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Abstract 

Automatic Time Alignment of Phonemes 
Using Acoust ic-Phonetic Informat ion 

John-Paul Hosom 

Ph.D., Oregon Graduate Institute of Science and Technology 
May 2000 

Thesis Advisor: Dr. Ronald A. Cole 

One requirement for researching and building spoken language systems is the availability 

of speech data that have been labeled and timealigned at the phonetic level. Although 

manual phonetic alignment is considered more accurate than automatic methods, it is too 

time consuming to be commonly used for aligning large corpora. One reason for the greater 

accuracy of human labeling is that humans are better able to locate distinct events in the 

speech signal that correspond to specific phonetic characteristics. The development of the 

proposed method was motivated by the belief that if an automatic alignment method were 

to use such acoustic-phonetic information, its accuracy would become closer to that of hu- 

man performance. Our hypothesis is that the integration of acoustic-phonetic information 

into a state-of-the-art automatic phonetic alignment system will significantly improve its 

accuracy and robustness. 

In developing an alignment system that uses acoustic-phonetic information, we use a 

measure of intensity discrimination in detecting voicing, glottalization, and burst-related 

impulses. We propose and implement a method of voicing determination that has av- 

erage accuracy of 97.25% (which is an average 58% reduction in error over a baseline 

xiii 



system), a fundamental-frequency extraction method with average absolute error of 3.12 

Hz (representing a 45% reduction in error), and a method for detecting burst-related im- 

pulses with accuracy of 86.8% on the TIMIT corpus (which is a 45% reduction in error 

compared to reported results). In addition to these features, we propose a means of us- 

ing acoustics-dependent transition information in the HMM framework. One aspect of 

successful implementation of this method is the use of distinctive phonetic features. 

To evaluate the proposed and baseline phonetic alignment systems, we measure agree- 

ment with manual alignments and robustness. On the TIMIT corpus, the proposed method 

has 92.57% agreement within 20 msec. The average agreement of the proposed method 

represents a 28% reduction in error over our state-of-the-art baseline system. In measuring 

robustness, the proposed method has 14% less standard deviation when evaluated on 12 

versions of the TIMIT corpus. 

xiv 



Chapter 1 

Introduction 

1.1 Motivation 

A fundamental assumption in much of speech processing is that the basic unit of speech 

is the phoneme. Most speech recognizers identify words based on their phonetic represen- 

tation, and nearly all speech synthesizers concatenate or synthesize waveform segments 

according to phonetic pronunciations. In addition, synthetic facial animation of words 

is usually done at the level of "visible phonemes," or visemes, which are closely related 

to phonemes. As a result, one requirement for researching and building spoken language 

systems is the availability of speech data that have been labeled and time-aligned at the 

phonetic level. In addition, time-aligned labels can be useful in language training, analysis 

of hearing disorders in children, and studies of coarticulation and prosody. 

Time-aligned phonetic labels can be created either by a trained human labeler or by 

an automatic method. Although precise evaluation of the quality of phonetic labeling is 

difficult, there is a general consensus that manual labeling is more accurate than automatic 

labeling; this consensus can be seen in the following statements by researchers in the 

field: Andrej Ljolje notes that "due to the . . . inherent limits in the parameterization 

of the speech signal and the speech model structure, the accuracy of the transcription 

[by automatic methods] is inferior to that achieved by human transcribers" [92]. Piero 

Cosi states that "The accuracy of automatic alignment systems will always be checked 

using references manually segmented by phonetic or speech communication experts" [32]. 

Stephen Cox reports that "It is well known that . . .variation [of manual alignments] is 

generally small when compared with alignments produced by automatic systems" [33]. 



To give further weight to the claim that manual alignments are more accurate than 

automatic alignments, systems that depend on alignment information can be developed 

using both methods, and the performance of the two systems can be compared. In one case, 

a speech synthesizer was created using both manually-aligned and automatically-aligned 

labels; the speech quality of the manually-aligned system was judged in listening tests to be 

superior to the quality of the automatically-aligned system [33]. In another case, a speech 

recognizer trained using manually-aligned phonemes had an 11% reduction in word-level 

error and a 12% reduction in sentence-level error compared to an identical system that was 

trained using automatically-aligned phonemes [66]. (This result is statistically sigmficant, 

with p=0.002.) 

Although manual alignment is considered more accurate than automatic methods, it is 

too time consuming and expensive to be commonly used for aligning large corpora. Manual 

segmentation has been reported to take between 11 and 30 seconds per phoneme [83, 891, 

whereas automatic segmentation can require between 0.1 and 0.4 seconds per phoneme 

on a Pentium Pro 200 MHz computer. This difference of several orders of magnitude can 

only become greater with even faster computer performance and better algorithms, while 

human performance will likely remain the same. In addition to the greater time required 

to generate manual alignments, there is variability in manually-generated alignments due 

to the subjective judgement of the human labeler [136, 139, 16, 114, 921. Because of these 

disadvantages to manual alignment, "there is a need for a fast, inexpensive, and accurate 

means of obtaining time-aligned phonetic labeling of arbitrary speech" [149]. 

The topic of this thesis, then, is the development of a method of performing pho- 

netic alignment that is significantly more accurate and robust than current automatic 

methods and significantly faster than manual alignment. The principles used to develop 

such a method may then be applied to other aspects of speech processing, such as speech 

recognition, speech synthesis, or facial animation. 



1.2 General Overview of Current Methods 

As noted above, the most accurate method of creating time-aligned phonetic labels is 

to employ a trained human labeler. This person typically generates phonetic alignments 

using a software tool that displays the speech waveform, spectrogram, label, and possibly 

other information. The labeler aligns the phonetic labels with the speech by listening 

to segments of the waveform and by using knowledge of the relationship between the 

waveform, its spectrogram, and its phonetic content. As a result, training in phonetics 

and spectrogram reading is required to produce acceptable label alignments, and manual 

alignment is a resource-intensive method. 

The most common automatic method for aligning speech is called "forced alignment." 

In this method, recognition of the speech signal is performed with the search result con- 

strained to the known sequence of phonemes. Because the search procedure yields the 

locations of the phonemes as well as their identities, the phonetic alignment can be ob- 

tained by constraining the search in this way. These systems are called "forced align- 

ment" systems because the alignment is obtained by forcing the recognition result to be 

the proposed phonetic sequence; this phonetic sequence is determined in advance by a 

pronunciation dictionary, grapheme to phoneme rules, or a human. In general, there is 

a strong link between automatic speech recognition and forced-alignment techniques, in 

that the same general processes can often be used for both tasks. Forced alignment and 

other methods of alignment will be covered in more detail in Chapter 3. 

