
A Comparative Analysis of Static Parallel Schedulers

Where Communication Costs Are Significant

Douglas Michael Pase
B.S., Northern Arizona University, 1982

A dissertation submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

July, 1989

The dissertation "A Comparative Analysis of Static Parallel Schedulers Where

Communication Costs Are Significant" by Douglas Michael Pase has been examined and

approved by the following Examination Committee:

Robert G. Babb II
Associate Professor, Thesis Advisor
Oree:on Graduate Center

Michael Wolfe
Associate Professor
Oregon Graduate Center

{/

Virginia ll1ary Lo
Assistant Professor

University of Oregon

V't\rek Sarkar - - .
Research Staff Member
ffiM Thomas J. Watson Research Center

11

Dedication

To my God, who made this work possible,

To my wife Anne and daughters Kathryn and Kirja,

Who supported me while I did it,

And to my parents, who encouraged me when I was young.

Acknowledgements

I wish t o acknowledge the support and encouragement of the faculty, staff, and

students of the Department of Computer Science and Engineering of the Oregon Graduate

Center. Their friendship and willingness t o listen have been as invaluable as their ideas and

enthusiasm. Particularly I would like t o thank my advisor, Dr. Robert G. Babb 11, and my

friend David C. DiNucci for their thoughts and opinions on technical matters, and my

committee members for their constructive comments and their patience.

Table of Contents

1 . Introduction- ..

2 . Related Work ..

3 . Definitions And Terminology ..

4 . Scheduler Components ..

5 . Experiment Description ..

6 . Problem Characteristics and Scheduler Performance ..

7 . Comparison of Schedulers ...

8 . Conclusions ..

9 . Future Work ..

Appendices:

A . Task Density Functions ...

B . Scheduler Performance Characteristics ..

C . Comparison of Schedulers By Problem Characteristic ...

D . Relative Efficiencies of Schedulers ..

E . Cumulative Histograms of Relative Performance ...

References ..

Abstract

A Comparative Analysis of Static Parallel Schedulers

Where Communication Costs Are Significant

Douglas M. Pase, Ph.D.

Oregon Graduate Center, 1989

Supervising Professor: Robert G. Babb I1

Efficient multiprocessor scheduling where communication between processors is free has

been studied for almost three decades. However, modern distributed architectures have

communication channels for which communication is not free. Such channels have a non-

zero latency and a finite capacity for communication. Previous work on parallel scheduling

accounting for communication effects has assumed that the channels had sufficient capacity

t o service all transmissions without significant delay from contention. We show t h a t the

average schedule length can be significantly shortened by taking contention into account.

We define families of static schedulers based on the strategy chosen for various phases, and

present a performance analysis based on tha t classification. Because certain static

schedulers are equivalent t o dynamic schedulers for which perfect knowledge is available,

parts of this work also apply t o dynamic scheduling.

CHAPTER 1

Introduction

1.1. Background

Since the inception of modern mechanized computing a particular theme has occurred

many times - how do we solve a given problem faster? This pursuit of greater speed has

led t o the development of better algorithms, more effective compiler optimization

techniques, and faster hardware. Speeding up the hardware could mean improving the

speed of a single processor, or i t could mean replicating the processors and dividing the

problem into smaller units (or tasks) which are then executed in parallel.

A particularly difficult par t of executing tasks in parallel is arranging the execution of

individual tasks so tha t the maximum benefit is gained from all the effort. I t is easy t o see

tha t when there is no additional cost for executing tasks in parallel, doing so will never slow

the computation down. However, when parallel execution incurs an additional expense, such

as from communication, improper scheduling can actually lead t o slower program execution.

A number of approaches have been proposed t o solve the problem of multiprocessor

scheduling considering communication costs. Among them are processor allocation, dynamic

load balancing, and static scheduling. Processor allocation problems generally take the

form of mapping a program graph Gp = (Vp,Ep) t o a network of processors G, = (V,,,E,)

such t ha t some criterion is minimized [BeS87,Bok8la,Bok8lb]. Vp is the set of vertices

(tasks) in the program, and Ep is the set of edges (communication arcs). Similarly, V, is the

set of processors in the network, and E, is the set of communication 1inks.which connect the

processors. It is called the mapping problem if the objective is t o minimize the number of

arcs in G, spanned by arcs in G, . This assumes tha t all communication is of equal cost,

and the value t o be minimized is the distance over which each message must travel. It also

assumes tha t only one task may be mapped t o a processor.

Another problem related t o processor assignment is called the quadratic assignment

problem [Bok8la]. In this case there are n objects and n locations. The affinity between

objects is recorded in a matrix A , and distances are recorded in a matrix D. The element

aij records the affinity between objects i and j, and element dij records the distance

between locations i , and j. The objective is to find a mapping function p :V,--+Vm such tha t

the overall cost of communication, ~ a i j d p (i) p (j l l is minimized. The affinity between two
i , j

objects can be thought of as a volume of communication between two tasks. A distance dij

can be thought of as the the cost of communicating between processors i and j.

Dynamic load balancing deals with communication on an indirect level. As work

becomes available, i t is shipped t o the processor which is best able t o accept i t

[Cas87,Ham80,Sta84]. If a task has not received all of its input, i t is not ready t o be

shipped. This is much like the "macro dataflow" model used in [SaH86,Sar87]. Processor

selection is deferred until the task can be executed, and the best processor is selected a t

tha t moment. Processors are not left idle as long as work is available. A particularly

important advantage t o this approach is tha t the schedule adapts itself t o the execution of

the program as the execution takes place. Thus even programs whose execution are

extremely da t a dependent can use this method of scheduling.

Dynamic load balancing approaches are generally classified as centralized or

decentralized. Centralized load balancing has one processor (the master) which is

responsible for all scheduling decisions. I t tracks the work levels of all processors within the

system, and supplies tasks whenever they are available t o processors (workers) tha t need

them. As tasks are completed the worker informs the master who collects and records the

information. When all of a task's inputs are available, the master places the task on a

ready queue, or assigns it t o a worker. Although this approach is simple and effective for

small numbers of processors, i t does not scale well. Loading of the master is proportional t o

the number of the processors in the system, so increasing the network size will eventually

cause it t o be saturated. In addition, as networks get larger there is an increase in the

communication delay between the more distant processors and the master, which causes

additional processors t o be less effective.

Distributed load balancing attempts t o remedy these problems by making decisions

locally. This means tha t the ability to make decisions increases with network size. It also

means tha t the distance between the unit which makes the decisions and the unit which

executes those decisions is zero. However, because each processor must make decisions

about whether t o accept or forward tasks, and where, each processor must now have some

idea of the system state. The system state must itself be communicated through messages

which are subject t o communication delay, so they may not reflect t ha t state accurately

when they are received or used.

Both centralized and distributed load balancing suffer somewhat from the fact tha t

scheduling is done at runtime, and therefore the scheduling overhead is paid for every time

a program is run. Little pre-execution program analysis is normally done t o aid the

scheduler in making its decisions, which prevents processors from planning the execution t o

minimize the overall processing time.

Static scheduling attempts t o solve some of these problems by analyzing the program

graph and scheduling i t before execution begins. This is necessarily restricted t o programs

or sections of programs which have little varying dynamic behavior. Our approach t o static

scheduling further restricts the problem to the scheduling of tasks with acyclic precedence

constraints and heterogeneous task and communication weights. I t is a superset of the

Precedence Constrained Scheduling Problem (PCS) [GaJ79], in tha t i t adds t o PCS the

additional problem of scheduling communication costs. In both problems the tasks have a

finite lifetime and are executed once. All incoming communication must be received before

a task may begin, and all outgoing transmissions are sent after the task has completed.

Because the problem in its general form is NP-complete [Ul175], solution approaches

have taken two diverging paths, namely tha t of restricting the problem until polynomial

solutions may be found, and of finding heuristic algorithms tha t may be computed more

cheaply but still produce schedules tha t are frequently close t o optimal.

Static scheduling may be done as the program is constructed, a s a preprocessing phase

prior t o compilation, automatically or semi-automatically at compiIe time, or a t the time

the program is loaded onto the machine for execution. Tasks may represent individual

instructions in a program, subroutines, program modules, or whole programs which are part

of a script. Communication between these tasks might be the fetch of a datum from main

memory, a structured message a few hundred or thousand bytes long, or the transfer of

complete files between successive filters. We assume here tha t the only cost associated with

communication is the message transmission time, which includes both the time required t o

transmit the message over the communication link, and the queuing delay which occurs

because of competition from other messages in the system. No setup time in sending or

receiving messages is included in this analysis, although there is no reason why i t could not

have been.

A scheduler is preemptive if execution of a given task may be interrupted and

suspended t o allow another task t o execute. I t is nonprcemptive if the reverse is true, tha t

is, once a given task is started i t runs t o completion without interruption.

Scheduling strategies may be further subdivided into optimal and heuristic

approaches. Optimal schedulers may use branch-and-bound techniques [KaN84,Koh75] or

linear, integer, or dynamic programming [ACD74,LaL78]. These approaches produce

schedules from the equivalence class of shortest length schedules (there may be more than

one possible shortest schedule), but the schedulers can require running times which are

exponential in the number of tasks t o be scheduled.

Heuristic schedulers are more difficult t o classify because of the great diversity in

approaches. However, a distinction can be made between stubborn and non-stubborn

schedulers. A stubborn scheduler will not move or attempt t o reschedule a task once it has

been scheduled. Non-stubborn schedulers will generate an initial task schedule, then

perturb it in different ways hoping t o find a better schedule. List schedulers are a special

class of stubborn schedulers. In this dissertation, a taxonomy of schedulers is developed and

the performance of different types is considered.

1.2. Contributions of This Dissertation

This dissertation makes the following specific contributions t o the study of parallel

scheduling:

(1) We examine five variables in the program/architecture system for their effect on

scheduler performance. The program variables are: the distribution of tasks within

a program, the number of subtasks within a program, and the average parallelism.

The architecture variables are: the average time (latency) required t o communicate

over empty links and the total number of processors available.

(2) We decompose static parallel scheduler algorithms into three basic parts and

examine how different designs for the parts affect scheduler performance. The

subdivisions we consider are: task selection, processor selection, and schedule

generation. The task selection strategies we consider include those used in critical

path scheduling and in diffusion dynamic load balancing. Processor selection includes

strategies where only processor load is considered, where processor load and empty

channel communication latency are considered, and where load, latency, and

contention a re considered.

(3) Several of the static schedulers we examine resemble dynamic (diffusion type) load

balancing schedulers. The static schedulers are similar in all important respects

except (1) there was no runtime overhead for scheduling, and (2) the static
s

scheduler has complete and accurate information about the entire system a t each

time a decision about task placement is made. As such the static schedulers

delineate the best average performance tha t could be expected from similar dynamic

schedulers.

1.3. Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter 2 summarizes much of the relevant work which has been done in static

scheduling, and particularly in list scheduling. In Chapter 3 we present a precise definition

of the multiprocessor scheduling problem. Chapter 4 describes a taxonomy of our 12

schedulers based on their modular decomposition. The construction of each of the 12

schedulers used in later chapters is also given, along with a worst case complexity analysis

for each.

A complete description of the scheduler experiment setup, inputs, and environment is

given in Chapter 5. We describe the five variables considered t o be most relevant t o

scheduler performance, and the range of values used for each. Chapter 6 analyzes the

effects of each experimental variable on scheduler performance. Chapter 7 analyzes the

effects of variables used in scheduler construction on scheduler performance. Our

conclusions and recommendations are presented in Chapter 8, and Chapter 9 presents some

ways in which this work might be extended.

Appendix A contains graphs of the different task distributions. The remaining

appendixes contain the numerical results of the different experiments. In particular,

Appendix B presents the experimental results in terms of frequency histograms of schedule

length, bar charts of average schedule length, and tables of all seven performance measures.

Results are grouped by problem characteristic t o show the effect tha t task distribution,

average parallelism, program size, etc., have on the different schedulers. Appendix C gives

the same presentation grouped by scheduler t o show the effect of different scheduling

decisions on scheduler quality. Appendix D contains plots of relative parallelism vs. relative

efficiency. Cumulative histograms of relative scheduler performance are given in Appendix

E.

CHAPTER 2

Related Work

This chapter summarizes previous work in precedence constrained scheduling (PCS).

Because of the scheduler strategies considered in this dissertation, we concentrate primarily

on list and list related scheduling strategies. Ullman [Ul175] proved that if task execution

times are not equal, or there are more than two processors, precedence constrained

scheduling for arbitrary graphs is NP-complete. This, in turn, implies tha t our extended

problem is NP-hard, because i t is a superset of PCS.

2.1. PCS Without Communication Costs

A number of good heuristic solutions t o PCS have been proposed in the literature.

Although we are considering a more general problem, PCS with non-zero communication

costs, these heuristics provide an excellent starting point for developing heuristic solutions

t o the extended form of PCS.

Much of the material discussing solutions t o PCS is collected together into two works.

The first is a survey article by M. J. Gonzalee [Gon77], the second is a book edited by E. G.

Coffman [CoflG]. Gonzalez [Gon77] surveys some of the major results in scheduling theory

known a t tha t time. He classifies scheduling problems by number of processors, task

duration, precedence graph structure, task interruptibility, job persistence or periodicity,

presence or absence of deadlines, whether resources are limited, and whether processors are

homogeneous or heterogeneous. A number of performance measures are also given, including

minimum completion time, minimum mean flow time, and maximum processor utilization.

Minimum completion time is an appropriate measure for scheduling large single jobs on

multiprocessor systems. Minimum mean flow time is appropriate for scheduling multiple

independent jobs in a time sharing environment, where fast turn around time is desirable.

Appropriate heuristics and measures are also given for hard and soft real-time

environments. Several scheduling algorithms are described, including those in [ACD74], and

performance bounds are given.

Coffman ct a1 [Con61 collect into a single work much of what is known about

scheduling theory. This work is more varied and in some ways more detailed than [Gon77].

I t includes polynomial algorithms for exact solutions t o specific subclasses of the general

scheduling problem. Solutions include tree-structured task systems, processors with different

speeds, and preemptive and nonpreemptive approaches. The problem complexity (its NP-

completeness) is shown, and bounds are derived on the performance of several scheduling

problems. Lastly, several exact and near exact algorithms are given which use branch-and-

bound and dynamic programming (see [HiL74]) techniques.

The earliest reference t o PCS and a critical path solution is by Hu. Hu presents the

original critical path scheduling algorithm and proves i t is optimal if all tasks have equal

execution times and the graph is a tree or forest [Hu61]. Coffman and Graham [CoG72]

later present a level-by-level scheduling algorithm (CG) which has tighter bounds than does

critical path scheduling. Furthermore, scheduling of arbitrary acyclic graphs is optimal

using CG if all tasks have equal execution times and there are only two processors. These

two scheduling algorithms provide the basic platform from which most of the scheduling

heuristics are derived.

In CG as well as Hu's algorithm, the emphasis is on ordering the selection of tasks

from which the schedule is generated. A pre-scheduling analysis is done on the program

graph, and the tasks are ordered into a list. As a task is removed from the list for

scheduling, each processor schedule is examined and the processor with the earliest finishing

schedule is selected. The task is placed a t the end of tha t processor's schedule. A machine

schedule contains only the order in which the tasks are executed, the processor on which

each task is executed, and the finish time of each.

Many authors explore the advantages and limitations of this approach, among them:

Kaufman, in [Kau74], discusses a heuristic solution t o the precedence constrained

multiprocessor scheduling problem where the ordering relation forms a tree. Communication

is considered insignificant and tasks are nonpreemptive, but tasks may have non-unit

weights. Tight bounds are derived which relate his algorithm to an optimal preemptive

schedule and t o an optimal nonpreemptive schedule.

Adam e t a1 (ACD741 compare the performance of five list scheduling algorithms. The

schedulers are HLFET (Highest Levels First with Estimated Times), HLFNET (HLFET with

equal task weights), RANDOM (task priorities are selected randomly), SCFET (Smallest

Co-levels First with Estimated Times), and SCFNET. A dynamic programming preemptive

scheduler is also used as a basis for comparison. There were 22 tests pulled from actual

programs, mostly written in FORTRAN, and about 900 were generated stochasticaIIy. A

statistical analysis of variance (AOV) concluded tha t HLFET performed best. A P=O.Ol

confidence level was used for the AOV. Tables from the text report tha t the largest

variation between schedulers was about 31 percent. The tests considered 2, 3, and 5

processors.

Garey and Johnson present a solution t o the two processor scheduling problem where

there is arbitrary s ta r t times and deadlines for each of the tasks [GaJ77]. An O(n3)

algorithm gives a schedule whenever one exists. This same algorithm can also be coupled

with a binary search t o find the shortest such schedule, or t o minimize "tardiness". A

number of variations of this scheduling problem are shown t o be NP-complete.

Bashir et a1 report the results of a statistical study in PSV83). In this study all tasks

have unit weights, and graphs have between 20 and 48 tasks per graph. 700 graphs are

generated a t random, and the resulting sample is used t o determine the probability tha t the

critical path scheduling algorithm finds an optimal schedule.

Blazewicz et a1 [BWD84] discuss the variation on the scheduling problem where some

tasks require two processors simultaneously. They present a general model for this type of

scheduling, and an appropriate heuristic. Bounds on the performance of their heuristic are

also developed.

Kasahara and Narita describe a fast branch-and-bound approximation scheme in

[KaN84]. The initial selection for the branch-and-bound algorithm is determined by a

modified critical path algorithm called CP/MISF (for Critical Pa th , Most Immediate

Successors First). CP/MISF uses the standard critical path algorithm with the exception

tha t ties are broken in favor of the task with the greatest number of successor tasks (i.e.,

tasks between it and the exit node). The approximation/optimization algorithm enumerates

all possible solutions, pruning as early as possible any tha t are clearly inferior. The current

best solution is replaced whenever a superior solution is found. Because the number of

possible solutions is so large, a CPU time limit was imposed, which causes the solution t o be

only approximate. Tests were done for graphs with 5-200 tasks, and 2-10 processors, with

no communication costs. Experimentation showed tha t in most cases this approach found

a n optimal solution within a few seconds. Kohler [Koh75] describes a slightly less refined

version of the branch-and-bound algorithm used by Kasahara and Narita. His results

strongly agree with those reported in the later article.

Ramamoorthy ct a1 [RCG72] develop dynamic programming algorithms tha t determine

(1) the minimum number of processors t o process a graph in the smallest possible time, (2)

the minimum time required t o process a graph on k processors, and (3) whether a graph

can be processed in the minimum time on k processors. Two heuristics are also presented,

both of which are similar t o load balancing. The heuristics are compared against an

optimal algorithm for small graphs and two processors. The major thrust of this paper is

intended t o be the dynamic programming algorithms, but the two heuristics provide ideas

on task selection strategies which we use in this dissertation. Ramamwrthy's task selection

strategy is different from critical path scheduling in tha t tasks are scheduled in the order

tha t they become available, which can be used both in a static or dynamic scheduling

environment.

Sethi [Set761 discusses some results from [CoG72] which includes an optimal O(n2)

algorithm for scheduling arbitrary directed acyclic graphs with unit weights on two

identical processors. He presents a graph labeling function with O(n+e) steps. He also

presents a new optimal algorithm for the two processor problem which has complexity

O(na(n)+c), where a (n) is a n almost constant function of n .

Graham [Gra69] and Fernandez and Bussell [FeB73] investigate the worst-case

performance of a critical path scheduling algorithm. Graham derives bounds for several

variations of the job-shop scheduling problem (i.e., PCS), including an upper bound on the

schedule length given a fixed number of processors. Although Graham's work considers only

a subset of the problem we consider, i t does provide some justification for claiming t ha t the

distribution of parallelism does not have a major impact on scheduler performance, which

we investigate empirically for the larger problem.

More detailed information about the limits of the Coffman-Graham and critical path

scheduling algorithms are given in [LaS77], [Kun81], and [Llo82]:

Lam and Sethi [LaS77] discuss the worst case performance of preemptive and

nonpreemptive versions of the Coffman-Graham (CG) scheduling algorithms. They show

tha t both algorithms are bounded by w/w0<2-2/m, where w is the length of the CG

schedule, w, is the length of an optimal schedule, and m is the number of processors. Note

tha t this accounts for the optimality of the special case where m = 2.

Kunde derives worst-case asymptotic bounds for the critical path scheduling heuristic

in [Kun81]. The bounds are derived for the special cases where tasks have unequal weights.

Three types of dependency structures are considered, namely trees (2-2/(m+l)), anti-trees

(exact bounds are not given, but they are generally worse than for trees), and chains (513).

Lloyd [Llo82] investigates the worst-case performance of the critical path scheduling

algorithm and the Coffman-Graham scheduling algorithm. This analysis presumes t ha t

there are a fixed number of available processors, and tha t additional resources exist. An

upper bound is given which depends on the number of processors and non-processor

resources in the system. This upper bound is the same for both scheduling algorithms, and

is asymptotically the best possible worst-case upper bound.

2.1.1. PCS With Communication Costs

Several recent studies do consider communication costs in their analysis. However,

none of the studies are as extensive as we have undertaken here. Three such studies are

summarized here.

Kruatrachue considers the problem of communication for a precedence based scheduler

in FrL87,Kru87,KrL88a,KrL88b]. He defines the ISH and DSH schedulers; ISH is a

modified version of Hu's scheduler [Hu61]. DSH is like ISH with an extra pass tha t

duplicates tasks whenever it is beneficial t o do so. Task duplication can have the beneficial

effect of using idle CPU time t o reduce communication. A basic assumption underlying all

his results is tha t contention has an insignificant effect on the performance of a scheduler.

All scheduling decisions are made assuming tha t the only delay in communication comes

from channel latency, and tha t messages rarely interfere with each other.

Granski ct a1 [GKS87] present a critical path algorithm suitable for scheduling

dataflow graphs on a dataflow machine. Their algorithm schedules conditional branches by

transforming the graph into a set of deterministic subgraphs, each element of which

represents a possible path of execution. A critical path algorithm is then used t o schedule

each of the subgraphs independently. Loops are scheduled by first multiplying the weight of

each node within the loop body by the expected number of iterations. The loop body is then

scheduled as if i t were acyclic. Simulated performance of their algorithm shows their

algorithm compares favorably with a random scheduling algorithm.

Chester Carroll c t a1 discuss a solution based on critical path analysis in [CHA88].

The solution first schedules critical paths (see Section 3.1 or (HiL74]), then adds non-critical

tasks later. Task selection for non-critical tasks is done by decreasing distance from the

terminal node of the graph, and uses distance from the initial node t o break ties. Only

"processor rich" systems were used in scheduling, which never blocked task execution

because of processor unavailability. Their study considers both latency and contention in

communication. Latency is restricted t o being no longer than the duration of the average

task. Other aspects of communication were also modeled - in particular, both completely

connected and s ta r networks with a packet switching protocol were used, and

communication buffer size was included in the feasibility constraints. No performance

results were reported.

CHAPTER 3

Definitions And Terminology

Briefly stated, the general problem t o be considered is: what are the characteristics of

parallel schedulers, programs, and architectures which affect resulting performance? Of

course this problem is so broad tha t one can only consider a very small portion of i t in a

work such as this. For the sake of simplicity we will restrict the problem t o static acyclic

program graphs and an idealized multiprocessor architecture. In doing so we restrict the

problem to what we believe are its principal components. As mentioned before, much work

has been done when the cost of communication between processors is zero [Cof76], and some

work has been done when communication latency is important but the communication link

bandwidth is effectively infinite [I<ru87]. We consider architectures tha t have a finite

communication capacity across links, so communication latency and contention may both

affect scheduler performance. In this chapter we give definitions and introduce the

terminology used in the remainder of the dissertation.

3.1. Task Graph Characteristics

DEFINITION: A task graph G = (A , T) is a connected, directed, acyclic graph with

heterogeneous non-negative weights on all nodes and arcs.

The set T of graph nodes represents tasks t o be performed; node weights represent the

computational resources (i.e. CPU time) required by the program to complete its execution.

Arcs in A represent communication between tasks; arc weights represent the volume of

communication between tasks. It does not represent the communication time of the arc -

t ha t is a function of the processor schedule. The direction of the arc indicates which task is

the sender and which is the receiver.

Intuitively, a task graph is a way of representing a program. Tasks within a graph

are s tr ic t on all parameters, tha t is, they must receive all communication before they begin

execution. Tasks are modeled as sending messages t o other tasks only after the sending

task has completed its execution. I t is assumed for convenience t ha t every graph begins

with a single node and ends with a single node. Graphs which have more than one initial or

terminal node may be easily modified t o this form by adding special initial and terminal

nodes.

Task graphs have no cycles nor conditional execution such a s are found in dataflow

graphs [Ack82,DaK82,Den801Gur84]. The restriction on cycles is particularly severe for the

representation of programs, as few useful programs are written without some form of

iteration structure such as loops, recursion, or generators. Compiler technology in recent

years, however, has progressed t o the point where loop unrolling may take place a s par t of

the optimizations a compiler is able to use [NC72]. Loop unrolling partially or completely

removes cycles from an otherwise cyclic graph. The unrolled portion of a loop may be

represented as a task graph, or the whole loop may be represented as a single node.

DEFINITION: The parent relation of a task graph G = (A , T) is the set A of arcs of G ,

tha t is, a is a parent of b iff (a , b) ~ A . P a r e n t (a) denotes the set- of tasks

{ p : (p , a) E A), which are the parent tasks of a . C h i l d (a) is the set. of tasks

{ c : (a , c) E A), which are all children of a .

Intuitively, a is a parent of b if b receives a message directly from a ; also, b is a child

DEFINITION: The ancestor relation of a task graph G = (A , T) is the transitive closure

of the parent relation. In other words, a is an ancestor of b iff a is a parent of b, or

there exists some c such tha t a is a parent of c and c is a n ancestor of b. The

descendant relation is the transitive closure of the child relation.

The ancestor relation is both irreflexive and antisymmetric. Irreflexive in this case

means a can never be its own ancestor, and antisymmetric means t ha t i t cannot be true

tha t both a is b's ancestor, and b is a's ancestor.

DEFINITION: An initial node of a task graph G is a task a E T which has no parent in

G , t ha t is, a is an initial node iff V b E T (b,a) 4 A . A terminal node of a task

graph G = (A , T) is a task a such tha t a is not an ancestor of any node. In other

words, a is terminal iff V ~ E T (a , b)gA.

DEFINITION: The earliest starting lime (EST)' of a task a is max (EST,+w,),
Z€P.T~D~(.)

where w, is the weight of task z.

A task may begin execution only after all its parents have finished, so a task's EST is

the estimated time of the latest parent's termination. EST ignores arc weights because the

costs associated with arc weights depend on particulars of the task placement and schedule,

which have not yet been determined. The EST of the initial node may be any finite value,

positive, zero, or negative, but is usually chosen t o be zero for convenience.

DEFINITION: The latest starting time (LST) of s task a is' (min LST,)-w.. The
rEchi[d(a)

LST of the terminal node is its EST.

A task's slack is the difference between its LST and EST. Intuitively, slack measures the

freedom available in scheduling the node.

' These definitions for EST, LST, and slack are equivalent to the clsssical definitions, such as are found in
IHiL741.

DEFINITION: A c r i t i ca l pa th of a graph is a connected directed path, including initial

and terminal nodes, for which the slack of each task is zero.

A graph may have more than one critical path, but all critical paths will have the

same length. The EST of a task represents the length of the longest path from the initial

node t o the task. The LST is a linear function of the length of the longest path from the

terminal node t o the task. Any task scheduled for execution between its EST and LST will

not adversely affect the execution of the graph. A task can be scheduled before its EST

when the scheduling progresses from bottom t o top, in exactly the same way tha t a task

may be scheduled after its LST when the scheduling order is from top t o bottom. The two
s

activities are symmetrical2. Any task scheduled before its EST will increase the total

execution time of the graph by a t least the difference between the EST and the scheduled

time. Similar results occur if a task is scheduled after its LST3.

The definitions for EST, LST, slack, and critical path reflect the most optimistic

execution possible which will not violate precedence constraints. They are optimistic in tha t

they assume enough computational resources tha t no task is delayed due t o processor

unavailability, and tha t there is no penalty for communication. Even though these values

are optimistic they serve a useful purpose as indicators for task priority

T h e idea of schedul ing a t a sk before i t s E S T m a y be confusing t o some readers . T o unde r s t and how t h i s
m a y occur , one m u s t recognize t h a t t h e E S T is only a n e s t ima to r which measures t h e ear l ies t t i m e at which a
t a s k may be scheduled without increasing the length of the schedule beyond the length of the cr i t ica l path. Some
scheduler designs (e.g. S C F E T IACD741) fix t h e t e rmina t ion t i m e of t h e final t a s k first, t h e n schedule each p a r e n t
t a s k in succession. If t h e final t a sk is given a s t a r t t i m e which i s i t s E S T , t h e n a n y t a sk which is scheduled before
i t s EST will increase t h e length of t h e schedule. Also, when schedul ing proceeds backwards like th i s , i t m a y be
necessary t o schedule a t a s k before i t s E S T in o rde r t o avoid viola t ing precedence const ra ints .

a l f more t h a n one t a s k is scheduled outs ide i t s EST-LST range , t h e execution t i m e of t h e g r a p h m a y o r m a y
n o t be augmen ted by t h e s u m of t h e differences. T h i s i s because t h e schedule of o n e of t h e t r e k s m a y cause t h e
cr i t ica l p a t h to cbange i n such a way t h a t t h e o the r does no t affect execution. F o r example , suppose t w o paral le l
t a s k s each have L S T - E S T - 10. I l t a s k a is scheduled a t t ime 15 a n d t a s k b at 20, t h e execution will be in-
creased by t h e max imum of t h e two , o r by 10 t ime uni ts . If on t h e o t h e r hand t h e t a s k s a r e sequent ia l r a t h e r
t h a n paral le l , t h e increase will be t h e sum, o r 15 t i m e units.

A number of task graph characteristics can affect the length of an optimal schedule.

Among them are program size, average parallelism, task distribution, and the arity of its

nodes. Program size affects schedule length by determining the total amount of work t o be

done. More work t o be done generally means longer schedules.

DEFINITION: The average parallelism of a task graph is the ratio of the total task

graph weight t o the length4 of its critical path.

Average parallelism measures the total amount of work tha t can be done in parallel

over the life of the computation. It is also the ideal speedup, given an infinite number of

processors with infinitely fast communication between them. Some programs are highly

parallel, while others exhibit an average parallelism near unity (they are effectively

sequential). An example of a nearly sequential program fragment would be the algorithm in

Figure 3.1, which raises a value b t o an integer power y = b P using the binary

decomposition of p . This algorithm is very fast, but i t has very little parallelism.

An example of a highly parallel program fragment is in Figure 3.2. Assuming + is an

associative operation, this fragment may be decomposed into two equally reasonable task

graphs, as shown in Figure 3.3 (a) and (b). Different task graphs are possible in this case

because of the associativity. Both decompositions have the same number of operations - N

additions in each case. However, because of the greater parallelism available in (b), one

would expect i t t o have a parallel shorter schedule than (a) whenever multiple processors

were available. The average parallelism of Figure 3.3 (a) is roughly 1; the average

parallelism of (b) is N/log2N.

