.
2016)

2016 Cancers ● Conducted a
retrospective analysis
of 19,784 patients.

● Analyzed aberrations
in the
PI3K/AKT/mTOR
pathway.

● Profiled a large
number of diverse
solid tumors in a
CLIA-certified
laboratory.

Transforming
Growth Factor Beta
(TGF-β) Signaling

Alterations in the
Intraocular Cytokine
Milieu after
Intravitreal
Bevacizumab
(Forooghian et al.
2010)

2010 Proliferative
Diabetic
Retinopathy

● Analysis to determine
the relationship
between cytokine
levels pars plana
vitrectomy (PPV) and
postoperative
outcomes.

● Assays on cytokines
were done with a
sandwich-ELISA
multiplex system in a
CLIA laboratory.

Targeting TGF-β for
treatment of
osteogenesis
imperfecta (Song et al.
2022)

2022 Osteogenesis
imperfecta
(brittle bone
disease)

● Histology and
RNA-Seq were
performed on bones.

● Gene Ontology (GO)
enrichment assay,
gene set enrichment
analysis (GSEA), and
Ingenuity Pathway
Analysis (IPA) were
utilized to identify
dysregulated
pathways.

● Markers of bone
turnover were
measured by CLIA-
and CAP-certified
laboratories.

Genetics of Pulmonary
Arterial Hypertension:
Current and Future

2005 Pulmonary
Arterial
Hypertension

● Discussion of
mutations in the gene
that codes for activin



Implications (Elliott et
al. 2005)

receptor-like kinase
(ALK 1) and TGF-β.

● Discussion of
CLIA-approved gene
tests.

Tumor Necrosis
Factor Alpha
(TNFA) Signaling
via NFKB

Immune response
profiling of patients
with spondyloarthritis
reveals signalling
networks mediating
TNF-blocker function
in vivo (Menegatti et
al. 2021)

2021 Spondyloarthritis ● Analyzed immune
responses to microbial
and pathway-specific
stimuli.

● Utilized peripheral
blood samples from
80 patients with axial
spondyloarthritis.

● Measured cytokines
and chemokines in a
CLIA-certified
laboratory.

The Diverse Genomic
Landscape of Clinical
Low-risk Prostate
Cancer (Cooperberg et
al. 2018)

2018 Prostate Cancer ● Analyzed prostate
cancer cases in the
Decipher Genomic
Resource Information
Database
(GRID) and
University of
California, San
Francisco (UCSF)
samples in a
CLIA/CAP-certified
laboratory.

● Samples were
analyzed for
facilitation of
treatment decisions.



DATA

RNA-seq data was utilized from 42 UHR replicates. The UHR is composed of a mixture of 10
human cancer cell lines. Of the 42 UHR replicates, based upon sequencing dates, 38 UHR
samples were evaluated. The lots are differentiated by their sequencing date; Lot 1 includes
sequencing conducted after November 9th, 2019, and Lot 2 includes sequencing conducted
before August 22nd, 2018. For Lot 1, one large fragmentation batch was prepared, and this batch
has been used for all subsequent sequencing runs; for Lot 2, one large fragmentation batch was
prepared.

For comparison with the null distribution, RNA-seq data from two de-identified patient samples,
both with biopsy 1 (pre-treatment) and biopsy 2 (on treatment) data were also utilized.

METHODS

Overview

Rational for Delta Evaluation: As the ultimate focus was to evaluate hallmarks for treatment
differences, we are interested in the difference in expression between pre- on-treatment samples
(which we denote as delta). The null distribution is pairwise different among the UHR samples.

We utilized prioritized Hallmarks of Cancer (Hanahan et al. 2011) described above as the gene
sets to evaluate the gene expression across the 38 UHR samples. All analyses were conducted in
the R programming environment and R Studio. The following describes our overall workflow:

● Evaluate gene expression distributions across the UHR lots and in the patient samples
○ Box plots, descriptive statistics for overall expression and pairwise deltas

● Evaluate impact of filtering low expression genes
○ Compare stringent and less-stringent gene filtering criteria using same criteria as

above
● Evaluate use of ranks

○ Evaluate the usage of deltas and determine if other ranks would be more
appropriate.

● Compute differences in gene expression (deltas) for the patient distribution.
○ Utilize the patient distribution as a comparison point. .
○ UHR expressions should be representative of the patient samples.

● Evaluate the UHR as a null reference distribution.
○ Assess if the UHR distribution meets the key characteristics for an optimal

reference/null distribution.



Deltas Computed Based on Gene Expression Differences

Log-transformed Null Distribution Data and Separation by Lots

The UHR TPM expression data was imported into RStudio and NA’s were omitted. The columns
consist of the ENSG and HUGO gene identifiers, as well as the UHR replicates. This was
merged with the run and lot metadata to allow evaluation of batch effects. In addition to the UHR
distribution data frame and its associated metadata data frame, we utilize a master gene
annotation data frame which includes the Hallmark gene set membership flags.

Once the cutoff metrics are applied, the main data frame is annotated by Lot 1, sequencing
conducted after November 9th, 2019, and Lot 2, sequencing conducted prior to August 22nd,
2018. The reference date is set as 2019-11-09, matching the formatting of the dates in the main
data frame. The reference data is then compared to the sample date. If the sample’s run data is
before 11/9/2019, and is annotated as Lot 2. After annotating, there are 26 UHR’s in Lot 1 and 12
UHR’s in Lot 2. Only UHRs with a run date were used.

The main data frame is then subsetted to produce two new data frames, a data frame containing
only Lot 1 samples and another data frame containing only Lot 2 samples. The minimum,
median, maximum, and average expression values are obtained for Lot 1 and Lot 2, separately,
and together. After these summary statistics, boxplots of the expression values were generated,
where the x-axis contains the UHRs and the y-axis contains the expression values. Boxplots were
obtained for Lot 1 and Lot 2 separately, and together (Figures 5 and 8).

The coefficients of variation were also computed. Matrices were made for Lot 1 and Lot 2
separately, and together. An annotation summary table was generated, consisting of gene
identifier, average expression in Lot 1, average expression in Lot 2, coefficient of variation in
Lot 1, coefficient of variation in Lot 2, and overall coefficient of variation.