Figure 1.1 illustrates how a state-of-the-art forced-alignment method compares with 

manual alignment on the utterance "I mean that's abs[olutely unprecedented]" from 

cellular-telephone speech. Based on visual inspection of the acoustic-phonetic cues in the 

spectrogram and by listening to each labeled segment, it is clear that the manual align- 

ments are better than the automatic alignments at the boundaries of the /m/, /€)/, / th/,  

and /b/. (Note that International Phonetic Alphabet (IPA) symbols are used through- 

out the text of this thesis to represent phonemes, and Worldbet phonetic symbols [64] 

are used in the figures; a list of IPA and Worldbet symbols and example words is given 

in Appendix C). However, automatic alignment of this speech segment took less than 3 
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Figure 1.1: Illustration of manual alignment compared with state-of-the-art automatic
alignment on the utterance "I mean that's abs[olutely unprecedented.]" Each panel shows,
from top to bottom: (a) time marks, (b) the waveform, (c) the spectrogram, (d) manual
alignments, and (e)results of automatic alignment.

seconds of computer time, whereas manual alignment would take nearly 2! minutes of

human effort at the reported rate of 11 seconds per phoneme.

1.3 Overview of Proposed Method

A system that does ideal phonetic alignment would have the following attributes:

. accuracy of human labelers at identifying important phonetic events and at working

under various channel, noise, and speaker conditions,

. the internal consistency of an automatic method, and

. operation in real time or faster.

This thesis presents the results of an initial effort at building a system that meets these

requirements, the methods used to obtain these results, and the motivations for the given



methods. 

One reason for the greater accuracy of human labeling over automatic methods is 

that humans are better able to locate distinct events in the speech signal that correspond 

to specific phonetic characteristics, such as the sudden increase in energy that signals 

the beginning of a plosive. This acoustic-phonetic information may provide robustness 

under conditions of channel distortion, speaker variability, and noise. The development of 

the proposed method was motivated by the belief that if an automatic alignment method 

were to use such acoustic-phonetic information, its accuracy would become closer to that of 

human performance, while still maintaining the internal consistency of current automatic 

methods. Our hypothesis is that the integration of acoustic-phonetic information into 

state-of-the-art automatic alignment systems will significantly improve the accuracy and 

robustness of phonetic alignment. 

The model for the proposed method uses standard forced alignment as a founda- 

tion. This model then incorporates specific acoustic-phonetic features into the stochas- 

tic phoneme-classification process, performs alignment based on classification of phonetic 

transition regions as well as classification of context-dependent phonemes, and uses p h e  

netic theory to address the issue of data sparsity. Previous work on integrating acoustic- 

phonetic information into the speech recognition process has indicated that current meth- 

ods of automatically extracting such information may not yield results that dramati- 

cally improve recognition performance. For example, in Schmid's work [130], the use of 

computed formant trajectories, formant amplitude, formant bandwidth, fundamental fre- 

quency, segment durations, and standard cepstral-domain features as input to a phonetic 

classifier resulted in an 8.8% reduction in error over the use of standard cepstral features 

alone. If the correct formant values were used instead of the estimated formant values, 

then the reduction in error increased to 17%. In work by Hosom prior to this thesis [65], 

voicing information was used as an additional feature for the digits classification task. 

The use of voicing values extracted by a voicing-estimation algorithm resulted in an 9.8% 

reduction in error, which is about half of the 19% reduction in error that could have been 

obtained if the correct voicing values were used. These results indicate that a significant 

issue in implementing a feature-based system is accurate extraction of the features that 



are used. As a result, new methods of extracting acoustic-phonetic features have been 

developed as part of this thesis. 

1.4 Evaluation Methodology 

One issue in developing an automatic alignment system is the metric by which success 

is measured. There is no known method to assess the correctness of a given phonetic 

alignment, because the exact times at which phonemes begin and end can sometimes be 

a subjective decision. Not only will different human labelers disagree about the exact 

placement of a boundary, but a single human shows variability in boundary placement. 

Because neither human nor machine alignments can be considered completely accurate, it 

is not possible to compute an absolute measure of accuracy. 

The most common method of measuring the performance of an automatic alignment 

system is to assume that manually-generated labels are correct, and to compute the 

automatic-alignment error relative to these values [3, 9, 15, 16, 19, 35, 36, 89, 93, 92, 96, 

113, 115, 114, 123, 134, 137, 136, 139, 142, 147, 149, 1411. This is an acceptable method 

if the difference between the automatic alignments and the unknown correct alignments 

can be considered greater than the difference between the manual alignments and the 

unknown correct alignments, and if we accept that an automatic system that produced 

no actual errors might still have a positive error measurement due to the variability in 

the manual alignments. Because perfect agreement between an automatic alignment and 

a manual alignment is unrealistic (and in such a case the automatic system would have 

the same internal variability as the human), performance measured in this way can not be 

considered accuracy, but simply agreement. Although the term "accuracy" is commonly 

used in the literature, we will use the term "agreement" to signify the distinction. 

A second method of measuring performance determines the robustness of the automatic 

alignment system instead of its agreement with manual alignments. In this method, we use 

a test corpus that has been subjected to a series of channel distortions. If we automatically 

align the speech under these different channel conditions, we can measure the variability 

in alignment performance without making reference to manual alignments. Because the 



true phonetic boundaries do not change with different channel conditions, any changes in 

the automatic alignment values indicate a lack of robustness. The amount of change under 

different conditions is considered to be inversely correlated with the degree of robustness 

of the automatic method. 

For this thesis, we will compare the agreement and robustness of our proposed system 

with a baseline forced-alignment system. Success will be based on whether or not the 

proposed system has significantly better agreement and is significantly more robust. 

1.5 Summary of Research Issues 

In summary, the problem addressed in this work is that of aligning the phonetic con- 

tent of speech with its corresponding acoustic signal. The hypothesis is that specific 

acoustic-phonetic information can be used by an automatic alignment system to signifi- 

cantly improve performance compared to a baseline automatic system, where the measures 

of success are agreement with human performance and robustness. Our approach is to 

measure specific acoustic-phonetic information at different levels of the forced-alignment 

process, and integrate this information in a probabilistic manner into the standard stochas- 

tic framework. 

