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In the past decade, permeable reactive barriers containing zero-valent iron metal
(FePRBs) have emerged as the most significant new technology for the treatment of
groundwaters contaminated with chlorinated organic compounds and, more recently,
other organic contaminants such as 2,4,6-trinitrotoluene (TNT). Principle issues relating
to the design, implementation, and monitoring of FePRBs include the rates of
contaminant transformation, the resulting distribution of products, and the potential
changes in FePRB performance due to aging of the iron material. Each of these issues is,
at its root, a problem of chemical kinetics. In this thesis, commonly observed kinetic
expressions for contaminant transformation are derived. Analyses of the simplifications
involved in these derivations indicate that the forms of the rate laws are correct (either
exactly or approximately) over a wider range of conditions than previously expected and
that reaction rates may respond in unexpected fashion to changes in concentrations of
reacting species or iron loading. These theoretical developments are applied to
experimental investigations of product distribution and FePRB longevity for the

treatment of TNT contaminated groundwaters.
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CHAPTER 1

Overview

1.1 Introduction and Problem Statement

In the past decade, permeable reactive barriers containing zero-valent iron metal
(FePRBs) have emerged as the most significant new technology for the treatment of
groundwaters contaminated with chlorinated organic compounds and, more recently,
other organic contaminants such as 2,4,6-trinitrotoluene (TNT) "% Since the strategy of
using iron to treat chlorinated solvents was first articulated >, researchers from a wide
variety of academic disciplines have investigated aspects of this technology, including
reaction pathways, degradation products, chemical mechanisms, chemical kinetics, and
mass transport. Some significant results include (i) the surface area normalization of
observed degradation rate constants * and the application of kinetic models accounting for
sorption and site limitation 31 (ii) the correlation of reduction rates to the lowest
unoccupied molecular orbital energy (ELumo) of the contaminant 8, (iii) the identification
of intermediate species and end products for a host of initial contaminants, and (iv) the
recognition of the role of oxide films in controlling the reduction process °,

A common theme in all of these research efforts is the kinetics of the iron
mediated reduction reactions. Kinetic information for a given contaminant is key to
designing FePRBs. These kinetic studies also form a principle means of determining
reaction mechanisms and the distribution of reaction products. Many of the kinetic
studies with the iron metal system have focused on defining empirical rate equations with
batch and column disappearance data. In contrast to these macroscopic studies, recent

molecular modeling efforts have focused on reaction kinetics at the atomistic scale.



Integration of these two bodies of work, however, is limited by the significant theoretical
gulf that lies between these two scales (see figure 1). A comprehensive theory of scaling
has been a long-term goal in theoretical chemical kinetics. In addition to possessing
scientific impact, such a construct would be useful in the ongoing research and
development of iron metal remediation technologies. This thesis is focused on a piece of
the scaling problem that, to date, has received little attention—scaling between
mechanistic chemical kinetics, where all stable reactants, products, and intermediates in a
reaction are specifically treated, and empirical chemical kinetics, where the number of

species considered explicitly is minimized to only those that are important.

1.2 Theory of Chemical Kinetics

The word “kinetic” is derived from the greek word “kinetikos” meaning to move.
In physics, the study of motion (mechanics) is divided into kinematics, which deals with
the description of motion, and kinetics, which deals with the effects of forces on motion.
In chemistry, such a distinction is not made and chemical kinetics refers to the study of
the time rate of change of the chemical composition of materials. The chemical
composition of a material can be described, macroscopically, in terms of thermodynamic
state variables such as temperature, pressure, or chemical potential, but, the most
common macroscopic descriptor is chemical concentration (which is related to chemical
potential) because, as we will see, reaction rates usually depend directly on the
population of reacting species.

From a molecular viewpoint, chemical kinetics involves the study of chemical
reactions in which one or more molecules undergo a transformation to form a new
molecule or molecules. Of course, at thermodynamic equilibrium, the macroscopic state
variables listed above remain unchanged but molecular transformations still occur and the
equilibrium values of the state variables are defined by the kinetics of those
transformations. The amount of time required for a single molecular transformation is
typically on the order of a femto-second while changes in the properties of materials are
usually on a much longer time scale (e.g., microseconds for the combustion of explosives
to kilo-years for mineral weathering). The kinetics of a chemical reaction are, therefore,

determined by the number of molecular transformations that occur per unit time and



10-12 \ith the transition

chemical kinetics can be thought of as a Markov chain
probabilities determined by the mechanics of the underlying molecular transformations.

Theoretical methods for predicting the probabilities of a molecular transformation
are based on the conclusion—originally drawn by Arrhenius '*—that a chemical reaction
involves passing over an energy barrier between two (local) minimum energy molecular
configurations. The initial energy minimum corresponds to the reactant(s) and the final
energy minimum corresponds to the product(s) of the reaction. Additional energy minima
may exist between the reactants and products and these minima correspond to stable
reaction intermediates.

Calculating the energy for any molecular configuration involves the evaluation of
the quantum mechanical Hamiltonian for the bond angles, inter-atomic distances, and
electronic configuration that are particular to the given configuration. Predicting a
molecular transformation probability, then, involves energy calculations for a range of
molecular configurations leading to an energy hyper-surface generally referred to as a
potential energy surface 14, Since the reaction can follow any path across the potential
energy surface, even discontinuous paths involving quantum tunneling, many schemes
for evaluating chemical kinetics from first-principles simplify the hyper-surface to a one-
dimensional energy curve that follows the minimum energy path between reactants and
products. This minimum energy path is referred to as the reaction coordinate and reaction
coordinate following is the simplification employed transition-state theory '° and Marcus
theory '6!7.
Chemical reactions are often times conceptualized in terms of the reaction
mechanism where all important molecular transformations are represented as the
molecular species involved in the transformation connected by an arrow which signifies
the transformation. The kinetics of the chemical reaction may be specified by
determining an equation for the rate of each of the transformations in the reaction
mechanism. The equations are known as the rate laws and are usually formed from the
product of a constant (known as the rate constant) and the concentrations of the reacting
species raised to an integer power which is equal to the molecularity of the given species.
The reaction mechanism can be related to the potential energy surface by considering a

graph whose nodes represent the local minima in the potential energy surface (i.e., the



reactants, intermediates, and products) and whose edges are then drawn between any two
nodes that are connected by a segment of the reaction coordinate that passes through no
other potential energy surface minima. The rate laws for the reaction mechanism are,
thus, directly related to the transformation probabilities between connected nodes on the
graph.

