Value Recursion in Monadic

Computations

Levent Erkok
M.S. Computer Science, 1998, The University of Texas at Austin
B.S. Computer Engineering, 1994, Middle East Technical University

A dissertation presented to the faculty of the
OGI School of Science and Engineering
at Oregon Health and Science University
in partial fulfillment of the
requirements for the degree
Doctor of Philosophy
in

Computer Science and Engineering

QOctober 2002

© Copyright 2002 by Levent Erkok
All Rights Reserved

it

The dissertation “Value Recursion in Monadic Computations” by Levent Erkok has

been examined and approved by the following Examination Committee:

Dr. John Lifnchbury é

Professor
Thesis Research Advisor

%r. Mark P. Jones
ssociate Professor

Dr. Richard Kiéburtz (
Professor

Dr. David Maier
Professor

Dr. Ross Paterson
Lecturer, City University, London

iii

Acknowledgements

I would like to thank my advisor, John Launchbury, for his guidance, help, and friendship
over the last four years. I would have never completed this thesis without him leading the
way. John knew exactly when to intervene and when to set me free, providing just the
right balance. I always felt privileged to be working with him. Thank you John.

Many people contributed to this work. Ross Paterson, Mark Jones, Dick Kieburtz,
and Dave Maier have all done an excellent job of providing me with invaluable feedback
and guidance. In particular, Ross took an early interest in our work, helping out with
the technical development over the years. Sava Krsti¢c was a constant source of help,
answering my endless questions with great enthusiasm. Nick Benton, Andrzej Filinski,
and Amr Sabry answered many e-mail questions. I am grateful to Amr for constructively
challenging our work, making us understand it better. Andy Moran collaborated with
us in developing the semantics of value recursion for the IO monad. Jeff Lewis helped
me understand the internals of Hugs, and helped with the implementation of the mdo-
notation. Simon Peyton-Jones answered many questions over e-mail, and implemented the
mdo-notation in GHC. The PacSoft research group at OGI provided a fun and stimulating
environment at all times. I had many joyful conversations with Zine Benaissa, Magnus
Carlsson, lavor Diatchki, John Matthews, Thomas Nordin, Emir Pa3ali¢, Walid Taha, and
many other friends at OGI. My heartfelt thanks go to all of them.

I am indebted to numerous people for shaping up my thinking and expanding my
horizons over the years, including Sadi Yalgmn, Halit Oguztiiziin, Cem Bozsahin, Hamilton
Richards, and Nicholas Asher. I thank them all.

My research was supported by grants from the Air Force Materiel Command (F19628-
96-C-0161) and the National Science Foundation (CCR-9970980). I am thankful to our
administrative staff for taking care of all the necessary details with meticulous care.

I would like to thank my parents, Fatma and Atila Erkok, for always being supportive,
and trusting me with my decisions. I sincerely hope that I am worthy of their trust.

Finally, I would like to thank my wife Sengiil Vurgun, for being on my side through
thick and thin, taking over many of my responsibilities, and especially for believing in me
when I did not. Thank you Sengiil, I could not have done it without you.

v

Contents

Acknowledgements e e iv
Contents e e e e e e e e e e v
Abstract e e e viii
1 Introduction e 1
1.1 Recursionandeffects 1

1.2 A motivating example: Modeling circuits using monads 2

1.3 Recursive monadic bindings L o 0L, 8
1.4 Ageneric mfiz? e e 9
1.5 The basic framework and notation 10
1.6 Outlineofthethesis 11

2 Properties of value recursion operators 12
2.1 Strictness (Nothing from nothing) 12
22 Purity (Justlike fir) L e 13
2.3 Left shrinking (Norecursion-No fiz) 13
2.4 Sliding (Puremobility) 14
2.5 Nesting (Two for the priceofone) 15
2.6 Derived properties L e 17
2.6.1 Constant functions Lo, 17

2.6.2 Approximation property e 18

2.6.3 Pureright shrinking 0oL L. 18

2.6.4 Parametricity: The “free” theorem 20

2.7 Stronger properties e 21
2.71 Strongsliding oL e 22

272 Rightshrinking o L. 22

2.8 Classification and summary 23

3 Structure of monads and value recursion 25
3.1 Monads with a strict bindoperator oL, 25
3.2 Idempotentmonads 28
3.3 Commutativemonads 29
3.4 Monads with addition, 30
3.5 Embeddings 31
3.6 Monad transformers 33

3.7 SUIINATY o o o e e e e e e e e e e e e e e e e e 34

A catalog of value recursion operators 35
4.1 TIdentity e e e e e e e 35
42 Exceptions: The maybe monad 36
4.3 Lists e e e e e 38
44 State o i e e e e e e e e e e e e e e 42
4.5 Output monad and monads based onmonoids 46
4.6 Environments e 48
4.7 Treemonad e e e e e 49
4.8 Fudgets e 51
4.9 Monad transformerso et e e e e e e e e e 53
410 SUMINATY . . v v v vttt e e e e e e e e e e e 55
Continuations and value recursion 58
5.1 A monad for continuations L . Lo, 58
5.2 The continuation monad transformer 61
5.3 First-class continuations and value recursion 62
5.4 Summary L i e e e e e e e e e e e e 65
Traces and value recursion 66
6.1 Parameterized valuerecursion 66
6.2 Preliminaries e e e e e e e e 68
6.2.1 Symmetric monoidal categories, 68
6.2.2 Traced symmetric monoidal categories 69
6.2.3 Traces and Conway operators 70
6.3 Tracesand valuerecursion 72
6.3.1 Commutative monads and traces 72
6.3.2 Monads arising from commutative monoids 74
6.3.3 Thecorrespondence 76
6.4 Dropping the monoidal requirement, ... 78
6.4.1 Arrowsandloop 79
6.4.2 Traced premonoidal categories 80
6.5 Summary e e e e e e e e e e e e e 83
A recursive do-notation 84
71 Imtroduction. e 84
7.2 The basic translation and design guidelines 86
7.2.1 Letgenerators i 87
722 Segmentationo e 89
7.23 Shadowing e 90
7.3 Translation of mdo-expressions 91
7.3.1 Preliminaries e e 91
7.3.2 The translation algorithm 92
7.3.3 Type checking mdo-expressions 95

vi

7.4 Current status and related work, 96

7.5 SUmMmary e e e e e e e e e e e 97

8 ThelOmonad and fixIO 98
81 Imtroduction. e 98
8.2 Motivatingexamples L Lo o L e 99
83 Thelanguage e 101
8.4 Semantics L L e e e e e 104
84.1 IOlayer e e 104

8.4.2 Functionallayer 108

843 Themarriage e 109

844 Structuralrules e, 110

8.4.5 Meaning of programstates 112

85 Examples e e e e e 114
8.6 Propertiesof izIO e 118
8.7 SUmMMAIY e e e e e e e e e e e e e e e e e e 121

9 Examples e e e 122
9.1 Therepminproblem iniiie... 122
9.2 Sorting networks and screen layout in GUI's. 125
9.3 Interpreters i i e e e e e e e e 127
9.4 Doubly linked circular lists with mutablenodes 128
9.5 Logicalvariables e 130
9.6 Summary i e e e e e e e e e e e e e e e e e 133

10 Epilogue e e e e 134
10.1 Related work e 134
10.2 Future Work e e e 137

A Fixed-point operators 140
B Proofs e e e e e 142
B.1 Proposition 2.5.2 L e e 142
B.2 Proposition 2.6.8 e e e 143
B.3 Proposition 2.7.1 e e e e e e 143
B4 Lemma 3.1.4 e e e e e 144
B.5 Proposition 3.4.2 e 144
B.6 Proposition 4.3.1 e 144
B.7 Proposition 4.9.1 e 146
B.8 Proposition6.3.5 147
Bibliography e 151
Index e e e e e e e e 158
Biographical Note 162

vil

Abstract

Value Recursion in Monadic Computations
Levent Erkok

Ph.D., OGI School of Science and Engineering,
Oregon Health and Science University
October 2002

Thesis Advisor: Dr. John Launchbury

This thesis addresses the interaction between recursive declarations and computational
effects modeled by monads. More specifically, we present a framework for modeling cyclic
definitions resulting from the values of monadic actions. We introduce the term value
recursion to capture this kind of recursion.

