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Abstract

Automatic Time Alignment of Phonemes
Using Acoustic-Phonetic Information
John-Paul Hosom
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Thesis Advisor: Dr. Ronald A. Cole

One requirement for researching and building spoken language systems is the availability
of speech data that have been labeled and time-aligned at the phonetic level. Although
manual phonetic alignment is considered more accurate than automatic methods, it is too
time consuming to be commonly used for aligning large corpora. One reason for the greater
accuracy of human labeling is that humans are better able to locate distinct events in the
speech signal that correspond to specific phonetic characteristics. The development of the
proposed method was motivated by the belief that if an automatic alignment method were
to use such acoustic-phonetic information, its accuracy would become closer to that of hu-
man performance. Our hypothesis is that the integration of acoustic-phonetic information
into a state-of-the-art automatic phonetic alignment system will significantly improve its
accuracy and robustness.

In developing an alignment system that uses acoustic-phonetic information, we use a
measure of intensity discrimination in detecting voicing, glottalization, and burst-related
impulses. We propose and implement a method of voicing determination that has av-

erage accuracy of 97.25% (which is an average 58% reduction in error over a baseline

xiii



system), a fundamental-frequency extraction method with average absolute error of 3.12
Hz (representing a 45% reduction in error), and a method for detecting burst-related im-
pulses with accuracy of 86.8% on the TIMIT corpus (which is a 45% reduction in error
compared to reported results). In addition to these features, we propose a means of us-
ing acoustics-dependent transition information in the HMM framework. One aspect of
successful implementation of this method is the use of distinctive phonetic features.

To evaluate the proposed and baseline phonetic alignment systems, we measure agree-
ment with manual alignments and robustness. On the TIMIT corpus, the proposed method
has 92.57% agreement within 20 msec. The average agreement of the proposed method
represents a 28% reduction in error over our state-of-the-art baseline system. In measuring
robustness, the proposed method has 14% less standard deviation when evaluated on 12

versions of the TIMIT corpus.
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Chapter 1

Introduction

1.1 Motivation

A fundamental assumption in much of speech processing is that the basic unit of speech
is the phoneme. Most speech recognizers identify words based on their phonetic represen-
tation, and nearly all speech synthesizers concatenate or synthesize waveform segments
according to phonetic pronunciations. In addition, synthetic facial animation of words
is usually done at the level of “visible phonemes,” or visemes, which are closely related
to phonemes. As a result, one requirement for researching and building spoken language
systems is the availability of speech data that have been labeled and time-aligned at the
phonetic level. In addition, time-aligned labels can be useful in language training, analysis
of hearing disorders in children, and studies of coarticulation and prosody.

Time-aligned phonetic labels can be created either by a trained human labeler or by
an automatic method. Although precise evaluation of the quality of phonetic labeling is
difficult, there is a general consensus that manual labeling is more accurate than automatic
labeling; this consensus can be seen in the following statements by researchers in the
field: Andrej Ljolje notes that “due to the ...inherent limits in the parameterization
of the speech signal and the speech model structure, the accuracy of the transcription
[by automatic methods] is inferior to that achieved by human transcribers” [92]. Piero
Cosi states that “The accuracy of automatic alignment systems will always be checked
using references manually segmented by phonetic or speech communication experts” [32].
Stephen Cox reports that “It is well known that ...variation [of manual alignments] is

generally small when compared with alignments produced by automatic systems” [33].



To give further weight to the claim that manual alignments are more accurate than
automatic alignments, systems that depend on alignment information can be developed
using both methods, and the performance of the two systems can be compared. In one case,
a speech synthesizer was created using both manually-aligned and automatically-aligned
labels; the speech quality of the manually-aligned system was judged in listening tests to be
superior to the quality of the automatically-aligned system [33]. In another case, a speech
recognizer trained using manually-aligned phonemes had an 11% reduction in word-level
error and a 12% reduction in sentence-level error compared to an identical system that was
trained using automatically-aligned phonemes [66]. (This result is statistically significant,
with p=0.002.)

Although manual alignment is considered more accurate than automatic methods, it is
too time consuming and expensive to be commonly used for aligning large corpora. Manual
segmentation has been reported to take between 11 and 30 seconds per phoneme [83, 89],
whereas automatic segmentation can require between (.1 and 0.4 seconds per phoneme
on a Pentium Pro 200 MHz computer. This difference of several orders of magnitude can
only become greater with even faster computer performance and better algorithms, while
human performance will likely remain the same. In addition to the greater time required
to generate manual alignments, there is variability in manually-generated alignments due
to the subjective judgement of the human labeler [136, 139, 16, 114, 92]. Because of these
disadvantages to manual alignment, “there is a need for a fast, inexpensive, and accurate
means of obtaining time-aligned phonetic labeling of arbitrary speech” [149].

The topic of this thesis, then, is the development of a method of performing pho-
netic alignment that is significantly more accurate and robust than current automatic
methods and significantly faster than manual alignment. The principles used to develop
such a method may then be applied to other aspects of speech processing, such as speech

recognition, speech synthesis, or facial animation.



1.2 General Overview of Current Methods

As noted above, the most accurate method of creating time-aligned phonetic labels is
to employ a trained human labeler. This person typically generates phonetic alignments
using a software tool that displays the speech waveform, spectrogram, label, and possibly
other information. The labeler aligns the phonetic labels with the speech by listening
to segments of the waveform and by using knowledge of the relationship between the
waveform, its spectrogram, and its phonetic content. As a result, training in phonetics
and spectrogram reading is required to produce acceptable label alignments, and manual
alignment is a resource-intensive method.

The most common automatic method for aligning speech is called “forced alignment.”
In this method, recognition of the speech signal is performed with the search result con-
strained to the known sequence of phonemes. Because the search procedure yields the
locations of the phonemes as well as their identities, the phonetic alignment can be ob-
tained by constraining the search in this way. These systems are called “forced align-
ment” systems because the alignment is obtained by forcing the recognition result to be
the proposed phonetic sequence; this phonetic sequence is determined in advance by a
pronunciation dictionary, grapheme to phoneme rules, or a human. In general, there is
a strong link between automatic speech recognition and forced-alignment techniques, in
that the same general processes can often be used for both tasks. Forced alignment and
other methods of alignment will be covered in more detail in Chapter 3.

Figure 1.1 illustrates how a state-of-the-art forced-alignment method compares with
manual alignment on the utterance “I mean that’s abs[olutely unprecedented)” from
cellular-telephone speech. Based on visual inspection of the acoustic-phonetic cues in the
spectrogram and by listening to each labeled segment, it is clear that the manual align-
ments are better than the automatic alignments at the boundaries of the /m/, /0/, /tt/,
and /b/. (Note that International Phonetic Alphabet (IPA) symbols are used through-
out the text of this thesis to represent phonemes, and Worldbet phonetic symbols [64]
are used in the figures; a list of IPA and Worldbet symbols and example words is given

in Appendix C). However, automatic alignment of this speech segment took less than 3
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Figure 1.1: Illustration of manual alignment compared with state-of-the-art automatic
alignment on the utterance “I mean that’s abs{olutely unprecedented.]” Each panel shows,
from top to bottom: (a) time marks, (b) the waveform, (c) the spectrogram, (d) manual
alignments, and {e)results of automatic alignment.

seconds of computer time, whereas manual alignment would take nearly 2% minutes of

human effort at the reported rate of 11 seconds per phoneme.

1.3 Overview of Proposed Method

A system that does ideal phonetic alignment would have the following attributes:

e accuracy of human labelers at identifying important phonetic events and at working

under various channel, noise, and speaker conditions,
o the internal consistency of an automatic method, and
e operation in real time or faster.

This thesis presents the results of an initial effort at building a system that meets these

requirements, the methods used to obtain these results, and the motivations for the given



methods.

One reason for the greater accuracy of human labeling over automatic methods is
that humans are better able to locate distinct events in the speech signal that correspond
to specific phonetic characteristics, such as the sudden increase in energy that signals
the beginning of a plosive. This acoustic-phonetic information may provide robustness
under conditions of channel distortion, speaker variability, and noise. The development of
the proposed method was motivated by the belief that if an automatic alignment method
were to use such acoustic-phonetic information, its accuracy would become closer to that of
human performance, while still maintaining the internal consistency of current automatic
methods. Our hypothesis is that the integration of acoustic-phonetic information into
state-of-the-art automatic alignment systems will significantly improve the accuracy and
robustness of phonetic alignment.

The model for the proposed method uses standard forced alignment as a founda-
tion. This model then incorporates specific acoustic-phonetic features into the stochas-
tic phoneme-classification process, performs alignment based on classification of phonetic
transition regions as well as classification of context-dependent phonemes, and uses pho-
netic theory to address the issue of data sparsity. Previous work on integrating acoustic-
phonetic information into the speech recognition process has indicated that current meth-
ods of automatically extracting such information may not yield results that dramati-
cally improve recognition performance. For example, in Schmid’s work [130], the use of
computed formant trajectories, formant amplitude, formant bandwidth, fundamental fre-
quency, segment durations, and standard cepstral-domain features as input to a phonetic
classifier resulted in an 8.8% reduction in error over the use of standard cepstral features
alone. If the correct formant values were used instead of the estimated formant values,
then the reduction in error increased to 17%. In work by Hosom prior to this thesis [65],
voicing information was used as an additional feature for the digits classification task.
The use of voicing values extracted by a voicing-estimation algorithm resulted in an 9.8%
reduction in error, which is about half of the 19% reduction in error that could have been
obtained if the correct voicing values were used. These results indicate that a significant

issue in implementing a feature-based system is accurate extraction of the features that




are used. As a result, new methods of extracting acoustic-phonetic features have been

developed as part of this thesis.

1.4 Evaluation Methodology

One issue in developing an automatic alignment system is the metric by which success
is measured. There is no known method to assess the correctness of a given phonetic
alignment, because the exact times at which phonemes begin and end can sometimes be
a subjective decision. Not only will different human labelers disagree about the exact
placement of a boundary, but a single human shows variability in boundary placement.
Because neither human nor machine alignments can be considered completely accurate, it
is not possible to compute an absolute measure of accuracy.

The most common method of measuring the performance of an automatic alignment
system is to assume that manually-generated labels are correct, and to compute the
automatic-alignment error relative to these values [3, 9, 15, 16, 19, 35, 36, 89, 93, 92, 96,
113, 115, 114, 123, 134, 137, 136, 139, 142, 147, 149, 141]. This is an acceptable method
if the difference between the automatic alignments and the unknown correct alignments
can be considered greater than the difference between the manual alignments and the
unknown correct alignments, and if we accept that an automatic system that produced
no actual errors might still have a positive error measurement due to the variability in
the manual alignments. Because perfect agreement between an automatic alignment and
a manual alignment is unrealistic (and in such a case the automatic system would have
the same internal variability as the human), performance measured in this way can not be
considered accuracy, but simply agreement. Although the term “accuracy” is commonly
used in the literature, we will use the term “agreement” to signify the distinction.

A second method of measuring performance determines the robustness of the automatic
alignment system instead of its agreement with manual alignments. In this method, we use
a test corpus that has been subjected to a series of channel distortions. If we automatically
align the speech under these different channel conditions, we can measure the variability

in alignment performance without making reference to manual alignments. Because the



true phonetic boundaries do not change with different channel conditions, any changes in
the automatic alignment values indicate a lack of robustness. The amount of change under
different conditions is considered to be inversely correlated with the degree of robustness
of the automatic method.

For this thesis, we will compare the agreement and robustness of our proposed system
with a baseline forced-alignment system. Success will be based on whether or not the

proposed system has significantly better agreement and is significantly more robust.

1.5 Summary of Research Issues

In summary, the problem addressed in this work is that of aligning the phonetic con-
tent of speech with its corresponding acoustic signal. The hypothesis is that specific
acoustic-phonetic information can be used by an automatic alignment system to signifi-
cantly improve performance compared to a baseline automatic system, where the measures
of success are agreement with human performance and robustness. Qur approach is to
measure specific acoustic-phonetic information at different levels of the forced-alignment
process, and integrate this information in a probabilistic manner into the standard stochas-

tic framework.

1.6 Outline

The following topics will be addressed in this thesis:

e Models of speech,

Previous work in automatic alignment,

Description of the baseline system,

Overview of the proposed approach,

e Acoustic-phonetic features,

Integrating transition information,



¢ Using distinctive features,
¢ Evaluation methodology, and
¢ Results and Discussion.

In addition, Appendix A provides a description of the stochastic frame-based recognition
systems (HMMs and HMM/ANNSs) that are the foundation for many alignment systems,
Appendix B contains a glossary of speech-related terms, and Appendix C contains a list

of phonetic symbols used throughout this thesis.




Chapter 2

Models of Speech

In order to develop a phonetic alignment method that incorporates acoustic-phonetic infor-
mation, it is important to understand theories of human speech production and perception,
as well as current approaches to computer speech recognition. This section provides back-
ground on some of the more prevalent models of speech production and recognition, and

in doing so also provides a foundation for concepts and terminology in speech processing.

2.1 Models of Speech Production

2.1.1 The Source-Filter Model

The most common model of speech production is called the “source-filter” model, which
was proposed by Johannes Miiller in 1848 and described in detail by Gunnar Fant [46].
In this model, the production of speech is composed of three independent parts: a sound
source (often the vibration of the vocal folds), a tube through which this sound source
passes (usually the vocal tract), and radiation of the sound from the mouth. This model
can be used to describe the speech signal in the spectral domain, at one instant in time.
There are several possible sound sources in speech production. The most common is
vibration of the vocal folds, which occurs when we utter vowels, nasals, retroflex sounds,
liquids, and glides. These sounds, such as /e/ and /m/, are called voiced sounds. The
vibration of the vocal folds creates a series of energy pulses; this pulse train has a spectral
slope of approximately —12 dB/ocatave. Several models of this source of voiced speech
have been developed (for example (48, 47, 81]). In general, these models describe an

increase in air flow as the glottis opens, a more sudden decrease in air flow as the glottis
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closes, and no air flow while the glottis remains closed for the remainder of the pulse cycle.

