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Abstract

Leveraging Multimodal Redundancy for Dynamic Learning, with

SHACER — a Speech and HAndwriting reCognizER

Edward C. Kaiser

Supervising Professor: Philip R. Cohen

New language constantly emerges from complex, collaborative human-human interactions

like meetings — such as when a presenter handwrites a new term on a whiteboard while

saying it redundantly. Fixed vocabulary recognizers fail on such new terms, which often

are critical to dialogue understanding. This dissertation presents SHACER, our Speech

and HAndwriting reCoginzER (pronounced “shaker”). SHACER learns out-of-vocabulary

terms dynamically by integrating information from instances of redundant handwriting

and speaking. SHACER can automatically populate an MS Project TM Gantt Chart by

observing a whiteboard scheduling meeting.

To document the occurrence and importance of such multimodal redundancy, we ex-

amine (1) whiteboard presentations, (2) a spontaneous brainstorming meeting, and (3)

informal annotation discussions about travel photographs. Averaged across these three

contexts 96.5% of handwritten words were also spoken redundantly. We also find that

redundantly presented terms are (a) highly topic specific and thus likely to be out-of-

vocabulary, (b) more memorable, and (c) significantly better query terms for later search

and retrieval.

To combine information SHACER normalizes handwriting and speech recognizer out-

puts by applying letter-to-sound and sound-to-letter transformations. SHACER then uses
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an articulatory-feature based distance metric to align handwriting to redundant speech.

Phone sequence information from that aligned segment then constrains a second pass

phone recognition over cached speech features. The resulting refined pronunciation serves

as a measure against which the integration of all orthographic and pronunciation hy-

potheses is scored. High-scoring integrations are enrolled in the system’s dictionaries and

reinforcement tables. When a presenter subsequently says a newly enrolled term it is more

easily recognized. If an abbreviation is handwritten at the same time, then the already

recognized spelling is compared to the handwriting hypotheses. If there is a first-letter or

prefix match, then that full spelling is dynamically acquired by the handwritten abbrevi-

ation as its expanded meaning. On a held-out test set SHACER significantly reduced the

absolute number of recognition errors for abbreviated Gantt chart labels by 37%.

For cognitive systems to be accepted as cooperative assistants they need to learn as

easily humans. Dynamically learning new vocabulary, as SHACER does by leveraging

multimodal redundancy, is a significant step in that direction.
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Chapter 1

Introduction

1.1 MOTIVATION

As computers become perceptually more capable, new types of computational systems are

becoming feasible. It is now possible to conceive of computational systems that understand

our regular communicative lives without requiring that we sit in front of a computer

to enter input [37]. For example, during meetings people present information to each

other across multiple modes. Graphically, they sketch diagrams, like a schedule chart

or timeline. Textually, they handwrite lists of important points, or they label parts of

their diagrams. While they are sketching or handwriting they are also speaking to each

other. Speakers may handwrite on public surfaces (like whiteboards, flipcharts or even

table napkins), while listeners jot down personal notes on paper. In the background of

such meetings computers can unobtrusively act as ambient perceptual agents. They can

observe the speech, handwriting, and sketching communication occurring between people.

Speech can be recorded through microphones and then recognized by speech recognition

systems [60, 118]. Similarly, handwriting and sketching can be perceived through various

ink-sensitive surfaces and then recognized by sketch or handwriting recognizers [4, 6].

As ambient perceptual computers become more effective at understanding peoples’

various communicative modes, they can better serve people’s needs by performing useful

background services. Instead of sitting in front of a computer to access these services,

people could simply interact freely with each other [37, 165]. Advances in background

perceptual understanding could dramatically enhance business productivity, for example,

by better facilitating meeting collaboration and summarization [4]. Such advances could

1
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also make it easier to search for and recover aspects of archived human-human interactions

recorded in computationally perceptual settings [106].

This thesis argues that combining information from speech and handwriting can help

computers do a better job at background understanding of complex human-human inter-

actions like meetings or lectures. Evidence offered in this thesis will show that, during

meetings or presentations, handwritten words are typically also spoken redundantly. The

information available in the redundant speech and handwriting can be combined to pro-

duce recognition that is significantly more accurate than the recognition achievable in

either mode alone. This improved accuracy means that more of the handwritten or spo-

ken words can be recognized correctly. Moreover, during meetings important words are

often out-of-vocabulary [179]. This is a significant problem for computer understanding,

because out-of-vocabulary words during meetings tend to be important words [179, 181],

with as much as 70% of out-of-vocabulary words being named-entities like proper names

[3]. When a name is out-of-vocabulary it cannot be recognized. Instead, the recognizer

substitutes other words in its place, which corrupts the recognizer’s word sequence mod-

eling and causes a cascade of local recognition errors in the vicinity of the substitution.

Current computer recognition systems, unlike people, cannot enroll new vocabulary

just by hearing it spoken or seeing it written in context. Commercial speech recognizers

revert to explicitly asking users to type in the spelling of a new word while also speaking

it, so that the system can specifically add the new spelling and pronunciation to its

vocabulary. The system presented in this thesis is a background understanding system.

It does not explicitly ask for user supervision and guidance to enroll new vocabulary.

Instead, since handwriting is often spoken redundantly during meetings or lectures, it

leverages that naturally occurring multimodal redundancy as a basis for enrolling new

words. Multimodal redundancy means that the same information is presented in more

than one mode, like handwritten words that are also spoken. Multimodal redundancy

provides implicit supervision for enrolling new words — the spelling of a newly spoken word

is determined from the corresponding redundant handwriting, while the pronunciation of

a newly handwritten word is extracted from the corresponding redundant speech. Thus,

this work argues that multimodal redundancy is the fulcrum on which understanding new
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words in context can be leveraged by computational systems.

Figure 1.1: A whiteboard scheduling session (center), processed unobtrusively in the ses-
sion’s background by Charter, our prototype perceptual multimodal scheduling applica-
tion, showing the dynamically evolving Gantt chart display (lower left) along with its
immediately derived MS Project TM chart object (upper right).

This dissertation introduces a prototype implementation of an ambient, perceptual

system, that can track the communicative interactions between people across various

modes like speech, sketching and handwriting during a business meeting. Our system is

named SHACER (pronounced shaker), which is an acronym for Speech and HAndwriting

reCognizER. The presenter in Figure 1.1 is drawing a schedule chart with task-lines

spanning the duration of the project and specific goals on each task-line sketched in as
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diamond-shaped milestones. During processing of the meeting the system continually in-

terprets and updates its understanding of the interaction. The system’s understanding is

reflected as both a beautified version of the labeled Gantt chart (Figure 1.1, lower left) and

as an automatically populated Microsoft Project TM object (shown in the upper right of

the illustration). The information in the Microsoft Project TM object is the same as that

reflected in the beautified Gantt chart, and includes a lexicon of expanded abbreviation

and acronym meanings, learned by the system dynamically as it observed and processed

the meeting.

SHACER can automatically detect occurrences of multimodal redundancy across hand-

writing and speech. It can then combine information across those redundant modes to

dynamically discover the spelling and pronunciation of new words or phrases. SHACER’s

enrolling those dynamically discovered new words into the systems’ dictionaries and lan-

guage models constitutes learning. For SHACER learning specifically means acquiring

new vocabulary, which is a critical part of acquiring or learning language. This definition

fits well with the definition of learning given by Herbert Simon, who defined learning as,

“changes in a system that result in improved performance over time on tasks similar to

those done previously” ([50], pg. 600). This definition suggests that continuous, cumula-

tive improvement is the acid test of learning. Performance results for the system described

in this thesis show significant, cumulative improvement across a series of test meetings.

SHACER learns new vocabulary in early meetings and then uses that enrolled vocabulary

to improve recognition in later meetings.

In order to better understand human-human interactions, computational systems need

to be generally more able to combine recognitions across various modes of perceptual input

to make dynamic, unsupervised inferences about how multimodal information should be

meaningfully combined. For example, they should be able to infer that an email dragged

to a folder belongs to that folder and therefore has some semantic relationship to other

emails in that folder. They also be able to infer that the handwritten letters of new word

should be associated with the redundantly spoken pronunciation for that same word.

SHACER makes these sort of dynamic, unsupervised inferences in processing multimodal

redundancy. The Defense Advanced Research Projects Agency’s Cognitive Assistant that
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Learns and Organizes [29]) (CALO) is predicated on the belief that such learning capa-

bilities may ultimately support artificially intelligent systems that can respond robustly

to surprising or unforseen inputs, just as people do. CALO’s aim is to transform com-

putational systems from being simply reactive to being truly cognitive [24]. In order for

a computational system to be truly cognitive it must at least be able to learn on its

own. This thesis argues that SHACER, by leveraging naturally occurring multimodal re-

dundancy to enroll new words, demonstrates the cognitive ability to learn. The learning

ability demonstrated by SHACER is an important step towards achieving CALO’s aim of

truly cognitive systems.

1.2 THE PROBLEM: NEW LANGUAGE AND THE NEED

FOR DYNAMIC LEARNING

As machines move closer to being observant and intelligent assistants for humans [119,

25, 70, 26, 164, 126, 9, 23] it is not enough that they rely on off-line models for the

support of recognition. They need to automatically adapt and acquire new models and

new knowledge as they are running [9], particularly by a single, natural demonstration.

Machines or systems that assist humans in real-time tasks need to be able to learn from

being shown — through sketch [38, 154], handwriting [100], teleassistance [143], speech

[162], or multimodally (as in the work described in this dissertation) through handwriting

and speech.

Figure 1.2: Introduction of a new abbreviation during a ninety minute spontaneous brain-
storming session, using a whiteboard and flip chart.
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New language and new language forms constantly emerge from complex, collaborative

human-human interactions like meetings and presentations. For instance, presenters often

handwrite new terms on a whiteboard or flipchart while saying them. In Figure 1.2 the

presenter writes the phrase, Information Q’s, while saying, “[. . . ] information questions”.

This action grounds the abbreviation, Q, to its expanded word form, Question. That

grounding has the effect that for the remainder of the presentation, when the presenter

writes the phrase information Q, it will readily be understood by other participants to

mean Information Question.

Figure 1.3: An example of redundantly presented, dialogue-critical terms from an online
presentation [182]: a full, multimodally redundant term introduction (e.g. Open Source,
top-left), followed by related handwritten abbreviations that are spoken in full.

A second example of new terms being dynamically introduced is shown in Figure 1.3.

The presenter begins by introducing the phrase, Open Source, which is both handwritten

and spoken. Because it is a topic-specific phrase it may not exist in the system’s vo-

cabularies, and without the attentional focus occasioned by its multimodal introduction

(see Section 2.1.4) it might also not exist in the forefront of the presentation observers’

minds. The presenter then subsequently introduces several new acronyms, OSI (for Open

Source Initiative) and OSDL (for Open Source Development Labs). These acronyms both

begin with first-letter abbreviations for the phrase, Open Source, and thus they are more
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readily understood in the context of their relation to that already grounded term. People

can dynamically recognize and process this kind of grounding; however, a handwriting

recognizer, with a fixed, off-line vocabulary and static word sequence model, would fail to

recognize OSI, because it is likely to be out-of-vocabulary and not part of the recognizer’s

word sequence model. Fixed vocabulary recognizers, with static, off-line language models,

fail on such newly created terms. These terms, as this example shows, are often critical

to dialogue understanding.

Figure 1.4: In this example the presenter handwrites CAGR while saying Category Growth
Rate.

The importance of this contextually grounded relation to a redundantly introduced

term can be clearly seen in the event depicted in Figure 1.4. The presenter introduces

the abbreviation CAGR while saying Category Growth Rate. The five top page hits of

a Google search on the abbreviation CAGR give the expanded meaning of CAGR exclu-

sively as Compound Annual Growth Rate. Thus, relying on a static dictionary of common

abbreviations, as might be compiled from top Google page hits for common abbreviations,

would lead to an incorrect interpretation of CAGR = Compound Annual Growth Rate.

To find the correct interpretation for CAGR the dynamic multimodal context is needed.

The presenter’s redundant speech holds the key to the correct interpretation of Category

Growth Rate. The same could be true for the abbreviation OS in the Figure 1.3 example,

which by static dictionary lookup could easily mean any of Ordnance Survey, Operating

System, or Office of the Secretary.

For the example in Figure 1.3 not only is Open Source first introduced redundantly

across handwriting and speech, but it is then also used repeatedly in varying forms during

the subsequent presentation. Multimodal context helps to define its correct expansion,
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and the frequent repetition of that context is de facto evidence of the term’s dialogue

criticalness. We will show later in this dissertation that the occurrence of multimodal

redundancy, e.g. handwriting a phrase like Open Source and also saying it, can be suc-

cessfully tracked by a computational system and leveraged as a means of enrolling new

vocabulary in the system’s recognizers (Chapters 5, 6 and 7). Subsequent speaking

of Open Source while handwriting its first-letter abbreviation can then be automatically

recognized, and the grounding between the initial letters, OS (which prefix both OSI

and OSDL) and its associated phrase, Open Source, can be made explicit as part of an

observant multimodal system’s background understanding of such a presentation.

1.3 MULTIMODAL REDUNDANCY AS A BASIS FOR

DYNAMIC LEARNING

Multimodal redundancy occurs when the information in one input mode is semantically the

same as information in another input mode, as for example, when a presenter handwrites

a phrase like, “Propose your solution,” while also saying it, as shown in Figure 1.5.

Figure 1.5: Multimodal Redundancy across handwriting and speech: a whiteboard pre-
senter handwriting Propose your solution while also saying, “[. . . ] Propose your solution.”

Observing and recognizing redundancy in rich multimodal environments could provide

the threshold ability a cognitive machine requires to allow fully bootstrapped learning. By

bootstrapped learning we mean learning that requires no external supervision, that lever-

ages the system’s current capabilities in order to expand and refine its future capabilities,

and that allows the system to improve on its own over time and usage.

An apt example of fully bootstrapped learning is human language acquisition. Lan-

guage is composed of symbols, which in turn are grounded in perception [30, 68]. In order
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Figure 1.6: A new stack sketch symbol being iconically grounded via speech and sketch.

for machines to accomplish the same kind of bootstrapped learning they need to be able

to ground perceptual features to recognizable symbols. We propose that multimodal re-

dundancy can be used by machines to ground new language in this way. Some of the ways

in which redundant multimodal information may provide a basis for dynamic machine

learning are exemplified in the following perceptual environments:

• Redundant speech and 2D sketch could support dynamic enrollment of new sketch

objects, by grounding of iconic sketches to spoken language. For example, in Fig-

ure 1.6 a presenter says, “dedicated stack,” while redundantly sketching an iconic

stack diagram. Later, after sketching several more similar stack icons, he references

them with a deictic point gesture, and as he’s gesturing again redundantly uses the

word, stack, to describe them.

• Redundant speech and 3D gesture could support dynamic enrollment of new ma-

nipulative or iconic 3D gestures. For example, in Figure 1.7, the user makes a

required but awkward manipulative hand/wrist gesture while saying, “Flip that

chair.” Leveraging multimodal redundancy could support the grounding of a new

(perhaps simpler or more natural gesture) to the semantics of the spoken command.

This sort of grounding could apply as well to new head/body posture significations

of assent/dissent or attention/inattention.

• Redundant gaze, speech and face recognition could support dynamic enrollment of

new faces in a face recognition module installed as part of a large meeting under-

standing system.
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Figure 1.7: Manipulative grounding via an awkward 3D gesture and speech.

• Redundant speech, gaze and visual activity recognition could support dynamic en-

rollment of new activity types.

All of these contexts of multimodal redundancy lend themselves to the task of learning

new vocabulary — either spoken, sketched, handwritten or gestural vocabulary. Collec-

tively we refer to techniques for computationally facilitating this type of grounding as

Multimodal Out-Of-Vocabulary Recognition (MOOVR). In implementing SHACER, we

have operationalized the notions underlying MOOVR.

1.4 LEVERAGING MULTIMODAL REDUNDANCY

Our first step towards a full Multimodal Out-Of-Vocabulary Recognition system that could

ultimately learn as easily as humans has been to create a prototype cognitive system that

learns implicitly from the observation of redundant handwriting and speech. Speech and

handwriting recognizers are closely related, relatively effective and inexpensive, and as

such lend themselves particularly well to the support of a system that learns dynamically

over time.

Others have worked with combining information from vision-based object recognition

and speech as a basis for learning [150, 147], but vision-based object recognition is still
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relatively immature and expensive. Speech and handwriting are also symbolic languages

and thus allow for meaningful phrases to be built up from combinations of lower level

symbols. In building up such combinations not all lower level symbols need occur in the

same mode. It is possible, by leveraging multimodal redundancy (as we will show in

this dissertation), to transfer knowledge about learned symbols in one mode to unknown

symbols in another mode (Sections 6.4.2) — as shown in Figure 1.3, where the OS prefix of

the unknown handwritten symbols, OSI and OSDL, is assigned the learned pronunciation

and expanded spelling of a known spoken phrase, Open Source.

1.4.1 Problems to be addressed

This thesis is concerned with the fact that during human-human interactions, when people

write words in a public space — like a whiteboard or tablet PC surface displayed on a pro-

jection screen — they typically also say what they handwrite. Such events are exemplary

instances of multimodal redundancy. The problem we address first is to gain some un-

derstanding of why, when and how such multimodal redundancy occurs in human-human

communication (see Chapter 2). Then given some understanding of the occurrence and

significance of multimodal redundancy we address the problem of designing and imple-

menting an observant multimodal system that can leverage such redundancy to support

dynamic learning of new words and abbreviations (see Chapters 4, 5, 6 and 7).

1.4.2 Hypothesis

Our hypothesis is that during multiparty interactions, where there is a shared space for

writing, the participants’ public handwriting will be accompanied by redundant speech.

We further claim that a properly designed perceptual system can observe such human-

human interactions and based on the occurrence of multimodal redundancy across hand-

writing and speech dynamically learn new words and abbreviations. We believe that

the ability to observe natural human-human interactions across handwriting and speech

and perform useful background understanding is a significant step forward toward truly

cognitive machines that can assist humans.
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1.4.3 Argument

Our thesis argument has two parts. First, we argue that multimodal redundancy across

handwriting and speech not only occurs non-trivially but is in fact typical of some types

of human-human interactions. We report on several empirical explorations we have con-

ducted that confirm the occurrence of multimodal redundancy across handwriting and

speech, and illustrate some important properties of such redundantly presented words —

namely that they tend to be dialogue-critical words as evidenced by their significantly

higher term frequency — inverse document frequency (tf-idf) weights (Chapter 2).

Second, we frame the import of those empirical findings by describing the design

and implementation of our Speech and HAndwriting reCognizER (SHACER) (Chapters 5

and 6). In Chapter 7 we discuss test results that confirm the efficacy of combining

handwriting and speech to better model the spelling and pronunciation of new terms, and

we test SHACER’s learning capabilities directly on a held-out test set of meetings. We

describe how SHACER leverages the occurrence of multimodal redundancy to dynamically

learn new words and thus significantly improve recognition of Gantt chart constituent

labels, which happen to be out-of-vocabulary abbreviations. Abbreviation label errors are

significantly reduced by 37% absolute. Thus, our prototype system significantly improves

its understanding of interactions during the test meetings, due to dynamic learning of

redundantly presented new vocabulary. On out-of-vocabulary data not previously seen

by the system, SHACER’s ability to recognize new terms improves on its own, without

supervision.



Chapter 2

Empirical Studies of Multimodal

Redundancy

As described in the Introduction, SHACER is designed to learn dynamically from in-

stances of multimodal redundancy across handwriting and speech; but, how often does

such redundancy occur? The literature on multimodal command systems suggests that

it hardly ever happens [133], while the literature on multimedia learning suggests that it

may be typical [6, 5]. Which is true? If multimodal redundancy were only to happen very

infrequently, or if it happened only in situations where there was no need for computa-

tional background understanding, then developing SHACER would not be important or

relevant. Therefore, before describing SHACER in detail, this chapter first reports the

results of our examinations of the frequency and importance of multimodal redundancy.

This chapter argues that redundantly presented words, i.e., words that are both hand-

written and spoken:

• are typical of multi-party settings where handwriting is intended to be seen publicly

as part of a multimodal interaction dialogue,

• are dialogue-critical for understanding the interactions in which they occur, and

• are also likely to be highly situation-specific words and thus out-of-vocabulary.

This means that SHACER’s ability to learn redundantly presented words is doubly

important, because the words it can learn are both critical for understanding and likely

to be out-of-vocabulary. Without the dynamic learning of new words, which SHACER

13
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can provide, background understanding of natural interaction contexts like presentations

or meetings would be significantly impaired.

2.1 A WORKING HYPOTHESIS OF MULTIMODAL RE-

DUNDANCY

Figure 2.1: In narrating a travelogue about photos printed on digital paper, the handwriter
labels the place name, Jenolan Caves, while also saying, “. . . this is the Jenolan Caves.”
This interaction, unlike earlier whiteboard examples, occurs in a much less formal setting
where the informal public space is a shared piece of paper.

In multi-party interactions humans use multiple modes of communication in pre-

dictable ways. Grounding, for example, is the process by which we attach meaning to

symbols we create [68], like handwriting a place’s name below its image in a photo while

talking about it as shown in Figure 2.1. Lexical entrainment [27] is the process of col-

laboratively arriving at dialogue-critical terms, which are shared references to the objects

under discussion. For example, speaking the phrase, “Information Questions,” in full

while handwriting its abbreviation, Information Q’s, on a flipchart (Figure 2.2) during a
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brainstorming session, and then inviting implicit acknowledgement by briefly pausing or

glancing at other participants, serves to entrain the use of the abbreviation, Information

Q’s, to subsequently mean Information Questions.

Figure 2.2: Entraining the meaning of the abbreviation, Information Q’s, by saying “infor-
mation questions” while handwriting it on a flipchart during a spontaneous brainstorming
session.

It has been argued that humans expend all and only the necessary conversational en-

ergy to accomplish communication [63, 35]. Part of communication is dialogue grounding

and entrainment. Herbert Clark’s Principle of Least Collaborative Effort [43, 42] argues

that dialogue partners will try to minimize the collaborative effort it takes to reach a level

of understanding. It is clear that multimodal redundancy — e.g., both handwriting and

speaking a term — requires more energy than unimodal communication alone. Therefore,

there must be important communicative purposes driving its use. We believe that pur-

pose is establishing and entraining a common ground of meaning. Our hypothesis is that

people use redundancy as a conversational strategy to bolster their communicative effec-

tiveness by drawing attention to the meanings of dialogue-critical terms. This working

hypothesis is suggested by the literature on early language acquisition, which points to

the importance of multimodality for focusing attention [61, 12] and thus providing a basis

for understanding intentionality and establishing the meaning associations between action

and intention that ground language [13, 14, 108, 168, 171, 177, 15]. We have adopted
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this hypothesis as a first step towards understanding why and how people use multimodal

redundancy. To begin establishing empirical support for this hypothesis, we derive and

consider two claims: (1) if multimodal redundancy is a general conversational strategy

then it should be typical of human-human interaction settings where multiple modes can

be perceived, and (2) if redundantly presented terms are dialogue-critical then they should

be measurably more important than other words. In this chapter we will prove both of

these initial claims.

2.1.1 Multimodal Complementarity Versus Redundancy

In multimodal command systems, like those designed for in-car navigation [66, 65], real-

estate queries [129, 184, 139], emergency management [134, 107], military applications [44,

47], or pedestrian navigation [78], prevailing knowledge holds that multimodal redundancy

occurs only for between 1-5% of interactions [136, 65]. Thus, as Oviatt [131] has pointed

out, empirical studies of such multimodal command interfaces show that complementarity

and not redundancy is the major organizational theme [133]. However, in very recent

work on a human-computer command scenario for Traffic Incident Management, Ruiz et

al. [120] found that users issued redundant commands between 30%-60% of the time.

Users were given a choice of issuing commands with either speech, iconic hand gestures,

or redundantly using both speech and gesture together.

For human-human interactions, Anderson et al. [6, 5] have shown that during distance-

learning lectures 15% of ink strokes were handwriting and 100% of that handwriting

was accompanied by semantically redundant speech. These distance-learning lectures

were computer-mediated by the use of a tablet PC equipped with special presentation

software. Thus, it appears that multimodal redundancy is less frequent during human-

computer interaction scenarios than during human-human, computer-mediated scenarios

like lectures.

In this chapter we will confirm Anderson et al’s findings with results from three new

empirical explorations (Section 2.2): (1) an exploration of online whiteboard presentations,

(2) an exploration of a spontaneous brainstorming session, and (3) an exploration of

discussions of photos printed on digital paper. All three of these interaction contexts, as
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is also true for Anderson et al’s lecture study, are of human-human interactions in which

participants share a public writing space.

2.1.2 Out-Of-Vocabulary Words In Natural Speech Processing Contexts

Yu et al. found that out-of-vocabulary (OOV) terms account for between 4.2%-8.0% of

the unique words occurring in meetings [179]. These OOV words tend to be those that

are important for understanding, like keywords, technical jargon, proper names [138] or

abbreviations. In examining OOV words in French news broadcasts, Allauzen and Gauvain

[3] reported that as much as 70% of OOV words were named-entities, like proper names.

Palmer and Ostendorf [138] found that on a corpus of English news broadcasts 45.2% of

OOV words occurred in phrases denoting a person, although proper names made up only

3% of all the words occurring in the corpus. For search queries (like those one might type

into Google) spoken documents are represented by their speech recognition transcripts.

When OOV proper names are mis-recognized in those transcripts then it has a detrimental

impact on retrieval accuracy [101].

In a recent analysis of lecture speech, Glass [60] pointed out that the ideal vocabulary

for speech recognition is not the largest vocabulary, but rather one that is both relatively

small and has a small Out-Of-Vocabulary (OOV) rate. A small vocabulary minimizes

substitution errors, and a small OOV rate minimizes insertion errors. The problem is

that in general the size of vocabulary and the rate of OOV are inversely proportional.

To illustrate the difficulty of obtaining such vocabularies, Glass compiled a small, 1.5K

vocabulary of words common to lectures in three different course areas. Commonness

was measured by how many lectures a word occurred in. The finding was that still in

each lecture area the 10 most frequent subject-specific words were not common across the

corpus of lectures, and thus OOV. The presence of technical, subject-specific OOV terms

makes deriving a vocabulary and language model for lecture speech and other natural

speech contexts a significant challenge.

When a lecture topic area or its technical vocabulary are known ahead of time, then

automatic vocabulary expansion can be used [179, 128], which leverages textbooks or

targeted web searches to augment dictionaries or language model statistics. Kurihara et
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al., in their work on the use of predictive handwriting during lectures given in Japanese

[99], assure full coverage with such methods. But such techniques don’t work for less

formal interactions, like a spontaneous whiteboard brainstorming session. Palmer and

Ostendorf used various off-line sources of personal name information to reduce OOV names

in broadcast news recognition by as much as 40% [138]. Their technique used an acoustic

distance measure to compare phonetic sequences representing OOV names to the names

in the off-line lists. Phonetic distance was based on a data-derived phonetic confusion

matrix. Matches that were close enough triggered the addition of an appropriate off-line

name to the system’s on-line recognition vocabulary. Later, in Section 5.3.3, we’ll discuss

the differences between this approach and SHACER’s approach to measuring phonetic

distance, which compares handwriting to speech rather than text to text as in this work

of Palmer and Ostendorf.

Work in the area of spoken document retrieval (SDR) [58] also must deal with OOV

terms. Saraclar and Sproat [153], while performing speech recognition on a corpus of six

teleconferences, using a vocabulary and language model from the Switchboard corpus, re-

ported a 12% OOV rate. Using the same vocabulary and language model on Switchboard

data itself had only a 6% OOV rate. As the OOV rate increased in moving from Switch-

board to Teleconference data so too did the recognition word-error-rate (WER) with an

attendant loss in precision-recall rates for document retrieval. Yu et al. [181], also using a

vocabulary and language model from the Switchboard corpus, found a 39.7% OOV rate for

keywords (e.g. semiconductor, radio-shack-solution, and multiple-database-search) occur-

ring in voicemail segments from the LDC Voicemail corpus [137]. Palmer and Ostendorf

[138], in examining English language news broadcasts, found that with a relatively large

dictionary (57K words) and an OOV rate below 1%, still 10-15% of recognized broadcast

news sentences had at least one OOV — and these OOVs were likely to be named entities

that carried much of the sentence’s meaning.

Although larger vocabularies lead to lower OOV rates in natural speech contexts,

larger vocabularies are also more expensive computationally (e.g. require more pruning,

etc.) and require more memory than smaller vocabularies [138]. Rosenfeld [146] found

that increasing vocabulary size for recognition of read North American Business news text



19

beyond an optimal 64K did not significantly improve recognition. Although increasing the

system vocabulary size did help recognition rates for many common words, it actually hurt

recognition rates for less common words by increasing the likelihood of insertion errors.

Less common words, like proper names, typically carry more semantic information, so

insertion errors due to increased vocabulary size don’t solve the OOV problem. Introduced

insertion errors are still detrimental to understanding.

2.1.3 Dynamic Learning Of Out-Of-Vocabulary Words

In the previous section it was made evident that simply increasing vocabulary size will not

solve the OOV problem. There is a need for some more dynamic means of detecting and

properly recognizing OOV words. SHACER’s goal is to dynamically learn OOV terms,

as they are presented redundantly during the course of an interaction. SHACER aims

to dynamically learning the spelling, pronunciation and local semantics of new terms,

enrolling them into dictionaries and language models as the system is running, and thus

improving the system’s accuracy and understanding over time and usage.

Dynamically learning new vocabulary has also been demonstrated by systems that

cluster similar repeated phonetic sequences, refine those clusters and then associate the

refined pronunciation representing the cluster to recurring images or actions [176, 150, 147,

175]. In the context of speech-only systems repetitive acoustic patterns can be identified

for word discovery during lectures [141]. Explicit pronunciation learning for new name

enrollment can be accomplished by having users first say and then spell their names [39].

2.1.4 Multimodality In Learning And Teaching

Moreno and Mayer’s theory of multimedia learning [117] is founded on three working as-

sumptions drawn from cognitive psychology [10]: (1) humans have separate processing

systems for visual/pictorial versus auditory/verbal channels of information (dual-channel

assumption), (2) each processing channel has limited capacity (limited-capacity assump-

tion), and (3) that meaningful learning requires mental processing in both verbal and

visual channels, building connections between them. These assumptions are discussed

also in Wickens et al. [170].
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Given these assumptions, Mayer and Moreno [109] can explain why presenting text that

is also spoken helps students learn more effectively, while presenting visual animations or

graphics along with visual and spoken text hurts learning. When the redundancy is across

two channels (visual and auditory) then processing proceeds in parallel in both channels

and the effect is complementary. When the redundancy is in the same channel (e.g. a

visual graphic with accompanying visual text) then the focus of attention must be split

overloading cognitive processing and resulting in degraded learning performance. The eyes

physically have to move back and forth focusing first on the graphic and then on the text,

and this can lead to cognitive overload. Wickens et al. in their Four-Dimensional Multiple

Resource Model agree with the conclusions of Mayer and Moreno, that it, “. . . is apparent

that we can sometimes divide attention between the eye and ear better than between two

auditory channels or two visual channels.”

The import of Mayer and Moreno’s findings is that students have better recall and

learn more effectively when textual information is presented redundantly in both visual

and auditory modes. Next we will show that in some human-human interactions speakers

typically present information in just this way, redundantly across both visual and auditory

channels, by handwriting words and also saying them

2.2 STUDY OF MULTIMODAL REDUNDANCY

We collected data in three settings: (1) online whiteboard presentations (WP), (2) a

spontaneous brainstorming (SB) session, and (3) photo annotation (PA) discussions. The

methodology was to annotate all handwriting and speech. For the redundancy analysis,

the frequency with which handwritten words were accompanied by redundant speech was

examined.
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2.2.1 Term Frequency - Inverse Document Frequency

Tf-idf word weights 1 are commonly used in search and retrieval tasks to determine how

important a word is relative to a document [11]. Words that occur with high-frequency

in a document, but are relatively rare across the set of documents under consideration,

provide a good indication of the document’s content [151]. For tf-idf analysis documents

were constructed by concatenating the transcripts of both the spoken and handwritten

words for each discourse segment of the collected data.

The handwritten abbreviations shown in Figure 2.3 (e.g., J, LB) exemplify the rela-

tion between dialogue-critical words and tf-idf weight. They are dialogue-critical words

because without knowing how they are grounded in speech, as shown by the call-outs in

Figure 2.3 (J = “Java tier,” LB = “Load Balancer”), the underlying visual representation

lacks meaning. They also have high tf-idf weights because they occur frequently within

the presentation, but not so frequently across the entire set of presentations. Thus the

abbreviations in Figure 2.3 are both dialogue-critical and highly weighted.

Figure 2.3: Dialogue-critical words are those whose grounding must be known in order to
understand the presentation or discussion (e.g., J = “Java tier”, LB = “Load Balancer”)

1Wikipedia entry for tf-idf : There are many different formulas used to calculate tfidf. The term
frequency (TF) is the number of times the word appears in a document divided by the number of total
words in the document. If a document contains 100 total words and the word cow appears 3 times, then
the term frequency of the word cow in the document is 0.03 (3/100). One way of calculating document
frequency (DF) is to determine how many documents contain the word cow divided by the total number
of documents in the collection. So if cow appears in 1,000 documents out of a total of 10,000,000 then
the document frequency is 0.0001 (1000/10000000). The final tf-idf score is then calculated by dividing
the term frequency by the document frequency. For our example, the tf-idf score for cow in the collection
would be 300 (0.03/0.0001). Alternatives to this formula are to take the log of the document frequency.
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2.2.2 Corpora Description

Online Whiteboard Presentations (WP)

We examined 34 short (3-4 minutes) whiteboard presentations offered on ZDNet’s At The

Whiteboard site [182]. Figure 1.5 shows a partial frame from one of these presentations.

These presentations discuss various technical and business topics (e.g. “Pain-Free Annual

Budgeting,” “The B2B Marketing Challenge,” etc.). There were on average of 11.6 hand-

writing events per presentation, and within those events 15.9 annotatable handwritten

words. In the 34 presentations there are 33 different presenters. The presentation videos

are professionally made, and the speakers are in general practiced. Half of the presenters

were associated with ZDNet, and half were executives from other companies (e.g. Dell,

Intel). Twenty nine of the presenters were male, and four were female.

Audio and video annotations were done by hand using WaveSurfer’s [167] video tran-

scription plug-in. Handwriting was annotated by scrolling the video frame-by-frame (video

was recorded at 15 frames per second) to mark the moment of initial pen-down and final

pen-up for each handwriting instance. If only one of the pen-up/pen-down events could

be clearly seen then the annotator made a best estimate for the other if possible, and if

not possible or if neither event could be clearly seen then the handwriting instance was

not counted.

Second Scoring: Handwriting Annotation Reliability

In order to judge the reliability of our annotation protocol, a second annotator scored five

randomly selected presentations from among the thirty-four, i.e., a 15% random sample.

Compared to the first annotator there was a 100% match on what the annotatable hand-

writing events were, a 96% match on the handwritten words within each event, and a 99%

match on the spelling of matched words. The kappa coefficient 2 was 0.92 for agreement on

which instances of handwriting were actual annotatable words. For the five second-scored

presentations there was a total of 84 handwritten words: 27 were un-annotatable (32%

2Kappa coefficient : a standard measure of inter-rater reliability [34]. Scores > 0.8 indicate good
reliability.
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of total), and 57 were annotatable (68% of total). Between annotators the handwriting

instance start times varied on average by 71 milliseconds and the end times by 49 millisec-

onds. Rounding up, the handwriting annotation timing accuracy was reliable to within

0.1 seconds, which is the same standard of reliability used in previously published studies

on multimodal timing by Oviatt et al. [130].

Spontaneous Brainstorming Session (SB)

Multimodal redundancy also occurs in less formal situations. For example, we recorded

a spontaneous brainstorming session, which occurred during a two day planning meeting

with twenty participants. Ninety minutes of the session were recorded. Figure 2.4 is an

example of handwriting and speech that occurred during this session. Annotation of hand-

writing events followed the same procedure used in annotation of the ZDNet whiteboard

meetings (see above). For audio transcription, only speech that was associated with a

handwriting event was annotated.

All handwriting was performed by the session leader, but the speech associated with

the handwriting events was spoken by various participants in the meeting. Only 52%

of the speech accompanying the presenter’s public handwriting during the brainstorming

session was spoken by the handwriter. The other 48% was spoken by seven out of the

other twenty meeting participants. The percent of contributions from each of those seven

roughly matched their positions in the organizational hierarchy underlying the meeting.

So, the project manager’s contributions were greatest (14%) followed by those of the

project lead (9%), team leads (9%, 5%, 5%) and then of the project engineers (5%, 3%).

Terminology

In a document, each unique word is referred to as a word type, while each individual word

occurrence is referred to as a word token. If while saying ”hand over hand” a presenter also

wrote the word hand, then concatenating the speech and handwriting transcripts would

yield the word token list, ”hand over hand hand,” with three tokens of the word type,

hand. We refer to the word types in this combined token list as overall types (i.e., ALL)

because they can originate from either speech or handwriting. The subset of ALL word
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Figure 2.4: The whiteboard and flipchart of a ninety minute spontaneous brainstorming
session. Virtually all handwriting (98%) was also spoken redundantly by various partici-
pants in the meeting.

types that were handwritten are HW word types. The subset of HW types that were

redundantly handwritten and spoken are RH types.

In natural language processing tasks, a stop-list typically contains closed class words

like articles, prepositions, pronouns, etc., which tend to occur with equal relative frequency

in most documents. When computing tf-idf weights [11], the stop words (i.e., words

occurring on the stop-list) are removed from consideration, because they tend to add

little to the determination of which words are important representatives of a particular

document.

Photo Annotation (PA) using Digital Paper and Pen

In [17] we reported on some aspects of a pilot study in which photos printed on digital paper

were discussed and simultaneously annotated with a digital pen (as shown in Figure 2.1

and Figure 2.5). See [17] for a discussion digital pen/paper technology. There were four

annotation sessions. In this thesis we further analyze data from the two native English

speakers’ sessions. All speech for these photo annotation sessions was hand annotated,

but the handwriting gestures were automatically captured via digital paper and pen.

Figure 2.5 shows three participants discussing a photo, using a digital pen to annotate the
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photo image printed on digital paper. The photo under discussion is shown at the bottom

of Figure 2.5. An image of the digital paper was projected, so they could be seen more

easily. All annotations written on the digital paper were rendered on the projected image

as they were created.

Participants were asked to choose some photos they’d like to discuss (9 and 10 photos

each for the sessions reported on here). They then spoke about their photos to a small

group of others, having been told that they could annotate freely and that the software

would process their annotations so they would get back labeled photos. Photos were

automatically projected on a shared display, since not all discussion members could easily

see the paper versions. The projected images were automatically updated when touching

the digital pen to a photo sheet (cf [17]).

2.2.3 Study Results

Percent of Handwriting Time

Previously, Kurihara et al. found that as much as 18% of lecture time was spent handwrit-

ing [99]. For the ZDNet whiteboard presentations examined here, the presenters spoke on

average for 192.9 seconds (stddev = 44.3 seconds) and handwrote on average for 38.9 sec-

onds (stddev = 20.9 seconds). Thus, on average 21.3% (stddev = 13.4%) of presentation

time was spent in handwriting.

For 8 of the 34 presentations we have sketch annotations also. On average for those

eight presentations, sketching occurred during 24.8% of the presentation time (± 0.04%),

with presentation time measured from start-of-speaking to end-of-speaking. Thus it ap-

pears that on average there was a slightly larger time-wise-percentage of sketching than

handwriting during these presentations.

Redundancy

Table 2.1 shows the number of handwritten words that occurred in each of the three

corpora (HW row), along with the number of handwritten words that were also spoken

redundantly (RH row). The bottom row of Table 2.1 shows the percent of handwritten

words that were spoken redundantly (RH /HW row). The total number of handwritten
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Figure 2.5: Three photo annotation session participants discuss a photo printed on digital
paper. As the narrator handwrites annotations they are also projected so the cross-table
participant can view them more easily.
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words accompanied by redundant speech (TOT column in Table 2.1) over all three corpora

was 664 out of 688 words, for an overall redundancy rate of 96.5%. These results support

the claim, which is derived from our working hypothesis, that multimodal redundancy is

typical of human-human interaction settings where multiple modes can be perceived

Table 2.1: Word-level redundancy rates across ZDNet whiteboard presentations (WP),
the spontaneous brainstorming (SP) session, and the photo annotation (PA) discussions.

Figure 2.6 shows the types of redundant matches that occurred averaged over all

three corpora. The preponderance of matches are exact lexical matches (74.3%), where

the handwritten terms are spoken exactly as written. Abbreviation exact matches are

defined as standard abbreviations that exactly match their expansions in speech (10%

— see Figure 2.4 inset). Almost exact matches differ only in number or tense (2.7%).

Approximate matches differ in word order or form (see table inset in Figure 2.6), or have

extra or missing words (7.6%), as is also true for the spoken expansions of abbreviation

approximate matches (1.7%). Category examples are shown in the inset of Figure 2.6. Our

result of 74.3% exact match with 96.5% overall redundancy closely parallels the 74% exact

match and 100% redundancy found earlier by Anderson et al. [5]. However, Anderson

et al. examined only 54 instances of handwriting. This work has analyzed an order of

magnitude more data — 688 handwriting instances. Our findings are thus numerically

more significant. We also examine three different scenarios, none of which was based on

the use of a tablet PC as in the study by Anderson et al.

For the ZDNet corpus, the percentage of handwritten words that were part of a name-

phrase was 7.3% (e.g. Sarbanes Oxley, Ghostbuster, Lawson), while for the two photo

annotation sessions that average percentage was much higher at 46.4% (e.g. Jenolan

Caves, Kayla, Buonconsiglio Palace). Recall that the percent of words in named entities

for French news broadcasts was about 1.2% [3] and for English broadcast news it was about
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Figure 2.6: Redundancy category breakdown averaged across ZDNet whiteboard presen-
tations (WP), the spontaneous brainstorming (SP) and photo annotation (PA) sessions.
Category examples are shown in the inset table.

3% [138]. The rate of words that occurred in handwritten name-phrases for presentations

and photo annotation discussions was three to forty times higher than occurrence rates

for broadcast news. Miller et al. [113] examined the OOV rate of various named-entity

types for various vocabulary sizes across English news broadcasts. Their data for proper

names are given here as vocabulary-size/OOV-rate pairs: 5K/65%, 10K/47%, 20K/30%,

40K/15%, 60K/11%, 80K/9%, 120K/6%. These OOV rates were as much as a factor of

ten greater than the baseline OOV rates for non-name words. Miller et al. [113] also

state that increasing vocabulary size above 60K does not improve recognition, because it

introduces more errors than it fixes. Thus, for the presentations and photo annotation

sessions examined here handwritten name-phrase words occurred much more frequently

than in news broadcasts, and are therefore more likely to be OOV in these natural speech

contexts.

The percentage of handwritten name-phrase words for the ZDNet presentations was

much less than for the photo annotation sessions; however, the ZDNet presentations had

many more abbreviations than the photo annotation sessions. In the ZDNet corpus, 44.3%

of handwritten words were abbreviations, while for the two photo annotation sessions

only 5.7% of the handwritten words were abbreviations. Presentation-specific abbrevi-

ations may be missing from standard recognition vocabularies and thus are also likely
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to be OOV. An example of a presentation specific OOV abbreviation was given in Sec-

tion 1.2 where CAGR was spoken as Category Growth Rate in contrast to its standard

interpretation of Compound Annual Growth Rate. Non-standard abbreviations also occur

in biomedical articles. Yu et al. developed a tool for mapping abbreviations in biomed-

ical articles to their full forms [178], but after applying their expansion tool there were

still 75% of abbreviations remaining undefined. Of these undefined abbreviations, fully

32% could not be found in any of four standard medical abbreviation databases. Thus

non-standard/idiosyncratic abbreviations present difficult problems for recognition and

understanding just as is the case for OOV named entities.

Of the six different types of redundancy charted in Figure 2.6, SHACER can currently

take advantage of three — (1) exact, (2) abbreviation exact, and (3) almost exact redun-

dancies. These three categories represent 87% of the handwriting events reported on in

this thesis. Within the no match category (3.7%) there was a sub-category dubbed se-

mantic matches. These are cases in which, for example, a narrator while writing the name

of a family member (e.g. Donald) says both the relationship and name of that family

member (e.g., “my son, Donald”), and then later while again writing the name says only

the relationship, “my son.”. Such semantic matches occurred in about 1% of redundant

instances. In the future SHACER may be able to benefit from such semantic matches as

well as from the broader category of approximate matches.

Redundancy Timing

Understanding the temporal relationship between handwriting events and redundant speech

is important. If they are likely to be temporally close then the search space for aligning

and detecting such redundancies can be reduced.

Following Oviatt et al. [136] we examined the integration patterns of redundantly

delivered inputs. For the 34 ZDNet presentations we examined the sub-corpus of the

382 handwriting/speech matched input instances (out of 395 total instances). Note that

these 395 handwriting instances contained the 492 handwritten words listed in Table 2.1’s

WP column as having occurred during the 34 ZDNet Whiteboard Presentations — thus
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Table 2.2: Temporal categories by precedence (for ZDNet corpus). Note that 24% of
instances are sequential (left), with no overlap between handwriting (W) and speech (S).

some instances included more then one word. We found that 24% of inputs were pre-

sented sequentially with either handwriting occurring first followed by speech (Table 2.2,

Writing First — 16%), or speech occurring first (8%). For simultaneous (over-lapped)

constructions (76% of instances), speech preceded handwriting in 13% of cases, handwrit-

ing preceded speech in 60% of cases, and neither preceded in 3% of cases (timing accurate

to 0.1 sec). Thus, overall, for the majority of redundant handwriting and speech instances

(60%) the inputs are overlapped with handwriting preceding speech. As in Oviatt’s study

the tendency of handwriting to precede speech was significant by Wilcoxon signed ranks

test, T+=524.5 (N=32), p<.0001, one-tailed.

When we superimpose the timing data for all instances (both sequential and simultane-

ous) from the spontaneous brainstorming session onto to that of the ZDNet presentations

(Figure 2.7), the timing contours are closely matched for the session leader while diverging

somewhat for the brainstorming session’s other participants. Figure 2.7 takes all of the

redundant instances and categorizes them into time-delay bins. The percentage of redun-

dancies in each bin, grouped by seconds from start-of-handwriting to the start-of-speech,

is plotted in Figure 2.7. Negative values mean that speech occurred first. During the

spontaneous brainstorming session when handwriting was spoken redundantly by others

(rather than by the leader), there was a marked shift in the peak average amount of time

by which speech trailed handwriting. Thus when speaking about his own handwriting the

brainstorming session leader’s timing pattern closely matched that of the average ZDNet
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presenter — with handwriting slightly preceding speech and simultaneously overlapping

it. However, when the speech of other meeting participants was reflected in his handwrit-

ing, he was first listening to what others said, extracting key terms, and then after a few

seconds (i.e., 4-6 seconds) handwriting those key terms on the whiteboard or flipchart.

Figure 2.7: The number of seconds by which the start of handwriting (HW) preceded
the start of speech. Negative values mean that speech preceded HW. The plot includes
data from the ZDNet presentations (WP) and from both the brainstorming (SP) session’s
leader and other participants. Note that, as expected, redundant speech not from the
leader occurred much later relative to handwriting than the speech of the handwriter.

Of the sequential inputs shown in Table 2.2, 33% were speech followed by handwriting,

a pattern which for speech and sketched graphics in Oviatt et al. [136] occurred for only

1% of the sequential inputs. This much larger proportion of speech preceding handwriting

(33%) versus Oviatt et al.’s small proportion of speech preceding sketch (1%) may reflect

some qualitative difference between handwriting and sketching. Perhaps handwriting re-

quires more cognitive effort and is therefore delayed in presentation compared to locative

sketching.

Inter-modal lag times are the amount of time that elapses from the end of the first

sequential mode to the start of the next mode. The inter-modal lag times for the sequential

patterns (shown in Table 2.2) are charted in Figure 2.8. In both cases (i.e., the speech

first case, and the handwriting first case) most of the lags were less then 2 seconds. This

can be seen by adding together the two left-most column groups in Figure 2.8): 80% of

the speech-first lags and 76% of the handwriting-first lags are less than 2 seconds. For the

speech first condition all lags were within 4 seconds. For the handwriting first condition

8% of the lags were longer than 4 seconds, with the longest being a full minute and a half,
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by one of the ZDNet presenters. This temporal analysis means that for natural speech

settings like those analyzed here, redundant speech can usually be found temporally close

to the handwriting. When handwriting occurs it is likely to be accompanied by redundant

speech. In 90% of the cases that redundant speech will most likely occur within 4 seconds

before or after the start of the handwriting instance. These lag-times are quite close to

the temporal results for bimodal speech and sketch inputs studied by Oviatt et al. [136]
3; however, in their study 99% of sequential constructions were pen-first inputs whereas

in our study only 67% of sequential inputs were handwriting-first.