1.6 Outline 

The following topics will be addressed in this thesis: 

Models of speech, 

Previous work in automatic alignment, 

a Description of the baseline system, 

a Overview of the proposed approach, 

Acoustic-phonetic features, 

Integrating transition information, 



Using distinctive features, 

Evaluation methodology, and 

Results and Discussion. 

In addition, Appendix A provides a description of the stochastic frame-based recognition 

systems (HMMs and HMM/ANNs) that are the foundation for many alignment systems, 

Appendix B contains a glossary of speech-related terms, and Appendix C contains a list 

of phonetic symbols used throughout this thesis. 



Chapter 2 

Models of Speech 

In order to develop a phonetic alignment method that incorporates acoustic-phonetic infor- 

mation, it is important to understand theories of human speech production and perception, 

as well as current approaches to computer speech recognition. This section provides back- 

ground on some of the more prevalent models of speech production and recognition, and 

in doing so also provides a foundation for concepts and terminology in speech processing. 

2.1 Models of Speech Production 

2.1.1 The Source-Filter Model 

The most common model of speech production is called the "source-filter" model, which 

was proposed by Johannes Miiller in 1848 and described in detail by Gunnar Fant [46]. 

In this model, the production of speech is composed of three independent parts: a sound 

source (often the vibration of the vocal folds), a tube through which this sound source 

passes (usually the vocal tract), and radiation of the sound from the mouth. This model 

can be used to describe the speech signal in the spectral domain, at one instant in time. 

There are several possible sound sources in speech production. The most common is 

vibration of the vocal folds, which occurs when we utter vowels, nasals, retroflex sounds, 

liquids, and glides. These sounds, such as /E/ and /m/, are called voiced sounds. The 

vibration of the vocal folds creates a series of energy pulses; this pulse train has a spectral 

slope of approximately -12 dB/ocatave. Several models of this source of voiced speech 

have been developed (for example [48, 47, 811). In general, these models describe an 

increase in air flow as the glottis opens, a more sudden decrease in air flow as the glottis 



closes, and no air flow while the glottis remains closed for the remainder of the pulse cycle. 

A second sound source is frication, which is produced by forcing air through a narrow 

constriction in the mouth. Frication is the sound source for phonemes such as /f/ and 

/s/. Fant states that this source has a spectral slope of -6 dB/octave [46], and fiication 

is often modeled using a random-noise generator. 

A third source of sound is plosion, which is produced by building up air pressure behind 

an obstruction (such as the tongue or lips) and then quickly removing that obstruction; 

this results in a sudden burst of air being released from the mouth. Phonemes that include 

plosion as a sound source are the plosives and affricates, such as /ph/, /th/, /dl,  and /g/. 
The source for plosion is usually modeled as a sudden steplike increase in air pressure 

with subsequent slow decay, resulting in a nearly flat spectral shape. 

The phonetic identity of a sound is further developed as the sound source passes 

through the vocal tract or nasal cavity. Each phoneme is produced with a certain position 

of the tongue and jaw, and these positions determine the shape of the vocal tract. Different 

shapes of the vocal tract have different resonant frequencies, and these resonant frequencies 

are called formants. Given a particular vocal tract length and shape, the formant values 

can be computed, and these formant values can then be represented by filter parameters. 

In this way, the sound source is filtered as it passes through the vocal tract, where the 

frequencies that are emphasized are dependent on the phoneme being produced. 

In the final stage of the source-filter model, the speech sound is radiated from the 

mouth. The effect on the spectrum caused by the radiation of sound is called the mdia- 

tion characteristic. The shape of the mouth opening is approximated by a point source, 

which results in the spectral slope of the speech being increased by +6 dBloctave. In 

some implementations of the source-filter model (such as formant-based text-to-speech 

synthesis), the sound source and radiation characteristic are combined into a single repre- 

sentation. This results in a voiced-source spectral slope of -6 dB/octave, and flat spectral 

slopes for the fricative and plosive sources. 

The source-filter model is quite powerful in describing several characteristics of speech, 

such as the overall spectral shape of sounds and the locations of formants based on the 

shape of the vocal tract. This model is also successful in explaining effects such as the 



overall increase in formant frequencies for female speakers, which is due to the difference 

between the typical male and typical female vocal tract lengths. 

2.1.2 Time-Based Modeling of Speech 

The source-filter model describes the speech signal at one instant in time; speech, however, 

is characterized by change over time in the sound source and resonant frequencies. Several 

properties and models of the time-dependent nature of speech are outlined here. 

At the physical level, the rate of speech is governed by the inertia of the articulators. 

The body of the tongue moves relatively slowly, and the rate of sonorant phonemes is 

limited by the rate at which the tongue moves. The lips and tip of the tongue can move 

faster, and so plosive sounds occur over a much shorter time interval. At the phonetic 

level, the average duration of phonemes ranges from 20 msec for voiced plosives (/b/, /d/, 

/g/) to 150 msec for diphthongs ( / a~ / ,  /ei/, /iu/, etc.), with an average phonetic duration 

of about 70 msec. In addition to durational variation due to phonetic differences, vowel 

duration may change by a factor of eight, depending on speaking rate, syntax, and stress 

[79]. Kanedera and Hermansky [72] have studied the perceptually-important modulation 

frequencies in speech, and found that most of the important temporal change in the speech 

signal occurs at 4 or 5 Hz, or about every 200 to 250 msec, which is approximately the 

duration of one syllable [59]. Finally, in recognition of speech, duration information is 

used by humans to distinguish long from short vowels, voiced from unvoiced fricatives 

and consonants, phrasefinal from non-phrase-final syllables, and stressed from unstressed 

vowels [79]. 

The many factors that influence speech duration and the many uses of duration in 

human speech perception result in fairly complex models. In one model proposed by Klatt 

for speech synthesis, seven factors that iduence the durational structure of a sentence 

are specified, and there are eight rules that account for these seven factors. This model 

is, as noted by its author, "only a preliminary step toward a complete theory" [79]. A 

simpler model proposed by van Santen [I401 is able to account for 86% of the variance 

of vowel durations in a large corpus of manually-segmented speech. This model requires 

eight parameters, controlling the factors of intrinsic vowel duration, pitch accent, syllabic 



stress, post-vocalic consonant, pre-vocalic consonant, within-word position, and utterance 

position. In a statistical-based model for speech recognition [22], a multi-level sub-lexical 

tree (called the ANGIE framework) is used to model duration from the phone level up to 

the word level. A data-driven approach has been used to estimate duration factors at each 

sub-lexical node in the tree. The duration information contained in the tree can then be 

used to test various word hypotheses, and favor those hypotheses that have a better match 

to the model durations. Using this model, an 8% reduction in error on a continuous-speech 

recognition task was obtained, with a 22% reduction in error for a word-spotting task. 