The kinetics of a reaction depend, in principle, on the concentrations of all
reactants, intermediates, and products. For many reactions, however, the rate is found to
depend primarily on the concentrations of only a few of the stable species (e.g., the
reactants). Rate laws that account only for the important species can, therefore, be
empirically defined to capture the critical features of laboratory kinetics experiments.
Since empirical rate laws need not be constrained by the principles of Markovian
dynamics, they may take forms other than the product of concentration terms that apply
to mechanistic rate laws. Such products are, however, still found to be broadly applicable
with the allowance of non-integer powers on the concentrations '®. Other common forms
for empirical rate laws include the quotient of two finite series of concentration terms '

and exponential rate equations derived from spectral integration.

1.3 Scaling Chemical Kinetics

Figure 1 shows the theoretical constructs described above organized according to
the length scales at which each is most relevant. Quantum mechanics details the
structures of the reacting species and, therefore, defines the most basic theory of chemical
kinetics but is also the most difficult to apply to kinetics problems in natural and
engineered systems. Statistical mechanics does not consider the structure of individual
molecules but still treats them each as individual entities. It is, therefore, most relevant to
the scale of a small (hundreds or thousands of molecules) collection of molecules.
Mechanistic kinetics no longer considers molecules as individual entities but, rather,
considers all like molecules as belonging to a class called a chemical species. All possible
chemical species are treated in a mechanistic kinetic theory and reaction rates are
followed by examining fluxes into and out of each class of molecules. This level of
theory is applicable to reactions occurring in a well controlled and characterized

environment and, therefore, mechanistic kinetics is most relevant at the scale of a



laboratory experiment. Empirical kinetics does not consider all of the possible chemical
species but, rather, only those that are particularly important to the reaction kinetics such
as the reactant(s) and product(s). This level of kinetic theory is applicable at the
laboratory scale but does not require the full knowledge of conditions needed to apply
mechanistic kinetics and is, therefore, relevant to systems found in nature and to
engineering applications of chemical kinetics such as the FePRBs considered in this
thesis.

Transferring information between these scales of theory is the central problem of
scaling chemical kinetics. Information may either be transferred up in length scale or
down. In scaling up, the task is to utilize information at some scale to predict behavior at
the next higher scale. For scaling from quantum mechanics to statistical mechanics, this
predictive scaling consists of calculating the probability of transition from the present
molecular configuration to all possible future configurations. Statistical mechanical
information can be scaled up to the mechanistic kinetics level by determining the mean
field solution for the Pauli master equation.

The task in scaling down is to constrain the possible mechanisms at some scale to
those that are consistent with the information about the behavior at the next higher level.
In this sense, scaling down is a diagnostic process where the nature of the parts of a
system are elucidated from the behavior of the whole. In many respects, this diagnostic
scaling represents a greater challenge than predictive scaling. Some promising techniques
include micro-environment embedding—where a quantum mechanical problem is
coupled with a statistical mechanical representation of the system environment—and
maximum entropy methods—where, given the constraint of some known mean field
solution, the statistical behavior of a system is assumed to maximize entropy generation.

Many of the issues surrounding scaling between quantum mechanics and
mechanistic kinetics, especially scaling up, are technical rather than strategic. Effective
scaling strategies have already been identified and the remaining challenge is to
implement these strategies efficiently. Scaling between mechanistic and empirical
kinetics, on the other hand, is a largely unsolved problem with respect to both strategies
for scaling and their implementation. Scaling strategies suggested by this thesis include

rate limiting step determination, process lumping, and application of approximate rate



laws for scaling up; and bifurcation parameter variation and analysis of kinetic models

that are generic with respect to mechanism for scaling down.

1.4 Summary of Contributions

The chemical kinetics of solute reduction by iron metal is necessary information

for the design of FePRBs and is an important tool for determining the details of the

reaction mechanism. This thesis—focused on scaling between mechanistic and empirical

chemical kinetics—has made the following contributions toward improving our

understanding of contaminant transformations on iron metal:

®

(ii)

(ii1)

Kinetic expressions for multi-stage reactions—of which heterogeneous
reactions are a prime example—are often simplified by pseudo-steady-state
and/or pseudo-equilibrium assumptions. Mistaken application of these
assumptions is, however, frequently encountered, and little research has
addressed the breadth of their applicability. Chapter 2 of this thesis outlines the
derivation of common empirical rate laws for heterogeneous reactions using the
pseudo-steady-state and pseudo-equilibrium assumptions and addresses the
generality of the empirical rate laws from a dynamical systems viewpoint.

The most common rate expressions found for iron mediated reduction reactions
are the first-order rate law and the Langmuir-Hinshelwood equation. The first-
order rate law is also found to be broadly applicable throughout environmental
chemistry and the Langmuir-Hinshelwood equation is foundational to
heterogeneous catalysis. A principle theoretical challenge to each of these
expressions is that they assume rate control by a single reaction or, in the case
of iron metal, a single reactive surface site. In chapters 3 and 4 the first-order
rate law and the Langmuir-Hinshelwood equation (respectively) are examined
as approximate expressions for the kinds of multi-pathway reactions that are
likely occurring in complex systems such as reactions on the surface of iron
metal.

