A Formal Model For Architecture-Independent

Parallel Software Engineering

David C. DiNucci
B.S., Portland State University, 1983

A dissertation submitted to the faculty
of the Oregon Graduate Institute
in partial fulfillment of the
requirements for the degree
Doctor of Philosophy
in
Computer Science and Engineering

March, 1990

The dissertation “A Formal Model for Architecture-Independent Paralle] Software Engineer-
ing” by David Carl DiNucci has been examined and approved by the following Examination

Committee:

Robert G. Babb II
Thesis Advisor
Associate Professor

Richard B. Kieburtz /

Professor, Department Head

- o - - :
/-’ ’e ~ =

Michael Wolfe
Associate Professor

Barry S. Jordan
Professor
University of Colorado at Boulder

Dedication

To Tamae, who did not deny her faith

in the most difficult of times

To my father, who demonstrated how to get the job done

To my mother, who showed me what it means to never quit

Acknowledgements

[would like to acknowledge the students, stafl, and faculty of Oregon Graduate
Institute for their support. In attempting to keep one foot ip theory and another in
practice, I have relied on their expertise and experience in both camps. [would especially
like to thank Robbie Babb for keeping me apprised of the needs of the parallel processing
community and Michael Wolfe for his support and example. [would also like to thank the
other members of my committee for their assistance, Dick Hamlet for his excellent guidance
in the early stages of this work, Steve Otto and Doug Pase for inspiring discussions, and the
many others (including “the gang") whose {riendship helped to make my stay at OGI an

enjoyable experience.

1. Algorithms for Parallel Architectures

2. Related Work

2.1, TRETOAUCLION ootiiiiiii ittt e e
2.2. Shared Memory and Message Passing ...
2.3. Parallelizing Compilers ...
D4, LINAA oo et
2.8, UMby oot e
2.6. Reactive Kernel ..o
2.7. Specification LangUaBes oottt
2.8. Dataflow LanguUages ..ot
2.9. Coarse Grain Data Flow ..o
200, ACLOTS oot .
210, SErand oo e
212, Paralation ..o
2.13. Synchronous Models ..o
2.14. Historical PerspectiVe .ooocovviiiiiiiiii et
3. FaNEbS oo ety
3.1, INtrodUCtION ooiiiiii e
3.2. Building the Model ...
3.2.1. Architecture-Independent Ether Model ..o

Table of Contents

i

w2

15

16

17

i8

19

21

21

22

22

23

24

24

25

8.2.2. Separabilily ..o
3.2.3. Independence of Number of Processors ...
3.2.4. Sample Problem e ettt e et
3.3. Higher Level Characterizationocooveeieioiiniiiiii
3.3.1. Ipstruction Specifications ..o S
3.3.2. Ensuring That Signatures are Correctcocovrvvvvrinneeainens.
3.3.3. Multiple Readers and Buffering in Ether ...
3.3.4. Instructions Performing the Same Operationc.ccooeeeiinne.
3.3.5. Final Version of Sample Problem ..o
3.4, Tnal NOLES i e
4. Axiomatic Semantics and Formal Results ...
4.1, TNErodUClION oot
B2, SYMUAX oottt et e s
4.3, SEMANLICS .ooriiiiiiiiiee et e e
4.3.1. Form of an Execution Graphcocceoiiiii i,
4.3.2. Axioms Constraining Execution Graphs ..o
4.4. Execution Graphs as Partial Orderscc.oooiiiiviiinin
4.5. Execution Graphs as Computationsc.cccooeiveieicenin..,
4.6. Tracing an Executioncoooiiiiiiiieioii e
4.7. Execution Graphs with Identical Logs are [somorphic
4.8. Toward Proving €, =€,/ ..o

4.9, ConElUSIONS oot et

34

36

38

38

40

41

43

46

47

47

48

51

60

64

67

70

70

5. Comparison with Other Models 73

S0, UNILY creoeeoeeee oot 73
5.2, Pebll INEES oottt ettt R bt 74
o3 T 016 ST OO OO OO ST SSSOTPPUPRSR 76
5.4, Functional Models oo 77
5.5. Guarded COmMMANAS ..oooouiiiiiiiiie ittt et 77
5.6. Graphical Specification LAnBUAZES ..ot 78
5.7. Imperative Sequential Programs ..o 78
8.8, CONCIUSION oottt et ot e r et e e 79
8. TIPIeMENBALION L.ooiiiiiiii ittt et 80
6.1, TNETOAUCEION 1iii s e et r et e e 80
8.2. Definition of a Valid Tmplementation ...t 80
6.3. A Generic IMplemMentabiOn ...ooiiiiiiiciiiiree et eee e e e 82
8.3.1. Conerete F-INEets ..ooioiiiiiiieee v 83
6.3.2. Abstraclion of Concrete F-Nets ..ocoiiiiiii e 84
6.3.3. Concrete Execution Graphs and Their Abstractioncocooeiiiiiiiiiniieeen, 87
6.3.4. Concrete Implementation ... 87
TR B T2 X 1= o O OSSP PRURUURPTT 88
6.3.4.2. Validity of Implementation Strategy ..oo.oovviiiiieiiiiieee et 91
6.3.4.3. Pseudo-code for the Generic Implementationccoooiiiiiiiciciiiiiiiie 93
6.4. Optimizing Concrete Execution for Differing Architectures ... 98
B8.4.1. Shared MEMOTY ..o e e 98
6.4.2. Message-Passing ..o 100

6.4.3. Final Implementation NOLESocoiiiiiiiiiiiiiiiii it
7. Future Directions and Conclusionsccooiiiioiiciiiiiccieecee e
0 TR Y2 T eYe EO T4 e < MO PSR
7.2, Extensions to F-INets ..o e
7.3, Software Tools ... e e eerr e e
7.3.1. Debugging/Monitoring Tools . ..cccciiioiiiioiiir e
7.3.2. Parallel Restructuring ToolS ...o.ccooeeiii e
7.3.3. Real-time Programming ...
7.4, Parallel ATchitectluTe oo e

7.5. Conclusion

vi

103

105

105

105

107

107

109

110

L1

113

Table of Illustrations

Figure 3.1 First Attempt at the Sample Problem ...

Figure 3.2 Second Attempt at Sample Problem ...

Figure 3.3 Final Diagram of Sample Problem ...

Figure 4.1 Node Labels for Execution Graph ...

Figure 4.2 One Execution Grapb for the Sample F-Net ...

Figure 4.3 A New Sample F-Net

Figure 4.4. An Execution Graph for F-Net in Figure 4.3 ...,

Figure 4.5. Comparable Order-4 and Order-2 F-Nets ..o

Figure 5.1. F-Nets Modeled as Petri Nets

Vil

31

37

40

53

54

62

63

71

75

Abstract

A Formal Model For Architecture-Independent

Parallel Soltware Engineering

David C. DiNucei, Ph. D.

Oregon Graduate Institute, 1991

Supervising Professor: Robert G. Babb II

In the absence of 2 unifying model to describe parallel algorithms, existing architectures
have served as the models. The resulting algorithms, expressed as sets of sequential
processes which communicate via shared memory or message passing, are non-portable, and
the component processes cannot be implemented according to an input-output specification
alone. Determining the set of computations represented by such an algorithm often requires
no less than simulating their execution. This dissertation develops a model, F-Nets, for
expressing parallel algorithms in a manner which avoids many of these difficulties. Both
high- and low-latency communication are efficiently accomodated, and processes can be
implemented in any deterministic language. The possible effects of each process is
completely determined by the input-output mapping it implements. Computations are
defined as partial orderings of these process executions, and algorithms are represented
graphically as folded computations. A formal axiomatic semantics is provided for unfelding
algorithms into computations, as is an operational semantics which is used to describe
efficient implementations of the model on various architectures. Some final observations

and predictions are made for [uture work based on the model.

vili

CHAPTER 1

Algorithms for Parallel Architectures

1.1. Introduction

What is a parallel algorithm? Decades after Lhe advent of parallel processors, this is
still not a symple question Lo answer, or even understand. The questioa is usually not put so
bluntly, or is accompanied by information about the intended target architecture: whether
the targel is shared-memory or message-passing or SIMD, the number of processors that i
contzins, specifics about the intecconnection topology or memory hierarchy, and the cost of

communication.

Yet, algorithms have traditionally been considered as being independent of architec-
ture. The same algorithm can be considered as instructions to a human solving a problem
on a scratch pad or black board, 2 Turing Machine accessing 2 tape and performing state
transitions, oF 2 uniprocessor accessing memory and executing instructions. The fact that 2
computation for all of these devices has the same form—a sequence—unifies the concept of
algorithm and provides for them to be written and analyzed (to some extent) without know-

ing their target.

The goal of this work s Lo define 2 model of computation which can be efficiently
implemented on diflerent MIMD architectures, and one which provides a natural setting in
which Lo deseribe parailet algorithms. In order to capture the generzlity of the word "alge-
rithim”, the programs expressed within this model should serve equally well as instructions to
a room full of humans, a set of Turing Machines, or a parallel processor. The remainder of

ghis chapier will further define the goals of this model by first describing the similanities and

differences between MIMD architectures, then the requirements of a parallel algorithm and
the factors which might make one representation better than another, and finally the role

that sequential languages might play in a paralle] setting.

1.2. MIMD Parallel Architectures

In this section, we provide a very simple formalism by which paralle]l architectures can
be compared and contrasted. The terminology used is by no means standard: each term is
defined as it is used, We then describe the differences in various architectures in terms of

architectural implementation, physical characteristics, semantics, and number of processors.

1.2.1. Formalism

An MIMD parallel architecture consists of some number of sequerntial processors and a
communication medium, called ether. Each sequential processor has the use of a2 computa-
tional unit capable of executing one instruction at a time, and each instruction terminates
in finite time. Each processor possesses some amount of local state (e.g. registers and local
memory) which is inaccessible by other processors and which can affect the behavior of
instructions executing on it. Processors do not necessarily perform instructions at the same
rate, nor do they have access to synchronized clocks. Each processor will be live—i.e. it will

be ready to execute another instruction within a finite time after the last has completed.

Processors share access to the ether. In addition to the standard instructions per-
formed by sequential processors, which only affect and are aflected by the local state of the

processor, each processor Is capable of posting (performing) evenfs. An event consists of a

type, an address', and an optional data item. FEvent types are divided into primary-

Un a message-passing system, this address is often called a channel.

secondary pairs. Common event type pairs for current architectures are (write, read),

(send, receive),and (unlock, lock).

When a processor posts a primary event, that event is copied to the ether. When a
processor posts a secondary event, the processor stalls until an associated primary event is
found in the ether with the same address; if the primary event has an associated data item,
that data is copied to the processor posting the secondary event. We call this pairing of

primary and secondary events event malching.

1.2.2. Number of Computational Units

The number of computational units in MIMD parallel architectures vary widely, The

definition given above does not preclude the use of a single computational unit by several

processors?. In the general case, in order to preserve the liveness of each processor, the
usage of the computational unit must be shared by interleaving groups of instruction execu-
tions from each processor. This requires that the computational unit switch contexts
regularly—i.e. that the state of one processor be saved {rom the computational unit’s state
(e.g. registers, program counter, pointers to address space), and that the computational unit
adopt the state of another processor. In general, an algorithm which is encoded to use
many more processors than there are computational units will consume more time for con-
text switching than one which is encoded to use approximately the same number of proces-

sors as computational units. An algorithm which uses fewer processors than there are com-

putational units will use those units ineflectively.

This work will address this problem by presenting a program as a fairly large collec-

tion of fairly small segments. When a segment begins execution, it will have no state, nor

2 In common usage, these processors would be ¢alled processes or virtusl processors.

will it have state when it has completed. A segment will not begin execution until all of the
resources that it needs are availahle to it, so a segment will never need to pause during its
execution. In this way, a program execubion consists of packing {i.e. scheduling) these seg-
ment executions onto the computational units at hand, with little or no need to switch con-
texts during segment executions, and no need to save or restore state between se'gment exe-

cubions.

1.2.3. Architectural Implementation of Ether

Current architectural implementations of ether can be broadly categorized by the sca-
lability of the pending event store and of the communication bandwidth required to match
pending primary events with secondary events, where scalabihity refers to the abiliky of the
architecture to accommodate more processors. Non-scalable communication is often imple-
mented with a small number of fixed-bandwidth busses used for communication by all pro-
cessing units, while scalable communication is implemented using a network of communica-
tion channels which grows with the number of processors. A non-scalable event store is
aften implemented by memory units which share common access paths, while a scalable
event store 15 often implemented with several memory units, each with one or more auto

romous access paths. Non-scalable event stores are often augmented with scalable ¢aches.

1.2.4. Physical Characteristics of Ether

The physical characteristics of ether can be analyzed in terms of bandwidth, Jatency,
anc overhead. Bandwidth is the number of events and/or size of events that can be under
sransport at any one time. Lalency is the time required to communicate (the news of} an

event from one arbitrary processor te another. Overhead is the amount of processor time

required to post an event.

These physical characteristics are related to architectural characteristics. Scalable
communication is usvally accompanied by relatively high lateney, due in patt to the fact
that the larger number of processors accommodated requires longsr communicaticn dis
tances. More significantly, the higher latency can be attributed to the techniques used to
implement scalable communication. Since implemenf;ing a unique communication path from
every processor to every part of the event store would be prohibitive, some paths are shared
and/or pass through intervening processors, and routing data through these paths takes
time. Scalable communication is also usually accompanied by high overhead: High latency
makes it advantageous Lo associate a Jarge amount of data with each data event, so Lhe

communication system must be prepared to handle these large, variable-length events.

1.2.5. Semantics of Ether

The semantic characteristics of the ether can be categorized into buffering, destruc-
tiveness, data (and granularity), and partitioning. An event pair is buffered if the ether can
accommodate multiple primary events for a given address, unbuffered if it keeps only the
latest. Even ether which supports buffered events is not infinite, and may lose events 01; fail
catastrophically if too many unmatched primary events are posted. For buffered event
pairs, il multiple primary events are found which match a secondary event, the oldest pri-
mary event is usually used for the match. An event pair is destructtve if the secondary
event removes the matched primary event from the ether, non-destructive il the primary
event is not removed. An event pair is a dafa pair i{ the primary event contains a data field
which is copied to the processor posting the secondary event when a match occurs. A data
pair will be said to have large granuferity il the data associated with the event can be large
and variable-sized, fine granularity if the data is small and fixed size. An event pair is par-

titioned if the address associated with the primary event uniguely identifies the processor

which will post the secondary event.

These semantic characteristics are traditionally a result of physical characteristics.
As already mentioned, in a high-latency ether, it is advantageous to use large-granularity
events. The use of partitioning can reduce the eflect of latency by allowing the primary
event to be forwarded directly to the processor which will post the secondary event, thereby
avoiding the latency when the secondary event is posted. Buflering allows latency to be hid-
den through pipelining, and allows multiple primary events to be posted to a given address
without waiting for verification through the ether {i.e. handshaking) that the previous pri-
mary events have been matched each time. For these reasons, a popular semantic combina-
tion for high-latency ecther consists of a (send, receive) large-granularity event pair
which is buffered, destructive, and partitioned. We call this combination of semantics

message-passaing.

When the latency of the ether is low, the amount of dala passed in a2 data event can
be small, and to keep overhead low, a fixed size datum 1s usually used. Partitioning is not
needed, and is restrictive: if the processor which will post the secondary event is determined
without knowledge of the processor which will post the primary event, partitioning adds
extra overhead by requiring an extra event match to communicate this "demand” to the pri-
mary event poster. Buffering is also not needed, and imposes extra overhead. For these rea-
sons, a popular semantics for low-latency ether consists of a (write, read) fine-
granularity event pair which i3 unbuffered, non-destructive, and non-partitioned, and a
(relinquish, acquire) no-data event pair which is unbuflered, destructive, and non-

partitioned. We call this combjnation of semantics shared-memory.

The use of destructiveness to block a processor from taking action until it is sale (i.e.

to achieve synchronization) is independent of latency, and so js present in both shared-

-~

memory and message-passing semantics. It plays the additional role ol removing events

from the ether in message-passing semantics.

The two event pairs of shared memory are often used in tandem. Ether addresses are
logically organized into structures, and each structure has another address designated as a
lock. A processor posts an acqulire event for the lock of a structure before posting any
read or write events for addresses within a structure, and follows reads and writes with a
relinquish event for the lock. This protocol ensures that at a write event will not be
posted concurrently with an other event to the same address, and allows all events between
the acquire and relinquish to be considered as an atomic event. The protocol is
relaxed when other aspects of the algorithm ensure that reads and writes to the same
address are correctly ordered—e.g. when all further accesses to a given address are reads.
The protected data structure has some similarity to a large-granularity event, but is
different than message passing in that it is non-bufiered, the lock events are not partitioned,
and when the Jocking mechanism is not used, multiple processors can post concurrent read

events to the structure elements.

There are some existing MIMD architectures which do not fit our ether model. Some
examples are those which perform synchronous message passing, in which the processor post-
ing the primary event also stalls until the event is matched, and architectures which have
“full/empty” bits associated with their addresses that do not have fixed semantics—i.e. a
primary event may set either set or clear the bit, a secondary event may wait for the bit to

erther be set or cleared.

Although the semantic combinations described here ate, to some extent, driven by
physical characteristics, and therefore by architecture, portability is rapidly becoming an

important factor. Implementations of shared-memory semantics on high-latency ether [29}

and message-passing semantics on low-latency ether are growing more popular. Usually,

caching is used to compensate for high-latency ether.

This work will attempt to develop an ether semantics which addresses the needs of
both high- and low-latency ether. To accomplish this, we keep overhead low by supporting
small, fixed-size data events while providing high-level destructive event parrs for acquiring
ownership of a large number of ether addresses at one time, allowing them to be transported
when ownership is established in a high-latency environment. We supporl a more relaxed
version of partitioning which allows a single address to be associaled with a subset of pro-
cessors, thereby allowing ¢complete partitioning to address jatency issues on those occasions
when the processor posting the secondary event is known in advance, but do not require
partitioning for the other occasions. We provide enough information for an implementation
of the model to optionally provide buffering when it will not affect the semantics, but the

a

semantics do not include bufiering.

1.3. Parallel Algorithms

According to Knuth |28], an algorithm is a set of rules which gives a sequence of
operations (or solving & specific type of problem. Even il we avoid questions of how a set
can "give" a sequence, and whether the rules of an algerithm truly form a set, this definition
states that ap algorithm is a means of expressing a sequence of operations. By this
definition, a paraliel algorithm is not an slgorithm at all. We therefore weaken this
definition somewhat, defining an algorithm as a means of expressing a set of computations
for solving a specific type of problem. A computation will be the representation of a fune-
btion which maps some input and initial state into some output and final state. If the set of

computations produced by an algorithm always contains exactly one element, we call the

algonthm deterministic, otherwise we ¢all it non-deterministic.

sequences of operations which become Lhe computation. The semanlics of the language in
which the algorithm is expressed provide the rules for unfolding the algarithm into a compu-
tation. This similarily of algorithm and computation aids in understanding their correspon-
dence. It is our thesis that parallel algocithms can be made easier to understand if their
representation more closely resembles a fo)ded parl..ial-ordering of operations. To allow an
algorithm to be nondeterministic, the semantics of our method will allow some algorithms to

be unfolded in more than one way.

Applicative (funcrional) and data flow languages provide one starting point (oc this
work, in that they also express computations which are partial orderings of operations, and
resemble their computations mathematically. Unfortunately, these languages have some

characteristics which make them poor choices for representing parallel algorithms:

(1) The operations (primitive functions) in these languages are small (i.e. execute in 2
very short time). Cues for determining how these operations should be acheduled on

processors for maximum efficiency are not apparent {rom the partia) ordering alone.

(2) The languages use single-assignment (oF no-assignment) vaniables to signify data
dependences. This paradigm provides lew cues as to how memory can be used and

re-used efficiently.
(3) They are deterministic.

The first problem ¢an be addressed by simply increasing the size of the operations.
But as the operations get larger, the amount of data that they consume and produce also
gets larger. This aggravates the second problem, since an operation updating a small part
of a large data structure needs to create a new copy of the data structure as a result to

preserve referential transparency.

