A Comparative Analysis of Static Parallel Schedulers

Where Communication Costs Are Significant

Douglas Michael Pase
B.S., Northern Arizona University, 1982

A dissertation submitted to the faculty
of the Oregon Graduate Center
in partial fulfillment of the
requirements for the degree
Doctor of Philosophy
in
Computer Science and Engineering

July, 1989

The

dissertation

“A Comparative

Analysis of Static Parallel Schedulers Where

Communication Costs Are Significant” by Douglas Michael Pase has been examined and

approved by the following Examination Committee:

Robert G. Babb II
Associate Professor, Thesis Advisor
Oreeon Graduate Center

Michael Wolfe T
Associate Professor
Oregon Graduate Center

Virginia l\glary Lo
Assistant Professor
University of Oregon

Vivek Sarkar i
Research Staff Member
IBM Thomas J. Watson Research Center

i

Dedication

To my God, who made this work possible,

To my wife Anne and daughters Kathryn and Kirja,

Who supported me while I did it,

And to my parents, who encouraged me when I was young.

hil

Acknowledgements

1 wish to acknowledge the support and encouragement of the faculty, staff, and
students of the Department of Computer Science and Engineering of the Oregon Graduate
Center. Their friendship and willingness to listen have been as invaluable as their ideas and
enthusiasm. Particularly I would like to thank my advisor, Dr. Robert G. Babb II, and my
friend David C. DiNucci for their thoughts and opinions on technical matters, and my

committee members for their constructive comments and their patience.

iv

A

A

B

C

D

E

R

Table of Contents

Introductionc.cocoveevcrneciiciiinn e
Related Workcccccoveveveecnincnicniiniciicnennes
Definitions And Terminologycccccceviiieincninnnn.
Scheduler Componentscccccoeeveercereivivesnecnineeinenns

Experiment Descriptionccccvivinvnviininninnes

..

Problem Characteristics and Scheduler Performanceccooovviiieiieniiiniciciiiiiinnineee

Comparison of Schedulerscccecvviiiiniinicinninns

CONCIUSIONS coiovviiiereeriiiiietiereeeiniarrrreesessssscasrareareenees

Future Workcoooviiiiiiiiriiiieeieccccreinree s cencemvenne

ppendices:

. Task Density Functionsc.ccccccveeerivivinicnecninncn

. Scheduler Performance Characteristics

. Comparison of Schedulers By Problem Characteristiccccovviivniceniinicnnnes

. Relative Efficiencies of Schedulers

. Cumulative Histograms of Relative Performance

CIETEIICES .oeoeeeiiiiiiiieiiriaieieeeeereesaesessnssnraassessasessannsrnnenseees

15

28

51

58

76

101

106

110

Abstract

A Comparative Analysis of Static Parallel Schedulers

Where Communication Costs Are Significant

Douglas M. Pase, Ph.D.

Oregon Graduate Center, 1989

Supervising Professor: Robert G. Babb II

Efficient multiprocessor scheduling where communication between processors is free has
been studied for almost three decades. However, modern distributed architectures have
communication channels for which communication is not free. Such channels have a non-
zero latency and a finite capacity for communication. Previous work on parallel scheduling
accounting for communication eflects has assumed that the channels had sufficient capacity
to service all transmissions without significant delay from contention. We show that the
average schedule length can be significantly shortened by taking contention into account.
We define families of static schedulers based on the strategy chosen for various phases, and
present a performance analysis based on that classification. Because certain static
schedulers are equivalent to dynamic schedulers for which perfect knowledge is available,

parts of this work also apply to dynamic scheduling.

vi

CHAPTER 1

Introduction

1.1. Background

Since the inception of modern mechanized computing a particular theme has occurred
many times — how do we solve a given problem faster? This pursuit of greater speed has
led to the development of better algorithms, more effective compiler optimization
techniques, and faster hardware. Speeding up the hardware could mean improving the
speed of a single processor, or it could mean replicating the processors and dividing the

problem into smaller units (or tasks) which are then executed in parallel.

A particularly difficult part of executing tasks in parallel is arranging the execution of
individual tasks so that the maximum benefit is gained from all the effort. It is easy to see
that when there is no additional cost for executing tasks in parallel, doing so will never slow
the computation down. However, when parallel execution incurs an additional expense, such

as from communication, improper scheduling can actually lead to slower program execution.

A number of approaches have been proposed to solve the problem of multiprocessor
scheduling considering communication costs. Among them are processor allocation, dynamic
load balancing, and static scheduling. Processor allocation problems generally take the
form of mapping a program graph G, = (V,,E,) to a network of processors G, = (V,,E,)
such that some criterion is minimized [BeS87,Bok81a,Bok81b]. V, is the set of vertices
(tasks) in the program, and E, is the set of edges (communication arcs). Similarly, V, is the
set of processors in the network, and E, is the set of communication links which connect the

processors. It is called the mapping problem if the objective is to minimize the number of

arcs in G, spanned by arcs in G,. This assumes that all communication is of equal cost,
and the value to be minimized is the distance over which each message must travel. It also

assumes that only one task may be mapped to a processor.

Another problem related to processor assignment is called the quadretic assignment
problem [Bok8la]. In this case there are n objects and n locations. The affinity between
objects is recorded in a matrix A, and distances are recorded in a matrix D. The element

a;;

; records the affinity between objects + and j, and element d;; records the distance

between locations ¢ and 5. The objective is to find a mapping function p:V,—~+V, such that

the overall cost of communication, Ea,-,-dp(,-)p(j), is minimized. The affinity between two
]

objects can be thought of as a volume of communication between two tasks. A distance d;;

can be thought of as the the cost of communicating between processors 1 and j.

Dynamic load balancing deals with communication on an indirect level. As work
becomes available, it is shipped to the processor which is best able to accept it
[Cas87,Ham80,Sta84]. If a task has not received all of its input, it is not ready to be
shipped. This is much like the “macro dataflow” model used in [SaH86,Sar87]. Processor
selection is deferred until the task can be executed, and the best processor is selected at
that moment. Processors are not left idle as long as work is available. A particularly
important advantage to this approach is that the schedule adapts itself to the execution of
the program as the execution takes place. Thus even programs whose execution are

extremely data dependent can use this method of scheduling.

Dynamic load balancing approaches are generally classified as centralized or
decentralized. Centralized load balancing has one processor (the master) which is
responsible for all scheduling decisions. It tracks the work levels of all processors within the

system, and supplies tasks whenever they are available to processors (workers) that need

them. As tasks are completed the worker informs the master who collects and records the
information. When all of a task’s inputs are available, the master places the task on a
ready queue, or assigns it to a worker. Although this approach is simple and eflective for
small numbers of processors, it does not scale well. Loading of the master is proportional to
the number of the processors in the system, so increasing the network size will eventually
cause it to be saturated. In addition, as networks get larger there is an increase in the
communication delay between the more distant processors and the master, which causes

additional processors to be less effective.

Distributed load balancing attempts to remedy these problems by making decisions
locally. This means that the ability to make decisions increases with network size. It also
means that the distance between the unit which makes the decisions and the unit which
executes those decisions is zero. However, because each processor must make decisions
about whether to accept or forward tasks, and where, each processor must now have some
idea of the system state. The system state must itself be communicated through messages
which are subject to communication delay, so they may not reflect that state accurately

when they are received or used.

Both centralized and distributed load balancing suffer somewhat from the fact that
scheduling is done at runtime, and therefore the scheduling overhead is paid for every time
a program is run. Little pre-execution program analysis is normally done to aid the
scheduler in making its decisions, which prevents processors from planning the execution to

minimize the overall processing time.

Static scheduling attempts to solve some of these problems by analyzing the program
graph and scheduling it before execution begins. This is necessarily restricted to programs

or sections of programs which have little varying dynamic behavior. Our approach to static

scheduling further restricts the problem to the scheduling of tasks with acyclic precedence
constraints and heterogeneous task and communication weights. It is a superset of the
Precedence Constrained Scheduling Problem (PCS) {GaJ79], in that it adds to PCS the
additional problem of scheduling communication costs. In both problems the tasks have a
finite lifetime and are executed once. All incoming communication must be received before

a task may begin, and all outgoing transmissions are sent after the task has completed.

Because the problem in its general form is NP-complete [Ull75], solution approaches
have taken two diverging paths, namely that of restricting the problem until polynomial
solutions may be found, and of finding heuristic algorithms that may be computed more

cheaply but still produce schedules that are frequently close to optimal.

Static scheduling may be done as the program is constructed, as a preprocessing phase
prior to compilation, automatically or semi-automatically at compile time, or at the time
the program is loaded onto the machine for execution. Tasks may represent individual
instructions in a program, subroutines, program modules, or whole programs which are part
of a script. Communication between these tasks might be the fetch of a datum from main
memory, a structured message a few hundred or thousand bytes long, or the transfer of
complete files between successive filters. We assume here that the only cost associated with
communication is the message transmission time, which includes both the time required to
transmit the message over the communication link, and the queuing delay which occurs
because of competition from other messages in the system. No setup time in sending or
receiving messages is included in this analysis, although there is no reason why it could not

have been.

A scheduler is preemptive if execution of a given task may be interrupted and

suspended to allow another task to execute. It is nonpreemptive if the reverse is true, that

is, once a given task is started it runs to completion without interruption.

Scheduling strategies may be further subdivided into optimal and heuristic
approaches. Optimal schedulers may use branch-and-bound techniques [KaN84,Koh75] or
linear, integer, or dynamic programming [ACD74,Lal78]. These approaches produce
schedules from the equivalence class of shortest length schedules (there may be more than
one possible shortest schedule), but the schedulers can require running times which are

exponential in the number of tasks to be scheduled.

Heuristic schedulers are more difficult to classify because of the great diversity in
approaches, However, a distinction can be made between stubborn and non-stubborn
schedulers. A stubborn scheduler will not move or attempt to reschedule a task once it has
been scheduled. Non-stubborn schedulers will generate an initial task schedule, then
perturb it in different ways hoping to find a better schedule. List schedulers are a special
class of stubborn schedulers. In this dissertation, a taxonomy of schedulers is developed and

the performance of different types is considered.

1.2. Contributions of This Dissertation

This dissertation makes the following specific contributions to the study of parallel

scheduling:

(1) We examine five variables in the program/architecture system for their effect on
scheduler performance. The program variables are: the distribution of tasks within
a program, the number of subtasks within a program, and the average parallelism.
The architecture variables are: the average time {latency) required to communicate

over empty links and the total number of processors available.

(2) We decompose static parallel scheduler algorithms into three basic parts and

examine how different designs for the parts affect scheduler performance. The

subdivisions we consider are: task selection, processor selection, and schedule
generation. The task selection strategies we consider include those used in critical
path scheduling and in diffusion dynamic load balancing. Processor selection includes
strategies where only processor load is considered, where processor load and empty
channel communication latency are considered, and where load, latency, and

contention are considered.

(3) Several of the static schedulers we examine resemble dynamic (diffusion type) load
balancing schedulers. The static schedulers are similar in all important respects
except (1) there was no runtime overhead for scheduling, and (2) the static
scheduler has complete and accurate information about the entire system at each
time a decision about task placement is made. As such the static schedulers
delineate the best average performance that could be expected from similar dynamic

schedulers.

1.3. Dissertation Outline
The remainder of this dissertation is organized as follows:

Chapter 2 summarizes much of the relevant work which has been done in static
scheduling, and particularly in list scheduling. In Chapter 3 we present a precise definition
of the multiprocessor scheduling problem. Chapter 4 describes a taxonomy of our 12
schedulers based on their modular decomposition. The construction of each of the 12
schedulers used in later chapters is also given, along with a worst case complexity analysis

for each.

A complete description of the scheduler experiment setup, inputs, and environment is
given in Chapter 5. We describe the five variables considered to be most relevant to

scheduler performance, and the range of values used for each. Chapter 6 analyzes the

effects of each experimental variable on scheduler performance. Chapter 7 analyzes the
effects of variables used in scheduler construction on scheduler performance. Our
conclusions and recommendations are presented in Chapter 8, and Chapter 9 presents some

ways in which this work might be extended.

Appendix A contains graphs of the different task distributions. The remaining
appendixes contain the numerical results of the different experiments. In particular,
Appendix B presents the experiment;l results in terms of frequency histograms of schedule
length, bar charts of average schedule length, and tables of all seven performance measures.
Results are grouped by problem characteristic to show the effect that task distribution,
average parallelism, program size, etc., have on the different schedulers. Appendix C gives
the same presentation grouped by scheduler to show the effect of different scheduling
decisions on scheduler quality. Appendix D contains plots of relative parallelism vs. relative

efficiency. Cumulative histograms of relative scheduler performance are given in Appendix

E.

CHAPTER 2

Related Work

This chapter summarizes previous work in precedence constrained scheduling (PCS).
Because of the scheduler strategies considered in this dissertation, we concentrate primarily
on list and list related scheduling strategies. Ullman [UlI75] proved that if task execution
times are not equal, or there are more than two processors, precedence constrained
scheduling for arbitrary graphs is NP-complete. This, in turn, implies that our extended

problem is NP-hard, because it is a superset of PCS.

2.1. PCS Without Communication Costs

A number of good heuristic solutions to PCS have been proposed in the literature.
Although we are considering a more general problem, PCS with non-zero communication
costs, these heuristics provide an excellent starting point for developing heuristic solutions

to the extended form of PCS.

Much of the material discussing solutions to PCS is collected together into two works.
The first is a survey article by M. J. Gonzalez [Gon77], the second is a book edited by E. G.
Coffman [Cof76]. Gonzalez [Gon77] surveys some of the major results in scheduling theory
known at that time. He classifies scheduling problems by number of processors, task
duration, precedence graph structure, task interruptibility, job persistence or periodicity,
presence or absence of deadlines, whether resources are limited, and whether processors are
homogeneous or heterogeneous. A number of performance measures are also given, includiné
minimum completion time, minimum mean flow time, and maximum processor utilization.

Minimum completion time is an appropriate measure for scheduling large single jobs on

multiprocessor systems. Minimum mean flow time is appropriate for scheduling multiple
independent jobs in a time sharing environment, where fast turn around time is desirable.
Appropriate heuristics and measures are also given for hard and soft real-time
environments. Several scheduling algorithms are described, including those in [ACD74], and

performance bounds are given.

Coffman et al [Cof76] collect into a single work much of what is known about
scheduling theory. This work is more varied and in some ways more detailed than [Gon77].
It includes polynomial algorithms for exact solutions to specific subclasses of the general
scheduling problem. Solutions include tree-structured task systems, processors with different
speeds, and preemptive and nonpreemptive approaches. The problem complexity (its NP-
completeness) is shown, and bounds are derived on the performance of several scheduling
problems. Lastly, several exact and near exact algorithms are given which use branch-and-

bound and dynamic programming (see [HiL74]) techniques.

The earliest reference to PCS and a critical path solution is by Hu. Hu presents the
original critiéal path scheduling algorithm and proves it is optimal if all tasks have equal
execution times and the graph is a tree or forest [Hu61]. Coffman and Graham [CoG72]
later present a level-by-level scheduling algorithm (CG) which has tighter bounds than does
critical path scheduling. Furthermore, scheduling of arbitrary acyclic graphs is optimal
using CG if all tasks have equal execution times and there are only two processors. These
two scheduling algorithms provide the basic platform from which most of the scheduling

heuristics are derived.

In CG as well as Hu’s algorithm, the emphasis is on ordering the selection of tasks
from which the schedule is generated. A pre-scheduling analysis is done on the program

graph, and the tasks are ordered into a list. As a task is removed from the list for

10

scheduling, each processor schedule is examined and the processor with the earliest finishing
schedule is selected. The task is placed at the end of that processor’s schedule. A machine
schedule contains only the order in which the tasks are executed, the processor on which

each task is executed, and the finish time of each.
Many authors explore the advantages and limitations of this approach, among them:

Kaufman, in [Kau74)], discusses a heuristic solution to the precedence constrained
multiprocessor scheduling problem where the ordering relation forms a tree. Communication
is considered insignificant and tasks are nonpreemptive, but tasks may have non-unit
weights. Tight bounds are derived which relate his algorithm to an optimal preemptive

schedule and to an optimal nonpreemptive schedule.

Adam et o/ [ACD74] compare the performance of five listv scheduling algorithms. The
schedulers are HLFET (Highest Levels First with Estimated Times), HLFNET (HLFET with
equal task weights), RANDOM (task priorities are selected randomly), SCFET (Smallest
Co-levels First with Estimated Times), and SCFNET. A dynamic programming preemptive
scheduler is also used as a basis for comparison. There were 22 tests pulled from actual
programs, mostly written in FORTRAN, and about 900 were generated stochastically. A
statistical analysis of variance (AOV) concluded that HLFET performed best. A P=0.01
confidence level was used for the AOV. Tables from the text report that the largest
variation between schedulers was about 31 percent. The tests considered 2, 3, and 5

Processors.

Garey and Johnson present a solution to the two processor scheduling problem where
there is arbitrary start times and deadlines for each of the tasks [GaJ77]. An O(n%
algorithm gives a schedule whenever one exists. This same algorithm can also be coupled

with a binary search to find the shortest such schedule, or to minimize “tardiness”. A

11

number of variations of this scheduling problem are shown to be NP-complete.

Bashir et al report the results of a statistical study in [BSV83]. In this study all tasks
have unit weights, and graphs have between 20 and 48 tasks per graph. 700 graphs are
generated at random, and the resulting sample is used to determine the probability that the

critical path scheduling algorithm finds an optimal schedule.

Blazewicz et ol [BWD84] discuss the variation on the scheduling problem where some
tasks require two processors simultaneously. They present a general model for this type of
scheduling, and an appropriate heuristic. Bounds on the performance of their heuristic are

also developed.

Kasahara and Narita describe a fast branch-and-bound approximation scheme in
[KaN84]. The initial selection for the branch-and-bound algorithm is determined by a
modified critical path algorithm called CP/MISF ({for Critical Path, Most Immediate
Successors First). CP/MISF uses the standard critical path algorithm with the exception
that ties are broken in favor of the task with the greatest number of successor tasks (i.e.,
tasks between it and the exit node). The approximation/optimization algorithm enumerates
all possible solutions, pruning as early as possible any that are clearly inferior. The current
best solution is replaced whenever a superior solution is found. Because the number of
possible solutions is so large, a CPU time limit was imposed, which causes the solution to be
only approximate. Tests were done for graphs with 5-200 tasks, and 2-10 processors, with
no communication costs. Experimentation showed that in most cases this approach found
an optimal solution within a few seconds. Kohler [Koh75] describes a slightly less refined
version of the branch-and-bound algorithm used by Kasahara and Narita. His results

strongly agree with those reported in the later article.

12

Ramamoorthy et al [RCG72| develop dynamic programming algorithms that determine
(1) the minimum number of processors to process a graph in the smallest possible time, (2)
the minimum time required to process a graph on k processors, and (3) whether a graph
can be processed in the minimum time on k processors. Two heuristics are also presented,
both of which are similar to load balancing. The heuristics are compared against an
optimal algorithm for small graphs and two processors. The major thrust of this paper is
intended to be the dynamic programming algorithms, but the two heuristics provide ideas
on task selection strategies which we use in this dissertation. Ramamoorthy’s task selection
strategy is different from critical path scheduling in that tasks are scheduled in the order
that they become available, which can be used both in a static or dynamic scheduling

environment.

Sethi [Set76] discusses some results from [CoG72] which includes an optimal O(n?)
algorithm for scheduling arbitrary directed acyclic graphs with unit weights on two
identical processors. He presents a graph labeling function with O(n+e¢) steps. He also
presents a new optimal algorithm for the two processor problem which has complexity

O(na(n)+e¢), where a(n) is an almost constant function of n.

Graham [Gra69] and Fernandez and Bussell [FeB73] investigate the worst-case
performance of a critical path scheduling algorithm. Graham derives bounds for several
variations of the job-shop scheduling problem (i.e., PCS), including an upper bound on the
schedule length given a fixed number of processors. Although Graham’s work considers only
a subset of the problem we consider, it does provide some justification for claiming that the
distribution of parallelism does not have a major impact on scheduler performance, which

we investigate empirically for the larger problem.

13

More detailed information about the limits of the Coffman-Graham and critical path

scheduling algorithms are given in [LaS77], [Kun81], and [L1082):

Lam and Sethi [LaS77] discuss the worst case performance of preemptive and
nonpreemptive versions of the Coffman-Graham (CG) scheduling algorithms. They show
that both algorithms are bounded by w/w,<2-2/m, where w is the length of the CG
schedule, w, is the length of an optimal schedule, and m is the number of processors. Note

that this accounts for the optimality of the special case where m = 2.

Kunde derives worst-case asymptotic bounds for the critical path scheduling heuristic
in [Kun81]. The bounds are derived for the special cases where tasks have unequal weights.
Three types of dependency structures are considered, namely trees (2—2/(m+1)), anti-trees

(exact bounds are not given, but they are generally worse than for trees), and chains (5/3).

Lloyd [Llo82] investigates the worst-case performance of the critical path scheduling
algorithm and the Coffman-Graham scheduling algorithm. This analysis presumes that
there are a fixed number of available processors, and that additional resources exist. An
upper bound is given which depends on the number of processors and non-processor
resources in the system. This upper bound is the same for both scheduling algorithms, and

is asymptotically the best possible worst-case upper bound.

2.1.1. PCS With Communication Costs

Several recent studies do consider communication costs in their analysis. However,
none of the studies are as extensive as we have undertaken here. Three such studies are

summarized here.

Kruatrachue considers the problem of communication for a precedence based scheduler
in [KrL87,Kru87,KrL88a,KrL88b]. He defines the ISH and DSH schedulers; ISH is a

modified version of Hu’s scheduler [Hu61]. DSH is like ISH with an extra pass that

14

duplicates tasks whenever it is beneficial to do so. Task duplication can have the beneficial
effect of using idle CPU time to reduce communication. A basic assumption underlying all
his results is that contention has an insignificant eflect on the performance of a scheduler.
All scheduling decisions are made assuming that the only delay in communication comes

from channel latency, and that messages rarely interfere with each other.

Granski et al [GKS87] present a critical path algorithm suitable for scheduling
dataflow graphs on a dataflow machine. Their algorithm schedules conditional branches by
transforming the graph into a set of deterministic subgraphs, each element of which
represents a possible path of execution. A critical path algorithm is then used to schedule
each of the subgraphs independently. Loops are scheduled by first multiplying the weight of
each node within the loop body by the expected number of iterations. The loop body is then
scheduled as if it were acyclic. Simulated performance of their algorithm shows their

algorithm compares favorably with a random scheduling algorithm.

Chester Carroll et al discuss a solution based on critical path analysis in [CHAS8S].
The solution first schedules critical paths (see Section 3.1 or [HiL74]), then adds non-critical
tasks later. Task selection for non-critical tasks is done by decreasing distance from the
terminal node of the graph, and uses distance from the initial node to break ties. Only
“processor rich” systems were used in scheduling, which never blocked task execution
because of processor unavailability. Their study considers both latency and contention in
communication. Latency is restricted to being no longer than the duration of the average
task. Other aspects of communication were also modeled — in particular, both completely
connected and star networks with a packet switching protocol were used, and
communication buffer size was included in the feasibility constraints. No performance

results were reported.

15

CHAPTER 3

Definitions And Terminology

Briefly stated, the general problem to be considered is: what are the characteristics of
parallel schedulers, programs, and architectures which aflect resulting performance? Of
course this problem is so broad that one can only consider a very small portion of it in a
work such as this. For the sake of simplicity we will restrict the problem to static acyclic
program graphs and an idealized multiprocessor architecture. In doing so we restrict the
problem to what we believe are its principal components. As mentioned before, much work
has been done when the cost of communication between processors is zero {Cof76], and some
work has been done when communication latency is important but the communication link
bandwidth is effectively infinite [Kru87]. We consider architectures that have a finite
communication capacity across links, so communication latency and contention may both
affect scheduler performance. In this chapter we give definitions and introduce the

terminology used in the remainder of the dissertation.

3.1. Task Graph Characteristics

DEFINITION: A task graph G = (A,T) is a connected, directed, acyclic graph with

heterogeneous non-negative weights on all nodes and arcs.

The set T of graph nodes represents tasks to be performed; node weights represent the
computational resources (i.e. CPU time) required by the program to complete its execution.
Ares in A represent communication between tasks; arc weights represent the volume of
communication between tasks. It does not represent the communication time of the arc —

that is a function of the processor schedule. The direction of the arc indicates which task is

16

the sender and which is the receiver.

Intuitively, a task graph is a way of representing a program. Tasks within a graph
are sirict on all parameters, that is, they must receive all communication before they begin
execution. Tasks are modeled as sending messages to other tasks only after the sending
task has completed its execution. It is assumed for convenience that every graph begins
with a single node and ends with a single node. Graphs which have more than one initial or
terminal node may be easily modified to this form by adding special initial and terminal

nodes.

Task graphs have no cycles nor conditional execution such as are found in dataflow
graphs [Ack82,DaK82,Den80,Gur84]. The restriction on cycles is particularly severe for the
representation of programs, as few useful programs are written without some form of
iteration structure such as loops, recursion, or generators. Compiler technology in recent
years, however, has progressed to the point where loop unrolling may take place as part of
the optimizations a compiler is able to use [AlC72]. Loop unrolling partially or completely
removes cycles from an otherwise cyclic graph. The unrolled portion of a loop may be

represented as a task graph, or the whole loop may be represented as a single node.

DEFINITION: The parent relation of a task graph G = (A,T) is the set A of arcs of G,
that is, a is a parent of b iff (a,b)EA. Parent(a) denotes the set” of tasks
{p:(p,a) € A}, which are the parent tasks of a. Child(a) is the set- of tasks

{c:(a,c) €A}, which are all children of a.

Intuitively, a is a parent of b if b receives a message directly from a; also, b is a child

of a.

DEFINITION: The ancestor relation of a task graph G = (A,T) is the transitive closure

of the parent relation. In other words, a is an ancestor of & iff a is a parent of &, or

17

there exists some ¢ such that a¢ is a parent of ¢ and ¢ is an ancestor of b. The

descendant relation is the transitive closure of the child relation.

The ancestor relation is both irreflexive and antisymmetric. Irreflexive in this case
means a can never be its own ancestor, and antisymmetric means that it cannot be true

that both a is b’s ancestor, and b is a’s ancestor.

DEFINITION: An snitial node of a task graph G is a task ¢ € T which has no parent in
G, that is, @ is an initial node if Vb € T (b,a) ¢ A. A terminal node of a task
graph G = (A,T) is a task a such that e is not an ancestor of any node. In other

words, ¢ is terminal iff V6E€T (a,b)¢ A.

DEFINITION: The carliest starting time (EST)' of a task a is emax()(EST,+w,),
zECparent(a

where w, is the weight of task z.

A task may begin execution only after all its parents have finished, so a task’s EST is
the estimated time of the latest parent’s termination. EST ignores arc weights because the
costs associated with arc weights depend on particulars of the task placement and schedule,
which have not yet been determined. The EST of the initial node may be any finite value,

positive, zero, or negative, but is usually chosen to be zero for convenience.

DEFINITION: The lateat starting time (LST) of a task o is min LST,]-w,. The
aten a

LST of the terminal node is its EST.

A task’s slack is the difference between its LST and EST. Intuitively, slack measures the

freedom available in scheduling the node.

! These definitions for EST, LST, and slack are equivalent to the classical definitions, such as are found in
[HIL74].

18

DEFINITION: A eritical path of a graph is a connected directed path, including initial

and terminal nodes, for which the slack of each task is zero.

A graph may have more than one critical path, but all critical paths will have the
same length. The EST of a task represents the length of the longest path from the initial
node to the task. The LST is a linear function of the length of the longest path from the
terminal node to the task. Any task scheduled for execution between its EST and LST will
not adversely affect the execution of the graph. A task can be scheduled before its EST
when the scheduling progresses from bottom to top, in exactly the same way that a task

may be scheduled after its LST when the scheduling order is from top to bottom. The two
activities are symmetrical?>. Any task scheduled before its EST will increase the total
execution time of the graph by at least the difference between the EST and the scheduled

time. Similar results occur if a task is scheduled after its LST®.

The definitions for EST, LST, slack, and critical path reflect the most optimistic
execution possible which will not violate precedence constraints. They are optimistic in that
they assume enough computational resources that no task is delayed due to processor
unavailability, and that there is no penalty for communication. Even though these values

are optimistic they serve a useful purpose as indicators for task priority.

2 The idea of scheduling a task before its EST may be confusing to some readers. To understand how this
may occur, one must recognize that the EST is only an estimator which measures the earliest time at which a
task may be scheduled without increasing the length of the achedule beyond the length of the eritical path. Some
scheduler designs (e.g. SCFET |ACD74]) fix the termination time of the final task first, then schedule each parent
task in succession. If the final task is given a start time which is its EST, then any task which is scheduled before
its EST will increase the length of the schedule. Also, when scheduling proceeds backwards like this, it may be
necessary to schedule a task before its EST in order to avoid violating precedence constraints.

31f more than one task is scheduled outside its EST-LST range, the execution time of the graph may or may
not be augmented by the sum of the differences. This is because the schedule of one of the tasks may cause the
critical path to change in such a way that the other does not affect execution. For example, suppose two parallel
tasks each have LST = EST = 10. If task @ is scheduled at time 15 and task b at 20, the execution will be in-
creased by the maximum of the two, or by 10 time units. If on the other hand the tasks sre sequentisl rather
than parallel, the increase will be the sum, or 15 time units.

18

A number of task graph characteristics can affect the length of an optimal schedule.
Among them are program size, average parallelism, task distribution, and the arity of its
nodes. Program size affects schedule length by determining the total amount of work to be

done. More work to be done generally means longer schedules.

DEFINITION: The average parallelism of a task graph is the ratio of the total task

graph weight to the length* of its critical path.

Average parallelism measures the total amount of work that can be done in parallel
over the life of the computation. It is also the ideal speedup, given an infinite number of
processors with infinitely fast communication between them. Some programs are highly
parallel, while others exhibit an average parallelism near unity (they are effectively
sequential). An example of a nearly sequential program fragment would be the algorithm in
Figure 3.1, which raises a value b to an integer power y = b? wusing the binary

decomposition of p. This algorithm is very fast, but it has very little parallelism.

An example of a highly parallel program fragment is in Figure 3.2. Assuming + is an
associative operation, this fragment may be decomposed into two equally reasonable task
graphs, as shown in Figure 3.3 (a) and (b). Different task graphs are possible in this case
because of the associativity. Both decompositions have the same number of operations — N
additions in each case. However, because of the greater parallelism available in (b), one
would expect it to have a parallel shorter schedule than (a) whenever multiple processors
were available. The average parallelism of Figure 3.3 (a) is roughly 1; the average

parallelism of (b) is N/log,N.

4 The length of a critical path is the sum of the weights of the taskson the critical path.

20

b « base

p + power

Yy + unity

while (p > 0) {
if (pmod 2 =1) y «~ y * b
be b *b
p + lp/2]

}

Figure 3.1. — Program Fragment With Limited Parallelism

DO 10 I
5
10 CONTINUE

1, N
S + A(I)

Figure 3.2. — Potentially Paralle] Reduction Operation

-] A(1) 8 Al1) A(N-1) A(N)

/ o000

+ Al(2) + +
N N
+\ + 4 +
‘e N/
N
+ ALN) l

+ answer
!

(a) (b)

Figure 3.3. — Reduction Operation Task Graphs

The distribution of tasks within a task graph (or task distribution) can potentially

affect the execution in several ways. The first and most obvious way is that it determines

21

the graph’s average parallelism. The second is that it determines the amount of slack each
task will have. Slack is a measure of how tightly constrained a task is in its schedule. A
large slack means the task may be scheduled within a large range of times without directly

impacting the overall length of the schedule.

Lastly, the shape of the distribution is capable of affecting the schedules as well. For
example, if 90% of the potential parallelism occurs in the last 10% of the graph (as
measured along the critical path), the execution will be essentially sequential up to the end
of the program, after which the program will load up the processors until its done. If 90%
of the parallelism occurs in the first 10% of the program, it might be possible to spread the
parallelism across some or all of the execution of the critical path, and thus incur less
additional expense. Whether this is realizable depends in no small part on the available

slack.

The fan-in, or arity, of nodes in a task graph may affect parallel schedule length
because each incoming arc to a task places a constraint on the execution of that task.
Tasks must receive communication from all parents before they may begin execution. If the
parent resides on the same processor as the child, the communication is free. If the parent
does not, a certain penalty in delay and resource usage must be paid. As the arity
increases, the likelihood that a parent will be scheduled on another processor, and thus that
communication will be across links increases, forcing a tradeoff between communication
delay and loss of parallelism. The communication delay can be reduced at the expense of
reducing the exploited parallelism. This becomes very important when it forces delays in
the execution of tasks along a critical path in the graph, since delays along the critical path

cannot be hidden or masked — except by longer delays in parallel parts of the graph.

22

3.2. Architecture Characteristics

Although graph characteristics are important, they are not the only significant factors
in scheduling. Various architectural considerations may also influence the length of parallel

schedules. This study considers three of the most important: processor count, link latency,

and link bandwidth.

There is a large number of multiprocessor architectures, each with characteristics that

are unique, and each with characteristics that are common to other systems®. A majority of
the systems can be classified as distributed memory, shared memory, or shared address
space. For the purposes of this dissertation, it is assumed only that each processor may
communicate with other processors via message passing over a network of communication
links. This is quite natural to a distributed memory machine. A shared memory machine
might also be used as a message passing machine, by using locks or semaphores to signal the
arrival of messages. A shared memory system can be viewed as a distributed machine with

a completely connected network that has near-zero communication latency.

DEFINITION: A multiprocessor architecture is a graph M = (P,L), where P is the set of

processor elements, and L is the set of communication links.

Communication links are some combination of uni- and bidirectional arcs, with labels
on all arcs and nodes. The directionality of the arcs represents the possible flow of
communication across the system. An arc label represents the bandwidth of the
communication link which connects processors on both ends of the arc. (There is nothing

inherent to our model which precludes communication startup costs from being used, but we

8 A large number of texts have appeared on this topic in recent years, and three are mentioned here. For a
thorough treatment of multiprocessor systems at the architectural level, see |[HwB84). Babb |Bab87] discusses pro-
gramming different commercially available parallel processing systems, and Chambers et al [CDJ84] considers
design ideas behind some of the more exotic experimental systems.

23

do not consider them in this study.) Node labels represent the different capabilities a

processor may have, along with the speed with which it is able to perform the work.

DEFINITION: Lsnk latency is the time delay per unit message incurred in transmitting a
message over a single empty communication link. Message latency is the time delay of

a given message.

Link latency is also called communication latency, or just latency. The units of
latency are generally seconds per bit or seconds per byte, but here we are interested in the
time relative to the execution of an average task so it is the average tasks executed per
transmission of an average message. Message latency is a function of the link latency and

the size of the message to be sent.

Message delay comes from two main sources: delay due to physical properties of the
communication circuits (i.e. link latency), and queuing delay due to multiple messages
competing for communication links. Queuing delay, or contention, depends on the total
resources available, the resources used by each message, and the pattern of usage. Network
resources are determined by the network size and topology. Message transmission patterns
can be co-operative or interfering. If message patterns are {effectively) random, interference
depends on the average distance a message is sent and the number of messages in transit.
Contention is dependent in part on latency because longer latency means messages take
longer to cross a link, and thus the link usage is higher. This in turn causes other messages

waiting to use the link to be further delayed.

Not all communications cause an increase in schedule length. Since communication
between two tasks on the same processor is “free”, delay can sometimes be avoided.
Communication between processors that occurs along the critical path will always affect the

schedule length (unless something in parallel affects it more). However, if there is sufficient

24

slack between communicating tasks off the critical path, communication may have no effect
at all. But to say that the eflect of communication is indirect is not to say that it is
insignificant. Its significance depends in large measure on the scheduler’s ability to take
advantage of opportunities to reduce its effects. This dissertation will examine in later

chapters the effect message delay has on different scheduler strategies.