A function was created to obtain the null deltas which are the pairwise differences of a gene
across the UHR’s. For instance, if we have a gene with 3 UHR’s, the delta would be UHR1 -
UHR2, UHR1 - UHR3, and UHR2 - UHR3. The delta distribution was computed for Lot 1 and
Lot 2 separated, and together. For Lot 1, there are 26C2 = 325 combinations; 325 pair-wise
deltas for a given gene. For Lot 2, there are 12C2 = 66 combinations; 66 pair-wise deltas for a
given gene. For Lot 1 and Lot 2 together, there are 38C2 = 703 combinations; 703 pair-wise
deltas for a given gene. The R matplot() function is utilized to produce the delta distribution plots
(Figures 7 and 10 ). The maximum deltas, average deltas, and 95th percentiles for the deltas were
computed.



Cutoff Metrics Set 1

Following gene list filtering, the NA’s are set to 0, and columns with 0’s are removed. Genes
where average expression < 100 are also removed. The data frame is then log2-transformed.
Columns with 0’s or negatives are then removed. Columns where log2-average expression > 1
are kept.

Cutoff Metrics Set 2

Following gene list filtering, the NA’s are set to 0, and columns with 0’s are removed. The data is
then log2-transformed. If there are any columns with 0’s or negatives, they are removed.

Deltas Computed Based on Rank Differences

The prior section discusses utilizing gene expression differences to compute the deltas, but due to
the scaling differences between the UHR null distribution data and the de-identified patient
samples used as our patient distribution, we examined deltas as rank-based differences.

Using the main data frame of the UHR distribution, 27 data frames were extracted for the 27
Hallmarks of Cancer. The main data frame was subsetted by the gene lists that are associated
with the 27 Hallmarks of Cancer. From here, several filtering methods are examined:

● Keeping genes with 0 expression
● Removing genes with 0 expression
● Keeping genes with > 1 average expression
● Keeping genes with > 10 average expression

Each of the 27 data frames were filtered by each of the five filtering methods for evaluation. The
27 data frames’ columns consisted of the ENSG identifier, and the 38 UHRs. The means of the
rows were taken and one of the filtering methods listed above was applied.

Once the filtering method was applied, the rankings were computed. The gene with the highest
expression would be given a rank of 1, the gene with the second highest expression would be
given a rank of 2, and so on. To calculate the rank deltas, the same delta function that was
utilized in the prior section was utilized. Once the rank delta distributions were computed, the
minimum and maximum rank deltas were computed. The 80th, 85th, 90th, and 95th percentiles
were also computed.



RESULTS AND DISCUSSION

Data Distribution Before Filtering

Pre-Filtering

Figure 3. Distribution of the log-transformed gene expression values without filtering.
Boxplot of the logged-expression values for Lot 1 and Lot 2 combined. The x-axis indicates the
UHR ID number, and the y-axis indicates the log-transformed gene expression value.

Figure 4. Distribution of the log-transformed gene expression values without filtering for
the two paired deidentified patient samples obtained. Boxplot of the logged-expression



values. The x-axis indicates the de-identified ID, and the y-axis indicates the log-transformed
gene expression value.

As shown by figures 3 and 4, there exists more variability between the lots than between the
patients. This was also reflected in the descriptive statistics as well (Table 2). Given the lot
differences and other technical differences, there was concern about combining the UHRs.

Table 2. Descriptive statistics summaries for the pre-filtered UHR distribution and the
patient distribution.

UHR Distribution
(Pre-Filtered)

Patient Distribution

Minimum 0.000216388 0

Q1 2.109567 5.438526

Median 3.159304 8.927307

Q3 4.340651 11.360290

Maximum 19.13106 22.00219

In addition to the variability, there was also a remarkable difference in overall expression with
the UHRs much lower than the patient samples (Table 2). This led us to assess both filtering (to
remove low expressed genes) as well as rank based methods given scaling issues.

Deltas Computed Based on Gene Expression Differences

Log-transformed Null Distribution Data and Separation by Lots

Cutoff Metrics Set 1

The first set of cutoff metrics are as follows:
● Filtered out genes with low non-logged average expression (< 100).
● Filtered out genes with low logged average expression (< = 1).

60554 genes were the starting point, however, after filtering, there are only 533 genes left. Lot 1
consisted of 26 UHRs, 533 genes, and 325 pair-wise deltas for a given gene (26C2). Lot 2
consisted of 12 UHRs, 533 genes, and 66 pair-wise deltas for a given gene (12C2). Overall, there
are 38 UHRs, 533 genes, and 703 pair-wise deltas for a given gene (38C2). Lot 1
logged-expression values are slightly higher than Lot 2.When taking Lot 1 and Lot 2 together, it
does not appear that normalization within or between lots was successful. Within the UHRs,



there is variation in the expression levels (Table 3). The normalization of the lots was not
apparent in the boxplots leading to concerns about the magnitude of the batch effects (Figure 5).

Figure 5. Distribution of the log-transformed gene expression values with the first
approach’s cutoff metrics. (A) Boxplot of the logged-expression values for Lot 1 only. The



x-axis indicates the UHR ID number, and the y-axis indicates the log-transformed gene
expression values. (B) Boxplot of the logged-expression values for Lot 2 only. The x-axis
indicates the UHR ID number, and the y-axis indicates the log-transformed gene expression
values. (C) Boxplot of the logged-expression values for Lot 1 and Lot 2 combined. The x-axis
indicates the UHR ID number, and the y-axis indicates the log-transformed gene expression
values.

Table 3. Descriptive statistics summary for cutoff metrics set 1.

UHR Distribution (After Cutoff Metrics Set 1)

Minimum 2.015176

Q1 7.118302

Median 7.913196

Q3 9.230560

Maximum 19.13106

Across the genes, there is a slight increase in the coefficients of variation for Lot 1 and Lot 2,
(Figure 5). The greatest variability was seen when the lots were combined.

Figure 6. Coefficients of variation distribution. Plot of the distribution of the coefficients of
variation, where blue indicates Lot 1 samples and black indicates Lot 2 samples.