'The length of a critical path is the sum of the weights of the tasks on the critical path.

b t b a s e
p t power
y t unity
w h i l e (p > 0) {

i f (p mod 2 = 1) y c y * b
b t b * b
P + L P / ~ J

3

Figure 3.1. - Program Fragment With Limited Parallelism

DO 10 I = 1, N
S = S + A(1)

10 CONTINUE

Figure 3.2. - Potentially Parallel Reduction Operation

answer

Figure 3.3. - Reduction Operation Task Graphs

The distribution of tasks within a task graph (or task distribution) can potentially

affect the execution in several ways. The first and most obvious way is tha t i t determines

the graph's average parallelism. The second is tha t i t determines the amount of slack each

task will have. Slack is a measure of how tightly constrained a task is in its schedule. A

large slack means the task may be scheduled within a large range of times without directly

impacting the overaIl length of the schedule.

Lastly, the shape of the distribution is capable of affecting the schedules a s well. For

exampIe, if 90% of the potential parallelism occurs in the last 10% of the graph (as

measured along the critical path), the execution will be essentially sequential up t o the end

of the program, after which the program will load up the processors until its done. If 90%

of the' parallelism occurs in the first 10% of the program, it might be possible t o spread the

parallelism across some or all of the execution of the critical path, and thus incur less

additional expense. Whether this is realizable depends in no small par t on the available

slack.

The fan-in, or arity, of nodes in a task graph may affect parallel schedule length

because each incoming arc t o a task places a constraint on the execution of tha t task.

Tasks must receive communication from all parents before they may begin execution. If the

parent resides on the same processor as the child, the communication is free.. If the parent

does not, a certain penalty in delay and resource usage must be paid. As the arity

increases, the likelihood tha t a parent will be scheduled on another processor, and thus tha t

communication will be across links increases, forcing a tradeoff between communication

delay and loss of parallelism. The communication delay can be reduced a t the expense of

reducing the exploited parallelism. This becomes very important when i t forces delays in

the execution of tasks along a critical path in the graph, since delays along the critical path

cannot be hidden or masked - except by longer delays in parallel parts of the graph.

3.2. Architecture Characteristics

Although graph characteristics are important, they are not the only significant factors

in scheduling. Various architectural considerations may also influence the length of parallel

schedules. This study considers three of the most important: processor'count, link latency,

and link bandwidth.

There is a large number of multiprocessor architectures, each with characteristics tha t

a re unique, and each with characteristics tha t are common t o other systems< A majority of

the systems can be classified as distributed memory, shared memory, or shared address

space. For the purposes of this dissertation, i t is assumed only tha t each processor may

communicate with other processors via message passing over a network of communication

links. This is quite natural t o a distributed memory machine. A shared memory machine

might also be used as a message passing machine, by using locks or semaphores t o signal the

arrival of messages. A shared memory system can be viewed a s a distributed machine with

a completely connected network tha t has near-zero communication latency.

DEFINITION: A multiprocessor architecture is a graph M = (P ,L) , where P is the set of

processor elements, and L is the set of communication links.

Communication links are some combination of uni- and bidirectional arcs, with labels

on all arcs and nodes. The directionality of the arcs represents the possible flow of

communication across the system. An arc label represents the bandwidth of the

communication link which connects processors on both ends of the arc. (There is nothing

inherent t o our model which precludes communication s tar tup costs from being used, but we

6~ large number of texts have appeared on this topic in recent years, and three are mentioned here. For a
thorough treatment of multiprocessor systems at the architectural level, see IHw884j. Babb IBab87) discusses p r e
gramming different commercially available parallel processing systems, and Chambers el at ICDJ84j considers
design ideas behind some of the more exotic experimental systems.

do not consider them in this study.) Node labels represent the different capabilities a

processor may have, along with the speed with which it is able t o perform the work.

DEFINITION: Link latency is the time delay per unit message incurred in transmitting a

message over a single empty communication link. Message latency is the time delay of

a given message.

Link latency is also called communication latency, or just latency. The units of

latency are generally seconds per bit or seconds per byte, but here we are interested in the

time relative t o the execution of an average task so i t is the average tasks executed per

transmission of an average message. Message latency is a function of the link latency and

the size of the message t o be sent.

Message delay comes from two main sources: delay due t o physical properties of the

communication circuits (i.e. link latency), and queuing delay due t o multiple messages

competing for communication links. Queuing delay, or contention, depends on the total

resources available, the resources used by each message, and the pattern of usage. Network

resources are determined by the network size and topology. Message transmission patterns

can be ceoperative or interfering. If message patterns are (effectively) random, interference

depends on the average distance a message is sent and the number of messages in transit.

Contention is dependent in par t on latency because longer latency means messages take

longer t o cross a link, and thus the link usage is higher. This in turn causes other messages

waiting t o use the link to be further delayed.

Not all communications cause an increase in schedule length. Since communication

between two tasks on the same processor is "free", delay can sometimes be avoided.

Communication between processors tha t occurs along the critical path will always affect the

schedule length (unless something in parallel affects i t more). However, if there is sufficient

slack between communicating tasks off the critical path, communication may have no effect

at all. But t o say tha t the effect of communication is indirect is not t o say tha t i t is

insignificant. Its significance depends in large measure on the scheduler's ability t o take

advantage of opportunities t o reduce its effects. This dissertation will examine in later

chapters the effect message delay has on different scheduler strategies.

3.3. Scheduling Performance Metrics

DEFINITION: A task asaignment cr:T+P is a mapping of tasks t o a set P of processors.

If task duplication is allowed [I<ru87], cr is a relation, not a function, because a task

&ay be assigned t o more than one processor. The same is true if certain types of

preemptive scheduling is used. If task duplication is not allowed and scheduling is

nonpreemptive, cr also induces a partition, and each task is assigned t o exactly one

processor.

DEFINITION: A schedule a :T+Z is a function from a set T of tasks t o Z , the set of

integers6. A multiprocessor schedule is a task assignment of T t o a set P of processors

with a schedule for each processor. All tasks must be executed a t least once, and no

more than one task may execute a t a time on a processor.

Intuitively, T is divided among the available processors, with some tasks possibly

occurring on more than one processor. Then a is a function which returns the s ta r t time of

a task on a processor. Because the schedules are nonpreemptive, the finish time of a task is

the sum of its s ta r t time and its weight. A schedule is valid if i t obeys all of the

constraints, such as precedence, which are imposed upon the task graph. Although we only

' In some formulations of the problem, u is a function t o Z+ or ZO, and negative integers are not included.
We include negative integers in our definition in order t o allow a scheduler t o Rx tbe termination time of the
schedule and work backwards t o the starting time. The usual order is t o Rx the start time a t zero or one and
schedule forward t o the end.

consider precedence in our model, other constraints, such as memory usage limits, are

certainly possible.

For reasons mentioned earlier, i t is desirable t o schedule tasks between their EST and

LST. In critical path scheduling, tasks are assigned priorities t o establish the order in

which tasks will be scheduled. The highest priority goes t o the task which will be scheduled

furthest outside of the EST-LST range, in order t o minimize its impact on the schedule.

Scheduling lower priority tasks first can never increase the opportunities t o schedule higher

priority tasks - i t can only fill time slots tha t higher priority tasks might have used.

On the other hand, always scheduling the highest priority task first will not guarantee

an optimal schedule, or even a good one. Suppose there are two unscheduled tasks a and b,

and task a has the highest priority of the two. Task a might have several slots which

would be equally suitable, whereas because of communication constraints task b might have

only one slot which does not adversely affect the schedule length. If task a is given the slot

which also happens t o be the best slot for b (because it is also the best slot for a by a small

margin) the schedule suffers because the completion time for b suffers. If a were less

aggressively scheduled, b could take its best slot, and a would be scheduled in a slot tha t is

"almost" as good. This strategy would ultimately give the best overall schedule, but t o

implement it reliably requires a search of nearly all the possible task combinations.

DEFINITION: The length of a task graph's schedule is the difference between the s tar t

time of the earliest task, and the finish time of the latest task.

Task weights affect schedule length in an easily understood manner - tasks tha t are

added t o the beginning or end of a schedule increase the schedule length by the value of the

task weight. Arc weights (i.e. message weights) do not have a s direct an influence on the

schedule length. If the sending and receiving tasks are both on the same processor, no

message is scheduled, and the schedule length is unaffected. If the tasks are on separate

processors, the message must be scheduled on each communication link in the path which is

used t o transmit the message from the sending task's processor t o the receiving task's

processor. The amount of time reserved on each link (i.e the message latency) is

proportional t o the message weight and the link transmission rate. Thus the execution of

the receiving task can be delayed by the latency of the message, and possibly more if other

messages are competing for the links. Communication delays the execution of individual

tasks, which in turn increases the schedule length.

Schedule length measures the total execution time of a given schedule. I t is interesting

t o note tha t as a scheduler constructs a schedule, i t attempts t o model "reality" with some

degree of accuracy. There may be some differences, perhaps insignificant, perhaps highly

significant, between "reality" and a scheduler's perception of reality. Because of those

differences, a scheduler's perception of a schedule and the actual schedule may be quite

different. This is also true of the scheduler's perception of the schedule length and the

actual schedule length.

A # DEFINITION: The parallel e f i c i e n c y of a task graph schedule is the value -
n x T p '

where T, is the length of a sequential execution of the graph (or the sum of the

weights of the individual tasks), n is the number of processors, and Tp is the length of

the parallel schedule.

The parallel efficiency describes how effectively the machine is being utilized.

Efficiencies near one show tha t near maximum speedup is being attained, while efficiencies

near zero indicate tha t few of the available resources are being used efficiently. If tasks are

not duplicated t o increase parallel execution speed, low efficiencies also reflect a high

processor idle time. If tasks are duplicated, all processors may be kept busy even when

parallel efficiency is low.

The processor count and average parallelism of the task graph together place an

upper bound on the speedup any parallel schedule can display on t ha t system. The bounds

are calculated in the following way:

Speedup < min(Average Parallelism, Processor Count).

Processor count and parallelism also place a limit on the best possible parallel efficiency

attainable for a graph. The best parallel efficiency is bounded above by

Parallel Eficiency < min(
Average Parallelism

Processor Count 7 1).

28

CHAPTER 4

Scheduler Components

Stubborn scheduling designs generally consist of three main phases: task selection,

processor selection, and schedule generation. Both the length of schedule computed and the

running time necessary to create the schedule will depend on the algorithms chosen for these

phases. It is interesting that the interaction between components can also have a major

effect on scheduler performance. For example, we discovered that combining a schedule

generator that models communication latency and contention, with a processor selector that

uses only latency can be very detrimental. Schedulers which include this pair can generate

schedules that are more than 40 times as long as a corresponding sequential schedule.

Dividing schedulers into phases gives us a simple taxonomy which will be used to compare

schedulers in later chapters.

4.1. Task Selection

The task selection phases can be subdivided into task priority assignment and task

selection. Priority assignment is an analysis of the (perhaps partially scheduled) task graph

to determine the order in which (remaining) tasks will be scheduled. Tasks are then selected

for scheduling according to the priorities assigned. Task priority may be a function of the

task's distance from the top of the task graph, from the bottom of the graph, or both

[Gon77]. Distance is measured as the sum of the running times of each task along the

longest path from the graph start (finish) to the task. No additional distance is usually

included because of communication.

While unscheduled tasks remain
Assign task priorities
Select a task t o be scheduled
Select a processor for the task
Schedule the task on the processor

End

Figure 4.1. - Scheduler With Multiple Task Priority Calculation

The priority assignment may occur as infrequently a s once or i t may occur more often.

A single priority assignment has the advantage of requiring less CPU time t o generate a

schedule, whereas multiple priority assignments allow the task priorities t o adjust t o the

changing conditions tha t will occur during execution. For example, the assignment of a

particular task t o a particular processor could change the critical path of the task graph;

reassigning task priorities would allow priorities t o reflect such changes. Figure 4.1 shows

the scheduling algorithm tha t recomputes the task priorities each time a task is selected. If

the task priorities are computed only once, the priority computation can be moved out of

the scheduling loop, as in Figure 4.2. This algorithm is used in all other schedulers.

Assign task priorities
While unscheduled tasks remain

Select a task t o be scheduled
Select a processor for the task
Schedule the task on the processor

End

Figure 4.2. - Scheduler With Single Task Priority Calculation

4.2. Processor Selection

Once a task has been selected for scheduling, a determination must be made as t o

which processor the task must be assigned t o yield the most favorable result. Each

processor must be examined t o determine which processor assignment will yield the overall

shortest schedule. This requires tha t the "important" aspects of the architecture be

modeled. Some features worth considering are communication link latency and capacity,

and processor load. Incorrect modeling of an architecture can lead to grossly inefficient

schedules, while complete modeling can be prohibitively expensive.

This work considers several processor selection functions, namely random processor

selection, selection based on processor load only, selection based on processor load and

communication latency, and selection based on load, latency, and communication capacity

(or contention). For random selection a processor is selected a t random each time a task is

t o be scheduled. Each processor is equally likely t o be selected, and no consideration is

given t o the architecture or t o the schedule generated. When selection is based on load,

each processor schedule is examined. The processor with the shortest schedule, i.e., the

earliest completion time or lightest processor load, is selected t o receive the task. When

selection is based on load and latency, each schedule is examined as before but the time

required t o communicate results t o other tasks is also included. I t is assumed tha t each

communication link is completely devoid of other traffic, i.e., interference between messages

is not considered. This is a reasonable approximation if the average link utilization is

generally quite light.

The last processor selection strategy considers processor load, link latency, and

contention. Communication contention is modeled by individually scheduling messages on

communication links. A separate schedule is maintained for each link in the system. Thus

if a previous message is scheduled t o use a link at a given time and a second message would

use the same link a t the same time, the second message is delayed or, when possible,

scheduled earlier than the first. In this way message contention is completely accounted for,

and simultaneous transmission of multiple messages over a communication link is not

allowed.

4.3. Schedule Generation

Schedule generation deals with the actual construction and recording of the various

schedules. It is a t this time tha t a task is actually assigned t o the processor which has been

selected for i t . This can be done in several ways. For a given task assigned t o a processor,

the generator may place the new task a t the top (or bottom) of the processor's schedule, or

i t may search the schedule for a suitable slot which would not increase the schedule length.

Task insertion in parallel scheduling has been the basis of some study FrL87,Kru87], and

although it increases the time required t o generate a schedule, i t can shorten the schedule

length by a modest amount.

Another degree of freedom in schedule generation is the level of architecture modeling

undertaken. Just as processor selection may make certain assumptions about the

environment in which a program will be executed, the schedule generator must also make

assumptions about the environment. And although i t is the same environment, each need

not necessarily make the same assumptions. For example, i t might be the case tha t only

processor load is considered in selecting a processor, but the schedule generator might build

schedules which explicitly account for all messages a task will send, and thus model both

communication latency and contention. I t is worth noting tha t the processor selector may

only use those features modeled by the generator, though i t may choose t o use fewer. This

is because the schedule generator is the mechanism tha t records the s tate of the execution

through each step of the scheduled computation.

4.4. Descriptions of Schedulers

Task selection, processor selection, and schedule generation define a taxonomy. Of the

160 schedulers this taxonomy defines 12 were selected for experimentation, for reasons

explained below. The specific characteristics of the schedulers used are summarized in

Table 4.1, and their relationship t o other schedulers may be found in Figure 4.3. A

complete description of each scheduler is included in the following sections. The

designations in the table indicate how the scheduler was constructed. The two fields under

"Priority Assignment" indicate the behavior of tha t part of the scheduler. The entry

"Once" indicates tha t the scheduler assigns the task priorities once before the first task is

scheduled, and they do not change after tha t point. "Many" indicates tha t the task

PIocesrof Selechon

Schedule Centratcon

Me&awre P ~ I O I I ~ From
Prrorrt, ~ 8 . n d e f s m c y
Tart Seltcrel From

Figure 4.3. - Organization of Scheduler Design Space

s Table 4.1. - Scheduler Design Parameters

priorities are re-calculated each time a task is scheduled. "Top" ("Bottom") indicates tha t

the priority is measured as the distance from the top (bottom) of the task graph. "Top"

("Bottom") under "Task Selection" indicates tha t task selection occurs from the top

(bottom) of the task graph.

Scheduler

#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12

Under "Processor Selection" there are four choices, namely, "Random", "Load",

"Latency", and "Contention". These indicate the level of architecture modeling t ha t occurs

in the determination of each task's processor assignment. "Random" indicates tha t the

processor is selected at random. "Load" indicates tha t only the processor load, or schedule

length, is considered in selecting a processor. "Latency" means t ha t both processor load

and communication latency are modeled. An entry of "Contention" indicates t ha t the task

is successively scheduled on each processor, complete with task insertion and message

scheduling, and the processor which gives the best task completion time is selected.

The "Schedule Generation" columns indicate whether task insertion was used in the

final schedule, and a t what level the scheduler modeled the architecture. "Full" indicates

tha t both tasks and messages were scheduled on the various resources, i.e., tha t

Priority
Assi nment

Task
Selection

Top
TOP
Bottom
Bottom
Top
TOP
Top
Bottom
TOP
Top
TOP
Top

Once
Many
Once
Many
Once
Many
Once
Once
Once
Once
Many
Once

Bottom
Top
Top
Top
Bottom
Top
Bottom
Top
Top
Bottom
Top
Bottom

Processor
Selection

Contention
Contention
Contention
Contention
Latency
Load
Load
Load
Random
Latency
Latency
Latency

Complexity

n2p t
nm+n2pl

n2p t
nm+n2p t

n2P
nm+np +n2t

np +n2t
np +n2t

m
np+n2t

nm +np +n21
n p + n t

Schedule
Generation

Insertion
Insertion
Insertion
Insertion
Insertion
Insertion
Insertion
Insertion
Insertion
Insertion
Insertion
No Insert.

Full
Full
Full
Full
Lat.
Full
Full
Full
Full
Full
Full
Full

communication contention was modeled. "Latency" indicates tha t tasks were scheduled

with sufficient delay tha t communication could take place across the appropriate processors,

but otherwise communication was not considered.

Figure 4.3 includes the entry "Order", t o indicate tha t the order of tasks is

maintained on the architecture, but no additional information is retained. A scheduler need

not record task s ta r t and finish times only if they are not used in either task or processor

selection. Any scheduler which selects a processor based on processor load, latency, or

contention must record task s tar t and finish times in addition t o the order in which tasks

are executed. Scheduler #9 selects processors a t random, so no s ta r t or finish times are

needed. In our experiments a separate task graph execution simulator is used t o determine

the actual schedule length, so all schedules are, in effect, "measured by the same yardstick".

This is needed because, as discussed in Section 3.2, each scheduler's perception of task s ta r t

and finish times may not be consistent with "reality".

This particular selection of schedulers was chosen t o compare not only the costs and

benefits of different scheduler phase designs, but also the relative importance of each

scheduler phase. Several of the most promising phase designs were selected for each

scheduler phase. A processor selection phase which selected processors at random was also

used, primarily t o provide a scheduler which could be used a s a standard of reference for

other schedulers.

The first four schedulers, #I, #2, #3, and #4, were designed t o test the impact of

task selection strategies on schedule length and CPU time. Each of these four schedulers

are identical in every way, except for task selection strategy. Scheduler #1 uses the same

task selection strategy used in Hu's scheduler [Hu61], and in critical path scheduling

[Koh75].

Scheduler #2 uses a task selection strategy which is identical t o t h a t which is used in

dynamic load balancing (cf. [ELZ86,LiK87]), namely earliest available task first, or first

come, first served. Dynamic load balancing selects tasks in order of availability, t h a t is,

task priority is measured a s the distance from the starting point, and the tasks closest t o i t

are selected. In other words, both priority assignment and task selection occur from the top

of the task graph. Because load balancing occurs a t run time, the priority assignment is

effectively recomputed each time a task is assigned.

One important difference between dynamic load balancing and the corresponding

static approach is t h a t the dynamic approach suffers from incomplete knowledge of the

system load when decisions are made, due t o the necessity of distributing load messages

relatively infrequently. For this reason the static approach is a n idealized version of the

dynamic approach. It provides a lower bound on the schedule length, both because of the

availability of complete information a t the time the schedule is created, and because the

overhead of generating the schedule does not interfere with the execution of the task graph.

In addition t o the above approaches, Hu's task selection method was also inverted,

t h a t is, priority was measured a s the distance from the top of the graph and tasks were

selected from the bottom. Scheduler #3 measures the task priorities once, scheduler #4

measures the priorities each time a task is selected for scheduling. Scheduler #4 was chosen

t o test the importance of multiple passes in the task selection phase.

T o understand more fully how the task selection mechanism works, consider the task

graph in Figure 4.4. Scheduler #1 uses a task selection phase which measures task priority

from the bottom of the task graph, so i t uses the LST of each task t o determine the task

selection order. I t selects tasks from the top, so a task with the smallest LST is selected

first. Thus scheduler #I would select tasks in the order a, c, b, e, d , j. Ties are not

EST - 1 EST - 1
LST - 3 LST - 1

wt- 1
EST - 3
LST - 3

LST - 5

Figure 4.4. - Example Task Graph

explicitly resolved, so the order of tasks b and e might be reversed.

Scheduler #2 measures task priority from the top of the task graph, so i t uses the

EST value. I t selects tasks from the top, so i t would select them in order of smallest EST to

largest. The first task t o be selected is task a. Once scheduled, it would fix a's EST a t the

actual time i t was scheduled, and recompute the EST for all unscheduled tasks. In this way

the task selection mechanism receives feedback from the actual schedule, a t least as i t is

perceived by the scheduler. The order in which all remaining tasks are scheduled, therefore,

depends on details of the architecture and other phases of the scheduler. After the EST's

are recomputed, the next task is selected for scheduling.

Scheduler #3 measures task priority from the top, and selects tasks from the bottom,

so i t too uses the EST to determine task ordering, but i t reverses the order used by

scheduler #2. It first selects the final task and schedules it. It then selects another task

and schedules it , subject t o the constraint tha t the execution of the second task must

complete before the final task, including any time needed for communication. Scheduling

proceeds in tha t manner until all tasks are scheduled. The order in which tasks from Figure

4.4 would be scheduled is f, d, e, 6 , c, a. Scheduler #4 works in the same way as #3, but

like scheduler #2 it fixes the EST of a task once it is scheduled, and recomputes all ESTs.

Schedulers #6, #7, and #8 were designed t o discern the effect of less expensive

processor selection strategies. A major portion of the scheduling expense comes from the

processor selection phase of the scheduler, so a less expensive one - load balancing - was

substituted. T o select a processor, each processor schedule is examined, and the processor

with the earliest completion time is selected. Since it was not known whether task selection

would have an impact on the effectiveness of a processor selection strategy, three different

task selection strategies were used. Scheduler #6 in particular was selected because its

design is closest t o tha t of dynamic diffusion scheduling.

Schedulers #10 and #11 were also designed as an attempt t o find effective, but

inexpensive, approaches t o scheduling. The idea was t o use load balancing, but include a

cost for communication. The main constraint was tha t the communication cost had t o be

inexpensive t o compute. Message latency was used, since the amount of computation

required is proportional t o the task arity, and the arity is usually a very small number.

To illustrate the different approaches t o processor selection, consider the partial task

graph in Figure 4.5 (a). (Only node precedence has been shown - node and arc weights

have not been marked, for convenience.) If we are scheduling the graph for a two processor

system, a partial result might be the schedule shown in Figure 4.5 (b). Assume tha t task c

is the next task t o be scheduled.

If the processor selection phase uses only load t o select a processor for a task, then c

will be scheduled on PE 1, because its schedule finishes first. If the communication

requirements between tasks a and c are small, the result will be a tight schedule, a s shown

in Figure 4.6 (a). However, if the message is large, the results could be very poor, as shown

PE 0 LINK P E 1

(a)
I

(b)

Figure 4.5. - Partially Scheduled Task Graph Fragment

P E 0 LINK P E 1 I P E O L I N K P E l

(a)
I

(b)

Figure 4.6. - Processor Selection Using Processor Load

in Figure 4.6 (b). I t might be better t o schedule e on PE 0, depending on the size of the

message connecting b and e. The same type of proble'm can occur if load and latency, but

not contention, are used in processor selection, although i t would not occur in this example.

Time P E 0 LINK P E 1 PE 0 LINK P E 1 Time

(a)
I

(b)

s Figure 4.7. - Processor Selection Using Contention

Now consider the situation which occurs if the message from a t o c is large, and the

message from b t o c is small. For concreteness, assume tha t the messages require empty link

transmission times (i.e. latencies) of 2 and 1, respectively, and tha t the execution time of

task c is also 1. The processor selector would first try c on PE 0, the result of which is

shown in Figure 4.7 (a). I t would then try c on P E 1, shown in Figure 4.7 (b). The first

schedule clearly is the better schedule, so PE 0 would be selected.

This example also illustrates the concept of task insertion. There are unused spaces in

PE 0's schedule which can be used by tasks such as c. When such spaces exist, they can

often be filled by scheduling suitable tasks in them, as they were in Figure 4.7 (a).

Schedules can be made more efficient with task insertion, because i t uses what would

otherwise be processor idle time.

The remaining schedulers, # 5 , #9, and #12, were each selected for different reasons.

Schedulers #5 and #9 were chosen t o provide a basis of comparison for the other

schedulers. Scheduler #5 is Kruatrachue's ISH scheduler, which has been proposed as a

solution t o this problem (Kru871, and scheduler #9 schedules tasks a t random. Scheduler

#12 was selected because poor performance was observed in scheduler #lo, and it was

thought tha t task insertion might be causing the problem. Scheduler #12 was designed t o

test tha t hypothesis. It differs from #10 in tha t #10 uses task insertion and #12 does not.

4.5. Scheduler #1

Scheduler #1 (Figure 4.8) is one of several variations on Hu's scheduler [Hu61].

Assigning task priority, as mentioned before, can be done using a standard PERT analysis

routine and the tasks put on a heap (also called a priority queue, heaps are discussed in

[Sed83]). PERT analysis has complexity O(m+n), where m is the number of precedence

arcs in the task graph and n is the number of tasks in the task graph, so task priority

assignment is O(m+nlogn), Checking for unscheduled tasks has complexity O(1). Task

selection, because of the heap structure, takes O(logn) time.

Processor selection and task scheduling are a bit more complicated. T o select the best

processor for a task t , t must be scheduled on each of the p available processors, and the

best selection recorded. This involves finding the shortest available communication path

from each parent of t t o t itself. A standard O(b) shortest-path graph search is used, such

Assign task priorities a s distance from the graph bottom
While unscheduled tasks remain

Select the task tha t is closest t o the top
Select the processor for which the task will finish

a t the earliest time (including communication)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.8. - Scheduler #1 Algorithm

a s is found in [Sed83] - t? is the number of links connecting the p processors. For this

scheduler, each message must be scheduled on each link over which the message is

transmitted t o avoid overloading the link. Overloading the link would cause a delay in the

actual message transmission which would not be anticipated by the scheduler. T o further

shorten communication time, the link schedule is searched for the earliest time slot which

will accommodate the new message. This allows the message t o be sent across the link a t

the earliest possible time after the processor has initiated the transmission. Therefore,

assuming the number of parents is bounded above by some small constant (i.e. task arity is

independent of the total number of tasks in the graph), the complexity of finding the fastest

communication path is O(nt) .

To insert t into the destination processor schedule, the schedule is searched for the

earliest slot which occurs after the message arrives. Because this search is O(n), i t is

overshadowed by the complexity of the communication algorithm, and can be ignored. Now

because there are p processors on which t o try each task, processor selection is an O(p tn)

operation. Task scheduling involves a t most the same operation repeated once (rather than

p times) and does not affect the overall complexity

Collecting terms together and noting tha t the loop executes n times, the time

complexity for scheduler #1 is O(n2pt?).

4.8. Scheduler #2

This algorithm (Figure 4.9) is very similar t o tha t of scheduler # I , with the notable

exceptions tha t task priority is measured from the top, and i t is measured each time a task

is selected for scheduling. This behavior is very much like tha t of a dynamic load balancing

system, in tha t tasks are selected as soon as they become available on a first come, first

served basis. It is also similar in tha t i t locally minimizes the system load.

While unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task tha t is closest t o the top
Select the processor for which the task will finish

a t the earliest time (including communication)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.9. - Scheduler #2 Algorithm

Differences are tha t there is no runtime overhead associated with scheduling, and the

scheduler has complete knowledge of the state of the entire system. Dynamic load

balancing systems do have a runtime overhead associated with scheduling each task. Also,

every processor's knowledge about the system is limited by the frequency with which i t

receives load messages. Because load messages are received relatively infrequently, a

processor's knowledge is incorrect by the amount the system state has changed since the last

load message was received.

Another, perhaps more subtle difference is tha t because the entire system state is

known, the static scheduler can effectively minimize loading for communication links as well

a s the processors. I t also avoids delays which can result because of the asynchronous nature

of a dynamic load balancing system. For example, if two processors each have work t o

export and they both choose the same processor t o receive the work, the receiving processor

could end up with work t o export - i t might have been better if one of the original

processors had given the work t o a different processor.

The time complexity of this algorithm is very similar t o tha t of scheduler #l.

Differences are tha t the PERT analysis is done inside the loop, and the heap is no longer

needed. This means the complexity for scheduler #2 is O(nm+nZpt!).

Assign task priorities as distance from the graph top
While unscheduled tasks remain

Select the task that is closest t o the bottom
Select the processor for which the task will finish

a t the latest time (including communication)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.10. - Scheduler #3 Algorithm

4.7. Scheduler #3

Scheduler #3 (Figure 4.10) is very similar t o scheduler #1 in its construction. Task

priority is assigned once before task selection begins and is not changed. Schedule

generation records both processor and link schedules, and both are used in processor

selection - communication link capacity is considered in processor selection. The difference

is tha t scheduler #3 measures task priority as distance from the top of the task graph

down, and schedules tasks from the bottom up. Its complexity is therefore the same as

scheduler # I , or O(nZpt).

4.8. Scheduler #4 .

Scheduler #4 (Figure 4.11) is much the same as scheduler #3. Priority assignment is

done from the top down, while task scheduling is done from the bottom up. Again,

processor selection and schedule generation both consider processor load as well as

communication latency and contention. The difference is tha t scheduler #4 recomputes the

task priorities each time a task is scheduled. The complexity for scheduler #4 is the same

a s tha t of scheduler #2, namely O(nm +nZp t).

While unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task tha t is closest t o the bottom
Select the processor for which the task will finish

a t the latest time (including communication)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.11. - Scheduler #4 Algorithm

4.9. Scheduler #5

Scheduler #5 (Figure 4.12) is Kruatrachue's ISH scheduler [Kru87]. I t uses the same

approach t o select tasks as is used by scheduler #l. Task priorities are measured from the

bottom up, and tasks are selected from the top down. Each task is tried on every available

processor, and the processor with the best finish time is selected. The difference is tha t

scheduler #5 does not model the architecture as completely as does scheduler #l. Scheduler

#5 examines the load on each processor, but i t computes the communication delay as if the

link had no competing traffic. It also ignores communication traffic when it generates the

Assign task priorities a s distance from the graph bottom
While unscheduled tasks remain

Select the task tha t is closest t o the top
Select the processor for which the task will finish

a t the earliest time (considering load and latency)
Schedule the task on the selected processor

(recording only processor schedules offset by latency)
End

Figure 4.12. - Scheduler #5 Algorithm

schedule.