FePRBs have been employed in the treatment of 2,4,6-trinitrotoluene (TNT),
however, in laboratory experiments, the appearance of the primary reduction

product, 2,4,6-triaminotoluene (TAT), has been found to vary widely. Other



potential products include a host of polymeric amino compounds which are
potentially inhibiting to reduction reactions on the iron surface. The distribution
of products for the Fe + TNT reaction is, therefore, of considerable interest for
assessment of long-term FePRB performance. In chapter 5 a combination of
kinetic experiments and kinetic modeling is performed to elucidate reaction
mechanisms and to predict the manner in which iron loading and initial TNT
concentration control the appearance of TAT versus other, surface bound,

products.
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CHAPTER 2

The Theory of Interfacial Chemical Kinetics

2.1 Abstract

Interfacial reactions, such as the transformation of environmental contaminants on
Iron metal, involve (7) transport of the reactant to the surface, (i7) adsorption, (iif)
transformation of the adsorbed reactant, (iv) desorption of products, and (v) transport of
products away from the surface. The full mathematical statement of the kinetics of
interfacial reactions is complex and not usually useful for the analysis of kinetic data or
for predicting the fate of contaminants in the environment. In this paper we present the
simplifications that lead to commonly applied rate equations including the pseudo-first-
order equation, the Langmuir-Hinshelwood equation, and the set of equations for bimodal
behavior. The key assumptions in this procedure include pseudo-steady-state
assumption—where one or more of the intermediate phases is assumed to have a
negligible time derivative—and the pseudo-equilibrium assumption—where one or more
of the reversible reactions are assumed to rapidly establish an equilibrium. Analysis of
these assumptions indicates that they are rigorously applicable only in certain limiting
cases and, further, that the form of the simplified rate equations are correct (either exactly
or approximately) over a wider range than that range where pseudo-steady-state or

pseudo-equilibrium approximations are applicable.
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2.2 Interfacial Kinetics in Environmental Chemistry
2.2.1 Environmental relevance of interfacial redox reactions

A large part of environmental chemistry is concerned with the fate and transport
of material within and among compartments, such as surface waters, soil, sediments,
groundwater, and air. Increasingly, many researchers are turning their attention to the
chemical transformations that occur at the interfaces between compartments. This focus
on interfacial chemistry is driven both by the significance of such reactions in fate and

transport and by the scientific challenges posed by reactions at interfaces.

The factors that impart environmental significance to interfacial reactions are
largely the same as those that have led to the scientific interest in such systems. The
asymmetrical nature of the forces at interfaces causes the chemistry in these systems to be
quite distinct from that in the bulk phases. These asymmetries present interesting
problems for both theoreticians and experimentalists. The same asymmetries can generate
highly reactive regions that often determine the lifetimes of chemicals in the
environment. Furthermore, interfacial asymmetries may be engineered to mitigate critical

contamination problems.

Electron transfer reactions represent an important class of interfacial reactions.
Many environmental contaminants are redox active and many remediation schemes rely
on manipulating the biogeochemical redox conditions of the media containing the target
pollutant. Scientifically, matters of electronic structure form the basis for our
understanding of molecules and electron transfer reactions comprise a significant
component of our understanding of homogeneous chemical reactions. Furthermore,
because electrons are very important to molecular structure, electron transfer reactions
offer a prototype for the development of chemical reaction theory. This last point is
particularly significant to the study of heterogeneous chemical reactions where the
lessons learned from studying heterogeneous electron transfer may be used to develop a

coherent view of all surface reactions.
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2.2.2 Generalized heterogeneous reaction kinetics.

The general mechanism for a heterogeneous redox reaction is depicted in Figure
2.1. For a reaction to occur, an oxidant molecule in the bulk fluid (Ox) must move to a
position near the surface, form a precursor complex with the surface (Ox:S), accept an
electron to produce an adsorbed reduced molecule or successor complex, (Red:S), detach

from the surface and move back into the bulk fluid (Red).

Concentrations in the bulk—under some velocity field—are given by the

advection-diffusion equation (assuming isotropic diffusion in a dilute solution).

a[;"] +7-V[OX] = D, V*[Ox] (1)
a[l;fd] +7-V[Red] = D, ,V*[Red] )

Where [Ox] and [Red] are the concentrations of oxidized and reduced molecules at some
point, {x, y, z}, in the space of the bulk fluid which is bounded by the reactive surface,
Zreactive = S(X, ¥), and possibly, a non-reactive container wall, zyan(X, y). v denotes the
velocity field and Dy denotes the diffusion coefficient of species “x” (Ox or Red). The
surface reactions on S(x, y) can be represented as boundary conditions for the system of

equations (1 and 2).

d[Ox],

P ~Dy, (7i-V[OxX]), -k [SI[Ox], + ks [Ox:S] (3
d[(:t“sl = k% [Ox], ~ k2 [S][Ox:S] -k [Ox:S] )
@ =k [Ox:S]+ k5 [S][Red], - k' [Red:S] (5)
aﬂ‘&%p%(ﬁ-vmedl)o—kmsnkedlo+k§:‘:"[Red:s1 ©)
S, =[S]+[Ox:S]+[Red:S] 7

Where 7 is the unit vector normal to the reactive surface, [S] is the concentration of

reactive surface sites (per unit volume of solution), [Ox:S] and [Red:S] are concentrations
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of molecules adsorbed to the surface (per unit volume of solution), and the k’s are rate
constants for the chemical reaction specified by the subscripts and superscripts. To
complete the set of equations, flux boundary conditions must be specified that are
specific to the type of reactor being considered (e.g., no flux across the container walls in

a batch reactor or flux in and flux out of a fixed bed reactor).

The full solution to equations (1-6) involves solving the Navier-Stokes equations
for v as well as exactly specifying the geometry of the reactive surface and accounting
for any movement of that surface. The level of detail involved in such a solution is not
available for most systems and, therefore, the mass transport equations are simplified by
assuming a (locally) well mixed bulk solution with a stagnant boundary layer. The
boundary layer is assumed to be of constant thickness between the bulk fluid and the
reactive surface across which Ox (and Red) molecules must diffuse before (and after)
reacting as shown in Figure 2.2. We then assume that the concentration gradient in the
boundary layer instantly attains a steady-state so that equations (1-2) may be set =0
giving a linear concentration profile in the boundary layer between the bulk

concentrations ([Ox] and [Red]) and the surface concentrations ([Ox]o and [Red]).