Our model of value recursion relies on the existence of particular fixed-point operators
for individual monads, whose behavior is axiomatized via a number of equational prop-
erties. These properties regulate the interaction between monadic effects and recursive
computations, giving rise to a characterization of the required recursion operation. We
present a collection of such operators for monads that are frequently used in functional
programming, including those that model exceptions, non-determinism, input-output, and
stateful computations.

In the context of the programming language Haskell, practical applications of value
recursion give rise to the need for a new language construct, providing support for re-
cursive monadic bindings. We discuss the design and implementation of an extension to
Haskell’s do-notation which allows variables to be bound recursively, eliminating the need

for programming with explicit fixed-point operators.

viii

Chapter 1

Introduction

This thesis addresses the interaction between two fundamental notions in programming
languages: Recursion and effects. Recursion is the essence of cyclic definitions, both for
recursive functions and circular data structures. Effects are the essence of computational
features, including I/O, exceptions, and stateful computations. Although both notions
have been studied extensively on their own, their interaction has received relatively little

attention.

1.1 Recursion and effects

In the traditional domain theoretic setting, the denotational semantics of recursive def-
initions are understood in terms of fixed-points of continuous functions. That is, the
semantics of a definition of the form z = f z is taken to be the least fixed-point of the
map corresponding to f [82, 83]. The same principle works for both recursive functions
and circular data structures, a rather pleasing situation.

Handling of effects in the denotational framework, however, proved to be much more
problematic, often summed up by the phrase “denotational semantics is not modular” [53,
64]. Briefly, addition of new effects require substantial changes to the existing semantic
description. For instance, exceptions can be modeled by adding a special failure element to
each domain, representing the result of a failed computation. But then, even such a simple
thing as the meaning of an arithmetic operation requires a messy denotational description;
one needs to check for failure at each argument, and propagate accordingly. The story is
similar for other cases, including I/O and assignments, two of the most “popular” effects
found in many programming languages [76, 77].

It was Moggi’s influential work on monads that revolutionized the semantic treatment
of effects, which he referred to as notions of computation. Moggi showed how monads can
be used to model programming language features in a uniform way, providing an abstract
view of programming languages [62, 63]. In the monadic framework, values of a given type

are distinguished from computations that yield values of that type. Since the monadic
structure hides the details of how computations are internally represented and composed,
programmers and language designers work in a much more flexible environment. This
flexibility is a huge win over the traditional approach, where everything has to be explicit.

Perhaps what Moggi did not quite envision was the response from the functional pro-
gramming community, who took the idea to heart. Wadler wrote a series of articles
showing how monads can be used in structuring functional programs themselves, not just
the underlying semantics [89, 91]. Very quickly, the Haskell committee adopted monadic
I/O as the standard means of performing input and output in Haskell, making monads an
integral part of a modern programming language [68, 69]. The use of monads in Haskell
is further encouraged by special syntactic support, known as the do-notation [47].

As the monadic programming style became more and more popular in Haskell, pro-
grammers started realizing certain shortcomings. For instance, function application be-
comes tedious in the presence of effects. Or, the if-then-else construct becomes unsightly
when the test expression is monadic. However, these are mainly syntactic issues that
can easily be worked around. More seriously, the monadic sublanguage lacks support for
recursion over the values of monadic actions. The issue is not merely syntactic; it is sim-
ply not clear what a recursive definition means when the defining expression can perform
monadic effects.

This problem brings us to the subject matter of the present work: Semantics of recur-
sive declarations in monadic computations. More specifically, our aim is to study recursion
resulting from the cyclic use of values in monadic actions. We use the term value recursion

to describe this notion.

1.2 A motivating example: Modeling circuits using monads

To illustrate value recursion, we will consider the example that motivated our work in
the first place: modeling circuits using monads. Microarchitectural design languages have
been the target of programming language research in recent years, aiming at providing
better language support for managing the complexity of such designs [12, 58]. Lava [8]
and Hawk [49, 59] are two recent systems designed to address this need. In this section,
we will consider a stripped down version of such a language, embedded in Haskell.

To familiarize ourselves with the types of circuits we can define, let us first consider
a simple non-monadic implementation. We represent signals by lists, successive elements
representing the values at each clock tick. Haskell is already expressive enough to define
the basic building blocks without much difficulty:

type Sig a = [¢]

and, zor : Sig Bool — Sig Bool — Sig Bool
and zs ys = zipWith (&&) zs ys
zor zs ys = zipWith (#) zs ys

ny 2 Sig Bool — Sig Bool
inv s = map not zs

delay i String > a — Siga > Sig o
delay - v zs = v : zs

The delay element forms a signal that behaves as its second argument during the first
clock cycle, behaving as its third argument afterwards. (The first argument to delay is
intended to be a name for v. We will use it later.) Of course, a more realistic example
would come equipped with multiplexers, registers, etc., but the elements above will be
sufficient for our purposes. For instance, we can model a half-adder simply by:

halfAdd 2 Sig Bool — Sig Bool — (Sig Bool, Sig Bool)
halfAdd zs ys = (sum, carry)
where sum = zor zs ys

carry = and 5 ys
Here is a sample run:

Main> halfAdd [True, Truel] [False, True]
([True,False], [False,Truel])

As another example, we can create a circuit that toggles its output at each clock tick,
starting from the value False:

inp DELAY False out toggle :: Sig Bool
toggle = out

where inp = inv out

<— out = delay “False” False inp

Variables inp and out are defined mutually recursively, corresponding to the feedback

loop in the circuit diagram. The recursive definition capability of Haskell’s where clause

plays a crucial role in expressing the required cyclic dependency. We have:

Main> toggle
[False,True,False,True,False,True,False,True,...

Note that the result is an infinite signal.

What can we do with circuit descriptions? Since we model circuits by functions, we
can pass them around and combine them to build bigger circuits. But, eventually, all we
can do with a circuit is to simulate it, that is, run it on a particular input. As pointed
out by Launchbury et al. [49], and Claessen [12], this model does not allow for multiple
interpretations. Ideally, we would like to be able to analyze our circuits, translating
them to other hardware description languages such as VHDL. Alternatively, we may want
to render the circuit graphically, obtaining a schematic diagram, or recast the circuit
description in the language of a theorem prover to let us reason about it. We would like
our language to be flexible enough to support all of these views.