3.3. Scheduling Performance Metrics
DEFINITION: A task assignment a:T—P is a mapping of tasks to a set P of processors.

If task duplication is allowed [Kru87], « is a relation, not a function, because a task
may be assigned to more than one processor. The same is true if certain types of
preemptive scheduling is used. If task duplication is not allowed and scheduling is
nonpreemptive, a also induces a partition, and each task is assigned to exactly one

processor.

DEFINITION: A schedule 0:T—Z is a function from a set T of tasks to Z, the set of

integers®. A multiprocessor schedule is a task assignment of T to a set P of processors
with a schedule for each processor. All tasks must be executed at least once, and no

more than one task may execute at a time on a processor.

Intuitively, T is divided among the available processors, with some tasks possibly
occurring on more than one processor. Then o is a function which returns the start time of
a task on a processor. Because the schedules are nonpreemptive, the finish time of a task is
the sum of its start time and its weight. A schedule is valid if it obeys all of the

constraints, such as precedence, which are imposed upon the task graph. Although we only

% In some formulations of the problem, & is a function to Z* or 2° and negative integers are not included.
We include negative integers in our definition in order to allow a scheduler to fix the termination time of the
schedule and work backwards to the starting time. The usual order is to fix the start time at zero or one and
schedule forward to the end.

25

consider precedence in our model, other constraints, such as memory usage limits, are

certainly possible.

For reasons mentioned earlier, it is desirable to schedule tasks between their EST and
LST. In critical path scheduling, tasks are assigned priorities to establish the order in
which tasks will be scheduled. The highest priority goes to the task which will be scheduled
furthest outside of the EST-LST range, in order to minimize its impact on the schedule.
Scheduling lower priority tasks first can never increase the opportunities to schedule higher

priority tasks — it can only fill time slots that higher priority tasks might have used.

On the other hand, always scheduling the highest priority task first will not guarantee
an optimal schedule, or even a good one. Suppose there are two unscheduled tasks a and &,
and task ¢ has the highest priority of the two. Task a might have several slots which
would be equally suitable, whereas because of communication constraints task & might have
only one slot which does not adversely affect the schedule length. If task a is given the slot
which also happens to be the best slot for b (because it is also the best slot for a by a small
margin) the schedule suffers because the completion time for b suffers. If a were less
aggressively scheduled, b could take its best slot, and ¢ would be scheduled in a slot that is
“almost” as good. This strategy would ultimately give the best overall schedule, but to

implement it reliably requires a search of nearly all the possible task combinations.

DEFINITION: The length of a task graph’s schedule is the difference between the start

time of the earliest task, and the finish time of the latest task.

Task weights aflect schedule length in an easily understood manner — tasks that are
added to the beginning or end of a schedule increase the schedule length by the value of the
task weight. Arc weights (i.e. message weights) do not have as direct an influence on the

schedule length. If the sending and receiving tasks are both on the same processor, no

26

message is scheduled, and the schedule length is unaflected. If the tasks are on separate
processors, the message must be scheduled on each communication link in the path which is
used to transmit the message from the sending task’s processor to the receiving task’s
processor. The amount of time reserved on each link (i.e the message latency) is
proportional to the message weight and the link transmission rate. Thus the execution of
the receiving task can be delayed by the latency of the message, and possibly more if other
messages are competing for the links. Communication delays the execution of individual

tasks, which in turn increases the schedule length.

Schedule length measures the total execution time of a given schedule. It is interesting
to note that as a scheduler constructs a schedule, it attempts to model “reality” with some
degree of accuracy. There may Ee some differences, perhaps insignificant, perhaps highly
significant, between ‘“reality’” and a scheduler’s perception of reality. Because of those
differences, a scheduler’s perception of a schedule and the actual schedule may be quite
different. This is also true of the scheduler’s perception of the schedule length and the

actual schedule length.

DEFINITION: The parallel efficiency of a task graph schedule is the value X'T ,
4
where T, is the length of a sequential execution of the graph (or the sum of the
weights of the individual tasks), n is the number of processors, and T, is the length of

the parallel schedule.

The parallel efficiency describes how effectively the machine is being utilized.
Efficiencies near one show that near maximum speedup is being attained, while efficiencies
near zero indicate that few of the available resources are being used efficiently. If tasks are
not duplicated to increase parallel execution speed, low efficiencies also reflect a high

processor idle time. If tasks are duplicated, all processors may be kept busy even when

27

parallel efficiency is low.

The processor count and average parallelism of the task graph together place an
upper bound on the speedup any parallel schedule can display on that system. The bounds

are calculated in the following way:

Speedup < min(Average Parallelism, Processor Count).

Processor count and parallelism also place a limit on the best possible parallel efliciency

attainable for a graph. The best parallel efficiency is bounded above by

Average Parallelism 1)

. Parallel Efficiency < min(Processor Count
c n

28

CHAPTER 4

Scheduler Components

Stubborn scheduling designs generally consist of three main phases: task selection,
processor selection, and schedule generation. Both the length of schedule computed and the
running time necessary to create the schedule will depend on the algorithms chosen for these
phases. It is interesting that the interaction between components can also have a major
effect on scheduler performance. For example, we discovered that combining a schedule
generator that models communication latency and contention, with a processor selector that
uses only latency can be very detrimental. Schedulers which include this pair can generate
schedules that are more than 40 times as long as a corresponding sequential schedule.
Dividing schedulers into phases gives us a simple taxonomy which will be used to compare

schedulers in later chapters.

4.1. Task Selection

The task selection phases can be subdivided into task priority assignment and task
selection. Priority assignment is an analysis of the (perhaps partially scheduled) task graph
to determine the order in which (remaining) tasks will be scheduled. Tasks are then selected
for scheduling according to the priorities assigned. Task priority may be a function of the
task’s distance from the top of the task graph, from the bottom of the graph, or both
[Gon77]. Distance is measured as the sum of the running times of each task along the
longest path from the graph start (finish) to the task. No additional distance is usually

included because of communication.

29

While unscheduled tasks remain
Assign task priorities
Select a task to be scheduled
Select a processor for the task

Schedule the task on the processor
End

Figure 4.1. — Scheduler With Multiple Task Priority Calculation

The priority assignment may occur as infrequently as once or it may occur more often.
A single priority assignment has the advantage of requiring less CPU time to generate a
schedule, whereas multiple priority assignments allow the task priorities to adjust to the
changing conditions that will occur during execution. For example, the assignment of a
particular task to a particular processor could change the critical path of the task graph;
reassigning task priorities would allow priorities to reflect such changes. Figure 4.1 shows
the scheduling algorithm that recomputes the task priorities each time a task is selected. If
the task priorities are computed only once, the priority computation can be moved out of

the scheduling loop, as in Figure 4.2. This algorithm is used in all other schedulers.

Assign task priorities

While unscheduled tasks remain
Select a task to be scheduled
Select a processor for the task

Schedule the task on the processor
End

Figure 4.2. — Scheduler With Single Task Priority Calculation

30

4.2. Processor Selection

Once a task has been selected for scheduling, a determination must be made as to
which processor the task must be assigned to yield the most favorable result. Each
processor must be examined to determine which processor assignment will yield the overall
shortest schedule. This requires that the ‘“important” aspects of the architecture be
modeled. Some features worth considering are communication link latency and capacity,
and processor load. Incorrect modeling of an architecture can lead to grossly inefficient

schedules, while complete modeling can be prohibitively expensive.

This work considers several processor selection functions, namely random processor
selection, selection based on processor load only, selection based on processor load and
communication latency, and selection based on load, latency, and communication capacity
(or contention). For random selection a processor is selected at random each time a task is
to be scheduled. Each processor is equally likely to be selected, and no consideration is
given to the architecture or to the schedule generated. When selection is based on load,
each processor schedule is examined. The processor with the shortest schedule, i.e., the
earliest completion time or lightest processor load, is selected to receive the task. When
selection is based on load and latency, each schedule is examined as before but the time
required to communicate results to other tasks is also included. It is assumed that each
communication link is completely devoid of other traffic, i.e., interference between messages
is not considered. This is a reasonable approximation if the average link utilization is

generally quite light.

The last processor selection strategy considers processor load, link latency, and
contention. Communication contention is modeled by individually scheduling messages on

communication links. A separate schedule is maintained for each link in the system. Thus

31

if a previous message is scheduled to use a link at a given time and a second message would
use the same link at the same time, the second message is delayed or, when possible,
scheduled earlier than the first. In this way message contention is completely accounted for,
and simultaneous transmission of multiple messages over a communication link is not

allowed.

4.3. Schedule Generation

Schedule generation deals with the actual construction and recording of the various
schedules. It is at this time that a task is actually assigned to the processor which has been
selected for it. This can be done in several ways. For a given task assigned to a processor,
the generator may place the new task at the top (or bottom) of the processor’s schedule, or
it may search the schedule for a suitable slot which would not increase the schedule length.
Task insertion in parallel scheduling has been the basis of some study [KrL87,Kru87|, and
although it increases the time required to genefate a schedule, it can shorten the schedule

length by a modest amount.

Another degree of freedom in schedule generation is the level of architecture modeling
undertaken. Just as processor selection may make certain assumptions about the
environment in which a program will be executed, the schedule generator must also make
assumptions about the environment. And although it is the same environment, each need
not necessarily make the same assumptions. For example, it might be the case that only
processor load is considered in selecting a processor, but the schedule generator might build
schedules which explicitly account for all messages a task will send, and thus model both
communication latency and contention. It is worth noting that the processor selector may
only use those features modeled by the generator, though it may choose to use fewer. This

is because the schedule generator is the mechanism that records the state of the execution

32

through each step of the scheduled computation.

4.4. Descriptions of Schedulers

Task selection, processor selection, and schedule generation define a taxonomy. Of the
160 schedulers this taxonomy defines 12 were selected for experimentation, for reasons
explained below. The specific characteristics of the schedulers used are summarized in
Table 4.1, and their relationship to other schedulers may be found in Figure 4.3. A
complete description of each scheduler is included in the following sections. The
designations in the table indicate how the scheduler was constructed. The two fields under
“Priority Assignment” indicate the behavior of that part of the scheduler. The entry
“Once” indicates that the scheduler assigns the task priorities once before the first task is

scheduled, and they do not change after that point. ‘“Many” indicates that the task

Rand. | Rand.| Load | Rand.| Load| Law| Rand.| Load| Lat.| Cant. | Processor Selection
Order|{ Load{ Load Lat. Lat. Lat. | Cont.| Cont. | Cont.| Cont. | Schedule Generation
Top 8 . 3.
Once K
Top 6 .11 2.
Top 4 14
0 ’:‘ ""
Bot. | .- K
Bot. 5 7 710 1.
Top |- C 12
Bot. 4
Once
May
Mary
Measure Prionity From Witk Insertion
Preority Assn Freguency L~
Task Selected From Withost Insertion

Figure 4.3. — Organization of Scheduler Design Space

33

Scheduler Priority Tas].(Proces‘sor Schedu'le Complexity
_ Assignment | Selection Selection Generation

#1 Once | Bottom | Top Contention | Insertion Full n2pe
#2 Many | Top Top Contention | Insertion Full nm+n’pe
#3 Once | Top Bottom | Contention | Insertion | Full n’pt
#4 Many | Top Bottom Contention | Insertion Full nm+n3pe
#5 Once | Bottom | Top Latency Insertion Lat. n2p
#6 Many | Top Top Load Insertion Full | nm+np+n%
#7 Once | Bottom | Top Load Insertion Full np+n
#8 Once | Top Bottom Load Insertion | Full np+n%e
#9 Once | Top Top Random Insertion Full m
#10 Once | Bottom | Top Latency Insertion Full np+n?t
#11 Many | Top Top Latency Insertion Full | nm+np+n?e
#12 Once | Bottom | Top Latency No Insert. | Full np+nf

s Table 4.1. — Scheduler Design Parameters

priorities are re-calculated each time a task is scheduled. “Top” (“Bottom”) indicates that
the priority is measured as the distance from the top (bottom) of the task graph. “Top”
(“Bottom”) under “Task Selection” indicates that task selection occurs from the top

(bottom) of the task graph.

Under “Processor Selection” there are four choices, namely, “Random”, “Load”,
“Latency”, and “Contention”. These indicate the level of architecture modeling that occurs
in the determination of each task’s processor assignment. ‘“Random” indicates that the
processor is selected at random. “Load” indicates that only the processor load, or schedule
length, is considered in selecting a processor. “Latency” means that both processor load
and communication latency are modeled. An entry of “Contention” indicates that the task
is successively scheduled on each processor, complete with task insertion and message

scheduling, and the processor which gives the best task completion time is selected.

The “Schedule Generation” columns indicate whether task insertion was used in the
final schedule, and at what level the scheduler modeled the architecture. “Full” indicates

that both tasks and messages were scheduled on the various resources, i.e., that

34

communication contention was modeled. “Latency” indicates that tasks were scheduled
with sufficient delay that communication could take place aeross the appropriate processors,

but otherwise communication was not considered.

Figure 4.3 includes the entry “Order”, to indicate that the order of tasks is
maintained on the architecture, but no additional information is retained. A scheduler need
not record task start and finish times only if they are not used in either task or processor
selection. Any scheduler which selects a processor based on processor load, latency, or
contention must record task start and finish times in addition to the order in which tasks
are executed. Scheduler #9 selects processors at random, so no start or finish times are
needed. In our experiments a separate task graph execution simulator is used to determine
the actual schedule length, so all schedules are, in effect, “measured by the same yardstick’’.
This is needed because, as discussed in Section 3.2, each scheduler’s perception of task start

and finish times may not be consistent with “reality”.

This particular selection of schedulers was chosen to compare not only the costs and
benefits of diflerent scheduler phase designs, but also the relative importance of each
scheduler phase. Several of the most promising phase designs were selected for each
scheduler phase. A processor selection phase which selected processors at random was also
used, primarily to provide a scheduler which could be used as a standard of reference for

other schedulers.

The first four schedulers, #1, #2, #3, and #4, were designed to test the impact of
task selection strategies on schedule length and CPU time. Each of these four schedulers
are identical in every way, except for task selection strategy. Scheduler #1 uses the same
task selection strategy used in Hu’s scheduler [Hu61], and in critical path scheduling

[Koh75].

35

Scheduler #2 uses a task selection strategy which is identical to that which is used in
dynamic load balancing (cf. [ELZ86,LiK87]), namely earliest available task first, or first
come, first served. Dynamic load balancing selects tasks in order of availability, that is,
task priority is measured as the distance from the starting point, and the tasks closest to it
are selected. In other words, both priority assignment and task selection occur from the top
of the task graph. Because load balancing occurs at run time, the priority assignment is

effectively recomputed each time a task is assigned.

One important difference between dynamic load balancing and the corresponding
static approach is that the dynamic approach suflers from incomplete knowledge of the
system load when decisions are made, due to the necessity of distributing load messages
relatively infrequently. For this reason the static approach is an idealized version of the
dynamic approach. It provides a lower bound on the schedule length, both because of the
availability of complete information at the time the schedule is created, and because the

overhead of generating the schedule does not interfere with the execution of the task graph.

In addition to the above approaches, Hu’s task selection method was also inverted,
that is, priority was measured as the distance from the top of the graph and tasks were
selected from the bottom. Scheduler #3 measures the task priorities once, scheduler #4
measures the priorities each time a task is selected for scheduling. Scheduler #4 was chosen

to test the importance of multiple passes in the task selection phase.

To understand more fully how the task selection mechanism works, consider the task
graph in Figure 4.4. Scheduler #1 uses a task selection phase which measures task priority
from the bottom of the task graph, so it uses the LST of each task to determine the task
selection order. It selects tasks from the top, so a task with the smallest LST is selected

first. Thus scheduler #1 would select tasks in the order a, ¢, b, ¢, d, f. Ties are not

36

EST- 0
wi-1 LST -0
Wt 1 EST- 1 EST- 1
LST-3 LST- 1
weo 1 EST - 2 EST- 3
LST - 4 LST- 3
wt -1

LST -5

Figure 4.4. — Example Task Graph

explicitly resolved, so the order of tasks b and e might be reversed.

Scheduler #2 measures task priority from the top of the task graph, so it uses the
EST value. It selects tasks from the top, so it would select them in order of smallest EST to
largest. The first task to be selected is task a. Once scheduled, it would fix a’s EST at the
actual time it was scheduled, and recompute the EST for all unscheduled tasks. In this way
the task selection mechanism receives feedback from the actual schedule, at least as it is
perceived by the scheduler. The order in which all remaining tasks are scheduled, therefore,
depends on details of the architecture and other phases of the scheduler. After the EST’s

are recomputed, the next task is selected for scheduling.

Scheduler #3 measures task priority from the top, and selects tasks from the bottom,
so it too uses the EST to determine task ordering, but it reverses the order used by
scheduler #2. It first selects the final task and schedules it. It then selects another task
and schedules it, subject to the constraint that the execution of the second task must
complete before the final task, including any time needed for communication. Scheduling

proceeds in that manner until all tasks are scheduled. The order in which tasks from Figure

37

4.4 would be scheduled is f, d, ¢, b, ¢, a. Scheduler #4 works in the same way as #3, but

like scheduler #2 it fixes the EST of a task once it is scheduled, and recomputes all ESTs.

Schedulers #6, #7, and #8 were designed to discern the effect of less expensive
processor selection strategies. A major portion of the scheduiing expense comes from the
processor selection phase of the scheduler, so a less expensive one — load balancing — was
substituted. To select a processor, each processor schedule is examined, and the processor
with the earliest completion time is selected. Since it was not known whether task selection
would have an impact on the eflectiveness of a processor selection strategy, three different
task selection strategies were used. Scheduler #6 in particular was selected because its

design is closest to that of dynamic diflusion scheduling.

Schedulers #10 and #11 were also designed as an attempt to find effective, but
inexpensive, approaches to scheduling. The idea was to use load balancing, but include a
cost for communication. The main constraint was that the communication cost had to be
inexpensive to compute. Message latency was used, since the amount of computation

required is proportional to the task arity, and the arity is usually a very small number.

To illustrate the different approaches to processor selection, consider the partial task
graph in Figure 4.5 (a). (Only node precedence has been shown — node and arc weights
have not been marked, for convenience.) If we are scheduling the graph for a two processor
system, a partial result might be the schedule shown in Figure 4.5 (b). Assume that task ¢

is the next task to be scheduled.

If the processor selection phase uses only load to select a processor for a task, then ¢
will be scheduled on PE 1, because its schedule finishes first. If the communication
requirements between tasks a and ¢ are small, the result will be a tight schedule, as shown

in Figure 4.6 (a). However, if the message is large, the results could be very poor, as shown

38

PEOLINK PE 1

. . . " b
G z
/
y

(a) (b)

Figure 4.5. — Partially Scheduled Task Graph Fragment

PEOLINK PE 1 PEOLINK PE 1
b b
a a
~l z z
&

¢ «
y y \

(a) (b)

Figure 4.6. — Processor Selection Using Processor Load

in Figure 4.6 (b). It might be better to schedule ¢ on PE 0, depending on the size of the
message connecting b and ¢. The same type of problem can occur if load and latency, but

not contention, are used in processor selection, although it would not occur in this example.

39

Time PE 0 LINK PE 1 PE 0 LINK PE 1 Time

- b - b :

0

(1) «) = =B
g ‘/ 2
3 L L \ 3
4 4
5 — 5

(a) (b)
. Figure 4.7. — Processor Selection Using Contention

Now consider the situation which occurs if the message from @ to ¢ is large, and the
message from b to ¢ is small. For concreteness, assume that the messages require empty link
transmission times (i.e. latencies) of 2 and 1, respectively, and that the execution time of
task ¢ is also 1. The processor selector would first try ¢ on PE 0, the result of which is
shown in Figure 4.7 (a). It would then try ¢ on PE 1, shown in Figure 4.7 (b). The first

schedule clearly is the better schedule, so PE 0 would be selected.

This example also illustrates the concept of task insertion. There are unused spaces in
PE 0’s schedule which can be used by tasks such as ¢. When such spaces exist, they can
often be filled by ;cheduling suitable tasks in them, as they were in Figure 4.7 (a).
Schedules can be made more efficient with task insertion, because it uses what would

otherwise be processor idle time.

The remaining schedulers, #5, #9, and #12, were each selected for different reasons.
Schedulers #5 and #9 were chosen to provide a basis of comparison for the other
schedulers. Scheduler #5 is Kruatrachue’s ISH scheduler, which has been proposed as a

solution to this problem [Kru87], and scheduler #9 schedules tasks at random. Scheduler

40

#12 was selected because poor performance was observed in scheduler #10, and it was
thought that task insertion might be causing the problem. Scheduler #12 was designed to

test that hypothesis. It differs from #10 in that #10 uses task insertion and #12 does not.

4.5. Scheduler #1

Scheduler #1 (Figure 4.8) is one of several variations on Hu’s scheduler [Hu61].
Assigning task priority, as mentioned before, can be done using a standard PERT analysis
routine and the tasks put on a heap (also called a priority queue, heaps are discussed in
[Sed83]). PERT analysis has complexity O(m+n), where m is the number of precedence
arcs in the task graph and n is the number of tasks in the task graph, so task priority
assignment is O(m+nlogn), Checking for unscheduled tasks has complexity O(1). Task

selection, because of the heap structure, takes O(logn) time.

Processor selection and task scheduling are a bit more complicated. To select the best
processor for a task ¢, t must be scheduled on each of the p available processors, and the
best selection recorded. This involves finding the shortest available communication path

from each parent of ¢ to ¢ itself. A standard O(€) shortest-path graph search is used, such

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (including communication)
Schedule the task on the selected processor
(recording both processor and link schedules)
End

Figure 4.8. — Scheduler #1 Algorithm

41

as is found in [Sed83] — £ is the number of links connecting the p processors. For this
scheduler, each message must be scheduled on each link over which the message is
transmitted to avoid overloading the link. Overloading the link would cause a delay in the
actual message transmission which would not be anticipated by the scheduler. To further
shorten communication time, the link schedule is searched for the earliest time slot which
will accommodate the new message. This allows the message to be sent across the link at
the earliest possible time after the processor has initiated the transmission. Therefore,
assuming the number of parents is bounded above by some small constant (i.e. task arity is
independent of the total number of tasks in the graph), the complexity of finding the fastest

communication path is O(n¢).

To insert ¢ into the destination processor schedule, the schedule is searched for the
earliest slot which occurs after the message arrives. Because this search is O(n), it is
overshadowed by the complexity of the communication algorithm, and can be ignored. Now
because there are p processors on which to try each task, processor selection is an O(p¢n)
operation. Task scheduling involves at most the same operation repeated once (rather than

p times) and does not affect the overall complexity.

Collecting terms together and noting that the loop executes n times, the time

complexity for scheduler #1 is O(n?p¢).

4.8. Scheduler #2

This algorithm (Figure 4.9) is very similar to that of scheduler #1, with the notable
exceptions that task priority is measured from the top, and it is measured each time a task
is selected for scheduling. This behavior is very much like that of a dynamic load balancing
system, in that tasks are selected as soon as they become available on a first come, first

served basis. It is also similar in that it locally minimizes the system load.

42

While unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (including communication)
Schedule the task on the selected processor
(recording both processor and link schedules)
End

Figure 4.9. — Scheduler #2 Algorithm

Differences are that there is no runtime overhead associated with scheduling, and the
scheduler has complete knowledge of the state of the entire system. Dynamic load
balancing systems do have a runtime overhead associated with scheduling each task. Also,
every processor’s knowledge about the system is limited by the frequency with which it
receives load messages. Because load messages are received relatively infrequently, a
processor’s knowledge is incorrect by the amount the system state has changed since the last

load message was received.

Another, perhaps more subtle difference is that because the entire system state is
known, the static scheduler can effectively minimize loading for communication links as well
as the processors. It also avoids delays which can result because of the asynchronous nature
of a dynamic load balancing system. For example, if two processors each have work to
export and they both choose the same processor to receive the work, the receiving processor
could end up with work to export — it might have been better if one of the original

processors had given the work to a different processor.

The time complexity of this algorithm is very similar to that of scheduler #1.
Differences are that the PERT analysis is done inside the loop, and the heap is no longer

needed. This means the complexity for scheduler #2 is O(nm+n°p¢).

43

Assign task priorities as distance from the graph top
While unscheduled tasks remain
Select the task that is closest to the bottom
Select the processor for which the task will finish
at the latest time (including communication)
Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.10. — Scheduler #3 Algorithm

4.7. Scheduler #3

Scheduler #3 (Figure 4.10) is very similar to scheduler #1 in its construction. Task
priority is assigned once before task selection begins and is not changed. Schedule
generation records both processor and link schedules, and both are used in processor
selection — communication link capacity is considered in processor selection. The difference
is that scheduler #3 measures task priority as distance from the top of the task graph
down, and schedules tasks from the bottom up. Its complexity is therefore the same as

scheduler #1, or O(n?p¢).

4.8. Scheduler #4

Scheduler #4 (Figure 4.11) is much the same as scheduler #3. Priority assignment is
done from the top down, while task scheduling is done from the bottom up. Again,
processor selection and schedule generation both consider processor load as well as
communication latency and contention. The difference is that scheduler #4 recomputes the
task priorities each time a task is scheduled. The complexity for scheduler #4 is the same

as that of scheduler #2, namely O(nm+n2p¢).

44

While unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task that is closest to the bottom
Select the processor for which the task will finish
at the latest time (including communication)
Schedule the task on the selected processor
(recording both processor and link schedules)

End

Figure 4.11. — Scheduler #4 Algorithm

4.9. Scheduler #5

Scheduler #5 (Figure 4.12) is Kruatrachue’s ISH scheduler [Kru87]. It uses the same
approach to select tasks as is used by scheduler #1. Task priorities are measured from the
bottom up, and tasks are selected from the top down. Each task is tried on every available
processor, and the processor with the best finish time is selected. The difference is that
scheduler #5 does not model the architecture as completely as does scheduler #1. Scheduler
#5 examines the load on each processor, but it computes the communication delay as if the

link had no competing traffic. It also ignores communication traffic when it generates the

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (considering load and latency)
Schedule the task on the selected processor
(recording only processor schedules offset by latency)
End

Figure 4.12. — Scheduler #5 Algorithm

45

schedule.

This simplifies some complexity results for the scheduler. Task priority is
O(m+nlogn) and task selection is Oflogn) as they were for scheduler #1. However,

processor selection is O(pn), and schedule generation is O(n). Thus scheduler #5 is O(pn?).

4.10. Scheduler #86

Scheduler #6 (Figure 4.13) has more in common with dynamic load balancing than
does scheduler #2. Scheduler #2 uses communication load in its calculations, which load
balancing cannot usually do because of a lack of dynamic information. Task priorities are
#ssigned each time a task is selected for scheduling on a first come, first serve basis, and a
processor is selected based on its load only. When the schedule is generated, tasks are

inserted into the earliest slots which will accommodate them.

In dynamic load balancing systems, this corresponds to the following behavior: Tasks
are selected for possible distribution in the order that they are created, that is, earlier tasks
are given higher priority than later ones. Tasks are selected for execution on a processor

primarily in the order they are received by the processor, but if a task receives all its inputs

Whilé unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (considering only processor load)
Schedule the task on the selected processor
(recording both processor and link schedules)

End

Figure 4.13. — Scheduler #6 Algorithm

46

and is ready to run, it will begin execution before the earlier task. The processor will

execute the later task rather than be idle.

The complexity of task assignment is O(m), processor selection requires a comparison
of p load values and thus is O(p). The schedule generator schedules messages on links as
well as tasks on processors, as do schedulers #1-#4, so its complexity is O(nf). Thus the

overall complexity of scheduler #6 is O(nm+np+n2¢).

4.11. Scheduler #7

This scheduler (Figure 4.14) is another variant of Hu’s scheduler, as are #1 and #5.
Task priority is measured as distance from the bottom of the graph to the task; task
selection starts at the top of the graph and works down. Processor selection considers only

processor load; schedule generation schedules communication as well as processor tasks.

As described in previous sections, task priority assignment is O(m+nlogn). Task
selection is Oflogn), processor selection is O(p), and schedule generation is O(nf). Overall

the complexity of scheduler #7 is O(np+n2¢).

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (considering only processor load)
Schedule the task on the selected processor
(recording both processor and link schedules)
End

Figure 4.14. — Scheduler #7 Algorithm

47

Assign task priorities as distance from the graph top
While unscheduled tasks remain
Select the task that is closest to the bottom
Select the processor for which the task will finish
at the latest time (considering only processor load)
Schedule the task on the selected processor
(recording both processor and link schedules)

End

Figure 4.15. — Scheduler #8 Algorithm

4.12. Scheduler #8

Scheduler #8 (Figure 4.15) is a variant on scheduler #3 which does not consider
communication in processor selection — only processor load. Task priorities are measured
from the top, and tasks are selected from the bottom. Processor selection takes place by
selecting the processor with the lightest load. Schedule generation explicitly schedules

communication. The complexity for this algorithm is the same as for scheduler #7, namely

O(np+n2t).

Assign task priorities as distance from the graph top
While unscheduled tasks remain

Select the task that is closest to the top

Select the processor at random

Schedule the task on the selected processor

(recording both processor and link schedules)
End

Figure 4.16. — Scheduler #9 Algorithm

48

4.13. Scheduler #9

Scheduler #9 (Figure 4.16) is different from other schedulers in that it selects
processors at random. Task selection is the same as in schedulers #2 and #6, that is,
priority is measured, and tasks are selected, from the top. This scheduler roughly
corresponds to a dynamic scheduler which selects processors at random. The probability
distribution here is uniform for each processor — every processor is equally likely to receive
each task. Because of this scheduler’s extreme simplicity, the only significant phase is task
priority assignment, which is required to maintain the topological ordering of the task
graph. Task selection, processor selection, and schedule generation are all O(1) operations,

so the overall complexity is O(m).

4.14. Scheduler #10

Scheduler #10 (Figure 4.17) is another variant of Hu’s algorithm. It is similar to
schedulers #1 and #7 in all respects but one: processor selection considers processor load
and communication latency, but not the capacity of the individual communication links. It

measures task priority from the top, and selects tasks from the bottom. Its complexity is

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (considering load and latency)
Schedule the task on the selected processor
(recording both processor and link schedules)
End

Figure 4.17. — Scheduler #10 Algorithm

49

the same as for scheduler #7, that is, O(np+n?t).

4.15. Scheduler #11

Scheduler #11 (Figure 4.18) is, like #2 and #86, similar to dynamic load balancing. In
this variant, the processor selection mechanism accounts for communication latency as well
as processor load. As before, this scheduler selects tasks from the top in a first available,
first served manner. Processors are selected by examining the load of each processor and
the cost of transmitting messages from all of the task’s parents to the processor.
Communication is assumed to be over empty channels. The processor which gives the
earliest completion time is selected. The task is scheduled on the processor, and all

messages from its parents are scheduled on the appropriate communication links.

Considering latency does not change the complexity of the processor selection

mechanism, so the overall complexity of scheduler #9 is O(nm+np+n2e¢).

4.16. Scheduler #12

Scheduler #12 (Figure 4.19) is identical in most respects to scheduler #10. Scheduler

#10, however, had unexpectedly poor performance. Scheduler #12 was created to test the

While unscheduled tasks remain
Assign task priorities as distance from the graph top
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (considering load and latency)
Schedule the task on the selected processor
(recording both processor and link schedules)

End

Figure 4.18. — Scheduler #11 Algorithm

50

Assign task priorities as distance from the graph bottom
While unscheduled tasks remain
Select the task that is closest to the top
Select the processor for which the task will finish
at the earliest time (considering load and latency)
Schedule the task on the selected processor
(recording both processor and link schedules,
but tasks are added to the ends of schedules,
rather than inserting them into an earlier slot)
End

Figure 4.19. — Scheduler #12 Algorithm

hypothesis that the task insertion was hiding some of the communication costs from the
processor selector. The difference between #10 and #12 is that scheduler #12 does not use
task insertion in its schedule generation. As each new task is added, it is added to the end
of the schedule even when earlier slots are available. The complexity for this algorithm is

O(np+nt).

51

CHAPTER 5

Experiment Description

Of all the variables that could have been used to generate task graphs and computer
architectures, five were selected for examination. They were: task distribution, avérage
parallelism, program size (task count), processor count, and communication (link) latency.
Variables which were not examined include the task arity, average task slack, network

topology, and communication switching technology and overhead.

Each of the 12 schedulers was tested on 6075 different cases. The cases consist of 63
diflerent simulated programs with 2048 tasks each, 54 simulated programs with 1024 tasks
each, 45 programs with 512 tasks, 36 programs with 256 tasks, and 27 programs with 128
tasks. Each of the groups was subdivided by the amount of parallelism, and by the

distribution of parallelism within the program.

The average parallelism available in any program depends on the total task weight
and the weight of the critical path. For these test cases, the average task weight was fixed
at 10, and varied between 6 and 14. The number of tasks in the critical path started at 8
and increased by a factor of 2 up to one fourth the total task count. However, because all
task weights were selected at random, the average parallelism varied from less than 3 to

more than 256.

Nine distributions of parallelism were used to give a wide spread in the arithmetic
mean and a moderate spread in the distribution variances. The distributions were all
nonlinearly scaled normal distributions. (Many good statistical texts describe normal

distributions and their properties, for example, [HoT77].) The nonlinear scaling compressed

52

3 b
_[T' (t—l)]z
¢

taf(t) = area
Distribution a b Area Mean | Variance |
0 0.10 | 0.10 | 0.7470 | 0.5000 0.0509
1 0.10 | 0.50 | 0.4226 | 0.3164 0.0259
2 0.10 | 1.00 | 0.1969 | 0.1877 0.0114
3 050 | 0.10 | 0.4226 | 0.6836 0.0260
4 0.50 | 0.50 | 0.3551 | 0.5000 0.0155
5 0.50 | 1.00 | 0.2432 | 0.3641 0.0086
6 1.00 | 0:10 | 0.1970 | 0.8121 0.0116
7 1.00 | 0.50 | 0.2432 | 0.6358 0.0086
8 1.00 | 1.00 | 0.2052 | 0.4999 0.0060

Table 5.1. — Task Distribution Function Characteristics
the distribution into a finite range without significantly altering its shape. The particulars
for each distribution along with the task density function are given in Table 5.1. Graphs of
the distributions may be found in Figure 5.1, and in Appendix A. In the graphs the initial

node, or starting point of the program is at 0. The terminal node, or finishing point is at 1.

Each program was scheduled for machines with 4, 8, and 16 processors. In every case
the processors were connected by a completely connected network — every processor had a
communication channel to every other processor. Communication links between processor
pairs were bi-directional, and only one message per link could be transmitted at a time.
This network topology was selected, not because it is more or less realistic than another, but
because it offers very low communication contention. If contention is a factor in scheduling

tasks for this network, it will certainly be a factor in scheduling for any other.

Although this topology is very expensive for real systems of even moderate size, using
it had a number of advantages. One advantage is that different message switching

technologies such as circuit switching or packet switching do not affect either the latency or

53

-~
e)
i R A

[
Start End Start End Start End

Figure 5.1. — Graphs of Task Distributions

the amount of contention in the network. In sparse networks such as a hypercube, the
choice of switching technology and the packet size (when packet switching is used) can

dramatically affect both message latency and contention that occurs within the network.

A completely connected network also has the advantage that it has the highest

performance of any network. This is because every network can be trivially embedded into

54

a completely connected network of the same size. Thus negative findings of this study will
also apply to other networks as well, although positive findings may not apply as

universally.

Communication latency is measured here as the average time required to send a
message over an empty communication link (see Chapter 3). We measure time in terms of
the the average time required to execute a task, rather than in seconds. Latency is a
function of both the average message size and the link speed. Message size is determined by
the task graph, and link speed is determined by the machine architecture. The average
task graph edge weight (message size) was fixed at 10, and communication latency was set
l;y varying the architecture link speed. If the communication latency were set at 5 and a
given message had a weight of 12, its transmission time (message latency) would be

5%12/10 = 6. In other words it would take the same amount of time to transmit that

message over a single empty link as it would to execute 6 tasks.

Latency was varied in such a way that the communication time of an average message
varied from 0 to 16 times the length of an average task. Nine tests were run in which the
ratios of message transmission time to task execution time were 0, Vg %, %, 1, 2, 4, 8, and
16. This range varies the importance that communication plays in the execution of the
program from insignificant to highly significant. A latency of 16 would occur in a system
when the message size is large and the communication links slow, or when the task size is
especially small. Such was the case in a distributed Prolog system developed for the Intel

iPSC [Pas87|, although the latency was not as high as 16.