A second characteristic of speech as  it changes over time is called coarticulation. Coar- 

ticulation is the effect that one phoneme has on its neighboring phonemes; this effect is 

manifested as a smooth change in formant frequencies from one phoneme to the next. This 

smooth transition between phonemes is one of the main factors that makes it d s c u l t  to 

determine the exact location of a phonetic boundary. 

Several models of coarticulation have been proposed. In a model developed by ohman 

[112], coarticulation in vowel-consonant-vowel (VCV) utterances is expressed in terms of 

vocal-tract shape by the formula 

where s(x, t) is the shape of the vocal tract at a position x and time t ,  v(x) is the vocal- 

tract shape corresponding to a given vowel, c(x) is the vocal-tract shape of the consonant, 

k ( t )  is an interpolation term that ranges from 0 to 1, and w,(x) is a term that describes 

the extent to which c(x) "resists" coarticulation. This model is successful in describing 

context-dependent variations in vocal-tract shapes using context-independent descriptions 

of the vowels and consonant. However, this model was only evaluated on VCV utterances, 

and 0hman briefly noted the seven modifications that would be necessary to model coar- 

ticulation of general speech. 0hman also noted the difficulty in his model for describing 

coarticulation between consonants, such as in a consonant-vowel-consonant (CVC) utter- 

ances. 

In the "locus theory" of coarticulation [40], consonants are assigned fixed formant 

values that may not be visible in the speech signal; these "virtual" formant values are 



interpolated with the formants that appear in vowels to create the context-dependent for- 

mant changes seen in speech. Klatt modified the locus theory so that the interpolation 

depends on the type of vowel [80]. Using this method, he achieved a consonantal intelli- 

gibility of 95% for synthetic CVC syllables, as compared to the intelligibility of 99% for 

natural-speech CVC syllables. Klatt did not, however, evaluate this model on continuous 

speech, in which coarticulation effects may extend over a duration of up to six phonemes 

[741. 

In the model proposed by Lofqvist, as reported in Cohen and Massaro [23], speech 

segments have overlapping "dominance functions" that control the articulators, with one 

dominance function per articulator. The dominance functions can differ in time offset, 

duration, and magnitude, giving relatively more or less weight to articulators associated 

with a given speech segment. Although this model is quite successful at modeling visual 

speech (in which the articulators are direct parameters of the system), it is not obvious 

how this model could be used directly in current speech recognition systems, in which the 

articulators are at best indirect parameters. 

A review of six theoretical models that describe coarticulation in continuous speech 

was conducted by Kent and Minifie [74]; their conclusion was that "coarticulatory pat- 

terns are not explained adequately by any of the theories or models discussed herein." 

This conclusion highlights the complex nature of coarticulation and the difficulty of de- 

veloping accurate models. Also, in considering these models for use in speech recognition 

or alignment, it is important to note that even in the simple case of CVC or VCV ut- 

terances, it is not possible to easily reverse ohman's, Klatt's, or Lijfqvist's equations to 

derive context-independent representations from the context-dependent acoustics. 

2.2 Models of Human Speech Recognition 

There are several models that describe human speech recognition at various levels of detail 

and at different levels of the speech recognition process. In this section we briefly describe 

some of the more prevalent models. 



2.2.1 The Motor Theory of Speech Perception 

The Motor Theory of Speech Perception (abbreviated as the "motor theory") is one of the 

most widely-cited theories of human speech perception. This theory states, in a more re- 

cent version [go], that "the objects of speech perception are the intended phonetic gestures 

of the speaker, represented in the brain as invariant motor commands that call for move- 

ments of the articulators." According to this theory, when we perceive speech, we perceive 

the gestures that correspond to the articulatory movements of the speaker, such as lip 

rounding and jaw raising. Furthermore, in this theory there is a "specialized module" in 

the brain that translates from the acoustic signal to the intended articulatory gestures. 

According to Liberman, such a module might work using the analysis-by-synthesis method 

[6], in which a mental model of a speech synthesizer is used to generate various acoustic 

properties. The acoustic-gesture parameters that are input to this synthesizer are var- 

ied until the error between the synthesized acoustic properties and the observed acoustic 

properties is minimized. The resulting articulatory gestures are the output of this module. 

Liberman and Mattingly claim that "the processes of speech perception are . . . inherently 

computational and quite indirect. If perception seems nonetheless immediate, [it is be- 

cause] the module is so well-adapted to its complex task." 

There are several criticisms of the motor theory concerning a number of its aspects. 

Cole et al. [29] have refuted the claim that there is a "biologically based link between 

perception and production . . . [that] occurs only in speech" [go]. Cole showed that the 

use of printed spectrogram displays can be interpreted by the eye and used to classify 

the phonemes in continuous speech with at  least 85% accuracy; single-word utterances 

can have a phonetic classification rate of at least 93%. Such visual reading of speech 

without a biological "specialized module" argues against the necessity of such a module 

when aurally recognizing speech. Furthermore, the person who read the spectrograms in 

that study did so without making explicit reference to articulatory gestures. This work 

challenges the claims that the acoustic signal is too complex to be directly mapped to 

phonetic categories, and that human speech perception requires the intermediate stage of 

determining articulatory gestures. 



In another criticism of the motor theory, Lane investigated the use of CV speech stimuli 

that had been modified so that the formant frequencies were inverted on the frequency 

axis. Such stimuli are heard as non-speech sounds, even though they have the same 

temporal patterns found in ordinary CV stimuli. Lane trained subjects to classify these 

modified stimuli, and found that "the categorization . . . of speech cues [is] not necessarily 

due to the operation of a special motor reference process, because the same results can be 

obtained, after proper auditory training, for stimulus differences that are not producible 

by speaking7' [117]. 

