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Abstract

Nonlinear Estimation and Modeling
of Noisy Time-Series by
Dual Kalman Filtering Methods

Alex Tremain Nelson

Ph.D., Oregon Graduate Institute of Science and Technology
September 2000

Thesis Advisor: Eric A. Wan

Numerous applications require either the estimation or prediction of a noisy time-series. Examples
include speech enhancement, economic forecasting, and geophysical modeling. A noisy time-series
can be described in terms of a probabilistic model, which accounts for both the deterministic
and stochastic components of the dynamics. Such a model can be used with a Kalman filter (or
extended Kalman filter) to estimate and predict the time-series from noisy measurements. When
the model is unknown, it must be estimated as well; dual estimation refers to the problem of
estimating both the time-series, and its underlying probabilistic model, from noisy data. The
majority of dual estimation techniques in the literature are for signals described by linear models,
and many are restricted to off-line application domains. Using a probabilistic approach to dual
estimation, this work unifies many of the approaches in the literature within a common theoretical
and algorithmic framework, and extends their capabilities to include sequential dual estimation of
both linear and nonlinear signals. The dual Kalman filtering method is developed as a method
for minimizing a variety of dual estimation cost functions, and is shown to be an effective general
method for estimating the signal, model parameters, and noise variances in both on-line and off-line

environments.
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Chapter 1

Introduction

1.1 Overview

This thesis addresses the problem of modeling and estimating noisy discrete-time signals, or time-
series. Numerous applications — vanging trom speech enhancement, o economic forecasting, to
adaptive control — require either the estimation, prediction, or mnodeling of a noisy time-series.
In estumotion, all data up to the current time is used to approximate the current value of the
underlying clean time-sevies. Prediction is coucewnted with using all avajlable data to approximate
a future value of the clean serles. Modelng (sometimes referved to as wdentification) is the process
of approximating the underlying dynauics that generated the clean time-series

These tasks are stiongly interdependent. For examnple, an acow ate model of the systein that
generated the time-series can be used for estiination of the signal. Conversely, if the clean signal is
available, it can be used to build an acenrate model of the dynamics. Furthermore, if an accurate
model and good sigual estimates are available, good predictions can be generated by using the

estimates as inpuls to the model.

Prediction
A N
// 2 ~
Fana S

Signal ' Model
Estimation Estimation
-

Figure 1.1: The dual estimation problem. Signal and model estimation are interdependent tasks;
prediction requires solving both.

However, when neither the model nor the clean signal ave known, the situation is much more
challenging (see Figure 1.1). The problem of cstimating (from noisy data) both the underiying
sipna} and the mwodel that produced i is the central topic of this thesis, and will be referred to

herein as the duol estimation problem.



The next section presents a set of basic assumptions about how the noisy data were generated,
and introduces much of the notation used throughout the thesis. The remainder of this introductory
chapter contains a brief motivational description of the dual estimation problem, followed by a
review of work done by other researchers to date, and a preview of the contributions made in this
thesis.

Chapter 2 uses a probabilistic approach to generate several cost functions that quantify (in
different ways) what is meant in the preceding text by “good” or “accurate” estimates and models.
Chapter 3 describes an algorithmic framework for minimizing these cost functions, which includes
the expectation-maximization (EM), recursive prediction error (RPE), and some new algorithms
as specific examples. Although particular attention is paid to linear and neural network models,
the algorithms described are applicable to a broader class of models that are differentiable in their
inputs and parameters. Finally, Chapter 4 gives an experimental comparison of the cost functions,
and Chapter 5 demonstrates the practical application of the algorithms using several real-world

examples.

1.2 Assumptions and Notation

1.2.1 Model Structure

Assume the noisy time-series of interest is generated by a nonlinear autoregressive function with

additive observation noise:

Tk = f(Zhots o Thom, W) + 0g
(1.1)

Yk = T + Nk, Vke {1...N}
where zp corresponds to the true underlying time-series driven by process noise vy, and f(-) is
a nonlinear function (e.g., a neural network) of the past M values of z; parameterized by w.
The only available observation is y;, which contains additive noise ny. The time-series is one-
dimensional; i.e., the noisy observation y; € R is a scalar. The situation is depicted in Figure 1.2.
The notation {y;}} is used herein to represent the sequence of data, {y1,¥2,Y3,... , ¥t}

This model structure is fairly general. Loosely speaking, Takens’ theorem [82] states that the
dynamics of a discrete-time system with state-space dimension d can be reconstructed in a 2d + 1
dimensional space constructed from a vector of observations on the system [zg_1, ... ,mk_(2d+1)]T.
In other words, the first part of Equation 1.1 can accurately model the dynamics of any unknown

d-dimensional system with observed variable zj, as long as M > 2d + 1 (see also [73, 31]), and as

long as the parameterized class of models f(-) is broad enough.
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Figure 1.2: The data are assumed to be generated by an unknown nonlinear autoregressive model, and
corrupted by additive measurement noise.

Although this tiesis is conceined exclusively with hime-serics modeling and estimiation, the
concepts it explores can be readily geueralized to orher system identification applications. Yor
example, including o user-determined inpur to the function fi-) would produce a noonlinear ARX
(autoregressive, ¢xogenons input) model. Similar extensions to ARMA (autoregressive moving
average) and ARMAX models are also possible, as are extensions fo multi-dimensional data sets
(dim{ye) > 1).

A more general formudation might also nclude nonlinear channel effects of the torm y, =
glr, v pppr, ). The amework developed in this thesis can be easily adjusted to include
such a nonlinewr mmcasnrement equation, as long as the channel function ¢{-) is known and differ-
entiable!. In Bquation 1.1, this funciion takes the special form g(ay, ... S IRy TW) = Ep Ny,
representing corrnption by additive noise.

A Gaussian assumption on the noise terms will facilitate the derivation of cost functions from
a probabilistic perspective in Chapter 2. However, much of the analysis is valid for non-Gaussian
noise as well. Also, the alporithims discussed in this thesis often remain vseful when the Gaussian
assumption ceases to hold, as is demonstrated experiinentally by the example applications

Chapter 4.

1.2.2 System Identification Loop

The methods described in thix thesis minst inevitably be used withw a system-identification loop
[40] of repeatedly: (1) selecting a niodel set. (2) chiwosing a cost function and algorithm to search

for and select. a model from that set, and then (3) validating e model (see Figure 1.3). The

LCorruption by unknown diannel effects repesenss o Wlind deconmotution problem, aud is cousjderably more
difficult unless additional constrainls o assumplions we used.
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inethods presented hercin address only the secoud of the thyee steps, under the assumption that

mechanisms are in place for performing model set selection and model validation.

Chouose

Data = Mcdai Set Prior Knowledge

.

Choose
<— Cost =

; i Function |

Data Search for £
Mode! Choose
<— Search 4
l Algorithm |
Dbataa = Validate  Reisat

Model
|

¢ Accepl

Figure 1.3: The system identification loop. The elements enclosed by the dashed hine are addressed in
this thesis. Figure adapted from [46].

Although the model set is partially defined by the noisy AR process of Equation 1.1, it remains
overly hroad because the founi of the function f{-) is not specificd. Before the opthnization methods
described in this thesis can be applied, the model et must be more narvowly defined in terms of
the order A and particntar tunctional foun of f(-). For example, f(-) might be defined as a 2-
layer {eedforward seural network with 16 inputs (M = 10), b ludden units, and one ouiput, o1 as
fitth-ovder (M = 3) linear model. The nicshods of this thesis app