This range of characteristics was selected for the test suite in an attempt to include
those characteristics which would most likely be encountered in real systems.

Characteristics which would most adversely affect the schedule length, and therefore

55

distinguish most clearly between schedulers, were also selected. Of those used, latency,
parallelism, and processor count produced the largest differences, sometimes reaching a
factor of 15 between the best scheduler and the worst. Varying the task distribution or the

problem size gave only modest differentiation between schedulers.

Other variables were not considered for various reasons. The most compelling reason
was the vast number of cases that would result if they were included. Instead, reasonable
values were selected where possible énd used for all tests. For example, average task arity
was fixed between two and three for all tasks. The arity for individual tasks was allowed to

vary randomly according to the requirements of the graph.

Slack was not expressly fixed, but it was not a controlled variable either. The average
slack of a task in a task graph varied from 2 to 14, or ¥s to a little less than 1% times the

average task weight. The overall average was 8, or ¥s the weight of an average task.

Task graphs were generated in a very controlled manner in order to guarantee a
specific set of characteristics. This tight control, however, removes a significant element of
randomness, which weakens the interpretation of statistical tests. The validity of any
conclusion rests heavily on the assumption that those variables which were controlled are, in
fact, the factors which control the performance of the schedulers tested here for “real

world” programs.

The task graph generation program created graphs by cutting the task distribution
into slices — as many slices as there were tasks to be assigned to the critical path. The
number of tasks allocated for each slice was proportional to the area under the slice, the
total graph size, and was inversely proportional to the length of the critical path. Task
weights were all generated at random using a distribution similar to Distribution 4 (see

Appendix A) Task graph edge weights (message volume) were generated in exactly the same

56

way.

Each slice was “sewn” to the previous one, generating the arcs and arc weights at
random. To do this, each task in the new slice was assigned two numbers, corresponding to
two tasks in the previous slice, using a uniform distribution. Those two arcs were then
established and the arc weights generated, again using Distribution 4. Although this process
connected all tasks in the new slice to some task in the previous slice, it was not sufficient to
guarantee that each task in the previous slice would be connected to some task in the new
slice. A second pass searched the previous slice for unconnected tasks, which were then

linked into the graph in the same way.

This approach limits the possible connection patterns between tasks to level graphs.
In general, task graphs will have connections that span multiple levels. It is not known if
more general connection patterns would affect the results uncovered by these experiments.
It should be noted, however, that although the the number of tasks in any path to a given
node will be the same, the sums of the task weights will be different because the task

weights vary randomly.

Figure 5.2 shows a block diagram of the experimental system used to generate task
graphs, schedules, and verify schedule lengths. Task graphs are generated according to the
supplied parameters. Those graphs are fed into a scheduler, along with a description of the
architecture for which the graph is to be scheduled. The schedule is then fed into a
simulator which determines the actual schedule length, or how long it would take to execute

that schedule on the architecture.

Program
Characteristics

Graph Machine
Generator Architecture

Task Graph
Scheduler

Processor Schedule

Program
Simulator

Figure 5.2. — Experimental System Setup

57

58

CHAPTER 6

Problem Characteristics and Scheduler Performance

The length of a parallel schedule and the CPU time required to generate that schedule
depend on the specific characteristics of the problem being scheduled. This chapter explores
the the effects of five problem characteristics on scheduler performance. Those
characteristics are: task distribution, average parallelism, program size, communication

latency, and processor count.

Scheduler performance is measured and compared here in seven different ways, each of

which is marked with its own symbol. They are:

%P<S The percentage of parallel schedules that were shorter than a sequential
schedule.
S/pP The speedup gained by the parallel schedule as compared with a sequential
T, . . .
schedule, or T T, is the length of a sequential schedule and T, is the length
p
of the parallel schedule.

S/C The speedup gained by the corrected schedule as compared with a sequential

T,
schedule, or T T, is the length of the corrected schedule.

P/C The speedup gained by correcting the parallel schedule for schedules which are

longer than a sequential schedule, or Tp .
(4

&

P Eff The parallel effictency of a schedule as defined in Chapter 3, or AT
»

where n

59

is the number of available processors.

xT,

C Eff The corrected parallel efficiency of a schedule, defined as - , where n is the

number of available processors.

CPU Sec The average number of CPU seconds on a Sequent Symmet,rycm used to schedule
the programs. (The theoretical worst case complexity for each scheduler may be

found in Chapter 4, in Table 4.1.)

Appendix B gives tables of these seven values for each scheduler, projected over each
problem characteristic. It also has frequency histograms for the schedule lengths, and bar
charts for the average parallel schedule length and average corrected parallel schedule

length, compared against a sequential schedule.

It is important to note that in treating each characteristic separately there is an
implicit assumption of independence. If, as will be assumed, the effect of changing one
characteristic is qualitatively independent of changes in other characteristics, this analysis
will hold. To take the most general case and assume complete interdependence would
necessitate the display and analysis of a 6075 point, 5 dimension surface, which is difficult
for a discrete problem space such as this. By treating the characteristics as independent,

the analysis becomes somewhat more tractable.

8.1. Distribution

The first problem characteristic to be considered is the distribution of parallelism
within a task graph. As can be seen Appendix B section 1, each of the schedulers show very
little variation in performance between distributions. Because the performance is very
different between schedulers, a direct comparison is not possible. However, if the

distribution has a minima) effect on performance, as claimed, then the ratio of performance

60

1.06

1.04 —

1.02 —

Il
111

1.00 d e . ==

I

TN |
[

0.98 -

0.96 — _—

0.94 4 —

| | I { | I | | | | | 1
1 2 3 4 5 6 7 8 9 10 11 12

Scheduler

Figure 6.1. — Distribution %P<S / Mean %P<S
for each distribution to the average performance over all nine distributions will be close to

1.00.

Figure 6.1 plots the variation from the average for “%P<S”, the percentage of
parallel schedules that are shorter than sequential schedules. The variation is figured over
the different task distributions by dividing the value for each distribution by the average
over all distributions. A large spread between distributions in this ratio would serve as a
strong indication that scheduler performance is strongly dependent upon the distribution of
parallelism within the task graph. Conversely, a small spread would be a strong indication

of independence between scheduler performance and task distribution.

Figure 6.1 clearly shows that distribution has very little effect on the number of
parallel schedules that are shorter than sequential schedules. (The widest range in variation
is only about 10% of the average.) This holds true for schedulers which generate very short
schedules, such as scheduler #1 as well as those whose schedules are almost all longer than

the sequential, such as #12.

61

1.25 — —

1.20 < —_—
1.15 - - —

1.10 — - = —
1054 __ —_— e _ = = = — —
10 = = = B TR B TS
0954~ @ T == = = = = - - =

0.90 — - = —_— —
0.85 -
0.80 —

0.75 —

| L | | | | I | | 1
1 2 3 4 5 6 7 8 9 10 11 12

Scheduler

Figure 6.2. — Distribution S/P / Mean S/P

1.15
1.10 -
1.05 — — — . _
0.95 - S — —— -
0.90 -
0.85 —
| | | | 1 ! | | I | 1 |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Figure 6.3. — Distribution S/C / Mean S/C
1.25 — p—
1.20 A
1.15 — =
1.10 — =
1.05 — - e - =
0954 — — = - - = _
0.90 — - _ -
0.85 — _— — e
0.80 — —_—
0.75 —

1 2 3 4 5 6 7 8 9 10 11 12
Scheduler

Figure 6.4. — Distribution P/C / Mean P/C

62

Figure 6.2 shows the ratios for “S/P”, or the average speedup of a parallel schedule
over a sequential schedule. The differences here are somewhat larger than for the previous
graph, but they are still relatively small, so average speedup is also independent of task
distribution. Plots for the other performance indicators are given in Figure 6.3 through

Figure 6.7.

From these diagrams it is evident that all of the performance measures are
independent of the distribution of parallelism within the graph being scheduled. However,
some anomalies in the plots are worth pointing out. For instance, schedulers #10, #11, and
#12 have the most variation in the different indicators, with the exception of Figure 6.3.
This may be explained by referring to Appendix B Sections 1.10, 1.11, and 1.12. A large
number of the parallel schedules are much longer than a corresponding sequential schedule,
so the corrected schedule will use the sequential schedule a disproportionately high number
of times. This means the comparison is more of sequential schedules against themselves
than for other schedulers. To further illustrate this point, if the schedulers had always
chosen parallel schedules longer than the sequential, then the correction process would

always select the sequential schedule over the parallel, and the variation would be zero.

Of the schedulers which do a complete architecture simulation, namely #1, #2, #3,
and #4, schedulers #3 and #4 have the widest variation in schedule speedup. Of the group
#5 through #9, scheduler #8 has the widest variation. Schedulers #3, #4, and #8 have
one thing in common — they measure task priority from the top of the task graph and
select tasks for scheduling from the bottom. This pattern of task selection causes the
schedulers to be marginally more sensitive to the distribution of parallelism than other

schedulers.

63

1.15
1.10 — . .
105 — — — — — p— . —
0954 — — — = = — — = T
0.90 —
0.85
I I ! T] { T T T [I I
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Figure 6.5. — Distribution P Eff / Mean P Eff
1.10
1.08 — _—
1.06 4 — —_ - —
1.04 - - — — _ — —_ -
1024 — — —_ - =
100 onnns e T e e
08ed — . — — __ - - __ _ =
096 4 — -_— e _
0.94 - -
0.92 — —_
0.90 <
T I I I I ! I | I | I [
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Figure 6.6. — Distribution C Efl / Mean C Eff
1.25 —
1.20 — —
1.15 - _
1.10 — — — —
I = = - = = = = = = = =
1.00_ — E.:: E—E—..mé e
0.90 — = - == - N —
0.85 — —
0.80 P
0.75 —
1 I I T T 1 1 | I I] T
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler

Figure 6.7. — Distribution CPU Sec / Mean CPU Sec

64

It is also interesting to note that in each of the previous plots the scheduler which
showed the least variation was the random scheduler (scheduler #9). The variance was
never more than 5% for any of the performance indicators. This shows that there was
nothing inherent in the distributions which would cause the performance to be lower or
higher for a particular distribution. Instead it was the way the scheduler reacted to the
distribution that caused one distribution to fare better than another, even if only in a minor

way.

8.2. Average Parallelism

The analysis of the eflect of parallelism on scheduler performance is more complex
than for the distribution of parallelism. This is because the cost of communication has a
disproportionate effect on the schedule length, affecting graphs with high parallelism more

severely than those with little or no parallelism.

6 —
5
4 —
S/P 340
9 | %
1
142 ——— —
146
0
-
| 1 1 i - | 1)
2 4 8 16 32 64 128 256
Parallelism

Figure 6.8. — Speedup for Scheduler #9 (Latencies 0-16)

65

A random scheduler such as #9 is unbiased in the sense that it doesn’t use feedback
from a partial schedule to determine where other tasks will be placed. Tasks are scattered
at random, and performance is determined by the characteristics of the task graph rather
than feedback within the scheduler. This is in contrast to schedulers which do use feedback,
which can have vastly different schedules for task graphs that have only small differences.
This lack of bias can be used to form a baseline for isolating the eflects of latency from
average parallelism. Figure 6.8 shows the speedup (S/P) for scheduler #9 over different
values of average parallelism and latency. Each of the tests were scheduled for 4, 8, and 16

processors.

The average parallelism of a graph is bounded above by the total number of nodes in
the graph. This means there is a bias in the average size of each category of parallelism —
the average size increases as the parallelism increases. It will be shown later that the

speedup is relatively unaffected by the size of the task graph, so graph size can be ignored

here.
8 16
7 —
6 —
Relative .
Speedup 4 8
3
| /\
2 4 — — o ————————————
() e —
1 -
0 —
[| | I T | I |
2 4 8 16 32 64 128 256
Parallelism

Figure 6.9. — Speedup of Scheduler #1 over #9 (Ty/ T, Latencies 0-16)

66

Latency cannot be so easily ignored. To remove the effect of latency, the speedup for
each level of parallelism and latency is divided by the corresponding value for the random
scheduler. The result is the speedup relative to the random scheduler. Figure 6.9 shows the
relative speedup of scheduler #1 to scheduler #9. As it turns out, each scheduler, when
compared to scheduler #9, has the same general pattern, but perhaps with some vertical
translation and scaling. Each scheduler does somewhat better with low parallelism, but

asymptotically approaches a stable linear factor with respect to the random scheduler.

To demonstrate this more convincingly, the variance over a weighted average is shown
in Figure 6.10. The weights were chosen to prefer increasing parallelism, and in fact are
li‘nearly proportional to the parallelism. From Figure 6.10 one sees that the largest variance
from y (the sample mean) is approximately 0.35. Because the parallelism is sampled at
exponentially growing intervals, this means approximately % the weight is placed on a

parallelism of 256. From this one can see that if the variance were all to occur on the task

graphs with the largest parallelism (which is the most one could violate the asymptotic

0.40 —
0.35 —
0.30 —

1 0.25 —

s 0.20 —
0.15 —
0.10 —
0.05 —
0.00 —

o {IN
U

= = __ —
T I T I |
3 4 5

sl 1l
sl |
[V]

T
6 7 8
Scheduler

Figure 6.10. — Variances Plotted For Values of Parallelism

67

performance idea), then 'é‘(.'lzso — y)? = 0.35 This immediately reduces to lygs — y! = 0.84.

In other words, the distance from the asymptotic mean is bounded above by 0.84 over these
task graphs. In fact, because the vast majority of the variance in each case occurs in the
low parallelism range (as illustrated in Figure 6.9), this analysis is exceedingly pessimistic.
Even so it demonstrates that the speedup over the random scheduler approaches a constant

factor as parallelism increases. ,

The weighted mean (y) for each scheduler and latency are given in Figure 6.11. The
weighting function used here is linearly proportional to the communication latency. To
reemphasize its significance, Figure 6.11 represents an approximate factor of improvement
each scheduler has over randomly scattering tasks across CPUs. Schedulers #1 through #4
outperform the random scheduler (#9) by as much as a factor of 2%; #5 through #9

perform about the same, and #10, #11, and #12 do much worse.

2.5
—16
2.0 —16 16 _16
-8 _¢ _o _3g
s{=4 = =§ =
- -2 -2
y =1 21 g =0 m0 =0 =0 =0 —0 =0 =0
1.0 4 =" -0 =1/4
-1 2
0.5 - -1 /
=f6 =16 =}
0.0 —

| |] | I | | |
1 2 3 4 5 6 7 8 9 10 11 12

Scheduler

p—

Figure 6.11 — Weighted Means For Ty/T; (Latencies 0-16)

68

6.3. Program Size

From Appendix B Section 3 it appears that speedup improves with increasing program
size. The differences in speedup between task graph sizes are displayed in Figure 6.12. This
graph is obtained by plotting the difference in the average parallel speedup between
adjacent graph sizes. Thus the y value for the square symbol (i.e. O) is obtained by
subtracting the average speedup for graphs with 128 tasks from the average speedup for

graphs with 256 tasks.

If the speedup were completely independent of program size, all differences would be
exactly zero or, allowing for random variation, evenly scattered on both sides of the zero
line. Figure 6.12 shows this is not what is happening here. Those schedulers which do well
show an improvement as the si_ze of the task graph increases. Schedulers #10, #11, and

#12, which do poorly under many circumstances, tend to do worse as the size increases.

0154 O Q
a . D o
.10 —
0 + A 3 o 4
+ + A A o
o © + A
0054 o A +
S/P o
000+ v cviiiets A ... x o
0O — 0(256) - o(128) ® £
005 | | & —°(512) - o(256)
T o — o(1024) - o(512) o A O
+ — 0(2048) - o(1024)
T I | T I I T | | I I 1
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler

Figure 6.12. — Relative Increase in Speed w/ Increasing Size

69

Although qualitatively the trend is upward for most of the schedulers, quantitatively
the trend is not very significant. For example, increasing the graph size by a factor of 16
only improves the speedup of scheduler #1 by 19 percent. It is expected that this trend
diminishes as graphs grow larger {otherwise the parallel efficiency would eventually exceed

1), so increasing the graph size by another 16X would yield less improvement.

6.4. Communication Latency

It is very difficult to directly measure the message delay due to contention, since the
delay itself modifies the graph execution. However, one can easily measure the effect of
accounting for (or not accounting for) latency or contention in a scheduler. Scheduler #5
(the ISH scheduler) accounts only for the communication delay due to latency, while
scheduler #1 accounts for both latency and contention delays. The schedulers are identical
but for that detail. Figure 6.13 shows the performance improvement scheduler #1 enjoys

over scheduler #5 for different latencies.

2.60 — —
2.40 —
2.20 —
2.00 —
Speedup § go _|
1.60
1.40 —
1.20 —
1.00

| 1 1 T
0 1/8 1/4 172 1 2 4 8 16

Latency

——
—

Figure 6.13. — Average Parallel Schedule Length: Scheduler #5 / Scheduler #1

70

When the cost of communication rises, whether due to latency or contention, the
speedup will decline because of the higher cost of doing work in parallel. This is true of all

parallel schedulers. The curves for schedulers #1 through #12 are given in Figure 6.14.

The important features of this graph are the backward “S” shape, that every curve
dips below 1.00, and that the schedulers fall naturally into 3 main groups or families. The
“S” shape indicates that increasing latency causes decreasing performance. Because
speedup values can never be below zero, the curve levels out. It is important to note that in
every case the curve approaches a value which is below 1.00. This shows that for high
latencies, none of the schedulers tested here is able to consistently generate parallel

schedules that are better than sequential schedules.

Although the curves appear to be asymptotic, such is not the case. If the latency were
greater than the total task weight of the program, the processor selection phase would have
no justification for using any parallelism whatsoever, and S/P would be exactly 1. The

reason each scheduler has a region in which it does worse than sequential is that every time

S/p

12 16

Latency

Figure 6.14. — Parallel Speedup vs. Latency

71

a task is scheduled, the processor selection phase looks only at the effects of past decisions
on the execution of the current task. It does not look at what eflect the current processor
selection will have on future decisions. The schedulers do not consider how much of the
program remains nor the expense of transmitting results to where they will eventually be
needed. Instead they choose to execute a task in parallel whenever its completion time will

be earlier, even if takes longer to get the information where it’s needed.

The fact that every scheduler has some latency value for which a sequential schedule
is better is a surprising result. For most of the schedulers used, it is a simple matter to
compare the parallel schedule against a sequential schedule and select the shorter of the
two. The two schedulers for which this comparison cannot be easily made are schedulers #5
and #9. Scheduler #5 is Kruatrachue’s ISH, and #9 is the random scheduler. Neither of
these schedulers record communication schedules, so neither has an accurate estimation of
what the parallel schedule length actually is. It is because these two schedulers do not
record communication that they require less than 1/10th the CPU time of other schedulers

to generate a schedule.

From Figure 6.14 it is apparent that the schedulers tested here fall into 3 main groups.
The group with the best performance consists of schedulers #1 through #4. This group has
in common that schedules for the links are recorded along with the processor schedules, and
that the scheduler uses communication schedules in its processor selection. The worst
performing family (schedulers #10, #11, and #12) recorded communication schedules, but
used only communication latency in processor selection. The third family contains a variety
of different approaches, whose overall performance was very similar to the random

scheduler.

72

8.5. Processor Count

With a good scheduler one would expect that throwing more processors at a problem
would give shorter schedules, and indeed this is the case for the schedulers examined here.
Ideally, one would hope that the speedup would be linear with respect to the increase in
processors. Unfortunately a number of considerations prevent that from being easily
achieved, such as whether there is sufficient parallelism to keep the processors busy, and
whether there is sufficient slack in the task graph to allow the parallelism to be used to an

advantage.

. Comparing the effects of the number of available processors on performance is most

or
nxT,’

easily done by examining the parallel efficiency. Parallel efficiency is the value

the sequential schedule length divided by the number of processors times the parallel
schedule length. It is bounded above by 1 and below by 0. In a sense, it represents the
fraction of the machine in use over the execution of a program. In another sense it

represents the speedup normalized by the greatest speedup the machine can offer.

However, even though a machine offers 16 processors, a 16X speedup is almost never
possible. A more accurate observation is that the speedup cannot exceed the minimum of
the average parallelism and the number of available processors [Jor87]. So, if the average
parallelism is 2, then no matter how many processors are available, the speedup will never
exceed 2. Note that this says nothing about the number of processors required to attain

that speedup, except for the trivial observation that it requires at least 2 processors.

T,
This suggests ——————— as a measure of schedule effectiveness. This measure
min(p,n)X T,

gives the fraction of usable machine which is actually put to use. It gives the parallel

efficiency without the inherent penalty for having excess processors. Values close to 1 mean

73

that the schedule is as effective as possible, given the problem and the architecture. The
measure does not account for other variables (such as latency) which can negatively affect
the efficiency. Because of this, values not close to 1 may mean that the schedule doesn’t use

the machine eflectively, or that it is affected by some unmeasured variable.

One may go about measuring the effect of processor count on performance in several
ways. The most common approach is fix the problem to be scheduled and vary the number
of processors directly, reporting any improvement. The disadvantage to this approach is
that the measurement is relative to a particular problem, which has its own special set of
characteristics. However, performance is dependent on the amount of parallelism relative to
the number of processors, nof the absolute number of processors. By fixing the problem and
varying the number of processors one is indirectly measuring the effect of relative

parallelism.

This gives a second approach, namely compare the relative efficiencies against the
relative parallelism. This has the advantage that it measures scheduler performance
against the best that could be done given the machine and the problem. It gives tighter
bounds on what is optimal than simply measuring speedup against processor count. We also
prefer this measure because it gives a result which is more generally applicable. In any
case, we do both. Appendix B Section 5 shows a comparison of speedup and processor
count. Appendix D compares relative efficiency against relative parallelism. It can be seen
from Appendix D that qualitatively each scheduler performs very nearly the same — each
pair of graphs with the same latency have very similar shapes, regardless of the scheduler
that produced it. Quantitatively, of course, performance differs between schedulers in the

ways described in previous sections.

74

1.0 —
0.9 —
0.8 —
0.7 -
0.6 —
0-5 —
04 —
0.3 +
0.2
0.1 =
0.0 —

Latency = 0

Latency = 1

Latency = %

1.0
0.9 —
0.8 —
0.7
0.6 —
0.5 —
0.4 —
0.3 -
0.2 —
0.1 —
0.0 —

Latency = %

ML N
L& ¥,
os ‘ol mutna-
A MM P N -
PR P YR T ¥ Ny
PRI TR PR e LR

v AR,

Latency = 2

1.0 —~
0.9 -
0.8 —
0.7 —
0.6 -
0.5 —
0.4
0.3 —

0.1 —

-

Pl " LN VT)
P

ratAs - s

-

0.0 —

Latency = 8

ot

P ROR ¥ e

bi!

« A, S A

Awing wr

o

-——lpy &

LT
-~

The

—

Figure 6.15. — Scheduler 1 — -f:

plots in Appendix

rriorvorir bbbl

163264 % % 1 2 4 8 163264
Parallelism / Processor Count

A\

D show some (fairly

complex

I

= —

16 32 64

T,
" min(p,n)xT,

behavior in the

scheduler /program/architecture system. For example, based on latency there are three

phases that occur, with a gradual transition between them. Using scheduler #1 as the

example (reproduced in Figure 6.15), the first phase includes latency values from 0 to %.

This phase is characterized by good performance when there is an excess of either

75

parallelism or processors. However, when the parallelism and processor count are very

nearly the same, the relative efficiency fluctuates between % and 1.

The second phase includes latencies between 1 and 4. It is characterized by a wide
variation in relative efficiency when the average parallelism exceeds the number‘ of
processors, with a relatively small variation when the processor count exceeds the average
parallelism. The third phase includes latencies greater than 4, and is characterized by

uniformly low efficiencies regardless of the parallelism or processor count.

76

CHAPTER 7

Comparison of Schedulers

Considering how the different schedulers were constructed, one might expect some
similarities as well as some differences in their performance. This chapter explores some of
those similarities and differences in te.rms of parallel schedule length and CPU time required
to generate parallel schedules. In particular we examine how different choices in task

selection, processor selection, and schedule generation affect scheduler performance.

7.1. Task Selection

As discussed in previous chapters, four task selection strategies were used. The
strategy for schedulers #1 and #7 measured priority once as distance from the terminal
node of the graph, and selected tasks from the start node, working towards the terminal
node. Schedulers #2 and #6 measured priority as distance from the top each time a task
was scheduled, and selected tasks from the top. Schedulers #3 and #8 measured priority
once as distance from the top, but scheduled tasks from the bottom up. Scheduler #4
measured priority in the same way as #3 and #8, but the priority was recalculated each
time a task was scheduled. In this section schedulers which are identical except for task
selection strategy are compared across different problem space variables (i.e., task
distribution, parallelism, program size, latency and processor count). This is done to
determine 1) if the task selection has an effect on scheduler performance, and 2) how that

effect is influenced by the different variables.

Schedulers are compared by selecting one scheduler from a group to be used as a

reference. Each of the remaining schedulers are then compared against the reference

77

scheduler. A numerical value is obtained by dividing the average schedule length for the
scheduler by the average schedule length for the reference. In this way, if task selection
strategy has no effect on schedule length, the numerical values will be close to 1.00. If task
selection does influence the schedule length, some value will be either much greater than or
much less than 1.00. If the impact is independent of the problem space variable, all values
will have approximately the same magnitude. On the other hand, if the impact is
exacerbated by some aspect of the problem space, the numerical values will increase or

decrease along with the variable that influences it.

We used two groups of schedulers for these tests. The first group was schedulers #1,
#2, #3, and #4; the second was schedulers #6, #7, and #8. The reference schedulers were
#1 and #7. Results from these tests show that differences in task selection strategy induce
only minor variations in parallel schedule length. Communication latency and processor
count emphasize those variations‘ in clearly discernible patterns, but the differences are

definitely of minor significance.

The effects caused by task selection may be seen in Figure 7.1 through Figure 7.3.
Figure 7.1 shows that the performance of each task selection strategy is not completely
independent of the distribution of tasks within a program. The relative performance of
each strategy does change somewhat with task distribution, but not in any clear pattern.

Performance is independent of average parallelism and program size.

Latency has a very clear eflect on the efficacy of task selection strategies. For
latencies less than 1 there is no appreciable difference between task selection strategies. As
latency increases beyond 1, however, two different strategies take the lead. Which of the
two is better depends on other details in scheduler construction. The first strategy is used

by both critical path scheduling and scheduler #1. It shows a clear improvement over the

78

1.15 5
1.10 a 8 a
4 X X
105 o - 2 & x X
1.00 X o o
+ A % + + ¥ + +
0.95 — o
0.90 — A
0.85 —
I] | I [I | | I
0 1 2 3 4 5 6 7 8
Distribution
Figure 7.1. — Effects of Task Selection Strategy By Distribution
1.10 4
o A
A
1.05 - i a o]
% X X X
O
a o
1004 R 3 3 3
+
X X + +
+
0.95 —
T I I I T I |]]
0 g % % 1 2 4 8 16
Latency
Figure 7.2. — Effects of Task Selection Strategy By Latency
1.15 — F=ToT,
o — Ts/T:
11045 A — Ty/Ti
X + — Te/T7
1.05 X — Ts/T7
a1} a
.00 — 0]
1.00 . X
0.95 - &
I I I I I [[
4 6 8 10 12 14 16

Processor Count

Figure 7.3. — Effects of Task Selection Strategy By Processor Count

79

strategies used by schedulers #3 and #4, and a minor but noticeable improvement over the
strategy used by scheduler #2. This strategy is most successful when a full system
simulation is used in processor selection. The strategy used by scheduler #2, which is
similar to that of diffusion scheduling, holds a slight advantage when.system load is the
predominant criterion in processor selection. Processor count also has a clear effect on task
selection performance. Interestingly enough, unlike latency the eflect becomes less

pronounced as the number of available processors is increased.

Although task selection has only a small impact on parallel schedule length, the same
is not true of its effect on CPU time. The selection of task selection strategy can have a
significant impact on the CPU time required to generate a parallel schedule. This is clearly
brought out in Figure 7.4, which shows scheduler #4 using 2% times as much CPU time as
scheduler #1. It is worth noting that while multiple task priority calculation incurs

considerable expense in scheduler #4, it does not induce the same expense in scheduler #2.

R vox X x ¥ X
X
204
0 — CPU:/CPU)
o — CPUs/CPU:
A — CPU/CPU:
15| + — CPUs/CPU>
X — CPUs/CPU> o ° o o o
o
o o)
0 a 0 0O [m] (m] a [m]]
1.0
| | 1 | l l] i l
0 1 2 3 4 5 6 7 8
Distribution

Figure 7.4. — Task Selection Expense By Distribution

80

So although multiple task priority determination can be an expensive option, it is not

necessarily so.

The expense of task selection is most aflected by program size, latency, and processor
count. It is largely unaflected by task distribution and parallelism. Figure 7.5 shows that
not only are the reference schedulers faster than the others, but the program size aflects
how much faster they are. It shows that the reference schedulers do better in proportion to
the size of the program to be scheduled. According to the complexity analysis from chapter
4, as n increases the slope of the ratio should level off because the dominating term for n
has the same power for each scheduler. We conclude that although the complexity analysis
provides a prediction for the behavior of each scheduler for very large n, the similarity of
the terms and the behavior of the decision algorithms internal to each scheduler preclude
any accurate analytical comparison for small n. The best guide is the experimental results

reported here and in Appendixes B and C.

Communication also has a significant eflect on the relative cost of each scheduler. To
understand this aspect of scheduler performance one must understand a little more about
the decision algorithm, and in particular, how the communication was scheduled. Each
scheduler attempts to minimize total execution time by scheduling each task so that it
starts at the earliest possible time. (Schedulers #3, #4, and #8 do this in a round about
way, by fixing the termination time and scheduling each task to establish the latest possible
start time.) If two tasks must communicate, the cost of the communication will depend on,
among other things, the relative placement of the two tasks. When both tasks are on the
same processor, the communication is free. When the tasks are separated by heavily used

communication links, the communication is expensive.

81

3.0 -
2.5 - +
X
2.0 — X
X X +
154 X A o
+ o
10 B % 8 = 0
T 1 I]]
128 256 512 1024 2048
Program Size
Figure 7.5. — Task Selection Expense By Program Size
3.5 — X
A
.0 - X
3.0 $ X
2.5 — A A
204 + + X 4 4 2 & +
o X
15 . X X X X
104 @ D o o = g g o w
I T T I I [I I I
0 g % % 1 2 4 8 16
Latency
Figure 7.6. — Task Selection Expense By Latency
nalls 5 — CPU/CPU:
14 o — CPUs/CPU.
12 : A — CPUyCPUy
10 + — CPUs/CPU-
8 X — CPUs/CPU-
6 -
i a
+
;13 ° :
i T T I I |
4 6 8 10 12 14 16

Processor Count

Figure 7.7. — Task Selection Expense By Processor Count

82

Latency affects this by increasing or decreasing the incentive to take advantage of
available parallelism by scheduling communicating tasks on separate processors. Low
latency encourages lots of parallelism, and lots of communication. This in turn means the
CPU cost of scheduling communication will be high. On the other hand, large latencies
discourage the use of parallelism, which causes longer delays from the time a task is
available for execution to the time its execution begins. This in turn, because task insertion
is used, causes an increase in the CPU time required to schedule a task. It is this combined

effect which causes the psychiatrist-couch appearance of the CPU curves for latency.

Processor count has a really dramatic eflect on the relative performance of different
strategies. Figure 7.7 shows that when there are few processors to be scheduled, task
selection can dominate the cost of scheduling by as much as a factor of 18. As the number
of processors increases, the costs associated with task selection are overshadowed by those of
processor selection and schedule generation. At 16 processors it made little difference in

terms of cost what form of task selection was used.

7.2. Processor Selection

Processor selection strategy, unlike task selection, does have a significant effect on
parallel schedule length. This effect was most noticeable when the parallelism was low, the
program size was small, or the latency was high. The effect varied from different strategies
being on par when communication latency was zero, to being faster by a factor of 2.6 when

latency was 16.

Several strategies were used to select processors for tasks. The most successful, and
the most costly, was employed by schedulers #1 through #4. These schedulers tried each
task on each processor, fully scheduling the task and all associated communication for each

trial. A second strategy measured only the load of each processor, by noting the finish time

83

of the latest task, and selecting the processor with the lightest load. The task and ali
associated communication were then irrevocably scheduled for the selected processor. This

strategy was used by schedulers, #6, #7, and #8.

A third strategy, which is not discussed in this section, selected a processor by
measuring the processor load and combining it with the required communication time,
similar to the first strategy. However, to reduce the expense, the communication was
assumed to be over empty channels. Communication contention, therefore, was not
considered in processor selection. When a task was added to the selected processor’s
schedule, it and all its associated communication were properly scheduled as with other
strategies. This approach was used by schedulers #10, #11, and #12, and its performance

will be discussed further in section 7.3.

As mentioned earlier, the efficacy of one processor selection strategy over another was
most influenced by parallelism, program size, and communication latency. As program size
or parallelism increase, the advantage of the first processor selection strategy over the
second decreases. The eflect is reversed for latency. The eflect is very pronounced with
parallelism. As even moderate values of parallelism are used, the advantage of the first
strategy are relatively minor. If the parallelism exceeds 16 the more expensive strategy is

less than 1.8 times faster than the much cheaper approach.

The loss of advantage is still apparent, but less pronounced, with increasing program
size. To some extent the two eflects must reinforce each other, if only because increasing
_parallelism requires an increase in program size. However, there are sufficient discrepancies
in the data to preclude either eflect being only a reflection of the other. For example,
programs with parallelism 256 all had 2048 tasks. If the two effects were different

manifestations of the same effect, the ratib when parallelism reached 256 would be the same

84

2.6 - o
2.4 4 & R
2.2 —
2.0 4 H
1.8 n
16 — © o & . o
14 - ° ° &
T I | | I T [I
2 4 8 16 32 64 128 256
Parallelism
Figure 7.8. — Effects of Processor Selection Strategy By Average Parallelism
2.1 < 'S
0
O
2.0 4
A o
R
1.9 - ° o
% n
1.8 — o
| | I I T
128 256 512 1024 2048
Program Size
Figure 7.9. — Effects of Processor Selection Strategy By Program Size
es54 -4
204 g
g B
15 - 5 —T/T:
B o — Te/T2
10— &P A — Ts/Ts
1 1] | l | | | T
0 2 4 6 8 10 12 14 16
Latency

Figure 7.10. — Effects of Processor Selection Strategy By Latency

85

as when program size reached 2048, and they are not the same.

The first strategy’s advantage increases as latency increases. As can be seen from
Figure 7.10, the advantages are consistent regardless of other details in the scheduler design.
The graph rises sharply between 0 and 2, then rises more gradually for higher latencies. It
is interesting to note that Figure 7.10 is divided into two sections, both of which are
straight lines. The first section has a slope of ~ 0.3, the second, ~ 0.07. The corner
separating the two divisions occurs at latency 2, which is the point of inflection of the

derivative, i.e, where the third derivative changes sign.

The eflect of processor selection strategy on CPU time to generate a parallel schedule
is very significant, and mostly independent of variables in the problem space. On the
average, scheduler #1 requires about 13 times as much CPU time as scheduler #7, scheduler
#2 requires 6% times as much as scheduler #6, and #3 needs 8% times as much as scheduler
#8. This variance indicates that the amount of additional CPU time a strategy will require

depends in part on other details of the scheduler design.

The effect program size has on how much faster the first strategy is than the second is
shown in Figure 7.12. CPU2/CPUs is strongly affected by program size, in that scheduler #2
becomes relatively cheaper as the size increases. Although the complexity analysis shows
CPUz/CPUs will eventually stabilize, it clearly does not do so in the range covered by these
experiments. On the other hand, CPU;/CPU7 and CPUs/CPUs appear to have stabilized at

13 and 8, respectively.