Finally, as Ladefoged points out, we are able to perceive two speech sounds as being 

the same, even if the articulator positions and movements used to produce the sounds are 

different. This occurs in %-colored vowels," which can be produced with the tip of the 

tongue up or with a raised tongue position further back in the mouth. This effect can 

also be obtained in the production of rounded vowels, such as /u/, with a lowered larynx 

position or with increased lip rounding. In both of these cases, although the articulators 

are in different positions, the resulting acoustic properties are the same. The fact that 

these sounds are perceived to be the same can be more parsimoniously explained by an 

auditory-based theory of speech perception than by the theory that listeners perceive 

speech "by reference to their own motor activities" [84]. 

2.2.2 The Multiple-Cue Model of Speech Perception 

In contrast to the motor theory, Ronald Cole and Brian Scott proposed a model of speech 

perception in which a combination of context-independent invariant cues and context- 

dependent phonetic transition cues are integrated when recognizing syllable units [28]. 

Properties of the waveform envelope are also used when integrating syllables into higher- 

level units such as words and phrases. This model will be referred to here as the "multiple- 

cuen model. 

Cole and Scott provided evidence for invariant cues in all consonant phonemes. These 

invariant cues may uniquely identify the phoneme (as in the case of /s/, /z/, /3/, /J/, 

/g/, and I*/), or they may be used in conjunction with transition cues to identify the 

phoneme (as in the case of If/, /0/, /v/, /a/, /m/, /n/, and 191). In the case of stops, 



the voiced/unvoiced distinction (/b/, /dl, /g/ as opposed to /ph/, /th/,  /kh/) is signaled 

by invariant cues, while the place of articulation involves either invariant or transitional 

cues. In addition to these two types of cues, properties of the waveform envelope can be 

used to recognize prosodic as well as phonetic information. 

This multiple-cue model is attractive in that (a) it is computationally more feasible 

than the inherently complex motor theory, (b) there is a direct mapping from acoustics 

to phonetics, making the speech signal more amenable to analysis, and (c) it accounts for 

aspects of the waveform that are both invariant and context-dependent. In criticism of this 

model, the time-domain waveform amplitude does not seem to be a likely candidate for 

human speech recognition, as the waveform signal is directly converted into a frequency- 

domain representation by the cochlea. However, the information that Cole and Scott 

determined using the time-domain waveform (amplitude, pitch, and duration) may also 

be extracted from a time-varying spectral representation. 

2.2.3 Invariant Cues for Stop Perception 

A study of speech perception that focused on one aspect of human performance was con- 

ducted by Stevens and Blumstein [133]. The result of this research identified an acoustic- 

phonetic cue that can be used to uniquely identify the place of articulation in stop conso- 

nants, based on human perception of synthetically-generated consonant-vowel phonemes. 

This cue is the gross spectral shape of the consonant, sampled at both the burst onset 

and the voicing onset. This work gives support to Cole and Scott's multiple-cue model, in 

specifying an invariant cue that can be used for identifying place of articulation in stops. 

2.2.4 The Fletcher-Allen Model 

Between 1918 and 1950, Harvey Fletcher and his colleagues studied human speech per- 

ception at Bell Labs. As a result of this effort, they developed a theory of human speech 

recognition that has been elaborated upon more recently by Jont Allen [I]; we will sum- 

marize a few of their contributions here. One result of Fletcher's work was measurement of 

correct CVC syllable recognition in terms of recognition rates of the component phonemes: 



where S is the probability of correct identification of the CVC syllable, cl is the probability 

of correct recognition of the first consonant, v is the probability of correct recognition of 

the vowel, and cz is the probability of correct recognition of the second consonant. This 

formula has the important implication that humans perceive each phoneme individually, 

rather than the syllable as an entire unit. In addition, Fletcher found evidence that 

humans process frequency bands independently, and that the overall error for recognition 

of several bands is equal to the multiplication of errors in each individual band. 

Allen interprets this to mean that humans perform partial recognition of frequency 

bands independently, and that these partial results are "fused" to produce estimates of 

phonemes. In general, the number of frequency bands should be between 10 and 30. Allen 

also notes that an important transformation takes place within each band, namely that 

"the neural representation of the signal intensity has been transformed into a measure of 

partial recognition . . .we must not assume that this is a trivial transformation" [I]. 

Based on Fletcher's findings, Allen proposes a cascaded model of human speech percep 

tion, in which the acoustic signal is first broken into heavily-overlapped frequency bands. 

The outputs of these bands are used to extract "phone features" in about 20 different 

bands, which are then used to classify phones. The phone-level classification is then used 

to classify syllables, which are in turn used to classify words. Allen also notes that "[it is] 

unlikely that feedback is common or significant between the deeper layers and the outer 

layers" [I]. 

2.2.5 Auditory Scene Analysis 

Auditory Scene Analysis (ASA) [13] is a theoretical model of human speech perception 

in which both bottom-up and top-down processing are used to determine what parts of 

the speech signal belong to a single acoustic event. As a result, ASA tends to focus on 

complex auditory environments involving multiple sounds. Often, grouping of patterns in 

the speech signal into "streams" is done on the basis of similarity, in pitch [30] or other 

aspects. This model is able to explain why a signal may be interrupted by a brief, stronger 

signal, but still be perceived as continuous. In a computational model of ASA, Cooke and 

Brown are able to detect certain occluded sounds and restore them (their example being 



speech occluded by a siren) [30]. 

2.2.6 The TRACE Model 

The TRACE model of speech perception was developed by James McClelland and Jeffrey 

Elman in 1986 [loll. This model was designed to be implemented on a computer while still 

being a plausible model for human speech recognition. The TRACE model has three levels: 

the feature level, the phoneme level, and the word level. The feature level is composed 

of seven distinctive features (consonantal, vocalic, diffuseness, acuteness, voicing, power, 

and amplitude of burst noise), each of which can have one of nine values. Each level is 

constructed by connecting a number of simple processing units, and recognition "takes 

place through the excitatory and inhibitory interactions of a large number of [these] units, 

each working continuously to update its own activation on the basis of activations of other 

units to which it is connected." Each unit represents a hypothesis about the input, with 

the activation of the unit monotonically related to the strength of the hypothesis; the 

connections between units represent relationships between hypotheses. Units on the same 

level that are inconsistent have mutually inhibitory connections. The connections between 

layers are bi-directional, which allows both bottom-up and topdown processing to occur 

simultaneously. 

