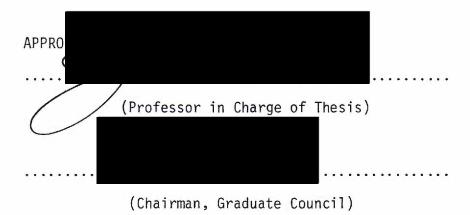
THE EFFECTS OF CARBOGEN INHALATION ON ACOUSTICALLY-INDUCED AUDITORY IMPAIRMENT IN THE GUINEA PIG


by

Jeffrey J. Brown, M.S.

A THESIS

Presented to the Department of Medical Psychology and the Graduate Division of the University of Oregon Health Sciences Center in partial fufillment of the requirements for the degree of

Doctor of Philosophy June 1980

ACKNOWLEDGEMENTS

This dissertation is dedicated to Mary Meikle and to Jack Vernon. Without the freedom and the guidance which they have continuously provided over the last four years my graduate career would have suffered greatly in lack of quality, challenge and fun.

Major appreciation should also be registered for Robert Brummett, Catherine Smith, David Lipscomb, Craig Lee, Herlene Benson and Jim Fenwick each of whom provided assistance without fail. Others deserving of attention include Donna Himes and Nancy Schuff for their help with the histological preparations. The remainder of my thesis review committee includes Robert Fitzgerald who also wrote the programs used in the statistical analysis, Sam Connell who did an excellent job in editing this tome and Dave Phillips who confirmed my statistical findings.

Members of my support system include my ever-so-patient parents, my Main Squeeze and official honeybunch, my best man, my good buddy my bro and all the rest of you great folks out there who have, at one time or another, dropped in at Bohunk Acres. You know who you are, get out of here, I love you.

Jeffrey J. Brown

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
TABLE OF CONTENTSii
LIST OF FIGURES vi
LIST OF TABLESix
LIST OF APPENDICES x
LIST OF ABBREVIATIONS xi
INTRODUCTION
Effects of Acoustic Overexposure on Cochlear Morphology 3
Vascular Supply of the Cochlea 6
Lateral Wall Vasculature 7
Medial Wall Vasculature11
Variations in Cochlear Blood Flow12
Sound and Cochlear Blood Flow14
Sound and Cochlear Oxygen Tension15
Metabolism in Cells of the Cochlea16
Effects of Cochlear Hypoxia19
Effects of Cochlear Hyperoxia23
Toxic Effects of Oxygen28
Measures Used in the Following Studies29
METHODS - EXPERIMENT I32
Animal Selection and Experimental Treatment Group32
Sound Exposure Cage33
Gas Exposure34
Acoustic Exposure36
Experimental Procedure39
Preparation for Electrophysiological Evaluation40

TABLE OF CONTENTS (continued)

Electrophysiological Measures
Histological Measures
Measurement of Arterial Blood Gas and pH
METHODS - EXPERIMENT II
Animal Selection
Surgical Preparation4
Acoustic Test Stimuli4
Recording of N ₁ Responses
Experimental Procedure5
Acoustic Overload5
Recovery of N ₁ Response Amplitude5
Arterial Blood Gas Measures5
Analysis of Data - Experiment I6
Analysis of Data - Experiment II6
RESULTS - EXPERIMENT I6
Electrophysiological Measures6
Histological Findings7
Arterial Blood Gas Measures8
RESULTS - EXPERIMENT II87
General Findings87
Effects of Carbogen Inhalation87
Electrophysiological Findings91
Relative Depression of Frequencies - G.P.#1 and G.P.#492
Relative Depression of Frequencies - Mean Data101
Relative Recovery of Frequencies - G.P.#1 and G.P.#4110
Relative Recovery - Mean Data120
DISCUSSION132

TABLE OF CONTENTS (continued)

E	ffects	of	Carbogen	on	Permanent	Cochlear	Impairment.	132
E	ffects	of	Carbogen	on	Arterial	Blood Gase	es	13
Е	ffects	of	Carbogen	on	Temporary	Cochlear	Impairment.	139
0	ther In	ter	pretation	ıs				143
А	Final	Wor	d		•••••		• • • • • • • • • • • • • • • • • • • •	145
SUMMAR	Y AND C	ONC	LUSIONS					147

TABLE OF CONTENTS (continued)

APPENDIX	A	. 149
APPENDIX	В	151
APPENDIX	C	152
APPENDIX	D	154
APPENDIX	E.,	155
APPENDIX	F	157
APPENDIX	G	158
APPENDIX	Н	160
APPENDIX	I	161
APPENDIX	J	171
BIBLIOGRA	ФРНУ	173

LIST OF FIGURES

	1.	Schematic diagram of capillaries in the cochlea of the		
		guinea pig.	page	2 10
	2.	One-third octave bandwidth frequency power spectrum of the		
		noise used as acoustic exposure in Experiment I.	page	38
	3.	Schematic diagram of the system used for the electro-		
		physiological measurements in Experiment I.	page	43
	4.	Schematic diagram of the system used for the electro-		
		physiological measurements in Experiment II.	page	51
	5.	Sample array of N ₁ responses at 32 frequencies before		
		acoustic overload in Experiment II.	page	54
	6.	Schematic time-line demonstrating sequence of events		
		in Experiment II.	page	59
	7.	50 μV isopotential function of the N $_1$ response at 32		
		test frequencies from two animals in Experiment II.	page	64
	8.	Averaged 1 μV isopotential functions of AC cochlear		
		potential from all animals in Experiment I.	page	70
	9.	Intensity functions of the AC cochlear potential at		
		1 kHz and at 10 kHz from all animals in Experiment I.	page	74
7	0.	Results of outer hair cell counts from all animals in		
		Experiment I.	page	79
1	1.	Results of inner hair cell counts from all animals in		
		Experiment I.	page	82
1	2.	Arterial blood pH, PO ₂ and PCO ₂ obtained from the		
		carotid artery of four animals in Experiment II.	page	90

LIST OF FIGURES (continued)

13.	Sample array of N ₁ responses at 32 test frequencies taken	
	21 seconds after acoustic overload in Experiment II.	page 94
14.	Sample array of N ₁ responses at 32 test frequencies taken	
	121 seconds after acoustic overload in Experiment II.	page 96
15.	Sample array of N $_{\mbox{\scriptsize I}}$ responses at 32 test frequencies taken	
	905 seconds after acoustic overload in Experiment II.	page 98
16.	Sample curves showing N_1 response amplitude at various	
	times after acoustic overload in two animals in Experi-	
	ment II.	page 100
17.	Relative depression curves showing mean N_1 response at	
	32 frequencies 20 seconds after acoustic overload from	
	two groups of animals in Experiment II (Test Sequence 4)	page 103
18.	Relative depression curves showing mean N_1 response at	
	32 frequencies two minutes after acoustic overload from	
	two groups of animals in Experiment II (Test Sequence 5)	page 106
19.	Relative depression curves showing mean N ₁ response at	
	32 frequencies five minutes after acoustic overload from	
	two groups of animals in Experiment II (Test Sequence 6)	page 109
20.	Relative depression curves showing mean N_{l} response at	
	32 frequencies ten minutes after acoustic overload from	
	two groups of animals in Experiment II (Test Sequence 7)	page 112
21.	Recovery curves showing N_1 response amplitude at four	
	frequencies before and after acoustic overload from	
	two animals in Experiment II.	page 115
22.	Recovery curves showing N_1 response amplitude at two	
	frequencies before and after acoustic overload from two	
	animals in Experiment II.	page 117

LIST OF FIGURES (continued)

23.	Recovery curves showing N_1 response amplitude at four fre-		
	quencies before and after acoustic overload from two		
	animals in Experiment II.	page	119
24.	Mean recovery curves showing N_{1} response amplitude at		
	frequencies between 2.1 kHz and 5.4 kHz from two groups		
	of animals in Experiment II.	page	122
25.	Mean recovery curves showing N_1 response amplitude at		
	frequencies between 9.9 kHz and 30 kHz from two groups of		
	animals in Experiment II.	page	125
26.	Mean recovery curves showing N_1 response amplitude at		
	frequencies between 5.9 kHz and 9.1 kHz from two groups		
	of animals in Experiment II.	page	127
27.	Mean recovery curves showing N ₁ response amplitude at		
	frequencies between 6.4 kHz and 7.6 kHz from two groups		
	of animals in Experiment II.	page	130

LIST OF TABLES

1.	Listing of experimental treatment groups, group sizes and		
	experimental acoustic and gas exposure for each in		
	Experiment I.	page	33
II.	Listing of mean sound pressure required to produce 50 μV		
	$\ensuremath{\text{N}_{\text{I}}}$ responses obtained from all guinea pigs in Experiment II.	page	66
III.	Listing of mean maximum electrical inputs of the AC cochlear		
	potential at 1 Khz and at 10 kHz from thirty animals in		
	Experiment I.	page	76
IV.	Arterial blood gas and pH measures obtained from the $\underline{\text{carotid}}$		
	artery of seven guinea pigs in Experiment I.	page	85

LIST OF APPENDICES

Α.	Tag numbers, groups, weights and stabilization intervals		
	for thirty animals in Experiment I.	page	149
В.	Integer numbering of test frequencies in Experiment I.	page	151
С.	Analysis of variance for 1 μV isopotential functions of		
	AC cochlear potential in Experiment I.	page	152
D.	Analysis of variance for intensity functions in Experi-		
	ment I.	page	154
E.	Complete listing of percent missing outer hair cells in		
	all animals in Experiment I.	page	155
F.	Analysis of variance for outer hair cell counts in		
	Experiment I.	page	157
G.	Complete listing of percent missing inner hair cells in		
	all animals in Experiment I.	page	158
Н.	Analysis of variance for inner hair cell counts in		
	Experiment I.	page	160
I.	Listing of N_1 response amplitudes expressed as percentage		
	values at 32 frequencies over 15 test sequences for each		
	animal in Experiment II.	page	161
J.	Analysis of variance for N_{1} response amplitudes at various		
	frequency subsets in Experiment II.	page	171

LIST OF ABBREVIATIONS

AC Alternating Current

A/D Analog to Digital

ANOVA Analysis of Variance

BBN Broad Band Noise

Carbogen Gas Composed of 5% CO2 and 95% O_2

dB Decibel

DC Direct Current

G.P. Guinea Pig

Hz Hertz (cycles per second)

IHC Inner Hair Cell

MEMA Middle Ear Muscle Activity

N₁ Cochlear Nerve Action Potential Wave #1

OHC Outer Hair Cell

PO2 Partial Pressure of Oxygen in Arterial Blood

PCO₂ Partial Pressure of Carbon Dioxide in Arterial Blood

PTS Permanent Threshold Shift

RD Recovery and Depression

RMS Root Mean Square

RR Relative Recovery

SD Standard Deviation

SEM Standard Error of the Mean

SPL Sound Pressure Level in db re:0.0002 µbar (20 µPa)

Abbreviations (continued)

т ₁	Turn 1 (Basal Turn) of Cochlea
T_2	Turn 2 of Cochlea
т ₃	Turn 3 of Cochlea
T ₄	Turn 4 of Cochlea
TS	Test Sequence
TTS	Temporary Threshold Shift
vas spirale	Commonly used term for Vessel of the Basliar Membrane
\overline{X}	Mean Value

INTRODUCTION

With technological emancipation from nature, man's ability to generate intense sound has outpaced his ability to restrict the prevalence of excessive noise. Noise pollution confronts industrialized society with yet another environmental danger. The pathological effects of this pollutant range from hearing loss to hypertension to coronary heart disease.

Despite awareness of noise as a health hazard, little conclusive evidence has accumulated concerning the actual mechanisms underlying permanent or temporary threshold shifts in hearing acuity which may result from acoustic overexposure. The occurrence of mechanical trauma to sensory and supporting structures due to sound of extremely high intensity is well documented. It is somewhat more difficult to explain how moderate intensity sound, which does not mechanically destroy cochlear sensory cells, leads to delayed degeneration of these structures often occurring at a considerable interval after the initial insult.

One relevant theory (41) (57) proposes that a metabolic alteration in sensory cells occurs as a result of a noise-induced vascular insufficiency in the inner ear. Several studies have provided evidence that noise at moderate intensities leads to a narrowing of the capillaries within the cochlea as well as decreases in the oxygen tension within the fluid compartments of the inner ear (42) (72). A noise-induced vascular insufficiency may lead to hypoxia of sensory and supporting structures of the organ of Corti compounding mechanically induced trauma due to intense sound.

Two studies (48) (108) have found that inhalation of carbogen gas (a high $\rm CO_2$ and high $\rm O_2$ mixture which is a vasodilator and hyper-oxygenator of the blood, endolymph and perilymph) leads to decreases in the magnitude of sound-induced temporary auditory impairment. However, these studies used very small numbers of chinchillas and humans and very limited measures of cochlear function. In addition, no measurement of other physiological effects of the gas such as changes in arterial $\rm PCO_2$, $\rm PO_2$ or pH were attempted. Because of the limitations of the two studies, these findings may be equivocal and bear close scrutiny.

In the present studies the specific aims were to determine if carbogen inhalation during acoustic exposure would lead to changes in the magnitude of (a) permanent and (b) temporary auditory impairment in groups of guinea pigs. More complete and meaningful assessment of cochlear function was striven for using both electrophysiological and histological measures. Additionally, measurements of arterial PO₂, PCO₂ and pH were made.

Two experiments were performed. The first study was designed to evaluate the effects of carbogen inhalation on permanent cochlear damage resulting from exposure to high intensity broad band noise. Measures of cochlear integrity were performed 30-40 days after the initial insult and included the AC cochlear potential and microscope counts of missing outer and inner hair cells. The second study was designed to evaluate the effects of carbogen inhalation on temporary auditory impairment within a 3 hour interval after a moderate intensity pure tone exposure. Cochlear impairment

was evaluated using the action potential of the cochlear nerve.

The finding that carbogen inhalation leads to reductions in acoustically induced auditory impairment would lend substantial weight to the vascular insufficiency hypothesis of noise induced hearing loss. Additionally, it would indicate that this gas or agents which duplicate its physiological effects may someday become useful clinical tools.

Effects of Acoustic Overexposure on Cochlear Morphology

It has been suggested by several authors that damage due to excessive sound may occur in two ways, depending on the intensity of the exposure (36) (92). These may be generally classed as mechanical damage, and metabolic damage.

At very high intensities of sound (above 135 dB SPL*) the most commonly reported form of cochlear damage is a complete mechanical disruption of the organ of Corti. This structure may be completely thrown off the basilar membrane throughout the length of the cochlea (15) (24). With shorter durations of high intensity acoustic exposure the organ of Corti may be disrupted only at a site presumably corresponding to that of peak mechanical displacement (28). These observations indicate that a mechanical effect may be primarily responsible for cochlear damage resulting from high intensity sound. Such effects occur at the same point in time as the acoustic overexposure.

With longer exposure and sound of lower intensity, microscopic

^{*}SPL: Sound Pressure Level in dB re: 0.0002 wbar (20 wPa).

morphological changes include rearrangement of cellular contents, swelling of hair cells and neural dendritic processes with cell rupture. The fact that such changes appear to occur with some time lag after cessation of the acoustic exposure suggests that intracellular mechanisms of damage may be involved (36) (92) (94). While at intensities above 125 dB SPL both mechanical destruction and metabolic exhaustion may contribute to hair cell loss (92), at lower sound intensities metabolic effects probably predominate and structural alterations appear only as secondary manifestations of the metabolic disturbance.

Permanent cochlear impairment due to acoustic overexposure results from destruction of the hair cells of the organ of Corti.

Damage usually begins in the OHC's then proceeds to the IHC's.

Evidence suggests that the area of peak OHC loss corresponds to the frequency spectrum of the sound used for the acoustic exposure (28) (92) (94). However, such effects are not always in correspondence with the place theory of frequency discrimination (4) (13) or with Greenwood's mapping of the cochlea (26) (34). Acoustic overexposure using broad band noise (BBN) which includes a large range of frequencies affects hair cells more evenly distributed throughout the cochlea (24). In previous work by this author OHC loss due to 70 hours of exposure to BBN at 115 dB SPL occurred in sites from the base to the apex of the guinea pig cochlea (10).

Electrophysiological measures of damage due to moderate intensity BBN in guinea pigs revealed that the major depression of the AC cochlear potential occurred in the 4 kHz range (39) (49). This may

correspond to the well known "4 kHz notch" in the audiograms of noise exposed humans. With longer durations of exposure to BBN the AC cochlear potentials are depressed over a larger frequency range (55) (92).

Many authors have described the course of damage within the cochlea due to excessive noise using both light and electron microscopy. Engstrom and co-workers (24) found OHC swelling, nuclear pyknosis, mitochondrial degeneration and vacuolization of cell cytoplasm as initial changes. Spoendlin (92) noted swelling of OHC's, swelling of dendrites to both OHC's and IHC's with eventual cell rupture and retrograde nerve degeneration. Lim and Melnick (61) have observed formation of blebs on the surface of the OHC's, vesiculation proceeding to vacuolization of the smooth endoplasmic reticulum, heavy accumulation of lysosomal granules and mitochondrial degeneration.

Kellerhals(49) noted that after a standardized exposure to the noise of gunshots, the number of destroyed OHC's had doubled and the number of destroyed IHC's had trebled 8-10 days after the initial insult. Such long-latency degenerative changes are consistent with a latent metabolic insult. Typically, following acoustic exposure at about 120 dB SPL, a number of cells appear to be destroyed immediately while a further number enter a slow degenerative process that may take 30 days or more for complete resolution (55). The changes observed in the cytoplasm of these cells (61) are consistent with metabolic disturbances as is the observation that isolated OHC's or IHC's may undergo such changes while neighboring cells are left intact. It has been suggested that the

eventual loss of function of an ear is determined by its ability to recover rather than by the initial insult (55).

Metabolic changes in cells would lead to disruptions in the processes necessary for the maintenance of homeostasis. Ionic imbalances, cell swelling and lysis are likely sequelae of such a deficit. Cell swelling may render cell membranes more friable than normal and further damage due to noise may result as a consequence of decreased resistance to mechanical displacement. The question is, what is the etiology of the initial metabolic lesion in the acoustically exposed cochlea?

Vascular Supply of the Cochlea

Mammalian cells depend on a continuous supply of oxygen and nutrients as well as removal of waste products. Although short term survival under anoxic conditions is possible, the majority of mammalian cells will not survive under conditions of prolonged hypoxia.

The vascular system of the organism provides a constant oxygen and nutrient supply to the cells under normal conditions. Blood vessels run in close proximity to cell borders allowing for diffusion and/or transport of substances between cell and vessel. In the cochlea of mammals and other vertebrates, however, the sensory cells exist at a relatively long distance from their blood supply. This situation contrasts with that in the vestibule where capillary networks are found beneath each sensory area. Further, the vascular network of the organ of Corti is thin and the vessels extremely

small in diameter (5 μ in the guinea pig cochlea) (2). Blood flow in such vessels is relatively slow. These anatomical factors might reasonably be expected to pose problems for sensory and supporting cells of the organ of Corti during fluctuating blood pressure or metabolic loads.

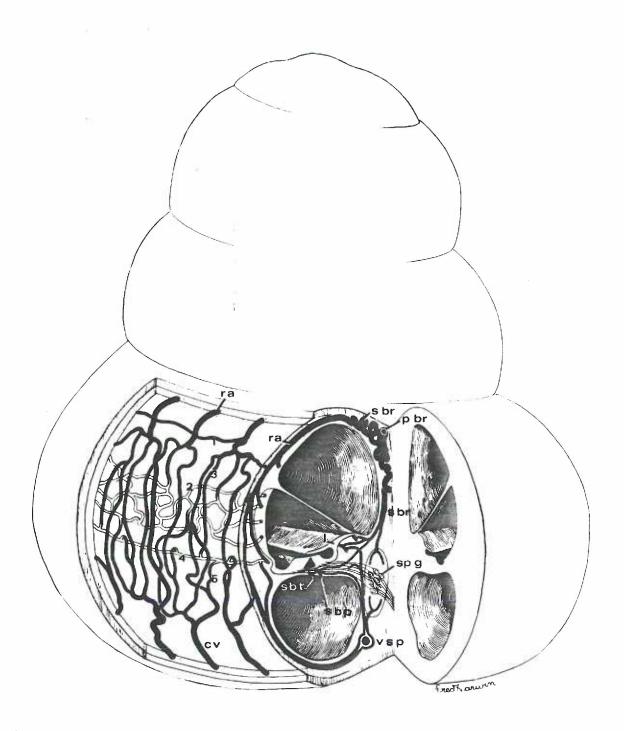
The arterial blood supply to the cochlea may be sequentially traced from the basilar artery to the anterior inferior cerebellar artery to the labyrinthine artery (87). In the guinea pig the labyrinthine artery divides into a common cochlear branch and an inferior vestibular branch. The former again divides into the posterior vestibular artery and the proper cochlear artery (2). This latter vessel enters the modiolus with the cochlear nerve. The proper cochlear artery supplies the cochlea via arteriolar branches. Some of these ascend for short distances and cross over the scala vestibuli in bony channels. There they break up into capillaries which supply the lateral wall of the cochlear duct, the spiral ligament and the stria vascularis (Figure 1). Other arteriolar branches descend to the limbus and the basilar membrane and form capillary networks on the medial side of the cochlear duct between scala media and scala tympani. These networks are in the closest proximity to the inner hair cells (IHC) and the outer hair cells (OHC) and provide the vascular bed for these structures (58).

<u>Lateral Wall Vasculature</u>

Smith (86) (87) and Axelsson (2) have identified several capillary beds of the cochlea and have assigned these into groups

on the basis of anatomical location. The first, on the lateral wall, is a network of capillaries within the upper spiral ligament (Figure 1). Some of these are located near the mesothelial cell layer and the perilymph. Smith (87) suggests that this network may be the most important interchange site between the blood and the perilymph of the scala vestibuli.

The second capillary bed is found running spirally within the stria vascularis. These vessels lie in the epithelia and form a dense network within the stria. The capillaries here are often larger in diameter (8-15 μ) (81) than other capillary beds of the guinea pig cochlea. As with other capillary beds of the cochlea, these vessels do not contain smooth muscle contractile elements in their walls although pericytes have been shown to be present.


Although it has long been suggested that the stria vascularis might be a source of oxygen and nutrients for the organ of Corti, Misrahy and co-workers (70) were the first to produce evidence supporting this suggestion. They noted that the oxygen tension in the endolymph near the stria was 55-70 mm Hg whereas closer to the organ of Corti it decreased to 16-25 mm Hg. On the basis of this oxygen concentration gradient they proposed that the organ of Corti received its oxygen supply from the vessels of the stria vascularis (72). Current research has not supported this speculation (59 (60).

The third capillary group described by Smith is the arteriovenous arcades which traverse the spiral ligament from the secondary arterioles to the venules. These vessels have been found to contain contractile elements and the blood flow here is relatively Figure 1. Schematic diagram of the capillaries in the cochlea of the guinea pig. The basal coil has been opened and a part of the bony otic capsule removed to better display the capillaries. cv:collecting venule; p.br: primary branch of the <u>labyrinthine artery</u>; ra:radiating arteriole; a.br:secondary branch; abp:spiral border below the inner pillar; sbt:spiral border below the tunnel; spg:spiral ganglion; vsp:posterior spiral vein.

- 1. Capillaries of the upper spiral ligament.
- 2. Network of the stria vascularis.
- Arteriovenous arcades.
- 4. Capillary in the spiral prominence.
- 5. Capillary in the lower spiral ligament.

From Smith, C.A., Vascular Patterns in the Membranous Labyrinth (87).

Reprinted with permission of the author.

fast. A fourth capillary network is located in loose connective tissue within the spiral prominence. A fifth network is located in the spiral ligament bordering the scala tympani.

Medial Wall Vasculature

Branches of the <u>proper cochlear artery</u> which supply the medial wall of the cochlea descend in the modiolus and emerge from the bone below the medial attachment of Reissner's membrane (87). These vessels form two layers. The first is a loose network within the limbus. The second is a looped network which runs between the basilar membrane and the mesothelial cells covering the scala tympani. This latter network of vessels is in the closest proximity to the tunnel of Corti and is often referred to as the <u>vas spirale</u> (56) or vessels of the basilar membrane (2).

Lawrence (58) has provided strong evidence that the <u>vas spirale</u> is responsible for the fluid and gas exchange necessary for maintenance of the hair cells. By selective surgical interference, vessels leading to the <u>vas spirale</u> or to the stria vascularis were occluded. Although the sample of animals in which successful occlusion occurred was few, it was found the occlusion of vessels leading to the <u>vas spirale</u> led to degeneration of the hair cells leaving the stria vascularis intact. Conversely, occlusion of the vessels leading to the stria vascularis caused degeneration of that structure without hair cell involvement (56). It was further observed (60) that during induced hypoxia of the organ of Corti, the fluid within the tunnel of Corti showed a decline in oxygen tension 2.3 seconds before a similar decline in the endolymph. Depression and recovery of the oxygen dependent cochlear potentials corresponded

with oxygen tension changes in the tunnel of Corti rather than in the scala media endolymph. The authors concluded (58) that the hair cells receive their oxygen from the <u>vas spirale</u> and not the stria vascularis as had been proposed by Misrahy (70) in 1958.

Variations in Cochlear Blood Flow

Because the capillary networks of the stria vascularis and the basilar membrane do not possess smooth muscle cells which might act in constriction or dilation of these vessels, how might changes in blood flow occur within these capillaries?

Muscular elements which may play a role in vasomotor responses have been identified in the arteriovenous arcades and in the arterioles proximal to the capillary networks. Alterations in capillary flow within the other vessels of the cochlea would be expected to occur as a consequence of changing pressures or patterns of resistance in these latter two sites. A few scattered pericytes have been found within the networks of the inner ear. Although these cells have not been considered to be contractile (78) electron micrographs have been obtained showing a spiral ligament vessel apparently consticted by the long process of a pericyte (42).

Although there is an apparent lack of vasomotor mechanisms within the capillary beds of the cochlea, adrenergic nerve fibers have been located following the cochlear branch of the labyrinthine artery into the modiolus (86). Spoendlin and Lichtensteiger (91) using afluorescence technique found a dense network of adrenergic nerve fibers in the spiral lamina. These have been found to send

short branches to the capillary beds nearby (89). It may be suggested that blood flow variations within the microvasculature of the cochlea may be the result of systemic changes; of muscular alterations in patterns of flow in arterioles or in arteriovenous arcades; by local actions of pericytes; or by such mechanisms as capillary endothelial cell swelling. A probable consequence of vessel damage would be platelet aggregation and the formation of a hemostatic plug. Aggregated platlets resulting from endothelial cell damage would be expected to aggravate decreases in blood flow within a capillary network.

Perlman, Tsunno and Spence (82) using photographic inspection of the vessels of the stria vascularis have found a marked increase in blood velocity after administration of vasopressor agents. These changes were closely related to changes in mean carotid blood pressure. No changes in the diameter of the strial vessels were noted during the increased flow period. Matsuyama (67) found increases in flow rates in the radiating arterioles without diameter changes after administration of various drugs or carbon dioxide gas. Using electrical impedance plethysmography (based on the impedance changes between two electrodes which varies with blood volume) Morimitsu, Matsou and Suga (77) have inferred that cochlear blood flow between the scala vestibuli and the scala tympani decreased after inhalation of pure oxygen but increased after inhalation of 10% carbon dioxide gas with 90% 0_2 . These authors also noted that blood volume increased in response to mild sound. Suga and Snow (95) using the same techniques noted that inhalation of 10% CO2 caused a 244% increase in cochlear blood flow over control values whereas inhalation of 100% 0_2 caused a decrease in flow to 57% of control values.

Sound and Cochlear Blood Flow

Observations of the ways in which the cochlear microvasculature reacts to acoustic stimulation are relevant to this study.

Perlman and Kimura (81) reported that noise intensities in the range of 135-155 dB SPL resulted in a marked increase in blood flow in the stria vascularis. Although high intensities were found to halt circulation in these vessels, lower intensities of sound (e.g., 120 dB) had no effects on cochlear blood flow. The method used for measuring the rate of blood flow in the experiments described above was a direct microscopic inspection of the vessels. No change in cochlear blood flow in response to 100 dB sound has been recently reported by Hulcrantz, Angelborg and Linder (45).

Lawrence, Gonzales and Hawkins (57) using histological preparations from acoustically exposed (120 dB) guinea pigs found that the vessels of the stria vascularis and of the <u>vas spirale</u> were devoid of red blood cells in the areas of the cochlea corresponding to the particular frequency of exposure. Following 8 hours of exposure at 120 dB the vessels of the stria were found to be markedly narrowed (41). Changes following long exposures appeared to be caused by endothelial cell swelling. Using electron microscopy the protrusion of endothelial cells into capillary lumina was confirmed. This protrusion caused these passages to become as narrow as 1 μ (42).

More recent studies have demonstrated poor penetration of contrast medium into the vessels of the spiral lamina and stria vascularis of the chinchilla cochlea exposed to 8 hours of 100 dB noise (62). Similar results have been reported in guinea pigs using indian ink perfusion (109). Duvall, Ward and Lauhala noted a failure of horseradish peroxidase to penetrate to the small vessels of the stria vascularis during exposure to 123 dB sound (19). This effect was found to last for some time following cessation of the acoustic exposure. Kellerhals (49) has found the strial vessels of the guinea pig to be so densely packed with red blood cells after noise exposure that they appeared to form a homogenous mass. Aggregation was suggested to have occurred due to sludging and decreased flow. Recent work on effects of noise on peripheral vasculature other than the ear has reported vessel constriction in human skin (47) and the tails of rats (9).

Sound and Cochlear Oxygen Tension

Studies of oxygen tension within the fluid compartments of the cochlea have produced data which are consistent with the hypothesis that noise-induced vascular insufficiency may participate in the pathogenesis of noise-induced hearing loss. Misrahy (72) and co-workers found that the PO₂ of the endolymph decreased sharply in response to intense sound. Following pure tone bursts of 130-135 dB the drop in endolymphatic PO₂ was found to be in the range of 20%-90%. A return to normal oxygen tension was found in some animals but not in others. After sound of lesser intensity (115 dB)

the drop in endolymphatic PO₂ was less marked (10%-15%). It was suggested by the authors even at that time (1958) that part of the hearing loss induced by loud sound might be accounted for by endolymphatic hypoxia. This was the result, it was further suggested, of a diminution in the blood supply or by an increase in metabolism within the active elements of the cochlea.

Koide (53) has more recently reported decreases in the oxygen tension of the perilymph and cerebral cortex of both rabbit and guinea pig during exposure to test tones (approximately 105 dB SPL) but not during exposure to shock waves.

The first cellular metabolic alteration which would be predicted to occur as a result of an oxygen deficiency would be an interruption of oxidative phosphorylation, the aerobic form of energy production. It is suggested that the changes in the metabolic status of the sensory cells of the cochlea, primarily that of oxidative metabolism, may be a contributing factor in noise-induced hearing loss.

Metabolism in Cells of the Cochlea

The cochlea is a very active site of oxidative physphorylation. Early measures of the respiration rates of different tissues based on the rate of consumption of oxygen (12) revealed that the stria vascularis was extremely high (10 μ l 02/ μ l tissue/hour). This level of 02 consumption was significantly higher than that found in the saccule or the utricle (3.8 and 2.4 μ l 02/ μ l tissue/hour respectively). The oxygen consumption in the latter two sites was

generally comparable to that in other areas considered to be very metabolically active such as proximal and distal renal tubules (3.6 μ l 02/ μ l tissue/hour) or choroid plexus (5.6 μ l 02/ μ l tissue/hours). The stria has a very high requirement for oxygen when compared to the other tissues of the body, presumably due to its role in the production of endolymph (86).