Increasing processor count emphasizes the differences in speed. As the processor count
increases, both processor selection strategies require more CPU time. Additionally, the n%p¢
term (processor selection) in the complexity analysis represents a significant portion of the

CPU time in schedulers #1, #2, and #3, so a small increase in p will be reflected as a linear

86

14 — A
134 o a 0 = D O
12
11 4
10 —
g
7 -

5 —

|
0 1 2 3 4 5

Distribution

-3 —

Figure 7.11. — Processor Selection Expense By Distribution

14 -
13 - a]
12 0 .

11 - ° o

lg— o
g _ A
7
6 —
5

l | |
128 256 512

Program Size

1024 2048

Figure 7.12. — Processor Selection Expense By Program Size

16 -
14 —
12
10 —
8 — D
6
14 o
24 %

0 -

o b

0 — CPU,/CPUy
o — CPUz/CPUs
A — CPUs/CPUs

—

I
4 8
Processor Count

|
12

Figure 7.13. — Processor Selection Expense By Processor Count

16

87

increase in CPU time. On the other hand, the np (processor selection) term is a very small
portion of the total time in schedulers #6, #7, and #8, so a small increase in p will yield a
relatively small change in CPU time. The net result is that a small increase in the number

of processors (p) gives an almost linear increase in the CPU ratios, as shown in Figure 7.13.

7.3. Processor Selection and Schedule Generation

One processor selection strategy which appeared promising was the third strategy
described in the previous section. This strategy combined elements from both of the
previous strategies, by taking into account the processor load and the communication time,
batt ignoring delays from contention with competing messages. It was anticipated that its
CPU requirements would be only slightly higher than merely accounting for processor load,
and that it would give some improvement in parallel schedule lengths. What happened was
that because of several minor optimizations within inner loops, the CPU requirements were
slightly lower. The minor increase expected was more than offset by improvements in the
implementation. The parallel schedule lengths, however, were very much worse — not
better — than the other strategies. It sometimes generated schedules that were 15 times as
long as other parallel schedules, and nearly 40 times as long as the corresponding sequential

schedules.

In an attempt to discover the precise combination of elements which caused this
unexpected behavior, several additional schedulers were constructed. Scheduler #10 used
the critical path scheduling task selection strategy, so scheduler #11 was designed with the

diffusion scheduling task selection strategy. The result was not significantly different.

It was also conjectured that task insertion in the schedule generation phase was
causing the problem, so scheduler #12 was constructed as a copy of scheduler #10 with the

task insertion removed. This means the schedule generator placed each new task at the top

88

of the schedule rather than search the schedule for a better slot. Scheduler #12 performed
about 30% worse than scheduler #10, which shows that task insertion was not the reason

for the poor performance.

Scheduler #5 is also very similar in design to scheduler #10. Both use task insertion
in the schedule generation, both use load and latency but not contention to select
processors. The difference is that scheduler #5 records only processor schedules, where
scheduler #10 records both processor and communication link schedules. Scheduler #10
records and schedules around contention where scheduler #5 pretends contention does not

exist.

Strangely enough, scheduler #5 performed significantly befter than scheduler #10, and
cost much less because it did not schedule communication. Since scheduler #5 did not have
the same performance as scheduler #10, the key elements to #10’s performance problems
were the use of latency without contention in processor selection, while using message

contention in schedule generation.

7.4. Other Comparisons

Considering the parallel schedule lengths over all tests, the schedulers naturally
formed three groups. The first group is schedulers #1, #2, #3, and #4. The second group
is schedulers #10, #11, and #12. The third group is schedulers #5, #6, #7, #8, and #9.
The division is quite easily seen in Figure 7.14 (cf. Figure 6.14.). Figure 7.14 is a frequency
histogram of the schedule lengths, with the the horizontal axis representing the fraction of

schedules that had the given y value.

The first group of schedulers performed significantly better than the other two,
generating schedules which were shorter on the average by a factor of 1.8 or more. The

principal characteristic that identifies this group is that each scheduler modeled contention

89

800000

600000 — ’ .
Schedule . i
Length 400000 — |

;
O_JJJJJJJJJI’J_}

200000 —
I | | | I [| 1 [I I |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler

Figure 7.14. — All Tests (6075 Cases)
in both processor selection and in schedule generation. This group included all schedulers

which did both of these things. It included no scheduler that did not do both.

The second group consists of schedulers that modeled latency in the processor
selection, but modeled contention in the schedule generation. One practical example of this
type of scheduler is a diffusion type load balancing strategy which attempts to account for
communication in its task distribution. Performance of this group was the worst of the

three because of an anti-synergistic effect.

The third group consists of all remaining schedulers. It includes, among others,
random scheduling (scheduler #9) and load balancing (scheduler #6). It also includes
Kruatrachue’s ISH scheduler (scheduler #5), which forms the platform from which DSH is
constructed [Kru87]. The schedule lengths of this group are substantially shorter than those
of the second group, though not as good as those of the first. It is noteworthy that this
group contains schedulers which work much more quickly than group one, sometimes by

more than two orders of magnitude. Figure 7.15 shows a histogram of the CPU times for

10000 — :

. I

8000 — P
CPU 6000 —
Time — i
(sec) 4000 —
i
- 3 i H
20004 | |
- i !

0 _J _d _j I S i

B
1 2 3

Scheduler

Figure 7.15. — All Tests (6075 Tests)
each of the 12 schedulers. Scheduler #5 (ISH) and scheduler #9 (random processor
selection) used the least CPU time of those tested, primarily because neither incurs the

expense of scheduling program communication.

Performance was also measured by the frequency with which a scheduler chose the
best schedule. This was measured in two ways — by comparing all of the schedulers
together, and by deriving an ordering through comparing each pair of schedulers. Figure
7.16 shows the results of comparing all schedulers together. It was obtained by pooling all
of the scheduler results together and counting the number of test cases for which each

scheduler created the best parallel schedule.

In addition to the group comparison, the schedulers were also compared pairwise,
Every pair of schedulers was compared, experiment by experiment, for the number of
shortest parallel schedules. Each scheduler was compared individually against the 11 other
schedulers. When a scheduler had more shorter schedules than its opponent, it was given a

point. The scheduler which had the largest number of points was given the rank of 1.

91

30 ¢
25]

20 * e
Frequency : :
(Per100) 154 .

10 -

0 — : * e ° : 4
T I [T I I I
1 2 3 4 5 6 7 8 9 10 11 12

Scheduler

—
—

Figure 7.16. — Relative Frequency By Group Comparison
(Scheduler #1 had the most points at 11.) The scheduler with the next highest number of
poinf,s was given the rank of 2, and so on. The results are given in Table 7.1. The ranks
reflect the order in which schedulers found. the shortest schedules most frequently, ie.,
scheduler #1 is ranked number 1 because it found the shortest schedule more often than any

other scheduler.

It is interesting to note that each scheduler generated the shortest parallel schedule
for some test case, and that there was only a weak correlation between the average parallel

schedule length, the average number of shortest schedules, and the pairwise ranking of all

Schedulers Ranked By Pairwise Comparison

Scheduler | Rank || Scheduler | Rank || Scheduler | Rank
e T
#1 1 #5 5 #9 10
#2 3 #6 8 #10 11
#3 4 #7 6 #11 9
#4 2 #8 7 #12 12

Table 7.1.

92

schedulers.

A third comparison was also done. For each experiment the best schedule was found,;
this included the 12 parallel schedules and a sequential schedule. Each schedule was then
compared against the best schedule, by dividing the length of the schedule by the length of
the shortest schedule for that experiment. A cumulative histogram was then constructed for
each scheduler, which shows the number of schedules that are better than a certain factor
of performance. Ihe results are given in Appendix E. The histograms of all experiments

taken together are also reproduced in Figure 7.17.

Figure 7.17 supports a number of claims made elsewhere in this dissertation. From it
one may clearly see that scheduler #1 indeed is the better scheduler, and that #2, #3, and
#4 have very similar performance. One may also distinguish between the three scheduler
groups. It shows not only how the groups are different, but also how individual schedulers

within each group differ.

- O M0 mer a @ o

mw oo~ e e N

93

1.0
0.9 —
0.8 —

0.7 — :':
06+’

0.5 —
0.4 —
03"
0.2 —
0.1 -
0.0 —

Scheduler 1 Scheduler 2

Scheduler 3

1.0
0.9 —
0.8 —
0.7 —

06—

0.5 —
0.4 —
0.3 —
02"
0.1 —
0.0 —

Scheduler 4 || Scheduler 5

Scheduler 6

104

0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —

02 7

01—
00"

Scheduler 7 || Scheduler 8 .,

Scheduler 9

10—

0.9 —
08 —
0.7
0.6
0.5 —
0.4 —

03

02"
01
0.0 -

Scheduler 1 Scheduler 11

Scheduler 12

1

17 1

0.
LB 1T 1T T1 11
1%1% 2 34 8 o

|
1 1%1% 2 34 8 0 1
Factor of Performance

1 T 1T b
1%1% 2 34 8 o

Figure 7.17. — Cumulative Histogram of Performance (All Tests)

94

CHAPTER 8
Conclusions
8.1. Scheduler Phase Effects
Static scheduling strategies can be divided into three phases — task selection,

processor selection, and schedule generation. Task selection decides the order in which tasks
will be scheduled. Processor selection chooses a processor which will yield the best overall
schedule for the selected task. Schedule generation records the the selections and system

resource usages such selections require.

Of the three phases, task selection affects the schedule length the least. Schedulers
#1, #2, #3, and #4 were identical in every way except task selection strategy, as were
schedulers #6, #7, and #8. The largest average difference in the first group was between
schedulers #1 and #4, the difference being that schedules from #4 were 5.2% longer than
those from #1. The average over each task distribution varied from about 13% in favor of
scheduler #4, to 15% in favor of scheduler #1. Average differences over other variables
(parallelism, size, latency, and processor count) yielded smaller differences. A 4.8%
difference was measured between schedulers #6 and #8 over all tests; the variation over

each variable was not much larger.

Although task selection had the least impact on the schedule length, it still had
substantial impact on the CPU time required to generate a schedule. Measuring task
priority from the top and scheduling from the bottom required more CPU time than
measuring from the bottom and scheduling from the top. Scheduler #3 used 35% more

CPU time than scheduler #1, and scheduler #8 used more than twice the CPU time of

95

scheduler #7. Re-measuring the priority each time a new task was selected increased the
cost of scheduler #4 by 80% over scheduler #3. Each phase’s direct contribution to the
total CPU cost was not measured, but schedulers #1, #3, #4, #7, and #8 used nearly
identical algorithms to select tasks. The only difference was in the direction of the priority
measurement and task selection. This indicates that most of the cost was tndirect, that is,

that certain task selection strategies caused other phases to do more work.

Processor selection proved to be the phase which affected schedule length most
profoundly. Schedulers #1, #7, and #10 were identical except for their processor selection
phase. Scheduler #1 modeled processor load, latency, and contention, scheduler #7
considered only processor load, and #10 considered both load and latency. The difference in
average schedule length was overwhelmingly in favor of scheduler #1. Scheduler #10
produced schedules which were 6.75 times as long as those produced by scheduler #1.

Schedules from #7 were about 1.9 times as long as those from #1.

Latency brought out the difference in performance most clearly. When the latency
was low (less than 1), the performance was nearly identical for the three schedulers. When
latency was very high (e.g. 16) schedules from #10 were more than 10 times as long as those
from #1. Scheduler #7 behaved similarly, generating schedules about 2.5 times as long as

those from #1 when latency was high.

While processor selection was the most important phase for generating short schedules,
it also affected the cost of generating schedules the most. Scheduler #1 required more than

15 times as much CPU time as scheduler #7 or #10.

The architecture model used by the schedule generator also aflected the CPU time.
Schedulers #5 and #10 were identical with the exception that the schedule generator in #5

modeled processor load and message latency, but not message contention. Scheduler #10

96

modeled load, latency, and contention. Scheduler #10 required about 6.4 times as much
CPU time as scheduler #5. This factor did vary somewhat with communication latency
because smaller latency encourages heavier usage of the communication system, which in
turn requires more information to be recorded by the schedule generator. (Zero latency is a
special case — it implies any message can get through at any time, so there is no need to

record message transmissions.)

As an aside, schedule generation records information that is used by other phases.
Information that is not recorded presumably is not available. Thus it does not make much
sense for the other phases (particularly processor selection) to attempt to model the
architecture in more detail than what is recorded by the schedule generator. On the other
bhand, information that is not used directly by other phases can still affect their behavior —
scheduler #10 is an example of this. This scheduler used only communication latency in its
processor selection phase, but it modeled contention in its schedule generator. Scheduler #5
modeled latency in both processor selection and schedule generation. Scheduler #5’s

4

schedules were 4.9 times faster than those of #10.

This latter case is also an example of pathological interactions that can occur between
phases. It is clear from observing the behavior of schedulers #10, #11, and #12 that
certain combinations of scheduler phase behaviors can cause unexpected results. In this
case, #10, #11, and #12 all have the common characteristic that they model latency in
processor selection, and contention in the schedule generation. As each task was assigned to
a processor, only the latency was considered — the fact that the communication system was
heavily overloaded was ignored. Thus moving one more task to another processor only
served to load the communication system further, which in turn caused greater delays due
to contention. It is not fully understood why this effect occurs when processor selection

models latency, but it does not occur when only processor load is considered.

97

8.2. Scheduler Families

Because of the characteristics of the phases, as‘out,lined in the previous section, the
schedulers tested here naturally fall into three families. The first two families have very
specific phase designs which identify them and are responsible for how they behave. The
third family is less easily defined, except that each scheduler generates schedules of about

the same length as every other scheduler in the family.

The first family consists of schedulers #1, #2, #3, and #4. In this family each
scheduler modeled processor load, message latency, and contention in both processor
selection and schedule generation phases. This family consistently generated the shortest
schedules, especially when the latency was high (e.g., greater than 1). It also required

significantly greater CPU time to generate the schedule than any other family.

The second family of schedulers consists of schedulers #10, #11, and #12. Family 2
schedulers modeled processor load and message latency in the processor selection phase, but
modeled load, latency, and contention in the schedule generation phase. This family
required about 1/6th the CPU time of family 1, and generated schedules that were more
than 6 times as long. Schedule length worsened as latency increased — for the highest
latency tested, average schedule length was 10 times that of family 1. The poor
performance of schedulers in this family is not because task insertion is used. Inserting
tasks into the middle of a schedule may increase contention by placing tasks where a lot of
communication is already taking place, but removing the task insertion only degrades

performance further (compare schedulers #10 and #12).

Family 3 consists of schedulers #5, #6, #7, #8, and #9. Scheduler #5 is
Kruatrachue’s ISH scheduler [KrL87,Kru87]. Schedulers #6, #7, and #8 are identical to

schedulers #2, #1, and #3, respectively, with the exception that the processor selection

98

phase only considers the processor load. Scheduler #9 selects the processor at random.
Even though the design of each scheduler varies substantially within this family, their
overall performance is very similar. This is because there are enough details in the program
execution that the scheduler does not explicitly account for, that the processor essignment s
effectively random. This explains particularly why the performance of each scheduler is so

similar to random processor assignment.

It is worth noting that every scheduler, regardless of its family, generated some
schedules that were longer than a sequential schedule. This fact offers a possibility for an
additional performance improvement. Sequential schedule lengths are easily determined {(by
summing the weights of the tasks). If the scheduler models the architecture sufficiently well
that the length of the parallel schedule accurately represents the program’s execution time,
compare the parallel and sequential schedule lengths, and select whichever is shorter. This
has the benefit of guaranteeing that no program will take longer than it would on a single
processor machine. This improvement was effective for family 1 schedulers when the latency

was above 4, and for family 2 schedulers when the latency was above 2.

This improvement may also add a substantial cost to the scheduler CPU time. In
schedulers #5 and #9, where the architecture is not accurately modeled, the cost of
scheduling a program may be multiplied many fold. These two schedulers, appropriately

modified, would require approximately the same CPU time as scheduler #7.

8.3. Effects of Problem Characteristics

In this work we chose to consider five variables in the problem space, namely, task
distribution, average parallelism, program size, communication latency, and processor count.
Of those, task distribution had almost no effect on any aspect of the scheduling problem. In

contrast, average parallelism had a fairly substantial impact on performance, generally

99

shortening parallel schedules as parallelism increased. Schedule length for schedulers #1
through #9 improved substantially. However, relative to the random scheduler all
scheduler performance declined. So although each scheduler improved, in an important

sense 1t was because the problem was easier.

Program size had a minimal, if consistently positive, eflect on scheduler performance.

Small improvements in schedule speedup were measured for each increase in program size.

As was expected, increased latency had a universally negative effect on schedule
lengths. What was not expected, however, was that none of the schedulers could handle
h‘igh latency very well. Each scheduler had a point above which it selected parallel
schedules which were worse than the equivalent sequential schedules. The best schedulers
were able to do better with high latency than were the other schedulers, but even the best

scheduler had problems with some programs.

Increasing processor count, like increasing parallelism, improved the average parallel
schedule length. It would be desirable, but unrealistic, to hope for a linear increase in
speedup. However, a new measure of performance which we call the relative effictency shows
that the best schedulers were doing better than would be indicated by the parallel efficiency

alone.

8.4. Implications For Dynamic Scheduling

Schedulers #2, #6, and #11 serve a special purpose in this work — they all emulate
diffusion scheduling. Each represents an idealized form of this dynamic load balancing
strategy. They are ideal in the sense that they do not suffer from two problems inherent to
diffusion scheduling, namely, runtime scheduling overhead and incomplete knowledge of the

system state.

100

Scheduler #6 is most similar to the common approach to diffusion scheduling [LiK87].
Scheduler #11 attempts to be only slightly more intelligent about its processor selection by
adding communication latency into its calculation. Scheduler #1 tries to be very intelligent
about processor selection, by considering communication link loading as well. A dynamic
implementation of this last algorithm would require special hardware to provide accurate
measures of link loading. Such hardware could not use the standard communication links,

or reporting the load would alter it, causing the measure to be unreliable.

Because these algorithms closely match dynamic diffusion schedulers without some of
their problems, it is unlikely that diffusion schedulers will perform better than either

scheduler #6 or #1.

8.5. Recommendations

In systems where high performance is most desirable, schedulers must accurately model
the communication system. A strategy which generates parallel schedules using scheduler
#1 but selects a sequential schedule when it is shorter gives the overall best performance.
However, this strategy can cost 100X more than a scheduler such as #5 (ISH). If the
latency is guaranteed to be less than 2, scheduler #5 will yield excellent results at very low
cost. If latency may be high, scheduler #7 with a comparison against a sequential schedule

is a moderately low cost, high performance alternative.

101

CHAPTER 9

Future Work

9.1. Other Network Topologies

This dissertation has only considered the effect of a single topology — a completely
connected network — on scheduler performance. Such networks are ideal in the sense that
the diameter and average diameter are both minimal, namely 1. The contention value,
which is the proportion of network resources an average message will use [Pas88], is also
minimized, namely 1/n for n processors. Although it was appropriate to use the topology in
this simulation study, completely connected networks are generally too expensive for use in
real systems. The obvious reason is that the number of connections grows as the square of
the number of processors in the network. This implies that even with a small number of
processors (say, 16) the cost of the whole system is dominated by the cost of the

interconnection network.

A number of topology families exist which have low cost and relatively high
performance. (For a general survey see [Fen81] and Chapter 5 of [HwB84]. Other
important articles on this topic include [AkK84,Dot,84,P1;V81,Von83].) Many of these
topologies grow as a factor of NlogN or better, where N is the number of processors. Even
though the number of connections grows slowly — NlogN is much less than N? for large N
— both the diameter and average diameter are logN or better. For example, a binary n-
cube (hypercube) has n2"® connections for 2* nodes. Its diameter is n, and its average

diameter is n /2.

102

1100 1101
11 OT00 1111 0101
0110 111
1010 1011
100 T 0011
0010
0000 0001

Figure 9.1. — D/4 Hypercube

If at any given instant every node is equally likely to send a message, the average

rDN
ct

resource usage for the network will be where r is the rate of message transmission, D

is the average distance a message must travel, N is the number of nodes, ¢ is the capacity
of a single network link, and £ is the number of links in the network. If the network is

regular (i.e. the degree is the same for every node), then € = Nd /2, where d is the degree of

If every node is

the network. Substituting into the previous expression gives us rf-
¢

equally likely to be the recipient of a message, the average distance a message must travel
is simply the average diameter. For the hypercube this equation reduces to L. This may
¢

be contrasted against the same value for a completely connected network, %L.
¢

As was noted in previous chapters, scheduler performance is driven in some cases by
the scheduler’s ability to handle contention. Because different networks offer different
abilities to deal with heavy message traffic, the network topology may affect scheduler
performance as well. Message switching technology could also have an impact, because it

also affects the performance of the network (see [DaS87, HRW85 MTH78]). Much work

103

remains to be done to measure the effect of more “realistic” network designs on ;cheduler
performance. It would be especially interesting to compare the performance of star-graphs
[AKKS87] against that of hypercubes under automatic scheduling systems. It would also be
valuable to examine the effects of packet and circuit switching on the system as well,
particularly because static schedulers seem to be much more sensitive to contention than

they are to latency.

9.2. Scheduling Loops and Conditionals

Static scheduling of acyclic task graphs by itself is not as generally useful as one
might hope. Requiring task graphs to be acyclic is a fairly severe restriction — the vast
majority of programs are expressed using some form of loop, and it is in those loops where
most of the parallelism may be found. Special provisions must also be made for conditional

expressions, which cannot be scheduled directly by these algorithms either.

Properly structured loops have a single entry and a single exit point. This
characteristic can be exploited by scheduling the loop body as if it were acyclic (Figure 9.2).
The loop execution time for this type of scheduling will be the number of loop iterations
tin'les the loop body schedule length. Thus a short schedule for the loop body will provide a

short (but not necessarily optimal) execution for the whole loop.

Further improvements may be realized by unrolling the loop some number of iterations

and scheduling the combined iterations. The difficulty with this solution is in guaranteeing

Figure 9.2. — Simple Loop

104

(b)

J
()

Figure 9.3. — Unrolled Loops

each part of the loop executes the correct number of times. If the number of loop iterations
(N) is known when the schedule is generated, that number of iterations may be unrolled,
giving an acyclic graph to schedule (Figure 9.3a). If the loop is too large to unroll
completely, then some “reasonable” number of iterations () might be chosen. The schedule
would then consist of (N mod ¢)+N unrolled iterations — N iterations inside the loop and

N mod ¢ iterations either before or after the loop (Figure 9.3b).

If the number of loop iterations is not known when the schedule is generated but is
known before the loop begins execution, some loop unrolling can still take place (Figure
9.3c). The idea here is that the initial entry point of the loop causes execution to begin in
such a way that when the final iteration of the unrolled loop is accomplished, the original

loop has executed the correct number of iterations.

105

Further work in this area would allow researchers to use large graphs from real
programs in comparing alternative systems. Most importantly, it could ultimately give
compilers the ability to automatically schedule programs for efficient parallel execution in

ways that humans are unable to do.

APPENDIX A

Task Density Functions

106

This appendix contains graphs which represent the density of tasks available for

execution with respect to the critical path of a program. The x-axis represents the

progression of time, the y-axis represents the the relative number of tasks whose earliest

schedulable time (EST) corresponds with the x-axis value. The area under each curve has

1
been normalized to 1, i.e., fotdf(t) dt =

1. The actual task distribution for a given

program may be obtained by multiplying the function by the program’s average parallelism

(ie total task weight
' eritical path weight

The start time is fixed at time O, finish time is fixed at time 1.

e
tdf = =<
area
Distribution a b Area Mean_| Variance
0 0.10 |} 0.10 | 0.7470 | 0.5000 0.0509
1 0.10 | 0.50 | 0.4226 | 0.3164 0.0259
2 0.10 | 1.00 | 0.1969 | 0.1877 0.0114
3 050 | 0.10 | 0.4226 | 0.6836 0.0260
4 0.50 | 0.50 | 0.3551 | 0.5000 0.0155
5 0.50 | 1.00 | 0.2432 | 0.3641 0.0086
6 1.00 | 0.10 | 0.1970 | 0.8121 0.0116
7 1.00 | 0.50 | 0.2432 | 0.6358 0.0086
8 1.00 | 1.00 | 0.2052 | 0.4999 0.0060

Table A.1. — Task Distribution Function Parameters

). Important values for each density function is given in Table A.1.

4 -
Relative
Task
Availability 2
0 - / \
1 |
Start Finish
Time
Figure A.1. — Distribution 0.
4 -
Relative
Task
Availability 2
0 -
| |
Start Finish
Time
Figure A.2. — Distribution 1.
4 -
Relative
Task
Availability2]
0 -
I
Start Finish

Time

Figure A.3. — Distribution 2.

107

4 -]

Relative
Task
Availability 2

04
[]
Start Finish
Time
Figure A.4. — Distribution 3.
4 —
Relative
Task
Availability 2
0 —
[I
Start Finish
Time
Figure A.5. — Distribution 4.
. 4 -
Relative
Task
Availability 2
0 —
[|
Start Finish

Time

Figure A.6. — Distribution 5.

108

4

Relative
Task
Availability 2 =

0
I
Start , Finish
Time
Figure A.7. — Distribution 6.
4
Relative
Task
Availability 2
0 —
| {
Start Finish
Time
Figure A.8. — Distribution 7.
4 -
Relative
Task
Availability 2 =
0
I I
Start Finish
Time

Figure A.9. — Distribution 8.

109

110

APPENDIX B

Scheduler Performance Characteristics

In this appendix the performance characteristics for each scheduler are displayed. The
problem space is divided by task distribution, average parallelism, program size,
communication latency, and processor count. It shows how changing a given characteristic,
such as program size, can affect the performance of a given scheduler. Each
scheduler/characteristic pair uses a histogram chart, a bar chart, and a table. The
histogram chart shows histograms side-by-side, to compare the distributions of schedule
lengths for a given scheduler. The bar chart shows the average sequential schedule length
(dashed line), the average length of the parallel schedules, and the average length of
min(sequential schedule, parallel schedule), which is referred to as the corrected schedule
length. This third item recognizes that the parallel schedules generated by the different
schedulers are not always shorter than a sequential schedule, and shows the effect of

selecting the shorter of the two.
The table gives specific values of interest in a numerical form. The values are:

%P<S Percentage of parallel schedules that were shorter than a sequential schedule.

T
—T-'—, where T, is the length of a

4

S/P The speedup gained by the parallel schedule, or

sequential schedule and 7, is the length of the parallel schedule.

s

S/C The speedup gained by the corrected schedule, or , where T, is the length of

4

the corrected schedule.

P/C

P Efl

CEff

CPU Sec

111

The speedup gained by correcting the parallel schedule for schedules which are

' T
longer than a sequential schedule, or —TL'
[4

This entry gives the paralle!l efficiency of a schedule, defined as , where n

T,
xT,

is the number of available processors.

This entry gives the corrected parallel efficiency of a schedule, defined as X'T ,
n [

where n is the number of available processors.

This field gives the average number of CPU seconds on a Sequent SymmetrycriD

used to schedule the programs.

B.1. Scheduler Performance By Task Distribution

B.1.1. Figure B.1. — Scheduler 1

50000 —
40000 — j : :
Schedule 30000 —) . : ; : :
Length l ; i i i ' l
20000 — : ! ! i : i i i
0000 A R T A T R
1 _ i
1l il
|] | I T |] I [
0 1 2 3 4 5 6 7 8
Distribution
9000 —
8000 —
7000 —
Average 6000 —
Schedule 5000 —
Length 4000 4 | 1 1. /™ 1 1 1]
3000 —
2000 —
1000 —
{ I T I T T] | I
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 91.26 89.04 8859 9022 89.19 8830 8785 88.59 88.59
S/pP 2.49 2.46 2.38 2.38 2.46 2.38 2.35 2.39 242
S/C 2.71 2.72 2.68 2.73 2.75 2.74 2.69 2.72 2.71
P/C 1.09 1.11 1.13 1.15 1.12 1.15 1.15 1.14 1.12
P Eff 0.57 0.55 0.53 0.55 0.55 0.54 0.52 0.53 0.53
CEff 0.58 0.56 0.53 0.56 0.56 0.54 0.53 0.54 0.54
CPU Sec | 324.47 329.20 336.16 345.11 349.93 357.54 363.99 362.10 368.47

113

B.1.2. Figure B.2. — Scheduler 2

50000 —
40000 — : .
Schedule 30000 —
Length
20000 — : ; : ;
10000 — :
i i i ; i i H i §
H i i i &] i
ol 4 & 4 & 4 4 4 4 4
[| | |] | I | T
0 1 2 3 4 5 6 7 8
Distribution
9000 —
8000 —
7000 —
Average 6000 —
Schedule 5000 —
Length 4000 — — [
3000 —
2000 —
1000
T { T 1 { { I I |
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 0304 9067 8993 9156 8993 9007 8844 9081 89.19
S/P 2.43 2.40 2.37 2.39 2.39 2.42 2.32 2.43 2.37
S/C 2.71 2.71 2.67 2.72 2.74 2.73 2.68 2.72 2.71
P/C 1.12 1.13 1.13 1.14 1.15 1.13 1.15 1.12 1.14
P Eff 0.57 0.55 0.52 0.55 0.55 0.53 0.52 0.53 0.53
C Eff 0.57 0.55 0.53 0.55 0.55 0.54 0.53 0.54 0.53
CPU Sec | 352.66 358.93 368.04 373.73 380.61 38822 395.58 393.50 400.46

B.1.3. Figure B.3. — Scheduler 3

114

70000 —
60000 — .
50000 — : :
Schedule 40000 — : :
Length 40000 j ‘ : : : : i
20000 — ! | | |
LUl R R A T R A
od 4 2 4 4 4 4 4 4 4
T T T T [I I [I
0 1 2 3 4 5 6 7 8
. Distribution
9000 —
8000 —
7000 -
Average 6000 —
Schedule 5000 -
Length 4000 -|— | . | 1 |
L r—
3000 —
2000 —
1000 —
T T [I I 1 I | |
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 9111 9319 9319 8844 8800 87.85 8504 8578 86.67
S/P 2.42 261 2.69 2.24 2.22 2.28 2.11 2.15 2.12
s/C 2.70 2.86 3.01 2.61 2.66 2.70 2.54 2.61 2.63
P/C 1.12 1.09 1.12 1.16 1.19 1.19 1.21 1.21 1.24
P Eff 0.57 0.57 0.57 0.54 0.54 0.53 0.51 0.52 0.52
CEff 0.58 0.57 0.57 0.55 0.55 0.54 0.52 0.53 0.53
CPU Sec | 419.27 425.95 433.74 460.77 477.16 486.70 507.85 503.09 513.46

B.1.4. Figure B.4. — Scheduler 4

115

70000 —
60000 —
50000 — . ,
Schedule 40000 . : : : . ’
Length : : : : : :
30000 — : . ; : : :
e TS R R A R R
UL S A T A R
i i i i i 4 i i
ol 2 2 4 4 2 2 2 i i
[T] 1 1 | | I T
0 1 2 3 4 5 6 7 8
Distribution
9000 —
8000 —
7000 —
Average 6000 —
Schedule 5000 —
Length _
g 4000 4— — |]]] il |
3000 —
2000 —
1000 —
| I [| [T | I |
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%Pgs 9141 93.33 93.19 88.74 89.04 88.44 84.59 85.93 87.26
S/P 2.40 2.51 2.70 2.25 2.23 2.27 2.13 2.16 2.10
s/C 2.70 2.85 3.03 2.60 2.66 2.70 2.54 2.61 2.63
P/C' 1.13 1.14 1.12 1.16 1.19 1.19 1.19 1.21 1.25
P Eff 0.57 0.57 0.57 0.54 0.54 0.53 0.51 0.52 0.52
CEfl 0.58 0.57 0.57 0.55 0.55 0.54 0.52 0.53 0.53
CPU Sec | 798.10 81598 82409 853.34 875.43 88879 91443 909.83 924.85

116

B.1.5. Figure B.5. — Scheduler 5

120000 —
100000 — : : ,
Schedule 80000 — .
Length 60000 — : : , i E :
000 ;¢ b oo
20000 — i i j
0 - — 3 —t ok - - | - | —d |
| |] I T T I I |
0 1 2 3 4 5 6 7 8
Distribution
9000 —
8000 —
7000 —
Average 6000 —
Schedule 5000 —
Length 4000 —
3000 —
2000
1000
[| | | k| T T | I
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%PSS 7659 7807 7733 76.74 76.15 7733 7585 7630 77.19
S/P 1.26 1.29 1.32 1.22 1.27 1.29 1.23 1.25 1.29
S/C 2.26 2.28 2.29 2.26 2.31 2.34 2.26 2.31 2.33
P/C 1.78 1.77 1.74 1.84 1.81 1.81 1.84 1.84 1.81
P Efl 0.51 0.49 0.47 0.49 0.49 0.48 0.47 0.48 048
CEff 0.52 0.51 0.49 0.51 0.51 0.50 0.49 0.50 0.50
CPU Sec 2.98 3.38 4.18 3.32 3.56 3.92 3.93 3.96 4.19

B.1.6. Figure B.8. — Scheduler 8

117

120000 — .
100000 — : i !
Schedule 30000 —
Length 60000 : ; : ; : g
40000 — : : : : : : ;
20000 | | | ; A
i i i i i i
od 4 4 4 4 4 4 4 4
| | | i I I |] I
0 1 2 3 4 5 6 7 8
Distribution
9000
8000 —
7000 —
Average 6000 —
Schedule 5000 —
Length 4000 -
3000 —
2000 -
1000 —
| | T | | | 1 | |
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 77.93 78.07 76.74 77.93 78.22 7704 7659 7748 76.44
S/P 1.38 1.36 1.31 1.32 1.33 1.28 1.24 1.27 1.25
S/C 2.35 2.30 2.23 2.30 2.30 2.26 2.22 2.25 2.24
P/C 1.70 1.70 1.70 1.74 1.74 1.77 1.79 1.77 1.79
P Eff 0.51 0.48 0.45 0.48 048 0.46 0.45 0.46 0.45
CEff 0.53 0.50 0.47 0.50 0.50 048 0.48 0.48 0.47
CPU Sec 54.50 55.39 57.03 57.21 57.89 59.25 60.57 60.19 61.12

118

B.1.7. Figure B.7. — Scheduler 7

120000 ~
100000 — - ' : :

Schedule 80000 —
Length 60000 —

40000 — ; :
20000 | R R N
i i i i H i H i H
od 4 £ 4 2 _d _& & & _i
| | | I { | | [I
0 1 2 3 4 6 7 8
Distribution
9000 —
8000 —
7000 —
Average 6000
Schedule 5000 —
Length 4000
3000 —
2000 4
1000 A
T | | [T [I | T
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P_<_S 78.07 7778 7630 7763 7793 7689 7630 7689 76.15
S/P 1.35 1.33 1.29 1.29 1.30 1.25 1.21 1.24 1.23
s/C 2.34 2.30 2.22 2.29 2.30 2.25 2.20 2.24 2.23
P/C 1.73 1.73 1.72 1.77 1.77 1.80 1.82 1.80 1.82
P Eff 0.51 0.48 0.45 0.48 0.48 0.46 0.45 0.46 0.45
CEfl 0.53 0.50 0.47 0.50 0.50 0.48 0.47 0.48 0.47
CPU Sec 2537 2542 2595 2646 2689 2742 2783 27.71 28.38

B.1.8. Figure B.8. — Scheduler 8

119

120000 —
100000 — .
Schedule 80000 —) : ,) .
Length 60000 : D ; i ;
; : i : : : : :
40000 | . ; ;) : : : i
200004 L
i i i i i i i i i
0 2 _E _£ _E _=2 _4 - d £
| I [I I I [I
1 2 3 4 5 6 7 8
Distribution
9000 —
8000 —
7000 —
Average 6000 —
Schedule 5000 —
Length 4000
3000 —
2000 —
1000
{ | | | I [[I I
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 7852 7926 7881 7837 7793 7748 7630 7674 76.44
S/pP 1.31 1.32 1.33 1.24 1.22 1.21 1.17 1.18 1.16
s/C 2.35 2.35 2.35 2.28 227 2.26 2.20 2.22 2.20
P/C 1.79 1.78 1.76 1.84 1.86 1.86 1.88 1.89 1.90
P Eff 0.51 0.50 0.49 0.48 0.47 0.47 0.45 0.46 0.45
CEfl 0.53 0.52 0.50 0.50 0.50 0.49 0.47 0.48 0.47
CPU Sec | 50.05 5241 5503 5465 5734 5987 60.13 60.70 62.60