There are higher pairwise deltas than expected for the UHR distribution and there is a shift
across the two lots. Summary statistics, such as minimum and maximum deltas were computed
for Lot 1 and Lot 2. In some cases, Lot 1 and Lot 2 had similar maximum deltas (Table 4). As an
example, now deprecated genes, ENSG00000278047.1 and ENSG00000276924.1, had identical
maximum deltas across the two lots, 7.704626 (Table 4). However, in other cases, Lot 1 and Lot
2 had very different maximum deltas Table 5). For instance, for small nucleolar RNA genes
ENSG00000263934.4 and ENSG00000200087.1 had different maximum deltas across the two
lots, 0.401890 and 0.899330, respectively. It is important to remember that these are supposed to
be representing null distributions so a doubling of the delta is a concern. There exists very large
pairwise differences that would make the detection of biological changes difficult. A stable
reference distribution should have less variability in its distribution within lots and between lots.

Table 4. Similar maximum deltas for cutoff metrics set 1.

Lot 1 Maximum
Delta

Lot 2 Maximum
Delta

Lot 1 and Lot 2
Maximum Delta

ENSG00000278047.1 5.501958 2.72114 7.704626

ENSG00000276924.1 5.501958 2.72114 7.704626

Table 5. Different maximum deltas for cutoff metrics set 2.

Lot 1 Maximum
Delta

Lot 2 Maximum
Delta

Lot 1 and Lot 2
Maximum Delta

ENSG00000263934.4 0.347370 0.401890 0.401890

ENSG00000200087.1 0.899330 0.713850 0.899330

When observing the distribution of the deltas for Lot 1, the deltas are within the range of -5 to 5;
for Lot 2, the deltas are within the range of -5 and 5 as well, but taken together, the deltas have a
broader range (Figure 7). The variation in the delta distribution indicates that the UHR may not
be a stable reference distribution.



Figure 7. Distribution of the gene expression delta distributions with the first approach’s
cutoff metrics. (A) Plot of the gene expression delta distribution for Lot 1 only. The x-axis



indicates the UHR pair number, the y-axis indicates the delta value. The delta value is the
difference in gene expression between a gene’s expression in one UHR and the same gene’s
expression in another UHR. (B) Plot of the gene expression delta distribution for Lot 2 only. The
x-axis indicates the UHR pair number, and the y-axis indicates the delta value. The delta value is
the difference in gene expression between a gene’s expression in one UHR and the same gene’s
expression in another UHR. (C) Boxplot of the gene expression delta distribution for Lot 1 and
Lot 2 combined. The x-axis indicates the UHR pair number, and the y-axis indicates the delta
value. The delta value is the difference in gene expression between a gene’s expression in one
UHR and the same gene’s expression in another UHR.

Using this filtering method, we observed that many transcripts are not expressed in the UHRs.
For those expressed, there was a high level of technical variability among the UHRs. Filtering
out non-expressed and highly variable genes reduces the number of genes tremendously but does
increase the overall expression closer to the patient distribution.

Cutoff Metrics Set 2

The second set of cutoff metrics are as follows:
● Removed any cells with average expression = 0.
● Removed any cells with 0 or negative logged average expression.

With a starting point of 60554 genes, after filtering with this set of cutoff metrics, there were
10430 genes left, giving a broader gene list than the first set of cutoff metrics. With this set of
cutoff metrics, Lot 1 consisted of 26 UHRs and 325 pair-wise deltas for a given gene (26C2); Lot
2 consisted of 12 UHRs and 66 pair-wise deltas for a given gene (12C2); and overall, there were
38 UHRs and 703 pair-wise deltas for a given gene (38C2). With this set of cutoff metrics, the
UHRs have a relatively more similar distribution in comparison to the distribution seen with the
first set of cutoff metrics (Figure 8 and Table 6). However, the lots do not appear to have been
normalized together.



Figure 8. Distribution of the log-transformed gene expression values with the second
approach’s cutoff metrics. (A) Boxplot of the logged-expression values for Lot 1 only. The



x-axis indicates the UHR ID number, and the y-axis indicates the log-transformed gene
expression values. (B) Boxplot of the logged-expression values for Lot 2 only. The x-axis
indicates the UHR ID number, and the y-axis indicates the log-transformed gene expression
values. (C) Boxplot of the logged-expression values for Lot 1 and Lot 2 combined. The x-axis
indicates the UHR ID number, and the y-axis indicates the log-transformed gene expression
values.

Table 6. Descriptive Statistics summary for cutoff metrics set 2.

UHR Distribution (After Cutoff Metrics Set 1)

Minimum 0.000216388

Q1 2.188729

Median 3.216161

Q3 4.383641

Maximum 19.13106

For Lot 1, there is 1 sample with a coefficient of variation > 1, and 10429 samples with a
coefficient of variation <= 1. For Lot 2, there are 0 samples with a coefficient of variation > 1,
and 10430 samples with a coefficient of variation <= 1. Combined, there are 0 samples with a
coefficient of variation > 1 and 10430 samples with a coefficient of variation <= 1. The higher
the coefficient of variation, the greater the level of dispersion around the mean; the lower the
coefficient of variation, the better, as the spread of data values is low relative to the mean. The
distribution of the coefficients of variation are spread from 0 to 1, indicating high variability
between lots and within lots. Across the genes, there is a slight increase in the coefficients of
variation, indicating higher variability between the two lots (Figure 9).



Figure 9. Coefficients of variation distribution. Plot of the distribution of the coefficients of
variation, where blue indicates Lot 1 samples and black indicates Lot 2 samples.

Lot 1 minimum delta is -5.548437; Lot 2 minimum delta is -5.716802; and together, the
minimum delta is -7.871139. Lot 1 maximum delta is 5.646818; Lot 2 maximum delta is
3.959282; and together, the maximum delta is 7.04626. This set of cutoff metrics is similar to
what was observed in the first set of cutoff metrics. In some cases, there were similar maximum
deltas. The now deprecated genes, ENSG00000171560.1, ENSG00000117308.14, and
ENSG00000182866.16, had similar maximum deltas for Lot 1 only and Lot 2 only, but when
considering Lot 1 and Lot 2 together, the maximum deltas varied. For instance,
ENSG00000171560.14 had a Lot 1 maximum delta of 0.4132900, a Lot 2 maximum delta of
0.5632920, and then the delta increases to 0.7605690, when considering both Lot 1 and Lot 2
(Table 7). However, in others, the deltas had a noticeable difference. For instance,
ENSG00000137285.9 had a Lot 1 maximum delta of 0.3063000, a Lot 2 maximum delta of
0.7170630, and an overall maximum delta of 1.3466430 (Table 9). In addition, for some genes,
Lot 1 had higher deltas than Lot 2 (Table 10), but in other genes, Lot 2 had higher deltas than Lot
1 (Table 9). The UHR distribution has variability as a whole and within the lots.