Figure 2.8: Modal lag between sequential handwriting and speech (or vice versa). Most
lag times fall below 4 seconds.

Redundancy as a Structural Marker

Table 2.2 does not include data from the brainstorming session, but there too some long

lag times occurred between handwriting and speech. Such temporally distant redundancy

seemed to serve a somewhat auxiliary function in not focusing attention immediately but

rather in introducing the expectation of that focusing event in the future, and thus serving

as an indicator of meeting structure. For example, at one point in the brainstorming session

3Oviatt et al. [136]: “The lag between the end of the pen signal and start of speech averaged 1.4
seconds, with 70% of all lags ranging between 0.0 and 2.0 sec, 88% between 0.0 and 3.0 sec, and 100%
between 0.0 and 4.0 sec.”
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the presenter wrote a discussion point on his flip-chart, but before saying it relinquished the

floor to another speaker. Several minutes later, at an appropriate juncture, the presenter

took the floor back by pointing at and verbally referring to his previously written place-

holding discussion point. In the next several dialogue turns he and others spoke the

place-holding term five more times with accompanying redundant deictic pointing. This

redundantly introduced term was both dialogue-critical (as evidenced by the number of

times it was repeated) and also served as a gloss to meeting structure by marking the

expectation of an important topic of interaction.

Redundancy and Projected Out-of-Vocabulary Words

Glass et al., in [60], examined the nature of OOV words in a small general vocabulary of

words common to a training set of lectures (see Section 2.1.2), and found that subject-

specific words from lectures were not well covered and often missing even from the vo-

cabulary of larger corpora like Broadcast News (recorded and transcribed television and

radio broadcasts) and Switchboard (spontaneous, two-party telephone conversations on

50 different topics). Here we perform a similar examination of word-type sharing across

the 34 presentations of our ZDNet whiteboard presentation corpus.

Table 2.3: Percent of tokens and types common to a Number of Shared Presentations.
Percent of handwritten (HW ) types commonly shared is also given, as well as the average
number of HW types (Avg. HW ) per presentation.

Table 2.3 shows the results of examining the number of shared word tokens and word

types along with the number of shared handwriting (HW ) types (type = unique word,

token = an individual occurrence of a word type). Row 1 of Table 2.3 shows that across
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all 34 presentations 15.81% of word tokens were shared, while only 0.25% of word types

and just 1.03% of handwritten types were shared commonly. This means that a relatively

large number of tokens for a small number of types were shared. This is common when

there is no stop word removal, because for example all the presentations share many

occurrences of articles like “a,” and “the.” With no stop list removal the average number

of handwriting types per presentation was 15.9. There were 209 average overall word types

per presentation. The percent of overall word types occurring in only one presentation

was 59.95% and of handwritten types was 48.32% (Table 2.3, row 4 — no stop-list removal

(no SL), Types Shared and HW Types Shared columns). Row 2 of Table 2.3 shows that it

is rare for tokens or types to occur in all presentations but one. Row 3 of Table 2.3 shows

that it is also relatively rare for tokens and types to occur in only two presentations and

no others.

In the lower three rows of Table 2.3 (rows 5-7) we show that the percentage of shared

types increases after basic stop list removal (SL, row 5) and then further increases with

larger dictionaries combined with the basic stop list removal (SL + 20k and SL + 170k,

rows 6-7). Note that SL = basic stop list, 20k = a 20,000 word dictionary of the most

common words in a corpus of meetings, and 170k = a 170,000 word dictionary from

the Festival Speech Synthesis Toolkit [21]. It can be seen that as the number of words

removed by combined stop-list and dictionary removal increases the number of remaining

presentation-specific handwritten types decreases from 14.6 in row 5 to only 3 in row

7. Thus with a large general dictionary (e.g. 170k) the roughly 8 presentation-specific

handwritten types present in row 4 (48.32% ? 15.9 ≈ 8) are reduced to just 2 in row 7

(82.76% ? 3 ≈ 2). However, employing such a large general vocabulary (e.g. 170k) to

reduce potential OOV words is not ideal, as Glass and Palmer have pointed out [60, 138],

Larger dictionaries require more computational resources and are susceptible to higher

word-error rates due to substitution errors.

In order to avoid reverting to oversized dictionaries, an important question is then, if

we had many more presentations to examine could we hope to find a smaller dictionary

with better OOV coverage? Figure 2.9 shows a power regression prediction that addresses

this question. As in row 4 of Table 2.3, the plotted points in Figure 2.9’s left-side plot
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are computed with no stop list removal. To accumulate the data points plotted in Fig-

ure 2.9’s left-side, we processed successively larger subsets of our corpora (i.e., 1 meeting

out of the 34, 2 meetings out of the 34, 3 meetings out of the 34, etc.), asking for each

increasingly larger subset how many overall and handwritten types occurred in only one

presentation. The plot in Figure 2.9’s left-side shows that the percent of presentation-

specific overall word types (upper trend line) and redundant handwritten types (lower

trend line) decreases steadily as set size increases, but at a rate that appears to level off.

The power regressions were done in MS Excel TM, and the highlighted R-squared values

indicate goodness of fit: 0.95 for overall and 0.97 for handwritten types (equations shown

in Figure 2.9, left-side).

Figure 2.9: A power regression prediction to examine the percentage of handwritten word
types occurring in only one presentation, given an increasing number of presentations.
Upper line = overall types, Lower line = handwritten types.

In Figure 2.9’s right-hand side plot we have extended the power regressions from the

left-hand side to see what rate of presentation-specific handwritten words might still be

present after examining a training set 10 times the size of our corpus. Trend lines were

computed using the equations listed in the left-side plot of Figure 2.9. Trend lines were

extended to 360 presentations. Even with this simulated order of magnitude larger training

set there was still a relatively large percentage of presentation-specific handwritten types

predicted (∼30%, Figure 2.9, right-side, lower trend line). This finding indicates that

in constructing an ideal vocabulary for a domain that includes public handwriting (e.g.

lectures or meetings) as much as 30% of redundantly presented words are likely to be
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presentation-specific and thus out-of-vocabulary. This is in accord with the empirical

evidence for proper name OOV rates at various vocabulary sizes given in Miller et al.

[113] and paraphrased above. Next we will show that redundant handwritten words,

which are likely to be highly presentation-specific, are indeed the dialogue-critical words

that one would want to recognize and understand for later retrieval tasks.

Redundancy,TF-IDF Weight and Retrieval Searching

In earlier work [17] we showed that for photo annotation sessions, redundantly introduced

(RH ) words had a 90% higher average frequency than ALL word types. In this thesis

we calculate the average tf-idf weights of ALL word types versus redundant handwritten

(RH ) word types, for not only the two native English-speakers’ photo annotation sessions

but also for the ZDNet corpus. For this combined data set, Figure 2.10 shows the average

tf-idf weight increase for RH types compared to ALL types. These are strikingly higher

tf-idf weights for RH types: 128% higher with no stop-word removal, and 70.5% higher

with stop-word removal. These weight increases were significant by Wilcoxon signed ranks

test (T+=561, N=33, p<0.0001, one-tailed).

Figure 2.10: Average tf-idf weight increases for redundant handwritten word types (RH )
versus ALL word types.

Table 2.4 shows examples from three ZDNet presentations of the top ten most highly

tf-idf -weighted word types (after basic stop list removal). In some presentations — like the

left-most, Detecting Greynets — all of the top ten are redundantly presented words. Some

presentations had relatively lower percentages of redundant handwritten (RH ) words in
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the top ten — as for the right-most, Network-Centric Computing. Even for these the RH

words as a class were much more likely to be representative terms than non-RH words as a

class (bottom rows, Table 2.4, In Top 10 TFW ). On average for all 34 meetings only 7.66%

of ALL types are present in the top ten most highly weighted words for a presentation.

But of the redundant handwritten (RH ) types, 61.47% are present in the top 10, which

represents 48.64% of all top ten words for all presentations. Thus, the likelihood of a

word being one of the top 10 most highly weighted words is less than 1 in 10 (7.66%) for

ALL word types, while for RH word types it is about 5 in 10 (48.64%). This means that

RH words as a class are significantly more representative of a presentation than non-RH

words (Wilcoxon signed ranks test, T+=593 (N=33), p<0.0001, one-tailed). Similarly, on

average, for all 19 individual photo discussions, just 11.5% of ALL types are present in

the top 10 most highly weighted words. But of the RH types, fully 81.77% were ranked

in the top 10, which represents 48.95% of all top ten words for all photo discussions.

Table 2.4: Top 10 word types ranked by tf-idf weight (WGHT) for three presentations
from the ZDNet corpus. Key: RH = Handwritten and Redundantly spoken, TF = Term
Frequency, DF = Document Frequency, TFW = TF-idf Weights.

Table 2.4 shows that redundantly handwritten and spoken word types (RH ) as a

class are better representatives of their respective presentations or discussions than other

words. Since they have significantly higher tf-idf weights than other words, they should

be effective search query terms. To test this claim we performed retrieval queries on an

indexed directory of speech and handwriting transcript documents, one such document for
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each presentation in the ZDNet corpus. Documents for this tf-idf analysis were formed

by concatenating the word-level transcripts of both speech and handwriting inputs. Each

document represented one session, with a session being either one ZDnet presentation or

the discussion surrounding one particular photo. The search engine we used was a state-

of-the-art, open-source search application called Seekafile [157], which works on both small

and large data sets. The point of this test was to confirm that using a tf-idf weighting

scheme, which is typically applied to huge data sets, would be effective for searching over

a small data set.

Figure 2.11: Retrieval accuracy using randomly selected three and two word queries, with
words being chosen from the sets of redundantly presented handwritten word types (RH )
and non-redundantly presented word types (non-RH ).

We performed searches with both three-word and two-word queries (Figure 2.11). For

each presentation the query words were randomly chosen from either the set of redundantly

handwritten and spoken words (RH bars in Figure 2.11) or from the set of words that were

not redundantly presented (non-RH bars in Figure 2.11). Retrieval accuracy measured

how often the best-scoring retrieval result was the correct result.

The outcome for three word queries (Figure 2.11, left side) shows that words from

the RH set yielded 84.8% retrieval accuracy while non-RH words yielded 66.7% accuracy.

Thus for randomly chosen three word queries the retrieval accuracy was 27% higher using

RH rather than non-RH words (marginally significant by Wilcoxon signed ranks test,

p<0.0655).

For two word queries the right side bar chart in Figure 2.11 shows that randomly

chosen words from the RH set yielded 137% higher accuracy than randomly chosen words
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from the non-RH set. RH accuracy was 78.8%, while non-RH accuracy was only 33.3%.

Thus for two-word queries the retrieval accuracy was significantly higher using RH as

opposed to non-RH words (Wilcoxon signed ranks test, T-=246, N=23, p<0.0001).

We have shown that as a class RH words have significantly higher tf-idf weights than

non-redundantly presented (non-RH ) words. Retrieval accuracy using RH words is sig-

nificantly better than for using non-RH words. These results support the claim that

redundantly presented words are more effective search query terms. They are thus mea-

surably more important words in natural speech settings likes presentations or discussions

than other words.

2.3 DISCUSSION

2.3.1 Study Implications

From the work of Moreno and Mayer [117, 109] on multimedia learning we know that

redundantly presented words are easier to recall. In fact Glaser [59] states that adult

learners remember only 10% of what they read, 20% of what they hear, 30% of what they

see, but 50% of they see, hear and read — which is exactly the experience of a meeting

participant in watching a presenter handwrite new vocabulary while also saying it. The

multimodal convergence of handwriting and speech makes the event more memorable.

This means that, after seeing redundantly presented words during a presentation, those

words will later come to mind more readily for use in retrieval queries.

We have also shown that redundant words are likely to be presentation-specific. This

means that for ideally sized vocabularies the percentage of redundant words likely to be

OOV could be as much as 30%. We have also shown that redundant words in natural

speech contexts like presentations and photo discussions have high rates of handwritten ab-

breviations and handwritten proper names respectively. Abbreviations and proper names

as word classes are very likely to be OOV. Therefore Understanding these redundant OOV

terms is critical for background understanding of a natural speech settings.
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2.3.2 Multimodal Understanding of Human-Human Interaction

Shared public writing spaces are spaces that can be commonly viewed by a group of

people participating in an interaction. Our claim is that terms handwritten in a public

space during human-human interactions typically are also spoken. This claim has clear

implications for the design of lecture or meeting transcription systems [60]. In other

publicly viewed spaces, like those of television news broadcasts, multimodal redundancy

also occurs in the form of textual labels that accompany on-screen images. If the high

incidence of redundancy that occurs across handwriting and speech were similar for on-

screen text and speech then multimedia data capture and indexing systems [163] could

also hope to leverage it for increased understanding. Leveraging expected redundancies

across note-taking and speech during call-center interactions could lead to better call-

center data-mining applications [122]. Computational understanding systems deployed in

all three of these settings could potentially benefit from leveraging multimodal redundancy

across writing and speech.

2.4 SUMMARY

We have shown in this chapter that contrary to prevailing knowledge on modality usage

in human-computer, multimodal command interface systems, handwriting and speech

redundancy is not only a major organizational theme but is typical for some human-

human interactions in which there is a public space for writing. Whereas Anderson et al.

[5] in previously describing this phenomenon examined only 54 instances of handwriting

in their study of computer mediated distance lecture deliveries, this chapter looked at an

order of magnitude more data (688 handwriting instances) across three different contexts.

We found that 96.5% of handwritten words were also spoken redundantly. These findings

are both complementary to and numerically more significant than Anderson et al’s.

Furthermore, we have shown that (1) a high proportion of redundantly presented

handwritten words are likely to be out-of-vocabulary in relation to ideally sized recog-

nition vocabularies, regardless of training set size, (2) that such redundancies are good

mnemonic representatives of a presentation, and (3) that as a class they are significantly



41

more representative of a presentation than other non-redundant word types.

Our working hypothesis was that people used multimodal redundancy to focus atten-

tion on important words. Derived from that hypothesis was the claim that if multimodal

redundancy is a general communicative strategy, then it should be typical in human-

human interaction settings. For the natural interaction contexts examined in this chapter

we have shown that such redundancy is typical. The second claim derived from our

working hypothesis was that if redundant words are dialogue-critical they should be mea-

surably more important than other words. We have shown that redundantly presented

words are significantly better retrieval query terms than non-redundant words. Therefore

they are measurably more important. In the next chapter we will discuss SHACER, and

show that these same important redundantly presented terms are dynamically learnable

by unsupervised, boot-strapped methods.



Chapter 3

SHACER: Overview

Fixed vocabulary recognizers fail on out-of-vocabulary (OOV) terms. In the previous

chapter we showed that in natural speech contexts both proper names and handwritten

abbreviations occur frequently, are critical for understanding, and are also more likely

than other words to be out-of-vocabulary. During presentations or meetings, when proper

names or abbreviations are handwritten on a whiteboard or other public writing surface

they are typically also spoken redundantly. It is not possible to expand vocabularies

enough to cover all such OOV terms. Therefore there is a need to learn OOV terms

dynamically. To address this need we have developed SHACER, a multimodal recognizer

that leverages the occurrence of modal redundancy across handwriting and speech to

discover the spelling, pronunciation and contextual semantics of OOV terms dynamically.

In this chapter we give a high-level overview of SHACER. First we briefly describe the

task domain within which SHACER operates. Then we outline what SHACER is able to

accomplish in that domain.

3.1 TASK DOMAIN

3.1.1 Gantt Charts

SHACER’s task domain is the creation of whiteboard Gantt charts. Figure 3.1 is an

illustration of a Gantt chart 1, drawn on whiteboard during a multi-party scheduling

meeting. The horizontal axis is typically the time duration of the project, which may be

1A Gantt chart is a type of horizontal bar chart developed as a production control tool in the early
20th century by the American social scientist and engineer, Henry L. Gantt.

42
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days, weeks, quarters or years. The project tasks are plotted as horizontal lines, whose

start and end points indicate the approximate time period over which a task endures.

Specific scheduling goals for a particular task are notated as diamond-shaped milestones

placed on the task-lines.

Figure 3.1: A typical Gantt chart from the SRI CALO Year 2 meeting corpus with callouts
identifying the various recognizable constituent types.

3.1.2 Meeting Corpus

The corpus of meetings from which SHACER’s inputs are drawn was collected at SRI

International as part of the CALO project [89]. There are nine meeting series in the

corpus, labeled A-I. Six of nine series are full five-meeting series. During collection of

the earlier series (A-F ) the collection hardware was being tuned, so their usefulness for

development and testing of SHACER is limited. The G series of five meetings (G1-G5 )

is used as SHACER’s development corpus and the H series (H1-H5 ) has been held out as

the unseen test series.

Each of the meetings is around 5-10 minutes in length on average, and has three

participants. The meeting participants were instructed to create a Gantt planning chart
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during each meeting using only the supported chart symbols: e.g. axes, lines, diamonds,

tick-marks and cross-out marks (Figure 3.1). The story line of each meeting series involved

hiring three new people, scheduling their arrivals, arranging for office space and equipment,

dealing with delays, and choosing a printer for the new hires to share. This type of scenario-

limited meeting is similar to those used in the European MultiModal Meeting Manager

(M4) project [112], and the Augmented Multiparty Interaction (AMI) project [33]. In the

SRI CALO meeting data there were five different sets of three people participating across

the nine series of meetings. There was no dedicated prompter during the meetings as for

the M4 collections, but the meetings’ agendas and goals were set out in the pre-meeting

instructions.

Participants were told how to label task-lines and milestones on the Gantt chart, and

were asked to write out names in full while speaking them at first and then abbreviate

them freely after that. This behavior presented no difficulties for the participants, and

the speech and handwriting events in these meetings had timing and semantic relatedness

properties similar to those seen in the lectures and brainstorming session studied in Chap-

ter 2. Thus, although constrained, these meetings were realistic in the important aspects

that made them suitable for the purposes of this thesis: (1) testing SHACER’s ability to

enroll new terms based on multimodal fusion of redundant events, (2) using the spelling,

pronunciation and semantics of those new enrollments to semantically understand subse-

quent abbreviations, and (3) measuring the difference between system recognition rates

using dynamic learning versus not using it.

3.1.3 Ambient Cumulative Interface

SHACER is deployed as part of a background perceptual application, which has been

designed to observe human-human interactions, understand them, and produce useful

background understanding. The interface is not a standard multimodal command in-

terface; rather, it is an ambient cumulative interface or ACI for short. An ACI is a

newly introduced class of multimodal system [88], which instead of supporting a direct

human-computer interface for sequences of command/display turns, accumulates ambient

perceptual observations during structured multi-party interactions [82] like the creation
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Figure 3.2: Our ambient-cumulative Charter system being used to support remote meeting
collaboration. SHACER’s dynamic learning of both the chart label, Joe Browning, and
its abbreviation, JB, support distributing to the remote user a semantically enhanced
representation in the form of a focus bubble (centered on the JB milestone) and hover
label (explaining the abbreviation). Together these distributed annotations allow the
remote user to better understand what the seated user is talking about when he points at
the office-space-availability milestone for Joe Browning and says, “. . . there’s a problem
with his office space.”

of a Gantt schedule chart during a meeting. The meetings are structured in that a Gantt

chart itself has inherent structure, both temporally and spatially. For example drawing

the axes temporally precedes drawing tasklines, so speech associated with the creation of

the axes precedes speech which is associated with creation of the tasklines. Drawing the

chart axes also creates a spatial context that allows the system to judge the difference

between tasklines, which are structurally part of the chart, and other spatially extraneous

lines like pointers, connectors or underlines.

The ACI we employ for testing SHACER is a suite of agents collectively referred to

as Charter. A common characteristic of human-human interactions during which Charter
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can be deployed is that there are public spaces. For example, there is a shared interactive

whiteboard or a piece of digital paper for public sketching and handwriting [90, 16].

There is a shared conversational space for speech captured by close-talking microphones

[87, 89]. There is a shared gestural space tracked by stereo-video cameras [94, 51] capable

of recognizing deictic pointing or gazing events. The system’s function is to unobtrusively

collect, recognize, integrate and understand the information it observes in those public

spaces, producing useful background artifacts.

Our ambient-cumulative Charter application [88] can, for example, recognize deictic

pointing events during a meeting. It can then leverage its background understanding of

the meeting’s content to distribute a semantically enhanced representation of that pointing

event. In the example shown in Figure 3.2, SHACER learned that the JB handwriting was

an abbreviation for Joe Browning. The full name, Joe Browning, had been handwritten

on the shared distributed workspace a few minute earlier. When it was written it was also

spoken redundantly, so SHACER learned and enrolled it. When JB was handwritten the

writer also said, “Joe Browning.” This second redundancy allowed SHACER to make the

association between JB and Joe Browning. Charter distributed that dynamically learned

knowledge to aid the remote user’s understanding of the meeting. Thus, when the remote

participant heard the utterance, “. . . there’s a problem with his office space,” he also saw

a circular focus area over the JB milestone. This was triggered by recognition of the

deictic pointing gesture. Within the focus area was a hover label holding the expanded

meaning of the abbreviation, which had been dynamically learned. In this way the remote

participant could better understand whose office was being discussed, and that information

was only available due to SHACER’s ability to dynamically learn the meaning of a newly

introduced abbreviation.

The long range goals of our ambient-cumulative system are quite similar to those

of the “ubiquitous computing” and “ambient intelligence” research efforts as described

by Pantic [140]. The vision of such research efforts calls for a shift of focus away from

computer-centered system design and towards human-centered design [132], which lever-

ages unobtrusive perception to understand context and adapt automatically in anticipation
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of a user’s needs. As shown in Figure 3.2 Charter/SHACER attempts to move in this di-

rection of dynamically adapting to user needs, by learning the meaning of abbreviations

and providing them in useful contexts that can aid remote users’ understanding. Char-

ter/SHACER can be used to integrate information from three modes of input: speech,

handwriting/sketching, and 3D deictic gestures like pointing. In this thesis the examina-

tion and analysis of three-way integration of speech, handwriting and 3D gesture is left for

future work. The focus here is on the integration of speech and handwriting for learning

new vocabulary.

3.2 SHACER PROCESSING

SHACER’s goal is acquiring new vocabulary dynamically in context, which is a necessary

part of what it means to learn. The first problem in learning is called the situation-

identification problem: identifying what the relevant features are out of all the possible

perceptual cues coming into the system [36]. For example, in language acquisition studies,

Baldwin et al. [15] have shown that infants more easily link objects with their names when

the person speaking the object-name is also looking at or pointing to the object. Thus,

multimodal redundancy identifies the relevant perceptual cues and focuses attention on

them [61, 12, 175, 177, 150]. This is the theoretical assumption underlying SHACER’s

approach to learning new words. Multimodal redundancy is the situational identifier that

focuses attention on the important features to be learned: the redundantly presented

spoken word and its handwritten spelling. Knowing that these are the perceptual cues to

be attended to, how can the occurrence of multimodal redundancy be leveraged to help

in dynamically learning new words?

3.2.1 Modal Recognition

Figure 3.3 diagrams the input paths of speech and handwriting into the system. This

example occurred during the second of the G series of meetings. In this G2 meeting the

meeting facilitator drew a Gantt chart to schedule space and equipment for a new hire.

He said, “This is our timeline for Fred Green,” and also wrote that name on a Gantt chart
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taskline on the whiteboard. In this example, the spoken two-word name, Fred Green, was

OOV. Both individual words occurred in the transcribing speech recognizer’s vocabulary,

but the two-word name as such was neither in the vocabulary nor was it part of the

training data on which the recognizer’s language model was built. SHACER uses three

different types of speech recognizers. The transcribing speech recognizer, referred to here,

distinguishes between speech and non-speech acoustic input and produces a transcription

of the speech. Because the sequence Fred Green was not explicitly accounted for in the

language model, the recognizer was forced to choose a sequence that was acoustically

very close and that had some probability assigned to it by the language model. This

is typically what transcribing speech recognizers do when they encounter OOV terms

— force recognition to acoustically similar in-vocabulary words whose sequence has some

probability in the language model [69]. In the Figure 3.3 example, the result of this forcing

was the insertion of a possessive s between Fred and Green.

Figure 3.3: Two modes of input to SHACER: (left) spoken input, and (right) handwritten
input. The spoken two-word name, Fred Green, was OOV, so the transcribing speech
recognizer forced recognition to an allowed two word sequence, inserting an s between the
words Fred and Green in the process. On the handwriting side, the top-stroke of the F in
Fred was not perceived. It was skipped, making it difficult for the handwriting recognizer
to correctly interpret.

Handwriting recognizers also have vocabularies and language models. If letters are

carefully handwritten then it is possible that OOV terms can be recognized correctly.
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However, words that are in the handwriting recognizer’s vocabulary and language model

are more easily recognized. In the Figure 3.3 example, handwriting recognition is further

confounded by an error in ink perception. The topmost stroke of the F in Fred was written

too lightly on the touch-sensitive whiteboard that was collecting ink during this meeting.

So the perception of that stroke was skipped, making it very difficult for the handwriting

recognizer to interpret the handwriting correctly.

Figure 3.4: On the right is the list of alternate phone-level recognitions of the speech,
from an ensemble of four phone recognizers. The correct phone-level pronunciation is
not present on the list; however, phone-level recognition does not insert the possessive s
between Fred and Green that results from the transcribing recognizer’s forced insertion.
On the left is the list of alternate handwriting recognizer outputs. Due to the ink-skip the
correct spelling does not occur.

The second type of speech recognizer used in SHACER is phone-level recognition.

This is illustrated in Figure 3.4, where below the spoken, Fred Green, is a list of alternate

phone-level recognitions. SHACER uses phone recognizers to mitigate the effect of forced

insertions that are imposed by the transcribing recognizer. None of the phone recognizers

spuriously insert the “s” between Fred and Green. In this example phone-level recognizers
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do a better job at acoustically interpreting the OOV proper name, but the canonically

correct 2 pronunciation still is not present in the list. This is the primary reason that

systems for spoken document retrieval rely on sub-word unit recognizers [123, 125, 31].

For example, Yu et al. [181, 180] report that spoken document retrieval based on phone-

level processing consistently outperforms word-level based processing, because phonemes

provide better coverage of OOV words including OOV query terms.

The list of alternate letter sequence interpretations of handwriting input in Figure 3.4

appears below the handwritten Fred Green. Because of the ink-skip the correct spelling

of the name does not appear in the list.

3.2.2 Phonetic Alignment

The second problem in learning, which is another basic axiom from the field of Artificial

Intelligence (AI) [36], is called the description problem. In order to know that two situ-

ations are similar they must be describable in a similar notation. Without that there is

no way to compare them. To detect multimodal redundancy and recognize new words,

SHACER’s first step is aligning the handwritten words to nearby spoken words. Closely

matching alignments then trigger SHACER’s detection of multimodal redundancy. To

make the handwritten words comparable to the spoken words SHACER transforms the

handwriting letter-string alternatives into sequences of phonemes. This process is called

Letter-To-Sound (LTS) transformation. It is illustrated in Figure 3.5), and SHACER ac-

complishes it by using a letter-to-sound transformation module from Alan Black’s CMU

FLITE toolkit [22]. The resulting phonemes are then aligned against the speech phonemes

as shown in the Alignment Matrix at the bottom of Figure 3.5.

SHACER’s phonetic articulatory-feature based aligner compares phone hypotheses by

feature sets rather then by phone name. Instead of assigning the phone match between g

and k an absolute score of 0, because they are not the same phone, it can instead assign

them a metric that takes into account the fact that they are identical in all articulatory

2A canonically correct pronunciation for a word is the phonetic pronunciation listed for that word in a
standard dictionary. For this thesis the standard dictionary used is the Carnegie Mellon University (CMU)
Dictionary, Version 6.0.
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Figure 3.5: After speech and handwriting streams have been individually recognized, they
need to be aligned to check for redundancy. First the handwriting is put through a Letter-
To-Sound transform (LTS), which is a transformation of sequences of letters into sequences
of phonemes. Then the phone ensemble phone sequences can be aligned with LTS phone
sequences.

features except voicing. This is illustrated in Figure 3.6, which highlights the alignment of

the g and k phones that are hypothesized by different ensemble phone recognizers to start

the word Green. Both phones share a similar place and manner of articulation. They are

both velar stops.

3.2.3 Pronunciation Refinement

When the alignments of LTS handwritten phone sequences and speech phoneme sequences

are close enough, then SHACER treats the respective handwritten and spoken inputs as

being possibly redundant. The next step in processing is to use the information embedded
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Figure 3.6: SHACER uses an articulatory-feature based alignment mechanism, which does
not insist that phones must be spelled the same way in order to match. Thus g and k are
aligned here, because they are both velar stops and differ only in that one is voiced while
the other is not voiced.

in the alignment matrix to better model the phone sequence transitions that are possible

— that is, given one phone what is the most likely next phone based on information in the

phonetically aligned columns of the alignment matrix. For example, Figure 3.7 highlights

the alignment matrix columns that represent the transition from the final phoneme of the

word Fred to the first phoneme of the word Green. There is some ambiguity as to whether

the first phoneme of the word Green is g or k. Counting the phone bigrams across rows

at this transition point, as illustrated in the expanded highlight box of Figure 3.7, yields

a table of bigram counts. The count of d-g bigrams is 8, while the count of d-k bigrams

is 4. Based on these bigram statistics it is more likely that the first phoneme of the word

Green is g and not k.

For the example shown in Figure 3.7, the resulting bigram sequence model for the

entire alignment matrix was used to constrain a second pass phone-level recognition of

the speech. In this case that second pass recognition yielded the correct pronunciation.
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There was no incorrectly inserted possessive ’s between Fred and Green, as was the case

for the transcribing recognizer. Even though the correct pronunciation of the spoken

name, Fred Green, appeared neither in the list of ensemble phone alternates nor in the list

of LTS phone sequences from the handwriting recognition, nonetheless the articulatory-

feature based alignment of the combined inputs correctly discovered the redundancy and

provided enough acoustic information to extract the correct pronunciation. This is the

benefit of leveraging multimodal redundancy. The redundant modes offer complementary

information, which when properly combined can yield better recognition than is possible

in either mode alone [85].

Figure 3.7: SHACER uses cross-row phone sequence information from the alignment ma-
trix to create a bigram phone sequence model. This model can combine information from
both handwriting and speech phone sequences to resolve ambiguous transitions like that
shown here from the last phoneme of Fred to the first phoneme of Green. Using the model
from the entire matrix to constrain a second-pass phone-level recognition yields the correct
pronunciation.
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Figure 3.8: The refined pronunciation produced by constrained second-pass phone recog-
nition is used as an integration decision metric against which to measure interpretations
from all input sources. The closest sources are chosen to represent the spelling and pronun-
ciation of the new word. Comparisons are shown for the speech transcript (non-matching),
versus word sequences extracted from the temporally corresponding segment of the speech
recognizer’s lattice — which in this case result in an exact pronunciation match.
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3.2.4 Integration

The refined pronunciation resulting from constrained second-pass phone recognition then

becomes the key to how SHACER leverages multimodal redundancy. That refined pro-

nunciation is used as a metric against which to measure hypotheses from all input sources,

as shown in Figure 3.8. When it is compared against the transcript, it does not match ex-

actly. It is also possible to use temporal boundary information from the alignment matrix

to choose segment of the transcribing speech recognizer’s lattice from which local word

sequences can be extracted. In this example, when the refined pronunciation is compared

against those extracted word sequences the acoustically most likely word sequence was

found to be an exact match.

This exact match is very strong evidence that, Fred Green, was in fact what was spoken

and written; so, that new spelling, pronunciation and semantics are dynamically enrolled

in the system.

3.2.5 Learning

The are two results of learning in SHACER (Figure 3.9). The first result is immediate —

the incorrectly recognized Gantt chart label (i.e., i-redesign) for Fred Green is corrected.

The fact that Fred Green is meant to be a taskline label, which in this context is the

learned semantics of the new term, also participates is this immediate aspect of learning.

For example, because of the underlying ink’s temporal and spatial relation to the Gantt

chart axes and taskline it is treated as a taskline label and not as a milestone label or

other extraneous handwriting. The second result of learning in SHACER is persistent

system enrollment. The primary enrollment site is the dictionary and language model

of a dedicated word/phrase-spotting speech recognizer. Later, when the enrolled word is

uttered again, the word/phrase-spotter will recognize it with high confidence. Thus en-

rollment persists both within a meeting and across meeting boundaries, while immediately

learned labels improve recognition but do not of themselves (i.e., without enrollment) have

a persistent effect on later recognition. Currently SHACER avoids falsely recognizing new
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Figure 3.9: There are two aspects of learning in SHACER. Immediate learning serves to
correct mis-recognitions, as is the case for the Fred Green Gantt chart label. Persistent
learning is the result of enrollment — the spelling and pronunciation of new terms are
added to the dictionary of a dedicated Word/Phrase-Spotting speech recognizer. Subse-
quent recognition of the new term is thus improved.

word spellings and pronunciations by using a high threshold on the likelihood of a detec-

tion and integration. If incorrect spellings or pronunciations are enrolled then currently

they persist until replaced by a more likely spelling and pronunciation combination.

3.2.6 Understanding Abbreviations

Multimodal redundancy can also help in learning abbreviations. Figure 3.10 shows some

inputs that occurred during the fourth of the G series of meetings. The discussion above

about the persistent enrollment of the newly learned name, Fred Green, happened in

meeting G2 — the second of the G series of meetings. Along with Fred Green another

new name was also learned in the G2 meeting, Cindy Black.

Ink and speech inputs, along with persistent learning, are entering the system at

the bottom of this Figure 3.10’s diagram. The perceived inputs are (1) the two spoken

utterances, “Fred Green,” and, “and Cindy Black,” and (2) the sketch/handwriting ink,
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which in this case is a diamond shaped Gantt chart milestone symbol written on a taskline

and two hand-lettered abbreviations (i.e., FG, CB) listed below it.

Figure 3.10: Understanding abbreviations in SHACER: a facilitator writes a diamond
shaped milestone on the whiteboard Gantt Chart, writes two abbreviations below it (i.e.,
CB, FG), and also says, “Cindy Black and Fred Green are arriving here at week five.”
Given these inputs and the previous enrollment of Cindy Black and Fred Green the system
corrects and expands its understanding of the abbreviations.

These perceived inputs are recognized, as shown in Figure 3.10’s recognized inputs

panel. The handwriting recognition gets the letter sequence for CB correct, but the letter

sequence for FG wrong. At this point, the system has no idea what relationship these

letter sequences may have to the two spoken utterances. Thus the abbreviation letter

sequences are ungrounded.

Both proper name utterances depicted in Figure 3.10’s recognized inputs panel are un-

recognizable sequences for the transcribing speech recognizer, because neither are listed

as two-word names in either the recognizer’s dictionary or its language model. Thus

the resulting speech recognition transcripts, Fred’s Green, and Cindy’s Black, are both

incorrect. However, these names were both learned and enrolled earlier in the G2 meeting,

as discussed above for Fred Green, so both OOV names are correctly recognized by the
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Word/Phrase-Spotter — as shown in the WPS Recognition box in Figure 3.10’s recognized

inputs panel.

The Word/Phrase-Spotter recognitions of Cindy Black and Fred Green trigger a search

for temporally nearby handwriting, and their associated spellings are compared to any

handwriting that is found. For the cases shown in Figure 3.10’s integrated inputs panel, the

handwriting instances (i.e., CB and FG) are first-letter abbreviations of the spoken, newly

enrolled names. SHACER currently can recognize first-letter and prefix abbreviations. In

the future other forms of abbreviations will be recognized also. These abbreviations can

then be associated with their expanded semantics: FG = Fred Green, and CB = Cindy

Black [87], as shown by the hover labels in Figure 3.10’s integrated inputs panel.

SHACER’s process of learning abbreviations is called Multimodal Semantic Acquisi-

tion. The learned semantics carried in one mode, like the WPS speech recognitions of Fred

Green or Cindy Black, are dynamically acquired by new symbols in another mode, which

in this case are the handwritten abbreviations, CB and FG. Thus unknown handwritten

abbreviations, which are redundantly spoken, are grounded by acquiring their expanded

meanings from previously recognized and enrolled speech.

3.3 SUMMARY

We have shown that SHACER can learn new words during meetings by learning them

dynamically. The chapter began by pointing out that in natural speech contexts both

proper names and handwritten abbreviations occur frequently, are critical for understand-

ing, and are also more likely than other words to be out-of-vocabulary. This raises the

need to learn OOV terms dynamically. This chapter has given a high-level overview of

how SHACER accomplishes dynamic learning of OOV terms.

SHACERs method depends on leveraging the occurrence of multimodal redundancy.

In that context, we have outlined SHACER’s three main functionalities.

1. Alignment: SHACER uses an articulatory-feature based alignment mechanism for

detecting redundancy. Phonetically close alignments of speech and letter-to-sound

transformed handwriting are processed as possible redundancies.
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2. Refinement: Using a phone-bigram sequence model derived from the alignment

matrix, SHACER produces a refined pronunciation hypothesis for a new term. Even

when neither individual input mode yields the correct pronunciation alternative,

combining their information by using the alignment matrix to constrain second-pass

recognition allows the system to still recover the correct pronunciation.

3. Integration: Using the refined pronunciation as an integration decision metric

against which to compare other inputs, SHACER can decide on the best combination

of spelling and pronunciation. Integrating information from speech and handwriting

can yield better recognition and understanding than is possible in either mode alone.

Figure 3.11: An overview of the SHACER’s learning and understanding capabilities.

Figure 3.11 summarizes the capabilities described in this chapter. In the G2 meeting,

when two new proper-name Gantt chart labels were introduced redundantly, the recog-

nition in both modes failed. Thus without SHACER both labels were incorrect. With
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SHACER, leveraging multimodal redundancy, both labels were correctly recovered and

enrolled. In the G5 meeting, there were many abbreviations. With no learning none

of the five abbreviations shown in Figure 3.11 could be recognized or understood. With

learning four of five of the abbreviations were recognized and understood correctly. They

were both correctly spelled and correctly understood in terms of their expanded meanings

(as shown by the hover labels in Figure 3.11). This was possible because all of these ab-

breviations were spoken redundantly, and all referred to terms that had been dynamically

learned in an earlier meeting. As enrolled terms they persisted across meeting boundaries

in the dictionary and language model of the dedicated Word/Phrase-Spotting recognizer,

and were recognized when spoken again.

In the following chapters we will discuss the three main steps of SHACER processing

— alignment, refinement and integration — in more depth and give detailed examples.

Finally we will present test results on a held-out data set, which make it evident that

SHACER can yield significant improvements in understanding.



Chapter 4

Prelude to SHACER: Multimodal New

Vocabulary Recognition

4.1 HIGH LEVEL GOALS

4.1.1 Dynamic Learning

Machines are moving closer to being observant and intelligent assistants for humans

[25, 9, 23, 55]. However, multimodal and spoken dialogue systems are typically imple-

mented with fixed vocabularies and knowledge spaces. Their automatically acquiring new

knowledge as they are running, particularly by a single, natural demonstration would

significantly enhance the usability of such systems. The dynamic augmentation of vocab-

ularies, pronunciation lexicons and language models is an active area of research in speech

and gesture recognition [39, 40, 41, 147, 92, 144]. Machines or systems that assist humans

in real-time 1 tasks need to be able to learn from being shown — through sketch [38, 154],

handwriting [100], teleassistance [143], speech [162], or multimodally through handwriting

and speech as in the work described in this chapter.

One example of learning from being shown is understanding abbreviations. Often

the handwritten terms during a whiteboard presentation are abbreviated, like those in

Figure 4.1. During the presentation their meaning is grounded in speech, and thus clear

to listeners. Listeners can learn an abbreviation’s grounding quickly and easily as they

see it written and hear it spoken. Such redundantly grounded terms then seed subsequent

1Real-time: a descriptive phrase that refers to events simulated by a computer at the same speed that
they would occur in real life.

61
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Figure 4.1: These abbreviations, J and LB, are critical to understanding this presentation.
During the presentation they are spoken was well as being written. The speech grounds
their meaning. Out of context it is difficult to know their meaning. A useful function
of an assistive computational program would be to perceive and recognize that meaning
during the presentation, so it would be available later.

semantic entrainment [43, 27]; that is, they are used over and over again with the same

understood meaning. They become the dialogue vernacular, the common talking points.

They are repeated throughout the presentation. For example, the abbreviation J in

Figure 4.1 was redundantly entrained to represent the term Java tier. In a presentation

about Scaling Internet Architecture that is a critical term. The abbreviation J was written

with that same meaning five times during the four minute presentation and referred to

eight times. However, without having watched the presentation, it is difficult to just

look at the diagram and know what the J or LB abbreviation below it refer to. If an

assistant program could leverage the fact that when the abbreviation was written on the

whiteboard it was also spoken, then it could learn that association and annotate the

diagram with explanatory hover labels — as shown in Figure 4.2. These hover labels

identify the expanded contextual meaning of the abbreviation.

In later chapters we will show how SHACER, building on the system, ideas and out-

comes discussed in this chapter, can perceive and recognize abbreviations that are redun-

dantly spoken as they are handwritten, and thus provide the dynamically learned semantic

labels shown in Figure 4.2 (J = Java tier, LB = Load Balancer). The work in this chap-

ter is a prelude to SHACER. It leverages multimodal redundancy across handwriting and

speech to dynamically learn out-of-vocabulary words. The system is called Multimodal
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New Vocabulary Recognition (MNVR). This chapter lays the foundation for our later de-

scribing what SHACER does. It shows that combining information from redundant hand-

writing and speech leads to significantly better recognition than can be achieved in either

mode alone. MNVR is about leveraging multimodal redundancy for better recognition,

and that functionality is what it shares with SHACER. Leveraging multimodal redun-

dancy is the functionality underlying the dynamic abbreviation understanding shown in

Figure 4.2.

Figure 4.2: Instances of multimodal redundancy serve as vernacular anchor points; that is,
they focus attention when they are introduced so that subsequent presentation structures
can be understood — like the flow diagram on the left, taken from a ZDNet At the
Whiteboard presentation on Scaling the Internet Architecture. SHACER has been designed
to address the need for this capability. Eventually the dynamically learned, informative
hover labels displayed in SHACER’s processed Gantt chart (right side) could also be
available in applications like the ZDNet presentation on the left.

Our aim, as for Breazeal et al. in their work on designing humanoid robots to be

cooperative partners for people, is that our system will be able to “acquire new capabilities

. . . as easy and fast as teaching a person” [25]. To take a first step in this direction our

MNVR technique focused on a single, important capability within the scope of what

humans ultimately need to teach a cooperative machine: establishing a common, working
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vocabulary of spoken words taught to the machine by natural demonstration as the system

is running.

4.1.2 The Vocabulary Problem

Most computer systems require users to type or speak the right words. For example

the newly released Microsoft Vista TM Operating System completely speech-enables the

windows command interface. Any menu item or any button name can be spoken — but

must be spoken verbatim to be recognized. Dozens of text manipulation commands in

speech dictation mode must also be memorized verbatim in order to be used. For example,

during spoken dictation, one can say, “select verbatim,” to highlight the word verbatim

in the previous sentence; but, one cannot say, “highlight verbatim,” or even, “choose

verbatim.” The problem with this is that users — particularly new or intermittent users

— often use the wrong words. This is an aspect of the classic vocabulary problem [56].

In studies of information retrieval searches, users seldom used the same word to refer to

a particular concept. Even a set of the 15 most common aliases for a concept covered

only 60-80% of the search vocabulary people chose for that concept. Users believe the

words they choose are the right ones. Those who are new to an interface or use it only

intermittently can grow discouraged or frustrated when the system does not understand

their words. For some users, this hurdle is enough to block acceptance of a new interface.

Having interfaces that could adapt dynamically to users’ chosen vocabulary could help in

addressing this issue by taking the burden of learning off the user and shifting it to the

system.

The MNVR approach combines handwriting recognition and out-of-vocabulary speech

recognition, to leverage two of the richest communicative modes we as humans have avail-

able for acquiring new vocabulary. Others have designed OOV speech recognition sys-

tems [57, 39, 20, 8, 111], but they are not used in a multimodal context. Related multi-

modal systems that extract words from statistical associations of object/phone-sequences

or action/phone-sequences [176, 62, 150] do not leverage the grammatical and linguistic

context in the same way MNVR does, nor do they use handwriting as an input. The key

components of MNVR’s approach are (1) highly constrained, real-time out-of-vocabulary
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Figure 4.3: A two-person Gantt chart scheduling meeting. The person at the whiteboard
is labeling tasklines. Charter’s processed understanding of the Gantt chart is shown in
the lower left, with an illustration of how MNVR dynamically learns OOV labels. The
associated Microsoft Project TM chart is shown at the top.



66

speech recognition, (2) standard handwriting recognition , and (3) a multimodal task do-

main capable of assigning semantics on the basis of spatial, temporal and in some cases

linguistic aspects of the input signals (depicted in Figure 4.3). In our task domain the

system functions as a real-time, multimodal interface to Microsoft Project TM [82]. Recog-

nition of multiple input modes (e.g. speech, 2D pen, handwriting, etc.) allows the system

to dynamically build a Microsoft Project TM chart as the meeting proceeds. OOV con-

stituent names, like the task-line labels show in Figure 4.3, are recognized in real-time and

enrolled as part of the Microsoft Project TM chart [82].

4.2 RELATED WORK

A well known approach to leveraging multimodal redundancy is audio/visual speech recog-

nition. Systems that augment speech recognition by visually extracted face and lip move-

ment features [121] employ an early-fusion approach that combines both input streams

in a single feature space. Previous work in our group [84, 91] as well as our MNVR

technique instead employs a late-fusion approach that combines the output of separate

modes after recognition has occurred. For our test-bed schedule-chart application early-

fusion is problematic because the temporal relation between handwriting and the speech

segments associated with it is neither completely simultaneous nor completely consistent

(see Section 2.2.3). It is not completely simultaneous because handwriting is not exactly

synchronous with redundant speech (see Section 2.2.3). Some phones may be spoken

synchronously as they are written, but that is not usually the case. Handwriting and re-

dundant speech only start simultaneously in 3% of cases, and in almost no cases were they

found to both start and stop at the same time. Most of the time handwriting precedes

and overlaps speech. Sometimes speech precedes handwriting. They overlap each other in

73% of cases. They are sequential in 24% of cases, meaning that the start of one follows

the end of the other. Thus, there is no clear way to know which handwriting goes with

which speech until they have been recognized and aligned, and that makes early fusion

problematic. Handwriting and speech lack the aligned temporal boundaries that exist

between articulated phonemes and visemes, which rely on the same muscle movements.
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Only in situations where the system can assume that users have spoken exactly what they

have handwritten is there a possibility of early fusion. In that situation no alignment is

necessary. The features of the first-occurring stream could be used directly in recognition

of the second stream. However, this would require that the handwriting be spoken ver-

batim, and statistics from Section 2.2.3 show that of the 97% of handwriting events that

are spoken redundantly, in only about three-quarters of those cases are the handwritten

words spoken exactly verbatim.

4.2.1 Hybrid Fusion for Speech to Phone Recognition

A third possibility, used by MNVR, is a hybrid re-recognition approach that takes initial

recognition results from all input modes, and then uses information from one input mode

to constrain a subsequent re-recognition pass on the input from another mode. A variation

of this approach has been used by Chung et al. [39] in their speak and spell technique

that allows new users to enroll their names in a spoken dialogue system. User’s first speak

their name and then spell it, in a single utterance. Thus, there is a single input mode

(speech) but separate recognition passes: the first pass employs a letter recognizer with an

unknown letter-sequence model, followed by a second pass OOV recognizer constrained by

a sub-word-unit language model and the phonemic mappings of the hypothesized letter

sequences from the first pass. On a test set of 219 new name utterances this system

achieves a letter-error-rate (LER) of 12.4%, a word-error-rate (WER) of 46.1%, and a

pronunciation-error-rate (PER) of 25.5%.

To recognize OOV terms MNVR uses simple phoneme sub-word units. Other speech

recognition systems use more sophisticated sub-word units. The sub-word-units used by

Chung et al for modeling OOV words are those of Bazzi [20]. These are multi-phone sub-

word units extracted from a large corpus with clustering techniques based on a mutual

information (MI) metric. Bazzi [19] shows that using MI generated sub-word-units out-

performs a system that uses only syllabic sub-word units; however, it is interesting to note

that 64% of his MI sub-word units are still actual syllables. Chung et al. extend the space

of sub-word units by associating sub-word-unit pronunciations with their accompanying

spellings, thereby making a finer grained, grapho-phonemic model of the sub-word-unit
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space.