The TRACE model is able to account for a number of effects observed in human speech 

perception, giving support to the psychological validity of this model. These effects include 

top-down lexical effects (a faster response to words than to non-words), the perception of 

phonemes as distinct categories instead of having continuous values, and results consistent 

with phonotactic rules (such as /sl/ being a valid phonetic combination, whereas / sd  is 

not), even though such rules were not explicitly provided. McClelland and Elman list 

eleven similarities between TRACE and human speech recognition, but also note that 

"although TRACE has had a number of important successes, it also has a number of 

equally important deficiencies," most of which are related to simplifying assumptions in 

the implementation of the model. 

The TRACE model has obvious parallels to artificial neural networks, with one im- 

portant difference being that in the TRACE model, the connections are bi-directional, 



whereas in typical feed-forward or recurrent networks, the connections are uni-directional. 

In addition, McClelland and Elman had no formal means of training the system, and relied 

on hand tuning of the parameters to obtain their results. 

2.2.7 The Fuzzy-Logic Model of Perception 

The Fuzzy-Logic Model of Perception (FLMP) is not a complete model of human speech 

recognition, in that it does not specify all of the steps from input of the speech signal 

to output of the recognized words. This model focuses on the integration of feature 

information to arrive at classification results that are consistent with human performance. 

The FLMP consists of three stages: feature evaluation, feature integration, and pattern 

classification. In the feature evaluation stage, the speech signal is analyzed, and certain 

features are extracted. For example, there may be a feature called "labialn to indicate 

a place of articulation. The values of these features are continuous, and they represent 

the degree of belief that the current speech segment indicates the specified feature. For 

example, the value for the "labial" feature may be 0.80, indicating a reasonably strong 

belief that the speech segment consists of a labial sound. The use of continuous values for 

each feature is supported by various studies of human speech perception [Ill]. 

The second stage consists of prototype matching, in which the input is matched to a 

prototype description of each possible phoneme. For example, the phoneme /b/ may have 

the prototype features "labial" and "voiced." The phoneme prototypes are specified by 

"matching functions" in terms of fuzzy-truth values, so that, for example, the matching 

function for /b/ may be specified as 

where B, is the degree to which the perceived speech, s, will match the phoneme prototype 

for /b/, L, is the degree of belief that the speech is labial, and V, is the degree of belief 

that the speech is voiced. (In an extended version of the FLMP, the belief values are 

modified by exponential weights that indicate the importance of extreme values of that 

feature.) The extent to which the input speech matches each prototype is computed by 

evaluating all of the matching functions. 



In the third stage, pattern classification is performed. The probability of identification 

of each phoneme is computed using Luce's model [95]. For our example of /b/, the 

probability of the speech containing a /b/, if the only possibilities are /ph/, /b/, and /d/, 

is given by: 

where p ( / b / ) s )  is the probability of a /b/ given the speech signal s, P, is the matching 

function for /ph/, Bs is the matching function for /b/, and D, is the matching function 

for /dl. 

Massaro and Friedman used the FLMP to model the results of several human pattern 

classification tasks, and found that the FLMP provides an equivalent or better represen- 

tation of the data when compared with a number of other information-integration models, 

including additive, linear integration, two-layer connectionist, theory of signal detectabil- 

ity, and multidimensional scaling models [loo]. It should also be noted that the FLMP is 

mathematically equivalent to Bayesian integration if the fuzzy-truth values are interpreted 

as probabilities, although the FLMP was developed based on psychological studies and 

without reference to Bayes' rule. 

2.3 Models of Computer Speech Recognition 

There are a number of models of computer speech recognition, each with a different per- 

spective. Most models can be generally classified as either segment-based or frame-based. 

In this part, we describe some influential segment-based and frame-based systems. 

2.3.1 Segment-Based Systems 

The SUMMIT System 

The SUMMIT system was originally developed by Victor Zue and his colleagues at MIT 

in the 1980s, and several variations have evolved over the years under the guidance of Jim 

Glass. One defining characteristic of the SUMMIT system is that it first divides the speech 

signal into segments, and then phonetically classifies each segment. The classification 



scores of the phonetic segments are searched to find the most likely word sequence. The 

general procedure for recognition in the SUMMIT framework is as follows: 

1. Acoustic boundaries (landmarks) are determined based on the amount of local spec- 

tral change. In one extreme implementation of SUMMIT [21], boundaries are placed 

automatically at every 10-msec frame (effectively transforming SUMMIT from a 

segment-based to a frame-based system), but this approach is not currently used 

because of the large amount of required computation time. 

2. A network of segments (dendrogram) is created by one of the following methods: 

(a) Merging short segments into longer segments according to their spectral sim- 

ilarity. This is the "traditional" approach used in SUMMIT [57], which has 

modest computational requirements. 

(b) Segmentation by recognition, in which a recognizer is used to classify each 

frame or acoustic landmark as a phoneme or a phonetic transition. After this 

classification, a forward-pass Viterbi search is done, which is followed by a 

backward-pass A* search. The A* search yields a number of alternative pho- 

netic segmentations of the speech signal; these segmentations form the resulting 

dendrogram. This approach is computationally more expensive, but yields bet- 

ter recognition performance than the traditional approach. The most recent 

implementation performs the segmentation in real-time on a 200 MHz CPU 

[21, 881. 

3. Given the dendrogram created in Step 2, phonetic classification of all segments is 

performed using one or both of the following methods: 

(a) The first method performs context-independent recognition of each segment in 

the dendrogram. In this method, there are between N + 1 and 2N recognition 

categories, where N categories correspond to the N possible phonemes, and the 

remaining categories are used to model segments not included in a hypothesized 

segmentation (called "not modeling" or "near-miss modeling") [21]. 



(b) The second method performs context-dependent recognition of each segment 

boundary in the dendrogram [56]. The context-dependent categories can be 

phonetic boundaries or phoneme-internal boundaries, and there can be as many 

as ( N  + N ~ )  recognition categories. In practice, only about 750 categories are 

used. 

These classifiers are trained with the same spectral-domain features that are com- 

monly used in HMM speech-recognition systems (described below), and classification 

is done using mixtures of Gaussians. 

4. Searching is done with a bigram forward-pass Viterbi search and, for N-best hy- 

potheses, an n-gram A* backward-pass search. If both context-independent segment 

recognition and boundary recognition are done in Step 3, then the final probability 

of a word sequence is the multiplication of the probabilities of the segment result 

and the boundary result for that sequence. 

Performance of the most recent version of SUMMIT is about 72% accuracy on phoneme 

classification of the TIMIT database. This phoneme-level result is among the best re- 

ported; a standard HMM system is reported to have 69.1% accuracy [87], and a recurrent- 

neural-network approach yielded 73.4% accuracy [128]. 