Table 7. Examples of similar maximum deltas for cutoff metrics set 2 (lowest deltas).

Lot 1 Maximum
Delta

Lot 2 Maximum
Delta

Lot 1 and Lot 2
Maximum Delta

ENSG00000171560.1
4

0.4132900 0.5632920 0.7605690



ENSG00000117308.1
4

0.4134070 0.4859700 1.0419480

ENSG00000182866.1
6

0.4134930 0.6076070 1.1948270

Table 8. Examples of similar maximum deltas for cutoff metrics set 2 (highest deltas).

Lot 1 Maximum
Delta

Lot 2 Maximum
Delta

Lot 1 and Lot 2
Maximum Delta

ENSG00000275127.1 4.304664 3.1155680 5.048557

ENSG00000207263.1 3.954312 3.2132190 4.647363

ENSG00000207279.1 3.916215 2.9740210 4.858417

Table 9. Different maximum deltas for cutoff metrics set 2 (lowest deltas).

Lot 1 Maximum
Delta

Lot 2 Maximum
Delta

Lot 1 and Lot 2
Maximum Delta

ENSG00000137285.9 0.3063000 0.7170630 1.3466430

ENSG00000196230.1
2

0.3063710 0.5641670 1.1350360

ENSG00000073578.1
6

0.3126200 0.6059340 1.1379830

Table 10. Different maximum deltas for cutoff metrics set 2 (highest deltas).

Lot 1 Maximum
Delta

Lot 2 Maximum
Delta

Lot 1 and Lot 2
Maximum Delta

ENSG00000206172.8 5.646818 1.5493750 5.646818

ENSG00000278047.1 5.501958 2.7211400 7.704626

ENSG00000276924.1 5.501958 2.7211400 7.704626

As seen with the first set of cutoff metrics, when considering Lot 1 and Lot 2 together, the deltas
have a broader range and greater variability. This again indicates that the UHR distribution may
not be suitable as a reference distribution.



Figure 10. Distribution of the gene expression delta distributions with the second
approach’s cutoff metrics. (A) Plot of the gene expression delta distribution for Lot 1 only. The



x-axis indicates the UHR pair number, and the y-axis indicates the delta value. The delta value is
the difference in gene expression between a gene’s expression in one UHR and the same gene’s
expression in another UHR. (B) Plot of the gene expression delta distribution for Lot 2 only. The
x-axis indicates the UHR pair number, and the y-axis indicates the delta value. The delta value is
the difference in gene expression between a gene’s expression in one UHR and the same gene’s
expression in another UHR. (C) Plot of the gene expression delta distribution for Lot 1 and Lot 2
combined. The x-axis indicates the UHR pair number, and the y-axis indicates the delta value.
The delta value is the difference in gene expression between a gene’s expression in one UHR and
the same gene’s expression in another UHR.

Deltas Computed Based on Rank Differences

Due to the scaling issues in gene expression data, we evaluated utilizing rank deltas. Using the
rankings of genes across the UHRs, the differences between ranks were obtained, and a
distribution was made based off of this. Using rank deltas attempts to address the batch and
scaling issues that were seen in previous analyses.



Table 11. Impact on Hallmark Gene sets selected filtering evaluation.

Gene Set Keeping
genes
with 0
expressio
n

Removin
g genes
with 0
expressio
n

Keeping
genes
with
average
expressio
n > 1

Keeping
genes
with
average
expressio
n > 10

% genes
lost
(Removin
g genes
with 0
expression
)

% genes
lost
(Keeping
genes
with
average
expressio
n > 1)

% genes
lost
(Keeping
genes
with
average
expressio
n > 10)