11

As operations become larger, Lthey also consume more inputs and produce more results.
Although some applicative languages allow an operation (i.e. function) to return several
results, the textual (linear) form of these tanguages does not provide for 2 natural represen-

tation for composing these functions.

These drawbacks to large aperations will be addressed here by allowing an operation

to return several results®, and by allowing a single variable to serve as both an argument
and 2 result to an operation. Even so, an operation will specify a function fram its inputs
before evaluation to its outpuis upon completion. Traditional [unctional compesition s no

longer suitable for operations of this [orm, so an alternate form will be introduced.

The ability to use a single variable as both the input and output of an operation rules
out the use of single-assignment variables to coordinate operation executions. One possible
alternative method is to assign each operation application (called an insfruction) a condi-
tion, or guard, which must be satisfied for the instruccion to execute. Unfortunacely, the
generality of guards obscures the possible aflects that the execution of one instruction can
bave on the ability of others to execute. The partial ordering defined by the parallel alge-
rithm becomes obscured by the multitude of possible combinations of values of variables.
Values become overloaded, being used for both the data being Lransformed by computations

and as a direct means of controlling the execution.

Single-assignment variables and guards are similar in that they both rely on the state
of some set of variables to determine whether an instruction can execute, ewher the
"defined-undefined” state of single-assignment variables, which we will term controf state, or

Lhe values within variables, which we will term data state. The excessive power of guards

S Thia iz an entirely diflerent tack than i3 taken with corried funtiions, where each function takes one argu-
menL 2nd produces one resull (which may be another funclion).

12

comes (rom their ability to depend on so many more possible stales per variable, and to
depend on variables that are not used by the instruction being guarded. The restrictiveness
of single-assignment variables results from the small pumber of possible states (i.e. two) and
from the specific semantic meanings assigned to those states which is not under the
algorithm’s control. A middle ground can be achieved by extending variables to bave more

possible control states, allowing control state to serve as a simplified form of guard.

Removing the fixed "defined-undefined” usage of control states requires that we
manage the control states expiicitly. An instruction in our mode] will specify the control
state which each ol its variables must have to enable execution, and will determine the final
control state that those variables will be left with after execution. WNon-determinism is
introduced as it would be with guards, by allowing different instructions to access the same
set of variables under similar conditions {identical control states). To preserve as much
iflormation as possible about the effects of each instruction on the control state of its vari-

ables, the range of possible final control states for each instruction will be made explicit.

Another cost of removing the special semantics of the "defined-undefined” control
states is efficiency. When a single-assignment variable has been defined, it can be rcad by
many functions concurrently with impunity, and the next version of the variable can be
pre-calculated. We will provide techniques that allow buffering and multiple-readers in an
implementation, even while the model presented to the vser provides atomic access to vari-

ables.

These extensions to functional languages remove some of the mathematical resem-
blance of algorithms to their computations. In its place, we look toward a topological
resemblance. If a parallel computation is a partial ordering and thus two-dimensional, it is

reasonable to assume that a folded computation would also be two-dimensional (ie. a

graph). It is this syntax which gives our model its name: Function Networks, or F-Nets.
The exact form of & computation and the semantics for unlolding an F-MNet into a computa-
pion will be deseribed. A textual syntax will also be provided, where cach instruction resem-

bles a subroutine call.

1.4. Preserving Sequential Semantica

The maost important part of the specification for a stand-alone sequential algorithm is
the input-sutput mapping that it implements. Provided that the algarithm iz nat real-time
or interactive, [actors such as the speed with which it performs that mapping, or the order
in which inputs are accepted from different ssurces or outputs are produced to different
sites, da not alter the eorrectness of the algorithm, though they may affect its intrinsie valoe
in comparson with other algorichms which implement the same input-output mapping. We
call a .mm:lel seperable if the input-sutput mapping expressed by each zequential process is
the only characteristic which afects 1ts behavior within a concurrent model. A direct resule
al thiz property ig that the implementation of that mapping has no effect an the averall
semantics, so each sequential algorithm can be implemented zeparately, vsing only ibs par-
tial function as a specification. Another is that all the existiog technology, methods, and
languages which exist for developing, expressing, and analyzing sequentizl algorithma can be

utilizad,

separability infers other properties. Since the input-output mapping enforced by each
sequential algorithm could conceivably be implemented by first reading all inpuiz then pro-
ducing all oulpuis, a separable model cannot depend on concurrent execulion of Lhe sequen-
Lial algorithms: There must be a serial schedube in which the algorithma could be execuled.
In addition, il an algorithm has multiple input sources, Lhey simply represent moltiple argu-

menls to the Mfunction expressed by the algorithm. Since neither the order in which these

14

arguments will be "read” nor the time that it will take the algorithm to evaluace is part of
the deseription of the partial function, the execution of the zlgorithm must be ¢onsidered to

be atomic: it either evalvates completely, or does not evaluate at all.

Separability, and therefore serializability, has an important implication wich regards
to portabitivy. If the functions expressed by the sequential algorithms are total®, each algo-
rithm will necessarily complete in a finite amount of time, so the parallel program can be
exccuted without context switching, no matter how many or how (ew processors are avajl-
able in a target architectyre, increasing portability. Since it is undesirable to restrict
sequencial algorithms to express total lunctions, and nearly always impossible to show that
they are, this finding is of limited utility, but if it is assumed Lhat algorithms are in fact
total in most practical cases, they can be executed without context switching by default,
invoking context switching only if available processors are monopolized by long-running

algarithms.

1.5. Conclusion

A description and rationale for the F-Net model of computation is presented in the
remaining chapters. F-Nets are designed to function well with either high- or low-latency
ether. The model is separable, so tragitional sequential languages ¢an be used [or the bulk
of the code. Algorithms in the model can be expressed in a graphica) form resembling the

folded partiat orderings of their computations.

Chapter 2 describes related work which addresses many of the same goals. Chapter 3

builds the F-Net model from scratch, with design decisions driven by the above goals.

1 They also nced Lo bt continuows, in the denolational semanties sense. This iz assured by the fact Lhal
they sre expressed in a language with conlinuous semantics.

15

Chapter 4 provides a formal semantics for the model, expressed mathematically as a set of
axioms. This includes defning the form of a computation in the model. Chapter 5 relates
the F-Net model to other formal medels of concurrent computation. Chapter 6 develops
efficient and correet implementations of the model to run on top of ether with shared-
memory and message-passing semantics. Chapter 7 addresses some of the shortcon.\ings of
the model, proposes how the model ¢ould be extended used as the basis for new tools and

architectures for parallel processing.

CHAPTER 2

Related Work

2.1. Introduction

The first chapter provided an overview of the goals of this work. This chapter will
describe other models which have been developed to address some of the same goals. Unfor-
tunalely, this includes victually all work performed in the Beld of parallel processing. We
attempt here to sample many of the techniques and relate them 1o those goals, concentrat-

ing on those that have the most similar set of goals to F-Nets.

The difference between a model and 2 language is not clear. A language can be con-
sidered as a user-oriented model, and the role of a language processor is to convert a user-
oricnted model to an architecture-oriented model. Judging whether 2 model s
architecture-independent therelore requites kpowledge of the language processor, the
characteristics of programs which it processes, and the similarity of the user model to an
architecture model. This chapter will make no attempt to address the first two of these

three factors.

The models discussed here will each be broken into their process models and their
ether models. A common process model consists of sequential processes which post events to
the ether. The method of initiating processes may vary, but there are commonly no restrie-
tions on the events that 2 process may post nor on the persistence of the process. The
processes are typically expressed in a wraditional sequential language, though these
languages sometimes require minor exiensions to provide the capability to post events. We

call such a process modcl the traditional proeess model,

17

Il 2 parallel computation model provides a traditional process model and unrestricted
access to the ether, the model will not demonstrate separabilivy. This can be seen from the
fact that deadlock is possible between processes, since each may post primary events and
each may post secondary events in reverse orders. Thus, the behavior of 2 process depends

on the implementation of its input-output mapping—i.e. the order in which it posts events.

2.2. Shared Memory and Message Paasing

Most current parallel computer architectures are designed to support an ether with
one of the semantic combinations described in the first chapter: shared-memory or message-
passing. These architectures are usually supphied with mallitasking tools to facilitate a
traditional process model [or posting events to this native ether. Message-passing events
and relinquish and acquire events for shared memory are oflen implemented by sub-
routines, while read and write events for shared memory are usually implemenied by
utilizing 8 loader to map some portion of the ether addresses into the process address space,

at which time erdinary memory operations on those addresses are used.

When architecture-independence ia not an issue, multivasking provides low-level con-
trol over the native ether, Because this approach is so popular, several tools have been
developed with the goal of standardizing the interface to these native ethers and providing
some more complex ether events, such as barrier and broadcast, which can be baile directly
from the low-level ether events. These tools are meant to ease programming and address
independence of number of processors, but are not meant to be ether-independent. For
shared-memory ethers, these tools include The Force |24], the monitors package from
Argonne National Laboratories (8], Large-Grain Data Flow [6), and Schedule [16). Packages
for message-passing cthers include the messages package (rom Argonne. A restricted form of

Schedule {7} has also been implemented for message-passing esher.

An ether with messags-passing semantics can be implemented relatively eamly on top
of an ether with shared-memory semantics by using & subrootine library te manage the
ether, and to match and copy evenis. However, the overhead required to copy evenis to
and from cther, the large granolarity of evenls, and the required partitioning of the address
.qu.:e make this an ineflective programming environment for low-latency eiber. To wpdale
a small portion of a large event i the ether, the entlire event must be copied to the process,
altered, then copied back to the ether. I maltiple processes wish to read the same large
gvenl concurrently, two events must be posted and matched. We will refer to these draw.

backs as the update-in-place and multiple readers problems, respectively.

An ether with shared-memory semantics, often called Shared Vircoal Memary [or Vir-
tual Shared Memory) (29, can be implemenied on top of an ether with message-passing
seminbics by passing messages whenever an allempt i delected to access 3 shared-memary
ether address which s not currentiy local to the posting processor. To provide sufficient
granularity of events, implementations rely on pasuing and caching several sequential
shared-memory ether addresses at one time as & page. The number of page transfers can be
minimized by implemeoting 3 causal ordering (2] which respects shared-memory semantics
but has the effect af arbitrarily postponing some processes. [n some implementations, these
postpanements can be indefinotely long. The eMciencey of Lthess methods depends 5 great

deal on the locality of access within the virtual shared-memory address space

2.3. Purallelising Compilers

A parallelining compiler takes a standard sequential program and produces a parallel
program with identical input-output behavior. By definition, this approach demonstrates
separability but limita sxpressibility: &g non-deterministic programs cannot be expressed.

Efficient use of processors and ether iz completely determined by the capabilities of the

18

compiler. Currently, efficient mapping can only be performed [or loops, and onlv for

shared-memory ether {4).

Some compilers aceept a slightly extended version of a sequential language {usually
Fortranj in order to allow the programmer greater expresasivensss. Adding Lhese special con-
structs to a program often does not alter its semantics in any way, but informs the compaler
of locations in the program where opportunities far paralleliam might be found. In some
cazes, these extensions add small amountzs of non-delerminism o the program in order to
increase parallelism. In most cases, these microlasking extensions apply only to Fortran DO
loeps and produce objeet programs for shared-memory ether [27]. Similar extensions for

message-passing ether are still in the experimental stages [t0],

Another method for the programmer to augment the information present in the source

code is through the use of internctive parallelizing tocls such as £ [3] and Faust [21]

2.4. Linda

Linda [11] presents a traditional process medel, and an ether model called tuple space.
I this ether, events do not include addresses per se—the secondary event matches a pri-
mary event based on characteriztics of the data value in the event. There are twa event
pairs defined for the ether, (out, in) and (eut, rd), which share the same primary
event. These pairs have large granularity, are buffered, and are non-partitioned. The first

pair is destructive, the second is not.

The lack of addresses in the ether model dees not correspond Lo any comman
hardware implamentation of ether. To compenzate, the designers of the medel propose
methods for determining an address or partial address [i.e. hash table bin) for some events

based on a global analysis of all event postimga within the alzgorithm. The same analysis

20

can sometimes yield a pactitioning for these addresses. In cases where a complete address
cannot be determined in this way, a look-up must be performed (at run-time) Lo match

cvenls.

Tuple space offers benefits over message passing by avoiding explicit partitioning, pro-
viding 2 more natural interface to high-latency cther on demand-driven applications. When
partitioning is benecficial, it can sometimes be computed without user involvement. How-
ever, the associative matching of events incurs overhead in both low-latency and high-
latency implementations, and the multiple-readers and updale-in-place problems are not
addressed for low-latency environments. The act thal the events cannot be partitioned in

some cases magnifies the effect of Jatency in high-latency environments.

2.5. Unity

Unity (12| provides only a process model: The ether mode! is identical to memory (i.e.
shared-memory minus the (relinqulish, acqulre) event pair). Each process consists of
an optional guard and a deterministic calculation. There is no synchronization: a program
execution consists of attempting to execute each process infinitely many times, in no partie-
ular order. A process execution will succeed, reading some ether addresses and wnting some
other (not necessarily disjoint) ether addresses, if and only if the guard is satisfied. The
resutt of a computation is defined as a fixpoint of this computation—j.e. the state of the

elher whep no further changes can occur through further computation.

The execution of each process is atomie by definition, so this model demonsirates
separability. The model was originally presented as a teaching tool, and presents a compu-
tation as a non-deterministic sequence of operations rather than as a partial ordering. The

role of 2 language processor will be to determine efficient partial orderings from this

21

specification, and to use high-latency ether effectively. There is little in the model itself to

ensure that these will be possible.

2.8. Reactive Kernel

The Reactive Kernel [5| implements a traditional process model, and an ether model
which consists of 2 memory semantics plus 8 (xsend, xrecv) event pair which is
buflered, partitioned, and destructive, similar to a message-passing semantics. The latter
event pair 18 wsed to transfer a capability, which can be considered as a "key” which
“unlocks” some range of ether addresses. A given capability can be held by only one process

at a time. There also exists an ether server which dispenses and collects capabilities.

A process csnnot post read or write events [or an ether address unless it holds a
capability which inctudes that address. The intent is that when a process wishes to pass
some state to another process, 1L acquires a capability from the server, posts data events,
then passges the capabihily Lo another process by posting an xsend event containing the
capability. When a process wishes to acquire state from another process, it acquires a capa-
bility by posting a xrecv event, then pesforms data evenis beflore passing the capability

back to the server or on Lo another process.

In a high-latency environment, ail of the data events described by a capability can be
transported through the ether with the capability. In a low-Jatency ether, 2!l data events
can be left stationary. The update-in-place problem is addressed by this model, but the

mudtiple-readers problem is not.

22

2.7. Specification Languages

Petri nets (36) are 3 prime example of 2 model which has partial orders as computa-
tions and in which “algorithms” are the folding of those computations. Simple Petri nets do
not provide any notion of data, and therefore do not present an ether model, but the do
provide 3 natural representation of concurrency. They are used primarily as a specification

language for concurrent processes.

Some dala extensions to Petri nets which have retained many of the Petri Net seman-
tics are Macro E-nets (34, which support high-level Petri-nec-like constructs designed to
model computer architectures, and VLP (18], which is presented as a method for introducing

synchronization into specification-level datafiow diagrams.

CODE (39) is a high-tevel specification language for parallel processing, allowing the

user to specifly dependences and exclusion between abstract processes.

2.8. Dataflow Languages

Dataflow is a general term used to reler to networks of processes connected by buffered
streams. In terms of the ether model we have discussed, the semantics of a stream ether
consists of a (deflne, use) event pair which is boflered and destructive. Unlike that
ether model, both the define and use events are partitioned: i.e. a stream can be written by
only one process and read by only one process. This provides {or demand-driven semantics,
and always results in deterministic programs (providing the composite processes are detes-
ministic) [25). A primary selling point of dataflow languages (e.g. SISAL {30) and Id) is the

fact that they demonstrate separabihity.

The processes in a dataflow model traditionally consist of elementary arithmetic

operations. Dataflow Janguages provide the ability to ¢compose functions using standard

23

functional composition and single-assignment variables. The (define, use) event pair is
not efficiently implementable in high-latency ether because aof its fine granularity. In low-
latency ether, the destructiveness of the event pair ¢auses undue copying. In either case,
the fine granularity of the processes causes excessive overhead due to scheduling. Special
architectures [35] are being constructed to minimize process scheduling overhead and over-
lap computation with communication latency. Mare praciical approaches for low-latency
ether invelve compiler technology to increase the granularity of operations and re-use

memory efficiently [20).

2.9. Coarse Grain Data Flow

The efficiency and use of ether can also be increased by allowing the user to create
larger processes explicitly, often in a traditional imperative language, thereby increasing the
granularity of cther events. Examples include MUPPET (33]. Loral DGL [26), and TDFL
[40]. These models retain the problems intrinsic to message-passing on both high- and low-
latency ethers. Non-determinism is introduced in some of these by allowing some operators
to execute when only some subset of their arguments are present, thereby allowing stresms

to be arbitrarily merged,

2.10. Actors

Actors || is a theoretical model of processes (aclors) which correspond via messages in
a very restricted framework. In this model, each actor receives messages through a single
message queue. As a result of reading a message, an aclor can create other actors, send
messages to other actors, and define a new behavior for itsel((i.e. to process ils next mes-
sage). The resultand actor program is constantly evolving, with new actors being ¢reated

and old actors changing behavior. A primary strength of the actor model is in its formal

treabment of message-passing,

2.11. Strand

Strand |18| programs resemble logic pregrams, consisting of a set of clanses, each con-

sisbing of & head, a guard, and a body, All data is passed using single-assignment variables.

During execubion, process calls are deposiled fo & "process ether”, with parameters
comsisking of addresses in the data ether. If a call matches the head of & clause, the van-
ables of the clause head are bound to the same cther addresses as the arguments of the pro-
eess call, all olher variables in the clavse are bound to new data ether addresses, and the
guard of the process is checked. IF the guard is satizfied {which requires that all variables in
the guard have been defined), the process eall is removed fram the process ether, and the
process calls declared in the process body are deposited, This continues until primitive
processes are called. A primitive process has well-defined in and out arguments, and sxe-
cutes atomically to define the out arguments based on the in arguments. Primitive
pracesses are supplied as part of the madel, though some implementations allaw the user to

introduce Lailored primitive processes implemented in 2 sequential language.

All three steps—head matching, clause checking. and reduction—are defined Lo occur
as & single atomde action. Thus, Strand demonstrales separability. Strand is ezsentially a
dataflow language in which functions can have multiple results as well as nen-determinism
{simee the headsz and guards of many process definitions may allow many different reductions
to occur). Because of the single-assignment paradigm, this mode! retains the vpdate-in-

place problem of traditional dataflow,

2.12. Parslation

Paralation [38], like Linda, relies on copying and assaciative leokup for s
architecture-independence. The model actually consista only of & few general data-
reduction operatara, which are targeted for implementing algorithma based on data parallel
am [SPMD and SIMDY, but are specifically not designed Lo aid communication between

non-homogeneous processes, which ia central o MIMD computing.

2.13. Synchronous Models

Synchronous madels such as Oceam [23), CSP |22), and CCS (33|, provide an ether with
message-passing semantics, bot ong in which & primary event will stall if there is no mateh-
ing secondary event in Lhe ether. Thus, the eiber is never required Lo store unmatehed
events: iL serves only as & means of cammuniesting from the poster of the primary event to
the poster of the secondary eveni. The mereased likelihood of & stall in this ether |8
addressed in CSP and Qceam by accompanying it with a fine-grained process model which

allows the programmer to offer alternate work whenever & process sialls,

Synchronous communication is not a real-world phenomenan, and must be built from
ssynchronous commuenication. Il processors consume space and each processar eaf podl AL
most one evenl ol a time, then the posting of events by different procesies must occur in &
different space or al a different time. Thus, for the sender o abtain the message and far

the receiver Lo be informed that it has been received requires two communications,

Any process which contains a send or recelbve can stall indefinitely depending on the
behavior of other processes. This could be considered as violating separabilicy. 1t is the role

ol CCS o define the behavior of each process in its environment.