Galescu [57] uses an approach similar to Chung et al’s in that he chooses grapheme-

to-phoneme correspondences (GPCs) as his sub-word-units. He uses an MI mechanism

like Bazzi’s to cluster multi-GPC units (MGUs). His language model (in which MGUs

are treated as words) was trained on 135 million words from the HUB4 broadcast news

transcriptions, with MGUs first being extracted from the 207,000 unique OOV occurrences

in that training data. He tested OOV word modeling on the individual OOV terms

occurring in 186 test utterances, yielding between a 22.9% — 29.6% correct transcription

rate, and between a 31.2% — 43.2% correct pronunciation rate. Applying the OOV

language model to the complete utterances in the 186 instance test sets yielded a false

alarm rate of under 1%, a relative reduction in overall WER of between 0.7% — 1.9%,

with an OOV detection rate of between 15.4% — 16.8%. For a large vocabulary system

these are encouraging results: there is a reduction in WER, whereas other systems report

increases in WER.

In designing the algorithm for OOV recognition and multimodal new vocabulary en-

rollment within MNVR we chose not to use GPCs because they require a large training

corpus, whereas MNVR’s static syllable grammar requires none. Since there is evidence

that many if not most MI extracted clusters are actual syllables (64% in Bazzi’s work ),

we felt that the loss in recognition accuracy was balanced out by the savings in not having

to acquire and process a task-specific corpus.

4.2.2 Multimodal Semantic Grounding

Roy [148] developed robotic and perceptual systems that can perceive visual scenes, parse

utterances spoken to describe the scenes into sequences of phonemes, and then over time

and repeated exposure to such combinations extract phonetic representations of words

associated with objects in the scene. We refer to this process as multimodal semantic

grounding.

In these experiments [148, 147, 150, 149] Roy grounds language in sensory-motor expe-

rience. Roy describes lexically defined semantics as “ungrounded speech understanding.”
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The lexicon words acquire meaning by assignment, instead of being grounded in per-

ception. This is the common approach to automatic speech recognition/understanding

currently. The intent of Roy’s work is to move from lexically defined semantics to percep-

tually grounded [68] semantics. In order to take some first steps in that direction Roy offers

an analysis of work done in the field of early language acquisition by children, pointing

out that (1) the learning problem can be solved “without labeled data since the function

of labels may be replaced by contextual cues in the learner’s environment,” and that (2)

non-linguistic context can be used to disambiguate words and utterances. The process

of using non-linguistic cues is at the crux of early language acquisition by humans. Roy

argues that it may well prove to be just as critical for language learning by machines. Roy

uses computer analyzed video of parent/child interactions to spot non-linguistic cues like

the presence of certain objects. MNVR takes advantage of very specific and informative

non-linguistic information in the form of handwriting.

As characterized by Yu and Ballard [176], Roy’s work [150] posits a theory of asso-

ciationism at the core of language learning. Roy’s model of Cross-channel Early Lexical

Learning is called CELL. In experiments with CELL, Roy presented pictures of childrens’

play objects (e.g., key, shoe, truck, dog, etc.) along with spoken utterances to CELL’s

robotic processor. The utterances were automatically extracted from recordings of care-

giver/child interactions involving the pictured objects. A lexicon of object-picture/spoken-

utterance pairs was extracted using an information theoretic measure. The learning prob-

lem was challenging because caregiver speech contained overt references to the play objects

only 30% of the time. For example, caregivers often used phrases such as, “Look at it

go!” while playing with various objects like a car or ball, etc. Even given this challenging

input CELL successfully demonstrated perceptually grounded word learning.

Rather than using string comparison techniques for measuring the similarity between

two speech segments (represented as phone-sequences), Roy generated an HMM based

on a segment’s best phone-sequence representation. Then each segment’s speech was

passed through the other segment’s HMM. The normalized outputs were then combined

to produce a distance metric. Of the words extracted by this method with audio only input

only 7% were lexically correct, while with both visual and audio input (combined through
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a further Mutual Information measure) 28% of the words extracted were lexically correct,

and of those, half were correct in their semantic association with the visual object. In

related work Gorniak and Roy [62] use these techniques to augment a drawing application

with an adaptive speech interface, which learns to associate segmented utterance HMMs

with button click commands. Instead of unambiguous button-click commands, MNVR

associates OOV speech with ambiguous handwriting recognition of Gantt chart constituent

labels.

Yu and Ballard [176] point out that associationism as the basic mechanism of percep-

tually grounded semantics is unlikely to be the whole story (see also [61]). Not only do

experiments show that speakers have a strong tendency to look at the objects they’re re-

ferring to [48]; but also, social cognitive skills, such as the ability to understand referential

intent, have also been shown to be a major constraining factor in language acquisition

[15]. The literature supports the view that even pre-verbal children have already ac-

quired an ability to associate deictic body gestures with intended referents; moreover,

both adults and children appear to share this same mechanism. To buttress their claims

for the role of embodied intention in language acquisition they perform an experiment in

adult second-language word and semantic acquisition. Monolingual English participants

are shown video of a children’s story about animals being read in Mandarin Chinese.

Some are shown only the book pages corresponding with the read audio, while others see

the reader’s gaze tracked by a superimposed dot, based on eye-tracking measures, that

indicates what animal on the page the reader is attending to while speaking. The second

group who see the intention-cue (the eye-gaze dot) perform significantly better at both

word segmentation and semantic association tasks.

The experiment is then repeated with the users replaced by a computer program.

The program performs phoneme recognition on the read input, and then uses a temporal

proximity measure between possible object references (e.g., animals appearing on the

current page) and phone-sequences from the read speech to place phone strings into bins.

The binned strings are then processed to extract word-like units that are clustered using an

agglomerative clustering routine. The cluster centroids are then associated with referents.
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Finally an Expectation Maximization algorithm is used to discover the most likely word-

object pairs. The computer program also receives input with and without intentional

cues, and again it is found that the presence of intentional cues significantly improves

performance.

To further explore embodied intention Yu and Ballard [176] developed an intelligent

perceptual system that can recognize attentional focus. It uses velocity and acceleration-

based features extracted from head-direction and eye-gaze sensor measurements, together

with some knowledge of objects in the visual scene. Visual scene analysis is based on

head-mounted scene cameras. Within that context, measurements of the position and

orientation of hand movements (tracked by tethered magnetic sensor) are used to segment

spoken utterances describing the actions into phone-sequences associated with an action.

The types of actions were stapling papers, folding papers, etc. Over time and repeated

associations phonetic representations of words describing both the objects and the actions

performed on those objects was statistically extracted.

Rather than using individual HMMs as the basis of measuring distance between pho-

netic sequences (as Roy does), Yu and Ballard use a modified Levenshtein distance [103]

measure based on distinctive phonetic features. Their use of articulatory features as a

basis for phonetic distance measures was inspired by the work of Kondrak [95, 96]. In 960

utterances (average six words per utterance) Yu and Ballard identify 12% of the words

as either action verbs or object names that their system attempts to pair with meanings

expressed in the other perceptual modes (gaze, head and hand movement). Their system

identifies actions and attentional objects (thus the semantics/meanings of the actions) in

non-linguistic modes in 90.2% of the possible cases. Of all possible word-meaning pairs

they recall 82.6% of them, and over those recalled pairs achieve an accuracy of 87.9%

for correctly pairing words with their associated meanings. The word-like units their

method extracts have boundaries that are word-level correct 69.6% of the time. In general

the phone-level recognition rate is 75% correct; however, because they do not attempt

to update the system’s vocabulary, they don’t report specific phone-error rates for their

tests.
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4.3 The MNVR Approach

In our MNVR technique, when a user at the whiteboard speaks an OOV label name

for a chart constituent, while also writing that label name on a task-line of the Gantt

chart, the OOV speech is combined with letter sequences hypothesized by the handwriting

recognizer to yield an orthography, pronunciation and semantics (OPS-tuple) for the new

label (Figure 4.4). The best scoring OPS-tuple, determined through a score combination

technique similar to mutual disambiguation [135], was then enrolled dynamically in the

system to become immediately available for future recognition.

Figure 4.4: The MNVR (Multimodal New Vocabulary Recognition) technique for out-of-
Vocabulary (OOV) recognition and system enrollment, via multimodal handwriting and
speech. The OOV handwritten and spoken label, signoff, shown on the left is recognized
by the process diagrammed on the right.

For example, when a user, creating a schedule chart at the whiteboard, says, “Call this

task-line handoff,” where handoff is an out-of-vocabulary term, while also writing handoff

on the whiteboard chart to label a task-line, the correct spelling (as the user wrote it)

was handoff, but the handwriting recognizer reported the spelling to be handifi. Using

letter-to-sound (LTS) rules on handifi yielded the pronunciation string, “hh ae n d iy f iy,”

which was one substitution and one insertion away from the correct pronunciation of, “hh
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ae n d ao f.” In this case the best pronunciation alternative from the speech recognizer

was, “hh ae n d ao f,” which was the correct pronunciation. So by using the phone string

generated by the speech recognizer we were able to enroll the correct pronunciation despite

errors in the handwriting recognition. The temporal boundaries of the speech recognizer’s

best pronunciation, “hh ae n d ao f,” were determined by the second pass lattice search of

the recognizer when it assigned the temporal boundary of the switch out-of in-vocabulary

(IV) carrier-phrase words into the OOV segment. In this example, the end time was

determined by the end of the utterance.

4.3.1 Mutual Disambiguation

Because the handwriting, speech and application modules are imperfect recognizers un-

certainty is a major concern. In our previous work on handling uncertainty in multimodal

interfaces [84] we have illustrated the importance of mutual disambiguation (MD). MD

uses grammatical constraints to derive the best joint interpretation by unification of gram-

matically licensed meaning fragments across the ranked inputs of the various modes. For

example, in a map-based emergency-planning scenario, sketched circles may be gram-

matically defined to demarcate various kinds of areas, while the specific type of area is

spoken. So, one draws a circle and says, “smoke jumper drop zone,” or, “sand bag area,”

etc. Both recognizers are uncertain and return lists of alternate results. All the gram-

matically licensed cross-list pairs are extracted and the highest scored one is then further

processed by the system. In MNVR we have constituent lists of handwriting-derived and

speech-derived phone sequences. Instead of using grammatical constraints, as MD does,

to highlight the most plausible combinations within the cross-product of the two lists in

the MNVR case they are all allowed. If the list of the handwriting alternatives and the

list of speech alternatives are redundant then they refer to the same event. So there is no

ranking to determine which of a set of grammatical rules is most likely. Rather the task

is to determine which OPS tuple is most likely, as they are all grammatically licensed.

MNVR uses a simple edit-distance measure, based on the spelling of phone names as the

basis for re-scoring and re-ordering that cross-product list. As our results below show,
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phonetic-level handwriting and speech information are also capable of significantly dis-

ambiguating each other, particularly in a constrained task domain like the creation of a

Gantt scheduling chart, where the temporal/spatial ontology of the task itself offers clear

indications of the user’s semantic intent for a given set of handwriting and speech inputs.

For example, in the current implementation the creation of a schedule grid must precede

the creation of task-lines, which in turn must precede the creation of task milestones. This

helps the system to decide what type of constituent is being labeled, because for example if

no tasklines have be recognized then the label cannot be for either a taskline or milestone.

4.3.2 System Description

In the MNVR system, users layout a schedule grid using the system’s sketch-recognition

agent named Charter (Figure 4.5). It employs a 2D sketch recognizer for recognizing chart

constituents and a handwriting recognizer for recognizing writing 2.

Figure 4.5: The Charter interface illustrating a beautified Gantt chart derived from sketch,
handwriting and MNVR recognition. An example of MNVR recognition for the OOV label,
signoff, is shown.

2The handwriting recognizer used in MNVR experiments was Calligrapher, version 5.
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All modules of the system operate within an agent-based architecture. At the core of

multimodal processing is an integration agent, referred to as the multiparser. The multi-

parser is a temporal chart parser that receives time-stamped messages from all connected

input modules and integrates them to produce higher level constituents. The multiparser

used in MNVR processing is directly descended from that of Johnston et al. [79], on

which the Quickset system was based. The distributed agent-based architecture [46, 98]

that underlies Quickset and MNVR is the application superstructure in which MNVR’s

recognition and feedback mechanisms are immersed. This superstructure is documented

elsewhere [47, 44, 44, 45, 77]. We review it here because the same superstructure is used

later by SHACER, and is critical in the decisions that SHACER makes about multimodal

turn segmentation. Johnston [79] outlines the basic chart parsing algorithm as the follow-

ing, where ∗ is an operator that combines two constituents according to the rules of the

grammar, constituents are designated as terminal sequences from vertex to vertex, and

both the vertices and constituents are linearly ordered.

(4.1) Chart(i, j) =
⋃

chart(i, k) ∗ chart(k, j)

As Johnston points out, in a multimodal context linearity is not assured, because input

from different modal constituents can well be temporally overlapped. Thus he defines the

basic temporal, multimodal chart parsing algorithm as:

multichart(X) =
⋃

multichart(Y ) ∗multichart(Z)(4.2)

whereX = Y
⋃

Z, Y
⋂

Z 6= ∅, Y ¬∅, Z¬∅

Constituent edges in a multimodal parse space cannot be identified by linear spans.

Instead they are identified by unique sets of identifiers (e.g. multichart([s,1,1,0],[g,2,2,1])),

each of which specify the constituent’s mode of origin, recognition sequence number, posi-

tion on the list of alternate recognitions, and semantic interpretation. This identification

axiom maintains the critical constraint enforced by linearity that a given piece of input

can only be used once in a single parse. Commands with intersecting IDs are different in-

terpretations of the same input, and are thus ruled out by the non-intersection constraint

in equation (2) above. This means that there can only be one correct interpretation acted
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upon for each set of inputs. This describes the difference between a single modal linear

chart parser and a multimodal temporal chart parser.

4.3.3 Two-Level Recursive Transition Network Grammar

To implement OOV speech recognition (SR) we augmented CMU’s Sphinx2 speech rec-

ognizer to use an embedded Recursive Transition Network (RTN) grammar in place of a

standard n-gram language model. This architecture is schematically illustrated in Fig-

ure 4.6. We explain it here because the same embedded RTN structure underlies new

word recognition in SHACER. Symbolic grammar-based speech recognition is often im-

plemented on top of a flat lexical tree, meaning the pronunciation sequence for each dic-

tionary word is an array of phones and the dictionary itself is thus a flat list of individual

arrays. In contrast continuous speech recognizers typically encode the system’s dictionary

as a single phonetic trie structure for all dictionary words, meaning that the dictionary is

not a flat list of arrays. A trie structure is a much more space efficient way to structure

a large list of morphologically varying words than a flat list of arrays. A re-entrant trie

structure is one that supports more than one path-walk of the trie simultaneously. In our

augmentation of Sphinx2 we have used a separate re-entrant lexical prefix tree for each

sub-grammar within the RTN (shown as terms 1-n in each grammar in Figure 4.6). Thus

when we dynamically add new words they are added only to the appropriate grammar’s

lexical prefix tree. During the first pass Viterbi search of MNVR’s speech recognizer, all

sub-grammars are searched in parallel, constrained only by the a priori state transitions

specified in the compiled grammars.

The use of separate lexical tries for each grammar results in a system that differs

significantly from that of a more standard OOV recognition approach like that of Bazzi

and Glass [20, 19]. Bazzi and Glass compose separate word and phone lexicons into a single

Finite-State-Transducer (FST). That composed FST has a single lexical trie containing

both words and phones. This is the standard large vocabulary recognition approach. Thus,

during the Viterbi search, both word and phone recognitions compete with each other in

ways that do not happen in MNVR’s parallel pass over separate lexical tries. For example,

instead of a single language model including both words and phones, in MNVR phone
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Figure 4.6: Schematic diagram of Recursive Transition Network (RTN) architecture em-
bedded within Sphinx2 Speech Recognizer, for the support of Multimodal New Vocabulary
Recognition (MNVR).

sequence transitions are constrained by the phone sequence grammar and word sequence

transitions are constrained by the word sequence grammar. Language model statistics are

critical to the approach used by Bazzi and Glass, while the MNVR approach requires no

statistical language model. Confining recognition to a small lexical trie for each grammar

makes acoustic decisions more pronounced and easier for the recognizer. This helps to

compensate for the lack of a statistical language model. Both the recognition results and

applicability of these two approaches differ. For example, the fact of our not needing to

create a statistical language model makes the MNVR approach much less expensive. In

our case we did not have the resources to build appropriate large-scale statistical language

models, so instead we created a simpler system that could still produce useful results.

In our MNVR approach the RTN is only two levels deep: (1) a task grammar, and

(2) a syllabic sequence grammar to cover OOV words. Therefore conceptually our imple-

mentation is very similar to Bazzi’s approach [19]. Where he uses a class-based n-gram

model — with OOV terms being modeled as a single word-class — we use an RTN with an



78

OOV sub-grammar. The key point of penalizing the transition into the OOV component

(e.g. the wgt in Figure 4.6) is conceptually the same for our MNVR implementation as for

Bazzi’s approach. Of course, the actual weight values and implementation details differ.

Currently this weight for MNVR is determined empirically by repeated experimentation.

To automate the determination of this weight much more data and time for testing would

be required, as there are many parameterized thresholds within Sphinx 2 that have subtle

and difficult to predict interactions. The basic formula for speech recognition, P(W|A)

= argmax (W ∈ L) P(A|W)∗P(W), (where A = acoustic features, L = language, W =

word(s), P(A|W) = acoustic model, P(W) = language model) is unchanged except that

for MNVR the language model value at any point in the search is either 1 or 0 depending

on whether the hypothesized state transition is licensed in the RTN.

The grammar writer can semantically label specific contextual locations in the gram-

mar where out-of-vocabulary words are licensed to occur (Figure 4.7). To use the system

a speaker must use these grammatically defined sentences to teach the system a new word.

These sentences are called carrier phrases. Users can say other sentences while using the

system but they will not be recognized. Like any grammar-based recognition system,

non-grammatical speech is filtered out. In effect the system becomes a phrase-spotter

for carrier phrases. The longer the carrier phrases are, the more easily they are spotted

by the recognizer. At run-time, when carrier phrases occur in the speech input, their

embedded OOV words are recognized (speech-recognition, SR, Figure 4.4) as sequences

of phones (speech-phones, SP, Figure 4.4). This recognition of speech-phones uses the

syllabic sub-grammar. The syllabifications used in that grammar are taken from the

Carnegie Mellon University (CMU) Dictionary, version 6. In the following, each step’s ab-

breviation, as used in Figure 4.4, is given in parentheses. These phone sequences are then

mapped to orthographies using a sound-to-letter (STL) module. The orthographies are

referred to as speech-letters (SL). If semantically interpretable handwriting recognition

(HR) occurs co-temporally then the letter string hypotheses from the handwriting recog-

nizer (handwriting-letters, HL) are mapped to corresponding phone strings (handwriting-

phones, HP) by an embedded letter-to-sound (LTS) module from Alan Black’s FLITE

distribution [22]. The speech derived pronunciations and spellings are then paired with
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Figure 4.7: An example of the unfolding transitions between networks in the RTN (Recur-
sive Transition Network) for both carrier phrase word sequences (upper part of diagram)
and syllabic phone sequences (lower part of diagram), with the transition between the
grammars marked as a dividing line. The grammatically specified OOV positions are
where the transition from upper to lower grammar is licensed.
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Figure 4.8: The MNVR (Multimodal New Vocabulary Recognition) technique for out-of-
Vocabulary (OOV) recognition and system enrollment, via multimodal handwriting and
speech.

the handwriting-derived pronunciations. These pairings are then scored, and the results

are referred to as orthography-pronunciation scored tuples (OPS-tuples). That scoring

uses a combined edit distance measure: EDL = edit-distance between letter strings, EDP

= edit-distance between phone strings (Figure 4.4). The edit distance is modified to take

matching as well as mismatching symbols into account, following [175]. The best scoring

OPS-tuple (score = SR x EDL x HR x EDP) is then dynamically enrolled in the system

at the points pre-specified during creation of the grammar. For example, task-line labels

may be specified to act as modifiers for spoken references to milestones occurring on that

task-line, like “move that signoff milestone to month fifteen.” Such modifiers are enrolled

simultaneously along with the new task-line’s label name, signoff, as shown in Figure 4.9.

MNVR situates learning very specifically. Within the context of the common task of

creating a whiteboard schedule chart in a multi-person meeting we recognize multimodal
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Figure 4.9: An OOV taskline label, demo, is shown on the left. When MNVR learns and
enrolls that new label name, it is enrolled at all pre-specified spots in the grammar. Sub-
sequently it can used to refer to the particular taskline that it labels, or to any milestone
that occurs on that taskline. This is illustrated in the middle and right panels, where
after enrollment a milestone placed on the demo taskline can be referred to as the demo
milestone.

patterns of co-temporal handwriting, speech and spatial constraints provided by the task

itself. We use the resulting notation of letter and phoneme sequences as a basis for

inferring the user’s intention to label a chart constituent with a new, previously out-

of-vocabulary (OOV) word. This approach leverages basic perceptual qualities of Yu

and Ballard’s concept of embodied intention [176]. Two of these qualities are (1) object-

directedness [168], which in this context means that the handwriting is written at the

location where the label is meant to be, and (2) action-connectedness [168], which in this

context means the letters of a single term are typically written from left to right one after

the other with some predictable exceptions like i dots and t crosses. These qualities serve

to register attentional focus and thus help in determining the semantics of their redundant

multimodal labeling inputs.

4.4 EVALUATION: BASELINE PERFORMANCE TEST

To provide baseline performance test results we collected instances of users labeling task-

lines on a Gantt chart. There were three subjects. The author was one of the subjects. The

other two subjects were colleagues who were not familiar with the system. One subject

was female, while two were male. The labeling events involved speaking key phrases like,

“Lets call this task-line concur,” or “Label this one the trial task-line.” Concur and trial

are examples of OOV words that were recognizable within grammatically defined carrier

phrases. As well as speaking, participants also co-temporally wrote the OOV label names



82

on the task-line. There were 54 instances of such inputs collected from each subject.

Participants read their spoken input from a script. Audio was recorded using a Samson

AH-1 QV wireless, close-talking microphone. Gain control was difficult to set for this

microphone, so many recordings were over-modulated and unusable for speech recognition.

Thus we excluded input combinations in which the speech was clipped from our test set.

Some OOV terms were combinations of two short words, like dry run or hand shake. In

some instances the handwriting recognizer interpreted such written inputs as two separate

inputs, especially when the user paused between writing each word. MNVR was not

equipped to handle two handwriting recognitions spanning a single spoken OOV term, so

such input combinations were also excluded from the current test set. After exclusions

we were left with 100 combinations of co-temporal speech and handwriting for labeling

Gantt chart task-lines from the three users. The 100-instance data set included 18 unique

carrier phrases with 51 unique embedded OOV words.

The OOV recognizer’s syllabic sub-grammar had 19006 unique syllable entries spread

across four categories: (1) first-last-syllable, (2) first-syllable, (3) last-syllable, (4) middle-

syllable. Since there was no large corpus of task-specific speech in the test domain on which

to build a plausible n-gram model over sub-word units, a symbolic grammar was used

instead. Thus there were no probabilities on either syllable sequences or rule occurrences

over the non-terminal categories, as would be the case with either an n-gram model or

a stochastic context free grammar model. We view this as an advantage of the MNVR

approach, because in modeling OOV terms it is neither desirable to (a) model only the

OOV labeled words in a corpus, nor to (b) model cross-word occurrences for OOV words

only at the boundaries occurring in the corpus. Both can result in over-training [20]. We

argue that for task-independence, it is better to use a large dictionary to model a more

general representation of the possible sub-word unit combinations of which OOV terms

may be comprised. MNVR used the CMU Dictionary, version 6.

MNVR’s selection of non-terminal categories was very similar to those used by Galescu

[57]; however, sub-word unit combinations were restricted to a 3-syllable length limit. This

is somewhat longer than Bazzi’s length limit of 3-5 phones [20], while both Chung et al’s

and Galescu’s systems have built in language-model-based length biases determined by
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the types of OOV terms occurring in their respective corpora. MNVR’s 3-syllable length

limit is partly due to tractability issues that arise from not having a stochastic language

model. Since MNVR’s second-pass search cannot rely on term sequence statistics (from a

language model) for pruning, and since its syllabic vocabulary is relatively large, it cannot

tractably perform a complete backward-forward A* search. So, MNVR instead relies on

a depth-first beam search with a one term look-ahead that attempts to heuristically guess

the best partial paths to keep in the beam. If the search dead-ends, then it back tracks

to the closest previous point where a new group of partial paths outside the previous

beam limit can be found and moves forward again until either the specified number of

alternatives has been found or the search space is exhausted. Transitions into the syllabic

sub-grammar are weighted, similar to the approach used by Bazzi [19].

Table 4.1: MNVR OOV Speech Recognition test set statistics (scored on best-of-5 output).

The 100 test instances of multimodal speech and handwriting for labeling a Gantt

chart task-line were fed into the system via the regression testing mechanism described

in Kaiser and Cohen [91]. There were an average of 4.5 in-vocabulary (IV) terms in each

of the 54 test instances. (Table 4.1). The OOV recognizer (OR) correctly detected the

occurrence of an OOV term in all 100 instances (100% detection as shown in Table 4.1).

This is the advantage of using carrier phrases. Although they are inconvenient for users

to remember, they make the detection of OOV terms highly reliable.

MNVR uses carrier phrases, which are grammatically defined syntactic fragments, to

frame and constrain OOV recognition to a small set of licensed linguistic contexts. The

carrier phrases used simple syntax, and within carrier phrases OOV recognition slots

were positioned near the end of the phrase. This was done with the fact in mind that

when people are speaking didactically they naturally use intuitively simple syntax [61].
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Table 4.2: MNVR Unimodal OOV Speech Recognition (scored on best-of-5 output).

Our intuition was that the use of linguistic constructions used for teaching might also

come naturally to people in a didactic context like a lecture or business presentation. For

example, choosing to have OOV words occur near sentence final position in carrier phrases

is a known characteristic of the prosodic delivery typical of infant caregivers. Certainly

the 100% OOV detection rate we see in these test results bears witness to the effectiveness

of leveraging sentence final position of new words to more effectively segment the phone

sequences to be learned. If people in making presentations to each other use these same

type of linguistic constructions, then with this approach we don’t need the large number

of correlated occurrences required by the associative statistical categorizers in systems

like those of Roy [148] or Yu et al. [177]. However the assumption that people will

With a single multimodal demonstration, we not only accomplish OOV detection with a

high degree of accuracy, but also achieve accurate segmentation — recognizing 8.4 out

of 10 of the utterances at the in-vocabulary (IV) word level completely correctly (84%

Utterance correct rate, Table 4.2, line 1). So we achieve an OOV segmentation error rate

of 16%. While our MNVR implementation has the ability to learn generally from a single

demonstration, it will still be able to benefit from multiple presentations over time to

refine pattern recognition accuracy.

We reduced the scope of the language acquisition problem to that of recognizing out-of-

vocabulary (OOV) words in grammatically specified positions. Thus, instead of posing the
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problem as that of language acquisition in our MNVR experimentation we have modified

the problem to be additional language acquisition for an established language syntax. By

using both the temporal/spatial coherence constraints of the scheduling task itself, and

the contextual grammatical constraints to isolate the system’s efforts at OOV recognition,

we are able process new words in real-time.

The recognition rate over IV utterance words was 88.89% (Table 4.2), with 63% of

the IV recognition errors being due to deletions. For example, in the utterance, “Let’s

label this the handover task-line,” (in which handover is OOV) the word ’task-line’ is

deleted because the OOV recognizer doesn’t find the correct boundary for stepping out of

the syllable-based OOV sub-grammar in the weighted recursive-transition-network (RTN)

parser embedded in the speech recognizer. Instances similar to this example account for

four out of the five of the utterance level deletion errors. Adjusting the weights on the

transitions between the task grammar and its embedded syllabic sub-grammar (within

the RTN language model) can ameliorate this error; however, MNVR currently has no

mechanism in place for dynamically adjusting this weight. Many research groups are

looking at similar problems in fine-tuning word-spotting or OOV detection systems [7, 19,

116, 115]. This is a very active area of research.

Note that the IV statistics given in Table 4.1 are computed over the best five transcript

alternatives produced by the recognizer. In multimodal systems it is not necessary that

the best recognizer transcript be correct. Mutual disambiguation from other input modes

can “pull-up” the correct transcripts [84], so we take that into account by scoring over

the top five alternative transcripts. For this test set there are only two instances in

which the best word-level transcript is not the recognizer’s highest ranked alternative.

For scoring phoneme recognition we also score over the five best alternatives from the

speech recognizer, because each alternative represents a different pronunciation and only

one of them has to be correct for the word to be recognized the next time it is uttered

by a user. For phonetic pronunciations, the recognizer’s highest ranked alternative is the

best match only 48.15% of the time.

For in-vocabulary (IV) recognition, taking into account the number of substitution,

insertion, and deletion errors, we achieve word-level recognition accuracy of 93.3%, and
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Table 4.3: MNVR Unimodal Handwriting (HW) letter recognition statistics. (Scored on
best scoring handwriting alternative).

thus an IV word error rate (WER) of 6.7% (Table 4.1). The unimodal speech recognition

of phonetic pronunciations is much less accurate. We achieve an accuracy of 51.37%

(Table 4.2) for a phone error rate (PER) of 48.63%. Recall that Chung et als Speak and

Spell system on a test set of 219 utterances a pronunciation-error-rate (PER) of 25.5%

(much lower than our unimodal rate), and a letter-error-rate (LER) of 12.4%. Currently

our MVNR systems word spelling (and thus LER) depends solely on the best alternative

from the handwriting recognizer, because although there can be alternative pronunciations

for the same lexical item we must still choose one single lexical representation for an

item. Thus, we achieved a letter-level accuracy of 88.65% (Table 4.3) for an 11.35% LER

(somewhat lower than Chungs above).

Table 4.4: MNVR Phone recognition via unimodal (UM) Handwriting (HW) using Letter-
to-Sound (LTS) rules over handwriting letters. (Scored on top 5 alternatives).

Our unimodal PER of 48.63% is closer to that of Galescu [57] which was 31.2% —

43.2%; however, when we use LTS to generate phone sequences from the handwriting

alternatives and then use these to disambiguate the speech phone sequences we improve our

PER to 20.58% (Table 4.5) This surpasses the accuracy of Chung et al’s system (25.5%),

and represents a 57.5% relative error reduction between unimodal speech pronunciations
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Table 4.5: MNVR Phone recognition via multimodal (MM) Speech + Handwriting (SHW)
using Letter-to-Sound (LTS) rules over handwriting, and Sound-to-Letter (STL) rules over
speech phone sequences. (Scored on top 5 speech and handwriting alternatives).

and multimodal speech plus handwriting pronunciations.

Of course, given such a large improvement in pronunciation recognition from unimodal

speech to multimodal speech plus handwriting, we must ask how much of this improve-

ment we could achieve solely by deriving pronunciations from the handwritten spellings

transformed via LTS rules. It may be the case that speech-only information is simply not

accurate enough, and we would be better off extracting pronunciations just from the hand-

writing. This certainly seems plausible when we recall that for this test set the letter-level

accuracy of handwriting recognition is 88.65% (Table 4.3). Table 4.4 shows that using

handwriting alone (with LTS transformations) we could achieve an accuracy of 77.96% in

predicting the phonemic pronunciations — for a PER of 22.14%. However, when we again

look at the results of combining speech and handwriting streams to arrive at pronuncia-

tions, where the PER is 20.58% (Table 4.5), we find that mutual disambiguation across

multiple input modes (i.e. using speech in addition to handwriting) still yields 7.04%

relative error reduction compared to extracting pronunciations unimodally from hand-

writing alone. This phone-level recognition improvement due to mutual disambiguation

across combined speech and handwriting inputs compared to the phone-level pronuncia-

tions generated from unimodal handwriting alone is significant by a McNemar test, which

yields a probability of this difference in recognition results having occurred due to chance

as only 3.1e-8.

To see how using the speech-generated pronunciations helps us to improve on the

handwriting generated pronunciations, we will again analyze the handoff example touched

upon earlier. The user says, “Call this task-line handoff,” (in which handoff is OOV) while
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writing handoff on the whiteboard chart to label a task-line. The correct spelling (as the

user wrote it) is handoff, but the handwriting recognizer reports the spelling to be handifi.

Using LTS rules on handifi yields the pronunciation string, “hh ae n d iy f iy,” which is

one substitution and one insertion away from the correct pronunciation of, “hh ae n d ao

f.” In this case the best pronunciation alternative from the speech recognizer is, “hh ae

n d ao f,” which is the correct pronunciation. So by using the phone string generated by

the speech recognizer we are able to enroll the correct pronunciation despite errors in the

handwriting recognition, thus demonstrating the effectiveness of using multimodal speech

and handwriting to achieve a level of pronunciation modeling accuracy for new (OOV)

words not achievable by either mode alone.

4.5 CONCLUSION

4.5.1 Robotic and Intelligent System Learning From Demonstration

Several researchers working with intelligent robotic systems in the area of learning from

demonstration by vision or sensor-based motion tracking [164, 169, 160, 9] call for the

inclusion of speech as a simultaneous input mode to help with the recognition of the

user’s goals. There is even a growing call from researchers in AI to adopt, as a grand

challenge, the learning of language from perceptual context [114]. Without context the

meaning of either language or actions is often ambiguous. With context a user’s intent

can be understood. MNVR uses the temporal convergence of handwriting and redundant

speech as well as the spatial convergence of handwriting and chart structures as context

for understanding Gantt chart labels.

4.5.2 Discussion of MNVR Test Results

The MNVR system is capable of multimodal speech and handwriting recognition. We have

described a test environment where speech and handwriting in combination are used to

label elements of a whiteboard chart (e.g. task-lines). Over a small test set of 100 speech

and handwriting events collected from three users we have shown that combining speech

and handwriting information multimodally results in significantly greater accuracy than
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that achievable in either mode alone. For example, the phone-error-rate over phone se-

quence pronunciations generated by speech alone was 48.63%, by handwriting alone it was

22.14%, while by multimodal combination of speech plus handwriting it was 20.58%. That

represents a 57.5% relative error reduction compared to speech-only pronunciations, and

a 7.04% relative error reduction compared to handwriting-only pronunciations (generated

by LTS rules). This 7.04% error reduction is significant by McNemar test (probability of

chance occurrence < 3.1e-8) as shown in Table 4.6. This significant reduction in error rate

supports our hypothesis that handwriting and speech are capable of significantly disam-

biguating each other in a constrained task domain like that of labeling whiteboard Gantt

chart constituents.

Table 4.6: Summary result for MNVR tests. The statistics reported in this section are
in the middle (in black font), while the related statistics of a smaller earlier test and of
a somewhat larger follow-up test are shown in gray font. In the Test set size column the
second number represents the number of test subjects (e.g. 100/3 means 100 test instances
from 3 subjects). Note that in all the tests the author was one of the listed subjects.

Table 4.6 also contains related results from (1) a smaller previous study in which we

found a relative error reduction for the multimodal combination of speech and handwriting

compared to handwriting alone was 15.5%, and (2) a slightly larger and subsequent follow-

up study on another test set of 114 labeling events in which we found a 4.6% relative

error reduction for the multimodal combination of speech and handwriting compared to

handwriting alone. The findings in the smaller earlier test and in the subsequent follow-up
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test trend in the same direction but were not significant. It is interesting to note that

as recognition in the individual modes improves, as it does here from the third to the

first tests, so too does the benefit of combining information from the two streams. This

suggests that as individual recognizers are improved (particularly as the speech recognition

is improved) we can potentially see even more benefit by combining information from the

redundant input streams

MNVR demonstrates the base-line capability of using multimodal speech and hand-

writing for new (OOV) word recognition. This capability allows users to teach the system

their chosen vocabulary, thus shifting the burden of learning off the user and onto the

system. MNVR, however, constrains users to only utter OOV terms in certain grammati-

cally specified positions within a larger carrier phrase. For instance in the example above

the carrier phrase was, “Call this task-line <oov term>”, and the <oov term> could only

be recognized in that specified position. The advantage of this approach is accuracy and

tractability: MNVR is a real-time method, and the carrier phrase aids in accurate seg-

mentation of the OOV term within the larger utterance. For some applications with fixed

vocabularies (e.g. certain classes of military applications) this may be a viable approach;

but, in general requiring the use of carrier phrases is too restrictive and too difficult for

users to remember. A more general approach is called for, and that has motivated our

development of SHACER.

4.6 SUMMARY

In this chapter we argued that learning systems in addition to their off-line-trained rec-

ognizers will need to perceive and learn from previously unseen natural demonstrations.

To do this they will need to develop methods of bootstrapped learning that can assemble

the outputs of their recognizers — which have been trained with supervision off-line —

into meaningful higher-level symbols in real-time in response to natural demonstrations.

We reviewed systems that are currently attempting to achieve such learning through the

perception and grouping of related inputs that share the same relation to some object

or action, like Roy’s CELL and Yu and Ballard’s system for understanding embodied
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intention.

We introduced our Multimodal New Vocabulary Recognition (MNVR) system, which

leverages multimodal redundancy as the basis for learning. We distinguished MNVR from

other multimodal learning systems as being capable of single instance learning, as opposed

to requiring repeated inputs. Our test results for MNVR show significant reductions in

error rate by integrating redundant speech and handwriting to understand chart labels,

as opposed to the recognition rates of either mode alone.

MNVR is a prelude to SHACER. It shares with SHACER the perception and lever-

aging of multimodal redundancy for dynamically learning new words. MNVR shows that

integrating information from redundant modes results in better recognition than is pos-

sible in either mode alone. However, whereas MNVR requires users to introduce OOV

terms within grammatically specified carrier phrases, SHACER has no such constraint.

SHACER users do not need to use carrier phrases, but can speak as they would naturally.

This much less constrained language that is accommodated by SHACER brings up the

need for aligning handwriting to speech in order to detect multimodal redundancy. Align-

ment in MNVR was simplified because the OOV positions within carrier phrases were

known. Thus it was acceptable to measure phonetic distance in MNVR with a standard

Levenshtein edit distance. In SHACER, we use a more sophisticated articulatory-feature

based distance metric. Also in SHACER, because the phone recognition problem is much

less constrained the for MNVR, we use an ensemble of variously constrained phone rec-

ognizers to completely characterize the input speech. In the next chapter we will describe

these differences in SHACER in more detail.



Chapter 5

SHACER: Alignment and Refinement

The previous chapter showed that combining information from handwriting and redun-

dant speech yielded significantly better recognition of OOV term pronunciations than was

possible using either mode alone. The drawback to the technique presented in the previous

chapter was that OOV terms had to be spoken in only certain grammatically defined slots

within carrier phrases. In this chapter we return to a discussion of SHACER. SHACER has

no constraint that users remember and speak defined carrier phrases. It can be deployed

in any situation where people redundantly say what they handwrite. SHACER’s aim is

to unobtrusively observe human-human interactions and leverage multimodal redundancy

to learn new words dynamically in context.

Figure 5.1 depicts a high-level flow diagram of input processing within SHACER. Per-

ceptually SHACER observes participant speech and sketching/handwriting inputs. The

speech is segmented into utterances separated by areas of non-speech audio. The inking

input is divided into sketching and handwriting segments. The spoken utterances then

flow into a set of speech recognizers: (1) a large-vocabulary continuous speech recognizer,

which is referred to as the transcribing recognizer because it transforms audio input into

textual transcriptions, (2) an ensemble of phoneme recognizers, and (3) a word/phrase-

spotting recognizer. Each phone recognizer transforms the audio input into a sequence

of phonemes. The set of those phone recognition outputs are routed to the multiparser.

The results of sketch and handwriting recognition from the ink input are also routed to

the multiparser. The multiparser applies temporal constraints to filter the possible com-

binations of phone set sequences and ink recognitions, which in turn form the constituents

of rules that define how such inputs combine to layout and label a Gantt schedule chart.

92
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Figure 5.1: A high-level flow chart for processing within SHACER.

When phone sequences and handwriting recognitions are combined into a possible Gantt

chart label, that combination is routed to a speech processing module, which performs

the three main steps of SHACER processing — (1) alignment, (2) refinement, and (3)

integration (as described in Chapter 3). That module returns a ranked list of possible

label constituents based on detecting and combining redundant handwritten and spoken

information from the phones sequences and handwriting recognition alternatives that were

routed to it. These possible constituents are further processed in multiparser. If they suc-

ceed in forming a new label for the chart, then that label is routed both to the display

module and to the dictionary and language model of the word/phrase-spotting recognizer.

If the new label term does not already exist the word/phrase-spotter’s vocabulary, then

its enrollment represents dynamic learning. Once a new word is enrolled it can be more
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readily recognized when spoken or written again.

This chapter will explain the processes represented in Figure 5.1 in more detail. The

following aspects of SHACER processing will be addressed:

1. Phone ensemble recognition.

2. Ink segmentation and recognition.

3. Alignment of handwriting and speech.

4. Refinement of handwriting/speech segment pronunciation.

The first two items preface SHACER’s main processing steps, but they are important

to understand. The first two of SHACER’s main processing steps — alignment and

refinement — will be discussed in this chapter. A discussion of the final of SHACER’s

three main processing steps, integration, will be left for the next chapter. Integration uses

the outcome of the pronunciation refinement step as a decision metric for choosing the

spelling and pronunciation of a new term.

5.1 PHONE ENSEMBLE RECOGNITION

In order to leverage the occurrence of multimodal redundancy SHACER must first detect

it. This is conceptually illustrated in Figure 5.2. Often the redundantly spoken words

that accompany a handwriting event are embedded in a longer utterance, as shown in the

two examples of Figure 5.2. SHACER’s approach to detecting redundancy is to align the

handwriting and speech recognition outputs, and look for closely matching segments.

5.1.1 Phone Recognition in Spoken Document Retrieval

SHACER’s alignment-based detection of multimodal redundancy is closely related to the

problem of locating query words in a database of documents during Spoken Document

Retrieval (SDR). Documents in Information Retrieval (IR) are objects or computer files,

which may have various formats. Text, images, videos, multimedia presentations, and

audio recordings can all be considered documents in the IR sense of the word [102]. Audio
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Figure 5.2: Detection of multimodal redundancy is done by finding closely matched align-
ments of handwriting and speech. Often times the redundantly spoken words, which
accompany a presenter’s handwriting, are embedded within a longer utterance. This
makes the problem of aligning the two input streams and detecting the redundancy more
challenging. The upper example is from a ZDNet At the Whiteboard presentation about
Rootkits, and three products for removing them are listed. The lower example illustrates
a taskline label for a new hire named Joe Browning. The speech in both examples is given
in quotes.
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recordings are referred to as Spoken Documents. Sometimes individual utterances within

a longer recording are themselves considered as spoken “documents.” In that case the

SDR task is to retrieve all the individual spoken utterances in which a single-word search

query has occurred and is relevant. This is analogous to what SHACER must accomplish

in detecting the location of a spoken redundancy that accompanies a handwriting event.

For example, the handwritten Joe Browning, in the lower part of Figure 5.2, is effectively

a query term. SHACER’s alignment of a handwritten term (like Joe Browning) with its

redundant spoken occurrence in a temporally nearby utterance, is parallel to finding a

typed-in query word in a database of possible audio documents during SDR.

In SDR, audio input is transformed to word or phone-level representations. These

transcriptions are then organized into memory structure lists with document-occurrence

counts in a process called indexation. Leath [102] and Saraclar and Sproat [153] both offer

comprehensive reviews of current SDR techniques, practices and aims. For spoken doc-

uments, which are transcribed at the word-level, indexing and retrieval can basically be

implemented within the standard search paradigm. Thus audio documents, represented

by their automatically recognized transcriptions, can be retrieved by standard query-

based web searches. This is the approach taken by the National Science Foundation’s

National Gallery of the Spoken Word project, which uses SpeechFind [183, 67] as an ex-

perimental audio index and search engine to make historically significant voice recordings

freely available and accessible on the web [102]. Many other systems take this traditional

transcription-based approach — like the InforMedia, SpeechBot, THISL, and NPR Online

projects [102], as well as some commercial systems, like Nuance’s Dragon AudioMining

[127] and Virage’s AudioLogger [153].

Moreau et al. [115] and other SDR researchers [181, 161, 80] point out that the disad-

vantage of using such traditional text retrieval approaches is that the search vocabulary

must be known a priori. OOV terms, like important named entities, cannot be recognized

by the system. This degrades retrieval performance. Also, the derivation of the complex

language models required by the traditional transcription-based approach requires huge

amounts of training data, which for constantly growing and changing audio archives may

simply be prohibitively expensive to acquire and annotate. Representing audio documents
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as sequences of sub-word units (like phonemes) avoids this problem. Sub-word unit recog-

nizers can be dramatically smaller than the large vocabulary continuous speech recognizers

(LVCSRs) used in the traditional approach. Sub-word unit recognition is independent of

vocabulary. Schone et al. have even proposed using sub-word unit recognition, because

of its vocabulary independence, as a means of searching telephone conversations in any of

the worlds languages [156]. They use 119 phones to represent all the phonemes in all of

the world’s languages. The disadvantage of sub-word unit indexing is that phone recog-

nizers typically have much higher error rates than LVCSR systems. For indexing longer

documents in large collections this could introduce a lose of discriminatory power, but for

collections of utterance length audio documents, like voice mail or teleconference collec-

tions, this is less of a problem. For such short document databases using a vocabulary

independent phone recognition system is judged by some researchers in the field to be

a very reasonable approach [115]. Hybrid systems that combine word-based and phone-

based recognition along with lattice-based indexation and processing are very promising

[153] and have been shown to achieve better retrieval results than using word-based sys-

tems alone [181, 7, 173].

5.1.2 SHACER’s Hybrid Word/Phone Recognition Approach

In SHACER handwritten words are not only likely to be OOV proper names, but because

they are OOV they are also likely to be mis-recognized by both handwriting and LVCSR

speech recognizers. This compounds SHACER’s alignment problem. Our relying on word-

level recognition alone to provide the necessary cues for detecting redundancy will not

work for SHACER. Therefore, SHACER uses a hybrid approach, which combines sub-

word unit recognition with word-based recognition, by aligning redundant handwriting

and speech in a process that is similar to cutting-edge hybrid SDR systems. SHACER’s

LVCSR word-level recognizer is run in parallel with an ensemble of phone recognizers

(Figure 5.1). Currently both recognizer types are run off-line. Speed has not been a focus

of SHACER’s development efforts for the system described in this thesis. In the future, as

more resources for SHACER’s development become available, it could take advantage of

better, faster phone-level recognition. For example in recent research on keyword spotting
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in informal speech documents, phonetic processing speeds of 0.02 x real-time [161] have

been reported.

Each of SHACER’s four ensemble phone recognizers is constrained differently. Fig-

ure 5.3 illustrates some of the various phone sequence recognition outputs and their align-

ment with respect to each other. We use both phones and syllables as sub-word units.

Both SDR and name recognition approaches have shown that better phone-level recogni-

tion can be achieved by using syllables as sub-word units [181, 159]. The transformation

from syllables to phone sequences is trivial because we name syllables by their respec-

tive phonetic pronunciation sequences (e.g. cat = ”K AE T” = ”K AE T”). The four

constraints are: (a) syllables follow a grammar of English syllabic sequencing (see Sec-

tion B.2), (b) phones follow a grammar of English phone sequences (see Section B.3), (c)

any syllable can follow any other with equal likelihood, and (d) any phone can follow any

other with equal likelihood.

Figure 5.3: Phone sequence outputs for different ensemble recognizers: (bottom) uncon-
strained phone-sequence, (middle) unconstrained syllable sequence grammar (the *, or
star, means that any syllable can follow any other) , (top) constrained syllable sequence
grammar. The differences between outputs are highlighted.

SHACER employs an ensemble approach to phone recognition for several reasons.

The first reason for using an ensemble of phone recognizers is that phone recognizers have

high error rates, so in an attempt to compensate for this we constrain each recognizer
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differently. Our hope is that by this means the correct phones and phone sequences at each

position will more often be available in the ensemble alignment matrix. This is illustrated

in Figure 5.3 where the frequent differences between the outputs are highlighted. The

way that SHACER extracts the phonetic information from an alignment matrix is more

complex than just a simple majority vote at each position. A positional bigram model of

phone sequences is extracted from the alignment. This model constrains a second pass

phone-level recognition, which is described in more detail later in this chapter. Thus,

information from the alignment matrix is used like a language model. Both the existence

of phones in the matrix and their positions relative to each other is taken into account

by the sequence model. During the second pass phone recognition, information from the

alignment-matrix-derived phone sequence model is weighted in relation to the phone-level

acoustic scores. This weighting serves to scale the scores of the sequence model in relation

to the acoustic model scores, so that scores from one model do not overwhelm the scores

from the other model. In speech recognition this weight is called the language model scaling

factor, and is usually determined by empirical trial. Thus, rather than a majority vote of

which phones are best in which positions, SHACER uses both (a) alignment-based phone

sequence information and (b) acoustical information to create a refined pronunciation. The

second pass recognition, which refines the pronunciation hypothesis, will be explained in

more detail later in this chapter.