A second sound source is frication, which is produced by forcing air through a narrow
constriction in the mouth. Frication is the sound source for phonemes such as /f/ and
/s/. Fant states that this source has a spectral slope of -6 dB/octave [46], and frication
is often modeled using a random-noise generator.

A third source of sound is plosion, which is produced by building up air pressure behind
an obstruction (such as the tongue or lips) and then quickly removing that obstruction;
this results in a sudden burst of air being released from the mouth. Phonemes that include
plosion as a sound source are the plosives and affricates, such as /p"/, /t*/, /d/, and /{f/.
The source for plosion is usually modeled as a sudden step-like increase in air pressure
with subsequent slow decay, resulting in a nearly flat spectral shape.

The phonetic identity of a sound is further developed as the sound source passes
through the vocal tract or nasal cavity. Each phoneme is produced with a certain position
of the tongue and jaw, and these positions determine the shape of the vocal tract. Different
shapes of the vocal tract have different resonant frequencies, and these resonant frequencies
are called formants. Given a particular vocal tract length and shape, the formant values
can be computed, and these formant values can then be represented by filter parameters.
In this way, the sound source is filtered as it passes through the vocal tract, where the
frequencies that are emphasized are dependent on the phoneme being produced.

In the final stage of the source-filter model, the speech sound is radiated from the
mouth. The effect on the spectrum caused by the radiation of sound is called the radia-
tion characteristic. The shape of the mouth opening is approximated by a point source,
which results in the spectral slope of the speech being increased by +6 dB/octave. In
some implementations of the source-filter model (such as formant-based text-to-speech
synthesis), the sound source and radiation characteristic are combined into a single repre-
sentation. This results in a voiced-source spectral slope of -6 dB/octave, and flat spectral
slopes for the fricative and plosive sources.

The source-filter model is quite powerful in describing several characteristics of speech,
such as the overall spectral shape of sounds and the locations of formants based on the

shape of the vocal tract. This model is also successful in explaining effects such as the
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overall increase in formant frequencies for female speakers, which is due to the difference

between the typical male and typical female vocal tract lengths.

2.1.2 Time-Based Modeling of Speech

The source-filter model describes the speech signal at one instant in time; speech, however,
is characterized by change over time in the sound source and resonant frequencies. Several
properties and models of the time-dependent nature of speech are outlined here.

At the physical level, the rate of speech is governed by the inertia of the articulators.
The body of the tongue moves relatively slowly, and the rate of sonorant phonemes is
limited by the rate at which the tongue moves. The lips and tip of the tongue can move
faster, and so plosive sounds occur over a much shorter time interval. At the phonetic
level, the average duration of phonemes ranges from 20 msec for voiced plosives (/b/, /d/,
/g/) to 150 msec for diphthongs (/a1/, /ei/, fiu/, etc.), with an average phonetic duration
of about 70 msec. In addition to durational variation due to phonetic differences, vowel
duration may change by a factor of eight, depending on speaking rate, syntax, and stress
[79]. Kanedera and Hermansky [72] have studied the perceptually-important modulation
frequencies in speech, and found that most of the important temporal change in the speech
signal occurs at 4 or 5 Hz, or about every 200 to 250 msec, which is approximately the
duration of one syllable [59]. Finally, in recognition of speech, duration information is
used by humans to distinguish long from short vowels, voiced from unvoiced fricatives
and consonants, phrase-final from non-phrase-final syllables, and stressed from unstressed
vowels [79].

The many factors that influence speech duration and the many uses of duration in
human speech perception result in fairly complex models. In one model proposed by Klatt
for speech synthesis, seven factors that influence the durational structure of a sentence
are specified, and there are eight rules that account for these seven factors. This model
is, as noted by its author, “only a preliminary step toward a complete theory” [79]. A
simpler model proposed by van Santen [140] is able to account for 86% of the variance
of vowel durations in a large corpus of manually-segmented speech. This model requires

eight parameters, controlling the factors of intrinsic vowel duration, pitch accent, syllabic
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stress, post-vocalic consonant, pre-vocalic consonant, within-word position, and utterance
position. In a statistical-based model for speech recognition [22], a multi-level sub-lexical
tree (called the ANGIE framework) is used to model duration from the phone level up to
the word level. A data-driven approach has been used to estimate duration factors at each
sub-lexical node in the tree. The duration information contained in the tree can then be
used to test various word hypotheses, and favor those hypotheses that have a better match
to the model durations. Using this model, an 8% reduction in error on a continuous-speech
recognition task was obtained, with a 22% reduction in error for a word-spotting task.

A second characteristic of speech as it changes over time is called coarticulation. Coar-
ticulation is the effect that one phoneme has on its neighboring phonemes; this effect is
manifested as a smooth change in formant frequencies from one phoneme to the next. This
smooth transition between phonemes is one of the main factors that makes it difficult to
determine the exact location of a phonetic boundary.

Several models of coarticulation have been proposed. In a model developed by Ohman
[112], coarticulation in vowel-consonant-vowel (VCV) utterances is expressed in terms of

vocal-tract shape by the formula
s(z,t) = v(z) + k(t)[c(z) — v(z)|w(z) (2.1)

where s(z,t) is the shape of the vocal tract at a position z and time ¢, v(z) is the vocal-
tract shape corresponding to a given vowel, ¢(z) is the vocal-tract shape of the consonant,
k(t) is an interpolation term that ranges from 0 to 1, and w.(z) is a term that describes
the extent to which c(z) “resists” coarticulation. This model is successful in describing
context-dependent variations in vocal-tract shapes using context-independent descriptions
of the vowels and consonant. However, this model was only evaluated on VCV utterances,
and Ohman briefly noted the seven modifications that would be necessary to model coar-
ticulation of general speech. Ohman also noted the difficulty in his model for describing
coarticulation between consonants, such as in a consonant-vowel-consonant (CVC) utter-
ances. '

In the “locus theory” of coarticulation [40], consonants are assigned fixed formant

values that may not be visible in the speech signal; these “virtual” formant values are
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interpolated with the formants that appear in vowels to create the context-dependent for-
mant changes seen in speech. Klatt modified the locus theory so that the interpolation
depends on the type of vowel [80]. Using this method, he achieved a consonantal intelli-
gibility of 95% for synthetic CVC syllables, as compared to the intelligibility of 99% for
natural-speech CVC syllables. Klatt did not, however, evaluate this model on continuous
speech, in which coarticulation effects may extend over a duration of up to six phonemes
[74].

In the model proposed by Lofqvist, as reported in Cohen and Massaro [23], speech
segments have overlapping “dominance functions” that control the articulators, with one
dominance function per articulator. The dominance functions can differ in time offset,
duration, and magnitude, giving relatively more or less weight to articulators associated
with a given speech segment. Although this model is quite successful at modeling visual
speech (in which the articulators are direct parameters of the system), it is not obvious
how this model could be used directly in current speech recognition systems, in which the
articulators are at best indirect parameters.

A review of six theoretical models that describe coarticulation in continuous speech
was conducted by Kent and Minifie [74]; their conclusion was that “coarticulatory pat-
terns are not explained adequately by any of the theories or models discussed herein.”
This conclusion highlights the complex nature of coarticulation and the difficulty of de-
veloping accurate models. Also, in considering these models for use in speech recognition
or alignment, it is important to note that even in the simple case of CVC or VCV ut-
terances, it is not possible to easily reverse Ohman’s, Klatt’s, or Lofqvist’s equations to

derive context-independent representations from the context-dependent acoustics.

2.2 Models of Human Speech Recognition

There are several models that describe human speech recognition at various levels of detail
and at different levels of the speech recognition process. In this section we briefly describe

some of the more prevalent models.
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2.2.1 The Motor Theory of Speech Perception

The Motor Theory of Speech Perception (abbreviated as the “motor theory”) is one of the
most widely-cited theories of human speech perception. This theory states, in a more re-
cent version [90], that “the objects of speech perception are the intended phonetic gestures
of the speaker, represented in the brain as invariant motor commands that call for move-
ments of the articulators.” According to this theory, when we perceive speech, we perceive
the gestures that correspond to the articulatory movements of the speaker, such as lip
rounding and jaw raising. Furthermore, in this theory there is a “specialized module” in
the brain that translates from the acoustic signal to the intended articulatory gestures.
According to Liberman, such a module might work using the analysis-by-synthesis method
[6], in which a mental model of a speech synthesizer is used to generate various acoustic
properties. The acoustic-gesture parameters that are input to this synthesizer are var-
ied until the error between the synthesized acoustic properties and the observed acoustic
properties is minimized. The resulting articulatory gestures are the output of this module.
Liberman and Mattingly claim that “the processes of speech perception are ... inherently
computational and quite indirect. If perception seems nonetheless immediate, [it is be-
cause| the module is so well-adapted to its complex task.”

There are several criticisms of the motor theory concerning a number of its aspects.
Cole et al. [29] have refuted the claim that there is a “biologically based link between
perception and production ... [that] occurs only in speech” [90]. Cole showed that the
use of printed spectrogram displays can be interpreted by the eye and used to classify
the phonemes in continuous speech with at least 85% accuracy; single-word utterances
can have a phonetic classification rate of at least 93%. Such visual reading of speech
without a biological “specialized module” argues against the necessity of such a module
when aurally recognizing speech. Furthermore, the person who read the spectrograms in
that study did so without making explicit reference to articulatory gestures. This work
challenges the claims that the acoustic signal is too complex to be directly mapped to
phonetic categories, and that human speech perception requires the intermediate stage of

determining articulatory gestures.
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In another criticism of the motor theory, Lane investigated the use of CV speech stimuli
that had been modified so that the formant frequencies were inverted on the frequency
axis. Such stimuli are heard as non-speech sounds, even though they have the same
temporal patterns found in ordinary CV stimuli. Lane trained subjects to classify these
modified stimuli, and found that “the categorization ... of speech cues [is|] not necessarily
due to the operation of a special motor reference process, because the same results can be
obtained, after proper auditory training, for stimulus differences that are not producible
by speaking” [117).

Finally, as Ladefoged points out, we are able to perceive two speech sounds as being
the same, even if the articulator positions and movements used to produce the sounds are
different. This occurs in “r-colored vowels,” which can be produced with the tip of the
tongue up or with a raised tongue position further back in the mouth. This effect can
also be obtained in the production of rounded vowels, such as /u/, with a lowered larynx
position or with increased lip rounding. In both of these cases, although the articulators
are in different positions, the resulting acoustic properties are the same. The fact that
these sounds are perceived to be the same can be more parsimoniously explained by an
auditory-based theory of speech perception than by the theory that listeners perceive

speech “by reference to their own motor activities” [84].

2.2.2 The Multiple-Cue Model of Speech Perception

In contrast to the motor theory, Ronald Cole and Brian Scott proposed a model of speech
perception in which a combination of context-independent invariant cues and context-
dependent phonetic transition cues are integrated when recognizing syllable units [28].
Properties of the waveform envelope are also used when integrating syllables into higher-
level units such as words and phrases. This model will be referred to here as the “multiple-
cue” model.

Cole and Scott provided evidence for invariant cues in all consonant phonemes. These
invariant cues may uniquely identify the phoneme (as in the case of /s/, /z/, /3/, /I/,
/4/, and /&/), or they may be used in conjunction with transition cues to identify the

phoneme (as in the case of /f/, /8/, /v/, /8/, /m/, /n/, and /y/). In the case of stops,
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the voiced funvoiced distinction (/b/, /d/, /g/ as opposed to /pt/, /tb/, /kP/) is signaled
by invariant cues, while the place of articulation involves either invariant or transitional
cues. In addition to these two types of cues, properties of the waveform envelope can be
used to recognize prosodic as well as phonetic information.

This multiple-cue model is attractive in that (a) it is computationally more feasible
than the inherently complex motor theory, (b) there is a direct mapping from acoustics
to phonetics, making the speech signal more amenable to analysis, and (c) it accounts for
aspects of the waveform that are both invariant and context-dependent. In criticism of this
model, the time-domain waveform amplitude does not seem to be a likely candidate for
human speech recognition, as the waveform signal is directly converted into a frequency-
domain representation by the cochlea. However, the information that Cole and Scott
determined using the time-domain waveform (amplitude, pitch, and duration) may also

be extracted from a time-varying spectral representation.

2.2.3 Invariant Cues for Stop Perception

A study of speech perception that focused on one aspect of human performance was con-
ducted by Stevens and Blumstein [133]. The result of this research identified an acoustic-
phonetic cue that can be used to uniquely identify the place of articulation in stop conso-
nants, based on human perception of synthetically-generated consonant-vowel phonemes.
This cue is the gross spectral shape of the consonant, sampled at both the burst onset
and the voicing onset. This work gives support to Cole and Scott’s multiple-cue model, in

specifying an invariant cue that can be used for identifying place of articulation in stops.

2.2.4 The Fletcher-Allen Model

Between 1918 and 1950, Harvey Fletcher and his colleagues studied human speech per-
ception at Bell Labs. As a result of this effort, they developed a theory of human speech
recognition that has been elaborated upon more recently by Jont Allen [1]; we will sum-
marize a few of their contributions here. One result of Fletcher’s work was measurement of

correct CVC syllable recognition in terms of recognition rates of the component phonemes:

S = cyveg (2.2)
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where S is the probability of correct identification of the CVC syllable, ¢ is the probability
of correct recognition of the first consonant, v is the probability of correct recognition of
the vowel, and c; is the probability of correct recognition of the second consonant. This
formula has the important implication that humans perceive each phoneme individually,
rather than the syllable as an entire unit. In addition, Fletcher found evidence that
humans process frequency bands independently, and that the overall error for recoguition
of several bands is equal to the multiplication of errors in each individual band.