The Feature System 

The FEATURE system was developed by Ronald Cole, Richard Stern, and Moshb Lasry 

at Carnegie-Mellon University in the early 1980's. The motivation for the FEATURE 

system was to enable automatic speech recognition to perform fine phonetic distinctions, 

such as between /ph/ and /b/. At the time that FEATURE was developed, frame-based 

template-matching systems had recognition rates of only about 60% on the "Eset" of 

confusable alpha-digits (which consists of the set of letters and digits {B, C, D, E, G, P, 

T, V, Z, and 3)). The original FEATURE system was designed for speaker-independent 

recognition of the isolated letters "A" through "Z." The following steps are involved in 

recognition using FEATURE: 



1. Signal Processing: Given an utterance corresponding to a single letter, signal pro- 

cessing routines are used to extract general information about the signal, such as 

spectral properties, the fundamental frequency, the number of zero crossings, and 

energy in various frequency bands. 

2. Segmentation: Four points are located in the utterance: the beginning of the utter- 

ance, the onset of the vowel, the vowel offset, and the ending of the utterance. 

3. Feature Extraction: About 50 different features are extracted, using the information 

determined from Steps 1 and 2. These features include the first three formants of 

the vowel region, the formant trajectories, the maximum and minimum frequencies 

of each formant, and the duration of aperiodic sound prior to and following voicing. 

The types of features were selected using visual inspection of different representations 

of the signal. 

4. Classirfication: A decision-tree approach is used to determine the probabilities of 

each of the twenty-six letters. Each node in the tree represents a group of letters, 

and lower nodes contain disjoint subsets of higher nodes; the leaf nodes contain the 

individual letters. At each non-leaf node, the likelihood of the utterance belonging 

to that node is determined using multivariate Gaussian probability distributions of 

the feature vectors. Probabilities are computed for all non-leaf nodes in the tree, 

and the final probability of a given letter is the multiplication of the probabilities of 

each node leading to that leaf node. Only relevant features are used at each node 

to reduce the dimensionality of the decision space, and the assumption is made that 

the sets of features used for classification at each node are independent. 

5. Adaptation: The Gaussian probability distributions can then be adjusted to better 

match the expected feature values of an individual speaker. The probability distri- 

butions are updated after recognition of each utterance and after receiving feedback 

from the user as to which letter was actually spoken (supervised adaptation). 

Without using speaker adaptation, the FEATURE system has 89% accuracy on isolated 

letters, and 83% accuracy on the Eset. Compared to frame-based template-matching 



systems, the reduction in error on the Eset is greater than 50%. The use of speaker adap  

tation further reduces the error rate by another 50%, given sufficient data for adaptation. 

The FEATURE system was modified and extended by Cole, Fanty, and others to use 

neural networks for classification and to recognize continuous-speech letters (spoken with 

or without pauses between words). Results of this new system, called "EAR," are 96% 

accuracy on microphone speech and 89% accuracy on telephone-band speech (241. These 

results represented the state-of-the-art for six years until a sophisticated HMM system 

achieved 97.3% accuracy on high-quality speech and 91.7% accuracy on telephone-band 

speech in 1996 [94]. 

2.3.2 Frame-Based Systems 

Hidden Markov Models 

By far the most dominant method for automatic speech recognition is currently the hidden 

Markov model (HMM) , which has been used for speech recognition since at least 1975 [7]. 

This method has an elegant mathematical framework that allows data-driven training 

of speech units such as words, phonemes, or context-dependent phones. The two major 

reasons for the widespread use of HMMs are that the mathematics are well formulated, 

moving speech recognition to the well-researched domain of statistical pattern recognition, 

and that the performance of HMM systems is most often superior to that of knowledge- 

based approaches. 

The details of using HMMs for speech recognition are presented in more detail in 

Appendix A, but the basic model for HMM-based recognition is that of independent 

states linked by state transition arcs, as illustrated in Figure 2.1. Each state is associated 

with a certain linguistic unit, usually a phonetic-based unit, and at any point in time 

the system is in one and only one state. With each increment in time (usually about 10 

msec), a transition is made to another (or the same) state. During recognition, the system 

estimates the likelihood of being in each state at time t, based on the likelihood of being 

in each state at time (t - I), the probabilities of transitioning from the previous states 

to the current state, and the probability of the current state being associated with the 

speech signal at time t (called an observation probability). The likelihood of each word at 



time t ,  is then the likelihood of being in the final state associated with that word at time 

t,; a simple comparison of word-final state likelihoods yields the most likely word given 

the speech input and HMM configuration. 

In general, the speech signal at time t is represented by spectral-domain information 

over a small (16 rnsec) time window. Estimation of the observation probabilities is often 

done using mixtures of Gaussians, although vector quantization (VQ) has also been used. 

The search through the HMM states to determine the most likely word is done using a 

dynamic-programming search algorithm called the Viterbi search. 

Figure 2.1: HMM state sequence for a two-word vocabulary. 

Hybrid HMM/ANN Recognition 

Hybrid HMM/ANN systems have been developed at research laboratories such as Cam- 

bridge University [128], ICSI [12], and OGI [68]. The main difference between standard 

HMM-based recognition and hybrid HMM/ANN recognition is in the estimation of the 

observation probabilities. In standard HMM systems, these probabilities are estimated 

using mixtures of Gaussians. In HMM/ANN systems, the observation probabilities are 



estimated using artificial neural networks (ANNs), which have been shown to estimate 

a posteriori probabilities given sufficient training data and hidden nodes [126]. Other 

aspects of HMM/ANN systems, such as the state-based framework and the use of the 

Viterbi search to determine the most likely utterance, are the same. Neural networks have 

some advantages over Gaussian mixture models (GMMs): ANNs have better discrimina- 

tive properties, do not require the input features to be uncorrelated, and do not require 

the data to fit Gaussian models [ll]. 

The main disadvantage of the hybrid HMM/ANN approach is the amount of time 

required to train a neural-network classifier; this increase in training time is, however, 

typically offset by a decrease in the time required to estimate the observation probabil- 

ities during recognition. Another disadvantage, from an engineering standpoint, is that 

once the network has been trained, it is not possible to easily modify its properties; with 

mixtures of Gaussians, phonetic models can be adjusted individually after training. Fi- 

nally, training the ANN requires good initial estimates of the locations of each phoneme; 

standard HMM systems can be trained without such information (although even standard 

HMM performance benefits fi-om the use of manually-aligned transcriptions). 