This simplifies some complexity results for the scheduler. Task priority is

O(m+nlogn) and task selection is O(1ogn) a s they were for scheduler #I. However,

processor selection is O(pn), and schedule generation is O(n). Thus scheduler #5 is O(pn2).

4.10. Scheduler #6

Scheduler #6 (Figure 4.13) has more in common with dynamic load balancing than

does scheduler #2. Scheduler #2 uses communication load in its calculations, which load

balancing cannot usually do because of a lack of dynamic information. Task priorities are

assigned each time a task is selected for scheduling on a first come, first serve basis, and a

processor is selected based on its load only. When the schedule is generated, tasks are

inserted into the earliest slots which will accommodate them.

In dynamic load balancing systems, this corresponds t o the following behavior: Tasks

are selected for possible distribution in the order tha t they are created, tha t is, earlier tasks

are given higher priority than later ones. Tasks are selected for execution on a processor

primarily in the order they are received by the processor, but if a task receives all its inputs

Whild unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task tha t is closest t o the top
Select the processor for which the task will finish

at the earliest time (considering only processor load)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.13. - Scheduler #6 Algorithm

and is ready t o run, i t will begin execution before the earlier task. The processor will

execute the later task rather than be idle.

The complexity of task assignment is O(m), processor selection requires a comparison

of p load values and thus is O(p). The schedule generator schedules messages on links as

well a s tasks on processors, as do schedulers #1-#4, so its complexity is O(nt). Thus the

overall complexity of scheduler #6 is 0(nm+np+n2!).

4.11. Scheduler #7

This scheduler (Figure 4.14) is another variant of Hu's scheduler, as are #1 and #5.

Task priority is measured as distance from the bottom of the graph t o the task; task

selection s tar ts at the top of the graph and works down. Processor selection considers only

processor load; schedule generation schedules communication as well as processor tasks.

As described in previous sections, task priority assignment is O(m+nlogn). Task

selection is O(logn), processor selection is O(p), and schedule generation is O(nC). Overall

the complexity of scheduler #7 is 0(np+n2t).

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain

Select the task tha t is closest t o the top
Select the processor for which the task will finish

a t the earliest time (considering only processor load)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.14. - Scheduler #7 Algorithm

Assign task priorities as distance from the graph top
While unscheduled tasks remain

Select the task tha t is closest t o the bottom
Select the processor for which the task will finish

a t the latest time (considering only processor load)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.15. - Scheduler #8 Algorithm

4.12. Scheduler #8

Scheduler #8 (Figure 4.15) is a variant on scheduler #3 which does not consider

communication in processor selection - only processor load. Task priorities are measured

from the top, and tasks are selected from the bottom. Processor selection takes place by

selecting the processor with the lightest load. Schedule generation explicitly schedules

communication. The complexity for this algorithm is the same as for scheduler #7, namely

Assign task priorities as distance from the graph top
While unscheduled tasks remain

Select the task that is closest t o the top
Select the processor a t random
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.16. - Scheduler #9 Algorithm

4.13. Scheduler #9

Scheduler #9 (Figure 4.16) is different from other schedulers in tha t i t selects

processors a t random. Task selection is the same as in schedulers #2 and #6, tha t is,

priority is measured, and tasks are selected, from the top. This scheduler roughly

corresponds t o a dynamic scheduler which selects processors a t random. The probability

distribution here is uniform for each processor - every processor is equally likely t o receive

each task. Because of this scheduler's extreme simplicity, the only significant phase is task

priority assignment, which is required t o maintain the topological ordering of the task

graph. Task selection, processor selection, and schedule generation are all O(1) operations,

so the overall complexity is O(m).

4.14. Scheduler #10

Scheduler #lo (Figure 4.17) is another variant of Hu's algorithm. It is similar t o

schedulers #1 and #7 in all respects but one: processor selection considers processor load

and communication latency, but not the capacity of the individual communication links. I t

measures task priority from the top, and selects tasks from the bottom. Its complexity is

Assign task priorities a s distance from the graph bottom
While unscheduled tasks remain

Select the task tha t is closest t o the top
Select the processor for which the task will finish

at the earliest time (considering load and latency)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.17. - Scheduler #I0 Algorithm

the same as for scheduler #7, tha t is, O(np+n21).

4.15. Scheduler #11

Scheduler #11 (Figure 4.18) is, like #2 and #6, similar t o dynamic load balancing. In

this variant, the processor selection mechanism accounts for communication latency a s well

as processor load. As before, this scheduler selects tasks from the top in a first available,

first served manner. Processors are selected by examining the load of each processor and

the cost of transmitting messages from all of the task's parents t o the processor.

Communication is assumed t o be over empty channels. The processor which gives the

earliest completion time is selected. The task is scheduled on the processor, and all

messages from its parents are scheduled on the appropriate communication links.

Considering latency does not change the complexity of the processor selection

mechanism, so the overall complexity of scheduler #9 is O(nm+np+n2C).

4.16. Scheduler #12

Scheduler #12 (Figure 4.19) is identical in most respects t o scheduler #lo. Scheduler

#lo, however, had unexpectedly poor performance. Scheduler #12 was created t o test the

While unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task tha t is closest t o the top
Select the processor for which the task will finish

a t the earliest time (considering load and latency)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.18. - Scheduler #11 Algorithm

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain

Select the task tha t is closest t o the top
Select the processor for which the task will finish

a t the earliest time (considering load and latency)
Schedule the task on the selected processor

(recording both processor and link schedules,
but tasks are added t o the ends of schedules,
rather than inserting them into an earlier slot)

End

Figure 4.19. - Scheduler #12 Algorithm

hypothesis tha t the task insertion was hiding some of the communication costs from the

processor selector. The difference between #10 and #12 is tha t scheduler #12 does not use

task insertion in its schedule generation. As each new task is added, i t is added t o the end

of the schedule even when earlier slots are available. The complexity for this algorithm is

O(np+ne).

CHAPTER 5

Experiment Description

Of all the variables tha t could have been used t o generate task graphs and computer

architectures, five were selected for examination. They were: task distribution, average

parallelism, program size (task count), processor count, and communication (link) latency.

Variables which were not examined include the task arity, average task slack, network

topology, and communication switching technology and overhead.

Each of the 12 schedulers was tested on 6075 different cases. The cases consist of 63

different simulated programs with 2048 tasks each, 54 simulated programs with 1024 tasks

each, 45 programs with 512 tasks, 36 programs with 256 tasks, and 27 programs with 128

tasks. Each of the groups was subdivided by the amount of parallelism, and by the

distribution of parallelism within the program.

The average parallelism available in any program depends on the total task weight

and the weight of the critical path. For these test cases, the average task weight was fixed

a t 10, and varied between 6 and 14. The number of tasks in the critical path started a t 8

and increased by a factor of 2 up t o one fourth the total task count. However, because all

task weights were selected a t random, the average parallelism varied from less than 3 t o

more than 256.

Nine distributions of parallelism were used t o give a wide spread in the arithmetic

mean and a moderate spread in the distribution variances. The distributions were all

nonlinearly scaled normal distributions. (Many good statistical texts describe normal

distributions and their properties, for example, [HoT77].) The nonlinear scaling compressed

Table 5.1. - Task Distribution Function Characteristics

the distribution into a finite range without significantly altering its shape. The particulars

for each distribution along with the task density function are given in Table 5.1. Graphs of

the distributions may be found in Figure 5.1, and in Appendix A. In the graphs the initial

node, or starting point of the program is a t 0. The terminal node, or finishing point is a t 1.

- --
e [: &J

tdf (t) =
area

Each program was scheduled for machines with 4, 8, and 16 processors. In every case

the processors were connected by a completely connected network - every processor had a

communication channel t o every other processor. Communication links between processor

pairs were bi-directional, and only one message per link could be transmitted a t a time.

This network topology was selected, not because it is more or less realistic than another, but

because it offers very low communication contention. If contention is a factor in scheduling

tasks for this network, i t will certainly be a factor in scheduling for any other.

Although this topology is very expensive for real systems of even moderate size, using

i t had a number of advantages. One advantage is tha t different message switching

technologies such as circuit switching or packet switching do not affect either the latency or

Variance
0.0509
0.0359
0.0114
0.0260
0.0155
0.0086
0.0116
0.0086
0.0060

Mean
0.5000
0.3164
0.1877
0.6836
0.5000
0.3641
0.8121
0.6358
0.4999

, Distribution
0
1
2
3
4
5
6
7
8

b
0.10
0.50
1.00
0.10
0.50
1.00
0:lO
0.50
1.00

a
0.10
0.10
0.10
0.50
0.50
0.50
1.00
1.00
1.00

Area
0.7470
0.4226
0.1969
0.4226
0.3551
0.2432
0.1970
0.2432
0.2052

Figure 5.1. - Graphs of Task Distributions

the amount of contention in the network. In sparse networks such as a hypercube, the

choice of switching technology and the packet size (when packet switching is used) can

dramatically affect both message latency and contention tha t occurs within the network.

A completely connected network also has the advantage t ha t i t has the highest

performance of any network. This is because every network can be trivially embedded into

a completely connected network of the same size. Thus negative findings of this study will

also apply t o other networks as well, although positive findings may not apply as

universally.

Communication latency is measured here as the average time required t o send a

message over an empty communication link (see Chapter 3). We measure time in terms of

the the average time required t o execute a task, rather than in seconds. Latency is a

function of both the average message size and the link speed. Message size is determined by

the task graph, and link speed is determined by the machine architecture. The average

task graph edge weight (message size) was fixed a t 10, and communication latency was set
s

by varying the architecture link speed. If the communication latency were set a t 5 and a

given message had a weight of 12, its transmission time (message latency) would be

5 ~ 1 2 / 1 0 = 6. In other words i t would take the same amount of time t o transmit tha t

message over a single empty link as it would t o execute 6 tasks.

Latency was varied in such a way tha t the communication time of an average message

varied from 0 t o 16 times the length of an average task. Nine tests were run in which the

ratios of message transmission time t o task execution time were 0, '1% %, %, 1, 2, 4, 8, and

16. This range varies the importance tha t communication plays in the execution of the

program from insignificant t o highly significant. A latency of 16 would occur in a system

when the message size is large and the communication links slow, or when the task size is

especially small. Such was the case in a distributed Prolog system developed for the Intel

iPSC [Pas87], although the latency was not as high a s 16.

This range of characteristics was selected for the test suite in an attempt t o include

those characteristics which would most likely be encountered in real systems.

Characteristics which would most adversely affect the schedule length, and therefore

distinguish most clearly between schedulers, were also selected. Of those -used, latency,

parallelism, and processor count produced the largest differences, sometimes reaching a

factor of 15 between the best scheduler and the worst. Varying the task distribution or the

problem size gave only modest differentiation between schedulers.

Other variables were not considered for various reasons. The most compelling reason

was the vast number of cases tha t would result if they were included. Instead, reasonable

values were selected where possible and used for all tests. For example, average task arity

was fixed between two and three for all tasks. The arity for individuaI tasks was allowed to

vary randomly according t o the requirements of the graph.

Slack was not expressly fixed, but i t was not a controlled variable either. The average

slack of a task in a task graph varied from 2 t o 14, or '1s t o a little less than 1% times the

average task weight. The overall average was 6, or % the weight of an average task.

Task graphs were generated in a very controlled manner in order t o guarantee a

specific set of characteristics. This tight control, however, removes a significant element of

randomness, which weakens the interpretation of statistical tests. The validity of any

conclusion rests heavily on the assumption tha t those variables which were controlled are, in

fact, the factors which control the performance of the schedulers tested here for "real

world" programs.

The task graph generation program created graphs by cutting the task distribution

into slices - a s many slices as there were tasks t o be assigned t o the critical path. The

number of tasks allocated for each slice was proportional t o the area under the slice, the

total graph size, and was inversely proportional t o the length of the critical path. Task

weights were all generated a t random using a distribution similar t o Distribution 4 (see

Appendix A) Task graph edge weights (message volume) were generated in exactly the same

way.

Each slice was "sewn" t o the previous one, generating the arcs and arc weights a t

random. T o do this, each task in the new slice was assigned two numbers, corresponding t o

two tasks in the previous slice, using a uniform distribution. Those two arcs were then

established and the arc weights generated, again using Distribution 4. Although this process

connected a11 tasks in the new slice t o some task in the previous slice, i t was not sufficient t o

guarantee tha t each task in the previous slice would be connected t o some task in the new

slice. A second pass searched the previous slice for unconnected tasks, which were then

linked into the graph in the same way.

This approach limits the possible connection patterns between tasks t o level graphs.

In general, task graphs will have connections tha t span multiple levels. I t is not known if

more general connection patterns would affect the results uncovered by these experiments.

It should be noted, however, that although the the number of tasks in any path t o a given

node will be the same, the sums of the task weights will be different because the task

weights vary randomly.

Figure 5.2 shows a block diagram of the experimental system used t o generate task

graphs, schedules, and verify schedule lengths. Task graphs are generated according t o the

supplied parameters. Those graphs are fed into a scheduler, along with a description of the

architecture for which the graph is t o be scheduled. The schedule is then fed into a

simulator which determines the actual schedule length, or how long it would take t o execute

t ha t schedule on the architecture.

Program
Characteristics

Graph Machine
Architecture

Task Graph

Scheduler

Processor Schedule ti
Program
Simulator

Figure 5.2. - Experimental System Setup

CHAPTER 6

Problem Characteristics and Scheduler Performance

The length of a parallel schedule and the CPU time required t o generate t ha t schedule

depend on the specific characteristics of the problem being scheduled. This chapter explores

the the effects of five problem characteristics on scheduler performance. Those

characteristics are: task distribution, average parallelism, program size, communication

latency, and processor count.

Scheduler performance is measured and compared here in seven different ways, each of

which is marked with its own symbol. They are:

%P<_S The percentage of parallel schedules tha t were shorter than a sequential

schedule.

s/p The speedup gained by the parallel schedule as compared with a sequential

T,
schedule, or -. T, is the length of a sequential schedule and Tp is the length

TP

of the parallel schedule.

s / C The speedup gained by the corrected schedule as compared with a sequential

T,
schedule, or -. T, is the length of the corrected schedule.

Tc

p/c The speedup gained by correcting the parallel schedule for schedules which are

P longer than a sequential schedule, or -.
Tc

T, P Eff The parallel eficiency of a schedule as defined in Chapter 3, or - , where n
n x T p

is the number of available processors.

T,
C Eff The corrected parallel elqiciency of a schedule, defined a s - , where n is the

~ x T ,

number of available processors.

am
CPU Sec The average number of CPU seconds on a Sequent Symmetry used t o schedule

the programs. (The theoretical worst case complexity for each scheduler may be

found in Chapter 4, in Table 4.1.)

Appendix B gives tables of these seven values for each scheduler, projected over each

problem characteristic. I t also has frequency histograms for the schedule lengths, and bar

charts for the average parallel schedule length and average corrected parallel schedule

length, compared against a sequential schedule.

I t is important t o note t h a t in treating each characteristic separately there is a n

implicit assumption of independence. If, a s will be assumed, the effect of changing one

characteristic is qualitatively independent of changes in other characteristics, this analysis

will hold. T o take the most general case and assume complete interdependence would

necessitate the display and analysis of a 6075 point, 5 dimension surface, which is difficult

for a discrete problem space such as this. By treating the characteristics a s independent,

the analysis becomes somewhat more tractable.

6.1. Distribution

The first problem characteristic t o be considered is the distribution of parallelism

within a task graph. As can be seen Appendix B section 1, each of the schedulers show very

little variation in performance between distributions. Because the performance is very

different between schedulers, a direct comparison is not possible. However, if the

distribution has a minimal effect on performance, as claimed, then the ra t io of performance

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 6.1. - Distribution % P I S / Mean % P I S

for each distribution t o the average performance over all nine distributions will be close t o

1.00.

Figure 6.1 plots the variation from the average for "%P<S", the percentage of

parallel schedules tha t a re shorter than sequential schedules. The variation is figured over

the different task distributions by dividing the value for each distribution by the average

over all distributions. A large spread between distributions in this ratio would serve as a

strong indication tha t scheduler performance is strongly dependent upon the distribution of

parallelism within the task graph. Conversely, a small spread would be a strong indication

of independence between scheduler performance and task distribution.

Figure 6.1 clearly shows tha t distribution has very little effect on the number of

parallel schedules tha t are shorter than sequential schedules. (The widest range in variation

is only about 10% of the average.) This holds true for schedulers which generate very short

schedules, such as scheduler #1 as well as those whose schedules are almost all longer than

the sequential, such a s #12.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 6.2. - Distribution S /P / Mean S/P

p - - - - - - - .-. .. ,. .. .i.. . -. . .-.
P I - - - = = - - - P - = - - -

0.95 - -

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 6.3. - Distribution S/C / Mean S/C

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 6.4. - Distribution P/C / Mean P/C

Figure 6.2 shows the ratios for "S/P7', or the average speedup of a parallel schedule

over a sequential schedule. The differences here are somewhat larger than for the previous

graph, but they are still relatively small, so average speedup is also independent of task

distribution. Plots for the other performance indicators are given in Figure 6.3 through

Figure 6.7.

From these diagrams it is evident tha t all of the performance measures are

independent of the distribution of parallelism within the graph being scheduled. However,

some anomalies in the plots are worth pointing out. For instance, schedulers #lo, #11, and

#12 have the most variation in the different indicators, with the exception of Figure 6.3.

This may be explained by referring t o Appendix B Sections 1.10, 1.11, and 1.12. A large

number of the parallel schedules are much longer than a corresponding sequential schedule,

so the corrected schedule will use the sequential schedule a disproportionately high number

of times. This means the comparison is more of sequential schedules against themselves

than for other schedulers. To further illustrate this point, if the schedulers had always

chosen parallel schedules longer than the sequential, then the correction process would

always select the sequential schedule over the parallel, and the variation would be zero.

Of the schedulers which do a complete architecture simulation, namely #1, #2, #3,

and #4, schedulers #3 and #4 have the widest variation in schedule speedup. Of the group

#5 through #9, scheduler #8 has the widest variation. Schedulers #3, #4, and #8 have

one thing in common - they measure task priority from the top of the task graph and

select tasks for scheduling from the bottom. This pattern of task selection causes the

schedulers t o be marginally more sensitive t o the distribution of parallelism than other

schedulers.

0.85 4
I I I I I I I I I 1 I

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 6.5. - Distribution P Eff / Mean P Eff

I I I I I I I 1 I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Figure 6.6. - Distribution C Eff / Mean C Eff

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Figure 6.7. - Distribution CPU Sec / Mean CPU Sec

It is also interesting t o note tha t in each of the previous plots the scheduler which

showed the least variation was the random scheduler (scheduler #9). The variance was

never more than 5% for any of the performance indicators. This shows t h a t there was

nothing inherent in the distributions which would cause the performance t o be lower or

higher for a particular distribution. Instead it was the way the scheduler reacted to the

distribution t h a t caused one distribution t o fare better than another, even if only in a minor

way.

6.2. Average Parallelism

The analysis of the effect of parallelism on scheduler performance is more complex

than for the distribution of parallelism. This is because the cost of communication has a

disproportionate effect on the schedule length, affecting graphs with high parallelism more

severely than those with little or no parallelism.

I I I I I I I I
2 4 8 16 32 64 128 256

Parallelism

Figure 6.8. - Speedup for Scheduler #9 (Latencies 0-16)

A random scheduler such as #9 is unbiased in the sense tha t i t doesn't use feedback

from a partial schedule t o determine where other tasks will be placed. Tasks are scattered

at random, and performance is determined by the characteristics of the task graph rather

than feedback within the scheduler. This is in contrast to schedulers which do use feedback,

which can have vastly different schedules for task graphs tha t have only small differences.

This lack of bias can be used t o form a baseline for isolating the effects of latency from

average parallelism. Figure 6.8 shows the speedup (S/P) for scheduler # 9 over different

values of average parallelism and latency. Each of the tests were scheduled for 4, 8, and 16

processors.

The average parallelism of a graph is bounded above by the total number of nodes in

the graph. This means there is a bias in the average size of each category of parallelism -

the average size increases as the parallelism increases. It will be shown later tha t the

speedup is relatively unaffected by the size of the task graph, so graph size can be ignored

here.

16

Relative

2 4 8 16 32 64 128 256
Parallelism

Figure 6.9. - Speedup of Scheduler #1 over #9 (T g / T , , Latencies 0-16)

Latency cannot be so easily ignored. T o remove the effect of latency, the speedup for

each level of parallelism and latency is divided by the corresponding value for the random

scheduler. The result is the speedup relative t o the random scheduler. Figure 6.9 shows the

relative speedup of scheduler #1 t o scheduler #9. As i t turns out, each scheduler, when

compared t o scheduler #9, has the same general pattern, but perhaps with some vertical

translation and scaling. Each scheduler does somewhat better with low parallelism, but

asymptotically approaches a stable linear factor with respect t o the random scheduler.

T o demonstrate this more convincingly, the variance over a weighted average is shown

in Figure 6.10. The weights were chosen t o prefer increasing parallelism, and in fact are
s

linearly proportional t o the parallelism. From Figure 6.10 one sees t h a t the largest variance

from y (the sample mean) is approximately 0.35. Because the parallelism is sampled a t

exponentially growing intervals, this means approximately YZ the weight is placed on a

parallelism of 256. From this one can see t h a t if the variance were all t o occur on the task

graphs with the largest parallelism (which is the most one could violate the asymptotic

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 6.10. - Variances Plotted For Values of Parallelism

1 -
performance idea), then ,(yu6 - c)2 = 0.35 This immediately reduces t o lym - y l = 0.84.

In other words, the distance from the asymptotic mean is bounded above by 0.84 over these

task graphs. In fact, because the vast majority of the variance in each case occurs in the

low parallelism range (as illustrated in Figure 6.9), this analysis is exceedingly pessimistic.

Even so it demonstrates tha t the speedup over the random scheduler approaches a constant

factor as parallelism increases. ,

The weighted mean (T j) for each scheduler and latency are given in Figure 6.11. The

weighting function used here is linearly proportional t o the communication latency. To

reemphasize its significance, Figure 6.11 represents an approximate factor of improvement

each scheduler has over randomly scattering tasks across CPUs. Schedulers #1 through #4

outperform the random scheduler (#9) by as much as a factor of 2%; # 5 through #9

perform about the same, and #lo, #11, and #12 do much worse.

0.0 -J
I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Figure 6.11 - Weighted Means For To/Ti (Latencies C16)

8.3. Program She

From Appendix B Section 3 i t appears t h a t speedup improves with increasing program

size. The differences in speedup between task graph sizes are displayed in Figure 6.12. This

graph is obtained by plotting the difference in the average parallel speedup between

adjacent graph sizes. Thus the y value for the square symbol (i.e. n) is obtained by

subtracting the average speedup for graphs with 128 tasks from the average speedup for

graphs with 256 tasks.

If the speedup were completely independent of program size, all differences would be

exactly zero or, allowing for random variation, evenly scattered on both sides of the zero

line. Figure 6.12 shows this is not what is happening here. Those schedulers which do well

show an improvement a s the size of the task graph increases. Schedulers #lo , #11, and

#12, which do poorly under many circumstances, tend t o do worse a s the size increases.

Figure 6.12. - Relative Increase in Speed w/ Increasing Size

-

-

q q
A a n 0
+ A + + 9 4 8

q 4
% 0

0
0 A

+ A
+ q

A

D A D

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Although qualitatively the trend is upward for most of the schedulers, quantitatively

the trend is not very significant. For example, increasing the graph size by a factor of 16

only improves the speedup of scheduler #I by 19 percent. I t is expected tha t this trend

diminishes as graphs grow larger (otherwise the parallel efficiency would eventually exceed

I), so increasing the graph size by another 16X would yield less improvement.

6.4. Communication Latency

It is very difficult t o directly measure the message delay due t o contention, since the

delay itself modifies the graph execution. However, one can easily measure the effect of

accounting for (or not accounting for) latency or contention in a scheduler. Scheduler #5

(the ISH scheduler) accounts only for the communication delay due t o latency, while

scheduler #1 accounts for both latency and contention delays. The schedulers are identical

but for tha t detail. Figure 6.13 shows the performance improvement scheduler #1 enjoys

over scheduler #5 for different latencies.

I I I 1 I 1 - 1 - 1 -- I
0 118 114 1/2 1 2 4 8 16

Latency

Figure 6.13. -Average Parallel Schedule Length: Scheduler #5 / Scheduler #I

When the cost of communication rises, whether due t o latency or contention, the

speedup will decline because of the higher cost of doing work in parallel. This is true of all

parallel schedulers. The curves for schedulers #1 through #12 are given in Figure 6.14.

The important features of this graph are the backward "S" shape, t h a t every curve

dips below 1.00, and t h a t the schedulers fall naturally into 3 main groups o r families. The

(4 S 9) shape indicates t h a t increasing latency causes decreasing performance. Because

speedup values can never be below zero, the curve levels out. It is important t o note t h a t in

every case the curve approaches a value which is below 1.00. This shows t h a t for high

latencies, none of the schedulers tested here is able t o consistently generate parallel

schedules t h a t are better than sequential schedules.

Although the curves appear t o be asymptotic, such is not the case. If the latency were

greater than the total task weight of the program, the processor selection phase would have

no justification for using any parallelism whatsoever, and SIP would be exactly 1 . The

reason each scheduler has a region in which i t does worse than sequential is t h a t every time

0 1 2 4 5.5 8 12 16
Latency

Figure 6.14. - Parallel Speedup vs. Latency

a task is scheduled, the processor selection phase looks only a t the effects of past decisions

on the execution of the current task. I t does not look a t what efTect the current processor

selection will have on future decisions. The schedulers do not consider how much of the

program remains nor the expense of transmitting results t o where they will eventually be

needed. Instead they choose t o execute a task in parallel whenever its completion time will

be earlier, even if takes longer t o get the information where it's needed.

The fact t h a t every scheduler has some latency value for which a sequential schedule

is better is a surprising result. For most of the schedulers used, i t is a simple mat ter t o

compare the parallel schedule against a sequential schedule and select the shorter of the

two. The two schedulers for which this comparison cannot be easily made are schedulers # 5

and #9. Scheduler # 5 is I<ruatrachue's ISH, and #9 is the random scheduler. Neither of

these schedulers record communication schedules, so neither has a n accurate estimation of

what the parallel schedule length actually is. I t is because these two schedulers do not

record communication tha t they require less than l/ lOth the CPU time of other schedulers

t o generate a schedule.

From Figure 6.14 i t is apparent t h a t the schedulers tested here fall into 3 main groups.

The group with the best performance consists of schedulers #1 through #4. This group has

in common t h a t schedules for the links are recorded along with the processor schedules, and

t h a t the scheduler uses communication schedules in i ts processor selection. The worst

performing family (schedulers #lo , #11, and #12) recorded communication schedules, but

used only communication latency in processor selection. The third family contains a variety

of different approaches, whose overall performance was very similar t o the random

scheduler.

6.6. Processor Count

With a good scheduler one would expect tha t throwing more processors a t a problem

would give shorter schedules, and indeed this is the case for the schedulers examined here.

Ideally, one would hope tha t the speedup would be linear with respect t o the increase in

processors. Unfortunately a number of considerations prevent tha t from being easily

achieved, such as whether there is sufficient parallelism to keep the processors busy, and

whether there is sufficient slack in the task graph t o allow the parallelism t o be used t o an

advantage.

, Comparing the effects of the number of available processors on performance is most

T, easily done by examining the parallel efficiency. Parallel efficiency is the value -
~ x T , , ' Or

the sequential schedule length divided by the number of processors times the parallel

schedule length. I t is bounded above by 1 and below by 0. In a sense, i t represents the

fraction of the machine in use over the execution of a program. In another sense i t

represents the speedup normalized by the greatest speedup the machine can offer.

However, even though a machine offers 16 processors, a 16X speedup is almost never

possible. A more accurate observation is tha t the speedup cannot exceed the minimum of

the average parallelism and the number of available processors [Jor87]. So, if the average

parallelism is 2, then no matter how many processors are available, the speedup will never

exceed 2. Note tha t this says nothing about the number of processors required t o at ta in

tha t speedup, except for the trivial observation tha t i t requires a t least 2 processors.

This suggests T, as a measure of schedule effectiveness. This measure
min(p ,n)X T,,

gives the fraction of usable machine which is actually put t o use. It gives the parallel

efficiency without the inherent penalty for having excess processors. Values close t o 1 mean

t h a t the schedule is a s effective a s possible, given the problem and the architecture. The

measure does not account for other variables (such as latency) which can negatively affect

the efficiency. Because of this, values not close t o 1 may mean t h a t the schedule doesn't use

the machine eflectively, or t h a t i t is aflected by some unmeasured variable.

One may go about measuring the effect of processor count on performance in several

ways. The most common approach is fix the problem t o be scheduled and vary the number

of processors directly, reporting any improvement. The disadvantage t o this approach is

t h a t the measurement is relative to a particular problem, which has its own special set of

characteristics. However, performance is dependent on the amount of parallelism relative t o

the number of processors, not the absolute number of processors. By fixing the problem and

varying the number of processors one is indirectly measuring the effect of relative

parallelism.

This gives a second approach, namely compare the relative efficiencies against the

relative parallelism. This has the advantage t h a t i t measures scheduler performance

against the best t h a t could be done given the machine and the problem. It gives tighter

bounds on what is optimal than simply measuring speedup against processor count. We also

prefer this measure because it gives a result which is more generally applicable. In any

case, we do both. Appendix B Section 5 shows a comparison of speedup and processor

count. Appendix D compares relative efficiency against relative parallelism. It can be seen

from Appendix D t h a t qualitatively each scheduler performs very nearly the same - each

pair of graphs with the same latency have very similar shapes, regardless of the scheduler

t h a t produced it. Quantitatively, of course, performance differs between schedulers in the

ways described in previous sections.

1.0 L
0.9 -
0.8 - Latency = 4
0.7 - i

i
0.6 - 4 , . . .
0.5 - ! i : ! . . .
0.4 l i i
0 . 3 ' ! ~ d + y 1 ; ~ 0.2 - . # .

0.1 -
0.0 -

1 1 1 1 1 1 1 1 1 1
?h % 1 2 4 8 16 32 6.

Parallelism / Processor Count

1 ,
Figure 6.15. - Scheduler 1 - vs.

n min(p ,n)X T,

The plots in Appendix D show some fairly complex behavior in the

scheduler/program/architecture system. For example, based on latency there are three

phases tha t occur, with a gradual transition between them. Using scheduler #1 as the

example (reproduced in Figure 6.15), the first phase includes latency values from 0 t o %.

This phase is characterized by good performance when there is an excess of either

parallelism or processors. However, when the parallelism and processor count are very

nearly the same, the relative efficiency fluctuates between H and 1.

The second phase includes latencies between 1 and 4. It is characterized by a wide

variation in relative efficiency when the average parallelism exceeds the number of

processors, with a relatively small variation when the processor count exceeds the average

parallelism. The third phase includes latencies greater than 4, and is characterized by

uniformly low efficiencies regardless of the parallelism or processor count.

CHAPTER 7

Comparison of Schedulers

Considering how the different schedulers were constructed, one might expect some

similarities as well as some differences in their performance. This chapter explores some of

those similarities and differences in terms of parallel schedule length and CPU time required

t o generate parallel schedules. In particular we examine how different choices in task

selection, processor selection, and schedule generation affect scheduler performance.