26

2.14. Historical Perapective

The next section will present the F-Nelt model as though its features were derived
directly from the goals set forth in chapter 1. In fact, the model was derived as an attempt
o formsalize the semantics of Babb’s LGDF technique, modifying or removing those portions
of the model which made its implementation difficult using shared-memory or message-
passipg semantics. This led to 96 LGDF2 (15| technique and Lhe F-Net model. The LGDF
work, 1n Lurn, was developed te provide execution semantics for Data Flow Diagrams sueh
as those vsed in Structured Analysis techniques [13], for the dual purpeses of providing a
smooth transition from design to implementation and of developing a parallel programming
method for shared-memory MIMD computers. This work was also influenced by the work of
Browne. The SCHEDULE model bas similar lineage. The VLP model, which is similar to
F-Nets, was developed independently, also with the goal of providiog semantics to high-level

data flow diagrams.

T

CHAPTER 3

F-Nets

3.1. Introduction

The first chapter presented some of the goald of this thesis: to define a model far
parallel computation which s architecture independent, provides separability, and expresses
an algorithm as & lolded partial ordering of operations. This chapter will build the model,

called F-Neta, providing some justification for each step in terms of those goals.

The chapiler consists of two major sections. In the first, the basic constructs of the
model are developed by addressing the goals listed above. In the second, methads of includ-
ing more high-level information in the F-Net are examined, both in terms of how this infor-
mation provides the programmer with a more abstract view of the F-Net's behavior, and in

terms of how a scheduler can take advantage of the information 1o optimize performance.

To give some grounding to the points made in this chapter, 3 sample problem will be

V&

presented-—to compute

The computation will proceed by initialising & shared variable, 1, to 51 and a shared run-
ning sum 16 0, then having two worker processes repeatedly decrement I, square the new
value, and add ithe resnlt to the running sum. When all 5 finished, another process will take

the sgquare root of sum o prodace the final answer,

28

2.2. Building the Model

In this section, we construct Lite major components of the F-Net model.

3.2.1. Architecture-Independent Ether Model

We begin by defining an ether model which addresses two of the three latency-related
semantic differences presented in the first chapter: granularity and partitioning. Buffering

will be addressed later.

High-latency ether benefts (rom large-granularily events so that more data is
transferred each time the latency of the ether is experienced, while low-latency ether
benefits from fine-granularity events to keep overhead low. We can accommodate both of
these reguiremenls by presenting the ether at two Jevels of granularity. The fine-grained
data addresses are grouped into coilections which we will call m-variables (or simply vari-
ables, when no confusion will result). For the time being, assume that cach m-variable has
an associated address designated as a lock. There are two event pairs defined for this ether:
a non-data event pair, (orphan, adopt), which is unbuffered, non-partitioned, and des-
tructive and operates on a lock address, and a fine-granularity event pair, (write,
read), which is unbuffered, non-partitioned, and non-destructive sod operates on a data
address. A process cannot post any dats events for an m-variable address until after it has
posted an adopt event for the lock.! When a process is finished posting data events, it may

release the m-variable by posting an arphan event for the lock.

This very closely models the way that shared-memory semantics are often utihized. In
this low-latency environment, the m-variable as a whole ¢an remain stationary 1n the ether,

ang all events can be implemented with fine granularity. In a high-latency environment,

U Whether this protocol is enforced by Lhe ether itsell or by the processes independently is uaimportant, as
long ag it is enioreed.

29

the adopt event can be used to move the data (i.e. pending data events) associated with Lhe
m-variable 3s a whole through the ether, with fine-grain data events occurring tocal to the

processor which successfully adopts the variable.

Partilioning can be added by extending the lock associated with an m-variable to a
set. of locks, only one of which can be orphaned at any one time, and partitioning the
(orphan, adopt) event pair. Thus, when an orphan event is posted, the process which

can perform the adopt event will be known.

For the F-Net mode}, we consider partitioning too restrictive for reasons mentioned
earlier. Instead of mapping each lock address to a unique process, we map each to a set of
processes. In those cases whece this set contains but one clement, this scheme is identical to
conventional partitioning. In other cases, some transport of the m-variable may still be pos-
sible in a high-latency environment to a point closer to all possible adopters. In either case,
the scheme has software-engineering benefits over & non-partitioned scheme, since inap-

propriate processes are not able to adopt the variable.

We also require that sets of processes to which the locks of an m-variable are mapped
must be disjoint—i.e. that each process has at most one lock of an m-vanable mapped vo it.
This simplifies the protocol required for a process to adept a particular m-variable, thus
reducing overhezd. When the model has been completely described, it can be seen that this

restriction does not restrict exprassiveness.

The data associated with an m-variable (i.e. the pending fine-granularity data events)
will be called its data atate. The set of lock addresses associated with an m-variable will be
called its caonrtrol domain, and the element of that domain which was last orphaned, U any,

will be called the control siale of the variable.

30

An m-variable can be considzred less formally as 2 bin which can contain a data
structure (its data state) and which carries a flag which lists the processes which can adopt
it (its control state). An adoption request for the variadble will block until the control state
of that variable contains the name of the adopting process. On successful adoption, the
conirol state of the variable> will be atomically cleared, which will keep any other process
from adopting it, and the data state will be made accessible to the process. When finished
accessing the data state, the process may relinquish access to the variable by orphaning it,

at which Lime the process must also specify a new control state.

To demonstrate the use of m-variables, we give a first approximation of a solution to
the sample problem. 1 and sum must be represented within m-variables, since they are
communicated among severa) processes. Although both could be kept in the same m-
variable, contention can be decreased by putting them in separate m-variables, since they

will be needed by both workers in diflerent phases of their execution.

We will write the processes in 8 C-like sequential psevdo-code, augmented with two

special statements:
adopt 1

which will post an adoption request for the appropriate lock of m-variable z, and
orphan xz as y

which wil) orpban m-variable z with a new control state of y. When an m-variable is other-
wise mentioned within the pseudo-code, it will play the role of a2 variable which refers to the
data state of the m-variable. We name the m-variables { and sum to reflect the data

stored there. The final answer will be deposited into an m-variable named ans.

The processes will be pamed Lnit, workerl, worker2, and finish. We use 2

fictional process, therest, Lo symbolize the destination of the answer after finish

31

produces it, so the end of the program will be signified when the m-variable ans obtains a

control state corresponding to this process.

An attempt at the problem solution follows. This is not a legal F-Net, but iHustrates

the use of m-variables.

Variables
inc 1 { unlnit = {init}, valid = {warkerl, worker2)});
Int sum (uninit = {inlt}, valid = {(workerl, worker2}):

i

float ans (empty = {finish}, full {therest});
Proces=es
inic
{
adopt {i;
1 = 51;
orphan 1 as valld:;
adopt sum;
sum = O;
orphan sum as vallid:

}
workerl
{
int temp:
adopt {;
i =4 -2
temp = &
orphan i as valiaqg:
Cemp = temp * tenmp:
adopt sum;
Sum = sum t Tewnp:’
orphan sum as valld;
Y
worker 2
{Seme as workerl)
finish
{

adopt sum;
adopt ans:
ans = sqrt (sum):
orphan sum as valld:
orphan ans as valid:

32

The m-variable declarations at the beginning list the type of the data state and the control
domain for each m-variable. The processes which correspond Lo each element of the control
domain are also listed. The first declared element of the control domain 1s the initial con-

trol state.

The problem with this code is thal the workers do not stop working when 2 reaches 1,
and the finish routine ¢annot ever adopt sum. It is tempting to change the last line in

the workers to

if temp == 1 then
orphan sum as done
else

orphan sum as valiad

where done corresponds to the finish process, but the order in which the workers adopt
i 1s not necessarily the same as the order in which they adept sum. The solution to this

problem will be dealt with later.

Yt @

N

sum ans

Figure 3.1 First Attempt at the Sample Problem

33

An F-Net is illustrated graphically by showing each process as a cicele, and each m-
variable 83 a polygon, as shown in Figure 3.1. The sides of an m-varable polygon represent
the elements of the control domain. (Variables with a control domain of only one element
are shown as a line, those of only two as a rectangle.) The side representing the initial con-
trol state of the m-varable i1s identified by using a thicker line. An arc connects each pro-
cess to the m-variables which it ean possibly adopt: The polygon side to which it is con-
nected corresponds to the element of the control domain containing that process. This

notation makes the control domain of each variable apparent from the diagram.

Note that for maximum parallelism, the workers must maintsin access to their m-
variables for as little time as possible. To facilitate this in the example, a copy of i is kept
in temp. I} i contained a large data slructure to be accessed, it might have been more

(avorable to retain access to the m-vanable, decreasing copying time at the expense of

decreasing parallelism.?

3.2.2. Separability

We ztlain the goal of separability by breaking a process intoe segments, each of which
has the sarpe semantics and halting behavior as it would if 1t were executing alore. In other
terms, we wish the computations described by the segments to be atomic transsctions—i.e.
computations that can be serialized (since the executions are independent) and either never
begin or complete (since their halting behavior is independent of other transactions). A set
of transactions is assured to be serializable if and only if each transaction is two-phase (17].
Two-phase, in the case of F-Nets, means that each transaction can be divided into a grow-

ing phase containing no orphan events, followed by a shrinking phase where all m-variables

2 Other approaches which do not incur copying or decreased parslictiam will also be made possible whep
buflering is introduced.

34

which were adopted in the growing phase are orphaned.

The bijection above requires that segment executions have this form if they are to
have the desired properties. A scgment which posts an event stream which is not of this
form can always be modified to be of_tbis form: If additional m-variables are needed alter
orphaning some but nat all of those that it owns, the transaction can terminate by orphan-
ing all of the rest of its m-vanables and initiating a new segment which begins by re-

adopling these variables as well as the newly-needed variables.

By definition, an atomijc transaction must complete if it shows any evidence of begin-
ning execution, but we do not wish to restrict our segments Lo express Lerminating computa~
tions. We can consider non-terminating computations as atomic transacbions by asserting
that each m-vamable bas an additional element of its control domain called | which does
not correspond Lo any process. In terms of the inleractions of other processes with the
ether, there is no difference betwzen a segment which orphans an m-variable with a control
state of | and one which does not orphan the m-variable at all: In either case, no process
can adopt the m-variable. A noa-terminating segment (i.e. one which does not orphan some
of its m-variables) can therefore be modeled as one which orphans some of its variables with
a control state of L (pronounced "bottom”). The 1 control state will be represented in our

system as the absence of any other control state.

Atomicity guarantees that a3 transaction will not partially complete, but it does not
guarantee that it will ever begin, even if there is nothing to stop it from doing so. [f the
model i1s to provide the power to demonstrale that programs will execute and produce
resvlts (liveness) as opposed to simply limiting the possible results (safety), the conditions

under which transactions will execute must be made explicit. We do 5o here:

35

A transaction will not be indefinitely postponed if the conditions required for its execu-
tion (i.e. the proper control state of the m-variables which it adopts) will be met con-

tinuously until it executes.

This rule has the effect of ensuring that a transaction will not be postponed indefinitely due

to deadlock.

Liveness (and specifically absence of deadlock) is related to separability, though it is
not usually regarded as such. If the issue of deadlock }s avoided at Lhe level of the model,
to be addressed at the algorithm level, the correciness of any new segment (in the sense that
it preserves liveness of the program as a whole) could depend upon the order in which vari-
ables are adopted with respect to other segments. Specifying lveness at the level of the

model itsell avoids this problem.

The model will not strand the implemencor with the very difficoly problem of deadlock
avoidance. We will require that cach segment adopt all of its m-variables in one atomic
action. In this way, an implementation can ensure that all m-variables have the correct

control state belore a segment adopts any of them.

3.2.3. Independence ¢f Number of Processors

The liveness rule in the previous section ensures that segments which can execute will
eventually be executed, regardless of the number of physical processors in the archilecture,
or the number of transactions to execute on those processors. The ability to adopt all m-
varizbles in one atomi¢ action aids an implementation in efficicntly sharing physical proces-
sors among processes, since each segment can be made to block exactly once, then execute

to completion, minimizing the need for context switching.

The overhead required by s context switch can be reduced even further by forbidding

the passage of any persistent local state (i.e. program store, registers, and program couvnier)

36

(rom one (ransaction in a process to the next. Explicit passage of persistent local state
between Lransactions ¢an be handled the same way as the passage of any other data state;
via an m-variable. The dats state of an m-variable is persistent by definition, and 'local’
means only that the control domain of the m-variable contains only one control state, which

is mapped to a single process.

The program counter ¢an also be mapped to the control state of an m-variable. To
illustrate this, consider the code of a process which has n statements which mark the begin-
nings of segments—i.e. where all of the m-variables for the transaction are atomically
adopted. If n different processes are constructed, each identical to the Arst except for an
initial branch to one of the segment beginnings and the additiona) adoption of a common
m-variable (say, STATE), each transaction can select the next process (and therefore seg-
ment) to execute by orphaning STATE with that next process as the new control state.
The control state of STATE s now effectively the persistent program countee for the origi-

nal process between transactions.

When persistent local state is tuled out, a process per se has no role. All state and
control ts managed explicitly by the segments. If more state is carried between segments of
different processes than is carried between segments of the same process, the concept of pro-
cess becomes somewhat confusing. The F-Net model will therefore not include the concept
of a process: an algorithm will consist of a set of these segments, called inatructions. Since
an jostruction i3 determinigtic, has no state belore adopting its variables, and adopts all of
its variables in one atomic action, it must adopt the same set of variables on each execu-
tion. By making this set of variables part of the specification of the instruction. the adopt

construct can (and will) be omitted from the model.

37

3.2.4. Sample Problem

In the sample problem, each worker consists of Lwo Lransactions. It would be possible
to unite those two into one by adopting both m-variables first, but this would counteract
the parallelism achieved by having two separate m-variables. Since the init process is
only executed once, it will simplify its execution to merge its two transactions. We present
the sample problem again below and in Figure 3.2. This time, the c¢ode is correct, and is

structured just as it will be in the final model.

Varlables

int i

int holdl
int hold?2
int sum
float ans

uninit inrange outrange):
ampty full):

empty full)

uninit valid).

empty full)

m—~ e e S

Instructions

inft [uninlt &, uninit sum]:
1 = S1%;
orphan L as Inrange;
sum = O;
orphan sum to valld;

partl ([inrange i, empty holdl):
i=1-1
temp = L;
Lf (L > 1)
orphan L to lnrange;
else
orphan L to outrange:
holdl = temp * tewp;
orphan holdl as full;

part2 { inrange L. ewpty hold2):

hold2 = temp * tewp;
orphan hold?2 as full;

redl [€full holdl, vallid suo):
sum = sum *+ holdl:
orphan suwm as valid;
orphan holdl as empty:

33

red2 [full hold2. valld sum J:
sum = sum * hold2:
orphan sum 2s valiqd:
orphan hold2 as empty:

finish [outrange i, esmpty holdl, empty hold2, valld sum, empty an
orphan 1 as outrange:’
orphan holdl as empty:
orphan hold2 as empty:
ans = sqrt ((float) sum);
orphan ans as full:
orphan sum as valid;

Note that the two transactions in each worker have become two separaie instructions,
called part and read (for reduce). Since data must be carried belween these instructions,
additional m-variables holdl and hold2 have been introduced. Also note tvhat each
instruction has been given a heading declaring the variables it will adopt and the control

state of each wvariable which correspond to the instruction. As a result, the variable

holdl

hold2

hN

ans

Figure 3.2 Second Attempt at Sample Problem

39

declaration lists only the control states of each variable, and adopt statements have been

omitted from the languages.

There is now a very precise way of specifying when the €L{nlsh instruction shoulid
execute: when a part process has taken the last value from), and when no more tem-
porary values (from the hold m-variables) are waiting to be added into the sum m-
variable. Note that the finish instruction does not need to access Lhe data states of 1,

holdl, or hold2, but needs to adopt them anyway as a condition that ¢ can execute.

The final conirol states left by the F-Net are similar to the initial control states so

that only minor modifications would be required to make the F-Net restartable.

3.3. Higher Level Characterigation

In this section, we look at ways of separating high-level information about the
behavior of each instruction from its implementation. This information will provide an
abstract view of an F-Net that can be utilized for documentation and aviomated error-
checking (if the low-level code is already written) or specification (if the fow-level code is

not). A scheduler can also use the abstract view to optimize execution.

3.3.1. Instruction Specifications

Since an instruction is deterministic and has no persistent local state before it begins
executing, its behavior during execution must depend only on the dala states of its m-
variables when they were adopted. This behsvior consists of reading and writing the data
state of the m-variables, and possibly orphaning some of them with new control stases.
(Even if it does not orphan some of the m-variables, it will be as though it has orphaned

them with a L control state.)

40

Thus, an instruction can be fully characterized by the set of m-variables that it will
adopt, and a function (called the firing function) describing the new data and control scates
of these m-variables based on their data states when they were adopted. This specification
1s complete: it deseribes precisely the effect of the instruction an the F-Net’s state. Put
another way, if insuuct.ior.\s in an F-Net execute accordiag ta the rules already given, then
any instruction implementation which Tulfills this specification will exhibit exactly the same

possible eflecls as any obher.

Although such a specification is complete, some important infarmation about how each

m-variable will be vsed is left hidden wilhin Lhe firing function. Specifically,

Read ussge:

Is the result of the firing function ever dependent on the data state of the m-variable?

Write usage:
Does the firing function ever specily a different new data state for the m-vanable than
that with which it began? (i.e. does the data state ever change as a result of execut-

ing the iostruction?)

Possible new control states:

Which new control states might the firing function assign to the m-variable?

We will require that this information be specified separately, and will be called the
instruction’s srgnalure for its argumenta. [t 15 shown in the graphical representation by
introducing arrowheads oa the arcs (toward the instruction for read usage, away from the
instruction for write usage) and “fingers” (short arcs) within the m-variables at the end of
the arcs to point to the possible new control states. See Figure 3.3. By including this infor-
mation as pact of the F-Net, much of the overall data and control flow can be determined

without examining the implementation or firing {unction associated with each instruction.

41

LoS1 unin(

inrange

eply full

hold2

oalrange

D

sum emply full
q ans
-
unindf valvd

emply full

Figure 3.3 Final Diagram of Sample Probiem

3.3.2. Ensuring That Signatures are Correct

a

The signature will be used as more than just 2 way of describing what an instruction
does—it will be taken as the programmer's specification of restrictions on what the ipstruc-
tion should (and should not) do. This allows some programming errors within the implemen-
tation to be caught (e.g. Lhe alteration of the data state of 2 m-variable without write
usage), but also inflorms vhe run-time system, in some cases, as to how the implementation
should be interpreted. For example, if an instruction implementation does not assign values
to (part of) a m-variable's data state, this could be interpreted as either leaving the old
values of as reinmtializing the data state Lo some “"empty” value. [f the m-variable is
identified in the signature as baving only write usage (no read usage), then the latter
interpretation most be taken, since the new contents of the m-variable cannot depend on its

previous contents.

42

There is one case. however, where it cannot be determined whether an implementation
matches its signature. [l a signature declares that the | control state is not a possible new
control state for a given mm-variable, this is equivalent to declaring that the pari of the
implementation which orphans the m-variable will be executed. Determining whether this is_
true would require careful analysis of the user's code at best, and is intractable at worst.
To circumvent these problems, the L control state will always be assumed to be a possible
new control state for every m-variable for every instruction—with one exception, described

in the next section.

3.8.3. Multiple Readers and Buffering in Ether

The semantics of the model ensure that only one instruction can adopt an m-variable
at any one time. Even 50, if the instruction which corrently owns the m-variable will not
write it (as per its signature), and snother instruction which will not write iv becomes ready
except for the fact that the m-variable has not been orphaned by the first instruction, a
scheduler could eptimistically begin the second instruction, and both could read the m-
variable concurrently. But if the first jnstruction never orphans the m-variable with the

proper control state, the optimisti¢ transaction would have to be backed out—an action

which we would prefer to avoid.?

But if the first instruction can promige that it will eventually orphan the m-variable
with the proper control state, the second (concurrent) instruction will no longer be optimis-
tic. That is, even though the model logicelly allows only one instruction o adopt a -
variable at 2 time, in this circumstance an implementation could allow multiple instruceions

to read the m-variable concurrently with no risk of lost work.