The standard way of attacking this problem is to abstract away from any particular
signal or circuit model, hiding the control flow behind a monad, and basic circuit elements
behind a type class. Each alternative semantics will be represented as an instance of this
class, providing new views of circuits. Then, by simply switching to a different monad,
we will be able to obtain an alternative interpretation without changing existing circuit
descriptions. Here is one way of capturing the required structure:!

class Monad m = Circuit m where
and, zor :: Sig Bool — Sig Bool — m (Sig Bool)

inv 2 Sig Bool — m (Sig Bool)
delay = String & a = Sig a - m (Sig @)

For instance, the description of the half-adder becomes:

halfAdd i Circuit m = Sig Bool — Sig Bool — m (Sig Bool, Sig Bool)
halfAdd i1 i2 = do sum <« zor il i2

carry « and il 12

return (sum, carry)

Note that the new model of halfAdd is not committed to any particular circuit model,
or signal data type. It is a generic description of half-adders. To simulate, all we need is
the identity monad for expressing the control structure, and the list model for signals:

type Sig a = [a]
data Simulate a = Sim o deriving Show

instance Monad Simulate where
return = Sim z
Simz>= f=Ffz
Unsurprisingly, the Circuit instance for the Simulate monad will simply mimic our

non-monadic implementation:

' A better alternative would be parameterizing the Circuit class over the Sig type as well, using a
multiparameter type class. We refrain from doing so, however, for the sake of simplicity.

instance Circuit Simulate where

and zs ys = return (zipWith (&&) zs ys)
zor s ys = return (zipWith (#) zs ys)
nv zs = return (map not zs)

delay - v zs = return (v:zs)

Using this model, we have:

Main> halfAdd [True, True] [False, True] :: Simulate ([Bool], [Booll)
Sim ([True,False],[False,True])

More interestingly, we can consider an alternative semantics which will create a wire-
by-wire description of a given circuit. In this model, signals will be identified by symbolic
names. Our monad will have to generate new names for intermediate wires, accumulating
a textual “drawing” of the circuit as it is built. Hence, we employ a combination of state
and output monads:

type Sig o = String
data Draw a = D (Int — (a, [String], Int))

instance Show a = Show (Draw a) where
show (D f) =1let (I,s,)=f0
in concatMap (H“\n”) s H “Result: ” -+ show !

instance Monad Drew where

return £ = D (X\i. (=, [], 1))
Df>= g=D (\i.let (a,0,i) =f1
Dh =ga
(b, o, z'") h i
n (b, o +# o, i"))
We will need the following auxiliary functions:
newWire :: Draw String
newWire = D (Ai. ('w:show i, [], i+1))
output = String — Draw ()
output s = D (Ai. ((), [3], 1))
item 2 String — String — String — Draw String
item a b ¢ = do n < newWire
output(n—i+“=”+}-a-{+ u”_H_b_H__“”%c)
return n

The function new Wire simply returns a new name. (The variable i keeps track of the

number of wires.) The function output lets us emit intermediate descriptions. Finally,

item is a generic function for creating a new wire together with a description of how it is

obtained. Using these auxiliaries, the Circuit instance for the Draw monad becomes:?

instance Circuit Draw where

and a b = 4tem “and” a b

zor a b = item “xor” a b

delay s v a = item “delay” s a

nv a = do n + newWire
output (n H “ = inv " H a)
return n

‘We have:

Main> print (halfAdd "a" "b" :: Draw (Sig Bool, Sig Bool))
w0 = xor a b

wl=and a b

Result: ("w0","wl")

It is worth emphasizing that the description of halfAdd did not change, we simply used
a different monad. This is the strength of the monadic approach.
Unfortunately, a similar translation for the toggle circuit does not work. Consider:

toggle :: Circuit m = m (Sig Bool)

toggle = do inp + inv out
out « delay “False” False inp
return out

Although the description perfectly fits the circuit diagram we had before, we have lost the
feedback loop. The variables inp and out are no longer recursively defined! (In fact, the
definition above is not even valid Haskell; the variable out is not in scope in the first line.)
Our non-monadic implementation did not have this problem, as it relied on the recursive
definition capabilities of Haskell. But now, we are on our own: Haskell does not let us
write recursive specifications in the presence of monadic effects.

Unfortunately, the problem is not merely syntactic. It is not clear how to perform this
kind of recursion at all: we want the values (i.e., the signals) to be defined recursively, but
we certainly do not want the effects to be repeated or lost (i.e., we do not want to create
circuit elements repeatedly, or not to create them at all). We refer to this kind of recursion
as value recursion. In short, to be able to express the required recursive structure, we need
the underlying monad to support recursive monadic bindings [18]. Just as the usual fixed-
point operator handles “normal” recursion, we expect to find value recursion operators,

? The delay element did not use its first argument in the simulation model, and here it does not use
the second. The name is irrelevant for simulation, while it is all we need in a textual representation.

generically called mfiz, mediating the interaction between the underlying effect and the
recursion operation.

Getting back to circuit modeling, we will require circuits to be modeled by monads for
which such fixed-point operators are available, captured by the MonadFiz class:

class Monad m = MonadFiz m where
mfiz 2 (¢ > ma) > ma

class MonadFiz m = Circuit m where
-- and, zor, inv, delay as before

Now, we can tie the recursive knot over inp and out, expressing toggle as follows:

toggle :: Circuit m = m (Sig Bool)
toggle = mfiz (A “(inp, out). do inp + inv out
out + delay “False” False inp
return (inp, out))
>= M\(inp, out). return out
The final missing piece is the MonadFizr instances for Simulate and Draw monads. At
this point, we ask the reader to simply accept the following definitions:

instance MonadFiz Simulate where
mfiz f = Sim (let Sim a = f a in a)

instance MonadFiz Draw where
mfic f =D (Xi. let D ¢ =fa
(a,s8,) =g i
in (a, s, 1))

Note that the Simulate instance is essentially the same as the usual fixed-point opera-
tor. The Draw instance is a bit more complicated, but the reader can see that we perform
the fixed-point computation over the variable a, (i.e., the value), passing around 7 and s
untouched. Now, to simulate toggle, we just use our Simulate monad:

Main> toggle :: Simulate (Sig Bool)
Sim [False,True,False,True,False,True,False,..

and, to get a simple textual drawing, we simply switch to the Draw monad:
Main> toggle :: Draw (Sig Bool)

w0 = inv wl

wl = delay False w0

Result: "wi"

The handling of recursion via mfiz is somewhat mysterious at this point. The whole
point of this thesis is to expose the mystery, and to explore the interaction between

recursion and effects, heading toward an equational theory of value recursion.