The second reason for using an ensemble of phone recognizers is that SHACER’s

phone recognizers are all grammar-based. They use no statistical model of English phone

sequencing during first-pass phone recognition. We did not have the resources available to

build or acquire such a statistical model of English phone sequences. Since SHACER does

not use a stochastic model of English phone sequences, its producing a list of alternate

phone sequence hypotheses tends to be intractable. Sequence models are a necessary

constraint during the A* search used to produce such alternates lists [145]. If we substitute

hard threshold pruning in place of using sequence models, then variations in resulting

interpretations tend to be bunched toward the end. Therefore, we use an ensemble of

outputs from differently constrained Viterbi, first-pass phone recognitions. This allows for

fuller variation across each alternate interpretation, rather than just at the sequence ends.
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The third reason for using an ensemble of phone recognizers is that individual phonetic

time boundaries must be known. This is critical for SHACER’s approach to locating and

detecting OOV terms. Using longer sub-word units (like syllables) provides better phone-

level recognition accuracy; but, within-syllable phonetic time boundaries are not easily

recoverable. There are methods for recovering these phonetic boundaries. Siede et al.

[158] replace syllable-like units with their equivalent phone sequences by an approach that

is similar to techniques for automatic time-alignment of phonemes [71]. This could also be

done by an augmentation of the low-level data structures used to represent states within

the Hidden Markov Models (HMMs) that are traversed at the lowest levels of the recog-

nizer’s first-pass Viterbi search [174]. Instead of implementing these approaches SHACER

simply uses both syllable and individual phone based recognizers in its ensemble of phone

recognizers. For syllable-based phone recognizers the within-syllable phone transitions are

very roughly estimated by simple interpolation with respect to the syllable start and end

times. For individual phone recognizers the temporal information for phonetic boundaries

is fully available. During processing SHACER heavily discounts within-syllable temporal

phone boundaries and instead mostly depends on temporal boundaries from the indi-

vidual phone recognizers. So ensemble recognition supports both syllable-based phone

recognition for higher accuracy and phone-level recognition for better temporal boundary

resolution.

In summary, SHACER uses a hybrid recognition approach that combines both word-

level and phone-level recognition because, as in the SDR task, that approach facilitates

OOV recognition. SHACER uses an ensemble of differently constrained phone recogniz-

ers in an effort to provide the best phone level information available, given poor phone

recognizers with little-to-no phone sequence modeling. Since the goal of this thesis is to

prove that SHACER can learn new words by leveraging multimodal redundancy, all that

is needed is adequate rather than state-of-the-art phone-level recognition. In the future

SHACER can benefit from better sub-word unit recognition.
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5.2 INK SEGMENTATION

In our current implementation of SHACER we use NISSketch (a commercial product from

Adapx, http://www.adapx.com) both for sketch recognition and as a wrapper for the MS

Tablet PC Handwriting recognizer. Successful sketch and handwriting recognition are

highly dependent on correctly segmented input. If sketch strokes are grouped together

with handwriting strokes then sketching is likely to be interpreted as handwriting and

vice versa.

Figure 5.4: To process input-inking SHACER needs to segment out chart constituents
from handwriting, like separating out the highlighted milestone diamond/alpha symbol
from the label-name handwritten below it. In this example the diamond/alpha was drawn
and the file report label was immediately handwritten below it. There was no temporal
cue as to the correct segmentation.
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5.2.1 Segmentation Rules

To accomplish handwriting and sketch recognition SHACER needs to segment ink-gestural

input into its component sketch and handwriting segments (Figure 5.4). The approach is

to distinguish handwriting from the other sketch constituents of Gantt charts like axes,

lines, milestone-diamonds, cross-outs, etc. In the following discussion an ink stroke is

defined as a sequence of x/y screen coordinates tracing the position of a pen tip from

surface contact at pen-down until the next pen-up. The features of ink strokes which are

tracked are: (1) individual stroke size relative to screen size, (2) stroke closeness to the

previous stroke, (3) horizontal relation to previous stroke group, (4) vertical relation to

previous stroke group, (5) height/width ratio of stroke group’s bounding box dimensions,

and (6) temporal distance from previous stroke.

1. Individual stroke size relative to screen size: For SHACER’s Gantt chart domain,

this feature effectively filters out the large Gantt Chart axes from all other ink

strokes. The axes are constructed as a single stroke that traces out a large “L”

shape. The nature of Gantt charts is that the axes will typically be larger than any

other sketched or handwritten constituents that become part of it. The axes roughly

define the horizontal and vertical boundaries of the chart.

2. Stroke closeness to the previous stroke: This feature can be used to hypothesize word

breaks. However, SHACER is very conservative in proposing word breaks. Instead

it treats all horizontally contiguous strokes as part of the same group and lets the

handwriting recognizer hypothesize word breaks within a group. Only when a stroke

is horizontally very distant from a previous stroke is a break hypothesized and a new

stoke group started.

3. Horizontal relation to previous stroke group: All strokes that are (a) relatively close

to the previous stroke, (b) don’t precede the previous stroke beyond some threshold

of distance, and (c) don’t either start below or extend too far below the bounding

box of the previous stroke group are considered an extension of the previous stroke

group. This is illustrated in the horizontal extension portion of the upper panel of
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Figure 5.5.

4. Vertical relation to previous stroke group: A stroke that is below the previous stroke

group starts a new group, triggering recognition on the previous group. This is

illustrated at the vertical shift points in the upper panel of Figure 5.5.

5. Height/width ratio of stroke group’s bounding box dimensions: Groups of handwrit-

ing strokes characteristically maintain a heighth/width relationship. If the group is

too compressed or extended either horizontally or vertically beyond a normal range

for handwriting, then it is considered to be sketching rather than handwriting. For

example, a horizontal line (which could be a taskline or cross-out stroke) will typi-

cally have a very low height to width ratio that distinguishes it from handwriting.

However, sending such a stroke group to the handwriting recognizer it will typically

be recognized as low-confidence handwriting.

6. Temporal distance from previous stroke: When the time after the previous stroke

exceeds a threshold, then that triggers recognition on the previous stroke group.

Figure 5.5 illustrates how tracking vertical shifts and horizontal extensions of the

bounding areas of accumulated ink strokes helps to inform the segmenter of constituent

boundaries. Thus single lines of handwriting (perhaps prepended by small symbols like

a cross-out or milestone diamond) can be reliably segmented. A disadvantage of this

approach is that it rules out the recognition of multi-line handwriting as a single segment

for recognition. An advantage is that in practice it can handle the segmentation of single

lines of slightly diagonal handwriting.

5.2.2 Iterative Best-Splitting of Segmented Stroke Groups

Stroke size is a good feature for distinguishing handwriting ink from the sketch ink of axes

and task-lines in SHACER’s Gantt chart domain; however, there are also some smaller

chart symbols (e.g. tick-marks, cross-outs, and milestone-diamond symbols) used in the

Gantt charts that SHACER processes. Given this, it does happen that concatenations

of non-handwriting symbols together with handwriting can occur. There can also be
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Figure 5.5: Sketch/Handwriting segmentation: upper-pane, by tracking horizontal exten-
sion; lower-pane, by a best-iterative split within the sketch recognizer itself.

concatenations of non-handwriting symbols to other non-handwriting symbols — like the

cross-out symbol followed by milestone-diamond symbol shown in Figure 5.5’s lower pane.

Such a concatenation is treated as a single input segment for recognition. SHACER’s

sketch recognizer therefore performs an iterative best-split search on all incoming ink

segments, specifically looking for instances in which the first 1-4 strokes can be better

recognized as a separate cross-out or milestone-diamond symbol. This is illustrated in the

lower pane of Figure 5.5 where the recognizer splits the concatenation into its constituent

parts — a cross-out followed by a milestone-diamond. The same technique of best-iterative

fitting can segment-out milestone-diamonds that on input are clumped together as a single

segment with nearby handwriting strokes. This is an exhaustive approach, trying all

possible combinations of segmentation splits. For 1-4 stroke prefixes this works, but for

the general case of separating sketch symbols from handwriting this approach may be too

computationally expensive.
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5.2.3 Correct Segmentation Rates

These ink segmentation techniques are heuristic and specific to SHACER’s Gantt chart

domain. As SHACER improves these segmentation methods will need to be upgraded,

expanded and brought into line with state-of-the ink segmentation approaches. For our

current purpose of supporting the development of SHACER’s integrative learning capabil-

ity they suffice and in fact can segment the ink input from the development test series of

meetings with 100% accuracy. Note that 100% segmentation does not imply 100% recog-

nition. Segmentation just means that strokes were grouped correctly into sketch versus

handwriting strokes groups, or mixed sketch/handwriting groups in which at most only

the first 1-4 stokes were sketching. Even with correct segmentation it still happens that a

group of handwriting strokes may be recognized as some type of sketch symbol like a line.

For these segmentation rules, the development test set was treated as a training domain.

Each example of incorrect segmentation was analyzed and new features were identified

that could correct the segmentation error. For the entire development test set, features

were added in this way until a feature configuration was reached that accomplished the

desired level segmentation accuracy. Again this approach is only successful because the

domain is small and limited enough that it could be approached in this way.

5.3 IDENTIFYING HANDWRITING AND SPEECH RE-

DUNDANCY

A sub-task within SDR is to actually word-spot the individual occurrences of query terms

in the audio database [180, 72, 7], as opposed to just determining which spoken documents

are most relevant to the query. As pointed out above, this word-spotting task is concep-

tually the same task that SHACER must accomplish in aligning handwriting and speech

redundancies. Handwriting in SHACER’s domain can be considered the equivalent of a

query term whose words must be spotted in the surrounding spoken utterances. The end-

goal for word-spotting in SDR is to retrieve an audio document or segment for play back

in the retrieval interface. The end-goal for word-spotting in SHACER is to dynamically

learn the spelling, pronunciation and contextual semantics of a redundantly presented
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word and enroll it in the system’s vocabulary to improve subsequent recognition. There

is no dynamic learning of new words involved in SDR.

5.3.1 Word Spotting and Cross-Domain Matching in SHACER

There are two approaches to the word-spotting task within the SDR research community.

One approach is the vector space model (VSM), which defines a space in which both

documents and queries are represented by vectors. Each vector is composed of term/weight

tuples, which can also store positional information. A typical means of assigning the weight

or relevance of a term in a document is the tf-idf (term frequency - inverse document

frequency) weighting scheme [151]. The process of creating the term/weight tables for a

given database of documents is called indexing. The VSM approach can used with either

transcripts or lattices [153, 185, 181]. If the query keywords are represented as words then

the lattices are word-level lattices. If the query keywords are represented as phoneme

sequences then the lattices are phone-level lattices. Transforming query keywords to phone

sequences is done by a text-to-speech engine; or alternatively, when the query words are

spoken, speech recognition automatically provides phonetic pronunciations. Presently the

main current of SDR research is indexing both word and phone lattices together, so that

query keywords can then be treated as words when they are in-vocabulary and treated

as phone sequences when they are out-of-vocabulary [153, 173, 7, 80]. Retrieval based on

VSM searching of word lattices is fast and scalable to large databases. VSM searching of

phone lattices is at least an order of magnitude slower [28] than searching word lattices;

however, both research systems [174] and commercial systems offer very fast searching

based on phone matrices. For example, for a commercial system (e.g. Nexidia [122])

that pre-processes audio to produce searchable phonetic tracks, Cardillo et al. [32] report

phonetic pre-processing rates of 4 times faster than realtime (4 x realtime) and search rates

of 36,000 x realtime (equivalent to searching 10 hours of media recordings in 1 second for

significant queries).

The second approach to word-spotting in SDR relies on dynamic programming match-

ing techniques that don’t use vector indexation [74, 75, 76]. This approach hypothesizes

location slots where query words could exist in the document database, estimates the
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probability of a slot/query-word match using some sort of probabilistic edit distance mea-

sure, and then computes the relevance of a document based on those probabilities [115].

This approach is much slower than VSM techniques due to the computational cost of slot

detection and probabilistic distance matching. However, for small databases like finding

utterances in which a certain city name was spoken it performs significantly better than

VSM approaches, as reported by Moreau et al. [115]. It also possible to use this approach

to find partial matches to spoken queries, so that users may utter queries that contain

extraneous words like “well,” or ”let’s see” [76]. Another use of this approach is finding

repeated words in lectures or other recorded audio [141, 76]. Repeated words in lectures

tend to be important, subject-specific words, so this approach could aid in the process of

identifying and potentially learning new words, as reported by Park and Glass [142] in

recent work at MIT.

SHACER uses a dynamic programming matching technique as opposed to a VSM tech-

nique for word-spotting redundancies across handwriting and speech. Currently SHACER

does exhaustive dynamic programming (DP) searches to discover redundancies, but the

window of spoken utterances that are examined is relatively small. Currently the five

utterances temporally preceding the moment at which the DP search starts are examined.

DP matching techniques for small databases, where speed is less of an issue, perform

significantly better than vector space modeling techniques [115]. In the future we will

experiment with VSM approaches for identifying the particular utterances in which re-

dundancies are highly likely to be located, and then within those utterances deploy a DP

search. SHACER’s DP search could potentially be faster by using optimization techniques

like those described by Itoh [76, 75].

For discovering repeated spoken words during lectures both Itoh [76] and Park [142]

match speech to speech. SDR systems that allow spoken queries, like that of Moreau et al.

[115, 64, 124] also match speech queries to a spoken database. SHACER’s matching task

is complicated by having to perform cross-domain matching from handwriting to speech.

Some work on dynamic programming algorithms specifically for cross-domain matching

between handwritten queries and text produced via Optical Character Recognition of

scanned documents has been described by Lopresti et al. [104, 105]. However, we are
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not aware of any other system that performs cross-domain matching between handwriting

and speech as SHACER does. Kurihara et al. have developed a system called SpeechPen

that uses speech recognition to allow note takers to create verbatim transcripts of spo-

ken Japanese instructions or lecture presentations. It allows users to choose from a list

dynamically predicted speech recognition alternatives to extend their current note-taking

strokes and thus increase the speed of taking verbatim notes. Currently SpeechPen does

not perform any DP matching between handwriting and speech. Schimke et al. [155] have

proposed an architecture for collecting time-stamped speech and handwriting, with an

aim to integrating them for increased recognition accuracy, but have not to our knowledge

reported on an actual implementation.

5.3.2 Multiparser Alignment Requests Within SHACER

The alignment process is conceptualized in Figure 5.6. The inputs to the alignment pro-

cess are: (a) LVCSR speech transcripts, (b) word/phrase-spotter recognitions, (c) phone

ensemble transcripts, (d) handwriting recognitions. All but (c) are ranked lists of alternate

recognitions, with each alternate having a likelihood score associated with it. The phone

ensemble outputs are one phone sequence hypothesis per recognizer. An example of the

information in the alternates list for handwriting recognition is shown in Figure 5.7. Aside

from ranking scores each alternate is also paired with its letter-to-sound (LTS) transfor-

mation. An embedded module within the multiparser acquires these LTS transformations.

That embedded LTS module along with an accompanying sound-to-letter module is ported

from Alan Black’s CMU FLITE toolkit [22].

The multiparser’s primary role is temporal grouping. It groups phone ensemble outputs

together by examining their time stamps. It then examines the time stamps of incom-

ing handwriting recognition alternates lists and proposes combinations of those phone

ensemble output groups and handwriting recognition alternates lists whose time stamps

are within some temporal threshold of each other. These proposed combinations are then

routed to the alignment module, which is labeled as the ARI module in Figure 5.6. The

multiparser requests that the ARI module test the combination for the occurrence of hand-

writing/speech redundancies, and return a ranked list of spelling/pronunciation/semantics
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Figure 5.6: This diagram shows a portion of SHACER’s high-level flow chart (see Fig-
ure 5.1 for the entire flow chart) showing how outputs from the transcribing speech recog-
nizer and from the word/phrase-spotting recognizer are routed to the Alignment, Refine-
ment and Integration (ARI) module, while outputs from the ensemble of phone recognizers
and from the handwriting recognizer are routed to the multiparser. The multiparser com-
bines phone ensemble outputs with handwriting recognizer outputs and then requests that
ARI perform alignment on those combinations.

tuples for any hypothesized redundant terms. In this section we only address the ARI ’s

alignment process. Its refinement process is dealt with in a later section, and its integration

process is described in the next chapter.

When the ARI module receives the request for alignment from the multiparser, it

attempts to activate the transcript and lattice information for the utterance associated

with the phone ensemble outputs. A sliding window of previous utterance information

is maintained that serves as the system’s short-term memory. If the phone ensemble’s

utterance is within that window (currently set to the previous five utterances) then ac-

tivation of transcript and lattice information is effected by reading the appropriate files

into active memory structures. The primary purpose of alignment is to judge whether the

handwriting was spoken redundantly within the utterance with which the multiparser has
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Figure 5.7: List of handwriting (HW) recognitions for the handwritten phrase, test one.
Each alternative has a spelling, score, and letter-to-sound (LTS) phone sequence.

paired it in the request for alignment. If it turns out that a local alignment is found that

is close enough then the inputs are judged to be redundant.

Judging whether a Phonary Request’s Speech/Handwriting Are Redundantly

Associated

Judging whether the speech and handwriting included in a request for alignment from

the multiparser are indeed redundantly associated has several steps. The first step is

to check for a transcript match of handwriting letter-string alternatives to terms in the

large vocabulary continuous speech recognizer (LVCSR) transcript. If there is an exact

match then the redundancy judgement is trivial and subsequent processing is reduced to

exploring alternative pronunciations present in the phone ensemble outputs, which might

help in dynamic pronunciation adaptation.

If there is no exact transcript match then the handwriting and speech are phonetically

aligned with each other. Figure 5.8 shows an example of such an alignment.

5.3.3 Phonetic Articulatory-Features as an Alignment Distance Metric

To perform this alignment SHACER uses a phonetic articulatory-feature based alignment

technique based on work by Kondrak [96, 95]. Many researchers in SDR measure pho-

netic distance by performing speech recognition on a training corpus, and then building

a statistical model of the frequency with which one phone is mis-recognized as another

phone by the recognizer [116, 7, 76]. The phone-to-phone matrix in which these statistics
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Figure 5.8: Phonetic alignment matrix based on articulatory-feature distance: (a) LTS
phone sequences from HW recognition, (b) ensemble speech recognition phone sequence
outputs, (c) HW LTS aligned segment, which is accurately time-bounded within the larger
utterance.

are stored is called a confusion matrix. The advantage of using a confusion matrix is that

it is data driven and recognizer specific. The fact that it is recognizer specific is also a

disadvantage, because if the vocabulary or language model of the recognizer changes then

the confusion matrix needs to be recomputed. SHACER’s goal as a dynamic learning sys-

tem is to be constantly adding to the vocabulary and language model of both speech and

handwriting recognizers. Therefore a recognizer specific confusion matrix within SHACER

would have to be constantly recomputed. Kondrak’s ALINE approach, based on static

articulatory features that are not recognizer specific, out-performs simple Levenshtein edit

distance [103] based on the spelling of phone symbols [97], and it also out-performs other

articulatory-feature based alignment techniques that use only binary features [18, 138, 175]

because of its assignment of saliency weights to the various categories of phonetic features

[95, 96]. For example, the manner of articulation (e.g. stop, affricate, fricative, approxi-

mate, high/mid/low vowel) of two phones is generally more important in comparing them

than considering their respective nasality or roundness, because nasality and roundness

are features that only a few phones have. Therefore manner of articulation has a much

greater saliency weight.
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In Kondrak’s algorithm some articulatory features are binary — roundness, voicing,

syllabic, retroflex, lateral, aspirated, nasal. Some features are categorical — manner

[stop, affricate, fricative, approximate, high/mid/low vowel ], height [high, mid-high, mid-

low, low ], backness [front, central, back ], and place [bilabial, labiodental, dental, alveolar,

retroflex, palato-alveolar, palatal, velar, uvular, pharyngeal, glottal ]. Vowels and conso-

nants have different sets of active features. Each type in the sub-category set (in [ital-

ics]) of each of the four major features (manner, height, backness, place) has an assigned

saliency weight based on empirical linguistic measurements (see Appendix A’s Section A.2

and Table A.5). SHACER augments Kondrak’s height feature to utilize four rather than

three sub-categories, and in parallel with that adds a fourth vowel type to the manner

feature (following Hosom [71]). So where Kondrak has high, mid and low manner features,

SHACER has very high vowel, high vowel, low vowel and very low vowel manner features

(see Section A.1).

In very recent work Kondrak has highlighted corpus-trained machine-learning ap-

proaches to determining phonetic distance, using either paired Hidden Markov Models

or Dynamic Bayes Net (DBN) models. Both of these machine-learned distance models

out-perform ALINE on cognate recognition tasks [97]. However, the drawback of a DBN

machine-learning approach, like that of Filali and Bilmes [54], is that it requires a large

training corpus. In the future, as larger multimodal handwriting/speech databases become

available, such methods could be tried in SHACER and compared against the performance

of its current salience-weighted articulatory-feature based distance measure.

Example of Phonetic Articulatory-Feature Based Alignment

SHACER’s phonetic articulatory-feature based aligner compares phone hypotheses by

feature sets rather then by phone name, so instead of assigning the phone match between

d and t an absolute score of 0 because they are not the same phone it can instead assign

them a metric that takes into account the fact that they are identical in all articulatory

features except voicing. Two further examples of how phonetic articulatory-feature-based

alignment works are the eh/ae and w/uw alignments shown in Figures 5.9 and 5.10.
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Figure 5.9: The articulatory-feature table shows areas of similarity for eh/ae and w/uw
example alignments. The eh/ae pair differ mostly in manner and height, while the w/uw
pair differ in manner, place, long-ness and roundness.
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Figure 5.10: Distance scores from the underlying articulatory-feature table (shown in
Figure 5.9) as well as salience values (Table A.1) to bias the weight put on each comparison
feature, yield the phone distance look-up tables. Two partial phone-distance lookup table
columns are shown here for eh/ae and w/uw example alignments. The eh/ae pair are
much closer together phonetically than the w/uw pair.



115

The partial articulatory feature table in Figure 5.9 illustrates several areas of com-

parison for these two examples. See Appendix A for a full listing and explanation of the

articulatory feature table used by SHACER. Both eh and ae are syllabic (by virtue of

being vowels), and both are also voiced. As well, they are close in terms of their manner

of articulation — eh being a low and ae being a very low vowel. They are close in their

backness with both being front vowels. The scores from this articulatory feature table, as

well as salience values to bias the weight put on each comparison, yield another table of

phone distances like those exemplified in Figure 5.10. Fuller examples of phone distance

tables are given in Section A.1. In Figure 5.10 the AE phone is 4 phones (out of 40) away

from EH phone, while for the w/uw example the UW phone is 24 phones away from W

phone with a correspondingly larger distance score.

5.3.4 The Mechanics Of Phonetic Alignment

The Effect of Seeding Alignment with Differing Sequences

* a-9 seed: ====================================

0. a-9 # f ow # d r aw n ih ng

1. a-1 # f ao r b r aw n ih ng

2. a-2 # f ao r d r aw n ih ng

3. a-3 # jh ow # b r aw n ih ng

4. a-4 # f ao r b r aw n ih ng

5. a-5 # jh ow # d r aw n ih ng

6. a-6 # f ow # b r aw n ih ng

7. a-7 # f ao r b r aw n iy z

8. a-8 # jh ow # b r aw n ih ng

9. a-10 hh # ow # b r aw n ih ng

* a-10 seed: ===================================

0. a-10 # hh ow # b r aw n ih ng

1. a-1 f # ao r b r aw n ih ng

2. a-2 f # ao r d r aw n ih ng

3. a-3 jh # ow # b r aw n ih ng

4. a-4 f # ao r b r aw n ih ng

5. a-5 jh # ow # d r aw n ih ng

6. a-6 f # ow # b r aw n ih ng

7. a-7 f # ao r b r aw n iy z

8. a-8 jh # ow # b r aw n ih ng

9. a-9 f # ow # d r aw n ih ng

Figure 5.11: Example alignments with different seed sequences. Upper alignment is
seeded by a-9 while lower alignment is seeded by a-10. Both alignments are of the same
input set, but different seeding results in different alignments.
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Currently we align all handwriting letter-to-sound (LTS) alternatives against each

other first, before aligning them with the phone ensemble outputs, since we know that

they refer to the same actual input. This yields a matrix of alignments like those shown

in Figure 5.11’s two examples. These two examples illustrate the point that depending

upon which phone sequence is used as the first or seed phone sequence (e.g. a-9 in

the upper example and a-10 in the lower example) different alignment matrices result.

These alignment variations can effect the coherence of the resulting handwriting/speech

alignment matrices — discussed in the next section.

Alignment Coherence

After aligning the handwriting (HW) alternatives as a block, each phone ensemble se-

quence in turn is then aligned against these HW blocks (as in the two examples in Fig-

ure 5.12). The resulting alignments can be characterized by a measure we have devised

and named coherence, which compares phones within columns of the alignment matrix

with a phone-to-phone articulatory-feature based distance metric (Appendix A).

The summed and averaged distances obtained from the coherence measuring procedure

can be used to characterize the entire matrix. A matrix in which every row is exactly the

same and all rows line up perfectly will be completely coherent. Thus it will have a

coherence score of 1.0). Whereas a matrix in which no phones on any row align with any

other phones will be almost completely in-coherent. Thus it will have a coherence score

near 0.0. We are still very actively examining the best strategy for obtaining this coherence

measure. For example, it often happens that the letter-to-sound transformations of the

handwriting alternates are very coherent as a matrix by themselves, and this in turn could

be considered as unduly biasing the overall coherence of the handwriting/speech matrices

(like those Figure 5.12) by putting too little weight on the speech phone sequences in

comparison to the handwriting alignment block.

We are experimenting with only comparing HW phones to speech phones and not to

other HW phones during the coherence measurement, in an effort to arrive at a coherence

measure of the HW/Speech matrix that is not unduly biased by the coherence of the HW-

alternates block itself. However it is not yet clear if this is a better strategy or not. It

may actually be useful to include the bias from the HW-alternates block coherence. More

empirical work is needed to determine this. In Figure 5.12 coherence measures are given

for the two alignments of HW/Speech matrices. Notice that the coherence measures differ

for differing alignments. In this case suggesting that the first alignment, in which silence
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KEY: sp = speech,

hw-lts = handwriting letter-to-sound

(coherence)

position 0 1 2 3 4 5 6 7 8 9 10 00.174

--- --- --- --- --- --- --- --- --- --- --- ------

| 0 ___ # # f ow # d r aw n ih ng

| 1 ___ # # f ao r b r aw n ih ng

| 2 ___ # # f ao r d r aw n ih ng

| 3 ___ # # jh ow # b r aw n ih ng

| 4 ___ # # f ao r b r aw n ih ng

hw-lts | 5 ___ # # jh ow # d r aw n ih ng

phones | 6 ___ # # f ow # b r aw n ih ng

| 7 ___ # # f ao r b r aw n iy z

| 8 ___ # # jh ow # b r aw n ih ng

| 9 ___ # hh # ow # b r aw n ih ng

| 10 ssb # # w ae # t v # # # #

sp | 11 ssd f # w ae t p s # # # #

phones | 12 ssa # # w eh # t s # # # #

| 13 ssc # # w eh # t s # # # #

sframe 6 9 12 32 36 39 44 45 45 45 46

(coherence)

position 0 1 2 3 4 5 6 7 8 9 10 00.154

--- --- --- --- --- --- --- --- --- --- --- ------

| 0 ___ # # hh ow # b r aw n ih ng

| 1 ___ # f # ao r b r aw n ih ng

| 2 ___ # f # ao r d r aw n ih ng

| 3 ___ # jh # ow # b r aw n ih ng

| 4 ___ # f # ao r b r aw n ih ng

hw-lts | 5 ___ # jh # ow # d r aw n ih ng

phones | 6 ___ # f # ow # b r aw n ih ng

| 7 ___ # f # ao r b r aw n iy z

| 8 ___ # jh # ow # b r aw n ih ng

| 9 ___ # f # ow # d r aw n ih ng

| 10 ssb # w # ae t v # # # # #

sp | 11 ssd f w # ae t p s # # # #

phones | 12 ssa # w # eh # t s # # # #

| 13 ssc # w # eh # t s # # # #

sframe 6 9 13 32 36 39 44 45 45 45 46

Figure 5.12: Example alignments of the block of letter-to-sound handwriting transforma-
tions (rows preceded by ) from Figure 5.11 with the phone ensemble alternatives (rows
preceded by ss labels). The varying alignments resulting from different seed sequences
result in different coherence measures (upper right of each alignment block).
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— i.e., # — is mostly at the beginning of the rows, is somewhat more coherent (score

= 0.174 on a scale from 0.0 to 1.0 ) than the second (score = 0.154 ), in which silence

occurs more often internally, away from the start column of the matrix. This is the kind

of distinction we want coherence to capture and represent.

The top row of the two displays in Figure 5.12 each is an index of sequence positions.

Each position identifies a column in the matrix, and has an associated start frame, which is

shown in the sframe row at the bottom of each matrix. Notice that for the more coherent

matrix (the upper one) the first phone of Joe Browning (i.e., jh) tends to start around

frame 12 at position 2, whereas for the less coherent matrix (the lower one) it tends to start

around frame 9 at position 1. To estimate the start frame for each position we average the

start/end frame information from each phone ensemble output. For the syllabic ensemble

sequences we use interpolation to suggest syllable-internal phonetic boundaries. However,

as these examples show the timing estimates (in terms of start/stop frames) are only as

good as the alignments themselves.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 00.677 (coherence)

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ------

0 ___ # f # ao r b # r aw n # iy # z #

1 ___ # f # ao r b # r aw n # ih ng # #

2 ___ # f # ao r d # r aw n # ih ng # #

3 ___ # jh # ow # b # r aw n # ih ng # #

4 ___ # f # ao r b # r aw n # ih ng # #

5 ___ # jh # ow # d # r aw n # ih ng # #

6 ___ # f # ow # b # r aw n # ih ng # #

7 ___ # jh # ow # b # r aw n # ih ng # #

8 ___ # f # ow # d # r aw n # ih ng # #

9 ___ hh # # ow # b # r aw n # ih ng # #

10 ssb # sh uw ow # p # r aw m dh iy ng d m

11 ssd # sh y uw l b p r aw m dh iy ng d m

12 ssa # sh # uw w b # r aw n # ih ng # #

13 ssc # sh # uw w w # er aw n # iy ng # #

Figure 5.13: Coherent example alignment of handwritten Joe Browning with spoken, “Joe
Browning.”

The alignments in Figure 5.12 are not very coherent, and indeed they should not be,

because the handwriting for Joe Browning is being aligned against the phone-ensemble

sequences for the utterance, ”Let’s ...”. The alignment in Figure 5.13 of the handwriting

for Joe Browning with the phone-ensemble sequences for the speech, “Joe Browning,” is a

much more coherent matrix (score = 0.677 ). Setting a threshold on the acceptable value

of the coherence metric defines one of SHACER’s primary means for deciding whether the

aligned handwriting and speech are actually redundant. Low coherence alignments are
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disregarded. High coherence alignments trigger further processing under the assumption

that redundancy may have occurred.

5.3.5 Alignment Procedure Modifications for SHACER

SHACER’s alignment routine is based largely on the definitions and algorithm given in

Kondrak [96, 95] for his ALINE technique. However, for SHACER we have modified

Kondrak’s algorithm in several ways. We have added a capability to split the alignment

of diphthongs in a way that makes sense for the alignment task that we are performing.

Each diphthong has two sub-phones of which it is composed. A diphthong’s distance from

another phone can be measured based either on (1) the diphthong’s full set of articulatory

features or on (2) the set of articulatory features belonging to either one of its sub-phone

members.

Diphthong Expansion

During alignment a diphthong can be expanded to cover the space of its compound mem-

bers (or of other phones that are very close to those compound members) as they occur

in other rows of input. For example, the diphthong, ey, shown in the Partial Alignment

Matrix in Figure 5.14 (line 7 ), has been expanded in this way. This expansion is shown in

close-up in the Select lines from Partial Alignment Matrix section of Figure 5.14, in which

the rows 4,7, and 12 of the Partial Alignment Matrix have been selected, extracted and

grouped. It can be seen that the ey diphthong in row 7 has been expanded into component

pieces that represent its compound phones (first phone = eh, and second phone = iy). The

expanded pieces are labeled in ways that identify them as part of the ey diphthong while

also denoting their roles in the expansion — i.e., the first phone/second phone sequence

ey ey representing the diphthong’s compound parts.

The first part of the ey expansion (e.g., ey) represents the phone eh and in the Select

lines from Partial Alignment Matrix section of Figure 5.14 is aligned below the phone ae.

In Figure 5.14’s Partial Section from Phone-Distance Table section (a larger example of the

phone distance table is given in Section A.6) it can be seen that the phone ae is the closest

phone to eh. This closeness drives the algorithmic expansion of the diphthong, ey, into its

component parts, because the ae/eh closeness scores better than the closeness of ey as a

diphthong to any other phone in lines of 1-6 of Figure 5.14’s Partial Alignment Matrix.

Below the second of ey ’s compound expansion phones (symbolized by ey immediately after

ey) is iy which is an exact phonetic match to the diphthong’s second compound member.
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Partial Alignment Matrix

0 ___ # # # r # ow

1 ___ f ao # r # #

2 ___ z ih # r # ow

3 ___ # ae # z # #

4 ___ # ae # d # #

5 ___ # ih # z # #

6 ___ # # # d # iy

7 ___ # _ey ey # # #

8 ___ # ah # # # #

9 ssb y iy iy d t uw

10 ssd y # ey t y uw

11 ssa n # iy d t uw

12 ssc n # iy d t uw

Select lines from Partial Alignment Matrix

4 ___ # ae # d # #

7 ___ # _ey ey # # #

12 ssc n # iy d t uw

Partial Section from Phone-Distance Table

| 28 ae |

|----------------|

| 28 ae 0 |

| 27 eh 2 |

| 26 ey 3 |

| 25 ih 3 |

Figure 5.14: An example of diphthong expansion — row 7 ey ey.

It is important in our coherence metric to have such expansions, because non-phones (e.g.

silence or noise — the # symbol) occurring in any matrix match-segment internal columns

degrade the coherence. Expanding the diphthongs allows our coherence metric to better

take into account the acoustic properties of diphthongs. Kondrak’s algorithm, designed for

studying cognate change during language evolution, does not explicitly support diphthong

expansion in this way. Our approach is akin to the use of expansions in other dynamic-

programming-based matching routines described in the literature [152].

Handling Length Mis-matches in Phone Alignments

For the Joe Browning alignment example (Figure 5.13) the spoken utterance, “Joe Brown-

ing,” and the LTS phones from the handwriting input, Joe Browning, were close to the

same length. However, this length correspondence is not always the case, as shown in the

example matrix in Figure 5.15 of which the first 12 frames have been truncated to allow

it to fit on this page. In this example Joe Browning is being aligned with the utterance,

“This is our timeline for Joe Browning.” So the Joe Browning reference array of letter-to-

sound generated phone sequences from the handwriting is much shorter than the phone
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ensemble sequences, covering only positions 20-32 (leaving positions 0-20 unmatched as is

appropriate in this case).

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 00.616

-- -- -- -- -- -- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- ------

0 ssd # ao ay n f r d jh y uw l p r # aw # m # ih ng d

1 ssa l oy ih n f er d jh # uw l b r _aw aw # n # ih ng #

2 ssb # oy # n f er d jh y uw l p r ae ah # n # ih ng #

3 ssc l oy # n f er d jh # uw l b r # aw # n # ih ng #

4 ___ # # # # # # # jh # ow # b r # ah # n # ih ng #

5 ___ # # # # # # # jh # ow # b r # aw t # # ih ng #

6 ___ # # # # # # # jh # ow # k r # ah # n # ih ng #

7 ___ # # # # # # # jh # ow # k r # aw t # # ih ng #

8 ___ # # # # # # # jh # ow # b r # aw # n r ih ng #

Figure 5.15: Example of length mis-matched alignment of letter-to-sound phoneme se-
quences for Joe Browning compared to ensemble phone output for utterance, “(This is
our time) line for Joe Browning.” The spoken portion in parentheses has been truncated
so the example will fit this page.

In Figure 5.15 the speech phones in rows 0-3 serve as the reference strings for the align-

ment, while the handwriting LTS phones in rows 4-8 serve as the hypothesis strings. This

mis-match in reference and hypothesis string lengths also arises during the handwriting/speech-

transcript letter-sequence matching task, as shown in Figure 5.16’s Buy Computer ex-

ample. This letter matching task is part of the comparison of the handwriting to the

speech transcript, and it is also part of the comparison of handwriting to lattice word

sequence extractions that will be discussed in the next section. To keep the phones or

letters from a handwriting instance relatively close together and not too far spread out

the cost of insertion/deletion moves is increased, as shown in Section ?? at lines a-d of

the dynamic programming match pseudo-code.

a. buYcomputer________

b. buTcomputerANDOTHER

a. buSYcomputer________

b. buT_computerANDOTHER

Figure 5.16: Example alignment of handwriting letter sequence (a) compared to letter
concatenations of the LVCSR transcript (b). This letter alignment is also performed in
evaluating the multiparser’s request for phonary alignment. Upper-case letters below an
underscore are insertions. Upper-case letters above an underscore are deletions. Upper-
case letters below another upper-case letter are substitutions.
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Global Versus Local Optimal Dynamic Programming Alignments

Aside from keeping the handwriting’s constituent letters or phones close together during

the dynamic programming matching routines, it is also necessary to check the finished

dynamic programming matrix for the best local matches. For example, Figures 5.17, 5.18

and 5.19 below show the alignment matrix for handwritten Buy Computer and a phone

recognizer output for the associated utterance, “. . . buy computer and other.”

First, a portion of the full matrix, with best-move and best-score information is shown

in Figure 5.17. Each matrix cell is labeled by a tuple that shows the best move to that cell

along with score of that best move. The move possibilities are I=INSertion, D=DELetion,

S=SUBstitution, = correct. These best-moves and best-scores represent all of the in-

formation that is typically recorded in the memory structures of the dynamic programming

pass. It is possible to implement memory structures that would keep a fuller listing of

the matrix, accounting for not only best-move/best-score information but for all possible

scores of all four move possibilities at each matrix cell, which is similar to what occurs

during the Viterbi search that is central to speech recognition. However, we have found

that back-tracing along the edges of the finished matrix (e.g. right-to-left along the bot-

tom row and bottom-to-top along the right-most column) can yield the optimal local path

for length mis-matched alignments, which as shown in Figures 5.18 and 5.19 is not always

the same as the global best path.

The first of the full matrices for this example, shown in Figure 5.18, shows only the

best moves resulting from the dynamic programming match algorithm. The best path

through this DP matrix is circled, and the path’s score, statistics and alignment are

shown highlighted below the figure. This is the best global path found by the algorithm.

However, it is possible to look for alternative local solutions by iteratively replacing each

move on the final column (moving from bottom to top) by a Deletion. Then, as each

replacement is made, the best path is re-computed. Likewise each move along the bottom

row (from right to left) can be replaced by an Insertion move, and the best local path

re-computed. When we do these iterations for this matrix we do find a better scoring local

path as we add Insertions from right-to-left along the bottom row. This best local path

is shown in the Figure 5.19 with its path statistics highlighted below the figure. Lower

path scores are better, so the local path score of 62.102 is better than the global score of

62.708. These statistics show that the local path’s better score is primarily due to more

correct matches. In this case the alignment of the handwritten Buy Computer against the

spoken, “Buy computer and other,” is moved from below the “ ... and other” portion of
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Phone ensemble phones (horizontal axis):

hh uh v d ah m d ch y uw hh iy uh r v b ey n dh ah t b aa ah dh ah r

-- -- - -

Rough association of speech with ensemble phones:

| buy | ... computer ... | and | ... other ... |

Handwriting LTS phone alignment (vertical axis):

3 2 1 > | top edge of aligned recognizer alternates

-- -- -- - | -----------------------------------------

b > > | b

ih > > | ih

b z b > | b

ah iy ay > | ay

ng > > > | ng

k k k > | k

ah ah ah > | ah

m m m > | m

p p p > | p

y y y > | y

uw uw uw > | uw

t t t > | t

er er er > | er

(1 hh) (2 uh) (3 v) (4 d) ...

(_ 000.000) (I 000.000) (I 000.000) (I 000.000) (I 000.000) ...

(1 b) (D 000.000) (D 000.000) (D 000.000) (S 023.000) (S 029.000) ...

(2 ih) (D 000.000) (D 000.000) (S 011.333) (D 008.000) (D 014.000) ...

(3 b) (D 000.000) (D 000.000) (D 000.000) (S 033.667) (S 033.667) ...

(4 ay) (D 000.000) (D 000.000) (S 008.775) (D 018.667) (D 018.667) ...

(5 ng) (D 000.000) (D 000.000) (D 000.000) (D 003.667) (D 003.667) ...

(6 k) (D 000.000) (D 000.000) (D 000.000) (S 001.000) (S 018.667) ...

(7 ah) (D 000.000) (D 000.000) (S 009.750) (D 000.000) (D 003.667) ...

(8 m) (D 000.000) (D 000.000) (D 000.000) (D 000.000) (D 000.000) ...

(9 p) (D 000.000) (D 000.000) (D 000.000) (S 013.000) (S 019.000) ...

(10 y) (D 000.000) (D 000.000) (D 000.000) (S 015.000) (S 022.000) ...

(11 uw) (D 000.000) (D 000.000) (S 015.550) (I 000.550) (D 007.000) ...

(12 t) (D 000.000) (D 000.000) (D 000.550) (S 027.950) (S 024.150) ...

(13 er) (D 000.000) (D 000.000) (D 000.000) (D 012.950) (S 016.150) ...

Figure 5.17: A portion of the full dynamic programming finished matrix for the alignment
of the handwritten Buy Computer and phone ensemble output for the spoken utterance,
“. . . buy computer and other.” The phone-level hypothesis is shown at the top. The
first four phones of that hypothesis, which appear in the truncated horizontal axis of the
matrix, are underlined. A rough association of the spoken utterance words to the phones
is given. The vertical axis of the alignment matrix is composed of the top edge of the
alignment of the handwriting recognizer’s LTS alternates (labeled 3,2,1 ), which is listed
vertically with “>” signs denoting the top (i.e. rightmost) edge. This edge is what is
shown as the vertical axis of the alignment matrix. Key: D = Deletion, I = Insertion, S
= Substitution, = Correct.
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Figure 5.18: Example of global best path for length mis-matched alignment of letter-
to-sound phoneme sequences for Buy Computer compared to ensemble phone output for
utterance, “a computer and other.” Circles trace the path of best states backwards from
the lower right corner.

the speech to below the “Buy computer ...” portion of the speech, where it should be.

Alignment Frame-Level Timing

As alignments are being processed the approximate frame-time of each column position

within the aligned matrices is determined by an averaging mechanism. The alignment

matrices are then cropped by removing phonetic outliers. These outliers are shown in the

pruned area of Figure 5.20. They arise from (a) errors in handwriting recognition, (b)

errors in letter-to-sound transformation, or (c) errors that are combinations of these two

processes. The outliers are pruned when they are more than a factor of standard deviation

away from the main body of the phone alignment matrix. Figure 5.20 offers an illustration

of this process. The phones r ah in row 5 and aa in row 8 (in position columns 19 and

20 ) are all pruned away. Their distance from the main body of the alignment, which is

marked off with vertical dividers between positions 24 and 28, is about three full positions

away — from position 20 to position 24. This exceeds the standard deviation in distances

between phones that occur within the main alignment body. In this case that standard
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Figure 5.19: Example of local best path for length mis-matched alignment of letter-to-
sound phoneme sequences for Buy Computer compared to ensemble phone output for
utterance, “a computer and other.” Circles trace the path of best states backwards from
the lower right corner, with replacement insertion moves along the bottom row.

deviation is between 1-2 positions.

Figures 5.21 and 5.22 illustrate an alignment matrix with its accompanying phone-level

timing information. Each line of phonetic frame-level start times shown in Figure 5.22 cor-

responds to the phone hypothesis for the accompanying ensemble phone recognizer in Fig-

ures 5.21. As mentioned earlier, SHACER currently has no mechanism for extracting syl-

lable internal temporal, so the ssa and ssc lines in Figure 5.22, which correspond to phone

hypotheses generated by syllable-based phone recognizers, have no syllable-internal timing

information about phonetic boundaries. The two phonotactically constrained phone recog-

nizers (ssb and ssd in Figure 5.22) are basically identical to word-level speech recognizers,

except that words are replaced by individual phones. Thus they do provide phone-level

start/end times. To extract frame-level temporal information SHACER averages across all

four phone ensemble timing matrices. Currently temporal phone boundaries within sylla-

bles are interpolated. In our future work we intend to adopt the use of speech recognizers

that not only better recognize phonetic structure (e.g. syllabic-based phone recognizers)

but also support the extraction of the phone-level temporal information that SHACER
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19 20 21 22 23 | 24 25 26 27 28 | 29 30

--- --- --- --- --- |--- --- --- --- --- |--- ---

0 ssb r uh r f # | r ih # # hh | er w

1 ssa r uh r f er | r ih l jh # | er w

2 ssc r uh r f er | r ih l jh # | er w

3 ssd y # er f # | r ih # v uh | r w

4 ___ # # # # er | # ay # v # | # #

5 ___ r ah # # m | # # # # # | # #

6 ___ # # # # # | er ih # v ah | # #

7 ___ # # # # # | er ay # v # | # #

8 ___ # aa # # # | r uw # d ah | # #

9 ___ # # # # # | er ay # v # | # #

10 ___ # # # # # | er ay # v # | # z

11 ___ # # # # # | er ih # v ah | # #

12 ___ # # # # # | er ay # v # | er #

13 ___ # # # # # | er uw # b ah | # #

.. (pruned).. | | .... "arrive" .... |

Figure 5.20: An alignment illustration for the handwritten word, arrive, which shows how
phonetic outliers are pruned. The pruning occurs for (r ah in row 5 and aa in row 8.
These sequences occupy position columns 19 and 20.

needs for the next step in its dynamic learning of new words, which is refinement of the

new word’s pronunciation.

Figure 5.21: A portion of the phone alignment matrix (for handwritten and spoken, Joe
Browning). Rows 7-9 are the 7th-9th handwriting letter-to-sound hypotheses. Rows 10-13
are ensemble phone recognizer outputs.

5.4 REFINEMENT OF HANDWRITING/SPEECH SEG-

MENT PRONUNCIATION

After phonetically aligning redundant handwriting and speech, as described above, the

next step is second-pass phone recognition. One of the phone ensemble recognizers acts as

a master phone recognizer. Its first function is to produce a phonetic sequence hypothesis,

which is routed to the multiparser where it participates in the alignment process used to
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Figure 5.22: The parallel start-frame matrix for the ensemble phone recognizers: ssb/ssd
use phone sub-word units, while ssa/ssc use syllables. The bottom row is the output start-
frame vector for the hypothesized phone positions, averaged over the phone sub-word unit
recognizers. Note that the syllable sub-word unit recognizers have no unit-internal phone
segmentations.

discover redundancies. Its second function is to cache the MEL-cepstrum features from

the first pass recognition and then re-use them for a fast second pass recognition to refine

the pronunciation of any discovered redundancy. Second pass recognition using cached

features is constrained by a phone sequence model built from the alignment matrices.

The alignment matrix also designates the temporal segment of a spoken utterance that

corresponds to the handwriting. This is why finding the optimal local alignment path is

so important. For example, the optimal global path in Figure 5.18 defines the temporal

segment of speech for second pass recognition to be that segment in which the speaker

said, “. . . and other,” while the optimal local path in Figure 5.19 defines the temporal

segment of speech for second pass recognition to be that segment in which the speaker

said, “. . . buy computer.” Second pass recognition on the global path segment (for “. . . and

other”) would not find a good phonetic pronunciation for the handwritten Buy Computer,

while second pass recognition on the local path segment (for “. . . buy computer”) will find

a refined pronunciation. Only the alignment-designated temporal segment is searched

during second pass recognition. This segment’s temporal boundaries can also be used

to identify word sequences from the transcribing recognizer’s lattice, which may provide

further matching evidence in comparison with the handwriting input, as described next.

5.4.1 Lattice Term Sequence Extraction

An instance in which Joe Browning is redundantly handwritten and spoken yields the

alignment shown in Figure 5.23. The letter-to-sound phone sequences from the handwrit-

ing alternates list are in rows 0-9, and the phone ensemble sequence outputs are in rows

10-13.