It has been found that the cells of the organ of Corti are specialized to participate in anaerobic energy production compared to those in the stria vascularis. Matchinsky and Thalmann (64) (65) using a method based on the fluorescence of pyridine neucleotides analyzed material from the stria vascularis and from the organ of Corti. They found 3 times more glycogen and 10 times more glucose-6 phosphate (an intermediate in glycolysis) in organ of Corti as compared to the stria. The activity of the glycolytic enzyme glycogen phosphorylase was 5 times higher in organ of Corti. In contrast, the citric acid cycle enzymes citrate synthase and malate dehydrogenase were 2.5 times higher in the stria than in the organ of Corti. These findings indicate that while the organ of Corti as well as the stria vascularis are dependent on aerobic metabolism, the organ of Corti appears to have more capacity for glycolysis than does the stria (66). In that the organ of Corti may be further from ready sources of oxygen or that the rate of blood flow to the cells of this structure may undergo large variations, this capacity would seem to be both necessary and adaptive.

Schneider (85) found that levels of lactate in perilymph increased during noise exposure, suggesting that anaerobic forms of

respiration may predominate during this time. Ishii, Takohoshi and Balogh (46) found that after exposure to BBN (110 dB SPL for 30 min) the levels of glycogen in the OHC's of the guinea pig decreased substantially. They suggested that the relatively larger stores of glycogen in the organ of Corti were being utilized during sound exposure due to cellular hypoxia.

The decline in the endolymphatic pO₂ during exposure to loud sound (72) and the biochemical changes in the organ of Corti may indicate (a) that a vascular insufficiency has developed that is limiting the delivery of oxygen to the cochlea or (b) that the transduction of sound into nerve impulses is an energy-consuming or at least an oxygen-consuming process.

Studies of the bioelectric potentials of the ear during systemic or local hypoxia indicate that oxygen is a prerequisite for their maintenance as well as the maintenance of all cell processes. In view of the microvascular anatomy of the cochlea and its responses to loud sound (57) it appears that the availability of oxygen and nutrients to the sensory cells of the organ of Corti may be limited during acoustic exposure when they are most needed. That is, restriction of blood flow as a consequency of acoustic overstimulation may be coupled with increased requirements of cells for the oxygen necessary to fuel the energy processes that transduce that sound. In summary, noise may be viewed as a metabolic stressor of the ear in two, separate but possibly synergistic, ways. These are, by increasing the requirement for oxygen and nutrients and by decreasing the delivery of those items by the induction of a vascular insufficiency.

Effects of Cochlear Hypoxia

The effects of hypoxia on cochlear potentials and inner ear structure have been well described. All forms of hypoxia, whether induced by vascular occlusion or by asphyxia, quickly abolish the nerve action potentials and reduce the AC cochlear potentials to a small fraction of their initial value (60). Oxygen tension of the endolymph and the perilymph falls quickly during anoxia induced by breathing pure nitrogen (54). The amplitudes of the action potentials decrease 22 seconds after the initial drop in endolymphatic pO2 and disappear completely within 1 minute (72). The AC cochlear potentials begin to decrease 6-7 seconds after the action potentials and reach their minimum value in 1.5 minutes. Both of these cochlear potentials may regain their initial value if restoration of normal air occurs quickly. After prolonged hypoxia (6-22 minutes), action potentials and AC cochlear potentials may never return to normal values (71).

The changes in cochlear potentials during hypoxia were described by Bekesy (4) and by Wever and co-workers in the early 1950's (106). Lawrence (60) found that during respiration of deoxygenated air, the AC cochlear potentials of cats were not affected until mixtures containing less than 4% 02 were used. Further reductions in respired oxygen caused further declines in AC cochlear potentials. Potentials recovered only partially with restoration of normal air. Repeated anoxic exposures led to a cumulative deterioration of response.

The endolymphatic potential and summating potential of the

cochlea show similar depressions during hypoxia but usually return to full normal levels. Although these potentials seem more resistant to hypoxia, the AC cochlear and the action potentials are very much less so (11).

Lawrence and Wever (54) using microscopic inspection of the histological preparations of cat ears found that following cochlear hypoxia the supporting cells showed the earliest morphological damage while the structure of the hair cells seemed to be preserved. After more prolonged hypoxia the hair cells became involved as well. The basal end of the cochlea always showed more extensive degeneration than did the apical end. An additional observation was that the degree of depression of the AC cochlear potentials in these ears depended on the method used for induction of the hypoxia. During anoxia induced by respiration of deoxygenated air, the depression of the AC cochlear potentials was on the order of 13 dB. After a more violent death induced by tracheal clamping and asphyxia, however, the depression of the AC cochlear potential was on the order of 34 dB. This indicates that the ear may have a certain metabolic reserve that may be decreased depending on the systemic requirements for consumption of oxygen.

Falbe-Hanson and co-workers (25) found no morphological changes in the organ of Corti in guinea pigs or cats after prolonged hypoxia induced by tracheal clamping even though the AC cochlear potentials had been permanently reduced. Kimura and Perlman (52) used obstruction of the <u>labyrinthineartery</u> to induce cochlear ischemia in guinea pigs. By sacrificing of the animals at sequential intervals

following the arterial obstruction an orderly sequence of histological changes could be established for all cochlear structures. The hair cells were found to be highly vulnerable. Within three hours the IHC's were fully disintegrated while OHC's were still present although damaged. Within six hours all hair cells were destroyed. Supporting cells had also disintegrated within this time interval. The stria vascularis also appeared to be highly vulnerable to ischemia. This structure began detachment from the spiral ligament within one hour and began to disintegrate within four hours. Thus it appears that the hair cells, supporting cells and the stria vascularis are the most vulnerable sites in the cochlea for damage due to hypoxia.

Bohne (8) found that ischemia of the cochleae of chinchillas by incubation of the temporal bones in a nitrogen atmosphere for various lengths of time prior to fixation induced a variety of pathological changes. After 30 minutes of this treatment, nerve fibers were swollen as well as the IHC's and OHC's. After one hour all hair cells were disrupted in pattern. After two hours severe degenerative changes were present in both nerve fibers and hair cells.

It has been found that during hypoxia the energy reserves of the different structures decline at different rates. Matchinsky and Thalmann have found that energy reserves declined most rapidly in the stria vascularis followed by the spiral ganglion, auditory nerve and the organ of Corti (66) (96). In all cases glycogen was the slowest substance to change and phosphocreatine, the storage

form of ATP, was the fastest. The rate of degradation of glycogen occurred most rapidly in the basal turns of the cochlea and most slowly at apical levels. The authors have concluded that while all inner ear structures are dependent on oxidative metabolism, the organ of Corti possesses larger carbohydrate stores and hence a larger potential for anaerobic respiration (96). Such alterations in biochemistry of the organ of Corti as increased lactate production (85) and decreased stores of glycogen (46) resulting from hypoxia would lead one to predict that the organ of Corti may be specialized to survive hypoxia. However, under larger stresses or over long periods, anaerobic energy reserves may not be capable of maintaining cell function.

In a classic paper bearing on this, Tonndorf, Hyde and Brogan (97) examined the reductions in the AC cochlear potentials due to acoustic overexposure in normal and in hypoxic guinea pigs. Their hypothesis was that the double stress of noise and hypoxia would lead to comparatively larger shifts in these potentials than would noise alone. This prediction was confirmed. A 1 kHz tone at 130 dB was presented for 1 minute in conjunction with respired oxygen concentrations of 21% (normal air), 10% and 8%. It was found that both the decline and the recovery of the AC cochlear potentials was influenced by the hypoxic state. Potentials decreased more rapidly and to lower levels and recovered more slowly at 8% 02 than at 10% and more slowly at 10% 02 than at 21% 02. It thus appears that an adequate supply of oxygen is a prerequisite for optimal recovery from acoustic overstimulation.

Effects of Cochlear Hyperoxia

In contrast to the number of studies dealing with the effects of oxygen deprivation on cochlear function, relatively few investigations have been made into the effects of increasing the supply of oxygen to the cochlea.

Kellerhals (49) used low molecular weight dextran in guinea pigs in an attempt to increase blood flow and decrease sludging of blood within the inner ear during acoustic trauma. Histological examination of the IHC's and OHC's of guinea pigs and the result of clinical trials in humans was reported to confirm the favorable effect of such treatment on recovery from acoustic trauma. It was suggested that these effects were the result of increases in blood flow to cells that had been metabolically impaired rather than to cells which had been mechanically damaged by the sound. Study of the use of low molecular weight dextran in the treatment of acoustic trauma in the guinea pig at this laboratory has not confirmed its effects on cochlear damage due to acoustic overstimulation (100).

Other agents which exert effects on the oxygenation of the blood or on the flow of blood to or within the cochlea have been investigated (82) (90). Suga and Snow (95) used electrical impedance plethysmography to measure blood volume while simultaneously recording the AC cochlear potentials from the basal turn of the cochlea resulting from a 1 kHz tone at 80 dB. With inhalation of pure oxygen, blood volume decreased to 57% of control values. In contrast to the effects of pure O2 inhalation, inhalation of 10% CO2

and 90% O₂ caused blood flow increases to 244% of control values. Following 15 minutes of respiration of this gas, cochlear blood flow stabilized at 333% of control value (95). Cochlear potentials were found to be stable during administration of the gas as long as the general condition of the animal remained good. Analogous results have been described for human cerebral blood flow by Kety and Schmidt (50). These authors concluded that in all cases alterations in peripheral resistance precipitated the changes in blood flow. Prazma and co-workers (84) have described an increase in the PO₂ of the endolymph to 101% over normal values after 20 minutes of respiration of 10% CO₂/90% O₂ in the guinea pig.

Measurement of human perilymphatic pO₂ using a polarographic principle has been accomplished by Fisch, Murata and Hessli (27). Carbon dioxide and oxygen caused a marked increase in oxygen tension in perilymph. Carbogen gas, composed of 5% CO₂ and 95% O₂, produced an elevation of perilymphatic PO₂ to 200% of control values within 30 minutes. Carbogen inhalation produced little or no blood pressure elevation. Tsunno and Perlman (98) have more recently found similar increases in guinea pig perilymphatic PO₂ using 8% CO₂ in air.

A favorable effect of elevated arterial PO_2 on depression of AC cochlear potentials in the guinea pig due to ethacrynic acid has been described by Prazma and Pecorak (83). Elevation of the arterial PO_2 was found to prevent the decline in these bioelectric potentials that was observed in those animals with normal or lowered arterial PO_2 . It was suggested that the elevations in

oxygen tension acted to preserve the ion transport systems affected by ethacrynic acid.

Effects of gas inhalation on noise-induced hearing loss have been examined by David Lipscomb and his group at the Noise Research Laboratory in Knoxville, Tennessee (44) (108) (48). Joglekar and Lipscomb (48) investigated the effects of inhalation of pure 02, of carbogen (5% $\text{CO}_2/95\%$ O_2) and of normal air on the temporary threshold shifts (TTS) induced by a 1 kHz 100 dB pure tone presented for 10 minutes. Humans and chinchillas were used and conventional and behavioral audiometry were the measure of hearing acuity. The various gas mixtures were presented to different groups of animals (a) during the 10 minutes of sound exposure or, (b) for 30 minutes following the sound exposure. Recovery curves for both the pre-stimulatory and the post-stimulatory gas inhalation conditions revealed distinct differences between the groups exposed to the different gas mixtures. Inhalation of normal air led to the largest TTS in both species. Pre-stimulatory inhalation of carbogen led to the smallest TTS in both species while the groups that received pure 0_2 showed intermediate effects. In the groups receiving the gas mixture following acoustic exposure similar changes were observed; the fastest recovery was seen in the group exposed to the carbogen, the slowest in the group which received normal air.

In the chinchilla population, recovery from TTS in those animals which received normal air was incomplete even 72 hours after stimulation whereas in the group that received the carbogen the TTS

was 34 dB less severe and recovery was complete within 48 hours. In the animals which received gas exposure after acoustic stimulation, those which received normal air demonstrated an apparent permanent threshold shift (PTS) after 15 days of recovery. In contrast, the group which received carbogen following acoustic stimulation, full recovery was found in 3 days. No consistent OHC damage was found for any of the groups of animals.

The limitations of this study are that only 6 animals were used in the experiment in which the gas was given during acoustic exposure and 4 animals were used in the experiment in which gas was presented after exposure. Thus there were only two chinchillas in each experimental group. Further, audiometry was only performed at one frequency (2 kHz). An additional limitation was that the acoustic trauma did not produce OHC damage and no histological data was obtained for comparison with audiological measures.

In more recent investigations (108) the Noise Research Laboratory group has demonstrated the effects of carbogen inhalation given at various times <u>before</u> acoustic exposure in humans and in chinchillas. Humans were exposed to a 100 dB l kHz pure tone. Again TTS was tested only at 2 kHz. Reduction of the magnitude of the TTS and therefore the time to full recovery were produced by carbogen inhalation. In the chinchillas, amplitude reduction of the cochlear nerve potential was used an an index of cochlear impairment. Acoustic exposure was a l kHz pure tone presented at 120 dB for 10 minutes. N_l responses to 2 kHz tone bursts were measured up to 72 hours after acoustic exposure. It was found that

respiration of carbogen for 30 minutes prior to the acoustic overstimulation led to large decreases in the level of, and time to recovery from, N1 response depression. No beneficial effects were noted if the gas preceded the acoustic exposure by more than 90 minutes. Histological analysis of the cochleae of these animals supported the electrophysiological finding. For the animals which received normal air, the average number of missing OHC's was found to be 4.5% primarily within the basal turns of the cochlea. In the group which received carbogen one hour before sound exposure the average loss was only 0.2%. Due to small individual experimental group size it is not known if this finding represents a statistically significant difference. This study again reflects several limitations due to small group size. No attempt was made to match animals for sensitivity to acoustic exposure in order to make meaningful comparisons between groups and the N₁ responses were only measured at one frequency. In each of the two studies above no measurements of arterial blood gas or pH changes resulting from the carbogen inhalation were performed.

In several European studies alterations in blood oxygen have been correlated with several aspects of auditory impairment. Berndt (6) has found that guinea pigs which have been adapted to a simulated altitude of 10,000 meters showed less depression of the AC cochlear potential 24 hours after a 130 dB exposure than non-adapted animals. Berndt (7) also showed that an increase in metabolic rate (hyperthyroidosis) led to a larger degree of noise-induced damage than a decrease in metabolic rate (hypothyroidosis).

Giger in a prospective study (32) treated 55 cases of sudden deafness in humans with carbogen inhalation and noted an audiometric improvement one year later in the experimental group.

Toxic Effects of Oxygen

The use of oxygen as a treatment is not always beneficial to auditory function. Pure oxygen has been found to have detrimental effects that are not seen with carbogen use. Hou and Lipscomb (44) measured action potentials with round window electrodes under differing gas inhalation conditions in chinchillas. When animals were given pure 02 two effects were noted: (a) a fast reversible depression of the action potentials, and (b) a more slowly developing chronic depression of the AP with a latency shift following multiple hyperoxic episodes. It was suggested that CO2 depletion was the probable cause of the fast reversible depression and that the secondary effect was due to an intracellular accumulation of superoxide radicals and consequent toxicity.

Superoxide radicals are the normal product of the biological reduction of molecular oxygen (29). A family of enzymes, the superoxide dismutases, protect against the toxic effects of the superoxide radicals by catalyzing the dismutation of superoxides to hydrogen peroxide and 02. High levels of oxygen in a system exceed the ability of the superoxide dismutases, however, and therefore may be cytotoxic.

Other detrimental effects of oxygen on auditory function have been noted by Bennett, Ackles and Cripps (5). In this

investigation, the effects of hyperbaric oxygen inhalation on auditory evoked responses was measured in military diving personnel. For subjects breathing compressed air at 10 atm. the evoked responses were severely depressed but returned to normal after decompression. The same decrement was noted at 2 atm. with respiration of pure 0_2 suggesting the decrease was caused by the hyperbaric oxygen in both cases. The speed of onset of the detrimental effects suggested that this depression was not related to the formation of superoxide radicals.

Measures Used in the Following Studies

There are several electrical potentials which may be recorded from the cochlea. These include the action potential of the auditory nerve (hereafter referred to as N_1), the AC cochlear potential, the summating potential and the endocochlear potential. All except the AC cochlear potential are direct current potentials (107). Each of these bioelectric potentials can be used as a source of information concerning the functional state of the cochlea.

Both the AC cochlear potential and the N₁ potential may be measured from an electrode contacting the round window membrane. The AC cochlear potential is a relatively faithful representation of the frequency and intensity of the acoustic stimulus. The amplitude of this potential is linearly related to the amplitude of the acoustic stimulus within the majority of the range of hearing of a normal ear. The maximum electrical output of the AC cochlear potential represents a relative measure of the maximum

output of the cochlea. The AC cochlear potential is thought to have its source primarily in the outer hair cells (14). Recording of the AC cochlear potential from the round window membrane is however considered to provide a view of the activity of these cells which are closest to the basal end of the cochlea.

The cochlear nerve potential, N_1 , is thought to represent the summed activity of the dendritic processes, axons and nerve cells of the primary afferent fibers of the cochlea (16) (51). Because of this, the $\ensuremath{\text{N}}_1$ response reflects not only the number of but also the synchrony of events at these sites. Thus the amplitude of the N_1 response depends on frequency, intensity, duration and rise/decay time of the acoustic stimulus (21). Because the majority of afferent fibers from the cochlea arise from the inner hair cells, the N₁ potential presumably represents primarily the activity of these cells. N₁ response threshold has been found to be a sensitive indicator of temporary auditory impairment (43) (73) (74). It is possible to measure the N_1 response at a large range of frequencies using tone bursts (20) (76). Due to frequency-following of the cochlear nerve fibers N₁ potentials are difficult to measure below about 2 kHz. The predominant frequency of the N₁ response itself is approximately 1 kHz.

Attempts to correlate hearing losses with changes in the AC cochlear potential have met with mixed success (40) (63) (104) (3). Good correlation has been found between <u>relative</u> depression of the AC cochlear potential and OHC loss (10) (102), between site of OHC

loss and frequency specific depression of AC cochlear potential (102) and between depression of AC cochlear potential and behavioral audiometric measures (103).

The N₁ potential is recognized as a more sensitive indicator of auditory impairment than the AC cochlear potential (16)(51)(104) (75)(76). The frequency of maximum depression of the N₁ potential due to pure tone acoustic overstimulation is found to be 1/2 to one octave above the stimulus frequency (76)(69).

Arterial blood gas values are affected by a variety of physiological and environmental factors. These include inspired gas content, rate and depth respiration and metabolic factors. Respiration of gas containing a large amount of CO₂ would be expected to increase the rate and depth of respiration and reduce the arterial pH (33).

A definitive study of arterial blood gas and pH values in the guinea pig has not been performed. Lall and Buckner (111), sampled carotid arterial blood in 10 unanesthetized guinea pigs in which a mean pH was 7.47, PCO2 was 28.6 mm Hg, and PO2 was 79.2 mm Hg. They also found large differences in these values from day to day. The Biology Data Book of the Federation of American Societies for Experimental Biology (1) lists mean values at pH 7.35, PCO2 30 mm Hg and PO2 70 mm Hg (95% O2 saturation). Data previously collected at this laboratory* from guinea pigs recovering from anesthesia were pH 7.38, PCO2 30 mm Hg and PO2 85 mm Hg. The unanesthetized guinea pig is known to respond hyperactively to handling. It may be suggested that arterial blood gas values might reflect respiratory changes occurring in response to experimental stimulation.

^{*}Mary B. Meikle, personal communication.

METHODS

In order to determine the effects of carbogen inhalation on both permanent and temporary acoustically-induced auditory impairment two separate experiments were performed. Experiment I utilized the AC cochlear potential and microscope counts of missing inner and outer hair cells as measures of permanent cochlear impairment. Measurements were obtained 30 days following an acoustic exposure which consisted of high intensity broad band noise. Experiment II utilized the amplitude of the N_{\parallel} response to tone bursts as measures of temporary auditory impairment within a 3-hours interval following exposure to a moderate intensity pure tone. Measures of arterial blood PCO2, PO2 and pH were obtained from animals exposed to each of the experimental conditions.

EXPERIMENT I - Effect of Carbogen Inhalation on Noise-Induced

Permanent Cochlear Impairment

Animal Selection and Experimental Treatment Groups

Thirty healthy pigmented guinea pigs within a 200-300 gram weight range were selected from the stock maintained at the Kresge Hearing Research Laboratory (102). Each animal was shown to possess auditory function by exhibition of the Preyer pinna reflex. Animals were assigned into experimental treatment groups as follows:

TABLE 1

Group	No. of Animals	Acoustic Exposure	Gas Exposure
Compressed Air/l	20 10	120 dB SPL*	Compressed Air
Carbogen/120	10	120 dB SPL	Carbogen
Control A	5	50 dB SPL	Compressed Air
Control B	5	50 dB SPL	Carbogen(95% 02 and 5% CO ₂)

*Re: 20 µPa

Once a day over 5 consecutive days each group of animals was placed into a wire mesh cage contained within an airtight box and allowed to breathe one of two gas mixtures for 4 hours. During the last 3.5 hours of this period one of two sound exposures was continually presented to each group of animals. Upon cessation of the acoustic stimulus and gas exposure each group was removed to their home cages and allowed to breathe normal room air.

The acoustic exposure consisted of a broad band of noise at an intensity of either 50 dB or 120 dB SPL. Animals were free to roam about the wire mesh cage at all times. The gas exposure consisted of either compressed normal air or compressed carbogen (5% $\rm CO_2/95\%~O_2$) allowed to enter the airtight wooden box at a flow rate of 15 liters/minute during the time the animals occupied the wire mesh cage.

Sound Exposure Cage

The sound exposure cage consisted of an 0.64 mm wire mesh cage

(78 cm x 35 cm x 35 cm) within a plywood box (88 cm x 45 cm x 45 cm) with a hinged top. This arrangement was constructed to provide precisely 5 cm of open space between the walls of the wooden box and the border of the wire mesh cage at each point. This minimized the effect of clustering of the animals at any point in the wire mesh to decrease the level of sound exposure. The top of the wooden box was sealed with compressible weather stripping and luggage clamps.

With the top of the cage closed the only gas access to the wooden box was provided by a 1.6 cm aluminum manifold along the rear wall. The manifold was punctured by small holes along its length within the cage to allow even entry of gas into the chamber. Air outlets were placed near the top of the wooden enclosure. A small hole in the front wall of the exposure cage allowed sampling of gas content within the chamber. The entry manifold was connected to compressed gas cylinders by 1.2 cm plastic tubing. The outlets were connected to the exterior of the building (7 meters) by 2.0 cm plastic tubing. The small 0_2 analyzer tubing opened within the wooden box at animal head height. All junctions, corners, fittings and holes were sealed inside and out with silicone-rubber caulking to render the wooden enclosure airtight with the top closed.

Gas Exposure

Gas was provided by large gas cylinders (size H) supplied and analyzed by the Airco Company. Four cylinders of each mixture of gas provided an adequate supply for the entire experiment. Gas

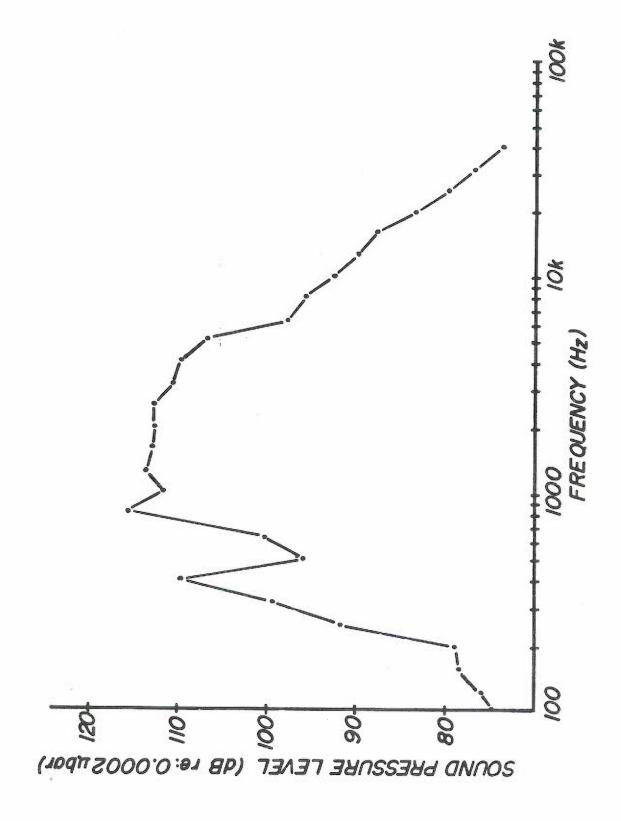
mixtures used were either carbogen (CO₂ equal to 4.98%, 4.95%, 4.89% or 4.79% balanced with pure O_2) or normal air (CO₂ equal to 0.03%, O_2 equal to 20.95%, O_2 equal to 78.8%). Gas supplied in the cylinders was dehydrated in nature. No humidification of the gas was provided between the cylinder and the animals.

Gas flow rate was controlled by a precision 2 stage regulator designed for each type of gas (Airco) in series with a Melco flow meter calibrated for small flow rates.

Flushing of the chamber with the experimental gas was done each day before placement of the animals within the chamber. Very high flow rates of gas sufficed to bring the 190 liter wooden box to 90-95% 0_2 concentration using carbogen. 0_2 concentration using normal air of course remained unchanged. When the 0_2 concentration in the wooden box reached 90% or after an equivalent amount of time using normal air the animals were quickly placed within the chamber and the flow rate immediately reduced to 15 liters/minute where it remained for the duration of the gas exposure period. Using carbogen, a measured 0_2 concentration of 95% was found in all cases approximately 15 minutes after placement of the animals within the cage.

Because of relative ease of measurement, oxygen concentration was used as a measure of overall gas concentration within the chamber rather than $\rm CO_2$ concentration. $\rm O_2$ concentration was measured using a MIRA OXA-100 oxygen analyzer. This instrument was calibrated using room air and carbogen before each 5-day exposure period.

Acoustic Exposure


The acoustic exposure consisted of a broad band of noise presented at 50 dBC* or 120 dB linear. The frequency spectrum of the 120 dB noise measured in 1/3 octave bandwidths is shown in Figure 2. This spectrum was measured at the center of the wire mesh cage at approximately animal head height (3 cm). It may be seen that the majority of sound pressure is at frequencies between 800 Hz and 4000 kHz and drops substantially in energy beyond these points.

The 120 dB acoustic exposure was chosen as an attempt to provide a high level of metabolic stress to the ear. It was expected that this level would not provide mechanical trauma as the primary insult, yet would provide significant cochlear pathology. The low intensity acoustic stimulus (50 dBC) was well below the ambient noise level in the guinea pig colony and was added to provide an innocuous sound environment as a procedure control.

Noise was produced by a pair of JB Lansing compression drivers (No. 2482). These were mounted directly to the wooden box at the center of each of the ends. A 5 cm hole in the wooden box was aligned with the 5 cm throat of the compression driver. The speakers were wired in parallel and driven by a single channel source provided by a random noise generator (General Radio No. 1382) in conjunction with a Mackintosh 240 watt power amplifier. The amplifier power source was controlled by an electronic timer which was set to go on 30 minutes after the animals were placed within the exposure cage and to stop exactly 3.5 hours later. Sound

^{*}The C scale is a weighted measure of sound pressure which descriminates against very high and very low frequencies.

Figure 2. One-third octave bandwidth frequency power spectrum of the broad band of noise used as acoustic exposure in Experiment I. Measurements were made at the center of the sound exposure cage 3 cm above the floor of the wire mesh cage at a sound pressure level of 120 dB. Data points are at the center frequency of each one-third octave. Note single sound pressure maximum at 250 Hz and more broad sound maximum above 800 Hz.

pressure levels were adjusted by alterations in the output of the random noise generator.

Sound pressure levels were measured with a precision sound level meter (Bruel & Kjaer No. 2209) on the linear scale for the 120 dB sound. It was necessary to use the "C" scale for measurement of the 50 dBC noise to overcome signal-to-noise overload on the linear scale due to low (<100 Hz) frequency vibration. For calibration of the 120 dB sound field, measurements of sound intensity were made at 5 cm intervals over the entire cage floor at heights of 2.5 cm, 7.6 cm and 12.7 cm (315 points). The sound pressure averaged over all these points was 120.26 dB (standard deviation 0.9 dB). The low intensity sound was adjusted to produce 50 dBC at the center of the exposure cage but was not measured over the entire sound field.

Experimental Procedure

Animals were removed from their home cages and placed into either normal air or into carbogen atmosphere (already described) each day for 5 consecutive days. Each group of animals first was allowed to remain in the gas environment for 30 minutes with no experimental sound exposure. After this time an acoustic stimulus was introduced which continued for 3.5 hours during continuous gas exposure. At the end of the 4-hour exposure period each group was returned to their home cages. Water was available each day in both the sound exposure cage and home cages. Food was only available in the home cages.

Each animal was weighed before exposure on the first of the 5-day period, on the 3rd day and on the 5th day. (APPENDIX A) At the end of the 5-day experimental period for each group of animals an interval of 30-40 days was allowed in order to permit damage effects to stabilize. Animals were kept in their home cages during this time with full access to food and water. No further exposure to gas or to sound other than the ambient level within the guinea pig colony was given during this time. At the end of the stabilization period each animal was prepared for electrophysiological and histological evaluation of auditory function.

Preparation for Electrophysiological Evaluation

Each animal was prepared for recording of the AC cochlear potential at the round window membrane as follows. The animal was anesthetized by an intraperitoneal injection of allobarbitol (60 mg/kg) with urethan (240 mg/kg). The neck and ear areas were clipped, the trachea cannulated and the animal placed on artificial ventilation. The pinnae were excised bilaterally. A heating pad was used to maintain a rectal temperature of 38° C + 2° C.

With visualization through an operating microscope, the thin muscle layer overlying the bulla was cleared by blunt dissection. With a pointed scalpel blade a small opening was made in the soft bone of the bulla; this was enlarged until a good view of the round window was provided. Bone chips and blood were removed from the site and the entire area was kept clean and dry. The animals were then secured to a small platform and this in turn secured

with magnetic clamps to the operating table.

For presentation of the acoustic test stimuli to the ear, a sealed sound system was employed. A specially designed sound cannula (99) was sealed into the external auditory meatus with silicone grease. The cannula contained provision for a calibrated microphone (Bruel & Kjaer, 1/2 inch) which terminated in a calibrated probe tube (1 mm). The sound cannula was connected to a Western Electric 555 loudspeaker by 25 cm of soft rubber tubing and 35 cm of rigid-walled tubing. The microphone was inserted into the sound cannula so that the probe tube barely projected into the external auditory meatus. This was accomplished before the test procedure and left in place during all subsequent electrophysiological measures in order that measurement of the sound intensity could be done without disturbing the connection of the ear to the loudspeaker. The sound pressure at each test frequency was measured immediately after completion of the last electrophysiological measure.

For recording of the AC cochlear potential, a silver electrode with a round ball tip was advanced by micromanipulator to contact the round window membrane. A second active electrode was inserted into the muscle adjacent to the bulla. A reference electrode was placed into the hind paw. Signals from the round window electrode were led to a battery powered, high gain differential amplifier (Princeton Applied Research) where they were amplified 1000 times and led to a narrow band wave analyzer (General Radio No. 1900-A). Figure 3 provides a schematic diagram of the entire preparation.

Figure 3. Schematic diagram of the sound producing system, animal and biological recording system used for the electrophysiological measurements in Experiment I. The active, reference and recording electrodes are not labeled. Note that the animal preparation, bioamplifier and animal warming system are enclosed within an electrically isolated, double-walled, sound shielded chamber.