8 "Racking out” means to nullify any eflects that & Lransaction has had on the suale of the system, essentiale
Iy "undoing” it.

43

This is exactly the approach we will take. If the signature of an instruction states
that 2 m-variable will not be written, and if exactly one new control state (or that -
variable is listed, the m-variable will be called non-vofatile, and the signature will be taken
as a promise that the instruction will eventually orphan the r/n-variable wilh that control
state. This is the condition alluded to at the end of the last subsection where & new control
state of | 3s not assurned as part of the signature.) a scheduler suspects that an instrue-
tion will attempt Lo break its promise by never orphaning the m-variable, the scheduler may
give the instruction a copy of the dala state on the m-variable znd assign the new Control

state to the m-varable itself.

This same solution 2lso provides {or buflering, even without altering the semantics of
the ether to include buflering. Suppose the contents of some m-variable (e.g. holdl in the
sample problem) is written by one instruction (e.g. partl), and read by another (e.g.
redl) which has non-volatile access to the m-variable and always passes the m-variable
back Lo the writer. As soon as redl begins execolion the first time, the scheduler knows
that it will eventually finish, so execution of partl can be initiated agzin, even before
redl has finished, provided that the new data state which it writes to the m-vanable is
buflered long enough Lo avoid conflicting with the version being concurrently read. Thus,
some amount of buflering can be implemented by a scheduler in this case, even though

buffering is not explicitly present in the model.

3.3.4. Instructions Performing the Seme Operstion

Diflerent instructions may be zlike in the transformations they perform Lo the dats
(i.e. their operation), but difier only in Lhe m-variables 2nd the control states of those m-
variables (o which they refer (i.e. their dinding). Cases in point are the partl and part2

mstructions or the redl and red2 instructions in the sample program. Entering and

44

mainlaining both instruction implementations seperately, in spite of the fact that they con-
sist of almost identical code, s impractical. From another standpoint, the wnformation that
they are identical in some sense is missing from the F-Net, and could be used to advantage,

both in reasoning about the F-Net and in implementing an efficient scheduler for the F-Net.

To facilitate reusing a single operation for multiple \nstructions, we decompose an

instruction specification into ils operation and its binding as follows:

Operation
An operation is an insttuction (Logether with ils signature) which has had its m-
variable references replaced by formal parameters called asguments, and its control
state teferences (in orphan staiements) replaced by formal parameters called {ransi-
Lions. (Each ransition will in some sense belong to one of the arguments.)

Binding
A binding is a2 means of creating an instruction from an operation by providing an
actoal-to-formal mapping. For each argument, the binding consists of three parts: (1)
an argumen! binding, which specifies the actual m-variable to be used for the argu-
ment; (2) a (ransilion binding, which specifies the actual elements of the control
domain of that m-variable to use for the transitions of the argument; and (3) a firing
conslrain{, which names the element of the control domain which corresponds to this

instruction.

3.3.5. Final Version of Sample Problem

Now for the final version of the sample problem. It does not difier significantly from

the previous version. The graphical version was presented in Figure 3.3.

Variables
int L (uninit inrange outrange)
int holdl (empty full);

]

£

int
int

float ans

Ops

hold2 (empty full);
sum (unlnlt valid):

inlt [out Int €00

out Int toSl

to51 = 51;
<init toli>;
to0 = O;
<inlt toO>;
endop

part [inout int n

rad

fin

out int n_sqq4d
int temp;

n=n-1:

temp = n;

e (n == 1)
<takelast n>;

else
<takel n>;

n_sqd = temp * tewp;

<put n_sqd>;

endop

(in int n
inout int add_n

add_n = add_n + n;

<take n>:
<inc add_n>:
endop
(nodata snarl
nodata snsr2
nodata snsr3
in Int n

out floakt sqrt_n

float temp:

<sense snsrl>;
<sense snsr2>;
<sense snsr3>:
cemp = n;

(empty full)

(Inlt)
(init)]

(takelast takel)
(put)

(take)
(Inc)]

(sense)
(sense)
(sense)
(take)
(put))

<take n>;

sqrt_n = sqrt{ temp)
<put sqrt_n>;

endop

Instrs
init { toSl
toO
part [n

n_sqgd
red [n

add_n
part [n

n_sqd
red ([n
add_n
fin [snsrl
snsr2
snsr3
n
sqrt_n

uninit
uninlit
Inrange

enpty
full
valiad
inrange

empty
full
valid
outrange
empty
empty
valiad
empty

sSum

holdl
holdl
sum

hold2
hold2
sum

{
holdl
nold2
sum
ans

—

—_— - —

48

lnit : inrange)
Init : valid)]
takelast : outrange,
takel t Inrange)
put : full)]
take : empty)

Inc : wvallg))
takelast : outrange.
takel i {nrange)
put : full)]
take : empty)

inc : valid))
sense : outrange)
sense : empty)
sense : empty)

take : valld)

put : full)]

The F-Net is now presented in three parts: M-variable declarations, operation

declarations, and instruction declarations.

The operations resemble the instructions in the previous example. Each is now pre-

ceded by its signature for each argument, which lists the data usage and Lype, the argument

name, and the list of transition names. (Usages in and Inout signily read usage, out

and Lnout signify write vsage, nodata signifies neither read nor write usage.) The syntax

of Lhe

orphan z as y

has been changed to

<y o

where y is now a transition and zis now an argument. Note that the arguments are nouns,

the transitions verbs.

47

The instcuctions now list the operation followed by the argument bindings (in brack-
ets). The binding for each argument consists of the name of the argument, the m-variable
and control state to which it is bound (i.e. the argument binding and firing constraint), and

the transition bindings in parentheses.

It should be noted that although the sample problem sadequately demonstrates the

concepts, its small size does not provide a good justification of their utility.

3.4. Final Notes

The restriction Lhat the elements of the control domain of an m-variable must be
independent s not a restriction becauvse of the functional nature of operations. Instead of
using two diflerent elements of a control doman as a firing constraint for an instruction,
two different instructions representing the same operation can be used, each having all of
the same bindings except that each uses only one of the elements of the control domain as
its firing constraint. Sjnce the fact that the two instructions exhibit the same behavior is
maintained within the mode} (by virtue of their having the same operation), no information
is lost in this reconstruction. As mentioned earlier, this restriction reduces overhead by sim-

plifying the locking protocol for each instruction required to avoid deadlock.

In addition to the static representation of an F-Net shown in Figure 3.3, dynamic
information relating Lo execution semantics can also be shown. By highlighting the side of
the m-variable corresponding to the m-variable's control state (with no side highlighted if
the control state is 1), the execution rules can be stated as follows: an instruction can fire
(i.e. execute) when it is connected only to highlighted m-variable sides. Execution of an
(nstruction consists of evaluating the Aring function corresponding to its operation, using the
data states corresponding to its "read” m-variables (i.e. those with arrows Loward the

instruction circle) as arguments.

48

CHAPTER 4

Axiomatic Semantics and Formal Resulits

4,1. Introduction

Previous chapters have attempted to give a “feel” for the form (i.e. syntax) and
behavior (i.e. semantics) of an F-Net, but formal reasoning requires more. This chapter
begins by restating this syntax and semantics using the mathematical language of sets and

functions.

Earlier, we defined a2 non-deterministic algorithm as one which describes 2 set of com-
putations, and a computation as a functional mapping from input to ovtput. We also
stated that a reasonable representation for a2 parallel computation is a partial order of
operations. In this section, we descnibe the execution of an F-Net a3 an Execution Graph.
The set of Execution Graphs achievable by any particular F-Net is defined by a set of con-
strainta in the form of axioms. These axioms are followed by theorems which show that

Execution Graphs are indeed partial orderings and computations.

The constructs within an F-Net which introduce non-determinacy are then identified.
With this jo ming, a choice log is defined which ¢aptures Lhe non-deterministic choices made
during a computlation. We then prove that such a choice log, together with the F-Net and
ils tnput, completely characienzes 2 computation. This is valuable information, since 2
choice log can be created during an execution with very little space or time overhead, and

can be used to re-execute an F-Net, perhaps within a debugger, with the same results.

49

The notation used early in this chapter is shown in Table 4.1. The finsl entry may
require further explanation. As a2 Luple is defined, its elements (fields) are named. Later
reference Lo an element of 2 tuple may require identiflying its parent. Since the use of sub-
scripting for thig purpose becomes confusing when tuples are heavily nested, as they are
here, Lhe aliernate notation shown is used. It is intended to be remimiscent of tecord selec-

tion notalion in the C computer language.

4.2, Syntax

Before presenting the formal definition of an F-Net in purely mathematical terms, we
will first provide an outline in English. An F-Net of otder p with alphabet & is a set of

vanables V' operations O, and instructions (which use those operations) /.

. A variable is a repository for dala stele, a data value being passed f{rom one computa-
tion (i.e. instruction execution) to the next, and control state, an indicator of the set
of instructions which can next access the variable. The dala stale of a variable will
be drawn {rom its data domain and the control state will be drawn from its controf

domeain. To avoid the complexities of type mismatches within the abstract model, all

Notation _ Meaning |
A B, - - Z2.¥ | Setsof various kinds, often of tuples
a,b, .z Scalars or tuples
a6 - - ¢ | Functions
N The set of natural numbers
P(L) The Power set of [
/4 The set of integers
|n m| {iel|n<:<m}
Sy The set S sugmented with a bottora element |
to create a Rat domain.
z-w Field w of tuple z

Table 4.1. Notation

30

variables will have the same data domain, 2, and the same control domain, [],p]l,

where L can be taken to represents the absence of control state.

. Operations denote atomic, deterministic computations. An operation possesses argu-
ments which formally represent variablea and each argument possesses (ranaitions
which formally represent some members of that variable’s control domajn. An argu-

ment is classified as being a read (written) argument, or having read (write) usage, if

its data state' is ever used in (produced as a result of} the execution of the operation.
A single argument can be read, written, both, or neither.

The computation performed by an operation is described by 3 firing function, ¢, which
functionally maps the data state of its read arguments to new data state for its write
arguments and transitions for "all of its srguments. For any argument with write
usage or multiple transitions, one possible transition for that argument is |, which can

be interpreted as the absence of a transition.

. Instructions are instantiations of operations. In addition to specifying the operation
to be instantiated, the instruction containg an argument binding, 3, which associates
each argument of the operation with variables of the F-Net, and a frarsition binding,
5, which associates the transitions for each argument and the control domain of the
corresponding variable. An additional firing conalraint, 7y, denctes the control state
which each argument must have in order for the instruction to fire (i.e. execute. per-

forming the mapping specified by its operation).

An F-Nel of order p €N is a 4-tuple f=<2,V,O.[) where

¥ is the Data Alphabet

"When we refer to the data slale or control state of a0 argument, we are actually referring to that of vhe
variable which the argument represents.

S1

V is the set of Variables
O is the seL of Operations, 0 €0 =<a K,]/V,T,QS) where
@ €N is the Arity (i.e. # of arguments)
Rg[l,al is Lhe sel of Read Arguments
WC[1,a| is the set of Wrilten Arguments
1‘.[1,0]—*[I,pl is the Tranailion Signalure (i.e. # of transitions/arg)
& is the Firing Funclion
45:2]“421”")(1‘1)(' - XT,

(1) il 7(k)=1 and £t¢W
where Ty = [1,706)]} otherunse

1 is the set of Instruclions, i€I=<0 ,,3,’1‘5) where
0 €0 is the Opcode?
ﬁ:[l,o -a I — V is the Argumen! Binding
L—1

’7:[1,0 -a|-—>[l,p] is the Firtng Conslraint

aisied

3:[1,0 -a]—*{[l,pll — ll,ph) is the Transi{ion Binding,
-1
(Notes: &(n) needs only to be defined over [1,7(n N

Example: The sample F-Net from the last chapier can be represented formally 85 an order
4 (or greater) F-Net, [zamptey={(S, V, 0, I}, where
V={i,hold1,hold2,sum,ans}
O ={oinit,opart,ored,ofin} where
oinit={2,{},{1,2}, {1,1)},dinit } where dq(J=(0,51,1,1)
oparts{?,{l}.{l@}‘{(l,2),(2,1)}@?&,‘)

2\n fact, 2 cleaner bul more verbose defioilion would make O sequence rather than s set, and the apcode
an index into it. The existiog definition will work nnder the assumption that firing funclions are actuslly
representabions of funclions.

, |1 if n=2
where ¢5pm(”)z(n“1s(n_1) "2 otherunse 1)

OTEdE@’{l12}«{2}'{(1’1))(2!1)})¢r5d >
where ¢,,4(n,m)=(n+m,1,1)

ofin=(5,{4},{s 1,{(1, (21,3,)4, 1),(5:1)} 6 5n)

where dpn(n)=(Vn ,1,1,1,1,1)
I={init,partl,part2,redl,red2,fin} where

init={oinit, {{1,sum),(2,i)},

(EBMCARINEREHINRCRARINY
parti={opar,{(1,i)(2,hold1)},

(L DL {3 ANR{L2D})
part2={opar,{(1,1),(2,hold2)},

{(L.2), 20} {L{3)n2N){0.20})
redi=(ored,{(1,hold1),(2,sum)},

{(1,2).22)} {1, {0 {(L VD0 2DN})
red2=(ored {(1,hold2),(2,sum)},

{(L2). 22 {L{ {20}

fin=(ofin,{(1,i),(2,hold1),(3,hold2),(4,2um),(5,ans)},

{(1.3),(2,1),(3,1),(4,2),(5,1)},

{L{ae{nh.EONE{EINE {121}

4.3. Semantics

52

An F-Net computation will be described as a partial ordering, called an Executioo

Graph, containing two kinds of nodes: Event (E) nodes, which represent instruction firings

(i.e. executions), and Variable Content (C) nodes, which represent the control angd data

53

state associated with a variable between instruction accesses. Ares connect each C node to
the E node representing the instruction firing which accesses the variable in that state, and
connect each B node to a set of C nodes representiog those same variables in their new (pos-
sibly un-modified) state. Since each C node will have at most one in-arc and one out-are,
the graph obtaiped by deleting all C nodes will also be & partial ordering. An execution
graph ilJustrates how each instruction execution maps the old data states of each of its
associated variables to new data and control states, or alternately, how each variable pro-
vides a means ol communication and control between instructions, and s similar to the

unrolling of a Petri net.

The set of possible execution graphs which correspond to a particular F-Net is
presented by characterizing its reembers in two stages. First, the general form of an execu-
tion graph is given, then a set of axioms is provided which constrains the elements Lo execu-

tion graphs corresponding to the pacticular F-Net.

4.3.1. Form of an Executioa Graph
Deflne an ezecution graph for an F-Net]=<2, V\O.1> with input :f -V —/ L asa 6
tuple II‘L=<E,C,B,A ,0‘,5) where

E is a set of firing events

C is a set of variable contenia

BCCXE is a set of before arcs

A CEXC s a set of after ares

A E—f-1)san instruction name labeling

0:C~>f -V is a variable name labeling

such that fvoctions

54

b‘.Cﬁ[l,ph is a control atate labeling

0:C—[-L called a data state labeling
exist, and Semantic Axioras § through 6, described below, hold.
An execution is represented graphically wich vertices EUC and edges BUA. The ver- -
tices are labeled according to the values of their T functions as (ollows:

c

c

C Node E Node

Figure 4.1 Node Labels for Execution Graph

See Kigure 4.2 for parts of a possible execution graph for the sample F-Net.

4.3.2. Axioms Constrrining Execution Graphs

IS

In addicion to Table 4.2, the following shorthand will be used in this section:

Define the inttial elements of C, C, as those elements which precede all elements of C hav-
ing the same name, i.e.
Co={coEC|cEC N\ c=cy=>co~>>c)

Axiom 1: Initial Conditions

Each variable has ap initial C node named for it, which has a control state labeling of

1 and a data state lzbeling of £.

Vo€V €Cyco=v N cq=1 A\ ¢o=t(v)

Axiom 2. Atomicity

A C node has at most one predecessor and one successor, signiflying that jt can be the

result of at rmost one instruction execution and can be sensed by at most one instrue-

{b) Possidle Ending

Figure 4.2 One Execution Graph for the Sample F-Net

NotLation Descrigtion T Meaning
£ Instruction Label d(e)
c Variable label ofc)
c Control state ofc)
c Data state o(c)
AL Image of set L {a(l).LELY
o{(y;)) Image of Seq. (Z.") where z_,-=c¥(y_,—)
XY m bijectively maps X to Y m(X)=Y A m Y (Y)=X where
m:X'—=Y XCX' YCY'
z¥ Successors {v|(z.y)EB} |4}
Yy Predecessors {I I(I,;’)&BI-[A}
T~>z Precedes (Byv(z.v)EB YA A y~>2)V z=¢
where I,ZEC[‘E
L> Set L as ascending sequence (lJ-) where
LEL N j<k==>1,<l
L= Set L ordered by ~>
I— ¥y Z determines Y The axioms and Z uniquely determine

Teble 4.2. Additional Notation

58

tion execution.

Veel X<t A |* <t

Axiom 3: Firing
Structure: An E node for an instruction has predecessor and successor C nodes which
correspond exactly to the varnables to which the arguments of the instruction are

bound.

Ve€E. *eoré f([L,€ 0 a))

A e"“:e‘-ﬁ([l.é-o-a])
Condition: The control states (or the predecessors of an E node must correspond
exactly Lo the firing constraint of the instruction represented by the E node.
Ve€E.c€¥e = ¢ =¢-+(e-Y0))
Result: The firing function dictates the new data state of each of the instruction’s
written arguments and a transition for each of the instruetion's arguments, based only
on the o0ld data slate of the read arguments. The control state of each new variable
content node js obtained by mapping its transition through its corresponding transi-
tion binding.
Ve€E.¢-0-(rq,rg, * *)=(w, Wy, -+« LEptg, 0 o 08 A
(VEE[L¢-0-a).Gi= (k) (1))
where r;€%, w;,9,€e*, (v;)=€-B(€-0-R<),
(7;)=¢-B({1,€-0-a]%),
(w;)=¢€-B(€-0-W<)

e‘,o.a)

Note: The sequences (TJ-), (u)j), and (g}-) defined in the where clause are the prede-

cessor nodes corresponding to read arguments, the successor nodes corresponding to

wrilte arguments, and all of the successor nodes, respectively. Axiom 3-structure

ensures that there is exactly one sequence (cj) of predecessor (or successor) nodes such
that (Zj)=e'ﬂ([l,c‘-oAa]<). The three sequences in the where clause are subse-

quences of such a sequence, and so are well defined.

Axiom 4: Non-interference
If a variable is not a write variable for an instruction, then an execution of Lhat
instroction wil) not aflect the data stale of the variable.
Ve€E, m€(l,é-0-a|\é-0-W.
c€E¥e N\ c'€e* N\ e=c'=¢-f(m) = ¢=¢’
Axiom §: Liveness
If an instruction can fire, it (or another instruction connected 1o some of its variables)

must fire.

(FELC'TC Ceni-f|Lyiv0-a]) A (Ve €C. é=iAi-BYE)))
= U{c*|c€C'}#@
Axiom 6: Time Consistency

The execution graph will be acyelic:

(z.9EC|YE N 24y N\ z~>y)=>not(y~>1)

[n generaj, seversl execution graphs will satisfy the axioms for a particular F-Net and input.

4.4. Execution Graphs as Partial Orders

The theorems ia this section will demonstrate that an execution graph s a partial ord-
ering, thal each variable is represented by exactly one bottom element within the partial
ordering, 2nd that the C nodes representing any variable are totally ordered within the

partial order.

]

58

Theorem 1:

~> partially orders the elements of EUC.

Proof of Theorem 1:
Reflexivity and transitiviby are obvious (rom the defimition of ~>. Axiom 6 gives

asymmetry.s

Theorem 2:

There is exactly one element of O representing each variable in the F-Net—i.e.
CorV

Proof of Theorem 2:
Axiom | gives Co=V. Lev dc,c'€Cuc=c’. By definition of Cy,
c~>c' N\ ¢'~>¢, but by Axiom 6, ~> is asymmetric. So ¢ =¢’' =0 Co—V is
1-1.a

Define C, E{C'EC c=uv}.

i.e. O, is the set of all C nodes labeled v.