1.3 Recursive monadic bindings

The use of mfiz to tie the recursive knot in a monadic computation is similar to the handling
of recursive bindings in usual let-expressions. For clarity, we will use the keyword letrec

here when a binding can be recursive, and let otherwise. In the pure world, we have:

letrec z = e in €’
=let z = fiz (Az. ¢) in ¢

= (Az. €') (fiz (Az. €))

What happens in a monadic computation? Similar to letrec, let us use the keyword

mdo? for monadic bindings that can be recursive, and do otherwise. We have:

mdo { z «+ ¢; ¢ }
=do { z « mfiz (Az. e); ¢ }
= mfiz (Az. €) >= Az. €

In Chapter 7, we will describe an extension to the do-notation of Haskell allowing
bindings to be recursive, using an enhanced version of this translation. Then, we will be
able to write the toggle example of the previous section as follows, the compiler taking

care of the insertion of appropriate calls to mfiz:

toggle = mdo inp < inv out
out + delay “False” False inp
return out

There is an opportunity here to clarify a potentially confusing issue about value re-

cursion. Consider a recursive definition of the form:

countDoun n = if n ==
then print “Done!”
else do print n
countDown (n—1)

The intention is clear: Each time countDown is called, we want the effect of printing to
take place. In this thesis, we will not be dealing with such definitions, as they are already
explained in terms of the usual fixed-point construction:

countDown = fix (M. An. if n == 0
then print “Done!”
else do print n

f (n—-1))

3The closest we can get to udo using ASCII. (We would have used dorec, but that is just too long.) Note
that the use of Haskell-like syntax is just for convenience. We could have used Moggi’s letr r < e in e’
notation and the keyword letrecr as well [63].

Note that effects are part of countDown's execution, rather than its definition. That
is, the effect of printing is not performed to determine the meaning of countDown itself.
In the toggle example, however, we see that effects are part of the definition: They are
performed in order to determine the values of inp and out, and the cyclic dependence
gives rise to the need for value recursion. In a sense, the use of recursion and effects in
countDown are orthogonal, with no interference in between. As shown above, this kind of

recursion is already explained in terms of fiz, the usual fixed-point operator.

1.4 A generic mfiz?

In Section 1.2, we saw two particular examples of mfix, one for the Simulation monad,
and another one for the Draw monad. Are these functions actually instances of a generic
schema? That is, can we find a definition of mfiz that will work for all monads, regardless
of which kind of effect we deal with? Let us pause briefly and consider how one might go
about defining such a generic operator.

Recall that the least fixed-point operator on domains satisfies the property:

fir = (a-a) - a
fiz f=f(fir f)
which also serves as a definition for fiz in a lazy language such as Haskell. One might

think that a similar defining equation can be found for mfiz as well. Indeed, it is not hard

to generalize to the monadic case:

mfit :: Monad m = (@ & m o) & m «
mfic f = mfiz f >= f
Note that this definition makes sense for all monads (i.e., it is polymorphic in m). But
is it a “good” definition? That is, can we use it sensibly to implement value recursion?

The short answer to this question is, unfortunately, no. To see why not, simply note

that this definition is equivalent to:
mfic f = fic dm.m 3= f) =| [{L, L>=f, L3>=f>=f, ..}

which will diverge whenever the = operator is strict in its first argument.? Furthermore,
even when 3= is not strict, this definition will attempt to compute the fixed-point over

*Note that the call to mfiz f will diverge regardless of what f is. In general, monads based on sum
types will suffer from this problem, as the “>= operator needs to inspect its first argument to see how to
proceed. Haskell’'s maybe and list monads are two popular examples that are based on sum types. Other
important examples where the >>= operator is strict in its first argument include the frequently used 10
and strict state monads.

10

both values and effects, which is simply not what we are trying to achieve. In value
recursion, we want the fixed-point to be computed only over the values, without repeating
or losing the effects. We will codify what we mean by value recursion in Chapter 2 using
a number of equational properties, exploring the interaction between recursion and effects
in depth. Then, we will be able to see more clearly why this default definition is not

appropriate for implementing value recursion.

1.5 The basic framework and notation

For most of this thesis we investigate value recursion in the usual domain theoretic seman-
tics of programming languages, where types are modeled by domains [77, 82]. We write L,
for the least element of the domain representing the type 7, dropping the subscript when-
ever unambiguous. Functions are modeled by continuous (and hence monotonic) maps
between domains, not necessarily strict. Recursion is modeled via least-fixed points. We
use monads to model effects, following Moggi [63]. Although by no means comprehensive,
the reader may find it useful to skim over Appendix A, which contains a brief review of
fixed-point operators.

We expect readers to be familiar with functional programming [35, 87], particularly
Haskell [7, 68]. For the most part, we use Haskell simply as a syntactically beefed up ver-
sion of A-calculus [30], so familiarity with any functional language should be sufficient. A
basic understanding of domain theoretic semantics of programming languages is necessary
to follow the technical development [76, 83]. Except for Chapter 6, we will be mainly inter-
ested in the “functional programming view” of monads [4, 91], rather than the categorical
one [2, 55]. Finally, we will have occasion to use the parametricity principle, allowing us
to derive theorems from the types of polymorphic functions [50, 75, 88].

Naturally, the theory of value recursion is independent of any particular programming
language. However, our work is closely tied to Haskell, and we will be careful in pointing
out the cases when the domain theoretic semantics and the semantics of Haskell do not
quite match up. The main differences show up in the treatment of products. Since tuples
are lifted in Haskell, it is not the case that (La,lg) = Laxg. Therefore, the equality
z = (m z, mp) fails. Similarly, A(z :: a).Lg # Laop, ie., the function type is lifted too.
Similar comments apply to sum types as well. Finally, the unit data type has two members,
1 and () itself, that is, it is not really a terminal object. Luckily, these differences do
not cause much trouble in practice, as long as one is aware of them. We point out the
cases where the difference becomes significant.

In our exposition, we will stick to Haskell notation as much as possible, deviating

from it only for typographical purposes. The difference mainly shows up in compositions

11

and A-bindings. For instance, we will write Haskell’s: \f -> \g -=> \x -> (f . g) x as
M. 2g. Xz. (f - g) =

1.6 Outline of the thesis

Our aim is to get through the basics of value recursion rather quickly, before we actually
investigate individual instances. To this end, we use the next two chapters to introduce
a number of equational properties that govern the behavior of value recursion operators.
Among these, we will identify three fundamental properties (namely strictness, purity, and
left shrinking), and in the remainder of the thesis we will consider only those operators
that satisfy this minimal core.

Chapters 4 and 5 are dedicated to the study of individual instances. In Chapter 4, we
investigate a wide range of monads that are frequently used in functional programming,
presenting value recursion operators for them. In Chapter 5, we argue that it is highly
unlikely that the continuation monad has an associated value recursion operator that will
satisfy our requirements.

Chapter 6 takes a step back and looks at a possible categorical theory of value recursion,
based on the notion of premonoidal categories and traces. Even though the theory of traces
does not provide a perfect fit, it is illuminating to see how recent work in this area can be
generalized to capture value recursion for a certain class of monads.

Chapters 7 and 8 deal with the Haskell language in particular. In Chapter 7, we will
turn our attention to syntactic support for value recursion, presenting a recursive version
of Haskell’s do-notation. In Chapter 8, we will study Haskell’s IO monad. Since the IO
monad is hardwired into Haskell, it is not possible to investigate value recursion for it
directly. Hence, we present a model language (complete with I/O operations and mutable
variables), and show how one can model value recursion in this world.

Chapter 9 presents a number of examples, which, in addition to the circuit modeling
example of this chapter, provides a tour of potential applications of value recursion.

Chapter 10 concludes the thesis with a discussion of related work and future research
directions. A brief review of fixed-points, along with several proofs that are omitted from
the main body of the thesis are given in the appendices.

Each chapter in the remainder of this thesis starts with a brief description of its
contents. Although we intend the chapters to be read in order, readers may find it useful
to quickly skim over these segments to determine a particular reading plan according to

their own interests.