Electrophysiological Measures

Acoustic test stimuli consisted of pure tones at the frequencies of 0.1, 0.2, 0.31, 0.5, 0.7, 1, 1.5, 2, 4, 5, 7, 10, 15 and 20 kHz. A measure of the amount of sound required to bring the electrical output of the ear to 1 μ V RMS at each of the test frequencies was recorded. After measurement of the actual sound pressure in each ear, a 1 μ V isopotential sensitivity function for each ear of each animal could be plotted.

Additionally, a measure of the magnitude of the AC cochlear potential resulting from a sound stimulus of increasing intensity (in 5 dB steps) was recorded at 1 and at 10 kHz. Sound intensity at each of these frequencies was increased until the maximum electrical output of the ear was reached. From these measures intensity functions were plotted for each ear with a record of the maximum electrical output of the ear. All electrophysiological measures were recorded in RMS voltages. Tests were periodically made for radiation artifact from the loudspeaker by removal of the DC bias thus decreasing the sound intensity without disturbing the electrical radiations from the loudspeaker.

Histological Measures

Immediately following the last electrophysiological and sound measurement, each animal was prepared for histological examination of the cochlea using the surface preparation technique (23).

While still anesthetized the animal was decapitated, the temporal bones removed and the cochleae perfused thoroughly with

Dalton's solution containing 1% OsO4 as a fixative. The temporal bones were then allowed to remain in the fixative for an additional 2 hours. The cochleae were then washed in normal saline and sequentially dehydrated in 35%, 50% and finally 70% ethanol in which they were stored.

With visualization through an operating microscope, the entire organ of Corti was dissected free from the osseous spiral lamina and each turn was mounted separately in glycerine. Using phase contrast microscopy, counts were made of the number of missing IHC's and OHC's in representative lengths of 100 cell segments at the base, turn 2, turn 3, turn 4 and at the apex of the cochlea. From these counts the percentage of missing OHC's and IHC's was easily computed for each location in each ear. The dissection and counting of the hair cells was conducted using a blind procedure.

Measurement of Arterial Blood Gas and pH:

In order to determine the direction and the magnitude of changes in arterial blood pH, PO₂ and PCO₂ resulting from four hours of carbogen inhalation in unrestrained unanesthetized guinea pigs seven additional animals were used. All blood samples were analyzed using a Radiometer-Copenhagen (PHM-27) blood gas analyzer. This instrument was calibrated before each series of blood measurements and corrected for barometric pressure daily.

The animals were first anesthetized by inhalation of Penthrane (Methoxyflurane) at room temperature and the trachea and <u>carotid</u> arteries exposed. A single <u>carotid artery</u> (right or left) was

dissected away from the neurovascular bundle and cannulated with a #22 teflon-coated intravenous catheter (Quik-Cath). The catheter was firmly tied to the vessel and sutured to the skin and fascia of the animal. The skin incision was closed with stainless steel clips and approximately 0.05 cc of sodium heparin was injected into the catheter to prevent blood clotting. All animals were then given 24 hours to recover from this procedure.

Following recovery approximately 0.75 cc of arterial blood was drawn into heparinized glass syringes with greased plungers which were stored on ice. Following the withdrawal of each sample, heparin was injected into the catheter. Five animals were placed into the exposure cage in a carbogen atmosphere and two animals placed in a normal air atmosphere. Conditions were identical to those in Experiment I with the exception that no experimental acoustic exposure was given. Samples of arterial blood were collected from these animals after 30, 60 and 360 minutes of exposure to gas (TABLE IV). One sample was collected from an animal after 30 minutes of recovery in room air.

All blood samples were stored on ice until measurement. No more than 3 hours was allowed to elapse between collection and analysis for any sample.

EXPERIMENT II - Effects of Carbogen Inhalation on Pure Tone Induced

Temporary Depression of N₁ Evoked Potential Amplitude

Animal Selection

Ten healthy pigmented guinea pigs within a 200-300 gram weight

range were used in this study. The animals were randomly assigned into two experimental treatment groups depending on gas exposure. All animals in both groups received identical acoustic exposure consisting of a pure tone overload at 4.5 kHz presented for 600 seconds at 104 dB SPL. The groups differed only in that one respired carbogen gas for 20 minutes prior to and then 10 minutes during the acoustic overload while the other received room air during this time. Recovery of N_1 response amplitude was monitored for 3 hours after stimulation in all animals.

Surgical Preparation

Each animal was first anesthetized by an intraperitoneal injection of allobarbitol as previously described. Surgical preparation was also identical to that described in the previous section with the exception that in the present study the round window electrode was cemented to the bulla. This preparation allowed removal of the micromanipulator and relatively free movement of the animal without disturbing the contact between the round window membrane and the electrode. Rectal temperature was maintained at 38° C \pm 2° C with a circulating warm water radiator constructed of polyethylene tubing.

The stroke volume of the respirator was adjusted to provide ample chest excursion on inhalation and then fine tuned to eliminate spontaneous middle ear muscle activity (MEMA)(68) as gauged by visual examination of the tympanic membrane. The respirator rate was consistently maintained at 60 breaths/minute.

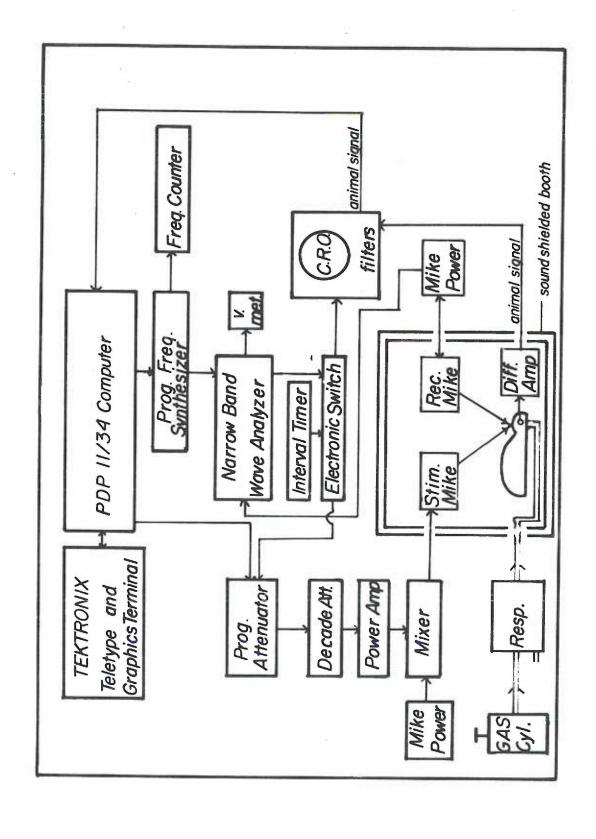
For presentation of the acoustic test stimuli to the ear a sealed sound system was used. A specially designed sound cannula was sealed into the external auditory meatus with silicone grease. Care was taken to ensure a tight seal.

Acoustic Test Stimuli

Acoustic test stimuli were produced by a condenser microphone (Bruel and Kjaer, 1/2") driven in reverse in order to obtain as "flat" a sound field as possible. The microphone inserted into the top of the sound cannula with soft rubber fittings to ensure a tight seal. The distance from the diaphragm of the microphone to the tympanic membrane of the animal after placement was approximately 2.5 cm. The sound cannula also contained provision for a calibrated probe tube microphone (Bruel & Kjaer 1/2") with a 1 mm probe tube. The tip of the probe tube when in position was located approximately 7 mm from the tympanic membrane. The calibrated microphone, condenser microphone and sound cannula were left in place during acoustic exposures and all electrophysiological and acoustic measurements. Reproduction of the acoustic test stimuli was qualitatively assessed by examination of the AC cochlear potential which they elicited.

Electrical signals recorded from the round window membrane were lead to a battery powered differential amplifier (Grass P15-B) where they were filtered and amplified 100 times. The biological signals were further filtered and amplified by a plug-in amplifier (Tektronix #3A9) within the oscilloscope before being led to a

computer for averaging and storage. The oscilloscope also provided a useful visual monitor of the electrical signals.


A PDP 11/34 computer was used to control the frequency and intensity of the acoustic test stimuli. The computer was also used for averaging and measurement of the N_1 responses. The experimental equipment and technique used for recording N_1 responses before and after overload was adapted from procedures developed by Meikle and Lee (69). A schematic diagram of the experimental set up is shown in Figure 4.

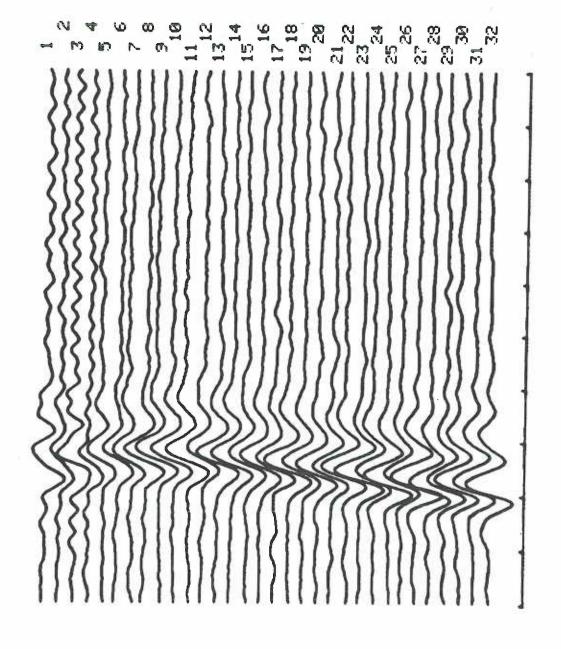
Frequencies were generated by a narrow band wave analyzer (General Radio 1162). The wave analyzer was also used during measurement of the intensities of the acoustic stimulus at each frequency.

Intensity of the acoustic stimuli was controlled at two points. One was by a programmable dB attenuator (Coulbourn S85-08) under computer control and the other by a decade attenuator under the experimenters manual control. The latter attenuator was positioned to provide tail-end attenuation of noise produced by the Coulbourn attenuator. For this purpose the decade attenuator was set at 20 dB during all data collection. The degree of attenuation present in the programmable attenuator varied with each stimulus frequency. During the acoustic overload the decade attenuator was set at 10 dB with 0 dB present in the programmable attenuator. Final amplification of the acoustic stimuli was provided by a Mackintosh 105 watt power amplifier.

Acoustic test stimuli consisted of shaped tone bursts having a

Figure 4. Schematic diagram of the sound producing system, sound measurement system and the $\rm N_1$ response recording system used in Experiment II. The active, reference and recording electrodes are not labeled. Note that the animal preparation and bioamplifier are enclosed within an electrically isolated sound shielded chamber. Note placement of decade attenuator with the purpose of attenuation of noise produced by programmable attenuator.

10 msec duration, a 1 msec rise and decay time and a 100 msec interstimulus interval (14) (76). Phase of tone burst onset was random. Timing and gating of the tone bursts was accomplished using an interval timer (Grason-Stadler 471-1) and an electronic switch (Grason Stadler 829-E). Tone bursts were presented at 32 frequencies from 2100 Hz through 30 kHz. (APPENDIX B). For convenience, these frequencies were numbered by integers 1 through 32, each frequency being separated from the next by 1/8 of an octave. The N_1 responses were sampled by the computer using a 12 bit A/D converter with a sampling rate of 25 kHz.


Recording of N₁ Responses

The sound intensity of the tone bursts at each frequency was adjusted in order to produce N₁ responses of 50 μ V at that frequency. The attenuation setting required at each of the 32 frequencies was stored in the computer memory. This list of intensities was used during each N₁ test sequence.

During a Test Sequence (TS) a total of 10 stimulus repetitions at each frequency was presented in order to compute an averaged N_1 response. A complete TS consisted of 320 tone burst presentations. The order of presentation of each tone burst was pseudo-random with the constraint that no two consecutive tone bursts were closer together than 2 octaves. This constraint served to minimize N_1 response adaptation. The time required to complete a TS was approximately 32 seconds (32 frequencies x 10 trials x 100 msec). Each complete TS provided an array of 32 averaged N_1 responses (Figure 5)

Figure 5. A sample array of N_1 responses at 32 frequencies from 2.1-30 kHz taken approximately 2000 seconds before initiation of the acoustic overload (TS-2). Note that the intensity of the acoustic stimulus at each frequency has been adjusted to provide an averaged N_1 response of 50 μv .

2 -1977 SEC 9 SAMPLE IS HI RECOVERY G P. #10(CAPBOGEN), TIME POST-EXP=

which was stored in memory for off-line measurement.

Experimental Procedure

Immediately following adjustment of the programmable attenuator to yield 50 μ V N₁ responses at each test frequency, two TS's were performed. These were displayed for qualitative examination of response reliability. Display of frequencies 8-22 followed every subsequent TS to provide an on-line monitor of N₁ amplitude. Hard copies of each TS display were made at the time of the TS. Following completion of TS-2, a carefully timed experimental procedure was begun.

At this time the intake of the respirator was either connected to a small cylinder of carbogen gas (Carbogen Group) or left in communication with room air (Room Air Group). The carbogen was delivered through a reservoir bag at a flow rate of 4.2 liters/minute. Both room air and carbogen were humidified before delivery to the animal to control tracheobronchial dehydration.

Respiration of carbogen or of room air continued for exactly 20 minutes whereupon TS-3 was conducted. This allowed inspection of the N $_{\rm l}$ responses to determine whether there were any changes resulting from the gas exposure or the 20 minute interval. TS-1, TS-2 and TS-3 were averaged together during off-line N $_{\rm l}$ amplitude measurement to provide the baseline responses at each frequency for each ear. Immediately following TS-3, the acoustic overload was begun.

Acoustic Overload

The acoustic overload consisted of a 4.5 kHz pure tone (Frequency 10) presented at an intensity of 104 dB for 600 seconds. Duration of acoustic exposure was under computer control. Intensity of the acoustic stimulus was adjusted before TS-3 for each ear using the following method.

With 0 dB in the programmable attenuator and 40 dB in the decade attenuator the gain of the power amplifier was increased to provide exactly 1 µbar at 4.5 kHz within the sound cannula (1 µbar = 74 dB re: 20 µPa) measured by the probe tube microphone. The amount of attenuation in the decade attenuator was decreased 30 dB during the acoustic overload to correspond to an actual SPL of 104 dB.

At the end of the 600 second acoustic overload the carbogen (if used) was disconnected from the respirator intake and all animals respired room air for the remainder of the experiment. It was estimated that no more than 2 minutes were required for complete flushing of carbogen from the respirator and respirator tubing.

Apart from this transition period, the animals in the carbogen group received a total of 30 minutes of gas exposure (20 minutes prior to and 10 minutes during acoustic overload). Timing of gas exposure duration and initiation of all test sequences was accomplished manually using a digital stopwatch.

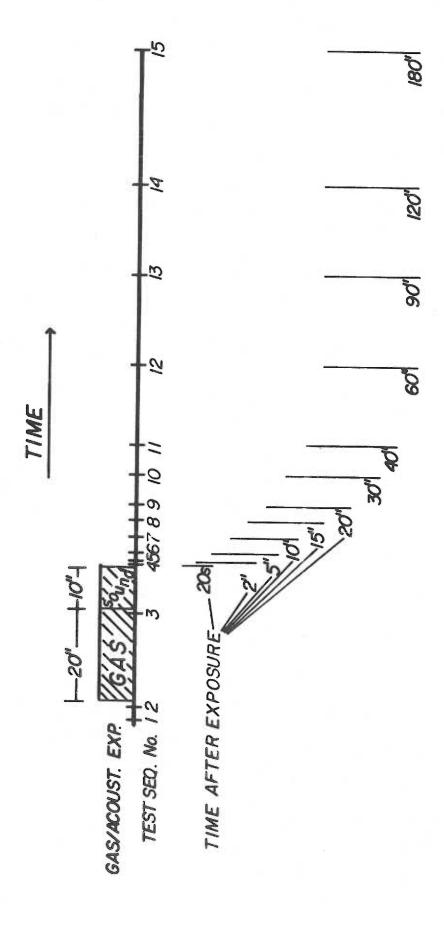
Prior to the last TS (TS-15) the sound pressure at each of the 32 test frequencies was measured. From these measures and the intensities required at each frequency to produce 50 μ V NJ responses,

a 50 μV isopotential function of the $N_{\mbox{\scriptsize I}}$ could be constructed for each ear.

Recovery of N₁ Response Amplitude

Test sequences were conducted at 12 precisely timed points following the acoustic overload (Figure 6). The points corresponded to Q.33, 2, 5, 10, 15, 20, 30, 40, 60, 90, 120 and 180 minutes post exposure.

The peak-to-peak amplitude of each averaged N₁ response from each of these TS's (32 responses x 15 TS's = 480 responses/animal) was measured using an automated computer measurement technique.* To minimize contamination of the N₁ responses by AC cochlear potentials, all N₁ traces were digitally filtered using a 2-pole Butterworth high pass filter function (93) with a corner frequency of 1.5 kHz. The filtering process introduced approximately 2-3 dB of attenuation into each N₁ trace as well as a slight phase shift. The bias introduced by the filtering procedure was not considered to significantly affect the conclusions to be drawn from the present study.


From the N1 amplitude measures, plots of N1 response depression and recovery over time at any frequency could be constructed as well as plots of depression at each frequency within each TS.

Arterial Blood Gas Measures

In order to determine the approximate changes in arterial pH,

^{*}The author wishes to thank Mr. Craig Lee for developing and modifying the computer programs for this study.

Figure 6. Schematic time-line demonstrating the sequence and timing of events in Experiment II. Note that two Test
Sequences were performed before the experimental gas was introduced (Carbogen or Room Air) and one performed during gas exposure (TS-3). Note also that gas exposure continued throughout the 10 minute, 4.5 kHz, 104 dB pure tone acoustic overload. Timing of Test Sequences following cessation of the acoustic overload is indicated next to the vertical bars at the bottom of the figure.

PO₂ and PCO₂ induced by the carbogen inhalation in this experiment four additional guinea pigs were prepared as follows. Animals were anesthetized by intraperitoneal injection of allobarbitol and placed on artificial ventilation as previously described. The ventilator volume was adjusted to provide approximately the same degree of chest excursion as observed in the preceeding series of 10 animals. The left or right <u>carotid artery</u> was cannulated and the cannula tied into place. Heparin was instilled into the distal end of the cannula. Samples of arterial blood were drawn into heparinized glass syringes with greased plungers at various times before, during and after exposure to either carbogen gas or room air. Syringes were stored on ice until measures could be made as previously described.

Analysis of Data, Experiment I

All animals survived the experimental procedure and the 30-40 day stabilization period. Acceptable electrophysiological measures were obtained from all ears in each group of animals. Because the electrophysiological and the histological measures from the two Control Groups were identical over all test frequencies and locations within the cochlea, these two groups of 5 animals were pooled for statistical analysis. Some fixation artifact was created at the apex of some of the cochleae during fixative perfusion. If it was possible, counts were made of missing hair cells from intact segments at this site, otherwise counts of missing inner or outer hair cells were not included in the statistical analysis.

Statistical analysis of all raw data was performed using each ear of each animal as an independent subject. This provided an N of 20 ears in each of the three experimental groups. Analysis was performed using the analysis of variance and the Scheffé test which measures group by group variations (17). Computations were made on a Wang Model 720 minicomputer. The analysis of variance of the l μV isopotential functions involved 3 one way ANOVA's using a 1 by 3 design. These corresponded to the elevation of the isopotential function (a) over-all test frequencies; (b) over frequencies from 100 Hz through 1.5 kHz; and (c) over frequencies from 2 kHz through 30 kHz. Analysis of intensity functions of the AC cochlear potential was accomplished using the maximum electrical output that each ear was able to attain at 1 kHz and at 10 kHz in two 1 by 3 designs. Analysis of IHC and OHC counts were performed using a 2 way ANOVA in a 3 by 5 design with repeated measures on location within the cochlea. The Scheffé test followed the analysis of variance in each case.

Analysis of Data, Experiment II

In pilot experimentation performed in preparation for Experiment II it was observed that a large amount of variability existed from animal to animal with regard to sensitivity to the acoustic exposure. In order to make meaningful comparisons of animals between the two experimental groups it was necessary to design a procedure by which animals could be matched for auditory sensitivity and then each matched pair of animals compared for amount of cochlear

impairment resulting from the acoustic overload. Animals in the Carbogen Group were matched with animals in the Room Air Group in the following manner. From the measures of the amount of sound pressure at each frequency in each ear and the amount of sound required to produce a 50 μ V N_I response in that ear at each frequency, 50 μ V isopotential functions of the N_I potential could be constructed for each ear (Figure 7). From these isopotential functions a mean of the values within the range of frequencies presumed to be most affected by the acoustic stimulus was computed (frequencies 9-18).

The number thus computed was taken to represent a measure of that ear's auditory function. The value for each ear was then rank ordered in each group to determine which animal should be matched with another (TABLE II). A difference level of \pm 3 dB was a priori considered to indicate similar levels of cochlear sensitivity and therefore a good match.

Each of the matches represented in TABLE II fell within the acceptable range with the mean difference score amounting to 3 dB. Because each of the animals in each group was matched with one in the other group and because the mean difference score was low, the data from all animals in each group was pooled for statistical analysis.

Pooling of the data was accomplished by transformation of the raw N_1 response amplitudes from its value in μV (peak-to-peak) to a percentage value relative to the mean N_1 amplitude measured before acoustic exposure in TS-1 - TS-3 (APPENDIX I). The percentage

averaged for the purpose of matching animals from each experimental bar at the top of the figure demonstrates the range of frequencies frequencies from 2.1 kHz through 30 kHz from two matched animals Figure 7. 50 μv isopotential function of the N_1 response at in Experiment II. G.P. #1 and G.P. #4 are shown. Horizontal group (TABLE II).

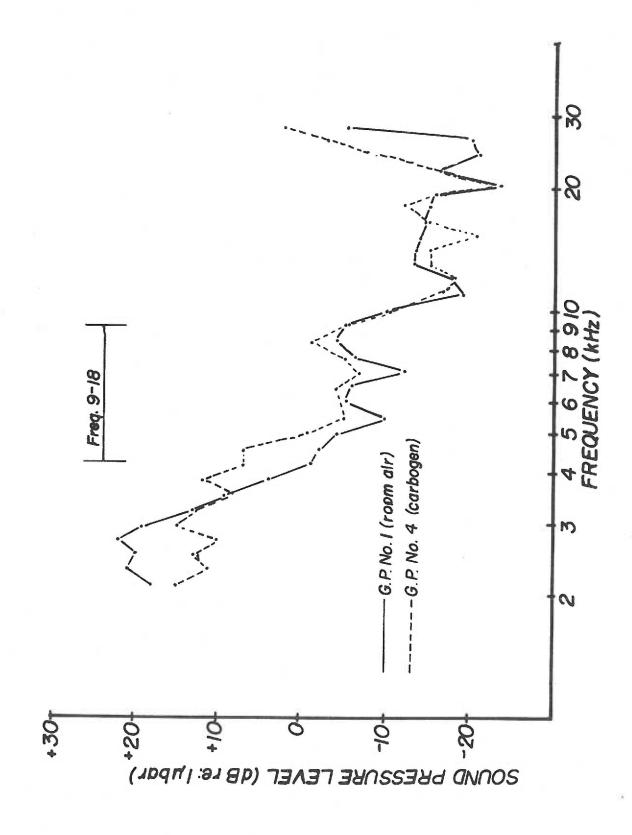


TABLE II. Listing of mean sound pressure required to produce 50 $\mu\nu$ peak to peak N $_1$ responses at frequencies 9 through 18 (4.2-9.1 kHz) obtained from ten guinea pigs. Values are rank ordered from the most to the least sensitive ear in each of two experimental groups. This rank order has been used as a basis for comparison of individual animal measures between the two groups. The overall analysis of data from Experiment II was accomplished using group means. The difference score represents the approximate correspondence in sensitivity from ear to ear.

TABLE II

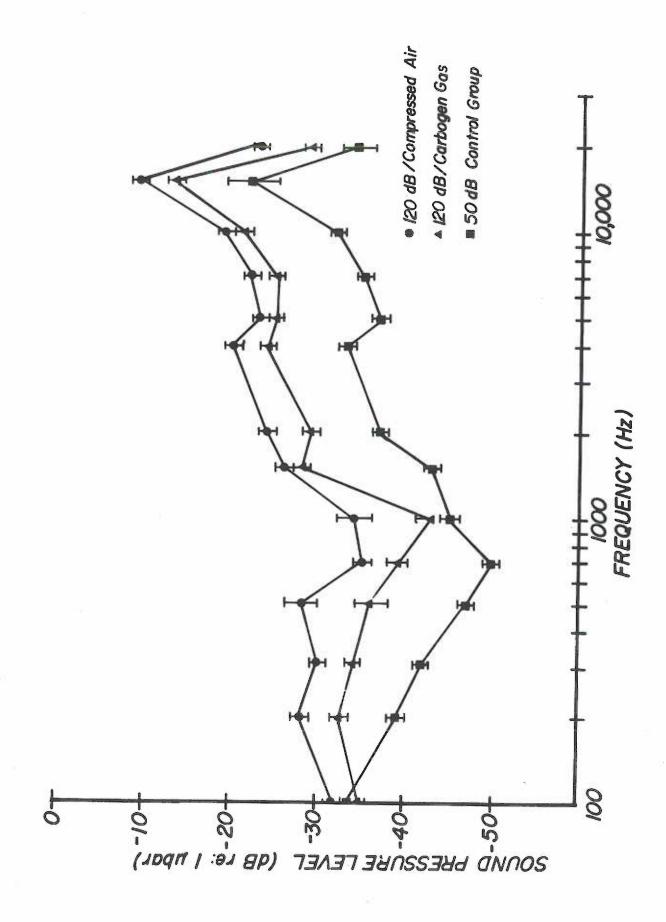
Ro	oom Air Group	-	Carbogen Group	
Animal	Mean dB	Difference (dB) Mean dB	Animal
G.P. #3	-10.3	5.8	-16.1	G.P. #6
G.P. #1	3 -5.1	0.0	-5.1	G.P. #10
G.P. #1	-4.5	2.5	-2.0	G.P. #4*
G.P. #8	+1.4	2.8	-1.4	G.P. #9
G.P. #1	2 +4.4	4.2	+0.2	G.P. #2
Mean Va	lues: -2.8	3.0	-4.8	

 $[\]star$ Representative pair of animals used for data display.

values in TS-4 through TS-15 were then averaged within each TS for several sets and subsets of frequencies. Mean relative depression (RD) curves were constructed for all frequencies in each TS following acoustic overload. Mean relative recovery (RR) curves were constructed for frequencies number 1-32, number 1-12, number 19-32, number 13-18 and number 14-16 inclusive. These values were further analyzed using the analysis of variance (17). Analysis of RR curves from each set of frequencies was accomplished using a 2-way ANOVA involving a 2 by 12 design with repeated measures on B, Test Sequence. The Scheffé test followed the analysis of variance in each case.

Plots of RD curves and RR curves were also constructed for one pair of matched animals (G.P.#1 and G.P. #4). It may be seen in TABLE I that this pair of animals represent a median match in the rank order. It may be seen in Figure 7 that the 50 μ V isopotential functions of the N₁ response for these two animals are very similar. Whenever raw data is presented in the following test it is from these two animals.

RESULTS


The results of both experiments confirmed a beneficial effect of carbogen inhalation on noise-induced auditory impairment. In Experiment I a decrease in noise-induced permanent elevation of the l µV isopotential function and in the number of missing inner and outer hair cells was found in animals given carbogen during acoustic exposure compared to those given compressed normal air. In Experiment II a decrease in the degree of depression, especially in the early stages of recovery, from a pure tone acoustic overload was found in animals given carbogen during exposure compared to those given room air. Within all measures of cochlear integrity, with the exception of the maximal outputs of intensity functions in Experiment I, the inhalation of carbogen during acoustic exposure introduced a statistically significant shift in all measures in the direction of increased auditory function.

EXPERIMENT I

Electrophysiological Measures

The mean 1 μ V isopotential functions of the AC cochlear potential for each of the 3 experimental groups within a frequency range of 100 Hz through 20 kHz are shown in Figure 8. Each point on each curve represents the mean sound level required at that frequency to elicit a cochlear potential of 1μ V (RMS). The sound pressure level required to attain this electrical output is plotted

mean (SEM). Major auditory impairment was identified in the group Experiment I. Vertical bars represent ± 1 standard error of the Figure 8. Averaged 1 µv isopential functions of the AC cochlear severe auditory impairment. The Control group curve may be seen atmosphere of Carbogen gas (120 dB/Carbogen Gas) led to less which received 120 dB of broad band noise in an atmospere of normal air (120 dB/Compressed Air) shown at the top of the potential obtained from all ears of 3 groups of animals in figure. Exposure to identical acoustic overexposure in an at the bottom of the figure.

on the ordinate and is inversely proportional to the functional performance of the ear. Thus the extent of cochlear damage is represented by the relative height of each curve above that of the control group.

The Compressed Air/120 Group is represented by the uppermost curve in Figure 8. These animals received 17.5 hours of broad band noise at 120 dB while breathing compressed air. Showing the effects of the acoustic overstimulation, but to a lesser degree, is the Carbogen/120 Group curve in the middle of Figure 8. These animals were exposed to an identical level of acoustic exposure while breathing carbogen gas. The Control Group curve at the bottom of Figure 8 provides a measure of the performance of normal ears.

It is evident from visual inspection of Figure 8 that the inhalation of carbogen during acoustic exposure led to a decrease in the pathologic elevation of the 1 μ V isopotential function at each test frequency. When averaged across all test frequencies, the elevation of the Compressed Air/120 Group curve amounted to 13 dB relative to the Control Group. In contrast, the mean elevation of the Carbogen/120 Group curve was only 8 dB. The decrease in elevation of the isopotential function in the group which received carbogen was most pronounced at frequencies below 1.5 kHz.

The analysis of variance applied to the raw data from the 1 μ V isopotential functions demonstrated a significant effect due to treatment (F(2,57) = 64.9, p < .001). The Scheffé test applied to these means indicated that the Carbogen/120 and the Compressed Air/120 Groups differed at the p < .005 level of significance. Both

of the high-intensity acoustically-exposed groups differed from the Control Group (p $\langle .001 \rangle$). At frequencies below 1.5 kHz the difference between the Carbogen/120 and the Compressed Air/120 Groups was more pronounced (p $\langle .001 \rangle$), whereas at frequencies above 1.5 kHz the difference was less pronounced (p $\langle .05 \rangle$) (APPENDIX C). Variability within the three experimental groups was approximately equivalent.

The AC cochlear potential output in μV (RMS) resulting from a sound stimulus of increasing intensity at 1 kHz and at 10 kHz are shown in Figure 9. It is evident from inspection of these intensity functions that inhalation of carbogen gas during acoustic overexposure resulted in a shift of the curves to the left and upwards relative to those animals which received only normal air during acoustic overexposure. The direction of this shift indicates an increase in sensitivity as well as in the output capability of the ears. The mean maximal outputs of the AC cochlear potential at 1 kHz and at 10 kHz are shown in TABLE III.

The analysis of variance applied to these data demonstrated significant difference between the means of the acoustically exposed groups (120 dB) and the Control Group (50 dB) but not between the Carbogen/120 and the Compressed Air/120 Groups (APPENDIX D) either at 1 kHz or at 10 kHz. However, no significant difference was found at 10 kHz between the maximal output of the Carbogen/120 Group and the Control Group while the Compressed Air/120 Group did differ from the Controls (p< .05).

Figure 9. Intensity functions of the AC cochlear potential at 1 kHz and at 10 kHz obtained from 3 groups of guinea pigs.

Each curve represents the mean of all ears within the appropriate treatment group at each point. Vertical bars represent ± 1 SEM.