Androgen
Response

96 94 87 57 2.08% 9.00% 40.63%

Angiogenesis 36 33 28 15 8.33% 22.00% 58.33%

Apoptosis 159 155 144 79 2.52% 9.00% 50.31%

Bile Acid
Metabolism

112 106 78 27 5.36% 30.00% 75.89%

DNA Repair 148 148 146 93 0.00% 1.00% 37.16%

E2F Targets 195 195 195 142 0.00% 0.00% 27.18%

Epithelial
Mesenchymal
Transition

197 196 167 88 0.51% 15.00% 55.33%

Estrogen
Response
Early

195 194 173 68 0.51% 11.00% 65.13%

Estrogen
Response Late

197 195 170 80 1.02% 14.00% 59.39%

G2M
Checkpoint

197 195 170 80 1.02% 14.00% 59.39%

Hypoxia 192 187 166 94 2.60% 14.00% 51.04%

IL2 STAT5
Signaling

195 181 145 68 7.18% 26.00% 65.13%

IL6 JAK
STAT3
Signaling

87 78 60 23 10.34% 31.00% 73.56%

Inflammatory
Response

200 177 112 43 11.50% 44.00% 78.50%

Interferon 96 93 79 37 3.13% 18.00% 61.46%



Alpha
Response

Interferon
Gamma
Response

200 191 156 67 4.50% 22.00% 66.50%

Kras Signaling
Downregulated

194 145 79 12 25.26% 59.00% 93.81%

Kras Signaling
Upregulated

196 179 137 51 8.67% 30.00% 73.98%

Mitotic
Spindle

198 198 193 115 0.00% 3.00% 41.92%

Mtorc1
Signaling

195 195 192 155 0.00% 2.00% 20.51%

Myc Targets
V1

198 196 196 184 1.01% 1.00% 7.07%

Myc Targets
V2

58 58 58 36 0.00% 0.00% 37.93%

Oxidative
Phosphorylatio
n

186 185 184 155 0.54% 1.00% 16.67%

P53 Pathway 193 190 172 77 1.55% 11.00% 60.10%

PI3K AKT
MTOR
Signaling

104 99 90 58 4.81% 13.00% 44.23%

TGF Beta
Signaling

54 54 51 30 0.00% 6.00% 44.44%

TNFA
Signaling via
NFKB

199 192 163 62 3.52% 18.00% 68.64%



With the filtering method of keeping genes with average expression > 10 in the UHR data, there
are 5 hallmarks where greater than 70% of the genes are lot: Bile Acid Metabolism, IL6 JAK
STAT 3 Signaling, Inflammatory Response, Kras Signaling Downregulated, and Kras Signaling
Upregulated. There are 2 hallmarks with less than 20 % of the genes being lost: Myc Targets V1
and Oxidative Phosphorylation. When looking at filtering method of keeping genes with average
expression > 10 in the UHR data, there are 5 pathways where greater than 70% of the genes were
lost: Bile Acid Metabolism, IL6 JAK STAT 3 Signaling, Inflammatory Response, Kras Signaling
Downregulated, and Kras Signaling Upregulated. There are 2 pathways where less than 20% of
the genes were lost: Myc Targets V1 and Oxidative Phosphorylation.

When assessing the filtering, we wanted to consider if the low expressing genes in the UHR data
were also low expressing in the patient samples, which could mitigate the impact.

In addition, we wanted to assess if the low expressing genes in the UHR data were low ranking
in the patient samples. For instance, given a pathway, IL6 JAK STAT3 Signaling, unfiltered,
there are 87 genes. After filtering for genes with average expression > 10, there are 23 genes left.
The 64 genes that were filtered out were examined in the patient data. We hypothesized that the
low expressing genes in the UHR would also be low expressing in the patient data. However, the
genes that were low expressing in the UHR were both low and high expressing in the patient
data. We also hypothesized that these genes would have low rankings in the patient data, but this
was not the case. These genes were low and high ranking in the patient data.

Given these filtering assessments, a number of Hallmarks would not be able to be evaluated
given the percentage of genes missing if the UHRs were utilized as the reference. In Bennett
2001, it is noted that missing data of 10% or higher can cause bias. The proportion of missing
data tolerated varies (often listed as 5% to 20%) as it is dependent on the robustness of the
statistical model being applied (Bennett 2001). Many hallmarks had more than 20% of their
genes lost after filtering. For instance, the Kras Signaling Downregulated pathway had 93.81%
of its genes removed after filtering out genes with < 10 average expression.

Of those genes that are low-expressing in the UHRs, we do not see them as consistently
low-expressing in the patients.

Additionally, we need to consider that some genes may be variable due to the disease status of
the patient, not just comparing the UHR data with the primary sample tissue, but patient specific
considerations. The UHR data also appears to inflate patient outliers if low-expressing genes are
not removed.



UHRs as a Reference Distribution for Disease Types

Figure 11. Low-expressing genes in the UHR distribution from the Interleukin-6 (IL6)
Janus Kinase (JAK) Signal Transducer and Activator of Transcription 3 (STAT3) Signaling
pathway as inputs to the Genotype-Tissue Expression (GTEx) project.



The low-expressing genes in the UHR distribution from the Interleukin-6 (IL6) Janus Kinase
(JAK) Signal Transducer and Activator of Transcription 3 (STAT3) Signaling pathway are the
following: CD38, TNFRSF12A, FAS, TNFRSF1B, BAK1, IL17RB, IL4R, IL12RB1, HMOX1,
CSF2RB, IL7, EBI3, TGFB1, TYK2, DNTT, MAP3K8, CCL7, LTBR, STAM2, REG1A, IL1R2,
IL1R1, IL18R1, LEPR, CSF3R, CNTFR, IL9R, IRF1, IL1B, IL13RA1, IL2RA, IL15RA, CD36,
ACVR1B, IL6, PIM1, TLR2, CXCL9, INHBE, ACVRL1, PIK3R5, IFNAR1, PDGFC,
TNFRSF21, CXCL13, CXCL3, PF4, CXCL1, CCR1, CSF2, CXCL10, CXCL11, CD14, JUN,
IL17RA, CSF1, SOCS3, IL3RA, SOCS1, PLA2G2A, PTPN1, CSF2RA, CRLF2, IRF9, LTB,
TNF, IL10RB, ITGB3. As a comparison to patient data, we utilized the Genotype-Tissue
Expression (GTEx) project, which has samples collected from 54 on-diseased tissue sites from
approximately 1000 individuals. This provides us with expression in these genes across tissue
types (Figure 11). From the TPM levels observed in Figure 11, the UHR distribution may not be
expressing the relevant genes for a number of cancers. Some of the genes in the list have 0
expression in the UHRs, but they are moderately or highly expressed in the GTEx patient
distribution. If the UHR data was utilized as a reference distribution for a given tissue, genes
would be left out of analyses. For instance, if a study were to be conducted on the lungs, a
number of genes would be under-estimated or viewed as non-expressed in the null distribution
inflating both normal and aberrant gene expression in patient samples.



CONCLUSION

If UHR replicates were to be used as a reference distribution to evaluate gene expression
differences in the patient distributions, a number of the Hallmarks of Cancer would not be able to
be evaluated given the large percentage of genes missing from appropriate filtering metrics.

In Bennett (2001) it is noted that missing data of 10% or higher can cause bias. The proportion of
missing data tolerated varies (often listed as 5% to 20%) as it is dependent on the robustness of
the statistical model being applied. As shown by our evaluation, the majority of the genesets had
greater than 40% of their genes lost after appropriate filtering.

Additionally, of those genes that are low-expressing in the UHR replicates, we do not see them
as consistently low-expressing the patients. We also need to consider that some genes will be
variable due to the disease status of the patient, meaning that we need to consider not only the
differences between UHR replicates and primary sample tissues, we also need to account for
patient-specific considerations. The UHRs also appear to inflate patient outliers if lowly
expressed genes are not accounted for.

Recognizing that the patient samples were limited, we assessed GTEX and found that across
tissues the UHRs often under-estimated the expression compared to patient samples.

Referring back to our definition for the key characteristics for an optimal reference/null
distribution, the UHR replicates do not appear to meet them, at least based on this data (Table
12).

Table 12. Alignment of the UHR replicates as a reference distribution with our key
characteristics for an optimal reference/null distribution.

Key Characteristics Do the UHR replicates match
these criteria?

Reasoning

The sample gene expression
distributions should be
appropriate for the disease
type.