~[Ox],

[0x], = [0"]5 £ +[0x], @)
Ox

[Red]-[Redk - [Red),

Red

[Red], = )
Where { is the distance from the reactive surface. The diffusive fluxes of Ox and Red

normal to the reactive surface and can be calculated as follows:

—D,, (7-V[Ox]) = —D,, ((’ -[0"]5_&5] = -%%([Ox]—[ox]o) (10)
Ox Ox

.wg] =~ Lrt ([Red] - [Red], ) (11)

—Dre (n : V[Red]) ==Dgey [C sked §Rcd

Differential equations can now be derived for the bulk concentrations by considering
advective fluxes in and out of a control volume and a sink term due to diffusion into (or

out of) the boundary layer surrounding any reactive surfaces in that control volume.
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d[Ox] 1 T o5i de— k" Ox]-[O

dt Vev if‘]o:: nds—kyrp, ([ x]-[ X]O) (12
d[Red] 1 7 = Red ed]—-[Red

dt - Yeov ﬁjkﬂi ‘n ds kMT P, ([R ] & ]O) (13)

Where kZ, is the mass transfer coefficient for 3 and J ., denotes the flux of ¥ (i.e., moles

or %, per unit time per unit area) across the surface of a control volume of size V¢y with
unit vector, #, normal to the surface (i.e., pointing outward from the control volume).
The surface integrals in equations (12-13) are > 0 for a net flow of X out of the control
volume. The selection of the control volume is not arbitrary since the applicability of
equations (12-13) requires that the concentration of Ox and Red be constant within the
control volume. We discuss the selection of control volumes for common reactor designs

in the next section.

The simplified version of equations (3-7) are found by substituting equations (10)
and (11) for the diffusive flux terms in equations (3) and (7)

d[Ox],

= ken0, ([0x]1-[0x], ) - k22 [SI[Ox], + kX [Ox:S] (14)
d[C:ix:S] = K2[S][OX], ~ k2 [Ox:S] - &, [Ox:S] (15)
%:1:31 =k, [Ox:S]+ k" [S][Red], - k**[Red:S] (16)
% = k% p, ([Red]—[Red], ) - K*[S][Red], + k*[Red:S] a”n
S,y =[S1+[Ox:S]+[Red:S] (18)

Equations (12-18) can be viewed as the set of rate laws that apply to the multi-stage
reaction depicted in Scheme 1 where mass transport is treated as the first and last

reversible steps in the reaction sequence.

Ox =28=Ox, +S—i:‘—‘0x:S—"m—) Red:S==Red, +S=2=Red  Scheme |
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The mass balance equation must, however, be modified from what would be implied by
Scheme 1 to account for the fact that a given concentration in the bulk of the control
volume may contribute a different number of total molecules than that of the same
concentration in the boundary layer. This can be done by considering the total moles of

Ox and Red in the control volume:

Total Moles = Bulk Moles + Boundary Layer Moles + Adsorbed Moles
(19)
[Ox] Vg, +[Red]Vy,,

| 4 [OXI+[0Kly o, [Red]+ [Redy | e
2
+Ox:S]V;,, +[Red:S]V;,,

Where V, is the volume of the bulk solution, V¥ is the volume of the appropriate

boundary layer, and V,, is the total solution volume in the control volume.

2.3 Types of Kinetic Data for Reduction of Contaminants by Iron Metal
2.3.1 Batch Reactor

The kinetics of reactions on granular iron metal are often investigated by
introducing the contaminant of interest into a slurry of water and granular iron in a closed
vessel, applying a means of mixing the slurry, and sampling, over time, the mixture for
concentrations of the contaminant and/or daughter products. In this type of reactor,
known as a batch reactor, the bulk solution should be well mixed so the control volume in
equations (12-13) can be taken as the entire vessel. During the course of the reaction
there are no fluxes into the vessel and the only flux out of the vessel is through the
sampling actions, which are designed to be small relative to the reactor volume. The
surface integrals in equations (12-13) can, therefore, be set = 0 which gives the following
equations in the place of equations (12-13).
d[Ox] _

- - ~kyy 0, ([OX]-[Ox],) (20)
d[ifd] = —kyet 0, ([Red] - [Red], ) (21)

Equations (14-18) remain the same.
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The kinetic data produced in a batch reactor are time series of concentration data
such as those shown in Figure 2.3 for 2,4,6-trinitrotoluene (TNT) reacting with granular
iron (12.5 g/L Fisher electrolytic). In general, the kinetic model contained in equations
(20-21) and (14-18) is over-parameterized for the treatment of such kinetic data and,
therefore, simplifications must be made. The necessary simplifications depend on the
kinetic regime that is observed in the data. Common kinetic regimes and the associated

simplifications are discussed in Section 2.4.

2.3.2 Column Reactor

Under environmental conditions, interfacial reactions typically involve water
moving past the (relatively) fixed surfaces of soil, sediment, or aquifer grains. To
simulate these conditions in the laboratory, the kinetics of contaminant transformation are
studied in columns filled with granular material and have a contaminant containing
solution as the influent. The flow in such a column reactor can be treated as one-
dimensional along the length of the column and the bulk fluid can be assumed to be well
mixed along the plane normal to the direction of the flow. Under these assumptions, the
appropriate control volume for a column reactor is a differential slice across the column
with area equal to the cross-sectional area of the fluid phase in the reactor (i.e., the cross-
sectional area of the column less that area occupied by solids).

Voy = lim £A,  Ax (22)

where €1is the porosity of the column, A, . is the cross-sectional area of the column, and
Ax is the thickness of the control volume. The fluxes of ¢ (Ox or Red) in and out of the

control volume are due to advection and diffusion.

B} ).

jx =(v [X], —Dl—éf—x)x 23)

J& =(V [Z]xm‘D,_a(-[)f] Ji (24)
x+dx

where v is the magnitude of the velocity and X is the unit vector in the direction of the

flow. 7 is —% for the portion of the control volume corresponding to J? and % for the
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portion corresponding to J#, . The surface integrals in equations (12-13) can then be

evaluated as follows:

EAx_m (V [Z]x "‘Dz a;f] Jio(—f)

1 - 1
—& 7. -7 dsV. = lim———
\/ 7. Va0gA  Ax
cv EA s +EA . (v [I],HAx_Dl?' ))’Eo(f) (25)
X x+Ax
_9IX] - 9’[X]
™ Px ox’

Substitution of equation 25 into equations (12-13) gives:
2
d[Ox] — d[Ox] 4 d°[Ox]

dr ox Dy x> ~kyr0, ([OX]-[Ox],) @0
2
T - el o, ST ki, (Rec-Ret) "

Equations (14-18) remain the same. Ignoring the diffusion terms (i.e., plug flow) and the
time derivatives (i.c., steady-state operation) gives a more familiar form of equations (26-

27).

v d[:x"] = k%0, (I0x]-[Ox], ) (28)
v d[l;:d] = kR0 ([Red]-[Red], ) 29)

As implied by equations (28-29), kinetics in a column reactor are usually examined by
sampling steady-state concentrations along the length of the column. An example of

concentration vs. distance data collected in a column reactor is shown in Figure 2.4.