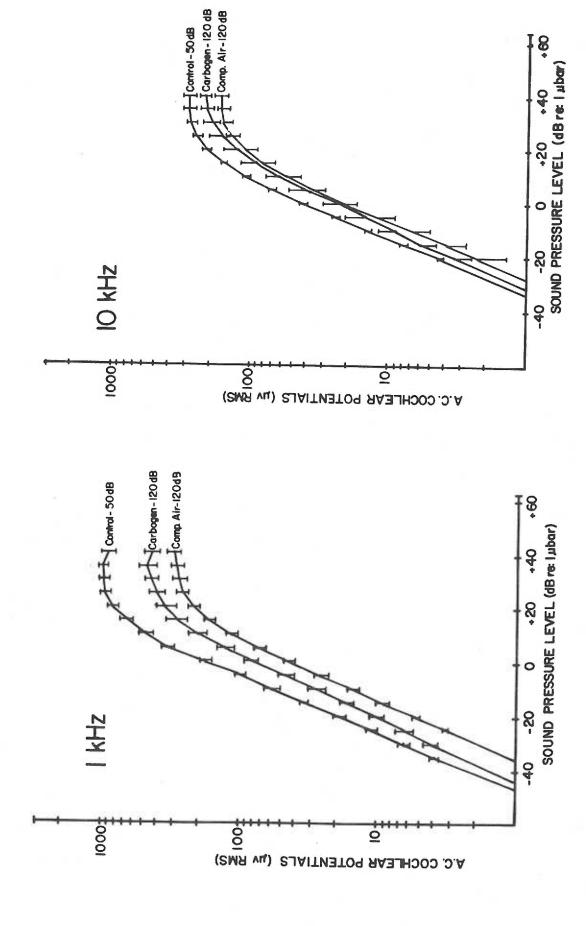
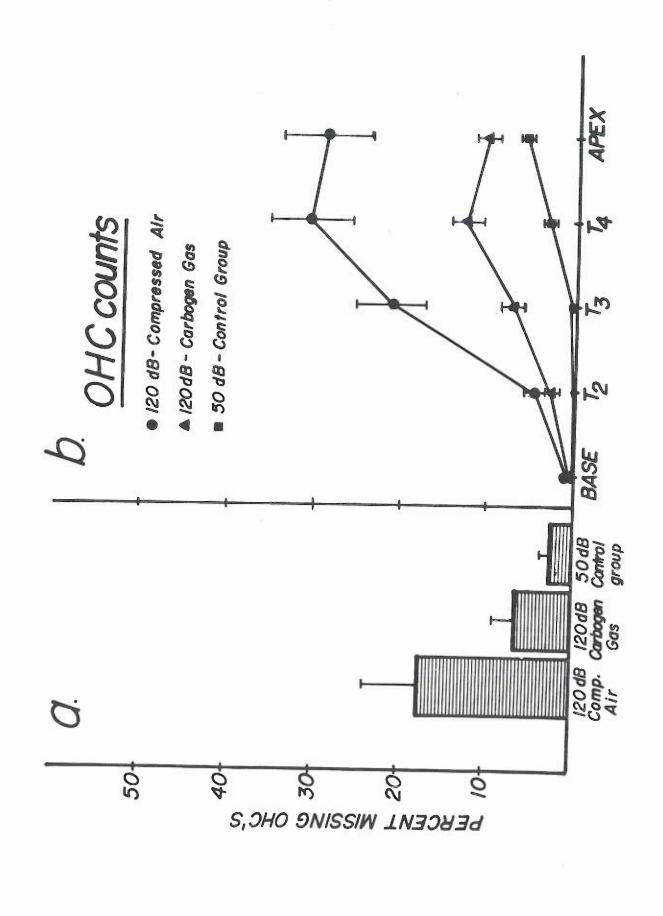


TABLE III. Maximum electrical output of the AC cochlear potential at 1 kHz and at 10 kHz obtained from 3 groups of animals. Values are the mean of all ears within each treatment group and are reported in RMS voltage.

TABLE III

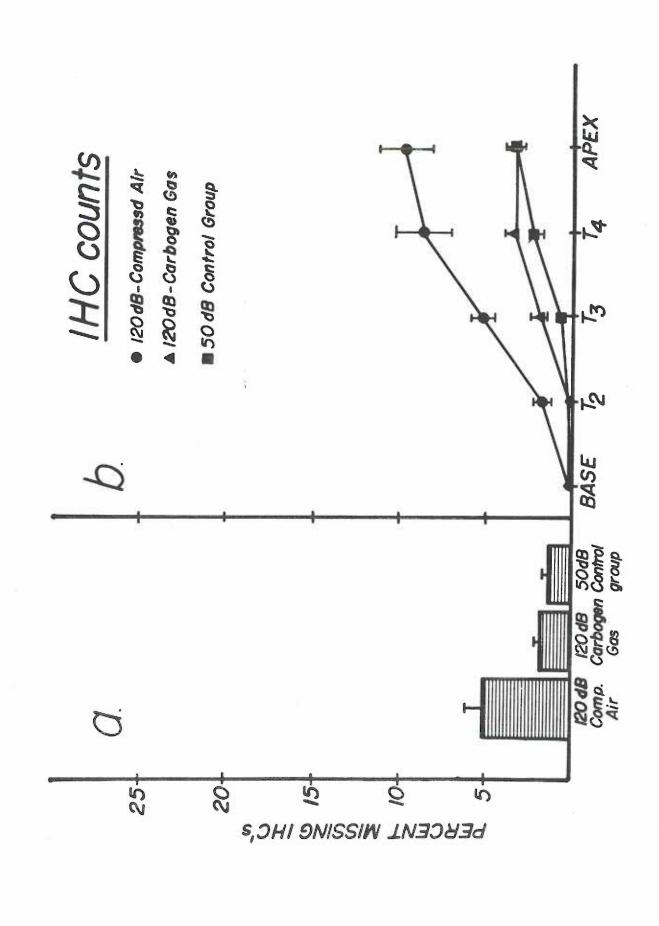

Experimental Treatment Group	Maximum Output at 1 kHz (RMS)	Maximum Output at 10 kHz (RMS)
Control	1010 µv	282 μν
Carbogen/120	434 µv	263 µv
Compressed Air/120	361 μν	207 μν

<u>Histological</u> Findings

Cochlear pathology in the groups exposed to 120 dB noise was characteristic of the type of hair cell loss resulting from a metabolic lesion rather than from pure mechanical trauma. OHC loss was patchy in both groups with common findings of only one or two OHC's lost within a single row. In ears which showed a larger degree of OHC loss it was common to find scattered groups of 2-3 OHC's to be missing from each row of OHC's at a single site. IHC loss was morphologically similar to OHC loss. Again scattered groups of inner hair cells were found to be missing rather than continuous bands along the basilar membrane. In general, on the basis of cochlear morphology, the use of 17.5 hours of 120 dB broad band noise was confirmed as a level of acoustic exposure which provided a maximum of metabolic stress of the hair cells (see introduction) with a minimum of mechanical trauma.

Total OHC losses expressed as percentage values relative to the total number that would exist in an equivalent segment of perfect organ of Corti are shown in Figure 10a. These total OHC losses are broken down by location within the cochlea in Figure 10b. Complete listing of individual cochlear OHC losses is available in APPENDIX E. Total OHC loss averaged over all locations within the cochlea in the Control Group amounted to 2%, a figure that is commonly found in untreated guinea pigs. In the Compressed Air/120 Group the net loss of OHC's throughout the cochlea amounted to 17.4%. In contrast, the net loss of OHC's in the Carbogen/120 Group was found to be 6.5%. The analysis of variance applied to these data

would exist in an equivalent segment of undamaged organ of Corti. counts are shown as a function of location within the cochlea percentage values relative to the total number of OHC's that Figure 10. Results of outer hair cell counts expressed as Counts averaged over all areas of the cochlea are shown in (a) for each of 3 experimental treatment groups. These in (b). Vertical bars represent ± 1 SEM.



demonstrated a significant effect due to acoustic exposure $(F(2,57) = 43.5, p \angle .001)$ (APPENDIX F). The Scheffé test applied to the means revealed a significant difference between the Carbogen/120 and the Compressed Air/120 Group $(p \angle .001)$.

It is evident from visual inspection of Figure 10b that the majority of OHC damage due to acoustic overload occurred within Turn 3 and Turn 4 of the cochlea. This area corresponds to a segment of basilar membrane approximately 0.4 to 6.19 mm from the apex (26) and to the frequencies 24 Hz - 1258 Hz according to Greenwood (34). This finding is consistent with the finding of a larger difference between means of the 1 μ V isopotential function at these frequencies between the Compressed Air/120 and the Carbogen/120 Groups. By the Scheffé test the means of the 0HC loss in these two groups were found to differ significantly at the apex (p \langle .001) at Turn 4 (p \langle .001) and at Turn 3 (p \langle .001) but not within Turn 2 or the base of the cochlea. The 0HC loss in the Control Group was primarily found at the apex.

Total IHC losses expressed as percentage values relative to the total number of IHC that would exist in an equivalent segment of perfect organ of Corti are shown for each individual cochlea in APPENDIX G and graphically in Figure 11a. These IHC losses are broken down by location in the cochlea in Figure 11b. Total IHC losses averaged over all locations in the cochlea amounted to 1.2% in the Control Group, 4.5% in the Compressed Air/120 Group and 1.66% in the Carbogen/120 Group. The analysis of variance applied to these data demonstrated a significant effect due to acoustical exposure only in the Compressed Air/120 Group (F(2,57)=19.78, p \angle .001)

would exist in an equivalent segment of undamaged organ of Corti. (a) for each of 3 experimental treatment groups. These counts are shown as a function of location within the cochlea in (b). percentage values relative to the total number of IHC's that Counts averaged over all areas of the cochlea are shown in Figure 11. Results of inner hair cell counts expressed as Vertical bars represent ± 1 SEM.

(APPENDIX H).

Inspection of Figure 11b reveals striking similarity to the OHC losses in Figure 10b. Again, the majority of hair cell damage was above Turn 3 in all groups. The means of IHC loss in the Compressed Air/120 and Carbogen/120 Groups were found to differ significantly at the apex (p \langle .001) at Turn 4 (p \langle .001) and at Turn 3 (p \langle .001) but less so at Turn 2 (p \langle .05) and not at all in the base. Again, missing IHC's in the Control Group were identified toward the apex.

It should be pointed out that a fairly consistent ratio between OHC and IHC loss was found in the two high-intensity acoustically-exposed groups. In all cases, OHC's showed relatively more pathology then IHC's resulting from the same acoustic exposure, that is ratio % missing OHC's/% missing IHC's was>1.

Arterial Blood Gas Measures

The arterial pH, PO_2 and PCO_2 obtained from the <u>carotid artery</u> of seven guinea pigs exposed to identical gas conditions as those in the preceeding experiment are shown in TABLE IV. The average arterial pH before placement into the exposure cage was 7.38. After 30 minutes of respiration of carbogen gas this dropped to 7.28. After 60 minutes arterial pH was found to be 7.31. After 4 hours it was once again found to be approximately 7.26. After 30 minutes of recovery in room air the pH in one animal was found to be 7.5. Arterial PCO_2 showed a corresponding shift. Before placement it averaged approximately 24 mm Hg which climbed to 36 mm Hz after

TABLE IV. Arterial blood pH, PO_2 and PCO_2 obtained from the carotid artery of seven guinea pigs. Five animals received 4 hours of exposure to carbogen gas and two animal received exposure to normal air. All animals were awake, unrestrained and unanesthetized for 24 hours prior to sampling. Animals which received carbogen gas are listed in IV-A, those that received normal air are listed in IV-B.

TABLE IV - A (Animals Exposed to Carbogen)

Before Gas 7.37 60 20 pH = 7.38 2 " 7.34 60 27 PO ₂ = 64 mm 3 " 7.40 75 22 PCO ₂ = 24 m 4 " 7.40 65 26 5 " 7.38 60 25 After 30" 7.3 220 37 pH = 7.28 4 " 7.28 200 30 PO ₂ = 230 m 5 " 7.28 270 40 PCO ₂ = 36 m After 60" 7.30 190 37 pH = 7.31 7.32 180 33 PO ₂ = 185 m 4 After 4 Hrs. 7.23 270 42 pH = 7.26 5 " 7.30 270 38 PO ₂ = 270 m PCO ₂ = 40 m 5 30" of Room 7.50 65 18						
2	Animal	No. Time	рН	PO ₂ (mm Hg)	PCO ₂ (mm Hg)	Mean Values
1 After 60" 7.30 190 37 pH = 7.31 7.32 180 33 PO ₂ = 185 m PCO ₂ = 35 m 4 After 4 Hrs. 7.23 270 42 pH = 7.26 7.30 270 38 PO ₂ = 270 m PCO ₂ = 40 m	1 2 3 4 5	11 11 11	7.34 7.40 7.40	60 75 65	27 22 26	pH = 7.38 PO ₂ = 64 mm Hg PCO ₂ = 24 mm Hg
3 " 7.32 180 37 $PO_2 = 185 \text{ m}$ 4 After 4 Hrs. 7.23 270 42 $PO_2 = 35 \text{ m}$ 5 30" of Room 7.50 65 18	2 4 5	II	7.28	200	30	pH = 7.28 PO ₂ = 230 mm Hg PCO ₂ = 36 mm Hg
5 30" of Room 7.50 65 18	1 3					pH = 7.31 PO ₂ = 185 mm Hg PCO ₂ = 35 mm Hg
10	4 5	After 4 Hrs.				pH = 7.26 PO ₂ = 270 mm Hg PCO ₂ = 40 mm Hg
Air Kecovery	5	30" of Room Air Recovery		65	18	

TABLE IV - B (Animals Exposed to Normal Air)

Animal	No.	Time	рН	PO ₂ (mm Hg)	PCO2(mm Hg)	Mean Values
1 2		Before Gas	7.40 7.40	60 60	30 30	pH = 7.4 PO ₂ = 60 mm Hg PCO ₂ = 30 mm Hg
1 2	,	After 30"	7.40 7.40	55 60	30 30	pH = 7.4 PO ₂ = 57 mm Hg PCO ₂ = 30 mm Hg
1 2		After 4 Hrs.	7.40 7.45	55 70	28 23	pH = 7.43 PO ₂ = 63 mm Hg PCO ₂ = 26 mm Hg

30 minutes of exposure to carbogen and to 40 mm Hg after 4 hours of carbogen. After 30 minutes of recovery in room air the arterial PCO2 dropped to 18 mm Hg. Arterial PO2 showed a dramatic rise during inhalation of carbogen. Before placement arterial PO2 averaged 64 mm Hg. This value climbed to 230 mm Hg after 30 minutes of carbogen respiration but then dropped to 185 mm Hg after 60 minutes of exposure. At the end of 4 hours of gas exposure the arterial PO2 was approximately 270 mm Hg. These elevated arterial PO2 values dropped quickly to normal after 30 minutes of recovery in room air. Visual observation of animals in Experiment I revealed a rapid rise in respiratory rate immediately after placement into the carbogen atmosphere.

Arterial blood gas values from animals exposed only to the compressed normal air conditions showed no shifts in pH, in PCO_2 , or in PO_2 over the course of a 4-hour exposure in the wooden cage. The values were very stable at pH of 7.4; PO_2 of 55-70 mm Hg and PCO_2 of 23-30 mm Hg.

RESULTS

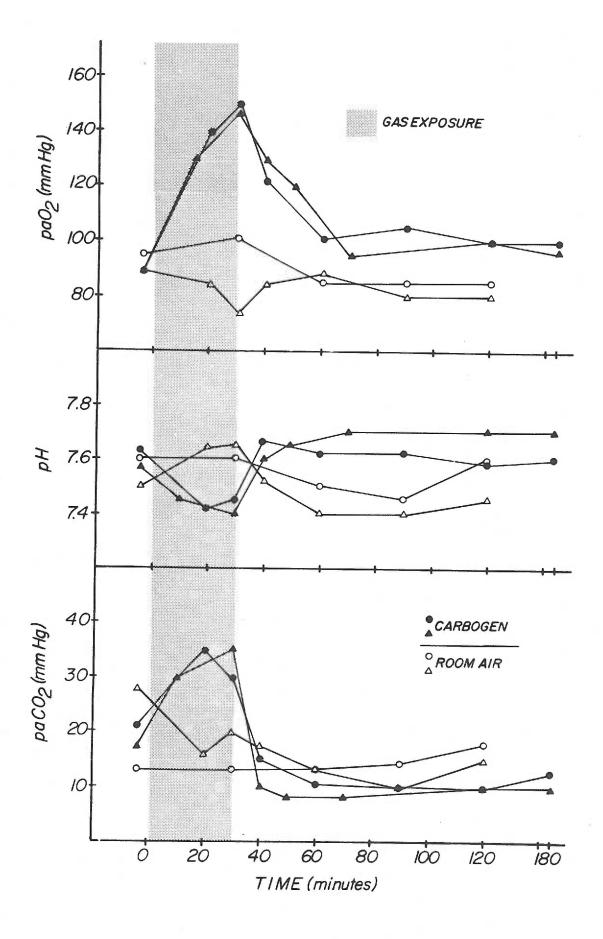
EXPERIMENT II

General Findings

Carbogen inhalation prior to and during a pure tone acoustic exposure was found to substantially limit the degree of N_1 response depression relative to that observed in animals which did not receive this gas. The beneficial effects of carbogen inhalation were confined to those frequencies which exhibited the largest degree of $N_{\mbox{\scriptsize I}}$ response depression following the acoustic overload. There was no evidence that carbogen inhalation prior to and during a pure tone acoustic exposure influenced the number of frequencies affected by the overload. Additionally, there was no evidence that carbogen inhalation influenced the absolute rate of recovery of the N_1 response relative to animals which received room air. As a consequence of less N_1 response depression in the animals which received carbogen but a comparable rate of recovery between the two groups, the final level of $\ensuremath{N_{\mbox{\scriptsize l}}}$ response recovery after 3 hours was greater in the group which received carbogen than in the group which did not.

Effects of Carbogen Inhalation

Complete tables of N_1 response amplitudes at each test frequency (within each test sequence for each experimental animal) are presented in APPENDIX I. Each value in each table represents


 N_1 response amplitude as a percentage value relative to the mean N_1 response amplitude before acoustic overload.

It should first be noted in reference to APPENDIX I and the first 3 N₁ response measures in Figures 24-27 that the initial 20 minutes of carbogen inhalation produced no dramatic or consistent effects on N₁ response amplitude. That is, N₁ response amplitude in the animals which received either carbogen or room air before acoustic overload were similar in TS-3 to those in TS-1 and TS-2.

The effects of a 30 minute period of carbogen inhalation during continuous artificial ventilation on arterial blood pH, PCO₂ and PO₂ are shown in Figure 12. It is evident from these figures that carbogen inhalation induced a rapid rise in PO₂ and PCO₂ with a corresponding fall in pH which reached a maximum at the end of the 30 minute period. At this time the arterial pH was approximately 7.42, the PO₂ = 150 mm Hz, and the PCO₂ = 32 mm Hg. This represents approximately a 170% increase in PO₂, a 160% increase in PCO₂ and a drop in pH from 7.57 to 7.42 relative to initial measures.

It should be noted that after cessation of the carbogen inhalation arterial PCO_2 and pH decreased and increased respectively to exceed control values. This may reflect the participation of a compensatory mechanism. No such compensatory changes were observed in arterial PO_2 . A further observation is that initial arterial blood gas values in both the animals that received carbogen and the animals that did not are different from the suggested normals for the guinea pig (see end of Introduction) (1). In reference to these values the pH and PCO_2 measured before gas

Figure 12. Arterial blood pH, PO_2 and PCO_2 obtained from the carotid artery of 4 guinea pigs during artificial ventilation with either Carbogen (95% $O_2/5\%$ CO_2) or normal air (21% O_2). Shaded area represents the period during which gas exposure was given. Normal room air was given at all other times.

exposure represent alkalosis and hypercapnia Further, the pH in the animals given only room air decreased over the 120 minute period as did the PCO_2 in one animal. The possible mechanisms behind this observed alkalosis and hypercapnia and its implications will be discussed.

Electrophysiological Findings

In all animals the range of frequencies showing the most pronounced N_l response depression following the acoustic overload were found above the overload frequency (4.5 kHz). The frequency or frequencies showing the maximum amount of N_l response suppression were found approximately 1/2 to 3/4 of an octave above this

(6.4 - 7.6 kHz) in all animals regardless of gas exposure condition. This finding is consistent with other reports of pure tone induced N₁ response depression (69)(76).

There was a large degree of variability in the degree of depression and the width of the range of frequencies affected from animal to animal within the same group and between animals in the two groups (APPENDIX I). In some ears, N_1 responses 20 seconds after the acoustic overload were suppressed to 0.0 % from 4.9 kHz (frequency 11) through 9.9 kHz (frequency 19). In other ears this range of maximally depressed frequencies was much more narrow. In some animals N_1 responses never reached 0.0% after the acoustic overload. In general, a consistent relationship between the degree of depression and the range of depressed frequencies was observed between each pair of matched animals (TABLE II). In each

case carbogen was found to have led to a reduction in the degree of N_1 response depression without much difference in the range of frequencies showing effects of the acoustic trauma.

A sample Test Sequence array of N_1 responses at 32 test frequencies (APPENDIX B) taken 21 seconds after cessation of the acoustic overload is shown in Figure 13. This TS-4 is from the same animal previously presented in Figure 6 before acoustic overload. In TS-4 the area of maximum N_1 response depression and the range of frequencies affected are clearly visible.

A sample TS (TS-5) taken after 2 minutes of recovery in the same animal shows a partial recovery of N₁ response amplitude at all test frequencies (Figure 14). After 5 minutes of recovery (Figure 15) all frequencies show an N₁ response in this animal. The last sequence of figures serve only to illustrate the frequency specific effects of pure-tone induced depression of the N₁ response and the basis for the following data.

Relative Depression of Frequencies-Raw Data Animals G.P.#l and G.P.#4

Figure 16 shows the N_1 response amplitude from two matched animals at each of the 32 test frequencies expressed as percentage values relative to the mean N_1 response amplitude in the 3 Test Sequences before acoustic overload. Four TS's are shown which represent measures at 20 seconds, 2 minutes, 5 minutes and 10 minutes after cessation of the acoustic overload.

It may be seen in Figure 16 that the animal which received

through 30 kHz (APPENDIX B). Overload frequency was #10 (4.5 kHz). approximately frequency #12 through frequency #16 (5.4-9.1 kHz). cessation of the acoustic overload (TS-4). Note that the range frequencies from 2.1 kHz through 30 kHz taken 21 seconds after Figure 13. Sample array of averaged ${\rm N}_1$ responses at 32 test Frequency integers are in 1/8 octave intervals from 2.1 kHz of frequencies showing N_1 response supression extends from

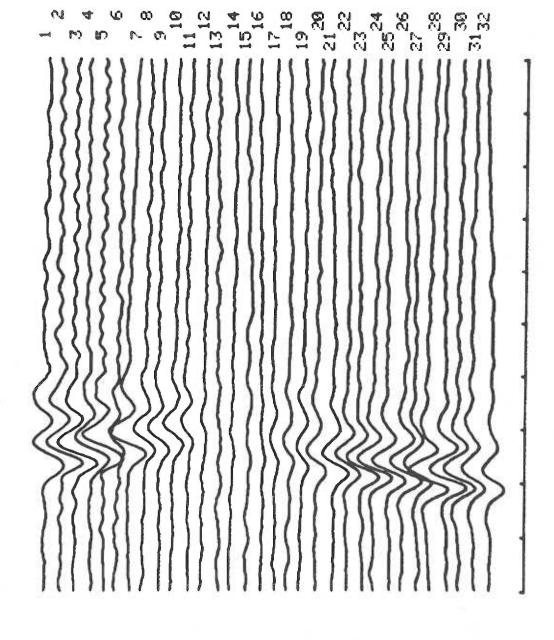


Figure 14. Sample array of averaged $N_{
m l}$ responses at 32 frequencies from 2.1 kHz through 30 kHz taken 121 seconds after cessation of the acoustic overload (TS-5). Note recovery of ${
m N}_{
m I}$ responses at Frequency intervals are in 1/8 octaves from 2.1 kHz through 30 frequencies #12 through #18 relative to the preceeding figure. kHz. Overload was frequency #10 (4.5 kHz).

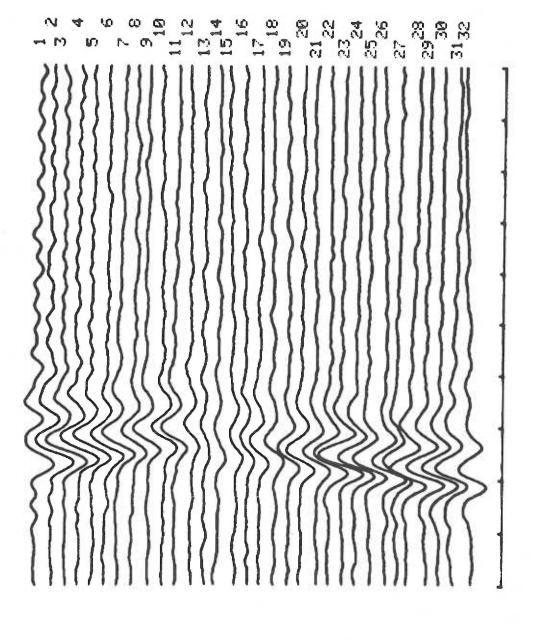


Figure 15. Sample array of averaged N_1 responses at 32 frequencies the acoustic overload (TS-8). Note robust ${
m N}_1$ response at all test from 2.1 kHz through 30 kHz taken 905 seconds after cessation of frequencies relative to preceeding figures. Frequency intervals are in 1/8 octaves from 2.1 kHz through 30 kHz. Overload was frequency #10 (4.5 kHz).

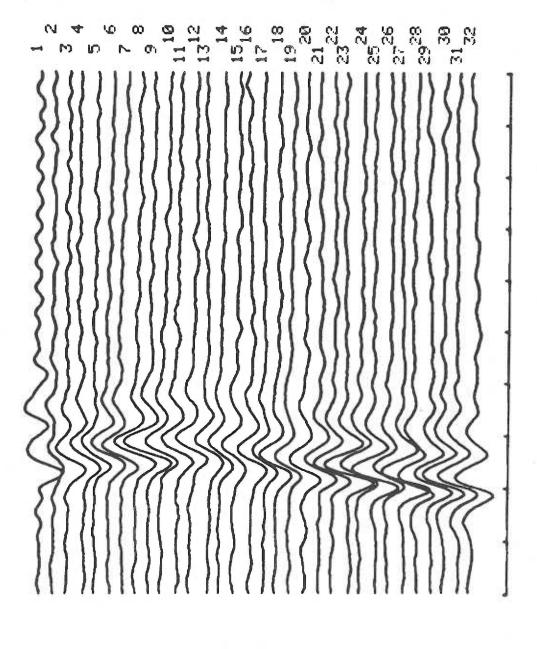
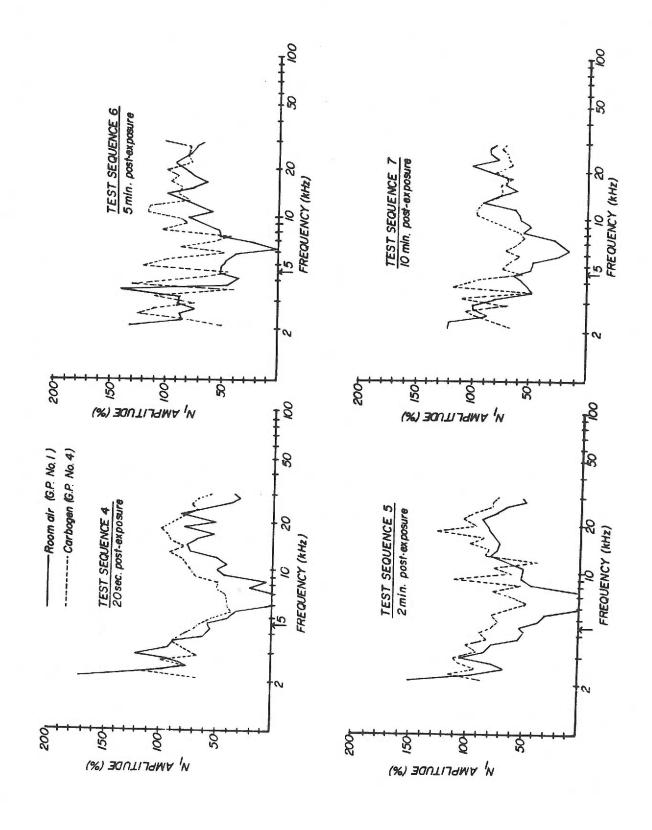
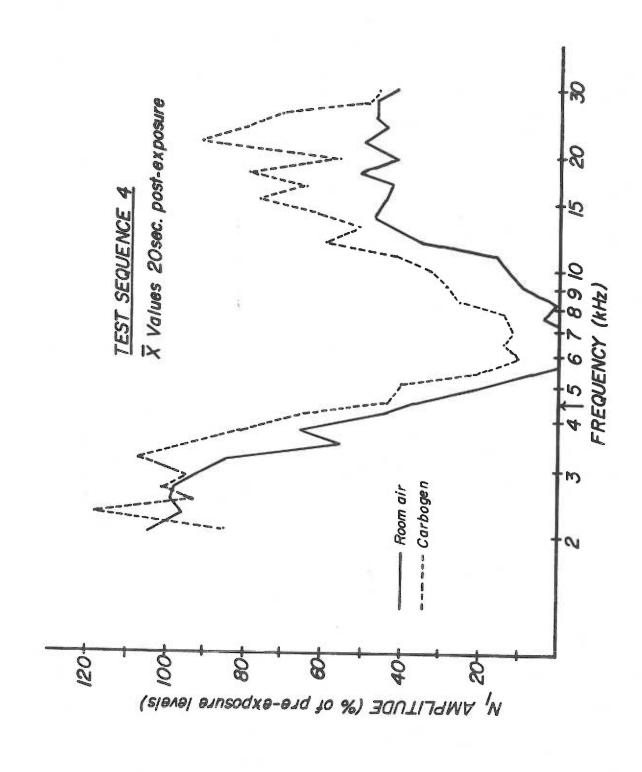



Figure 16. Sample relative depression (RD) curves showing N₁ response amplitude expressed as a percentage value relative to mean pre-exposure N₁ response amplitude for each ear. N₁ responses were measured at various times following a 4.5 kHz, 104 dB pure tone acoustic overload (arrow on horizontal axis). The two curves in each diagram represent raw data from a pair of matched animals one of which received carbogen during acoustic overload the other of which received room air.