Allen interprets this to mean that humans perform partial recognition of frequency
bands independently, and that these partial results are “fused” to produce estimates of
phonemes. In general, the number of frequency bands should be between 10 and 30. Allen
also notes that an important transformation takes place within each band, namely that
“the neural representation of the signal intensity has been transformed into a measure of
partial recognition ...we must not assume that this is a trivial transformation” [1}.

Based on Fletcher’s findings, Allen proposes a cascaded model of human speech percep-
tion, in which the acoustic signal is first broken into heavily-overlapped frequency bands.
The outputs of these bands are used to extract “phone features” in about 20 different
bands, which are then used to classify phones. The phone-level classification is then used
to classify syllables, which are in turn used to classify words. Allen also notes that “[it is]
unlikely that feedback is common or significant between the deeper layers and the outer

layers” [1].

2.2.5 Auditory Scene Analysis

Auditory Scene Analysis (ASA) [13] is a theoretical model of human speech perception
in which both bottom-up and top-down processing are used to determine what parts of
the speech signal belong to a single acoustic event. As a result, ASA tends to focus on
complex auditory environments involving multiple sounds. Often, grouping of patterns in
the speech signal into “streams” is done on the basis of similarity, in pitch [30] or other
aspects. This model is able to explain why a signal may be interrupted by a brief, stronger
signal, but still be perceived as continuous. In a computational model of ASA, Cooke and

Brown are able to detect certain occluded sounds and restore them (their example being
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speech occluded by a siren) [30].

2.2.6 The TRACE Model

The TRACE model of speech perception was developed by James McClelland and Jeffrey
Elman in 1986 [101]. This model was designed to be implemented on a computer while still
being a plausible model for human speech recognition. The TRACE model has three levels:
the feature level, the phoneme level, and the word level. The feature level is composed
of seven distinctive features (consonantal, vocalic, diffuseness, acuteness, voicing, power,
and amplitude of burst noise), each of which can have one of nine values. Each level is
constructed by connecting a number of simple processing units, and recognition “takes
place through the excitatory and inhibitory interactions of a large number of [these| units,
each working continuously to update its own activation on the basis of activations of other
units to which it is connected.” Each unit represents a hypothesis about the input, with
the activation of the unit monotonically related to the strength of the hypothesis; the
connections between units represent relationships between hypotheses. Units on the same
level that are inconsistent have mutually inhibitory connections. The connections between
layers are bi-directional, which allows both bottom-up and top-down processing to occur
simultaneously.

The TRACE model is able to account for a number of effects observed in human speech
perception, giving support to the psychological validity of this model. These effects include
top-down lexical effects (a faster response to words than to non-words), the perception of
phonemes as distinct categories instead of having continuous values, and results consistent
with phonotactic rules (such as /sl/ being a valid phonetic combination, whereas /sy/ is
not), even though such rules were not explicitly provided. McClelland and Elman list
eleven similarities between TRACE and human speech recognition, but also note that
“although TRACE has had a number of important successes, it also has a number of
equally important deficiencies,” most of which are related to simplifying assumptions in
the implementation of the model.

The TRACE model has obvious parallels to artificial neural networks, with one im-

portant difference being that in the TRACE model, the connections are bi-directional,
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whereas in typical feed-forward or recurrent networks, the connections are uni-directional.
In addition, McClelland and Elman had no formal means of training the system, and relied

on hand tuning of the parameters to obtain their results.

2.2.7 The Fuzzy-Logic Model of Perception

The Fuzzy-Logic Model of Perception (FLMP) is not a complete model of human speech
recognition, in that it does not specify all of the steps from input of the speech signal
to output of the recognized words. This model focuses on the integration of feature
information to arrive at classification results that are consistent with human performance.

The FLMP consists of three stages: feature evaluation, feature integration, and pattern
classification. In the feature evaluation stage, the speech signal is analyzed, and certain
features are extracted. For example, there may be a feature called “labial” to indicate
a place of articulation. The values of these features are continuous, and they represent
the degree of belief that the current speech segment indicates the specified feature. For
example, the value for the “labial” feature may be 0.80, indicating a reasonably strong
belief that the speech segment consists of a labial sound. The use of continuous values for
each feature is supported by various studies of human speech perception [111].

The second stage consists of prototype matching, in which the input is matched to a
prototype description of each possible phoneme. For example, the phoneme /b/ may have
the prototype features “labial” and “voiced.” The phoneme prototypes are specified by
“matching functions” in terms of fuzzy-truth values, so that, for example, the matching

function for /b/ may be specified as
B;=L; Vs (23)

where B; is the degree to which the perceived speech, s, will match the phoneme prototype
for /b/, L, is the degree of belief that the speech is labial, and V; is the degree of belief
that the speech is voiced. (In an extended version of the FLMP, the belief values are
modified by exponential weights that indicate the importance of extreme values of that
feature.) The extent to which the input speech matches each prototype is computed by

evaluating all of the matching functions.
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In the third stage, pattern classification is performed. The probability of identification
of each phoneme is computed using Luce’s model [95]. For our example of /b/, the
probability of the speech containing a /b/, if the only possibilities are /p®/, /b/, and /d/,
is given by:

B,

P(/5/1) = FT BTy (24)

where p(/b/|s) is the probability of a /b/ given the speech signal s, P; is the matching

function for /pt/, B; is the matching function for /b/, and D; is the matching function
for /d/.

Massaro and Friedman used the FLMP to model the results of several human pattern
classification tasks, and found that the FLMP provides an equivalent or better represen-
tation of the data when compared with a number of other information-integration models,
including additive, linear integration, two-layer connectionist, theory of signal detectabil-
ity, and multidimensional scaling models {100]. It should also be noted that the FLMP is
mathematically equivalent to Bayesian integration if the fuzzy-truth values are interpreted
as probabilities, although the FLMP was developed based on psychological studies and

without reference to Bayes’ rule.

2.3 Models of Computer Speech Recognition

There are a number of models of computer speech recognition, each with a different per-
spective. Most models can be generally classified as either segment-based or frame-based.

In this part, we describe some influential segment-based and frame-based systerns.

2.3.1 Segment-Based Systems

The SUMMIT System

The SUMMIT system was originally developed by Victor Zue and his colleagues at MIT
in the 1980s, and several variations have evolved over the years under the guidance of Jim
Glass. One defining characteristic of the SUMMIT system is that it first divides the speech

signal into segments, and then phonetically classifies each segment. The classification
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scores of the phonetic segments are searched to find the most likely word sequence. The

general procedure for recognition in the SUMMIT framework is as follows:

1. Acoustic boundaries (landmarks) are determined based on the amount of local spec-

tral change. In one extreme implementation of SUMMIT [21], boundaries are placed

automatically at every 10-msec frame (effectively transforming SUMMIT from a

segment-based to a frame-based system), but this approach is not currently used

because of the large amount of required computation time.

2. A network of segments (dendrogram) is created by one of the following methods:

(a)

(b)

Merging short segments into longer segments according to their spectral sim-
ilarity. This is the “traditional” approach used in SUMMIT [57], which has

modest computational requirements.

Segmentation by recognition, in which a recognizer is used to classify each
frame or acoustic landmark as a phoneme or a phonetic transition. After this
classification, a forward-pass Viterbi search is done, which is followed by a
backward-pass A* search. The A* search yields a number of alternative pho-
netic segmentations of the speech signal; these segmentations form the resulting
dendrogram. This approach is computationally more expensive, but yields bet-
ter recognition performance than the traditional approach. The most recent
implementation performs the segmentation in real-time on a 200 MHz CPU

[21, 88].

3. Given the dendrogram created in Step 2, phonetic classification of all segments is

performed using one or both of the following methods:

(a)

The first method performs context-independent recognition of each segment in
the dendrogram. In this method, there are between N + 1 and 2N recognition
categories, where N categories correspond to the N possible phonemes, and the
remaining categories are used to model segments not included in a hypothesized

segmentation (called “not modeling” or “near-miss modeling”) [21].
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(b) The second method performs context-dependent recognition of each segment
boundary in the dendrogram [56]. The context-dependent categories can be
phonetic boundaries or phoneme-internal boundaries, and there can be as many
as (N 4+ N?) recognition categories. In practice, only about 750 categories are

used.

These classifiers are trained with the same spectral-domain features that are com-
monly used in HMM speech-recognition systems (described below), and classification

is done using mixtures of Gaussians.

4. Searching is done with a bigram forward-pass Viterbi search and, for N-best hy-
potheses, an n-gram A* backward-pass search. If both context-independent segment
recognition and boundary recognition are done in Step 3, then the final probability
of a word sequence is the multiplication of the probabilities of the segment result

and the boundary result for that sequence.

Performance of the most recent version of SUMMIT is about 72% accuracy on phoneme
classification of the TIMIT database. This phoneme-level result is among the best re-
ported; a standard HMM system is reported to have 69.1% accuracy [87], and a recurrent-

neural-network approach yielded 73.4% accuracy [128].

The Feature System

The FEATURE system was developed by Ronald Cole, Richard Stern, and Moshé Lasry
at Carnegie-Mellon University in the early 1980’s. The motivation for the FEATURE
system was to enable automatic speech recognition to perform fine phonetic distinctions,
such as between /p"/ and /b/. At the time that FEATURE was developed, frame-based
template-matching systems had recognition rates of only about 60% on the “E-set” of
confusable alpha-digits (which consists of the set of letters and digits {B, C, D, E, G, P,
T, V, Z, and 3}). The original FEATURE system was designed for speaker-independent
recognition of the isolated letters “A” through “Z.” The following steps are involved in

recognition using FEATURE:
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1. Signal Processing: Given an utterance corresponding to a single letter, signal pro-
cessing routines are used to extract general information about the signal, such as
spectral properties, the fundamental frequency, the number of zero crossings, and

energy in various frequency bands.

2. Segmentation: Four points are located in the utterance: the beginning of the utter-

ance, the onset of the vowel, the vowel offset, and the ending of the utterance.

3. Feature Eztraction: About 50 different features are extracted, using the information
determined from Steps 1 and 2. These features include the first three formants of
the vowel region, the formant trajectories, the maximum and minimum frequencies
of each formant, and the duration of aperiodic sound prior to and following voicing.
The types of features were selected using visual inspection of different representations

of the signal.

4. Classification: A decision-tree approach is used to determine the probabilities of
each of the twenty-six letters. Each node in the tree represents a group of letters,
and lower nodes contain disjoint subsets of higher nodes; the leaf nodes contain the
individual letters. At each non-leaf node, the likelihood of the utterance belonging
to that node is determined using multivariate Gaussian probability distributions of
the feature vectors. Probabilities are computed for all non-leaf nodes in the tree,
and the final probability of a given letter is the multiplication of the probabilities of
each node leading to that leaf node. Only relevant features are used at each node
to reduce the dimensionality of the decision space, and the assumption is made that

the sets of features used for classification at each node are independent.

5. Adaptation: The Gaussian probability distributions can then be adjusted to better
match the expected feature values of an individual speaker. The probability distri-
butions are updated after recognition of each utterance and after receiving feedback

from the user as to which letter was actually spoken (supervised adaptation).

Without using speaker adaptation, the FEATURE system has 89% accuracy on isolated

letters, and 83% accuracy on the E-set. Compared to frame-based template-matching
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systems, the reduction in error on the E-set is greater than 50%. The use of speaker adap-
tation further reduces the error rate by another 50%, given sufficient data for adaptation.

The FEATURE system was modified and extended by Cole, Fanty, and others to use
neural networks for classification and to recognize continuous-speech letters (spoken with
or without pauses between words). Results of this new system, called “EAR,” are 96%
accuracy on microphone speech and 89% accuracy on telephone-band speech {24]. These
results represented the state-of-the-art for six years until a sophisticated HMM system
achieved 97.3% accuracy on high-quality speech and 91.7% accuracy on telephone-band
speech in 1996 [94].

2.3.2 Frame-Based Systems

Hidden Markov Models

By far the most dominant method for automatic speech recognition is currently the hidden
Markov model (HMM), which has been used for speech recognition since at least 1975 [7].
This method has an elegant mathematical framework that allows data-driven training
of speech units such as words, phonemes, or context-dependent phones. The two major
reasons for the widespread use of HMMs are that the mathematics are well formulated,
moving speech recognition to the well-researched domain of statistical pattern recognition,
and that the performance of HMM systems is most often superior to that of knowledge-
based approaches.

The details of using HMMs for speech recognition are presented in more detail in
Appendix A, but the basic model for HMM-based recognition is that of independent
states linked by state transition arcs, as illustrated in Figure 2.1. Each state is associated
with a certain linguistic unit, usually a phonetic-based unit, and at any point in time
the system is in one and only one state. With each increment in time (usually about 10
msec), a transition is made to another (or the same) state. During recognition, the system
estimates the likelihood of being in each state at time ¢, based on the likelihood of being
in each state at time (¢ — 1), the probabilities of transitioning from the previous states
to the current state, and the probability of the current state being associated with the

speech signal at time ¢ (called an observation probability). The likelihood of each word at
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time ¢,, is then the likelihood of being in the final state associated with that word at time
tw; a simple comparison of word-final state likelihoods yields the most likely word given
the speech input and HMM configuration.

In general, the speech signal at time ¢ is represented by spectral-domain information
over a small (16 msec) time window. Estimation of the observation probabilities is often
done using mixtures of Gaussians, although vector quantization (VQ) has also been used.
The search through the HMM states to determine the most likely word is done using a

dynamic-programming search algorithm called the Viterbi search.

' 0.2 0.3 0.6

06 Y2 (i PP2—(E )01 O(_),J;l 10

02 . 0.35 0.7

0.2

o 0.65 o =

Figure 2.1: HMM state sequence for a two-word vocabulary.