No UHR replicates are too low;
we observed the loss of
hallmarks and the replicates
are not representative of other
disease types (i.e. Lung in the
GTEx analysis).

There is biological variability
sample-to-sample, but is not
due to technical artifacts.

No Observed batch effects
between Lot 1 and Lot 2.

Large enough distribution to No Observed batch effects



avoid sampling error. between Lot 1 and Lots 2;
also issues of sampling genes
being dependent on gene
filtering criteria.

Pairwise differences among
samples should reflect normal
biological variability, but be
less than actual treatment
effects, if present.

No Observed technical variability
and low expression in the
UHR reference distribution.
This led to artificial inflation
of patient metrics.

Overall, some disease types would not be able to be evaluated accurately due to the high
prevalence of the low-expressing genes in the UHR replicates distribution in the patient
distribution.

Through the evolution of laboratory testing, we began to examine how laboratory testing has
evolved. We observed an increased emphasis on rigor and appropriateness in terms of model
validation, and evaluation of the appropriateness of the validation. As pipelines and data became
more complex and heterogeneous, there was increased interest in constructing a null reference
distribution. Increasing complexity in laboratory testing led us to consider how to effectively and
appropriately address the gaps in pipeline development. Additionally, with the increasing need
for validation, it became crucial to determine best practices to evaluate the methods.

Constructing an appropriate reference distribution for gene expression differences to assess
therapeutic effects on tumors has been of great interest. However, as examined, the lack of a gold
standard is a challenge. Validation will likely be test-specific, and we must consider not only the
methods, but how to best evaluate the methods. To effectively transition from research to clinical
usage, there is a great need for the validation and hardening of complex and heterogeneous
algorithms. Moving computational approaches towards clinical usage has the potential to greatly
improve patient outcomes, and the cost and efficacy of therapies.



SUPPLEMENTARY TABLES

Supplementary Table 1. Selected 27 Hallmarks of Cancer percentiles from log-transformed
UHR null distribution data. The 27 hallmarks of cancer gene sets are Androgen Response,
Angiogenesis, Apoptosis, Bile Acid Metabolism, DNA Repair, E2F Targets, Epithelial
Mesenchymal Transition, Estrogen Response Early, Estrogen Response Late, G2-M Checkpoint,
Hypoxia, Interleukin-2 (IL2) Signal Transducer and Activator of Transcription 5 (STAT5)
Signaling, Interleukin-6 (IL6) Janus Kinase (JAK) Signal Transducer and Activator of
Transcription 3 (STAT3) Signaling, Inflammatory Response, Interferon Alpha Response,
Interferon Gamma Response, Kras Signaling Downregulated, Kras Signaling Upregulated,
Mitotic Spindle, mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling, Myc
Targets Version 1, Myc Targets Version 2, Oxidative Phosphorylation, P53 Pathway,
Phosphatidylinositol-3-kinase (PI3K) Protein Kinase B (AKT) MTOR Signaling, Transforming
Growth Factor beta (TGF-β) Signaling, and Tumor Necrosis Factor alpha (TNFA) Signaling via
NFKB.

Gene Set 80% 85% 90% 95%

Hall27_8TPM_3
Cases

0.72737408 0.832910649999
999

0.965429 1.16577631

Androgen
Response

0.724289 0.8231581 0.948067 1.1456019

Angiogenesis 0.765911 0.86406155 0.9847476 1.169414665

Apoptosis 0.775832 0.883771 1.017094 1.21569275

Bile Acid
Metabolism

0.6839744 0.78451285 0.9136398 1.0963923

DNA Repair 0.6728688 0.777899 0.911773400000
001

1.10796444

E2F Targets 0.6722568 0.7689838 0.8888254 1.0679854

Epithelial
Mesenchymal
Transition

0.801383 0.90709482 1.04253414 1.2399902

Estrogen
Response Early

0.8440108 0.94997652 1.0869838 1.2864356

Estrogen
Response Late

0.815328800000
001

0.9264732 1.0649914 1.2677708



G2M
Checkpoint

0.815328800000
001

0.9264732 1.0649914 1.2677708

Hypoxia 0.75973776 0.859781 0.9881236 1.1867816

IL2 STAT5
Signaling

0.7575114 0.859255275 0.9813087 1.16756195

IL6 JAK STAT3
Signaling

0.8120904 0.91979775 1.0496285 1.2487675

Inflammatory
Response

0.7580475 0.855052000000
001

0.974345 1.154014

Interferon Alpha
Response

0.68399306 0.7801986 0.90189764 1.0888282

Interferon
Gamma
Response

0.7306946 0.83169055 0.96121617 1.155964462

Kras Signaling
Downregulated

0.8496776 0.96214141 1.10766404 1.3322966

Kras SIgnaling
Upregulated

0.7403022 0.8439323 0.9720568 1.1604856

Mitotic Spindle 0.719004 0.814107 0.938396999999
999

1.119083

MTORC1
Signaling

0.6741474 0.7755839 0.9056416 1.1047935

Myc Targets V1 0.602424 0.6972704 0.8182644 1.0070586

Myc Targets V2 0.702392000000
001

0.80156005 0.918627 1.088662

Oxidative
Phosphorylation

0.604576 0.699522 0.825072 1.01589875

P53 Pathway 0.604576 0.699522 0.825072 1.01589875

PI3K AKT
MTOR
Signaling

0.7555876 0.8579957 0.9838778 1.1607478



TGF Beta
Signaling

0.849766 0.9497597 1.0739196 1.28278151

TNFA Signaling
via NFKB

0.8484084 0.9587466 1.09231997 1.289468455



Supplementary Table 2. Selected Hallmarks of Cancer percentiles from the UHR null
distribution data. The 27 hallmarks of cancer gene sets are Androgen Response, Angiogenesis,
Apoptosis, Bile Acid Metabolism, DNA Repair, E2F Targets, Epithelial Mesenchymal
Transition, Estrogen Response Early, Estrogen Response Late, G2-M Checkpoint, Hypoxia,
Interleukin-2 (IL2) Signal Transducer and Activator of Transcription 5 (STAT5) Signaling,
Interleukin-6 (IL6) Janus Kinase (JAK) Signal Transducer and Activator of Transcription 3
(STAT3) Signaling, Inflammatory Response, Interferon Alpha Response, Interferon Gamma
Response, Kras Signaling Downregulated, Kras Signaling Upregulated, Mitotic Spindle,
mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling, Myc Targets Version 1, Myc
Targets Version 2, Oxidative Phosphorylation, P53 Pathway, Phosphatidylinositol-3-kinase
(PI3K) Protein Kinase B (AKT) MTOR Signaling, Transforming Growth Factor beta (TGF-β)
Signaling, and Tumor Necrosis Factor alpha (TNFA) Signaling via NFKB.