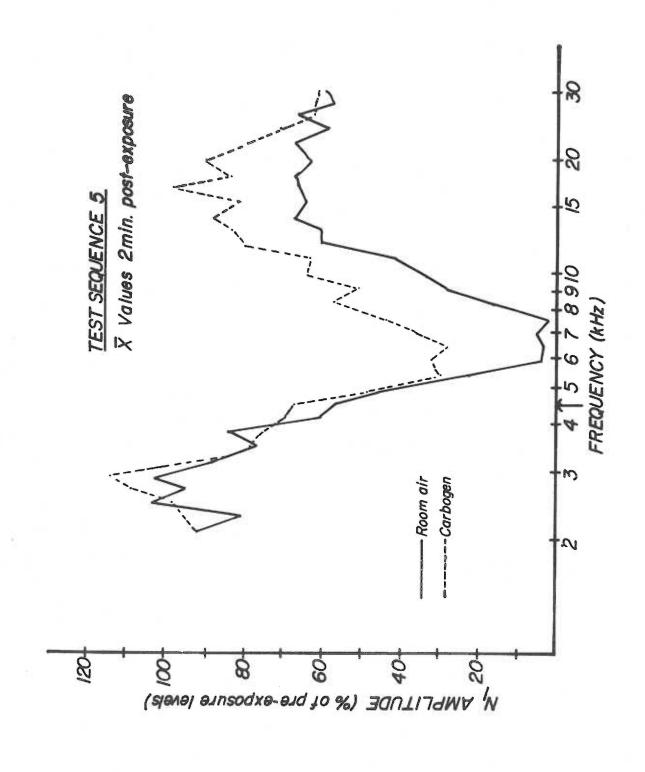

carbogen (G.P. #4) gas for 20 minutes prior to and then 10 minutes during the acoustic overload demonstrated less N_1 response depression than his appropriate control (G.P. #1) in each relative depression (RD) plot. The effects of carbogen inhalation were only evident where there was substantial N_1 response depression. That is, where no depression occurred, no difference between the animals is present in N_1 response amplitude. The areas of maximum N_1 response depression were found approximately 1/2 to 1 octave above the overload frequency (indicated by the small arrows on the horizontal axis). Over the recovery period encompassed by these RD curves both ears demonstrated substantial N_1 response recovery. The beneficial effects of carbogen inhalation are still quite evident in TS-7.

A further observation concerning the raw data presented in the preceding figure is that while depression of N_1 response amplitude was more pronounced in the animal which received room air than in the animal which received carbogen during acoustic overload, the range of frequencies which were affected by the pure-tone overload does not appear to differ dramatically. Apart from a difference in degree of N_1 response depression, the general shape of the RD curves in each TS is about the same. This observation becomes more evident when mean RD curves which include all animals within each treatment group are seen.

Relative Depression of Frequencies-Mean Data

Figure 17 shows the mean RD curves from two groups of 5 animals

Figure 17. Mean relative depression (RD) curves obtained from all at each frequency are expressed as percentage values relative to mean pre-exposure N_1 response amplitudes at that frequency. Test Sequence-4 was taken 20 seconds after cessation of the acoustic overload. Note that the maximum depression of the N_1 response occured approximately one-half octave above the exposure freqthe group which received room air and the group which received ears in two groups of animals in which ${ t N}_1$ response amplitudes uency (indicated by the arrow on the horizontal axis) in both carbogen during acoustic overload.

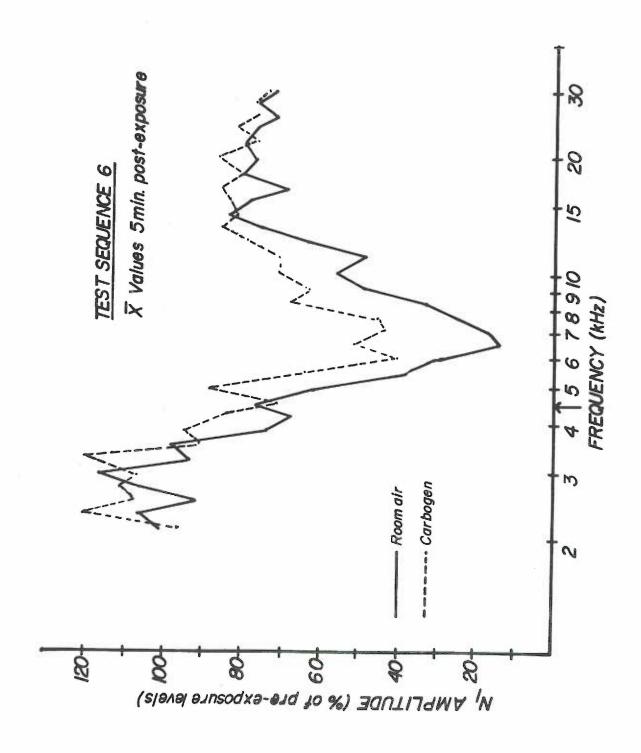


in Test Sequence-4; taken 20 seconds after cessation of the acoustic overload. The relative lack of N_{\parallel} response amplitude depression in the group of animals which received carbogen during exposure is clearly evident in this figure. The similarity in the shape of the RD curves from the two groups of animals is also evident as is the similarity in the frequency which demonstrated the maximum N_{\parallel} response depression. It should be noted that there was a large beneficial effect on the degree of N_{\parallel} response depression as a result of carbogen inhalation. Within the maximally depressed frequency range, the group which received room air during acoustic exposure demonstrated N_{\parallel} response amplitudes that reach a value of 0.0 % while the group which received carbogen did not.

Further observation of these mean RD curves reveals that the range of frequencies above 15 kHz also show some differences in N1 response amplitude between the two experimental groups. It should be noted that the Room Air Group showed substantial depression relative to the Carbogen Group despite the fact that this frequency range lies far above the area of maximum N1 response depression. The relative exacerbation of depression in this high frequency range in the Room Air Group persists up to 2 minutes following cessation of the acoustic overload and then does not subsequently appear.

Figure 18 shows mean RD curves from the two experimental groups of animals 2 minutes after cessation of the acoustic overload. Because the N₁ response depression in the group which received room air does not reach a measurable minimum of 0.0% the effects

at each test frequency is expressed as a percentage value relative to the mean pre-exposure ${\sf N}_1$ response amplitude at that frequency. all ears in two groups of animals in which N_1 response amplitude Figure 18. Mean relative depression (RD) curves obtained from Test Sequence-5 was taken 2 minutes after cessation of the acoustic overload.



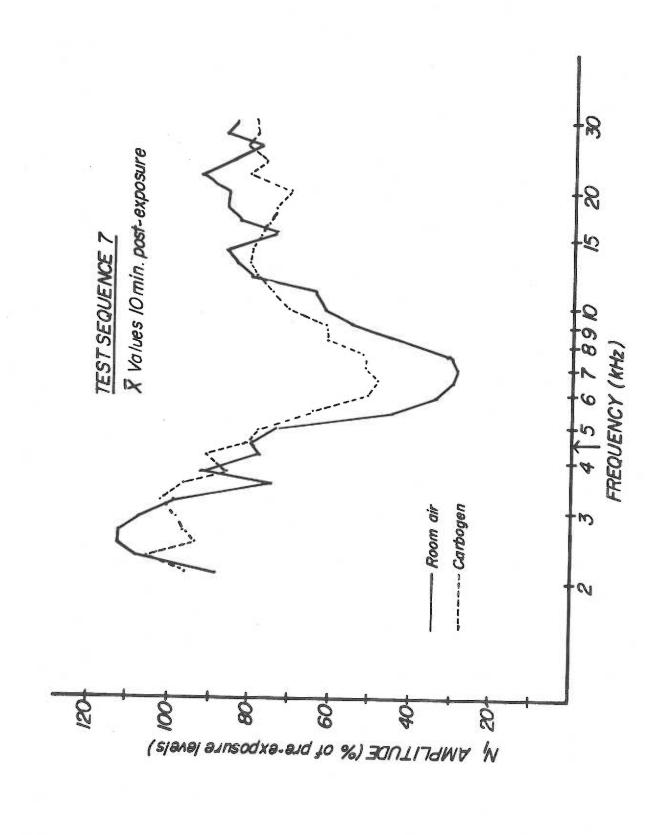
of carbogen on induced N₁ depression are more clearly evident than in Figure 17. Examination of Figure 18 reveals that approximately 25% difference exists between the two experimental groups at the area of maximum N₁ suppression (approximately 6.4 kHz). Because this value is relative to the mean N₁ amplitude before acoustic overload (approximately 50 μ V) this indicated that a mean difference of approximately 13 μ V of N₁ response was produced by carbogen inhalation. When compared to the last figure. the Carbogen Group RD curve seems shifted somewhat to the left relative to the RD curve from the group which received room air. Again, however, the high frequencies show more damage in the latter group.

Figure 19 shows mean RD curves from the two experimental groups 5 minutes after cessation of the acoustic overload. Both groups have shown substantial recovery of N_1 response amplitude in all frequencies at this point in time. The relative difference between the two groups is still approximately 25% at the maximally depressed frequency. A major change in this TS relative to the previous two figures is that the frequencies above 15 kHz in the Room Air Group have recovered to a point equivalent in amplitude to the Carbogen Group. When the RD curves in Figure 18 and Figure 19 are compared it is evident that N_1 response amplitudes in frequencies above 15 kHz have not recovered very much in the Carbogen Group while substantial recovery has occurred in the Room Air Group.

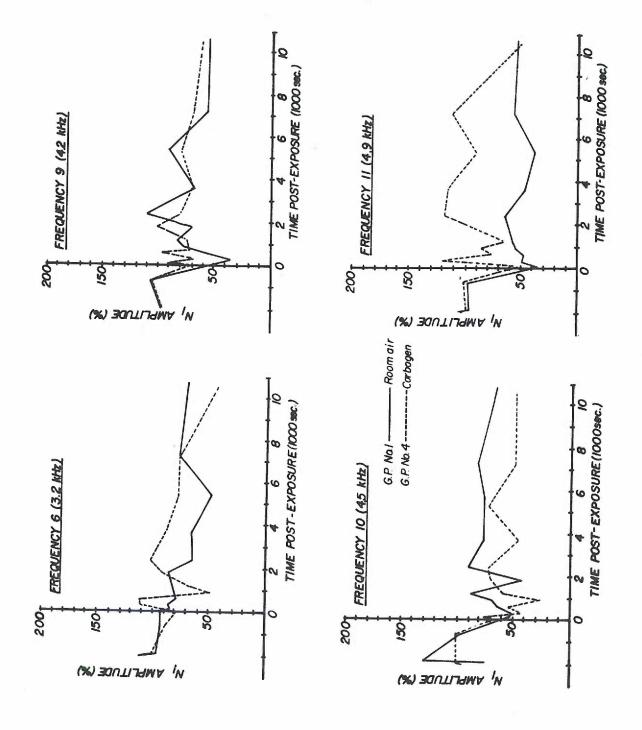
Figure 20 shows mean RD curves 10 minutes after acoustic

exposure N_1 response amplitude at each frequency. Test Sequence-6 all ears in two groups of animals in which ${ t N}_1$ response amplitude Figure 19. Mean relative depression (RD) curves obtained from was taken 5 minutes after cessation of the acoustic overload. is expressed as a percentage value relative to the mean pre-

exposure. In this TS the two groups of animals show even less difference in the degree of N₁ response depression. At the frequency of maximum depression the two groups now differ by only 18% of preexposure levels or approximately 9 μ V. There are no observable differences in N₁ response amplitude between the two groups in the very high frequencies and the approximate shape of the curves are the same.


Relative Recovery of Frequencies: Raw Data G.P.#1 and G.P.#4

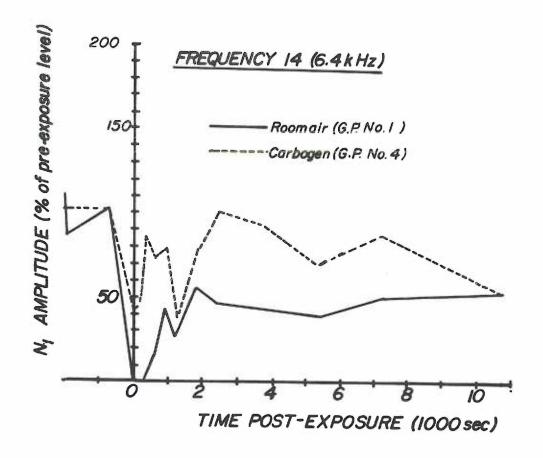
Depression and recovery of individual frequencies following acoustic overload from a representative pair of animals are shown in Figure 21, Figure 22 and Figure 23. In each case G.P. #1 and G.P. #4 are presented. Again, values are plotted relative to mean pre-exposure N₁ amplitudes and so these curves represent relative recovery (RR) measures.


Figure 21 shows the relative recovery (RR) curves for frequency 6 (2.3 kHz); frequency 9 (4.2 kHz); frequency 10 (overload frequency, 4.5 kHz); and frequency 11 (4.9 kHz). Frequency 6 lies well below the range of maximally depressed frequencies, exactly 1/2 an octave below frequency 10. At this frequency very little N_1 response depression due to acoustic overload is evident, as would be predicted from the mean RD curves for the two groups. There is some decline in N_1 response amplitude over time in both animals regardless of gas inhalation condition.

At frequency 9, N₁ response depression is more visible. In this diagram the carbogen animal demonstrates very little N₁

Figure 20. Mean relative depression (RD) curves obtained from all expressed as a percentage value relative to the mean pre-exposure ears in two groups of animals in which ${
m N}_1$ response amplitude is $^{
m N}_{
m 1}$ response amplitude at each frequency. Test Sequence-7 was taken 10 minutes after cessation of the acoustic overload.

animals which received either carbogen (G.P. #4) or room air (G.P. #1) Figure 21. Sample relative recovery (RR) curves showing ${\tt N}_1$ response exposure levels. The vertical axis represents the time of cessation amplitude expressed as a percentage value relative to mean prefrequencies are shown. Data are taken from a matched pair of of the acoustic overload. Depression and recovery of four during acoustic overload.


response depression while the room air animal showed a nearly 30% (15 μ V) decrease in amplitude. Recovery of responses at this frequency was very rapid and after a few minutes both animals exhibit similar N₁ response amplitudes.

Frequency 10 exhibits effects similar to those observed at frequency 9 whereas frequency 11 does not. This latter frequency approaches the maximally depressed range. At frequency 11 very distinct differences in the degree of N_1 response depression were found between the two gas conditions. As has been pointed out, such differences in relative N_1 depression occurred primarily above the exposure frequency.

Figure 22 shows RR curves from G.P. #1 and G.P. #4 at frequency 14 and frequency 15 in the center of the range of frequencies which showed maximum N₁ response depression (6.4 and 6.9 kHz respectively). In both diagrams the effects of the carbogen are very evident. The degree of N₁ response depression is far less in the animal which received carbogen, especially in the first 1000 seconds after acoustic overload. After this time, differences between the two groups are less pronounced.

Figure 23 presents the RR curves from the representative ears for frequencies 17 (8.3 kHz); frequency 18 (9.1 kHz); frequency 19 (9.9 kHz); and frequency 24 (15.3 kHz). Frequency 17 lies just below the full octave above the exposure frequency. The effects of carbogen are evident at this frequency, again in terms of degree of depression and initial stages of recovery. Frequency 18 shows similar effects. At frequency 19, toward the

Figure 22. Sample relative recovery (RR) curves showing N_1 response amplitude as a percentage value relative to mean pre-exposure levels. The vertical axis represents the time of cessation of the acoustic overload. Depression and recovery of two frequencies are shown which are one-half and five-eights of an octave above the exposure frequency. Data are taken from a matched pair of animals.

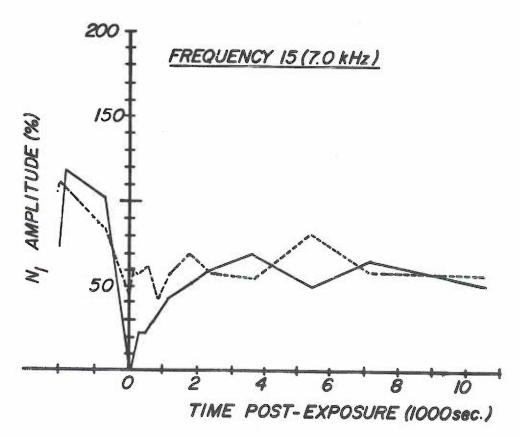
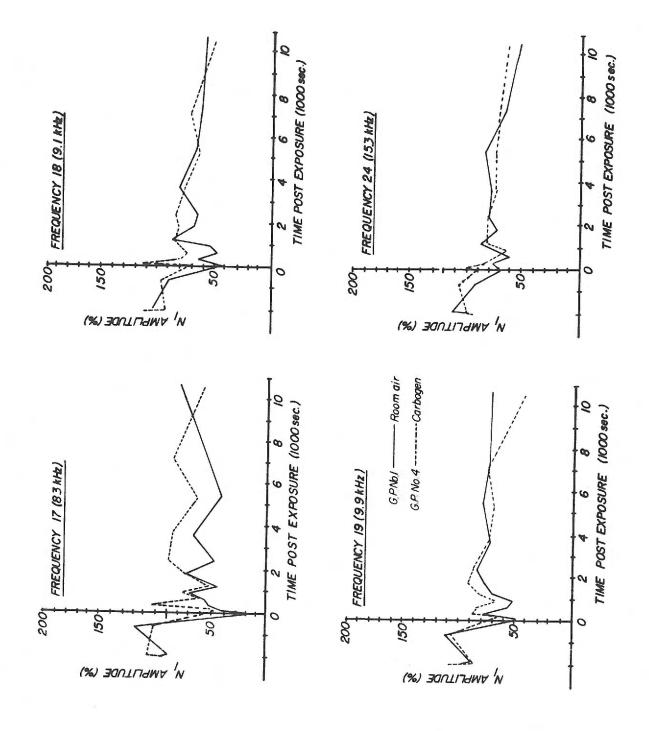
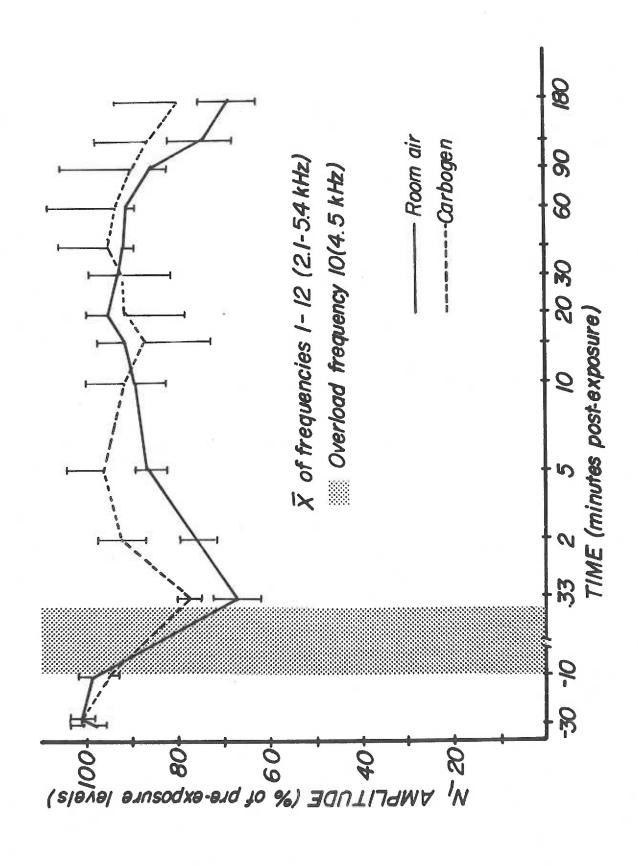



Figure 23. Sample relative recovery (RR) curves showing $\rm N_1$ response amplitude expressed as a percentage value relative to mean pre-exposure levels. Depression and recovery of four frequencies are shown. Data are taken from a matched pair of animals.

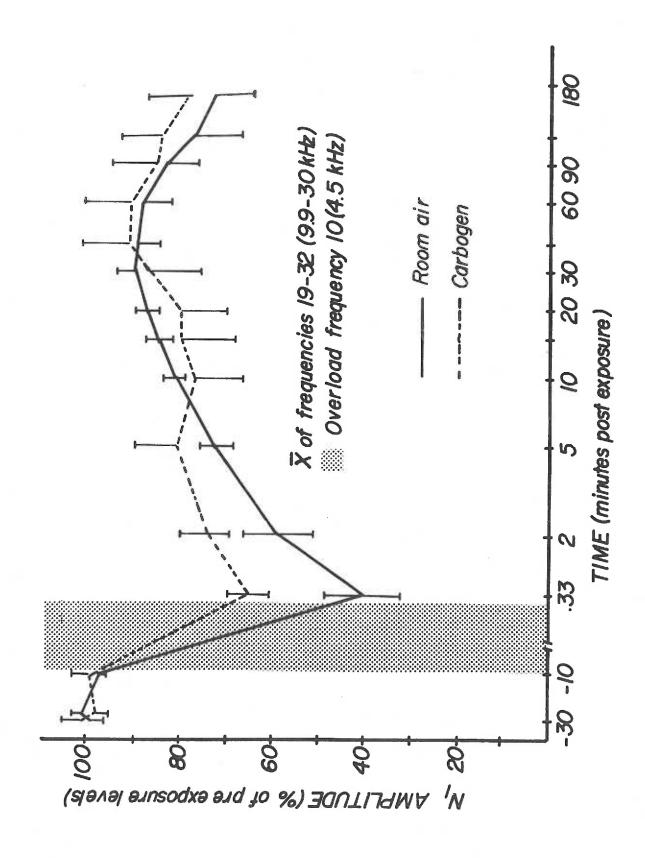

high frequency side of the maximally depressed range, very little difference in the degree of N_1 depression between the two ears is evident. This decrease in the effects of carbogen are still more pronounced at frequency 24.

As may be seen in all presentations of raw data from the representative pair of ears, the level of variability of the N_l responses was high relative to the total N_l amplitude measured. Because of this limitation, comparisons between each set of matched ears at each frequency provide only qualitative information. In order to provide more meaningful information and statistical analysis, pooling of data in frequency subsets provided mean RR curves for each group of animals.

Relative Recovery, Mean Data

Mean relative recovery curves for the two experimental groups are shown in Figure 24, Figure 25, Figure 26 and Figure 27. In each diagram the N_1 response amplitude is expressed as a percentage value relative to the mean N_1 response amplitude before overload. The frequency set 1-12 (2.1 kHz - 5.4 kHz) is shown in Figure 24. This range of frequencies lies generally below the area of maximum N_1 depression with the exception of frequency 11 and frequency 12. It is evident from this figure that some depression of N_1 response occurred as a result of the acoustic exposure. This depression is present in the first minutes after acoustic overload and showed quick recovery. It should be pointed out that N_1 recovery in this frequency range was faster in the

Figure 24. Mean relative recovery (RR) curves obtained from all ears in two groups of animals showing recovery of the N $_1$ response following an acoustic overload in which N $_1$ response amplitude is expressed as a percentage value relative to mean pre-exposure levels for each subset of frequencies. Vertical bars represent \pm 1 SEM. The stippled area represents the duration of the acoustic overload (10 minutes). Frequencies #1-#12 (2.1-5.4 kHz) are shown.



group which received room air than in the group which received carbogen. Both groups show equivalent N₁ response depression after 10 minutes of recovery. The depression observed in this frequency range is most probably due to that in frequencies 11 and 12. The analysis of variance applied to these data fails to show any significant differences in the degree of N₁ depression and recovery F(1,8) = 0.26 (APPENDIX J) over the 3 hour recovery period.

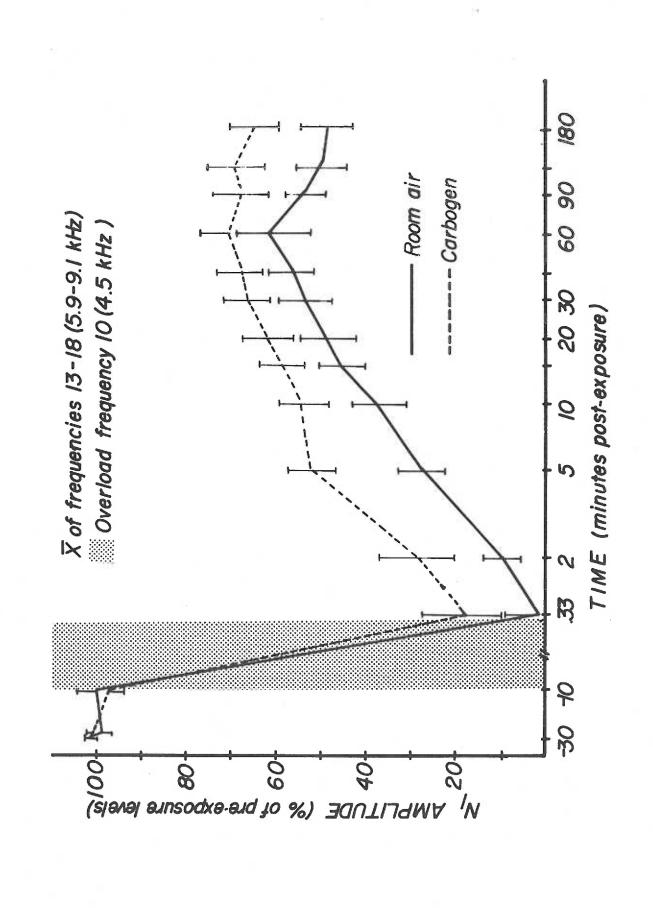
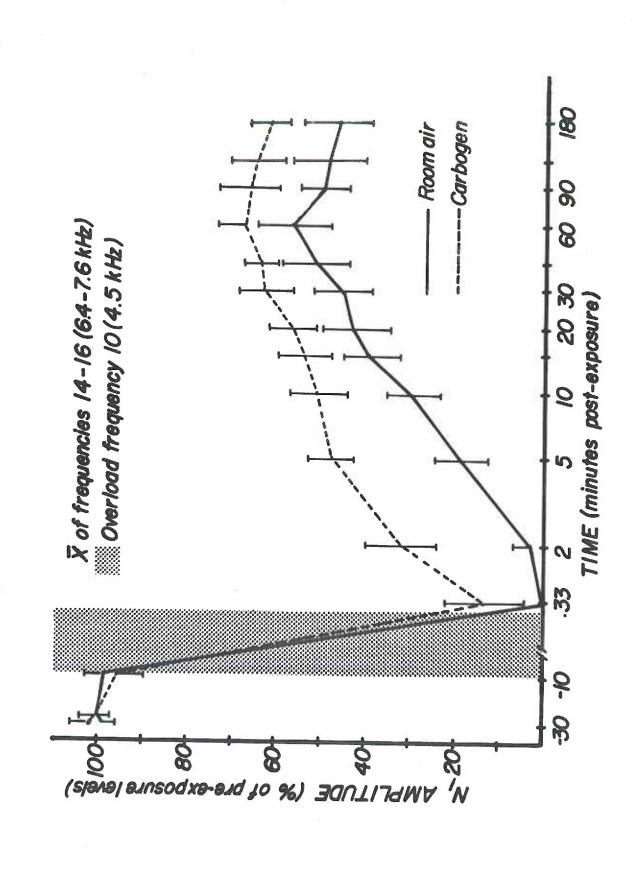

Figure 25 shows the mean RR curves for the frequencies which lie above the range of maximally depressed N1 responses (frequencies 19 through 32 (9.9 kHz - 30 kHz). As with the lower frequency subset some depression as a result of the acoustic overload was present. Again, no differences between the curves over the 3 hour period were found by statistical analysis F(1,8) = 0.22. It should be noted that the degree of N1 depression does appear to differ between the two groups in the first five minutes after overload as was seen in the mean RD curves within this time period. After 5 minutes the curves intersect. It is also interesting to note that the maximum recovery of N1 responses in this frequency range did not occur until 40 minutes after the acoustic overload whereas maximum recovery in the previous figure occurred between 5 and 10 minutes after overload.

Figure 26 shows the mean RR curves for the frequencies 13-18 (5.9 kHz - 9.1 kHz). This frequency range encompasses the maximally depressed frequencies evident in the mean RD curves already shown. In contrast to the mean RR curves at the frequencies above and below this frequency range, frequencies 13-18 do differ significantly (F(1,8) = 8.39, p<.05). The group which received

ears in two groups of animals showing recovery of the ${
m N}_{
m I}$ response following an acoustic overload in which ${
m N}_1$ response amplitude is Figure 25. Mean relative recovery (RR) curves obtained from all levels for each subset of frequencies. Vertical bars represent expressed as a percentage value relative to mean pre-exposure ± 1 SEM. Frequencies #19-#32 (9.9-30 kHz) are shown.

ears in two groups of animals showing recovery of the N $_1$ response Figure 26. Mean relative recovery (RR) curves obtained from all following an acoustic overload in which ${ t N}_1$ response amplitude is levels for each subset of frequencies. Vertical bars represent expressed as a percentage value relative to mean pre-exposure ± 1 SEM. Frequencies #13-#18 (5.9-9.1 kHz) are shown.



carbogen showed far less N_1 response depression and more complete recovery throughout the recovery period. To some degree the measures of N_1 suppression in this frequency range are limited by the floor value of 0.0 μ V. Maximum recovery of this frequency range occurred in both groups at 60 minutes after the acoustic overload. A slow decline in N_1 response occurred in both groups after this time. After 3 hours of recovery the approximate difference in N_1 response amplitude between the two groups is similar to that in the initial period following overload. This is perhaps due to an approximately equivalent rate of N_1 response recovery in the two groups. This latter observation is based on the finding that the slopes of the recovery curves in both groups are approximately the same.

A more narrow range of frequencies within the area of maximum N_1 depression is shown in Figure 27. This figure demonstrates the mean RR curves for frequencies 14 through 16 (6.4 kHz - 7.6 kHz). Depression and recovery of this set of frequencies shows even more distinct differences between the two experimental groups. Again, the measures in the Room Air group are limited by floor effects. Despite this, the analysis of variance shows these curves to be significantly different $(F_{(1,8)} = 8.05, p < .05)$. When this figure is compared to the last (frequencies 13-18) it is evident that any increase in N_1 response depression differences between the two groups was found in the first 15 minutes of recovery.

Again, the approximate rate of N₁ response recovery was the

subset of frequencies. Vertical bars represent ± 1 SEM. Frequencies ears in two groups of animals showing N_1 response recovery following as a percentage value relative to mean pre-exposure levels for each an acoustic overload in which ${
m N}_{
m I}$ response amplitude is expressed Figure 27. Mean relative recovery (RR) curves obtained from all #14-#16 (6.4-7.6 kHz) are shown.

same in the two groups and the final level of N_1 response amplitude reflects that immediately following the acoustic exposure. Additionally, the N_1 response declined in both groups after 60 minutes of recovery. The reason for this decline in N_1 response amplitude which occurred in all animals regardless of gas exposure condition was probably due to alterations in blood gas tension which will be discussed below.

DISCUSSION

The results of both experiments confirmed a significant beneficial effect of carbogen inhalation on acoustically-induced auditory impairment in the guinea pig. Experiment I demonstrated a significant reduction in permanent cochlear impairment induced by high intensity broad band noise using the AC cochlear potential and counts of missing inner and outer hair cells as a measure of cochlear function. Experiment II demonstrated significant protection afforded by carbogen inhalation using the degree of N_1 response amplitude depression as a measure of cochlear function. The finding that carbogen inhalation provided protection from acoustically-induced auditory impairment is substantiated not only by the results of each experiment alone, but also by virtue of the fact that similar results were observed in two experiments which employed completely different experimental designs. Further substantiation is provided by the relatively large numbers of animals used in each study. It should be noted that these data confirm and extend the findings of David Lipscomb and his coworkers at the Noise Research Laboratory (48) (108).

Effects of Carbogen on Permanent Cochlear Impairment

The effects of carbogen inhalation on broad band noise-induced permanent cochlear impairment may be summarized as follows: Carbogen inhalation during high intensity acoustic exposure led to a significant decrease in the pathologic elevation of the $1\mu V$ isopotential

function of the AC cochlear potential relative to that seen in animals which received only normal air. The beneficial effect was found at all test frequencies but was pronounced at test frequencies below 1.5 kHz. Carbogen inhalation was also found to significantly reduce the number of missing outer hair cells in the cochleae of animals which received it relative to those which did not. Carbogen inhalation alone was not found to lead to any changes in AC cochlear potential or number of missing hair cells in animals which received a very low acoustic exposure relative to those which received normal air.

In all animals exposed to the high intensity noise, the areas of maximum hair cell loss were found within Turn 3, Turn 4 and at the apex of the cochlea. At each site, inhalation of carbogen reduced the magnitude of cell loss. The largest OHC loss was observed within Turn 4 in all animals which received high intensity acoustic exposure regardless of gas inhalation condition.