B.1.9. Figure B.9. — Scheduler 9

120

160000 —
140000 —
120000 — : j ;
100000 — ; : ; f ; ;
Schedule .
Length 7] f ; : : : : f :
600
H H i H i i
20000 — i ! ! !
*] i i i j i
ol & & _E I RN B N B
I ! | I T T T 1 T
0 1 2 3 4 5 6 7 8
. Distribution
9000 —
8000 —
7000 —
Average 6000 —
Schedule 5000 -
Length 4000 <
3000 —
2000
1000 —
| [I | I | | I |
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%PSS 75.11 75.26 75.11 75.41 76.15 76.44 75.41 76.00 76.15
S/P 1.09 1.11 1.13 1.11 1.13 1.14 1.10 1.13 1.14
S/C 2.08 2.09 2.07 2.10 2.12 2.12 2.07 2.10 2.11
P/C 1.91 1.88 1.84 1.88 1.87 1.86 1.88 1.87 1.85
P Eff 0.40 0.40 0.39 0.40 0.40 0.40 0.39 0.40 0.40
CEfl 0.42 0.42 0.42 0.42 0.43 0.43 041 0.42 0.42
CPU Sec 1.19 1.21 1.24 1.22 1.23 1.24 1.24 1.24 1.26

121

B.1.10. Figure B.10. — Scheduler 10

800000
700000
600000 —
Schedule 500000 — . ' ' .
Length 400000 - ’ : : ' : : : . f
300000 — : ' ' : : : . '
200000 — , ! : i ! i ; i
100000 — i ; i i : ! .
o S O I O S O Y S
] | | | | | | | |
0 1 2 3 4 5 6 7 8
Distribution
45000
40000 —
35000 —
30000 —
Average
25000 —
Schedule
Length 20000 —
15000 —
10000 H--Jd--JdJevcdd-cdd--d demd -l d=d == -
5000 —
L HE | L [
i | | | | | 1 i |
0 1 2 3 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 64.00 6296 6000 6148 6222 6163 60.15 62.81 60.00
S/P 0.46 0.43 0.39 0.33 0.42 0.36 0.33 0.33 0.29
s/C 1.85 1.87 1.84 1.86 1.88 1.85 1.84 1.88 1.84
P/C 4.03 4.30 4.66 5.62 4.47 5.19 5.64 5.67 6.33
P Eff 0.44 043 0.41 0.43 0.43 0.41 0.41 0.42 0.41
C Efl 0.48 0.47 0.45 0.47 047 0.45 0.45 0.46 0.45
CPU Sec 1986 21.73 2474 20.381 22.38 2488 2410 24.16 28.19

B.1.11. Figure B.11. — Scheduler 11

122

800000 —
700000 —
600000 —
Schedule 500000 — . . |
Length 400000 —) , j ; :
300000 —) : : : _ : : '
200000 2 P ; L : A
100000 J | J ; : ! i :
o] I S
1 [1 I T [T
0 3 4 5 6 7 8
Distribution
45000
40000 -1
35000 —
30000
25000 4
20000
15000 <
10000 < geddd] g-- i QN D
5000 —
il | 1
1 !) ! |
3 4 5 6 8
Distribution
Distribution
0 4 5 6 8
63.11 62.07 61.33 5941 60.44 60.59 60.30
0.41 0.35 0.35 0.33 0.31 0.34 0.31
1.84 1.87 1.84 1.84 1.85 1.88 1.83
4.49 5.33 5.31 5.56 6.02 5.48 5.98
0.45 043 043 041 0.41 0.41 0.41
0.48 0.47 0.47 0.45 0.45 0.46 0.45
46.83 50.58 52.23 54.42 55.65 55.02 58.25

B.1.12. Figure B.12. — Scheduler 12

123

800000 —
700000 —
600000 —
Schedule 500000 — , , .
Length 400000 — : : :
300000 — : : : ‘ : ; :
200000 — ! : ! : i | 5 ;
: i ! : i :
100000 - ; -‘ J J
s 0 I S O O
T I I | I ! I [I
0 1 2 3 4 5 6 7 8
Distribution
45000
40000 —
35000 —
30000 —
Average
25000 —
Schedule
Length 20000 —
15000 —
10000 {{--dH4--4--4— 4d--dd--44--44--44--414
5000 —
I T [I | | I |
0 1 2 4 5 6 7 8
Distribution
Distribution
0 1 2 3 4 5 6 7 8
%P<S 5926 5807 56.89 5867 55.85 56,59 53.33 55.11 5585
S/P 0.33 0.31 0.30 0.27 0.29 0.27 0.23 0.25 0.23
S/C 1.64 1.68 1.69 1.61 1.63 1.62 1.57 1.61 1.61
P/C 5.01 5.41 5.69 5.90 5.70 5.97 6.85 6.32 6.88
P Eff 0.37 0.38 0.37 0.34 0.35 0.35 0.31 0.33 0.34
CEfl 0.41 0.42 0.42 0.38 0.40 0.40 0.36 0.38 0.39
CPU Sec 14.30 1560 17.22 14.91 15.82 16.73 15.63 16.41 16.89

B.2. Scheduler Performance By Parallelism

B.2.1. Figure B.13. — Scheduler 1

124

50000 — :
40000 —)
Schedule 30000 — i : . ‘ ' :
Length i i : : i i l
20000 — : ! § ; § : |
S F T T S I B
=1 i1 1144
o 4
|] I i [| I T
2 4 8 16 32 64 128 256
Parallelism
20004 . TTT=T
0004 0 T====
Average } ___a-
Schedule 0004 ____.
Length | _ _ o o o o e o o__ —
5000 —]
T I I I | [| I
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 100.00 88.52 88.40 88.89 89.51 89.16 88.68 88.48
S/P 1.87 1.82 2.21 2.52 2.76 2.82 2.70 2.55
S/C 1.87 1.94 2.49 2.97 3.21 3.22 3.10 2.86
P/C 1.00 1.07 1.13 1.18 1.16 1.14 1.14 1.12
P Eff 0.34 0.33 0.46 0.57 0.65 0.68 0.70 0.68
CEff 0.34 0.34 0.47 0.58 0.65 0.69 0.70 0.69
CPU Sec | 171.53 20384 250.10 28026 363.91 47372 637.22 909.51

B.2.2. Figure B.14. — Scheduler 2

125

50000 —
40000 — . I) 5
Schedule 30000 - .
Length : : i é
20000 — ; : ;
: i : : i : ; i
: H ! ! 1 i H i
10000 — ;] i i
- { i # 2 s H
S T T R B B B
| [I | T [| I
2 4 8 16 32 64 128 256
Parallelism
20000 — --=-
0004 T ===-
Average } s c_a-
Schedule 10000 —
Length ~ } 77077 ‘
gt e e __ —
5000
T [[I | | I]
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 100.00 95.46 89.88 88.97 89.09 88.34 88.48 87.65
s/p 1.89 1.93 2.21 2.48 2.70 2.70 2.62 2.42
s/C 1.89 1.96 2.46 2.93 3.20 3.22 3.10 2.86
P/C 1.00 1.02 1.12 1.18 1.18 1.19 1.18 1.18
P Eff 0.34 0.34 0.46 0.56 0.64 0.68 0.69 0.68
CEfl 0.34 0.34 0.46 0.57 0.65 0.69 0.70 0.69
CPU Sec | 18366 217.03 26972 303.77 39541 514.76 697.28 1022.49

126

B.2.3. Figure B.15. — Scheduler 3

70000 —
60000 —
50000 — .
Schedule 40000 - . .
Length . ' i : ;
30000 — . : : : i ;
20000 —) ' i i i
: : i i i
10000 — : i i g ! |
o 4 4 4 4 4 4 4 =
| I | | I I | [
2 4 8 16 32 64 128 256
Parallelism
20000 T
5000 g T—===-=
Average | ____.-
Schedule 10000 —
Length | 777" ,____I
5000 — [—1
N —
- pe— |
I I I T I | | T
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 100.00 88.43 87.65 88.89 89.40 88.89 88.68 87.24
S/P 181 1.78 2.09 2.41 2.61 2.64 2.54 2.43
s/C 161 1.96 2.49 2.89 3.04 3.09 3.11 3.09
P/C 1.00 1.10 1.19 1.20 1.16 1.17 1.23 1.27
P Eff 0.34 0.33 0.46 0.56 0.64 0.68 0.70 0.71
CEf 0.34 0.34 047 0.57 0.65 0.69 0.71 0.72
CPU Sec | 19823 23400 29769 33898 475.82 680.99 985.83 1493.03

B.2.4. Figure B.16. — Scheduler 4

127

70000 —
60000 — ;
50000 —| ﬁ
Schedule 40000 — .) :
Length . , : i
30000 - ; i : : : .
20000 — , . : § i i
10000 — : i i * i H
o 4 4 4 4 4 4 4 =
| | | | | | i |
2 4 8 16 32 64 128 256
Parallelism
20004 . TTETT
0004 T ===-
Average | aa-__
Schedule y9000{ = _____
Length o ____ ____I
5000 — |
1 v 1.
| L I I T I | I
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 100.00 88.52 87 .41 89.38 90.33 89.30 88.68 88.07
S/P 1.91 1.78 2.08 2.43 2.56 2.63 2.53 2.42
S/C 1.91 1.96 2.48 2.89 3.04 3.09 3.12 3.10
P/C 1.00 1.10 1.20 1.19 1.19 1.17 1.23 1.28
P Eff 0.34 0.33 0.46 0.57 0.64 0.68 0.70 0.71
CEfl 0.34 0.34 047 0.57 0.65 0.69 0.71 0.72
CPU Sec | 388.22 463.48 567.71 639.18 870.06 1205.80 1750.92 2770.58

128

B.2.5. Figure B.17. — Scheduler 5

120000 —
100000 —

Schedule 80000 —
Length 60000 —

0 — I‘ﬁn........‘....,............. e e e e

40000 — ‘ i § ' ,
20000 — : i
M i i i i i
0 — = A —ad —d - - =
| [| | I [
2 4 16 32 64 128 256
Parallelism
e0000-{ ==
1000 ====-
Average oo a-
Schedule 10000 -
Length | . TTT77
- o= = o= ﬂ -— e ap o Em am o e G em =
5000 4 —1
[[T | I I I [
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 77.78 69.26 72.76 76.46 80.97 82.72 84.16 83.54
S/p 1.44 0.96 0.94 1.23 1.55 1.68 1.66 1.54
S/C 1.63 1.68 2.03 2.32 2.58 2.75 2.81 2.72
P/C 1.13 1.76 2.17 1.89 1.66 1.64 1.70 1.76
P Efi 0.31 0.29 0.40 0.50 0.58 0.62 0.65 0.64
CEff 0.31 0.31 0.42 0.52 0.60 0.64 0.66 0.66
CPU Sec 1.54 1.72 1.98 2.20 3.08 4.84 8.92 18.79

B.2.8. Figure B.18. — Scheduler 6

129

120000 — :
100000 ; E :
Schedule 80000 — ‘ : !
Length 0000 . ; : :
i i ! H :
40000) ; ' ;
20000 — i : :
i H i i é i i i
0 - = - S N L B | -t =
| [| | | | |]
2 4 8 16 32 64 128 256
Parallelism
200004 . TETTT
50004 0 ====-
Average | _aea-
Schedule 10000 -
Length |
5000 — ‘_l |
{ { | I | | | |
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P_<_S 66.67 66.02 74.07 78.52 83.85 84.22 84.57 83.95
S/P 0.76 0.74 1.13 1.48 1.70 1.80 1.79 1.66
S/C 1.58 1.56 1.97 2.33 2.65 2.85 2.89 2.77
P/C 2.09 2.12 1.74 1.58 1.56 1.59 1.61 1.67
P Efi 0.27 0.25 0.38 0.49 0.57 0.63 0.65 0.65
CEfl 0.30 0.28 0.40 0.51 0.59 0.64 0.67 0.67
CPU Sec 30.87 34.53 39.91 43.70 57.17 76.72 111.04 183.65

B.2.7. Figure B.18. — Scheduler 7

130

120000 —
100000 — ; :
Schedule 80000 — : :
Length 60000 — : :
i i i :
40000 —) ; ; 3
20000 —
F i ; ! i i
0 - = = 8 i =4 | =
T]] L |] | {
2 4 8 16 32 64 128 256
Parallelism
20000 — -t =1
000 - ==-
Average | __aL__
Schedule ;0000
Length | O T
5000 — _“I
| 1 R] i i 1 |
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 66.67 65.19 74.07 78.11 83.85 84.09 83.95 84.36
S/P 0.76 0.73 1.11 1.44 1.65 1.75 1.75 161
S/C 1.58 1.56 1.96 232 2.64 2.84 2.88 2.76
P/C 2.09 2.13 1.77 1.62 1.60 1.62 1.65 1.71
P Eff 0.27 0.25 0.38 0.49 0.57 0.62 0.65 0.65
CEfl 0.30 0.28 0.40 0.51 0.59 0.64 0.67 0.67
CPU Sec 16.44 17.23 19.43 20.86 26.86 35.26 48.60 73.04

B.2.8. Figure B.20. — Scheduler 8

131

120000 — : :
100000 — ‘ '
Schedule 50000 — . '
Length 60000 — ; ;
! 1 . s H
40000 — ; { : .
: i ! : ! i i :
20000 : i : : : .
i ; i i i { i i
o 4 4 4 _4 4 2 & &
[| | | [I |
4 8 16 32 64 128 256
Parallelism
20000 ==-=
o004 . ===e-
Average | o=
Schedule 10000 —
Length | N
5000 — _—l
| [I I [| [[
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 66.67 65.00 74.07 79.26 84.98 85.05 85.39 85.60
S/p 0.77 0.73 1.09 1.37 1.52 1.60 1.65 1.67
S/C 1.58 1.56 1.97 2.33 2.64 2.82 2.90 291
P/C 2.07 2.13 1.80 1.71 1.74 1.77 1.75 1.74
P Efi 0.27 0.25 0.38 0.50 0.58 0.63 0.66 0.67
CEf 0.30 0.28 0.40 0.52 0.60 0.65 0.68 0.69
CPU Sec 25.44 28.98 36.46 41.35 55.60 78.74 119.16 195.49

B.2.9. Figure B.21. — Scheduler 9

160000 —~
140000 —
120000 — .
100000 — : ‘ i
Schedule . .
Length 80000 — ! ;
60000 — ; i ; :
40000 — ' , :
20000 — ; : !
o 4 4 4 4 4 4 4 d
| I | | |] [
2 4 8 16 32 64 128 256
Parallelism
20000 — -9
0004 === ==
Average ||l | m™—™m @200 eeea-
Schedule 10000 —
Length | [O P
5000 —
I | | 1 [| I 1
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 61.48 63.15 72.76 77.45 80.56 83.54 84.57 83.95
S/P 0.61 0.64 0.93 1.22 1.45 1.59 1.63 1.54
§/C 1.45 1.46 1.78 2.11 2.40 2.65 2.74 2.68
P/C 2.39 2.28 1.91 1.72 1.65 1.66 1.69 1.74
P Eff 0.21 0.21 0.31 0.40 048 0.55 0.60 0.61
CEff 0.25 0.25 0.33 0.42 0.50 0.57 0.61 0.63
CPU Sec 0.79 0.87 0.95 1.00 1.25 1.58 2.06 2.82

133

B.2.10. Figure B.22. — Scheduler 10

700000 <
600000 —
Schedule 500000 —) .
Length 400000 . : - ;
300000 ; ; : :
200000 — ; i | ! ! |
o T O O R R R
o a4]]
[I T [I | | {
2 4 8 16 32 64 128 256
Parallelism
45000 lmml
40000 — = T
35000 —
Average 30000 —
Schedule 25000 —
Length 920000 — 4--44
50004 | t+t bVl1otl0 o 1td4--1-
IOOOO—L —] _| 1--11°"1
5000 - H
| []
| | | 1 T 1 I [
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 73.33 58.70 59.01 61.48 63.99 65.02 63.79 59.67
S/pP 1.37 0.76 0.40 0.30 0.28 0.35 0.36 0.29
S/C 1.57 1.55 1.73 1.89 2.01 2.06 2.03 1.92
P/C 1.15 2.04 4.30 6.22 711 5.86 5.62 6.66
P Efl 0.29 0.26 0.35 0.44 0.50 0.54 0.55 0.54
CEff 0.30 0.29 0.39 0.48 0.54 0.58 0.59 0.58
CPU Sec 5.85 7.94 11.72 15.25 22.59 34.76 55.88 105.92

B.2.11. Figure B.23. — Scheduler 11

700000 —
600000 —
Schedule 500000 . .)

Length 400000 - , i § \

300000 — Z : : ; : ;
200000 — ; | ’ ; |
100000 — :
8 IR R SO R SRS R B
{ | | | 1 | I |
2 4 8 16 32 64 128 256
Parallelism
71400.0
45000 —
40000 —
35000 —
Average 30000 —
Schedule 25000 —

Length 900004 ~ __ _f +tV |t Vv 1A4--4-
15000 — 4-=-1-
wooH _ ——|__1d__14--1-1" "1

5000 —
1 | | 1|
1] | | | | |]
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 77.78 60.28 59.18 62.22 61.73 61.18 59.88 56.79
s/P 1.43 0.77 0.42 0.31 0.27 0.29 0.34 0.29
s/C 1.64 1.58 1.76 1.92 1.98 1.96 1.97 1.86
P/C 1.14 2.06 4.24 6.21 7.36 6.65 5.72 6.50
P Eff 0.30 0.27 0.36 0.44 0.50 0.53 0.54 0.53
CEff 0.31 0.30 0.40 0.48 0.54 0.57 0.59 0.58
CPU Sec 19.89 24.87 31.71 37.43 51.88 73.10 111.80 200.41

B.2.12. Figure B.24. — Scheduler 12

135

700000 —
600000 — .
Schedule 500000 — . .
Length 400000 — i 5 :
300000 i ' i :
. 1
200000 — . , 1 : |
100000 — i i j J :
0o —a _Jd J J , _J
I I I] { I
2 4 8 16 32 64 128 256
. Parallelism
45000 51400.8 06408.5 97408.8
40000 1 l l l 1 1
35000 —
Average 30000 —
Schedule 25000 —
Length 20000 — {--1-
150004 ! t1t1 +1 t1 | 4--1-
10000 — ______J___ _ _._--..-_---
ook [T] P 1 |
I [I I I T [|
2 4 8 16 32 64 128 256
Parallelism
Average Parallelism
2 4 8 16 32 64 128 256
%P<S 73.33 58.06 55.72 55.64 56.58 56.79 54.73 53.91
s/P 1.24 0.59 0.32 0.25 0.23 0.23 0.23 0.21
S/C 1.53 1.44 1.55 1.65 1.72 1.73 1.73 1.68
P/C 1.23 243 4.84 6.68 7.38 7.44 7.48 7.97
P Ef 0.28 0.23 0.28 0.36 0.41 0.44 0.46 0.44
CEfl 0.29 0.27 0.33 0.41 0.46 0.49 0.51 0.50
CPU Sec 5.49 6.96 9.55 11.85 16.62 23.24 34.02 53.51

B.3. Scheduler Performance By Program Size

B.3.1. Figure B.25. — Scheduler 1

50000 — j
40000 ?
Schedule 30000 |
Length i
20000 — l
}
16000 — i J J
ol J
| | |] 1
128 256 512 1024 2048
Program Size
20000-{ ________ -----7
15000 <
Average
Schedule 100004 200000000000 eemee-
Length
50004 0 mee—-e-
(r——— [T 1
L [I |
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S |[87.65 88.89 88.97 89.44 89.54
S/P 2.07 222 233 238 247
S/C 224 242 257 268 2.80
P/C 108 109 110 113 1.14
P Eff 044 049 054 057 0.60
CEff 044 050 054 057 0.60
CPU Sec|36.53 79.69 170.33 362.19 751.52

136

137

B.3.2. Figure B.26. — Scheduler 2

50000
40000 —

Schedule 30000 -
Length
20000 —

10000

| b
o M
thoh

0 ——= -.;.3
[|

128 256 512 1024 2048
Program Size

20000 "7

15000 —

Average
Schedule o004 —==---
Length

5000 00 ——eme--

128 256 512 1024 2048
Program Size

Program Size
128 256 512 1024 2048

%P<S |91.36 90.64 89.96 89.71 90.77

S/pP 209 221 230 236 244
s/C 225 241 256 267 280
P/C 107 109 111 113 114

P Eff 044 049 053 056 0.59
CEfl 044 049 054 057 0.60
CPU Sec|36.64 80.76 173.16 382.43 840.53

B.3.3. Figure B.27. — Scheduler 3

Schedule
Length

Average
Schedule
Length

70000 —
60000 —
50000 —
40000 —
30000 — :
20000 — ' : ;
10000 — | !
| i] -
0-d et | == =
| T T T T
128 256 512 1024 2048
Program Size
200004 - ==== :
15000 |
1004 0 —-----
—
5000 000 —e-----
=== Jf_l | |
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S |88.07 88.58 88.64 88.75 89.42
S/P 202 217 218 227 236
S/C 228 244 258 267 276
P/C 1.13 113 119 118 1.17
P Eff 044 049 054 056 059
CEf 045 050 054 057 0.60
CPU Sec|38.91 86.89 197.48 458.79 1077.15

138

B.3.4. Figure B.28. — Scheduler 4

Schedule

Length

Average
Schedule ;4000

Length

70000 —
60000 -1
50000 —
40000 —
30000 —
20000 —
10000 —

0 —

20000

15000 —

139

Y B

|

128

|

512 1024 2048
Program Size

5000 000 ——eeee-
——
_--I--—ﬂ—'ﬁ [ﬁ:—l '
128 1024 2048
Program Size
Program Size
128 256 2048
%P<S |88.20 88.58 89.89
S/pP 202 214 2.34
S/C 228 245 2.76
P/C 1.13 114 1.18
PEff 044 049 0.59
CEfl 045 0.50 0.60
CPU Sec}41.81 99.53 255.76 714.34 2227.39

B.3.5. Figure B.29. — Scheduler 5

Schedule
Length

Average
Schedule
Length

120000 — f
100000 —
80000 —
60000 —
40000 —
20000 — i ; ‘
od 4 4 _4 o d B
T | | | |
128 256 512 1024 2048
Program Size
g0000-{ -----1
15000 -
woo0-{ —-e---
5000 0000000 =—=—=--
— | — I- I l
l T { | {
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S [73.25 74.38 76.63 78.05 78.89
S/P 095 106 1.17 125 1.33
S/C 194 206 2.17 2.26 236
P/C 205 194 186 181 1.77
P Eff 039 044 048 0.51 0.54
CEfl 0.41 046 0.50 053 0.55
CPU Sec| 026 062 143 345 8.82

140

B.3.8. Figure B.30. — Scheduler 6

120000 —
100000 —

Schedule 80000 —
Length 60000 —

40000 — g
20000 , |
; i 3 i ;}.
0 ——d 3 — -
T | I | I
128 256 512 1024 2048
. Program Size
2000~ === =7
15000 —
Average
Schedule ;00004 @ === o—-----
Length
5000 000000 —e-—-e-
] r—H-I [1
I T I T
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S |72.70 74.69 77.20 79.01 79.66
S/P 101 112 120 128 1.36
S/C 188 202 213 224 234
P/C 187 180 1.77 175 1.73
P Eff 037 042 046 050 0.53
CEff 039 044 048 052 055
CPU Sec| 3.20 7.28 17.77 47.95 148.28

141

142

B.3.7. Figure B.31. — Scheduler 7

120000 —
100000 —

Schedule 80000 —
Length g0000 -

;

40000 —
. H ¢ g
20000 — i i]]
b
0 —4 —d4 _d = E
I]] | I
128 256 512 1024 2048
Program Size
20000 ~—-==-
15000 —
Average
Schedule 00004 2 mm===-
Length
5000 — -—————-
L | : | l [| |
128 256 512 1024 2048

Program Size

Program Size
128 256 512 1024 2048

%P<S |72.70 74.38 76.87 78.46 79.54

S/P 099 1.0 1.18 126 1.33
S/C 188 201 213 223 234
P/C 1.90 184 180 178 1.76

P Eff 037 042 046 049 0.53
CEff 0.39 044 048 051 0.54
CPU Sec| 2.97 6.31 13.16 27.75 57.75

143

B.3.8. Figure B.32. — Scheduler 8

120000 —
100000 —
Schedule 80000_1
Length go000 -

; ;
40000 . ! .
| i i
20000 i i
H ' i
0 —_— __d _J J E
T I I T I
128 256 512 1024 2048
Program Size
e0000 - -]
15000 —
Average
Schedule 00004 202020200000 mmme-—-
Length
50004 000 =mm=---
[—Ho | [1
I i T [I
128 256 512 1024 2048

Program Size

Program Size
128 256 512 1024 2048

%P<S |73.11 75.82 77.70 78.94 79.89

sS/P 1.02 1.11 117 122 127
S/C 191 205 216 225 233
P/C 187 184 184 184 1.84

P Eff 038 043 047 050 0.53
CEfl 0.40 045 049 052 0.55
CPU Sec| 4.64 10.97 23.79 55.76 130.44

144

B.3.9. Figure B.33. — Scheduler 9

160000 —;
140000
120000 —

100000 —
Schedule)
Length 80000 —

60000 —

40000 —

20000 — ,

0 —d i — -ag F
| | | 1

128 256 512 1024 2048

Program Size

i
H H
i H
: 1
i

e0000-{ ----- 7

15000 —

Average
Schedule 100004 eemeee-
Length

5000 -

==
1 | | | {
128 256 512 1024 2048

Program Size

Program Size
128 256 512 1024 2048

%P<S {70.92 72.84 74.73 77.09 78.78

S/P 088 092 101 109 1.18
S/C 1.76 182 195 206 217
P/C 200 199 192 189 1.84

P Eff 032 033 038 042 046
CEfi 0.34 036 040 044 048
CPU Sec| 0.11 0.27 059 1.27 268

B.3.10. Figure B.34. — Scheduler 10

700000 —
600000 —
500000 — .
Schedule 400000 — . i
Length . :
300000 — . i
200000 — |
100000 — ; i
o 4 i J }
T I 1 T I
128 256 512 1024 2048
Program Size
57347.5
40000 — | |
35000 — M T
30000
Average
25000 —
Schedule
Length 20000 — i D
15000 —
10000 4---}-
5000 — 4---f-
eemi = lamal1 N |
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S |60.77 60.49 60.82 62.41 62.79
S/P 044 038 0.37 037 0.36
S/C 1.72 1.76 180 183 1.89
P/C 3.90 466 487 495 5.28
P Eff 035 0.39 042 044 046
CEfl 038 043 046 048 0.50
CPU Sec| 1.86 4.38 9.91 22.77 53.78

145

B.3.11. Figure B.35. — Scheduler 11

700000 —
600000 —
500000 —
Schedule 400000 i
Length :
300000 . ;
200000 — |
i
100000 — ° i i H
; i H
0 i 4 i]
T] T | I
128 256 512 1024 2048
Program Size
810043
40000 —
35000 — T T
30000 —
Average
25000 —
Schedule
Length 20000 — 17777
15000 —
10000 — 4---}-
5000 —] 1= 4o
I I I I I
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S |61.04 60.80 60.16 61.39 61.38
sS/pP 046 0.44 038 036 0.34
S/C 1.73 1.77 182 184 186
P/C 375 404 477 513 555
P Eff 035 039 042 044 046
CEff 039 042 046 048 0.50
CPU Sec| 2.01 5.09 13.82 42.07 138.59

146

B.3.12. Figure B.36. — Scheduler 12

700000 -
600000 — :
500000 '
Schedule 400000) i
Length . :
300000 : :
200000 . % ;
100000 — i | i
0 — 3 J ,i‘ } __é
| 1 1 i |
128 256 512 1024 2048
. Program Size
78485.6
40000 —
35000 — T]
30000
Average
25000
Schedule
Length 20000 — 1777
15000 —
10000 — N .
5000 — | A-==-F-
gl L T T
128 256 512 1024 2048
Program Size
Program Size
128 256 512 1024 2048
%P<S |57.48 56.48 56.79 56.72 56.14
S/P 038 032 0.29 028 0.26
s/C 158 160 162 1.63 1.63
P/C 4.13 495 5.57 581 6.25
P Eff 030 033 035 036 0.37
CEfl 035 038 040 040 041
CPU Sec| 1.58 3.52 7.58 16.28 34.89

147

148

B.4. Scheduler Performance By Communication Latency

B.4.1. Figure B.37, — Scheduler 1

50000 — :
40000 — 1
Schedule 30000 — ; i
Length i {
20000 — ‘ 1 ‘
10000 — ' i
i i J i J J
0 = = = =1
I | I [I T | | I
0 0.125 025 05 1 2 4 8 16
Latency
20000 —
15000
Average
Schedule 10000 - _ - — — - e A__1]
Length
[——1
5000 —
ﬂlillllllllH‘l”l |]] ‘ :
0 0.125 0.25 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 100.00 100.00 9941 65.63 36.59
S/P 5.41 5.39 5.33 5.15 4.63 3.49 2.13 1.26 0.82
s/C 5.41 5.39 5.33 5.15 4.63 3.49 2.13 1.43 1.12
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.37
P Eff 0.77 0.77 0.76 0.74 0.68 0.53 0.33 0.18 0.12
CEff 0.77 0.77 0.76 0.74 0.68 0.53 0.33 0.20 0.16
CPU Sec | 23601 367.55 377.65 377.22 373.21 364.08 357.92 351.85 33147

B.4.2. Figure B.38. — Scheduler 2

149

50000 —
40000
Schedule 30000 ; 1
Length g §
20000 — : % i
Lo
10000 — | i : i
1 ; : 3 H
£ b £ K] j
o] & 4 & 4 11 i i
L T I T T | | I]
0 0125 025 05 1 2 4 8 16
Latency
20000 —
15000 -
Average
Schedule 10000 L o o o o e e e e e o e o d__1
Length
5000 —
| { | | | | i { {
0 0125 025 05 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 10000 10000 9852 68.15 46.96
S/p 5.40 5.36 5.29 5.11 4.58 3.42 2.11 1.24 0.82
s/C 5.40 5.36 5.29 5.11 4.58 3.42 2.11 1.43 1.13
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.16 1.38
P Ef 0.77 0.76 0.76 0.74 0.67 0.52 0.32 0.18 0.12
CEfl 0.77 0.76 0.76 0.74 0.67 0.52 0.32 0.20 0.16
CPU Sec | 269.11 39891 408.24 408.83 40598 397.70 388.44 379.80 354.74

B.4.3. Figure B.39. — Scheduler 3

150

70000 —
60000 —
50000
Schedule 40000 -
Length i :
30000 — . :
20000 — i % :
10000 — | ;
i i i i {] i J }
Y - S R R R B
T | I I | I I ! [
0 0125 025 05 1 2 4 8 16
Latency
20000 —
15000 -
Average
Schedule 10000 = — o o o e o e e e d__14
Length _J
5000 —
T 1M 1|
T 1 | ! [| I | 1
0 0125 025 05 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 100.00 100.00 9467 67.70 36.89
S/pP 5.40 5.39 5.32 5.15 4.48 3.28 2.01 1.17 0.78
S/C 5.40 5.39 5.32 5.15 4.48 3.28 2.04 1.47 1.13
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.25 1.45
P Efl 0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.19 0.12
CEfl 0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.22 0.16
CPU Sec | 289.44 783.10 68841 51320 404.12 379.77 380.50 389.73 399.73

B.4.4. Figure B.40. — Scheduler 4

151

70000 —
60000 — '
50000 —
Schedule 40000 :
Length -
8 30000 S
: ! i
20000 — , : | | i
10000 — i i ;
‘x . . s S
ol 4 4 4 4 4 4 4 4 |
[[! T 1 | | T |
0 0.125 025 05 1 2 4 8 16
Latency
20000
15000 —
Average
Schedule 10000 — — o e e o o e e e e e e e e e e = S
Length
1
5000 —
I I I I I I ! I
0 0.125 025 05 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 100.00 10000 9496 6933 37.63
S/P 5.40 5.39 5.32 5.15 4.48 3.28 2.01 1.19 0.76
S/C 5.40 5.39 5.32 5.15 448 3.28 2.03 1.47 1.13
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.24 1.47
P Eff 0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.19 0.12
CEff 0.77 0.77 0.76 0.74 0.66 0.51 0.34 0.22 0.16
CPU Sec | 693.65 1147.67 1065.19 908.85 807.54 786.65 789.18 799.60 806.52

B.4.5. Figure B.41. — Scheduler §

152

120000 — i
100000 —
Schedule 50000 — : f
Length 60000 — ;
i i
40000 2 §
1 i i
20000 — , i i
l 1 | 1 ! | | | |
0 0.125 025 05 1 2 4 8 16
Latency
20000 — 31054.2
15000 —
Average
Schedule 10000 - o o e e e ———————— A1 1__1]
Length
(1
5000 —
T ramr il |
I T [I I I | I [
0 0.125 0.25 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 100.00 98.67 51.56 29.78 11.56
S/p 5.38 5.34 5.25 5.01 4.04 2.40 1.25 0.61 0.31
S/C 5.38 5.34 5.25 5.01 4.04 240 1.48 1.16 1.04
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.18 1.89 3.35
P Efl 0.77 0.76 0.75 0.73 061 0.38 0.20 0.10 0.05
CEfl 0.77 0.76 0.75 0.73 0.61 0.38 0.22 0.16 0.15
CPU Sec 3.80 3.81 3.80 3.78 3.76 3.72 3.67 3.60 3.50

B.4.6. Figure B.42. — Scheduler 6

153

120000 —
100000 —
Schedule 80000 — :
Length 0000 —
40000 - .
20000 — : !
;) : : J ! i
0d 5 & _d =2 _d ¥ i L
I | [[I | I T T
0 0.125 025 0.5 1 2 4 8 16
Latency
20000 — 20851.8
15000 — (
Average
Schedule 310000 1 _ __ _ o e ____ N U O P
Length 2
A l
5000 —
T | T I I | I [|
0 0.125 025 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 10000 100.00 10000 98.96 53.48 3259 1141
s/P 5.40 5.24 5.04 4.63 3.68 2.25 1.23 0.64 0.33
S/C 5.40 5.24 5.04 4.63 3.68 2.25 1.49 1.20 1.05
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.21 1.86 3.20
P Efi 0.77 0.75 0.73 0.69 0.57 0.37 0.20 0.10 0.05
CEff 0.77 0.75 0.73 0.69 0.57 0.37 0.22 0.17 0.15
CPU Sec 48.06 58.07 58.86 58.97 59.53 59.83 60.06 60.02 59.78

B.4.7. Figure B.43. — Scheduler 7

154

120000 —
100000 — i
Schedule 80000 —)
Length 60000
i i
40000 A
i i i
20000 —| , ! 1 i
: i ; i B § 2
04 —= —J _& _= _d - = 4
T I T | T I | I T
0 0.125 025 0.5 1 2 4 8 16
Latency
20000 — 04810
15000 —
Average
Schedule 10000 = - C o o o e _dd__4
Length
il
5000 —
T 1T 1T 1 1
!] I [[I I T T
0 0.125 025 05 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 100.00 9763 5333 31.70 11.26
S/P 5.40 5.24 5.04 4.62 3.66 2.22 1.21 0.63 0.32
S/C 5.40 5.24 5.04 4.62 3.66 2.22 1.48 1.19 1.05
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.23 1.90 3.28
P Eff 0.77 0.75 0.73 0.69 0.57 0.36 0.20 0.10 0.05
CEff 0.77 0.75 0.73 0.69 0.57 0.37 0.22 0.17 0.15
CPU Sec 17.19 26.89 27.52 27.56 27.91 2835 28.65 28.67 28.69