The bottom row in the diagram shown in Figure 5.23 is labeled sframe and it lists the



128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 00.446

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ------

0 ___ # f # ow # d # r aw n # ih ng # #

1 ___ # f # ao r b # r aw n # ih ng # #

2 ___ # f # ao r d # r aw n # ih ng # #

3 ___ # jh # ow # b # r aw n # ih ng # #

4 ___ # f # ao r b # r aw n # ih ng # #

5 ___ # jh # ow # d # r aw n # ih ng # #

6 ___ # f # ow # b # r aw n # ih ng # #

7 ___ # f # ao r b # r aw n # iy z # #

8 ___ # jh # ow # b # r aw n # ih ng # #

9 ___ hh # # ow # b # r aw n # ih ng # #

10 ssb # sh uw ow # p # r aw m dh iy ng d m

11 ssd # sh y uw l b p r aw m dh iy ng d m

12 ssa # sh # uw w b # r aw n # ih ng # #

13 ssc # sh # uw w w # er aw n # iy ng # #

sframe 0 8 19 27 35 41 46 49 61 73 80 83 88 95 104

Figure 5.23: An example alignment matrix for handwritten and spoken Joe Browning.

start-frame approximations for each alignment column, which are a result of averaging

timing information from each of the phone ensemble inputs. In this example since the

handwriting and speech are the same, the alignment segment is the entire alignment, but

this is not always the case, as in the Buy Computer example discussed above.

0. 1 91 2 JOE BROWN || jh ow + b r aw n

1. 1 91 3 JOE BROWN MEAN || jh ow + b r aw n + m iy n

2. 1 91 3 JOE BROWN RING || jh ow + b r aw n + r ih ng

3. 1 91 2 SHOW BROWN || sh ow + b r aw n

4. 1 91 3 JOE BROWN MEANS || jh ow + b r aw n + m iy n z

5. 1 91 3 JOE BROWN DING || jh ow + b r aw n + d ih ng

6. 1 91 3 JOE BROWN E. || jh ow + b r aw n + iy

...

81. 1 91 3 JOE BRAND TEA || jh ow + b r ae n d + t iy

82. 1 91 3 SHOW BRAND A. || sh ow + b r ae n d + ey

83. 1 91 3 SHOW BRAND AIM || sh ow + b r ae n d + ey m

84. 1 91 3 SHOW BRAND T. || sh ow + b r ae n d + t iy

85. 1 91 3 SHOW BRAND TEA || sh ow + b r ae n d + t iy

Figure 5.24: Extracted LVCSR lattice sequences based on the temporal boundaries of the
alignment matrix in Figure 5.23. Column 1 numbers the extractions, column 2 is the start
frame, column 3 is the endframe, and column 4 is the number of words in the extraction.
The right-most column is the canonical pronunciation of each extracted sequence.

The alignment segment’s average start/stop times (e.g. start=8/stop=88 from the

sframe line in Figure 5.23) are used to query the LVCSR lattice for the utterance be-

ing processed and extract all possible word sequences over that alignment segment’s time

boundaries. SHACER uses an iterative back-off on the segment boundaries, starting with
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the tightest (which is a slight constriction of the alignment boundaries) and progressively

widening the boundaries until a threshold limit of word sequences is reached. For exam-

ple, for the alignment matrix of Joe Browning as shown in Figure 5.23, the top seven

lattice extractions and the last five lattice extractions out the eighty-five possible word

sequences extracted from the lattice are shown in Figure 5.24. Notice that because the

word, Browning, was not in the dictionary the correct word is not actually present in the

lattice; however, there is a lot of phonetic information in the extracted word sequences

that are present in this lattice segment.

ID sf ef CombProb Cohere LAlign PAlign MatchLS Handwriting || Lattice

-- -- -- -------- ------ ------ ------ ------- ----------- ---------------

0 1 91 0.770 0.790 0.727 0.755 0.944 JoeBrowning || JOE_BROWN_RING

1 1 91 0.762 0.789 0.727 0.748 0.944 JoeBrowning || JOE_BROWN_DING

2 1 91 0.738 0.791 0.636 0.758 0.885 JoeBrowning || JOE_BROWN_THING

3 1 91 0.724 0.727 0.636 0.639 0.885 JoeBrowning || JOE_BROWN_RINGS

4 1 91 0.718 0.729 0.545 0.630 0.859 JoeDrowning || JOE_BROWN_RING

5 1 91 0.714 0.727 0.545 0.617 0.859 FoeBrowning || JOE_BROWN_RING

6 1 91 0.710 0.727 0.545 0.623 0.859 JoeDrowning || JOE_BROWN_DING

7 1 91 0.710 0.726 0.545 0.638 0.859 JoeBrowning || JOE_BROWN_DINK

8 1 91 0.707 0.728 0.545 0.644 0.859 JoeBrowning || JOE_BROWN_LINK

9 1 91 0.706 0.725 0.545 0.610 0.859 FoeBrowning || JOE_BROWN_DING

Figure 5.25: Re-ranked LVCSR lattice extractions. The extraction sequence is shown in
the right-most column labeled Lattice.

To take advantage of the phonetic information in these extracted lattice sequences,

they are compared to the handwriting sequences. Based on that comparison they are then

re-ranked on the following scales:

1. The coherence of their phonetic alignments (see the Cohere for Coherence column

in Figure 5.25).

2. Their letter and phone alignment scores (see the LAlign for Letter Align and PAlign

for Phone Align columns in Figure 5.25).

3. Their spelling closeness, which is measured as the percentage of matching letters

between the closest handwriting/lattice-words combination (see the MatchLS for

Match Letter Score column in Figure 5.25).

These various scores are combined into a single probability that is computed as a

weighted average (see the CombProb for Combined Probability column in Figure 5.25), by

which the lattice sequences are ranked. A threshold on this combined probability deter-

mines which of these lattice sequences are themselves grouped and phonetically aligned.
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Then, as an aligned group, they are aligned against the ensemble speech outputs. This

creates further alignment matrices, which can be mined for further phone sequence infor-

mation to constrain second pass recognition.

5.4.2 Positional Phone-Bigram Modeling

To consolidate the phone sequence information available from both the speech and hand-

writing input streams (Figure 5.21) we have designed and implemented a technique that

we call Positional Phone-Bigram Modeling. Figures 5.26 and 5.27 together give an exam-

ple of positional phone bigram modeling. For the alignment matrix shown in Figure 5.26

the user spoke, “And one . . . uh data server.” This speech was segmented into two short

utterances. As the user spoke these utterances he also wrote the term 1 dataserver.

Figure 5.26: Phonetic alignment of speech and handwriting information. The user spoke
two utterances: (1) “And one” . . . (then he paused and said) (2) “Uh data server.” As he
spoke he wrote 1 dataserver.

SHACER does not yet handle instances where the handwriting corresponds to portions

of more than one utterance, as is the case for the handwriting in Figure 5.26. However,

our exploration of the delivery timing of multimodal redundancies across handwriting and

speech (Section 2.2.3) does indicate some guidelines for how we can go about this in our

future work. For example, typically handwriting overlaps temporally with all utterances

to which it should be aligned. If a single instance of handwriting overlaps both (a) an

earlier-starting spoken utterance and (b) a later-finishing spoken utterance, then that

suggests that those two utterances could be treated as one for the purpose of alignment

with handwriting, to discover any redundancy. In Figure 5.26 only the second spoken
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utterance is aligned with the handwriting, so there is a partial mismatch between the

aligned speech and handwriting. The handwriting section of the alignment is the upper

row blocks in Figure 5.26. It represents the phonetic letter-to-sound-generated sequence

from the handwritten term, “one data server.” The speech phone sequences are shown in

the lower row blocks of Figure 5.26, and represent the utterance, “uh data server.”

In Figure 5.27 another alignment matrix for this same combination is shown. Re-

call that many such matrices are constructed and used during processing, because their

alignments vary depending on the first or seed phone sequence. Phone bigram counts

are collected from all alignment matrices for a given attempt at handwriting and speech

integration. In Figure 5.27 we highlight the area that corresponds to the word data, and

see how information from that matrix can help in modeling the likelihood of how the word

data was pronounced (e.g. either d ae t ah or d ey t ah). Our dynamic positional phone

bigram counts bigrams across rows, as shown in the enlarged box on the upper-left side

of Figure 5.27. This results in bigram counts like those shown in Figure 5.27’s right-side

count/bigram table, where in comparing between d ey t ah and d ae t ah the former is

more likely based on phone sequence information extracted from this matrix.

Equations 1 and 2 in Figure 5.28 show how the positional bigram counts are computed

(the interpolated normalization method is not shown). Equation 1 in Figure 5.28 states

that for each phone (p), which is a member of the phone set (P), and for each frame

position (j ) from 0 to the number of columns (c) in the alignment matrix (e.g. Figure 5.21),

the count of bigram (p1,p2) at frame/column position j (i.e., ct(j,p1,p2)) is summed over

all occurrences of p1 in the i ’th row (i from 0 to the number of rows, r, in the matrix)

and p2 in k ’th row of the l ’th column such that neither p1 nor p2 is silence (s = silence).

Note that l ranges from j+1 to cns, where the ns subscript means the nearest column

with a non-silence phone. The notation p(i,j) denotes the phone at the i ’th row and j ’th

column of the matrix. The handling of silence in bigrams at the beginning and end of each

matrix row is not shown, and otherwise silence is not allowed be part of a bigram. Thus in

Equation 1 in Figure 5.28 if a phone is silence (s) then it is not considered, and the bigram

in which it is participating does not add to the bigram count. Positional information, j,

keeps track of the start frame of the bigram’s first phone (which is computed from the

average start frames of the phone sub-unit recognizers, as shown in Figure 5.22). This is

used to constrain the bigram not to be used beyond a threshold of distance from its start

position. The intuitive motivation is that bigrams from the end of an alignment segment

may not be appropriate to use near the beginning of an alignment segment.
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Figure 5.27: An illustration of how Positional Phone-Bigram Modeling works. As shown
in the box on the upper-left, phone sequences are counted across rows in the alignment
matrix. These counts are then used to weight second-pass phone recognition over saved
speech features. For example, given the phone-bigrams available in this alignment matrix
for the word data, the d ey t ah pronunciation appears more likely than the d ae t ah
pronunciation. This is shown in count/bigram table in the upper-right.
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Figure 5.28: Positional phone bigram equations.

Positional Phone Bigram Model Example

Approximate frame-times across all alignment matrices support the construction of a

positional bigram model of phone sequences as described in Section 5.4.2 above. For

the handwriting, Buy Computer, and partially redundant speech, “A computer and other

. . . ,” various alignment matrices like that shown in Figure 5.29 contribute phone sequence

information to a positional phone bigram model for constraining second pass phone-level

recognition.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

--- --- --- --- --- --- --- --- --- --- --- --- --- ---

0 ___ # # # b ay # k ah m # p y uw #

1 ___ # # # b ay # k ah m # p y uw #

2 ___ # b ih z iy # k ah m # p y uw #

3 ___ # # # b ay # k ah m # p y uw #

4 ___ # b eh r iy # k ah m # p y uw #

5 ___ # # # b ay # k ah m # p # ah #

6 ___ # b uw # iy # k ah m # p y uw #

7 ___ # # # b ay # k ah m # p # ah #

8 ___ # # # b ah ng k ah m # p y uw #

9 ___ # # # b ay # k ah m # p y uw #

10 ssb hh # uh v # # d ah m d ch y uw hh

11 ssd # # ao v # # g uw m b ch y uw hh

12 ssa # b ah p ih ng k # # # f y uw uw

13 ssc # f ah v # # k ah m k f y uw uw

------ --- --- --- --- --- --- --- --- --- --- --- --- --- ---

sframe 21 23 25 30 32 34 37 42 46 54 58 68 75 80

Figure 5.29: A section from one alignment matrix for the handwriting, Buy Computer, and
the partially redundant utterance, “A Computer and other . . . .” Handwritten information
is in rows 0-9, while ensemble phone recognition information is in rows 10-13. Phone
sequences collected from this partial alignment matrix and others like it for this pair of
inputs are the basis for the top-scoring bigrams shown in Figure 5.30.

For the alignment request, which is partially shown above in Figure 5.29, actual bigram
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likelihoods are shown in Figure 5.30. For space reasons, only the upper range of normalized

bigram likelihoods are shown in Figure 5.30. This range include bigrams with likelihoods

greater than 0.1e-5. From left-to-right each row in Figure 5.30 shows for each bigram (1)

the pair of phone IDs, (2) the pair phone names (Figure 5.30, bigram column), (3) the

bigram likelihood (Figure 5.30, likelihood column), (4) the average frame distance from

the start of the aligned segment (Figure 5.30, frame column), and finally (5) the list of

positions at which the bigram occurs (Figure 5.30, positions column). Figure 5.29’s sframe

row depicts how positions relate to the alignment matrix).

The correct bigrams in Figure 5.29 are highlighted, and ordered in sequence from

top-to-bottom. For this example the highlighted bigrams have the highest likelihoods

compared to other possible bigrams at their respective positions. The actual bigram

model used for second-pass constraint is an empirically weighted interpolation of (a) these

illustrated bigram statistics along with (b) unigram statistics for all phones appearing in

all contributing alignment matrices and (c) a small amount of probability mass for all

other non-appearing phones.

5.4.3 Second Pass Phone Recognition

As mentioned earlier, the effect of using the positional phone bigram model during sec-

ond pass phone recognition is analogous to that of using a word-level language model to

constrain the acoustic choices made by an LVCSR speech recognizer. In both cases the

sequence model biases the scores of known and frequently encountered sequences to be

higher than the scores of those sequences that are unknown or have not occurred frequently

in the data on which the model was trained. The positional phone bigram model holds

combined information from (1) the phone ensemble, (2) the handwriting letter-to-sound

transformations, (3) the lattice extractions and possibly also from (4) exact transcript

matches. These constraints on phone sequencing then interact with the actual acoustics

of a spoken utterance. Section 3.2.3 introduced an example of a handwritten and redun-

dantly spoken proper name, Fred Green. The speech recognition transcript for this input

was Fred’s Green, with an inserted possessive — because the sequence Fred Green was not

in the language model training data. Second pass recognition, using the positional phone

bigram-model, yielded the correct pronunciation (e.g. F R EH D G R IY N ). In the

refined, second-pass pronunciation there was no incorrectly inserted possessive ’s between

Fred and Green. This is the value of second-pass pronunciation refinement.
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Figure 5.30: Selected portions of the complete bigram statistics listing for alignment of the
handwriting, Buy Computer, and speech, “A computer and other . . . ” A partial alignment
matrix for these inputs is shown in Figure 5.29. Note that in this example the correct
bigrams (highlighted and circled) receive the most weight.
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5.5 SUMMARY

This chapter has described the alignment and refinement steps in SHACER’s detection

and learning of OOV terms. These are the first two of SHACER’s three main processing

steps. The third main processing step is integration, which uses the refined pronunciations

described in this chapter as a distance metric for choosing the spelling and pronunciation

of a redundantly presented OOV term. Integration will be fully described in the next

chapter.

We compared SHACER’s approach to learning new words to the problem of retrieving

relevant documents in the Spoken Document Retrieval task. SDR tasks use either a vec-

tor space model (VSM) approach or a dynamic programming (DP) matching approach for

deciding which documents are relevant. For small document databases DP is significantly

better, although slower. Comparing handwriting against a small window of previous spo-

ken utterances, as SHACER does, is equivalent to a small database SDR task. Therefore

SHACER’s use of a DP approach is reasonable. Further experimentation is called for in

the future to determine if SHACER can benefit from a hybrid VSM/DP approach.

We reviewed recent literature showing that machine-learning techniques for discover-

ing phonetic distances do out-perform static articulatory-feature tables like that which

SHACER uses. However, since these machine-learning approaches are recognizer specific

they would have to be re-computed whenever new words were added to the vocabulary

and language model of the system. We argue that since SHACER’s purpose is exactly

that — to be constantly discovering and adding new words to the system — a static

articulatory-feature distance definition is appropriate. In the future the necessity and

computational cost of constantly updating machine-learned phone distances will have to

be further evaluated within SHACER.

This chapter described SHACER’s use of articulatory-feature based alignment, and

detailed the differences between SHACER’s implementation and the original algorithm on

which is was patterned. Those differences were (a) diphthong expansion and (b) optimal

DP local path discovery.

Finally, SHACER’s use of the articulatory-feature based alignment matrices to support

phone-sequence modeling was described. SHACER’s phone-sequence modeling approach

is called Positional Phone-Bigram Modeling. It plays a critical role in constraining sec-

ond pass speech recognition over cached speech features, which is the core of SHACER’s

refinement processing step.



Chapter 6

SHACER: Integration

As discussed in chapter 3, SHACER has three main functionalities: (1) alignment, (2)

refinement, and (3) integration. The previous chapter discussed alignment and refinement.

This chapter discusses integration. Integration uses the refined pronunciation from step

2 as an integration decision metric against which to compare other inputs, and decide

on the best combination of spelling, pronunciation and semantics. This integration step

differentiates SHACER from SDR approaches, which do not attempt to learn new words

in this way.

6.1 INPUT SOURCES

Figure 6.1: A diagram of the various multimodal inputs that contribute to SHACER’s
integration of redundant handwriting and speech information. (KEY: WPSR-trans
= Word/Phrase-Spotting Recognizer transcript, S-trans = speech-transcript, S-latts =
speech-lattices, HW-alt = handwriting alternates list, PEO = Phone Ensemble Output).

There are five information sources across which comparisons are made: (1) handwrit-

ing letter-strings and their phone sequences, (2) LVSCR word-level transcripts, (3) LVSCR

137



138

word-level lattices, (4) word/phrase-spotter recognitions, (5) ensemble phone-level recog-

nitions. These information sources are pictured graphically in Figure 6.1, which also shows

a sixth information source — sketch/chart recognition. The sixth input provides context

in which combinations of the other five input sources are interpreted. The diagram of

input sources (Figure 6.1) will be used throughout this chapter to provide a common per-

spective on the examples discussed. Each numbered input is labeled with its abbreviation,

and these abbreviations are the same as those used in Figure 6.2.

Figure 6.2: Salience rankings with flow lines indicating the input contributions to each.
The right-side box offers a different view. (KEY: WPSR-trans = Word/Phrase-Spotting
Recognizer transcript, S-trans = speech-transcript, S-latts = speech-lattices, HW-alt =
handwriting alternates list, PEO = Phone Ensemble Output).

6.1.1 Saliency of Various Input Combination

Comparisons across the five information sources provide different perspectives on confi-

dence. For example, the salience of each comparison is positioned graphically according

to rank in Figure 6.2. The upper pane of the diagram in Figure 6.2 has the inputs, which

are the same as those shown in Figure 6.1. The right pane of the diagram in Figure 6.2

shows how the inputs can be combined.

1. A matching relationship between word/phrase-spotter recognition transcripts (WPSR-

trans) and handwriting alternates-list letter transcriptions (HW-alts trans), num-

bered 1, is strong evidence for fusing speech/handwriting segment information; oth-

erwise, the occurrence of the WPSR-trans can be used to expose possible handwrit-

ten abbreviations.
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2. A matching relationship between speech transcripts (S-trans) and handwriting alternates-

list letter transcriptions (HW-alts trans), numbered 2, is again very strong evidence

for fusing speech/handwriting segment information. It can also serve to identify

handwritten abbreviations. For example, the handwritten letters, IT, when accom-

panied by the spoken phrase, “Information Technology,” are strong evidence that IT

should be interpreted as meaning Information Technology. In this case the hand-

writing and speech have a first-letter abbreviation relationship. A check for such

standard relationships can confirm the abbreviation.

3. An aligned handwriting/phone-ensemble-output phone matrix (PM ), which identi-

fies the temporal segment corresponding to the handwriting, can be used to extract

relevant word sequences from the speech transcriber’s lattice. Those time-bounded

lattice sequences can be combined with handwriting letter sequence alternatives (HW

alts trans) to discover redundancy also (number 3 ). In the saliency pane of Figure 6.2

the combination of inputs is labeled as HW-alt + PEO + S-latts.

4. The combination numbered 4, between handwriting LTS alternates (HW-LTS alts)

and phone ensemble outputs (PEO) exposes the handwriting segment location within

accompanying speech on the basis of articulatory-feature based alignment of discov-

ered redundancies. The phone sequences discovered in that alignment can be refined

and yield a new word.

The lower pane in Figure 6.2 shows the relative saliency of various types of input

matches listed above. An exact match between a handwriting alternative (HW-alt) and a

Word/Phrase-Spotter Recognition (WPSR-trans) is very strong evidence for redundancy.

Its salience is ranked 1. For this event to occur, the word has to have been previously

discovered as a redundancy, enrolled in the word phrase spotter, and then spoken again.

An exact match between a handwriting alternative (HW-alt) and an utterance transcript

term (S-trans) is also still strong evidence for accepting the transcript term. The salience

of such a comparison is ranked 2 in Figure 6.2. Finally the occurrence of a match be-

tween handwriting (HW-alt) and speech recognizer lattice terms (S-latts) is considered

more salient than matches of handwriting (HW-alt) and phone-ensemble-outputs (PEO).

The least salient comparison type, between handwriting (HW-alt) and phone-ensemble-

outputs (PEO), embodies the most uncertainty, which is gauged by the special measure

of coherence, and thus also requires the most work in order to learn a new word.
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These salience rankings are currently intuitive. They work reasonably well for proving

the concept of basing dynamic learning of new vocabulary on the occurrence of multimodal

redundancy, but SHACER will need a more stochastic, data-driven approach as more

training data becomes available.

6.2 CHOOSING THE BEST COMBINATIONS OF INPUT

INFORMATION

To combine information from all the different input sources SHACER currently follows

the steps listed below:

1. Determine which handwriting alternative’s letter-to-sound phone sequence (HW-

LTS alt) is closest pronunciation-wise to the group of first-pass ensemble phone

sequences. The result is the 1st-pass-closest-HW.

2. Determine which (HW-LTS alt) is closest to the group of second-pass phone se-

quences. The result is the 2nd-pass-closest-HW ).

3. Compare, across both spelling and pronunciation, each pair of handwriting alterna-

tive and first-pass speech output, and then each pair of handwriting alternative and

second-pass speech output. The scores of these pair-wise comparisons are a sum of

the handwriting recognizer score, the speech recognizer score, and the normalized

scores of the phone and letter alignment comparisons for each pair.

During the final scoring of combined information sources, normalized phone align-

ment comparison scores are an average per-phone score based on the number of

phones in the speech segment to which the handwriting is being compared. If all

phones in the speech are matched then the score is 1.0 — a perfect match. An

alignment with insertion and/or deletion errors will reduce the normalized match

score. If there are more errors (e.g. substitutions, insertions or deletions) than cor-

rect matches then the normalized match score is 0. Normalized letter alignment

comparisons are treated similarly.

4. If there exist combinations of handwriting alternatives and lattice word sequences,

then those with (i) a high enough phone coherence, (ii) letter alignment score, and

(iii) phone alignment score are examined and added to the list possible combinations.
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There is no actual handwriting recognition score for word sequences extracted from

the lattice. Thus handwriting recognition scores cannot be factored into the prob-

ability for such combinations. Thus the score of the lattice comparisons must be

artificially scaled with respect to other combinations that do include handwriting

recognition scores. Since the existence of high-scoring lattice sequences is on its

own strong evidence of what the pronunciation should be, the lattice combinations

are correspondingly biased to rank at the top of the list of comparisons across all

information sources.

5. If, for a given utterance, there is a Word/Phrase-Spotter recognition then that is

taken into account as strong evidence of what the spelling of the handwritten word

should be.

6. If there is no Word/Phrase-Spotter recognition and no exact or near exact matches

across the handwriting/lattice comparisons, then a determination from either (a) the

handwriting/first-pass-speech, (b) handwriting/second-pass-speech or (c) handwrit-

ing/lattice comparisons is made as to what the most likely spelling and pronunciation

ought to be. Information from the above 1st-pass-closest-HW and 2nd-pass-closest-

HW is used in making this decision, to determine how much confidence to place in

(a) and (b).

7. If any combination group ranks high enough compared to the others then its ranked

and scored pairs are used to decide which handwriting alternative to use as a basis

for the spelling.

8. If no combination group ranks high enough then all combinations are sorted and the

best scoring pair becomes the basis for creating the list of alternate spellings and

pronunciations.

The final result of this alignment-based integration process are output messages from

the master speech recognizer, like those shown in Figure 6.3. The score listed for these

examples is actually that of the most coherent alignment matrix for the redundant inputs

involved in the new word discovery. These messages are routed back to the multiparser for

both persistent enrollment in the learning accumulator structures and immediate inclusion

in the displayed Gantt chart.

Ultimately, with a larger database for training, SHACER will employ stochastic pat-

tern recognition approaches — like neural nets, maximum entropy models or conditional
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Upper Example:

score:

------------

0.742,

spelling pronunciation

-------------- -------------------------

’Buy Computer’ ’b ay k ah m p y uw t er’

Lower Example:

score:

------------

0.725,

spelling pronunciation

-------------- -------------------------

’Joe Browning’ ’jh ow b r aw n ih ng’

Figure 6.3: Example responses to the multiparser’s request for phonetic alignment and
redundancy discovery.

random fields — to model the combination of variously weighted information under all the

various conditions of integration. We believe that having identified the heuristic conditions

described above for determining what combination factors should be taken into account

will eventually help in designing these stochastic approaches to make better combinatory

choices.

6.3 INTEGRATION EXAMPLES

In the remainder of this chapter we examine in detail examples of handwriting and speech

integration, which show how SHACER’s approach can yield substantial improvements in

recognition. In each example we highlight how the refined pronunciation of a multimodally

redundant term is used as an integration decision metric, to assign confidence to the various

input information sources. All of the examples are based on the second of the G series

of meetings collected as part of the CALO project at SRI. This meeting is referred to

as the G2 meeting. The whiteboard ink that occurred during this meeting is shown in

Figure 6.4. The processed understanding of that ink is shown in Appendix D.

To process this G2 meeting the recorded ink and speech were played back in appro-

priate order within SHACER’s MultiPlayer Suite for off-line analysis and integration. All

examples discussed result from this off-line playback analysis. Previously logged messages

from multiple input streams are processed in lock-step mode, which guarantees that each

input is fully processed before the next input is sent. This is necessary because some of
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Figure 6.4: Upper Diagram. The ink input for meeting G2. In this meeting the arrival
times for three new hires are scheduled. The new hires are named Joe Browning (JB),
Fred Green and Cindy Black. Along with their arrival times, recommendations for their
equipment and office space are also scheduled. Lower Diagram. G2 meeting analysis errors
when SHACER is not used. Top: missing semantics for the abbreviation, JB. Middle:
three misspelled constituent labels due to incorrect handwriting recognition. Bottom:
unrecognized tick mark and label due to sketch mis-segmentation.
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Figure 6.5: For the three incorrectly interpreted label names during the G2 meeting,
correct handwriting interpretation was either missing from the list of recognition alternates
or was not the first alternate listed.
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Figure 6.6: G2 meeting analysis corrections when SHACER is used. Top: abbreviation
semantics discovered (JB = Joe Browning). Middle: three constituent labels dynamically
enrolled in WPSR with correct spelling, semantics and pronunciation. Bottom: Unrecog-
nized tickmark and label not processed by SHACER at this time, still incorrect.

SHACER’s recognizers are slower than realtime. The errors that occur in this Multiplayer

analysis for meeting G2, when SHACER is not used, are depicted in Figure 6.4, and Fig-

ure 6.5 shows that in each case the correct handwriting interpretation was either missing

from the list of recognition alternates or was not the first alternate listed.

During the G2 meeting each of the handwriting events was accompanied by redundant

speech. So, the mistaken interpretations could be corrected by SHACER’s integration of

information from both input streams. Figure 6.6 shows that by using SHACER four

of the five errors were corrected. In the remaining sections we will show how SHACER

integrated information to make these corrections.

6.3.1 Lattice Alignment Fusion: ’Fred Green’

In finding the correct spelling and pronunciation for Fred Green (as illustrated in Fig-

ure 6.7), salience-combination 3 is the critical piece of information. This salience combi-

nation is shown in Figure 6.2’s saliency pane as the third combination of inputs labeled

as HW-alt + PEO + S-latts.
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In this example, Fred Green did not exist in the handwriting recognizer’s alternates list

(HW-alts). However, after aligning HW-alts with the phone-ensemble outputs (PEOs),

there was enough phonetic information from these sources to make a coherent alignment,

indicating a possible redundancy. This alignment, which is not shown in Figure 6.7,

also provided estimates of the temporal boundaries of the redundancy within the spoken

utterance. Using the positional phone bigram model, which was dynamically built from the

alignment matrix over the redundant segment, second-pass phonetic recognition yielded a

refined pronunciation. This refined pronunciation is shown at the top of Figure 6.7 — set

off with a dotted highlight. This refined pronunciation was then used as an integration

decision metric against which alternate spelling and pronunciation choices from (a) the

speech transcripts, (b) speech lattices and (c) word/phrase-spotter recognitions, and (d)

handwriting information were compared.

The temporal segmentation boundaries from the aligned handwriting/phone-ensemble-

output matrix were used to extract word sequences from the Speechalyzer lattice. The

list of extracted word sequences is shown in Figure 6.7. The best scoring extracted word

sequence was an exact pronunciation match for the refined second-pass phone sequence

output (e.g. F R EH D G R IY N = f r eh d g r iy n). This exact match was better than

any competing match with the handwriting alternates list. Thus the comparison with

the handwriting alternates list is marked with red X indicating that it was not chosen as

being closest to the integration decision metric. The speech transcript, which is not shown

in Figure 6.7, in this case it was Fred’s Green. The transcriber inserted a possessive ’s,

because the two-word proper name sequence had no likelihood in the speech transcribing

recognizer’s language model. The match between the integration decision metric and this

transcription’s pronunciation (F R EH D Z G R IY N ) was not as good as the match

with the best lattice extraction. For this utterance there were no previously enrolled words

recognized by the word/phrase-spotter, so there were no comparisons made in that regard.

The multimodal inputs graphic in the lower part of Figure 6.7 shows that the critical

participants in this integration decision were the phone ensemble output (PEO) matrix

with aligned handwriting, together with information extracted from the Speechalyzer lat-

tice. The bottom pane of Figure 6.7 shows that in this instance the correct spelling,

pronunciation and semantics were discovered even though they did not exist in the out-

puts of the speech transcriber and handwriting recognizer. Once such a label has been

recovered it is enrolled in the Word/Phrase-Spotting Recognizer, and can thus be more

readily recognized when it is next uttered.
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Figure 6.7: Discovering the correct spelling, semantics and pronunciation of Fred Green
by aligning and fusing speech and handwriting information sources.
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6.3.2 Speech/Handwriting Fusion: ’Cindy Black’

In finding the correct spelling of Cindy Black (as illustrated in Figure 6.8), salience-

combination 4 is the critical piece of information. This salience combination is shown in

Figure 6.2’s saliency pane as the fourth combination of inputs labeled as HW-alt + PEO.

In this case the correct term sequence did not occur in either the Speechalyzer tran-

script or lattice. The transcript, Cindy’s Black, which is not shown in Figure 6.8, had

an inserted possessive ’s, because again the two-word proper name sequence had no like-

lihood in the speech transcribing recognizer’s language model. As with Fred Green this

meant that Cindy Black was an OOV term. However, Cindy Black did occur as the sec-

ond hypothesis on the handwriting alternates list (HW-alts). The letter-to-sound (LTS)

transformation for that alternative is shown Figure 6.8.

In comparing the integration decision metric to the various inputs, the best pronun-

ciation match was actually one of the first-pass ensemble phone pronunciations, which

ultimately became the pronunciation shown in Figure 6.8’s bottom pane. Since a phone

ensemble pronunciation was the best match, the rest of the integration decision was made

by scoring all combinations of spellings, spelling LTS transformations, pronunciations and

pronunciation STL (sound-to-letter) transformations. The score of such tuples depends

on the acoustic score of the phone ensemble pronunciations, the handwriting recognizer

score of the spellings, and the normalized articulatory-feature based distance between the

pronunciation/spelling-LTS combinations and spelling/pronunciation-STL combinations

for the tuple. The best scoring tuple’s spelling was that of the second handwriting alter-

native, Cindy Black. Thus, the comparison of the integration decision metric to the lattice

is marked with red X in Figure 6.8 because it was not the most useful comparison in this

case. The best matching pronunciation was that of the phone-ensemble pronunciation

that was closest to the integration decision metric.

The canonical pronunciation for Cindy Black was not among the results of either the

ensemble speech recognition, the second pass search, or the integration step. However, the

phone ensemble pronunciation, which was chosen by the integration decision metric (shown

in the bottom pane of Figure 6.8) did show intriguing evidence of phonetic adaptation.

For example, there is common tendency to say words like black as two syllables — bah-lack

— instead of one. Instead of being a pronunciation recognition error this non-canonical

pronunciation could represent pronunciation adaptation. If that is so, then after it was

enrolled in the word/phrase-spotter it would aid in making the term more recognizable

when next it was uttered.
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Figure 6.8: Discovering the correct spelling for Cindy Black and introducing the possibility
of pronunciation adaptation.
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The multimodal inputs graphic in the lower part of Figure 6.8 shows that the critical

participants in this integration decision were the phone ensemble output (PEO) matrix

with aligned handwriting, together with handwriting alternates list (HW-alts). The bot-

tom pane of Figure 6.8 shows that in this instance the correct spelling and semantics were

again discovered even though they did not exist in the output of the speech transcriber

and were not the first alternative in the handwriting recognizer’s output.

6.3.3 Speech/Handwriting Fusion: ‘Buy Computer’

In finding the correct spelling of Buy Computer (as illustrated in Figure 6.9), SHACER

was again able to leverage the refined pronunciation produced by the second-pass phone

recognition over cached speech features as an anchor for comparison. Comparing the

term sequences extracted from the Speechalyzer lattice to the integration decision metric

yielded a closest match for the 13th alternative — very low on the alternates list by virtue

of its acoustic and language model scores from the transcribing speech recognizer. This

strong comparative match boosts it to have the best combined score, and thus allows

SHACER to recover the correct spelling and pronunciation in this instance.

The multimodal inputs graphic in the lower part of Figure 6.9 shows that the critical

participants in this integration decision were the phone ensemble output (PEO) matrix

with aligned handwriting, together with information extracted from the Speechalyzer lat-

tice. Although the lattice information is much less prominent than in the Fred Green case

it is nonetheless sufficient for correct integration.

6.3.4 Speech/Handwriting Fusion: Discussion

In summary it seems clear that the array of evidence (e.g., ensemble speech, handwriting,

Speechalyzer transcripts and lattices, WPSR recognition) that we have at our disposal is

very rich, and provides a basis for making many reasonable recognition choices in context.

In Chapter 7 we will show test results on the entire development test set from which

these examples are drawn as well as results on a separate held-out test set of meeting

data. As those test results indicate SHACER’s integration of redundant multimodal inputs

already can make a significant difference in understanding; still, we believe that we are

just beginning to explore the types of features available in this space and the ways in

which we can take advantage of this rich information across redundant modal inputs.
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Figure 6.9: Discovering the correct spelling and pronunciation of the taskline label, buy
computer.
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6.4 DISCOVERING HANDWRITING ABBREVIATION

SEMANTICS

In Figure 6.10 below the handwritten abbreviation, JB, is syntactically correct but seman-

tically unbound. The system only knows that the symbol JB is a handwritten taskline

label, but is has no idea that JB may be an abbreviation with larger meaning.

Figure 6.10: Unbound semantics of taskline label, JB.

6.4.1 The Role of the Word/Phrase-Spotting Recognizer

Without SHACER the system does not know that JB has a broader sphere of reference,

and indeed shares the same meaning as the spoken and handwritten term, Joe Browning.

SHACER has the capability to make this discovery and to do it dynamically based on

Word/Phrase-Spotting recognition (WPSR) enrollments from the previous meeting, G1

(as shown in Figure 6.11). WPSR acts a persistent store of enrolled spelling/pronunciation

combinations, which is cumulative either within a single meeting or across a series of

meetings, and thus supports boot-strapped recognition improvements as the system is

used over time. Combining handwriting alternates (HW-alts) with word/phrase-spotting

recognition transcripts (WPSR-trans) in the most salient of the combination types shown

in Figure 6.2. A fully handwritten term, which has already been learned and enrolled by

the system, occurring also as a WPSR transcript is very strong evidence of redundancy.

So strong, in fact, that it can also be used to associate larger meanings with abbreviations.
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Figure 6.11: Word/Phrase-Spotting Recognizer (WPSR) acting as a persistent store of
spelling and pronunciations across a series of meetings (in this case from meeting G1 to
meeting G2).

In meeting G2 as the user wrote JB he also said, “This is our timeline for Joe Brown-

ing.” The Speechalyzer recognition for this utterance was, “This is our timeline for job

running,” because Browning was not in the Speechalyzer dictionary. However, since Joe

Browning was enrolled in the WPSR by SHACER during meeting G1, it was recognized

by WPSR in meeting G2 for this user utterance, and this recognition provided the basis

for binding JB to Joe Browning as depicted in Figure 6.12.

6.4.2 Comparing Word/Phrase-Spotter Recognition to Handwriting

Term recognition in WPSR is first used to match to the handwriting alternates list (HW-

alts)), as shown in the upper pane of Figure 6.13. If the bounds of the alignment section

for the HW-alts are significantly different than those of the WPSR term transcript, then

this difference can be used to expose the existence of a handwritten abbreviation. This

situation is shown in Figure 6.13. The HW abbreviation phone sequence hypotheses cover

a segment across the ensemble speech phone sequence alignment much shorter than the

bounds of the WPSR term’s end boundary (e.g. the significant difference between frame

210 and frame 160 shown in Figure 6.13). This significant difference triggers a decision

to explore this WPSR recognition event (e.g. Joe Browning) as the semantics of the

handwritten abbreviation.

SHACER uses two pieces of evidence to make the final decision on binding the hand-

written abbreviation. First the distance of each handwritten hypothesis from the WPSR
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Figure 6.12: Word/Phrase-Spotting Recognition of Joe Browning as the basis of binding
the semantics of the handwritten abbreviation JB.

output is measured. At the time this example was created SHACER only considered the

handwriting hypotheses as potential first letter abbreviations. Now it also considers prefix

abbreviations, and in the future this check will be expanded to consider other varieties of

abbreviation templates. This measurement yields a highly likely first letter abbreviation

interpretation (Figure 6.13).

The second piece of evidence SHACER uses is to examine the Speechalyzer lattice for

term sequences spanning the boundaries found in the WPSR recognition transcript. Those

lattice sequences that are close enough to the WPSR transcript are aligned with the phone

ensemble outputs. This alignment is used to create a positional phone bigram model, which

in turn constrains a second-pass phone recognition. The refined pronunciation from that

second pass output is then the integration decision metric as shown in Figure 6.14. The

check between the integration decision metric and the WPSR pronunciation confirms that

the WPSR recognition was not spurious.

After these two comparisons, if the first letter abbreviation distance is close enough

and there is a sufficient match between WPSR output and the refined pronunciation, then

SHACER decides to treat the handwritten term as an abbreviation, and binds the WPSR

proper name semantics to it. Figure 6.14 shows the result of the second-pass recognition,

a plausible pronunciation adaptation for the term Joe Browning, which in turn is added

back into the WPSR as another pronunciation alternative. In the future we will use such

additions to refine the WPSR pronunciation alternatives (using clustering and centroid
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Figure 6.13: Upper pane: phonetic alignment of phone ensemble outputs with handwriting
hypotheses, for the handwritten abbreviation, JB, and the section of the utterance, “This
is our timeline for Joe Browning,” that corresponds to Joe Browning. The alignment mis-
match in temporal boundaries, triggers a check for a possible abbreviation. In this case
there is a strong first-letter abbreviation match.
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Figure 6.14: To produce a refined pronunciation speech lattice term sequences spanning
the WPSR temporal boundaries are aligned with the phone ensemble outputs. The result-
ing refined pronunciation becomes the integration decision metric, which serves to confirm
that the WPSR recognition is present in the speech. This check allows the spelling and
pronunciation of the proper name to be semantically attached to the handwritten abbre-
viation JB.
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pronunciations, along the lines of what Roy [150] or Yu and Ballard [175] have outlined

in their works), but for now we just expand the number of alternative pronunciations.

6.5 SUMMARY

This chapter has detailed the process of using the refined pronunciation produced by

second-pass phone recognition as an integration decision metric. The role of an integration

decision metric is to choose the appropriate group of inputs from which the final spelling

and pronunciation should be taken, and then function as metric against which the final

combinations can be scored. In-depth examples showed unimodal recognition failed in the

recognition of a series of Gantt chart labels, whereas integration of redundant handwriting

and speech succeeded in establishing correct understanding of the same labels — including

learning dynamically the meaning of a new handwritten abbreviation.
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SHACER: Testing

This chapter examines various tests to which SHACER has been submitted — baseline

recognition tests, tests of the validity of some of its primary assumptions, and tests of

the efficacy of its approach to dynamic learning of out-of-vocabulary terms including

abbreviations. These tests make it evident that SHACER’s leveraging of multimodal

redundancy improves recognition.

7.1 WORKING HYPOTHESIS

As it is evident that multimodal redundancy requires more energy than unimodal com-

munication, there must be important communicative purposes driving its use (see Sec-

tion 2.2.2). We believe that establishing a common ground of meaning is that purpose,

and that people use redundancy as a conversational strategy to bolster their communica-

tive effectiveness by drawing attention to the meanings of dialogue critical terms, as is

supported by the evidence offered in Section 2.2. In the remainder of this chapter we

will show how SHACER leverages its perception of these natural attention focusing events

to significantly improve its computational ability to better understand a human-human

interaction.

7.2 MULTIMODAL TURN END-POINTING

Segmentation of speech and ink was addressed in Chapter 5. As a multimodal system,

SHACER also needs to segment different modal streams into turns of input. In a multi-

modal system predicting the end of user input turns can be complex. User interactions

vary across a spectrum from single, unimodal inputs to multimodal combinations delivered

either simultaneously or sequentially. Thus it is difficult for a multimodal system to know

158
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how to group and segment user input turns. Making incorrect turn segmentation deci-

sions can adversely affect recognition, as the test results of SHACER’s turn segmentation

approach at the end of the section make clear.

7.2.1 Fixed-Threshold Wait-Times for Turn Segmentation

The current approach to the multimodal turn segmentation problem, as discussed in the

literature, is to wait for some fixed threshold of time before assuming the end of user turn-

input [136]. Recent research has sought to reduce this fixed wait time by the use of corpus-

based, probabilistic [65] or user-adaptive models [73]) of input styles. The motivation for

modeling this temporal threshold is to avoid under and over collection errors. Gupta et

al. describes under-collection errors as having occurred when some user turn-inputs arrive

after turn processing has already started. These types of errors are listed in Table 7.1 as

numbers #1 and #2. On the other hand, over-collection errors are those in which users re-

enter inputs due to a perception of system unresponsiveness. These are listed in Table 7.1

as numbers #3 and #4 [65]. As Johnston et al. [79] have pointed out, avoiding these types

of errors is important when mistakes have disruptive or confusing side-effects. An example

of such confusing effects would be under-collecting a multimodal pan command, which is

composed of (a) drawing an arrow plus (b) saying “pan,” by triggering a unimodal zoom

command as soon as the arrow is drawn and disregarding whether any speech occurred or

not.

Table 7.1 categorizes the types of temporal mis-combination errors that can occur

in a multimodal system. Aside from under and over collection errors, we have added a

third category, not described by Gupta et al., that we term over-under collections. These

occur when left-over inputs from previous commands remain available and combine with

subsequent under-collections.

Table 7.1: Categorization of multimodal temporal turn-segmentation mis-combination
errors by collection type and modality level.
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Both Gupta et al’s [65] and Huang et al’s [73] recent studies assume the use of mul-

timodal command interfaces, which alternate between accepting turns of user input and

displaying the interpreted output. They both focus on minimizing under/over collection

errors by better predicting how long to wait for the end of user turn input, using Bayesian

modeling techniques. However, focusing solely on turn segmentation prediction does not

adequately consider the underlying parsing mechanisms at work in a multimodal system.

7.2.2 Parsing and Edge-Splitting

This section explains our edge-splitting modification to the basic multimodal chart pars-

ing algorithm. Without this modification many integrations of speech and handwriting

information would be systematically dis-allowed. Therefore it is important to understand

how edge-splitting works.

In Section 4.3.2 we reviewed the basic temporal chart parsing algorithm that underlies

SHACER’s use within Charter. For convenience we give the formulas again here. The ∗
in Equation 7.1 is an operator that combines two constituents according to the rules of

the grammar. Constituents are designated as terminal sequences from vertex to vertex,

and both the vertices and constituents are linearly ordered.

(7.1) Chart(i, j) =
⋃

chart(i, k) ∗ chart(k, j)

As Johnston points out [79], in a multimodal context linearity is not assured, because input

from different modal constituents can well be temporally overlapped. Thus he defines the

basic temporal, multimodal chart parsing algorithm as:

multichart(X) =
⋃

multichart(Y ) ∗multichart(Z)(7.2)

whereX = Y
⋃

Z, Y
⋂

Z 6= ∅, Y ¬∅, Z¬∅

Constituent edges in a multimodal parse space cannot be identified by linear spans.

This is the meaning of Equation 7.3. Instead they are identified by unique sets of identifiers

(e.g. multichart([s,1,1,0],[g,2,2,1])), each of which specify the constituent’s mode of origin,

recognition sequence number, position on the list of alternate recognitions, and semantic

interpretation. This identification axiom maintains the critical constraint enforced by

linearity that a given piece of input can only be used once in a single parse. Commands

with intersecting IDs are different interpretations of the same input, and are thus ruled

out by the non-intersection constraint in equation (2) above. This means that there can

only be one correct interpretation acted upon for each set of inputs. Therefore once that



161

best scoring command is chosen and executed all constituent edges from that command

are removed from the chart.

This removal policy means that all constituent edges, which participate in an otherwise

correct interpretation of partial, under-collected input, are then no longer available to

participate in a subsequent interpretation of fully collected turn-inputs, because their IDs

would intersect. This is the underlying issue in multimodal parsing that makes under-

collection a general problem.

(7.3) multichart([id, 2, 1, 0]) =⇒ multichart([mmid, 2, 1, 0])

SHACER’s solution is to (1) filter all messages of an appropriate type (e.g. all ink-

gestural edges), (2) clone them — changing only the input mode symbol identifier (id

=⇒ mmid, Eq. 3), and (3) put the cloned edges back on the chart. It then enforces

the constraint that edges with the new input mode symbol identifier (e.g. mmid) only

participate in subsequent multimodal interpretations. They can no longer be interpreted

unimodally. These split-edge clones are periodically removed from the chart just as other

edges are removed, based on an edge-defined time-out period. To allow for long distance

associations across modes, edge time-outs are ignored until at least the next edge of the

same type arrives on the chart. Thus edge-splitting, in conjunction with an under-specified

display [88], solves the underlying problem of under-collected, unimodal interpretations

starving subsequent multimodal interpretations by removing the edges needed for multi-

modal integration.

7.2.3 Testing Edge-Splitting in Charter

Figure 7.1 depicts the use of edge-splitting in our Charter Suite prototype application

for ambient-cumulative multimodal recognition of a multiparty scheduling meeting. The

upper half of the diagram in Figure 7.1 shows an example task-line, labeled office, and

diamond-shaped milestones marking the temporal availability of office space (abbreviated

as Avail). The bottom half of the diagram shows an example task-line, labeled Buy

Computer.

Without edge-splitting, ink-gestures that temporally precede the spoken utterances

with which they are associated fire unimodally producing incorrect interpretations: (mid-

dle column of Figure 7.1), trail (for avail), lay computer (for Buy Computer). These were

under-collection errors. Their respective edges were removed from the chart disabling

subsequent multimodal recognition. Also, for abbreviation interpretations based solely on
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Figure 7.1: Left-column: Gantt chart ink. Middle column: Edge-splitting disabled,
so interpretations are based on Type 1 under-collection errors (see. Table 7.1). Right
column: Edge-splitting enabled, so errors have been corrected by subsequent multimodal
interpretations. Lighter colored ink (upper left) illustrates no-wait, under-specified recog-
nition display.

under-collected ink input (middle column of Figure 7.1: trail, Avail), there were no se-

mantic glosses (e.g. Figure 7.1, upper right, gray text boxes containing “AVAILABLE”).

These glosses were produced only by integration with speech, via SHACER. Without edge-

splitting under-collection errors disable the multimodal integration necessary for semantic

glosses.

With edge-splitting enabled the incorrectly interpreted unimodal ink-gesture edges

were split, and their multimodal clones put back on the chart. These split edges then

combined with their respective spoken utterances producing correct multimodal interpre-

tations (shown in the right column of Table 7.1), which replaced the incorrect unimodal

interpretations.

Table 7.2 shows the test results for using edge-splitting. These tests results are from

processing the G series of meetings. There were 51 constituent labels in the five finished

Gantt Charts created during this meeting series. All 51 were presented multimodally, i.e.

handwritten and spoken redundantly. Without edge-splitting there were 13 multimodal

label recognition errors. With edge-splitting there were only 7. Counts were determined by
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Table 7.2: Test Results for multimodal constituent labeling, with Relative Error-rate
Reduction (RER) for Edge-Splitting.

visual inspection of system output (e.g. Figure 7.1, middle and right columns.). Therefore

edge-splitting yielded a relative error rate reduction (RER) of 46.2% — significant by a

McNemar test (p = 0.03).