Statistically significant IHC loss was observed only in the group which received normal air and high intensity sound. There was no difference in the mean loss of IHC's at any site within the cochlea between the group which received carbogen with high intensity sound and the Control Group. There was a consistent relationship between the degree of IHC and OHC damage within each of the two groups which received 120 dB noise. Additionally, there was a consistent ratio between the relative amount of damage to IHC's and that to OHC's between the two groups. In all cases the relative degree of IHC damage was less than that of OHC damage.

A shift in the 1 kHz and in the 10 kHz intensity function of

the AC cochlear potential was observed in the group of animals which received carbogen during acoustic exposure. However, the differences in the mean maximal output of the AC cochlear potential between the two groups which received the high intensity acoustic exposure was not found to be statistically significant.

Arterial blood pH, PO_2 and PCO_2 were substantially altered by inhalation of carbogen during the 4 hours of gas exposure while no changes were observed in these measures in animals which received normal air. After 30 minutes of carbogen inhalation corresponding to initiation of the acoustic overstimulation, the arterial pH declined from a baseline level of 7.38 to 7.28. The arterial PCO_2 showed a corresponding rise from 24 mm Hg to 36 mm Hg and PO_2 rose from 64 mm Hg to 230 mm Hg. These values altered over the remaining 3.5 hours only in that PO_2 appeared to decrease after 60 minutes of gas inhalation and showed an increase after 4 hours in two animals.

The finding that OHC damage was patchy and irregular in the animals which received high intensity acoustic exposure lends morphological evidence to support the proposal that a metabolic type of lesion was produced at the sound levels and durations of exposure used in Experiment I. A mechanically induced lesion resulting from localized basilar membrane displacement would be expected to be present over large contiguous areas of the cochlea with inner hair cell loss in the same location. Loss of IHC's in this experiment was found to be patchy and irregular and bore no precise or consistent relation to areas of OHC loss except in terms of gross location within the cochlea (Turn 3, Turn 4 and apex). The general

degree of IHC loss corresponded with OHC loss from group to group. The inference that this represents a metabolic form of cochlear lesion supports the hypothesis that carbogen inhalation in some way provided sensory cells in the organ of Corti with protection from cellular changes produced by the acoustic exposure. It is conceivable that vascular changes produced by carbogen acted in some way to mechanically reduce the amplitude of displacement of the basilar membrane in response to the acoustic overstimulation. The possibility that carbogen inhalation exerted an effect on the cochlea which effectively decreased the amount of basilar membrane displacement, while unlikely, cannot be ruled out.

It was found that while carbogen inhalation led to a statistically significant reduction of damage measured by the mean 1 μV isopotential function over all test frequencies, this protection was most marked at test frequencies below 1.5 kHz. The finding that OHC loss occurred in all animals which received high intensity acoustic exposure from Turn 3 to the apex of the cochlea corresponds with observed differences in the 1 μV isopotential function between the two groups at different frequencies. Turn 4 in the guinea pig cochlea represents areas of peak basilar membrane displacement due to frequencies from 24 Hz through 1248 Hz according to formulation provided by Greenwood (34). It is within this frequency range that the largest differences in elevation of the isopotential function and of OHC loss were found in the two experimental groups.

It is generally accepted that the AC cochlear potential recorded from the round window membrane reflects primarily the activity of outer hair cells in or near the basal turns of the cochlea (14) (107). Therefore the question arises as to why any differences in the 1 μ V isopotential function were found in groups which showed no differences in OHC loss at the base and within Turn 2 of the cochlea? On the basis of the present data one must assume that the round window recording did in fact represent the activity of cells further toward the apex of the cochlea. The present findings also suggest that damage to hair cells within Turn 3, Turn 4 and at the apex may be reflected throughout the frequency range of the 1 μ V isopotential function.

The observation of OHC loss so far apically within the cochlea resulting from exposure to a broad band of noise is somewhat surprising in that this finding is not in precise agreement with previous observations at this laboratory (10). In a study of the effects of broad band noise produced by a single speaker suspended over a wire mesh cage using "free field" conditions, maximum OHC loss was found from Turn 2 through Turn 4 of the guinea pig cochlea (10). Comparison of the 1/3 octave frequency power spectrographs from that and from this study reveals a striking difference. The frequency spectrograph in Experiment I of the present study (Figure 2) shows two distinct maxima. One is a broad area from approximately 900 Hz through 4 kHz. The other maximum is a more narrow sound pressure peak at approximately 250 Hz. It is this latter peak that is absent in the frequency spectrograph from the previous study (10).

It may be suggested that this lower frequency was primarily responsible for the OHC loss observed in animals exposed to the high intensity broad band noise in this study. Spoendlin (92) has shown

OHC losses in Turn 3, Turn 4 and at the apex of the guinea pig cochlea resulting from exposure to a narrow band of noise with a center frequency of 250 Hz at an intensity of 130 dB in a free field situation. It is likely that the peak of sound pressure at this frequency in the present study led to the observed morphological damage. If OHC damage had resulted primarily from higher frequency sound, it would have been predicted to have led to loss of OHC's within the basal turn of the cochlea. Why there was no loss observed within Turn 2 in animals in the present study despite substantial sound pressure at frequencies higher than 250 Hz is not known.

Resonance is increased in any closed chamber relative to free field conditions due to increased sound reflection from surfaces. The peak in the frequency power spectrograph at 250 Hz may correspond to a particular resonance characteristic of the enclosed wooden box used for the acoustic exposure. Resonance of the chamber used in Experiment I would be enhanced by virtue of the fact that the compression drivers which produced the vibration of air were tightly bolted to the wooden enclosure. This probably led to a certain amount of vibration of the wooden box itself which was directly transmitted from the speaker. Although the animals were not in direct contact with the wooden box, further amplification of the resonant frequency may have been provided by close proximity to the wooden wall.

Effects of Carbogen on Arterial Blood Gasses

The observed changes in arterial blood gas values over the 4hour exposure period and then immediately afterward are relevant to

the recovery of damaged ears in this study. If it is assumed that cochlear blood flow and consequently oxygenation increases directly with arterial PCO2 (an overly simple assumption) it is evident that cochlear blood flow would reach a maximum very quickly and stay elevated over the remainder of the 3.5 hour acoustic exposure period. The increase in arteriolar vascular diameter would be expected to be compensated for by autoregulatory mechanisms (Bayliss effect) and by sympathetic activation at more proximal arterial sites. Further, during this time the animals would be expected to compensate for respiratory acidosis and hypercarbia by metabolic and respiratory changes. These would include increased reabsorption of bicarbonate ion in the renal tubule and an increase in the rate and depth of respiration. Because the ambient gas itself led to hypercarbia, metabolic compensation would be expected to play the major role in readjustment of body pH. Metabolic compensatory mechanisms are somewhat longer in latency than respiratory mechanism however, and would be expected to persist for some time after carbogen inhalation stopped.

In this regard it is important to note the dramatic fall in PCO₂ and rise in pH which occurred in one animal 30 minutes after cessation of the carbogen inhalation during recovery in room air. This sharp fall to below normal blood gas values was probably the result of a metabolic compensatory mechanism which lagged slightly in time relative to respiratory compensation. By this line of reasoning, the vascular consequences of this compensatory fall in PCO₂ in animals immediately following acoustic exposure would be expected

to have an antagonistic effect to that produced by the gas. Because this would have occurred during a time in which the sensory cells are recovering from the acoustic trauma, this compensation may have played a negative role in recovery from acoustic overload. Such a negative influence would not be expected to occur in animals which received normal air. However by virtue of the evidence that substantial decreases in acoustically-induced auditory impairment were provided by inhalation of carbogen, the negative influence suggested here must be less significant than the positive effects of carbogen inhalation.

Effects of Carbogen on Temporary Cochlear Impairment

The effects of carbogen inhalation on pure-tone induced temporary auditory impairment may be summarized as follows: Inhalation of carbogen during acoustic overload led to a significant decrease in N1 response depression resulting from a 4.5 kHz pure tone overload at 104 dB. The maximally depressed frequency was found approximately 1/2 octave above the overload frequency in all animals. Carbogen inhalation did not lead to a change in the width of the depressed frequency domain nor did it lead to a shift in the maximally depressed frequency. Inhalation of carbogen during acoustic overload did not lead to substantial changes in the rate of recovery of the maximally depressed frequencies. Differences in rate of recovery from N1 response depression were observed in frequency domains above and below the maximally depressed frequencies. But in these areas there was far less N1 response suppression and therefore recovery

appeared to be faster in the groups which received room air. Because the initial degree of N_{\parallel} response depression was less at the maximally depressed frequencies in animals which received carbogen during acoustic overload and the relative rate of recovery from N_{\parallel} response depression was similar in the two groups, the level of recovery of N_{\parallel} response at the end of 3 hours of recovery was higher in the group which received carbogen than in the group which received room air.

The maximally depressed frequency range was similar in width in both groups. The range of frequencies exhibiting some N_1 response depression extended widely on both sides of the maximally depressed frequency. These findings are in agreement with earlier reports of Mitchell (76) and Meikle (69). When various subsets of frequencies were grouped and the degree of depression compared, it was found that the experimental groups differed significantly only in the range of frequencies showing maximal depression. This range extended approximately from 3/8 to 8/8 of an octave above the exposed frequency (5.9 kHz to 9.1 kHz). Above and below this range, there were no significant differences between the two groups over the 3 hours recovery period. It was found that at the very high frequencies (9.9 kHz -30 kHz) the N₁ responses were more depressed but recovered very quickly in the group which received room air. Similar effects were found in the frequency range below the area of maximal N₁ response depression (2.1 kHz - 5.4 kHz). These effects were only found in the first 5-10 minutes following exposure. Any observed differences in these two frequency domains in terms of N₁ response depression occurred only in the first 10 minutes after the acoustic overload.

Because carbogen inhalation ended at the same time as the acoustic overload it seems probable that the protection or beneficial effects of the gas ended at the same time. This proposal is supported by the finding that although the initial level of damage differed between the two groups, the relative rate of recovery in the maximally depressed frequency range did not.

Carbogen inhalation rapidly altered the arterial pH, PCO_2 and PO_2 in the artificially ventilated animals. It should be remembered that the animals used for blood sampling were respirated using artificial ventilation for approximately 1/2 hour before initial blood samples were drawn. After 20 minutes of carbogen inhalation the pH fell quickly from 7.6 to 7.4, the PCO_2 rose from 20 mm Hg to 33 mm Hg and the PO_2 rose from 87 mm Hg to 140 mm Hg. However, there is a major inconsistency in these data. Comparison of the initial blood gas values (Figure 12) in the animals which were being artificially ventilated with the normal values for the awake and unrestrained guinea pig breathing room air (TABLE IV) shows differences. The net effect of carbogen inhalation in Experiment II apparently was to shift the blood gas and pH values from highly abnormal initial values to more normal blood gas tensions.

The "normal" blood gas values in Experiment I ranged from pH = 7.37 - 7.45; $PCO_2 = 24 - 30$ mm Hg; and $PO_2 = 60 - 70$ mm Hg. It is evident that the initial values in Experiment II (taken approximately 1/2 hour after artificial ventilation was initiated) represent guinea pigs which are highly alkalotic, have a substantially decreased PCO_2 and an elevated PO_2 . Such effects could be accounted for by over-

ventilation of the animal in the rate or the depth of respiration. A possible consequence of the blood gas values in the anesthetized artificially-ventilated guinea pigs might be a decrease in cochlear blood flow induced by low PCO₂ and high pH.

The procedure which was used to adjust the rate and depth of respiration is presumably at fault. The procedure used was to increase the depth of respiration slowly from low levels until spontaneous middle ear muscle activity (MEMA) ceased. This technique has been used for several years to guage adequacy of respiration at this laboratory (68). It is apparent that in this case the procedure overcompensated for proper levels of respiration. This is most probably due to a failure to adequately compensate for the latency between alteration of respiration depth and appearence of MEMA. Alternatively it may simply require overrespiration of the animal to eliminate MEMA.

Following cessation of the carbogen inhalation there was some compensatory mechanisms evident in terms of adjustment of body pH and PCO₂ but these were not as dramatic as those observed in Experiment I. The compensation in Experiment II did occur at points in time in which recovery was presumed to be taking place.

The findings of extremely low PCO_2 values in the blood of all animals in Experiment II may explain the gradual decline in the N_1 response amplitude that was observed after approximately 60 minutes of recovery from acoustic overload. This point in time corresponds to approximately 2 hours of artificial ventilation for each animal. The decline in N_1 response may be accounted for by a decline in the

functional state of the cochlea in which there was an artificially induced vascular insufficiency due to decreased PCO₂ or increased pH.

Despite the finding that carbogen served to elevate the PCO₂ to normal levels it remains true that this elevation produced a significant beneficial effect. In this regard, the findings of both Experiment I and Experiment II confirm the general hypothesis of this study. That is, that inhalation of a gas which increases blood flow within the cochlea and the oxygenation of that blood led to a decrease in acoustically-induced auditory impairment.

Because such similar effects were observed in two experiments which employed such different designs substantial weight is given to the vascular insufficiency theory of noise induced hearing loss (41) (42)(57)(72). It is evident from these measures that arterial $P0_2$ increased substantially. Unfortunately the hypothesis that the beneficial effects of carbogen occurred through vascular alterations can only be confirmed through inference. The bulk of experimental evidence (27)(33)(50)(84)(90)(95)(98) however supports this inference.

Other Interpretations

Because it was not possible to directly observe an increase in cochlear blood flow, interpretation of these findings as resulting from such may be premature. There may be other effects of this gas which conceivably participate in the effects observed in these studies (38). Some of these effects of carbogen inhalation include (a) decrease in intracellular pH; (b) changes in plasma HCO3; (c) increase in cardiac output or pulse rate; (d) increased permeability of vessels

due to dilatation and opening of gap junctions or (3) decreased basilar membrane displacement due to some mechanical effect of carbogen on the vessel cells.

Because the general shape, maximally depressed frequencies and rate of recovery of the two groups in Experiment II were very similar, it seems reasonable to eliminate effects of carbogen inhalation on the mechanical performance of the cochlea as a participant in the mechanism of its beneficial effects. A similar inference may be made by virtue of the finding that the magnitude of OHC loss was decreased by inhalation of carbogen during acoustic exposure but no change was observed in the location of OHC loss within the cochlea.

Other of the suggested effects of carbogen may or may not be a participant in the observed findings. When the possible effects of carbogen are evaluated in terms of applicability to the present two studies it may be suggested that, of the direct and indirect effects of carbogen inhalation, none appear more physiologically relevant to the functional state of the cochlea than increased delivery of hyper-oxygenated blood. Although assumed through inference rather than observation, it seems safe to present a presumptive hypothesis of the beneficial effects of carbogen inhalation as acting on oxidative metabolism in the acoustically hypoxic organ of Corti.

In terms of the specific aims of these studies we have confirmed that carbogen inhalation during acoustic overexposure leads to reduction in (a) the pathologic permanent elevation of the 1 μ V isopotential function of the AC cochlear potential; (b) the number of

missing inner and outer cochlear hair cells 30 days following the insult and (c) the temporary depression of the cochear N_1 response within a specific frequency range. It was inferred that this effect was produced by vasodilation of vessels in the inner ear produced by a measured elevated PCO_2 and increased delivery of oxygen measured as an elevated PO_2 . These findings lend strong support to the hypothesis that vascular insufficiency is a large component in some forms of acoustically-induced hearing loss.

A Final Word

The implications of the dependence of cochlear sensory cells on oxygen and on a competent vascular supply which is especially pronounced during acoustic exposure have both basic scientific and clinical implications. Such findings may provide a partial explanation as to why some ears are damaged and some are not by identical acoustical exposures; why there are tough and tender ears. Vascular events may underly instances of sudden deafness in humans and may provide a key to treatment of these disorders. Interruption of oxidative metabolism may play a role in disorders of hearing which appear to have no cause or many causes, such as tinnitus. Lastly, carbogen inhalation may one day provide a therapeutic measure in cases of accidental acoustic trauma. In this instance, treatment usually follows trauma and so the length of time between the initial insult and the application of carbogen must be elucidated in future research.

Future investigations into the effects of acoustic trauma in cochlear oxidative metabolism must also concern itself with understanding the anatomical and biochemical events which may underly the protective effects of carbogen inhalation. Understanding of these mechanisms may allow development of other vasoactive compounds which may provide many of the effects of carbogen inhalation without the inconvenience of gas application.

SUMMARY AND CONCLUSIONS

An investigation was conducted into the possible beneficial effects of inhalation of carbogen gas (95% 0_2 -5% $C0_2$) on acoustically-induced permanent and temporary auditory impairment in guinea pigs. Evaluation of permanent cochlear impairment after exposure to high intensity broad band noise was accomplished using the AC cochlear potential and counts of missing inner and outer hair cells from each turn of the cochlea. Evaluation of temporary auditory impairment following a single pure tone sound exposure was accomplished using the amplitude of the N_1 response of the cochlear nerve potential over a large frequency range. In both experiments inhalation of carbogen preceeded and accompanied acoustic overstimulation in one-half of the animals while the other one-half received normal air. It was found that:

- 1) Carbogen inhalation during acoustic exposure led to a significant protection of the cochlea from the permanent and temporary pathologic effects of intense sound.
- 2) The general description of the protection afforded by carbogen inhalation was that it reduced the magnitude of cochlear impairment. The morphology and anatomic location of hair cell loss, the range of frequencies affected by the pure tone and the rate of recovery from temporary N_1 response depression were not altered.

Based on the current understanding of the actions of carbogen gas it was concluded that carbogen inhalation led to a reduction in

cochlear damage due to a support of oxidative metabolism in the acoustically-hypoxic organ of Corti. This support was provided by increased delivery of hyperoxygenated blood to the inner ear.

Animal Numbers, Group and Weights During the Experimental Period

Tag Number	Weight Day No. 1	Weight Day No. 3	Weight Day No. 5	Weight Day of Sacrifice	Stabilization Interval (Days)
Group A- Cor	mpressed Air/5	O dB Acoust	ic Exposure		
10	311	310	305	499	34
35	278	289	300	473	35
99	228	289	300	476	34
100	276	285	296	502	34
no tag	303	320	340	553	33
Group B- Ca	rbogen/50 dB A	coustic Expo	osure		
2	296	307	340	570	30
22	282	303	340	576	29
56	249	264	295	410	30
70	274	283	310	490	29
94	240	250	280	490	30
Group C- Cor	npressed Air/1	20 dB Acoust	cic Exposure		
5	310	319	328	463	32
7	237	250	276	410	34
13	255	268	287	450	34
14	276	274	274	406	34
21	298	303	310	430	32
54	319	329	350	460	35
57	305	318	228	476	32
58	267	276	300	452	34
60	283	293	307	450	37
63	305	325	335	460	34

Tag Numbe	er Weight Day No. 1	Weight Day No 3	Weight Day No. 5	Weight Day of Sacrifice	Stabilization Interval
Group D-	Carbogen/120 dB	Acoustic Exp	posure		
1	250	274	280	424	36
4	268	286	290	486	31
22	205	234	250	391	36
53	234	249	252	366	29
59	325	329	348	451	29
62	324	339	360	478	36
64	215	244	260	390	31
71	230	240	251	360	31
75	300	325	355	510	36
98	310	341	360	453	29

APPENDIX B

Integer Numbering of Frequencies in 1/8

Octave Steps From 1 Through 32 Used in

N₁ Recovery Experiment

Test Stimuli

Integer	Actual Frequency (kHz)	Integer	Actual Frequency
1	2.1	26	18.2
2	2.3	27	19.8
3	2.5		
4	2.7	28	22.0
5	2.9	29	24.0
6	3.2	30	26.0
7	3.5		
8	3.8	31	28.0
9	4.2	32	30.0
10	4.5		
11	4.9		
12	5.4		
13	5.9		
14	6.4		
15	7.0		
16	7.6		
17	8.3		
18	9.1		
19	9.9		
20	10.8		
21	11.8		
22	12.8		
23	14.0		
24	15.3		
25	16.6		

APPENDIX C

ANALYSIS OF VARIANCE FOR 1 µv ISOPOTENTIAL FUNCTIONS (One way, equal group numbers)

A. Over all test frequencies:

2105.0653 = SSB 923.3620 = SSE 3028.4273 = SST 1052.5326 = A 16.1993 = B 64.9738 = F-Value, p <.001 2.0000 = k-1 57.0000 = k(n-1)

GROUPS INVOLVED	SOURCE OF	VARIATION	F	DF	р
Control X Carbogen/120		Treatment	41.5	(2,57)	< .001
Control X Compressed Air	/120	Treatment	98.5	(2,57)	८. 001
Carbogen/120 X Compresse	ed Air/120	Treatment	12.12	(2,57)	<.01

B. Over test frequencies 100 Hz - 1.5 kHz:

1573.4333 = SSB 1006.7500 = SSE 2580.1833 = SST 786.7166 = A 17.6622 = B 44.5421 = F-Value, p(.001 2.0000 = k-1 57.0000 = k(n-1)

GROUPS INVOLVED SOURCE OF VA	RIATION	F	DF	р
Control X Carbogen/120	Treatment	32.7	(2,57)	₹.001
Control X Compressed Air/120	Treatmant	88.4	(2,57)	८ .001
Carbogen/120 X Compressed Air/120	Treatment	13.59	(2,57)	८.005

C. Over test frequencies 2kHz- 20 kHz:

```
1747.4333 = SSB

1158.7500 = SSE

2906.1833 = SST

873.7166 = A

20.3289 = B

42.9789 = F-Value, p \( \cdot .001 \)

2.0000 = k-1

57.0000 = k(n-1)
```

GROUPS INVOLVED	SOURCE OF VARIATION	F	DF	р	·
Control X Carbogen/120	Treatment	41.6	(2,57)	< .001	
Control X Compressed Air/1	20 Treatment	81.89	(2,57)	< . 001	
Carbogen/120 X Compressed	Air/120 Treatment	6.73	(2,57)	< .05	

APPENDIX D

ANALYSIS OF VARIANCE FOR INTENSITY FUNCTIONS

(One-way, equal group numbers)

A. 1 kHz:

5061338.8000 = SSB 3185384.8000 = SSE 8246723.6000 = SST 2530669.4000 = A 55883.9438 = B 45.2843 = F Value, p < .001

GROUPS INVOLVED	SOURCE OF VARIATION	ON F	DF P
Control X Carbogen/120	Treatment	59.3	(2,57) (.001
Control X Compressed Air/120	Treatment	75.3	(2,57) < .001
Carbogen/120 X Compressed Air/120Treatment			(2,57) ns

B. 10 kHz

59868.1000 = SSB 392338.3000 = SSE 452206.4000 = SST 29934.0500 = A 6883.1280 = B 4.3489 = F-Value, p 4.05 2.0000 = k-1 57.0000 = k(n-1)

GROUPS INVOLVED	SOURCE OF VARIATION	F	DF	р
Control X Carbogen/120	Treatment	. 52	(2,57)	, ns
Control X Compressed Air/120	Treatment	8.17	(2,57)	<.05
Carbogen/120 X Compressed Air/120	Treatment	4.55	(2,57)	ns

APPENDIX E

Complete listing of counts of missing OHC's from 3 groups of animals in Experiment I. Values are expressed as percentages relative to the total number that would be present in equivalent segments of perfect organ of Corti.

Compressed Air/120 Group

<u>Animal No.</u>	Apex	Turn 4	Turn 3	Turn 2	Base
63-L R 14-L R 50-L S5-L R 5-L R 21-L R 57-L R	100 18 12 19 19 20 9 14 12 22 32 33 66 19	67 27 33 19 21 30 21 18 27 26 9 32 44 100 25 27 9 35 30	21 12 14 10 11 12 26 35 25 30 11 10 23 17 83 33 19 15 9	6 6 6 6 6 6 1 4 5 5 5 7 6 9 4 5 6 3 8 0 0 0 3 1 0 0 0 3 1 0	20523103020001600000
X SD SEM	29 23 5.2	31 20 4.6	21 17 3.8	5 3.4 0.78	1.25 1.8 0.4

Carbogen/120 Group

Animal No.	Apex	Turn 4	Turn 3	Turn 2	Base
22-L R 98-L R 59-L R 4-L 75-L R 1-L R 71-L R 64-L R	15 15 6 14 21 18 3 4 9 8 5 6 6 13 7 10	8 12 5 7 16 15 3 8 4 8 37 9 13 20 10 17 26 14 19	8 9 0 3 10 6 3 4 4 17 19 1 3 24 9 12 6 3 2	13 7 1 0 1 3 0 1 1 2 0 8 1 6 4 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0
X SD SEM	10.4 5.3 1.2	13 7 1.8	7.3 6.4 1.4	2.1 3.4 0.78	0.1 0.0 0.0
		Contro	ol Group		
0-L R 99-L R 10-L R 35-L R 100-L R 2-L R 70-L R 56-L R 22-L R 94-L	6 5 8 6 5 7 12 7 5 6 6 1 8 7 4 5 6	0 3 0 5 3 6 2 4 3 4 2 5 2 1 8 6 3 2 0 5	0 0 0 0 0 1 1 0 0 0 0 0	0 1 0 0 0 0 1 2 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0
	6	5	2	0	0

APPENDIX F

ANALYSIS OF VARIANCE FOR OUTER HAIR CELL COUNTS

(2-way, repeated measures on B, location)

	SS	DF	MS		F	Р
BET SUBJECTS	20542.986	59	5005,000		40.74	
A ERROR	12412.586 8130.400	2 57	6206.293 142.638		43.51	< .001
LKKOK	0130.400	57	142.030			
WITH SUBJECTS	36389.200	240				
В	11991.886	4	2997.971		37.51	< .001
AB	6177.813	8	772.226		9.66	
ERROR	18219.500	228	79.910			
GROUP	SOURC	E OF VAR	IATION	DF	- F	р
Control X Carbog	en/120 Tre:	atment		(2,57)	4.52	4.05
Tollor of A Carbog	CII) 120 11C	a onici i c		(2,57)	7.52	€.05
Control X Compre	ssed Air/120 Trea	atment		(2,57)	49.6	(.001
Carbogen/120 X C	omnressed Air/120	Treat	mont	(2,57)	24.16	, 001
our bogen, 120 % of	ompressed ATT/IZC	Jireau	IIICH C	(2,57)	24.10	(.001
Above at APEX	Tre	eatment		(1,18)	24.12	∠.001
Ab T				(-,,	L. Ta, I L.	C.001
Above at T ₄	Tre	eatment		(1,18)	22.96	٥.001
Above at T ₃	Tre	eatment		(1,18)	13.7	< .001
3		a omene		(1,10)	13.7	~ .001
Above at T ₂	Tre	eatment		(1,18)	.28	ns
Above at BASE	T					
FIRSTE AC DAGE	Ire	eatment		(1,18)	. 05	ns

APPENDIX G

Complete listing of counts of missing IHC's from 3 groups of animals in Experiment I. Values are expressed as percentages relative to the total number that would be present in equivalent segments of perfect organ of Corti.

Compressed Air/120 Group

Animal No.	Apex	Turn 4	Turn 3	Turn 2	Base
63-R L 14-R L 50-R L 54-R L 5-R L 13-R L 21-R L 57-R L 76-R	10 5 4 14 6 5 8 5 3 16 25 20 12 4 20	5 5 10 6 5 3 1 7 6 2 6 8 8 16 3 9 2 5 8 13	3 5 6 3 0 6 3 6 9 0 0 0 8 5 0 7 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 3 3 2 0 0 0 0 4 0 2 2 0 10 1 2 2 0	000000000000000000000000000000000000000
X SD SEM	9.5 6.5 1.5	8.4 6.9 1.6	5 2.8 .65	1.6 2.3 .5	0 0 0
	<u>C</u>	arbogen/l	20 Group		
22-R L 98-R L 59-R L 4-R L	4 3 0 2 4 7 2 2	2 2 0 0 3 7 1 4	2 0 0 0 3 5 6	0 2 0 0 0 0 1	0 0 0 0 0 0

Appendix G, Continued)

Animal No.	Apex	Turn 4	Turn 3	Turn 2	Base
75-R	2	3	1	0	0
L	2	4	0	0	0
1-R	4	3	3	0	0
L	3	8	3	0	0
53-R	4	3	0	0	0
L	3	4	2	0	0
71-R	5	4	2	0	0
L	3	4	2	0	0
64-R		0	0	0	0
L	3	3	1	0	
62-R	4	4	5	0	0
L	4	6	2	0	0
Χ	3.15	3.2	1.8	0.15	0.0
SD	1.4	2.1	1.8	0.49	0.0
SEM	0.33	0.5	0.43	0.11	0.0

		Control	Group		
0-R L 99-R L 10-R	2 3 2 3 4	1 2 0 0 5 4	0 0 0 0 0 3	0 0 0 0 1	0 0 0 0
L 35-R L 100-R	5 3	4	1 0 0 0 0	0 0 0 0	0 0 0 0
2-R L 70-R L	3 5 3 5 2 5	0 3 2 3 3 4 0	2 2 2 0	0 0 0 0	0 0 0 0
56-R L 22-R L 94-R L	5 8 3 1 2 3	0 3 2 2 2 2 2	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
X SD SEM	3.5 1.6 0.36	2.1 1.5 0.55	0.5 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0

APPENDIX H

ANALYSIS OF VARIANCE FOR INNER

HAIR CELL COUNTS

(2-way, repeated measures on B, location)

	SS	DF	MS		F	Р	
BET SUBJ	1700.596	59					
A Error	797.726 902.870	2 57	398.8 15.8		25.8	<.001	
WITH SUBJ	3131.600	240					
B AB Error	1345.813 398.106 1387.680	4 8 228	336.49 49.70 6.00	63 !	55.28 8.17	<.001	
Group	Source	of Var	iation	DF	F	Р	
Control x Carbogen/120 Treatment (2,57) 0.33 ns							
Control x Co	mpressed Air	/120 Tre	atment	(2,57)	25.2	<.001	
Carbogen/120	x Compresse Air/1		atment	19.78	<. 001		
Above at Ape	x	Trea	atment	(1,18)1	99.8	۷.001	
Above at Tur	n 4	Trea	atment	(1,18)1	31.4	۷.001	
Above at Tur	n 3	Trea	atment	(1,18)	50.7	۷.001	
Above at Tur	n 2	Trea	atment	(1,18)	10.4	۷.05	
Above at Bas	e 	Trea	atment	(1,18)	0.0	ns	

APPENDIX I

Averaged N response amplitudes at 32 frequencies in 15 Test Sequences expressed as percentage values relative to mean N response amplitude in Test Sequence 1 through 3.