155

B.4.8. Figure B.44. — Scheduler 8

120000 |
100000

Schedule 80000
Length 60000 —

. -

{
40000 — , ; i
20000 — ; ; ; §
0 —= 2 _4 4 4 2 3 1 i
[T T T I | T []
0 0.125 025 0.5 1 2 4 8 16
Latency
20000 — 31023.0
I
15000 ﬂ
Average
Schedule 10000 = o o o e e e e e e e e o 1 1__ 1]
Length _]
5000 -
I |] I |] T |
0 0125 025 05 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 10000 97.33 54.81 34.07 13.63
s/p 5.39 5.29 5.08 4.64 3.55 2.14 1.16 0.61 0.31
S/C 5.39 5.29 5.08 4.64 3.55 2.14 1.51 1.21 1.08
P/C 1.00 1.00 1.00 1.00 1.00 1.00 1.30 1.99 3.48
P Efi 0.77 0.77 0.74 0.69 0.56 0.37 0.21 0.11 0.05
CEfl 0.77 0.77 0.74 0.69 0.56 0.37 0.24 0.17 0.15
CPU Sec 33.51 93.66 83.21 61.73 50.06 47.28 4746 4784 4801

B.4.9. Figure B.45. — Scheduler 9

156

160000 - :
140000 — f
120000-1
100000 —
Schedule
Length 80000 — i
60000 — i
40000 — i
20000 ;] !
0 = 4 4 _d 4 4 & 4
T L 1 I 1 I I
0 0.125 025 05 1 2 4 8 16
Latency
20000 — 340714
15000 —
Average
Sﬁhed“ﬁe 10000 | — - e e - N
engt —I
50007
[[| | | T [1 T
0 0.125 0.25 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 10000 9333 50.96 28.74 8.00
S/P 4.51 441 4.28 4.00 3.25 1.97 1.06 055 0.28
s/C 4.51 441 4.28 4.00 3.25 1.99 1.40 1.14 1.04
P/C 1.00 1.00 1.00 1.00 1.00 1.01 1.32 207 3.67
P Eff 0.64 0.63 0.61 0.59 0.50 0.31 0.17 009 0.04
CEff 0.64 0.63 0.61 0.59 0.50 0.31 0.20 0.16 0.15
CPU Sec 1.23 1.23 1.23 1.23 1.23 1.23 123 123 1.23

B.4.10. Figure B.48. — Scheduler 10

157

700000 —
600000 —
500000 — .
Schedule 400000 — :
Length ;
300000 — . i
200000 — : | {
100000 — : T B
. H H 4
0 . . - 4 &
I T I I I 1 [I T
0 0.125 0.25 0.5 1 2 4 8 16
Latency
02050.0 127411.8
40000 —
35000 — T
30000 —
Average
25000 —
Schedule
Length 20000 —
15000 —
10000 4 - - - — e e e e - ~==3
5000 —
' o 1 s 8 s s W A
I I |] T T | ! |
0 0.125 0.25 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 100.00 100.00 100.00 100.00 9852 43.70 5.48 1.78 5.78
S/P 5.34 5.28 5.15 4.82 3.00 0.93 0.32 0.16 0.08
S/C 5.34 5.28 5.15 4.82 3.18 1.28 1.02 1.00 1.01
P/C 1.00 1.00 1.00 1.00 1.06 1.37 3.18 6.42 13.11
P Efl 0.77 0.76 0.75 0.71 0.52 0.16 0.06 0.03 0.03
CEff 0.77 0.76 0.75 0.71 0.52 0.19 0.15 0.15 0.15
CPU Sec 19.46 27.48 27.95 2780 2787 25588 1992 17.75 16.75

B.4.11. Figure B.47. — Scheduler 11

158

700000
600000 —
500000 — ;
Schedule 400000 — ;
Length :
300000 —
200000 | i §
: i i
100000 — . i i i
0 : - s ..5 F]
| I I T I T 1 I
0 0125 025 05 1 2 4 8 16
Latency
67088.2 128208.7
40000 —
35000 — TT]
30000 —
Average
25000
Schedule B
Length 20000 —
15000 -
10000 _F ------------------- —H-- } —
5000 -
1 s B o s 8 s B s B 1 A
I I I T | [
0 0.125 025 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<S 1060.00 100.00 100.00 100.00 99.41 3896 1.33 2.22 7.11
S/pP 5.36 5.26 5.15 4.89 3.32 0.85 0.29 0.15 0.08
§/C 5.36 5.26 5.15 4.89 3.37 1.22 1.00 1.00 1.01
P/C 1.00 1.00 1.00 1.00 1.01 1.43 3.47 6.88 13.23
P Efl 0.77 0.76 0.74 0.72 0.54 0.16 0.05 0.03 0.03
C Eff 0.77 0.76 0.74 0.72 0.54 0.18 0.15 0.15 0.15
CPU Sec 49.89 57.91 58.45 5833 58.15 5414 4840 4542 43.83

B.4.12. Figure B.48. — Scheduler 12

159

700000 —
600000 — .
500000 — ;
Schedule 400000 — i
Length i
300000 — ;
200000 : i :
: ; :
100000 — E J
0 : : - = _d: | F 2
T [T | 1 I I
0 0.125 025 0.5 1 2 4 8 16
Latency
83197.7 1600230.2
40000 —
35000 1T
30000 —
Average
25000 —
Schedule
Length 20000 —
15000
10000 4 e v e e - e - —
5000 —
11 141 111 1 l I I
| I I [I | [
0 0.125 0.25 0.5 1 2 4 8 16
Latency
Latency
0 0.125 0.25 0.5 1 2 4 8 16
%P<LS 100.00 100.00 10000 100.00 95.56 696 000 1.33 5.78
S/P 4.90 4.66 4.28 3.20 1.62 061 025 0.12 0.06
S/C 4.90 4.66 4.28 3.20 1.73 101 100 1.00 1.01
P/C 1.00 1.00 1.00 1.00 1.07 165 402 852 1741
P Eff 0.75 0.72 0.68 0.54 0.26 009 004 0.02 0.02
CEfl 0.75 0.72 0.68 0.54 0.26 015 0.15 0.15 0.15
CPU Sec 19.63 24.19 23.56 2050 1688 12.14 966 8.77 8.19

B.5. Scheduler Performance By Processor Count

B.5.1. Figure B.49. — Scheduler 1

50000 — ;
40000 — .
Schedule 30000 — : .
Length
20000 —
10000 < J J
0
I T T
4 8 16
Processor Count
20000 —
15000 —
Average
Schedule 310000 - _ — o e
Length
5000 ~ | 1
| T !
4 8 16
Processor Count
Processor Count
4 8 16
%P<S |[79.90 90.47 96.84
S/pP 1.59 275 3.98
s/C 195 290 4.05
P/C 123 105 1.02
P Eff 063 055 0.44
CEfl 065 056 0.44
CPU Sec|22.33 110.17 913.15

160

B.5.2. Figure B.50. — Scheduler 2

16

50000 —
40000]
Schedule 30000 - ’ :
Length | |
20000 — ;
| !
10000 — ;
4
0 3 o
T |
4 8
Processor Count,
20000 —
15000 —
Average
Schedule 10000 L — o o e e e e e e e e e e
Length
5000 — I
| I 1
4 8 16
Processor Count
Processor Count
4 8 16
%P<S [81.09 91.75 98.37
S/P 156 275 3.98
S/C 195 289 401
P/C 125 105 101
P Eff 063 055 0.44
CEff 064 055 0.44
CPU Sec|54.02 142.68 940.55

161

162

B.5.3. Figure B.51. — Scheduler 3

70000 — :
60000 —
50000 —
Schedule 40000 i
Length
8 30000 :
20000 — i | ;
H 3 1
10000 — : !
{
0 4 <4 _d
I | |
4 8 16
. Processor Count
20000 -
15000 —
Average
Schedule 10000 = — o e e e e e e e e e e e e e e i
Length
5000 - l
| | |
4 8 16
Processor Count
Processor Count
4 8 16
%P<S |78.62 9037 97.43
S/P 145 269 413
s/C 189 290 417
P/C 131 108 101
P Eff 0.61 0.55 0.45
CEfl 0.63 0.56 0.45
CPU Sec{26.53 146.93 1235.87

163

B.5.4. Figure B.52. — Scheduler 4

70000 —
60000 —
50000
Schedule 40000 -
Length
30000 —
20000 | ;
10000 i
§ y]
04 = i
| {]
4 8 16
Processor Count
20000 —
15000 —
Average
Schedule 10000 - _ _ o e]
Length
5000 l
] | 1
4 8 16
Processor Count
Processor Count
4 8 16
%P<S 79.36 90.67 97.28
S/P 143 270 412
s/C 1.90 290 4.16
P/C 132 107 101
P Eff 0.61 0.55 0.45
CEfl 0.63 0.56 0.45
CPU Sec|401.09 520.76 1679.76

B.5.5. Figure B.53. — Scheduler §

120000 —

100000 —
Schedule 80000 —
Length 60000 —
40000 —

20000 —

0

o h'l-.d.‘....a....-. ettt & e osvamamnas e 0w b

00 = tm-..............-....... cm— e

Processor Count

20000 —

15000 —

Average

Schedule 10000 —
Length

5000 —

e - e - e — ewe = - o

|
8

Processor Count

Processor Count
4 8 16

%P<S |[67.31 80.00 83.21
S/P 087 151 1.82
S/C 176 243 3.04
P/C 202 161 167
P Eff 0.56 0.50 0.39
CEfl 0.60 0.51 0.40
CPU Sec| 3.09 3.55 4.50

16

164

B.5.6. Figure B.54. — Scheduler 6

120000
100000
Schedule 80000 —
Length 60000
40000 —

20000 —

0 -

I |
4 8

Processor Count

16

20000 —

15000 -

Average
Schedule 10000
Length

5000 —

- — e e b - e e e dc v, e, e, .- —-—-

1
4 8

Processor Count

Processor Count

4 8 16
%P<S |66.37 79.75 86.02
S/P 081 162 219
S/C 173 238 3.10
P/C 213 147 1.41
P Eff 0.54 048 0.39
CEfl 0.59 050 0.39
CPU Sec|37.83 46.06 90.50

16

165

166

B.5.7. Figure B.55. — Scheduler 7

120000 —
100000 —

Schedule 80000 — :
Length 60000 -

i :
40000 — i
20000 — *
5 _g &
0 — - — —_—t
| | 1
4 8 16
Processor Count
20000 —
15000 —
Average
Schedule 10000 - L o o e e e e e e e e ==
Length
5000 — | l
1]
! | |
4 8 16

Processor Count

Processor Count

4 8 16
%P<S |65.88 79.46 85.98
S/P 079 1.60 2.20
S/C 172 237 3.10
P/C 219 148 1.41

P Eff 054 048 039
CEff 0.59 049 039
CPU Sec| 6.58 14.85 59.04

B.5.8. Figure B.568. — Scheduler 8

120000 —

100000 —
Schedule 80000 —
Length 60000
40000 —

20000 —

0 —

|
§
_d
|
8

o — k'n.....-............ comereamarein s

Processor Count

20000 —

15000 —

Average
Schedule 10000 —
Length

5000 —

i
8

Processor Count

Processor Count
4 8 16

%P<S
S/pP

s/C
P/C

P Eff

C Eff
CPU Sec

66.27 80.44 86.57
073 162 229
1.70 238 3.24
233 147 142
0.53 049 040
058 050 041
12.64 30.62 127.67

16

167

B.5.9. Figure B.57. — Scheduler 9

168

160000 — :
140000 — f
120000 — ! :
1 . | ' :
Schedule . '
Length 0000 — ' :
60000 —
i i i
40000 — E
20000 —
2 d]
0 —] —— ——i=
T T [
4 8 16
. Processor Count
20000 —
15000 -
Average
Schedule 10000 4L L o o ol e e e e
Length
5000 — r———l
| I |
4 8 16
Processor Count
Processor Count
4 8 16
%P<S |64.54 77.78 84.69
S/P 070 137 1.88
S/C 164 217 275
P/C 233 159 146
P Eff 0.48 041 0.31
C Eff 053 0.42 031
CPU Sec| 1.23 1.23 1.23

B.5.10. Figure B.58. — Scheduler 10

Schedule
Length

Average
Schedule
Length

700000 —
600000 —
500000 —
400000
300000 —
200000 —
100000 —

B e«

0 -

|
8

Processor Count

B —

16

40000 —
35000 —
30000 —

25000 —
20000 —
15000 —

10000 4 F - -« - - AR S [- —

5000 —

Processor Count

Processor Count
4 8 16

%P<S
S/P
S/C
P/C

P Eff
CEff

CPU Sec[10.21 16.09 43.99

58.96 62.37 63.75
033 037 0.39
163 192 206
490 5.15 531
050 043 033
0.57 046 0.34

169

170

B.5.11. Figure B.59. — Scheduler 11

700000 —
600000 —
500000 —
Schedule 400000
Length
300000 —
200000 <
100000 —

0 —

| T
Pl ccsmscssssn ot o somom s e

P B O

[
8 16
Processor Count

o —

40000 —
35000 —

30000 —

Average
5000 —
Schedule 2

Length 20000 —
15000 —

10000 -+ | - - - — - I IR S - -
5000 — |

Processor Count

Processor Count

4 8 18
%P<S |58.77 61.83 62.42
S/P 0.33 036 0.37
s/C 163 1.92 204
P/C 491 539 5.58

P Eff 0.50 043 0.33
C Eff 0.57 047 0.34
CPU Sec [40.00 45.74 72.43

171

B.5.12. Figure B.80. — Scheduler 12

700000 —

600000 —

500000 —
Schedule 400000
Length 300000 —
200000 —

100000 —

0 -

ORI I
= - |

R | SO

Processor Count

40000 -
35000 —

A - 30000 —
verage oennn _
Schedule

20000 —

Length
15000 <

10000 — | - - - - - PR SRR P AP L
5000 —
I |||

Processor Count

Processor Count

4 8 16
%P<S |55.70 56.64 57.53
S/P 026 028 0.28
s/C 154 167 168
P/C 591 602 6.01

P Efl 046 035 0.24
CEfl 0.54 038 0.26
CPU Sec| 6.32 11.51 30.01

172

APPENDIX C

Comparison of Schedulers By Problem Characteristic

In this appendix the performance of diflerent schedulers is compared for each variable
in the problem space. The variables are: task distribution, average parallelism, program
size, communication latency, and processor count. It shows how different schedulers respond
to a given characteristic, such as program size. Each scheduler/characteristic pair uses a
histogram chart, a bar chart, and a table. The histogram chart shows histograms side-by-
side, to compare the distributions of schedule lengths for the different schedulers (1 through
12). The bar chart shows the average sequential schedule length (dashed line), the average
length of the parallel schedules, and the average length of min(sequential schedule, parallel
schedule), which is referred to as the corrected schedule length. This third item recognizes
that the parallel schedules generated by the different schedulers are not always shorter than

a sequential schedule, and shows the effect of selecting the shorter of the two.
The table gives specific values of interest in a numerical form. The values are:
%P<S Percentage of parallel schedules that were shorter than a sequential schedule.

S/p The speedup gained by the parallel schedule, or 7,'—, where T, is the length of a
»

sequential schedule and T, is the length of the parallel schedule.

T
S/C The speedup gained by the corrected schedule, or —TL’ where T, is the length of
[

the corrected schedule.

P/C The speedup gained by correcting the parallel schedule for schedules which are

T,
longer than a sequential schedule, or _TL'
[

P Eff

CEfl

CPU Sec

173

xT,

[4

This entry gives the parallel efficiency of a schedule, defined as , where n

is the number of available processors.

This entry gives the corrected parallel efficiency of a schedule, defined as X'T ,
4

where n is the number of available processors.

This field gives the average number of CPU seconds on a Sequent Symrnetryem

used to schedule the programs.

174

C.1. All Test Cases

C.1.1. Figure C.1. — All Tests (6075 Cases)

800000 -
700000
600000 — :
500000 — L
Schedule 400000 . i l I
Length 300000 — : ' |
200000 { ‘J -J
100000 — !
0 m—d__ 41 | J _J __J _ __J _.}
L L 1 T 1] | i 1
. Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
208848 278024 360083
Al ongth 1T 1
12000 — 2 3
10000 - __ _ __ 1(. ________________________ bhodoloL
Average
Schedule 000
Length 6000 —
4000 —
2000 —
1 1 i i 1 ! |]
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 89.07 90.40 8881 89.10 76.84 77.38 77.10 77.76 75.67 61.70 61.00 56.63
S/P 241 239 230 229 127 130 128 124 112 036 035 027
S/C 272 211 269 270 229 227 226 227 209 186 185 1.63
P/C 1.13 1.13 1.17 1.18 181 174 177 184 187 510 527 5.98
P Eff 054 054 054 054 048 047 047 047 040 042 042 035
CEfl 055 054 055 055 050 049 049 050 042 046 0.46 0.39
CPU Sec |348.55 379.08 469.78 867.21 3.72 58.13 26.83 56.98 1.23 23.43 52.72 15.95

175

C.2. Comparison By Task Distribution

C.2.1. Figure C.2. — Distribution = 0 (675 Cases)

700000 —
600000 —
500000 —
Schedule 400000 —
Length 300000 I
200000 — SR
100000 — ; ; : 1 i ; !
ol = d] _J
| | | I | { | | | { 1 | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 21:8S THRA AT
Scheﬁule ﬂength l [l l
12000 — SR
10000 - _ _ ___ 4 ________________________ I O N
Average
Schedule 8000 —
Length 6000 —
4000—' » N - |
2000 —
i | |] | ! { | 1 | | {
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%PSS 9126 93.04 91.11 91.41 76.59 77.93 78.07 78.52 75.11 64.00 63.11 59.26
S/P 2.49 2.43 2.42 240 126 138 135 131 1.09 046 041 033
5/C 2.71 271 2.70 270 226 235 234 235 208 185 184 1.64
P/C 1.09 1.12 1.12 1.13 178 1.70 173 1.79 191 403 449 501
P Eff 0.57 0.57 0.57 057 051 051 051 051 040 044 045 037
CEfl 0.58 0.57 0.58 058 052 053 053 053 042 048 0.48 041
CPU Sec |324.47 352.66 419.27 798.10 2.98 54.50 25.37 50.05 1.19 19.86 46.83 14.30

176

C.2.2. Figure C.3. — Distribution = 1 (875 Cases)

700000 —
600000 —
500000 —
Schedule 400000
Length 3 0
200000 — ; ' |
100000 . 3 ; ; i i i _J :
1 1 . . i
o =g J 4]
T |] T [I T 1 T T T | T
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential T2 uml ST
Schedule Length I I I l l I
12000 < - 3
10000 - __ ___ 4(_ ________________________ R4l
Average
Schedule 8000 —
Length 6000 —
4000 — oI
2000 —
[|] I | T T T I [{ T
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 89.04 90.67 93.19 93.33 78.07 78.07 77.78 79.26 75.26 62.96 62.96 58.07
S/P v 246 240 261 251 129 136 133 132 1.11 043 040 0.31
S5/C 272 271 286 285 228 230 230 235 209 1.87 184 168
P/C 1.11 1.13 1.09 114 177 170 173 178 188 430 460 541
P Eff 055 055 057 057 049 048 0.48 050 040 0.43 043 0.38
CEff 056 055 057 057 051 050 050 052 042 047 047 042
CPU Sec {329.20 358.93 425.95 815.98 3.38 55.39 2542 5241 1.21 21.73 49.04 15.60

C.2.3. Figure C.4. — Distribution = 2 (875 Cases)

177

700000 —

600000 —

500000 — .
Schedule 400000 — :
Length 300000 — :

200000 — . '

. . . : 1 : i

100000 - ; I : ! : i

ol =g d_d_d_J_J B
I | [I 1 T 1 | | | | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
. Scheduler
Average Sequential MBS WS IO
Schedule Length l 1 l l [l
12000 - H < 3
10000 - ___ __ LZ_ __________________________ Ry
Average
Schedule 5000 -
Length 6000 —
4000 — 1
2000 —
I [R | I | T I [T I
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.59 89.93 93.19 93.19 77.33 76.74 76.30 78.81 75.11 60.00 58.81 56.89
S/P 238 237 269 270 132 131 129 133 1.13 039 033 030
S/C 268 267 301 303 229 223 222 235 207 184 182 1.69
P/C 1.13 1.13 1.12 112 174 170 172 176 184 466 464 5.69
P Efl 053 052 057 057 047 045 045 049 039 041 041 037
CEff 053 053 057 057 049 047 047 050 042 045 045 042
CPU Sec[336.16 368.04 433.74 824.09 4.18 57.03 25.95 55.03 1.24 24.74 52.50 17.22

C.2.4. Figure C.5. — Distribution = 3 (875 Cases)

178

700000 —
600000 —
500000 — .
Schedule 400000 -) :
Length 430000 — Ll
200000 — L
100000 — A S _J i
1 l
o m b d i d_d_d_J_4_| _
i |] | | | i] 1 1 1 I 1
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential Xems A =2
Schedule Length 101161
12000 < - :
10000 - _____ 4 ________________________ o4l
Average
Schedule 8000 —
Length 6000 —
4000 —
2000
AL 1 | | | 1 | I ! | i |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 90.22 91.56 8844 88.74 76.74 77.93 77.63 78.37 75.41 61.48 62.07 58.67
S/pP 238 239 224 225 122 132 129 124 111 033 035 0.27
S/C 273 272 261 260 226 230 229 228 210 186 1.87 161
P/C 1.15 1.14 116 116 184 174 1.77 184 188 562 533 590
P Eff 055 055 054 054 049 048 048 048 040 043 043 034
CEff 056 055 055 055 051 050 050 050 042 047 047 0.38
CPU Sec {345.11 373.73 460.77 853.34 3.32 57.21 26.46 54.65 1.22 20.81 50.58 14.91

179

C.2.5. Figure C.8. — Distribution = 4 (875 Cases)

700000
600000 —
500000 —
Schedule 400000
Length 300000 —
200000 — P
100000 S R T
' . H H H N 1
od s Jd_Jg_J_d_J_J_ 4 Jd_J
[| I I] I I I I I | | T
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential s FERL MES
Sche§ule Length [1 [l l 1
12000 H 3 T
10000 -{ _____ L/_ ________________________ o4l
Average
Schedule 8000 —
Length 6000
4000 — Bl
2000 —
I T [I ! I 1 I T I | [
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 89.19 89.93 88.00 89.04 76.15 78.22 77.93 77.93 76.15 62.22 61.33 55.85
S/P 246 239 222 223 127 133 130 122 1.13 042 035 029
S/C 275 2.74 266 266 231 230 230 227 212 188 184 163
P/C 112 115 119 119 181 1.74 177 186 187 447 531 5.70
P Eff 055 055 054 054 049 048 048 047 040 043 043 035
C Eff 056 055 055 055 0.51 050 050 050 043 047 047 0.40
CPU Sec|349.93 380.61 477.16 875.43 3.56 57.89 26.89 57.34 1.23 22.38 52.23 15.82

C.2.8. Figure C.7.

— Distribution = 5 (675 Cases)

180

700000 —
600000 —
500000 —
Schedule 400000 -
Length 500000
200000 — Pt
. !
100000 — L T T T R B
oo =_d_d_d_d_d_J_J4_4_4_J_J
| [I I | I I | | | I I I
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential Tam7 WU S0
Schegule Length J ll ll l
12000 — ,
10000 - _____ 4 ________________________ bbb odd
Average
Schedule 8000 —
Length 000 —
4000 - 1
2000 —
I I | T [| I I I I T |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.30 90.07 87.85 8844 77.33 77.04 76.89 77.48 76.44 61.63 59.41 56.59
S/P 238 242 228 227 129 128 125 121 114 036 033 027
s/C 274 273 270 270 234 226 225 226 212 185 184 162
P/C 1.15 1.13 1.19 119 181 177 180 186 186 5.19 5.56 5.97
P Eff 054 053 053 053 048 046 046 047 040 041 041 0.35
CEfl 054 054 054 054 050 048 048 049 043 045 0.45 0.40
CPU Sec |357.54 388.22 486.70 888.79 3.92 59.25 27.42 59.87 1.24 24.88 54.42 16.73

C.2.7. Figure C.8. — Distribution = 8 (675 Cases)

181

700000 —
600000 —
500000 —
Schedule 400000
Length 450000 — I ,
200000 — P
100000 — S T S S S
od w gy oy a4 44
| i ! | | | l { | | | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential fpss oimms amlS
Schegule Length | I
12000 —) [H |
10000 | _ ____ &4 ________________________ R4)
Average
Schedule 3000
Length 6000 —
4000 — 1 1
2000 —
I i | | | | | [| | | |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%PSS 87.85 8844 8504 8459 7585 76.59 76.30 76.30 75.41 60.15 60.44 53.33
S/p 2.35 2.32 2.11 213 123 124 121 117 110 033 031 0.23
S/C 2.69 2.68 2.54 254 226 222 220 220 207 184 1.85 1.57
P/C 1.15 1.15 1.21 119 184 179 182 188 188 564 6.02 6.85
P Eff 052 052 051 051 047 045 045 045 039 041 041 031
CEff 0.53 0.563 0.52 052 049 0.48 047 047 041 045 045 0.36
CPU Sec [363.99 395.58 507.85 914.43 3.93 60.57 27.83 60.13 1.24 24.10 55.65 15.63

C.2.8. Figure C.9. — Distribution = 7 (875 Cases)

182

700000 —

600000 ~

500000
Schedule 400000 4
Length 300000 —
200000 —

100000 —

0 —

N

i
I P P
T T T 1
2 3 4 5 6

Scheduler

12000 —

10000 —
Average
Schedule 5000 —

Length 6000 -
4000 —
2000 —

ge Sequential

ule Length

| |]] 1
3 4 5 6 7

Scheduler

1

Scheduler
4 5 6 7

9 10 11 12

S/P 2.39
s/C 2.72
P/C 1.14
P Eff 0.53
C Ef 0.54

%P<S | 88.59 90.81

CPU Sec [362.10 393.50 503.09

85.93 76.30 77.48 76.89
216 125 127 1.24
261 231 225 224
121 184 177 1.80
0.52 048 046 0.46
0.53 0.50 0.48 0.48
909.83 3.96 60.19 27.71

76.00 62.81 60.59 55.11
1.13 033 034 025
2.10 188 1388 1.61
187 567 548 6.32
040 042 041 033
042 046 046 0.38
1.24 24.16 55.02 16.41

C.2.9. Figure C.10. — Distribution = 8 (875 Cases)

183

700000 —
600000
500000 — :
Schedule 400000 . :
Length 300000 — :
200000 — vy
. . ! ! :
100000 - e T T N
o A
I I | I I L I I | T [I
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential Sep Hems 41EES
Schesule Length l l l l []
12000 A
10000 - _____ é./__ ________________________ U .
Average
Schedule 3000
Length 6000 —
4000 — 1 1 1 |
2000 —
I | I | I | T I I] | I
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.59 89.19 86.67 87.26 77.19 76.44 76.15 76.44 76.15 60.00 60.30 55.85
S/P 242 237 212 210 129 125 123 116 114 029 031 0.23
S/C 271 271 263 263 233 224 223 220 211 184 183 1561
P/C 1.12 114 124 125 181 179 182 190 185 633 598 6.88
P Eff 053 053 052 052 048 045 045 045 040 0.41 041 034
CEfl 054 053 053 053 050 047 047 047 042 045 045 0.39
CPU Sec [368.47 400.46 513.46 924.85 4.19 61.12 28.38 62.60 1.26 28.19 58.25 16.89

C.3. Comparison By Parallelism

C.3.1. Figure C.11. — 1.5 < Parallelism < 3 (135 Cases)

184

180000 —
160000 —
140000 —
120000 —
Schedule 100000 —
Length 80000 —
60000 — C
40000 l ‘ . ;) . .
20000_ - : 4 i H \ { : i 3 . H
S - Y I I I I B B B I
I T 1 I T T | I l [| I
Se 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
14000 - Average Sequential
Schedule Length
12000 -
10000
Average
Schedule 8000 +-----F-ceoeooo - ol i ke o e il i
Length 6000 — — (]
4000 —
2000 —
T | T | [| I | T | | |
2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%PSS 100.00 100.00 100.00 100.00 77.78 66.67 66.67 66.67 61.48 73.33 77.78 73.33
S/P 1.87 1.89 1.91 191 144 076 076 0.77 061 137 143 124
S/C 1.87 1.89 1.91 191 163 158 158 158 145 157 1.64 1.53
P/C 1.00 1.00 1.00 100 113 209 209 207 239 115 1.14 123
P Eff 034 034 0.34 034 031 027 027 027 021 029 0.30 0.28
CEff 0.34 0.34 0.34 034 031 030 030 030 025 030 0.31 0.29
CPU Sec|171.53 183.66 198.23 388.22 1.54 30.87 1644 2544 0.79 5.85 19.89 5.49

C.3.2. Figure C.12. — 3 < Parallelism < 6 (1080 Cases)

185

180000 -
160000 ,
140000 o ,
120000 — : ' ! : .
Schedule 100000 — . , , i
Length g4000 _ : : : : . ' i
60000 . R T B
40000 — - e
wood - | op b
o = 4 4 4 4 4 4 4 4 4 4 4 4
[I I | I ! I | T | I | I
Seq 1 2 3 4 5 6 7 8 g 10 11 12
Scheduler
14000 — Average Sequential
Schedule Length
12000 —
10000
Average
Schedule 8000 4 — - - - € e e e e - —~T-F-44--}F4-4d-}F-t4--Ft-4-}-- 11
Length 6000
4000 — -1
2000 -
I I T I | T | [! | I I
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.52 9546 8843 88.52 69.26 66.02 65.19 65.00 63.15 58.70 60.28 58.06
S/P 1.82 193 178 178 096 0.74 0.73 0.73 064 076 0.77 059
5/C 1.94 1.96 1.96 196 168 156 156 156 146 155 1.58 1.44
P/C 107 102 110 110 176 212 213 213 228 204 206 243
P Eff 033 034 033 033 029 025 025 025 021 026 027 023
CEfl 034 034 034 034 031 028 028 028 025 029 030 0.27
CPU Sec [203.84 217.03 234.00 463.48 1.72 34.53 17.23 2898 0.87 7.94 2487 6.96

C.3.3. Figure C.13. — 8 < Parallelism < 12 (1215 Cases)

186

600000 —
500000 —
400000 —
Schedule
Length 300000 — :
200000 - : .
: ! I
100000 — S
! 1] ! ! 1 ! | ' |
0 —F=1= II_J—";_J_J_JI—J_J_J
| | | | | i
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential e s Aol
Scheﬁule Length I | | | l |
12000 — 1 17 1
10000 —
Average
Schedule 8000 4 -----F-cocw--- § g I A 0 PRI W) AP B g G
Length 6000 —
4000 — y
2000 —
| I] I | I [T 1 [
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.40 89.88 87.65 87.41 72.76 74.07 74.07 74.07 72.76 59.01 59.18 55.72
S/P 2.21 2.21 209 208 094 1.13 1.11 109 093 040 042 0.32
S/C 2.49 2.46 2.49 248 203 197 196 197 1.78 173 176 155
P/C 113 1.12 119 120 217 174 177 180 191 430 424 484
P Eff 046 046 046 046 040 038 038 038 031 035 036 028
C Eff 0.47 0.46 0.47 047 042 040 040 040 033 039 0.40 0.33
CPU Sec |250.10 269.72 297.69 567.71 1.98 39.91 1943 3646 095 11.72 31.71 9.55

C.3.4. Figure C.14. — 12 < Parallelism < 24 (1215 Cases)

187

600000

500000 —

400000 — : '
Schedule : :
Length 300000 — : :

200000 — P

' |

100000 | A T I

] . ‘ ' i : !
od = J4__J4__J_J4_J i _J _J
T 1 I I T [I I | I T
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential X;2 FMLe 2RI
Schedule Length r J 1 l J 1
12000 — T T ;
10000 —
Average
Schedule 8000 F-=---F--w-womooooommo oo oo oo ol o8 ks i nhd e
Length gpoo
4000 —
1 —1
2000 —
{ | I I [I | [I | |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.80 8897 88.89 89.38 76.46 7852 78.11 79.26 77.45 61.48 62.22 55.64
S/P 252 248 241 243 123 148 144 137 122 030 031 025
s/C 297 293 289 289 232 233 232 233 211 189 192 165
P/C 1.18 118 120 119 1.89 158 162 1.71 172 622 6.21 6.68
P Eff 057 056 056 057 050 049 049 050 040 044 044 036
CEff 058 057 057 057 052 051 051 052 042 048 048 041
CPU Sec [280.26 303.77 338.98 639.18 2.20 43.70 20.86 41.35 1.00 15.25 37.43 11.85

188

C.3.5. Figure C.15. — 24 < Parallelism < 48 (972 Cases)

600000 —
500000 — ‘
; i
400000 — ; .
Schedule
Length 300000 —
200000 — S
100000 — o] _J !
o g
| | 1 |] | 1 i] ! | I
Seq 1 2 3 4 5 6 7 8 9 10 11
Scheduler
Average Sequential) Sm20 0B 4e!
Schedule Length 1l
12000 — T : 1
10000 - _____ / ________________________ B I N
Average
Schedule 8000 =
Length 000 —
4000
2000 —
I I T | I I i [I I | !
1 2 3 4 5 6 7 8 g 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 89.51 89.09 8940 90.33 80.97 83.85 83.85 84.98 80.56 63.99 61.73 56.58
S/P 276 270 261 256 155 170 165 1.52 145 0.28 0.27 023
S/C 321 320 304 304 258 265 264 264 240 201 198 1.72
P/C 1.16 1.18 1.16 119 166 156 160 174 165 7.11 736 7.38
P Eff 065 064 064 064 058 057 057 058 048 0.50 050 041
CEfl 065 065 065 065 060 059 059 060 050 054 054 0.46
CPU Sec|363.91 395.41 475.82 870.06 3.08 57.17 26.86 55.60 1.25 22.59 51.88 16.62

C.3.8. Figure C.16. — 48 < Parallelism < 968 (729 Cases)

189

600000 —
500000 — . !
400000 — b
Schedule) .
Length 300000 — . :
200000 — oo
A
100000 T R
. . . 1 '
N T T T T T I T N T I _ _J
| i |] T | |] | LR |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
. Scheduler
Average Sequential 30015 46RO 51400.0
Schedule Length l l l l I l
14000 — /] (]
12000 —} - - - — & e SN B R O Ay
Average 10000
Schedule
Length 7
6000 —
4000 - 1
2000 —
I T I I | [1 I | T I I
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 89.16 88.34 88.89 89.30 82.72 84.22 84.09 85.05 83.54 65.02 61.18 56.79
sS/pP 282 270 264 263 168 180 175 160 159 035 029 023
S/C 322 322 3.09 309 275 285 284 282 265 206 196 173
P/C 1.14 119 117 1.17 164 159 162 177 166 586 665 7.44
P Eff 068 068 0.68 068 062 063 062 063 055 054 053 0.44
CEfl 069 069 069 069 064 064 064 065 057 0.58 0.57 0.49
CPU Sec |473.72 514.76 680.99 1205.80 4.84 76.72 35.26 78.74 1.58 34.76 73.10 23.24

190

C.3.7. Figure C.17. — 98 < Parallelism < 192 (488 Cases)

700000 —
600000 —
500000 — j
Schedule : :
400000 —
Length '
300000 —) :
200000 - : : : :
100000 — o _‘ _‘ i
I |] | T |] [I] [| |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 4010 45725 004005
20000 — Schedule Length l 1 [l l l
.]]
16000 _____ / ________________________ SRR
Average
Schedule 12000 —
Length
8000 —
—
4000 —
[1 | T | | T 1 I | |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<LS 88.68 88.48 8868 88.68 84.16 84.57 83.95 85.39 84.57 63.79 59.88 54.73
s/pP 270 262 2.54 253 166 179 175 165 163 036 034 0.23
S/C 3.10 3.10 3.11 312 281 289 288 290 274 203 197 173
P/C 1.14 1.18 1.23 123 170 161 165 175 189 562 5.72 748
P Eff 0.70 0.69 0.70 0.70 065 065 065 066 060 055 054 046
CEff 070 070 071 0.71 066 067 067 068 061 059 059 051
CPU Sec1637.22 697.28 985.83 1750.92 8.92 111.04 48.60 119.16 2.06 55.88 111.80 34.02

191

C.3.8. Figure C.18. — 192 < Parallelism < 384 (243 Cases)

700000 —
600000
-
500000 —
Schedule .
400000 : :
Length T . :
200000 ﬂ ' ‘
100000 — A T
ob— ¢4 d_d_d_d_d_4_J _j 1
[T [] | T 1 T | T
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential TR 714000 OT4BS
95000 — Schedule Length [l r l l 1
T z T
20000_----4 -------------------------- R X I S iy
Average
Schedule 15000 —
Length
10000 —
1
5000 -
[[T 1 I I I [I I I
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 8848 8765 87.24 88.0783.54 83.9584.36 85.60 83.95 59.67 56.79 53.91
S/P 2.55 2.42 2.43 242 154 166 161 167 154 029 029 021
S/C 2.86 2.86 3.09 310 272 277 276 291 268 192 186 168
P/C 1.12 1.18 1.27 128 1.76 167 171 174 1.74 666 6.50 7.97
P Eff 0.68 0.68 0.71 071 064 065 065 067 061 054 053 0.44
CEf 0.69 0.69 0.72 0.72 066 067 067 0.69 063 058 058 0.50
CPU Sec|909.51 1022.49 1493.03 2770.58 18.79 183.65 73.04 195.49 2.82 105.92 200.41 53.51

192

C.4. Comparison By Program Size

C.4.1. Figure C.19. — Program size = 128 (729 Cases)

25000 — :)
20000 - 1
Schedule 15000 : . :
Length :
10000 — : P
b
5000 — J | | J
od— 4 g Jd 4111111
I] |] T 1 I I I | T]
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 2028 2730 3337
Schedule Length
1500 — / W
Average 1250 — === === - - === R WO R DU S PN N S
Schedule 1000
Length 750_
500 — -
250 —
| [| [| [| T I | |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler

1 2 3 4 5 6 7 8 9 10 11 12
%P<S |87.65 91.36 88.07 88.20 73.25 72.70 72.70 73.11 70.92 60.77 61.04 57.48

S/P 207 209 202 202 095 101 099 102 088 044 046 0.38
S/C 224 225 228 228 194 188 188 191 176 172 173 158
P/C 108 107 113 113 205 187 190 187 200 390 3.75 4.3
P Eff 044 044 044 044 039 037 037 038 032 035 035 0.30
CEfl 044 044 045 045 041 039 039 040 034 038 039 035

CPU Sec |36.53 36.64 3891 4181 026 320 297 464 011 186 201 1.58

C.4.2. Figure C.20. — Program size = 256 (972 Cases)

193

70000 —
60000 — : . :
50000 S
Schedule 40000 — : i '
Length 40000 | Lo
P
20000 —) , : : ! 5
10000 — A
o i ' R B
od— 4 4441 444444 4
| T |] i | |] 1 | | | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential o771 88628 L0
Schedule Length l l l l l l
3000 / [
= el - e, — - - - . ——- - - .- - — - - - b - -t - -
Average 2500 1
Schedule 2000 -
Length 1500 —
1000 — 2
500 —
{ T 1 | o | | i | 1
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5] 7 8 9 10 11 12
%PSS 88.80 90.64 88.58 88.58 74.38 74.69 74.38 75.82 72.84 60.49 60.80 56.48
S/P 222 221 217 214 106 1.12 110 1.11 092 038 044 0.32
S/C 242 241 244 245 206 202 201 205 182 176 177 1.60
pP/C 109 109 113 114 194 180 184 184 199 466 404 495
P Eff 049 049 049 049 044 042 042 043 033 039 039 033
CEff 050 049 050 050 046 044 044 045 036 043 042 0.38
CPU Sec |79.69 80.76 86.89 9953 062 728 6.31 1097 027 438 509 3.52

C.4.3. Figure C.21. — Program size = 512 (1215 Cases)

194

150000 -
125000 — . . :
100000 — Coon
Schedule : ; \
Length 75000 — : §
50000 b
: . , ; i ; : i
25000 R R
A T T R T R T B B S
od— 4 4 44 4 4 4 4 4 Jd d
I I I | [I I | I I [| I
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 1805 14013 17503
Schedule Length
6000 / -
5000 - - - -~ #---mmmemmm e oo 4--F1-1-F-1-
Average 00
Schedule 4000
Length 3000 4
2000 — 1
1000 —
I I I [I [I I | I I [
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 88.97 89.96 88.64 88.97 76.63 77.20 76.87 77.70 74.73 60.82 60.16 56.79
S/P 9233 230 218 219 1.17 120 118 1.17 101 037 038 029
s/C 257 256 258 258 217 213 213 216 195 180 182 1.62
P/C 110 1.11 1.19 1.18 186 177 180 184 192 487 477 557
P Eff 054 053 054 054 048 046 046 047 038 042 042 035
CEfl 054 054 054 054 050 048 048 049 040 046 046 040
CPU Sec|170.33 173.16 197.48 255.76 1.43 17.77 13.16 23.79 059 9.91 13.82 7.58

195

C.4.4. Figure C.22. — Program size = 1024 (1458 Cases)

350000 — .