Hybrid HMM/ANN Recognition

Hybrid HMM/ANN systems have been developed at research laboratories such as Cam-
bridge University {128], ICSI [12], and OGI [68]. The main difference between standard
HMM-based recognition and hybrid HMM/ANN recognition is in the estimation of the
observation probabilities. In standard HMM systems, these probabilities are estimated

using mixtures of Gaussians. In HMM/ANN systems, the observation probabilities are
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estimated using artificial neural networks (ANNs), which have been shown to estimate
a posteriori probabilities given sufficient training data and hidden nodes [126]. Other
aspects of HMM/ANN systems, such as the state-based framework and the use of the
Viterbi search to determine the most likely utterance, are the same. Neural networks have
some advantages over Gaussian mixture models (GMMs): ANNs have better discrimina-
tive properties, do not require the input features to be uncorrelated, and do not require
the data to fit Gaussian models [11].

The main disadvantage of the hybrid HMM/ANN approach is the amount of time
required to train a neural-network classifier; this increase in training time is, however,
typically offset by a decrease in the time required to estimate the observation probabil-
ities during recognition. Another disadvantage, from an engineering standpoint, is that
once the network has been trained, it is not possible to easily modify its properties; with
mixtures of Gaussians, phonetic models can be adjusted individually after training. Fi-
nally, training the ANN requires good initial estimates of the locations of each phoneme;
standard HMM systems can be trained without such information (although even standard

HMM performance benefits from the use of manually-aligned transcriptions).

Syllable-Based Recognition

Motivated by psychoacoustic evidence that the syllable is important in human speech per-
ception, Su-Lin Wu, Steven Greenberg, and their colleagues at the International Computer
Science Institute (ICSI) developed a syllable-based recognition system [152]. The input
to this system is a “modulation spectrogram,” which represents the time-varying spectral
content of speech with low-pass-filtered independent frequency bands [60]. These bands
capture the syllable-length fluctuations in the speech signal while suppressing faster and
slower change. The modulation-spectrogram bands are passed to a neural network with
a relatively large (185 msec) window of input frames, and are classified into 124 “semi-
syllable” categories for the numbers-recognition task. A Viterbi search is then used to
search the network outputs for the most likely number sequence.

Performance of this syllable-based system (90.2% word accuracy on telephone-band

speech) was not as good when compared with a baseline system (93.2% word accuracy),
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but the combined performance of the syllable-based and baseline systems was much greater
than either system alone (94.5% accuracy). This indicates that the types of errors made
by each system are to some degree independent, and that further research in this area

may be fruitful.

Transition-Based Recognition

The Stochastic Perceptual Auditory-event-based Model (SPAM) for speech recognition
was developed by Nelson Morgan and his colleagues at ICSI. The motivation for SPAM
is that “information needed for correct [phonetic] identification is largely contained in
spectral transitions” (called avents) [151]. This motivation is supported by the work of
Furui, who found that humans associate spectral transitions with phonetic identification in
natural speech [51]. In SPAM, the primary unit of classification is the phonetic boundary
region, with all non-boundary frames of speech classified as a single “non-transition state.”
A neural network is used to estimate the probability of a given frame of speech belonging
to a particular class, and the most likely word is determined using a Viterbi search.

Recognition experiments using SPAM on the task of digit classification showed that the
error rate for SPAM is roughly twice that of standard phonetic recognition on clean speech,
and about equal to phonetic recognition performance on noisy speech. However, the
combination of results from SPAM and standard phonetic recognition yielded performance
much better than either system alone, indicating that the errors in the two systems are
independent.

Cravero, Pieraccini, and Raineri [34] created an HMM-based system in which the units
for recognition are either context-independent phonemes or diphones, depending on the
relevance of the category to recognition (some categories, such as plosives, depend heavily
on transition information, and other categories do not). Their general-purpose system
has 22 context-independent “stationary” units, and 101 phonetic transition units. On a
corpus of nearly 1000 isolated Italian words, an HMM system trained using their proposed
categories yielded 77.5% accuracy in word recognition. A comparable system trained on
only context-independent phonetic units had 73.7% accuracy in word recognition, and a

system trained on only phonetic transitions had 68.2% accuracy. This indicates a clear
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advantage to using a combination of phonetic transition and steady-state categories, with
a 15% reduction in word-level error for the given task. The authors did not, however,
compare the performance of their system with a context-dependent phonetic recognizer.

In related work, Hosom and Cole implemented a transition-based digit recognition
system [67], in which the units for classification were phonetic-transition units as well as
context-independent phonetic units. As in the SPAM model, classification was done by a
neural network, and a Viterbi search was used to determine the most likely word sequence.
They found a 13% reduction in error over a context-dependent baseline approach, from
94.7% to 95.4% word accuracy on telephone-band speech. This system was restricted to
digit recognition, due to the large number of possible diphones in unconstrained speech.

The SUMMIT system, described above, also performs transition-based recognition
during the segmentation-by-recognition procedure, in order to identify the locations of the
speech segments [21]. During this procedure, each potential acoustic landmark is classified
as either a phonetic transition or a non-transition, and the Viterbi and A* searches are used
to determine the N-best segmentations. Transition information can also be used during
the classification of segments into phonemes, by multiplying the segmentation likelihoods
by the likelihoods of all transitions in that segmentation [56].

Finally, a phonetic alignment system developed by van Santen and Sproat [141] aligns
phonemes with speech using phonetic transition information in different frequency bands.

This system is discussed in more detail in Section 3.4.

2.4 Human Spectrogram Reading

As noted in the description of the motor theory, humans are capable of recognizing words
using only printed spectrograms that display the speech signal along the dimensions of
time, frequency, and energy. This ability to recognize speech using spectrogram displays
is called “spectrogram reading.” (An example spectrogram is given in the third panel in
Figure 1.1). The techniques employed in spectrogram reading may be useful in the design

of machines that can recognize speech. During spectrogram reading, explicit features in
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the speech signal are used, and such explicit features have the potential to be automat-
ically extracted from the speech signal. This potential was a driving force behind the
development of the FEATURE system, described above.

The seminal paper on spectrogram reading [29] describes the abilities of a single spec-
trogram reader, referred to as VZ, and analyzes his approach. It was found that VZ was
able to identify more than 97% of all phonetic segments in continuous speech. VZ associ-
ated one segment with only one phoneme (one hypothesis per segment) about half of the
time, while he associated one segment with two phonemes (two hypotheses per segment)
an additional one-third of the time. VZ identified the correct phonetic label 86% of the
time. As for his use of higher-level knowledge when reading spectrograms, it was found
that labeling performance was actually slightly better on utterances containing nonsense
words.

VZ used a two-pass method for reading spectrograms; in the first pass, he segmented
the speech, and in the second pass he identified the phonemes in each segment. (There was,
however, some adjustment of the segmentation during the second pass.) Segmentation was
done primarily by locating the points of spectral change and sharp changes in intensity.
Some boundaries were determined based on relative local duration; for example, two
adjacent stop closures can be identified as two phonemes even without a change in spectral
information, because the combination of both stop closures is significantly longer than the
duration of a single stop closure. Changes in formant frequencies (such as a dip in the
first formant frequency or a decrease in formant amplitude) were used by VZ to identify
transitions within a sonorant region. In some cases, such as liquid-vowel transitions, no
boundary was marked until the second pass. VZ used a left-to-right segmentation strategy
in some cases, and a less sequential strategy in others. In the less sequential cases, VZ
would segment the obvious boundaries first and then identify more difficult boundaries.

Once the speech had been initially segmented, each segment was assigned a phonetic
label. Label assignment was done based on knowledge of unique spectral patterns for a
phoneme, by knowledge of coarticulatory effects, and by constraints imposed by English
phonology. Even for highly complex sounds such as plosives, VZ was able to identify and

classify plosives with great accuracy based on the characteristic patterns of the manner




30

and place of the plosive. Vowel classification was done by first classifying the vowel as
reduced or unreduced. For unreduced vowels, the characteristics of the Jakobson, Fant,
and Halle set of distinctive phonetic features were used, such as diffuseness and acute-
ness; these features are related to characteristics such as vowel height or place. Once a
general classification had been made, a finer classification was obtained based on relative
duration and detection of offglides. It is also interesting to note that by “computing ap-
propriate formant displacements,” VZ was able to effectively normalize for the effects of
coarticulation. Finally, VZ used phonological rules when necessary. These rules included
phonetic-combination rules, such as the lack of the /dl/ combination in English, and rules
about allophonic variation that can be predicted based on context, such as /t/ being
unaspirated in an /st/ cluster but aspirated (/t"/) in a word-initial position.

The ability of VZ to read spectrograms and the analysis of his methods has several
implications for automatic speech recognition. First, VZ’s performance on phonetic clas-
sification of continuous speech represents a roughly 50% reduction in error compared to
current automatic speech-recognition systems when trained and evaluated on clean micro-
phone speech (with about 85% accuracy for VZ and 70% accuracy for automatic methods).
This indicates that the phoneme-level performance of ASR systems can still be greatly
improved, which in turn should improve the performance of word-level recognition. Sec-
ond, VZ did not make use of suprasegmental cues such as pitch contours (for tone and
intonation), stress, and rhythm, except for occasional references to local duration and
speech rate. If these suprasegmental features were available, the performance of VZ and
automatic systems might further improve. Third, for units of classification, VZ “appears
to use a mixture of phonemes, diphones, and sub-phonetic units,” indicating that the use

of all of these units may be advantageous in automatic speech-recognition systems.

2.5 Weaknesses of HMM and HMM/ANN Systems

Although the mathematics that define HMM and HMM/ANN systems are well formu-
lated, the amount of data needed to train an HMM recognizer and the fragility of these

systems when used under different conditions indicate that the HMM framework has some
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weaknesses when applied to speech recognition. In addition to the well-known issue that
independence between the the values of each frame of speech can not be fully justified,
there are other ways in which standard HMMs may not be best suited to speech recogni-
tion. One major weakness of HMM systems is that because no speech-specific knowledge
(other than perceptually-related warping of the spectrogram and data-driven clustering of
phonetic categories) is used in computing the likelihoods of each phoneme at each frame,
these values are estimates of not only the phonetic qualities of the speech, but also the
channel and noise conditions of the training data. (Channel and noise distortions can be
addressed by RASTA or CMS pre-processing, but complex distortions, such as are found
in telephone speech, are not easily factored out.) In addition, the system is tuned to
the characteristics of the speakers in the training set, who may or may not represent the
qualities of the speaker(s) in the test set. This union of phonetic and corpus-specific infor-
mation in training makes recognition performance sensitive to factors that are unrelated
to the phonetic content of the signal.

There are several ways in which phoneme-specific knowledge is available but not used
in HMM systems. First, one set of features is used to classify all phonemes in an HMM,
whereas there is evidence that humans make use of a wide variety of cues. In particular,
there is information about voicing, pitch, glottalization, bursts, and intensity that is de-
tectable by humans but not well represented by the standard feature set. As perceptual
studies indicate that humans make use of all available relevant cues, it is likely that the use
of this information in computing the observation probabilities will improve the robustness
of an HMM system.

Second, the observation-probability classifier is trained to classify all frames within a
(sub-)phonetic segment as a single (sub-)phonetic category. These estimates will be more
unreliable at phonetic boundaries, because the speech signal is changing most rapidly
during a transition, there are fewer transition examples than non-transition examples for
training, and the data are more widely spread in the feature space due to coarticulation
between two phonemes. However, perceptual studies by Furui, the analysis of spectrogram-
reading techniques by Cole, and the (sometimes preliminary) speech-recognition and align-

ment systems developed by Zue, Morgan, Hosom, and van Santen indicate that phonetic
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boundaries are well-motivated categories for classification, providing information that is
complementary to the phonetic steady-state regions. The use of phonetic transition infor-
mation in an HMM system may then also lead to more robust recognition, if the problems
associated with an inherently large number of phonetic-transition categories can be ad-
dressed.

Third, although data-driven clustering of categories into phonetically-related groups
is often done in order to make effective use of the training data, the relationships among
phonemes that arise out of the physical constraints of the speech production process are
not explicitly used. These relationships, if properly encoded, may provide additional

structure to an HMM system for improved robustness.

2.6 Summary

There is a wide range of models of speech, depending on the application and the approach
of individual researchers. From this array of models, we can draw some general conclusions
that may be relevant in the design of automatic speech-recognition and phonetic-alignment
systems.

First, although no current automatic system makes use of all relevant information in
the speech signal, humans seem to combine information from as many different relevant
sources as possible. This belief is seen in Liberman’s statement that “every potential cue
— that is, each of the many acoustic events peculiar to a linguistically significant gesture
— is an actual cue. All possible cues have not been tested, ...but no potential cue has
yet been found that could not be shown to be an actual cue” [90]. Or, as Cole and Scott
state, “...there are many different cues to each phonetic distinction, and listeners make
use of all available cues” [28].

Second, there are several time-domain aspects of speech, notably coarticulation and
duration, that are complex and not fully understood. Use of such information may improve
automatic speech recognition performance (as was shown in Chung and Seneff’s work),
but improvements will be limited by the accuracy and robustness of the coarticulation and

duration models. Current models, such as those proposed by Klatt, van Santen, Chung




33

and Seneff, and Ohman, are either still in the research stage or would be difficult to apply
to the recognition of speech.

Third, stochastic models of speech recognition usually perform better than rule-based
models. This indicates that a small number of rules (or even a larger number of complex
rules) does not robustly capture the variability found in continuous speech. However, as
the success of statistical models depends on the way in which the data are represented [5], it
may be advantageous to utilize some of the known, fixed properties of speech in the design
of statistical speech recognizers. This is, however, not easily accomplished; Fred Jelinek,
who at the time was with a major IBM speech recognition project, somewhat facetiously
claimed that the most effective technique IBM had found for decreasing error rates was to
“fire a linguist” [105]. The reason that acoustic-phonetic or linguistic information has not
been successfully integrated is not necessarily that our knowledge of linguistics is incorrect,
but that it has proven very difficult to extract and reliably incorporate the features that
represent this knowledge. As noted by Cole, this difficulty “stands as a major stumbling
block to progress” [26].