G.P. #1 (Room Air)

FREQ 1234 X X X X X X X X X X X X X X X X X X X	36 1 159 1 138 1 105 1 108 1 1 108 1 1 108 1 1 108 1 1 108 1 1 108 1 1 108 1 1 108 1 1 105 1 1 1 1	38 10 127 10 128 10 196 10 197 10 198	3 4 4 7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	513576483366666667777661366576 1535764833666666777776886576	602628684441957011158681952512261 13887886844357011158681952512261	71128000 1009 1009 1009 1009 1009 1009 1009	95822210M68561M1M94M667540922688 1808777655454M556555688789922688	99927031227823645480582266792266	1097005666021395063082255022295650 128866746635506308222295650 109776886674663550638222295650	11888465530055636078648398985789866 12719655746678668878789888	122 172 1143 1034 1034 1035 1035 1035 1035 1035 1035 1035 1035	135667148051792198028087303605462 143973555346480847303605462	183282675858585899042555519526056515 58776658553567555776668758775	15 77 77 113 79 713 79 713 79 713 79 713 713 713 713 713 713 713 713 713 713
30 ½ 31 ½ 32 %	105 1 104 103	98 9	90 38 96 30 97 36	67 49 52	76 74 66	86 87 81		36 89 83	75 96 87					76 77 77

G.P. #2 (Carbogen)

FREQ 123422222 45678910	TS1 2 94 89 114 105 82 122 97 119 114 97 96 133 112 67 88 125 100 102 118 89	116 79 95 83 88 70 120 86 96	79 7 95 7 100 16 80 7 84 9 63 6 86 9 75 7	6 71 8 89 3 54 9 101 3 61	7 77 84 76 75 78 67 74 72 65	8 60 63 83 71 89 44 94 63	9 79 79 74 58 69 53 74 52 59	10 61 58 66 58 66 77 61 61 56	11 32 65 82 102 69 67 38 46	12 58 65 63 69 73 58 74 50	13 54 53 53 61 47 63 49 39 52	14 54 53 59 59 59 59 63 69	15 56 60 47 55 59 65 61 48 44
112344244444444444444444444444444444444	118 89 94 129 112 116 125 87 102 147 105 101 115 86 100 135 108 94 115 82 91 120 100 119 111 113 106 106 107 97 106 107 106 106 110 98 103 106	7879384718895396656641	49. 53.23.23.23.23.23.23.23.23.23.23.23.23.23	0946080004712884983327	70 41 30 28 45 45 45 45 42 51 42 52 53 66	68 65 44 22 7 1 7 7 4 7 4 4 9 9 9 1 1 2 7 3 1 5 5 1	5133400254503413355488066555543335448806	47314254457200131733154423 45546661317333154423	4753399924232654563766 66554924563766	4331852478013664456666679	4407044477845555494773244555666666666666666666666666666666666	44 94 49 49 49 49 49 49 49 49 49 49 49 4	44 33 43 55 55 50 57 48 45 56 56 57 47 87 14 59

G.P. #3 (Room Air)

```
5
35
63
132
117
                                                                                                                  8
63
63
100
117
80
FREQ
                                                                                                                                                                                 13
50
57
79
117
                        TS1
                                                 3
91
82
123
128
92
117
                                                                                                                                                                        12
92
78
                                                                                                     7
39
66
127
162
80
95
41
                                                                                                                              993125777664724476355691732867528
8578573367635691732867528
1998
                                                                                              6
                                                                                                                                                                                                              15
51
55
                                                                                        89
97
81
105
114
   1234567890112345678901222345678901
                                    194
            104
                                                                  60
                                                                                                                                                           89
80
                                                                                                                                                                                                 69
64
67
65
                                                                                                                                               36
                                                              70
102
137
77
                                    107
                        110
                                                                                                                                              68
                          96
74
                                        79
                                                                                                                                          81
                                                                                                                                                                    97
                                                                                                                                                          85
                                                                                                                                                        101
63
                        197
                                    100
                                                                              89
                                                                                                                                                                                                 64
61
                                                                                                                                                                                 93
27
                                                                                                                 1642828163544516966553398377
165344516966553398377
                          80
                                    102
                                                                                           57
                                                               100
                        110
                                    119
                                                    69
                                                                  31
                                                                                          967756188815613741337419179
214633741337419179
                                                                                                                                                        111
                                                                                                                                                                                                 66
                                                 111
107
95
                                                                 80
32
20
26
                                       91
94
                                                                                                     1 i i
41
                          96
                                                                              94
37
34
57
21
                                                                                                                                                        51
86
19
76
56
43
39
47
51
77
71
                                                                                                                                                                                                49
58
60
60
60
42
33
40
42
55
43
47
58
                       98
103
100
                                    101
88
92
                                                                                                        58
                                                 111
97
76
                                                                                                     115
64
29
37
26
30
                        110
                                                                    99999
                        111
                                    111
                                                                                 0
                        91
111
                                    194
                                                 104
81
80
116
71
85
108
111
                                                                              000137620351890
134758577690
                                    107
                                    110
                        110
                       85
122
                                        98
                                                                                                    417
57
65
87
107
89
53
105
95
101
                                                                    0
                                    106
                                                                 119
83
84
96
122
98
103
                                       95
                                    108
                                    103
                                                 108
78
88
                                       94
98
                                    112
                                    96
97
102
93
                                                 100
92
                                                                                                                                                                                                 44
                                                                                                                                                       114
84
104
                        110
                                                                                                                                                                                                60
62
67
57
61
56
                       90
108
93
95
                                                 108
97
107
                                       99
                                                                                                                                                      103
93
102
97
                                                 93
102
                                    110
                                                                                                     100
98
                                                                                                                                              91
86
                                                                               76
                        100
                                       96
                                                                              50
                                                                                                                    96
99
                                       90
                                                                                                        88
                        101
                                                 198
                                                                              50
                                                                                                                                              94
                                                                                                                                                                       81
                                                                                                                                                                                    68
                                                                                                                                                                                                              48
```

G.P. #4 (Carbogen)

```
5
83
115
92
107
FREQ
                       TS1
                                         2
                                                            4
65
115
75
99
66
78
                                                                                                                25
43
47
57
                                                                                                                                      10
75
75
102
90
119
91
69
                                                                                                                            9
65
72
70
74
                                                                                                                                                              12
34
70
100
129
88
89
27
121
69
47
115
                                                                                                                                                     11
                                                                                                                                                                            1495276888484953868844476
                                                                                                                                                                                                      15
37
59
62
63
57
45
                       102
                                                  98
93
92
                                      98
                                                                                        48
                                                                                                    64
                                                                                                                                                 45
86
95
115
76
102
33
138
80
74
117
            100
                                    106
                                                                                                    81
97
                                                                                        79
                       105
                                    102
                                                                                     125
  104
                                      90
                                                                                     110
73
110
                                                                                                 107
69
                                                104
                       111
                                    102
                                                  85
                                                                         91
                                                                                                                 47
47
                                                                                                                          100
                       110
                                   100
                                                  89
                                                                                                 110
47
                                                                                                                             67
                      198
97
96
192
192
195
195
95
                                                                                     36
130
67
43
                                   101
                                                   90
                                                               88295555
65556
                                                                         101
                                                                                                            101
                                                                                                                                                                                                      38
65
63
                                      96
97
                                                                           82
                                                110
                                                                                                 11876556882155747727757768667762
                                                                                                                            62
76
                                                105
                                                                           88
78
72
78
61
                                                                                                                                      19192766696492732517997636
1919276769999999999978786
                                   101
                                                101
                                                                                                                            60
                                                                                                                                                                                                      50
50
53
                                  97
112
107
102
111
98
106
92
112
97
97
                                                100
                                                                                    120
100
47
86
56
41
103
                                                                                                                           6576636575248856476188777688677768
                                                  85
                                                                                                                                                  109
                                                                                                                                                                 90
                                                  89
                                                                40
                                                                                                                                                    58
                                                                                                                                                                 40
                                                                                                                                                                                                      40
                                                102
                                                                41
                                                                            46
                                                                                                                                                 100
58
49
88
                                                                                                                                                              91
54
68
84
76
74
110
                                                                                                                                                                                                      55
56
44
                                                               42
51
                                                                       59
78
113
60
76
77
84
89
85
127
195
49
78
                                                  83
                                               105
                                               101
96
106
                                                                48
                                                                                                                                                                                                      57
51
                      110
108
86
                                                               69
72
76
89
79
19
3
                                                                                    80
816
114
78
85
85
85
87
87
87
87
                                                                                                                                                 84
83
103
116
89
81
97
75
76
                                                                                                                                                                                                      44
75
                                               101
103
104
95
                                                                                                                                                                                      99
105
80
83
72
95
88
88
87
                         99
98
                                                                                                                                                             105
104
77
74
102
88
105
79
                                                                                                                                                                                                      58
                                                                                                                                                                                                      59
                       106
                                                                                                                                                                                                      60
                         93
                                      99
                                               107
                                                                                                                                                                                                      64
                       100
                                      95
                                               104
                                                                                                                                                                                                      69
                                                            90
190
79
67
67
68
                      164
                                   100
                                                  95
                                                                                                                                                                                                      69
                         97
94
                                     97
                                               105
                                                                                                                                                                                                     59
57
57
59
60
                                     94
                                               111
                                  98
92
109
                      100
                                               199
                                                                                                                                                                88
78
                                                                                                                                                                                         84
                      102
97
                                               104
                                                                                                                                                                                         69
74
                                                                                                                                                    84
                                                  93
92
                                                                                                                                                    84
                                                                                                                                                                88
                      191
                                  106
                                                                                     101
                                                                                                                                                    87
                                                                                                                                                                87
                                                                                                                                                                            96
                                                                                                                                                                                         81
                                                                                                                                                                                                      56
```

G.P. #6 (Carbogen)

```
TS1
103
96
FREQ
                                    90
70
                                             3
105
132
                                                                                           7
125
115
103
                                                                                                                  9
127
127
80
                                                                                6
142
155
120
101
125
95
141
101
123
97
63
                                                                                                                                         11
118
132
82
                                                                                                                              10
100
                                                                                                                                                     12
73
125
93
93
98
109
                                                                                                                                                                   13
88
                                                                                                                                                                               14
                                                                                                                                                                                           15
   1234567890
                                                        120
                                                                    108
                                                                                                      135
132
                                                                                                                                                                               88
                                                                                                                                                                                           90
                                                        132
84
                                                                    144
105
                                                                                                                              108
                                                                                                                                                                            125
82
                                                                                                                                                                 129
                     107
73
115
                                                                                                                                                                                        118
                                  109
                                               82
                                                                                                      84
93
113
                                                                                                                              130
                                                                                                                                                                95
91
92
117
                                                                                                                                                                                          72
84
                                    88
                                                                                                                  105
102
97
                                             138
                                                        108
                                                                                                                              80
106
                                                                     106
                                                                                              90
                                                                                                                                       108
98
103
103
105
97
98
62
775
776
79
98
109
116
131
                                                                                                                                                                              88
                                 92
113
                                                                    98
115
                                               92
89
                                                        100
                                                                                           111
93
122
88
107
86
74
56
                                                                                                                                                                           96
117
78
83
                                                                                                                                                                                        104
                        97
97
                                                        101
                                                                                                     107
128
90
105
92
81
64
48
44
45
54
67
75
79
85
92
100
                                                                                                                             111
                                  103
                                               99
                                                                     103
                                                           86
                                                                                                                  118
193
199
191
28
55
51
58
67
82
97
                                                                                                                                                   111
95
99
94
82
75
62
57
74
71
75
80
97
102
104
114
126
128
                                                                                                                                                               86
83
109
77
81
76
55
56
76
73
85
95
100
105
115
                                                                                                                                                                                          69
77
93
76
82
76
64
59
70
          97
                                                                       99
97
74
                                 95
111
                                           106
99
114
103
105
116
113
116
113
107
                                                           81
                        89
                                                           31
                                                                                                                                                                            191
77
82
76
59
57
76
76
85
                                   96
94
                        89
                                                           51
36
15
6
6
6
6
6
8
12
3
4
  112134156
11212222234
112122222226
11212222226
                     101
                                                                       65
49
22
16
21
20
32
                       93
                                 100
                       94
93
91
91
98
87
                                   88
                                                                                  45
                                                                                              40
                                   991538358553
                                                                                          41
45
47
51
62
68
75
82
100
                                                                              471554
559721
9981229
129129
139
                                                                                                                                                                                         76
80
                                            114
                                                                       46
                                                                                                                                                                                         83
95
90
                                           106
115
122
113
113
120
111
                                                                   46
65
88
91
106
                       99
89
88
91
                                                                                                                                                                             95
93
                                                           60
                                                                                                                                                                           100
                                                                                                                                                                                         98
                                                           70
                                                                                                                             105
                                                                                                                                                                           100
                                                                                                                                                                                         94
                       91
                                                          89
89
                                                                                                                 109
                                                                                                                             129
                                                                                                                                                                           113
                                                                                                                                                                                      107
                       85
                                                                  107
121
116
                                                                                                                 102
109
                                                                                                                             120
                                                                                                                                        128
                                                                                                                                                               115
116
                                                                                                                                                                           104
                                                                                                                                                                                         95
                       97
                                   91
                                                                                                     109
107
                                                        100
                                                                                                                                                   128
122
114
                                                                                          105
                                                                                                                                        135
123
                                                                                                                             125
                                                                                                                                                                           105
                                                                                                                                                                                      100
                       95
                                           109
108
                                   95
                                                          93
89
76
55
47
35
33
                                                                                          107
                                                                                                                 109
                                                                                                                             111
                                                                                                                                                               111
                                                                                                                                                                           104
                                   92
96
                       98
                                                                   110
                                                                                          197
                                                                                                      108
                                                                                                                 108
                                                                                                                             125
                                                                                                                                        125
                                                                                                                                                               110
                                                                                                                                                                           107
                                                                                                                                                                                      191
                       92
                                                                  100
73
64
                                           111
                                                                               103
                                                                                          111
                                                                                                      115
                                                                                                                 121
                                                                                                                             121
                                                                                                                                        125
                                                                                                                                                   121
                                                                                                                                                               109
                                                                                                                                                                           105
                                                                                                                                                                                      101
                       98
93
                                90
103
105
                                           110
103
95
                                                                                 90
82
71
                                                                                                     104
103
107
                                                                                                                                                  106
115
115
                                                                                             96
                                                                                                                                                              98
114
117
115
                                                                                                                 108
                                                                                                                            106
                                                                                                                                        114
                                                                                                                                                                          92
108
                                                                                                                                                                                        96
                                                                                                                108
109
113
                                                                                                                            114
115
122
                                                                                                                                       119
123
122
                                                                                          101
87
                                                                                                                                                                                      103
                       99
                                                                     49
53
                                                                                                                                                                          117
                                                                                                                                                                                      115
                                   95
                                            194
                    100
                                                                                 60
                                                                                             97
                                                                                                     111
                                                                                                                                                   111
```

```
G.P. #8 (Room Air)
FREQ
                        TS1
91
78
                                                                                                                                                              11
108
90
122
117
                                                                                                                                                                            12
113
100
                                                                                                                                                                                                                       15
75
88
                                                                                                         7
124
108
129
100
                                                                                                                       132
92
100
                                                                                                                                                 19
149
                                                                                                                                                                                                         14
                                       118
                                                                                            6
102
115
98
139
138
111
63
87
66
86
56
32
24
13
16
                                                           3
                                                                                      5
                                                                                                                                    124
98
107
                                                                                                                                                                                                       105
                                                                                                                                                                                             89
                                                                                  89
                                                        89
                                                                  102
    12345678901123145678901222222222223333
                                                                                                                                                 94
96
121
153
108
                                                                                                                                                                                                      98
100
                                                                                                                                                                                             90
                                       121
118
                                                                     82
94
                                                                               121
182
73
92
106
95
95
64
79
41
              *******************************
                                                     100
                                                                                                                                                                                                                    98
82
116
93
86
106
78
                                                                                                                                                                            116
97
108
                                                                                                                                                                                             96
                                                        85
87
                             96
                                                                                                                       95
143
111
                                                                                                                                                                                         927
1118
1262
104
755
775
1126
106
106
109
109
109
109
109
109
                                                                                                                                    107
116
                                       117
95
93
                                                                                                                                                                                                       107
                                                                  100
                             95
                                                                                                          130
93
98
100
99
114
                                                                                                                                                                                                      143
122
124
106
85
                                                                                                                                                              114
932
116
94
94
748
552
49
556
68
88
88
                                                                     92
77
                             84
                                                     119
                                                                                                                                                                            86
129
113
114
66
46
55
57
79
83
106
121
108
117
113
113
                                                                                                                                     102
                             95
                                                     111
                                                    106
108
101
114
93
94
                                                                                                                       150
103
99
95
54
60
41
50
44
51
54
80
                                                                                                                                    147
111
94
94
59
53
43
56
67
78
68
51
101
108
108
1128
109
100
                                                                     99879999999999955557457212
44555556557656762
                             86
                                        106
                                        98
85
94
110
                          93
113
                                                                                                                                                                                                                    101
71
43
                                                                                                                                                                                                           91
                          91
95
103
                                                                                                                                                                                                           56
                                                                                                            49359451391392964357102
                                        101
96
93
                                                                                                                                                                                                           50
                                                     120
100
105
111
96
108
                                                                                                                                                                                                        50
48
57
72
57
68
95
92
105
                                                                                                                                                                                                                       40
45
55
56
69
98
88
                              84
                                                                                       Ø
                           105
                                                                                       0
                           100
                          106
104
94
57
                                            82
                                                                                    9931767724371977687
33476779777887768
                                                                                                 31
33
49
66
84
87
89
86
                                            99
                                        96
95
111
107
87
103
                                                     147
83
105
113
98
110
                            104
                                                                                                                         92
92
105
                                                                                                                                                                                                                         84
                                                                                                                                                                   94
                               87
99
                                                                                                                                                                                                                         96
                                                                                                                                                                   99
93
                                                                                                                                                                                                         101
                                                                                                                                                                                                                      86
113
                                                                                                                                                                                                         103
                               98
                                                                                                                                                                                                        118
94
95
                                                                                                                         91
96
98
111
                                                                                                                                                                 110
                                                                                                                                      108
                               89
                                          100
                                                                                                                                      104
95
117
68
98
                                                                                                                                                                                                                         88
                                         99
103
                                                       106
87
                               94
                                                                                                                                                                                                                         85
                                                                                                  95
81
                                                                                                                                                                 108
                            103
                                                                                                                                                                    95
                                                                                                                                                                                                         133
                                                                                                                                                                                                                      106
                            90
102
                                                       109
                                          100
                                                                                                  85
92
89
78
                                                                                                                         108
98
93
93
                                                                                                                                                                 108
                                                                                                                                                                                                         102
                                                                                                                                                                                                                      100
                                                       105
                                             91
                                                                                                                                                                 112
120
112
109
                                                                                                            100
82
75
                                                                                                                                                                                                                         95
                                                                                                                                                                                                         106
                                             98
                                                       100
                             100
                                                                                                                                                                                           124
118
120
                                                                                                                                       106
118
                                                                                                                                                                                                        124
121
                                                                                                                                                                                                                      117
                             86
100
                                                       113
                                          100
                                                                                                                                                                                                                      109
                                             93
                                                        106
                                                                                                                                                    192
                                                                                                                          129
                                                                                                                                          91
                                                                                                                91
                                91
                                          109
                                                           98
                                                                                      87
                                                                                                   80
```

APPENDIX I (continued)

G.P. #9 (Carbogen)

```
13
175
209
115
142
                       2
106
FREQ
                                                                           8
                                                                                          10
                                                                                                          12
                                                                                                                                  15
                                                            6
                                                                                                 11
                                                                                                                          14
                                 92
87
                                                                               115
                                                                                       100
132
120
115
97
                                                                                                       109
212
76
113
                                       71
163
                                                       98
198
                                                                                               139
205
                                                               145
                                                                       86
202
               100
                                               103
                                                                                                                        118
                                                                                                                                148
                                                                               139
                                                                139
                 80
                       132
                                               205
                                                                                                                        181
                                                                                                                                108
                                                                               152
132
142
                                                       110
95
        90
                                         96
                                                 87
                                                                 66
                                                                          80
                                                                                                 83
                               101
               108
                                                                                                                          94
                                                                                                                                126
                                                                95
132
153
                               105
                                         33
                                                 95
                                                                                                115
               105
                         88
                                                                        140
                                                                                                                        118
                                                                                                                                110
                                               161
257
559
559
559
739
153
22
266
368
                                                       148
275
                                                                                                       203
275
                                                                                                               195
278
    567
                               116
                                                                        176
                                                                                                189
                 60
                       123
                                       101
                                                                                                                        126
                                                                                                                                101
                                       242
27
                       207
                                 42
                                                                        292
                                                                               160
                                                                                         64
                                                                                                214
                                                                                                                        207
                 50
                                                                                                                                114
                                                                                                 52
75
78
                                                         52
79
               103
                         63
                               132
                                                                106
                                                                         68
                                                                                 95
                                                                                        124
                                                                                                         67
                                                                                                                  32
                                                                                                                          85
                                                                                                                                116
    9
                                                                                                         83
81
               116
                         88
                                 94
                                         48
                                                                 87
                                                                        101
                                                                                100
                                                                                       114
                                                                                                                 90
                                                                                                                        118
                                                                                                                                  98
                         83
73
                                                          90
59
                                                                          81
73
                                                                                93
100
               107
                               199
                                         50
                                                                119
                                                                                       116
                                                                                                                100
                                                                                                                          95
                                                                                                                                102
  10
               109
                               116
                                          19
                                                                  89
                                                                                        116
                                                                                                  88
                                                                                                         86
                                                                                                                  62
                                                                                                                          98
                                                                                                                                  84
                                                                               122
80
66
79
67
62
                       116
105
107
93
                                                                                                                135
99
78
  11
12
13
               83
113
                                         30
12
                                                          85
47
                                                                                                                        124
72
                                                                 91
95
77
53
65
65
67
83
94
                               100
                                                                        116
                                                                                        100
                                                                                                 94
82
64
57
61
70
80
77
93
                                                                                                        113
                                                                                                                                107
                                                                          91
74
75
69
78
75
89
99
                                                                                         91
76
75
65
70
78
81
82
97
92
                                                                                                        101
72
81
73
81
90
85
102
111
103
                                                                                                                                  68
70
                                 80
               85
107
103
                                                                                                                          80
71
75
83
                                107
                                           0
                                                          47
                                                                                                                  83
71
  14
15
                                           0
                                                          49
                                 99
                                                                                                                                  67
                       105
                                 90
                                           0
                                                                                                                                  65
68
                                                          40
  16
17
18
                                          15
15
               103
                                                         55
51
53
68
62
94
92
91
                                                                                                                  75
71
                                100
                         96
                                                                                 78
77
93
93
                                                                                                                          84
91
               113
                         84
                                                                                                                                  94
93
                                191
                                                                                                                102
89
                                 97
                 91
                        110
                                                 42
60
64
                                                                                                                                  91
87
                 97
                                110
                                         28
57
58
66
                         91
                                                                                                                        100
  101
105
                 93
                        101
                                                                                                                103
                                105
                                                                                                                        101
                 98
                         96
                                105
                                                                        107
                                                                                100
                                                                                                                105
                                                                                                                                111
                                                                                                                          96
                                                  87
75
98
                                                                        101
93
120
                                                                                                89
113
                        114
                                                                  94
                                                                                101
                                                                                        110
                                                                                                        108
                101
                                  83
                                                                                                                105
                                                                                                                        103
                                                                                                                                101
                                                                106
113
                                                                                        100
117
                 94
                        104
                                100
                                                                                110
                                                                                                        102
                                                                                                                103
                                                                                                                        103
                                                                                                                                110
                                                                                                        124
97
93
95
86
66
                                          90
75
93
                        106
                                                        108
                                                                                106
                                                                                                110
                                                                                                                        113
                 92
                                101
                                                                                                                110
                                                                                                                                113
                                                                                          97
99
84
                                                                  95
88
                                                                          97
91
                                                                                                                  95
83
                                102
124
                                                          84
80
                                                                                  82
86
                                                                                                                          91
84
                 95
                        102
                                                                                                102
                                                                                                                                100
                                                  95
86
                101
                          74
                                                                                                  84
                                                                                                                                  84
                                                                82
103
75
91
83
                                                          65
79
71
                                                                                97
103
                                                                                                                                  92
79
48
                         95
                                124
                                          95
                                                                          90
84
88
85
90
                                                                                                105
                                                                                                                          99
                 89
                                                                                                                105
                                                100
73
63
65
67
                                                                                                                95
55
102
                                                                                                                        196
57
85
92
                        103
                                114
                                        106
                                                                                        103
                                                                                                  9875
95
97
97
                 82
                 83
                        100
                                                                                  88
                                                                                          82
                                111
                                          66
                                                          80
75
65
                         93
98
97
                                196
                                          48
46
52
                                                                                100
                                                                                                                                  70
67
                100
                                                                                        104
                                                                                                        100
                                                                                  92
95
                                                                                          98
95
                                                                                                        104
92
                 93
                                102
                                                                                                                  94
                                                                                                                102
                100
                                                                        102
                                                                  80
                                102
                                                                                                                                  60
```

APPENDIX I (continued)

G.P. #10 (Carbogen)

```
TS1
99
                                                                                                                                                                                                                                                                                                      15
79
                                                         2
94
                                                                                                                                                                                              9
                                                                                                                                                                                                                                           12
104
FREQ
                                                                                                                                                                                                           10
                                                                                                                     5
                                                                                                                                                                           8
                                                                                                                                                                                                                             11
                                                                                                                                                                                                                                                                  13
                                                                                                                                                                                                                                                                                    14
                                                                                                                                       6
                                                                      106
82
84
                                                                                                                                                                                                                                                                 91
                                                                                                                 89
                                                                                                                              91
107
                                                                                                                                                 71
115
                                                                                                                                                                                                           99
                                                                                              91
                                                                                                                                                                   106
                                                                                                                                                                                         94
                                                                                                                                                                                                                             86
                                                                                                                                                                                                                                                                                    81
          123456789
                                                                                         102
117
117
127
30
                                                                                                           120
128
134
                                                                                                                                                                       53
92
                                  151
                                                                                                                                                                                                       135
                                                                                                                                                                                                                             58
                                                                                                                                                                                                                                                              128
                                                         66
                                                                                                                                                                                     110
                                                                                                                                                                                                                                           164
                                                                                                                                                                                                                                                                                143
                                                                                                                                                                                                                                                                                                  158
                                                                                                                                                                                                                                          117
137
156
156
                                                                                                                                                                                                                                                                                                  112
125
                  \(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tirit{\text{\tex}
                                                     195
                                                                                                                              105
                                                                                                                                                                                     148
                                                                                                                                                                                                       110
                                                                                                                                                                                                                                                              102
                                   110
                                                                                                                                                 128
                                                                                                                                                                                                                          141
                                                                                                                                                                                                                                                                                143
                                                                                                                                                                                                                                                             131
151
129
46
71
                                                                            97
                                                                                                                               145
                                                                                                                                                 122
                                                                                                                                                                   102
                                                                                                                                                                                     140
                                                                                                                                                                                                       125
                                                                                                                                                                                                                             94
                                   122
                                                         80
                                                                                                                                                                                                                                                                                120
                                                                                                                                                                   92
86
132
                                                                                                                              119
30
                                                                                                                                                                                     106
73
                                                                                                             122
84
                                                                                                                                                                                                       151
                                                                                                                                                                                                                                                                                                  130
                                   122
                                                         92
                                                                            84
                                                                                                                                                                                                                             66
                                                                                                                                                                                                                                                                                119
                                                                                                                                                 106
                                                                                                                                                                                                      141
71
81
75
                                                                            92
95
                                   131
                                                          76
                                                                                                                                                     88
                                                                                                                                                                                                                             41
                                                                                                                                                                                                                                                                                110
                                                                                                                                                                                                                                                                                                  129
                                                                                                             123
59
64
62
67
                                                                                                                              170
71
77
                                                                                                                                                                                     148
73
                                                                                                                                                                                                                                               61
77
                                                                                          139
                                                                                                                                                  136
                                                                                                                                                                                                                         223
                                       89
                                                     123
                                                                                                                                                                                                                                                                                    71
                                                                                                                                                                                                                                                                                                      86
                                                     97
107
                                                                                                                                                     63
68
                                                                                                                                                                                                                         115
117
                                                                        115
                                                                                              49
                                                                                                                                                                   103
                                                                                                                                                                                                                                                                                    69
                                       87
                                                                                                                                                                                                                                                                                                      67
                                                                                                                                                                                                                                                                  56
70
                                                                                                                                                                   119
83
                                                                                                                                                                                         93
                                                                                                                                                                                                                                               75
83
                                       83
                                                                        109
                                                                                              50
                                                                                                                                                                                                                                                                                                      81
                                                                                                                                                                                                                                                                                    68
      10
                                       98
                                                     195
                                                                            96
                                                                                               47
                                                                                                                                   105
                                                                                                                                                                                     111
                                                                                                                                                                                                           60
                                                                                                                                                                                                                         120
                                                                                                                                                                                                                                                                                    81
                                                                                                                                                                                                                                                                                                      87
                                                                                                                                                                                                                         89
104
75
84
                                                                                                                                                                                                                                           110
121
83
                                                                            84
                                                                                                                                                                        82
                                                                                                                                                                                   198
78
62
71
58
65
84
77
81
79
87
65
93
                                                                                                                                                                                                                                                                               113
110
71
76
75
65
75
80
95
100
110
      11
                                   102
                                                     113
                                                                                               30
                                                                                                                                                     91
65
55
55
55
57
79
83
79
74
                                                                                                                                                                                                           95
                                                                                                                                                                                                                                                              113
                                                                                                                                                                                                                                                                                                  102
      12
13
                                                                                                                                                                                                       104
71
59
75
71
61
84
64
98
                                   136
                                                          82
                                                                            80
                                                                                               10
                                                                                                                 39
                                                                                                                                                                       80
57
55
71
68
75
75
77
77
                                                                                                                                                                                                                                                              110
                                                                                                                                                                                                                                                                                                  113
                                                                                                                                                                                                                                                                  75
80
                                                                                                                 19533354476667783
                                   198
                                                          83
                                                                        191
                                                                                                  6905
                                                                                                                                                                                                                                                                                                      66
                                                                            98
83
97
84
                                                         98
87
      14
                                   102
                                                                                                                                                                                                                                               67
                                                                                                                                                                                                                                                                                                      73
                                                                                                                                                                                                                                          81
69
91
73
95
110
      15
16
17
                                   129
                                                                                                                                                                                                                             49
79
84
76
78
96
93
90
                                                                                                                                                                                                                                                                  63
69
                                                                                                                                                                                                                                                                                                      81
                                                         99
                                   103
                                                                                                                                                                                                                                                                                                      59
                                                                                                                                                                                                                                                                                                  84
73
107
                                                                                               20
                                   109
                                                      105
                                                                                                                                                                                                                                                                  66
                                                                         101
97
89
87
77
                                                      109
85
89
                                                                                               21
24
41
      18
19
                                       88
                                                                                                                                                                                                                                                                  86
                                   116
                                                                                                                                                                                                                                                                  84
94
      29
21
22
23
24
25
26
                                                                                                                                                                                                                                                                                                  108
                                   121
127
                                                          85
                                                                                               60
50
62
77
                                                                                                                                                                                                        102
                                                                                                                                                                                                                                                               108
                                                                                                                                                                                                                                                                                                  110
                                   124
                                                          98
                                                                                                                                                                                                                                                                                                      90
67
                                                                                                                                                                                                           94
                                                                                                                                                                                                                                           107
92
                                                                                                                                                                                                                                                                                    94
75
93
72
73
72
96
                                                                                                                                                                                                                                                                   94
                                                                                                                                                                       94
85
                                                                                                                                                                                                                              69
37
                                                          94
                                                                             96
                                                                                                                                                                                                           87
                                                                                                                                                                                                                                                                   35
                                    109
                                                                                                                                                                                                                                           111
                                                          81
97
                                                                                                                                                                                                                                                                  93
81
                                                                             87
                                    131
                                                                                                                                                                                                        103
                                                                                                                                                                                                                                                                                                       95
                                                                                                                                                                        91
                                    104
                                                                             98
                                                                                               65
                                                                                                                  67
                                                                                                                                                                                                            72
                                                                                                                                                                                                                              91
                                                                                                                                                                                                                                                                                                       64
                                                                                               80
57
                                                                                                                                                      86
57
                                                                                                                                                                                                                                               91
74
                                                                                                                                                                                                                                                                  64
75
                                    124
                                                          91
                                                                             84
                                                                                                                  84
                                                                                                                                                                        80
                                                                                                                                                                                                           91
                                                                                                                                                                                                                           104
                                                                                                                                                                                                                                                                                                       82
                                                                                                                                108
                                                                                                                 59
83
                                       98
                                                                                                                                                                                          64
       27
                                                                              94
                                                                                                                                    55
                                                                                                                                                                     103
                                                                                                                                                                                                           63
                                                                                                                                                                                                                              87
                                                                                                                                                                                                                                                                                                       68
                                                      107
       28
29
30
                                    109
                                                          96
                                                                              94
                                                                                                92
                                                                                                                                    94
                                                                                                                                                   100
                                                                                                                                                                        87
                                                                                                                                                                                          94
                                                                                                                                                                                                            81
                                                                                                                                                                                                                              96
                                                                                                                                                                                                                                                85
                                                                                                                                                                                                                                                                   96
                                                                                                                                                                                                                                                                                                       94
                                                                                                                                                                                                                                                                                    84
90
73
74
                                                                             96
94
                                                                                                                                                                                                                                                                   88
                                   122
106
                                                                                               80
71
                                                           82
                                                                                                                  82
                                                                                                                                    86
                                                                                                                                                       90
                                                                                                                                                                        84
                                                                                                                                                                                          88
                                                                                                                                                                                                            86
                                                                                                                                                                                                                              86
                                                                                                                                                                                                                                                88
                                                                                                                                                                                                                                                                                                       82
                                                                                                                 84
71
                                                                                                                                                       94
                                                                                                                                                                                                                              88
                                                                                                                                                                                                                                                96
                                                                                                                                                                                                                                                                   88
                                                           98
                                                                                                                                    84
                                                                                                                                                                        98
                                                                                                                                                                                          90
                                                                                                                                                                                                            88
                                                                                                                                                                                                                                                                                                       94
                                                                                                                                                      82
87
                                                           92
                                                                              98
                                                                                                                                                                                                                                                                  65
72
                                                                                                                                                                                          86
                                                                                                                                                                                                            82
                                                                                                                                                                                                                              90
                                                                                                                                                                                                                                                84
                                    108
                                                                                                49
                                                                                                                                    84
                                                                                                                                                                        88
                                                                                                                                                                                                                                                                                                        78
       31
                                                                                                                                                                                                            85
                                    112
                                                      195
                                                                             81
                                                                                                                                     75
                                                                                                                                                                                                                                                79
                                                                                                46
                                                                                                                  60
                                                                                                                                                                        81
                                                                                                                                                                                          81
                                                                                                                                                                                                                                                                                                        74
```