7.1. Task Selection

As discussed in previous chapters, four task selection strategies were used. The

strategy for schedulers #1 and #7 measured priority once as distance from the terminal

node of the graph, and selected tasks from the s tar t node, working towards the terminal

node. Schedulers #2 and #6 measured priority as distance from the top each time a task

was scheduled, and selected tasks from the top. Schedulers #3 and #8 measured priority

once as distance from the top, but scheduled tasks from the bottom up. Scheduler #4

measured priority in the same way as #3 and #8, but the priority was recalculated each

time a task was scheduled. In this section schedulers which are identical except for task

selection strategy are compared across different problem space variables (i.e., task

distribution, parallelism, program size, latency and processor count). This is done t o

determine 1) if the task selection has an effect on scheduler performance, and 2) how tha t

effect is influenced by the different variables.

Schedulers are compared by selecting one scheduler from a group to be used as a

reference. Each of the remaining schedulers are then compared against the reference

scheduler. A numerical value is obtained by dividing the average schedule length for the

scheduler by the average schedule length for the reference. In this way, if task selection

strategy has no effect on schedule length, the numerical values will be close t o 1.00. If task

selection does influence the schedule length, s o m e value will be either much greater than or

much less than 1.00. If the impact is independent of the problem space variable, all values

will have approximately the same magnitude. On the other hand, if the impact is

exacerbated by some aspect of the problem space, the numerical values will increase or

decrease along with the variable tha t influences i t .

We used two groups of schedulers for these tests. The first group was schedulers #1,

#2, #3, and #4; the second was schedulers #6, #7, and #8. The reference schedulers were

I and #7. Results from these tests show tha t differences in task selection strategy induce

only minor variations in parallel schedule length. Communication latency and processor

count emphasize those variations in clearly discernible patterns, but the differences are

definitely of minor significance.

The effects caused by task selection may be seen in Figure 7.1 through Figure 7.3.

Figure 7.1 shows tha t the performance of each task selection strategy is not completely

independent of the distribution of tasks within a program. The relative performance of

each strategy does change somewhat with task distribution, but not in any clear pattern.

Performance is independent of average parallelism and program size.

Latency has a very clear effect on the efficacy of task selection strategies. For

latencies less than 1 there is no appreciable difference between task selection strategies. As

latency increases beyond 1, however, two different strategies take the lead. Which of the

two is better depends on other details in scheduler construction. The first strategy is used

by both critical path scheduling and scheduler #1. I t shows a clear improvement over the

0 1 2 3 4 5 6 7 8
Distribution

Figure 7.1. - Effects of Task Selection Strategy By Distribution

Latency

Figure 7.2. - Effects of Task Selection Strategy By Latency

0.95 -
4 6 8 10 12 14 16

Processor Count

Figure 7.3. - Effects of Task Selection Strategy By Processor Count

strategies used by schedulers #3 and #4, and a minor but noticeable improvement over the

strategy used by scheduler #2. This strategy is most successful when a full system

simulation is used in processor selection. The strategy used by scheduler #2, which is

similar t o tha t of diffusion scheduling, holds a slight advantage when system load is the

predominant criterion in processor selection. Processor count also has a clear effect on task

selection performance. Interestingly enough, unlike latency the effect becomes less

pronounced a s the number of available processors is increased.

Although task selection has only a small impact on parallel schedule length, the same

is not true of its effect on CPU time. The selection of task selection strategy can have a

significant impact on the CPU time required t o generate a parallel schedule. This is clearly

brought out in Figure 7.4, which shows scheduler #4 using 2% times as much CPU time as

scheduler #1. It is worth noting tha t while multiple task priority calculation incurs

considerable expense in scheduler #4, i t does not induce the same expense in scheduler #2.

I I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

Figure 7.4. - Task Selection Expense By Distribution

So although multiple task priority determination can be an expensive option, i t is not

necessarily so.

The expense of task selection is most affected by program size, latency, and processor

count. I t is largely unaffected by task distribution and parallelism. Figure 7.5 shows tha t

not only are the reference schedulers faster than the others, but the program size affects

how much faster they are. It shows tha t the reference schedulers do better in proportion t o

the size of the program to be scheduled. According t o the complexity analysis from chapter

4, as n increases the slope of the ratio should level off because the dominating term for n

has the same power for each scheduler. We conclude tha t although the complexity analysis

provides a prediction for the behavior of each scheduler for very large n , the similarity of

the terms and the behavior of the decision algorithms internal t o each scheduler preclude

any accurate analytical comparison for small n . The best guide is the experimental results

reported here and in Appendixes B and C.

Communication also has a significant effect on the relative cost of each scheduler. T o

understand this aspect of scheduler performance one must understand a little more about

the decision algorithm, and in particular, how the communication was scheduled. Each

scheduler attempts t o minimize total execution time by scheduling each task so tha t i t

s tar ts at the earliest possible time. (Schedulers #3, #4, and #8 do this in a round about

way, by fixing the termination time and scheduling each task t o establish the latest possible

s ta r t time.) If two tasks must communicate, the cost of the communication will depend on,

among other things, the relative placement of the two tasks. When both tasks are on the

same processor, the communication is free. When the tasks are separated by heavily used

communication links, the communication is expensive.

I I I I
128 256 512 1024

Program Size

Figure 7.5. - Task Selection Expense By Program Size

Latency

Figure 7.6. - Task Selection Expense By Latency

Processor Count

Figure 7.7. - Task Selection Expense By Processor Count

Latency affects this by increasing or decreasing the incentive t o take advantage of

available parallelism by scheduling communicating tasks on separate processors. Low

latency encourages lots of parallelism, and lots of communication. This in turn means the

CPU cost of scheduling communication will be high. On the other hand, large latencies

discourage the use of parallelism, which causes longer delays from the time a task is

available for execution t o the time its execution begins. This in turn, because task insertion

is used, causes an increase in the CPU time required t o schedule a task. It is this combined

effect which causes the psychiatrist-couch appearance of the CPU curves for latency.

Processor count has a really dramatic effect on the relative performance of different

strategies. Figure 7.7 shows that when there are few processors t o be scheduled, task

selection can dominate the cost of scheduling by as much as a factor of 18. As the number

of processors increases, the costs associated with task selection are overshadowed by those of

processor selection and schedule generation. A t 16 processors it made little difference in

terms of cost what form of task selection was used.

7.2. Processor Selection

Processor selection strategy, unlike task selection, does have a significant effect on

parallel schedule length. This effect was most noticeable when the parallelism was low, the

program size was small, or the latency was high. The effect varied from different strategies

being on par when communication latency was zero, t o being faster by a factor of 2.6 when

latency was 16.

Several strategies were used t o select processors for tasks. The most successful, and

the most costly, was employed by schedulers #I through #4. These schedulers tried each

task on each processor, fully scheduling the task and all associated communication for each

trial. A second strategy measured only the load of each processor, by noting the finish time

of the latest task, and selecting the processor with the lightest load. The task and all

associated communication were then irrevocably scheduled for the selected processor. This

strategy was used by schedulers, #6, #7, and #8.

A third strategy, which is not discussed in this section, selected a processor by

measuring the processor load and combining it with the required communication time,

similar t o the first strategy. However, t o reduce the expense, the communication was

assumed to be over empty channels. Communication contention, therefore, was not

considered in processor selection. When a task was added t o the selected processor's

schedule, i t and all its associated communication were properly scheduled a s with other

strategies. This approach was used by schedulers #lo, #11, and #12, and its performance

will be discussed further in section 7.3.

As mentioned earlier, the efficacy of one processor selection strategy over another was

most influenced by parallelism, program size, and communication latency. As program size

or parallelism increase, the advantage of the first processor selection strategy over the

second decreases. The effect is reversed for latency. The effect is very pronounced with

parallelism. As even moderate values of parallelism are used, the advantage of the first

strategy are relatively minor. If the parallelism exceeds 16 the more expensive strategy is

less than 1.8 times faster than the much cheaper approach.

The loss of advantage is still apparent, but less pronounced, with increasing program

size. T o some extent the two effects must reinforce each other, if only because increasing

parallelism requires an increase in program size. However, there are sufficient discrepancies

in the da t a t o preclude either effect being only a reflection of the other. For example,

programs with parallelism 256 all had 2048 tasks. If the two effects were different

manifestations of the same effect, the ratib when parallelism reached 256 would be the same

2 4 8 16 32 64 128 256
Parallelism

Figure 7.8. - Effects of Processor Selection Strategy By Average Parallelism

1.8 o
I I I I I

128 256 512 1024 2048
Program Size

Figure 7.9. - Effects of Processor Selection Strategy By Program Size

Latency

Figure 7.10. - Effects of Processor Selection Strategy By Latency

as when program size reached 2048, and they are not the same.

The first strategy's advantage increases as latency increases. As can be seen from

Figure 7.10, the advantages are consistent regardless of other details in the scheduler design.

The graph rises sharply between 0 and 2, then rises more gradually for higher latencies. It

is interesting t o note tha t Figure 7.10 is divided into two sections, both of which are

straight lines. The first section has a slope of M 0.3, the second, M 0.07. The corner

separating the two divisions occurs a t latency 2, which is the point of inflection of the

derivative, i.e, where the third derivative changes sign.

The effect of processor selection strategy on CPU time t o generate a parallel schedule

is very significant, and mostly independent of variables in the problem space. On the

average, scheduler #1 requires about 13 times as much CPU time a s scheduler #7, scheduler

#2 requires 6% times as much as scheduler #6, and #3 needs 8% times as much as scheduler

#8. This variance indicates that the amount of additional CPU time a strategy will require

depends in part on other details of the scheduler design.

The effect program size has on how much faster the first strategy is than the second is

shown in Figure 7.12. CPU2/CPUa is strongly affected by program size, in tha t scheduler #2

becomes relatively cheaper a s the size increases. Although the complexity analysis shows

CPU2/CPUa will eventually stabilize, i t clearly does not do so in the range covered by these

experiments. On the other hand, CPUI/CPU-I and CPUs/CPUs appear t o have stabilized a t

13 and 8, respectively.

Increasing processor count emphasizes the differences in speed. As the processor count

increases, both processor selection strategies require more CPU time. Additionally, the n2p!

term (processor selection) in the complexity analysis represents a significant portion of the

CPU time in schedulers #1, #2, and #3, so a small increase in p will be reflected as a linear

0 1 2 3 4 5 6 7 8
Distribution

Figure 7.11. - Processor Selection Expense By Distribution

128 256 512 1024 2048
Program Size

Figure 7.12. - Processor Selection Expense By Program Size

I 1
8 12

Processor Count

Figure 7.13. - Processor Selection Expense By Processor Count

increase in CPU time. O n the other hand, the np (processor selection) term is a very small

portion of the total time in schedulers #6, #7, and #8, so a small increase in p will yield a

relatively small change in CPU time. The net result is t h a t a small increase in the number

of processors (p) gives an almost linear increase in the CPU ratios, a s shown in Figure 7.13.

7.3. Processor Selection and Schedule Generation

One processor selection strategy which appeared promising was the third strategy

described in the previous section. This strategy combined elements from both of the

previous strategies, by taking into account the processor load and the communication time,

but ignoring delays from contention with competing messages. It was anticipated t h a t i ts

CPU requirements would be only slightly higher than merely accounting for processor load,

and t h a t i t would give some improvement in parallel schedule lengths. W h a t happened was

t h a t because of several minor optimizations within inner loops, the CPU requirements were

slightly lower. The minor increase expected was more than offset by improvements in the

implementation. The parallel schedule lengths, however, were very much worse - not

better - than the other strategies. It sometimes generated schedules t h a t were 15 times a s

long as other parallel schedules, and nearly 40 times as long as the corresponding sequential

schedules.

In a n a t tempt t o discover the precise combination of elements which caused this

unexpected behavior, several additional schedulers were constructed. Scheduler #10 used

the critical path scheduling task selection strategy, so scheduler #11 was designed with the

diffusion scheduling task selection strategy. The result was not significantly different.

I t was also conjectured tha t task insertion in the schedule generation phase was

causing the problem, so scheduler #12 was constructed a s a copy of scheduler #10 with the

task insertion removed. This means the schedule generator placed each new task a t the top

of the schedule rather than search the schedule for a better slot. Scheduler #12 performed

about 30% worse than scheduler #lo, which shows tha t task insertion was not the reason

for the poor performance.

Scheduler #5 is also very similar in design t o scheduler #lo. Both use task insertion

in the schedule generation, both use load and latency but not contention t o select

processors. The difference is tha t scheduler #5 records only processor schedules, where

scheduler #10 records both processor and communication link schedules. Scheduler #10

records and schedules around contention where scheduler #5 pretends contention does not

exist.

Strangely enough, scheduler #5 performed significantly better than scheduler #lo, and

cost much less because it did not schedule communication. Since scheduler #5 did not have

the same performance as scheduler #lo, the key elements t o #lo's performance problems

were the use of latency without contention in processor selection, while using message

contention in schedule generation.

7.4. Other Comparisons

Considering the parallel schedule lengths over all tests, the schedulers naturally

formed three groups. The first group is schedulers #1, #2, #3, and #4. The second group

is schedulers #lo, #11, and #12. The third group is schedulers #5, #6, #7, #8, and #9.

The division is quite easily seen in Figure 7.14 (cf. Figure 6.14.). Figure 7.14 is a frequency

histogram of the schedule lengths, with the the horizontal axis representing the fraction of

schedules tha t had the given y value.

The first group of schedulers performed significantly better than the other two,

generating schedules which were shorter on the average by a factor of 1.8 or more. The

principal characteristic tha t identifies this group is tha t each scheduler modeled contention

600000 -
Schedule
Length ~OOOOO -

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 7.14. -All Tests (6075 Cases)

in both processor selection and in schedule generation. This group included all schedulers

which did both of these things. I t included no scheduler tha t did not do both.

The second group consists of schedulers tha t modeled latency in the processor

selection, but modeled contention in the schedule generation. One practical example of this

type of scheduler is a diffusion type load balancing strategy which attempts t o account for

communication in its task distribution. Performance of this group was the worst of the

three because of an anti-synergistic effect.

The third group consists of all remaining schedulers. It includes, among others,

random scheduling (scheduler #9) and load balancing (scheduler #6). It also includes

Kruatrachue's ISH scheduler (scheduler #5), which forms the platform from which DSH is

constructed [Kru87]. The schedule lengths of this group are substantially shorter than those

of the second group, though not as good as those of the first. It is noteworthy tha t this

group contains schedulers which work much more quickly than group one, sometimes by

more than two orders of magnitude. Figure 7.15 shows a histogram of the CPU times for

CPU
Time
(set)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Figure 7.15. -All Tests (6075 Tests)

each of the 12 schedulers. Scheduler #5 (ISH) and scheduler #9 (random processor

selection) used the least CPU time of those tested, primarily because neither incurs the

expense of scheduling program communication.

Performance was also measured by the frequency with which a scheduler chose the

best schedule. This was measured in two ways - by comparing all of the schedulers

together, and by deriving an ordering through comparing each pair of schedulers. Figure

7.16 shows the results of comparing all schedulers together. It was obtained by pooling all

of the scheduler results together and counting the number of test cases for which each

scheduler created the best parallel schedule.

In addition t o the group comparison, the schedulers were also compared pairwise.

Every pair of schedulers was compared, experiment by experiment, for the number of

shortest parallel schedules. Each scheduler was compared individually against the 11 other

schedulers. When a scheduler had more shorter schedules than its opponent, i t was given a

point. The scheduler which had the largest number of points was given the rank of 1.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

30-

25 -

20-
Frequency
(Per 100) 15 -

10-

5 -

0 -

Figure 7.16. - Relative Frequency By Group Comparison

(Scheduler #1 had the most points a t 11.) The scheduler with the next highest number of

points was given the rank of 2, and so on. The results are given in Table 7.1. The ranks

reflect the order in which schedulers found the shortest schedules most frequently, i.e.,

scheduler #1 is ranked number 1 because i t found the shortest schedule more often than any

other scheduler.

'
:

: t @

j t

:
: t

t : t . t o t

It is interesting t o note tha t each scheduler generated the shortest parallel schedule

for some test case, and tha t there was only a weak correlation between the average parallel

schedule length, the average number of shortest schedules, and the pairwise ranking of all

I I I I I I I I I I I I

Table 7.1.

schedulers.

A third comparison was also done. For each experiment the best schedule was found;

this included the 12 parallel schedules and a sequential schedule. Each schedule was then

compared against the best schedule, by dividing the length of the schedule by the length of

the shortest schedule for t h a t experiment. A cumulative histogram was then constructed for

each scheduler, which shows the number of schedules t h a t are better than a certain factor

of performance. The results are given in Appendix E. The histograms of all experiments

taken together are also reproduced in Figure 7.17.

Figure 7.17 supports a number of claims made elsewhere in this dissertation. From i t

one may clearly see t h a t scheduler #l indeed is the better scheduler, and t h a t #2, #3, and

#4 have very similar performance. One may also distinguish between the three scheduler

groups. It shows not only how the groups are different, but also how individual schedulers

within each group differ.

Factor of Performance

Figure 7.17. - Cumulative Histogram of Performance (dl Tests)

CHAPTER 8

Conclusions

8.1. Scheduler Phase Effects

Static scheduling strategies can be divided into three phases - task selection,

processor selection, and schedule generation. Task selection decides the order in which tasks

will be scheduled. Processor selection chooses a processor which will yield the best overall

schedule for the selected task. Schedule generation records the the selections and system

resource usages such selections require.

Of the three phases, task selection affects the schedule length the least. Schedulers

#I , #2, #3, and #4 were identical in every way except task selection strategy, as were

schedulers #6, #7, and #8. The largest average difference in the first group was between

schedulers #1 and #4, the difference being tha t schedules from #4 were 5.2% longer than

those from #l. The average over each task distribution varied from about 13% in favor of

scheduler #4, t o 15% in favor of scheduler #l. Average differences over other variables

(parallelism, size, latency, and processor count) yielded smaller differences. A 4.8%

difference was measured between schedulers #6 and #8 over all tests; the variation over

each variable was not much larger.

Although task selection had the least impact on the schedule length, i t still had

substantial impact on the CPU time required t o generate a schedule. Measuring task

priority from the top and scheduling from the bottom required more CPU time than

measuring from the bottom and scheduling from the top. Scheduler #3 used 35% more

CPU time than scheduler #1, and scheduler #8 used more than twice the CPU time of

scheduler #7. Re-measuring the priority each time a new'task was selected increased the

cost of scheduler #4 by 80% over scheduler #3. Each phase's direct contribution t o the

total CPU cost was not measured, but schedulers #1, #3, #4, #7, and #8 used nearly

identical algorithms to select tasks. The only difference was in the direction of the priority

measurement and task selection. This indicates tha t most of the cost was indirect , tha t is,

tha t certain task selection strategies caused other phases t o do more work.

Processor selection proved t o be the phase which affected schedule length most

profoundly. Schedulers #1, #7, and #10 were identical except for their processor selection

phase. Scheduler #1 modeled processor load, latency, and contention, scheduler #7

considered only processor load, and #10 considered both load and latency. The difference in

average schedule length was overwhelmingly in favor of scheduler # l . Scheduler #10

produced schedules which were 6.75 times as long as those produced by scheduler #1.

Schedules from #7 were about 1.9 times as long as those from # l .

Latency brought out the difference in performance most clearly. When the latency

was low (less than I), the performance was nearly identical for the three schedulers. When

latency was very high (e.g. 16) schedules from #10 were more than 10 times as long as those

from #l. Scheduler #7 behaved similarly, generating schedules about 2.5 times a s long as

those from #1 when latency was high.

While processor selection was the most important phase for generating short schedules,

i t also affected the coat of generating schedules the most. Scheduler #1 required more than

15 times as much CPU time as scheduler #7 or #lo.

The architecture model used by the schedule generator also affected the CPU time.

Schedulers # 5 and #10 were identical with the exception tha t the schedule generator in #5

modeled processor load and message latency, but not message contention. Scheduler #10

modeled load, latency, and contention. Scheduler #10 required about 6.4 times as much

CPU time as scheduler #5. This factor did vary somewhat with communication latency

because smaller latency encourages heavier usage of the communication system, which in

turn requires more information t o be recorded by the schedule generator. (Zero latency is a

special case - i t implies any message can get through a t any time, so there is no need t o

record message transmissions.)

As an aside, schedule generation records information tha t is used by other phases.

Information tha t is not recorded presumably is not available. Thus i t does not make much

sense for the other phases (particularly processor selection) t o attempt t o model the

architecture in more detail than what is recorded by the schedule generator. On the other

hand, information tha t is not used directly by other phases can still affect their behavior -

scheduler #10 is an example of this. This scheduler used only communication latency in its

processor selection phase, but i t modeled contention in i ts schedule generator. Scheduler #5

modeled latency in both processor selection and schedule generation. Scheduler #5's

schedules were 4.9 times faster than those of #lo.

This latter case is also an example of pathological interactions tha t can occur between

phases. It is clear from observing the behavior of schedulers #lo, #11, and #12 tha t

certain combinations of scheduler phase behaviors can cause unexpected results. In this

case, #lo, #11, and #12 all have the common characteristic t ha t they model latency in

processor selection, and contention in the schedule generation. As each task was assigned t o

a processor, only the latency was considered - the fact tha t the communication system was

heavily overloaded was ignored. Thus moving one more task t o another processor only

served t o load the communication system further, which in turn caused greater delays due

t o contention. I t is not fully understood why this effect occurs when processor selection

models latency, but i t does not occur when only processor load is considered.

8.2. Scheduler Famil ies

Because of the characteristics of the phases, as outlined in the previous section, the

schedulers tested here naturally fall into three families. The first two families have very

specific phase designs which identify them and are responsible for how they behave. The

third family is less easily defined, except tha t each scheduler generates schedules of about

the same length as every other scheduler in the family.

The first family consists of schedulers # I , #2, #3, and #4. In this family each

scheduler modeled processor load, message latency, and contention in both processor

selection and schedule generation phases. This family consistently generated the shortest

schedules, especially when the latency was high (e.g., greater than 1). It also required

significantly greater CPU time to generate the schedule than any other family.

The second family of schedulers consists of schedulers #lo, #Ill and #12. Family 2

schedulers modeled processor load and message latency in the processor selection phase, but

modeled load, latency, and contention in the schedule generation phase. This family

required about 1/6th the CPU time of family 1, and generated schedules tha t were more

than 6 times as long. Schedule length worsened as latency increased - for the highest

latency tested, average schedule length was 10 times tha t of family 1. The poor

performance of schedulers in this family is not because task insertion is used. Inserting

tasks into the middle of a schedule may increase contention by placing tasks where a lot of

communication is already taking place, but removing the task insertion only degrades

performance further (compare schedulers #10 and #12).

Family 3 consists of schedulers # 5 , #6, #7, #8, and #9. Scheduler #5 is

Kruatrachue's ISH scheduler [KrL87,Kru87]. Schedulers #6, #7, and #8 are identical t o

schedulers #2, # I , and #3, respectively, with the exception tha t the processor selection

phase only considers the processor load. Scheduler #9 selects the processor a t random.

Even though the design of each scheduler varies substantially within this family, their

overall performance is very similar. This is because there are enough details in the program

execution tha t the scheduler does not explicitly account for, tha t the processor assignment is

eflectively random. This explains particularly why the performance of each scheduler is so

similar t o random processor assignment.

It is worth noting tha t every scheduler, regardless of i ts family, generated some

schedules tha t were longer than a sequential schedule. This fact offers a possibility for an

additional performance improvement. Sequential schedule lengths are easily determined (by

summing the weights of the tasks). If the scheduler models the architecture sufficiently well

tha t the length of the parallel schedule accurately represents the program's execution time,

compare the parallel and sequential schedule lengths, and select whichever is shorter. This

has the benefit of guaranteeing tha t no program will take longer than i t would on a single

processor machine. This improvement was effective for family 1 schedulers when the latency

was above 4, and for family 2 schedulers when the latency was above 2.

This improvement may also add a substantial cost t o the scheduler CPU time. In

schedulers #5 and #9, where the architecture is not accurately modeled, the cost of

scheduling a program may be multiplied many fold. These two schedulers, appropriately

modified, would require approximately the same CPU time as scheduler #7.

8.3. Effects of Problem Characteristics

In this work we chose t o consider five variables in the problem space, namely, task

distribution, average parallelism, program size, communication latency, and processor count.

Of those, task distribution had almost no eflect on any aspect of the scheduling problem. In

contrast, average parallelism had a fairly substantial impact on performance, generally

shortening parallel schedules as parallelism increased. Schedule length for schedulers # I

through #9 improved substantially. However, relative t o the random scheduler all

scheduler performance declined. So although each scheduler improved, in an important

sense i t was because the problem was easier.

Program size had a minimal, if consistently positive, effect on scheduler performance.

Small improvements in schedule speedup were measured for each increase in program size.

As was expected, increased latency had a universally negative effect on schedule

lengths. What was not expected, however, was tha t none of the schedulers could handle

high latency very well. Each scheduler had a point above which it selected parallel
s

schedules which were worse than the equivalent sequential schedules. The best schedulers

were able t o do better with high latency than were the other schedulers, but even the best

scheduler had problems with some programs.

Increasing processor count, like increasing parallelism, improved the average parallel

schedule length. It would be desirable, but unrealistic, t o hope for a linear increase in

speedup. However, a new measure of performance which we call the re la t ive e f i e i e n c y shows

tha t the best schedulers were doing better than would be indicated by the parallel efficiency

alone.

8.4. Implications For Dynamic Scheduling

Schedulers #2, #6, and #11 serve a special purpose in this work - they all emulate

diffusion scheduling. Each represents an idealized form of this dynamic load balancing

strategy. They are ideal in the sense tha t they do not suffer from two problems inherent t o

diffusion scheduling, namely, runtime scheduling overhead and incomplete knowledge of the

system state.

Scheduler #6 is most similar t o the common approach t o diffusion scheduling [LiK87].

Scheduler #11 attempts t o be only slightly more intelligent about its processor selection by

adding communication latency into its calculation. Scheduler #1 tries t o be very intelligent

about processor selection, by considering communication link loading as well. A dynamic

implementation of this last algorithm would require special hardware t o provide accurate

measures of link loading. Such hardware could not use the standard communication links,

or reporting the load would alter it, causing the measure t o be unreliable.

Because these algorithms closely match dynamic diffusion schedulers without some of

their problems, i t is unlikely tha t diffusion schedulers will perform better than either

scheduler #6 or #l.

8.5. Recommendations

In systems where high performance is most desirable, schedulers must accurately model

the communication system. A strategy which generates parallel schedules using scheduler

#1 but selects a sequential schedule when i t is shorter gives the overall best performance.

However, this strategy can cost 1 0 0 ~ more than a scheduler such a s #5 (ISH). If the

latency is guaranteed t o be less than 2, scheduler #5 will yield excellent results a t very low

cost. If latency may be high, scheduler #7 with a comparison against a sequential schedule

is a moderately low cost, high performance alternative.

CHAPTER 9

Future Work

9.1. Other Network Topologies

This dissertation has only considered the effect of a single topology - a completely

connected network - on scheduler performance. Such networks are ideal in the sense tha t

the diameter and average diameter are both minimal, namely 1. The contention value,

which is the proportion of network resources an average message will use [Pas88], is also

minimized, namely l / n for n processors. Although i t was appropriate t o use the topology in

this simulation study, completely connected networks are generally too expensive for use in

real systems. The obvious reason is tha t the number of connections grows as the square of

the number of processors in the network. This implies tha t even with a small number of

processors (say, 16) the cost of the whole system is dominated by the cost of the

interconnection network.

A number of topology families exist which have low cost and relatively high

performance. (For a general survey see [Fen811 and Chapter 5 of [HwB84]. Other

important articles on this topic include [AkK84,Dot84,PrV81,Von83].) Many of these

topologies grow as a factor of NlogN or better, where N is the number of processors. Even

though the number of connections grows slowly - M o g N is much less than for large N

- both the diameter and average diameter are logN or better. For example, a binary n-

cube (hypercube) has n2" connections for 2" nodes. Its diameter is n , and its average

diameter is n/2.

Figure 9.1. - D/4 Hypercube
s

If at any given instant every node is equally likely t o send a message, the average

resource usage for the network will be - rDN where r is the rate of message transmission, D e

is the average distance a message must travel, N is the number of nodes, c is the capacity

of a single network link, and e is the number of links in the network. If the network is

regular (i.e. the degree is the same for every node), then e = Nd/2 , where d is the degree of

the network. Substituting into the previous expression gives us - 2rD. If every node is
c d

equally likely t o be the recipient of a message, the average distance a message must travel

r is simply the average diameter. For the hypercube this equation reduces t o -. This may
e

2 r be contrasted against the same value for a completely connected network, --
N e '

As was noted in previous chapters, scheduler performance is driven in some cases by

the scheduler's ability t o handle contention. Because different networks offer different

abilities t o deal with heavy message traffic, the network topology may affect scheduler

performance as well. Message switching technology could also have a n impact, because i t

also affects the performance of the network (see [DaS87,HRW85,MTH78]). Much work

remains t o be done t o measure the effect of more "realistic" network designs on scheduler

performance. It would be especially interesting t o compare the performance of star-graphs

[AkK87] against tha t of hypercubes under automatic scheduling systems. It would also be

valuable t o examine the effects of packet and circuit switching on the system as well,

particularly because static schedulers seem to be much more sensitive t o contention than

they are t o latency.

9.2. Scheduling Loops and Conditionals

Static scheduling of acyclic task graphs by itself is not as generally useful as one

might hope. Requiring task graphs t o be acyclic is a fairly severe restriction - the vast

majority of programs are expressed using some form of loop, and i t is in those loops where

most of the parallelism may be found. Special provisions must also be made for conditional

expressions, which cannot be scheduled directly by these algorithms either.

Properly structured loops have a single entry and a single exit point. This

characteristic can be exploited by scheduling the loop body as if i t were acyclic (Figure 9.2).

The loop execution time for this type of scheduling will be the number of loop iterations

times the loop body schedule length. Thus a short schedule for the loop body will provide a

short (but not necessarily optimal) execution for the whole loop.

Further improvements may be realized by unrolling the loop some number of iterations

and scheduling the combined iterations. The difficulty with this solution is in guaranteeing

Figure 9.2. - Simple Loop

(4
Figure 9.3. - Unrolled Loops

each part of the loop executes the correct number of times. If the number of loop iterations

(N) is known when the schedule is generated, tha t number of iterations may be unrolled,

giving an acyclic graph t o schedule (Figure 9.3a). If the loop is too large t o unroll

completely, then some "reasonable" number of iterations (i) might be chosen. The schedule

would then consist of (N mod i)+N unrolled iterations - N iterations inside the loop and

N mod i iterations either before or after the loop (Figure 9.3b).

If the number of loop iterations is not known when the schedule is generated but is

known before the loop begins execution, some loop unrolling can still take place (Figure

9.3~) . The idea here is tha t the initial entry point of the loop causes execution t o begin in

such a way tha t when the final iteration of the unrolled loop is accomplished, the original

loop has executed the correct number of iterations.

Further work in this area would allow researchers to use large graphs from real

programs in comparing alternative systems. Most importantly, it could ultimately give

compilers the ability to automatically schedule programs for efficient parallel execution in

ways that humans are unable to do.