We note that in two of the six error instances corrected by SHACER’s edge-splitting

technique speech was associated with a preceding ink-gesture that was between 3-22

unrelated utterances and 45-250 seconds earlier. Thus, edge-splitting mitigated under-

collection errors for both temporally distinguished turns (Figure 7.1, buy computer), and

for input groupings that were structurally distinguished based on their redundancy rela-

tions despite long temporal/turn distances (Figure 7.1, Avail). Turn segmentation based

solely on temporal thresholds (e.g. adaptive temporal threshold prediction [65, 73]) could

not address such integration errors across long-distance, structurally-distinguished group-

ings.

In our test set of five meetings there were 500 utterances and 183 gestural/ink in-

puts. Most chart constituents could only be recognized unimodally (e.g. axes, tickmarks,

tasklines, milestones), while others (e.g. handwritten labels) could be interpreted either

unimodally or multimodally. All gestural inputs were initially interpreted unimodally. In

edge-splitting mode, roughly 24% (44/183) of gestural inputs were also interpreted mul-

timodally (Table 7.2), whereas in non-edge-splitting mode 21% (38/183) were interpreted

multimodally. In non-edge-splitting mode the unimodal recognition rate was roughly 87%,

while in edge-splitting mode it was 89%. Thus, in our test series, with competing uni-

modal/multimodal recognitions, edge-splitting never confounded or degraded recognition,

it only significantly improved recognition.

7.2.4 Baseline Word and Phone Recognition

The counts of individual utterances and individual ink-gestures vary depending on the

settings used to parameterize Speechalyzer’s endpointing mechanism and the version of

Charter that is used for performing gesture segmentation. For example, across SHACER’s
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development test set of five meetings (G1-G5 ) for the tests reported in the rest of this

chapter there are a total of 402 individual utterances and 181 individual ink-gestures.

These counts differ from those given in Section 7.2.3 for the reasons stated above.

Table 7.3: Recognition accuracy for word, phone, and handwriting recognizers over
SHACER’s five meeting development test set (G1-G5, 360 speech and 51 handwriting
instances). Accuracy is (Correct − (Substitutions + Insertions + Deletions))/Total, while
Percent (%) Correct is (Correct/Total).

The LVCSR transcript accuracy, handwriting recognition accuracy (MS Tablet PC

Handwriting recognizer), and accuracy and correctness for each of the ensemble of phone

recognizers are given in Table 7.3. The speech results are computed from only 360 of the

total 402 utterances because many utterances are short filled-pauses and these are not

scored. The handwriting results are computed from only the 51 handwriting events that

occurred as part of the 181 total ink input events. We define accuracy and correctness

by the standard NIST definitions for determining word error rates, as implemented in the

CSLU Toolkit [49]. The actual formulas for accuracy and correctness are given in the

caption of Figure 7.3. For determining phone error rates, phones are treated as words and

compared on the basis of their spelling, using a standard Levenshtein edit distance, as is

done in computing word-level error rates. This is the standard method of reporting phone

error rates [57].

Speech Using constrained syllables as sub-word units yields more accurate phone recog-

nition because phonetic sequences and word structure are better accounted for; however,

constrained and un-constrained phone versions, although much less accurate, are still

used because they provide finer phonetic boundary information and more directly reflect

feature-level acoustic information important for our alignment mechanism.
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7.2.5 Word/Phrase Spotter Out-Of-Vocabulary (OOV) Enrollment

SHACER uses a word/phrase-spotter as the target for OOV enrollment, as opposed to en-

rollment solely in the LVCSR dictionary and language model. The WPSR output indicates

with high likelihood that a dialogue-critical term has been uttered. The number of enrolled

terms per meeting is presently small (about 8-10), but as the system’s capabilities grow

we hope to learn whole phrases or sub-grammars, which can be used to complement the

LVCSR output. Such a capability lends itself to techniques for contextually constrained

language modeling as in [52, 62, 149].

SHACER’s WPSR uses the same two-level RTN architecture used by the MNVR

recognizer (Section 4.3.2), but the levels are switched. In MNVR the carrier-phrase word

level is primary and the syllabic out-of-vocabulary level is secondary, while for WPSR

the syllabic level is primary (to cover all non-enrolled terms at a phonetic level) and the

enrolled word level is secondary. In both implementations the transition from primary to

secondary grammars is gated by an empirically determined confidence threshold, so that

in the carrier-phrase case the out-of-vocabulary hypotheses are high confidence and in the

WPSR case the enrolled word recognitions are high confidence.

A further augmentation to WPSR was to allow the inclusion of virtual sub-grammars.

These are illustrated by the <place holder word phrase name> virtual sub-grammar in

Section B.4.1’s [word phrase] grammar. By virtual we mean that initially such a sub-

grammar has no terminals, but only empty place-holders. There was a virtual sub-

grammar for both taskline names and milestone names, so the semantics of the new word

are used to determine which virtual grammar will receive the new vocabulary. Although

the place-holder terminals cannot participate in recognition, they nonetheless have a spe-

cific location within the primary grammar at which they can occur (see Section 4.3.2).

When enrolled words replace place-holders at the specific locations in which they are

grammatically licensed, then subsequently the new words are licensed to occur in those

grammatical locations.

7.3 TWO PHASE PROCESSING

Meeting processing is currently off-line, requiring on the order of 10-20 times real-time

on a dual 3G+ workstation. Utterance transcript logs along with the raw ink recording

are processed in a first phase pass over the multimodal data. This pass produces separate
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utterance files based on boundaries from the LVCSR transcript log, as well as logs of phone-

level transcripts for three out of the four phone recognizers (the slave recognizers). The

fourth phone recognizer, the master, must be re-run in the next phase so that phase two’s

dynamic second-pass speech processing can occur, which comprises the main processing

steps of refinement and integration.

The second phase of processing uses utterance transcripts along with lattice logs and

phase-one recognition message logs as input. This phase performs actual integration of

handwriting and speech hypotheses. The output is a labeled Gantt chart. When learning

mechanisms are being employed the knowledge from learning is stored in file-based accu-

mulators (see Appendix C), which serve as updaters for (1) the word/phrase-spotting rec-

ognizer’s dictionary, (2) the handwriting recognizer’s dictionary, (3) the handwriting rec-

ognizer’s reinforcement table, which biases recognition in favor of previous high-confidence,

integrated recognitions, (4) an abbreviation table in the master phone recognizer, and (5)

a prefix/suffix mis-recognition reinforcement table in the master recognizer that associates

high confidence recognitions with their list of related mis-recognitions and significant af-

fixes (so that when affix mis-recognitions are discovered, which are very highly correlated

to a previous recognition, that consistent recognition error can be transformed into its

correct interpretation). These accumulators are described in the next section.

7.4 FILE-BASED ACCUMULATORS FOR LEARNING PER-

SISTENCE

Examples of the four file-based accumulators, which are loaded into SHACER when pro-

cessing the G5 meeting in learning mode, are given in Appendix C, where they are de-

scribed in detail. Each file in this appendix represents the actual learning accumulated over

the development test set’s first four meetings (e.g. G1-G4 ). Brief conceptual descriptions

of what the knowledge stored in these files accomplishes is given below.

7.4.1 Adding to Speech and Handwriting Dictionaries

The file which accumulates additions to the systems vocabulary is shown in Section C.1.

It is the basis for updating both the word/phrase-spotting recognizer’s (WPSR’s) and the

handwriting recognizer’s run-time dictionaries. At the start of meeting processing each

message in the file is read in and processed. The information in each file entry specifies

(1) the term being enrolled in the WPSR recognizer’s dictionary along with its specified
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pronunciation (e.g. Joe Browning, ’JH OW B R AW N IH NG’ ), and (2) the individual

words, Joe and Browning, being enrolled in the handwriting recognizer’s dictionary. Words

that are in the handwriting recognizer’s dictionary tend to be better recognized than words

that are not.

7.4.2 Expanding the Master Speech Recognizer’s Abbreviation Table

Entries in the shacer_vocab.txt file (Section C.2) are used to populate the master phone

recognizer’s abbreviation expansion table. This table supports lookups of the handwriting

recognizer’s letter sequence hypotheses, so that when a match occurs between a handwrit-

ing recognizer alternative and a table entry the abbreviation expansion can be immediately

recovered. This aids in identifying instances of redundant speech.

7.4.3 Biasing Handwriting Recognition

The file that holds weight-biasing entries is shown in Section C.4. Its entries are used

to populate the handwriting recognizer’s weight biasing mechanism, which boosts more

frequently recognized terms to higher positions on the output alternates list. Each addi-

tion increases a term’s frequency count. Terms with higher frequency counts have their

recognition scores proportionally increased and thus can move up in the list of output

alternatives — in effect becoming easier to recognize the more often they have been seen

in the past.

7.4.4 Affix Tracking for Mis-Recognition Correction

(Example D)

CB = [cos, as, cy, cd, cry, coy, ay, Coy, cis]

CB = [iB, SB, Cts, EB, eB, cps, cB]

Finally, entries in the affix reinforcement file, shown in Section C.3, are used to populate

the master phone recognizer’s prefix/suffix mis-recognition reinforcement table. Example

mis-recognitions of handwriting events are listed in Example D’s entry for the abbre-

viation, CB = Cindy Black. If such a mis-recognition occurs again for a subsequent

handwriting recognition event, and it can be uniquely linked to one of these previously

seen incorrect forms that is strong evidence for CB having actually been handwritten. For

example, during meeting G5, as described below in Section 7.6.1, a handwritten label for

CB is poorly recognized due to an ink skip over the letter C. This results in a recognition
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of iB. Given the table entries shown in Example D above, this mis-recognition is unique

to CB, and it is therefore replaced by the correctly associated CB. Judgements about

when a mis-recognized affix can be replaced are dependent on a measure of its uniqueness.

Only uniquely mis-recognized affixes can be replaced.

7.5 PLAUSIBILITY TESTING

7.5.1 Speech/Handwriting Combination Benefits

SHACER’s approach to producing the refined pronunciation of redundantly presented

terms, is to align phone ensemble outputs with LTS transformations of associated hand-

writing, and then use a phone sequence model extracted from that alignment to constrain

second-pass phone recognition. How plausible is this approach? How potentially effective

could it be? Does including information from the handwriting LTS phone sequences in

the positional phone bigram model actually help second-pass recognition or hurt it?

To illustrate the general plausibility and potential benefit of combining speech and

handwriting information in a constrained second pass speech recognition, and to get some

idea of the upper bound of improvement in terms of phone accuracy that is achievable by

combining handwriting information with phone ensemble recognitions we performed an

experiment using the correct phone transcript of each of the 360 development utterances

as if it were the letter-to-sound transformation of the handwriting. Thus it was as if we

had perfectly recognized and transformed redundant handwriting for every word spoken

in every utterance, and this information was combined with the speech information via

our positional phone-bigram model.

Figure 7.2 shows the two test conditions. In the first condition, speech+speech, only

speech information is used. Because the multiparser rules on which integration rests expect

inputs from both speech and handwriting, copying the speech information and using it

as if it were handwriting information means that a parallel rule system does not have

to be written. This saves time, and using the copied speech in this way still adds no

new information to the methods that extract phone sequence bigrams. Thus the repeated

speech information does not change the outcome of the second pass phone recognition.

The second condition, speech+pseudo-HW, simulates the addition of perfect handwriting.

Any change in accuracy of second-pass refined pronunciations using the speech+pseudo-

HW compared to the baseline speech+speech can demonstrate how much adding this type

of phonetic information can possibly help, if at all.
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Figure 7.2: Test conditions for examining the plausibility and efficacy of combining pho-
netic information from handwriting with speech — in the speech+pseudo-HW condition.
The control condition is speech+speech in which no new information is added.

Table 7.4: Phone-level recognition accuracy over SHACER’s five meeting development test
set (G1-G5, 360 speech utterances). Accuracy is (Correct − (Substitutions + Insertions
+ Deletions))/Total, while Percent (%) Correct is (Correct/Total). Key: pb = positional
phone-bigram information used, no-pb = no positional phone-bigram information used.

Results are shown in Table 7.4, and in the charts depicted in Figure 7.3. The leftmost

of the charts in Figure 7.3 broadly compares the control speech+speech condition to the

active speech+pseudo-HW condition. It clearly illustrates that combining information

from handwriting with speech can improve the phonetic accuracy of second pass phone

recognition, irrespective of whether positional phone bigram modeling is used or not. The

vertical axis in each of Figure 7.3’s charts is the percent accuracy.

The middle and right charts in Figure 7.3 show that there were two dimensions of

change. The first dimension of change was with respect to the use of positional phone-

bigram information (pb) to constrain second-pass speech recognition. The right-most chart
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in Figure 7.3 shows that there were two states: (1) pb (indicating that positional phone-

bigram info was used, Table 7.4, rows 1-2), and (2) no-pb (indicating that no positional

phone-bigram info was used because every bigram likelihood was set to 1.0, Table 7.4,

rows 3-4).

Figure 7.3: Charted results (from Table 7.4) for testing the efficacy of combining hand-
writing with speech information to improve phonetic recognition accuracy (as measured
on the vertical axes).

Across the first dimension of pb/no-pb there was a tripling of accuracy from 8% no-

pb to 24% pb in the speech+speech condition and from 15% no-pb to 48% pb in the

speech+pseudo-HW condition. Thus using the positional phone-bigram model’s statistical

phone-sequence information was very important.

The second dimension of change, which is depicted in Figure 7.3’s middle chart, was

what type of pseudo-handwriting information was used: either (a) a copy of the utterance’s

existing phone ensemble output sequences, or (b) the correct phone transcript for the

utterance. State (a) represents the speech+speech condition, meaning that no new phone

sequence information was added because the pseudo-handwriting was identical to the

existing speech information. These results are shown in Table 7.4’s rows 2 & 4. State (b)

represents the speech+psuedo-HW condition, meaning knowledge of what the perfectly

recognized handwriting’s letter-to-sound phones would be was added in. Results for this

state are shown in Table 7.4’s rows 2 & 4).

Across the second dimension of pseudo-handwriting conditions (speech+speech com-

pared to speech+pseudo-HW ) in Figure 7.3’s middle chart there was a doubling of accu-

racy, from 8% to 15% in no-pb mode and from 24% to 48% in pb mode. This tells us that

combining phone sequence information from handwriting with phone sequence information



171

from speech can indeed have a large impact on the accuracy of second-pass speech phone

recognition. Findings across both dimensions of change strongly validate our approach of

integrating letter-to-sound transformations from the handwriting with outputs from our

ensemble of phone recognizers to produce refined phone sequence hypotheses.

Table 7.5: Phone-level recognition accuracy over SHACER’s five meeting development test
set (G1-G5, 360 speech utterances). Accuracy is (Correct − (Substitutions + Insertions
+ Deletions))/Total, while Percent (%) Correct is (Correct/Total). Key: pb = positional
phone-bigram, pbg = phone-bigram (i.e., no positional information used).

Also, as shown Table 7.5, not using positional information as part of the phone bigrams

(i.e. the pbg condition) only marginally improves accuracy in the speech+speech condition

(from 24% to 25%), while actually degrading accuracy in the speech+pseudo-HW condition

(from 48% to 47%). So we cannot yet show statistically that positional information helps

in contributing to the overall highly beneficial effect of using phone bigram constraints

during second pass phone recognition.

To summarize, in Table 7.4 and Table 7.5 we compared three methods of constraining

second-pass phone recognition. The constraints are three different phonetic sequence

models:

1. Use of positional phone bigram models (pb condition in Table 7.4 and Table 7.5).

2. No use of positional phone bigram models (no-pb condition in Table 7.4), which is

done by setting all bigram scores to 1.0 so that sequence information doesn’t matter

during second-pass decoding.

3. Use of phone bigram models that have no positional information (pbg condition in

Table 7.5).

The pb condition compared to the no-pb condition helped greatly, tripling accuracy rates.

However, there was no clear advantage to either using positional information, pb condition,

or not using it, the pbg condition.
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7.5.2 Testing Articulatory-Feature Based Phonetic Distances

Given a phonetic representation for each hypothesis in the list of handwriting recognitions

(via a letter-to-sound transformation) SHACER needs to discover what segments of speech

are associated with it. Standard edit-distance [103], based on the spelling of phone names,

does not provide an accurate distance measure for this purpose. So SHACER uses an

approach put forward by Kondrak [96] for phonetic articulatory-feature based alignment

(see Section 5.3.3).

Articulatory Feature-based Alignment

To test the effectiveness of articulatory-feature based alignment we ran our proof-of-

concept system over the five meetings of the development test set and compared the

accuracy of second-pass speech phone sequences for 14 OOV terms using a system-wide

standard Levenshtein edit distance (LD) versus using an articulatory-feature based dis-

tance metric (AF ). Thus, this experiment represents two runs of the SHACER system

on the G series of meetings, using both handwriting and speech information. In one run

the alignment distance metric was standard Levenshtein edit distance (LD run), and in

the other run the articulatory-feature based alignment metric was used (AF run). Both

runs used the full integrative mechanisms of the system with both handwriting and speech

input. The purpose was to test which alignment metric worked better. This test was run

on OOV terms (although there were only a small number available) because for terms that

are in-vocabulary it is futile to try to improve their pronunciations — they already have

the canonical pronunciations which are the standard against which improvement would

be measured.

It would have been desirable to have more than 14 OOV terms to test on. However,

since these were full system tests across the entire G series of meetings it was not possible

to create more OOV test terms by removing vocabulary from the transcribing recognizer’s

dictionary and language model. Any such removal would necessitate rebuilding the lan-

guage model of the transcribing recognizer (CMU Sphinx 3.5), and the resources were not

available to do that. There were other meeting series from the same SRI year 2 meeting

corpus, but each other series had some technical collection issue, like poor microphone

quality or non-standard chart diagrams, that disqualified it.

The results of testing the effectiveness of an articulatory-feature (AF ) based distance

measure versus a standard Levenshtein edit distance (LD) based measure, are shown in

Table 7.6. Table 7.6’s 1st-best columns shows an absolute 2% gain in accuracy due to
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Table 7.6: The effect of system-wide articulatory-feature based alignment (AF ) versus
standard Levenshtein distance alignment (LD) on pronunciation accuracy of second-pass
phone-level interpretations over a set of fourteen OOV terms. Key: pb = positional
phone-bigram; no-pb = no positional phone-bigram.

the use of the articulatory-feature based (AF ) metric (from 73% to 75% and from 82% to

84%). The benefit of using the AF versus LD metric is better reflected in Table 7.6’s n-

best average columns. This is because the 1st-best alternative often reflects the influence

of LVCSR word-lattice or word/phrase-spotter outputs. These are more salient combi-

nation indicators than full handwriting/phone-ensemble alignments (see Section 6.1.1).

Table 7.6’s n-best list columns are more reflective of actual second-pass recognition alter-

natives. For these alternatives, which depend directly on the alignment of handwriting

and phone-ensemble phonetic sequences, we see that even without using constraints from

the positional phone-bigram model (no-pb condition) there is a 39% relative increase in

average accuracy (from 28% to 39%), and when the positional phone-bigram model is used

there is a 47% relative increase in average accuracy (from 36% to 53%). This again reflects

the benefit of using dynamic positional phone-bigram modeling to constrain second-pass

phone recognition. Compared to not using it (no-pb) there is a 36% relative reduction in

error rate (AF/no-pb 25% to AF/pb of 16%).

These results indicate that using an articulatory-feature based distance metric (AF

condition) is better than using only Levenshtein edit distance (LD condition). However,

because these statistics are figured on the processing results from only 14 OOV instances,

they are indicative but not yet significant. To see the difference that these effects make

we must turn to a closer examination of the overall system output.

Articulatory-Feature Based Metric for Learning the Meaning of Abbreviations

When a user at the whiteboard handwrites a label and says it, that instance of multimodal

redundancy triggers learning and enrollment into the Word/Phrase-Spotting Recognizer

(WPSR), the handwriting recognizer, and other reinforcement tables (see Section 7.4).

For example, saying, “Joe Browning,” while writing it out in full triggers learning and
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Figure 7.4: Introducing a new term via multimodal redundancy: (G1 ) writing the name
of a new hire, Joe Browning, to label a schedule taskline on a Gantt chart while saying,
“This line represents Joe Browning.” (G2 ) Referring to Joe Browning again, while hand-
writing an abbreviation, JB, for his name. G1 learning provides the meaning of the JB
abbreviation in G2.

enrollment (Figure 7.4). Once the WPSR’s dictionary contains Joe Browning, then when

next spoken it is recognized by WPSR (hopefully). If it is also then handwritten as an

abbreviation a series of checks and comparisons will be triggered as described in Sec-

tion 6.4.2..

Table 7.7: Results for learning abbreviation semantics over the 5-meeting development
test set, using system-wide articulatory-feature based alignment (AF ) versus standard
Levenshtein distance (LD) alignment. Key: pb = positional phone-bigram constraint
used, no-pb = no positional phone-bigram constraint used. ER = error rate.

If there is an abbreviation match discovered, then any new pronunciations for “Joe

Browning” are added to (1) the WPSR dictionary, and the abbreviation, JB, is added

to (2) the handwriting recognizer’s dictionary and (3) reinforcement table, as well as to

(4) the table of abbreviations and their expansions in the master phone recognizer, and

also is processed for significant prefixes or suffixes which are added to (5) the prefix/suffix
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mis-recognition reinforcement table (Section 7.4). Information in these five tables is what

persists and accumulates across meetings when the system is in learning mode. Thus if

JB has been recognized and associated with Joe Browning in G2, because Joe Browning

was fully enrolled in G1 (Figure 7.4), then subsequently JB is more readily recognized,

and the system knows how to associate it with Joe Browning — that is, the system knows

that the local meaning of JB (i.e., its semantics) is the expanded string, Joe Browning.

If we examine the system-wide effects of articulatory-feature based alignment versus

Levenshtein distance based alignment on the learning of abbreviation semantics we find a

22% relative reduction in error rate, as shown in Table 7.7 (54% error rate for LD/pb to

42% error rate for AF/no-pb). Because of the small sample size this is a marked but not

significant reduction.

7.6 TEST OUTCOMES

7.6.1 Results on Development Test Set

Before presenting test results, an example section of Gantt chart label recognitions will

be explained. This example illustrates the difficulties involved and provides some context

for explaining the test outcomes.

Figure 7.5 illustrates a portion of the sketched Gantt chart created during the fifth

meeting of the development test set. Each meeting in the series was about various aspects

of hiring three new employees (e.g. Joe Browning, Cindy Black and Fred Green). None of

these two-word names were in either the dictionary or language model of the LVCSR, so

they were not well recognized. This is reflected in the utterance samples in Figure 7.5 where

“Sunday Black” is recognized for Cindy Black and “[In]fer agreeing” for Fred Green. The

ink-only recognitions are shown in the No Learning box in the upper-right of the diagram.

This example (Figure 7.5, left-side) shows a task-line and diamond-shaped milestone.

The task-line is for the arrival of the new hires and is labeled with the first-letter abbre-

viation for each of them (JB, CB, FG). None of the names were correctly recognized by

the LVCSR; but, all were learned in previous meetings, so using the techniques described

in Section 6.4.2 their semantics were assigned correctly in four of the five instances, as

shown in Figure 7.5’s Learning box in the lower right. This was accomplished because Joe

Browning and Fred Green were recognized by the word/phrase spotter. However, Cindy

Black was not. Rather, CB had been previously learned as an abbreviation, and even

though a significant ink skip caused the C in CB to be missed almost entirely (in this
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example the ink recognition is iB), the correct interpretation was still recoverable. It was

recoverable because one of the skipped ink’s interpretations exactly matched a previously

seen mis-recognition suffix associated uniquely with CB (see Section 7.4.4).

Figure 7.5: A portion of the Gantt chart created in the final development set meeting:
abbreviations, ink skips, non-standard printing, and OOV or mis-spoken utterances made
recognition and understanding challenging.

The arrival time of Cindy Black and Fred Green (CB and FG) was temporally marked

by a diamond-shaped milestone. While handwriting their abbreviations the speaker mis-

takenly said, “Cindy Green,” and, “Fred Black,” mixing up their names. Later in ut-

terance 26 (Figure 7.5, U26) he corrected himself, saying, “I’m sorry, Cindy Black and

Fred Green,” which again was poorly recognized. Thus, neither of these two abbrevi-

ations could be identified from speech evidence with integrative methods alone. CB ’s

semantics was recovered based on previous learning of the hand-written abbreviation and

thus its known association to Cindy Black, but this did not work for FG because the

non-standard G confounded the generation of any previously learned interpretations or

mis-interpretations.

Ink-skips and mis-spoken names — these are some of the problems in recognition and

integration that SHACER must deal with. Across all five meetings of the development

test set there were 51 scorable labeling events (Table 7.8): 27 unabbreviated terms, and

24 abbreviations. Table 4 shows results in non-learning and learning conditions, with

unabbreviated label results grouped to the left of abbreviated label results. They are
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grouped separately because the format of abbreviation scores is x/y, where x is the number

of letter correct (i.e. lexically correct) labels and y is the number of semantically correct

labels. Note that an abbreviated label was only considered correct when it was both

lexically and semantically correct. In that case a hover label with its associated expansion

was also shown in the Charter display (see examples in the Figure 7.5 lower right Learning

area). In non-learning mode abbreviations were never semantically correct, because the

system had no way of making the associations. A letter-correct label means that it is

spelled correctly. A semantically correct label means that if the label is an abbreviation,

like CB, then it is accompanied by a semantic hover-label with its correct abbreviation

expansion, which for CB is Cindy Black.

Learning in these SHACER tests has a twofold definition:

1. The ability to make inferential associations across inputs modes, which add or con-

firm integrated information not available in either mode alone.

2. The ability to remember integrated information both during a single meeting and

across a series of meetings.

Thus, in non-learning mode, recognition of chart labels devolves to sketch/handwriting

recognition, because no inferential associations are made and there is no ability to remem-

ber a previous recognition or use it to bias future recognitions.

Across the development test series (G series), which was used for development of the

system, the use of learning resulted in a 75% relative reduction in error rate for label

recognition generally (significant by McNemar test, p<=4.77e-07). This result is shown

in Table 7.8’s Total RER column, where RER = Relative Error-rate Reduction. For

abbreviated labels, learning accounted for an 83% absolute reduction in label recognition

error rate (significant by McNemar test, p<=1.91e-06). This result is shown in Table 7.8’s

Abbrev AER column, where AER = Absolute Error-rate Reduction.

7.6.2 Results on Held-Out Test Set

The held out test set also was a series of five meetings (H1-H5 ), with a scenario similar to

that of the development test set, and with the same meeting participants. However, the

held-out meeting set had some substantial differences; for example, there were 70% more

non-abbreviated labels, and 50% fewer abbreviations. The participants in the meeting

corpus were free to vary their meetings within the guidelines of the scripted instructions.

This arbitrary variation accounts for these differences in number of abbreviations used.
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Table 7.8: Summary results on development test set and held-out test set. Abbreviated la-
bels are considered correctly recognized only when both spelling and semantics are correct.
RER = Relative Error rate Reduction. AER = Absolute Error rate Reduction.

The resulting 12% relative reduction in error rate (Table 7.8, Total RER column) for

recognition of all label events in the held-out test set was not significant by a McNemar

test; however, the 37% absolute error rate reduction for the recognition of abbreviated

labels alone (Abbrev AER column) was significant (McNemar test, p<=0.03).

Given the definition of learning above, SHACER has demonstrated significant learning

on a previously unseen test set. With the ability to (1) make inferential associations across

modes and (2) use remembered learning across meetings, SHACER was able to identify

the lexical/semantic aspects of Gantt chart labels significantly better than without those

abilities. SHACER accomplished this by means of its primary processes: alignment, re-

finement and integration. These processes are used to unobtrusively detect instances of

multimodal redundancy across handwriting and speech. Therefore, SHACER proves the

concept that bootstrapped learning from leveraging multimodal redundancy is possible.

SHACER can dynamically combine lower-level recognitions into new higher level knowl-

edge (like learned abbreviations) and continually build up its level of understanding.

7.7 SUMMARY

In designing the thresholds and heuristic conditions that supported recognition and learn-

ing the aim was to discover plausible and general procedures that were not specific to

the development test set. In particular, the techniques of (1) articulatory-feature based

alignment and (2) positional bigram modeling to constrain the second pass search over

saved speech features are general in this sense.
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The tests described in Section 7.5.1 showed that an upper bound for combining pho-

netic information from letter-to-sound transformed handwriting with phonetic information

from speech could be a doubling of phone-level recognition accuracy. Thus, the concept

of using handwriting information combined with speech information to improve phone

recognition has also been shown to be plausible and generally effective. Using articulatory-

feature based distances for aligning the letter-to-sound transformations of the handwriting

alternatives with phone ensemble outputs was shown to be useful and effective.

Overall, the cumulative effectiveness of SHACER’s general procedures was evaluated

by testing on the held-out test data. The held-out test results demonstrated the system’s

ability to learn new terms, based on these general procedures. Further, tests showed

that using these approaches within SHACER made a significant difference — a 37% ab-

solute reduction in recognition error rate, in recognizing the expanded meanings of out-

of-vocabulary abbreviations. This showed that SHACER’s concept of learning new terms

on the basis of detecting and dynamically analyzing instances of multimodal redundancy

works. It also showed that SHACER’s transfer of learned meanings from newly recogniz-

able symbols or expressions in one mode (e.g. Figure 7.4, G1, spoken and handwritten

Joe Browning) to previously unseen symbols in another mode (e.g. Figure 7.4, G2, hand-

written abbreviation, JB) is feasible and can significantly improve the system’s level of

understanding.



Chapter 8

Conclusion and Future Work

8.1 CONCLUSION

This dissertation introduced SHACER, a system for recognizing instances of redundant

handwriting and speech during common human-human interactions like meetings. There

are many large research projects currently studying human interactions during meetings

[37, 165, 4, 33, 106, 29, 24], trying to devise ways that computational systems can be a ben-

efit to people in these situations. SHACER’s contribution of dynamic vocabulary learning

to this arena of computational system development is specific, timely and significant.

8.1.1 Specificity of Contribution

As shown in chapter 2 people typically say what they publicly handwrite during a meeting.

SHACER is the first research system to specifically attempt to leverage such instances of

multimodal redundancy across handwriting and speech to support dynamic learning and

adaptation — for example, by enrolling out-of-vocabulary terms based on handwriting and

speech redundancy (Chapter 6) and then using those enrolled terms to better understand

subsequent abbreviations (Chapter 7).

8.1.2 Timeliness of Contribution

Speech and handwriting recognizers are closely related, mature in terms of the capabilities

and relatively inexpensive, and as such lend themselves particularly well to the support

of a system that learns dynamically over time. Our Introduction (Chapter 1) listed pos-

sible contexts in which the occurrence of multimodal redundancy could be leveraged for

improving recognition and adaptive learning. Tracking deictic glances or gestures (e.g.

looking or pointing) and combining such gestures with speech is an exciting area of re-

search for dynamic learning; however, vision-based object recognition is still relatively

180
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immature and expensive, whereas handwriting and speech recognizers are common. For

example the Tablet PC architecture includes both speech and handwriting recognition by

default. Fully handwritten words or phrases are often language-specific iconic represen-

tations of spoken pronunciations (e.g., abbreviations and acronyms), and thus support

a broad range of straightforward iconic perceptual grounding — i.e., associating ortho-

graphic text to the pronunciation of spoken utterances. Therefore, in terms of research

into systems that can acquire new language both graphically (via handwriting) and audi-

torily (via speech) SHACER is timely, and suggests a broad and rich area of immediately

available further study — like lecture understanding or collaborative annotation systems

in which both spoken and handwritten information can be readily collected.

8.1.3 Significance of Contribution

Finally, the results presented in this thesis are significant. Testing of SHACER (in Chap-

ter 7) has shown that it is possible, by leveraging multimodal redundancy, to transfer

meaning from known symbols in one mode to unknown symbols in another mode (Sec-

tion 6.4). This ability can have a substantial effect in improving background understand-

ing of the natural interactions occurring during meetings. Testing of SHACER yielded a

significant 37% reduction in absolute abbreviation recognition error rate.

We have argued that computational perceptual systems in addition to their off-line-

trained recognizers will need to observe and learn from previously unseen natural demon-

strations. To accomplish this kind of bootstrapped learning and adaptation they will need

to assemble the outputs of their recognizers, which have been trained with supervision

off-line, into meaningful higher-level symbols in real-time, without supervision. SHACER

is a prototype of how to do this by leveraging multimodal redundancy.

8.1.4 Contributions

This dissertation has made research contributions in the following areas.

Multimodality

1. Chapter 2 showed that contrary to prevailing knowledge on modality usage in human-

computer, multimodal command interface systems, which show that multimodal re-

dundancy occurs in only 1%-5% of interactions, handwriting and speech redundancy

is typical for some computer-mediated, human-human interactions, with redundant

speech accompanying handwriting well over 95% of the time.
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2. Previously Anderson et al. examined redundant speech associated with handwriting

during computer-mediated distance lecture delivery. Their study looked at only 54

instances of handwriting. This dissertation examined an order of magnitude more

data (688 handwriting instances) across three separate contexts: whiteboard pre-

sentations, a spontaneous brainstorming session, and photo annotation/discussion

sessions. In these contexts, handwriting occurs on a shared space during human-

human interactions, which is also true for Anderson et al’s study. Our finding was

that 96.5% of handwritten words are also spoken redundantly. This finding both

complements and extends Anderson et al’s work. Whereas Anderson et al’s study

was specific to the use of tablet PCs, none of the three scenarios we examined in-

cluded the use of a tablet PC (Section 2.2.3).

3. In studying a small corpus of multi-party photo annotation discussions (Section 2.2.2)

this dissertation offers evidence that handwriting on digital paper during a public

discussion is accompanied by redundant speech, just as is handwriting on a white-

board during a lecture, presentation or brainstorming session.

4. This dissertation offers strong evidence both from our earlier work with Multimodal

New Vocabulary Recognition (MNVR — Chapter 4) and from our current work

with SHACER that combining information from redundant handwriting and speech

leads to better recognition than can be achieved in either mode alone. MNVR

test results in Section 4.5.2 show a significant 57.5% relative error rate reduction

compared to speech-only pronunciations, and a significant 7.04% relative error rate

reduction compared to handwriting-only pronunciations. SHACER test outcomes

in Section 7.6 show a significant 37% absolute reduction in error rate compared to

either handwriting-only or speech-only recognition of abbreviated Gantt chart labels,

because neither handwriting nor speech alone succeeded in producing any correct

recognitions for such abbreviated labels.

5. In Section 2.2.3 we have shown that (a) redundantly presented terms are likely to be

out-of-vocabulary (OOV) for ideally sized recognition vocabularies, (b) likely to be

memorable to meeting participants (by virtue of having been presented redundantly

across multiple informative modes — e.g. handwriting and speech), and also (c)

likely to be dynamically learnable. We contend that learning these words dynam-

ically could offer a viable alternative to drastically increasing vocabulary size for

tasks like lecture and meeting transcription or summarization.
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6. This dissertation introduced the working hypothesis that people use multimodal

redundancy (e.g. across handwriting and speech) as a conversational strategy to

bolster their communicative effectiveness by drawing attention to the meanings of

dialogue-critical terms (Section 2.2.2). To begin establishing empirical support for

this hypothesis we derived two claims: (1) if multimodal redundancy is a general con-

versational strategy then it should be typical of human-human interaction settings

where multiple modes can be perceived, and (2) if redundantly presented terms are

dialogue-critical then they should be measurably more important than other words.

Both claims are supported by the evidence. The first claim is supported by the

finding of 96.5% redundancy averaged over three interaction settings (Section 2.2.3),

which means that multimodal redundancy in some cases is typical. Claim two is

supported by the significantly higher tf-idf weights associated with redundantly pre-

sented terms, which shows that they are measurably more important (Section 2.2.3)

than non-redundant terms.

Multimodal System Architecture

1. In Section 3.1.3 a new class of multimodal system was introduced. This ambient-

cumulative interface (ACI) system, instead of supporting a direct human-computer

interface for sequences of command/display turns, accumulates ambient perceptual

observations during structured multi-party interactions like the construction of a

Gantt schedule chart during a meeting. SHACER was deployed for within an ACI

called Charter. Charter provided a shared work space during Gantt chart schedule

meetings, which was the basis for SHACER’s development and testing.

2. Section 7.2 showed that our edge-splitting technique, which is an extension of the

basic temporal chart parsing algorithm for multimodal systems (Section 7.2), re-

sulted in a significant 46.2% relative reduction in multimodal recognition error rate

by avoiding the underlying parsing problems related to incorrect turn segmentation.

Without this fundamental architectural innovation SHACER could not be successful.

3. Section 4.3.2 introduced our approach to embedding a recursive transition network

(RTN) of separate finite-state grammar recognizers into the architecture of CMU’s

Sphinx 2 continuous speech recognizer (Figure 4.6, and see Appendix B for specific

grammars used by SHACER). This two-level RTN structure supported both (1)

specifying the location of out-of-vocabulary words within a defined carrier phrase in
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MNVR (Figure 4.7, and (2) techniques used in SHACER to provide a basis for the

Word/Phrase-Spotting Recognizer (Section B.4). This symbolic grammar-defined

approach to two-level recognition is advantageous for new task domains in which

there is not yet much data for stochastically modeling the transition between RTN

levels.

4. Chapter 5 contributes a description of the low-level algorithmic aspects of integrating

handwriting and redundant speech. In particular it describes SHACER’s notable

augmentations of articulatory-feature based dynamic programming alignment: (a)

diphthong expansion (Section 5.3.5), and (b) measuring the coherence (Section 5.3.4)

of phonetic alignments to rank the possibility of a redundancy match.

5. Section 5.4.1 contributes a viable approach to extracting LVCSR lattice terms based

on the temporal boundaries of handwriting and redundant speech alignment. This is

a general technique that can be used to improve multimodal recognition regardless

of whether the target term is in or out-of-vocabulary, as exemplified in the Fred

Green example in Section 6.3.1 where the two-word name, Fred Green, is not in

the speech recognizer’s language model. Thus, although both Fred and Green are

individually in the recognizer’s language model, recognition of the two-word sequence

is deprecated and the recognizer defers to the in-language-model sequence, “Fred’s

Green.” Using the lattice term extraction and the ranking techniques described in

Section 5.4.1 this error is corrected.

Learning

1. SHACER successfully demonstrated first that learning new vocabulary dynamically

from even a single instance of redundant handwriting and speech can be done.

Secondly, SHACER proved that after learning has been accomplished, a newly en-

rolled term can be subsequently recognized in one mode and its meaning transferred

to a new, unknown symbol in another mode. This is the basis for SHACER’s suc-

cessful understanding of previously unknown abbreviations.
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8.2 FUTURE WORK

8.2.1 Moving Toward Stochastic Decision Processes

In the future as we are able to deploy larger data gathering efforts and formalize our

abilities to annotate multimodal perceptual input streams for complex human-human in-

teractions like meetings and presentations, we will move toward statistically modeling the

concordances between input modes in order to better weight the confidence we place on

various contributions. For example, our current heuristics for deciding how much im-

portance to ascribe to a concordance between a handwriting alternative and an LVCSR

transcript term, or between a handwriting alternative and a word/phrase-spotter recog-

nition term are intuitive (see Section 6.2); whereas, with a larger database of annotated

examples we could move toward a hybrid symbolic/statistical model such as we employed

in our earlier Members, Teams, Committees (MTC) approach for biasing the confidence

that the system placed on various input mode contributions [91, 172].

8.2.2 Better Modal Recognizers

SHACER’s current base-line phone recognition accuracy rates are under 50%. We know

that if handwriting is completely redundant to speech then using oracular phone tran-

scripts, which represent ideal handwriting recognition and letter-to-sound transformation,

as part of the ensemble lattice does improve overall recognition (Section 7.5.1), resulting in

as much as a doubling of the phone accuracy rate. With better base-line phonetic speech

recognition this benefit will increase. Therefore we believe that the task of combining in-

formation from handwriting and speech motivates renewed effort in building better phone

recognition systems.

Aside from SHACER, other sub-word language processing approaches are now coming

into the main stream in areas like spoken document retrieval, call center data mining, and

audio/video indexing and searching (e.g. Nexidia [122], Virage [163]). For some years NT-

CIR — The Japanese National Institute of Informatics (NII) Test Collection for Informa-

tion Retrieval (IR) Systems Project — in collaboration with NIST (the National Institute

of Standards and Technology) has sponsored a Cross-Lingual Information Retrieval Task

(CLIR) track (Nist 2006 Cross-Lingual Information Retrieval Task (Clir)) for searching

through spoken documents or telephone speech in any language [156]. In effect this work

is developing a universal speech recognition system based on a sub-word unit database

covering all the worlds phonemes. This effort is spurred on by the commercial success of
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language specific versions of sub-word recognition approaches (e.g. Nexidia [122]), which

like SHACER’s use of phonetic recognition, are better able to handle out-of-vocabulary

terms.

SHACER’s phone recognition capabilities could be developed to be on par with the

phone recognition technology underlying recent successes in spoken document retrieval

like those which motivate NIST’s effort above to build a langauge universal phonemic

recognition system. We believe that leveraging redundant speech and handwriting (be-

cause of its clear applications in meeting summarization, lecture transcription, picture and

map annotation tracking and understanding, etc.) is another application area ripe for an

effort in building fast, efficient and appropriate sub-word recognizers. To move forward in

this regard SHACER also needs a better ability to constrain handwriting recognition with

information from redundant speech. This would require code-level access to a handwriting

recognizer, so that new constraint algorithms like SHACER’s dynamic positional bigram

modeling (Section 5.4.2) could be developed and applied during a second pass handwriting

recognition.

8.2.3 Better Structural Understanding of Syntax and Semantics

Speech and handwriting transcripts could potentially be improved by using speech and

handwriting from all participants during meetings. In order to generally align handwrit-

ten notes to speech across multiple participants in meetings, presentations and lectures

SHACER needs better structural understanding of the syntax and semantics of both the

handwriting and speech inputs. This will facilitate a wider and more robust array of

matching techniques across not only lexical but also semantic redundancy. The system

could be semantically expanded to include information from WordNet [53] or VerbNet [93]

synsets, etc.

This effort to better understand the structural relationships between the notes and

speech of multiple handwriters and speakers will by necessity be stochastic, which means

that to move forward in this regard large scale data collection efforts are probably needed.

MIT has demonstrated the advantage of well deployed and long-lived data collection efforts

(e.g. Jupiter [186] and lecture transcription systems [60]) for improving spoken language

processing. Semantic web-tagging has motivated several deployed games on the internet

for gathering data on picture tagging [1, 2]. For acquiring the multimodal data that

SHACER needs, one possible arena of data collection could be on-line distributed picture

annotation, in which groups of people discuss photos that are mutually visible even to
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distant participants. The photos can be visible in some locations on computer screens or

televisions, in other locations on tablet PCs, and finally also they can printed on digital

paper (as in our photo annotation discussions — Section 2.2.2) [16]. Users would be

motivated to participate in this scenario because of their own desires to share photos with

friends and families. Photos are increasingly recorded and stored digitally, so new ways of

sharing photos are needed. Such an online service could potentially be designed to gather

both speech and ink data. There would be encumbrances involved (e.g., the need to wear

some sort of microphone or sit in front of an array of microphones, and the need to use a

tablet PC or digital pen and paper), but these could be outweighed by the benefits and

inherent attraction of being able to share photos in new ways. Also SHACER’s underlying

ability to leverage multimodal redundancy for better understanding could result in useful

annotations, which were created “for free” as a side-effect of sharing and conversing about

a set of photos. These multimodal annotations, could be stored along with the photos

(as is supported in the emerging MPEG-7 standard [116]. As shown in Section 2.2.3 such

annotations, which may include a high percentage of redundantly handwritten and spoken

words, would make very effective search indexes for organizing and finding photos.

8.2.4 Beyond Handwriting and Speech: MOOVR

Finally, another level of future work involves study and prototyping of systems for other

redundant Multimodal Out-Of-Vocabulary Recognition (MOOVR) combinations, for ex-

ample gaze and speech, point and speech, activity and speech, document context and

speech, dynamic learning of sketch constituents, etc. Several research groups are now

addressing the possibility of combining these various redundant modal possibilities (e.g.

within the CALO project). Work in these other areas of multimodal redundancy could also

lead us back into the study of interactions in Virtual/Augmented environments where key-

boards and mice are less effective, such as MAVEN [84], which first inspired our thoughts

about MOOVR/SHACER.

8.2.5 Better Understanding of Multimodal Redundancy

We don’t fully understand why and when people use multimodal redundancy [86]. The

literature on early language acquisition suggests the importance of multimodality for fo-

cusing attention [61, 12] and thus providing a basis for understanding intentionality and

establishing the meaning associations between action and intention that ground language

[13, 14, 108, 168, 171, 177, 15]. The Theory of Multimedia Learning [109] explains why
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students who watch multimedia presentations with embedded multimodal redundancy

have enhanced memory recall. However, it is not yet fully clear why a presenter would use

handwriting and speech redundantly. Is it a conscious effort to enhance communication,

or does it arise unconsciously — for instance, from McNeill’s hypothesized speech/gesture

growth point [110]?

As we gain understanding of when and why people use redundant handwriting and

speech, a related question will be how that tendency could be usefully invoked in certain

human-computer interfaces. If multimodal redundancy comes naturally to people in some

settings, as shown in Chapter 2, then can machine learning interfaces be designed that

encourage people to be redundant? If so, then as we have shown, it is possible to leverage

that redundancy for dynamic unsupervised machine learning.

Ultimately we hope and believe our work with SHACER is part of a larger gradual

shift that is taking place from computer-centric to human-centric applications. Such

applications will begin to shift more and more of the burden of learning and adaptation

off of the user and onto the machine.
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Appendix A

Articulatory Features and Phonetic

Distances

A.1 ARTICULATORY FEATURE TABLE AND PSEUDO-

CODE

To align speech and handwriting we have adopted a phonetic alignment approach put

forward by Kondrak [96] for articulatory-feature based alignment. Kondrak’s algorithm

characterizes each phoneme by its set of articulatory features. Some features are binary

and some are categorical as shown in Table A.1.

A.1.1 Articulatory Feature Table

All features in Table A.1 have an associated salience weight. Vowels and consonants have

different sets of active features. The weight of each categorial feature of each major type

(e.g. manner, height, backness, place) is based on empirical linguistic measurements.

SHACER does not use all of Kondrak’s place features because we are presently only

concerned with English phone sequences (e.g. we do not use the features uvular and

pharyngeal). We have augmented Kondrak’s height feature to utilize four rather than his

original three sub-categories (e.g. Kondrak’s original three categories are high, mid, low),

and in parallel with that we have added a fourth vowel type to the manner feature (in

this we follow Hosom [71]).
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Table A.1: The table of articulatory features used by SHACER. Some are binary, while
others are categorial. Vowels and Consonants have different applicable features, and each
feature has a salience weight taken primarily from Kondrak [96].
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A.2 PER PHONE ARTICULATORY FEATURE VALUE

TABLE

A listing of the actual articulatory feature values used for each phone in the current

SHACER phone set is given in Tables A.2, A.3, A.4, and A.5. The values are assigned

as illustrated in Table A.2.

Table A.2: Articulatory feature values for individual phones (p-th). The actual values
are assigned based on the categories into which each phone in the phone set is classed;
for example, the stop phone category all get a manner score of 1.0, while the affricate
category all get a manner score of 0.9.
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Table A.3: Articulatory feature values for individual phones (dh-hh).

Table A.4: Articulatory feature values for individual phones (y-ao).
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Table A.5: Articulatory feature values for individual phones (ah-oo).

A.3 EXAMPLE PHONE DISTANCE TABLE

The top row of Table A.6 below lists individual phones, preceded by their numerical

identifier. In the columns below this top row each individual column has rows of (1) a

phone identifier number, (2) a phone name, and (3) a distance for that row’s phone from

the column’s phone, which is the phone listed in the top row heading the column. Thus

each phone in the top row below the heading row has a phonetic distance of 0 from itself.