2.4 Kinetic Models for Interpretation of Heterogeneous Kinetic Data
2.4.1 Pseudo-First-Order Kinetics

Numerous studies on the kinetics of contaminant reduction by iron metal have
produced disappearance data that are sufficiently described by a first-order rate law s,
o =~k [0x] (30)
where roy is the rate of Ox disappearance and ks is the first-order rate constant. In a

batch reactor, rox = d[Ox] / dt and [Ox] disappears geometrically with time. In a steady-
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state column reactor rox = v d[Ox] / dx. In a column operated at steady state, [Ox]
disappears geometrically with distance.

First-order reaction kinetics can arise from a variety of kinetic scenarios (ref
FOC). In heterogeneous systems, these include mechanisms where one of the stages in
scheme 1 is rate limiting, such as mass transfer control, adsorption control, and surface
reaction control (with abundant surface sites). First-order disappearance kinetics can also
arise when the rate of reaction is controlled by multiple first-order processes in series
such as mass transfer and surface reaction (with abundant surface sites).

A first-order rate equation that is appropriate for any of the possible rate limiting
steps or cases of mixed control can be derived by assuming that active sites are present in
an abundance (i.e., d[S}/dt = 0) and that the time derivatives of [Ox]o and [Ox:S] can be
neglected in equations (14-15). This last assumption is known as pseudo-steady-state
because the intermediate species are treated as being in steady-state though their
concentrations change in response to changes in the concentrations of the parent

compound. The pseudo-steady-state assumption can be written formally as:
0=kypr 2, ([OX]1-[Ox], ) — ki [SI[Ox], + kX [Ox:S] (31)
0 = k% [S][Ox], — kX [Ox:S]— &, [Ox:S] (32)

Equations (31-32) can be rearranged to give expressions for [Ox]o and [Ox:S] in terms of
[Ox].

ki Ok s+ Kigr Ouk

Oxl. =
X, = o o ko ok kO[S

[Ox] (33)

kr Pk [S]
kit Pk + gy PRy + Ko [SIK

[Ox:S]= [Ox] (34)

Substituting equation (33) into equation (12) gives:

dlOx] _ _ ko [SIK

1 _
T -7 ds—kO" Ox 35
dt VCVCﬂ ox 71 S =Kar P “[kg;pakg’; +k3’;pakm+k§;’;[31km][ ] (33)

Equation (35) is a first-order rate law only if [S] is constant. We consider the case where

[S] is variable in the next section but here we assume
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[S1=T'rp, (36)
Where 'ty denotes the surface concentration of reactive sites. This allows us to express

equation (35) as a first-order rate expression:

diox] 1 oo
PR §f Tox -1 ds —kg,0,[OX] €]

ke, = L (38)
. 2% 1 1

ki Urakoe  kenlng Ky
Where ks, is the surface area normalized first-order rate constant.

If a single stage in scheme 1 is rate limiting, the appropriate rate-constant can be

obtained by finding the limit of equation (38) as the non-rate limiting terms approach co.

For mass transport limited reactions, letting k>, k>, and k_, — o gives:

ke, =k 39)
For adsorption limited reactions, letting kgx., k., — oo gives:

kgy =koxTro, (40)

For surface reaction limited reactions, letting kor, ko, ko — oo gives:
kg, = eds_Tot @1)

Where the ratio of kO; to kg is finite even though the individual rate constants are taken

to be infinite.

2.4.2 Site-Limited Kinetics

A number of studies have demonstrated mixed order kinetics "' where the
disappearance rate is constant (i.e., zero-order) at high concentrations and proportional to
[Ox] (i.e., first-order) at low concentrations. An example of mixed order disappearance
data collected in a batch reactor is shown in Figure 2.5.

A rate law that captures the observed mixed order behavior can be derived by
relaxing the abundant site assumption in the derivation of equation (37) and including

only intra-species competition for reactive sites (i.e., ignoring [Red:S] in equation 18).
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Assuming a steady-state for [Ox:S] (i.e., setting equation 11 to zero) and substituting

equation (18) with [Red:S] = 0 gives the following expressions for [S] and [Ox:S].

1
[S1=S;, 20x 42)
L+ —[Ox],
des rxn
Ox
= e o
[Ox:S] = 5, —e—cem (43)
14+——ats 10
Ko +km,[ X

Substituting equation (42-43) into equation (14) and defining Ky =k /(k>x + k)
yields a simplified form of equation (14).

d[Ox],
dt

Sk, o KR IOX],

Tot"rin

= iz, (I0x]-[0x], ) - =22 [Ox],
LH

(44)

Equation (44) taken with equation (12) gives a complete system of equations for Ox
disappearance with intra-species competition for reactive sites and potential mass transfer
effects. If mass transfer is relatively fast, equations (12) and (44) simplify to the

Langmuir-Hinshelwood equation for surface mediated reactions.

d[OX] _ _ Spuk K [OX]

Tot“rxn

dr 1+ K3 [Ox]

(45)

Equation (45) is analogous to the Mechalis-Menton equation for enzyme kinetics and is
also referred to as the Hougen-Watson equation. In the limit of large [Ox], equation (45)

approaches a zero-order rate-law.

Ox
tim A9 _ iy SnakemKislOX_ ¢ (46)
o= gt 0w 1+KO[OX]

In the limit of small [Ox], equation (45) approaches a first-order rate law.

ox
d[Ox] = lim _M =lim-S. k Kg [Ox] a7

Tot™ rxn

lim o
ox—0  dt Ox—0 1+ Klﬂ [Ox] Ox—0

A rate equation that is similar in form to equation (45) can also be derived by assuming a
rapidly established equilibrium of the Ox adsorption reaction. We compare these two

approaches, pseudo-steady-state analysis and pseudo-equilibrium analysis, in section 2.5.
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The approach used in deriving the Langmuir-Hinshelwood equation can also be
used to derive a rate-law that includes inter-species competition for reactive sites. Here
we address product inhibition due to accumulation of Red on the surface but the approach
may also be used for inhibitory species that do not participate in the reaction sequence
depicted in scheme 1.