APPENDIX [(continued)

G.P. #12 (Room Air)

```
FREQ
                        TS1
103
                                         2
84
87
                                                   3
111
103
116
77
                                                                 72
110
                                                                                                                                   9
107
                                                                                                                                                                               12
84
67
                                                                                      5
                                                                                                                7
                                                                                                                                                                 11
76
                                                                                                   6
                                                                                                                                                     10
                                                                                                                                                                                         13689123449932720243648298969869518
                                                                                                                                                                                                          14
                                                                                                                                                                                                                        15
            100
                                                                                               92
                                                                                                             84
                                                                                                                                                 82
119
                                                                                                                                                                                                      437011194359007294864337188308307
107657897907294866677788308307
       123
                                                                                                                          80
                                                                                                                                                                                                                       60
                                                                                                                                   119
127
117
121
116
                                                                               87
132
                                                                                                         13521116693473228655445629881877628516
11117893473286554456298818777628516
                         108
                                                                                             130
                                                                                                                       110
                                                                                                                                                               101
                                                                                                                                                                                                                       56
56
71
                                         91
91
83
87
                                                                 195
88
92
70
                                                                                                                                                 110
77
97
                                                                                                                                                              110
66
78
107
74
                                                                                            97
117
                                                                                                                       86
117
                                                                                                                                                                            118
62
92
91
78
93
                            91
                         131
       456789
                                                                               100
                                                   97
130
                                                                                            128
109
                                                                                                                       145
107
                         114
                                                                                  887927373
997373
4816
                                                                                                                                                                                                                       80
                           82
                                                                                                                                                  100
                                                                                                                                                                                                                       57
90
                        124
85
88
                                                                                                                       98
102
                                                       68
95
97
                                                                    80
72
62
46
                                       114
                                                                                               865102551336833669744025446376
                                                                                                                                    100
                                                                                                                                                    82
                                      118
113
96
116
                                                                                                                                                 110
95
102
                                                                                                                                   8976748696464212166404331
196655666789878889889
                                                                                                                                                                                                                       83
                                                                                                                                                                                                                      86
73
73
67
                                                                                                                       104
                        100
78
                                                    102
104
    9071978
7077777778
86674
9084
                                                                     40
                                                                                                                                                 109
94
64
65
68
77
60
74
81
90
86
89
97
89
71
85
96
                                         78
78
                                                    120
                                                                        Ū
                         100
                         91
112
                                                    130
                                                                        0
                                                                                                                                                                                                                        55
                                         95
89
                                                    91
113
                                                                        Ō
                                                                                                                                                                                                                       66
                        96
110
104
103
                                                                        ø.
                                                                                  2405225247702232456
44324758456
                                                                                                                                                                                                                      56
58
55
55
55
55
55
57
57
57
67
                                                       80
80
                                       103
                                                                        0
                                      114
75
97
97
119
123
92
114
                                                                        00000
                                                    121
97
89
85
88
109
78
97
88
91
                         105
112
                            94
88
                                                                     20
21
18
25
17
15
12
21
                         98
106
                                      99
113
                         103
                         104
106
                                       104
                                                                                                                                                                               92
98
90
85
89
                         102
                                       105
                            98
                                       102
                                                        98
                                                                     14
37
34
                                                                                                                                                                                                                       69
                                      100
                                                     196
199
                                                                                                                                                                                                                       91
                         105
                                                                                                                                                                                                                       91
                            96
                                          98
                                                     105
                                                                     19
                                                                                                             81
                                                                                                                                       91
                                                                                                                                                  100
                                                                                                                                                               103
                                                                                                                                                                                                                       86
                                                                                                                          81
                                                                                                                                                                               98
```

APPENDIX I (continued)

G.P. #13(Room Air)

```
3
108
109
72
133
151
FREQ
                      TS1
                                     83
                                                                          5
86
                                                                                                                                    10
114
126
112
104
                                                                                               11
103
131
133
87
91
116
93
108
                                                                                                                                                         1259984246779981042467770755555565309125622301120
                                                                                                                                                                           13
                                                          119
114
117
77
           xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
  108
                                                                                                          90
                                                                                                                                                                                        83
                                                                                                                                                                                                    72
74
                                                                       119
82
110
139
86
                                   104
107
                         86
                                                                                   119
93
125
112
106
                                                                                                                                                                                        64
                      119
                                                                                                                                                                                   100
50
55
55
99
98
86
66
36
22
25
46
55
57
77
80
113
106
                                                                                                                                                                                                    86
                         €1
                                   104
                                                                                                                                                                                               60
                                     88
                                                              86
                                                                                                                                     110
                                                              84
69
58
                         99
                                     91
                                               108
                                                                                                                                   19997920304777596122941775961229417759612294177596122941
                        89
                                   111
                                                  99
                                                                          91
                                                                                                                                                                         116
                                                 94
87
                                     88
                                                                          80
                     107
116
107
                                   105
                                                             56
                                                                                                                                                 874969
6925
33341
78674
9982
                                              94
83
193
85
111
                                     88
                                                                          44
                                   109
                                                                         200000043345583
122344583
                      109
                                     86
                      109
                                   105
                                     99
93
                         39
                                               119
107
                         87
                        81
90
                                  111
                                 106
73
103
92
104
103
                                               102
                     133
96
97
100
90
106
91
101
                                                 92
                                               100
                                              110
                                              94
106
                                 85
100
96
113
92
                                              108
107
101
102
102
102
101
87
                                                                                                                                              90
86
110
96
88
110
120
                                                                         66
61
62
48
42
73
72
                     100
                                                                                                                                      94
91
78
                        96
                                  100
                                                                                                                                                                       100
                                98
99
113
104
                     100
                                                                                                 80
42
80
77
                                                                                                                                                                          83
                        99
93
                                                                                                          101
73
95
                                                                                                                      101
102
95
                                                                                                                                      93
                                                                                                                                                                       107
                                                                                                                                  120
122
                                                                                                                                                                       109
                     100
                                                                                                                                                          131
                                                                                                                                               122
                                                                                                                                                                       131
```

APPENDIX J

ANALYSIS OF VARIANCE ON N_{\uparrow} AMPLITUDE

(2-way, Repeated Measures on B, Test Sequence)

A. <u>Frequencies 1-32</u> (2.1-30 kHz).

	SS	DF	MS	F p
BET SUBJ A ERROR	14218.882 1309.441 12909.440	9 1 8	1309.441 1613.680	.81 ns
WITH SUBJ B AB ERROR	16721.936 10841.390 1281.398 4599.147	110 11 11 88	985.580 116.490 52.263	18.85 <.001 2.22 <.05

B. <u>Frequencies 10-22</u> (4.5-12.8 kHz).

	SS	DF	MS	F	р
BET SUBJ A ERROR	13871.821 5320.008 8551.813	9 1 8	5320.008 1068.976	4.97	ns
WITH SUBJ B AB ERROR	32820.150 25805.039 752.951 6262.158	110 11 11 88	2345.912 68.450 71.160	32.96 < .96	.001 ns

C. <u>Frequencies 13-18</u> (5.9-9.1 kHz).

Lancar especialists	SS	DF	MS	F p
BET SUBJ A	14645.536 7498.683	9 1	7498.683 893.356	8.39 < .05
ERROR	7146.853	8		
WITH SUBJ	38552.536	110		
AB	31486.596 871.969	11	2862.417 79.269	40.66 < .001 1.12 ns
ERROR	6194.246	88	70.389	1.12 ns

D. <u>Frequencies 14-16</u> (6.4-7.6 kHz).

	SS	DF	MS	F. p
BET SUBJ	17984.397	9		
Α	9023.736	1	9023.736	8.05 <.05
ERROR	8960.660	8	1120.082	, , , , , , , , , , , , , , , , , , ,
WITH SUBJ	41375.321	110		
В	33967.914	11	3087.992	42.28 <.001
AB	980.619	11	89.147	1.22 ns

APPENDIX J (cont.)

E. <u>Frequencies 1-12</u> (2.1-5.4 kHz)

	SS	DF	MS	F p
BET SUBJ	22956.089	9		
Α	728.161	7	728.161	.26 ns
ERROR	22227.928	8	2778.491	
WITH SUBJ	14483.450	110		
В	6049.949	11	549.995	6.61 4.001
AB	1119.916	11	1001.810	1.12 ns
ERROR	7313.583	88	83.108	

F. Frequencies 19-32 (9.9-30 kHz).

	SS	DF	MS	F p
BET SUBJ	18168.353	9		
A	507.174	1	507.174	.22 ns
ERROR	17661.179	8	2207.647	
WITH SUBJ	21278.904	110		
В	12762.894	11	1160.263	16.65 4.001
AB	2347.220	11	213.383	3.04
ERROR	6168.788	88	70.099	

- (1) Altman, P.L., (Ed.) Biological Handbooks, Blood and Other Body Fluids, Federation of American Societies for Experimental Biology., Wash. D.C., 1961.
- (2) Axelsson, A., The vascular anatomy of the cochlea in the guinea pig and in man, Acta Otolaryngol. 1968, Supplement 243.
- (3) Beagley, H.A., Acoustic trauma in the guinea pig I. Electrophysiology and Histology, II. Electron Microscopy. Acta Otolaryngol., 1965.60, 437-451.
- (4) Bekesy, G. von., Gross localization of the place of origin of the cochlear microphonics. J. Acoust. Soc. Am., 1952. 24, 399-409.
- (5) Bennett, P.B., Ackles, K.N., Cripps, V.J., Effects of hyperbaric oxygen and nitrogen on auditory evoked responses in men. Aerospace Medicine, 1969. 40 (5), 521-525.
- (6) Berndt, H., Kranz, D., Wagner, H., Gerhardt, H.J., Hair cell noise damage after improved hypoxia tolerance, Laryngologie, Rhinologie, Otologie (Stuttgart), 1978. 57(6), 520-523.
- (7) Berndt, H., Wagner, H., New ways of preventing impairment caused by noise, Z. Gesamte Hyg. (Berlin), 1979. 25(2), 140-143.
- (8) Bohne, B.A., Mechanisms of noise damage in the inner ear. In Henderson, D., Hamernik, R.P., Dosanjh, D.S., Mills, J.H., (Eds), Effects of Noise on Hearing. 1976. Raven Press, New York.
- (9) Borg, E., Peripheral vasoconstriction in response to sound, II. Dependence on rate of change of sound level. Acta Otolaryngol., 1979. 85, 332-335.
- (10) Brown, J.J., Brummett, R.E., Meikle, M.B., Vernon, J.A., Combined effects of noise and neomycin:cochlear changes in the guinea pig. Acta Otolaryngol., 1978. 86, 394-400.
- (11) Butler, R.A., Honrubia, V., Johnston, B.M., Fernandez, C., Cochlear function under cochlear impairment. Ann Otol. Rhinol. Laryngol., 1962. 71, 648-656.
- (12) Chou, J.T.Y., Rodgers, K., Respiration of tissues lining the membranous labryinth. J. Laryngol. and Otol., 1962. 76, 341-351.
- (13) Culler, E.A., In symposium on tone localization in the cochlea. Ann Otol. Rhinol. Laryngol., 1935. 44, 807-813.
- (14) Dallos, P., Cheatham, M.A., Production of cochlear potentials by inner and outer hair cells. J. Acoust. Assoc. Am., 1976. 60, 510-512.
- (15) Davis, H., Acoustic trauma in the guinea pig. WADC Technical Report. 53-58. U.S. Government Publication Office, 1953.

- (16) Derbyshire, A.J., Davis, H., The action potentials of the auditory nerve. Am. J. Physiol., 1935. 113, 476-504.
- (17) Downie, N.M., Heath, R.W., Basic Statistical Methods. Harper and Row, New York, 1974.
- (18) Drescher, D.G., A review of cochlear biochemistry in normal and noise exposed ears. In Henderson, D., Hamernik, R.P., Dosanjh, D.S., Mills, J.H., (Eds), Effects of Noise on Hearing, Raven Press, New York, 1976.
- (19) Duvall, A.J., Ward, W.D., Lauhala, K.E., Stria ultrastructure and vessel transport in acoustic trauma. Ann. Otolaryngol., 1974. 83, 498-514.
- (20) Eggermont, J.J., Odenthal, D.W., Schmidt, P.H., Spoor, A., Electrocochleography. Basic principles and clinical application. Acta Otolaryngol., Suppl. 1974. 316, 1-84.
- (21) Eggermont, J., Analysis of compound action potential responses to tone bursts in human and guinea pig cochlea. J. Acoust. Soc. Am., 1976. 60, 1132-1139.
- (22) Eggermont, J.J., Compound action potential tuning curves in normal and pathological human ears. J. Acoust. Soc. Am., 1977. 62, 1247-1251.
- (23) Engstrom, H., Ades, H.W., Anderson, A., Structural pattern of the organ of Corti. 1966. Almqvist & Wiksell., Stockholm.
- (24) Engstrom, H., Ades, H.W., Bredberg, G., Normal structure of the organ of Corti and the effects of noise induced cochlear damage. In Wolstenholme, E.W., Knight, J. (Eds) Sensorineural Hearing Loss, Williams and Wilkens, Baltimore, MD. 1970.
- (25) Falbe-Hanson, J., Christiansen, E., Gisselsson, L., Hensen, H.J., Permin, P.M., Effect of acute and prolonged oxygen deprivation on the organ of Corti in guinea pigs and cats. Arch Otolaryngol., 1958, 69, 71-77.
- (26) Fernandez, C., Dimensions of the cochlea in the guinea pig. J. Acoust. Soc. Am., 1952. 24(5), 519-523.
- (27) Fisch, V., Murata, K., Hessli, G., Measurement of oxygen tension in human perilymph. Acta Otolaryngol., 1976. 81, 278-282.
- (28) Fried, M.P., Dudek, S.E., Bohne, B.A., Basal turn cochlear lesions following exposure to low frequency noise. Tr. Am. Acad. Opth. & Otol., 1976. 82, 258-298.
- (29) Fridovich, I., The biology of oxygen radicals. Science, 1978. 201, 875-880.
- (30) Galambos, R., Davis, H., The responses of single auditory nerve fibers to acoustic stimulation. J. Neurolophysiol., 1943. 6,39-58.

- (31) Geldard, F.A., The Human Senses, John Wiley & Sons, New York, 1972.
- (32) Giger, H.L., Treatment of sudden deafness with $0_2/C0_2$ inhalation. H.N.O., 1979. 27, 107-109.
- (33) Goodman, L.S., Gilman, A., (Eds) The Pharmacological Basis of Therapeutics, Fifth Edition, McMillan & Co. New York, 1975.
- (34) Greenwood, D.D., Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am., 1961. 33, 1355-1349.
- (35) Ham, A., Histology, Seventh Edition., J.B. Lippincott & Co., Phil. PA. 1974.
- (36) Hamernik, R.P., Henderson, D., The potentiation of noise by other ototraumatic agents. In Henderson, R.P., Hamernik, D., Dosanjh, D.S., Mills, J.H., Effects of Noise on Hearing. Raven Press. New York, 1976.
- (37) Harker, L.A. Hemostasis Manual, Second Edition, F.A. Davis Co., Phil, PA. 1974.
- (38) Harper, H.A., Review of Physiological Chemistry, Fifteenth Edition., Lange Medical Publications, Los Altos, CA. 1975.
- (39) Hawkins, J.E., Jr., Lurie, M.H., Davis, H., Supplementary report on injury of the inner ear produced by exposure to loud tones. Committee on Medical Research of the Office of Scientific Research and Development, 1943.
- (40) Hawkins, J.E., Jr., Iatrogenic toxic deafness in children. In McConnell F., Ward, P.H. (Eds) Deafness in Childhood, Vanderbilt. University Press, Nashville, TN. 1967.
- (41) Hawkins, J.E., Jr., The role of vasoconstriction in noise induced hearing loss. Ann. Otolaryngol., 1971. 80, 903-913.
- (42) Hawkins, J.E., Jr., Johnsson, L.G., Preston, R.E., Cochlear microvasculature in normal and damaged ears. Laryngoscope, 1972. 82, 1091.
- (43) Hawkins, J.E., Jr., Johnsson, L.G., Stebbins, W.C., Moody, D.B., Coombs, S.L., Hearing loss and cochlear pathology in monkeys after noise exposure. Acta Otolaryngol., 1976. 81, 337-343.
- (44) Hou, S.M., Lipscomb, D.M., Preliminary report on the effects of hyperoxia on cochlear potentials in the chinchilla. Arch Otolaryngol., 1978. 218, 239-245.
- (45) Hulcrantz, E., Angelborg, C., Beusong-Linder, M., Noise and cochlear blood flow. Arch. Otolaryngol. 1979. 224, 103-106.
- (46) Ishii, D., Takahashi, T., Balogh, K., Glycogen in the inner ear after acoustic stimulation. Arch Otolaryngol. 1969. 67, 573-582.
- (47) Jansen, G., Zur nervosen Belastung durch Lärm. Zentralblatt für arbeitsmedizin und arbeitschutz Darmstadt. DM. Dietrich, Steinkopff, Verlag, 1967.

- (48) Joglekar, S.S., Lipscomb, D.M., Shambaugh, G.E., Jr., Effects of oxygen inhalation on noise induced threshold shifts in humans and chinchillas. Arch Otolaryngol., 1977. 103, 574-578.
- (49) Kellerhals, B., Acoustic trauma and cochlear microcirculation. Adv. Oto. Rhino. Laryngol., 1972. 18, 91-168.
- (50) Kety, S.S., Schmidt, C.F., The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption in normal young men. J. Clin. Invest., 1948. 17, 484-492.
- (51) Kiang, N., Peake, W.T., Components of electrical responses recorded from the cochlea. Ann. Otol., 1960. 69, 448-458.
- (52) Kimura, R., Perlman, H.B., Arterial obstruction of the labyrinth, I: Cochlear changes. Ann. Otol. Rhinol. Laryngol., 1958. 57(1), 5.
- (53) Koide, Y., Yoshida, M., Konno, M., Nakone, Y., Yoshikawa, Y., Nagaba, M., Morimoto, M., Some aspects of the biochemistry of acoustic trauma. Ann. Otol. Rhinol. Laryngol., 1960. 69:662-697.
- (54) Lawrence, M., Wever, E.G., Effects of oxygen deprivation upon the structure of the organ of Corti. Arch. Otolaryngol., 1952. 55, 31-37.
- (55) Lawrence, M., Yantis, P.A., Individual differences in functional recovery and structural repair following overstimulation of the guinea pig ear. Ann. Otol. Rhinol. Laryngol., 1957. 66, 595-621.
- (56) Lawrence, M., Effects of interference with terminal blood supply on the organ of Corti. Laryngoscope, 1966. 76, 1318-1337.
- (57) Lawrence, M., Gonzales, G., Hawkins, J.E., Jr., Some physiological factors in noise induced hearing loss. Am. Indust. Hyg. Jn., 1967. 28, 425-430.
- (58) Lawrence, M., The function of the spiral capillaries. Laryngoscope, 1971. 81, 1314-1322.
- (59) Lawrence, M., Nuttall, A.L., Oxygen availability in the tunnel of Corti measured by microelectrodes. J. Acoust. Soc. Am., 1972. 52, 566-573.
- (60) Lawrence, M., Nuttall, A.L., Burgio, P.A., Cochlear potentials and oxygen associated with hypoxia. Ann. Otol., 1975. 84, 499-512.
- (61) Lim, D.J., Melnick, W., Acoustic damage of the cochlea, A scanning and transmission electron microscope observation. Arch. Otolaryngol., 1971. 94, 294-305.
- (62) Lipscomb, D.M., Axlesson, A., Vertes, D., Roettger, R., Carrol, J., The effect of high level sound on hearing sensitivity, cochlear sensorineuroepithelium and vasculature of the chinchilla. Acta Otolaryngol., 1977. 84, 44-56.
- (63) Lurie, M.H., Davis, H., Hawkins, J.E., Jr., Acoustic trauma of the organ of Corti in the guinea pig. Laryngoscope, 1944. 54, 375-386.

- (64) Matchinsky, F.M., Thalmann, R., Quantitative histochemistry of microscopic structures of the cochlea, Sampling procedures and analysis of pyridine neucleotides. Laryngoscope, 1967. 79, 292-305.
- (65) Matchinsky, F.M., Thalmann, R., Quantitative histochemistry of microscopic structures of the cochlea, Ischemic alterations of levels of glygogen intermediates and cofactors in the organ of Corti and the stria vascularis. Ann. Otol. Rhinol. Laryngol., 1967. 79, 12-29.
- (66) Matchinsky, F.M., Thalmann, R., Energy metabolism of the cochlear duct. In Paparella, M.M., (Ed), Biochemical Mechanisms in Hearing and Deafness, Charles, C. Thomas, Springfield, Il., 1970.
- (67) Matsuyama, S., Experimental study of the effects of some drugs on the inner ear circulation. J. Otolaryngol. (Japan), 1970. 73, 26.
- (68) Meikle, M.B., Brummett, R.E., Vernon, J.A. Prevention of spontaneous middle ear muscle activity in the guinea pig. J. Aud. Res., 1976. 16, 12-19.
- (69) Meikle, M.B., Lee, C.A., Fatigue of the cochlear nerve by intense pure tones: Invariance of the half octave shift. JASA, 1978. 64, 135-136.
- (70) Misrahy, G.A., Hildreth, K.M., Shinbarger, E.W., Clark, L.C., Price, E.A., Endolymphatic oxygen tension in the cochlea of the guinea pig. J. Acoust. Soc. Am., 1958. 30(4), 247-250.
- (71) Misrahy, G.A., DeJonge, B.R., Shinbarger, E.W., Arnold, J.E. Effects of localized hypoxia on the electrophysiological output of the cochlea of the guinea pig. J. Acoust. Soc. Am., 1958. 30(8), 705-709.
- (72) Misrahy, G.A., Shinbarger, E.W., Arnold, J.E., Changes in cochlear endolymphatic oxygen availability, action potential and microphonics during and following asphyxia, hypoxia and exposure to loud sounds. J. Acoust. Soc. Am., 1958. 30(8), 701-704.
- (73) Mitchell, C., The temporary effects of intense sound and sodium salicylate on the electrical activity of the cochlea. Unpublished Doctoral Dissertation, University of Oregon Medical School, Portland, Oregon, 1973.
- (74) Mitchell, C., Brummett, R., Himes, D., Vernon, J., Electrophysiological study of the effect of sodium salicylate upon the cochlea. Arch. Otolaryngol., 1973. 98, 297-301.
- (75) Mitchell, C., Susceptibility to auditory fatigue: Comparison of changes in cochlear nerve potentials in the guinea pig and chinchilla. J. Acoust. Soc. Am., 1976. 60, 418-422.
- (76) Mitchell, C., Frequency effects of temporary N₁ depression following acoustic overload. Arch. Otolaryngol., 1977. 103, 117-123.

- (77) Morimitsu, T., Mitsou, K., Suga, F., Behavior of the cochlear blood flow. Ann. Otol. Rhinol. Laryngol., 1965. 74, 22-32.
- (78) Movat, H.Z., Fernando, N.V.P., Small arteries with an interval elastic lamina. Exp. Molec. Path., 1963. 2, 549-555.
- (79) Nebeya, D., A study of the comparative anatomy of the blood vascular system of the internal ear in mammalia and in homo. Kioto Acta Scholae Med. (Japan), 1923. 6, 1-132.
- (80) Perlman, H.B., Kimura, R.A., Observations of the living blood vessels of the cochlea. Ann. Otol. Rhinol. Laryngol., 1965. 64, 1176.
- (81) Perlman, H.B., Kimura, R., Cochlear blood flow in acoustic trauma. Acta Otolaryngol. 1961. 54, 99-110.
- (82) Perlman, H.B., Tsunno, M., Spence, H., Cochlear blood flow and function: Effect of pressor agents. Acta Otolaryngol., 1963. 56, 587-598.
- (83) Prazma, J., Pecorak, J.B., Ethacrynic acid: effects on the cochlear potentials in normal and high blood oxygen. J. Clin. Invest., 1975. 55, 840-844.
- (84) Prazma, J., Fischer, N.D., Biggers, W.P., Ascher, D., The changes in the endolymphatic oxygen concentration and the cochlear potentials after short anoxia, hyperoxia, and hypercapnia. Ann. Otolaryngol. 1978. 86(4), 622.
- (85) Schneider, E.A., A contribution to the physiology of the perilymph. III. On the origin of noise induced hearing loss. Ann. Otol. Rhinol. Laryngol., 1974. 83, 406-412.
- (86) Smith, C.A., Capillary areas of the cochlea of the guinea pig. Laryngoscope, 1951. 61(11), 1073-1095.
- (87) Smith, C.A., Vascular patterns of the membranous labyrinth. In Lorenzo, de (Ed) Vascular Disorders and Hearing Defects, University Park Press, Baltimore, MD. 1973.
- (88) Smith, C.A., Innervation of the cochlea of the guinea pig by use of the golgi stain. Ann. Otol. Rhinol. Laryngol. 1975. 84(4), 443.
- (89) Smith, C.A., Cameron, S., Richter, R., Cochlear innervation: Current status and new findings by use of the golgi stain. In Hirsch, D.H., Eldredge, J., Hirsch, J.K., Silverman, J.K. (EDS), Hearing and Davis, Essays Honoring Hallowel Davis, University Press, St. Louis, MO. 1976.
- (90) Snow, J.B., Suga, F., Labyrinthine vasodilators, Arch. Otolaryngol. 1973. 97, 365-370.
- (91) Spoendlin, H., Lichtensteiger, W., The andrangergic innervation of the laryrinth. Acta Otolaryngol., 1966. 61, 423-427.
- (92) Spoendlin, H., Anatomical changes following various noise exposures. In Henderson, R.P., Hamernik, D., Dosanjh, D.S., Mills, J.H. (Eds), Effects of Noise on Hearing, Raven Press, New York, 1976.

- (93) Stanley, W.D., Digital signal processing. Reston Pub. Co. Reston, VA. 1975.
- (94) Stockwell, C.W., Ades, H.W., Engstrom, H., Patterns of hair cell damage after intense auditory stimulation. Ann. Otol. Rhinol. Laryngol., 1969. 78, 1144-1168.
- (95) Suga, F., Snow, J.B., Cochlear blood flow in response to some vaso-dilating drugs and some related agents. Laryngoscope, 1969. 79, 1956-1963.
- (96) Thalmann, R., Miyoshi, T., Rauchbach, E., Biochemical correlates of inner ear ischemia. In Lorenzo, De., (Ed) Vascular disorders and hearing defects. University Park Press. Baltimore, MD. 1973.
- (97) Tonndorf, J., Hyde, R.W., Brogan, F.A., Combined effect of sound and oxygen deprivation upon cochlear microphonics in the guinea pig. Ann. Otol. Rhinol. Larungol., 1955. 64, 392-405.
- (98) Tsunno, M., Perlman, H.B., Cochlear oxygen tension relation to blood flow and function. Acta Otolaryngol., 1965. 59, 437-450.
- (99) Vernon, J.A., Meikle, M.B., Electrophysiology of the cochlea, In Thompson, R.F., and Patterson, M.M., (Eds) Methods in Physiological Psychology, Vol. 1:Recording of Bioelectric Potentials, Academic Press, New York, 1974.
- (100) Vernon, J.A., Personal Communication.
- (101) Vosteen, K.H., New aspects in the biology and pathology of the inner ear. Arch. Ohren. Nasen. und Kehlkopfheilk. 1961. 178, 1-104, Beltone Instutute Translation No. 6, July 1963.
- (102) Walloch, R.A., Brummett, R.E., Himes, D., Acoustic trauma in two highly inbred strains of guinea pigs. J. Aud. Res., 1976. 16, 89-97.
- (103) Walloch, R.A., Taylor-Spikes, M., Auditory thresholds and cochlear Microphonics from the same guinea pigs. J. Aud. Res., 1977. 17, 145-154.
- (104) Wever, E.G., Bray, C.W., Horton, G.P., The problem of stimulation deafness as studied by the auditory nerve technique. Science, 1934. 80, 18-19.
- (105) Wever, E.G., Smith, K.R., The problem of stimulation deafness I. Cochlear impairment as a function of tonal frequency. J. Exp. Psychol., 1944. 34, 239-245.
- (106) Wever, E.G., Lawrence, M., Straut, C.B., Effects of oxygen deprivation upon the cochlear potentials. Am. J. Physiol., 1949. 159, 199-208.
- (107) Wever, E.G., Electrical potentials of the cochlea. Physiol. Rev., 1966. 46, 102-127.

- (108) Witter, H.L., Deka, R.C., Lipscomb, D.B., Shambaugh, G.E., Effects of prestimulatory carbogen inhalation on noise induced temporary threshold shifts in humans and chinchillas. In Press.
- (109) Ylikoski, J., Wersall, J., Bjorkrokh, B., Correlative studies on the cochlear pathology and hearing loss in guinea pigs after intoxication with ototoxic antibiotics. Acta Otolaryngol., 1974. Suppl. 326.
- (110) Yoshioka, K., Experimental study of the effect of intense sound on the cochlear blood vessels. Otologia Fukowda (Japan) 1957. 4 Suppl. No. 3.
- (111) Lall, Amrit and Buckner, Steven A., Arterial blood gases, pH, hemoglobin, oxygen content and blood pressure, heart rate and rectal temperature of unanesthetized guinea pigs. Federation Proceedings, Vol. 35 #3, p. 853, entry #3571, 1976.