Chapter 2

Properties of value recursion operators

What kinds of properties do we expect value recursion operators to satisfy? So far, we have
been using phrases like “recursion without repeating or losing effects,” or “recursion only
over the values” to characterize value recursion. The aim of this chapter is to formalize
our intuitions by means of equational properties.

Synopsis. We discuss a number of equivalences that we expect value recursion operators
to satisfy. These properties range from those that imitate properties of the usual fixed-
point operator over domains, to those that govern the interaction between recursion and
effects. We also provide a number of derived properties, including those that are granted by
virtue of parametricity. Several properties that might be naively expected, yet unsatisfiable

for a wide range of monads, are discussed as well.

2.1 Strictness (Nothing from nothing)

The domain theoretic treatment of recursion in programming languages relies on least
fixed-points [76, 83]. That is, given a specification of the form z = f z, where f :: & = a,
we expect z to be the least a satisfying this equation. In this setting, one can show that a
function is strict if and only if its least fixed-point is L. Since L represents no information
in the domain theoretic ordering, our slogan in this case is simply nothing from nothing.

Generalizing to value recursion, we expect the following property to hold:
Property 2.1.1 (Strictness.) Let f :: @ = m o,
fla=dma © mfiz f =1lpa (2.1)

Remark 2.1.2 1In Section 2.6.2, we will be able to derive the right to left implication
from other properties, i.e., we will show that if mfiz f is L, then f must be strict. We
prefer expressing the strictness law as it is, however, as it uniquely characterizes strict

functions of type a — m «.

12

13

2.2 Purity (Just like fiz)

Purity formalizes the intuition that mfiz should behave exactly like fiz, in case there are

no effects:
Property 2.2.1 (Purity.) Let h:a — «a,
mfiz (return - h) = return (fiz h) (2.2)

Diagrammatically, we capture purity as follows:

=

return

3
8
3
3

Remark 2.2.2 We use wiring diagrams to capture properties pictorially. Note that we
do not formalize these diagrams, nor use them for any purpose other than illustration.
Dashed boxes represent where value recursion is performed. Thin lines show data flow.
The thick line, called the effect line, refers to the details of the monadic computation.
Although it is not correct to consider the effect line as carrying data, it usually helps to
think of it as such. (The effect line analogy holds very well for the state monad, but it is
not very intuitive for, say, the exception monad.) We indicate pure computations by not
letting them use the effect line, as illustrated by the h box in the above diagram. The
solid loop on the right hand side indicates the use of fiz. (Note that there are no dashed

boxes on the right hand side as there are no applications of mfiz.)

2.3 Left shrinking (No recursion — No fiz)

Recall our naive translation schema for the recursive do-notation from Section 1.3. Nat-
urally, we would like mdo to behave exactly like do, provided there are no recursive

bindings. That is, the following two code fragments should have the same meaning:

mdo z «+ A doz + A
B mdo B

provided A does not make use of z, or any variable defined in the block B. If B does not
have any recursive bindings either, we can push mdo further down, eventually eliminating
it altogether. We capture this correspondence by the left shrinking property:

14

Property 2.3.1 (Left shrinking.) Let f::a—= 38 > ma, a:mp,
mfir (Az. a >= Ay. fzy) =a>= Ay. mfic (Az. f z y) (2.3)
where does not occur free in a.

The name “left shrinking” is suggested by the corresponding diagram:

Remark 2.3.2 The reader might expect an analogous right shrinking property as well.
But, as we will see in Chapter 3, arbitrary lifting of computations from the right hand
side of a >>= is not possible in general. We can, however, lift pure computations out. We

will provide a derived law to deal with this case in Section 2.6.3.

2.4 Sliding (Pure mobility)
Let f::a— B and h:: 8 = a. As reviewed in Appendix A, the equation

fie (b - f) =h (fix (f - b)) (2.4)

expresses the dinaturality condition for fir, an extremely important law for manipulating
fixed-points. We expect value recursion operators to satisfy a similar law as well.

Two problems arise in translating Equation 2.4 to the world of value recursion. The
order of f and h is swapped, and h is duplicated on the right hand side. Obviously, if f
and h can both perform effects, swapping and duplication are both out of question. When
h is pure, however, we expect to be able to slide it over f:

Property 2.4.1 (Sliding.) Let f::a—=m B, h: 8> q,

fhL)=f1 = mfix (map h - f) = map h (mfiz (f - &) (2.5)

where map :: (a = b) - m a — m b is the usual lifting function.! The consequent

can be equivalently expressed as:

mfiz (A\z. f £ >= return - h) = mfiz (f - h) >= return - h (2.6)

1The function map is defined by the equation map f m = m 3= return - f. Note that, in Haskell
notation map is called fmap, and the name map is reserved to be used with the list monad only [68].
Deviating from Haskell, we use the name map consistently for all monads.

15

Diagrammatically:

)
1|

The side condition, i.e., f - h and f should agree on L, is essential. When we think of
recursion as an iterative process that starts with 1, we see that f first receives L on the
left hand side in the recursive loop, but receives h L on the right. If A L # L, f will have
more information to start with on the right hand side. The side condition guarantees that
this extra knowledge is irrelevant: f must not distinguish between 1 and k L. It is worth
noting that dinaturality of fiz (Equation 2.4) does not require any such conditions. As
we will see in Chapter 3, however, without the side condition, sliding is unsatisfiable for

many practical monads of interest.

Observation 2.4.2 The side condition is trivially satisfied if k is strict. It turns out

that this particular case is derivable from parametricity (see Corollary 2.6.12).

Note The alert reader will note that the order of effects does not matter for commutative
monads, and hence one might expect a swapping property where both computations are

effectful. This is indeed the case, see Section 3.3 for details.

2.5 Nesting (Two for the price of one)

Bekid’s property for usual fixed-points states that simultaneous recursion over multiple
variables is equivalent to recursion over one variable at a time (see Appendix A.) In the
value recursion world, one way to express this relation is to assert the equivalence of the

following two expressions:

mdo z « mdo y « f (z, y) mdo z « f (z, z)

return y
return z
return z
The nesting property? stipulates this equivalence:
Property 2.5.1 (Nesting.) Let f :: (a,a) - m o,
mfiz (Az. mfiz (Ay. f (z, y))) = mfiz (Az. f (2, 7)) (2.7)

2This property was first suggested to us by Ross Paterson (personal communication).

16

The following proposition states an equivalent form of nesting, which is quite useful in

symbolic manipulations:
Proposition 2.5.2 Let f :: (1,0) & m (7,0). Assuming true products, the equation

mfiz (A=,). mfiz (A(., y)- f (2, y))) = mfic | (2.8)

is satisfied exactly when nesting holds, provided mfiz satisfies the sliding property.
Proof See Appendix B.1. a

Using Equation 2.8, it is easy to describe nesting diagrammatically:

Just like the Beki¢ property for fiz, nesting generalizes to any number of variables. For
instance, one can derive:
mfiz (M=z, -,). mfiz (A 9,). mfiz (A - 2). f (2, 9, 2)))) (2.9)
= mfiz (s, y, 2). f (2, 9, 2))

Note that the order of nesting is also immaterial, we could have recursed over any permu-
tation of the variables; for instance, first over z, then z and finally y, etc.