Fourth, given the various models of human and machine speech recognition, it seems
likely that the speech recognition problem is best approached at multiple levels, includ-
ing specific acoustic features at a lower level, sub-phonetic (possibly including phonetic-
transition) units at a higher level, as well as phonetic and syllabic levels. Examples of this
hierarchical approach are seen in the TRACE model, as well as in Fletcher and Allen’s
model. The use of distinctive features in phonetics, in the TRACE model, and in spectro-
gram reading suggests that distinctive features may also be advantageous in approaches
to automatic speech recognition. Results from the use of combined steady-state and tran-
sition units by Morgan, Cravero et al., Hosom and Cole, and Glass and Chung indicate
the potential of transition information. However, a clear advantage of the transition-based
approach over context-dependent, general-purpose HMM or HMM/ANN systems has not

been reported in the literature.




Chapter 3

Previous Work in Phonetic Alignment

Of a review of 32 automatic alignment systems, 44% (14 systems) use HMM or HMM/ANN
recognition to obtain the alignments, and another 25% (8 systems) use dynamic time
warping (DTW). The remaining third (10 systems) employ a wide variety of approaches,
including methods that use estimates of voicing [2], measures of spectral variation [116,
139], a hierarchical segmentation structure called a dendrogram [54, 31], diphone detection
[141, 73], multiple frequency bands [141], temporal decomposition [144], templates of
phoneme sequences [9], and rules that encode acoustic-phonetic knowledge [89].

In this chapter, we will report on the agreement of manual alignments (inter-labeler
consistency), discuss the HMM systems, the DTW approaches, a multiple-frequency-band
method [141], two diphone-detection methods {141, 73], and a knowledge-based method
[89]. Finally, we will describe the current state of the art in automatic phonetic alignment,
based on the systems reviewed here.

Automatic-alignment agreement with manual labels is most often reported in terms of
what percentage of the automatic-alignment boundaries are within a given time threshold
of the manually-aligned boundaries. For example, Brugnara et al. report that for their
system, 88.9% of their automatic boundaries are within 20 msec of the manual boundaries.
This type of result will be reported here as a percent “agreement” within the given thresh-
old; in this example, Brugnara’s system has 88.9% agreement within 20 msec. Results with
a threshold of 20 msec will be reported when possible, as this threshold is commonly used
and allows general comparison between systems. Relative differences in the agreement
between two systems will be reported using the terminology “reduction in error,” even if

the alternate (although cumbersome) terminology such as “increase in agreement” may
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be technically more correct.

3.1 Manual Phonetic Alignment

Evaluation of manual phonetic alignments is subject to the same pitfalls as evaluation
of automatic systems. As a result, manual alignment agreement is usually reported as
inter-labeler agreement, with one set of manual alignments chosen as nominally “correct,”
and the other set of alignments measured in relation to the first set.

Cosi et al. [32] reported on the manual alignment of 10 continuous-speech Italian
sentences recorded at 16 kHz and aligned by three people. They found a mean deviation
of 6 msec, about 55% agreement within 5 msec, and 93.5% agreement within 20 msec.

Ljolje et al. [92] reported on the manual alignment agreement for 100 Italian utter-
ances from two human transcribers, and found 80.0% agreement within 10 msec, 92.9%
agreement within 20 msec, and 96.8% agreement within 30 msec. These results correspond
well with those reported by Cosi.

Wesenick and Kipp [147] evaluated the manual alignment of German sentences by
three transcribers. They found average agreement levels of 63% within 0 msec (perfect
correspondence), 73% within 5 msec, 87% within 10 msec, and 96% within 20 msec. The
transcribers used in this study were all graduate students in phonetics, and all had re-
ceived an intensive training session. As part of this training, a number of conventions
were established to ensure consistent labeling. One such rule was to always set a segmen-
tation boundary where the values of the speech signal changed from negative to positive
[146]. Not surprisingly, these results represent the best reported performance of human
consistency on the task of phonetic alignment.

Leung and Zue [89] evaluated 5 American English sentences as aligned by two people.
The sentences were recorded using a microphone, and the text came from the Harvard
list of phonetically-balanced sentences. Manual alignment required about 30 seconds per
phoneme, and they reported approximately 80% agreement within 10 msec, 87% agreement
within 15 msec, and 93% agreement within 20 msec.

Cole et al. [25] reported on inter-labeler agreement for four languages, as labeled by
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both native and non-native speakers. For American English aligned by two transcribers
(native speakers), they reported 79% agreement within 10 msec, which is marginally lower
than the value reported by Leung. For German speech, they found 63% agreement within
5 msec and 79% within 10 msec when comparing two native-speaker labelers, and 69%
agreement within 5 msec and 81% agreement within 10 msec when comparing a native-
speaker labeler and a non-native-speaker labeler. One point of interest is that although
Wesenick, Cosi, Ljolje, and Leung performed their evaluations on 16-kHz microphone
speech and Cole et al. performed their evaluation on 8-kHz telephone-band speech, the
results are quite comparable. In addition, the results for Leung on English speech and the
results for Ljolje on Italian speech are nearly identical, as are the results for English and
German alignments reported by Cole.

As none of the above evaluations were performed on the commonly-used TIMIT corpus
of American English speech, we manually aligned 50 sentences from the test partition of
TIMIT (1800 phonemes). We used the phoneme sequence as given in the TIMIT phoneme-
label files, but removed all timing information prior to hand labeling. For evaluation, we
(a) merged glottalized sounds with their surrounding voiced sounds, if possible, and (b)
did not evaluate boundaries between stop closures and silence (as any such boundary is
placed arbitrarily). We found 81.7% agreement with the standard TIMIT alignments with
a threshold of 10 msec, and 93.5% agreement within 20 msec. These results correspond
well with the results reported by Cosi, Ljolje, Leung, and Cole.

In summary, there is fairly consistent agreement among humans labelers for continu-
ous speech, even across language and channel conditions. There is an average agreement
of 93.78% within 20 msec for the measured manual alignments, with a maximum of 96%
within 20 msec for highly-trained specialists using a set of rigorous and well-defined con-

ventions.

3.2 HMM systems

As mentioned in Chapter 1, HMM and HMM/ANN speech recognizers can be used to

obtain phonetic alignments using a process called forced alignment. In forced alignment,
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Figure 3.1: Inter-labeler agreement of alignments at various thresholds, as reported by six
researchers.

the HMM is used to recognize the input speech with the Viterbi search constrained to
only the correct sequence of phonemes. The result of the Viterbi search contains the
phonetic alignment (as well as the score for the known phoneme sequence). In cases
where the words are known but the phoneme sequence is not, a dictionary can be used
in combination with pronunciation rules to generate a phoneme sequence for each word;
these sequences can then be concatenated together, with optional pauses between words, to
arrive at a phoneme sequence for the entire utterance. Rapp noted that because “the task
of phoneme alignment can be considered as simplified speech recognition, it is natural
to adopt a successful paradigm of [automatic speech recognition|, namely HMMs, for
alignment” {123].

Wightman and Talkin [149] developed an HMM-based system called “the Aligner,”
with the acoustic model training and Viterbi search implemented using the HTK Toolkit
[150]). The Aligner uses a 10-msec frame rate and five mixture components per Gaussian

to estimate the state occupation likelihoods. Non-speech sounds, such as breath noise
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and lip smacks, are collapsed into a single “silence” model. The system was trained on
unvoiced and voiced stop closures, whereas most HMM systems train the stop closure
and the stop burst as one unit. The system was trained using the TIMIT labels as an
initial segmentation. In evaluation of their system, they did not use the TIMIT phonetic
sequence directly, but they first mapped the words to canonical dictionary pronunciations,
then performed forced alignment, and then mapped the forced-alignment phonemes to the
TIMIT phoneme sequence; this allowed them to compare the phonetic boundary align-
ments while still performing forced alignment from word-level information. Performance
on the TIMIT test set was approximately 80% agreement within 20 msec.

Brugnara et al. [15, 16, 3] developed an HMM forced-alignment system that uses spec-
tral variation features in addition to the standard cepstral-domain features for computing
state occupation likelihoods. The use of these additional features resulted in a 2% relative
reduction in error. They also tried adjusting the phonetic alignments after the Viterbi
search, based on the values of the spectral variation features, but found no improvement
in performance. They evaluated this system on the TIMIT database, and reported 75.3%
agreement within 10 msec, 84.4% agreement within 15 msec, and 88.9% agreement within
20 msec. They also compared this system to an identical system trained without initializa-
tion from the manual alignment information, and found that the system trained using the
manual alignments had a 50% reduction in error compared to the system trained without
manual alignments.

Pellom [115, 114] developed an HMM for forced alignment with a variety of speech en-
hancement algorithms. This system uses a 5-msec frame rate, 5-state monophone HMMs,
gender dependent models, 16 Gaussian mixture components per state, and Gamma distri-
bution transition probabilities. When phoneme-level transcriptions are not available, the
system generates pronunciations using the CMU dictionary and word-juncture modeling.
The system was trained and evaluated on TIMIT data that had been down-sampled to
8 kHz, and agreement was 86.2% within 20 msec. Pellom evaluated the same system on
the NTIMIT corpus of telephone-band speech and the CTIMIT corpus of cellular-band
speech, using various noise-reduction techniques. For NTIMIT, the system with the best

combination of speech enhancement algorithms had 76.8% agreement within 20 msec; for
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CTIMIT, the best-performing system had 66.7% agreement within 20 msec.

Ljolje and Riley [93] built a three-state HMM system that has different types of pho-
netic models, depending on the availability of training data. If enough data are available
for a given phoneme in its left and right contexts, then a complete triphone model is used,
although the left and right contexts are clusters of similar phonemes instead of individual
phonemes. If sufficient data are not available for a full triphone model, then a “quasi-
triphone” model is attempted; this quasi-triphone model has the left state dependent on
the left context, the middle state context independent, and the right state dependent on
the right context. If sufficient data are not available for the “quasi-triphone” model, then
left-context dependent and right-context dependent models are attempted. If sufficient
data are still not available, then context-independent phoneme models are used. The
HMM uses full-covariance Gaussian probability density functions to estimate the state oc-
cupation probabilities, a Gamma-distribution duration model, and a 10-msec frame rate.
The models were trained and evaluated on the TIMIT database. Two types of models
were trained: those based on the manual alignments in the TIMIT database, and those
based on a mixture of manual alignments and Viterbi re-estimation of the alignments. In
either case, they found 80% agreement within 15 msec.

Svendsen and Kvale [136] first segment the speech into acoustically similar segments,
and then use an HMM with the segment boundaries as anchor points during the Viterbi
search. Segmentation is done using vector quantization, constrained so that all vectors in
a cluster are contiguous in time (called sequence-constrained VQ or SCVQ). Using this
method, they set a threshold to provide 2.5 times as many segment boundaries as phonetic
boundaries, so that 98% of the manually-labeled phonetic boundaries are within 20 msec of
a hypothesized segment boundary. Then, a three-state monophone single-mixture HMM
(with the ability to skip the middle state) is trained on each phoneme. During the Viterbi
search, a state transition is only allowed at the hypothesized segment boundaries. This
system was trained and evaluated on the EUROMO corpus, which contains 16 kHz read
speech from a small number of male and female speakers in different languages. Results
on the single-speaker British-English test set showed 82.3% agreement within 20 msec,
but this performance was probably negatively influenced by the lack of training data.




40

Cox, Brady, and Jackson [33] developed an HMM system with a 10-msec frame rate
to align read British-English speech for 2 adult males, 2 adult females, and one female
child. The system was trained on manually-segmented data and then evaluated on the
same training data. This method of training and testing on the same data was acceptable
for their purpose (generating alignments for only those five speakers), but does not allow
comparison of their results with speaker-independent systems.

Ljolje, Hirschberg, and van Santen [92] trained a monophone (context-independent)
three-state HMM system with Gaussian estimation of the state occupation likelihoods.
Gamma distributions were used to model the phoneme durations, and the frame size was
2.5 msec. The system was trained using an initial uniform-duration segmentation of the
states instead of manual alignments. Training and evaluation was done on Italian utter-
ances in carrier phrases. When mean biases were removed from the results, performance
was 78.1% agreement within 20 msec.

Pauws, Kamp, and Willems [113] trained an HMM system using a three-step process,
so that they did not have to initialize their training with manual alignments. Their pur-
pose was to create alignments for use in text-to-speech, and they wanted high-accuracy
alignments without the costs associated with manual alignment. Their system was trained
and evaluated on isolated Dutch words recorded from a single speaker. In the first step,
the speech was segmented into three broad phonetic classes, “silence,” “voiced,” and “un-
voiced,” using energy in different frequency bands, the zero crossing rate, and the spectral
slope. This initial segmentation had 82% agreement within 20 msec. Given this segmen-
tation, the next step was to use sequence-constrained vector quantization (SCVQ) within
each broad phonetic class to align the phonemes. This process resulted in 70% agreement
within 20 msec. In the third step, an HMM system was trained to recognize each phoneme,
with the initial segmentation taken from the second-step results. This system used 6 states
per phoneme for all phonemes except bursts, which had 2 states per phoneme. The frame
rate of 5 msec enforced a minimum duration of 30 msec for non-burst phonemes and 10
msec for bursts. Performance of this system was 89.5% agreement within 20 msec. Pauws,

Kamp, and Willems then compared this system to a forced-alignment HMM system that
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was initialized with manual segmentations, as well as another system that was initial-
ized with equal-duration segmentations. Performance of the manual-segmentation system
was 96.0% agreement within 20 msec, and performance of the equal-duration system was
76.14%. It should be noted, however, that the system trained with manual segmenta-
tions was trained and evaluated on the same data, so that this result can not be used for
comparison with speaker-independent alignment systems.