Define age:C—WN as age(c) = [{c'€C-.c'~>c}|

le. age (c) 35 the number of C' nodes with the same name preceding ¢ (including ¢ itself).

Theorem 3:
All variable content nodes with a given name labeling are totally ordered by ~> (i.e.

form a chain in the partial ordering):

VvEV,c,c'€C, not(c~>cN=c'~>¢

Proof of Theorem 3:

The proof will consist of showing that

age

CUH|1)|CU H

59

from which the proof of the theorem is obvious.
Define B(c)={c’EC;.c'3e A c/~>c N\ (Ve"EC: .c"~>c =c"~>¢')}.
That is, B(c) is the set of "closest™ members of C{— which precede ¢, so

=l+ X .
age(c) C’EB(C)age(c)

Let ¢’,c"€B(c). Then from definition of B(¢) and Axiom 2,

¢'~>c = *|#0=|c" ¥ =1,
and the same is true for ¢’ Let c'4={e'}, "¥={e"}.
|e’*mC?|=|e”*mCE|=1 from Axiomn 3-structure. [n each case, that element
must be c. From Axiom 2, e'=e”, and since |*e¢/MC;|=1, ¢'=¢”. Thus,
B(c)={c'}. and age(c)=age(c)—1, so in general,

VvV, n>1. [{c€C, age(c)=n}|<|{cEC, age(c)=n—1}|
The proof is finished by observing that

[{c€C, age(c)=1}|=1

by Axiom 1 and definition of Cy. o

4.68. Execution Graphs as Computations

Define c~>E{c'€C’.c’~>c A c'#c}

Theorem 4:

The control state and data state labelings (funclions & and J) for an execution graph
are unique: l.e.

l— 0,0

Proof of Theorem 4:

Induction over partial order C™.

Base Case: ¢€EC — ¢,¢

60

From axiom 1, ¢ =1 A\ ¢=¢(c)
Inductive Case: Ve EC.((¢'Ec o F— c)— ¢ ,c).
c’€c~> @l *c |=l from axiom 2, Let ¥¢ ={e}, and let (7;) be the sequence
of &’s predecessors corresponding Lo its read arguments,).e.
(r,)=€-P(€é-0-R <) where 7, € *e.
By consbruction, V1. 7i€C,~, o by the inductive assumption, t— 'r',-. Let
(n)=€-0-Hr1,79, - - - ,1;) (ie. the resule vector from the instruction)
and mEE'ﬂ_‘(a (i-e. the argument represented by ¢).
Axioms 3-resull and 4 diclale
Cl:é"\((m)(nmi-li-o-%’l)'
and
(e i m=(c-0- W),
“Tler it mgéo-w
where ¢” is the member of *& such that c=¢”. o
The fact that T and T are completely determined by an execution graph explains why
they are not taken to be part of the definition of the graph, but it also illustrates that each
C node represents the results of a function evaluation, perhaps on its way to be used as an
argument to another {unction. To get 2 better feeling {or the function evaluation taking
place, the O labeling can be interpreted slightly diflerently, as the function evaluation

represented by the node rather than the result of that evaluation, simply by leaving the &

functions nnreduced while following the procedure used in Lhe proof of Theorem 4.

Define the oufput of a execubion graph z. relative to variable €V and control state

n€[1,p|, denoted oulput(:z:/ _,,v,n), as the sequence

61

o({c €z, C,.c=n}")
(Corollary 3.1 and Theorem 4 prove that this is well defined.)
Define an F-Net as being delerminale with respect to variable €V and control state
n€ll,p], if and only if

Vioulput(z; ,,v.n)=output(z’; ,,v,n)

(i.e. if the output sequence for contro) state n of variable ¥ is dependent only on the input

for a given F-Net).

4.6. Tracing an Execution

How much (or little) information is vequired, in addition to the F-Net itself, to com-
pletely determine an execution graph for that F-Net {up to an isomorphism)? This question
s important for debugging non-deterministic programs, for jt determines the amouni of
data that must be logged during an execution in order to reconstruci "what happened” dur-

ing that execution,
Define, for 1,:'€J,

shared (3,4")=v-B([1,¢-0-a)" B([1,+" -0 a))
(i.e. the set of variables to which both 1 and i’ are bound).
Define the contends relation <> as

i<>i'=i#0 N shared (s,

A VoEshared(i,i").i-b(i-F (v))=i"b(i" ()}

1.e. two instructions contend whenever they have at least one variable in common, 2nd for

all variables which they have in common, their firing 1s constrained to the same control

state of that variable.

Put another way, two instructions contend if the states of the variables which they
share do not dictate which should execute next. Since they do share variables, the I nodes
representing their executions will be related by ~>>, so the order in which they execute will
aflect the topology of the execution graph. This suggests (and the remainder of this chapter
will prove) that contending instructions are the only source of non-determinism in an F-Net.
We now add instrumentation Lo an F-INet to capture the order in which contending instrue-
tions fire, and thus the non-deterministic choices made during an F-Net execution. This is
accomphished by coloring the instructions of the F-Neb such that contending instructions
always bave differing colors, then recording the color of each contending instruchion every
time it fires. This Jog of colors does not need to be global—it is only necessary that any two
instructions which contend vse a common log. Since contending instructions already have
some common variables by defimition, these variables provide a handy (and local) site to
store the logs. It is nol necessary Lo assign a log to each shared variable, but ta at least

one variable shared by the contending 1astructions.

-~

Define an Instrumented F-Net as a 8-tuple /=<E, V,0,l,color logsel) where
/=(E,V,0,1)is an F-Net
color:/—IN is an Instruciion Coloring
logsel:I]—P(V)is a Log Selector
such that
(t<>i") =>color (¥)#color (3') N\ logsel (i)Mlogsel (s")Mshared (i)
not(+<>:") =>logsel {1)=}
1.e. for any two instructiong which contend, the colors assigned to the instructions are
different, and at least one of their shared variables belongs to the log selector of each

tnstruction.

63

Example:
To better convey the points of this scction, we now leave the previous example behind
and refer to the F-Net shown in Figure 4.3. [t will not be necessary to detail the firing
functions for the individual instructions. In this F-net, B <>C and B<>D are the
only instructions which contand. One possible inscrumentation for that F-iNet is
color={(A,0),(B0),(C,1),(D,1),(F,0)} and
logsel={(A {}),(BAL,MN(CAMP(D{L},(F.(})}

Define a Traced Ezecufion Graph of instrumented F-Net f=<S'V,O,f,COlOT,[Dg$6[>

with input . as a 7-tuple £ ~ ={E,C B A ,8,7,logent) where
IR

T |
1 2
3 1 2
D Y L
2

S AN\ NS)
! 3 2

Figure 4.3 A New Sample F-Net

64

1/',=<E,C,B,A ,5,5'> is an execution graph for F-Net f =<Z, V,O,]> with input L
logent: C—IN is the Log Entry
such that
Ve€EEVcE*e.c€logsel () =logent(c)=color(€)
ji.e. each time a contending ipstruction fires, the color of the instruction ia logged to all of its
predecessor nodes which correspond to its log selectors.

Define the Log of traced execution graph T ~ [or variable vEV, denoted log(Z ~ ,v), 3s
S It

logent({c€C,.c*={e} N\ vElogsel(¢)}™)

where

}=(E, V,0.1,color logsel)

z:} =({E.C,B,A,6,5,logent)

j.e. the log for a variable is the sequence of log entries assigned to the C nodes named for

the variable, omitting those that do nol immediately precede contending instructions.

M}—(F)

N
Nov NG

Figure 4.4. An Execution Graph for F-Net in Figure 4.3

o [

65

Example:
Il the execolion graph in Figure 4.4 is a traced execution graph of the instrumented

F-Nei given in the last example, then

log(z- \L)=0,1
fe
log(2. ,M)=0
I
All other logs are empty o

Minimizing the range of color will therefore minimize the size (i.e. number of bits) for
a log enlry, and minimizing the range of logsel will minimize the number of Jogs to which

each log entry is recorded.

4.7. Execution Grapha with Identical Loga are Isomorphic

Definition: Prefix subgraph

Let 7 be an execulion graph. ¥ is8 a prefiz subgraph of T if ¥ is a subgraph of x, if
every predecessor in T of an element of ¥ is also in ¥ (as is the arc between them),
and if every successor to an E node in § is also in ¥ —i.e. the following conditions
hold:

(V) c€y-C=c€x-C

(2)e€y-E=e€x-E

(3)(c€y-C N\ (e,c)ez-A)s>(e€y-E N (e,c)Ey-A)

(4) (e€y-£ A (c,e)€z-B)s(c€Ey-C N (c,e)Ey-B)

(5) (e€y-E N\ (e,c)Ex A =>cEy C

Notez that a prefix subgraph is often nol a legal execution graph because it does not adhere

to Axiom S-lyveness.

66

Definition: Graph Isomorphism
Execution graphs (or prefix subgraphs) = and 2’ are isomorphic (denoted z=z') iff
there exist bijections ¢ :2-C<«=+z’-C and €:2-E£++z’-F such that

(c,e)E;-B@(c“(c)‘e'(c))EI'-B
(e.c)€z- A <=(e(e)c(c))Ex" A
e)=a((c))
He)=oté(e))
From the proof of Theorem 4, it also follows that
A ey=ofc(c))
5o)= c(c)
The rest of the chapter will be devoted to proving the following theorem:

Theorem 5:

Iy :r'7 =(E,C,B A ,6,5,logent) and :E'} =(E',C"\B’ A" &0 logent') are

traced execution graphs of instrumented F-Net]=(2,V,O,],Color,logsel> with

input ¢ such that VsE€Slog(z ~ ,v)=log(z’~ .v) then execution graphs
/.t /e

.’L‘/‘L=<E,C,B,A ,5,5’> and x'/|t=<E'.C’,B',A"d’,5”) of]=<E| V,O,[) are 5o

morphie.

That is, in sddition to the original input and instrumented F-Net, only the log associated
with each variable is needed to uniquely determine the execution graph. The proof will be
presented “top-down™ to give the reader a better bearing on where it is all leading, and 13
based on an induction over the partial ordering represented by the execution graphs.

Proof of Theorem b

67

Base case:
The prefix subgraph consisting only of the C elements of T is \somorphic to the prefix
subgraph consisting only of the C\ elements of z'. This follows immediately from the

definition of Cy, Axiom 1, and the definition of 2 prefix subgraph.

Inductive step:
Suppose that there is a prefix subgraph of z; , (call it y) which is isomorphic to 2
prefix subgraph of I'/_L (call it ¥'). T cither execution graph (say z, WLOG) has an
element not in its prefix sudbgraph (y), then pick a least such element by partial order-
ing ~=>, and call it e,. (Tt must be a member of £ {rom the definition of prefix sub-
graph.) We will show that the other execution graph (z) has 2n element €,/ not in its
prefix subgraph (y’) such that adding e, its belore ares, after ares, and successors to
¥ is a prefix subgraph which is isomorphic to thal obtained by adding ¢,/ its before

!
arcs, after arcs, and successors to ¥'.

The result of this induction is that given any two traced execution graphs with identical
logs for all variables, all of bobh graphs can be pulled into y and ¥/, so the execution

graphs themselves must be isomorphic.

Proof of the inductive step:

Construct ¥, ¥’ and ¢, as indicated in the above prool statement.
Define

— ¥
_Pz= €,
All members of P, must be members of ¥, so by the inductive assumption, there exists a set

P_iin ¥/ such that

P,&P

I

Consider the successors of lei

E’I/E U CII*
C‘EPII

68

E'zr cannot be empty, since we know from execution graph z that there exists an instrue-

tion (€,) which can fire based on the control states of the elements of P,, so by Axiom §-

Liveness and isomorphism, one of the elements of P, must have a successor.

Pick a Jeast element of E’z: and call it €, In the next section, Lemma §5 will show that

€,/=€;, and from Lemma 5.2 it will follow that

=%*e,, so E’z{e;’}. Axiom 3-

Structure then gives that ezt* and &, * have the same names, control states, and data

states.

=cC,!

4.8. Toward Proving ¢,

Lemma 5.1: shared(€,,€,)#()

Proof:
P,=P,
=3P,)=5(P)
e, =P,
3%,)=5(P,)
*e, Py
(e,) VAP)ED
(e)V e 4D
6 L6, 00}V Bl Eoro - AT
=shared (€;,€,)%C)

(By construction)
(Mapping over like sets)
(By construction)
(Mapping over like sets)

(By construction)

(Substitution)
{Axiom 3-struct)

(Def. of shared)

69

Lemma 6.2: ¢,E¥e, A\ ¢, €%e N\ ¢,=c, =>¢,=c,
Proof:
Let ¢,E¥e, and ¢',€%e, such that ¢,=c';. Since ¢,EP,, there must be a
¢, ®€P, 1 such that ¢,=c¢,), and therefore ¢, =c,.. We will prove that ¢ ,/=c’,, thus
proving the Lemma.
Suppose that ¢’ 54, 0.
From Theorem 3, al) elements of C with the same name [orm a chain in the partial
order, so either (2) ¢’ ~>c . or (b) ¢ p~>c’y
(a) ¢€ *61/, s0 by Axiom 2-Alomicity, c’,/*={ez:}A Fram this, the definition of
~>, and the fact that ¢',~>c 1, we gev €,~>¢,. But ¢, is a member of ¥/,
so by the definition of prefix subgraph, €, must also be. = <=.
(b) Let CI/={EII|}. (It must have exactly one ¢lement, from Axjom 2-Atomicity and
. the fact that it precedes other elements.) But from ¢,~>c’,/ and the construe-
tion of ¢’,y, it follows that c,i~=>e’ i~>c’ i~>e,i. Thus, €, is not a least ele-
ment having a predecessor in P,r. =<,
So ¢! /=¢,1, and therefore ¢/, =c . o
Lermnmasa 5.8
VeEshared (€, €,)dc, E¥e,, c € e, c,=Cp=V
Proof:
vE€shared(é,,¢,) =>v€e, B([1,6;-0-a]) M€, B((1.€,-0-a]) (Def. of shared)

= EIC, €¥e,, € *611. Zt-z =c_zr=v (Axiom 3-structure)e
Lemms 6.4

€y <>621

70

Proof of Lemma 5.4
¢, E¥e, N\ cp€ep N\ cy=typ=>c, =y (Lemma 5.2)
YvEshared{€, ¢,)dc, E¥e,, c, € eprc=c,=v (Lemma 5.3)

= VuEshared(€,,é,0dc, € ¥ey,c, €%, c=c, =5 N\ cp=c, (Substitution)

Ve€E cE*e =>c=¢-b(6-FY2)) (Axiom 3-cond)
=VvEshared(€,,6,).€,-b(&, F ' (v))=¢,+b(€,6"(v)) (Substitution)
shared(€é,,€,)# (Lemma 5.1)
6, <>E, (Def of <>

Lemma 5.5

£, =€,

Proof:
Suppose false: e,
€, 7€,
After adding the results of Lemma 5.4, the definition of an instrumented F-Net gives
logsel(¢€,)Mlogsel(€,)Mshared (€, ¢,)#(
Let v be a member of that set. Then it must be 2 member of shared(e,,€,/), so by
lemma 5.3,
Je, €%, ,c,E % e e, =cp=v
From this, and the fact that inogSe!(eﬁzn)ﬂlogsef(c}), and the definition of a
traced execution graph,
logent(c,)=color(€,)
logent(c N=color(€,)
Since ¢, and ¢,s are corresponding elements from isomorphic prefix subgraphs, and

since the logs for the execution graphs are identical,

71

logent(c,)=logent{c,)
50
color(€,)=color(€,)
But the definition of an instrumented F-Net expressiy requires that

€76, N\ €,<>€,=>color(&,)Fcolor(¢€,)

Thus the contradiction, so €,/=¢; .0

4.9. Conclusions

The previous two sections showed that, in general, only a small amount of information
needs to be recorded during an execution to allow for the reconstruction of that execution,
and that this information only needs to be recorded flor instructions which contend. In the
example given, this consisted of recording one bit of information whenever instructions C or
D fired, and two bits whenever B fired. In addition, Lthe recording is always performed to
an uncontested site, namely a variable which is already accessed by the instruction perform-
ing the recording. It seems plausible that the space and time overhead for this recording
will be small enough in the general case that the benefit gained by instrumenting every F-

Net will not be negated by any significant loss in performance during its execution.

The fact that conly the fArings of contending instructions need to be recorded directly
implies that of an F-Net has no such instructions, all executions of that F-Net will be deter-

ministic: i.e. given the same input, all execution graphs will be isomorphic.

4.10. Final Note on the Effects of Order (Size of Control Domain)

An order-p F-Net is ope in which each of its variables has a control domain of {at
most) p elements (plus 1). Variables in an order-1 F-Net can therefore provide no means to

control the order in which instructions fire and thus ne means to enforce communication

72

between instructions. A legal execution for zny order-1 F-Net could consist of a single
instruction asseciated with each variable firing repeatedly forever (or until variables attain

a control state of 1). Order-1 F-Nets are therefore clearly of little use.

An F-Net of order 2 or higher can always be expressed as an F-Net of order 2 with the
same number of instructions by modeling each n-control-state variable with lg(n) 2-
control-state variabtes. This provides n different ways of constraining the firing of the
instruction. See Figure 4.5. By selectively producing transitions to these vanables, any of
these instructions can arbitrarily determine the next control state for each of the variables,
thereby dictating which connectjvity will be enabled next. This is exactly the behavior

required for an n-control-state variable.

"Non-volatility” is preserved by this transformation. I an instruction in a high-order
F-Nel has non-volatile access to a variable, the instruction can always be modeled as per-
forming 2 single transition to each of that variable’s representatives in the order-2 F-Net

with no write usage to any of them. I the high-order instruction does have write usage to

O

Order 4 F-Net Comparable Order 2 F-Net
Figure 4.5. Comparable Order-4 and Order-2 I-Nets

73

the variable, or performs multiple transitions, it must have write usage to, or perform multi-

ple transitions to, at least one of the representative variables in the order-2 F-Net.

Even though an order 2 F-Net can always be constructed to have the same behavior

as a higher-order F-Net, the amount of high-level information about that behavior is

greater in the higher-order F-Net.

(1)

(2)

Two different instructions in a high-order F-Net which represent the same mapping
from read arguments to write arguments and which perform the same nomber of
transition to each argument can use the same operation. After translating to an
order-2 F-Net, it may not be possible 1o use the same operation lor both because the
transitions performed by the operation may depend on Lhe encoding of the variable’s

control domain.

[t 13 not possible to represent as many transition bindings in a low-order F-Net as in
a higher-order one. For example, in Figure 4.5, it is apparent that instruction D will
only make transitions to control states 01 or {0, enabling instructions B or C, but
this is not apparent at all in the order-2 F-Net. The possible combinations of transi-

tions have been hidden inside of the firing function of D’.

Additional justification for having nets of order higher than 2 will become clear when the

model is extended to include hierarchy. TFor these teasons, low-order F-Nets will not be

further considered in this thes)s, and the term "F-Net" will subsequently refer to an order

infinivty F-Net—i.e. one in which the variables have as large of a control domain as needed.

This is possible because control states to which there are no transitions or bindings have ne

effect on the semantics and are not shown in the graphical representation.

74

CHAPTER 5

Comparison with Other Models

Now that F-Nets have been formally defined, some comparisons can be made between

F-Nets and some of the other models mentioned in Chapter 2.

5.1. Unity

Unity programs are very similar to order 1 F-Nets'—ie. F-Nets with a control
domain capable only of ensuring the atomicity of execution. Unity provides two extensions
over these nets, however: (1) a strong nction of fairness, ensuring that no iastruction firing
will be delayed for more than a finite number of other instruction frings, and (2) an
option;l guard for each instruction which prevents it (rom having an cflect when not
satisfied. Unity-like guards could be simulated in order-1 F-Nets by including conditionals
within operations and requiring arguments to have read usage whenever they have write
usage. This latter restriction is necessary because every firing would be required to produce

a new data state [or these arguments, whether or not the simulated guard was satisfied.

On a more practical level, a Unity program, as presented by the authors, has rela-
tively fine-grained processes and ether. The ability to collect ether addresses into larger
structures is jroportant to achieve the granularity in high-latency environments needed for

portable parallel programs.