Remark 2.5.3 We will take a closer look at Equation 2.8 in the case of lifted products
(as in Haskell). Assuming mfiz satisfies strictness, the left hand side will always be L, due

to strict matching against pairs. Using irrefutable patterns, one might attempt:

mfiz (A\"(z,). mfix (A\"(,, ¥), f (2, 9))) = mfiz |

However, a problem still remains. If f is strict, then the right hand side will be L, but
the left hand side might produce an answer, because L # (1, L1).®> The proper way of
expressing Equation 2.8 with lifted products is:

mfic (A*(z,). mfix A7, 9), f (2, 9))) = mfix (A (2, 9). f (z, %) (210)
Similar to Proposition 2.5.2, one can establish:

Proposition 2.5.4 In the case of lifted products, Equation 2.7 is equivalent to Equa-
tion 2.10, provided mfiz satisfies sliding. W]

3Peter Thiemann was first to notice this problem (personal communication).

17

2.6 Derived properties

One can derive new equalities using the properties we have described so far, and proper-
ties of the underlying domain-theoretic framework. This section presents a collection of
such laws—those that we have found to be the most useful when reasoning about value

recursion.

2.6.1 Constant functions

Left shrinking and purity properties imply an expected property of fixed-point operators:
If the fixed-point variable is not used, recursion is irrelevant:

Proposition 2.6.1 Let a :: m a be a constant (i.e., £ does not occur free in a). Then,
mfiz (Az.a) = a (2.11)

provided mfiz satisfies purity and left shrinking laws.
Proof

mfiz (Az. ¢) = mfix (Az. a >= Ay. return y)

= a >= Ay. mfic (Az. return y) {left shrinking}
= a 3= Ay. return (fiz (Az. y)) {purity}
= a 3= Ay. return y
=a
Note that fiz (\z. y) = (Az.) (fiz (M\z. y)) = . 0

The diagram in this case is trivial:

2
Q

........

Similarly, we can lift a conditional expression from inside an mfiz, if the test expression

is not involved in the recursion computation:

Proposition 2.6.2 Let a be a boolean expression where z does not occur free in a. Let

f, gt = m a. We have:

mfiz (Az. if a then f z else g z) = if a then mfiz f else mfiz ¢ (2.12)

Proof Case analysis on the value of a. The True and False cases are obvious. When
a = 1, the left hand side yields L by Proposition 2.6.1, guaranteeing the equivalence. O

18

2.6.2 Approximation property
Monotonicity implies that f 1 always provides an approximation to mfiz f:

Proposition 2.6.3 Let f :: «a & m . Then,
fLE mfiz f

provided mfiz satisfies purity and left shrinking,.

Proof Since (Az. f 1) C (Az. f z), we have mfiz (Az. f L) C mfiz f by the monotonic-
ity of mfiz. But the left hand side is f L by Proposition 2.6.1, completing the proof. [

Remark 2.6.4 Proposition 2.6.3 states more than a rudimentary fact: f L yields valu-
able information on the structure of the fixed-point. Consider the list monad, for instance.
If f::a > [a], and if f L is a cons-cell, then so is mfiz f. In particular, if f L is a finite
list of length k, then the length of the fixed-point is k as well. In general, for any monad

based on a sum type, f L determines the top level structure of mfiz f.
We can now establish the strictness property in one direction (see Remark 2.1.2):

Corollary 2.6.5 Let f :: @ &+ m a, and mfizx f = L. Then f is strict, provided mfiz
satisfies purity and left shrinking laws.
Proof By Proposition 2.6.3, f L € L, implying that f L = 1. (W]

2.6.3 Pure right shrinking

The sliding property allows lifting of pure computations from the right hand side of a >=:

Corollary 2.6.6 Let f:a—>ma,and h:: a— 3,

mfic (M(z, y). f £ >= Az return (2, h z))

(2.13)
= mfiz f >= Az return (z, h z)

provided mfiz satisfies sliding. (On the left hand side, the value-recursion loop is over
(a, B), while the one on the right hand side it is over « only.)
Proof We have

mfiz (A(z, y). f £ >= Az return (z, b z))
= mfiz (map (Az. (z, h 2)) - f - m) {slide}
map (Az. (z, b 2)) (mfiz (f - m - (Az. (2, h 2))))
= mfic f >= Az return (z, h 2)

Sliding applies, since (f-m) L=(f-m -Az(z, h2)) L= f L. a

19

The diagram in this case looks like:

oo o e N | oo AN
P X] X T)
) L

1 X

e

i
A

which suggests the name pure right shrinking.

Warning 2.6.7 In case we have lifted products, as in Haskell, the pattern matches
against pairs should be done lazily. That is, every formula of the form: A(z, y). fz y
should be replaced with At. f (w1 t) (w2 t), or the Haskell equivalent A "(z, y). f = .
(And similarly for triples, quadruples, etc.) For instance, Equation 2.13 should be ex-

pressed as:
mfic (M. f (m t) >= Az return (z, h z)) = mfix f >= Az return (2, h 2z)
or,
mfic (A" (z, y). f £ >= Az return (2, h 2)) = mfiz f >= Az return (2, h 2)
avoiding the strict match against the tuple.

It is possible to generalize Equation 2.13, so that h can use z and y as well. We call

this variant the scope change law:

Proposition 2.6.8 Let f:a—>ma, h:a— (a,b) > 6,

mfiz (Mz, y). f £ >= Az return (2, b z (z, y)))

(2.14)
= mfiz f >= Iz return (fix (A(z,). (2, h 2z (3, y))))
provided mfiz satisfies purity, left shrinking, nesting, and sliding laws.
Proof See Appendix B.2. |

Remark 2.6.9 Simple manipulation of the right hand side of Equation 2.14 yields the

following equation:

mfizc (Mz, y). f £ >= Az return (2, h z (z, y)))

(2.15)
= mfiz f >= Az return (z, fir (\y- b z (2, y)))

This form of the scope changing property is quite useful in derivations, although somewhat

less symmetric than Equation 2.14.

20

2.6.4 Parametricity: The “free” theorem

The least fixed-point operator on domains satisfies the following uniformity law [60, 82]:
Let f::a—a,g::f— B8,and s :: a — §, where s is strict. Then,

s-f=g-s= s(ficf)="fieyg (2.16)

This extremely useful law is exactly the free theorem for the type (¢ = a) = «, and
hence granted by virtue of parametricity in our setting [75]. For mfiz, parametricity gives

us the following theorem for free:
Theorem 2.6.10 Let foa—omao,guf—ormpB,s:a—f,

map s -f =g 8= map s (mfizx f) = mfiz g (2.17)
provided s is strict. O

Remark 2.6.11 It is worth emphasizing that we use Theorem 2.6.10 freely in our treat-
ment of value recursion.? If one takes a more abstract view, of course, we expect Equa-
tion 2.17 to be postulated as a property to be checked, rather than taken for granted. Of
course, this begs the question exactly what strict would mean in this new setting. See
Simpson and Plotkin’s recent work for a modern account of such questions [79]. (We will

return to the treatment of value recursion in more abstract settings in Chapter 6.)

As we pointed out before, sliding strict computations is a direct consequence of para-

metricity:
Corollary 2.6.12 Let f::a—mpB, h:: f— a. Then,

mfic (map h - f) = map h (mfic (f - b)) (2.18)

provided h is strict.