Dalsgaard, Andersen, Barry, and Jérgensen [36, 37, 35] used a self-organizing neural
network (SONN) to estimate the probabilities of distinctive phonetic features (such as
“front,” “central,” “low,” “high,” and “labial,” each with three possible values) in the
speech signal. These distinctive features were subject to principle component analysis to
determine the most relevant features for phonetic classification. The principle components
were used to model phonetic likelihoods with Gaussian probability density functions, and
then a Viterbi search was applied to these likelihoods to align the speech. Distinctive
features were used so that the system could be easily applied to new languages. When
evaluated on English speech from the EUROMO corpus using 15 principle components,
agreement was 77.1% within 20 msec.

Malfrere, Deroo, and Dutoit [96] compared alignments generated by dynamic time
warping (DTW) of synthetic speech (TTS/DTW) with alignments generated by an HMM
system. The HMM system was trained and evaluated on read French speech from a
single speaker, and the system was initialized with the alignments from the TTS/DTW
system (described below). The system was trained for several iterations using 16 Gaussian
probability density functions per state. The alignments of this Gaussian system were then
used to train a hybrid HMM/ANN system with a context window of nine frames. This
final system had 84.0% agreement within 20 msec.

Kipp, Wesenick, and Schiel [75, 147] implemented an HMM system for use in cases
where only the word-level transcription is available. This system performed simultaneous
alignment of the canonical dictionary pronunciation and several pronunciation variants.
The HMM system used context-independent models with between three and six states per
phoneme, and a 10-msec frame rate. The HMM system was trained and evaluated on the

PHONDAT-II corpus of German speech, and was initialized with manually-aligned data.
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The post-processing refinement adjusted the boundaries within a 10-msec window using
simple time-domain techniques. This system had 84% agreement within 20 msec.

In the approach developed by Stober and Hess, a baseline approach similar to semi-
continuous HMMs (where all states in the HMM share the same set of Gaussians, with
different mixture component weights for each state) was augmented with specific duration
information that had been scaled to fit the length of the utterance. The duration informa-
tion predicted from the length of the utterance was modified based on a “fitness function,”
which was computed using a genetic algorithm. This approach yielded agreement of 84%
within 20 msec on the Bonner Prosodische Datenbank (BPD) corpus, and agreement of
80% within 20 msec on the Phondat-II corpus.

Rapp [123] trained a forced-alignment system for German using Entropic’s HMM
Toolkit called HTK [150]. He used a 10-msec frame rate to report his results, but found
that a 5-msec frame rate was also “acceptable.” He reported 84.4% agreement within 20
msec for German read speech.

Wheatley, Doddington, et al. [148] trained an HMM on specific non-speech sounds
(silence, inhalation, exhalation, and lip smack) as well as using gender-specific phoneme
models. They trained and evaluated their system on telephone-band continuous speech.
Evaluation was done by automatically determining the phoneme sequence of each word,
and then comparing the word-level alignments of the automatic system with manual word-
level alignments. They reported that their system had a “failure rate” of 0.9% (2 out of
212 sentences), and that “the overwhelming majority of words are correct at least to within
a second; ... the alignment is normally correct to within one or two 20-msec frames.” A
lack of specific quantified results, and the fact that their system was trained and evaluated
on telephone-band speech, makes a performance comparison with other systems difficult.

In summary, the reported systems represent numerous refinements on the standard
HMM procedure, but in all cases the basic process remains the same, namely estimating
phonetic likelihoods at each frame, and then searching through these likelihoods with a
constrained Viterbi search to determine the phonetic alignments. Direct comparison of
the results from these systems is not possible, because even in the four cases where the

systems have been evaluated on the same corpus (TIMIT), there are small differences in
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the implementation of the HMM systems that prevent a one-to-one comparison. In the
case of Pellom’s system, the TIMIT corpus was down-sampled to 8 kHz for training and
evaluation, the frame rate was 5 msec, stop closures were merged with their succeeding
plosives, and there were a total of 46 phonemes; in Brugnara’s system, training was done
at 16 kHz, the frame rate was 5 msec, stop closures were not merged with their succeeding
plosives, and there were a total of 48 phonemes. Ljolje and Riley trained at 16 kHz
with a 10-msec frame rate, merged stop closures with their bursts, and used a set of
47 phonemes. Wightman and Talkin trained at 16 kHz, used a 10-msec frame rate, did
not merge stop closures, and used a set of 35 phonemes. If, however, we assume that
the performance differences due to these variations are minimal (Wightman and Talkin
claim “very similar” results for systems trained on 16 kHz and 8 kHz speech), then we can
generally conclude that performance of HMM systems on the TIMIT database ranges from
80% to 88.9% agreement within 20 msec. Performance on other databases and languages
tends to be similar but slightly lower, with agreement levels from 77% to 84% within 20
msec. Only Wheatley et al. and Pellom evaluated systems on telephone-band speech, and
severe performance degradation was reported; even systems with the best possible noise
compensation had no more than 76.8% agreement within 20 msec for land-line telephone

speech and 66.7% agreement within 20 msec for cellular speech.

3.3 The DTW Approach to Phonetic Alignment

Dynamic Time Warping (DTW) is a method that aligns two sets of features in time,
so that the error between the two features is minimized. It is a dynamic-programming
algorithm, as is the Viterbi search; the Viterbi search, however, uses likelihood estimates
and transition probabilities instead of a set of reference features and a distance metric. One
of the earliest publications on using DTW for phonetic alignment of speech was published

by Michael Wagner in 1981 [143]. This system is composed of the following stages:

1. LPC analysis is used to determine the energy, approximate formant values, degree
of voicing, and fundamental frequency at each 5-msec frame. The voicing and fun-

damental frequency values are computed from autocorrelation of the inverse-filtered
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Figure 3.2: Agreement of HMM-based automatic alignment systems with manual align-
ments at various thresholds.

signal. (Methods of extracting voicing and fundamental frequency will be covered

in more detail in Chapter 6).

2. The signal is classified into voiced, unvoiced, and silence segments by comparing the
values from Step 1 to pre-determined thresholds. Segments of less than 20 msec are

merged with surrounding segments.

3. Formant tracking of the voiced regions is done using points of expected reliability

(“anchor points”) in the signal.

4. The speech is aligned at the segment level using DTW to match the segments found
in Step 2 (the “given sequence of segments”) with the segments expected based on
the phonetic transcription (the “expected series of segments”). A “distance table”
of costs associated with mapping a given sequence of segments from the set {voiced,
unvoiced, silence} to an expected sequence of segments from the set {vowel, un-

voiced fricative, voiced fricative, unvoiced burst, voiced burst, nasal or semivowel,
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stop closure, pause} is used, allowing the three types of segments from the acoustic

analysis to be mapped to a set of eight broad phonetic categories.

5. The speech is aligned at the phoneme level, using DTW to match the phonetic
transitions in the transcription with the phonetic transitions in the signal. The
values for phonetic transitions in the signal are computed from the change in energy
for the unvoiced regions and the change in formant values for the voiced regions; the
values for phonetic transitions in the transcription are determined by table-lookup

of “expected” energy changes and formant changes for the given phoneme pair.

This unique system, one of the first to use DTW and phonetic transition information
in phonetic alignment, was reported to work “reliably” at the segment-alignment stage
and “well” at the phonetic-alignment stage, based on a small corpus of two speakers.
The author notes the advantage of using formant derivatives instead of absolute formant
values, because “energy and formant derivatives are far more speaker-independent than
absolute energies or formants” [143].

Malfrere, Deroo, and Dutoit [96] performed automatic alignment by dynamic time
warping (DTW) of synthetic speech; this type of system will be referred to as a TTS/DTW
system. This system generates the speech with the MBROLA speech synthesizer [43]
(using a constant FO value), and computes 36 spectral-domain features and energy values
from the synthetic speech at each 10-msec frame. The same set of spectral and energy
features is computed for the input speech. Finally, dynamic time warping is used to time-
align the two utterances so that the differences (Euclidean squared distances) between
the two sets of spectral features are minimized. The advantage of this approach is that
no training database is needed; the disadvantage is that the synthetic speech from a
single speaker serves as the only template. The TTS/DTW system was compared with
an HMM alignment system that had been initialized using the output of this TTS/DTW
system (described in more detail in Section 3.2). They evaluated the performance of both
systems on data from a single French speaker. Results for the TTS/DTW system were
82.1% agreement within 20 msec; the HMM system attained agreement of 84.0% within
20 msec. Given the simple and constrained nature of the TTS/DTW system, and the
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fact that the HMM system was trained using the output of the TTS/DTW system, it is
interesting that the HMM system had only a 10% relative reduction in error.

Campbell [19] used a TTS/DTW system to align a corpus of Japanese speech. He
used several TTS voices and prosodic contours to minimize the differences between the
synthetic and input speech. This system had 69% agreement within 100 msec, which is far
less accurate than his reported 97% agreement within 100 msec for two manually-generated
alignments. Gong and Haton (58] performed phonetic alignment using the TTS/DTW
approach, but performed an iterative process of alignment and speaker adaptation to
minimize the differences between the synthetic and input speech. They evaluated their
system by training two continuous-speech recognizers using the outputs of the baseline
(first iteration) and final-iteration alignment systems, respectively. The recognizer trained
on the final iteration’s output had a 50% relative reduction in error, compared to the
recognizer trained on the baseline system’s output. Saito [129] proposed the use of the
change in the fundamental frequency (delta-F0) for the alignment of speech. In Saito’s
system, DTW was used to align a new utterance with a reference utterance; then the
boundaries obtained from DTW were adjusted based on the local maxima and minima
in the delta-FO contour. Saito reported average boundary-error reductions of 29% and
16% for two test speakers by incorporating the delta-FO information into the alignment
process. Svendsen and Soong [137] used DTW to align the input speech with “speaker-
independent” phonetic templates obtained from spectral averages of different speakers.
They reported agreement of 32% within 15 msec, 72% within 30 msec, and 92% within 45
msec. Falavigna and Omologo [45] also aligned the input speech with phonetic prototypes,
but they used a spectral variation function to emphasize changes in the signal, and they
also used the signal’s energy contour to refine the DTW estimates. This system had 61%
agreement within 20 msec when evaluated on an Italian continuous-speech corpus. Finally,
Chamberlain and Bridle [20] modified the DTW algorithm for aligning two utterances, so
that long samples of speech could be processed on low-memory machines.

In summary, DTW has been used, typically in conjunction with synthetic speech, to
align the input utterance with a reference utterance. Although the methods of report-

ing performance are sometimes different than the standard method of percent agreement
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within a given threshold, results in general do not seem as good as with HMM-based

systems.
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Figure 3.3: Agreement of D'T'W-based methods of automatic alignment with manual align-
ments at various thresholds.

3.4 Other Methods of Automatic Phonetic Alignment

The HMM and DTW approaches to phonetic alignment are certainly not the only ones;
about one-third of phonetic-alignment systems reported in the literature use some other
method. In this section, we describe some of these alternative systems, focusing on the
ones that are more relevant to this thesis.

An alignment system developed by van Santen and Sproat [141] applies edge detectors
to spectral-domain representations and energy information in different frequency bands.
This information is combined with a set of phonetic sequences for each word to arrive at
the aligned phonetic sequence. Their approach focuses on detecting phonetic boundaries
(referred to as diphones) rather than the conventional HMM approach of estimating the

likelihood of each phonetic category at every frame of speech. They note that the spectral
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cues to different types of phonetic transitions are contained in different frequency bands;
for example, a boundary between an /f/ and an /s/ has a decrease in energy below 2000
Hz and an increase in energy above 4000 Hz; a boundary between an /f/ and a vowel,
however, has an increase in energy in the 800 Hz to 2500 Hz frequency range. The authors
group the set of possible diphones into two classes, “broad” and “narrow.” Broad diphones
can be categorized by their manner of articulation (such as voiced burst or unvoiced
fricative) and can be identified based on energy changes in broad regions of the spectrum.
Narrow diphones are characterized by more subtle differences, such as formant movement
or insertion of a glottal stop. To account for these two types of diphones, van Santen and
Sproat use two representations of the speech signal; the first representation is energy in
five different frequency bands (for classifying the broad diphones), and the second is a
mel-frequency scale FFT representation (for classifying the narrow diphones). They then
perform edge detection on the frequency bands, detecting both quick changes and less
localized changes. The frequency-band information is combined in such a way that exact
synchronicity in time is not required. This information is combined using Bayes’ rule to
estimate the “overall acoustic cost” of each diphone at each time frame. For the narrow
diphones, the mel-FFT representation is used with vectors of weights that characterize
each diphone to locate the time point of greatest change between the two phonemes. van
Santen and Sproat reported 50% agreement within 2 msec and 95% agreement within 6
msec for a single speaker when evaluated on the training data, and 90% agreement within
20 msec when evaluated on a single test speaker. Although the use of a single speaker
in the test corpus does not guarantee that the results will generalize to multi-speaker
corpora, the extremely high agreement argues for the merit of this method.