300000 — . . :

250000 -
Schedule 200000 —
Length 150000 —
100000 —

50000 — o]
od— 44 _d_d_4_4_d_|
I

8

I 1 [I { [I |
Seq 1 2 3 4 5 6 7

Scheduler

Average Sequential Z004 W0 34372

Schedule Length [1], l[—l

12000 — / (- :
10000 -~ = === - - - s s s T FT=1r-711
Average

Schedule 8000 —

Length 000 —
4000 — — {1
2000 —
T T 1 T | I | [] [T
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 8944 89.71 8875 89.09 78.05 79.01 78.46 78.94 77.09 62.41 61.39 56.72
S/P 2.38 2.36 2.27 226 1.25 128 126 122 1.09 037 0356 028
s/C 2.68 2.67 2.67 267 226 224 223 225 206 183 184 1.63
P/C 1.13 1.13 1.18 118 181 175 178 184 189 495 5.13 5.81
PEff 057 056 056 056 051 050 049 050 042 044 0.44 036
CEff 0.57 0.57 0.57 0.57 053 052 051 052 044 048 048 0.40
CPU Sec|362.19 382.43 458.79 714.34 3.45 47.95 27.75 55.76 1.27 22.77 42.07 16.28

196

C.4.5. Figure C.23. — Program size = 2048 (1701 Cases)

700000 —
600000 —
500000 — o
Schedule 400000 — A
Length 300000 — . ; '
200000 — P
. ! i |
100000 — R I T A
] 1 i 4
od— 4 _d_d_4 4 _4_3_d _4 1 _1 _
I | | I | | | |) I T 1
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential S747.5 610043 784E50
Schedule Length I l I l l I
2%00 —_—_——— Z— ———————————————————————— - .- - -l - -
Average
Schedule 15000 —
Length
10000 —
1
5000 —
I T | I [| [T I T]
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 89.54 90.77 89.42 89.89 78.89 79.66 79.54 79.89 78.78 62.79 61.38 56.14
S/P 247 244 2.36 234 133 136 133 127 118 036 034 0.26
s/C 280 2.80 2.76 276 236 234 234 233 217 189 186 1.63
P/C 1.14 1.14 1.17 1.18 1.77 173 176 184 184 528 555 6.25
P Eff 060 0.59 0.59 059 054 053 053 0.53 046 046 046 037
CEff 0.60 0.60 0.60 060 055 055 054 055 048 050 0.50 041
CPU Sec|751.52 840.53 1077.15 2227.39 8.82 148.28 57.75 130.44 2.68 53.78 138.59 34.89

197

C.5. Comparison By Communication Latency

C.5.1. Figure C.24. — Latency = 0 (875 Cases)

Schedule
Length

Average

Schedule
Length

8000 4 —auo | :
—wae L f P *
6000 —| P . , ’
i H i i i i § i
- { i i i i i i i i i i
4000 — ; : : : : : : : ; ' : i
SORH E HV E RV B R N BV I N Y O
I R Y I I R B R B I 4
0 i 14 1 14 4 1 4 i 1
| I I I | I T I I T [
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Averase Sequential
12000 — Schedule Length
P
8000 —
6000 —
4000 —
2000 —

10 o e
2 3 4 5 6 7 8 9 10 11 12
Scheduler

1

Scheduler
1 2 3 4 5 6 7 8 9 10 11 12

S/P
s/C
P/C
P Eff
C Eff

%P<S 1100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

541 540 540 540 538 540 540 539 451 534 536 4.90
541 540 540 540 538 540 540 539 451 534 536 4.90
100 100 100 100 100 100 100 100 100 100 100 1.00
077 077 077 077 097 077 077 077 064 077 077 0.95
077 077 077 0377 077 077 077 077 064 077 077 075

CPU Sec|236.01 269.11 289.44 693.65 3.80 48.06 17.19 33.51 1.23 1946 49.89 19.63

C.5.2. Figure C.25. — Latency = 0.125 (875 Cases)

198

10000 — — 20480
— 10000 ! .
8000 S .
; ; : ; i f ! ! i : ; i
68000 : ; ; H ! ' !) . i : 1
— 1 1 i
Schedule e
g 4000 - ; | . . ; 1 i . : i
SR R 0 A U Y O O O
P T Y |1
0 i 44+ 4 4 4 44 1 1 4
| i] | | | 1 | | 1 | i i
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential
Schedule Length
12000
10000 - _ ____ A_/_._ ___________________________________
Average
Schedule 8000 —
Length 000
.
4000 —
2000 —
1 | | | ! | | | { i i
1 2 3 4 5 6 7 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S [100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
S/P 539 536 5.39 539 534 524 524 529 441 528 526 4.66
s/C 539 5.36 539 539 534 524 524 529 441 528 526 4.66
P/C 100 100 1.00 100 100 100 100 100 100 100 100 1.00
P Eff 077 076 0.77 077 076 075 075 0.77 063 076 0.76 0.72
CEff 0.77 0.76 0.77 077 076 095 075 077 063 076 076 0.72
CPU Sec|367.55 398.91 783.10 1147.67 3.81 58.07 26.89 9366 1.23 27.48 57.91 24.19

199

C.5.3. Figure C.26. — Latency = 0.25 (875 Cases)

— 0480
10000 - .
Schedule A
v 1 3 1 i N : H 2 I 1 H
Length so00{ - 0 4 1 b b0 b b
[N T T T T R A
T
S N N L T R R R BN Y RN B
o P D A R R D R A
I I I ! | I I | I T [T I
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential
Schedule Length
12000 —
10000 - _____ 4/_ _______________________________ —
Average
Schedule 8000
Length 6000
4000 —
2000—-1
I I I I T T I] | T T
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler

1 2 3 4 5 6 7 8 9 10 11 12
%P<S [100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

S/P 533 5829 532 532 525 504 504 508 428 515 515 428
S/C 533 529 532 532 525 504 504 508 428 515 515 4.28
P/C 100 100 100 100 100 100 100 100 100 100 100 1.00
P Eff 076 076 076 076 075 073 073 074 061 075 074 0.68

CEf 076 076 076 076 075 073 073 074 061 075 074 068
CPU Sec|377.65 408.24 688.41 1065.19 3.80 58.86 27.52 83.21 1.23 27.95 58.45 23.56

C.5.4. Figure C.27. — Latency = 0.5 (875 Cases)

200

15000 -~ — 20480
12500 —
10000 < - ! i
H 1 1 T i
Schedule : ! : ! : . i
Length °OT) bbb
5000 — - i ! { ! ! i 1 l ’i i] {'
.) . . . i {
sl L]
- 4 4
o] S A N N BN SRS B 11 i
| I I i | [I ! | I | I |
Seq 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential
Schedule Length
12000
10000 -} _ __ __ e(_ ___________________________________
Average
Schedule 5000
Length 000 —
4000 —
2000 —
[T | { ! T] [| T |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S |100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
S/P 5.15 5.11 515 5.15 501 463 462 464 400 482 489 320
S/C 515 5.11 5.15 515 501 463 462 464 400 482 489 3.20
P/C 100 100 100 100 100 100 100 100 100 100 100 100
P Eff 074 0.74 074 074 073 069 069 069 059 071 0.72 0.54
CEfl 074 074 074 074 073 069 069 069 059 071 0.72 054
CPU Sec|377.22 408.83 513.20 908.85 3.78 58.97 27.56 61.73 1.23 27.80 58.33 20.50

C.5.5. Figure C.28. — Latency = 1 (875 Cases)

201

50000 —
40000 —
Schedule 3 7
Length 90000 | — . :
C
10000 - S
A O I
0 — = 4 4 F ¥ 4 4 4 4 j 1 F | H
T [I I | | I | [] | | I
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential
Schedule Length
12000 —
10000 - ____. t_/__ ___________________________________
Average
Schedule 5000
Length 6000
4000 -
2000 —
[I | [| I [| I | [T
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S [100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.52 99.41 95.56
S/P 463 458 448 448 404 368 366 355 3.25 3.00 3.32 162
S/C 463 458 448 448 404 368 366 355 3.25 3.18 3.37 173
P/C 100 100 100 100 100 100 100 100 100 106 1.01 1.07
P Eff 068 067 066 0.66 061 057 057 056 050 052 054 0.26
CEfl 068 067 066 066 061 057 057 056 050 052 054 0.26
CPU Sec|373.21 405.98 404.12 807.54 3.76 59.53 27.91 50.06 1.23 27.87 58.15 16.88

C.5.8. Figure C.29. — Latency = 2 (875 Cases)

202

100000 —
90000 —
80000 — _
70000 Lo
Schedule 60000 — ;
Length 50000 — . : !
40000 — i ‘ :
30000 — : oo
20000 4 — T
w00 - 4 & i i 1 b b i oi b
o = 4 4 4 4 4 4 4 4 4 1 ¢
I I I [| | I I I | | I I
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential
Schedule Length
15000 -
Average 12500 —
Schedule 10000 . - - - - € _ e —] —$-4-
Length 7500
5000
2500
T I I I I T I [I I | I
1 2 3 4 5 6 7 8 g 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S |100.00 100.00 100.00 100.00 98.67 98.96 97.63 97.33 93.33 43.70 38.96 6.96
sS/P 349 342 328 328 240 225 222 214 197 093 085 061
S/C 349 342 328 328 240 225 222 214 199 128 122 101
P/C 100 100 100 100 100 100 100 100 101 137 143 165
P Eff 053 052 051 051 038 037 036 037 031 016 016 0.09
CEfl 053 052 051 051 038 037 037 037 031 019 019 0.15
CPU Sec |364.08 397.70 379.77 786.65 3.72 59.83 28.35 47.28 1.23 25.88 54.14 12.14

C.5.7. Figure C.30. — Latency = 4 (675 Cases)

203

200000 —

150000 — :
Schedule ' : :
Length 100000 — : ; ;

A

50000 — |] f

BT EER
0od = _d _j .} 4 4 4 4 ! j i
T l | | l I | i | | { | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 304064 357415 302656
Schedule Length [l l l [l
15000 — ' [T]
Average 12500
Schedule 10000 —+ - - _ _ _E e e e] i
Length .0 | 1 _l _—‘
5000 —
2500 —
| | 1 | | i | 1 | | |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 99.41 98.52 94.67 94.96 51.56 53.48 53.33 54.81 50.96 548 1.33 0.00
S/P 213 2.1 2.01 201 125 123 121 116 106 032 0.29 025
S/C 2.13 211 204 203 148 149 148 151 140 102 1.00 1.00
P/C 100 100 1.01 101 118 121 123 130 132 3.18 3.47 4.02
P Eff 0.33 0.32 034 034 020 020 020 021 0.17 006 005 0.04
CEfl 033 032 034 034 022 022 022 024 020 015 0.15 0.15
CPU Sec |{357.92 388.44 380.50 789.18 3.67 60.06 28.65 47.46 1.23 19.92 4840 9.66

C.5.8. Figure C.31. — Latency = 8 (875 Cases)

204

400000 —
300000 — .
Schedule : !
H ! i
Length 200000 | i 1 |
oy
100000 — j j }
. i | | J
od = 4 4 4 4 i 4 4 J i 1
| | |] 1 | | | | | | | i
Seq 1 2 3 4 5 6 7 8 9 10 11 12
. Scheduler
Average Sequential 170820 026500 O7TORB2 831977
Schedule Length l l l l l l J]
15000 —] } |
Average 12500 —
Schedule 100004 _ _ ___¥_ . _______1l._ L4 dobl-d-b -1 1
Length 7500 — l
5000 —
2500 —
| 1 i | | | | i | !
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 7 8 9 10 11 12
%PSS 65.63 68.15 67.70 69.33 29.78 32.59 31.70 34.07 28.74 1.78 2.22 1.33
S/P 1.26 1.24 1.17 119 061 064 063 0.61 0.55 0.16 0.15 0.12
S/C 1.43 1.43 1.47 147 116 120 119 1.21 1.14 100 100 1.00
P/C 1.14 1.16 1.25 124 189 18 190 199 207 642 6.88 8.52
P Efl 0.18 0.18 0.19 0.19 0.10 0.10 0.10 0.11 009 0.03 0.03 0.02
CEfl 0.20 0.20 0.22 022 0.16 0.17 0.17 0.17 0.16 0.15 0.15 0.15
CPU Sec [351.85 379.80 389.73 799.60 3.60 60.02 28.67 47.84 123 17.75 45.42 8.77

C.5.9. Figure C.32. — Latency = 18 (875 Cases)

205

800000 —

700000 —

600000 — i
Schedule ¢ f :
Length i :

“E 400000 — i |

300000 — .

200000 I

100000 — ey } | Jl

- —d _d ..3
S L S E R e S B B B R B
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 1274113 1282067 1602302
Schedule Length l]l ll 1
35000 — T 1T 171
30000
Average
25000 —
Schedule
Length 20000 —
15000 -
10000 -1 - P b e b ol L
5000 —
T I T I I I T I I | [|
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 36.59 46.96 3689 37.63 11.56 11.41 11.26 13.63 800 5.78 7.11 5.78
S/P 082 082 0.78 0.76 031 033 032 031 028 0.08 008 0.06
S/C 1.12 1.13 1.13 1.13 104 105 105 108 1.04 101 101 1.01
P/C 137 138 145 147 335 320 3.28 348 3.67 13.11 13.23 17.41
P Eff 0.12 012 0.12 012 005 005 0.05 005 004 003 003 0.02
CEff 0.16 0.16 0.16 016 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
CPU Sec|331.47 354.74 399.73 806.52 3.50 59.78 28.69 48.01 1.23 16.75 43.83 8.19

206

C.8. Comparison By Processor Count

C.8.1. Figure C.33. — Processor count = 4 (2025 Cases)

700000 —
600000 —
500000 —

Schedule 400000 —

Length 300000 —
200000 —
100000 — ' |

0 m—d_Jd_J_| _ _J _J _
T T T T T 1

| |
Seq 1 2 3 4 5 6 7 8
Scheduler

ool | W

B

Schedule Length

12000 — 3 T
10000 - _ _ ___ 1_/_- ______ S) U O O ISR NP N N O O N
Average

14000 — Average Sequential 208277
[1]

Schedule 8000 —
Length 6000 —

4000 —
2000 -
i 1 1 1 | | i | | I 1 {
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler

1 2 3 4 5 6 7 8 9 10 11 12
%P<S |79.90 81.09 7862 79.36 67.31 66.37 6588 66.27 64.54 58.96 58.77 55.70

S/pP 159 156 145 143 087 081 079 073 070 033 033 026
8/C 195 195 189 190 176 173 172 170 164 163 163 1.54
P/C 1.23 125 131 132 202 213 219 233 233 490 491 591

PEff 063 063 061 061 056 054 054 053 048 050 0.50 0.46
CEff 065 064 063 063 060 059 059 058 053 057 057 0.54
CPU Sec [22.33 54.02 26.53 401.09 3.09 37.83 6.58 12.64 1.23 10.21 40.00 6.32

C.8.2. Figure C.34. — Processor count = 8 (2025 Cases)

207

700000
600000 — :
500000 — , :
Schedule 400000 : ! *
Length 500000 — o
200000 o
7 A
100000 — N T R R
04 = i i i i i i i i 4 1 _1i
| | | 1 | | | Ll i | | | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential 21837 274537 32712
Schedule Length
19000 LD
- / 1]
10000 - - @ o e o o e e e e m e e e] Y I T U N
Average
Schedule 8000 —
Length 6000 —
4000 —
2000 —
| | |] | | i 1] | T |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%PSS 90.47 91.75 90.37 90.67 80.00 79.75 79.46 80.44 77.78 62.37 61.83 56.64
S/p 275 275 269 270 151 162 160 162 137 037 036 0.28
S/C 2.90 2.89 2.90 290 243 238 237 238 2.17 192 192 1.67
P/C 1.05 1.05 1.08 107 161 147 148 147 159 515 5.39 6.02
P Efl 0.55 055 055 055 050 048 048 049 041 043 043 0.35
CEff 0.56 0.55 0.56 056 051 050 049 050 042 046 047 0.38
CPU Sec [110.17 142.68 146.93 520.76 3.55 46.06 14.85 3062 1.23 16.09 45.74 11.51

C.8.3. Figure C.35. — Processor count = 18 (2025 Cases)

208

700000 —
600000 —
500000 — L
Schedule 400000 — I | l
; ; .
Length 250000 — N
. i i
200000 — § i ;
i i i
100000 — ; A
o . i
| 1 | | | | |] 1 | ! | |
Seq 1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Average Sequential BITA0 A7TH0 349207
Schedule Length
12000 _ : LD
10000 - _ _ ___ e{_ ________________________ L4 bt
Average
Schedule 3000 —
Length gpoo
4000 — J ‘ __I
2000 —
{ | | 1 | i | 1 1 | 1 |
1 2 3 4 5 6 7 8 9 10 11 12
Scheduler
Scheduler
1 2 3 4 5 6 7 8 9 10 11 12
%P<S 9684 9837 97.43 97.28 83.21 86.02 85.98 86.57 84.69 63.75 62.42 57.53
S/P 398 3.98 4.13 412 182 219 220 229 1.88 039 037 028
S/C 405 4.01 4.17 416 304 3.10 310 324 275 2.06 2.04 168
P/C 1.02 1.01 1.01 1.01 167 1.41 141 142 146 5.31 558 6.01
P Efl 044 0.44 0.45 045 039 039 039 040 031 033 033 0.24
CEfl 0.44 0.44 0.45 045 040 039 039 041 031 034 034 0.26
CPU Sec|913.15 940.55 1235.87 1679.76 4.50 90.50 59.04 127.67 1.23 43.99 72.43 3001

209

APPENDIX D

Relative Efficiencies of Schedulers

This appendix gives plots of the relative efficiencies of different schedules. The relative

efficiency of a schedule is defined as —; T, is the length of a sequential schedule

min(p,n)x T,
for the program, and T, is the length of the parallel schedule. The values p and n are the
average parallelism in the program and the number of processors in the machine,

respectively.

Relative efficiency has the advantage over in that the relative efficiency does

‘p
not penalize a schedule for having more processors than the problem can actually keep busy.

For example, if a program has an average parallelism of 2, then no scheduler will ever have

a parallel speedup that exceeds 2, no matter how many processors are available.

Conversely, the fact that a particular program has an average parallelism of 2 does
not imply that there exists a two-processor schedule which gives that parallel parallel
speedup. There could easily be precedence constraints which make all the parallelism
available at the same instant in time. This would mean that half of the graph has no
parallelism, and half has lots of parallelism. In order to get the speedup of 2, many

processors would have to be available for the short time when the parallelism is available.

Each page in this appendix contains nine plots, representing the relative efficiencies of
programs as the communication latency varies from 0 to 16. The x-axis represents the
average parallelism relative to the number of processors in the system. The y-axis gives the

relative efficiency.

210

Latency =0 Latency = Y&

Latency = %

Latency = %

[L
L
s L ¢
L B
I
L
y o401
i ¢ i

'

Latency = 8

“
-

a

CaE, Vol dugt s
I " IR SR B
kA Ve
At s e

e T

Y v A

prrrreTe

vl

i

163264%s % % 1 2 4 8 163264s
Parallelism / Processor Count

[o SIR

S ler 1 — & v, —————r
cheduler . vs min(p,n)XTp

1

1711
1 2 4 8163264

%

1.0

094 %
0.8
0.7 4
0.6 -
0.5 -
0.4 -
0.3
0.2 -
0.1
0.0

1.0 —
0.9 -
0.8 —
0.7 -

211

Latency =0

Latency = s

Latency = %

0.6)

0.5 —
0.4 —
0.3 -
0.2
0.1 —
0.0 —

1.0 —
0.9 —
0.8 -
0.7 — s
0.6
0.5 —
0.4 — y
034 ¢
0.2 -
0.1
0.0 —

Latency = %

PN
*

JETR TNy P CHTIN

f

i1 1

Latency = 8

Latency = 16

I T 11

Scheduler 2 — .
n

81632645 % % 1 2 4 8
Parallelism / Processor Count

rrr 7 11717 1711

7,

16 32641/ Y%

[

" min(p,n)XT,

1.0
0.9 —
0.8 —
0.7 —
0.6 -
0.5 —
0.4 -
0.3 —
0.2 —
0.1 —
0.0 —

1.0 —
0.9 -
0.8
0.7 —
0.6
0.5 —
0.4 —
0.3
0.2 4
0.1 —
0.0 —

1.0 -
0.9
0.8
0.7 - .
0.6 - H
0.5 —
0.4 —
0.3
0.2 -
0.1
0.0 —

212

..................................

Latency = %

3o ¥ [S S ¥ L S v | S
\ lé .‘. (3 l } 3 ‘i} t ; } % (‘3 3 }! ' ;
p b t i}
\ ! 1
Latency = 0 Latency = Vs Latency = %
.................. ".‘ ii ’
v} S T I
Py BERE P
L t 4 IRERE R
EERREE

Latency =1

Latency = 4

BTS2 TR

]

R
£ 14

ORI = e W e

s

Scheduler 3 — L oy,
n

717 1717 1717 11

8 16326415 % % 1 2 4 8 163264
Parallelism / Processor Count

T,
T,

min(p,n)X T,

1

ek]

U
h %

I.Oj L

0.8 — L
0.7 -

0.6
0.5

0.4 —
0.3 4
0.2 —
0.1 —
0.0 —

10

0.9 -
0.8 —
07 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —
0.1 -

0.0

1.0 —
0.9 -
0.8 —
0.7
0.6 —
0.5 -
0.4 4

0.3 S 'l
0.2
0.1
0.0 H

213

Latency =0

Latency = Ys

Latency = %

Latency = %

.
: 3
| S
s 4o
S S
jlix;.
£
Fd i vy
'.‘.“j_,.._,:
: Pl

RS T, g e S e o
b

ahaty B .

L O
PRI O
R S

T 1

Scheduler 4 — £ vs.
n

rr7r17 o1 b1 1

163264s % % 1 2 4 8163264 %
Parallelism / Processor Count

T,

min(p,n)X T

4

1

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4
0.3 -
0.2 —
0.1 —
0.0 —

1.0
0.9 —
0.8 —
0.7
0.6 —
0.5 —
0.4 —
0.3 —
0.2 <
0.1 —
0.0 —

1.0

0.9
0.8
0.7 4
0.6 —
0.5
0.4 —
0.3 -
0.2
0.1 —
0.0 —

214

Latency = Y&

Latency = %

R Y
[Y e I

ok non. o,

]
i

T e

Latency = 2

Padg e

wrs, o

..

Latency = 8

t 3 '

F L 51U
o~

uﬂ”

T 171

00 —

Scheduler 5 — L s,
n

163264Ys % % 1 2 4 8

rrrrrvoori1 11

Parallelism / Processor Count

T,

min(p,n)X T,

4

16 32 641/

I

1.0 —
0.9 —
0.8 — :
0.7 <
0.6 —
0.5 —
0.4 —
0.3 -
0.2 -
0.1

e

[t

1
Vo

215

Latency = 0

Latency = s

Latency = %

g Ay e

s

Ana-

-~

I STV
ol

Latency = 4

B

l..':
L IR

ST NON

LA

Latency = 8

~

i

»

Latency = 16

T T 1T 1
8

o —

-
T T 1 171

Scheduler 6 — £ vs.
n

L

T,
min(p,n)X

163264 % % 1 2 4 8 163264's
Parallelism / Processor Count

T

P

= —

1.0
0.9 —
0.8 —
0.7 —
0.6 —
0.5
0.4 -
0.3 =
0.2 —
0.1 -
0.0 —

1.0 -
0.9 - y
08 :
07
0.6
0.5 -

0.4 —

0.3 —

0.2 —

0.1 —

0.0 —

1.0
0.9 —

0.8 H

0.7
0.6 —

0.5 — ?

0.4 —
0.3 —
0.2 —
0.1 -
0.0 —

216

Latency = 0

Latency = s

e s, 4
PO e L
PR R S

il e s
+ nan

ane
)
N

L\ N
¥

Latency = 2

Latency = 4

S L R

Bl ol RN Y

.

PR T IR
s,

Latency = 8

s

¢ b
(20 T T

iy i

~ v o {

Latency = 16

o —

Scheduler 7 — -% vs.

rr1rrr 17 17111

8 163264%s % % 1 2 4 8 163264s
Parallelism / Processor Count

T,

min(p,n)x T

P

T

g_

1.0
0.9 4
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —
0.1 —
0.0 —

1.0 A
0.9 —
0.8 —
0.7 4
0.6 —
0.5 —
0.4 -
0.3 —
0.2 —
0.1 —
0.0 —

1.0 —

0.9
0.8 —
0.7 —
0.6

0.5 P

04 -
0.3 —
0.2
0.1
0.0

217

Latency =0

v S e
-

o

LY SRR N
-t

S~

\'é.é’{

Latency = 2

Latency = 4

[I LI

P R ELR A

Latency = 8

;
a

Prerv T

- .

P S X

ARG D

o 4

3

Latency = 16

T 1

Scheduler 8 — £ vs.

163264Ys % % 1 2 4 8
Parallelism / Processor Count

rr 11717 1771711

T,

min(p,n)X T

n P

16 32 64 /s

I

=

%

1.0 -
0.9 —
0.8 —
07 Y3
0.6 - LI
0.5 —
0.4 —
0.3 —
0.2
0.1 —
0.0 —

1.0 -
0.9 -
0.8 ,
0.7 - H

3

05— 3
0.4 —
0.3 —
0.2 —
0.1 —
0.0 —

1.0 —
0.9 —
0.8 —

N
S
]

218

o6 .+ . h
1

et e, S gkt

EE SR STV

—
Y4
Latency = 2

Latency = 4

P

T

L S TR R

Latency = 8

vara e -
I

. ¥
i !
“‘al!;

Latency = 16

T

Scheduler 9 — £ vs.
n

16326415 % % 1 2 4 8
Parallelism / Processor Count

rFrr1r ot b il

T,

r

16 32 64 1/s

min(p,n)X T

I

= —

1.0
0.9 —
0.8 —
0.7
0.6 —
0.5 —
0.4 —
0.3 —
0.2
0.1 —
0.0 —

1.0 —
0.9 —
0.8 —
0.7
0.6 -
0.5 -
0.4 -
0.3 —
0.2 —
0.1 H
0.0

1.0 -
0.9 —
0.8
0.7 —

0.6 —

219

R e[R See e[e R
45'?5"5“ %%E"l"“ TR
RN P 11y
\ - £y
Latency =0 Latency = s Latency = %
.................. “‘. !'.
'i ! Latency = 1 g 7 Latency = 2
14 ¢ BN
i “
- .i.i.g'e—,-;'
LI S Y . . : - ¢
Latency = % ‘g‘{g:lj ;
RO H :
Latency = 4 Latency = 8 Latency = 16
‘:ﬁ = R 4 . 4 H 3 ’ ;) . . N .E ‘: :
R R RN B R R T

1

Scheduler 10 — £ vs.

r7 71 117 171 11

163264 % % 1 2 4 8 163264s

T T 1T 17 1T 1T 17T 1711
/8% % 1 2 4 B 163264

Parallelism / Processor Count

T,

n min(p,n)X

T

P

220

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 -
0.3 —
0.2
0.1 —
0.0 —

1.0
0.9 —
0.8 —
0.7 A
0.6 —
0.5 —
0.4 —
0.3 —
0.2 4
0.1
0.0

1.0 —
0.9 -
0.8
0.7 4
0.6
0.5 -
0.4
0.3 —
0.2 4
0.1 —

0.0 —

SRR TR N A
" H (O IR B
AN Py A RS
! 2 S I
Latency = 0 Latency = /s Latency = %
.............. ‘i". ;!
‘ ! Latency =1 § (Latency = 2
!
1 TSRS :
s S
o SERERRE
2ok § i
Latency = % 3 }' 1 % 5 Z ; il
’ t I A
Latency = 4 Latency = 8 Latency = 16
‘§§iii§5“izitlils “{i‘i!l\

I

1/g

T

T 17 1T 1T
% % 1 2 4 8

Scheduler 11 — £ vs.

FrT 1T 17 1v1m 11 bl

1632645 % % 1 2 4 8 163264
Parallelism / Processor Count

T,

min(p,n)Xx T

n P

N U A O
% % 1 2 4 8163264

221

08— = 4 Z- 1 . : : $ H
08— &+ ¥ . , N
0.7 - ;:;%’ ;b
o6 i .} i
054 . I
0.4 — p . i
0.3 - :
0.2 — % . A Y o,
0.1 -{Latency =0 Latency = Y5 Latency = %
0.0 —
1o
0.9 - Latency = % ;
s *
0.7 — :
0.6 -
0.5 -
0.4 —
0.3 -
0.2 — :
0.1 - o :
0.0 —
1o A T T
0.9 —
0.8 - Latency = 4 Latency = 8 Latency = 16
0.7 —
0.6 —
0.5 -
0.4 —
0.3 H o LRI
0.2 o :)
01 v 4% - L.

oo CEYAL R Bl YV i e ..
T r17rrrrv1r 1771717 17 17171 ¢V b v v 1 11

2 4 81632645 % % 1 2 4 81632645 % % 1 2 4 8 163264

Parallelism / Processor Count

L ke RN ST
RPN =
e e

Latency =1 | . Latency = 2

AL et

TewN L.

bea -

+ et R

RPN £ S

P W W

v S

e e EE L L
s« e o $- 1A

wa. e

P N T L
. AP W Sadiyot M L "

. e M B
. r.TmS A

-t

T,

min(p,n)X T

Scheduler 12 — £ vs.
n 2

222

APPENDIX E

Cumulative Histograms of Relative Performance

An important method of displaying scheduler behavior is through the use of
cumulative histograms. A cumulative histogram is different from other histograms in that
each column is the sum of all sample values that occur to its left. It is, in effect, the
integration of the curve described by a common histogram. The main advantage over a
common histogram is that the shape of a cumulative histogram is insensitive to the width of

3

its columns.

This appendix contains cumulative histograms of schedule lengths relative to the
shortest available schedule. Each program/architecture pair was was used by the 12
schedulers to generate a parallel schedule. The 12 parallel schedules and a sequential
schedule were compared for length, and the shortest was selected. This schedule was used
as a reference for later comparisons as the shortest available schedule for that
program/architecture pair. These histograms were created by dividing each parallel
schedule length by the shortest available length, and histograming the result. Thus the x-
axis represents the ratio of a schedule to the best schedule, and the y-axis represents the

number of parallel schedules that did at least that well.

For a concrete example, consider the histogram for scheduler #1 in section E.1. One
point along the curve occurs at (1.25, 0.88). This means that overall, 88% of the schedules
generated by scheduler #1 were no longer than 1.25 times the length of the best known

schedules for the corresponding program/architecture pairs.