Proof Direct consequence of the free theorem with FF — f-h,G + map h - f and
S > h, where we use capital letters to identify variables in Equation 2.17.]

1A word of caution is in order regarding Haskell and parametricity. It is well known that the seq
primitive weakens the parametricity properties of Haskell [50, 68, 88]. We do not make use of this primitive
in our work.

21

Parametricity allows us to take mirror images of our properties. For instance, the

following equation is essentially the same as Equation 2.13:
mfic (A(z, y). f y >= Az return (h 2, 2)) = mfix f >= Xz return (h z, 2)

Obviously, we can consider the same equation over arbitrary length tuples and arbitrary

permutations as well. We capture the essence of this process in the following corollary:

Corollary 2.6.13 Let f,g :: (o,8) = m (a,8). The equation mfiz f = mfiz g holds

exactly when its mirror image, that is:
mfiz (map swap - f - swap) = mfiz (map swap - g - swap)

holds, where swap (z, y) = (y, z)-
Proof Simple application of Corollary 2.6.12 on both sides. Note that swap is strict. (I

As a final corollary to the free theorem, we consider the following injection law:

Corollary 2.6.14 Let f ma—>mea, 22 a —> (3, p: B — a, where p is strict and

p i = idy. We have:

mfiz f = map p (mfiz (map i - f - p)) (2.19)

Proof Let F—map i-f - -p, G~ f,and S — pin the free theorem. Again, capital
letters denote the variables in Equation 2.17. d
Note that Corollary 2.6.14 also follows from the sliding property. The intended reading

of Equation 2.19 is as follows. The function 7 injects a’s to 3’s, while p projects back.
Hence, we can introduce spurious variables into the recursive loop, as long as they are not

used anywhere.

2.7 Stronger properties

In this section we present two laws, strong sliding and right shrinking, which might be
naively expected to be satisfied by value recursion operators. As we will prove in Chap-
ter 3, however, they are both unsatisfiable for a wide variety of monads of practical inter-
est. The most important monad satisfying both these properties is the lazy state monad
(Section 4.4).

22

2.7.1 Strong sliding

If Equation 2.5 holds unconditionally, (i.e., without requiring f (h L) = f 1), we say that
the given value recursion operator satisfies the strong sliding property. As we will see in
Chapter 3, strong sliding is not satisfiable for a variety of practical monads. However,

when available, it allows us to deduce several interesting equalities:
Proposition 2.7.1 Let f::a - m o, and ¢ :: «. Then,

mfic (Mz,). f = >= Ay. return (q, y)) = f ¢ >= Ay return (q, y) (2.20)
provided mfiz satisfies the purity, left shrinking and strong sliding properties.
Proof See Appendix B.3. O
Proposition 2.7.2 Let f::a—>m g, g:: 8 > m a. Then,

mfic (M3, 9). f © 3= M. gy 3= Ao'. return (2, ¢))

2.21
=mfiz Mz,). fz>= M. gy >= Az'. return (2/, ¢')) ()

provided mfiz satisfies the purity, left shrinking, nesting and strong sliding properties.

Diagrammatically:
— X’ —x
T :‘/ """"" | y ."““""[""""" - _
i y’ H = L x) y i
’ H f g : : f g :
' / i ' |

Proof Straightforward applications of nesting, left shrinking, and the mirror image of
the previous proposition on the left hand side. a

2.7.2 Right shrinking

Pure right shrinking (Corollary 2.6.6) tells us how to pull pure computations from the right
hand side of a >>=. Although it is not possible to pull out effectful computations in general,
there are certain monads for which it is possible to do so, the most important examples
being the output monad (or, in general, monads based on monoids—see Section 4.5), and
the lazy state monad (Section 4.4). The following property captures the situation:

Property 2.7.3 (Right shrinking.) Let f:a—>ma,g::a—>mpf,

mfic (Mz, y). f 2 3= Az g z >= Aw. return (z, w))

(2.22)
=mfic f >= Az. ¢ 2 >= dw. return (2, w)

23

Diagrammatically:

Fact 2.7.4 Obviously, Equation 2.22 generalizes 2.13. That is, if a given value recursion

operator satisfies right shrinking, it will automatically satisfy the pure version as well.

The combination of right shrinking and strong sliding allow us to generalize the scope
change law (Proposition 2.6.8) as well:

Proposition 2.7.5 Let fr:a—-o>ma,g:a— (a,8) - mB,

mfic (M(z, y). f 2 3= Az g z (z, y) >= Aw. return (z, w))

(2.23)
= mfizx f >= Xz mfizx (Ab. g z (2, b)) >= Aw. return (z, w)

provided mfiz satisfies purity, left shrinking, nesting, strong sliding and right shrinking.
Proof Analogous to the proof of Proposition 2.6.8. a

2.8 Classification and summary

Our properties try to capture the expected behavior of value recursion operators, formal-

izing our intuitions. It is worth reiterating the most important goals:

e Recursion should be performed only over the values, and the fixed-point computation
should be similar to that of fiz,

e Effects should be neither repeated nor lost,

e In the case when there are no recursively bound variables, mdo should behave
exactly like a do.

How do our properties match these goals? Strictness states that the fixed-point is L
exactly when the given function is strict, analogous to fiz. Purity states that, in case there
are no effects, mfiz should behave exactly like fiz. These two properties are as close as we
get to the behavior of the usual fixed-point operator on domains. Left shrinking states
that mdo is exactly the same as do, in case there are no recursive bindings. We consider
these three properties to be the most essential, leading to the following definition:

24

Definition 2.8.1 (Value recursion operators.) A value recursion operator for a monad

(m, >=, return) is a function mfiz :: (&« - m a) - m ¢, satisfying:
e Strictness: f Lo =1lpme © mfiz f = Lna,
e Purity: mfiz (return - h) = return (fiz h),

e Left shrinking: mfiz (Az. a >= Ay. f 2 y) = a >= Ay. mfiz (Az. f z y), pro-

vided z is not free in a.

At this point, two questions arise. First, why are sliding and nesting properties left
out from Definition 2.8.1, even though we have found that they are both satisfied by many
instances of mfiz in practice (see Chapter 4)7 And second, are there other properties of
interest that we have completely missed?

The answer to the first question is a matter of choice. We would like to keep the
requirements as simple as possible, but no simpler. As we will see several examples in
Chapter 4, operators that do not satisfy the basic properties mandated by Definition 2.8.1
yield results that are not very sensible for value recursion. Other properties are just as
important theoretically, but it is our belief that they are in a secondary status from a
practical point of view.

It is much harder to answer the second question. Whether we have the “right” def-
inition should become apparent as value recursion finds its place in practical functional
programming. Our work, both in the context of this thesis and in using recursive monadic
bindings in practical Haskell programs, led us to conclude that Definition 2.8.1 satisfacto-
rily captures the minimal common core.

Finally, a comment on uniqueness is in order. Given a particular monad, we do not
require a unique value recursion operator for it. There may be none, exactly one, or many
operators satisfying the requirements of Definition 2.8.1. (For instance, in Chapter 4, we
will be able to show that identity, maybe and list monads of Haskell have unique value
recursion operators, while the state monad has an infinite chain of them. On the other
extreme, the continuation monad probably has none—see Chapter 5 for details.) Further-
more, different operators for the same monad might satisfy different sets of properties in
addition to the basic set mandated by Definition 2.8.1. In such a case, the user has the re-
sponsibility to pick the most appropriate operator for the problem at hand, possibly using

our properties as a guide. We will see a concrete example of this situation in Section 4.4.