APPENDIX A

Task Density Functions

This appendix contains graphs which represent the density of tasks available for

execution with respect t o the critical path of a program. The x-axis represents the

progression of time, the y-axis represents the the relative number of tasks whose earliest

schedulable time (EST) corresponds with the x-axis value. The area under each curve has

been normalized t o 1, i.e., tdf (t) d t = 1. The actual task distribution for a given

program may be obtained by multiplying the function by the program's average parallelism

(i.e. laak weight) Important values for each density function is given in Table A.1.
critical path weight

The s ta r t time is fixed at time 0, finish time is fixed a t time 1.

Table A.1. - Task Distribution Function Parameters

- -+-

e [; @>J tdf =
area

Distribution
0
1
2
3
4
5
6
7
8

a

0.10
0.10
0.10
0.50
0.50
0.50
1.00
1.00
1.00

b

0.10
0.50
1.00
0.10
0.50
1.00
0.10
0.50
1.00

Area

0.7470
0.4226
0.1969
0.4226
0.3551
0.2432
0.1970
0.2432
0.2052

Mean

0.5000
0.3164
0.1877
0.6836
0.5000
0.3641
0.8121
0.6358
0.4999

Variance

0.0509
0.0259
0.0114
0.0260
0.0155
0.0086
0.0116
0.0086
0.0060

4 -
Relative

Task
~vai labi l i ty -

0 -

I
Start

Time

I
Finish

Figure A.1. - Distribution 0.

4 -
Relative

Task
~vai labi l i ty -

I
Start

Time

Figure A.2. - Distribution 1

4 -

Relative
Task

Availability -

0 -

I
Start

I
Finish

I
Finish

Time

Figure A.3. - Distribution 2.

Relative
Task

~vai labi l i ty '

Relative
Task

~vai labi l i ty -

I
Start

Time

Figure A.4. - Distribution 3.

I
Finish

I
Start

Time

Figure A.5. - Distribution 4.

I
Finish

Relative Tas i 1 A
Availability

0

I
Start

I
Finish

Time

Figure A.6. - Distribution 5.

Relative
Task 1

Availability

0

Relative
Task

~ v a i l a b i l i t ~ -

I
Start

Time

Figure A.7. - Distribution 6.

I

Finish

I
Start

I

Finish
Time

Figure A.8. - Distribution 7

Relative
Task 1

~ v a i l a b i l i t ~

0

I
Start

I

Finish
Time

Figure A.9. - Distribution 8.

APPENDIX B

Scheduler Performance Characteristics

In this appendix the performance characteristics for each scheduler are displayed. The

problem space is divided by task distribution, average parallelism, program size,

communication latency, and processor count. It shows how changing a given characteristic,

such as program size, can affect the performance of a given scheduler. Each

scheduler/characteristic pair uses a histogram chart, a bar chart, and a table. The

histogram chart shows histograms side-by-side, t o compare the distributions of schedule

lengths for a given scheduler. The bar chart shows the average sequential schedule length

(dashed line), the average length of the parallel schedules, and the average length of

min(sequentia1 schedule, parallel schedule), which is referred t o as the corrected schedule

length. This third item recognizes tha t the parallel schedules generated by the different

schedulers are not always shorter than a sequential schedule, and shows the effect of

selecting the shorter of the two.

The table gives specific values of interest in a numerical form. The values are:

% P I S Percentage of parallel schedules tha t were shorter than a sequential schedule.

s/P
T,

The speedup gained by the parallel schedule, or -, where T, is the length of a
TP

sequential schedule and Tp is the length of the parallel schedule.

s/c T,
The speedup gained by the corrected schedule, or -, where T, is the length of

Te

the corrected schedule.

p/c The speedup gained by correcting the parallel schedule for schedules which are

TP longer than a sequential schedule, or -.
Tc

P Eff 1 0
This entry gives the parallel e f i c i ency of a schedule, defined as - , where n

nXTp

is the number of available processors.

T,
C Eff This entry gives the corrected parallel c f i c i e n c y of a schedule, defined a s -,

n x Tc

where n is the number of available processors.

m
CPU Sec This field gives the average number of CPU seconds on a Sequent Symmetry

used t o schedule the programs.

B.1. Scheduler Performance By Task Distribution

B.1.1. Figure B.1. - Scheduler 1

0 1 2 3 4 5 6 7 8

Distribution

50000 -
40000 -

Schedule 30000 -
Length

20000 -
10000-

0 -

Average 6000
Schedule 5000

I
! i I

I i i
I ! t I !

I I I I i i I] 1 j j j I] j

Length 4000
3000
2000
1000

I I I I I I I I I

I I I I I I I I I

0 1 2 3 4 5 6 7 8
Distribution

%P<S
s / P
s/c
p/c
P Eff
C Eff
CPU Sec

Distribution
0 1 2 3 4 5 6 7 8

91.26 89.04 88.59 90.22 89.19 88.30 87.85 88.59 88.59
2.49 2.46 2.38 2.38 2.46 2.38 2.35 2.39 2.42
2.71 2.72 2.68 2.73 2.75 2.74 2.69 2.72 2.71
1.09 1.11 1.13 1.15 1.12 1.15 1.15 1.14 1.12
0.57 0.55 0.53 0.55 0.55 0.54 0.52 0.53 0.53
0.58 0.56 0.53 0.56 0.56 0.54 0.53 0.54 0.54

324.47 329.20 336.16 345.11 349.93 357.54 363.99 362.10 368.47

B.1.2. Figure B.2. - Scheduler 2

0 1 2 3 4 5 6 7 8
Distribution

Schedule 30000 -
Length

20000 -

10000 -

o -

Average 6000
Schedule 5000
Length 4000

3000

2000

1000

j

i
i !

i i i i
j I

i j : i i ! I i 1 i i
i 1 i d - - - - B z - E r - C C

0 1 2 3 4 5 6 7 8
Distribution

I I I I I I I 1 1

%PIS
s/P
s/c
p/c
P Eff
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

93.04 90.67 89.93 91.56 89.93 90.07 88.44 90.81 89.19
2.43 2.40 2.37 2.39 2.39 2.42 2.32 2.43 2.37
2.71 2.71 2.67 2.72 2.74 2.73 2.68 2.72 2.71
1.12 1.13 1.13 1.14 1.15 1.13 1.15 1.12 1.14
0.57 0.55 0.52 0.55 0.55 0.53 0.52 0.53 0.53
0.57 0.55 0.53 0.55 0.55 0.54 0.53 0.54 0.53

352.66 358.93 368.04 373.73 380.61 388.22 395.58 393.50 400.46

B.1.3. Figure B.3. - Scheduler 3

0 1 2 3 4 5 6 7 8

Distribution

70000 -
60000 -
50000 -

Schedule 40000 -
Length

30000 -
20000 -
10000 -

0 -

Average 6000
Schedule 5000
Length 4000

3000

2000

1000

j
i I i j

I

i i i I i I 1 j i
i i i *

.L * - P * P
* a

0 1 2 3 4 5 6 7 8

Distribution

I I I I I I I I I

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

91.11 93.19 93.19 88.44 88.00 87.85 85.04 85.78 86.67
2.42 2.61 2.69 2.24 2.22 2.28 2.11 2.15 2.12
2.70 2.86 3.01 2.61 2.66 2.70 2.54 2.61 2.63
1.12 1.09 1.12 1.16 1.19 1.19 1.21 1.21 1.24
0.57 0.57 0.57 0.54 0.54 0.53 0.51 0.52 0.52
0.58 0.57 0.57 0.55 0.55 0.54 0.52 0.53 0.53

419.27 425.95 433.74 460.77 477.16 486.70 507.85 503.09 513.46

B.l.4. Figure B.4. - Scheduler 4

0 1 2 3 4 5 6 7 8
Distribution

70000 -
60000 -
50000 -

Schedule 40000 -
Length

30000 -
20000 -
~ O O O O -

0 -

7000

Average 6000

i i
I i j i i : i i I I i

i J i 1 + A A J J i i i i i i - P A A i i

Schedule 5000
Length 4000

3000

2000

1000

I I I I I I I I I ~

0 1 2 3 4 5 6 7 8

Distribution

s/c
p/c
P Eff
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

91.41 93.33 93.19 88.74 89.04 88.44 84.59 85.93 87.26
2.40 2.51 2.70 2.25 2.23 2.27 2.13 2.16 2.10
2.70 2.85 3.03 2.60 2.66 2.70 2.54 2.61 2.63
1.13 1.14 1.12 1.16 1.19 1.19 1.19 1.21 1.25
0.57 0.57 0.57 0.54 0.54 0.53 0.51 0.52 0.52
0.58 0.57 0.57 0.55 0.55 0.54 0.52 0.53 0.53

798.10 815.98 824.09 853.34 875.43 888.79 914.43 909.83 924.85

B.1.S. Figure B.5. - Scheduler 5

120000

Schedule
Length 60000

40000

20000

9000 -
8000 -
7000 -

Average f3000 -
Schedule 5000 -
Length 4000 -

3000 -
2000 -
1000 -

I I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

0 1 2 3 4 5 6 7 8
Distribution

%P<S

SP-
s/c
p/c
P Eff
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

76.59 78.07 77.33 76.74 76.15 77.33 75.85 76.30 77.19
1.26 1.29 1.32 1.22 1.27 1.29 1.23 1.25 1.29
2.26 2.28 2.29 2.26 2.31 2.34 2.26 2.31 2.33
1.78 1.77 1.74 1.84 1.81 1.81 1.84 1.84 1.81
0.51 0.49 0.47 0.49 0.49 0.48 0.47 0.48 0 . 4 8 .
0.52 0.51 0.49 0.51 0.51 0.50 0.49 0.50 0.50
2.98 3.38 4.18 3.32 3.56 3.92 3.93 3.96 4.19

B.1.6. Figure B.6. - Scheduler 6

Average 6000 -
Schedule 5000 -
Length 4000 -

I I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

I I I I I I I I I

0 1 2 3 4 5 6 7 8

Distribution

%P<S
SP-
s/c
p/c
P Efi
C Eff
CPUSec

-
Distribution

0 1 2 3 4 5 6 7 8

77.93 78.07 76.74 77.93 78.22 77.04 76.59 77.48 76.44
1.38 1.36 1.31 1.32 1.33 1.28 1.24 1.27 1.25
2.35 2.30 2.23 2.30 2.30 2.26 2.22 2.25 2.24
1.70 1.70 1.70 1.74 1.74 1.77 1.79 1.77 1.79
0.51 0.48 0.45 0.48 0.48 0.46 0.45 0.46 0.45
0.53 0.50 0.47 0.50 0.50 0.48 0.48 0.48 0.47

54.50 55.39 57.03 57.21 57.89 59.25 60.57 60.19 61.12

B.1.7. Figure B.7. - Scheduler 7

Schedule

I I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

Average
Schedule
Length

0 1 2 3 4 5 6 7 8

Distribution

%P<S

s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Distribution
0 1 2 3 4 5 6 7 8

78.07 77.78 76.30 77.63 77.93 76.89 76.30 76.89 76.15
1.35 1.33 1.29 1.29 1.30 1.25 1.21 1.24 1.23
2.34 2.30 2.22 2.29 2.30 2.25 2.20 2.24 2.23
1.73 1.73 1.72 1.77 1.77 1.80 1.82 1.80 1.82
0.51 0.48 0.45 0.48 0.48 0.46 0.45 0.46 0.45
0.53 0.50 0.47 0.50 0.50 0.48 0.47 0.48 0.47

25.37 25.42 25.95 26.46 26.89 27.42 27.83 27.71 28.38

B.1.8. Figure B.8. - Scheduler 8

0 1 2 3 4 5 6 7 8

Distribution

120000 -
100000 -

Schedule 80000 -
Length 60000 -

40000 -
20000 -

0 -

Average
Schedule
Length

a 4 a

!
I

I i i !

i i f i 4 i i i i
i f 1 1 A A 1

I I I I I I I I I

0 1 2 3 4 5 6 7 8
Distribution

%P<S
s/p-
s/c
p/c
P Eff
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

78.52 79.26 78.81 78.37 77.93 77.48 76.30 76.74 76.44
1.31 1.32 1.33 1.24 1.22 1.21 1.17 1.18 1.16
2.35 2.35 2.35 2.28 2.27 2.26 2.20 2.22 2.20
1.79 1.78 1.76 1.84 1.86 1.86 1.88 1.89 1.90
0.51 0.50 0.49 0.48 0.47 0.47 0.45 0.46 0.45
0.53 0.52 0.50 0.50 0.50 0.49 0.47 0.48 0.47

50.05 52.41 55.03 54.65 57.34 59.87 60.13 60.70 62.60

B.1.9. Figure B.9. - Scheduler 9

Schedule
Length

Average
Schedule
Length

I I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

0 1 2 3 4 5 6 7 8
Distribution

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPUSec

1

Distribution
0 1 2 3 4 5 6 7 8

75.11 75.26 75.11 75.41 76.15 76.44 75.41 76.00 76.15
1.09 1.11 1.13 1.11 1.13 1.14 1.10 1.13 1.14
2.08 2.09 2.07 2.10 2.12 2.12 2.07 2.10 2.11
1.91 1.88 1.84 1.88 1.87 1.86 1.88 1.87 1.85
0.40 0.40 0.39 0.40 0.40 0.40 0.39 0.40 0.40
0.42 0.42 0.42 0.42 0.43 0.43 0.41 0.42 0.42
1.19 1.21 1.24 1.22 1.23 1.24 1.24 1.24 1.26

B.1.10. Figure B.lO. - Scheduler 10

Average
Schedule
Length

800000 -
700000 -
600000 -

Schedule 500000 -
Length 400000 -

300000 -
200000 -
1000oo-

0 -

0 1 2 3 4 5 6 7 8
Distribution

!
i ! ! ! i ! i

1 ji j, j A 1i-I
I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

% P I S
s/P
s/c
p/c
P Eff
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

64.00 62.96 60.00 61.48 62.22 61.63 60.15 62.81 60.00
0.46 0.43 0.39 0.33 0.42 0.36 0.33 0.33 0.29
1.85 1.87 1.84 1.86 1.88 1.85 1.84 1.88 1.84
4.03 4.30 4.66 5.62 4.47 5.19 5.64 5.67 6.33
0.44 0.43 0.41 0.43 0.43 0.41 0.41 0.42 0.41
0.48 0.47 0.45 0.47 0.47 0.45 0.45 0.46 0.45

19.86 21.73 24.74 20.81 22.38 24.88 24.10 24.16 28.19

B.l . l l . Figure B . l l . - Scheduler 11

0 1 2 3 4 5 6 7 8

Distribution

800000 -
700000 -
600000 -

Schedule 500000 -
Length 400000 -

300000 -
200000 -
~ O O O O O -

0 -

Average
Schedule
Length

1 ! !
i !

j j j j j j

0 1 2 3 4 5 6 7 8

Distribution

I I I I I I I I T

%P<S
s /P
s/c
p/c
P Efl
C EB
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

63.11 62.96 58.81 62.07 61.33 59.41 60.44 60.59 60.30
0.41 0.40 0.39 0.35 0.35 0.33 0.31 0.34 0.31
1.84 1.84 1.82 1.87 1.84 1.84 1.85 1.88 1.83
4.49 4.60 4.64 5.33 5.31 5.56 6.02 5.48 5.98
0.45 0.43 0.41 0.43 0.43 0.41 0.41 0.41 0.41
0.48 0.47 0.45 0.47 0.47 0.45 0.45 0.46 0.45

46.83 49.04 52.50 50.58 52.23 54.42 55.65 55.02 58.25

B.1.12. Figure B.12. - Scheduler 12

Schedule 500000
Length 400000

300000

200000 ! I I 1
I

100000

Average
Schedule
Length

I I I I I I I I I
0 1 2 3 4 5 6 7 8

Distribution

0 1 2 3 4 5 6 7 8
Distribution

%P<S
s/P
s/c
p/c
P Efl
C Eff
CPUSec

Distribution
0 1 2 3 4 5 6 7 8

59.26 58.07 56.89 58.67 55.85 56.59 53.33 55.11 55.85
0.33 0.31 0.30 0.27 0.29 0.27 0.23 0.25 0.23
1.64 1.68 1.69 1.61 1.63 1.62 1.57 1.61 1.61
5.01 5.41 5.69 5.90 5.70 5.97 6.85 6.32 6.88
0.37 0.38 0.37 0.34 0.35 0.35 0.31 0.33 0.34
0.41 0.42 0.42 0.38 0.40 0.40 0.36 0.38 0.39
14.30 15.60 17.22 14.91 15.82 16.73 15.63 16.41 16.89

B.2. Scheduler Performance By Parallelism

B.2.1. Figure B.13. - Scheduler 1

Schedule
Length

Average
Schedule 10000 -
Length

2 4 8 16 32 64 128 256

Parallelism

Parallelism

%P<S
SF '
s/c
p/c
P Eff
C Eff
CPUSec

Average Parallelism
2 4 8 16 32 64 128 256

100.00 88.52 88.40 88.89 89.51 89.16 88.68 88.48
1.87 1.82 2.21 2.52 2.76 2.82 2.70 2.55
1.87 1.94 2.49 2.97 3.21 3.22 3.10 2.86
1 .OO 1.07 1.13 1.18 1.16 1.14 1.14 1.12
0.34 0.33 0.46 0.57 0.65 0.68 0.70 0.68
0.34 0.34 0.47 0.58 0.65 0.69 0.70 0.69

171.53 203.84 250.10 280.26 363.91 473.72 637.22 909.51

B.2.2. Figure B.14. - Scheduler 2

Schedule
Length

2 4 8 16 32 64 128 256
Parallelism

Average - - - - -
Schedule 10000 - - - - -
Length - - - - - - - - - - - - - - - -

5000

2 4 8 16 32 64 128 256

Parallelism

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPUSec

Average Parallelism
2 4 8 16 32 64 128 256

100.00 95.46 89.88 88.97 89.09 88.34 88.48 87.65
1.89 1.93 2.21 2.48 2.70 2.70 2.62 2.42
1.89 1.96 2.46 2.93 3.20 3.22 3.10 2.86
1.00 1.02 1.12 1.18 1.18 1.19 1.18 1.18
0.34 0.34 0.46 0.56 0.64 0.68 0.69 0.68
0.34 0.34 0.46 0.57 0.65 0.69 0.70 0.69

183.66 217.03 269.72 303.77 395.41 514.76 697.28 1022.49

B.2.3. Figure B.15. - Scheduler 3

Schedule 40000
Length

30000

20000

10000

Average
Schedule 10000 -
Length

I I I I I I I I
2 4 8 16 32 64 128 256

Parallelism

2 4 8 16 32 64 128 256
Parallelism

%P<S
s/P
s/c
p/c
P Eli
C Eff
CPUSec

Average Parallelism
2 4 8 16 32 64 128 256

100.00 88.43 87.65 88.89 89.40 88.89 88.68 87.24
1.91 1.78 2.09 2.41 2.61 2.64 2.54 2.43
1.91 1.96 2.49 2.89 3.04 3.09 3.11 3.09
1.00 1.10 1.19 1.20 1.16 1.17 1.23 1.27
0.34 0.33 0.46 0.56 0.64 0.68 0.70 0.71
0.34 0.34 0.47 0.57 0.65 0.69 0.71 0.72

198.23 234.00 297.69 338.98 475.82 680.99 985.83 1493.03

B.2.4. Figure B.16. - Scheduler 4

Average I - - - - - I

70000 -
60000 -
50000 -

Schedule 40000 -
Length

30000 -
20000 -
10000 -

0 -

Schedule 1~~~~ - - - - -
Length - - - - - - - - - - - - - - - -

!
j i i

I
i j i i j i

!
1 j

a i i
4 i 1 _ i 4

i
+ -.

2
P i 4 A i P 4 i i : P

I I I I I I I I

2 4 8 16 32 64 128 256
Parallelism

2 4 8 16 32 64 128 256
Parallelism

%P<S
s /P
s/c
p/c
P Efl
C Efl
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

100.00 88.52 87.41 89.38 90.33 89.30 88.68 88.07
1.91 1.78 2.08 2.43 2.56 2.63 2.53 2.42
1.91 1.96 2.48 2.89 3.04 3.09 3.12 3.10
1.00 1.10 1.20 1.19 1.19 1.17 1.23 1.28
0.34 0.33 0.46 0.57 0.64 0.68 0.70 0.7 1
0.34 0.34 0.47 0.57 0.65 0.69 0.71 0.72

388.22 463.48 567.71 639.18 870.06 1205.80 1750.92 2770.58

B.2.5. Figure B.17. - Scheduler 5

Average
Schedule
Length

120000 -
100000 -

Schedule 80000 -
Length 60000 -

40000 -
20000 -

0 -

2 4 8 16 32 64 128 256
Parallelism

i
i j
i i i j

i
i i i i i f f i -. i - 4

i
P

I I I I I I I I
2 4 8 16 32 64 128 256

Parallelism

% P F S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

77.78 69.26 72.76 76.46 80.97 82.72 84.16 83.54
1.44 0.96 0.94 1.23 1.55 1.68 1.66 1.54
1.63 1.68 2.03 2.32 2.58 2.75 2.81 2.72
1.13 1.76 2.17 1.89 1.66 1.64 1.70 1.76
0.31 0.29 0.40 0.50 0.58 0.62 0.65 0.64
0.31 0.31 0.42 0.52 0.60 0.64 0.66 0.66
1.54 1.72 1.98 2.20 3.08 4.84 8.92 18.79

B.2.8. Figure B.18. - Scheduler 8

Average
Schedule 10000 -
Length

120000 -
1 OOOOO -
80000 - Schedule

Length 60000 -
40000 -
20000 -

0 -

2 4 8 16 32 64 128 256
Parallelism

i

I

1
i i i

I
i i j

I i i I

! s f i i j
5 - a A - s J -. - i

2 4 8 16 32 64 128 256
Parallelism

--

I I I I 1 I I I

S I C
P I C
P ER
C Eff
CPUSec

Average Parallelism
2 4 8 16 32 64 128 256

66.67 66.03 74.07 78.52 83.85 84.22 84.57 83.95
0.76 0.74 1.13 1.48 1.70 1.80 1.79 1.66
1.58 1.56 1.97 2.33 2.65 2.85 2.89 2.77
2.09 2.12 1.74 1.58 1.56 1.59 1.61 1.67
0.27 0.25 0.38 0.49 0.57 0.63 0.65 0.65
0.30 0.28 0.40 0.51 0.59 0.64 0.67 0.67

30.87 34.53 39.91 43.70 57.17 76.72 111.04 183.65

B.2.7. Figure B.19. - Scheduler 7

120000

Schedule
Length 60000

40000

20000
i j j A 1 i i

1 9C -I
i
.e

Average
Schedule 10000 -
Length

I I I I I I I I
2 4 8 16 32 64 128 256

Parallelism

I I I I I I I I

2 4 8 16 32 64 128 256
Parallelism

%p<s
s/P
s/c
p/c
P ER
C Eff
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

66.67 65.19 74.07 78.11 83.85 84.09 83.95 84.36
0.76 0.73 1.1 1 1.44 1.65 1.75 1.75 1.61
1.58 1.56 1.96 2.32 2.64 2.84 2.88 2.76
2.09 2.13 1.77 1.62 1.60 1.62 1.65 1.71
0.27 0.25 0.38 0.49 0.57 0.62 0.65 0.65
0.30 0.28 0.40 0.51 0.59 0.64 0.67 0.67

16.44 17.23 19.43 20.86 26.86 35.26 48.60 73.04

B.2.8. Figu re B.20. - Scheduler 8

Average
Schedule 10000 -
Length

120000 -
100000 -

Schedule 80000 -
Length 60000 -

40000 -
20000 -

0 -
2 4 8 16 32 64 128 256

Parallelism

I

:

i , , i
i

i
f 1 f i

I i i i I
4 1 i J j 1 -

I I I I I I I I

I I I I I I I I

2 4 8 16 32 64 128 256
Parallelism

s/c
p/c
P Eff
C Eff
CPUSec

Average Parallelism
2 4 8 16 32 64 128 256

66.67 65.00 74.07 79.26 84.98 85.05 85.39 85.60
0.77 0.73 1.09 1.37 1.52 1.60 1.65 1.67
1.58 1.56 1.97 2.33 2.64 2.82 2.90 2.91
2.07 2.13 1.80 1.71 1.74 1.77 1.75 1.74
0.27 0.25 0.38 0.50 0.58 0.63 0.66 0.67
0.30 0.28 0.40 0.52 0.60 0.65 0.68 0.69

25.44 28.98 36.46 41.35 55.60 78.74 119.16 195.49

B.2.9. Figure B.21. - Scheduler 9

Average
Schedule
Length

160000 -
140000 -
120000 -
100000 -

Schedule
80000 - Length
60000 -
40000 -
20000 -

0 -

Parallelism

I

i i I i

i i i i i

i f i j i i : J -
4 - j i

2 4 8 16 32 64 128 256
Parallelism

I I I I I I I I

s/c
p/c
P Eff
C Eff
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

61.48 63.15 73.76 77.45 80.56 83.54 84.57 83.95
0.61 0.64 0.93 1.22 1.45 1.59 1.63 1.54
1.45 1.46 1.78 2.11 2.40 2.65 2.74 2.68
2.39 2.28 1.91 1.72 1.65 1.66 1.69 1.74
0.21 0.21 0.31 0.40 0.48 0.55 0.60 0.61
0.25 0.25 0.33 0.42 0.50 0.57 0.61 0.63
0.79 0.87 0.95 1 .OO 1.25 1.58 2.06 2.82

B.2.10. Figure B.22. - Scheduler 10

2 4 8 16 32 64 128 256
Parallelism

600000 -
Schedule 500000 -
Length 400000 -

300000 -
200000 -
1OOOOO -

0-

Average
Schedule
Length

!

I i I I

I I -

2 4 8 16 32 64 128 256
Parallelism

%P<s
s /P
s/c
p/c
P Eff
C Efl
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

73.33 58.70 59.01 61.48 63.99 65.02 63.79 59.67
1.37 0.76 0.40 0.30 0.28 0.35 0.36 0.29
1.57 1.55 1.73 1.89 2.01 2.06 2.03 1.92
1.15 2.04 4.30 6.22 7.11 5.86 5.62 6.66
0.29 0.26 0.35 0.44 0.50 0.54 0.55 0.54
0.30 0.29 0.39 0.48 0.54 0.58 0.59 0.58
5.85 7.94 11.72 15.25 22.59 34.76 55.88 105.92

B.2.11. Figure B.23. - Scheduler 11

2 4 8 16 32 64 128 256
Parallelism

700000 -
600000 -

Schedule 500000 -
Length 400000 -

300000 -
200000 -
100000 -

0 -

Average
Schedule
Length

I I

! 1
I

-

2 4 8 16 32 64 128 256
Parallelism

r

s/c
p/c
P Eff
C Eff
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

77.78 60.28 59.18 62.22 61.73 61.18 59.88 56.79
1.43 0.77 0.42 0.31 0.27 0.29 0.34 0.29
1.64 1.58 1.76 1.92 1.98 1.96 1.97 1.86
1.14 2.06 4.24 6.21 7.36 6.65 5.72 6.50
0.30 0.27 0.36 0.44 0.50 0.53 0.54 0.53
0.31 0.30 0.40 0.48 0.54 0.57 0.59 0.58

19.89 24.87 31.71 37.43 51.88 73.10 111.80 200.41

B.2.12. Figure B.24. - Scheduler 12

700000

Schedule 500000
Length 400000

300000
200000 1
1ooOOO

I I I I I I I I
2 4 8 16 32 64 128 256

Parallelism

Average
Schedule
Length

2 4 8 16 32 64 128 256
Parallelism

s/c
p/c
P Eff
C Eff
CPU Sec

Average Parallelism
2 4 8 16 32 64 128 256

73.33 58.06 55.72 55.64 56.58 56.79 54.73 53.91
1.24 0.59 0.32 0.25 0.23 0.23 0.23 0.21
1.53 1.44 1.55 1.65 1.72 1.73 1.73 1.68
1.23 2.43 4.84 6.68 7.38 7.44 7.48 7.97
0.28 0.23 0.28 0.36 0.41 0.44 0.46 0.44
0.29 0.27 0.33 0.41 0.46 0.49 0.51 0.50
5.49 6.96 9.55 11.85 16.62 23.24 34.02 53.51

B.3. Scheduler Performance By Program Sice

B.3.1. Figure B.25. - Scheduler 1

128 256 512 1024 2048

Program Size

Schedule 30000 -
Length

20000 -
10000 -

i i

128 256 512 1024 2048
Program Size

0 - - j i i I I I

Average
Schedule 10000 -
Length

5000 -
------- 1 I 1

I

- - - - - -

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

87.65 88.89 88.97 89.44 89.54
2.07 2.22 2.33 2.38 2.47
2.24 2.42 2.57 2.68 2.80
1.08 1.09 1.10 1.13 1.14
0.44 0.49 0.54 0.57 0.60
0.44 0.50 0.54 0.57 0.60

36.53 79.69 170.33 362.19 751.52

1

B.3.2. Figure B.26. - Scheduler 2

Schedule
Length

Average
Schedule 10000 -
Length

128 256 512 1024 2048
Program Size

I I I 1 I

128 256 512 1024 2048
Program Size

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

91.3690.64 89.96 89.71 90.77
2.09 2.21 2.30 2.36 2.44
2.25 2.41 2.56 2.67 2.80
1.07 1.09 1.11 1.13 1.14
0.44 0.49 0.53 0.56 0.59
0.44 0.49 0.54 0.57 0.60

36.64 80.76 173.16 382.43 840.53

B.3.3. Figure B.27. - Scheduler 3

Schedule 40000
Length

30000

I I I 1 I
128 256 512 1024 2048

Program Size

128 256 512 1024 2048
Program Size

Average
Schedule 10000 -
Length

5000 -

I I I

----..-

%PIS
s/p
SF
p/c
P Eff
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

88.07 88.58 88.64 88.75 89.42
2.02 2.17 2.18 2.27 2.36
2.28 2.44 2.58 2.67 2.76
1.13 1.13 1.19 1.18 1.17
0.44 0.49 0.54 0.56 0.59
0.45 0.50 0.54 0.57 0.60

38.91 86.89 197.48 458.79 1077.15

I

------- -------
-I I r I

1

B.3.4. Figure B.28. - Scheduler 4

Schedule ~OOOO
Length

30000

I I I I I
128 256 513 1024 2048

Program Size

128 256 512 1024 2048
Program Size

Average
Schedule 10000 -
Length

5000 -

I I I 1 I -

- - - - - -

%P<S
s / P
s/c
p/C
P Eff
C Efl
CPU Sec

Program Size
128 256 512 1024 2048
88.20 88.58 88.97 89.09 89.89
2.02 2.14 2.19 2.26 2.34
2.28 2.45 2.58 2.67 2.76
1.13 1.14 1.18 1.18 1.18
0.44 0.49 0.54 0.56 0.59
0.45 0.50 0.54 0.57 0.60
41.81 99.53 255.76 714.34 2227.39

I

------- -------
t I l l i 1 I

1

B.3.5. Figure B.29. - Scheduler 5

120000

1 OOOOO

Schedule 80000

Average
Schedule -
Length

128 256 512 1024 2048

Program Size

Program Size

% P I S
s/P
s/c
p/c
P Eff
C Efi
CPU See

Program Size
128 256 512 1024 2048

73.25 74.38 76.63 78.05 78.89
0.95 1.06 1.17 1.25 1.33
1.94 2.06 2.17 2.26 2.36
2.05 1.94 1.86 1.81 1.77
0.39 0.44 0.48 0.51 0.54
0.41 0.46 0.50 0.53 0.55
0.26 0.62 1.43 3.45 8.82