Hallmark 80% 85% 90% 95%

HALLMARK_H
all27_8TPM_3C
ases

1.8064898184 2.040683279 2.328570468 2.7560888379

Androgen
Response

1.862245232 2.083846789 2.3554361313 2.7828646302

Angiogenesis 1.837945834 2.05460191193 2.33359664 2.75632524226

Apoptosis 1.868215792 2.0739212332 2.330296812 2.74721387644

Bile Acid
Metabolism

1.755443924 1.99638473735 2.289723455 2.73190025739

DNA Repair 1.838774856 2.062325028 2.330841305 2.742453996

E2F Targets 1.844434846 2.06788338012 2.344990634 2.76448907

Epithelial
Mesenchymal
Transition

1.866869158 2.0782954875 2.351251534 2.753325389

Estrogen
Response Early

1.900927828 2.1060300825 2.3558508593 2.752555438

Estrogen
Response Late

1.877595522 2.09443987 2.353831856 2.7562816842

G2M
Checkpoint

1.877595522 2.09443987 2.353831856 2.7562816842

Hypoxia 1.87870099 2.0910988 2.34904939 2.75331048



IL2 STAT5
Signaling

1.842645624 2.0700490719 2.349712668 2.7838542957

IL6 JAK STAT3
Signaling

1.82276932 2.056915474 2.3415032977 2.751600495

Inflammatory
Response

1.797070153 2.03626169 2.33166671 2.773685445

Interferon Alpha
Response

1.812572998 2.047244868 2.3227862216 2.7520969251

Interferon
Gamma
Response

1.816140186 2.050227218 2.3309535702 2.7734586984

Kras Signaling
Downregulated

1.769484958 2.016578381 2.320699056 2.7829069092

Kras Signaling
Upregulated

1.800783616 2.0359538808 2.328227822 2.76611229

Mitotic Spindle 1.882997596 2.10814181 2.379096177 2.774779283

MTORC1
Signaling

1.855704736 2.0750123 2.353450986 2.76042797568

Myc Targets V1 1.8285190468 2.0445517555 2.32474921488 2.7579078498

Myc Targets V2 1.889029338 2.1068648007 2.3637815 2.752123158

Oxidative
Phosphorylation

1.78321062 2.0160021468 2.299152766 2.730994914

P53 Pathway 1.78321062 2.0160021468 2.299152766 2.730994914

PI3K AKT
MTOR
Signaling

1.870169498 2.090032386 2.35462838 2.763074448

TGF Beta
Signaling

1.8996557108 2.1045169978 2.352185682 2.746576411

TNFA Signaling
via NFKB

1.89801849 2.1106782775 2.35807604 2.75313239675



Supplementary Table 3. UHR Rank Delta minimum and maximum distribution.

Hallmark Keeping
genes
with 0
expressio
n

Removing
genes
with 0
expressio
n

Keeping
genes
with > 1
average
expressio
n

Keeping
genes
with > 10
average
expressio
n

X007_delt
a

X005_delt
a

Androgen
Response

0, 36 0, 36 0, 36 0, 36 0, 30 0, 47

Angiogenesis 0, 9 0, 9 0, 9 0, 7 0, 3 0, 15

Apoptosis 0, 50 0, 50 0, 50 0, 32 0, 3 0, 114

Bile Acid
Metabolism

0, 33 0, 33 0, 33 0, 13 0, 22 0, 32

DNA Repair 0, 74 0, 74 0, 74 0, 71 0, 44 0, 80

E2F Targets 0, 74 0, 74 0, 74 0, 74 0, 24 0, 53

Epithelial
Mesenchymal
Transition

0, 63 0, 63 0, 63 0, 34 0, 65 0, 110

Estrogen
Response Early

0, 72 0, 72 0, 72 0, 34 0, 64 0, 92

Estrogen
Response Late

0, 60 0, 60 0, 60 0, 41 0, 56 0, 60

G2M
Checkpoint

0, 60 0, 60 0, 60 0, 41 0, 56 0, 60

Hypoxia 0, 70 0, 70 0, 70 0, 64 0, 31 0, 130

Il2 STAT5
Signaling

0, 69 0, 69 0, 63 0, 30 0, 40.5 0, 90

IL6 JAK
STAT3
Signaling

0, 21 0, 21 0, 21 0, 14 0, 17 0, 46

Inflammatory
Response

0, 72.5 0, 60 0, 44 0, 20 0, 36.5 0, 106



Interferon
Alpha
Response

0, 46 0, 26 0, 29 0, 22 0, 24 0, 69

Interferon
Gamma
Response

0, 101 0, 68 0, 61 0, 37 0, 62.5 0, 134

Kras Signaling
Downregulated

0, 173.5 0, 79 0, 47 0, 9 0, 78 0, 71.5

Kras Signaling
Upregulated

0, 70 0, 70 0, 70 0, 30 0, 46 0, 102

Mitotic Spindle 0, 67 0, 67 0, 67 0, 58 0, 24 0, 85

MTORC1
Signaling

0, 81 0, 81 0, 81 0, 81 0, 35 0, 70

Myc Targets V1 0, 118 0, 118 0, 118 0, 112 0, 41 0, 64

Myc Targets V2 0, 24 0, 24 0, 24 0, 15 0, 7 0, 13

Oxidative
Phosphorylatio
n

0, 69 0, 69 0, 69 0, 67 0, 33 0, 73

P53 Pathway 0, 70 0, 70 0, 70 0, 43 0, 31 0, 97

PI3K AKT
MTOR
Signaling

0, 33 0, 33 0, 33 0, 32 0, 10 0, 33

TGF Beta
Signaling

0, 19 0, 19 0, 19 0, 12 0, 10 0, 33

TNFA
Signaling via
NFKB

0, 69 0, 69 0, 62 0, 33 0, 47 0, 106



Supplementary Table 4. UHR Rank delta percentile distribution; 80th, 85th, 90th, and 95th
percentiles.