Chapter 3

Structure of monads and value recursion

So far, our study of value recursion was set in the context of arbitrary monads. We will
now take a closer look at various properties that monads may satisfy, such as idempotency,
commutativity, or additivity. The aim of this chapter is to investigate the implications of
structural properties of monads for value recursion.

Synopsis. We first consider monads whose = operator is strict in its first argu-
ment, covering many practical monads of interest. We show that strong sliding and right
shrinking properties are not satisfiable for such monads. We then consider idempotent,
commutative and additive monads, trying to identify how value recursion operators should
behave in each case. Finally, we briefly discuss embeddings and monad transformers.

3.1 Monads with a strict bind operator
Consider a monad m whose = operator is strict in its first argument. That is:
I >=f=1ne (3.1)

for all f :: 7 — m o. Haskell’s maybe, list, 10, and strict state monads are examples of
such monads. In this section, we will prove that neither strong sliding, nor right shrinking

properties can be satisfied for such a monad, unless it is trivial in the following sense:

Definition 3.1.1 (Trivial monad.) A monad (m, >=, return) is trivial if, for all types

7, the domain corresponding to the type m 7 consists only of L, ;.

Remark 3.1.2 The canonical example of a trivial monad is:

data Void a -- no constructors, all we have is L

return t = L
m>»= f=1

25

26

Note that all of our properties hold for a trivial monad, with the only possible definition

mfix f = L.

Lemma 3.1.3 Let (m, >=, return) be a monad where >>= is strict in its first argument.
If return is strict as well, then m is trivial.l

Proof Pick an arbitrary type 7, and let @ be an arbitrary element of m 7. We have:

a = consta L; {const z y = z}
= return, L, 3= const a {left unit}
= Llpr 3= const a {return is strict}
= Llnr {>= is strict}
The result now follows by Definition 3.1.1. |

Note that Lemma 3.1.3 requires return to be strict at all types. The following lemma
simplifies this requirement, reducing the proof obligation to return being strict at only one

particular type:?

Lemma 3.1.4 Let (m, >=, return) bé a monad where >>= is strict in its first argument.
If return is strict at one type, (i.e., there exists a type 7 s.t. return, 1, = L,), then it
is strict at all types.

Proof See Appendix B.4.]

After these preliminary results, we can now proceed with our original goal:

Proposition 3.1.5 Let (m, >=, return) be a monad where 3= is strict in its first
argument. If there is a value recursion operator for m that satisfies the strong sliding
property of Section 2.7.1, then m is trivial.

Proof We will first establish that if such an operator exists, then return must be strict.
Define:3

fooa(->m() o= ()= 0
f () = return () h_=()
Note that f - h = Az. return (). Let mfiz be a value recursion operator for m satisfying

the strong sliding property. Then, Equation 2.6 must hold with no side conditions. The
right hand side of Equation 2.6 reads:

1For brevity, we simply refer to a monad (m, 3=, return) by the name of its type constructor, i.e., m.

2This lemma and its proof has been suggested to us by Ross Paterson (personal communication).

3The domain corresponding to the unit type, written () following the Haskell notation, consists of
exactly two elements: L and (), with the obvious ordering L [().

27

mfic (f - h) >= return - h

and, by Proposition 2.6.1 and the left unit law, it must be equal to return (). Similarly,
the left hand side of Equation 2.6 reads:

mfic (Az. f £ >= return - h)

and, by the strictness property, it must compute to L. (Note that f is strict because
it matches its argument against (), and >>= is strict in its first argument by hypothesis.)
Hence, strong sliding implies return () = L. By monotonicity, then, return must be strict
at the type (). Hence, by Lemmas 3.1.4 and 3.1.3, m must be trivial. O

A similar argument shows that right shrinking property shares the same fate:

Proposition 3.1.6 Let (m, >=, return) be a monad where 3= is strict in its first
argument. If there is a value recursion operator for m that satisfies the right shrinking
property of Section 2.7.2, then m is trivial.

Proof Define:

f o [Int] = m [Int] g = [Int] > m Int

| = retum
[zs = return (1 : zs) g [z]

g .- =return 1

It is easy to see that the left hand side of Equation 2.22 must yield L by the strictness
property (note that g will diverge on 1 :). By purity, we have

mfiz f = return (fizx (Azs. 1 : z5))
Hence, the right hand side of Equation 2.22 evaluates to
return (1, fix (Azs. 1 : zs))

implying that L = return (1, fir (Azs. 1 : zs)). By monotonicity, then, return must be
strict at the type (Int, [Int]) . Hence, by Lemmas 3.1.4 and 3.1.3, m must be trivial. O

In other words, unless a given monad m is trivial, no value recursion operator for
m can satisfy strong sliding and right shrinking properties, provided m’s = operator is
strict in its first argument. This is an important result, as it identifies inherent limitations

on properties that can be expected to hold for many practical monads of interest.

Corollary 3.1.7 Neither strong sliding nor right shrinking properties are satisfiable for
Haskell’s maybe, list, strict state and IO monads, as none of these monads are trivial (no

pun intended—see Definition 3.1.1). (i

28

3.2 Idempotent monads
A monad m is said to be idempotent if the equation?

a>= Az. a 3= Ay. return (z, y) = a 3= Az. return (z, z) (3.2)

holds for all a :: m 7 [46]. Identity, maybe and environment monads are examples of
idempotent monads. Intuitively, a monad is idempotent if computations can be duplicated
whenever their results are needed.
Note that Equation 3.2 does not specify any data flow between repeated computations.
That is, the equation
Az fz>= f = f (3.3)

is not required to hold.® However, if a monad is idempotent, we expect both sides of
Equation 3.3 to be indistinguishable by mfiz. Furthermore, once mfiz f is computed for
a function f, further applications of f should not change the result. We capture these

intuitions in the following property:

Property 3.2.1 (Idempotency.) Let f :: @ = m «, where m is an idempotent monad

with a value recursion operator mfiz. Then,

mfiz Az. f 2 >= f) = mfiz f (3.4)
mfic f >= f = mfiz f (3.5)

The first equality can be captured diagrammatically as follows:

N e a -~

We leave it to the reader to picture Equation 3.5.

Remark 3.2.2 It is important to note that Property 3.2.1 does not state that Equa-
tion 3.4 or 3.5 can be used as definitions of value recursion operators whenever the un-

derlying monad is idempotent.® For instance, Equation 3.5 will always produce L for

‘In category theory, a monad m is called idempotent if its join :: m (m a) — m a operator is an
isomorphism [55]. The definition we use is more useful from a practical point of view, however. For instance,
the maybe monad is idempotent with our definition, although its join operator is not an isomorphism.

% As a counterexample, consider the identity monad where Equation 3.3 is satisfied only for idempotent
functions (i.e., f2 = f), but not in general.

5Individual definitions might coincide, of course. For instance, in Chapter 4, we will see that Equa-
tion 3.5 does indeed define value recursion operators for identity and environments, but not for exceptions.

29

mfiz in a monad with a >= operator that is strict in its first argument, which is clearly

undesirable.

We will discuss idempotency property with respect to identity, exception, monads

based on idempotent monoids, and enviro