B.3.6. Figure B.30. - Scheduler 6

Schedule 80000

Length 60000

I I I I I
128 256 512 1024 2048

Program Size

Average
Schedule 10000
Length

128 256 512 1024 2048
Program Size

% P I S
SIP
s/c
P I C
P EB
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

72.70 74.69 77.20 79.01 79.66
1.01 1.12 1.20 1.28 1.36
1.88 2.02 2.13 2.24 2.34
1.87 1.80 1.77 1.75 1.73
0.37 0.42 0.46 0.50 0.53
0.39 0.44 0.48 0.52 0.55
3.20 7.28 17.77 47.95 148.28

B.3.7. Figure B.31. - Scheduler 7

Program Size

120000 -
100000 -
80000 - Schedule

Length 60000 -
40000 -

Average
Schedule
Length

!
I

i

f

I
i

128 256 512 1024 2048
Program Size

20000 - j
i i

i
-

% P I S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

72.70 74.38 76.87 78.46 79.54
0.99 1.10 1.18 1.26 1.33
1.88 2.01 2.13 2.23 2.34
1.90 1.84 1.80 1.78 1.76
0.37 0.42 0.46 0.49 0.53
0.39 0.44 0.48 0.51 0.54
2.97 6.31 13.16 27.75 57.75

B.3.8. Figure B.32. - Scheduler 8

Schedule
Length

Average
Schedule
Length

128 256 512 1024 2048
Program Size

128 256 512 1024 2048
Program Size

%P<S
s / P
s/c
p/c
P Eff
C EK
CPU Sec

Program Size
128 256 512 1024 2048

73.11 75.82 77.70 78.94 79.89
1.02 1.11 1.17 1.22 1.27
1.91 2.05 2.16 2.25 2.33
1.87 1.84 1.84 1.84 1.84
0.38 0.43 0.47 0.50 0.53
0.40 0.45 0.49 0.52 0.55
4.64 10.97 23.79 55.76 130.44

B.3.9. Figure B.33. - Scheduler 9

Schedule
Length 80000

Average
Schedule 10000 -
Length

I I I I I
128 256 512 1024 2048

Program Size

I I 1 I I
128 256 512 1024 2048

Program Size

%P<S
s/P
s/c
p/c
P Eff
C Eff

+CPUSec

Program Size
128 256 512 1024 2048

70.92 72.84 74.73 77.09 78.78
0.88 0.92 1.01 1.09 1.18
1.76 1.82 1.95 2.06 2.17
2.00 1.99 1.92 1.89 1.84
0.32 0.33 0.38 0.42 0.46
0.34 0.36 0.40 0.44 0.48
0.11 0.27 0.59 1.27 2.68

B.3.10. Figure B.34. - Scheduler 10

Schedule ~OOOOO
Length

300000

Average
Schedule
Length

128 256 512 1024 2048
Program Size

128 256 512 1024 2048
Program Size

%P<S
SF
s/c
p/c
P Eff
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

60.77 60.49 60.82 62.41 62.79
0.44 0.38 0.37 0.37 0.36
1.72 1.76 1.80 1.83 1.89
3.90 4.66 4.87 4.95 5.28
0.35 0.39 0.42 0.44 0.46
0.38 0.43 0.46 0.48 0.50
1.86 4.38 9.91 22.77 53.78

B.3.11. Figure B.35. - Scheduler 11

Average
Schedule
Length

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
1OOOoo -

128 256 512 1024 2048

Program Size

i
t

, i
! i
1 i

'

i i

0 - 1 1 l
I I I I I '

128 256 512 1024 2048

Program Size

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Program Size
128 256 512 1024 2048

61.04 60.80 60.16 61.39 61.38
0.46 0.44 0.38 0.36 0.34
1.73 1.77 1.82 1.84 1.86
3.75 4.04 4.77 5.13 5.55
0.35 0.39 0.42 0.44 0.46
0.39 0.42 0.46 0.48 0.50
2.01 5.09 13.82 42.07 138.59

B.3.12. Figure B.36. - Scheduler 12

Average
Schedule
Length

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
100000 -

128 256 512 1024 2048

Program Size

i
i
i

1
i i

I
i

i i
i j i

0 - i - A

%P<S
SP-
SIC
PIC
P Eff
C Eff
CPU Sec

I I I I I
128 256 512 1024 2048

Program Size

Program Size
128 256 512 1024 2048

57.48 56.48 56.79 56.72 56.14
0.38 0.32 0.29 0.28 0.26
1.58 1.60 1.62 1.63 1.63
4.13 4.95 5.57 5.81 6.25
0.30 0.33 0.35 0.36 0.37
0.35 0.38 0.40 0.40 0.41
1.58 3.52 7.58 16.28 34.89

B.4. Scheduler Performance By Communication Latency

B.4.1. Figure B.37. - Scheduler 1

0 0.125 0.25 0.5 1 2 4 8 16

Latency

50000 -
40000 -

Schedule 30000 -
Length

20000 -
10000 -

0 -

Average
Schedule
Length

1
!

1

i

- d d i d

0 0.125 0.25 0.5 1 2 4 8 16

Latency

I I I

% P I S
s/P
SIC
p/c
P Eff
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 100.00 99.41 65.63 36.59
5.41 5.39 5.33 5.15 4.63 3.49 2.13 1.26 0.82
5.41 5.39 5.33 5.15 4.63 3.49 2.13 1.43 1.12
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.37
0.77 0.77 0.76 0.74 0.68 0.53 0.33 0.18 0.12
0.77 0.77 0.76 0.74 0.68 0.53 0.33 0.20 0.16

236.01 367.55 377.65 377.22 373.21 364.08 357.92 351.85 331.47

B.4.2. Figure B.38. - Scheduler 2

Average
Schedule 10000 -
Length

50000 -
40000 -

Schedule 30000 -
Length

20000 -

10000 -
0 -

0 0.125 0.25 0.5 1 2 4 8 16

Latency

i
I

i
! 1

4
i d L f

Latency

I I I I I I I I I

%P<S
SF
s/c
p/c
P Eff
C Eff
CPUSec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 100.00 98.52 68.15 46.96
5.40 5.36 5.29 5.11 4.58 3.42 2.11 1.24 0.82
5.40 5.36 5.29 5.11 4.58 3.42 2.11 1.43 1.13
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.16 1.38
0.77 0.76 0.76 0.74 0.67 0.52 0.32 0.18 0.12
0.77 0.76 0.76 0.74 0.67 0.52 0.32 0.20 0.16

269.11 398.91 408.24 408.83 405.98 397.70 388.44 379.80 354.74

B.4.3. Figure B.39. - Scheduler 3

Average
Schedule 10000
Length

70000 -
60000 -
50000 -

Schedule 40000 -
Length

30000 -
20000 -
loo00 -

o -

0 0.125 0.25 0.5 1 2 4 8 16
Latency

i , i
i

i i 1

j 4 f J j j j
~ ; e i

I I I I I I I I I
0 0.125 0.25 0.5 1 2 4 8 16

Latency

%P<S
SF'
S I C
P I C
P Eff
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 '100.00 100.00 100.00 94.67 67.70 36.89
5.40 5.39 5.32 5.15 4.48 3.28 2.01 1.17 0.78
5.40 5.39 5.32 5.15 4.48 3.28 2.04 1.47 1.13
1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.25 1.45
0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.19 0.12
0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.22 0.16

289.44 783.10 688.41 513.20 404.12 379.77 380.50 389.73 399.73

B.4.4. Figure B.40. - Scheduler 4

70000

60000

Schedule 40000
i

Length i j
30000 i

i

20000

10000
i

Average
Schedule 10000 -
Length

Latency

Latency

%P<S

s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 100.00 94.96 69.33 37.63
5.40 5.39 5.32 5.15 4.48 3.28 2.01 1.19 0.76
5.40 5.39 5.32 5.15 4.48 3.28 2.03 1.47 1.13
1 .OO 1.00 1.00 1.00 1.00 1.00 1.01 1.24 1.47
0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.19 0.12
0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.22 0.16

693.65 1147.67 1065.19 908.85 807.54 786.65 789.18 799.60 806.52

B.4.6. Figure B.41. - Scheduler 6

Average
Schedule 10000
Length

120000 -
100000 -

Schedule 80000 -
Length 60000 -

40000 -
20000 -

0-

0 0.125 0.25 0.5 1 2 4 8 16

Latency

i
t

1 j
I i
i

i
i 1 j j 4 4

I I I I I I I I I
0 0.125 0.25 0.5 1 2 4 8 16

Latency

%P<S
s/P
s/c
p/c
P Efl
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 98.67 51.56 29.78 11.56
5.38 5.34 5.25 5.01 4.04 2.40 1.25 0.61 0.31
5.38 5.34 5.25 5.01 4.04 2.40 1.48 1.16 1.04
1.00 1.00 1.00 1.00 1.00 1.00 1.18 1.89 3.35
0.77 0.76 0.75 0.73 0.61 0.38 0.20 0.10 0.05
0.77 0.76 0.75 0.73 0.61 0.38 0.22 0.16 0.15
3.80 3.81 3.80 3.78 3.76 3.72 3.67 3.60 3.50

B.4.6. Figure B.42. - Scheduler 6

Schedule 8W00 4

Average
Schedule 10000 -
Length

0 0.125 0.25 0.5 1 2 4 8 16

Latency

Latency

%P<S
s/P
s/c
p/c
P Efl
C Eli
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 98.96 53.48 32.59 11.41
5.40 5.24 5.04 4.63 3.68 2.25 1.23 0.64 0.33
5.40 5.24 5.04 4.63 3.68 2.25 1.49 1.20 1.05
1.00 1.00 1.00 1.00 1.00 1.00 1.21 1.86 3.20
0.77 0.75 0.73 0.69 0.57 0.37 0.20 0.10 0.05
0.77 0.75 0.73 0.69 0.57 0.37 0.22 0.17 0.15

48.06 58.07 58.86 58.97 59.53 59.83 60.06 60.02 59.78

B.4.7. Figure B.43. - Scheduler 7

Average
Schedule
Length

120000 -
100000 -
80000 - Schedule

Length 60000 -
40000 -
20000 -

0 0.125 0.25 0.5 1 2 4 8 16

Latency

i

1
i i I

1
1 i

-. i _ d i A 4
I I I I I I I I I
0 0.125 0.25 0.5 1 2 4 8 16

Latency

% P I S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 97.63 53.33 31.70 11.26
5.40 5.24 5.04 4.62 3.66 2.22 1.21 0.63 0.32
5.40 5.24 5.04 4.62 3.66 2.22 1.48 1.19 1.05
1.00 1.00 1.00 1.00 1.00 1.00 1.23 1.90 3.28
0.77 0.75 0.73 0.69 0.57 0.36 0.20 0.10 0.05
0.77 0.75 0.73 0.69 0.57 0.37 0.22 0.17 0.15
17.19 26.89 27.52 27.56 27.91 28.35 28.65 28.67 28.69

B.4.8. Figure B.44. - Scheduler 8

120000 i

100000
I

Schedule

Length 60000 1 i
i

40000 I
i I i

20000 4 i

i 4 f
i i

1 - - 4 s

Average
Schedule 10000 -
Length

Latency

Latency

%PIS
s/P
s/c
p/c
P EfI
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 97.33 54.81 34.07 13.63
5.39 5.29 5.08 4.64 3.55 2.14 1.16 0.61 0.31
5.39 5.29 5.08 4.64 3.55 2.14 1.51 1.21 1.08
1.00 1.00 1.00 1.00 1.00 1.00 1.30 1.99 3.48
0.77 0.77 0.74 0.69 0.56 0.37 0.21 0.11 0.05
0.77 0.77 0.74 0.69 0.56 0.37 0.24 0.17 0.15

33.51 93.66 83.21 61.73 50.06 47.28 47.46 47.84 48.01

B.4.9. Figure B.46. - Scheduler 9

Schedule
Length 80000

Average
Schedule
Length

Latency

0 0.125 0.25 0.5 1 2 4 8 16

Latency

% P I S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 100.00 93.33 50.96 28.74 8.00
4.51 4.41 4.28 4.00 3.25 1.97 1.06 0.55 0.28
4.51 4.41 4.28 4.00 3.25 1.99 1.40 1.14 1.04
1.00 1.00 1.00 1.00 1.00 1.01 1.32 2.07 3.67
0.64 0.63 0.61 0.59 0.50 0.31 0.17 0.09 0.04
0.64 0.63 0.61 0.59 0.50 0.31 0.20 0.16 0.15
1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23

B.4.10. Figure B.48. - Scheduler 10

700000

Schedule q o o o ~ ~
Length

300000

0 0.125 0.25 0.5 1 2 4 8 16
Latency

Average
Schedule
Length

0 0.125 0.25 0.5 1 2 4 8 16
Latency

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPUSec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 98.52 43.70 5.48 1.78 5.78
5.34 5.28 5.15 4.82 3.00 0.93 0.32 0.16 0.08
5.34 5.28 5.15 4.82 3.18 1.28 1.02 1.00 1.01
1.00 1.00 1.00 1.00 1.06 1.37 3.18 6.42 13.11
0.77 0.76 0.75 0.71 0.52 0.16 0.06 0.03 0.03
0.77 0.76 0.75 0.71 0.52 0.19 0.15 0.15 0.15
19.46 27.48 27.95 27.80 27.87 25.88 19.92 17.75 16.75

B.4.11. Figure B.47. - Scheduler 11

0 0.125 0.25 0.5 1 2 4 8 16
Latency

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
100000 -

Average
Schedule
Length

2 .
i

i
i i

S/C
p/c
P Eff
C Eff
CPU Sec

I I I I I I I I I

Latency

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 99.41 38.96 1.33 2.22 7.11
5.36 5.26 5.15 4.89 3.32 0.85 0.29 0.15 0.08
5.36 5.26 5.15 4.89 3.37 1.22 1.00 1.00 1.01
1.00 1.00 1.00 1.00 1.01 1.43 3.47 6.88 13.23
0.77 0.76 0.74 0.72 0.54 0.16 0.05 0.03 0.03
0.77 0.76 0.74 0.72 0.54 0.19 0.15 0.15 0.15

1 49.89 57.91 58.45 58.33 58.15 54.14 48.40 45.42 43.83

B.4.12. Figure B.48. - Scheduler 12

500000

Schedule 400000
Length

300000

0 0.125 0.25 0.5 1 2 4 8 16
Latency

Average
Schedule
Length

0 0.125 0.25 0.5 1 2 4 8 16
Latency

%PIS
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Latency
0 0.125 0.25 0.5 1 2 4 8 16

100.00 100.00 100.00 100.00 95.56 6.96 0.00 1.33 5.78
4.90 4.66 4.28 3.20 1.62 0.61 0.25 0.12 0.06
4.90 4.66 4.28 3.20 1.73 1.01 1.00 1.00 1.01
1.00 1.00 1.00 1.00 1.07 1.65 4.02 8.52 17.41
0.75 0.72 0.68 0.54 0.26 0.09 0.04 0.02 0.02
0.75 0.72 0.68 0.54 0.26 0.15 0.15 0.15 0.15

19.63 24.19 23.56 20.50 16.88 12.14 9.66 8.77 8.19

B.6. Scheduler Performance By Processor Count

B.S.1. Figure B.49. - Scheduler 1

4 8 16

Processor Count

Schedule 30000 -
Length

20000 -
10000 -

0 -

Average
Schedule 10000 -
Length

d

I I I
4 8 16

Processor Count

I

%P<S
s /P
S I C
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

79.90 90.47 96.84
1.59 2.75 3.98
1.95 2.90 4.05
1.23 1.05 1.02
0.63 0.55 0.44
0.65 0.56 0.44

22.33 110.17 913.15

B.6.2. Figure B.60. - Scheduler 2

Schedule
Length

Average
Schedule 10000 -
Length

4 8 16
Processor Count

Processor Count

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

81.09 91.75 98.37
1.56 2.75 3.98
1.95 2.89 4.01
1.25 1.05 1.01
0.63 0.55 0.44
0.64 0.55 0.44

54.02 142.68 940.55

B.6.3. Figure B.51. - Scheduler 3

70000

Schedule ~ O O O O
Length

30000

20000

10000

0 L
Processor Count

Average
Schedule 10000 - - - - - - - - - - - - - - - - - - - - - - - - - -
Length

4 8 16
Processor Count

%P<S
s / P
s/c
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

78.62 90.37 97.43
1.45 2.69 4.13
1.89 2.90 4.17
1.31 1.08 1.01
0.61 0.55 0.45
0.63 0.56 0.45

26.53 146.93 1235.87

B.6.4. Figure B.62. - Scheduler 4

Schedule 40000
Length

30000

20000 i
10000 i

f a i
d

Average
Schedule 1- -
Length

I I I

4 8 16

Processor Count

Processor Count

%P<S
S F '
s/c
p/c
P Eff
C Efl
CPU Sec

Processor Count
4 8 16

79.36 90.67 97.28
1.43 2.70 4.12
1.90 2.90 4.16
1.32 1.07 1.01
0.61 0.55 0.45
0.63 0.56 0.45

401.09 520.76 1679.76

B.6.6. Figure B.63. - Scheduler 6

Schedule 80000

Length 60000

20000

Average
Schedule 10000 -
Length

Processor Count

4 8 16
Processor Count

%P<S
s /P
s/c
p/c
P Eff
C EB
C P U Sec

Processor Count
4 8 16

67.31 80.00 83.21
0.87 1.51 1.82
1.76 2.43 3.04
2.02 1.61 1.67
0.56 0.50 0.39
0.60 0.51 0.40
3.09 3.55 4.50

B.S.6. Figure B.54. - Scheduler 6

1 OOOOO
2

j
1

Schedule
Length 60000 i

4 8 16
Processor Count

Average
Schedule 10000 -
Length

4 8 16

Processor Count

%P<S
s / P
s/c
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

66.37 79.75 86.02
0.81 1.62 2.19
1.73 2.38 3.10
2.13 1.47 1.41
0.54 0.48 0.39
0.59 0.50 0.39

37.83 46.06 90.50

B.5.7. Figure B.55. - Scheduler 7

120000 -
100000 -
80000 - Schedule

Length 60000 -
40000 -
20000 -

0 -

i

1 1

I

i ! I

I

1 i i
i 1
i i

C i - 2 A

I i I

20000 -

15000 -
Average
Schedule 1OOOO -,
Length

5000 -

4 8 16
Processor Count

%P<S
S I P
s/c
p/c
P Eff
C Eff
CPU Sec

4 8 16
Processor Count

, - - - - -

Processor Count
4 8 16

65.88 79.46 85.98
0.79 1.60 2.20
1.72 2.37 3.10
2.19 1.48 1.41
0.54 0.48 0.39
0.59 0.49 0.39
6.58 14.85 59.04

-

I I

I I I

B.S.8. Figure B.58. - Scheduler 8

100000

Schedule

Length 60000

40000

20000 i

i
d

i
f -

Processor Count

Average
Schedule ~ O O O O
Length

4 8 16
Processor Count

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

66.27 80.44 86.57
0.73 1.62 2.29
1.70 2.38 3.24
2.33 1.47 1.42
0.53 0.49 0.40
0.58 0.50 0.41

12.64 30.62 127.67

B.5.9. Figure B.57. - Scheduler 9

Schedule
Length

Average
Schedule 10000 -
Length

I I I
4 8 16

Processor Count

Processor Count

%P<S
s/P
s/c
p/c
P Eff
C Efl
CPU Sec

Processor Count
4 8 16

64.54 77.78 84.69
0.70 1.37 1.88
1.64 2.17 2.75
2.33 1.59 1.46
0.48 0.41 0.31
0.53 0.42 0.31
1.23 1.23 1.23

B.6.10. Figure B.58. - Scheduler 10

500000

Schedule ~OOOOO
Length

300000

4 8 16
Processor Count

Average
Schedule
Length

4 8 16

Processor Count

%P<S
s/p
SIC
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

58.96 62.37 63.75
0.33 0.37 0.39
1.63 1.92 2.06
4.90 5.15 5.31
0.50 0.43 0.33
0.57 0.46 0.34

10.21 16.09 43.99

B.5.11. Figure B.59. - Scheduler 11

700000

i 600000

500000

Schedule 400000 i I

Length i
300000

I I
200000 i i i

I i
100000

0
i i

a

Processor Count

Average
Schedule
Length

4 8 16
Processor Count

%P<S
s /P
s/c
p/c
P Efl
C Eff
CPU Sec

Processor Count
4 8 16

58.77 61.83 62.42
0.33 0.36 0.37
1.63 1.92 2.04
4.91 5.39 5.58
0.50 0.43 0.33
0.57 0.47 0.34

40.00 45.74 72.43

B.S.12. Figure B.60. - Scheduler 12

700000

600000

Schedule 400000
Length 300000

200000

1 o m
n

Processor Count

Average 25000
Schedule
Length

15000

4 8 16
Processor Count

%P<S

s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Processor Count
4 8 16

55.70 56.64 57.53
0.26 0.28 0.28
1.54 1.67 1.68
5.91 6.02 6.01
0.46 0.35 0.24
0.54 0.38 0.26
6.32 11.51 30.01

APPENDM C

Comparison of Schedulers By Problem Characteristic

In this appendix the performance of different schedulers is compared for each variable

in the problem space. The variables are: task distribution, average parallelism, program

size, communication latency, and processor count. It shows how different schedulers respond

t o a given characteristic, such as program size. Each scheduler/characteristic pair uses a

histogram chart, a bar chart, and a table. The histogram chart shows histograms side-by-

side, t o compare the distributions of schedule lengths for the different schedulers (1 through

12). The bar chart shows the average sequential schedule length (dashed line), the average

length of the parallel schedules, and the average length of min(sequentia1 schedule, parallel

schedule), which is referred t o as the corrected schedule length. This third item recognizes

tha t the parallel schedules generated by the different schedulers are not always shorter than

a sequential schedule, and shows the effect of selecting the shorter of the two.

The table gives specific values of interest in a numerical form. The values are:

% P I S Percentage of parallel schedules tha t were shorter than a sequential schedule.

S /P
T,

The speedup gained by the parallel schedule, or -, where To is the length of a
TP

sequential schedule and Tp is the length of the parallel schedule.

s/c To
The speedup gained by the corrected schedule, or -, where Te is the length of

Te

the corrected schedule.

p/c The speedup gained by correcting the parallel schedule for schedules which are

P longer than a sequential schedule, or -.
Tc

T, P Eff This entry gives the parallel e f i c i e n c y of a schedule, defined a s - , where n
n X T ,

is the number of available processors.

1 8 C Eff This entry gives the cor rec t ed parallel e f i c i e n c y of a schedule, defined as -
n X T , '

where n is the number of available processors.

CPU Sec This field gives the average number of CPU seconds on a Sequent symmetrym

used t o schedule the programs.

C.1. A11 Test Cases

C.1.1. Figure C.1. - All Tests (6075 Cases)

Average
Schedule
Length

500000 -
Schedule 400000 -
Length

300000 -
200000 -
100000 -

0-

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

-1111

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

I I I i I I I I

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.07 90.40 88.81 89.10 76.84 77.38 77.10 77.76 75.67 61.70 61.00 56.63
2.41 2.39 2.30 2.29 1.27 1.30 1.28 1.24 1.12 0.36 0.35 0.27
2.72 2.71 2.69 2.70 2.29 2.27 2.26 2.27 2.09 1.86 1.85 1.63
1.13 1.13 1.17 1.18 1.81 1.74 1.77 1.84 1.87 5.10 5.27 5.98
0.54 0.54 0.54 0.54 0.48 0.47 0.47 0.47 0.40 0.42 0.42 0.35
0.55 0.54 0.55 0.55 0.50 0.49 0.49 0.50 0.42 0.46 0.46 0.39

348.55 379.08 469.78 867.21 3.72 58.13 26.83 56.98 1.23 23.43 52.72 15.95

C.2. Comparison By Task Distribution

C.2.1. Figure C.2. - Distribution = 0 (675 Cases)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

700000 -
600000 -
500000 -

Schedule 400000 -
Length 300000 -

200000 -
100000

I

I . i i J s ~ i - - i A A i ~ ~
I I I I I I I I I I I I I

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

91.26 93.04 91.11 91.41 76.59 77.93 78.07 78.52 75.11 64.00 63.11 59.26
2.49 2.43 2.42 2.40 1.26 1.38 1.35 1.31 1.09 0.46 0.41 0.33
2.71 2.71 2.70 2.70 2.26 2.35 2.34 2.35 2.08 1.85 1.84 1.64
1.09 1.12 1.12 1.13 1.78 1.70 1.73 1.79 1.91 4.03 4.49 5.01
0.57 0.57 0.57 0.57 0.51 0.51 0.51 0.51 0.40 0.44 0.45 0.37
0.58 0.57 0.58 0.58 0.52 0.53 0.53 0.53 0.42 0.48 0.48 0.41

324.47 352.66 419.27 798.10 2.98 54.50 25.37 50.05 1.19 19.86 46.83 14.30

C.2.2. Figure C.3. - Distribution = 1 (676 Cases)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

700000 -
600000 -
500000 -

Schedule ~OOOOO -
Length

300000 -
200000 -
1ooooo

,I
I !

: i = i i - i i i i . A J i A J J
I I 1 I I I I I I I I I I

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.04 90.67 93.19 93.33 78.07 78.07 77.78 79.26 75.26 62.96 62.96 58.07
2.46 2.40 2.61 2.51 1.29 1.36 1.33 1.32 1.11 0.43 0.40 0.31
2.72 2.71 2.86 2.85 2.28 2.30 2.30 2.35 2.09 1.87 1.84 1.68
1.11 1.13 1.09 1.14 1.77 1.70 1.73 1.78 1.88 4.30 4.60 5.41
0.55 0.55 0.57 0.57 0.49 0.48 0.48 0.50 0.40 0.43 0.43 0.38
0.56 0.55 0.57 0.57 0.51 0.50 0.50 0.52 0.42 0.47 0.47 0.42

329.20 358.93 425.95 815.98 3.38 55.39 25.42 52.41 1.21 21.73 49.04 15.60

C.2.3. Figure C.4. - Distribution = 2 (675 Cases)

Average
Schedule 8000 -

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
loo000

o~

Length 6000 -

1

I i
i

- , 1 , ii J L J ~ ~ J J
I I I I I I I I I I I I I

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
sb'
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

88.59 89.93 93.19 93.19 77.33 76.74 76.30 78.81 75.11 60.00 58.81 56.89
2.38 2.37 2.69 2.70 1.32 1.31 1.29 1.33 1.13 0.39 0.39 0.30
2.68 2.67 3.01 3.03 2.29 2.23 2.22 2.35 2.07 1.84 1.82 1.69
1.13 1.13 1.12 1.12 1.74 1.70 1.72 1.76 1.84 4.66 4.64 5.69
0.53 0.52 0.57 0.57 0.47 0.45 0.45 0.49 0.39 0.41 0.41 0.37
0.53 0.53 0.57 0.57 0.49 0.47 0.47 0.50 0.42 0.45 0.45 0.42

336.16 368.04 433.74 824.09 4.18 57.03 25.95 55.03 1.24 24.74 52.50 17.22

C.2.4. Figure C.6. - Distribution = 3 (676 Cases)

Schedule 4-
Length

300000

200000 1
!

100000

--~~ii-iiiii~

Average
Schedule 8000 -
Length 6000 -

1 1 1 1 1 1 1 1 1 1 1 1 1
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S

s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

90.22 91.56 88.44 88.74 76.74 77.93 77.63 78.37 75.41 61.48 62.07 58.67
2.38 2.39 2.24 2.25 1.22 1.32 1.29 1.24 1.11 0.33 0.35 0.27
2.73 2.72 2.61 2.60 2.26 2.30 2.29 2.28 2.10 1.86 1.87 1.61
1.15 1.14 1.16 1.16 1.84 1.74 1.77 1.84 1.88 5.62 5.33 5.90
0.55 0.55 0.54 0.54 0.49 0.48 0.48 0.48 0.40 0.43 0.43 0.34
0.56 0.55 0.55 0.55 0.51 0.50 0.50 0.50 0.42 0.47 0.47 0.38

345.11 373.73 460.77 853.34 3.32 57.21 26.46 54.65 1.22 20.81 50.58 14.91

C.2.5. Figure C.6. - Distribution = 4 (675 Cases) .

Schedule ~OOOOO

200000
!