Karjalainen, Altosaar, and Huttunen [73] also used boundary detection to automati-
cally align speech; in their case, they used a set of neural networks. In a method similar to
the work of van Santen and Sproat, they classify “coarse categories” of boundaries, such
as “stop to vowel” and “vowel to nasal”; unlike van Santen and Sproat, they consider all
boundaries to be “coarse,” instead of splitting the boundaries into two classes. Using such
coarse boundary detectors, they use 64 categories to cover the Finnish language. A sim-

ple rule-based parser is used to match the boundary-classification outputs with the text
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transcription. The authors use LPC coding with a perceptually-warped frequency scale
as input to the networks. These features, with a 100-msec context window and 10-msec
frame size, are passed to a set of 64 feed-forward binary-output neural networks to classify
the speech frames into the 64 boundary categories. The outputs of the neural network are
smoothed, and smaller output peaks are removed. The outputs of the neural network are
then matched to the transcriptions using a simple three-step rule-based algorithm. When
evaluated on Finnish isolated words from a single speaker, recorded at 22 kHz, the mean
alignment error on the test set was 8.7%; this compares favorably with an HMM-based
alignment system trained on the same data, which had an error rate of 17.6%

Leung and Zue [89] developed a three-step procedure to align a phonetic transcription
with its corresponding speech. In the first step, a classification of speech into broad pho-
netic categories is done, “to determine robust acoustic-phonetic events that are relatively
context-independent.” The classification is done using a binary decision tree; at each node
in the tree, a binary decision is made based on features of the input signal. A 5-msec frame
rate is used. At each frame, an M-dimensional vector is generated, where each element in
the vector represents some acoustic-phonetic knowledge or information. The vector values
are smoothed, clipped, and normalized. The speech is classified into a total of 6 cate-
gories: sonorant, obstruent, voiced obstruent, silence, nasal and voice-bar, and “unlabeled
segments” that correspond to an energy dip in the middle of sonorant regions. Given this
coarse segmentation, dynamic programming is used with acoustic-phonetic rules to map
each coarse segment onto one or more phonemes. For example, a phoneme is not allowed
to match a category outside of its class (obstruent can not match silence); also, a plosive
such as /t"/ is not allowed to match a long obstruent because of duration constraints.
Then, to match segments that correspond to more than one phoneme, heuristic rules are
used; for example, “pre- and post-vocalic liquids next to certain vowels are assumed to
have a duration that constitutes one-third of the syllable nucleus.” If clear acoustic cues
are available, “further segmentation is accomplished by a proper selection of feature pa-
rameters and algorithms based on contextual information.” This system was evaluated on
three speakers reading a set of phonetically-balanced sentences which had been manually

aligned. Results were approximately 75% agreement within 10 msec and 90% agreement
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within 20 msec.

3.5 State of the Art in Phonetic Alignment

For the systems reviewed above that were evaluated on microphone-quality speech, per-
formance ranged from 77% agreement [36] to 90% agreement [16, 89] within 20 msec;
variables that ﬁay affect performance include the method of training the system, the
number of speakers in the training and test corpora, the type of corpus (isolated word or
continuous speech), and the language used in training and testing. Average performance
is about 84% agreement within 20 msec, and HMM-based systems tend to out-perform
other systems. If we focus on the TIMIT corpus of continuous English speech, then the
reported performances range from about 80% [149] to 90% [16] within 20 msec, with an
average agreement of 85% within 20 msec.

Pellom and Hansen [115, 114] were the only authors to train on one set of channel
conditions and evaluate on a different set; this study showed performance on clean micro-
phone speech of 86.2% within 20 msec, 76.8% within 20 msec for artificial telephone-band
speech, and 66.7% within 20 msec for artificial cellular speech.

Manual alignment, in contrast, is reported to have inter-labeler agreement between
92.9% [92] and 96% [147] within 20 msec, with an average agreement of 93.78% within
20 msec. Manual-alignment agreement on the TIMIT corpus is 93.49% within 20 msec,
which is a 41% reduction in error when compared to the best reported automatic results
of 88.9% within 20 msec for TIMIT. The manual alignments of TIMIT are consistently
more accurate than the automatic alignments across all thresholds, with a minimum error
reduction of 25% within 5 msec, and with error reduction increasing steadily to 50% within
40 msec.

Figure 3.4 shows manual alignment agreement (the dotted line) on the TIMIT corpus
as reported here, and automatic alignment performance on TIMIT (the solid line) as

reported by Brugnara.
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Figure 3.4: Comparison of manual alignment performance on TIMIT (dotted line), and
best automatic alignment performance reported for TIMIT (solid line).



Chapter 4

Baseline System for Forced Alignment

In order to evaluate the method of phonetic alignment proposed in this thesis, it is neces-
sary to have a baseline system that has been trained on the same data and evaluated using
the same metrics. This section describes our baseline system, which was developed under

the HMM/ANN framework commonly used at CSLU for speech recognition systems.

4.1 System Parameters

Most of the parameters used in training the baseline alignment system were determined
from our experiments on training high-performance digit recognition systems [68]. These
previous experiments investigated the use of PLP and MFCC features, delta features, the
number of cepstral coefficients, the duration constraints used in the Viterbi search, and the
type of context-dependent categories used in recognition. The set of “best” parameters
was obtained based on word-level results from a large set of parameter combinations.

Training was done on the TIMIT corpus [52] (for samples of microphone speech), the
OGI Stories corpus [27] (for samples of telephone-band speech), and the OGI Portland
Cellular corpus [27] (for samples of telephone-band cellular speech). This variety of corpora
was used to make the system robust to several channel conditions, instead of being specific
to one type of channel.

The TIMIT corpus (a joint effort between MIT, Texas Instruments, and SRI) con-
tains read speech from 630 speakers from eight dialect regions of the United States. The
sentences were designed to be phonetically rich, and were recorded with a Sennheiser noise-

canceling, head-mounted microphone in a quiet environment. The speech was digitized at

52
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16 kHz with 16-bit resolution. The corpus contains waveform data, text transcriptions,
and time-aligned phonetic labels.

The OGI Stories corpus contains utterances of extemporaneous speech, where each
utterance is approximately 50 seconds in length. These data were recorded over telephone
channels. Speakers were recruited from throughout the United States, and were asked to
speak on the topic of their choice for one minute. A total of 692 utterances were recorded,
of which more than 200 have been transcribed with time-aligned phonetic labels. The
data were recorded from an analog line, and digitized in 8 kHz 16-bit linear format.

The Portland Cellular corpus consists of utterances obtained from speakers who were
using cellular telephones. Like the Stories corpus, the Portland Cellular corpus contains
extemporaneous speech on a topic of the speaker’s choice, and 200 calls have been tran-
scribed at the phonetic level. The data were captured digitally from a T1 connection and
saved in 8 kHz, 8-bit u-law format.

One of the first steps in training the baseline system was to automatically map the
hand-labeled phonetic symbols in the training corpora to a consistent set of symbols
suitable for training. This mapping consisted of removing diacritic symbols, mapping the
phonetic symbols to the Worldbet system, if necessary, and mapping non-speech labels to
the silence (/.pau/) label. In addition, very short pauses (with duration less than 20 msec)
were removed to improve the number of available contexts, and glottalization labels were
merged into the neighboring vowel (or sonorant) or split between surrounding vowels.

The sub-phonetic categories in the baseline system are similar to those used by Ljolje
and Riley. Each phoneme is split into one, two, or three sub-phonetic parts. If split into
two or three parts, the left part is dependent on the context of the preceding phoneme’s
broad category, the center part (if any) is context independent, and the right part is
dependent on the following phoneme’s broad category. Phonemes that remain as a one-
part phoneme can either be context-independent (for example, the characteristics of /.pau/
do not depend on either the preceding or following phoneme) or dependent on the following
phoneme (for example, burst sounds such as /t"/ have characteristics that depend on the
following vowel, but are always preceded by silence). The left and right contexts for

each category are not phoneme-specific, but contain clusters of phonemes grouped into a
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common broad category. The phoneme clusters that comprise each context are specific
to each target phoneme, and each cluster of phonemes was determined using a tree-based
clustering procedure.

Transition probabilities for each state were set to be all equally likely, so that the
implicit Geometric distribution found in standard HMM systems was removed. To make
use of a priori information about phonetic durations, the search was constrained by spec-
ifying minimum and maximum duration values of each category. The minimum duration
for a category was set to be the value at the 2nd percentile of all duration values for that
category, and the maximum duration was set to be the longest duration for that category
found in the training data. Percentile values were used instead of the absolute minimum
durations to remove outliers. During the search, hypothesized category durations beyond
the minimum or maximum value were penalized by a value proportional to the difference
between the proposed duration and the specified minimum or maximum duration.

The speech data were converted to a 16 kHz sampling rate, if necessary. A 160 Hz high-
pass filter was applied to make the microphone-speech training data more closely match
the telephone-speech data, and to remove low-frequency breath noise that is sometimes
present in microphone speech. The system was trained using 13 PLP features (12 cepstral
coefficients and 1 energy parameter) as well as their delta values. A window size of 16
msec was used with a frame rate of 5 msec. Cepstral-mean subtraction (CMS) was used
to reduce convolutional noise.

As many as 8000 samples of each sub-phonetic category were taken from each corpus,
for a total of up to 24,000 training samples per category. A context window of 5 frames
was used, with frames taken at —60, —-30, 0, 30, and 60 msec relative to the frame of inter-
est. The resulting set of 130 features was input to a fully-connected feed-forward neural
network, which was trained using back-propagation to estimate the likelihood of each sub-
phonetic category. The training was adjusted to use the negative penalty modification
proposed by Wei and van Vuuren [145] instead of division by priors. The network had
130 inputs, 300 units in the hidden layer, and 614 outputs. A total of nearly 2 million
examples were used during training, corresponding to about 1 GB of data. Training was

done for 45 iterations. The network results for iterations 15 through 45 were then applied
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Table 4.1: Performance of the baseline alignment system on the TIMIT, NTIMIT, and
CTIMIT corpora. The thresholds for agreement are specified in each column heading.

[ Corpus | 5 msec | 10 msec | 15 msec | 20 msec | 25 msec | 30 msec | 35 msec |

TIMIT | 48.23 72.95 84.13 89.95 93.21 95.21 96.47
NTIMIT | 42.52 65.12 76.80 83.23 87.43 90.20 92.18
CTIMIT | 30.30 48.64 60.90 68.20 73.38 77.07 79.87

to the forced-alignment task on a development set of the TIMIT corpus, and the “best”

iteration was determined by selecting the iteration with the minimum alignment error.

4.2 Performance

This baseline system was evaluated on the TIMIT, NTIMIT, CTIMIT, Stories, and Port-
land Cellular corpora. The baseline method has 89.95% agreement within 20 msec on
TIMIT, which is a 9% reduction in error compared to the best reported automatic-
alignment results on this corpus [16]. However, the manual irter-labeler agreement of
93.49% within 20 msec on TIMIT is still a 35% reduction in error compared to this base-
line. For the NTIMIT corpus, the baseline system has 83.23% agreement within 20 msec.
The inter-labeler agreement of 89.66% on NTIMIT thus represents a 38% reduction in
error over the baseline system. When evaluated on the CTIMIT corpus, the baseline sys-
tem has agreement of 68.20% within 20 msec; the inter-labeler agreement of 80.74% is a
39% reduction in error over the baseline performance. The baseline system has 87.35%
agreement within 20 msec on the Stories corpus, and 82.51% agreement within 20 msec on
the Portland cellular corpus, indicating that the artifical means of creating the NTIMIT
and CTIMIT corpora by sending the TIMIT data through telephone and cellular channels
does not create data that are representative of actual telephone or cellular speech. The
performance of the baseline system on the TIMIT, NTIMIT, and CTIMIT corpora at
several thresholds is given in Table 4.1, and the level of inter-labeler agreement on these
corpora is given in Table 4.2.

The performance of this baseline system, the system in the literature with the best
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Table 4.2: Level of inter-labeler agreement on the TIMIT, NTIMIT, and CTIMIT corpora.
The thresholds for agreement are specified in each column heading.

[ Corpus [ 5 msec | 10 msec | 15 msec | 20 msec | 25 msec | 30 msec | 35 msec |
TIMIT 60.38 81.73 89.07 93.49 95.36 96.91 97.79
NTIMIT | 46.23 71.94 84.29 89.66 92.34 93.91 95.14
CTIMIT | 44.51 61.87 73.61 80.74 84.65 87.92 91.03

reported results on TIMIT, and manual alignments as evaluated on TIMIT are plotted
in Figure 4.1. The performance of this system as compared to manual alignments on the
NTIMIT and CTIMIT corpora are shown in Figures 4.2 and 4.3, respectively. (The levels
of manual agreement on the TIMIT, NTIMIT, and CTIMIT corpora were obtained by
manually aligning 50 randomly-selected sentences from each corpus, and comparing these

alignment results with the canonical TIMIT alignments).
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Figure 4.1: Performance on the TIMIT test set for manual alignments (dashed line), best
reported results (by Brugnara et al., dotted line), and the baseline system used in this
thesis (solid line).
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Figure 4.2: Performance of manual labeling (dotted line) and baseline system labeling
(solid line) on the NTIMIT corpus.
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Figure 4.3: Performance of manual labeling (dotted line) and baseline system labeling
(solid line) on the CTIMIT corpus.



Chapter 5

Proposed Approach

With performance of state-of-the-art forced alignment being between 35% and 40% worse
than observed manual alignments on TIMIT, NTIMIT, and CTIMIT, it is clear that
performance improvement should be possible. Our approach to realizing performance gains
is to understand and improve upon the weaknesses of current HMM/ANN systems. We
continue to rely on the HMM/ANN model as a foundation, because of its solid framework
and superior results when compared to other systems. However, given our knowledge of
human speech production and recognition, we believe that the HMM/ANN model can be
improved to incorporate more of the information that is used by humans when recognizing
speech, thereby bringing performance closer to that of human levels. Our hypothesis is
that the integration of such acoustic-phonetic information into an HMM/ANN alignment
system will significantly improve its agreement with manual alignments and its robustness.
We base our thesis on the assumptions that the multiple-cue model of speech is valid,
that invariant cues can be identified, and that special, inherently-complex decoders (as in
Liberman’s motor theory) are not required for automatic speech recognition.

The proposed model addresses the integration of acoustic-phonetic information from
three angles: with the integration of acoustic-level features, with the use of phonetic tran-
sition information, and with the use of distinctive phonetic features. For the acoustic-level
features, we supplement the current HMM/ANN spectral-domain features with specific
acoustic-phonetic features believed to be important for speech perception. For phonetic
transition information, we identify not only the context-dependent sub-phonetic categories
of current HMM/ANN systems, but we simultaneously identify and integrate phonetic

transition categories. For the distinctive phonetic features, we combine distinctive feature
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information representing phonetic manner, place, and height, to arrive at a phoneme-level
representation. Each of these levels will be described in more detail in this chapter and
the following chapters.

In the implementation of this approach, we have assumed that the correct phonetic
sequence of each word is known, in order to separate word-level influences from phoneme-

level alignment performance.