"Reeall that the order of an F-Net is the maximum size of the control domains Tor its varisbles.

75

5.2. Petri Neta

An operation which has no arguments having read or write usage must have a firing
function which returns constant transitions. An F-Net containing only operations of this
kind can be modeled directly as a Petri net. Each element (other than 1) of the contro)
domain of each variable in the F-Net becomes a place in the Petri Net, and each instruction
hecomes a Petri-Net transition. Each argument in the F-Net becomes two arcs in the Peiri
Net—an input arc representing the firing constraint and an output arc representing the
transitien binding. The initial marking for the Petm1 Net consists of one token on each

place which corresponds to an initial control state, see Figure 5.1.a,

To model F-Nets more generally requires that Petrt Net semanties be extended. In
addition to the above translation (now with rmultiple output arcs for each argument, one far
each transition binding), the following additions are required (see Figure 5.1.b for an exam-
ple):

(1) The input arcs to the transitions in the Petri Net are colored (with chalk) red, white,
or both, depending on whether the associated argument has read usage, write usage,

or both. Arcs having neither are left uncolored.
(2} Places are labeled for the variable which they represent.

(3) Each token is extended to carry a data value, and is labeled indelibly with the name

of the variable to which it belongs.

(4) When a transition fires, it takes one token [rom each input place. As it is taken,
some of the chalk from the arc will smudge onto the token. (If the arc has both red
and white, both colors will smudge.] Based only on the data associated with tokens
which are smudged with red chalk, the transition delermines new data values for

tokens smudged with white, then determines an output arc for all tokens. The

76

F-Net

Corresponding Petri Net

a. No read-write usage b. With read-write vsages

Figure 5.1. F-Nets Modeled as Petri Nets
output arc chosen must be connected to the appropriate variable (i.e. that for which
the token is labeled), and the transition may determine that it will not replace the
token at all if the token 33 smudged white or if there is more than one output place
corresponding to its variable.? Az a token is put on an output place, all smudges are
cleaned off the token. Note that uahke conventional Petri Nets, a3 token is notl

added to each output place, but to at most one output place corresponding to each

2 This latter case represents the _Lcon'.rol stale.

77

m-variable.

Other extended versions of Petri Nets which include data transformations and timing
of transitions have been proposed by other researchers, primanly to simulate hardware sys-
tems. While the F-Net model has intentionally avoided addressing timing constraints, we

believe that it can address 2ll other aspects of these models.

5.3. CCS8

F-Nets and Milner’s CCS have a great deal of similarity. Both use, as a basis, finite
state machines. Events can occur only when the states of diflerent machines occur in stated
combinations. These events are atomic, and when they occur, they cause (or allow) a tran-

sition to the state of each of the machines involved.

The specifics of the models are different, however. In CCS, the evenls are communica-
tion, where no data transformation takes place, while in F-Nets, the events are instruction
firings, which do transform data. In CCS, a state transition may involve a data cransfor
mation, and may be non-deterministic, while in F-Nets, the state transition itsell does not
transform data, and is deterministic. However, the state transition snd data transforms-
vion 1in F-Nets depends on the event which causes the transiormation and the data which
that event accesses (unlike CCS where the transformation depends only upoo the previous
state of the machine plus non-determinism), and that event can be non-deterministically

chosen in 30me cases.

From these comparisons, it seems clear that an F-Net can be constructed with identi-
cel behavior to any CCS program, by representing each CCS communication link with one
or more F-Net instructions, as necessary to provide the required non-determioism. The pos-
sibility that some aspects CCS and F-Net theories could be merged could provide fertile

ground for future research.

78

5.4. Functional Models

A ptimary difference between F-Nets and traditional functional models is its lack of
single-assignment vamnables, and therefore lack of referential Lransparency in the genera)
case. A limited amount of rceferential transparency can be obtained within an F-Net by
considering each m-variable to be a set of functional variables, one for each element of the
control domain, and ensuring that each instruction with write usage makes a transition to a
“new" {say, numerically higher) control state. But any usable functional model must be able
to create new contexts with new versions of single-assignment variables to avoid using up
the supply. These contexts are typically created (or each iteration of 2 loap, each invoca-
tion of a function, or by using a local assignment (let ... in) facility. In the absence of
these contexts, the tontrol state of an m-variable provides a method for explicitly managing

the reuse of control states, rather than relegating the analysis of re-use to a smart compiler.

5.56. Guarded Commands

Assuming that each element of the control domain of each m-variable represents a
predicate over the data state of that m-variable, and the control state represents one of
those predicates which is asserted to be true, the firing constrajnt of each instruction can be
regasded as a guard formed by the conjunction of Lhese predicates. Any guarded command
can therefore be modeled by expressing its guard in disjunctive normal form and creating a
separate instruction (with tbe same operation) for each disjunct. This F-Net form of
guarded commands clearly shows the relationships between the guards of different com-
mands, both to the human in terms of the graphical form of the F-Net and to a scheduler
when determining when a guard must be re-evaluated. A compiler for Unity could very well

use such an P-Net a5 an intermediate form.

79

Similarly, the rontrol states for a variable can be regarded as exception conditions,

with the instructions constrained by each control state being the exception handlers.

5.8. Graphical Speciflcation Languages

Common graphical specification]anguages; either detail the possible data relationships
between modules without defining the control relationships (e.g. dataflow diagrams or
Entity-Relation diégrams), or they detail the control relationships without detailing the
data relationships (e.g. Petri Nets). In F-Nets, all of the information about each
instruction’s behavior other than the actual mathematical transformation between input
and output 1s shown in the graphical version of the F-Net., The fact that the graphical
form does not express the mathematical transformation itself leaves it free of much of the
complexity to which Brooks referg in his refutation of the pessibility of workable, graphical

languages [9].

5.7. Imperative Sequential Progrems

An imperative sequential unstructured program can be converted to an F-Net by mak-
ing each statement into an instruction, each variable into an m-variable having a single-
element control domain, and the instruction counter inte a vanable with no data state but
a very large control domain, with each possible control state representing the location of a
statement. Each instruction would be bound to the appropriate dats variables and to the
proper control state of the instruction counter. The resultant F-Net would contain no con-
currency aside from some possible optimistic buffering due to non-velatile arguments, and
the graphical representation would resemble a rat’s nest of arcs to m-variables, and a too-

detailed depiction of control by the fingers within the instruction counter variable.

80

Instead of this fine-grained approach, an instruction in an F-Net typically ¢onsists of &
group ol logically-related statements, and m-variables contain logically-related groups of
variables. The control state is moved away (rom the central program counter, instead being
distributed among tbe “states of completion’ (control states) of the program’s variables (m-

variables), enforcing only the order in which they are accessed by different instructions.

In this form, each instruction resembles a block in & structured language, and transi-
tions are transfers among blocks. This transler of control is looser than that employed in
structured-programming practices, but the graphical F-Net provides a flowchart for these
branches, uncluttered with the statement-by-statement control and data management Lthat
35 better shown in the text of the program. Unlike traditional process models where control
structures hide within the communicating processes, control state puts it between processes
(instructions) so that decisions affecting subsequent process e¢xecutiop are made explicit in

the model.

5.8. Conclusion

The comparisons here have regarded control state in a variety of different ways: as a
predicate for a guard, as a means of ensuring atomic execution, as part of the name of a
variable, and as a program counter. In addition, the elements of a variable's control
domain can be considered the states of a finite state machine, which watches over access Lo
the variable. We believe these examples illustrate the power present in the simple concept

of control state.

81

CHAPTER 8

Implementation

B8.1. Introduction

The axioms defining the semantics of F-Nets in Chapter 4 provide a basis for deter-
mining whether a specific implementation of the model is correct—i.e. whether the execution
graphs produced by an F-Net in the implementation obey the axioms. However, the axioms
were chosen with the additional goal of facilitating efficient implementations on a variety of
architectures. This chapter will prove (by example) that this is indeed possible. First, a
generic implementation will be developed and shown to obey the axioms. Then, this imple-
mentation will be optimized separately for shared-memory and message-passing architec-

tures,

8.2. Definition of a Valid Implementation

Let F be the set of all legal F-Nets {minus isomorphisms), and X be the set of all legal
execution graphs (minus isomorphisms). Then the semantics of F-Nets given in Chapter 4
can be considered as a function

p:F—=P(X)
which maps each F-Net to the set of all legal execution graphs for that I~Net. The F-Nets
and execution graphs described in Chapter 4 will be called abstract, and p will be called the
interpretation function.

A specific host environment for F-Nets, which includes language processors, & run-time

environment, and the host computer’s architecture, can also be considered as the definition

83

X

Figure 8.1 Relationship of Mappings for a Hypothetical F-Net
implementation to produce its concrete exacution graph in a finite amount of time. In light
of the fairness rule discussed in chapter 3, we instead require that any finite prefix subgraph
of the execution graph be computed in a finite time. (We specifically do nef require that
this amount of time be predictable, nor even that it be possible to tell when the time has

elapsed.) This means that an implementation must enlarge the graph evenly in some sense.

8.3. A Generic Implementation

In this section, a generic implementation will be proposed and argued to be valid. The
first two subsections will define the forms for the concrete F-Net and concrete execution
graphs tn the generic implementation, and will describe the 7 and w, mappings which
interpret these as abstract F-Nets and execution graphs. The third subsection will concen-
trate on defining the g function which executes the concrete F-Net on an actual architecture

to produce the concrete execution graph.

84

8.3.1. Concrete F-Nets (rf)

The concrete C-based textual syntax that was presented informally in the Chapter 3
"sum ol squares” example will be used for the generic implementation. A more formal

description of the syntax follows:

fnet .= Vars var™ Ops op+ Instrs inatrt

var = lype varname (cslatename’)

op := opname [arg+)l opbody

arg ;= rwperms argname (lransname)

rwperms = Lin type) out fype| inout lype| nodata
ynaly = opname [binding’)

binding = argname : cslalename varname (tranabdg+)
transbdg /= transname : cstaleneme

where

varneme, cslatename, opname, and Iransname

are legal C ideatifiers

type is a legal C type expression (possibly a structured type)
opbody

is a legal C program block with the lollowing caveats:

(1) Statements which could facilitate communication with other programs are disal-
lowed. This includes [/O. (Chapter 7 will address how 1/O can be built into the

model.)

(2) Arguments declared in the arg section which have rwperms other than nodata can
be accessed within the program as though they were variables with the associated
type, except that Lhey cannot be aliased. in arguments cannot be used in any con-
text in which their contents could be modified.

{3) Transition statements, of the form

< {ransname argname >

85

are included, where argname is an argument of the operation and {ransmame is a

legal transition of that argument, as identified in the operation signature.

8.3.2. Abstraction of Concrete F-Nets (7r)

The concrete F-Net ia abstracted in a fairly obvious way.? The declarations in [

represent the following mappings:

Variable Declarations
The var productions represent a mapping:
Var_dec: Varname —(CtlIDom —IN)
l.e. each varrable name is associated with a mapping from the declared control domain
of that variable to the natural numbers. The Ci!Dom —IN mapping is sequential

within the vaciable (i.e. the first-mentioned control state 1o [, the second to 2, ete.).

Operation Declarations
The op productions represent a mapping:
Op_dec:Opname—(Argname —~(INXRWperm X(Transname —IN))x Opbody)

i.e. each operation name is associated with an acgname mapping (corresponding to the
arg productions), and an operation body. The argname mapping associates each argu-
ment name with (1) an element of IN, (2) a read-write permission (a member of {in.
out, inout, nodats}), and (3) 2 mapping which associates each transition rame with
an element of IN. The Argname—IN mapping is sequential within the operation, the

Trensname —IN mapping is sequential within the argument.

Instruction Declarations

The (nair productions represent a mapping

A 2 formalized view of Lhia "obvious™ inltrpretation is not helpful, the reader ean safely skip all but the
discussion of ¢ in the last few paragraphs of Lhis subsection.

bt

Instr_dec:fnslr—

{Oprame x{Argname— CliDom X Varname X(Transname — CtiDom)})

Based on these mappings, the F-Net rrF{_f]=<Z,S,O,)') is defined. Since the abstracl model
does not address the issue of types, ¥ will be taken to be the set of strings of bits, and types
will be mapped onto this set as appropriate. S will be the domain of Var_dec [i.e. the set of
all variable names). O and J will be the range of the mappings Ops:Opname—O and
Instrs fnstr =7 which are defined below. (In these definitions, lower case names are free

variables.)

Ops:Cprame— O
Ops(opn) is defined as {a,R,W,$) where Op_dec{opn)={sig,opbody) and
a=|Domatn(sig)|
R={arg|sig(argn)={arg,rwp,iranss } A\ (rwp=in \ rwp=inout)}
W={arg|sig(argn)= (arg,rwp,tranas) A (rwp=out V rwp=inout})}

$ is defined via the behavior ol Lhe opbedy program, as described shortly.

Instrs:Ingtr—]
Instrs(instr) 18 defined as (0,6,7,6) where Inatr_dcc({nslr]=<opn,args) and
Op_dcc(opn)=(ax'g,opbody) and
0=0ps(opn)
ﬁz{(arg,aw]|s|'g(argn)=(arg,rwp,transs)
Nargs(argn)={pbnd sw tbnd)}
75{(ar9,catate)|3|'g(argn)=<arg,rwp,transs)
Nargs{argn)={pbnd sw tbnd Y\ Var_dec(sw)(pbnd)=catate)
§={{arg (trans cstale))| sig(argn)={arg rwp lranss)A\transs({ransrn)=trans

Nargs{argn)= {pbnd sw,tbnd)\ Var_dec(sw)(cstate)=cstate \tbnd(tranan)=catate}

87

In the definition of Ops, the resull of ¢arg,argy, - - ,arg|p)) is defined by the opbody
program's behavior when it is executed after initializing (a) the argument variables
corresponding to the opbody’s in and inout arguments with the values arg, ' - - arg)z,
and (b) the argument variables corresponding to the operation’s out arguments with pre-
determined constant initialization values (e.g. zeroes), A transition statement has no effect
on the execution except that any further reference to that argument, either within a transi-
tion statement or as a reference to the daia values associated with it, will cause the pro-
gram to halt. The result of the firing [unction,

(rcs,,rese, Ceoresiw bty tﬂ)
15 the following interpretation of that execution:
d!‘{l:

If a transition statement executes for argument arg, then ¢, =trans, where trans is the

Lransition field from the first such statemeant executed. If arg is non-volatile, ¢,.,=1. If

arg
neither of the above is true, £,,=1.
resy where arg is the kth write {out or inout) argument:
I a transition statement executes for argument arg, then rea, is the value assigned to
the argument variables associated with arg when the first such statement executed. If
a transition statement does not execute for arg, resy =1 .
Although determining the result of evaluating ¢ with some arguments may be undecidable
1n some cases, it i3 noneiheless well-defined and meets the requirements for a firing (unction
for an operalion with that signature. Note that the initialization of out arguments to a
constant is necessary; if they were nol initialized, and the argument vanables {or portions
thercofl) were not assigned new values during exccution of the opbody program, then the

remaining data values when a transition was performed would not necessarily be a function

of the values present on the readable arguments when the execution began. ‘i'his

83

initialization also allows the program to read the values associated with an out argument
without disturbing the functional nature of the required mapping, since the values read will
either be the original constant values or new values which must already be a function of the

values originally on the read arguments.

8.3.3. Concrete Execution Graphs and Their Abstraction (7y)
A concrete execution graph will be of the form
2:=<C,E,B,A ,U‘,c_r,c,fm'r)
whera
C,E,B AJd, and o are identical in form to an abstract execution gravh
¢:E—ContXStore is the Exccution State of e
fair is the Fairness State

¢ and fatr will be described in more detail later. Their role is to help determine the next
action to perform or the concrete execution graph. The abstract interpreiation of 3 con-

crete execution graph will be obtained by omitting € and farr—ie.
?rx[(C',E,B,A,c;,E,f,fallr))E<CIE;B|AstE>
8.3.4. Concrete Implementation {g)

This section will describe a concrete implementation p. First, a strategy will be
presented, then this strategy will be shown to meet the requirements for p: i.e. any fAnite
peefix subgraph of the resulting concrete execution graph will obey the semantic axioms
within a finite amount of time. Then, an implementation based on that strategy will be

presented and shown to correctly implement the strategy.

8¢

§.3.4.1. Strategy

The strategy of the concrete implementation will be to define a mapping p"X—X
which takes a concrete execution graph and returns one which is somehow more well
defined: ie. is closer Lo obeying the semantic axioms than its predecessor. A partial ordering
on execution graphs will be defined to formalize exactly what this means. g is then defined
as the result of calling 2 recursively on the empty execution graph, ly (ie.

22 - dly) -))) an infinite number of times.

To aveid relerring back to concrete syntax, the abstract F-Net corresponding to the
concrete F-Net {obtzined by xp described above) will be used as a precise notation for
deseribing the implementation. The abstract definition of the firing funetion, ¢, is not useful
for implementation, however, since it was not defined in terms of the syntax of the opbedy

program, but its behavior.

Y

To address this, we describe here, for each opbody, 2 continuation which maps an ini-
tial program stere to a final program store, by treating the opbody as a C program, but
augraenting the traditional store used by C, which we will call csfore, with four other kinds
of store which will be acted upon by transitions and data state references. The overall store

operated on by the opbody will be a tuple storcE<calorc,f.smrc,f.s!orc ,s8tore estare)

istore: A set contalning the arguments for which transition statements have been per-

formed by the current execution.

fstore: A set containing the non-volatile arguments for which a transilion has been

automatically performed (by the Finishing step, defined below).

satore: A vector of segments, indexed by argument, which contains the values for the

operation’s argument variables.

90

estore: A vector of IN), indexed by argument. which contains the transition performed to

each of the operation’s arguments.

The argument references in the opdody are now converted to executable code as [ollows.
Each reference to an argument variable for argument arg causes check_arg(arg) to be

executed before the appropriate access to sstore|arg] is performed, where

check_arg(arg) =
If argElstore
halt

Each transition statement <frans arg> in the opbody becomes perf_trans ({rans, asg)

where

perf_trans (lrans, arg) =
check_arg(arg)
tstore«—(store(J{arg}
1€ arg@fstore
cstorelargle—trang

With these translations, the opbody defines a continuation which maps an initial store to a
final store. 1-0-¢" will refer to that continuation.

The 6 and & mappiogs are defined for concrete execution graphs as follows: (Elements

of store should be prefixed by ¢(¢) store-)

1 if ¥e={}
¢-8(arg)(estorefarg]) if *c={¢e} (where arg=¢-87'(c))

[y
il

ic) if *e=({)
c=qastore[arg] il *c={e}/\ arg€(lstore| Jfstore\é-0- W (where arg=¢-87(C))
i otherwise

Define p'(z)=z', where z' is identical to z except that one or more of the alterations

described in the following four steps have been applied:

a1

Initialization: Create a new tmitial ¢ node

If IveV Veel.2#s then create a new ¢ node and define c=3.

Extension: Create new ¢ node and successor ¢ nodes
[37l Varg€[l,f-0-2l3ceCc*={) N\ c=v-flarg) /\ e=1 4(arg) then
(a) Create a new ¢ node, make it the successor for all the ¢ nodes instantiated in the
condition, define €=+, and define ¢(¢)= (1'-a-¢‘,<cstore,{},{},sa£0rc,eatore)), where

csfore is the initial store as defined by the C implementation, all elements of

estore are 1, and

0 ifarg€i-0-W\i0-R

t =9
sstore arg] ¢ otherwise (where e*=e/\e=r-parg))

(b) For all arg€|l,i 0 s, create a ¢ nede, make it a successor to ¢, and define
c=1-Blarg)
Execution: Advance the execution state of an e node
If 3ecE.c(e)={cont store })\ cont#halt,
then evaluate cont(store) for a finite amount of time, yielding 2 new continuation

coné' and store store’. Define e(¢)={cont’ store’).

Finishing: Perform transition to a non-volatile argument
If 3c€k, arg€(l,é-0-a].arggé-o- WAZ 0-1{arg)=1
f\e[c)=<cont,<cstorc,ls!orc.js!om,.sslurc,cstorc))/\argg_ltstorc | fstore
then define fe)= (can!,(catorc,fatorc,fs!orc‘,sslorc,zatorc’)) where

fstore'=fstore | {arg} and eatore'=cestore except that cstore'larg|=1

The Irequency in which these steps will be executed in subsequent iterations of g will be

constrained by the following fairness criterion:

For some set of [ree variable instantiations, the condition (or a step will not remain

true for more than a Anite number of applications of ' before the step is executed.