As with the derivation of the Langmuir-Hinshelwood equation we assume a
steady-state for [Ox:S] by setting equation (15) to zero. Product inhibition is included by
relaxing the [Red:S] = 0 condition and, instead, assuming a steady-state for [Red:S] by
setting equation (16) to zero. These two steady-state conditions, along with equation (18)

give the following equations for [S], [Ox:S], and [Red:S]:

S
N AN “8)
ads des rxn
Ox], +—2_[Red
K (k0 vk, ) e e ok
kOx
SToc k(h—fk_[ox]o
[Ox:S]= o (km+l:',ks ) ez r (49)
= Ox], + 2 [Red],
kdes (kdes +krm) kdes
k kOx kRed
Tot Red W‘Oxads [OX]O +—%[Red]o
kdes (kdes +krm) kdes
[Red:S] = — — (50)
kG (Kot +k,y ) k

Ox], +—*_[Red
et (e ) e e el
Substituting equation (49) into equation (14) and equation (50) into equation (17) gives
simplified rate equations for [Ox]o and [Red]o that, when taken together with equations

(12-13), form a complete set of differential equations.

40Xk, _ pox  (10x]~[Ox]y )~ ——— LK ol O%ho 1)
dt 1+ K, [Ox], + K¢ ,[Red],
d[Red], e kp K, [Ox],
0 d]-[Red], )+ 2 52
dt w7 P ([Red] ~[Red), 1+ K, [Ox], + Ky 4[Red], ©2)
Where k, Kox, and Kgeq are defined as follows:
kRed
kp, =S,k des (53)

Tot""rxn 3 Red
k.. +k,_,
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kS (ke k)

= 54

(k2 +ky,) >4)
kRed

Kied =];% (55)
des

When mass transfer is relatively fast, equations (12-13) and (51-52) simplify to the form
commonly employed when examining product inhibition effects.

d[Ox] __ kp K, [0x]
dt 1+ K, [Ox]+ K ,[Red]

(56)

d[Red] _ kp, K, [Ox]
dt  1+K, [Ox]+ K, [Red]

(57

2.4.3 Bimodal Kinetics

Before establishing the steady-state kinetic regimes described above, many
reactor designs must pass through a transient induction period. In the batch reactor this
transient region usually takes the form of an initial drop in [Ox] that is substantially
steeper than the remainder of the disappearance curve (ref TNT paper). In most cases
where an initial drop is observed, it consists of only a few points which are ignored in the
analysis of the data. In other cases, the initial drop is so large that it fully dominates the
observable kinetics. These two endpoints are the surface controlled and mass
transport/adsorption controlled kinetics discussed above. In some cases, however, both
the initial drop and steady-state kinetics are sufficiently well resolved so that the reaction
kinetics must be treated as having two distinct regions. An example of such data is
depicted in Figure 2.6 where TNT is being reduced by iron metal.

The fitted curve shown in Figure 2.6 is the sum of two decreasing exponentials.
[Ox] = &, exp(r,t) + &_exp(r.t) (58)

A triple exponential expression for [Ox] vs. t in a batch reactor can be obtained from
equations (12-18) by assuming abundant sites and treating [S] as a constant (= Sty). A
triple exponential is, however, over-parameterized for most data displaying an initial drop
and, therefore, the mass transport and adsorption stages in Scheme 1 must be lumped as

depicted in Scheme 2.



23

Ox +S =it Ox:§ —m s Red +§ Scheme 2

MT/des

This can be accomplished by applying a steady-state assumption to either [Ox] (i.e.,
setting equation 14 to zero) or [Ox:S] (i.e., setting equation 15 to zero).

We can determine which of the two steady-state conditions is appropriate by
examining mass balance equations based on equation (19). In a typical batch experiment,
mass is introduced as Ox and into the bulk solution. The total moles is, therefore, given
as:

Total Moles =[Ox]],_,Vau (59)
Since the initial concentrations of [Ox]p and [Ox:S] are zero, the reaction is not in the
pseudo-steady-state defined by equations (33-34). We can, however, calculate the amount
of material that would have to be transferred from the bulk to the boundary layer and
surface in order to achieve steady-state by equating equation (59) to the mass balance

equation for this virtual transition giving

[Ox]* +[Ox]®
2

[OX]] .oV = [OXI*V,, + Vi +[0x:ST (Vi + V') (60)

Where the “SS” superscripts denote the virtual steady-state concentrations. Equations
(33-34) give relationships between the steady-state concentrations and substituting these
relationships into (60) along with the abundant site assumption gives:

Vour +l[1+ Kirkin +birken ]v°"

20 Kk + kS k  +KOT k. )

[OX]|,-o Vi = [OXT*® 61)

kb(l}kaacc)ixsrTotpa
Kok +konk,, + kol k..

(VBulk + VBT )

The second term inside the parentheses is < 1 and, therefore, since the volume of the
boundary layer, V3" , is much smaller than the volume of the bulk, V,, , we can ignore

contributions from the boundary layer to the total mass and the total volume giving the
following relationships between the initial concentration, [Ox]|—o, and the initial

concentrations for the virtual steady-state.

Ox 7,0x Ox Ox
(Ox = KOk + KOk +KOT ko Oxll ©

RSO k0K + k0T K, + KSRKOT

Tot!a
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kv k>: +kk

Ox SS — Ox ] .