5.1 Acoustic-Level Features

Current HMM/ANN systems use features that represent spectral information, energy,
their delta values, and possibly their delta-delta values (acceleration coefficients) at each
time frame. Usually the spectral information is warped to emphasize perceptually relevant
aspects, and either cepstral-mean-subtraction (CMS) or RASTA processing is used to
attenuate convolutional (channel) noise. This feature set represents a generic view of the
speech signal with values that are useful for classification of all phonemes. However, such
features do not give a complete representation of all relevant information in the speech
signal. For example, knowledge that a frame of speech is voiced is clear evidence that the
corresponding phoneme can not be a voiceless fricative or affricate; a frame with vowel-like
spectral characteristics but a lack of voicing is more likely to be the consonant /h/ than if
voicing were present. Also, knowledge that a frame of speech is glottalized increases the
likelihood that the frame is at the beginning or ending of a word. The standard feature
set, however, does not capture explicit information about voicing or glottalization. These
types of features will be referred to here as “acoustic-level features,” to distinguish them
from other types of features such as phonetic transitions or distinctive phonetic features
(described below in Sections 5.2 and 5.3). From the results of the research by Liberman
as well as Cole and Scott, it is believed that humans use as many relevant cues as possible,
which motivates us to incorporate acoustic-level features that are complementary to the
standard feature set.

Perceptually-relevant features, such as voicing and formants, have been used before

in speech recognition, but without dramatic success [65, 130]. Improvement has been
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limited because of insufficient accuracy in their extraction. Experiments that use the
“correct” values for voicing, broad-category features, or formants (as determined by man-
ual assignment or from the phonetic transcription), instead of values extracted from the
speech signal, have demonstrated at least twice the amount of error reduction [65, 130].
As a result of the discrepancy between the theoretically-possible results and the actually
obtained results from extracted parameters, we focus on developing methods for robust
extraction of perceptually-relevant features.

Several criteria were used in selecting the features for investigation. First, we focused
on features that are not well represented by the standard spectral-domain features; we
assumed that if the standard feature set implicitly captures the information of interest
(such as formant movement), then the neural-network classifier will not benefit greatly
from redundant information supplied in a different form. Second, as models of phoneme
duration, coarticulation, and other time-domain aspects of speech are still in preliminary
stages [79, 22], we restricted our investigation to features that are local in time and can
be determined using fixed time windows. Third, we applied our knowledge of speech pro-
duction, human speech recognition, and automatic speech-recognition systems to identify
features that may provide relevant information about phonetic identity. Fourth, extrac-
tion of a feature from the speech signal must be computationally tractable, as the final
alignment system is required to be significantly faster than manual alignment.

Based on these criteria, we developed a list of five features that merited further in-
vestigation. These features are intensity discrimination, voicing, fundamental frequency

(F0), glottalization, and burst-related impulses.

Intensity Discrimination. We implement a measure of intensity discrimination in au-
tomatic speech recognition. Intensity discrimination has been modeled in psycho-
logical studies as a relative change in energy on the log scale [102]. This model has
been found to provide a good description of human detection of intensity changes.
As changes in intensity provide useful information about phonetic transitions, a
perceptually-motivated model of intensity discrimination may be useful in automatic

phonetic alignment.
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Voicing. Voicing is a measure of periodicity in the waveform that occurs when the vocal
folds vibrate. Voicing information can be used to distinguish between phonemes
(such as /s/ and /z/, or /h/ and a vowel); the time from the current frame until
the onset of voicing (voice-onset time) also provides information about the identity
of plosive consonants ( /pt/, /t&/, /k*/, /b/, /d/, /g/, /4/, and /&/). Extracting
information about voicing is a well-researched area, and yet a definitive, reliable
method does not exist. Voicing extraction is particularly difficult on telephone-band
speech, in which the lower regions of the frequency spectrum (which may contain

the first few harmonics related to voicing) are severely attenuated.

Fundamental Frequency. Fundamental frequency, or F0, is the rate at which the vocal
folds vibrate during voiced speech. As Saito noted [129], a change in FO may indicate
a phonetic boundary between voiced consonants and vowels. Methods of extracting
FOQ are also quite numerous, but again a definitive, robust method is still an area of

research, and FO extraction on telephone-band speech is considered a difficult topic.

Glottalization. Glottalization is defined as aperiodic or extremely slow vibration of the
vocal folds, which sometimes occurs at word boundaries. Glottalization may be the
only cue that identifies a word boundary, if the spectral characteristics of the ending
phoneme of the first word and the beginning phoneme of the second word are the

same. (Examples of this can be seen in the words “heavy yoke” and “E.E.”)

Impulses. Impulses are defined here as the sudden increase in energy that occurs at the
beginning of a burst. Identification of impulses helps to identify plosive consonants
and locate their initial boundary. There are some previously-published methods
for identifying bursts, and we will review the literature and propose and evaluate a

perceptually-motivated method.

The feature set we consider for this thesis is not a complete set, in that it does not
attempt to represent all of the features that are believed to be used by humans during
speech recognition, nor all of the possible features that could be used. The set is, however,

composed of features that are thought to be relevant to speech perception, are not well
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represented by current spectral-domain features, have well-researched models, do not rely
on higher-level phonetic knowledge, and are computationally tractable.

Integration of these features into a speech recognition system can be accomplished by
early integration (during phonetic classification by the ANN or GMM), middle integration
(during the Viterbi search), or late integration (by performing post-Viterbi combination
of word-level outputs). Early integration has the advantage that decisions are made while
all of the relevant information is available and can be combined in a non-linear way. As
the neural network can easily take any fixed number of values as input and arrive at a
theoretically optimal classification of the input space, we integrate the proposed additional
features into the alignment system by appending them to the existing set of PLP features
for input to the neural network.

The contribution of this thesis to the area of feature extraction for phonetic alignment

is in the development of new methods for robust extraction of acoustic-level features.

5.2 Phonetic Transition Information

5.2.1 Motivations for Phonetic Transitions

In most HMM and hybrid HMM/ANN systems, the categories for recognition are context-
dependent sub-phonetic units that are trained on all frames within a sub-phonetic seg-
ment. For example, in our baseline system, a category can correspond to a whole, half, or
third of a phoneme, and the left and right sub-phonetic categories are dependent on the
preceding and following phonetic contexts, respectively. Each state in the HMM is then
associated with a single phonetic-based category, and the state transition information is
determined using a priori information in the training set. As a result of this framework,
the likelihood of a state transition is not dependent on information in the speech sig-
nal being recognized. Furthermore, classification results may be less reliable at phonetic
boundaries, because the speech signal has a higher degree of variability during a transi-
tion, there are fewer transition examples than non-transition examples for training, and

the data are more widely spread in the feature space due to coarticulation between the
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two phonemes. However, perceptual studies by Furui [51], the analysis of spectrogram-
reading techniques by Cole [29], the (sometimes preliminary) speech-recognition systems
developed by Zue and Glass, Cravero, Morgan, and Hosom [56, 34, 106, 67], and the pho-
netic alignment system developed by van Santen and Sproat {141] indicate that phonetic
boundaries are well-motivated categories for classification, providing useful information
that is complementary to the phonetic steady-state regions. The development of an HMM
system that incorporates acoustics-dependent phonetic transition information may then

lead to more robust recognition and alignment.

5.2.2 Previous Approaches to Phonetic Transitions

In the MIT SUMMIT system [56], the likelihoods of “events” are computed, where an event
corresponds to a significant change in the signal acoustics. Given a particular segmen-
tation from a segment-based recognizer, each event may be considered either a phonetic
boundary or internal to a phoneme. The likelihood of each observed event’s acoustics is
then determined, and the total likelihood of the series of events in the segmentation is
computed by multiplication. This likelihood can be integrated with the segment-based
phoneme likelihood by assuming independence and multiplying the values.

In a system developed at OGI [67], a hybrid HMM/ANN system classifies speech into
context-independent phonemes or phonetic transition regions (modified diphones). The
diphone units used in training are up to 120 msec in length; if a phoneme in the training
set is longer than 120 msec, then a context-independent phonetic category is created in
the middle of that phoneme. During the Viterbi search, the context-independent steady-
state region is made optional, in order to account for rapid speech. In this approach,
the probabilities of steady-state and transition categories are considered independent, just
as all categories are considered independent in a standard HMM system. However, a
relationship between these two types of categories is enforced during the Viterbi search,
namely that steady-state and transition categories must occur in alternating sequence.

In a system developed at CSELT [34], the units for classification are context indepen-
dent phonemes and phonetic transitions, as in the OGI system. A major difference is that

the CSELT system does not model every possible phonetic transition, but only the ones
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that are thought to be perceptually important. Similarly, some phonemes (such as plo-
sives) are not modeled by context-independent units. This approach reduces the number
of categories in a general-purpose recognizer to 123 (22 for context-independent phonemes,
and 101 for phonetic transitions). A second difference is that in the OGI system, phonetic
transition regions are allowed to occur over a variable number of frames, whereas in the
CSELT system, the phonetic transitions are restricted to a contiguous series of four frames
(40 msec).

In the Stochastic Perceptual Auditory-event-based Model (SPAM) approach [106],
transition-based recognition and phonetic-category recognition are performed indepen-
dently and then combined after each Viterbi search. The transition-based recognizer
has phonetic-transition categories and a single “non-transitioning state” (“nts”) category.
The transition categories are associated with states that have no self-loop, and these
states are separated by the “nts” state which does have a self-loop. This recognizer and
a standard context-independent phonetic-category recognizer are run separately, and the
Viterbi-search results from each recognizer are combined to obtain a single score for each
word. Although this approach overcomes the weakness of using a single classifier for
both phonetic-category and transition recognition, it is similar to the SUMMIT system in
that the transition and phonetic-category information are combined at a late stage in the
recognition process.

In the theoretical domain, Bourlard and Morgan proposed Discriminant HMMs, in
which the likelihood of a state is estimated given an observation of speech data. This is
in contrast to the standard HMM approach, in which the likelihood of an observation is
estimated given a particular state. In Discriminant HMMSs, the likelihood of observing a
given state is dependent not only on the observation vector, but also on the prior state,
which can be represented as

planlgk 1, 7n,6)
where ¢ is state m at time n; qﬁ_l is state k at the previous time n — 1, z, is the
observation data, and @ is the set of model parameters. This dependence of the current
state on the previous state is related to the topic of state transitions, in that in both

cases the relationship between the previous state, the current state, and the observed
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speech must be learned. Although this technique is appealing, they reported that “facing
numerous problems, this approach was however simplified by . . . disregarding the previous
state in the conditional.” Division by the state priors then reduces this technique to the
more conventional HMM framework.

Bengio proposed the use of asynchronous Input-Output HMMs (called asynchronous
IOHMMs or just IOHMMs) to the problem of speech recognition [8]. In standard HMMs,
the speech observations are considered outputs (states “generate” observations), and the
state sequence that best matches this known output is computed. In IOHMMs, in contrast,
the speech observations are considered the input and the phoneme sequence is the output.
Both the state emission probabilities and the state transition probabilities are dependent
on the observed speech input. For the task of speech recognition, in which the input
sequence of speech observations is generally longer than the output sequence of phonemes,
there is an additional “emit-or-not distribution”; when a state is entered, a decision is
made whether or not to emit a phoneme output based on this emit-or-not distribution. The

stated potential advantages of IOHMMs over conventional HMMs include the following:

(a) Training is discriminant (which is also true for hybrid HMM/ANN systems),

(b) The emission and transition distributions can be modeled using ANNs (whereas in
conventional HMM/ANN hybrids, only the emission distributions are modeled by
ANNs), and

(c) The reduction from the large number of possible outputs in standard HMMs (the
number of possible output observations) to the smaller number of possible cutputs
in IOHMMs (the number of phonemes) “reduces the problem of imbalance between

transition probabilities and emission probabilities.”

We are not aware of any implementations of IOHMMSs for speech recognition, which
limits discussion to the theoretical domain.

Finally, Riis and Krogh [127] proposed an approach called “hidden neural networks”
(HNNSs); as part of this approach, neural networks can be used to independently estimate

the probability of state occupation as well as the probability of state transition. Riis and
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Krogh give no details about how the transition networks should be implemented, but they
report that they “did not observe any improvements using transition networks,” and so
in their final system all models “use standard HMM transition probabilities.” As a result,
their final system is similar in many ways to more standard HMM/ANN systems, although
the method of training the ANNs differs.

5.2.3 Proposed Approach to Phonetic Transitions

Our proposed approach to integrating transition information is motivated by the impor-
tance of phonetic transitions and by the desire to integrate this information with phonetic-
category information early in the decision-making process. In standard HMMs, the prob-
ability of an observation sequence given a state sequence is defined as the multiplication

of the likelihoods of each observation at each state:
T
P(Olq) = HP(0t|Qt) (5.1)
t=1

where O is the observation sequence (0;0203...07) from time 1 to time T and q is the
state sequence (¢;¢24s . -.gr). In our system, we define the probability of an observation
sequence given a state sequence to be the multiplication of the likelihoods of each obser-
vation given the current state and the transition from the previous state to the current

state:
T

P(Olq) = p(o1l@) - [] p(osltrans(g:—1,4:), q¢) (5.2)
=2

where trans(g;—1,g:) represents the transition from state g,y to state ¢;. In the case
where ¢;_, is the same state as q;, trans(q;—1, ¢;) represents the probability of a self-loop,
independent of which state is currently occupied. We can then use Bayes’ rule to transform

this so that the state information is dependent on the observation vector:

p(trans(g—1, ), ge|ot) - p(oz) (5.3)

p(ot|trans(gi—1,q¢),q1) =
(o4 p(trans(g:—1,q:),q:)
We then assume independence between the state transition and the state occupation

probabilities:

p(trans(g;—1,q:)|os) - p(qt|o;) - p(04) (5.4)
p(trans(g,—1,¢:)) - p(as) '

p(osjtrans(ge—1,q¢),qt) =
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and factor this into three separate parts:

_