The role of fair s to record enough history of which steps have bzen applied to guarantee
the lairness constraint. For example, fair could be implemented as a simple vector of the

aumber of applications of g that have oceurred that have not executed a particular step.

£.3.4.2. Validity of Implementation Strategy

Define the following partial order over concrete execution graphs X:
zcz'=(Ve€z- C'er’ Cc=c'escce’ N gy Az is a prefix subgraph of 2’

i.e. execution graph z is less well defined than z"if z is a prefix subgraph of z" and the con-

trol and data states of all of the ¢ nodes in z are less well defined than those in 2. The

bottom element of this partial order s the empty execution graph.

By this definition, z € 2'{z). That the z is a prefix subgraph of 2(z) follows directly
from the Initialization and Extension steps. That the new graph has more well defined &
and & functions is shown as [ollows. If a ¢ node is introduced without predecessors {in the
Introduction step), ¢ and ¢ are well-defined, and since no step gives predecessors to a
previously-existing ¢ node, remains well defined. Il a ¢ node is introduced with a predeces-
sor ¢ (in the Extension step), ¢ will have a non-1 value precisely when the argument of ¢
bound to ¢ is a member of fstore Ufators, and this condition cannot be made false nor can
the value estorefarg] be redefined once this condition is true. ¢ is defined only under the
same condition or when arggeé-a-W. In the former case, the value ssfore|arg| cannot be
redefined for the same reasons as ¢, and it cannat be redefined in the latter case due to the
syntactic restriction that such argument variables cannot be used within the opbody in a

context where their contents can be altered.

93

Thus, o' is monotonic in the sense that it does not move down or across the partial
order. The remainder of this section shows thal it not only moves up the partial order, but
that the semantic axioms will hold for any finite prefix subgraph of the concrete execution
graph within a finite number of recursive applications of 2. (Clearly, each application takes

a fnite Lime.)

Axiom 1: The property that
Vs€853ce Ceg=8/N\ey=1\ey=2(s)
is ensured by fairness of Initialization and the definition of ¢ and 0. That these cgs
are members of O, (i.e. precede all members of C having the same name) follows
from the fact that a)l other ¢'€C.c=8 are created in the Extension step, and each
such node can be inductively shown to be preceded by a ¢ nede with the same name
created in the Initialization step.

Axiom 2: A ¢ node is given a successor only in the Extension step and only under the condi-
tion that it does not already have successors, and is given a predecessor only in the
Extension step, and only under the condition that it is newly created (i.e. has no
predecessors).

Axiom 3-Structure and Axiom 3-Condition: Only the Extension step creztes e nodes or
gives them predecessors or successors, and it obeys these axioms by definition.

Axiom 3-Result: The fairoess constraint ensures that the Execution step will be repeatedly
applied to every execulion state until 1t halts. The continuous semantics ol sequen-
tial computer languages ensures that if the sequential computation denoted by the
concrebe operation includes perf_trans, then it will be executed in a finite number
ol applications of p/. The fairness constraint also ensures that the Finishing step will
be executed for all non-volatile arguments for which perf_trans has not executed

within a finite number of calls. Axiom 2-Result follows directly from these and the

94

definition of the ¢ and o labelings.

Axjom 4-Non-interference: Ensured by the initialization of as{ere in the Extension step, and
by the definition of @.

Axiom 5-Liveness: Epsured by the fairness constraint applied to the Exiension step.

Axiom B-Time: No step gives a predecessor to anh already existing node, and ne step creates

a cycle.

8.3.4.3. Pseudo-code for the Generic Implementation

This seclion presents an efficient implementation of the above strategy. TFirst, it will
be assumed that S is finite, so all applications of o’ which perform the Initialization step can
be performed first. Second, the Extension condition can be checked, and the Extension step
executed, immediately whenever the control state of a “terminal” ¢ node (i.e. one without
successors) becomes defined within the Initjalization or Finishing steps. The Execution step
can be made efficient by keeping all (cont,atore) pairs on a "run” queue, which is serviced in
a fair, round-robin fashion. Entrics need not remain on the queue (or instructions which
have halted or performed transitions to all of their arguments, since further advancement of
execution will not affect any aspect of the execution graph other than the continuatien or
store itself. The precise time and method of invoking the Finishing step will not be detailed

until later sections on implemwentations for specific architectures.

To [acilitate efficient checking of the Extension condition and performance of the Exe-
cution step, the o and ¢ labelings will be maintained explicitly, and only for the terminal ¢
nodes. The data state for the terminal ¢ node for which =3 will be called dstate|s|. The
control of these terminal ¢ nodes state will not be maintained directly, but witl be reflected
in an vector called reasons, indexed by instruction: reasons[i| will equal n if the ¢ nodes

for n of its argument bindings cither do not exist or the terminal nodes have a control state

95

other than that of the instruction’s firing constraint. Thus, the condition in the Extension

step will reduce to testing whether the reasons count for that instruction is 0.

With these changes, estore becomes redundant-—all assignments eslore|arg|«—(rans
will be replaced with calls to dec_count ((-8(arg),i-6(arg)(trans)), which will decrement
the reasons for all instructions bound to the variable and constrained by the control state
mentioned in the arguments, and check whether the execution condition has been met for
those instructions. This requires that perf_trans has access to ¢ (the instruction on
whose behalf the operation is executing), so we augment the store with fsfore which con-

tains the current instruction. The store now consists of (c.store,i.atorc,istorc fstore sstore)

Portions of the execution graph which will no longer be used in performing the steps
will simply be discarded. All side-effects of graph creation will be present even though the
graph itsell will not be maintained. Annotations will relate each portion of the code to the
steps above so that code to keep the graph can be added if desired, say for debugging pur-

poses.
per f_trans ({rena, arg) now becomes

perf_trans ({rans, arg) =
check_arg(arg)
(stores—~tstore| J{arg}

*#4Define c=1slore-8(arg)(trans) where ¢
* ok ok is the oldest node such that c=tatore S(arg)
**+*1f drg has write usage, define c=sslorelarg]

if arg€sstore-o- W

dstate|istore -B(arg)|«—sstorelarg|
If argdfstore

dec_counct (istore-B{arg), ftstore-8(arg)(trans))
Lf lstore| Jfstore=|L iatore-0-a]

halt

96

Since we assume that fstore is lost when an evaluation finishes, the "normal halt"
(executed after the last line of code in an operation) must now ensure that all non-volatile

arguments are finished:
normal_halt =
for arg€[lstore-o-aj.arggistore-o-W)\ tstore-farg)=1
If arg@fslore
fin_trans (arg)

The concrete implementation (minus invocation of the finishing step) is conc_imp, where:

conc_imp =
inito
initl | serve_q | serve_q | serve_qg |

Initd =
***Tnitlalize the executlon graph to be empty

for €l
reasons{ie~i-0-a

initl =
for sE€S

*%x INITIALIZATION: Create ¢ node, define c=s, ¢=1, c=t(s)

dstate[s)e—1(s)
dec_count (s, 1)

serve_gq =
repeat
cont,slore >¢—— dequeue

* okt EXECUTION

(cont' store'}— tslice (cont,store)
Lf conl'#halt
enqueue ((cont’,storc'))
forever

dec_count (3, n)

**¢For each instruction whlch benefits from new control state
LA of ¢ node...

97

20: for f€l 3arg€[l,r-0-a|. -Hlarg)=2 N\ {-{arg)=n

it Decrement number of reascns Lt cannot fire
al: reasons|{|e—reasons|i|—1
*ohe If no more reasons (l.e. Extenslion condition true)

az: if rcaaona\i‘:O

* ot EXTENSION:

* 4 Create new successor ¢ nodes with | control stata
al: ine_counts (1)

LR Create new ¢ noda, deflne £=1, inltiate assoclated
A opbody

initliate (1)
inc_counts (1) =
*44For gach argument of new ¢ node...
for arg€l,i-0-a|

*k Let ¢’ be oldest ¢ node such that c'=v-f{arg)

% Create new ¢ node, define c=t-S(arg)c=l

* ok If arg has no write usage, define c=¢'

A Eor each instructlion which benefited frow control state
* oAk of ¢ ...

a4: for f2€l Jarg2¢|L,i2.0-a]. 12.8(arg2)=1-Barg) N\ 12-v(arg2)=i v{arg)
* A Increment number of reasons lt cannot flre
reasons[12]«—reasons|[i2]+1
initlate (¥) =
for arg€i-o-R
satore|arg|+—dstate |i-B{arg))
for erg&i-o-W\i. o R

satore[arg|+—0
enqueue ({i-0-¢ {catore i {1 {}.58t0re)))

The Finishing step will consist of performing fin_trans {arg) for non-volatile argu-

ment arg, where

98

fin_trans (arg) =
if argétstore
fstore «—fatore| J{arg)

##+ FINISHING: Define c=iatore-5(arg)(l), where ¢
x k% is oldest node such that c=islore-S8(arg)

dec__coulnt (istore-Barg), istore-8(arg)(1))

if tsiore Ufs!orc =[1,1slore 0-a]
halt

The optimal time and method of invoking fin_trans (other than that in normal_halt)

will depend upon the specific architecture.

In order to ensure that the Extension step executes only when the condition is true,
the test at a2 and the execution of Lnc_counts at a3 must together occur atomically.
In addition, the decrement at al must occur as an atomic step to avoid —~ead-write
conflicts. These atomicity constraints could be ensured by providing that only one instruc-
tion perform dec_counts at a time (perhaps by funneling all executions through a com-
mon monitor or acquiring a global lock) or by separately assigning each recasons count its
own lock and locking all that could be accessed by inc_counts before a2, but the former
solution creates a global bottleneck while the latter creates significant overhead in dealing
with each instruction separately and avoiding deadlock. A middle ground can be reached

by defining a rivals relation <<>> as

{<<>>1'=3s€shared(1,7").0-b(i-37(s))=1"b(:"-87(3)))
(i.e. two instructions are rivals whenever their firing constraint uses the same control state
at least one variable) and a rivalry as the transitive closure of <<>>. By this definition,
all instructions referenced in the for at aO plus all instructions referenced in the for at
a4 will belong to the same rivalry. We will enforce the atomicity constraints by restricting
execution of dec_counts to one instruction per rivalry at a time. (Note that the call to

initiate does not need to be protected, but moving it outside of the dec_counts logic

99

requires additional bookkeeping overhead.)

8.4. Optimizing Concrete Execution for Differing Architectures

Both a shared-memory and message-passing implementation will be presented. Both
will be based on the generic implementation described in the last section, but will differ in
the details of copying and maintaining dstate and sstore, and deciding when to invoke

fin_trans.

8.4.1. Shared Memory

The primary focus behind the shared memory implementation will be to reduce or
eliminate copying of dstate to sstore in initlate. For the most part, this is accomplished
by using the dstate directly in place of the sstore (i.e. replacing the ssiore|arg|e—dstate|s]

statements with sstore [arg|=dstates]).

The flaw with this simple implementation is that anp instruction may continue to
access dstate after fin_trans has been performed, and fin_trans may allow another
instruction to begin execution and access the same dstale concurrently with the current
instruction. I the subsequent instruction does not have write usage to the variable, or the
current instruction does not have read usage, no harm is done—the memory can be shared
by both instructions. If, however, an instruction with write usage to the variable is ini-
tiated while an instruction is still reading the variable, they clearly cannot access the same
dstate bufler without disastrous consequences. In this case, a new version of the dstate for
that variable must be allocated and used by the new instruction, leaving the old version to
be deallocated when the last reader has finished with it. If the new instruction has read
usage to the variable (in addition to its write usage), the contents of the old version must be

copied to the new one.

100

The following replacements of initiate and perf_trans are based on the above
descriptions. Instead of containing data state, dsfale, and sstale (and m) now contain
pointers to a tuple of <rcadcr3,version,data), where readers contains the number of instruc-
tions reading the data state, verston is the version number of the data state, and dala is
the actua) data state. An auxiliary vector, version, contains the number of the latest ver-
sion for each variable. alloc allocates a data state tuple and returns a pointer to it,
dealloc deallocates the data state associated with such a pointer. Indirection is

represented by *.

initiate (f) =
s=1-8(arg)
Eor arg€i-o- W
L1f *dstate[s] readerss0
m«+«— alloc ()
Af arg€i-0-R
*m-data«— *dstate[s)-data
dstate —m
*dstate[s] readers+0
version [s]e«—version{s]+1
*dstate|s]-version «—version|s|
if argg@i-o-R
*dstate[s].data 0
for arg€i-o-W{ Ji-o-R
sstorelarg|e—dstate|s]
enqueue ((-o-é',(cstore,1',{},{},sslore)))

perf_trans (lrans, arg) =
check_arg(aryg)
tatore «—tstore| J{aryg}
s=f1store B(arg)
1f arg€tstore-0-R
*sstore{a]-readers«— “sstore{s|-readersa—1
L€ *satore[s]-readers=0/\sstore[s| versionstversion|s]
dlispose (sstore(s])
LE arggfatore
dec_count (8, istore-6(arg)(trans))
if tslore| Jfstore=[1,islore-0-a]
halt

In addition, all other references to sstore{arg] must be replaced by *sstore|arg)-data. To

101

ensure that only one instruction per rtivalry performs the dec_count code, each nivalry

must be assigned a lock which dec_count must acquire to execute.

There are other ways to optimize this implementation. The above tricks with pointers
(and thus the extra indirection) can be avoided completely Jor variables with no non-volatile
readers, or where it can be statically determined that a non-volatile reader will never relin-
quish the variable to a writer. Also, fin_trans ¢an be delayed for any finite amount of
time, and doing so may allow a reader to finish belore a writer to the same variable is ini-
tiated, avoiding the need Tor making a copy. In lact, each time another reader of the vari-
able is initiated, this time starts over, so if reader initiations progress continuously, a writ~
ing instruction may be postponed indefinitely without violating the {airness in the model. In
the general case, however, parallelism can be maximized by performing fin_trans as soon
as possible after the ¢ node is created. The confict between parallelism and copying over-
head can be addressed directly by allowing the F-Net programmer to include hints within

the concrete F-Net code.

6.4.2. Message-Passing

The message-passing based implementation described here will assume that the
instructions are statically assigned to processors, This assignment can be performed ran-
domly, or based on a static analysis of the F-Net together with a knowledge of the intercon-

nect network present in the hardware.

The functionality of the implementation is distributed among processes, both by repli-
cating some of the procedures (such as dec_count) and by splitting single procedures (such
as initO and 4initliate).

Initialization Process

An initialization process wiil contain the code for the main process:

102

init_process =
for (€]
spawn instruct_process[1]
for r€ set of rivalrles
spawn rivalry_process|[r]
inttl

The code for initO is distributed among the nivalry processes.

Rivalry Processes (One per Rivairy)
A tivalry process will perform the initO code {or its rivalry, then will await messages
requesting that dec_count be invoked for an instruction in the rivalry. The process
wil) contain the code for dec_count and the procedures called by it (inc_counts
and initlate) and will locally maintain all reagons counts associated with the
rivalry, as well as all dstate entries during the time that they might be needed by an
instruction in the rivalry (i.e. while the control state of that variable corresponds to a

control state belonging to the rivalry).

rivalry_process [r] =
for 1€ rivalry r
regsons|i]+«—i-0-a
repeat
awalt message <:‘,arg,lrana,newdatatc>
s=i-0-B(arg)
n=1i.0-8arg)(trans)
dstate[s|=newdstate
dec_count (s , n)
forever

initlate will be replaced by

initiate (1) =
for arg€lf-o-a[\i-0- W
astore[arg|=dstate {t-B(arg)]
send <sstorcL to instruct_process[()

The missing sslore initialization code is performed within the instruction process.

Note that even the sstore for arguments which are not read nor written is sent to the

103

instruction process, since the sstore must be forwarded to the new rivalry when a

transition is performed.

Instruction Processes (One per Instruction)
An Instruction process contains the code corresponding to the opbody corresponding to

the instruction’s operation.

Instruct_process [1] =
repeat
avalt message <aslorc>
for arg€i-o-W\t.0-R
sstore[arg|e—0
tstore «—~{}
fstore+—{}
for argE[l,l'-o-a].arg is nen-volatile
fin_trans (arg
enqueue (i-0-¢', Zc.storc,i,{},{},sgtore>)
forever

The calls to dec_count (s, n) within perf_trans and fin_trans are replaced

by
send <{atore,arg,trana,aatore[arg]> to rivalry_process [r]

where r is the rivalry corresponding to the new control state. The
if -+ - dstate[s]= - - code should also be removed from perf_trans, since the

instruction process no longer maintains dstate.

In cases where a rivalry contains exactly one instruction, the functionality of the
rivalry process can be combined with that of Lhe instruction process. Further optimizations
based on the F-Net topology and read-write usages of arguments c¢an minimize the number
of times a dslalc must be passed by bypassing the rivalry process in some circumstances.
Shared memory techniques can aJso be used to avoid messages when multiple instructions

reside on the same processor.,

104

8.4.3. Final [mplementation Notes

It lias been noted that parallelism is increased by performing the fin_trans opera-
tion as soon as possible after initiation of the instruction. Taking this to its natural
extreme, fin_trans can be called as part of the inltlate crode so that the results can
be felt even before the execution of the opbody has begun. If this is done, a saleguard must
be taken to ensure that looping does not ocecur within initiate when a wseless subgrapn
is entered. This is a subgraph of an F-Nsat where the semantics dictate that each instruc-
tion In the sub-graph can fire again if it fres once, due to all of the instruction’s arguments
being non-volatile and always allowing another instruction (perhaps itsell) with the same
characteristics to fire. To prevent this, useless subgraphs can be detected syntactically

before execution and handled specially.

The data flow nature of the model suggests an alternate implementation {or message-
pas.sing= architectures. In 1t, the instruction processes do not pass data state to the rivalry
process on each transition, but instead report the location (processor and address) of the
data state. The rivalry process now has three jobs: (a) to determine when an instruction
can fire (as before), (b) to determine the optimal processor on which to execute that instruc-
tion {(based on the locations of all of the variables and the required opbody program, as well
as the load on each processor) and (c) to direct message traffic Lo move the code and data
to the optimal processor. Such an implementation would benefit from an architecture in
which one processor (i.e. the rivalry’s) could initiate messages from a second processor (i.e.
that containing the data stale or opbedy} to a third processor {i.e. the optimal processor).
Under some circumstances, data state and/or opbody code could be preemptively sent to a
probable optimal processor before the instruction is ready to fre. or even replicated onto
several possibly-cptimal processors. Unlike other process-migration techniques, no run-time

state would need to accompany the opbody, and unlike standard dataflow techniques, data

105

would not move to a "waiting-matching” store before moving to its final destination.

106

CHAPTER 7

Future Directions and Conclusions

7.1. Introduction

This work has presented F-Nets primarily as a theoretical model, aithough an imple-
mentation has been outlined to demonstrate its portability. This chapter will speculate on
uses that might be made of the model, and on how it might be mads more vsable. The first
section will propose some extensions to the model that could make it amenable to building
large software systems. We then outline how ¥-Nets could provide leverage in developing
software-engineering tools. Finally, we propose an architeciure to efficiently execute F-Net

programs.

7.2. Extensions to F-Neta

The F-Net model provides a framework for bwlding operations which are atomie,
determimistic, and stateless, and then for constructing a concurrent program from these
operations. In practice, programs are not built or analyzed in this monolithic (ashion: they
consist of fragments, or modules, which are built separately and then composed. This abil-
ity to compose modules is a primary selling point of object-criented programming, for exam-

ple.

F-Nets can be modified to accommodate a very simple form of composition by aug-
menting F-Net {ragments, or modules, with arguments similar ¢to operations. This allows an
F-Net mnstruction to bind either an operation or an F-Net module inte another F-Net. The

arguments are represented within the module implementation as formal m-variables, to

107

which instructions within the implementation can be bound. This same extension can allow
an F-net to bind to other "outside-worid" objects, such as the input and output streams pro-
vided by an operating system. In itsell, this extension does not make F-Nets more powerful,

simply decomposable.