100000 i ' i i ; i I =-!iJiii~~1 J
0 :::

Average
Schedule 8000 -
Length 6000 -

1 1 1 1 1 1 1 1 1 1 1 1 1
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.19 89.93 88.00 89.04 76.15 78.22 77.93 77.93 76.15 62.22 61.33 55.85
2.46 2.39 2.22 2.23 1.27 1.33 1.30 1.22 1.13 0.42 0.35 0.29
2.75 2.74 2.66 2.66 2.31 2.30 2.30 2.27 2.12 1.88 1.84 1.63
1.12 1.15 1.19 1.19 1.81 1.74 1.77 1.86 1.87 4.47 5.31 5.70
0.55 0.55 0.54 0.54 0.49 0.48 0.48 0.47 0.40 0.43 0.43 0.35
0.56 0.55 0.55 0.55 0.51 0.50 0.50 0.50 0.43 0.47 0.47 0.40

349.93 380.61 477.16 875.43 3.56 57.89 26.89 57.34 1.23 22.38 52.23 15.82

C.2.6. Figure C.7. - Distribution = 5 (875 Cases)

Schedule 400000
Length

300000

200000

100000 I I

I I I I I I I I I I I I I
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Average
Schedule
Length

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s/P
s/c
p/c
P Eff
C Eff
CF'U Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.30 90.07 87.85 88.44 77.33 77.04 76.89 77.48 76.44 61.63 59.41 56.59
2.38 2.42 2.28 2.27 1.29 1.28 1.25 1.21 1.14 0.36 0.33 0.27
2.74 2.73 2.70 2.70 2.34 2.26 2.25 2.26 2.12 1.85 1.84 1.62
1.15 1.13 1.19 1.19 1.81 1.77 1.80 1.86 1.86 5.19 5.56 5.97
0.54 0.53 0.53 0.53 0.48 0.46 0.46 0.47 0.40 0.41 0.41 0.35
0.54 0.54 0.54 0.54 0.50 0.48 0.48 0.49 0.43 0.45 0.45 0.40

357.54 388.22 486.70 888.79 3.92 59.25 27.42 59.87 1.24 24.88 54.42 16.73

181

C.2.7. Figure C.8. - Distribution = 6 (675 Cases)

Schedule 400000
Length

300000

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Average
Schedule 8000

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

% P I S
S F '
s/c
p/C
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

87.85 88.44 85.04 84.59 75.85 76.59 76.30 76.30 75.41 60.15 60.44 53.33
2.35 2.32 2.11 2.13 1.23 1.24 1.21 1.17 1.10 0.33 0.31 0.23
2.69 2.68 2.54 2.54 2.26 2.22 2.20 2.20 2.07 1.84 1.85 1.57
1.15 1.15 1.21 1.19 1.84 1.79 1.82 1.88 1.88 5.64 6.02 6.85
0.52 0.52 0.51 0.51 0.47 0.45 0.45 0.45 0.39 0.41 0.41 0.31
0.53 0.53 0.52 0.52 0.49 0.48 0.47 0.47 0.41 0.45 0.45 0.36

363.99 395.58 507.85 914.43 3.93 60.57 27.83 60.13 1.24 24.10 55.65 15.63

C.2.8. Figure C.9. - Distribution = 7 (676 Cases)

600000

500000

Schedule 400000
Length 300000

200000

Average
Schedule 8000 -

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

I I I I I I I I I I I I

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

% P I S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.59 90.81 85.78 85.93 76.30 77.48 76.89 76.74 76.00 62.81 60.59 55.11
2.39 2.43 2.15 2.16 1.25 1.27 1.24 1.18 1.13 0.33 0.34 0.25
2.72 2.72 2.61 2.61 2.31 2.25 2.24 2.22 2.10 1.88 1.88 1.61
1.14 1.12 1.21 1.21 1.84 1.77 1.80 1.89 1.87 5.67 5.48 6.32
0.53 0.53 0.52 0.52 0.48 0.46 0.46 0.46 0.40 0.42 0.41 0.33
0.54 0.54 0.53 0.53 0.50 0.48 0.48 0.48 0.42 0.46 0.46 0.38

362.50 393.50 503.09 909.83 3.96 60.19 27.71 60.70 1.24 24.16 55.02 16.41

(2.2.9. Figure C.lO. - Distribution = 8 (675 Cases)

Average
Schedule 8000 -

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
100000 -

0 -

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

I ! I

!

i ' J i
--iiiiij-ii A i

I I I I I I I I I I I I I
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s/P
s/c
p/c
P EB
C EB
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.59 89.19 86.67 87.26 77.19 76.44 76.15 76.44 76.15 60.00 60.30 55.85
2.42 2.37 2.12 2.10 1.29 1.25 1.23 1.16 1.14 0.29 0.31 0.23
2.71 2.71 2.63 2.63 2.33 2.24 2.23 2.20 2.11 1.84 1.83 1.61
1.12 1.14 1.24 1.25 1.81 1.79 1.82 1.90 1.85 6.33 5.98 6.88
0.53 0.53 0.52 0.52 0.48 0.45 0.45 0.45 0.40 0.41 0.41 0.34
0.54 0.53 0.53 0.53 0.50 0.47 0.47 0.47 0.42 0.45 0.45 0.39

368.47 400.46 513.46 924.85 4.19 61.12 28.38 62.60 1.26 28.19 58.25 16.89

C.3. Comparison By Parallelism

C.3.1. Figure C.11. - 1.6 < Parallelism < 3 (135 Cases)

Average
Schedule
Length

180000 -
160000 -
140000 -
120000 -

Schedule 100000 -
Length 80000 -

60000 -
40000 -
20000 -

0 -

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

1

- - j : j j i i j j j 1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

I I I I I I I 1 I I I I 1

%P<S
SP-
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

100.00 100.00 100.00 100.00 77.78 66.67 66.67 66.67 61.48 73.33 77.78 73.33
1.87 1.89 1.91 1.91 1.44 0.76 0.76 0.77 0.61 1.37 1.43 1.24
1.87 1.89 1.91 1.91 1.63 1.58 1.58 1.58 1.45 1.57 1.64 1.53
1.00 1.00 1.00 1.00 1.13 2.09 2.09 2.07 2.39 1.15 1.14 1.23
0.34 0.34 0.34 0.34 0.31 0.27 0.27 0.27 0.21 0.29 0.30 0.28
0.34 0.34 0.34 0.34 0.31 0.30 0.30 0.30 0.25 0.30 0.31 0.29

171.53 183.66 198.23 388.22 1.54 30.87 16.44 25.44 0.79 5.85 19.89 5.49

C.3.2. Figure C.12. - 3 < Parallelism < 6 (1080 Cases)

Average
Schedule 8000 -

180000 -
160000 -
140000 -
120000 -

Schedule 100000 -
Length 80000

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

i

i

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

60000 -
40000 -
20000 -

0 --

:

! i
I i i i i

i
j f i ! : i ! - ' j ' A J j j J

i i 1 - i -

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

I I I I I I I I I I I I 1

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.52 95.46 88.43 88.52 69.26 66.02 65.19 65.00 63.15 58.70 60.28 58.06
1.82 1.93 1.78 1.78 0.96 0.74 0.73 0.73 0.64 0.76 0.77 0.59
1.94 1.96 1.96 1.96 1.68 1.56 1.56 1.56 1.46 1.55 1.58 1.44
1.07 1.02 1.10 1.10 1.76 2.12 2.13 2.13 2.28 2.04 2.06 2.43
0.33 0.34 0.33 0.33 0.29 0.25 0.25 0.25 0.21 0.26 0.27 0.23
0.34 0.34 0.34 0.34 0.31 0.28 0.28 0.28 0.25 0.29 0.30 0.27

203.84 217.03 234.00 463.48 1.72 34.53 17.23 28.98 0.87 7.94 24.87 6.96

C.3.3. Figure C.13. - 6 < Parallelism < 12 (1215 Cases)

Schedule
Length 300000

Average
Schedule
Length

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<s
s /P
s/C
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.40 89.88 87.65 87.41 72.76 74.07 74.07 74.07 72.76 59.01 59.18 55.72
2.21 2.21 2.09 2.08 0.94 1.13 1.11 1.09 0.93 0.40 0.42 0.32
2.49 2.46 2.49 2.48 2.03 1.97 1.96 1.97 1.78 1.73 1.76 1.55
1.13 1.12 1.19 1.20 2.17 1.74 1.77 1.80 1.91 4.30 4.24 4.84
0.46 0.46 0.46 0.46 0.40 0.38 0.38 0.38 0.31 0.35 0.36 0.28
0.47 0.46 0.47 0.47 0.42 0.40 0.40 0.40 0.33 0.39 0.40 0.33

250.10 269.72 297.69 567.71 1.98 39.91 19.43 36.46 0.95 11.72 31.71 9.55

C.3.4. Figure C.14. - 12 < Parallelism < 24 (1215 Cases)

Average
Schedule
Length

600000 -
500000 -
400000 -

Schedule
Length 300000 -

200000 -

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

! j j

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
s/P
s/c
p/c
P Efr
C Efr
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.89 88.97 88.89 89.38 76.46 78.52 78.11 79.26 77.45 61.48 62.22 55.64
2.52 2.48 2.41 2.43 1.23 1.48 1.44 1.37 1.22 0.30 0.31 0.25
2.97 2.93 2.89 2.89 2.32 2.33 2.32 2.33 2.11 1.89 1.92 1.65
1.18 1.18 1.20 1.19 1.89 1.58 1.62 1.71 1.72 6.22 6.21 6.68
0.57 0.56 0.56 0.57 0.50 0.49 0.49 0.50 0.40 0.44 0.44 0.36
0.58 0.57 0.57 0.57 0.52 0.51 0.51 0.52 0.42 0.48 0.48 0.41

280.26 303.77 338.98 639.18 2.20 43.70 20.86 41.35 1.00 15.25 37.43 11.85

C.3.6. Figure C.15. - 24 < Parallelism < 48 (972 Cases)

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

600000 -

500000 -

400000 -
Schedule
Length 300000 -

200000 -
1OOO00 -

10000
Average
Schedule 8000

Length 6000

! I

I I !

, I
I '

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

0 - =dJi~~--ii ,

%P<S
s / P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.51 89.09 89.40 90.33 80.97 83.85 83.85 84.98 80.56 63.99 61.73 56.58
2.76 2.70 2.61 2.56 1.55 1.70 1.65 1.52 1.45 0.28 0.27 0.23
3.21 3.20 3.04 3.04 2.58 2.65 2.64 2.64 2.40 2.01 1.98 1.72
1.16 1.18 1.16 1.19 1.66 1.56 1.60 1.74 1.65 7.11 7.36 7.38
0.65 0.64 0.64 0.64 0.58 0.57 0.57 0.58 0.48 0.50 0.50 0.41
0.65 0.65 0.65 0.65 0.60 0.59 0.59 0.60 0.50 0.54 0.54 0.46

363.91 395.41 475.82 870.06 3.08 57.17 26.86 55.60 1.25 22.59 51.88 16.62

C.3.6. Figure C.16. - 48 < Parallelism < 96 (729 Cases)

600000 -
500000 -

400000 -
Schedule
Length 300000 -

200000 - I
100000 - I I

,,
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

12000 -
Average 10000 -
Schedule
Length 8000 -

6000 -

Schedule Length

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s/P
s/c
P/C
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.16 88.34 88.89 89.30 82.72 84.22 84.09 85.05 83.54 65.02 61.18 56.79
2.82 2.70 2.64 2.63 1.68 1.80 1.75 1.60 1.59 0.35 0.29 0.23
3.22 3.22 3.09 3.09 2.75 2.85 2.84 2.82 2.65 2.06 1.96 1.73
1.14 1.19 1.17 1.17 1.64 1.59 1.62 1.77 1.66 5.86 6.65 7.44
0.68 0.68 0.68 0.68 0.62 0.63 0.62 0.63 0.55 0.54 0.53 0.44
0.69 0.69 0.69 0.69 0.64 0.64 0.64 0.65 0.57 0.58 0.57 0.49

473.72 514.76 680.99 1205.80 4.84 76.72 35.26 78.74 1.58 34.76 73.10 23.24

C.3.7. Figure C.17. - 96 < Parallelism < 192 (488 Cases)

Schedule qOOOOO
Length

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Average
Schedule
Length

Average Sequential
Schedule Length

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

88.68 88.48 88.68 88.68 84.16 84.57 83.95 85.39 84.57 63.79 59.88 54.73
2.70 2.62 2.54 2.53 1.66 1.79 1.75 1.65 1.63 0.36 0.34 0.23
3.10 3.10 3.11 3.12 2.81 2.89 2.88 2.90 2.74 2.03 1.97 1.73
1.14 1.18 1.23 1.23 1.70 1.61 1.65 1.75 1.69 5.62 5.72 7.48
0.70 0.69 0.70 0.70 0.65 0.65 0.65 0.66 0.60 0.55 0.54 0.46
0.70 0.70 0.71 0.71 0.66 0.67 0.67 0.68 0.61 0.59 0.59 0.51

637.22 697.28 985.83 1750.92 8.92 11 1.04 48.60 119.16 2.06 55.88 111.80 34.02

C.3.8. Figure C.18. - 192 < Parallelism < 384 (243 Cases)

20000 -
Average
Schedule 15000 -
Length

loo00 -

Schedule 400000
Length

300000 -
200000 -
100000 -

0-

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

L I

i i
! i i

- I I fiiii j; -2

Schedule Length

I I I I I I I I I I I I

I I I I I I I I I I I I

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s /P
s/c
p/c
P EfT
C EfT
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.48 87.65 87.24 88.07 83.54 83.95 84.36 85.60 83.95 59.67 56.79 53.91
2.55 2.42 2.43 2.42 1.54 1.66 1.61 1.67 1.54 0.29 0.29 0.21
2.86 2.86 3.09 3.10 2.72 2.77 2.76 2.91 2.68 1.92 1.86 1.68
1.12 1.18 1.27 1.28 1.76 1.67 1.71 1.74 1.74 6.66 6.50 7.97
0.68 0.68 0.71 0.71 0.64 0.65 0.65 0.67 0.61 0.54 0.53 0.44
0.69 0.69 0.72 0.72 0.66 0.67 0.67 0.69 0.63 0.58 0.58 0.50

909.51 1022.49 1493.03 2770.58 18.79 183.65 73.04 195.49 2.82 105.92 200.41 53.51

C.4. Comparison By Program Sice

C.4.1. Figure C.19. - Program s i ~ e = 128 (729 Cases)

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

25000 -
20000 -

Schedule 15000 -
Length

10000 -
5000 -

o

Average
Schedule
Length

1 !

!

I
!
I

! : i i I

-- J A J J

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

I 1 I 1

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPUSec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

87.65 91.36 88.07 88.20 73.25 72.70 72.70 73.11 70.92 60.77 61.04 57.48
2.07 2.09 2.02 2.02 0.95 1.01 0.99 1.02 0.88 0.44 0.46 0.38
2.24 2.25 2.28 2.28 1.94 1.88 1.88 1.91 1.76 1.72 1.73 1.58
1.08 1.07 1.13 1.13 2.05 1.87 1.90 1.87 2.00 3.90 3.75 4.13
0.44 0.44 0.44 0.44 0.39 0.37 0.37 0.38 0.32 0.35 0.35 0.30
0.44 0.44 0.45 0.45 0.41 0.39 0.39 0.40 0.34 0.38 0.39 0.35

36.53 36.64 38.91 41.81 0.26 3.20 2.97 4.64 0.11 1.86 2.01 1.58

C.4.2. Figure C.20. - Program sice = 266 (972 Cases)

2500 -
Average
Schedule 2000 -
Length 1500 -

70000 -
60000 -
50000 -

Schedule 40000-

Length 30000 -
20000 -
10000 -

0

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

1 i

I j
i !

! i :
i : 1 i i i i i

A J ~ ~ J J J i
dj 1 -- 1

I I I I I I I I I I I I

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

I I I 1 I I I I I 1 1 I I

%P<s
s/P
s/c
p/c
P Eff
C Eff
CPUSec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

88.89 90.64 88.58 88.58 74.38 74.69 74.38 75.82 72.84 60.49 60.80 56.48
2.22 2.21 2.17 2.14 1.06 1.12 1.10 1.11 0.92 0.38 0.44 0.32
2.42 2.41 2.44 2.45 2.06 2.02 2.01 2.05 1.82 1.76 1.77 1.60
1.09 1.09 1.13 1.14 1.94 1.80 1.84 1.84 1.99 4.66 4.04 4.95
0.49 0.49 0.49 0.49 0.44 0.42 0.42 0.43 0.33 0.39 0.39 0.33
0.50 0.49 0.50 0.50 0.46 0.44 0.44 0.45 0.36 0.43 0.42 0.38

79.69 80.76 86.89 99.53 0.62 7.28 6.31 10.97 0.27 4.38 5.09 3.52

C.4.3. Figure C.21. - Program size = 512 (1215 Cases)

100000 I
Schedule i !

Length 75000 ! t 1
50000 ! i

i i I i
25000 i i I i i i

i i i i
i j i i i i i i i i

j i i i 1 i - i ~
I

I 1 I I I I I I I I I I I I

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

Average
Schedule
Length

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

88.97 89.96 88.64 88.97 76.63 77.20 76.87 77.70 74.73 60.82 60.16 56.79
2.33 2.30 2.18 2.19 1.17 1.20 1.18 1.17 1.01 0.37 0.38 0.29
2.57 2.56 2.58 2.58 2.17 2.13 2.13 2.16 1.95 1.80 1.82 1.62
1.10 1.11 1.19 1.18 1.86 1.77 1.80 1.84 1.92 4.87 4.77 5.57
0.54 0.53 0.54 0.54 0.48 0.46 0.46 0.47 0.38 0.42 0.42 0.35
0.54 0.54 0.54 0.54 0.50 0.48 0.48 0.49 0.40 0.46 0.46 0.40

170.33 173.16 197.48 255.76 1.43 17.77 13.16 23.79 0.59 9.91 13.82 7.58

C.4.4. Figure C.22. - Program s i ~ e = 1024 (1458 Cases)

Average
Schedule
Length

350000 -
300000 -
250000 -

Schedule 2- -
Length

150000 -
1OOOOO -
50000 -

0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

1 I

i 1 I 1
i !
I i

i i i i ~ J ~ j j J j , i -- A

I I I I I I I I I I I I I
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<s
SP-
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.44 89.71 88.75 89.09 78.05 79.01 78.46 78.94 77.09 62.41 61.39 56.72
2.38 2.36 2.27 2.26 1.25 1.28 1.26 1.22 1.09 0.37 0.36 0.28
2.68 2.67 2.67 2.67 2.26 2.24 2.23 2.25 2.06 1.83 1.84 1.63
1.13 1.13 1.18 1.18 1.81 1.75 1.78 1.84 1.89 4.95 5.13 5.81
0.57 0.56 0.56 0.56 0.51 0.50 0.49 0.50 0.42 0.44 0.44 0.36
0.57 0.57 0.57 0.57 0.53 0.52 0.51 0.52 0.44 0.48 0.48 0.40

362.19 382.43 458.79 714.34 3.45 47.95 27.75 55.76 1.27 22.77 42.07 16.28

C.4.5. Figure C.23. - Program siee = 2048 (1701 Cases)

20000 -
Average
Schedule 15000 -
Length

10000 -

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
100000 -

0 -

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

i i
: I !

i i i
i I i i i I i

l i l Ai l~ i j i t
d 1

Schedule Length

I I I I I I I I I I I I I

Scheduler

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

89.54 90.77 89.42 89.89 78.89 79.66 79.54 79.89 78.78 62.79 61.38 56.14
2.47 2.44 2.36 2.34 1.33 1.36 1.33 1.27 1.18 0.36 0.34 0.26
2.80 2.80 2.76 2.76 2.36 2.34 2.34 2.33 2.17 1.89 1.86 1.63
1.14 1.14 1.17 1.18 1.77 1.73 1.76 1.84 1.84 5.28 5.55 6.25
0.60 0.59 0.59 0.59 0.54 0.53 0.53 0.53 0.46 0.46 0.46 0.37
0.60 0.60 0.60 0.60 0.55 0.55 0.54 0.55 0.48 0.50 0.50 0.41

751.52 840.53 1077.15 2227.39 8.82 148.28 57.75 130.44 2.68 53.78 138.59 34.89

C.5. Comparison By Communication Latency

C.5.1. Figure C.24. - Latency = 0 (675 Cases)

8000 -PO

Schedule
Length 40°0 i i i j i i , j

-
2000 - 1 l J 1 1 1 1 J

0 i i j i i i i i

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

12000 -

Average
8000 - Schedule

Length 6000 -
4000 -

Avera e Sequential
~cheau l e Length

lOOOO-,,,,-- . J

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5.41 5.40 5.40 5.40 5.38 5.40 5.40 5.39 4.51 5.34 5.36 4.90
5.41 5.40 5.40 5.40 5.38 5.40 5.40 5.39 4.51 5.34 5.36 4.90
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.64 0.77 0.77 0.75
0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.64 0.77 0.77 0.75

236.01 269.11 289.44 693.65 3.80 48.06 17.19 33.51 1.23 19.46 49.89 19.63

C.6.2. Figure C.25. - Latency = 0.125 (676 Cases)

6000
Schedule
Length

4000

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Average Sequential
Schedule Length

,-,,- ---------,,--,,---,-------------------

Average
8000

J
Schedule
Length 6000

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s / P
s/c
PIC
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5.39 5.36 5.39 5.39 5.34 5.24 5.24 5.29 4.41 5.28 5.26 4.66
5.39 5.36 5.39 5.39 5.34 5.24 5.24 5.29 4.41 5.28 5.26 4.66
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.77 0.76 0.77 0.77 0.76 0.75 0.75 0.77 0.63 0.76 0.76 0.72
0.77 0.76 0.77 0.77 0.76 0.75 0.75 0.77 0.63 0.76 0.76 0.72

367.55 398.91 783.10 1147.67 3.81 58.07 26.89 93.66 1.23 27.48 57.91 24.19

C.6.3. Figure C.26. - Latency = 0.25 (875 Cases)

Schedule
Length

5000 -

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

Avera e Sequential
~ c h e a u l e Length

12000

,,--- ---------,---,---,,-------------------

Average
8000

J
Schedule
Length 6000

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s /P
s/c
p/c
P Eff
C Eff

_CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5.33 5.29 5.32 5.32 5.25 5.04 5.04 5.08 4.28 5.15 5.15 4.28
5.33 5.29 5.32 5.32 5.25 5.04 5.04 5.08 4.28 5.15 5.15 4.28
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.76 0.76 0.76 0.76 0.75 0.73 0.73 0.74 0.61 0.75 0.74 0.68
0.76 0.76 0.76 0.76 0.75 0.73 0.73 0.74 0.61 0.75 0.74 0.68

377.65 408.24 688.41 1065.19 3.80 58.86 27.52 83.21 1.23 27.95 58.45 23.56

C.6.4. Figure C.27. - Latency = 0.5 (676 Cases)

Schedule
Length

Average
Schedule 8000

Length 6000

Average Sequential
Schedule Length

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

ScheduIer
1 2 3 4 5 6 7 8 9 10 11 12

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5.15 5.11 5.15 5.15 5.01 4.63 4.62 4.64 4.00 4.82 4.89 3.20
5.15 5.11 5.15 5.15 5.01 4.63 4.62 4.64 4.00 4.82 4.89 3.20
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.74 0.74 0.74 0.74 0.73 0.69 0.69 0.69 0.59 0.71 0.72 0.54
0.74 0.74 0.74 0.74 0.73 0.69 0.69 0.69 0.59 0.71 0.72 0.54

377.22 408.83 513.20 908.85 3.78 58.97 27.56 61.73 1.23 27.80 58.33 20.50

C.6.5. Figure C.28. - Latency = 1 (875 Cases)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

50000 -
40000 -
30000 -

Schedule

Length 20000 -

10000 -

0 -

-
i

i - i i
" I I i - = , i J ? , j 1 4

I I I I I I I I I I I I I
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<s
SF'
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.52 99.41 95.56
4.63 4.58 4.48 4.48 4.04 3.68 3.66 3.55 3.25 3.00 3.32 1.62
4.63 4.58 4.48 4.48 4.04 3.68 3.66 3.55 3.25 3.18 3.37 1.73
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.01 1.07
0.68 0.67 0.66 0.66 0.61 0.57 0.57 0.56 0.50 0.52 0.54 0.26
0.68 0.67 0.66 0.66 0.61 0.57 0.57 0.56 0.50 0.52 0.54 0.26

373.21 405.98 404.12 807.54 3.76 59.53 27.91 50.06 1.23 27.87 58.15 16.88

C.S.8. Figure C.29. - Latency = 2 (875 Cases)

Average
Schedule
Length

100000 -
90000 -
80000 -
70000 -

Schedule 60000 -
Length 50000 -

40000 -
30000 -
20000 -
10000 -

0 -

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

t

t i :
:

! :
i i i - i - i j i i - ! ; 4 - A , , , , d ; 1 1 1 1 1

I I I I I I I I I 1 1 I I
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s/P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

100.00 100.00 100.00 100.00 98.67 98.96 97.63 97.33 93.33 43.70 38.96 6.96
3.49 3.42 3.28 3.28 2.40 2.25 2.22 2.14 1.97 0.93 0.85 0.61
3.49 3.42 3.28 3.28 2.40 2.25 2.22 2.14 1.99 1.28 1.22 1.01
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.37 1.43 1.65
0.53 0.52 0.51 0.51 0.38 0.37 0.36 0.37 0.31 0.16 0.16 0.09
0.53 0.52 0.51 0.51 0.38 0.37 0.37 0.37 0.31 0.19 0.19 0.15

364.08 397.70 379.77 786.65 3.72 59.83 28.35 47.28 1.23 25.88 54.14 12.14

C.6.7. Figure C.30. - Latency = 4 (875 Cases)

150000 -
Schedule
Length 1oooor~ -

0 -
1 1 1 1 1 1 1 1 1 1 1 1 1

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

12500 -
Average
Schedule 10000 -
Length 7500 -

Schedule Length

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<s

s/c
P I C
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

99.41 98.52 94.67 94.96 51.56 53.48 53.33 54.81 50.96 5.48 1.33 0.00
2.13 2.11 2.01 2.01 1.25 1.23 1.21 1.16 1.06 0.32 0.290.25
2.13 2.11 2.04 2.03 1.48 1.49 1.48 1.51 1.40 1.02 1.00 1.00
1.00 1.00 1.01 1.01 1.18 1.21 1.23 1.30 1.32 3.18 3.47 4.02
0.33 0.32 0.34 0.34 0.20 0.20 0.20 0.21 0.17 0.06 0.050.04
0.33 0.32 0.34 0.34 0.22 0.22 0.22 0.24 0.20 0.15 0.15 0.15

357.92 388.44 380.50 789.18 3.67 60.06 28.65 47.46 1.23 19.92 48.40 9.66

C.S.8. Figure C.31. - Latency = 8 (675 Cases)

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

400000 -

300000 -
Schedule

Length 200000 -

100000 -

0 -

Average
12500 -

Schedule 10000 -
Length

7500 -

,

I

I '

!

E i J

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
SP-
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

65.63 68.15 67.70 69.33 29.78 32.59 31.70 34.07 28.74 1.78 2.22 1.33
1.26 1.24 1.17 1.19 0.61 0.64 0.63 0.61 0.55 0.16 0.15 0.12
1.43 1.43 1.47 1.47 1.16 1.20 1.19 1.21 1.14 1.00 1.00 1.00
1.14 1.16 1.25 1.24 1.89 1.86 1.90 1.99 2.07 6.42 6.88 8.52
0.18 0.18 0.19 0.19 0.10 0.10 0.10 0.11 0.09 0.03 0.03 0.02
0.20 0.20 0.22 0.22 0.16 0.17 0.17 0.17 0.16 0.15 0.15 0.15

351.85 379.80 389.73 799.60 3.60 60.02 28.67 47.84 1.23 17.75 45.42 8.77

205

C.6.9. Figure C.32. - Latency = 16 (676 Cases)

Average
Schedule
Length

600000 -
Schedule 500000 -
Length

400000 -

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

I
I r i ,

Average Sequential
Schedule Length

300000 - I

200000 -
100000 -

0- -

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
s /P
SIC
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

36.59 46.96 36.89 37.63 11.56 11.41 11.26 13.63 8.00 5.78 7.11 5.78
0.82 0.82 0.78 0.76 0.31 0.33 0.32 0.31 0.28 0.08 0.08 0.06
1.12 1.13 1.13 1.13 1.04 1.05 1.05 1.08 1.04 1.01 1.01 1.01
1.37 1.38 1.45 1.47 3.35 3.20 3.28 3.48 3.67 13.11 13.23 17.41
0.12 0.12 0.12 0.12 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.02
0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.150.15 0.15 0.15 0.15

331.47 354.74 399.73 806.52 3.50 59.78 28.69 48.01 1.23 16.75 43.83 8.19

C.0. Comparison By Processor Count

C.6.1. Figure C.33. - Processor count = 4 (2026 Cases)

I i i
Schedule 400000 ! i n

I

I

200000

Average
Schedule
Length

Scheduler

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

%P<S
s /P
s/c
p/c
P Efl
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

79.90 81.09 78.62 79.36 67.31 66.37 65.88 66.27 64.54 58.96 58.77 55.70
1.59 1.56 1.45 1.43 0.87 0.81 0.79 0.73 0.70 0.33 0.33 0.26
1.95 1.95 1.89 1.90 1.76 1.73 1.72 1.70 1.64 1.63 1.63 1.54
1.23 1.25 1.31 1.32 2.02 2.13 2.19 2.33 2.33 4.90 4.91 5.91
0.63 0.63 0.61 0.61 0.56 0.54 0.54 0.53 0.48 0.50 0.50 0.46
0.65 0.64 0.63 0.63 0.60 0.59 0.59 0.58 0.53 0.57 0.57 0.54

22.33 54.02 26.53 401.09 3.09 37.83 6.58 12.64 1.23 10.21 40.00 6.32

C.6.2. Figure C.34. - Processor count = 8 (2025 Cases)

Average
Schedule
Length

700000 -
600000 -
500000 -

Schedule ~OOOOO -
Length

300000 -
200000 -
1OOOOO -

0-

Average Sequential
Schedule Length

! i
i

1 1
!

i I i
1
i

I
I i i I

- d A d 2 - J - - A - l - A J J

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

I I I I I I I I I I I I I
S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Scheduler

%P<S
s /P
s/c
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

90.47 91.75 90.37 90.67 80.00 79.75 79.46 80.44 77.78 62.37 61.83 56.64
2.75 2.75 2.69 2.70 1.51 1.62 1.60 1.62 1.37 0.37 0.36 0.28
2.90 2.89 2.90 2.90 2.43 2.38 2.37 2.38 2.17 1.92 1.92 1.67
1.05 1.05 1.08 1.07 1.61 1.47 1.48 1.47 1.59 5.15 5.39 6.02
0.55 0.55 0.55 0.55 0.50 0.48 0.48 0.49 0.41 0.43 0.43 0.35
0.56 0.55 0.56 0.56 0.51 0.50 0.49 0.50 0.42 0.46 0.47 0.38

110.17 142.68 146.93 520.76 3.55 46.06 14.85 30.62 1.23 16.09 45.74 11.51 ,

C.6.3. Figure C.35. - Processor count = 16 (2025 Csses)

Average
Schedule
Length

700000 -
600000 -
500000 -

Schedule 400000 -
Length

300000 -
200000 -
100000 -

0 -

Average Sequential
Schedule Length

1
i

I
I I I 1 i i : i i i

1 . l j j --!--2-.l-2-i-.i-i J + A

I I I I I I I I I I I I I

a5173.0 m o 348aa7 nnnl

S e q l 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Scheduler

% P I S
s/P
S I C
p/c
P Eff
C Eff
CPU Sec

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

96.84 98.37 97.43 97.28 83.21 86.02 85.98 86.57 84.69 63.75 63.42 57.53
3.98 3.98 4.13 4.12 1.82 2.19 2.20 2.29 1.88 0.39 0.37 0.28
4.05 4.01 4.17 4.16 3.04 3.10 3.10 3.24 2.75 2.06 2.04 1.68
1.02 1.01 1.01 1.01 1.67 1.41 1.41 1.42 1.46 5.31 5.58 6.01
0.44 0.44 0.45 0.45 0.39 0.39 0.39 0.40 0.31 0.33 0.33 0.24
0.44 0.44 0.45 0.45 0.40 0.39 0.39 0.41 0.31 0.34 0.34 0.26

913.15 940.55 1235.87 1679.76 4.50 90.50 59.04 127.67 1.23 43.99 72.43 30.01

APPENDIX D

Relative Efficiencies of Schedulers

This appendix gives plots of the relative efficiencies of different schedules. The relative

efficiency of a schedule is defined as
T# . T, is the length of a sequential schedule

min(p , n) x Tp

for the program, and Tp is the length of the parallel schedule. The values p and n are the

average parallelism in the program and the number of processors in the machine,

respectively.

' 6
Relative efficiency has the advantage over - in tha t the relative efficiency does

n x T P

not penalize a schedule for having more processors than the problem can actually keep busy.

For example, if a program has an average parallelism of 2, then no scheduler will ever have

a parallel speedup tha t exceeds 2, no matter how many processors are available.

Conversely, the fact tha t a particular program has an average parallelism of 2 does

not imply tha t there exists a two-processor schedule which gives tha t parallel parallel

speedup. There could easily be precedence constraints which make all the parallelism

available a t the same instant in time. This would mean tha t half of the graph has no

parallelism, and half has lots of parallelism. In order t o get the speedup of 2, many

processors would have t o be available for the short time when the parallelism is available.

Each page in this appendix contains nine plots, representing the relative efficiencies of

programs as the communication latency varies from 0 t o 16. The x-axis represents the

average parallelism relative t o the number of processors in the system. The y-axis gives the

relative efficiency.

Parallelism / Processor Count

T-
1 8

Scheduler 1 - vs.
n min(p ,n)X T,,

Parallelism / Processor Count

' 8
Scheduler 2 - vs.

n m i n (~ , n) ~ Tp

........ """ "..