[ KOS KO, + KT,k + KK, L ke 63)
k> kT 0

Ox:S 5S — M1 Kads! TotFPa Ox o

ol kapkon +kopk, + kT k. + kKol 0, (023 (64)

Little of the transferred mass in establishing a steady-state resides in the boundary layere
indicating that the kinetics of the initial drop in the double exponential are predominately
controlled by the kinetics of reaching a steady-state in [Ox:S]. We can, therefore, lump
the mass transport and adsorption processes by assuming a pseudo-steady-state in [Ox]o.
Setting equation (14) = 0, along with the abundant site assumption, gives an expression
for [Ox]o.

k% 0. [Ox]+ kS [Ox:S]

Ox]l, =
X = e ks,

(65)

Substitution of equation (65) into equations (12) and (15) gives a set of differential
equations that apply to Scheme 2 and lead to a double exponential expression for [Ox]

disappearance in batch (equation 58).

diox]__ 1 g5 - kw0 kxS,
dt Vey ko +kSS,

ke 0 ko

kngpa + ka(:.:STot

Ox]+ [Ox:S] (66)

dlOx:S] _ ky10,kSr,
dt kP, +kuSm,

ke ko

B kngpa + ka%STol

Ox] [Ox:S]-k,,[Ox:S] ©7)

Equations (66-67) imply definitions for the rate constants on the lumped mass

transfer/adsorption stage in scheme 1.

k% p KOS

Ox = MT M a™ ads"™ Tot 68

e o, kS, “®
kOxpakO:

X s = e des (69)

kg 20 + ki Sroe
Note that equation (68) has a linear dependence on g, and equation (69) does not depend
on p,. Equations (66-67) can be applied to a batch reactor by setting the surface integral
in equation (66) to zero. The solution to this system of equations in terms of [Ox] is given

by equation (58) with eigenvalues, r,,., and pre-exponentials, o, given as follows:
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2
_ _(k}ngIadspa +kAleTIdes +krm):tJ(k13xT/adspa +kAof’l"ldes +krm) _4kA04xT/adspaern

T > (70)
+ Ox
a, = [Ox}l,wr"*—k”’r"“"i (71)

Nt AP
Figure 2.7 shows [r,.| (Figure 2.7A) and a.,,. (Figure 2.7B) as functions of pp, (the
mass concentration of iron) using rate constants derived from fitting equation (58) to the
data shown in Figure 2.6. From equation (70) we can see that both r, and r. are <0 and
that the magnitude of . is less than the magnitude of r. (i.e., |r,| < |r.[). This implies that
the initial drop is dominated by r. while the slower portion of the bimodal kinetics is
controlled by r,. Since the initial drop can be interpreted as mass transfer/adsorption

controlled kinetics and the slower portion can be interpreted as pseudo-steady-state
reaction controlled kinetics we can compare 1. to kor,_, 0, and r, to the first-order rate

constant derived in Section 2.4.1 (see equations 37-38).

2.5 Critique of Steady State and Equilibrium Assumptions

The kinetic equations for multi-stage reactions (such as the reaction depicted in
scheme 1 above) are often simplified by assuming the reaction to be in a steady state . In
reactors comprised of one or more flow through cells (such as a CSTR or PFR), this
procedure, performed by setting all time derivatives to zero, finds, exactly, the fixed point
attractor of equations (8-14). The steady-state equations describe the total amount of
conversion that occurs within the reactor and the kinetics of the reaction can be
ascertained by examining the response of conversion rates to changes in input flow rates

and concentrations or spatial concentration gradients in the case of a fixed bed reactor.

In reactors that do not have continuous input of Ox (such as a batch reactor), the
fixed point attractor is the state where all species are in the reduced form and, therefore,
kinetic information is contained only in the time series concentration data where the
concentrations progress toward the steady-state. The kinetics equations for such a reactor
design are often times simplified by assuming that some, but not all, of the species are in
a pseudo-steady-state. The procedure for deriving these equations involve setting some of

the time derivatives to zero and using these equations to derive algebraic relationships
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between the concentrations of certain species which are then substituted into the
remaining rate laws (whose derivatives were not set to zero). In some instances, some of
the species in a reaction sequence are assumed to rapidly equilibrate with each other and
that kinetics in one of the species induce proportional kinetics in the other species. This
equilibrium assumption is a special case of the pseudo-steady-state assumption and we

will denote it as the pseudo-equilibrium assumption.

We may explain the details of steady-state and pseudo-steady-state derivations
and bring to light ideas to keep in mind when using thus derived by considering a

simplified version of scheme 3 in both a plug flow reactor and a batch reactor.

Ox +8 % Ox:S—'m_yRed+$§ Scheme 3

Where we have lumped the mass transport and sorption processes for Ox:S formation and
neglected Red adsorption. In a plug flow reactor of cross-sectional area, A, and flow rate,

Q, the kinetic equations for scheme 3 are as follows:

J0x] __ QJ[Ox]

s ===k [SIOX] + £, [OxS] o
a[(?;::S] =k, [SI[Ox]—k,, [Ox:S]-k,_,[Ox:S] (73)
St =[S1+[Ox:S] o

Setting all time derivatives to zero gives

d[Ox] A

[ X]=6(kads[S][Ox]—kd“[0x:S]) (75)
. =k¢ 1 76

[Ox:S] e [S][Ox] (76)

Substituting equation (76) into equation (75) and applying equation (74) gives

dox] _ A k As“‘k“"kk#[oxl

. | _

_A Ky — 2 [S][Ox] |= -2 Y "
& Q(km[sj[o;q o g S x]] v vl

k, +k

rxn
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Equation (77) is the Langmuir-Hinshelwood equation for scheme 3 as it applies to plug
flow reactors. The solution to equation (77) is a fixed point solution to equations (72-74)
and is asymptotically stable (i.e., solutions to equations 72-74 will approach equation 77

at large times).

In the case of abundant reaction sites, [S] can be taken as constant and equal to

Stot. The steady-state solution for this case is the pseudo-first-order equation as follows

dox] A k..
=-Bg ¢ K o
& Q ™™k, +k [Ox] (78)

rxn

In a batch reactor, the kinetic equations for scheme 3 are as follows

d[ftx] =~k [SIOX] + &, [Ox:S] "
d[?z):zsl =k, [SI(OX] - k,, [Ox:S] - k., [Ox:S] 0
St =[S1+[Ox:S] o

The fixed point attractor for equations (79-81) is [Ox] = [Ox:S] = 0 and, so, the kinetic
equations for a batch reactor are typically simplified by setting either d[Ox:S}/dt =0 (a
pseudo-steady-state assumption) or d[Ox]/dt = O (a pseudo-equilibrium assumption). The

pseudo-steady-state assumption gives the following

d[O k Stakim k kmk [0x]
[ 7 Bl s [S1OX]-k,,, TR “__[S][Ox]=- ;: 7 (82)
des + ren 1+ #[Ox]
k, +k_,

Equation (82) is the Langmuir-Hinshelwood equation as applied to a batch reactor (note
the similarities with equation 77). Solutions to Equation (82) are not, however,
asymptotically stable and are not solutions to equations (79-81). Figure 2.8 shows the
field of vectors (d[Ox], d[Ox:S]) in ([Ox], [Ox:S]) space. A solution to equations (79-81)
passing through ([Ox]o, [Ox:S]o) can be visualized by starting at the initial point and
following the arrows to the fixed point is reached. An asymptotically stable solution

exists as those points that can not be reached from either [Ox:S]o = 0 or [Ox]o = 0. The
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derivation of equation (82) involves setting d[Ox:S]/dt = 0 and, therefore, solutions to

equation (82) pass through the horizontal arrows in Figure 2.8.

k
S, —%% [0
Tot kdﬂ + km,[ X] )
14— ket [0x]
k, +k

S n

[Ox:S]=

We can see from Figure 2.8 that any initial condition along equation (83) will not follow

equation (83) but rather will approach the asymptotically stable solution described above.