An extension which does zdd power is the treatment of modules and operations as
first-class objects. In other words, an m-variable can contain the description of an opera-
tion or module as its data state, and a special bind operation is provided which takes such
a description as an argument and "becomes” that operation or module when it fires. By
allowing bindings to zlso be first class objects, also to be fed to the bind instruction,

dynamic binding becomes possible.

With these extensions, the primary diference between F-Nets and objeci-oriented pro-
gramming s persistence. This can be added by providing another operation, called
instantlate, which takes a module description and returns another meodule description
which is equivalent to the first except that the m-variables within are instantiated: i.e.
whenever and wherever the module is bound, it will use the same copies of the m-variables
with the same control and data states. An instantiated module can therelore be passed
around as an cbject. When there is a need to access the object, it can be bound with a
bind operation, allowing some of the instructions within to fire and access or alter the m-

variables (“instance variables").

To provide 2 method of passing arguments through multiple levels of binding, argu-
ments (arcs} can be extended to represent a bundle of arguments, called a cable. These
cables ¢an be nested hierarchically, allowing entire contexts of variables to be brought into
out of, or through a level of module hierarchy. This allows for a very precise, controlled,

yet flexible management of scope, foreign to most object-oriented languages.

108

A much more basic extension that must be provided to F-Nets before they are usable
in ar applications environment is the ability to partition m-variables. With the semantics
outlined in this dissertation, il an entire array is present on a single m-vanable, it is only
accessible to one instruction at a time, regardless of whether other instructions would
attempt to access the same elements. By creating arrays of m~variables and methods to
bind arguments to portions of these arrays, this access contention can be addressed within
the semantics of the model and handled properly by a scheduler, though perhaps at the cost

of higher overhead per element.

7.3. Software Tools

Four inter-related features of F-Nets make them particularly suitable as a basis for

tools:

(1} The parallel and sequential aspects of a program are specified separately, each in a
form best suited to its function, so tools do not need to combine their approach to

these very different aspects of syntax and execution.

(2) The uniform graphical representation for parallel aspects of the program, across

tools and architectures, facilitates tool integration and similarity of user interface.

(3) The use of traditional sequential languages [or implementing operations provides for

the use or adaptation of existing sequential tools.

(4) The model seen by the user is very similar to the model used during execution, facili-

tating a "What you see is what you get" approach for execution-based tools.

7.8.1. Debugging/Monitoring Tools

Parallel debugging is regarded as a very difficult probiem for several reasons. Sequen-

tial debugging techniques are not easily adapted to parallel programs, due to the lack of

109

global program state or a single program counter. Non-deterministic execution makes re-
creation ef errors difficult, and this can be complicated even more when program execution
timings are afiected by the debugging process. Tracing the flow of control and data, or just
determining what the correct flows should be, is difficult. If the program was created by a
parallelizing compiler or tool, the user may not be familiar with the relationship between

the source program and the program being debugged.

F-Nets address each of these problems. Because an F-Net consists of a graphical net-
work, with each node representing a sequential program which exhibits sequential behavior,
these aspects of the program can be approached separately. A high-level graphical intetface
{14] could be used to visualize and control the parallel behavior of the F-Net, and a tradi-
tional sequential debugger could be invoked for the low-level operation executions when
needed. The desired flow of contrel and data is apparent in the static F-Net, and the
actual flows could be easily represented by highlighting various portions of the graphical
representation during an execution. If the software-engineering features of F-Nets lure users
to create programs using the model, the execution behavior of the program during debug-
ging will net be surprising or unfamihar. Finally, the logging techniques described in
Chapter 4 may well be non-intrusive enough so that every execution could be logged. If this
is the case, any execution could be re-played within a debugger with exactly the same

behavior ag the original.

Perhaps the most important debugging feature provided by F-Nets is the likelihood
that they would not need to be debugged at all. In traditional process models, the user
strategically places synchronization and communication primitives in the program in order
to obtain the desired execution behavior, while with F-Nets, the user explicitly specifies the
desired execution behavior, decreasing the chances for accidental communication or syn-

chronization.

o

7.3.2. Parallel Reatructuring Tools

Parallel restructuring tcols take a sequential program and produce a parallel program.
Taking a simplistic view, the resulting program is to have identical input/cutput behavior
as the original sequential program—i.e. 1t is Lo represent the same function lrom input his-

tory to output history, but optimized to run well on sorne specific parallel architecture.

This view 1s too simplistic. To hold to a rigid semantic mapping thwarts much of the
possible optimization which could occur for almost any parallel or vector architecture. A
simple example of a shght alteration in semantics is the order in which a fcating point sum
reduction is performed. Since round-off errors will occur in different ways depending upon
the order in which elements are summed, altering this order can change the behavior of the

prograrm.

The programmer has no way of specilying, in a purely sequential language, whether
the order of the reduction is or is not jmportant. [f this information is conveyed to an
interactive parallelizing tool, it is typically captured in a form which is unique to a particu-
lar architecture: restructuring the same program for another architecture would require the

information to be specified again.

The problem above is a result of the fact that both the source and the result of res-
tructuring or parallelizing is a specific implementation, rather than a description of the
variety of implementations acceptable to the programmer. A more productive approach

might be to view restructuring io two-steps:

(1) Converting a program into a more general version—i.e. providing non-deterministic
choices for implementation of various constructs—such that the input program is one
instance of the output program. This process wil] not be automatic, since the more

general program can be regarded as the specific program plus human knowledge of

111

the specification. This generalization process could be 1terative, with the more gen-

eral prograrmn serving as input later to create an even more general program.

(2} Targeting a general program [or a specific architecture. This could be done
automatically or with user interaction. The resulting program should always match
the specification of the g=neral program, and may or may not be more specific (i.e. it
may preserve the generality of the specification in the [orm of non-determinism, or it

may “hard-wire" non-deterministic choices to some specific implementation).

For this approach to succeed, the programmer must be able to understand the ocutput
program from step 1 and to accept it as the program to replace the orjginal. The F-Net
model may be able to aid in this, The implementations described in Chapter 6 are examples

of automatic targeting for parallel architectures.

7.3.3. Real-time Programming

F-Nets do not contain timing informaiion only because this would clearly violate their
architecture-independent qualitiess. Even on a given architecture, timing can change
significant]y depending upon the policy used by the scheduler. However, if these factors are
known, the structure and simple semantics provided by F-Nets could help in addressing
real-time programming problems. By approximating the time that each argument of each
operation would take to produce a transition after the operation fired, then utilizing infor-
mation about the architecture and scheduling policy to determine appropriate compositions
for these timings, best- and worst-case scenarios could be computed to determine the

efiectiveness of the design cr to alter scheduling decisions.

Non-determinism could also play an important role in real-time programming by serv-
ing as a means of specifying alternate actions in emergency (near-deadline) situations. This

would require additional F-Net notation to specify when such an emergency action should

112

occur, but it would not violate the F-Net semantics in any case: whether or not the emer-
gency occurred, one of the non-deterministic actions would be taken, so the execution graph

would still be valid.

7.4. Parzallel Architecture

Although F-Nets have been proposed as an architecture-independent programming
solution, specially developed architectures could take maximum advantage of the con-
currency expressed in the model. The division between the traditional sequential nature of
the operations and the control/communication nature of the rest of the F-net could be
reflected in the architecture design, even without using special-purpose hardware, and the
fact that F-Nets are designed to work in both high- and low-latency ether could allow for
both low-latency shared-memory within clusters of processors and a high-latency scalable

interconnect between clusters.

We propose an architecture consisting of clusters ol processors, with each cluster con-
sisting of one or more operation processors (OP) to execute operation programs, and a net
processor (NP) to execute the net (i.e. perform scheduling decisions) and feed ready F-Net
instructions to the OPs. Both the NP and OPs read and write a common Node Memory,
with OP accesses mapped through an MMU. Two short gueues are kept in Node Memory
for fast communication between the NP and OPs: a queue of operations which are ready to
execute on this cluster, written by the NP, and an event queue written by the OPs. The

NPs in different clusters can communicate with each other via an interconnection network.

Since the OPs execute all user code, they should consist of very powerful processors.
An OP repeatedly accesses the ready queue, obtaining pointers to an operation (i.e. a pro-
gram implementing an operation) and to each the data states for its arguments, then ini-

tializes the MMU for these segments and begins executing the program. When the operation

113

performs a transition, the corresponding segment is removed from the memory map, and a

transitjon event is enqueued containing the argument and transition. If the program halts

or a memory protection violation occurs, all segments ate removed {rom the memory map, a

halt event is enqueued, and the ready queve is read again.

The NP executes no user code, so it deces not need excessive computation power ot

floating point capability. The NP serves four roles: (1) a "manager" for some set of rival-

ries in a net (2) a slave to the OP, [3) 2 slave to the interconnect (or more properly, to

rivalry managers on other NPs}, and (4) a stopwatch for the OP.

(1)

As manager for some rivalries, it keeps the current reasons counts for all instructions
within those rivalries, and keeps track of the Jocatjons of the program segment and
data segments needed to execute those instructions. When an instruction’s reasons
count reaches zero, 1t 1s charged with the responsibility of determining the best node
to execute the Insiruction on, based vpon each node’s current load and locality to
these segments, and directing communication to unily these segments on that node.
It may direct extra copies of data and program segments to several nodes to provide

maximum {lexibility in choosing a node to schedule an instruction.

As slave to the OP, it monitors the event queuve and relays the effects of events to

the rivalry manager which is affected.

As slave to the ioterconnect, it receives cormmands from other rivalry managers
which direct it to send and receive program and data segments and to report on
current load information. When a complete instruction (the program and all data
segments) has been received, it enqueues this information in the ready queue for the

oPr.

114

(4) As stopwatch lor the OP, it monitors the amount of time that the OP has been exe-
cuting the current instruction. If there are more instructions in the ready queue, it
interrupts the OP causing it to perform a context switch (i.e. go back to the ready
queue). The assumption is that the OP will not need to timeslice between instrue-

tions in the general case.

More study would certainly need to be performed before pinning down the parameters
for this architecture, but the Cogent XTM [31] offers one interesting possibility for an inter-
connect: both a high-speed bus for load status vpdates and data transfer commands, and a
separate set of reconfigurable channels to handle the actual transfer of data and program

segments between node processors,

Adding disks to each NP could make this architecture eflective at handling database
applications while also allowing little-used segments to be stored on disk rather than in node
memory. Fault tolerance over single-OP or single-cluster [ailures could be implemented by

having NPs create additional copies ol data segmenls after each transition as well as keep-

ing track of transitions which had not been relayed to other NPs,

7.6. Conclusion

F-Nets have been shown to be based on rational motivations: architecture indepen-
dence, similarity of algorithm to computation, and the preservaiion of sequential semantics
where possible. A construction has been proposed based on only these factors, and the
result has been demonstrated to fulfill its goals. Architecture-independence has been shown
through actual implemsntation techniques, in Chapter 8. Similarity of algorithm Lo compu-
tation has been shown formally, in Chapter 4. The preservation of sequential semantics of
each operation implementation was built 1ato the model during its construction in Chapter

3, and has been demonstrated in other chapters. In addition to achbieving these goals, F-

115

Nets have been shown to be general encugh to apply to a number of areas, providing a com-
mon ground on which to compare and contrast other formal models and establishing a basis

for new tools and programming techniques.

!3'

L

(5]

71

L16

References

Agha, G and Hewitt, C., “Concurrent Programming Using Actors” in Object-
Orienled Concurrent Programming, \. Yonezawa and M. Tokore (ed.), Cambridge,

MA, MIT Press, 1987, pp. 37-53.

Ahamad, M., Huteo, P. W. and John, R., "Implementing and Programming Causal
Distributed Shared Memory,” GIT-CC-90-49, College of Computing, Geargia

Inssitute of Technology, 1990.

Allen, J. R. and Kennedy, K., "A Parallel Programming Environment,” [EEE

Software, vol. 2, 4 (July 1985), pp. 21-20.

Allen, R. and Kennedy, I{., "Automatic Translation of FORTRAN Programs to
Vector Form,” ACM Transaclions on Programming Languagcs and Sysiemas, vol. 9, 4

(Ocrober 1087), pp. 401-542.

Athas, W. C. and Seitz, C. L., "Multicomputers: Message-Passing Concurrent

Computers,” Compuler, vol. 21, 8 (August 1088), pp. 9-24,

Babb, R. G. and DiNucci, D. C., "Design and implementation of parallel algorithms
with Large-Grain Data Flow,” in The Characleristics of Parallel Algorithms, L H.
Jamieson, D. B. Gannon and R. J. Douglass (ed.), Cambridge, MA, MIT Press,

L987, pp. 335-349.

Beguelin, A. L., "SCHEDULE: A Hypercube Implementation,” 8rd Confercnce on
fiypercube Concurrent Compulers and Applicalions, vol. 1, Architecture, Soltware,

Computer Systems and General Issues{(Januvary 1988), pp. 468-471.

8l

9]

o]

[13]

14]

17]

117

Boyle, J., Butler, R., Glickleld, B., Disz, T., Lusk, E., Overbeek, R., Patterson, J.
and Stevens, R., Porlable Frograms for Parallel Processors, New York, NY, Holt,

Rinehart and Winston, 1987,

Brooks, F. P., "No Silver Bullet Essence and Accidents of Software Engineering,”

Compulier, vol. 20, 4 {Apri) 1987), pp. 10-19.

Callahan, D. and Kennedy, K., "Compiling Programs for Distributed-Memory

Multiprocessors,” Journal of Supercomputing, vol. 2(1988), pp. 151-169.

Carriero, N. and Gelernter, D., "Linda in Context,” Communicaltons of the ACM,

vol. 32, 4 (April 1989), pp. 444-458.
Chandy, K. M. and Misra, J., Parallel Program Desiygn: A Foundation, Reading,
MA, Addison-Wesley, 1988,

DeMarco, T., Structures Analysia and Syslem Specification, New York, NY,

Yourdon Press, 1978.

DiNucet, D. C., "Design of a debugger for large-srain dataflow programs,”

Technical Report CSE-88-005, Oregon Graduate Center, {988.

DiNucet, D. C. and Babb, R. G., "Design and implementation of parallel programs

with LGDF2," COMPCON’89, San Francisco, [989, pp. 102-107.

Dongarra, J. J. and Sorensen, D. C., "A portable environment for developing
parallel FORTRAN programs,” Paraffe! Computing, vol. 5, 1&2 (July 1087), pp.
175-186.

Eswaran, K. P, Gray, J. N, Lorie, R. A. and Traiger, . L., "The notions of

consistency and predicate locks in a database system,” Communications of the

ACM, vol. 19, 11 {November 1976), pp. 624-633.

18]

[£9]

21]

[23)

[24)

118

Foster, 1. and Taylor, S, Strand: New Concepts tn Paraife!l Programming,

Englewoad Cliffs, NJ, Prentice-Hall, 1989.

Fuggetta, A., Ghezzi, C., Mandrioli, D. and Morzent1, A, "VLP: A Visual
Language for Prototyping,” JEEE Workshop on Languages for Aulomation, August

1988.

Geopinath, K. and Hennessy, J. L., "Cepy Elimination in Functional Languages,”
Proceedings of the Conference on Programming Languages (ACM Symp. on Prin. of

Programming Languages), 1989,

Guarna, V. A., Gannon, D, Gaur, Y. and Jablonowski, D., "FAUST: An
Environment for Programming Parallel Scientific Apphications,” Proceedings

Supercomputing '88 Orlande, FL, November 1988, pp. 3-10.

Heare, €. A. R, Communicaling Sequeniial Processes, Englewood Chifls;, NJ,

Prentice-Hall, 1985.
Jones, G. and Goldsmith, M., Programminrg in occam 2, Prentice-Hall, 1988.

Jordan, H. F., Benten, M. S., Alaghband, G. and Jakob, R., "The Force: A Highly
Portable Parallel Programming Language,” Proceedings of the 1889 Internationgl
Conference on Pargliel Procesaing, vol. II - Soltware(August 1989), pp. 112-117.

Kahn, G. and MacQueen, D. B, "Coroutines and Networks of Parallel Processes,”

Proe. [EIP 77, August 1977 pp. 993-998.

Kaplan, I, "Programming the Loral LDF 100 Dataflow Machine,” ACM SIGPLAN

Notices Nofices, vol. 22, 5 (May 1987), pp. 47-57.

Karp, A. H. and Babb, R. G., "A comparison of 12 parallel fortran dizlects,” JEEE

Software, 1988, pp. 92-67.

28]

(29}

130]

3]

[36]

119

Knuth, D. E., The Art of Computer Programming: Volume 1/Fundamental

Algorithms, Reading, MA, Addison-Wesley, 1975.

Li, K. and Hudak, P., "Memory Coherence 1m Shared Virtual Memory Systems,”
Proceedings of the Fifth Annual ACM Symposium on Principles of Dristributed
Computing, Calgary, Alberta, Canada, August 1986, pp. 228-239.

MeGraw, I, Skedzielewsk:, S., Allan, S., Oldehoelt, R., Glauert, J., Kirkham, C,,
Novce, B. and Thomas, R., "SISAL: Streams and [teration in a Single Assignment
Language: Language Reference Manual, Version 1.2," M-148, Rev. 1, Livermore,
CA, Lawrence Livermore National Laboratery, March 1985.

Merrow, T. and Henson, IN., "System Design [(or Parallel Computing," High

Performance Sysiems, January 1889, pp. 36-44.

Milner, R., A Calculus of Communicating Systems, vol. 92, Berlin, Springer-Verlag,

1980.

Muhlenben, H., Kramer, O., Limburger, F, Mevenkamp, M. and Screitz, S,
"MUPPET: A Programming Environment for Message-Based Mulliprocessors,”

Paralle! Compuling, vol. 8, {-3 {October 1988}, pp. 201.221.
Noe, J. D. and Nutt, G. J., "Macro E-Nets lor Representation of Parallel Systems,”

IEEE Transaclions on Computers, vol. C-22, 8 (August 1973), pp. 718-727.

Papadopoulos, G. M. and Culler, D. E., "Monscon: An Explicit Token-Store
Avchitecture,” Proe. 17th Annuel Sympostum on Computer Architecture, Computer

Archilecture News, vol. 18, 2 (June 1990), pp. 82-91.

Peterson, J., Petrt Net Theory and the Modeling of Sysiems, Englewood Cliffs, NJ,

Preatice-Hal), 1981,

120

Prate, V. R., "Modeling Concurrency with Partial Orders," [nternetione! Journal of

Parallel Programming, vol. 13, L (February £1986), pp. 33-71.

Sabot, G. W. The Parelation Model: Archilecture-Independenl Paraliel

Programming, Cambridge, MA, MIT Press, 1988.

Sobek, 8., Azam, M. and Browne, J. C., "Architectural and Language Independent
Parallel Programming: A TFeasibility Demonstration,” Proceedings of the 1988

International Conference on Parellel Processing, vol. 11, Soltware{August 1988), pp.

80-83.
Suhler, P. A., Biswas, J. and Korner, K. M., "TDFL: A Task-Level Data Flow
Language," Tech. Rep.-87-44, Austin, TX, University of Texas, CS Dept., November

1987,

121

Biograpbical Note

David DiNuceil was born in Portland, Oregon on January 13, 1857. He atiended Ce.ntcnnial
High School in Gresham, Oregon, graduating in 1875. He then attended Portland State
University until 1981, receiving a Bachelor of Science Degree in Computer Science. During
his stay at PSU, he werked in the computer center as student consultant, computer
operator, and programmer. He also worked for one summer at the Harris Corporation in

Fort Lauderdale, Flerida.

Alter leaving PSU and spending 4-months in Japan, be took a position with the Portland
School District’s Research and Evaluation Department, and shortly therealter married
Tamae Sawano. In 1983, after advancing to the position of Data Systems Coordinator, he
left the School District to attend Oregon Graduate Institute (then Oregon Graduate Center)

full time,

The autbor is leaving Oregon Graduate Institote to take a summer Post-Doctoral

appontment at Lawrence Livermore National Laboratories.

	199003.dinucci.david to p. 82.pdf
	199003.dinucci.david to p. 121.pdf