E.1. All Test Cases

-~ O N O = e P -

w oo =~ Lo e N

223

1.0
0.9 -
0.8 —

07
06—

0.5 A
0.4 —

034"

0.2
0.1 -
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0
0.9 —
0.8 —

07 <
06

0.5 —
0.4 —
0.3 —

02"

0.1 —
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

1.0
0.9 —
0.8 —
0.7
0.6 —
0.5
0.4 -
0.3 S

027
0.1 —
00"

Scheduler 7

Scheduler 9

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4

03—+~

024"

0.1 -

00—

Scheduler 10

Scheduler 11

Scheduler 12

I
1

1T 17T 71717
1%1% 2 34 8 o0 1

T T 111
1%1% 2 34 8

Factor of Performance

T 1
oo 1

LI
1% 1% 2

T 11
34 8 o

E.2. Average Parallelism

- O H O et B o=

w oo = Qe o N

224

1.0
0.9 —
0.8 —

074’
06 -

0.5 —
0.4 —
0.3 —
0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0 A

094 -

08— °

0.7 —
0.6 —

05—

0.4 —

03

0.2
0.1 —
0.0 —

Scheduler 4

Scheduler 5

1.0

0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —
0.1
0.0 —

i Scheduler 9

1.0 —
0.9 —
0.8 —
0.7 —
0.6 -
0.5 —
0.4 —
0.3 —

02"

0.1 —

0.0 —

Scheduler 10

Scheduler 11

Scheduler 12

17T 17T 111
1 1%1% 2 34 8

]
oo 1

T T TT 171
1%1% 2 34 8 o

Factor of Performance

Parallelism 2

| 17 1T 110 ¥l
1 1%1% 2 34 8 o

=~ O B O w0 DT

nw o —~c o0 Do W

225

10 e e e
09 S -~

08—+ 3
074 -
06— -
0.5 —
044.
0.3 —
0.2 —
0.1 -
0.0 Scheduler 1 Scheduler 2 Scheduler 3

to I\ —

o9 _— P o

p - :
08 y
o7 e 7
0.6 —) ,.-"’ N
0.5 — e e

-

0.4 —

0.3 . ; =
0.2 — . ;
0.1 H . -

0.0 Scheduler 4 || Scheduler 5 || Scheduler 6

10— ST | P ST | TP T S e
0.9 - 7 7 S

0.8 — P A

0.7 - /_. _,-’: /;'_,

0.6 — ‘ L :
0.5 — e ~
0.4 - yd
03 -~ =
02
01 -

00" Scheduler 7 |- Scheduler 8 - Scheduler 9

10T e [o [e
0.9 — i -
0.8 -

0.7 —

0.6 — - -
0.5 - -_/r __-"’/ ///
04— e

0.3 - _ L

02 : e

0.1 - :

004" Scheduler 10 || - Scheduler 11 }| - Scheduler 12
| 1T 1T 1TT T T°1 T 1T 1T TT 1T 1 T 1T T 1T T1
1 1%1% 2 34 8occo 1 1%1% 2 34 8o0c0 1 1%1% 2 34 8 o

Factor of Performance

Parallelism 4

- O 0O =0 =T

n oo —c Qo Dfo N

226

1.0 —
0.9 —
0.8 —
0.7

06 -

05"

0.4 —

03"

0.2 —
0.1 —
0.0

Scheduler 1

.................................

Scheduler 2

Scheduler 3

1.0 —
0.9 —
0.8 —
0.7 —

06—

0.5 —
0.4 -
0.3 —

024"

0.1 —
0.0

Scheduler 4

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 -
0.1 —

0.0 -

Scheduler 7

1.0 —
0.9 —
0.8 —
0.7
0.6 -
0.5 —
0.4 —
0.3 -

024’
01"
00"

Scheduler 10

Scheduler 11

Scheduler 12

|
1

17T 17 1TV

{
1%1% 2 34 8 o

i
1

17T T T1T1T 1T T 1
1%1% 2 34 8 0 1

Factor of Performance

Parallelism 8

1717 TT i
1%1% 2 34 8 o©

H 0 = a6 T

- O

n oo - e o Wn

227

10 I [e [e
0.9 ///-’_—_—— - —

08— . rd

07+ - N
06 -
054"
0.4
034
0.2 <
0.1)

0.0 — Scheduler 1 Scheduler 2 Scheduler 3

10 g [[e
0.9 — //~ v ../’J

08—+ . ~
074 - g :
06+ -
0.5 " -~ el
0.4 - ! ."‘,.

0.3 - :
024"
0.1 A ; ,
0.0 4 Scheduler 4 |} - Scheduler 5] - Scheduler 6

10| e _

0.9 — - e ra
0.8 - ’

0.7
0.6 — o
05-
04—

03 -
02 :
0.1+ - '
00" Scheduler 7 Scheduler 8 || - Scheduler 9

10 A PO | T TP e
0.9 — : : ;

0.8 —
0.7 —

0.6 - - ’
0.5 - / // /’I'-'

0.4 b -~ ..r"/
03 7 —

02" .

0.1 4
004 Scheduler 10

T 1T 171 171
1 1%1% 2 34 8 o©

. Scheduler 11 ||~ Scheduler 12
1 | 1 Tt 1T 1 1 1 1 T 1 i
1 1%1% 2 34 800 1 1%1% 2 34 8

Factor of Performance

Parallelism 16

- Q B O =0 P '

n o —e oo o

228

1.0

0.9 —
0.8 -
0.7 —

06— .

0.5 —
0.4 —

03"

0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0

0.9 —
0.8 —
0.7 —

06 &
05 -

0.4 —
0.3

02+.

0.1 —
0.0 -

Scheduler 4

Scheduler 5

Scheduler 6

1.0
0.9 —
0.8
0.7 —
0.6 —
0.5 —
0.4 —
0.3

02"
0.1
00

Scheduler 7

Scheduler 9

1.0 4
0.9 —
0.8 4
0.7 -
0.6 —
0.5 —
0.4 —

03

0.2

01—+,

0.0

Scheduler 10

Scheduler 11

Scheduler 12

| B R B

1
1 1%1% 2 34 8

T 1 17 T TT 11
1 1%1% 2

Factor of Performance

Parallelism 32

34 8 oo

11 1T TT7T 11
1 1%1% 2 34 8

- 0 H 0 =0 P ot

mw o —~c e Do n

229

10
0.9 —
0.8 —

07 :
06— -

0.5 —
0.4 4

03—’

0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0
0.9 —
0.8 -
0.7 H

06—
05"

0.4 —
0.3 —

02—+.

0.1 —
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

1.0
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —

04 7
03 - -
02"

0.1 -

004"

Scheduler 7

Scheduler 8

Scheduler 9

1.0
0.9 —
0.8 —
0.7
0.6 —
0.5 —

044 -

03"

0.2 —

01—+.

0.0 —

Scheduler 10

Scheduler 11

Scheduler 12

1T T 11U

|
1 1%1% 2 34 8

T 117 T 17T 11
1 1%1% 2 34 8

Factor of Performance

Parallelism 64

117 T T©0 11
1 1%1% 2 34 8

o @) H O et o P

m oo~ A o N

230

1.0 —
0.9 —
0.8 —
0.7 —

06— -

0.5 —

04+.

0.3 —
0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0
0.9 —
0.8 —
0.7 —

06—’

0.5 —
0.4 —
0.3 -

024,

0.1 —
0.0

Scheduler 4

Scheduler 5

Scheduler 6

1.0

0.9 —
0.8 —
0.7 —
0.6 —
0.5

04— °
0.3 —

0.2 —

014.

0.0 —

Scheduler 7

Scheduler 8

,'. Scheduler 9

1.0
0.9 —
0.8 —
0.7
0.6 —
0.5 —

044"

0.3

02—

0.1 -
0.0 -

Scheduler 10

Scheduler 11

Scheduler 12

I
1

r 1 17 11

|
1%1% 2 34 8 o

1T T T 11 11
1 1%1% 2

Factor of Performance

Parallelism 128

34 8 o

11T TP 71
1 1%1% 2 34 8 o

231

Scheduler 2

o3 O M-t P o= 'T

= O

Scheduler 5

0w oo — Ao o W

Scheduler 8

Scheduler 11

—_——
—
o~
4'/’-
Scheduler 3
......................... g
—P’/_F.-
.-/f.‘
Scheduler 6
Scheduler 9
.._/"——”"i—

Scheduler 12

//'.:’-
Scheduler 1
......... ,//
f./'/’
Scheduler 4
/’
"/
Scheduler 7
-.’-_—_—//
Scheduler 10
T 1T 11

1% 1% 2 34 8

Factor of Performance

Parallelism 256

17 17T 171011
1%1% 2 34 8 o

E.3. Latency

- O 5O e ® =t

w o oA o N

232

10
0.9 -
0.8

074"

0.6 —
0.5
0.4
0.3 —
0.2 —

0.1 -

0.0 S

Scheduler 1

Scheduler 2

Scheduler 3

1.0 S

09—

0.8 -
0.7 -
0.6 —
0.5 4
0.4 —
0.3 —

024"

0.1 —
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

1.0 A

09"

0.8 —
0.7 —

0.6
0.5 j

04—

0.3 A
0.2 -
0.1
0.0

Scheduler 8

Scheduler 9

1.0
0-9 —

08"

0.7 —
0.6
0.5 -

04—

0.3
0.2 H
0.1 —

0.0 —

Scheduler 10

Scheduler 11

Scheduler 12

T 17 1T 171 7 7
1 1%1% 2 34 8 o

T 1T T 1it
1 1%1% 2 34 8

Factor of Performance

Latency =0

Ui
o 1

17 T v 1
%1% 2 34 8 o

- 0 B O = =T

n o —cS Q.0 o W

233

1.0
0.9 —

08— -
07+ .

0.6 —
0.5 —

04—

0.3 —
0.2 —
0.1 -
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0
0.9 —

08 -

0.7

0.6 —
0.5 —
0.4 —
0.3 —

02+-

0.1 —
0.0 -

Scheduler 4

Scheduler 5

Scheduler 6

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —

0.4

0.3 —

024"

0.1 =

00-.

Scheduler 7

Scheduler 8

Scheduler 9

1.0
0.9 —
0.8 —

074 :

06— -
05—.

0.4 —
0.3
0.2
0.1

00"

Scheduler 10

Scheduler 11

Scheduler 12

T 1T Tl

|
1 1%1% 2 34 8

T 1T 17T 1T 11 11
1 1%1% 2 34 8

Factor of Performance

Latency = 1/8

1T T 171 11
1 1%1% 2 34 8 o0

- O H O = 0 D =T

w e —£ e o Wn

234

1.0
0.9 —

08 —.

0.7 —
0.6
0.5 —

04--

0.3 —
0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0 —

094 :

08 .

0.7 —
0.6 —
0.5 -
0.4 —
0.3 —

02"

0.1
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

1.0 A
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 S

03 .

024.

0.1 -

004.

Scheduler 7

Scheduler 8

Scheduler 9

1.0
0.9 —
0.8 —
0.7 4

06— -

0.5 —

04

0.3 —
0.2 S
0.1

00+

Scheduler 10

Scheduler 11

Scheduler 12

17T 17T 17T 1
1 %1% 2

34 8 o0 1

17T 17T 17T P 1
1%1% 2 34 8 o

Factor of Performance

Latency = %

T 7T 1T 1TV 1T 1
1 1%1% 2 34 8

- O 5O = P

m oo —s QL o N

235

1.0 4

09 '

0.8 —
0.7 —
0.6 —
0.5 —

04—-

0.3 —
0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

10

09"
08

0.7 —
0.6 —
0.5
0.4 —

0.3

0.2 —
0.1 —
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

10

0.9 —
0.8 —
0.7
0.6 —
0.5 —
0.4 —
0.3 —

024 -

014"

00-.

Scheduler 7

Scheduler 8

Scheduler 9

1.0 —
0.9 —
0.8 —
0.7
0.6 —

05—
04—

0.3 —
0.2
0.1 —

00"

Scheduler 10

Scheduler 11

Scheduler 12

T T 171 §©1 1

1
1 1%1% 2 34 8 o

T 17 vV 1T ti1 11
1 1%1% 2 34 8 o

Factor of Performance

Latency = %

1T 17T 17T 1111
1 1%1% 2 34 8 o0

- O O oo o

m o -~ Do N

236

10

09— -

08"

0.7 —

06—

0.5 —
0.4 =

03—+.

0.2 4
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0 —
0.9 —
0.8 —

07
06— -

0.5 —
0.4 —

03—

0.2 4
0.1 —
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

1.0
0.9 —
0.8
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 4
0.1 —

00— 7

.................................

Scheduler 7

Scheduler 8

- Scheduler 9

1.0
0.9 —
0.8 A
0.7 -
0.6 —
0.5 —
0.4
0.3 —
0.2 —

0.1

00 -

Scheduler 10

Scheduler 11

_——" Scheduler 12

r T 1T 111
1 1%1% 2 34 8

|
oo 1

r 17T 17T 11
1%1% 2 34 8 o

Factor of Performance

Latency =1

T 11 1 T1T 11
1 1%1% 2 34 8 o

- 0O g O =t = T

w oo —s o Do N

237

1.0 —
0.9 —
0.8 —
0.7

06— -

0.5 —

04"
034"

0.2 —
0.1
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0 —
0.9 —
0.8 —
0.7 —

06

054 -
04"

0.3 —

02—’

0.1 —
0.0

Scheduler 4

— 4 Scheduler 5

Scheduler 6

1.0 -
0.9 -
0.8 -
0.7 —
0.6 -
0.5 —
0.4 —
0.3 —
0.2
0.1 -
0.0 -

Scheduler 7

.................................

Scheduler 8

— Scheduler 9

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3
0.2 —

0.0 A

-

_____._-//écheduler 10

-,

__..-—"”.Scheduler 11

_Seﬁ;du]er 12

T T T T711 11
1 1%1% 2

34 8 0 1

1T 17 111
1%1% 2 34 8

Factor of Performance

Latency = 2

|
oo 1

11 11 1T 1
1%1% 2 34 8 x

- O 5 0 =0 P o'y

oo s A o U

238

1.0 A
0.9 -
0.8 —
0.7 —
0.6 —

05+

044’

03-

0.2
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0 A
0.9 —
0.8 4
0.7 —
0.6 —
0.5 -

04 -

03"

024"

0.1 —
0.0 —

Scheduler 4

Scheduler 5

Scheduler 6

1.0 S
0.9 —
0.8 —
0.7 =
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —
0.1 —
0.0 —

__—-—' Scheduler 7

Scheduler 8

Scheduler 9

1.0
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —
0.1 —

0.0 —

_Stheduler 10

Scifeduler 11

Sc-he’éuler 12

1T T 111
1 1%1% 2 34 8

T 1
oo 1

1 1T 77T 11
1%1% 2 34 8

Factor of Performance

Latency = 4

T 1T 17 T 171 11
1 1%1% 2 34 8 o

- 0 H O = e oa ® =

w oo o=o o0 o N

239

1.0 -
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —

02—/
0.1

0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —

04— -
03"

02"

0.1
0.0 —

Scheduler 4

1.0
0.9 —
0.8 —
0.7 —
0.6
0.5 —
0.4 —
0.3 —
0.2
0.1 -
0.0

1.0
0.9 —
0.8 —
0.7 -
0.6 —
0.5 —
0.4 —
0.3 4
0.2
0.1 —
0.0 —

p
— ——Scheduler 10

-~

————Scfieduler 11

17T 71T 111
1 1%1% 2 34 8

|
00

T 17 17 TV V1
1 1%1% 2 34 8 o

Factor of Performance

Latency = 8

L
1 1%1% 2

- Q 5 0 = o o0 1

7 S =~ R P 2 - I ¥

240

1.0 —
0.9 —
0.8
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —

02
01"

0.0 —

1.0 —
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —

02 &

014"

0.0 —

1.0
0.9 —
0.8 —
0.7 —
0.6 —
0.5 -
0.4
0.3 —
0.2 —
0.1 —
0.0 —

.................. B]
L P
,"..-"’ G :.f" _’ /-
Scheduler 1 Scheduler 2 Scheduler 3
.................. ;;,;:;....-......--v..--u:-....-n.-"."_'_"_- P L I A A A I BB B S SN]
/’/. 7
Scheduler 4 — Scheduler 5 — Scheduler 6
.—-,‘. .‘/d‘. ‘—.
/,._.-" E < . o
-~ — o
" Scheduler 7 — Scheduler 8 _,-o—-"‘/ Scheduler 9

1.0 ~
0.9 —
0.8
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2 —
0.1 —
0.0 —

‘—'_‘_‘___—___‘__.
Scheduler 10

-
s
-~

e —
Scheduler 11

Scheduler 12

1T 1T 1371
1 1%1% 2 34 8

T 1
oo 1

1 T 11T 11
141% 2 34 8 o

Factor of Performance

Latency = 16

T T T 1T T1TFP P 1
1 1%1% 2 34 8

E.4. Processor Count

241

10—

0.9 — i |

084
07+ 7

0.6
0.5
04—4.
0.3 <
0.2 -
0.1 4

0.0 — Scheduler 1

Scheduler 2

Scheduler 3

0.9 - -
0.8 — -

0.7 —
0.6
0.5]
0.4
0.3 -
0.2
014"

8 0 = e o N oot

—- O

10 T

0.0 Scheduler 4

Scheduler 5

Scheduler 6

0.9
0.8 —

0.6 —
0.5 — -~
0.4 —
034 -
02"
0.1 —

nw oo —~c e ra Wn

1o

0.7 — o

00" Scheduler 7

Scheduler 8

10— ’

0.9 4
0.8 —

0.7
0.6 j

04— -
034"

0.2
0.1 4

00 Scheduler 10

Scheduler 11

Scheduler 12

T 1T 1
1 1%1% 2

T 7T 1T 111

I 1
34 8001 1%1% 2 34 8 c0 1

Factor of Performance

Processor Count 4

T 17T 1T TV 1T
1%1% 2 34 8

242

Scheduler 1

Scheduler 3

B0 et 6 © - oT

= O

Scheduler 4

Scheduler 6

w oo —s o Do NN

Scheduler 7

Scheduler 9

Scheduler 10

.......

-
Scheduler 2
........................ g

//
L~

../"f

Scheduler 5
.""/'_—‘

Scheduler 8

Scheduler 11

Scheduler 12

1T 17T 11 T 1
1%1% 2 34 8 ©

Factor of Performance

Processor Count 8

1%1% 2 34 8 o©

—O B O = e P

m o e Lo o N

243

1.0 —
0.9 —
0.8 —
0.7 —

06— -
0.5 |

0.4 —

034"

0.2 —
0.1 —
0.0 —

Scheduler 1

Scheduler 2

Scheduler 3

1.0
0.9 —

08— -
0.7 |
0.6 —

0.5 —
0.4 —

03 "

0.2 —
0.1 —
0.0 =

Scheduler 4

Scheduler 5

Scheduler 6

1.0
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —

02

014"

004"

Scheduler 7

Scheduler 8

_/ Scheduler 9

1.0 -
0.9 —
0.8 —
0.7 H
0.6 —
0.5 —
0.4 —
0.3

02
01"
0.0 -

Scheduler 10

Scheduler 11

Scheduler 12

1

|
1%1% 2 34 8 oo

11 1T 11V 11
1 1%1% 2 34 8 o

Factor of Performance

Processor Count 16

1 17 1T 110 11
1 1%1% 2 34 8

E.5. Sequential Scheduler

- 0O H O =0

noo o~ oo o N

244

10
0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3 —
0.2
0.1 —
0.0

1.0 -
0.9 —
0.8 -
0.7 —
0.6 -
0.5
0.4 —
0.3 -
0.2 -
0.1 —
0.0 -

~

Parallelism 16

Parallelism 32

1.0 —
0.9
0.8 4
0.7
0.6 —
0.5 —
04

03
0.2 4

0.1 —1

0.0 H

1.0

0.9
0.8 —
0.7 4
0.6 —
0.5
0.4 —
0.3
0.2
0.1
0.0 4

-

/

Processor Count 4

/
Processor Count 8

e

I“
-

g

./ﬁoce/ssor Count 16

1 T 17 1
1 1%1% 2

Tt 1
34 8 00 1

LR
1% 1% 2 34 8 o

Factor of Performance

T 7T 17T P b T
1 1%1% 2 34 8 o

- O H QO =m0 P =T

w oo —e e e W

245

1o U | P TTI T I T T T ST | T —
0.9 : ‘ .-
0.8 — 0 <
0.7 ; . :
0.6 - : .
0.5 — -
0.4 — ’ ’
0.3
0.2
0.1 — R ; .
0.0 — Litency 0 Lat€ncy 1/8 Latency %
10— L | IS T I —
0.9 - . ;
0.8 — g : ;
0.7 ; . ;
0.6 — ;
0.5 - ’
0.4 — ’ N A
0.3 - : :
02 — : ; ;
0.1 —

0.0 - Latency % “Latency 1 -~ Latency 2

10 [e [e
0.9 - _." ..,/".‘
0.8 — —~

0.7 - ;

0.6 — e

0.5 — L

0.4 - !

0.3 — rad S

0.2 - g

0.1 -

00~ — Latency 4 || Latency
}
8

8 Latency 16
| 1T T 17T 1 |
ol 1%1% 2 34 8

I
1 1%1% 2 34 8 o0 1 1%41% 2 34

[Ack82]

[ACD74]

[AKK84]

[AKK87]

[AICT2]

[Bab87]

[BSV83)

[BeS87]

246

References

W. B. Ackerman, ‘“Data Flow Languages,” IEEE Computer, vol. 15, 2 (February

1982), pp. 15-25.

T. L. Adam, K. M. Chandy and J. R. Dickson, “A Comparison of List Schédules
for Parallel Processing Systems,” Communications of the ACM, vol. 17, 12

(December 1974), pp. 685-690.

S. B. Akers and B. Krishnamutrhy, “Group Graphs as Interconnection
Networks,” 14th International Conference on Fault Tolerant Compuling,

Kissimmee, Florida, June 1984, pp. 422-427.

S. B. Akers and B. Krishnamurthy, “On Group Graphs and Their Fault
Tolerance,” IEEE Transactions on Compulters, vol. C-36, 7 (July 1987), pp. 885-

888.

F. E. Allen and J. Cocke, “A Catalogue of Optimizing Transformations,” in
Destgn and Optimization of Compilers, R. Rustin (ed.), Prentice-Hall, Englewood

Cliffs, NJ, 1972.
R. G. Babb II, ed., Programming Parallel Processors, Addison-Wesley, 1987.
A. F. Bashir, V. Susarla and K. Vairavan, “A Statistical Study of the

Performance of a Task Scheduling Algorithm,” IEEE Transactions on Computers,

vol. C-32, 8 (August 1983), pp. 774-777.

F. Berman and L. Snyder, “On Mapping Paralle]l Algorithms into Parallel
Architectures,” Journal of Parallel and Distributed Computing, vol. 4, 5 (October

1987), pp. 439-458.

[BWD84]

[Bok81a]

[Bok81b]

(CHASS]

[Cas87]

(CDJs4]

[CoGT2]

[Cof76]

[DasS87]

247

J. Blazewicz, J. Weglarz and M. Drabowski, “Scheduling independent 2-processor
tasks to minimize schedule length,” Information Processing Letters, vol. 18, 5

(June 1984), pp. 267-274.

S. H. Bokhari, “On the Mapping Problem,” [EEE Transactions on Compulers,

vol. C-30, 3 (March 1981), pp. 207-214.

S. H. Bokhari, “A Shortest Tree Algorithm for Optimal Assignments Across
Space and Time in a Distributed Processor System,” IEEE Transactions on

Software Engineering, vol. SE-7, 6 (November 1981), pp. 583-589.

C. C. Carroll, A. Homaifar and K. G. Ananthram, “An Intelligent Allocation
Algorithm For Parallel Processing,” BER Report 416-17, The University of

Alabama, January 1988.

T. L. Casavant, “Analysis of Three Dynamic Distributed Load-Balancing
Strategies with Varying Global Information Requirements,” The 7th International

Conference on Distributed Computing Systems, September 1987, pp. 185-182.
F. B. Chambers, D. A. Duce and G. P. Jones, eds., Distributed Computing,
Academic Press, New York, 1984.

E. G. Coffman and R. L. Graham, “Optimal Scheduling for Two-Processor

Systems,” Acta Informatica, vol. 1(1972), pp. 200-213.

E. G. Coffman, Jr., ed., Computer and Job-Shop Scheduling Theory, John Wiley &

Sons, 1976.

W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks,” IEEE Transactions on Computers, vol. C-36, 5 (May

1987), pp. 547-553.

[DaK82]

[Den80]

[Dot84]

[ELZ86)

[Fen81]

[FeB73]

[GaJ77]

[GaJ79)

[Gon77)

[Gra69)

248

A. L. Davis and R. M. Keller, “Data Flow Program Graphs,” IEEE Computer,

vol. 15, 2 (February 1982), pp. 26-41.

J. B. Dennis, “Data Flow Supercomputers,” Computer, vol. 13, 11 (November

1980), pp. 48-56.

K. W. Doty, “New Designs for Dense Processor Interconnection Networks,” IEEE

Transactions on Computers, vol. C-33, 5 (May 1984), pp. 447-450.

D. L. Eager, E. D. Lazowska and J. Zahorjan, ‘“Adaptive Load Sharing in
Homogeneous Distributed Systems,” IEEE Transactions on Software Engineering,

vol. SE-12, 5 (May 1986), pp. 662-675.

T. Feng, “A Survey of Interconnection Networks,” I[EEE Computer, vol. 14, 12

(December 1981), pp. 12-27.

E. B. Fernandez and B. Bussell, “Bounds on the Number of Processors and Time
for Multiprocessor Optimal Schedules,” IEEE Trensactions on Computers, vol.

C-22, 8 (August 1973), pp. 745-751.

M. R. Garey and D. S. Johnson, “Two-Processor Scheduling With Start-Times
and Deadlines,” SIAM Journal on Computing, vol. 6, 3 (September 1977}, pp.

416-426.

M. R. Garey and D. S. Johnson, Computers and Intractability — A Guide to the

Theory of NP-Completeness, Freeman, 1979.

M. J. Gonzalez Jr., “Deterministic Processor Scheduling,” ACM Computing

Surveys, vol. 9, 3 (September 1977), pp. 173-204.

R. L. Graham, “Bounds On Multiprocessing Timing Anomalies,” SIAM Journal of

Applied Mathematics, vol. 17, 2 (March 1969), pp. 416-428.

[GKSS87]

[Gur84]

[Ham80]

[HRWSS5]

[HiL74]

[HoT77}

[Hub1]

[HwBs4]

[Jor87]

[KaN84]

249

M. Granski, I. Koren and G. M. Silberman, “The Effect of Operation Scheduling
on the Performance of a Data Flow Computer,” IEEE Transactions on

Computers, vol. C-36, 9 (September 1987), pp. 1019-1029.

J. R. Gurd, “Fundamentals of Dataflow,” in Distributed Computing, F. B.

Chambers, D. A. Duce and G. P. Jones (eds.), Academic Press, New York, 1984.

1

D. Hammerstrom, “Dynamic, Decentralized Load Leveling,” FEuromicro 80,

London, England, October 1980.

J. G. Harp, J. B. G. Roberts and J. S. Ward, “Signal Processing With Transputer

Arrays (TRAPS),” Computer Physics Communications, vol. 37(1985), pp. 77-86.

F. S. Hillier and G. J. Lieberman, Operations Research, Holden-Day, San

Francicso, 1974.

R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, Macmillan,

1977.

H. C. Hu, “Parallel Sequencing And Assembly Line Problems,” Operations

Research, vol. 9, 6 (November 1961), pp. 841-848.

K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing,

McGraw-Hill, New York, 1984.

H. F. Jordan, “Interpreting Parallel Processor Performance Measurements,”
SIAM Journal on Scientific and Statistical Computing, vol. 8, 2 (March 1987), pp.

s220-s226.

H. Kasahara and S. Narita, *“Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing,” IEEE Transactions on Computers, vol. C-33, 11

(November 1984), pp. 1023-1029.

[Kau74}

[Koh75]

[Kru87]

[KrL87]

[KrL88a]

(KrL8sb]

[Kun81]

[LaS77]

[LaL78]

250

M. T. Kaufman, “An Almost-Optimal Algorithm for the Assembly Line
Scheduling Problem,” IEEE Transactions on Computers, vol. C-23, 11 (November

1974), pp. 1169-1174.

W. H. Kohler, “A Preliminary Evaluation of the Critical Path Method for
Scheduling Tasks on Multiprocessor Systems,” IEEE Transactions on Computers,

vol. C-24, 12 (December 1975), pp. 1235-1238.

B. Kruatrachue, “Static Task Scheduling and Grain Packing in Parallel

Processing Systems,” Ph.D. Thesis, Oregon State University, Corvallis, 1987.

B. Kruatrachue and T. Lewis, “Duplication Scheduling Heuristic (DSH), A New
Precedence Task Scheduler for Parallel Systems,” Technical Report 87-60-3,

Oregon State University, Corvallis, OR, 1987.

B. Kruatrachue and T. Lewis, “Grain-Size Determination for Parallel

Processing,” IEEE Software, vol. 5, 1 (January 1988), pp. 23-33.

B. Kruatrachue and T. Lewis, “Grain Determination for Paralle] Processing
Systems,” Proceedings of the 21st Hawaii International Conference on System

Sciences, vol. 2(January 1988), pp. 119-128.

M. Kunde, “Nonpreemptive LP-Scheduling on Homogeneous Multiprocessor

Systems,” SIAM Journal on Computing, vol. 10, 1 (February 1981), pp. 151-173.

S. Lam and R. Sethi, “Worst Case Analysis of Two Scheduling Algorithms,”

SIAM Journal on Computing, vol. 6, 3 (September 1977), pp. 518-536.

E. L. Lawler and J. Labetoulle, “On Preemptive Scheduling of Unrelated Parallel
Processors by Linear Programming,” Journal of the Association for Computing

Machinery, vol. 25, 4 (October 1978), pp. 612-619.

ILiK87)

[L1082]

[MTH78]

[Pas87]

[Pas88]

[Prvsi]

[RCG72]

[SaH86]

[Sar87]

251

F. C. H. Lin and R. M. Keller, “The Gradient Model Load Balancing Method,”
IEEE Transactions on Software Engineering, vol. SE-13, 1 (January 1987), pp.

32-38.

E. L. Lloyd, ‘“Critical Path Scheduling With Resource and Processor
Constraints,” Journal of the Assoctation for Computing Machinery, vol. 29, 3

(July 1982), pp. 781-811.

H. Miyahara, Y. Teshigawara and T. Hasegawa, “Delay and Throughput
Evaluation of Switching Methods in Computer Communication Networks,” IEEE

Transactions on Communications, vol. COM-26, 3 (March 1978), pp. 337-344.

D. M. Pase, “Load Balancing Heuristics and Network Topologies for Distributed
Evaluation of Prolog,” Technical Report CS/E 87-005, Oregon Graduate Center,

Beaverton, OR, 1987.

D. M. Pase, “Contention and The Star Graph as a Network Topology,”

Technical Report CS/E 88-023, Oregon Graduate Center, Beaverton, OR, 1988.

F. P. Preparata and J. Vuillemin, “The Cube-Connected Cycles: A Versatile
Network for Parallel Computation,” Communications of the ACM, vol. 24, 5

(May 1981), pp. 300-309.

C. V. Ramamoorthy, K. M. Chandy and M. J. Gonzalez, Jr., “Optimal
Scheduling Strategies in a Multiprocessor System,” IEEE Transactions on

Computers, vol. C-21, 2 (February 1972), pp. 137-146.

V. Sarkar and J. Hennessy, ‘“Partitioning Parallel Programs for Macro-

Dataflow,” 1986 ACM Lisp Conference (), 1986, pp. 202-211.

V. Sarkar, “Partitioning and Scheduling Parallel Programs for Execution on

Multiprocessors,” Ph.D. Thesis, CSL-Tech. Rep.-87-328, Stanford University,

[LiK87]

[L1082]

IMTH78]

[Pas87]

[Pas88]

[Prvsi]

[RCG72]

[SaHS86]

[Sar87]

251

F. C. H. Lin and R. M. Keller, “The Gradient Model Load Balancing Method,”
IEEE Transactions on Software Engineering, vol. SE-13, 1 (January 1987), pp.

32-38.

E. L. Lloyd, “Critical Path Scheduling With Resource and Processor
Constraints,” Journal of the Association for Computing Machinery, vol. 29, 3

(July 1982), pp. 781-811.

H. Miyahara, Y. Teshigawara and T. Hasegawa, “Delay and Throughput
Evaluation of Switching Methods in Computer Communication Networks,” IEEE

Transactions on Communications, vol. COM-26, 3 (March 1978), pp. 337-344.

D. M. Pase, “Load Balancing Heuristics and Network Topologies for Distributed
Evaluation of Prolog,” Technical Report CS/E 87-005, Oregon Graduate Center,

Beaverton, OR, 1987.

D. M. Pase, “Contention and The Star Graph as a Network Topology,”

Technical Report CS/E 88-023, Oregon Graduate Center, Beaverton, OR, 1988.

F. P. Preparata and J. Vuillemin, “The Cube-Connected Cycles: A Versatile
Network for Parallel Computatibn,” Communications of the ACM, vol. 24, 5

(May 1981), pp. 300-309.

C. V. Ramamoorthy, K. M. Chandy and M. J. Gonzalez, Jr., “Optimal
Scheduling Strategies in a Multiprocessor System,” IEEE Transactions on

Computers, vol. C-21, 2 (February 1972), pp. 137-146.

V. Sarkar and J. Hennessy, “Partitioning Parallel Programs for Macro-

Dataflow,” 1986 ACM Lisp Conference (¢), 1986, pp. 202-211.

V. Sarkar, “Partitioning and Scheduling Parallel Programs for Execution on

Multiprocessors,” Ph.D. Thesis, CSL-Tech. Rep.-87-328, Stanford University,

[Sed83]

[Set76]

[Sta84]

[Un175)

[Von83]

252

Stanford, 1987.
R. Sedgewick, Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

R. Sethi, “Scheduling Graphs on Two Processors,” SIAM Journal on Computing,

vol. 5, 1 (March 1976), pp. 73-82.

J. A. Stankovic, “Simulations of Three Adaptive, Decentralized Controlled, Job
Scheduling Algorithms,” Computer Networks, vol. 8, 3 (June 1984), pp. 199-217,

North-Holland.

J. D. Ullman, “NP-Complete Scheduling Problems,” Journal of Computer and

System Sctences, vol. 10, 3 (June 1975), pp. 384-393.

C. Von Conta, “Torus and Other Networks as Communication Networks with up
to Some Hundred Points,” IEEE Transactions on Computers, vol. C-32, 7 (July

1983), pp. 657-666.

(Sed83]

[Set76]

[Stag4)

[Ul175)

[Von83]

252

Stanford, 1987.
R. Sedgewick, Algorithms, Addison-Wesley, Reading, Massachusetts, 1983.

R. Sethi, “Scheduling Graphs on Two Processors,” SIAM Journal on Computing,

vol. 5, 1 (March 1976), pp. 73-82.

J. A. Stankovic, “Simulations of Three Adaptive, Decentralized Controlled, Job
Scheduling Algorithms,” Computer Networks, vol. 8, 3 (June 1984), pp. 199-217,

North-Holland.

J. D. Ullman, “NP-Complete Scheduling Problems,” Journal of Computer and

System Sciences, vol. 10, 3 (June 1975), pp. 384-393.

C. Von Conta, “Torus and Other Networks as Communication Networks with up
to Some Hundred Points,” IEEE Transactions on Computers, vol. C-32, 7 (July

1983), pp. 657-666.

2563

Vita

The author was born, which, all things considered, was a very good start indeed. He
spent the bulk of his youth studying the biological and geological sciences in exotic locations
such as Eagar Arizona. Eventually tiring of worms and dirt, the author’s ever curious mind
turned to the black art of Mathematics. This led him to that great Citadel of Intellectual
Prowess, Northern Arizona University, where he became exceedingly proficient at holding
meaningful conversations with inanimate objects. This unusual talent led him to obtain a

Bachelor’s Degree in Mathematics, with a dual major in Computer Science.

Somehow during his stay at NAU he managed to meet up with the wonderfully
desirable Anne Cecile Heil. Through what can only be called an astounding display of
fabrication, exaggeration, and outlandish promises he convinced her to marry him, which

was certainly the best thing ke ever did.

Through the natural course of events, one beautiful daughter came along, then
another. Each of these wonderful girls delighted the eye and enchanted the soul of all who
met them. In the words of one astute observer, “Either those kids aren’ his, or Nature’s

playing tricks on us again.”

	198907.pase.douglas to p. 80.pdf
	198907.pase.douglas to p. 160.pdf
	198907.pase.douglas to p. 253.pdf