Another form of the Langmuir-Hinshelwood equation can be obtained by
assuming that the adsorption step of scheme 3 is in pseudo-equilibrium (i.e., setting
d[Ox]/dt = 0) so that equation (79) and equation (81) give the following relationship
between [Ox:S] and [Ox]

Sta 5"1‘—[0)(]
[Ox:S]= ——de— (84)
1+ kﬂ [Ox]

des

Equation (84) is the Langmuir isotherm and a kinetics expression for [Ox] is obtained by
assuming that the overall rate of reaction (i.e., d[Ox}/dt) is equal to the rate of surface

transformation (i.e., d[Ox:S}/dt) giving

k
Srok,, 22 [0

dioxj __ ™ S Py (85)
dt 1+iﬂ[0x]

des

As is the case for equation (82), solutions of equation (85) are neither asymptotically
stable nor solutions to equations (79-81). Since equation (85) was derived by assuming
d[Ox]/dt = 0, solutions to equation (85) lay along the curve in Figure 2.8 where the
horizontal component of the vector field goes to zero (i.e., equation 84). Equation (84)
bounds the asymptotically stable solution from above while equation (83) bounds the
asymptotically stable solution from the bottom.
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As [Ox] becomes small relative to Sty, equations (79-81) approach pseudo-first-

order behavior which can be found by substituting [S] = St into equations (79-80)

d[‘g"] =—k_ [Ox]+k,,[Ox:S] (86)
dOXS]_ ¢ [Ox]-k, [Ox:S]~k . [Ox:S] 87)

Where Igm =k, Sy, - Equations (86-87) comprise a linear homogeneous system of

equations of second order. The solution to such a system is the sum of two exponential

functions (provided that they are linearly independent) with eigenvalues

(g + +km)—\/(12m gtk ) — 4k,
;=

d 5 (88)

‘(’Em +k,, +km)+\/(12m +k,, +k,,‘,,)2 —4k k.,

> (89)

r, =

Both eigenvalues are negative and r., which is larger in magnitude, corresponds to the
transient portion of the kinetics (e.g., an initial drop in a bimodal kinetic profile), while r,

corresponds to the pseudo-first-order portion of the kinetics (with kgps = 14).
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Kinetic Differential equations for batch Fitting equations
equations
First-Order dlOx] o [Ox]=[Ox], exp(—k>:p ¢
disappearance dr ~kur £,[Ox] 0 p( Tt )
];h*.‘“g;“;‘“'od dIOX] _ _ SpukmKI0x] IN((OX]) + KH[OX] = - Sy k., Kt
nshelwo - Ox
disappearance di 1+ K.y lOx] +In([Ox},) + K [0x],
without
product
inhibition
Langmuir- dlOx] _ kp,K,, [Ox] Compute numerically
Hinshelwood | 4 1+ K, [OX]+ Kg g[Red]
disappearance
with product
inhibition
Bimodal d[Ox] x Ox]=« +a t
disappearance dt = Kt 10 [OX1+ K74, [OX:S] [Ox]=e, cxp(r; ) B exp(r_ )
d[Ox:S
[ = ko [Ox]-k%,, [Ox:S]

—k,_ [Ox:S]

Table 2.1. Summary of rate laws that are useful in the treatment of kinetic data.
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Simplified interfacial reaction scheme with a well mixed bulk solution and

a diffusive boundary layer.
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Vector field for the non-steady-state analogue to Langmuir-Hinshelwood

kinetics. The long dashed line is the pseudo-equilibrium derived
Langmuir-Hinshelwood equation, the short dashed line is the pseudo-

steady-state derived Langmuir-Hinshelwood equation, and the solid line is

the path of the Lyapunov vector.
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CHAPTER 3

Central Limit Theorem for Chemical Kinetics in Complex Systems’

3.1 Abstract

The prevalence of apparently first-order kinetics of reactant disappearance in
complex systems with many possible reaction pathways is usually attributed to the
dominance of a single rate limiting step. Here, we investigate another possible
explanation: that apparently first-order kinetics might arise because the aggregate
behavior of many processes, with varying order of reaction and rate constant, approaches
a “central limit” that is indistinguishable from first-order behavior. This hypothesis was
investigated by simulating systems of increasing complexity and deriving relationships
between the apparent reaction order of such systems and various measures of their
complexity. Transformation of a chemical species by parallel irreversible reactions that
are zero, first, or second order is found to converge to a central limit as the number of
parallel reactions becomes large. When all three reaction orders are represented, on
average, in equal proportions, this central limit is experimentally indistinguishable from
first-order. A measure of apparent reaction order was used to investigate the nature of the
convergence both stochastically and by deriving theoretical limits. The range of systems
that exhibit a central limit that is approximately first-order is found to be broad. First-
order like behavior is also found to be favored when the distribution of material among
the parallel processes (due to differences in rate constants for the individual reactions) is
more complex. Our results show that a first-order central limit exists for the kinetics of
chemical systems and that the variable controlling the convergence is the physical

complexity of reaction systems.

! Bandstra J.Z. and P.G. Tratnyek. 2005. Journal of Mathematical Chemistry. In Press.
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3.2 Introduction

A first-order rate equation is often used to model the chemical kinetics of
reactions that involve complex pathways and multiple mechanisms. The results of such
modeling are often quite satisfactory even though theoretical considerations would
suggest a more complicated rate law. Common explanations of this phenomenon include:
(?) the first order model is applied over a small ext