The distance numbers are a figure of merit, with larger numbers meaning greater distance.
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Table A.6: Example listings from the phone distance table. The closest phones are 0
distance apart. The artificial padding phones (+, ) are the most distant phones.

| 0 p | 1 b | 2 t | 3 d | 4 k | 5 g |

|----------------|----------------|----------------|----------------|----------------|----------------|

| 0 p 0 | 1 b 0 | 2 t 0 | 3 d 0 | 4 k 0 | 5 g 0 |

| 2 t 6 | 3 d 6 | 0 p 6 | 1 b 6 | 5 g 10 | 4 k 10 |

| 1 b 10 | 0 p 10 | 6 ch 8 | 7 jh 8 | 2 t 10 | 3 d 10 |

| 8 f 12 | 9 v 12 | 12 s 9 | 13 z 9 | 6 ch 11 | 7 jh 11 |

| 10 th 13 | 11 dh 13 | 4 k 10 | 5 g 10 | 14 sh 16 | 1 b 16 |

| 6 ch 15 | 7 jh 15 | 3 d 10 | 2 t 10 | 0 p 16 | 15 zh 16 |

| 4 k 16 | 2 t 16 | 10 th 12 | 11 dh 12 | 12 s 20 | 13 z 20 |

| 3 d 16 | 5 g 16 | 8 f 13 | 15 zh 13 | 3 d 20 | 23 w 20 |

| 12 s 16 | 13 z 16 | 14 sh 13 | 9 v 13 | 7 jh 21 | 2 t 20 |

| 14 sh 20 | 23 w 20 | 1 b 16 | 0 p 16 | 10 th 22 | 6 ch 21 |

| 9 v 22 | 15 zh 20 | 7 jh 19 | 6 ch 19 | 8 f 24 | 11 dh 22 |

| 11 dh 24 | 8 f 22 | 13 z 20 | 12 s 20 | 1 b 26 | 9 v 24 |

| 7 jh 25 | 10 th 24 | 5 g 20 | 4 k 20 | 15 zh 26 | 22 y 24 |

| 13 z 26 | 6 ch 25 | 11 dh 22 | 10 th 22 | 13 z 30 | 14 sh 26 |

| 5 g 26 | 4 k 26 | 15 zh 24 | 14 sh 24 | 23 w 30 | 0 p 26 |

| 23 w 30 | 12 s 26 | 9 v 24 | 8 f 24 | 11 dh 32 | 12 s 30 |

| 15 zh 30 | 14 sh 30 | 22 y 36 | 22 y 26 | 9 v 34 | 10 th 32 |

| 22 y 42 | 22 y 32 | 23 w 36 | 23 w 26 | 22 y 34 | 8 f 34 |

| 20 l 46 | 20 l 36 | 20 l 40 | 20 l 30 | 19 r 48 | 19 r 38 |

| 19 r 48 | 19 r 38 | 19 r 42 | 19 r 31 | 20 l 50 | 20 l 40 |

| 40 axr 68 | 37 er 58 | 40 axr 62 | 40 axr 52 | 37 er 68 | 37 er 58 |

| 37 er 68 | 40 axr 58 | 37 er 62 | 37 er 52 | 40 axr 68 | 40 axr 58 |

| 16 m 70 | 16 m 60 | 17 n 70 | 17 n 60 | 24 iy 69 | 30 uw 59 |

| 17 n 76 | 17 n 66 | 16 m 76 | 16 m 66 | 30 uw 69 | 24 iy 59 |

| 24 iy 85 | 24 iy 75 | 24 iy 79 | 24 iy 69 | 18 ng 70 | 18 ng 60 |

| 30 uw 85 | 30 uw 75 | 30 uw 79 | 30 uw 69 | 26 ey 74 | 26 ey 64 |

| 18 ng 86 | 18 ng 76 | 18 ng 80 | 18 ng 70 | 44 oo 74 | 25 ih 64 |

| 41 ix 90 | 41 ix 80 | 41 ix 84 | 41 ix 74 | 25 ih 74 | 29 uh 64 |

| 29 uh 90 | 29 uh 80 | 29 uh 84 | 29 uh 74 | 29 uh 74 | 41 ix 64 |

| 44 oo 90 | 26 ey 80 | 44 oo 84 | 26 ey 74 | 41 ix 74 | 38 ay 66 |

| 26 ey 90 | 25 ih 80 | 26 ey 84 | 25 ih 74 | 21 hh 75 | 31 ow 66 |

| 25 ih 90 | 31 ow 82 | 25 ih 84 | 31 ow 76 | 31 ow 76 | 35 oy 66 |

| 21 hh 91 | 38 ay 82 | 21 hh 85 | 38 ay 76 | 38 ay 76 | 33 ah 69 |

| 31 ow 92 | 35 oy 82 | 31 ow 86 | 35 oy 76 | 35 oy 76 | 27 eh 69 |

| 35 oy 92 | 39 ax 85 | 35 oy 86 | 39 ax 79 | 39 ax 79 | 36 aw 69 |

| 38 ay 92 | 27 eh 85 | 38 ay 86 | 27 eh 79 | 27 eh 79 | 39 ax 69 |

| 33 ah 95 | 36 aw 85 | 33 ah 89 | 36 aw 79 | 36 aw 79 | 17 n 70 |

| 36 aw 95 | 33 ah 85 | 36 aw 89 | 33 ah 79 | 33 ah 79 | 32 ao 74 |

| 39 ax 95 | 32 ao 90 | 39 ax 89 | 32 ao 84 | 17 n 80 | 28 ae 74 |

| 27 eh 95 | 34 aa 90 | 27 eh 89 | 34 aa 84 | 34 aa 84 | 34 aa 74 |

| 28 ae 100 | 28 ae 90 | 28 ae 94 | 28 ae 84 | 32 ao 84 | 16 m 76 |

| 32 ao 100 | 44 oo 100 | 32 ao 94 | 44 oo 94 | 28 ae 84 | 44 oo 84 |

| 34 aa 100 | 21 hh 101 | 34 aa 94 | 21 hh 95 | 16 m 86 | 21 hh 85 |

| 43 + 200 | 43 + 210 | 43 + 194 | 43 + 204 | 43 + 184 | 43 + 194 |

| 42 _ 200 | 42 _ 210 | 42 _ 194 | 42 _ 204 | 42 _ 184 | 42 _ 194 |



Appendix B

SHACER Grammars

B.1 GRAMMAR DESCRIPTION AND FORMAT

For SHACER five out of the ensemble of six speech recognizers that are employed (Chap-

ter 5) use our augmented version of Carnegie Mellon University’s Sphinx 2 speech rec-

ognizer. To augment Sphinx 2 we added the capability for it to use a grammar based

language model, as described in Section 4.3 and Figure 4.6. The grammars used for con-

strained syllable (Section B.2) and phone recognition (Section B.3) and the grammar for

the word/phrase-spotting recognizer (Section B.4) are given below.

Grammars are written in the formalism used by PROFER [83, 81], our robust natural

language parser — a formalism that is parallel to that used by Carnegie Mellon University’s

Phoenix parsing system [166] (i.e. PROFER accepts and compiles the same grammars

that Phoenix accepts and compiles).

The following rules along with the symbols described in Figure B.8 provide a basis for

constructing the grammar definition files used by PROFER.

Figure B.1: Symbols used in grammar definition files.

Character(s) Meaning
[ ] Square brackets surround the name of a net, which show up as “tags”

in the output.
( ) Parentheses surround each rewrite pattern within a net’s definition.
* Designates optionality — the term following the * may occur or not

occur.
+ Designates 1 or more occurrences of the term following the +.

*+ or +* Designates 0 or more occurrences of the term following the *+ or +*.

1. Grammars are defined as patterns that get associated with net name-tags. Each
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individual net must have a separate definition file (i.e., a file whose name stem exactly

matches the net name and whose extension is .gra). These points are illustrated in

Figure B.2.

Figure B.2: File name and net name correspondences.

For convenience, multiple nets can be defined in the same file. However, that single

file, containing multiple net definitions, must at some point be written out into indi-

vidual files corresponding to the individual nets defined within it. This can be done

using filization commands that are available in PROFER’s application programming

interface (API).

2. Net names must contain only lower case letters, with no spaces. To separate

words within a net name underscoring can be used (see the [noun_phrase] and

[verb_phrase] nets in Figure B.2).

3. Terminals within rewrite patterns are sequences of all lowercase letters with no

underscoring, as shown in Figure B.3 (john, the, and boy are all terminals). Note

that terminals differ from nets only in the fact that they are not surrounded by

square brackets. Terminals will be matched as strings directly against individual

string elements of the input to the parser.

Figure B.3: Terminal rewrite patterns.

4. The top-level non-terminal in the definition of a net must be a net name, and that

name must correspond exactly to the name-stem of the file in which it appears. This
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is illustrated in Figure B.2 where [sentence] is the top-level non-terminal in the

file defining the sentence net, and the file in which this definition occurs is named

sentence.gra — for the net it defines.

5. Subsequent (i.e., non-top-level) non-terminal patterns are called rewrites and must

be all uppercase letters, with no spaces. They may include underscoring to separate

words, as illustrated in Figure B.6 by the OBJECT_PHRASE rewrite.

In this version of PROFER rewrites must be locally defined within each net where

they appear. Note that rewrites do not appear in the output.

6. Non-terminal rewrites appearing at the left margin, with no preceding white space

begin a block of rewrite patterns. Each rewrite pattern within the block defines a

particular sub-pattern that can be mapped from the input into the block’s non-

terminal rewrite. The pattern list within a block represents a disjunctive list, as

illustrated in Figure B.7 — meaning that within a given parse only one of the

patterns within the block will actually be used to map the input onto the block’s

non-terminal rewrite.

7. A given non-terminal rewrite must not appear in the definition file below the block

in which it is defined.

Figure B.4: Context-Free translations to case-frame style regular expressions.

8. Since not all Context-Free Grammar (CFG) expressions can be translated into the

regular expression formalism employed by our case-frame style parser (as shown in



216

Figure B.4), some restrictions are necessary. These restrictions rule-out the possibil-

ity of “center-embedding” (see the right-most block in Figure B.4) for which there

is no equivalent regular language expression:

• A top-level net name can appear only once (on the first line) of the file which

defines it — and cannot appear within the definition of any net that appears

within its definition.

• Likewise a non-terminal rewrite cannot appear within the block of a rewrite

pattern by which it is defined.

These restrictions are depicted graphically in Figure B.6.

Note that it is possible to define regular grammars that allow for “center-embedding”

of nets to any finite depth by copying the net definition and giving it a unique name

for each level of self-embedding desired — two examples are given in Figure B.5.

In these examples (se stands for (s)elf-(e)mbedded nets, and ser stands for (s)elf

(e)mbedded (r)ewrites). Both grammars can parse inputs that contain some number

of a’s followed by a matching number of b’s (up to the level of embedding defined,

which in both of these cases is four deep).

EXAMPLE: nets | EXAMPLE: rewrites
[se] | [ser]
(a [se_one] b) | (a SE_ONE b)
(a b) | (a b)

[se_one] | SE_ONE
(a [se_two] b) | (a SE_TWO b)
(a b) | (a b)

[se_two] | SE_TWO
(a [se_three] b) | (a SE_THREE b)
(a b) | (a b)

[se_three] | SE_THREE
(a b) | (a b)

INPUT: | INPUT:
a c a b d e b | a c a b d e b

PARSE: | PARSE:
se:[a,se_one:[a,b],b] | ser:[a,a,b,b]

Figure B.5: Example of discreet center-self-embedding in regular-expression format.
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Figure B.6: Self-embedding restrictions.

9. Each rewrite pattern within a rewrite block must be preceded by white space on the

line on which it occurs (see Figure B.7).

10. Elements within a particular rewrite pattern represent a conjunctive list; that is, the

elements defined in the rewrite pattern must be seen sequentially in the input for

there to be a valid mapping to the pattern, as shown in Figure B.7. This means

that PROFER will not partially recognize an individual pattern. Either a pattern

is discovered in the input or it is not. However, elements within a pattern can be

marked as optional (*), one-or-more (+) or zero-or-more (*+ or +*), as described in

the symbol table shown in Figure B.8 and illustrated in the ids.gra of Figure B.7.

11. Aspects of conjunction and disjunction can be combined to allow for partial parses

of the input. Conceptually this amounts to defining slots within frames, which is

the basic case-frame architecture of the PHOENIX system.

PROFER accomplishes the same thing by using conventions to define slot or frame

associations, as shown in the following example:

[order]

(+SLOT)

SLOT

([pizza])

([drink])

([salad])

This example defines a net called order which is composed of any combination of
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pizza, drink and salad SLOTs. An order must have at least one of its slots filled;

that is, it must include at least one of pizza, drink or salad; but, an order could

also include more than one pizza, more than one drink, more than one salad . . . or

any combination of such multiples. Thus, if the spoken order is for a pizza, a drink

and a salad, but the drink portion of the input is garbled, then a partial parse

including the portions that fill the pizza and salad slots can still be returned.
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Figure B.7: Basic formatting for grammar definition files.
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B.2 CONSTRAINED SYLLABARY GRAMMAR

This grammar is used for the constrained syllable-sequence phone ensemble recognizer.

The grammar was constructed from a syllabified version of the Carnegie Mellon University

(CMU) Dictionary version 4.0, which has syllabifications for over 100,000 words. This

dictionary was processed to extract lists of first, middle and last word-position syllables as

well as single syllable words whose syllables fit in the first-last position syllable category.

The grammar specifies the order in which these syllable categories can be combined.

B.3 CONSTRAINED PHONE GRAMMAR

This grammar is used for the constrained phone-sequence phone ensemble recognizer. The

grammar was constructed from an existing phone grammar used in [71]. Translated to an

appropriate grammar format and used here with permission.

B.4 WORD PHRASE GRAMMAR

The Word/Phrase grammar is the obverse of the MNVR grammar described in Sec-

tion 4.3.3. That is, rather than primarily recognizing grammar defined carrier-phrase

words and occasionally dropping into the secondary syllabic grammar for out-of-vocabulary

terms, it does the opposite — it primarily recognizes syllabic terms (e.g. this is shown

in the grammar below as being terms in the <syllabary> embedded grammar) until it

finds a high confidence recognition of an enrolled term (e.g. this is shown in the grammar

below as being terms in the <place holder word phrase name> grammar). Initially the

word phrase name grammar, whose only terminal is the <place holder word phrase name>,

is always empty, but its filled at start-up time from any designated and available file-based

accumulators like those described in Appendix C.

B.4.1 Word Phrase

[word_phrase]

(+[term])

[term]

([syl_terms])

([word_phrase_name])

([sem_wp])



221

[syl_terms]

(<syllabary>)

[word_phrase_name]

(<place_holder_word_phrase_name>)

[sem_wp]

(sem_taskline)

(sem_line)

(sem_milestone)

B.4.2 Syllabary

[syllabary]

([first_last_syllable])

([first_last_syllable] [first_last_syllable])

([first_syllable] [last_syllable])

([first_syllable] [last_syllable] [first_last_syllable])

([first_last_syllable] [first_syllable] [last_syllable])

([first_syllable] [middle_syllable] [last_syllable])

[first_last_syllable]

(z_aa)

(z_aa_b_s_t)

(z_aa_d)

(z_aa_d_z)

\ldots (first_last_syllable contains 9606 syllabic terminals)

(z_zh_ey_k)

(z_zh_iy_l)

(z_zh_w_aa)

(z_zh_w_aa_n)

[first_syllable]

(z_aa)

(z_aa_b)

(z_aa_b_f)

(z_aa_b_s)

\ldots (first_syllable contains 17259 syllabic terminals)

(z_zh_w_aa)

(z_zh_w_aa_n)

(z_zh_w_aa_r)

[middle_syllable]

(z_aa)

(z_aa_b)

(z_aa_b_s)

(z_aa_ch)

\ldots (middle_syllable contains 2988 syllabic terminals)
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(z_zh_aa_r)

(z_zh_ax_k)

(z_zh_er)

(z_zh_w_aa_z)

[last_syllable]

(z_aa)

(z_aa_b)

(z_aa_ch)

(z_aa_d)

\ldots (middle_syllable contains 3775 syllabic terminals)

(z_zh_ih_n)

(z_zh_iy_n)

(z_zh_w_aa)
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B.5 SHACER Stop-List

A stop-list typically contains closed class words like articles, prepositions, pronouns and

auxiliary verbs that tend to occur with equal frequency in most documents, making them

not useful as representative words for a particular document.

a before her nor someone us
aboard behind hers nothing something various
about being herself notwithstanding somewhat versus
above below him of such via
across beneath himself off suchlike vis-a-vis
after beside his on sundry was
against besides hisself oneself than we
all between i onto that were
along beyond idem opposite the what
alongside both if or thee whatall
although but ilk other theirs whatever
am by in otherwise them whatsoever
amid can including ought themselves when
amidst circa inside our there whereas
among concerning into ourself they wherewith
amongst considering is ourselves thine wherewithal
an could it outside this which
and despite its over thou whichever
another down itself own though whichsoever
anti during like past through while
any each many pending throughout who
anybody either may per thyself whoever
anyone enough me plus till whom
anything everybody might regarding to whomever
are everyone mine round tother whomso
around except minus save toward whomsoever
as excepting more self towards whose
astride excluding most several twain whosoever
at few must shall under will
aught fewer myself she underneath with
bar following naught should unless within
barring for near since unlike without
be from neither so until worth
because have nobody some up would
been he none somebody upon ye

Figure B.8: SHACER’s stop list.
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Learning Accumulator Files

The file contents listed below are also explained briefly in Section 7.4.

C.1 SPEECH AND HANDWRITING DICTIONARY AD-

DITIONS

The accumulator file contents below are from the sphinx add to dict.log file resulting from

the processing of the fourth meeting in the development series, which is referred to as

the G series. Note that processing of this fourth meeting depends on the processing of

the third meeting, which in turn depended on those before it. Thus the file list below

is effectively an accumulation from all four previous meetings. The lines are listed in

groups of five, each starting with the system’s best scoring orthographic hypothesis of the

word to be newly enrolled in the Word/Phrase-Spotting recognizer’s (WPSR’s) dictionary

and grammar. The second terms in each line form a list of alternate spellings, which are

informative but not used as part of the new enrollment. The third terms in each line list

alternative pronunciations for the new term. The process of choosing the best spelling

and pronunciations is described in Chapter 5.

SHACER’s WPSR is an implementation of CMU’s Sphinx 2 speech recognizer —

which we have augmented to use rule-based language models defined by grammars like

those described in Appendix B. Thus the WPSR, as does Sphinx 2, uses acoustic tri-

phones as the basis for modeling spoken linguistics. For optimal efficiency the recognizer

is designed to determine the minimal set of tri-phones necessary to support recognition

given its dictionary. To do this the recognizer looks at both all word-internal tri-phones

and also all word-transitional tri-phones. Word transitional tri-phones are determined by

taking each dictionary word and first pairing it with all dictionary words in a following

position (to create a so-called right-context table of tri-phone transitions) and then pairing

224
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it with all dictionary words in a preceding position (to create a so-called left-context table

of tri-phone transitions). This guarantees that all possible tri-phone contexts that the

system will need for recognition are available from the recognizer’s database of Gaussian

mixture models and their model weights.

Dynamically adding new words to the WPSR dictionary sometimes requires an ac-

companying dynamic expansion of these tri-phone context databases, otherwise the sys-

tem fails. As designed Sphinx 2 only performs the construction of its tri-phone database

context tables when its language model is initially read in. We modified Sphinx 2 to sup-

port dynamic run-time expansion of its tri-phone context databases. During run-time this

ability to dynamically expand the tri-phone context databases is not part of the recogni-

tion process thread, so it is possible for recognition to restart while the tri-phone context

databases are still being rebuilt. To keep this from happening we designed a method of

first caching the additions to be made and then adding them within a routine that blocked

further recognition until the expansion process was complete.

Currently we are not clustering and refining pronunciations for the same word as they

are entered, as is described by Yu [175] for their experiments in recognizing embodied

intentions. So, for an entry like Joe Browning there are five separate instances (listed as

five separate groups of Joe Browning entries in the file below) during the first four of the

G series meetings in which redundant handwriting and speech information was combined

with high enough confidence to trigger an enrollment. Given these five enrollment groups

there are about a dozen separate pronunciations for Joe Browning that will be active

for recognition during the fifth G series meeting. All of these separate pronunciation

alternatives are added to the Word/Phrase-Spotter’s dictionary and considered with equal

likelihood at present. Part of our future work will be clustering and refining pronunciation

alternatives. Given the current relatively small size of the enrolled dictionary (numbering

in the dozens of terms) and our focus on developing and testing a proof-of-concept learning

system, such pronunciation refinements have not been a priority for the purposes of this

thesis dissertation.

log_entry(sphinx_add_to_dict,sphinx_add_to_dict(

’Joe_Browning’,’Joe_Browning’,’jh ow b r aw n ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh ow b r aw n r ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh ow b r aw n d ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh ow b r aw n th ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh ow b r aw n r ih ng z’,[])

’Arrive’,’Arrive’,’er ay v’,[])

’Arrive’,’Arrives’,’er ay v z’,[])

’Arrive’,’Arrives’,’t uw er ay v z’,[])
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’Arrive’,’ARRIVE’,’t uw er ay v’,[])

’Arrive’,’ARRIVE’,’er aa ay v’,[])

’Buy_Computer’,’Buy_Computer’,’b ay k ah m p y uw t er’,[])

’Buy_Computer’,’Buy_Computer’,’k ah m p y uw t er’,[])

’Buy_Computer’,’BuyComputer’,’ao v k ah m p ch y uw uh r’,[])

’Buy_Computer’,’Buy_Computer’,’d ih m p ch y uw hh iy uh r er’,[])

’Buy_Computer’,’Buy_Computer’,’ah v k ah m p ch y uw uh r’,[])

office,office,’ao f ah s’,[])

office,office,’ao f ah s ow’,[])

office,office,’ao f ah s ah m’,[])

office,office,’ow ao f ah s’,[])

office,office,’ao l f ah s’,[])

proposed,proposed,’p r ah p ow z d’,[])

proposed,proposed,’p r ah p ow z’,[])

proposed,proposed,’p r ah p ow z d t uw’,[])

proposed,proposed,’ah p r v p ow uw z t’,[])

proposed,trop_used,’p r v p hh aa l uw z t’,[])

equipment,equipment,’ih k w ih p m ah n t’,[])

equipment,equipment,’ih k w ih p m ah n t jh iy’,[])

equipment,equipment,’ih k w ih p m ah n t d uw’,[])

equipment,equipment,’ih k w ih p m ah n t r ih p’,[])

equipment,equipment_t,’ih k w ih p m ah n t t ey p’,[])

’Available’,’Available’,’ah v ey l ah b ah l’,[])

’Available’,’Available’,’ah v ey l ah b ah l t uw’,[])

’Joe_Browning’,’Joe_Browning’,’jh ow b r aw n ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh uw b r aw n ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh y ow b r aw n ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh uw l b r aw n ih ng’,[])

’Joe_Browning’,’Joe_Browning’,’jh uw b r aw m ih ng’,[])

’Fred_Green’,’Fred_Green’,’f r eh d g r iy n’,[])

’Fred_Green’,’Fred_Green’,’th r eh d g r iy n’,[])

’Fred_Green’,’Fred_Green’,’f r eh d z g r iy n’,[])

’Fred_Green’,’Fred_Green’,’f r eh d k r iy n’,[])

’Fred_Green’,’Fred_Green’,’f er eh d g r iy n’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n d iy b l ae k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n d iy z b l ae k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n p iy d b ah l ae ae k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n d iy d w ay v k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n p iy d w ay v k’,[])

’Arrive’,’Arrive’,’er ay v’,[])

’Arrive’,’ARRIVE’,’er aa ay v s’,[])

’Arrive’,’ARRIVE’,’er ao ay v s’,[])

’Arrive’,’ARRIVE’,’w er ay v s’,[])

’Arrive’,’ARRIVE’,’w er ay v z’,[])

’Buy_Computer’,’Buy_Computer’,’b ay k ah m p y uw t er’,[])

’Buy_Computer’,’BUY_COMPUTER’,’w ay k ah m p y uw r’,[])

’Buy_Computer’,’BUY_COMPUTER’,’w ay k ah m p y er’,[])

’Buy_Computer’,’BUY_COMPUTER’,’w ay g ah m p y uw r’,[])

’Buy_Computer’,’BUY_COMPUTER’,’w ay g ah m p y er’,[])
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’Recommend’,’Recommend’,’r eh k ah m eh n d’,[])

’Recommend’,’Recommend’,’r eh k ah m eh n d d iy’,[])

’Recommend’,’Recommend’,’r eh k ah m eh n d d uw z’,[])

’Office’,’Office’,’ao f ah s’,[])

’Office’,’OFFICE’,’ao f ah’,[])

’Office’,’OFFICE’,’f ah z’,[])

’Office’,’OFFICE’,’ao dh ah’,[])

’Office’,’OFFICE’,’ao l f ah’,[])

’Recommend’,’Recommend’,’r eh k ah m eh n d’,[])

’Recommend’,’RECOMMEND’,’r eh k m ah n b’,[])

’Recommend’,’RECOMMEND’,’r eh k w eh n b’,[])

’Recommend’,’RECOMMEND’,’r ah k w ih n b’,[])

’Recommend’,’RECOMMEND’,’r eh k w uh n b’,[])

joe_browning,joe_browning,’jh ow b r aw n ih ng’,[])

joe_browning,joe_browning,’jh ow b b r aw n iy’,[])

joe_browning,joe_browning,’jh r ow p b r aw m ih’,[])

joe_browning,joe_browning,’ch uw w b r aw n ih’,[])

joe_browning,joe_browning,’ch uw w b r aw n ey’,[])

’Fred_Green’,’Fred_Green’,’f r eh d g r iy n’,[])

’Fred_Green’,’Fred_Green’,’f r eh d k r iy n’,[])

’Fred_Green’,’Fred_Green’,’f r ih t g r iy n’,[])

’Fred_Green’,’Fred_Green’,’f r ih d g r iy n’,[])

’Fred_Green’,’Fred_Green’,’f r ih d k r iy n’,[])

joe_browning,joe_browning,’jh ow b r aw n ih ng’,[])

joe_browning,joe_browning,’jh ow b r aw n ih ng r ay’,[])

joe_browning,joe_browning,’jh ow b r aw n iy ng r ay’,[])

joe_browning,joe_browning,’jh ow b r aw n ey ng r ay’,[])

joe_browning,joe_browning,’jh ow b r aw n iy n r ay’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n d iy b l ae k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n d iy b l ay ae k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n y uw b w ae k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n y uw b l ay k’,[])

’Cindy_Black’,’Cindy_Black’,’s ih n y iy b w ay k’,[])

fred_green,fred_green,’f r eh d g r iy n’,[])

fred_green,fred_green,’f r ey d g r iy n’,[])

fred_green,fred_green,’f r eh d g r iy ng’,[])

fred_green,fred_green,’f r eh ih d g r iy n’,[])

fred_green,fred_green,’th r eh d g r iy n’,[])

’Arrive’,’Arrive’,’er ay v’,[])

’Arrive’,’Arrive’,’er ay v iy’,[])

’Arrive’,’Arrive’,’er ay v d’,[])

’Arrive’,’Arrive’,’er w ay v y’,[])

’Arrive’,’Arrive’,’er w ay v dh’,[])

’Buy_Computer’,’Buy_Computer’,’b ay k ah m p y uw t er’,[])

’Buy_Computer’,’Buy_Computer’,’hh w ay k ah m p y uw t er’,[])

’Buy_Computer’,’Buy_Computer’,’ay k ih m p y uw t uw l’,[])

’Buy_Computer’,’Buy_Computer’,’ay k ih m p y uw dh uw l’,[])

’Buy_Computer’,’Buy_Computer’,’ay k ih m p y uw d uw l’,[])

’Recommend’,’Recommend’,’r eh k ah m eh n d’,[])
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’Recommend’,’RECOMMEND’,’r w eh k uw m ih n d’,[])

’Recommend’,’RECOMMEND’,’r w ih k ah m eh n d dh’,[])

’Recommend’,’RECOMMEND’,’r w ih k ah m ih n d dh’,[])

’Recommend’,’RECOMMEND’,’r w ih k ah m ah n d dh’,[])

’Recommend’,’Recommend’,’r eh k ah m eh n d’,[])

’Recommend’,’RECOMMEND’,’k uw ah n d’,[])

’Recommend’,’RECOMMEND’,’t k uh ih n d’,[])

’Recommend’,’RECOMMEND’,’k uw ih n b’,[])

’Recommend’,’RECOMMEND’,’t g uw ah n d’,[])

office,office,’ao f ah s’,[])

office,office,’ao f ah s p iy’,[])

office,office,’ao f ih s’,[])

office,office,’ao f ih z’,[])

office,office,’ao f ah z’,[])

’Avail’,’Avail’,’ah v ey l’,[])

’Avail’,’Avail’,’ih b eh l’,[])

’Avail’,’Avail’,’ih t d ae ow l’,[])

’Avail’,’Avail’,’ih t b ae ow l’,[])

’AVAILABLE’,’AVAILABLE’,’ah v ey l ah b ah l’,[])

’AVAILABLE’,’AVAILABLE’,’ah v b iy l p ah l’,[])

’AVAILABLE’,’AVAILABLE’,’ah v dh ih ow l b l’,[])

’AVAILABLE’,’AVAILABLE’,’ah v dh eh l b l’,[])

’AVAILABLE’,’AVAILABLE’,’ah v dh ih l b l’,[])

joe_browning,joe_browning,’jh ow b r aw n ih ng’,[])

joe_browning,joe_browning,’jh uw b r aw n ih ng’,[])

joe_browning,joe_browning,’jh ow b r ah n ih ng’,[])

joe_browning,joe_browning,’jh uw b r ah n ih ng’,[])

joe_browning,joe_browning,’y uw l p r ah n ih ng’,[])

cindy_black,cindy_black,’s ih n d iy b l ae k’,[])

cindy_black,cindy_black,’s ih n d iy b w ae k’,[])

cindy_black,cindy_black,’s eh n d iy b w ae k’,[])

cindy_black,cindy_black,’s ih n jh iy b w ay k’,[])

cindy_black,cindy_black,’s ih n d iy p w ay ae k’,[])

fred_green,fred_green,’f r eh d g r iy n’,[])

fred_green,fred_green,’v r eh d g r iy n’,[])

fred_green,fred_green,’v r eh p g r iy n’,[])

fred_green,fred_green,’v r ey d g r iy n’,[])

fred_green,fred_green,’v r ey p g r iy n’,[])

’Buy_Computer’,’Buy_Computer’,’b ay k ah m p y uw t er’,[])

’Buy_Computer’,’Buy_Computer’,’k ah m p y uw t er’,[])

’Buy_Computer’,’Buy_computers’,’k ah m p y uw t er z’,[])

’Buy_Computer’,’Buy_Computer’,’k uw m p y uw t r’,[])

’Buy_Computer’,’Buy_Computer’,’k uw m p y uw t uh r’,[])

’Office’,’Office’,’ao f ah s’,[])

’Office’,’OFFICE’,’ao l f ah s’,[])

’Office’,’OFFICE’,’ao l f ah’,[])

’Office’,’OFFICE’,’ao l th ah s’,[])

’Office’,’OFFICE’,’aa l f ah s’,[])

’Recommend’,’Recommend’,’r eh k ah m eh n d’,[])
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’Recommend’,’RECOMMEND’,’r eh k ah m ih n d ih’,[])

’Recommend’,’RECOMMEND’,’r eh k ah m ih n d ey’,[])

’Recommend’,’RECOMMEND’,’r eh k ah m ih n d dh’,[])

’Recommend’,’RECOMMEND’,’er eh k er m ih n d ey’,[])

)

C.2 ABBREVIATION TABLE INFORMATION

As abbreviations are learned (Section 6.4) each abbreviation/expansion pair is enrolled

in an abbreviation lookup table. The list below is a cumulative log of those enrollments

for the first four meetings of the G series. This table aids in subsequent abbreviation

recognition, for example, by allowing lookups of the handwriting recognizer’s letter se-

quence hypotheses so that their expansions can be compared to the speech transcript (as

described in Section 5.3.2) for immediate association of known handwritten-abbreviation

with their transcribed redundant speech. When the list below is enrolled at the start of

the G5 meeting, exact duplicates will be filtered out, but orthographic alternatives will

be included.

JB | Joe Browning

JB | joe browning

FG | Fred Green

JB | joe browning

CB | Cindy Black

FG | fred green

Avail | AVAILABLE

JB | joe browning

CB | cindy black

FG | fred green

C.3 MIS-RECOGNITION TABLE INFORMATION

The entries listed below from the sphinx add to reco hw nbest table.log file provide the

input to the master speech recognizer’s prefix/suffix mis-recognition reinforcement table

(see Section 7.3), which associates high confidence recognitions with their list of related

mis-recognitions and significant affixes. We refer to affixes because mis-recognition in

SHACER is often triggered by ink skips, which tend to come at the beginning or ending of

terms — thus producing prefix/suffix letter string recognitions. Our intuition in regard to

ink-skip affix mis-recognitions is that the aspects of a user’s handwriting, which cause or

are related to the ink skip, may remain consistent for that handwriter — so the same affix
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mis-recognitions may occur over and over. When affix misrecognitions are discovered,

which are very highly correlated to a previous recognition, that consistent recognition

error can be transformed into its correct interpretation. The entries in this file are made

each time there is a high confidence integration of redundant handwriting and speech.

Each entry line below is added to the log file in parallel to the enrollment of a new word

in the Word/Phrase-Spotter recognizer. Each entry’s first parameter is the orthographic

representation of the new term being enrolled, which serves as a string-key for the hash-

table structure that is used to hold this lookup table’s information. The values associated

with each hashed string-key are those listed in the entry as the second parameter. This

list includes all handwriting recognizer alternate outputs for the enrolled term. The list

is used subsequently during handwriting and speech integration to identify handwriting

recognizer outputs that have been seen before and mis-recognized in the same form. When

that mis-recognition is substantially unique (i.e., above a threshold value of association

with a particular new word) then the system regards that the new word as having been

the actual handwriting entry. This can account for succeeding in label recognitions that

otherwise could not be correctly recognized by the system (e.g. Section 7.6.1 and 7.4).

log_entry(sphinx_add_to_reco_hw_nbest_table,sphinx_add_to_reco_hw_nbest_table(

’Joe_Browning’,[’For Browning’,’Joe Browning’,’Foe Browning’,’Toe

Browning’,’Hoe Browning’,’Joc Browning’,’Jos Browning’,’Fore Browning’,’Jol

Browning’,’foe Browning’])

’Arrive’,[’ARUM’,’ARRIVE’,’Arrive,’,’ARRUDA’,’Arrives’,’ARRIVER’,’ARRIVES’])

’Buy_Computer’,[’Buy Computer’,’BuyComputer’,’Busy

Computer’,’Buycomputer’,’Buoy Computer’,’Buycomputw’,’Bury

Computer’,’BuyComputw’,’Briny Computer’,’BuyCompufer’])

office,[’of fire’,’of fie’,’of fine’,’of free’,’of Fie’,’of fice’,’of

fico’,’of Grice’,’of Spice’])

proposed,[’trop used’,’Proposed’,’Hop used’,proposal,’top

used’,’propose,’,’Ho posed’,’to posed’,’to posed’,’HO posed’])

equipment,[’equip meant’,’equipment t’,’equip merit’,’Equipment t’,’equip

ment’,’equipmen t’,’equip meat’,’eyuipmen t’,’equip mint’])

’Available’,[’Avail able’,’Avail ab he’,’Avail ab le’,’Avail ab ie’,’Avail

ab Ie’,’Avail ab foe’,’Avail ab fie’,’Avail ab toe’,’Avail ab hoe’])

’JB’,[’TB’,’JOB’,’JIB’,’TAB’,’JAB’,’Jos’,’JP’,’J-B’,’j-B’])

’Fred_Green’,[’i-redesign’,’Erred Green’,’l-redesign’,’Erect
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Green’,’t-retirees’,’Eared Green’,’l-redlines’,’t-red

Green’,’i-redlines’,’l-red Green’])

’Cindy_Black’,[’Kindy Black’,’Cindy Black’,industrials,’Lindy

Black’,indusial,’iindy Black’,’Kindly Black’])

’Arrive’,[arrive,’Arvin’,avrivc,’Avrivc’,arrivi,avrive,avrivi,avriVc,arriva])

’Buy_Computer’,[’lay computer’,’1 uycemputer’,’1 uycempirter’,’1

uycempater’,’1

uyeanputer’,luyeanputer,burglarproofed,buyouts,buoyantly,’Honeycombs’])

’Recommend’,[’Reoco mm end’,’Reocommend’,’Reoc0 mm

end’,’Reocummend’,’Rococo mm end’,’Reocommenol’,’Revco mm

end’,’Reocommond’,’Reoccur mm end’])

’Office’,[office,’off ice’,’of fico’,’of fire’,’of file’,’of twice’,’of

fice’,’of trice’,’of fide’,’of fiche’])

’Recommend’,[recommend,’Recommencl’,’Rocommend’,’Rccommend’,’Recommenct’,

recommencl,’Recommenci’,recommenci,’Re commend’])

’JB’,[’5 B’,’TB’,’Js’,’Jos’,’J B’,’j B’,’5 B’,’y B’,’I B’])

’FG’,[’I-G’,’H-G’,’IT-G’,’Io-Gs’,’EG’,’To-Gs’,’HG’,’Io-GL’,’I-G,’])

’JB’,[’Jos’,’Js’,’JD’,’JDs’,’Job’,’Jas’,’Jog’,jd])

’CB’,[cos,as,cy,cd,cry,coy,ay,’Coy’,cis])

’FG’,[’EG’,’Visor’,’i-g’,tg,’Tier’,’i-or’,’Ii-or’,’Ti-or’,’ii-or’])

’Arrive’,[’ARNE’,arrive,’ARNIE’,’ARCANE’,’AR Rue’,’AR Rive’,’AR RWE’,’AR

RUNE’,’AR RNs’])

’Buy_Computer’,[’Buy computer’,’Buycomputer’,’Buycimputer’,’Buyamputer’,

’Buyeimputer’,’Buyamputcr’,’Bumper’,’Bumpier’,’Bumpers’,’Bumpiest’])

’Recommend’,[recommends,recommend,’1 ecoMMEWD’,iecoMMEWD,lecoMMEWD,

recommender,recommenders,’Recommender’,’Recommenders’])

’Recommend’,[recommend,recommender,’become ND’,’become END’,recommended,

’Become ND’,’Secom END’,’becomes ND’,’Become END’,’1 econmenD’])

office,[’Office’,’off

ice’,’oft-ice’,’off-ice’,officc,’of-fid’,offici,’oft-id’,officC])

’Avail’,[avail,’Artie’,’Arthur’,’Arian’,’Avian’,avian,’Arte’,

’Artier’,’Arties’])
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’Avail’,[trail,trait,avail,’t-rail’,’Argil’,’Arai,’,’trail.’,

’trail,’,’Argil,’])

’JB’,[’TB’,’5 B’,’JOB’,’JIB’,’J B’,’j B’,’5 B’,’y B’,’f B’])

’CB’,[iB,’SB’,’Cts’,’EB’,eB,cps,cB])

’FG’,[’T-G’,’F-G’,’I-O’,’FT-G’,’t-g’,’ET-G’,’l-g’,’i-g’])

’Buy_Computer’,[’Buy Computer’,’BuyCoarputer’,’Buy

computer’,’Buyloarputer’,’Buy computers’,’Buyloonputer’,’Buy

Coarputer’,’Buyloaiputer’,’Buy Coanputer’])

’Office’,[office,’oft-ice’,’of-fie’,’of-tice’,offici,’of-tie’,

offie,’of-fisc’,’oft-ie’])

’Recommend’,[’Recommencl’,’Recommenced’,’Recommenci’,’Recommenc’])

)

C.4 HANDWRITING RECOGNIZER BIAS INFORMA-

TION

As explained in Section 7.4 the lines of the vocab_nbest.txt file below populate the hand-

writing recognizer’s weight biasing mechanism, which boosts more frequently recognized

terms to higher positions on the handwriting recognizer’s output alternates list.

The entry lines below are added whenever a label is recognized and assigned during

Charter meeting processing, so the entries are for both integrated handwriting/speech

labels and also for labels assigned by handwriting recognition alone without the benefit of

a high confidence redundancy integration. Each addition increases to the term’s frequency

count maintained in the handwriting recognition agent. The effect of these entries in the

handwriting recognizer is that, for example, after JB has been used and recognized as a

label four times in meetings G1 - G4 (as reflected in the four file entries below and the four

times that JB appears in the int + speech illustrations shown in Sections D.4, D.5, D.6

and D.7) then in meeting G5 an instance of JB occurring in the alternates list resulting

from handwriting recognition will receive an appropriately biased score, which is likely to

move it up in term of its rank on that list of alternates. This means that frequently used

and recognized terms get recognized by the handwriting recognizer more easily over time

and usage.
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Joe Browning | 1

Arrive | 1

Buy Computer | 1

office | 1

proposed | 1

equipment | 1

space | 1

Available | 1

JB | 1

Arrive | 1

Fred Green | 1

Cindy Black | 1

Arrive | 1

lay computer | 1

Buy Computer | 1

Recommend | 1

Office | 1

Recommend | 1

JB | 1

CB | 1

FP | 1

sr | 1

FG | 1

JB | 1

Arrive | 1

CB | 1

FG | 1

Arrive | 1

Buy Computer | 1

Recommend | 1

Recommend | 1

office | 1

office | 1

Avail | 1

Avail | 1

Avail | 1

trail | 1

Avail | 1

Recommend | 1

JB | 1

cb | 1

CB | 1

FG | 1

Buy Computer | 1

Office | 1

Recommend | 1

Recommend | 1

1 K | 1

Z | 1
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KC | 1

avail | 1

avail | 1



Appendix D

Development Set Meeting Transcripts

D.1 SPHINX 2 PHONE SET

D.1.1 Noise Phones

There are nine noise phones used in SHACER’s versions of the Sphinx 2 speech recognizer.

+BREATH+, +CLICK+, +DOOR+,

+LAUGH+, +MIKE+, +NOISE+,

+NONVOCAL_NOISE+, +SOFT_NOISE+, +VOCAL_NOISE+

D.1.2 Speech Phones

There are forty speech phones used in the SHACER versions of the Sphinx 2 speech
recognizer.

AA, AE, AH, AO, AW,

AY, B, CH, D, DH,

EH, ER, EY, F, G,

HH, IH, IY, JH, K,

L, M, N, NG, OW,

OY, P, R, S, SH,

SIL, T, TH, UH, UW,

V, W, Y, Z, ZH

D.2 LVCSR LATTICE EXAMPLE

The following is an elided version of a lattice file produced by Speechalyzer (see Sec-

tion 5.4.1).

...

Frames 264

#

Nodes 232 (NODEID WORD STARTFRAME FIRST-ENDFRAME LAST-ENDFRAME)
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0 </s> 264 264 264

1 <sil> 212 236 263

2 ++BREATH++ 212 220 235

3 ARE(2) 204 207 217

4 OR(2) 204 206 217

5 THEIR 179 198 217

6 THEY’RE 179 198 217

7 THERE 179 197 218

8 THERE’RE 178 202 203

9 THEIR 178 198 217

10 THEY’RE 178 198 218

11 THERE 178 197 218

12 OTHER 170 190 219

...

142 I’M 20 33 46

143 IN(2) 20 32 44

144 THE(2) 20 30 33

145 TWO 20 30 34

146 THE(3) 20 29 31

147 TO(3) 20 28 33

148 I 20 26 28

149 COMPUTER 19 68 116

150 COMPUTE 19 64 77

151 DUMPS 19 50 55

152 DUMP 19 47 57

153 DIDN’T(4) 19 44 48

154 AM 19 39 44

155 COME 19 32 48

156 TWO 19 31 32

...

218 PIPE 1 19 28

219 POINT 1 19 28

220 BUTT 1 18 28

221 PART 1 18 28

222 BEEN(2) 1 17 20

223 BUT 1 16 30

224 WHY(2) 1 15 17

225 BUY 1 13 18

226 BY 1 13 19

227 BYE 1 13 19

228 PER 1 13 17

229 BOY 1 12 16

230 <sil> 1 2 12

231 <s> 0 0 0

#

Initial 231

Final 0

#

BestSegAscr 0 (NODEID ENDFRAME ASCORE)
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#

Edges (FROM-NODEID TO-NODEID ASCORE)

1 0 -166492

3 1 -150221

3 2 -150221

4 1 -150221

4 2 -150221

5 1 -449761

5 2 -449761

5 3 -340703

5 4 -340703

...

230 198 -38822

230 199 -38822

230 200 -38822

230 201 -38822

230 202 -38822

230 203 -38822

230 204 -38822

230 205 -38822

230 206 -38822

231 207 0

231 208 0

...

231 226 0

231 227 0

231 228 0

231 229 0

231 230 0

End

D.3 LVCSR TRANSCRIPT EXAMPLE

The following is a formatted version of an individual utterance’s transcript file extracted

from the larger Speechalyzer output file.

UTTERANCE: (

a. 01050427Z005351,

b. 2005-05-24T14:42:37.516,

c. 2005-05-24T14:42:40.059,

d. BUT COMPUTER AND OTHER,(

(

d. 2005-05-24T14:42:37.516,

e. 2005-05-24T14:42:37.716,

f. BUT),

(

d. 2005-05-24T14:42:37.725,
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e. 2005-05-24T14:42:38.535,

f. COMPUTER),

(

d. 2005-05-24T14:42:38.544,

e. 2005-05-24T14:42:39.011,

f. AND),

(

d. 2005-05-24T14:42:39.020,

e. 2005-05-24T14:42:39.087,

f. <sil>),

(

d. 2005-05-24T14:42:39.097,

e. 2005-05-24T14:42:39.525,

f. OTHER),

(

d. 2005-05-24T14:42:39.535,

e. 2005-05-24T14:42:40.020,

f. <sil>),

(

d. 2005-05-24T14:42:40.030,

e. 2005-05-24T14:42:40.030,

f. </s>)))
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D.4 G1 MEETING

Figure D.1: Ink for the G1 Meeting.

Figure D.2: Phase 1 (ink-only) processing of the G1 Meeting.

Figure D.3: Phase 2 (ink + speech) processing of the G1 Meeting.
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D.5 G2 MEETING

Figure D.4: Ink for the g2 Meeting.

Figure D.5: Phase 1 (ink-only) processing of the g2 Meeting.

Figure D.6: Phase 2 (ink + speech) processing of the g2 Meeting.
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D.6 G3 MEETING

Figure D.7: Ink for the g3 Meeting.

Figure D.8: Phase 1 (ink-only) processing of the g3 Meeting.

Figure D.9: Phase 2 (ink + speech) processing of the g3 Meeting.
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D.7 G4 MEETING

Figure D.10: Ink for the g4 Meeting.

Figure D.11: Phase 1 (ink-only) processing of the g4 Meeting.

Figure D.12: Phase 2 (ink + speech) processing of the g4 Meeting.
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D.8 G5 MEETING

Figure D.13: Ink for the g5 Meeting.

Figure D.14: Phase 1 (ink-only) processing of the g5 Meeting.

Figure D.15: Phase 2 (ink + speech) processing of the g5 Meeting.
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D.8.1 COMBINED SPEECH/GESTURE TRANSCRIPTS

The development set of meetings from the CALO year 2 data set is referred to as the G

series. The transcript for each of the five meetings is given in the sections below.

The key below explains what is shown on each line of output in the following sections.

On Line-1 there is first the sequence numberings of the utterance or gesture (9(8) — note

that gestures are within upper and lower equal-lines (e.g. =====), then the start-time

and end-time of the utterance in seconds and milliseconds, followed by the file name stem

of the utterance, which is used to locate the corresponding lattice file. On Line-2 is the

Speechalyzer recognition transcript, followed on Line-3 by the hand-annotated transcript,

and on Line-4 the canonical phone sequence for the hand-annotated transcript.