Hallmark Keeping gene
with 0
expression

Removing genes
with 0
expression

Keeping genes
with > 1 average
expression

Keeping genes
with > 10
average
expression

Androgen
Response

5, 6, 7, 10 5, 6, 7, 10 5, 6, 8, 10 5, 6, 8, 10

Angiogenesis 2, 2, 2, 3 2, 2, 2, 3 2, 2, 2, 3 1, 2, 2, 2

Apoptosis 8, 10, 12, 16 8, 10, 12, 16 9, 10, 12, 16 7, 9, 10, 13

Bile Acid
Metabolism

6, 7, 9, 11 6, 7, 9, 11 6, 7, 8, 11 3, 3, 4, 5

DNA Repair 12, 15, 18, 23 12, 15, 18, 23 12, 15, 18, 23 12, 14, 17, 22

E2F Targets 13, 15, 18, 23 13, 15, 18, 23 13, 15, 18, 23 13, 15, 18, 23

Epithelial
Mesenchymal
Transition

9, 11, 13, 17 9, 11, 13, 17 10, 11, 14, 17 7, 9, 11, 14

Estrogen
Response Early

11, 13, 16, 21 11, 14, 17, 22 12, 14, 17, 22 7, 8, 10, 13

Estrogen
Response Late

11, 12, 15, 19 11, 13, 15, 19 11, 13, 16, 20 8, 10, 12, 15

G2M
Checkpoint

11, 12, 15, 19 11, 13, 15, 19 11, 13, 16, 20 8, 10, 12, 15

Hypoxia 10, 12, 14, 19 10, 12, 14, 19 10, 12, 15, 20 10, 12, 15, 19

IL2 STAT5
Signaling

9, 11, 13, 17 9, 11, 13, 17 9, 11, 13, 17 7, 9, 11, 14

IL6 JAK STAT3
Signaling

5, 5, 6, 8 4, 5, 6, 8 4, 5, 6, 8 3, 3, 4, 5

Inflammatory
Response

11.5, 14, 16, 22 10, 12, 15, 19 8, 9, 11, 14 5, 6, 8, 10

Interferon Alpha
Response

6, 7, 8, 10 5, 6, 8, 10 6, 7, 8, 11 5, 6, 8, 10



Interferon
Gamma
Response

11, 13, 15, 20 11, 13, 15, 19 11, 13, 15, 20 8, 9, 11, 16

Kras Signaling
Downregulated

17, 20, 25, 33 13, 15, 19, 25 10, 12, 14, 19 3, 4, 4, 6

Kras Signaling
Upregulated

12, 13, 16, 21 11, 13, 16, 20 11, 13, 15, 20 7, 9, 10, 13

Mitotic Spindle 13, 15, 18, 23 13, 15, 18, 23 13, 15, 18, 24 13, 15, 18, 24

MTORC1
Signaling

12, 15, 18, 24 12, 15, 18, 24 12, 15, 18, 24 14, 16, 20, 26

Myc Targets V1 12, 15, 19, 25 12, 15, 19, 25 12, 15, 19, 25 13, 16, 19, 26

Myc Targets V2 4, 5, 6, 8 4, 5, 6, 8 4, 5, 6, 8 3, 4, 4, 6

Oxidative
Phosphorylation

12, 14, 18, 24 12, 14, 18, 24 12, 14, 18, 24 13, 15, 18, 24

P53 Pathway 12, 14, 17, 23 12, 14, 17, 23 12, 15, 18, 24 9, 11, 14, 20

PI3K AKT
MTOR
Signaling

5, 6, 7, 10 5, 6, 7, 10 5, 6, 8, 10 5, 6, 7, 9

TGF Beta
Signaling

3, 4, 5, 6 3, 4, 5, 6 3, 4, 5, 6 3, 4, 4, 6

TNFA Signaling
via NFKB

11, 13, 16, 20 11, 13, 16, 20 11, 13, 16, 20 7, 8, 10, 13



APPENDIX

Appendix 1. The following Medical Genetics Search Filters were developed in conjunction
with the staff of GeneReviews: Genetic Disease Online Reviews at GeneTests, University of
Washington, Seattle and NCBI.
Ref: https://pubmed.ncbi.nlm.nih.gov/help/#medical-genetics-filters

Category PubMed equivalent

Diagnosis (Diagnosis AND Genetics)

Differential Diagnosis (Differential Diagnosis[MeSH] OR
Differential Diagnosis[Text Word] AND
Genetics)

Clinical Description (Natural History OR Mortality OR
Phenotype OR Prevalence OR Penetrance
AND Genetics)

Management (therapy[Subheading] OR treatment[Text
Word] OR treatment outcome OR
investigational therapies AND Genetics)

Genetic Counseling (Genetic Counseling OR Inheritance pattern
AND genetics)

Molecular Genetics (Medical Genetics OR genotype OR
genetics[Subheading] AND genetics)

Genetic Testing (DNA Mutational Analysis OR Laboratory
techniques and procedures OR Genetic
Markers OR diagnosis OR testing OR test
OR screening OR mutagenicity tests OR
genetic techniques OR molecular diagnostic
techniques AND genetics)

https://pubmed.ncbi.nlm.nih.gov/help/#medical-genetics-filters


Medical Genetics ((Diagnosis AND genetics) OR (Differential
Diagnosis[MeSH] OR Differential
Diagnosis[Text Word] AND genetics) OR
(Natural History OR Mortality OR
Phenotype OR Prevalence OR Penetrance
AND genetics) OR (therapy[Subheading] OR
treatment[Text Word] OR treatment outcome
OR investigational therapies AND genetics)
OR (Genetic Counseling OR Inheritance
pattern AND genetics) OR (Medical Genetics
OR genotype OR genetics[Subheading] AND
genetics) OR (DNA Mutational Analysis OR
Laboratory techniques and procedures OR
Genetic Markers OR diagnosis OR testing
OR test OR screening OR mutagenicity tests
OR genetic techniques OR molecular
diagnostic techniques AND genetics))
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