4 % ; ' i i I b * ' I

. I !
\

Latency = fb

"" .

: ; : ,

Latency = 2

. 1.0 -. "" "

0.9 -
0.8 - Latency = 4 Latency = 8 Latency = 16
0.7 - i . .

0.6 - . '.
: . :

0.5 -
0.4 5 . . .

0.2 - . - . . .
0.1 -
0.0 -

I I I I I 1 1 1 1 ~
110% Ih 1 2 4 8 1632641/s fb % 1 2 4 8 1 6 3 2 6 4 l I ~ j h Ih 1 2 4 8 1 6 3 2 6 4

.
I " '

\ $, : j i i
! .. 1

1 I
!

Latency = '1s

.

, j i f ' i
(. : . . .

j ; o $ 4 ! .
: ;: q

Latency = 1

1.0 -
0.9-
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0 .o .-
1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

. :\ ;.
'\ V, i

' r l
!

Latency = 0

4 '
a *

.; \
i.< ii ,

!

Latency = Ih

1,
Scheduler 3 - vs.

n min(p,n)xTp

.
k t ' q ; ; i 4

Y r
1

Latency = ?4

"
,. .

I , .
; 5 !
t : :
? ? . .

I I.' . I . !
. i . :

Latency = 2

Latency = 16

. .
, , a

? ? ? . .
' 4 "

0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1. 0 -
0.9 -
o.8-
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -

118 ?A 35 1 2 4 8 16 32 64 ?4 ?h 1 2 4 8 16 32 64l/s ?4 'h 1 2 4 8 16 33 64
Parallelism / Processor Count

m

0.3-
0.2 -
0.1 -
0.0 -

1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ 1

Latency = 0

a s , i i b
3 4 ;i I

. % :
i

Latency = '1s

.

:. .; j .
: + . : : : : '

Latency = ?h

. 3 .'
Latency = 4 ; .

. . .
: i . . : .

J : :, ..

Latency = 1

.

Latency = 8

. .:

1 ,
Scheduler 4 - vs.

n min(p , n) ~ T,

. . "

!

Latency = ?h

1.0 -
b a a -

0.8 -
0.7 -

..

0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

. . . ""

. . ; : ;: f " "

. . , . .

* * *

i

Latency = l/s

1

Latency = 0

1.0 -
0.9 -

0.7 -
0.6 - 1
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1.0-'
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -

Lat,ency = 'h

. . . Z

Latency = 4 .

.
4, ; z. . : : .

I ; \ :

. , ,

Latency = 1

0.2 -
0.1 -
0.0 - -

, . : , a

Latency = 2

I , ,
.

\ \ \

1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 1 ~ ~ ~ 1 1
11s jh ?4 1 2 4 8 163264'18 ?A ?4 1 2 4 8 163264'1s 34 ?4 1 2 4 8 1 6 3 2 6 4

Parallelism / Processor Count

.

Latency = 8

.
. .

. . . .

. ""

Latency = 16

Parallelism / Processor Count

m
1 8

Scheduler 5 - vs.
n min(p ,n)X T,

""

Latency = jh

1.0 -
0.9-
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

. b "

i '2 j b 4 .. r
"r
1

Latency = 0

. . . . "

. .
i .

1 .

Latency = 2

. . """

Latency = 16

a , ,

! ! !

h b ' .

!

Latency = '1s

0.1 -
0.0 -

1 1 1 1 1 1 1 1 1 1 1 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~
'1s jh '14 1 2 4 8 163264'18 jh ?h 1 2 4 8 163264'18 jh '14 1 2 4 8 163264

.
b.

i j ? . . . I ; ! ? .
t .

t : l , '

! !i'

Latency = 1

.

1 . 0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

" ;?

Latency = ?4

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -

Latency = 4

. .

Latency = 8

0.3 - , / /

. . . , , .

0.8 -4 Latency = 4 I I Latency = 8 (1 Latency = 16 I

O-O-I,--,---II*hrr 1 I I I - - - I
' Is jh ?h 1 2 4 8 16 3264 l Is jh ?h

Parallelism / Processor Count

m
1 ,

Scheduler 6 - vs.
n min(p , n) ~ Tp

1,
Scheduler 7 - vs.

n min(p , n) ~ Tp

'1s % 'A 1 2 4 8 163264lIe ?4 ?h 1 2 4 8 163264l Is % 'A 1 2 4 8 1 6 3 1 6 4
Parallelism / Processor Count

rn

. 1.0 -
. i :\ :: .!

t ' j * . !
\ ?
t

Latency = lls Latency = %

0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1.0 -
0.9 -
0.8 -
0.7 -
0.6-
0.5 -
9.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1. 0-
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

.

; i : . : , i ;

i ! ! ; ; - .
j t : : . .
1 : ' .

\ .3,
t

Latency = 1

i

Latency = 0

b ' .
! j

i t
I

i i) -i
i

Latency = ?h

Latency = 4

: ,
. .

: : i f ; ;

t . : ;
. * q *

. .
: .

Z ' . ! :
1) : ' '
? t :
i : . ; : . . .
I * . . , * . .

Latency = 2

.

Latency = 8

9 :
? i i ;

- * * i ; ? j i ;

1

Latency = 16

- - - A i i i i

4 " '

t

Latency = ?4

.

f

Latency =

1. 0 -
0.9-
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

b ' .
:,, 3 :.

!

Latency = 0

1.0 -
0.9 -
0.8 -
0.7
0.6:
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2-
0.1 -
0.0 -

118 ?4 'h 1 2 4 8 16 32 64 ?4 'h 1 2 4 8 16 32 64 % 'h 1 2 4 8 16 32 64
Parallelism / Processor Count

Scheduler 8 - vs.
T,

n min(p , n) ~ Tp

1
I

<) '\

Latency = ?h

.

j $ $
I

Latency = 1

Latency = 4

' . ,
.

i : :
4 ; ; - .
> . T .

r - i j . .
\ ? : I : ; :

- * $ % , + * < ?

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

: i

. j .
4 . :

Latency = 2

.

Latency = 8

. . :
1 % : .
$ 5 ; : : - - * i , i i i ;

1 1

Latency = 16

. .

- - * J i i i i i
1 1 1 1 1 1 1 1 1 1 1 1

1,
Scheduler 9 - vs.

n min(p , n) ~ T,

.

.
.. ..I : . b b a b j 3 y i i

.: 3 .

., !

Latency = '1s

.

. t ! ' .
Latency = 1 ! I

'

. .

7 ; . v : .

.. : . . .
. .

1.0 - *

., j l " '

Latency = ?4

Latency = 2

.

. . . .
. . . .

0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -
1.0 --
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

Latency = 16

I '

1 1 1
! ! .

1 1
XI 'h 1 2 4 8 163364

Latency = 0

?

1 ' ' t

.j 4 ,i .
3: 9 '
? . \

Latency = 'h

Parallelism / Processor Count

Scheduler 10 - vs.
T'

n min(p , n) ~ Tp

Latency = 8

i t ,
. . .

i i \ t i j i i l
1 ~ ~ ~ ~ ~ ~ ~ ~

1.0
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -

0.0

11s ?4 'h 1 2 4 8 163264l/s fh 'h 1 2 4 8 163264l / s

Latency = 4

.: .:
O . ' I

'18 % 'h 1 2 4 8 163264lIa '16 'h 1 2 4 8 163264'18 % 'h 1 2 4 8 1 6 3 2 6 4
Parallelism / Processor Count

Scheduler 11 - vs. T,
n min(p ,n)x T,

'18 jh ?h 1 2 4 8 16 32 64 54 ?h 1 2 4 8 16 32 64 jh 34 1 2 4 8 16 32 64
Parallelism / Processor Count

1,
Scheduler 12 - vs.

n min(p,n)xT,

APPENDIX E

Cumulative Histograms of Relative Performance

An important method of displaying scheduler behavior is through the use of

cumulative histograms. A cumulative histogram is different from other histograms in tha t

each column is the sum of all sample values tha t occur t o its left. I t is, in effect, the

integration of the curve described by a common histogram. The main advantage over a

common histogram is tha t the shape of a cumulative histogram is insensitive t o the width of

its columns.

This appendix contains cumulative histograms of schedule lengths relative t o the

shortest available schedule. Each program/architecture pair was was used by the 12

schedulers t o generate a parallel schedule. The 12 parallel schedules and a sequential

schedule were compared for length, and the shortest was selected. This schedule was used

a s a reference for later comparisons as the shortest available schedule for tha t

program/architecture pair. These histograms were created by dividing each parallel

schedule length by the shortest available length, and histograming the result. Thus the x-

axis represents the ratio of a schedule t o the best schedule, and the y-axis represents the

number of parallel schedules tha t did at least tha t well.

For a concrete example, consider the histogram for scheduler #1 in section E.1. One

point along the curve occurs a t (1.25, 0.88). This means tha t overall, 88% of the schedules

generated by scheduler #1 were no longer than 1.25 times the length of the best known

schedules for the corresponding program/architecture pairs.

E.1. All Test Cases

..................................

/- ...'

Scheduler 3

/'-
.A*-

i
.i'

../ /'"

. Scheduler 6

,'--
..J'

i

> Scheduler 9

Scheduler 1 Scheduler 2

0.9 -
0.8 -
0.7 -

Scheduler 11
*

Scheduler 12
I I I I I I I I I I I I I I I I I I I 1 I I I I
1 l%lH 2 34 8oo 1 l%l% 2 34 8 oo 1 l%lW 2 34 8 rn

Factor of Performance

F 1.
0.9 -

a 0.8-
C 0.7 -
t 0.6 -
i 0.5 -
0 0.4 -

0.3 -
0.2 -
0.1 -

f 0.0 -
1.0

s 0.9 -
0.8 -

h 0.7 -
0.6 - e
0.5 -
0.4 -
0.3 -

1 0.2 -
e 0.1 -
s 0.0 -

om................................-
7

+*' ...
::'
.'

'

Scheduler 4 -.........-.........

/-

//'

/'

..'

' Scheduler 5

i7
.,'. ...'

i
#.'

./'
..... *"

;:

' Scheduler 7

..

.-
.,-

/'

./'
./*. .."

./ 3'

Scheduler 8

..

E.2. Average Parallelism

.. "

.F

Scheduler 3
... -

*

d
7

7

,- -

-
fl

-
Scheduler 6

...

Scheduler 2

; .-

- - -

Scheduler 5

1.0 J
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

F 1 ., -
0.9 -

a 0.8 -
C 0.7 -
t 0.6 -
i 0.5 -
0 0.4 -
n 0.3 -

0.2 -
0.1 -

f 0.0-

..-.-
: -
.'
: -

Scheduler 1
...
..---
'

Scheduler 4
................................. - 1.0 - - - s 0.9 -

0.8 -
h 0.7 -

0.6 - e
0.5 -
0.4 -
0.3 -

1 0.2 -
e 0.3 -
s 0.0 -

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

Factor of Performance

Parallelism 2

- -
-A-

,- --

- -
-'

Scheduler 7

/- - _-
d i
i

./'

-

d Scheduler 9

..'
d

-
d

- -. .'

. "
Scheduler 10

I I I I I I I I I I I I I I I I I I 1 I I l l
1 1341% 2 34 8 m 1 1341% 2 34 8 m 1 l%l# 2 34 8 m

...

- *
r- ..

Scheduler 11

d

-,d - *

.-
- -

....
*

Scheduler 12

1 1%1% 2 3 4 8 0 0 1 l % l % 2 3 4 8 0 3 1 1341% 2 3 4 8 0 3
Factor of Performance

Parallelism 4

.,7

Scheduler 3

./j-

..-.
/'.

.d.

./. .,..
0"

. Scheduler 6

.-.
.,-

.i'

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

F 1.0 -
0.9 -

a 0.8-
C 0.7 -
t 0.6 -
i 0.5 -
0 0.4 -
n 0.3 -

0.2 -
0.1 -

f 0.0 -
1.0 -

s 0.9 -

., y ,'
:

! .
'

.

Scheduler 1

.., 7
'
.

'

Scheduler 4

-
:-

./..

Scheduler 9

.-

./*. ../-

,--- /"
. Scheduler 12

I I I I I I I
1 1%l% 2 3 4 8 oo

...
./
:,-

Scheduler 2
... ..- ...

/"
I
/ ,..'

I.* ..'

. Scheduler 5
.. - /--.

..J
I*

s 0.0 - . Scheduler 8

Factor of Performance

Parallelism 8

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4-
0.3-
0.2 -
0.1 -
0.0 -

I I I I I I I I I I I I I I I I I
1 l%l% 2 34 8 oo 1 l%l% 2 34 8 oo

-

/'..
/

.fC ,
/
.
'

. Scheduler 10

... -

./.*.'

,'.
,,'.

. Scheduler 11

- Factor of Performance

Parallelism 16

Factor of Performance

Parallelism 32

Factor of Performance

Parallelism 64

Parallelism 128

Factor of Performance

Parallelism 256

E.3. Latency

Latency = 0

Latency = 1/8

Factor of Performance

Latency = %

................. """

..rO

Scheduler 3 .
. Scheduler 6

..

Scheduler 2
................................

. Scheduler 5
...

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

F 1.0 -
0.9 -

a 0.8 -
C 0.7 -
t 0.6 -
i 0.5 -
0 0.4 -
n 0.3 -

0.2 -
0.1 -

f 0.0 -

.

.

Scheduler 1
.................................
:F

.

'

Scheduler 4

..-

.: Scheduler 9

.............................
,--

1.0 -
s 0.9 -

0.8 -
h 0.7 -

0.6 - e
0.5 -
0.4 -
0.3 -

1 0.2 -
e 0.1 -
S 0.0 -

#.
0.8 - :' 1-

0.7 - :---
0.6 - .
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

Scheduler 12
I I I I I I I

1 1%1?4 2 34 8 00 1 l%l% 2 34 8 00 1 l%lU 2 3 4 8 00

.'
'

:
.
:
.
.

. Scheduler 7 Scheduler 8

Factor of Performance

Latency = W

'

Scheduler 3
.. ".

. Scheduler 6
.. " "..............

..-' Scheduler 9
' . " ,i.

/ N ~

/'

i .*
/*

/'

Scheduler 12
I 1 I I I I I

1 ! 4 1 # 2 3 4 8 0 0

...

Scheduler 2
.....>........

. Scheduler 5
...

1.0 --I
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

:

Scheduler 1

. Scheduler 8
...
.7

. Scheduler 11
I I I I I I I I

l ' k 1 3 4 2 3 4 8 0 0 1

s 0.9 -
0.8 - C

h 0.7 -
0.6 - e 0.5 -
0.4 -
0.3 -

1 0.2 -
e 0.1 -
s 0.0 -

1.0 -
0.9 -
0.8 -
0.7 -
0.6-
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

0.9 -
a 0.8 -
C 0.7 -
t 0.6 -
i 0.5 -
0 0.4 -
n 0.3 -

0.2 -
0.1 -

f 0.0 -
1.0 -

j

:
.
.
. Scheduler 7

.'
.
.

' Scheduler 10
I I I I I I I I I
1 l ' k l 3 4 2 3 4 8 0 0 1

..............................
'

'

.

Scheduler 4

Latency = 1

............... ""

../

Scheduler 3

.-

i - Scheduler 6
...... " -

>...
J' Scheduler 9

.." ""-

..'

sdi 'kduler 12
I 1 I I I I I

1 l%lW 2 3 4 8 00

Factor of Performance

Latency = 2

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
0.0 -

F
0.9 -

a 0.8 -
C 0.7 -
t 0.6 -
i 0.5 -
0 0.4 -
a 0.3 -

0.2 -
0 0.1 -
f 0.0 -

1.0 -
s 0.9 -

0.8 -
h 0.7 -

0.6 - e
0.5 -
0.4 -
0.3 -

1 0.2 -
e 0.1 -
s 0.0-

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1
0.0 I

..

.. .*f
:
'

..
'

-

Scheduler 1

.
'

Scheduler 4

,,.. Scheduler 7
.. ,.=

/scheduler 10
1 I I I I I I I I
1 l%lW 2 3 4 8 00

..
a

f

Scheduler 2

1 . 0 - P P . :7

d' Scheduler 5

/'. Scheduler 8

&.

--'scheduler 11
I I I I I I I I

1 l%1% 2 3 4 8 00

Latency = 4

Factor of Performance

Latency = 8

Factor of Performance

Latency = 16

E.4. Processor Count

Factor of Performance

Processor Count 4

Factor of Performance

Processor Count 8

Factor of Performance

Processor Count 16

E.5. Sequential Scheduler

Factor of Performance

References

[Ack82] W. B. Ackerman, "Data Flow Languages," IEEE Computer, vol. 15, 2 (February

1982), pp. 15-25.

[ACD74] T . L. Adam, K . M. Chandy and J. R. Dickson, "A Comparison of List Schedules

for Parallel Processing Systems," Communications of the ACM, vol. 17, 12

(December 1974), pp. 685-690.

[AkK84] S. B. Akers and B. Krishnamutrhy, "Group Graphs a s Interconnection

Networks," 14th International Conference on Fault Tolerant Computing,

Kissimmee, Florida, June 1984, pp. 422-427.

[AkK87] S. B. Akers and B. Krishnamurthy, "On Group Graphs and Their Faul t

Tolerance," IEEE Transactions on Computers, vol. C-36, 7 (July 1987), pp. 885-

888.

[AlC72] F. E. Allen and J. Cocke, "A Catalogue of Optimizing Transformations," in

Design and Optimization of Compilers, R. Rustin (ed.), Prentice-Hall, Englewood

Cliffs, NJ, 1972.

[Bab87] R. G. Babb 11, ed., Programming Parallel Processors, Addison-Wesley, 1987.

[BSV83] A. F . Bashir, V. Susarla and K . Vairavan, "A Statistical Study of the

Performance of a Task Scheduling Algorithm," IEEE Transactions on Computers,

vol. G 3 2 , 8 (August 1983), pp. 774-777.

[BeS87] F . Berman and L. Snyder, "On Mapping Parallel Algorithms into Parallel

Architectures," Journal of Parallel and Distributed Computing, vol. 4, 5 (October

1987), pp. 439-458.

[BWD84] J . Blazewicz, J . Weglarz and M. Drabowski, "Scheduling independent 2-processor

tasks t o minimize schedule length," Information Processing Letfers, vol. 18, 5

(June 1984), pp. 267-274.

[b k 8 l a] S. H. Bokhari, "On the Mapping Problem," IEEE Transactions on Computers,

vol. C-30, 3 (March 1981), pp. 207-214.

[Bok8lb] S. H. Bokhari, "A Shortest Tree Algorithm for Optimal Assignments Across

Space and Time in a Distributed Processor System," IEEE Transactions on

Software Engineering, vol. S E 7 , 6 (November 1981), pp. 583-589.

[CHA88] C. C. Carroll, A. Homaifar and K. G. Ananthram, "An Intelligent Allocation

Algorithm For Parallel Processing," BER Report 416-17, The University of

Alabama, January 1988.

[Cas87] T. L. Casavant, "Analysis of Three Dynamic Distributed Load-Balancing

Strategies with Varying Global Information Requirements," The 7th International

Conference on Distributed Computing Systems, September 1987, pp. 185-182.

[CDJ84] F. B. Chambers, D. A. Duce and G. P . Jones, eds., Distributed Computing,

Academic Press, New York, 1984.

[CoG72] E. G. Coffman and R. L. Graham, "Optimal Scheduling for Two-Processor

Systems," Acta Injormatica, vol. 1(1972), pp. 200-213.

[Con61 E. G. Coffman, Jr., ed., Computer and Job-Shop Scheduling Theory, John Wiley &

Sons, 1976.

pas871 W. J. Dally and C. L. Seitz, "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks," IEEE Transactions on Computers, vol. G 3 6 , 5 (May

1987), pp. 547-553.

[Ga J79]

[Gon77]

[Gra69]

A. L. Davis and R. M. Keller, "Data Flow Program Graphs," IEEE Computer,

vol. 15, 2 (February 1982), pp. 26-41.

J. B. Dennis, "Data Flow Supercomputers," Computer, vol. 13, 11 (November

1980), pp. 48-56.

K. W. Doty, "New Designs for Dense Processor Interconnection Networks," IEEE

Transactions on Computers, vol. G33 , 5 (May 1984), pp. 447-450.

D. L. Eager, E. D. Lazowska and J. Zahorjan, "Adaptive Load Sharing in

Homogeneous Distributed Systems," IEEE Transactions on Software Engineering,

vol. SE12 , 5 (May 1986), pp. 662475.

T. Feng, "A Survey of Interconnection Networks," IEEE Computer, vol. 14, 12

(December 1981), pp. 12-27.

E. B. Fernandez and B. Bussell, "Bounds on the Number of Processors and Time

for Multiprocessor Optimal Schedules," IEEE Transactions on Computers, vol.

G22, 8 (August 1973), pp. 745-751.

M. R. Garey and D. S. Johnson, "Two-Processor Scheduling With Start-Times

and Deadlines," SIAM Journal on Computing, vol. 6, 3 (September 1977), pp.

416-426.

M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the

Theory of NP-Completeness, Freeman, 1979.

M. J. Gonzalez Jr., "Deterministic Processor Scheduling," ACM Computing

Surveys, vol. 9, 3 (September 1977), pp. 173-204.

R. L. Graham, "Bounds On Multiprocessing Timing Anomalies," SIAM Journal of

Applied Mathematics, vol. 17, 2 (March 1969), pp. 416-428.

[GKS87] M. Granski, I. Koren and G. M. Silberman, "The Effect of Operation Scheduling

on the Performance of a Data Flow Computer," IEEE Transactions on

Computers, vol. (2-36, 9 (September 1987), pp. 1019-1029.

(Gur84) J . R . Gurd, "Fundamentals of Dataflow," in Distributed Computing, F. B.

Chambers, D. A. Duce and G. P. Jones (eds.), Academic Press, New York, 1984.

(Ham801 D. Hammerstrom, "Dynamic, Decentralized Load Leveling," Euromicro 80,

London, England, October 1980.

[HRW85] J . G. Harp, J. B. G. Roberts and J. S. Ward, "Signal Processing With Transputer

Arrays (TRAPS)," Computer Physics Communications, vol. 37(1985), pp. 77-86.
8

[HiL74] F. S. Hillier and G. J. Lieberman, Operations Research, Holden-Day, San

Francicso, 1974.

[HoT77] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, Macmillan,

1977.

[Hu61] H. C. Hu, "Parallel Sequencing And Assembly Line Problems," Operations

Research, vol. 9, 6 (November 1961), pp. 841-848.

[HwB84] K . Hwang and F. A. Briggs, Computer Architecture and Parallel Processing,

McGraw-Hill, New York, 1984.

[Jor87] H. F. Jordan, "Interpreting Parallel Processor Performance Measurements,"

SIAM Journal on Scientific and Statistical Computing, vol. 8, 2 (March 1987), pp.

s22es226.

[KaN84] H. Kasahara and S. Narita, "Practical Multiprocessor Scheduling Algorithms for

Efficient Parallel Processing," IEEE Transactions on Computers, vol. C-33, 11

(November 1984), pp. 1023-1029.

[Kau74] M. T. Kaufman, "An Almost-Optimal Algorithm for the Assembly Line

Scheduling Problem," IEEE Transactions on Computers, vol. C-23, 11 (November

1974), pp. 1169-1174.

[Koh75] W. H. Kohler, "A Preliminary Evaluation of the Critical Pa th Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Transactions on Computers,

vol. C-24, 12 (December 1975)) pp. 1235-1238.

[Kru87] B. Icruatrachue, "Static Task Scheduling and Grain Packing in Parallel

Processing Systems," Ph.D. Thesis, Oregon State University, Corvallis, 1987.

[KrL87] B. Kruatrachue and T. Lewis, "Duplication Scheduling Heuristic (DSH), A New

Precedence Task Scheduler for Parallel Systems," Technical Report 87-60-3,

Oregon State University, Corvallis, OR, 1987.

[KrL88a] B. Kruatrachue and T . Lewis, "Grain-Size Determination for Parallel

Processing," IEEE Software, vol. 5, 1 (January 1988)) pp. 23-33.

[KrL88b] B. Kruatrachue and T . Lewis, "Grain Determination for Parallel Processing

Systems," Proceedings of the 21st Hawaii International Conference on System

Sciences, vol. 2(January 1988), pp. 119-128.

[Kun8l] M. Kunde, "Nonpreemptive LP-Scheduling on Homogeneous Multiprocessor

Systems," SIAM Journal on Computing, vol. 10, 1 (February 1981), pp. 151-173.

[LaS77] S. Lam and R . Sethi, "Worst Case Analysis of Two Scheduling Algorithms,"

SIAM Journal on Computing, vol. 6, 3 (September 1977), pp. 518-536.

[LaL78] E. L. Lawler and J. Labetoulle, "On Preemptive Scheduling of Unrelated Parallel

Processors by Linear Programming," Journal of the Association for Computing

Machinery, vol. 25, 4 (October 1978)) pp. 612-619.

[LiK87] F. C. H. Lin and R. M. Keller, "The Gradient Model Load Balancing Method,"

IEEE Transactions on Software Engineering, vol. SE13, 1 (January 1987), pp.

32-38.

[Llo82] E. L. Lloyd, "Critical Path Scheduling With Resource and Processor

Constraints," Journal of the Association for Computing Machinery, vol. 29, 3

(July 1982), pp. 781-811.

[MTH78] H. Miyahara, Y. Teshigawara and T. Hasegawa, "Delay and Throughput

Evaluation of Switching Methods in Computer Communication Networks," IEEE

Transactions on Communications, vol. COM-26, 3 (March 1978), pp. 337-344.

[Pas871 D. M. Pase, "Load Balancing Heuristics and Network Topologies for Distributed

Evaluation of Prolog," Technical Report CS/E 87-005, Oregon Graduate Center,

Beaverton, OR, 1987.

[Pas881 D. M. Pase, "Contention and The Star Graph as a Network Topology,"

Technical Report CS/E 88-023, Oregon Graduate Center, Beaverton, OR, 1988.

[PrV81] F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles: A Versatile

Network for Parallel Computation," Communications of the ACM, vol. 24, 5

(May 1981), pp. 300-309.

[RCG72] C. V. Ramamoorthy, K. M. Chandy and M. J. Gonzalez, Jr., "Optimal

Scheduling Strategies in a Multiprocessor System," IEEE Transactions on

Computers, vol. G21, 2 (February 1972), pp. 137-146.

[SaH86] V. Sarkar and J. Hennessy, "Partitioning Parallel Programs for Macr*

Dataflow," 1986 ACM Lisp Conference (?), 1986, pp. 202-211.

[Sar87] V. Sarkar, "Partitioning and Scheduling Parallel Programs for Execution on

Multiprocessors," Ph.D. Thesis, CSL-Tech. Rep.-87-328, Stanford University,

F. C. H. Lin and R. M. Keller, "The Gradient Model Load Balancing Method,"

IEEE Transactions on Software Engineering, vol. SE13 , 1 (January 1987), pp.

32-38.

E. L. Lloyd, "Critical Pa th Scheduling With Resource and Processor

Constraints," Journal of the Association for Computing Machinery, vol. 29, 3

(July 1982), pp. 781-811.

H. Miyahara, Y. Teshigawara and T. Hasegawa, "Delay and Throughput

Evaluation of Switching Methods in Computer Communication Networks," IEEE

Transactions on Communications, vol. COM-26, 3 (March 1978), pp. 337-344.

D. M. Pase, "Load Balancing Heuristics and Network Topologies for Distributed

Evaluation of Prolog," Technical Report CS/E 87-005, Oregon Graduate Center,

Beaverton, OR, 1987.

D. M. Pase, "Contention and The Star Graph a s a Network Topology,"

Technical Report CS/E 88-023, Oregon Graduate Center, Beaverton, OR, 1988.

F. P. Preparata and J. Vuillemin, "The Cube-Connected Cycles: A Versatile

Network for Parallel Computation," Communications of the ACM, vol. 24, 5

(May 1981), pp. 300-309.

C. V. Ramamoorthy, K. M. Chandy and M. J . Gonzalez, Jr., "Optimal

Scheduling Strategies in a Multiprocessor System," IEEE Transactions on

Computers, vol. G21, 2 (February 1972), pp. 137-146.

V. Sarkar and J . Hennessy, "Partitioning Parallel Programs for Macro-

Dataflow," 1986 ACM Lisp Conference (?), 1986, pp. 202-211.

V. Sarkar, "Partitioning and Scheduling Parallel Programs for Execution on

Multiprocessors," Ph.D. Thesis, CSL-Tech. Rep.-87-328, Stanford University,

Stanford, 1987.

(Sed831 R. Sedgewick, Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

[Set761 R. Sethi, "Scheduling Graphs on Two Processors," SL4M Journal on Computing,

vol. 5, 1 (March 1976), pp. 73-82.

(Stag41 J. A. Stankovic, "Simulations of Three Adaptive, Decentralized Controlled, Job

Scheduling Algorithms," Coniputer Networks, vol. 8, 3 (June 1984), pp. 194217,

North-Holland.

[U1175] J. D. Ullman, "NP-complete Scheduling Problems," Journal of Computer and

System Sciences, vol. 10, 3 (June 1975), pp. 384-393.

[Von83] C. Von Conta, "Torus and Other Networks a s Communication Networks with up

t o Some Hundred Points," IEEE Transactions on Computers, vol. C-32, 7 (July

1983), pp. 657-666.

Stanford, 1987.

(Sed831 R. Sedgewick, Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

[Set761 R. Sethi, "Scheduling Graphs on Two Processors," S U M Journal on Computing,

vol. 5, 1 (March 1976), pp. 73-82.

[%a841 J . A. Stankovic, "Simulations of Three Adaptive, Decentralized Controlled, Job

Scheduling Algorithms," Conlputer Networks, vol. 8 , 3 (June 1984), pp. 199-217,

North-Holland.

[U1175] J . D. Ullman, "NP-Complete Scheduling Problems," Journal of Computer and

System Sciences, vol. 10, 3 (June 1975), pp. 384-393.

[Von83] C. Von Conta, "Torus and Other Networks a s Communication Networks with up

t o Some Hundred Points," IEEE Transactions on Computers, vol. C-32, 7 (July

1983), pp. 657-666.

Vita

The author was born, which, all things considered, was a very good s ta r t indeed. He

spent the bulk of his youth studying the biological and geological sciences in exotic locations

such as Eagar Arizona. Eventually tiring of worms and dirt, the author's ever curious mind

turned t o the black a r t of Mathematics. This led him to tha t great Citadel of Intellectual

Prowess, Northern Arizona University, where he became exceedingly proficient a t holding

meaningful conversations with inanimate objects. This unusual talent led him t o obtain a

Bachelor's Degree in Mathematics, with a dual major in Computer Science.

Somehow during his stay a t NAU he managed t o meet up with the wonderfully

desirable Anne Cecile Heil. Through what can only be called an astounding display of

fabrication, exaggeration, and outlandish promises he convinced her t o marry him, which

was certainly the best thing he ever did.

Through the natural course of events, one beautiful daughter came along, then

another. Each of these wonderful girls delighted the eye and enchanted the soul of all who

met them. In the words of one astute observer, "Either those kids aren't his, or Nature's

playing tricks on us again."

	198907.pase.douglas to p. 80.pdf
	198907.pase.douglas to p. 160.pdf
	198907.pase.douglas to p. 253.pdf