Key Example:
Line-1. 9(8): 1116970739.849 1116970741.373 transcript (01050427Z004148):

Line-2. IS THERE SOME WITH TILL

Line-3. IS THERE SOME WAY TO TELL

Line-4. IH Z DH EH R S AH M W EY T IH T EH L

D.8.2 G5 FULL TRANSCRIPT
Meeting ID: 1117129989000 G5

1(0): 1117130117.731 1117130119.588 transcript (01050926Z113634):

2(1): 1117130120.731 1117130123.131 transcript (01050926Z113639):

YOU KNOW

Y UW N OW

3(2): 1117130123.131 1117130126.484 transcript (01050926Z113647):

I’M GETTING

AY M G EH T IH NG

4(3): 1117130126.484 1117130131.64 transcript (01050926Z113659):

THE SAME RESPONSE WHETHER SOME WAY IT FOR

THE SAME RESPONSE WHETHER IT’S ON MY HEAD OR UH THAT’S

DH IY S EY M R IH S P AA N S W EH DH ER IH T S AA N M AY HH EH D ER DH AE T S

5(4): 1117130132.7 1117130133.84 transcript (01050926Z113717):

THAT’S BETTER

BETTER

B EH T ER

6(5): 1117130133.103 1117130133.884 transcript (01050926Z113719):

GOOD

GOOD

G UH D

7(6): 1117130134.750 1117130136.417 transcript (01050926Z113722):

WELL CASE

OKAY

OW K EY

8(7): 1117130141.131 1117130143.179 transcript (01050926Z113728):
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ALRIGHT ELEMENT

ALRIGHT GENTLEMEN UM

AO L R AY T JH EH N AH L M IH N

9(8): 1117130144.36 1117130145.636 transcript (01050926Z113734):

LET’S GET STARTED

LET’S GET STARTED

L EH T S G EH T S T AA R T AH D

10(9): 1117130145.855 1117130148.26 transcript (01050926Z113738):

AND JUST

AND UH JUST

AE N D JH IH S T

11(10): 1117130148.474 1117130154.103 transcript (01050926Z113743):

QUICKLY ORIENTED RE BUTT IN THERE WILL HAVE FOLKS REPORT OUT HERE WE ARE WITH OR TIMELINE

QUICKLY TO ORIENT EVERYBODY AND THEN WE’LL HAVE FOLKS REPORT OUT HERE WE ARE WITH OUR TIMELINE

K W IH K L IY T UW AO R IY EH N T EH V R IY B AA D IY AE N D DH EH N W IY L HH AE V F OW K S R IH P AO R T AW T HH IH R W IY AA R W IH

TH AW ER T AY M L AY N

== GESTURE ============================================================

1: 1117130152.222 1117130155.738

[xy axis(prob(0, 0.957)), line(prob(6, 0.748)), writing(prob(13, 0.55), text(1)), writing(prob(21, 0.378), text(L)), writing(prob(25, 0.318),

text(z)), writing(prob(25, 0.312), text(k)), writing(prob(26, 0.306), text(l)), writing(prob(26, 0.3), text(t)), writing(prob(26, 0.294),

text(i)), writing(prob(27, 0.288), text(r)), arrow(prob(30, 0.248), vh(305, -6), vh(797, 901), 334)]

=======================================================================

== GESTURE ============================================================

2: 1117130156.972 1117130157.191

[tick(prob(8, 0.672)), writing(prob(13, 0.53), text(1)), writing(prob(24, 0.33), text(I)), writing(prob(24, 0.324), text(l)), line(prob(26,

0.303)), writing(prob(26, 0.3), text(i)), writing(prob(27, 0.282), text(K)), writing(prob(28, 0.276), text(M)), arrow(prob(47, 0.116),

vh(655, 403), vh(702, 393), 258)]

=======================================================================

12(11): 1117130157.45 1117130158.636 transcript (01050926Z113802):

WEEK WHEN

WEEK ONE

W IY K HH W AH N

== GESTURE ============================================================

3: 1117130157.566 1117130157.753

[writing(prob(13, 0.53), text(1)), tick(prob(14, 0.512)), writing(prob(24, 0.33), text(I)), writing(prob(25, 0.312), text(l)), writing(prob(26,

0.3), text(i)), writing(prob(27, 0.282), text(L)), writing(prob(28, 0.276), text(K)), line(prob(38, 0.171))]

=======================================================================

== GESTURE ============================================================

4: 1117130158.363 1117130158.769

[tick(prob(6, 0.729)), writing(prob(13, 0.53), text(1)), writing(prob(24, 0.33), text(I)), writing(prob(25, 0.312), text(l)), writing(prob(26,

0.3), text(i)), writing(prob(27, 0.288), text(y)), writing(prob(27, 0.282), text(K)), line(prob(28, 0.28)), writing(prob(28, 0.276), text(M))]

=======================================================================

== GESTURE ============================================================

5: 1117130159.35 1117130159.535

[writing(prob(13, 0.55), text(2)), writing(prob(14, 0.52), text(1)), writing(prob(15, 0.5), text(3)), tick(prob(22, 0.365)), writing(prob(24,

0.324), text(z)), writing(prob(25, 0.318), text(Z)), writing(prob(26, 0.306), text(L)), writing(prob(26, 0.294), text(i)), writing(prob(27,

0.288), text(a)), writing(prob(27, 0.282), text(s)), writing(prob(28, 0.276), text(B)), line(prob(41, 0.154))]

=======================================================================

13(12): 1117130159.274 1117130160.360 transcript (01050926Z113806):

TO

WEEK TWO

W IY K T UW

== GESTURE ============================================================

6: 1117130160.316 1117130160.863
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[tick(prob(10, 0.627)), writing(prob(13, 0.53), text(1)), line(prob(24, 0.333)), writing(prob(24, 0.33), text(I)), writing(prob(25, 0.312),

text(l)), writing(prob(26, 0.3), text(i)), writing(prob(27, 0.282), text(V)), writing(prob(28, 0.276), text(y)), arrow(prob(48, 0.111),

vh(657, 676), vh(711, 678), 274)]

=======================================================================

== GESTURE ============================================================

7: 1117130161.160 1117130161.753

[writing(prob(10, 0.63), text(3)), writing(prob(25, 0.318), text(z)), writing(prob(25, 0.312), text(g)), writing(prob(26, 0.306), text(J)),

writing(prob(26, 0.3), text(s)), writing(prob(26, 0.294), text(I)), tick(prob(28, 0.272)), line(prob(45, 0.125))]

=======================================================================

14(13): 1117130161.179 1117130162.636 transcript (01050926Z113809):

THE FOR THE

WEEK THREE

W IY K TH R IY

== GESTURE ============================================================

8: 1117130162.457 1117130162.941

[tick(prob(8, 0.683)), writing(prob(13, 0.53), text(1)), writing(prob(24, 0.33), text(I)), writing(prob(25, 0.312), text(l)), writing(prob(26,

0.3), text(i)), writing(prob(27, 0.282), text(y)), line(prob(28, 0.278)), writing(prob(28, 0.276), text(K))]

=======================================================================

== GESTURE ============================================================

9: 1117130163.253 1117130164.753

[writing(prob(10, 0.63), text(4)), writing(prob(24, 0.33), text(a)), writing(prob(24, 0.324), text(q)), arrow(prob(42, 0.146), vh(710,

804), vh(747, 814), 288), line(prob(44, 0.131))]

=======================================================================

15(14): 1117130163.407 1117130167.112 transcript (01050926Z113813):

WHICH SO ONE GO FOR THE SYSTEM THAT BUT THE TIMELINE FOR

== GESTURE ============================================================

10: 1117130165.738 1117130166.425

[tick(prob(8, 0.677)), writing(prob(14, 0.52), text(1)), writing(prob(17, 0.46), text(No)), writing(prob(24, 0.33), text(I)), writing(prob(25,

0.318), text(l)), writing(prob(26, 0.3), text(i)), line(prob(27, 0.292)), writing(prob(27, 0.288), text(K)), writing(prob(27, 0.282), text(N)),

arrow(prob(46, 0.12), vh(675, 983), vh(720, 992), 284)]

=======================================================================

== GESTURE ============================================================

11: 1117130166.847 1117130167.910

[writing(prob(10, 0.63), text(5)), writing(prob(13, 0.54), text(s-)), writing(prob(13, 0.53), text(g-)), writing(prob(24, 0.33), text(T)),

writing(prob(25, 0.312), text(s))]

=======================================================================

16(15): 1117130167.712 1117130169.7 transcript (01050926Z113828):

INTO TO YOU

HAND IT TO YOU

HH AE N D IH T T IH Y UW

17(16): 1117130169.350 1117130170.550 transcript (01050926Z113831):

ALRIGHT

ALRIGHT

AO L R AY T

== GESTURE ============================================================

12: 1117130169.879 1117130171.957

[line(prob(2, 0.883)), writing(prob(12, 0.56), text(sr)), writing(prob(13, 0.55), text(Mr)), writing(prob(13, 0.54), text(nr)), writing(prob(13,

0.53), text(mr)), writing(prob(14, 0.51), text(ir)), writing(prob(15, 0.5), text(er)), writing(prob(15, 0.49), text(ire)), writing(prob(16,

0.48), text(ira)), arrow(prob(21, 0.381), vh(187, 163), vh(204, 1111), 360), xy axis(prob(29, 0.267)), writing(prob(36, 0.187), text())]

=======================================================================

18(17): 1117130172.17 1117130173.293 transcript (01050926Z113834):

WE HAVE

WE HAVE
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W IY HH AE V

== GESTURE ============================================================

13: 1117130173.644 1117130174.972

[writing(prob(13, 0.55), text(IB)), writing(prob(13, 0.53), text(BB)), writing(prob(14, 0.52), text(SB)), writing(prob(14, 0.51), text(3B)),

writing(prob(15, 0.5), text(Jos)), writing(prob(15, 0.49), text(JPs)), writing(prob(16, 0.48), text(Ips)), writing(prob(16, 0.47), text(sis)),

writing(prob(17, 0.46), text(jpg)), writing(prob(24, 0.324), text(B)), diamond(prob(46, 0.12))]

=======================================================================

19(18): 1117130174.17 1117130175.341 transcript (01050926Z113838):

JOB RUNNING

JOE BROWNING

JH OW B R AW N IH NG

== GESTURE ============================================================

14: 1117130176.160 1117130177.738

[writing(prob(25, 0.312), text(a B)), writing(prob(27, 0.288), text(i B)), writing(prob(28, 0.276), text(r B)), diamond(prob(29, 0.259)),

arrow(prob(44, 0.131), vh(222, 1049), vh(247, 1075), 320)]

=======================================================================

20(19): 1117130176.207 1117130180.760 transcript (01050926Z113841):

THIS IN THE BLACK AND FRED’S GREEN

UH CINDY BLACK AND FRED GREEN

S IH N D IY B L AE K AE N D F R EH D G R IY N

== GESTURE ============================================================

15: 1117130178.285 1117130180.426

[writing(prob(13, 0.55), text(Fey)), writing(prob(13, 0.54), text(ECT)), writing(prob(13, 0.53), text(Fee)), writing(prob(14, 0.52), text(Foy)),

writing(prob(14, 0.51), text(Frey)), writing(prob(15, 0.5), text(t-e, )), writing(prob(15, 0.49), text(t-er)), writing(prob(16, 0.48),

text(t-el)), writing(prob(16, 0.47), text(r-er)), writing(prob(17, 0.46), text(t-or))]

=======================================================================

21(20): 1117130181.55 1117130184.84 transcript (01050926Z113854):

AND JOB RUNNING IS ARRIVING HERE STILL

AND JOE BROWNING IS ARRIVING HERE STILL

AE N D JH OW B R AW N IH NG IH Z ER AY V IH NG HH IH R S T IH L

== GESTURE ============================================================

16: 1117130182.269 1117130184.457

[diamond(prob(5, 0.79)), writing(prob(14, 0.51), text(9)), writing(prob(15, 0.5), text(4)), writing(prob(16, 0.48), text(47)), writing(prob(16,

0.47), text(67)), writing(prob(24, 0.324), text(H)), writing(prob(26, 0.294), text(A)), arrow(prob(38, 0.172), vh(161, 824), vh(214, 820),

266)]

=======================================================================

22(21): 1117130184.207 1117130186.7 transcript (01050926Z113903):

BUT STORED WEEK FOR

AT THE START OF WEEK FOUR

AE T DH IY S T AA R T AH V W IY K F AO R

23(22): 1117130186.369 1117130188.36 transcript (01050926Z113908):

AND

AND UM

AE N D

== GESTURE ============================================================

17: 1117130187.801 1117130189.113

[writing(prob(9, 0.65), text(JB)), writing(prob(9, 0.64), text(IB)), writing(prob(10, 0.63), text(SB)), writing(prob(11, 0.6), text(3B)),

writing(prob(14, 0.52), text(TB)), writing(prob(14, 0.51), text(FB)), writing(prob(15, 0.49), text(JOB)), writing(prob(16, 0.48), text(JIB)),

writing(prob(17, 0.46), text(JAB)), diamond(prob(25, 0.317))]

=======================================================================

24(23): 1117130190.960 1117130192.464 transcript (01050926Z113912):

CINDY’S GREEN

CINDY GREEN

S IH N D IY G R IY N
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== GESTURE ============================================================

18: 1117130191.51 1117130192.988

[diamond(prob(6, 0.751)), writing(prob(13, 0.55), text(4)), writing(prob(13, 0.54), text(0)), writing(prob(16, 0.48), text(Ro)), writing(prob(16,

0.47), text(Ay)), writing(prob(17, 0.46), text(AD)), writing(prob(25, 0.318), text(H)), writing(prob(25, 0.312), text(x)), writing(prob(26,

0.306), text(D)), writing(prob(26, 0.3), text(A)), writing(prob(26, 0.294), text(R)), arrow(prob(42, 0.146), vh(175, 984), vh(215, 991),

281)]

=======================================================================

25(24): 1117130192.464 1117130194.293 transcript (01050926Z113916):

AND FRED’S BLACK

AND FRED BLACK

AE N D F R EH D B L AE K

== GESTURE ============================================================

19: 1117130193.473 1117130195.941

[writing(prob(7, 0.7), text(CB)), writing(prob(11, 0.59), text(cb)), writing(prob(13, 0.55), text(as)), writing(prob(13, 0.54), text(cos)),

writing(prob(13, 0.53), text(eb)), writing(prob(14, 0.52), text(lb)), writing(prob(14, 0.51), text(cis)), writing(prob(15, 0.5), text(eB)),

writing(prob(16, 0.48), text(ib)), diamond(prob(26, 0.3))]

=======================================================================

26(25): 1117130194.312 1117130197.417 transcript (01050926Z113922):

PARSERS SUNDAY BLACK INFER AGREEING

I’M SORRY CINDY BLACK AND FRED GREEN

AY M S AA R IY S IH N D IY B L AE K AE N D F R EH D G R IY N

== GESTURE ============================================================

20: 1117130196.348 1117130198.113

[writing(prob(9, 0.64), text(Foy)), writing(prob(13, 0.55), text(Fy)), writing(prob(13, 0.53), text(Fop)), writing(prob(14, 0.52), text(Fs)),

writing(prob(14, 0.51), text(Foe)), writing(prob(15, 0.5), text(Ftp)), writing(prob(15, 0.49), text(fa)), writing(prob(16, 0.48), text(Ft.)),

writing(prob(16, 0.47), text(t-g)), writing(prob(17, 0.46), text(t-a)), diamond(prob(46, 0.122))]

=======================================================================

27(26): 1117130197.512 1117130200.684 transcript (01050926Z113931):

OR ARRIVING HERE TO STORE THAT WE FIVE

ARE ARRIVING HERE AT THE START OF WEEK FIVE

AA R ER AY V IH NG HH IH R AE T DH IY S T AA R T AH V W IY K F AY V

28(27): 1117130200.684 1117130204.560 transcript (01050926Z113943):

WHERE RIGHT HERE AT AT THE START OF WEEK FOURIER

WE’RE RIGHT HERE AT THE START OF WEEK THREE

W IY R R AY T HH IH R AE T DH AH S T AA R T AH V W IY K TH R IY

== GESTURE ============================================================

21: 1117130203.738 1117130207.4

[line(prob(2, 0.892)), arrow(prob(19, 0.419), vh(372, 168), vh(344, 1088), 1), writing(prob(26, 0.306), text(e)), writing(prob(26, 0.3),

text(J)), writing(prob(26, 0.294), text(T)), writing(prob(27, 0.288), text(G)), writing(prob(27, 0.282), text(L)), writing(prob(28, 0.276),

text(I)), xy axis(prob(29, 0.262))]

=======================================================================

29(28): 1117130207.731 1117130209.426 transcript (01050926Z113955):

AND

AND UM

AE N D

== GESTURE ============================================================

22: 1117130212.426 1117130215.770

[diamond(prob(5, 0.773)), writing(prob(13, 0.53), text(97)), writing(prob(14, 0.52), text(ay)), writing(prob(24, 0.324), text(D)), arrow(prob(40,

0.158), vh(330, 801), vh(375, 798), 267)]

=======================================================================

30(29): 1117130212.674 1117130213.931 transcript (01050926Z113959):

SO FAR

SO FAR

S OW F AA R

31(30): 1117130214.684 1117130220.331 transcript (01050926Z114002):
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CHECKERS TOLD US THAT BUYING THE START A WEEK FOR WE WILL HAVE THREE COMPUTERS

JACK HAS TOLD US THAT BY THE START OF WEEK FOUR WE WILL HAVE THREE COMPUTERS

JH AE K HH AH Z T OW L D AH S DH AE T B AY DH IY S T AA R T AH V W IY K F AO R W IY W IH L HH AE V TH R IY K AH M P Y UW T ER Z

== GESTURE ============================================================

23: 1117130218.145 1117130221.645

[writing(prob(13, 0.55), text(3pc)), writing(prob(13, 0.54), text(3K)), writing(prob(13, 0.53), text(37K)), writing(prob(14, 0.52), text(32K)),

writing(prob(14, 0.51), text(34K)), writing(prob(15, 0.5), text(377K)), writing(prob(15, 0.49), text(Jpe)), writing(prob(16, 0.48), text(Jpg)),

writing(prob(16, 0.47), text(spe)), writing(prob(17, 0.46), text(Jpi))]

=======================================================================

32(31): 1117130222.179 1117130224.588 transcript (01050926Z114017):

AND ONE PRINTER

AND ONE PRINTER

AE N D W AH N P R IH N ER

== GESTURE ============================================================

24: 1117130223.629 1117130228.20

[writing(prob(13, 0.55), text(sprinter)), writing(prob(13, 0.54), text(printer)), writing(prob(13, 0.53), text(Printer)), writing(prob(14,

0.52), text(printers)), writing(prob(15, 0.5), text(Imprinter)), writing(prob(15, 0.49), text(Printers)), writing(prob(16, 0.47), text(sprint-or))]

=======================================================================

== GESTURE ============================================================

25: 1117130228.676 1117130237.395

[writing(prob(13, 0.55), text(1datascrver)), writing(prob(13, 0.53), text(1dataserver)), writing(prob(14, 0.52), text(data server)), writing(prob(14,

0.51), text(1datasorver)), writing(prob(15, 0.5), text(1data server)), writing(prob(15, 0.49), text(1datasaver)), writing(prob(16, 0.48),

text(rata server)), writing(prob(16, 0.47), text(caterer)), writing(prob(17, 0.46), text(Hakata server))]

=======================================================================

33(32): 1117130228.798 1117130230.188 transcript (01050926Z114023):

IN ONE

AND ONE

AE N D W AH N

34(33): 1117130230.331 1117130232.645 transcript (01050926Z114027):

DATA SERVER

UH DATA SERVER

D EY T AH S ER V ER

35(34): 1117130250.579 1117130252.998 transcript (01050926Z114032):

OKAY SO OLD

OKAY SO

OW K EY S OW

36(35): 1117130254.64 1117130255.826 transcript (01050926Z114040):

LET’S LISTEN TO BUILD

LET’S LISTEN TO BILL

L EH T S L IH S AH N T AH B IH L

37(36): 1117130265.541 1117130266.379 transcript (01050926Z114045):

38(37): 1117130289.588 1117130292.436 transcript (01050926Z114048):

SO BY BY THE START OF WEEK FIVE

SO BY BY THE START OF WEEK FIVE

S OW B AY B AY DH AH S T AA R T AH V W IY K F AY V

39(38): 1117130295.341 1117130297.150 transcript (01050926Z114056):

SO

SO

S OW

40(39): 1117130297.579 1117130301.579 transcript (01050926Z114103):

CHECK IT I UNDERSTAND YOU TO SAY THAT THAT THE
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JACK DID I UNDERSTAND YOU TO SAY THAT THE UM

JH AE K D IH D AY AH N D ER S T AE N D Y UW T IH S EY DH AH T DH IY

41(40): 1117130301.912 1117130305.798 transcript (01050926Z114115):

THAT THERE WAS A DELAY IN THE TWO P C’S WHICH WE HAD TO ORDER

THAT THERE WAS A DELAY IN THE TWO P C’S WHICH WE HAD TO ORDER

DH AH T DH EH R W AH Z AH D IH L EY IH N DH IY T UW P IY S IY Z W IH CH W IY HH AE D T UW AO R D ER

42(41): 1117130335.512 1117130336.703 transcript (01050926Z114128):

ALRIGHT

ALRIGHT

AO L R AY T

43(42): 1117130336.750 1117130339.122 transcript (01050926Z114131):

SO LET’S DO THIS

SO LET’S DO THIS

S OW L EH T S D UW DH IH S

== GESTURE ============================================================

26: 1117130336.788 1117130337.803

[cross(prob(13, 0.538)), writing(prob(14, 0.52), text(Th)), writing(prob(14, 0.51), text(th)), writing(prob(15, 0.5), text(Xx)), writing(prob(15,

0.49), text(xx)), writing(prob(16, 0.47), text(Ta)), writing(prob(21, 0.378), text(x)), writing(prob(24, 0.33), text(X)), writing(prob(25,

0.318), text(y)), writing(prob(27, 0.288), text(t)), arrow(prob(29, 0.256), vh(413, 768), vh(397, 839), 11), diamond(prob(34, 0.211)),

line(prob(38, 0.175))]

=======================================================================

== GESTURE ============================================================

27: 1117130338.256 1117130338.694

[line(prob(13, 0.531)), arrow(prob(30, 0.25), vh(442, 785), vh(438, 897), 1), tick(prob(44, 0.132))]

=======================================================================

== GESTURE ============================================================

28: 1117130338.944 1117130339.319

[line(prob(13, 0.539)), writing(prob(25, 0.312), text(I)), writing(prob(26, 0.294), text(S)), writing(prob(27, 0.288), text(i)), writing(prob(27,

0.282), text(s)), writing(prob(28, 0.276), text(T)), arrow(prob(30, 0.25), vh(418, 888), vh(478, 777), 206), xy axis(prob(35, 0.203)), tick(prob(44,

0.134))]

=======================================================================

== GESTURE ============================================================

29: 1117130339.663 1117130340.881

[writing(prob(12, 0.56), text(To)), writing(prob(25, 0.318), text(i)), writing(prob(25, 0.312), text(x)), arrow(prob(26, 0.303), vh(495,

788), vh(481, 932), 5), writing(prob(26, 0.3), text(T)), writing(prob(26, 0.294), text(F)), writing(prob(27, 0.288), text(t)), line(prob(34,

0.208)), xy axis(prob(49, 0.105))]

=======================================================================

44(43): 1117130340.674 1117130343.503 transcript (01050926Z114138):

AND WE HAVE ONE P C

AND WE HAVE ONE P C

AE N D W IY HH AE V W AH N P IY S IY

== GESTURE ============================================================

30: 1117130341.772 1117130343.678

[writing(prob(9, 0.65), text(pc)), writing(prob(10, 0.63), text(pl)), writing(prob(13, 0.54), text(1pc)), writing(prob(14, 0.52), text(po)),

writing(prob(14, 0.51), text(1PC)), writing(prob(15, 0.5), text(1Pc)), writing(prob(15, 0.49), text(pl.)), writing(prob(16, 0.47), text(pee)),

diamond(prob(35, 0.2))]

=======================================================================

45(44): 1117130344.369 1117130346.750 transcript (01050926Z114146):

THAT WEEK FOR FOR A JOB RUNNING

AT WEEK FOUR FOR JOE BROWNING

AE T W IY K F AO R F R ER JH OW B R AW N IH NG

46(45): 1117130346.950 1117130349.988 transcript (01050926Z114153):

AND THEN IT TO START A WEEK BIAS

AND THEN AT THE START OF WEEK FIVE
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AE N D DH EH N AE T DH AH S T AA R T AH V W IY K F AY V

== GESTURE ============================================================

31: 1117130348.210 1117130350.616

[diamond(prob(9, 0.649)), writing(prob(12, 0.56), text(Ay)), writing(prob(13, 0.55), text(4)), writing(prob(14, 0.51), text(9)), writing(prob(16,

0.48), text(Ra)), writing(prob(16, 0.47), text(Ah)), writing(prob(24, 0.324), text(H)), writing(prob(25, 0.312), text(A)), writing(prob(26,

0.3), text(R)), writing(prob(26, 0.294), text(D)), arrow(prob(40, 0.157), vh(322, 992), vh(370, 994), 273)]

=======================================================================

47(46): 1117130349.988 1117130351.198 transcript (01050926Z114203):

WE WILL HAVE

WE WILL HAVE

W IY W AH L HH AE V

== GESTURE ============================================================

32: 1117130351.38 1117130353.69

[writing(prob(10, 0.63), text(210)), writing(prob(13, 0.54), text(xo)), writing(prob(13, 0.53), text(40)), writing(prob(14, 0.52), text(21O)),

writing(prob(14, 0.51), text(HO)), writing(prob(15, 0.5), text(2lo)), writing(prob(15, 0.49), text(2l0)), writing(prob(16, 0.48), text(218)),

writing(prob(16, 0.47), text(rio))]

=======================================================================

48(47): 1117130351.484 1117130353.55 transcript (01050926Z114207):

TWO P C’S

THE TWO P C’S

DH AH T UW P IY S IY Z

49(48): 1117130353.303 1117130356.17 transcript (01050926Z114210):

FOR SUNDAY BLACK AND FRED’S GREEN

FOR CINDY BLACK AND FRED GREEN

F R ER S IH N D IY B L AE K AE N D F R EH D G R IY N

50(49): 1117130356.17 1117130357.674 transcript (01050926Z114217):

ONE ONE PRINTER

WE’LL HAVE ONE PRINTER

W IY L HH AE V W AH N P R IH N ER

== GESTURE ============================================================

33: 1117130356.382 1117130356.663

[writing(prob(13, 0.54), text(1)), writing(prob(24, 0.33), text(I)), writing(prob(25, 0.318), text(l)), writing(prob(26, 0.3), text(i)),

writing(prob(27, 0.288), text(r)), writing(prob(27, 0.282), text(V)), writing(prob(28, 0.276), text(y)), tick(prob(34, 0.205)), line(prob(36,

0.191))]

=======================================================================

== GESTURE ============================================================

34: 1117130357.85 1117130361.257

[writing(prob(9, 0.65), text(printer)), writing(prob(11, 0.59), text(printers)), writing(prob(13, 0.54), text(grunter)), writing(prob(13,

0.53), text(painter)), writing(prob(14, 0.52), text(granter)), writing(prob(14, 0.51), text(punter)), writing(prob(15, 0.5), text(irinter)),

writing(prob(16, 0.48), text(lrinter)), writing(prob(16, 0.47), text(trent-er)), writing(prob(17, 0.46), text(trial-er))]

=======================================================================

51(50): 1117130361.455 1117130364.703 transcript (01050926Z114222):

AND WHEN DO IS SERVER SIDE RIGHT

AND ONE DATA SERVER IS THAT RIGHT

AE N D W AH N D EY T AH S ER V ER IH Z DH AE T R AY T

== GESTURE ============================================================

35: 1117130362.69 1117130369.147

[writing(prob(10, 0.63), text(clatterer)), writing(prob(11, 0.59), text(Clatterer)), writing(prob(13, 0.55), text(Idatuserver)), writing(prob(14,

0.51), text(iclatuserver)), writing(prob(16, 0.47), text(idatuserver)), writing(prob(17, 0.46), text(idolater server))]

=======================================================================

52(51): 1117130369.560 1117130370.617 transcript (01050926Z114232):

ALRIGHT

ALRIGHT

AO L R AY T
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53(52): 1117130371.445 1117130374.531 transcript (01050926Z114234):

SO IT’S GETTING TIRED BUT IT’S STILL DOABLE

SO IT’S GETTING TIGHTER BUT IT’S STILL DOABLE

S OW IH T S G IH T IH NG T AY T ER B AH T IH T S S T IH L D UW AH B AH L

54(53): 1117130376.245 1117130380.226 transcript (01050926Z114243):

ALRIGHT SO LET’S LOOK AT OUR OFFICE TIMELINE

ALRIGHT SO LET’S LOOK AT OUR OFFICE TIMELINE

AO L R AY T S OW L EH T S L UH K AE T AW ER AO F AH S T AY M L AY N

== GESTURE ============================================================

36: 1117130376.835 1117130379.585

[line(prob(3, 0.86)), writing(prob(9, 0.65), text(mr)), writing(prob(13, 0.54), text(win)), writing(prob(13, 0.53), text(men)), writing(prob(14,

0.52), text(nn)), writing(prob(14, 0.51), text(ms)), writing(prob(15, 0.5), text(won)), writing(prob(15, 0.49), text(wen)), writing(prob(16,

0.48), text(min)), writing(prob(16, 0.47), text(wir)), writing(prob(17, 0.46), text(rm)), arrow(prob(19, 0.413), vh(564, 158), vh(564,

1096), 0), xy axis(prob(45, 0.125))]

=======================================================================

== GESTURE ============================================================

37: 1117130380.413 1117130384.163

[writing(prob(7, 0.7), text(office)), writing(prob(9, 0.65), text(Office)), writing(prob(12, 0.56), text(off ice)), writing(prob(13, 0.54),

text(offrce)), writing(prob(13, 0.53), text(off-ce)), writing(prob(14, 0.52), text(offie)), writing(prob(14, 0.51), text(Offie)), writing(prob(15,

0.5), text(offin)), writing(prob(15, 0.49), text(of-fia)), writing(prob(16, 0.48), text(off Ice))]

=======================================================================

55(54): 1117130381.722 1117130384.312 transcript (01050926Z114256):

BY A DON’T BELIEVE SO

I DON’T BELIEVE SO

AY D OW N B IH L IY V S OW

56(55): 1117130385.874 1117130387.74 transcript (01050926Z114304):

THANKS VERY MUCH

THANKS VERY MUCH

TH AE NG K S V EH R IY M AH CH

57(56): 1117130387.360 1117130391.817 transcript (01050926Z114308):

OKAY SO CORD OR OFFICE TIMELINE WE’RE GONNA HEAVILY OFFICE SPACE

OKAY SO ACCORDING TO OUR OFFICE TIMELINE WE WERE GOING TO HAVE ALL THE OFFICE SPACE

OW K EY S OW AH K AO R D IH NG T AH AW ER AO F AH S T AY M L AY N W IY W ER G OW IH N T IH HH AE V AO L DH IY AO F AH S S P EY S

== GESTURE ============================================================

38: 1117130391.382 1117130393.507

[diamond(prob(5, 0.791)), writing(prob(11, 0.6), text(is)), writing(prob(12, 0.57), text(as)), writing(prob(13, 0.53), text(4)), writing(prob(14,

0.51), text(0)), writing(prob(24, 0.33), text(A)), writing(prob(24, 0.324), text(D)), writing(prob(26, 0.294), text(d)), arrow(prob(43,

0.137), vh(550, 813), vh(584, 810), 263)]

=======================================================================

58(57): 1117130391.979 1117130394.303 transcript (01050926Z114321):

TAKING CARE OF RIGHT HERE

TAKEN CARE OF RIGHT HERE

T EY K AH N K EH R AH V R AY T HH IH R

== GESTURE ============================================================

39: 1117130395.710 1117130398.804

[writing(prob(10, 0.62), text(Avail)), writing(prob(13, 0.55), text(trail)), writing(prob(13, 0.54), text(Frail)), writing(prob(13, 0.53),

text(frail)), writing(prob(14, 0.51), text(t-rail)), writing(prob(15, 0.5), text(f-rail)), writing(prob(15, 0.49), text(Ho-rail)), writing(prob(16,

0.48), text(to-rail)), writing(prob(16, 0.47), text(f-Vail)), writing(prob(17, 0.46), text(Ah-rail))]

=======================================================================

59(58): 1117130399.322 1117130400.493 transcript (01050926Z114328):

AND

AND

AE N D

60(59): 1117130401.169 1117130403.93 transcript (01050926Z114332):

JOHN:Person Name TIMIT OR STAY WITH THIS
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JOHN TELL ME WHERE WE STAND WITH THIS

JH AA N T EH L M IY W EH R W IY S T AE N D W IH DH DH IH S

== GESTURE ============================================================

40: 1117130410.492 1117130411.867

[writing(prob(11, 0.59), text(xo)), writing(prob(12, 0.57), text(XO)), writing(prob(13, 0.54), text(X.)), writing(prob(13, 0.53), text(Xo)),

writing(prob(14, 0.52), text(Xl)), writing(prob(15, 0.5), text(x.)), writing(prob(16, 0.48), text(xl)), writing(prob(21, 0.378), text(x)),

writing(prob(24, 0.33), text(X)), diamond(prob(25, 0.308)), writing(prob(26, 0.306), text(K)), arrow(prob(39, 0.166), vh(544, 815), vh(588,

806), 257), line(prob(46, 0.119))]

=======================================================================

== GESTURE ============================================================

41: 1117130413.304 1117130415.851

[diamond(prob(4, 0.811)), writing(prob(13, 0.55), text(4)), writing(prob(13, 0.54), text(0)), writing(prob(25, 0.318), text(x)), writing(prob(25,

0.312), text(J)), writing(prob(26, 0.306), text(n)), writing(prob(26, 0.3), text(D)), writing(prob(26, 0.294), text(A)), writing(prob(27,

0.288), text(R)), arrow(prob(45, 0.124), vh(548, 868), vh(580, 878), 291)]

=======================================================================

== GESTURE ============================================================

42: 1117130416.820 1117130420.945

[writing(prob(9, 0.65), text(trail)), writing(prob(9, 0.64), text(Avail)), writing(prob(10, 0.62), text(frail)), writing(prob(11, 0.6),

text(Frail)), writing(prob(11, 0.58), text(t-rail)), writing(prob(13, 0.53), text(trait)), writing(prob(14, 0.51), text(trill)), writing(prob(17,

0.46), text(l-viii))]

=======================================================================

61(60): 1117130422.455 1117130423.369 transcript (01050926Z114339):

RIGHT

RIGHT

R AY T

62(61): 1117130502.845 1117130505.503 transcript (01050926Z114343):

THING I I A IF WE’RE GOING TO PUT

THE THING I I IF WE’RE GOING TO PUT

DH IY TH IH NG AY AY IH F W ER G OW IH N T IH P UH T

63(62): 1117130505.845 1117130508.484 transcript (01050926Z114351):

WRIST BOOT THEM UP AND TO OFFICES

WE’RE GOING TO SPLIT THEM UP INTO TWO OFFICES

W IH R G OW IH N T IH S P L IH T DH EH M AH P IH N T AH T UW AO F AH S AH Z

64(63): 1117130509.131 1117130516.7 transcript (01050926Z114358):

JACKED NATIVE VARY COMPILING KEYS LAST MEETING THAT WE DON’T WANT TO PUT THEM THE SAME OFFICE WITH

UM JACK MADE A VERY COMPELLING CASE LAST MEETING THAT WE DON’T WANT TO PUT THEM IN THE SAME OFFICE WITH

JH AE K M EY D AH V EH R IY K AH M P EH L IH NG K EY S L AE S M IY T IH NG DH AH T W IY D OW N W AA N T T IH P UH T DH AH M IH N DH AH

S EY M AO F AH S W IH DH

65(64): 1117130516.7 1117130518.988 transcript (01050926Z114419):

THE READ SERVER’S PARTICULAR AND THE PRINTER

THE RAID SERVER IN PARTICULAR AND THE PRINTER

DH IY R EY D S ER V ER IH N P ER T IH K Y AH L ER AE N D DH AH P R IH N T ER

66(65): 1117130519.322 1117130522.931 transcript (01050926Z114427):

SO ALWAYS NOW WE HAVE ARE REQUIREMENT FOR FREE SPACES

SO WE NOW WE HAVE A REQUIREMENT FOR THREE SPACES

S OW W IY N AW W IY HH AE V AH R IH K W AY R M AH N T F ER TH R IY S P EY S AH Z

67(66): 1117130523.245 1117130527.960 transcript (01050926Z114437):

WHAT A SINGLE OFFICE THE DOUBLE OFFICE AND EQUIPMENT FOR

WE WANT A SINGLE OFFICE A DOUBLE OFFICE AND AN EQUIPMENT ROOM

W IY W AA N T AH S IH NG G AH L AO F AH S AH D AH B AH L AO F AH S AE N D AE N IH K W IH P M AH N T R UW M

68(67): 1117130528.141 1117130533.760 transcript (01050926Z114452):

AND I STILL WANT TO HAVE THOSE PEOPLE IN IN ROLL IT TO PROXIMITY TOMORROW OFFICE

AND I’D STILL WANT TO HAVE THOSE PEOPLE IN IN RELATIVE PROXIMITY TO MY OFFICE

AE N D AY D S T IH L W AA N T T IH HH AE V DH OW Z P IY P AH L IH N IH N R EH L AH T IH V P R AA K S IH M AH T IY T AH M AY AO F AH S
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69(68): 1117130535.293 1117130547.264 transcript (01050926Z114510):

ANY OTHER THING THAT WE NEED TO CONSIDER IS HOW WE’RE GOING TO SPLIT THEM UP BECAUSE THE THE TELEPHONE DROPS AND WE PUT THE DROPS IN THE

ONE MAKE SURE THE NUMBERS ASSIGNED STAY WITH THE PERSON’S NAME

UH AND THE OTHER THING WE NEED TO CONSIDER IS HOW WE’RE GOING TO SPLIT THEM UP BECAUSE OF THE TELEPHONE DROPS WHEN WE PUT THE DROPS IN

WE WANNA MAKE SURE THE NUMBERS ASSIGNED STAY WITH THE PERSON’S NAME

AH N D DH IY AH DH ER TH IH NG W IY N IY D T AH K AH N S IH D ER IH Z HH AW W ER G OW IH N T AH S P L IH T DH EH M AH P B IH K AH Z AH

V DH AH T EH L AH F OW N D R AA P S W EH N W IY P UH T DH IY D R AA P S IH N W IY W AA N AH M EY K SH UH R DH IY N AH M B ER Z AH S AY

N D S T EY W IH TH DH AH P ER S AH N Z N EY M

70(69): 1117130547.341 1117130556.64 transcript (01050926Z114550):

SO WE DON’T GO THROUGH BUDGET DIRECTORY CHANGES RANDOM PEOPLE TELEPHONES AND SO WHAT THAT’S YOUR PROBLEM I I’M SURE YOU GUYS CAN WORK THAT

THAT’LL

SO WE DON’T GO THROUGH A BUNCH OF DIRECTORY CHANGES TRYING TO MOVE PEOPLE AND TELEPHONES AND SO ON THAT’S YOUR PROBLEM I I’M SURE YOU GUYS

CAN WORK THAT OUT

S OW W IY D OW N G OW TH R UW AH B AH N CH AH V D ER EH K T ER IY CH EY N JH IH Z T R AY IH NG T UW M UW V P IY P AH L AH N D T EH L AH

F OW N Z AH N D S OW AA N DH AE T S Y UH R P R AA B L AH M AY AY M SH UH R Y UW G AY Z K AH N W ER K DH AE T AW T

71(70): 1117130556.331 1117130563.36 transcript (01050926Z114622):

SO WHEN DO YOU THINK WILL KNOW OLD ABOUT THE THE THE SECOND OFFICE WILL BE STUCK IN KNOWS EVERYBODY

SO WHEN DO YOU THINK WE’LL KNOW ABOUT THE UH THE SECOND OFFICE OR AT LEAST I CAN HOUSE EVERYBODY

S OW W IH N D UW Y UW TH IH NG K W IY L N OW AH B AW T DH IY DH IY S EH K AH N AO F AH S ER AE T L IY S T AY K AH N HH AW S EH V R IY B

AA D IY

72(71): 1117130598.141 1117130599.55 transcript (01050926Z114645):

RIGHT

ALRIGHT

AO L R AY T

73(72): 1117130599.645 1117130605.922 transcript (01050926Z114647):

THAT IS THERE ANOTHER EQUIPMENT ROOM ON THE FLOOR THAT WE COULD MAYBE SHOOT ORANGES EQUIPMENT IN TWO

HAS IS THERE A ANOTHER EQUIPMENT ROOM ON THE FLOOR THAT WE COULD MAYBE SHOEHORN THIS EQUIPMENT INTO

HH AH Z IH Z DH EH R AH AH N AH DH ER IH K W IH P M AH N T R UW M AA N DH AH F L AO R DH AH T W IY K UH D M EY B IY SH UW HH AO R N DH

IH S IH K W IH P M AH N T IH N T AH

74(73): 1117130613.836 1117130616.588 transcript (01050926Z114710):

SO LET’S LOOK AT THE TIME ALIGNED AREN’T SO

SO LET’S LOOK AT THE TIMELINE ALRIGHT SO

S OW L EH T S L UH K AE T DH AH T AY M L AY N AO L R AY T S OW

75(74): 1117130631.264 1117130633.293 transcript (01050926Z114720):

FOR A HUB OR LEAVE THAT

ALRIGHT I WELL I’LL LEAVE THAT

AO L R AY T AY W EH L AY L L IY V DH AE T

76(75): 1117130636.236 1117130640.598 transcript (01050926Z114727):

YES LET ME THAT TO YOU AND JOHN TO TO WORK OUT CLUES DETAILS

YEAH SO I’LL LEAVE THAT TO YOU AND JOHN TO TO WORK OUT THOSE DETAILS

Y AE S OW AY L L IY V DH AE T T IH Y UW AH N D JH AA N T UW T UW W ER K AW T DH OW Z D IH T EY L Z

77(76): 1117130640.598 1117130648.64 transcript (01050926Z114744):

I MIGHT MAKE IT MAY WE CAN PUT THE PRINTER IN INTO THE OTHER WITH THE OTHER PRINTERS AND FOR ROOM DOWN A WHOLE IN ANY THEN

THAT MIGHT MAKE IT AND MAYBE WE CAN PUT THE PRINTER IN INTO THE OTHER WITH THE OTHER PRINTERS IN THE PRINTER ROOM DOWN THE HALL IN ANY

EVENT

DH AE T M AY T M EY K IH T AH N D M EY B IY W IY K AH N P UH T DH IY P R IH N ER IH N IH N T AH DH IY AH DH ER W IH TH DH AH AH DH ER P

R IH N ER Z IH N DH AH P R IH N ER R UW M D AW N DH AH HH AO L IH N EH N IY IY V EH N T

78(77): 1117130648.255 1117130653.17 transcript (01050926Z114810):

WHICH TELLING ME IS WE’RE GONNA HAVE A ROOM FOR A JOB RUNNING A FEW DAYS AFTER

WHAT YOU’RE TELLING ME IS WE’RE GOING TO HAVE A ROOM FOR JOE BROWNING A FEW DAYS AFTER

W AH T Y UW R T EH L IH NG M IY IH Z W ER G OW IH NG T IH HH AE V EY R UW M F R ER JH OW B R AW N IH NG AH F Y UW D EY Z AE F T ER

79(78): 1117130653.17 1117130654.484 transcript (01050926Z114824):

HE ARRIVES HERE WHICH

HE ARRIVES HERE WHICH

HH IY ER AY V Z HH IH R W IH CH
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80(79): 1117130654.798 1117130657.464 transcript (01050926Z114828):

IS IS RIGHT UP ON THE LIMIT IS THAT CORRECT

IS IS RIGHT UP ON THE LIMIT IS THAT CORRECT

IH Z IH Z R AY T AH P AA N DH AH L IH M AH T IH Z DH AE T K ER EH K T

81(80): 1117130661.703 1117130666.217 transcript (01050926Z114837):

YEAH THE SECOND OFFICE THAT YOU’RE INTERESTED IN FIGHT FOR THE PRINTER AND DATA SERVER

NOW THE SECOND OFFICE THAT YOU HAD ORIGINALLY IDENTIFIED FOR THE PRINTER AND DATA SERVER

N AW DH AH S EH K AH N AO F AH S DH AH T Y UW HH AE D ER IH JH N AH L IY AY D EH N AH F AY D F ER DH AH P R IH N ER AH N D D EY T AH S

ER V ER

82(81): 1117130666.217 1117130667.226 transcript (01050926Z114853):

IS

83(82): 1117130667.341 1117130670.74 transcript (01050926Z114855):

THAT ALSO TO BE AVAILABLE THE SAME TIME

IS THAT ALSO GOING TO BE AVAILABLE AT THE SAME TIME

IH Z DH AE T AO L S OW G OW IH N T AH B IY AH V EY L AH B AH L AE T DH IY S EY M T AY M

== GESTURE ============================================================

43: 1117130678.575 1117130682.263

[diamond(prob(6, 0.737)), writing(prob(12, 0.57), text(xx)), writing(prob(13, 0.53), text(1)), writing(prob(14, 0.51), text(I)), writing(prob(15,

0.5), text(N)), writing(prob(15, 0.49), text(Ni)), writing(prob(16, 0.48), text(Nr)), writing(prob(17, 0.46), text(Ns))]

=======================================================================

== GESTURE ============================================================

44: 1117130683.247 1117130688.372

[writing(prob(14, 0.51), text(trails)), writing(prob(25, 0.312), text(h rails))]

=======================================================================

84(83): 1117130689.169 1117130691.788 transcript (01050926Z114905):

OKAY SO WHAT IS IT IS EIGHTY

OKAY SO IT IS IT IS A

OW K EY S OW IH T IH Z IH T IH Z EY

85(84): 1117130692.293 1117130693.512 transcript (01050926Z114913):

UH

86(85): 1117130693.684 1117130697.17 transcript (01050926Z114915):

IT’S A ACCEPTABLE OFFICE FOR PEOPLE IT’S NOT

IT’S AN ACCEPTABLE OFFICE FOR PEOPLE IT’S NOT

IH T S AH N AE K S EH P T AH B AH L AO F AH S F AO R P IY P AH L IH T S N AA T

87(86): 1117130697.17 1117130701.950 transcript (01050926Z114925):

THE PRINTER EQUIPMENT ROOM THAT WE’RE IT OR BRING PLOT THAT WE’RE TURNING INTO AN OFFICE

A AN EQUIPMENT ROOM THAT WE’RE GOING TO OR BROOM CLOSET WE’RE TURNING INTO AN OFFICE

EY AE N IH K W IH P M AH N T R UW M DH AH T W ER G OW IH NG T AH ER B R UW M K L AA Z AH T W ER T ER N IH NG IH N T AH AH N AO F AH S

88(87): 1117130704.445 1117130705.322 transcript (01050926Z114943):

ARE

ALRIGHT

AO L R AY T

89(88): 1117130711.569 1117130717.379 transcript (01050926Z114945):

SO THE WE’RE WE’RE WRITE UP ON THE WIRE BUT IF EVERYTHING WORKS OUT WEEKEND

SO THAT WE’RE WE’RE RIGHT UP ON THE WIRE BUT IF UH EVERYTHING WORKS OUT WE CAN

S OW DH AE T W ER W ER R AY T AH P AA N DH IY W AY ER B AH T IH F EH V R IY TH IH NG W ER K S AW T W IY K AE N

90(89): 1117130717.703 1117130725.274 transcript (01050926Z115003):

GET THERE GET THIS NEW TEAM WORKING TOGETHER WITH MINOLTA LAYERS THAT WHAT YOU’RE YOU’RE SAYING IS THAT CORRECT

UH GET EVERY GET THIS NEW TEAM WORKING TOGETHER UH WITH MINIMAL DELAY THAT’S WHAT I HEAR YOU SAYING IS THAT CORRECT
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G EH T EH V R IY G IH T DH IH S N Y UW T IY M W ER K IH NG T AH G EH DH ER W IH TH M IH N AH M AH L D IH L EY DH AE T S W AH T AY HH IH

R Y UW S EY IH NG IH Z DH AE T K ER EH K T

91(90): 1117130727.284 1117130729.655 transcript (01050926Z115027):

SO JACKED IN THE FINAL OBSERVATIONS

SO JACK ANY FINAL OBSERVATIONS

S OW JH AE K EH N IY F AY N AH L AA B Z ER V EY SH AH N Z

92(91): 1117130732.512 1117130734.17 transcript (01050926Z115033):

OKAY SURE

OKAY JOHN

OW K EY JH AA N

93(92): 1117130739.912 1117130741.264 transcript (01050926Z115037):

IS THAT A PROBLEM

IS THAT A PROBLEM

IH Z DH AE T EY P R AA B L AH M

94(93): 1117130751.112 1117130752.626 transcript (01050926Z115041):

LET’S GET

UH LET’S GET

L EH T S G IH T

95(94): 1117130752.626 1117130754.674 transcript (01050926Z115045):

GET THEM SITTING ON SOMETHING

GET THEM SITTING ON SOMETHING

G IH T DH EH M S IH T IH NG AO N S AH M TH IH NG

96(95): 1117130754.779 1117130757.836 transcript (01050926Z115051):

AND THEN WE’LL WORRY ABOUT MAKING IT LOOK NICE

AND THEN WE’LL WORRY ABOUT MAKING IT LOOK NICE

AE N D DH EH N W IH L W ER IY AH B AW T M EY K IH NG IH T L UH K N AY S

97(96): 1117130758.274 1117130762.722 transcript (01050926Z115101):

I MEAN HAVE TO ROLL EVERY YOU’RE WORKING WITH NINETEEN THIRTY SCREWS INFERRED RICHER HAVE

I MEAN AFTER ALL EVERYBODY HERE IS WORKING WITH NINETEEN THIRTIES PRISON FURNITURE ANYHOW

AY M IY N AE F T ER AO L EH V R IY B AA D IY HH IH R IH Z W ER K IH NG W IH DH N AY N T IY N TH ER T IY Z P R IH Z AH N F ER N IH CH ER

EH N IY HH AW

98(97): 1117130765.207 1117130767.141 transcript (01050926Z115116):

OKAY WELL THANKS VERY MUCH TILMAN
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