Syllable-Based Recognition 

Motivated by psychoacoustic evidence that the syllable is important in human speech per- 

ception, Su-Lin Wu, Steven Greenberg, and their colleagues at the International Computer 

Science Institute (ICSI) developed a syllable-based recognition system [152]. The input 

to this system is a "modulation spectrogram," which represents the time-varying spectral 

content of speech with low-pass-filtered independent frequency bands [60]. These bands 

capture the syllablelength fluctuations in the speech signal while suppressing faster and 

slower change. The modulation-spectrogram bands are passed to a neural network with 

a relatively large (185 msec) window of input frames, and are classified into 124 "semi- 

syllable" categories for the numbers-recognition task. A Viterbi search is then used to 

search the network outputs for the most likely number sequence. 

Performance of this syllable-based system (90.2% word accuracy on telephoneband 

speech) was not as good when compared with a baseline system (93.2% word accuracy), 



but the combined performance of the syllable-based and baseline systems was much greater 

than either system alone (94.5% accuracy). This indicates that the types of errors made 

by each system are to some degree independent, and that further research in this area 

may be huitful. 

Transition-Based Recognit ion 

The Stochastic Perceptual Auditory-event-based Model (SPAM) for speech recognition 

was developed by Nelson Morgan and his colleagues at ICSI. The motivation for SPAM 

is that "information needed for correct [phonetic] identification is largely contained in 

spectral transitions" (called avents) [151]. This motivation is supported by the work of 

F'urui, who found that humans associate spectral transitions with phonetic identification in 

natural speech [51]. In SPAM, the primary unit of classification is the phonetic boundary 

region, with all non-boundary frames of speech classified as a single "non-transition state." 

A neural network is used to estimate the probability of a given frame of speech belonging 

to a particular class, and the most likely word is determined using a Viterbi search. 

Recognition experiments using SPAM on the task of digit classification showed that the 

error rate for SPAM is roughly twice that of standard phonetic recognition on clean speech, 

and about equal to phonetic recognition performance on noisy speech. However, the 

combination of results from SPAM and standard phonetic recognition yielded performance 

much better than either system alone, indicating that the errors in the two systems are 

independent. 

Cravero, Pieraccini, and Raineri [34] created an HMM-based system in which the units 

for recognition are either context-independent phonemes or diphones, depending on the 

relevance of the category to recognition (some categories, such as plosives, depend heavily 

on transition information, and other categories do not). Their general-purpose system 

has 22 context-independent LLstationary" units, and 101 phonetic transition units. On a 

corpus of nearly 1000 isolated Italian words, an HMM system trained using their proposed 

categories yielded 77.5% accuracy in word recognition. A comparable system trained on 

only context-independent phonetic units had 73.7% accuracy in word recognition, and a 

system trained on only phonetic transitions had 68.2% accuracy. This indicates a clear 



advantage to using a combination of phonetic transition and steady-state categories, with 

a 15% reduction in word-level error for the given task. The authors did not, however, 

compare the performance of their system with a context-dependent phonetic recognizer. 

In related work, Hosom and Cole implemented a transition-based digit recognition 

system [67], in which the units for classification were phonetic-transition units as well as 

context-independent phonetic units. As in the SPAM model, classification was done by a 

neural network, and a Viterbi search was used to determine the most likely word sequence. 

They found a 13% reduction in error over a context-dependent baseline approach, from 

94.7% to 95.4% word accuracy on telephone-band speech. This system was restricted to 

digit recognition, due to the large number of possible diphones in unconstrained speech. 

The SUMMIT system, described above, also performs transition-based recognition 

during the segmentation-by-recognition procedure, in order to identify the locations of the 

speech segments [21]. During this procedure, each potential acoustic landmark is classified 

as either a phonetic transition or a non-transition, and the Viterbi and A* searches are used 

to determine the N-best segmentations. Transition information can also be used during 

the classification of segments into phonemes, by multiplying the segmentation likelihoods 

by the likelihoods of all transitions in that segmentation [56]. 

Finally, a phonetic alignment system developed by van Santen and Sproat [I411 aligns 

phonemes with speech using phonetic transition information in different frequency bands. 

This system is discussed in more detail in Section 3.4. 

2.4 Human Spectrogram Reading 

As noted in the description of the motor theory, humans are capable of recognizing words 

using only printed spectrograms that display the speech signal along the dimensions of 

time, frequency, and energy. This ability to recognize speech using spectrogram displays 

is called "spectrogram reading." (An example spectrogram is given in the third panel in 

Figure 1.1). The techniques employed in spectrogram reading may be useful in the design 

of machines that can recognize speech. During spectrogram reading, explicit features in 



the speech signal are used, and such explicit features have the potential to be automat- 

ically extracted from the speech signal. This potential was a driving force behind the 

development of the FEATURE system, described above. 

The seminal paper on spectrogram reading [29] describes the abilities of a single spec- 

trogram reader, referred to as VZ, and analyzes his approach. It was found that VZ was 

able to identify more than 97% of all phonetic segments in continuous speech. VZ associ- 

ated one segment with only one phoneme (one hypothesis per segment) about half of the 

time, while he associated one segment with two phonemes (two hypotheses per segment) 

an additional one-third of the time. VZ identified the correct phonetic label 86% of the 

time. As for his use of higher-level knowledge when reading spectrograms, it was found 

that labeling performance was actually slightly better on utterances containing nonsense 

words. 

VZ used a two-pass method for reading spectrograms; in the first pass, he segmented 

the speech, and in the second pass he identified the phonemes in each segment. (There was, 

however, some adjustment of the segmentation during the second pass.) Segmentation was 

done primarily by locating the points of spectral change and sharp changes in intensity. 

Some boundaries were determined based on relative local duration; for example, two 

adjacent stop closures can be identified as two phonemes even without a change in spectral 

information, because the combination of both stop closures is significantly longer than the 

duration of a single stop closure. Changes in formant frequencies (such as a dip in the 

first formant frequency or a decrease in formant amplitude) were used by VZ to identify 

transitions within a sonorant region. In some cases, such as liquid-vowel transitions, no 

boundary was marked until the second pass. VZ used a left-to-right segmentation strategy 

in some cases, and a less sequential strategy in others. In the less sequential cases, VZ 

would segment the obvious boundaries first and then identify more difficult boundaries. 

Once the speech had been initially segmented, each segment was assigned a phonetic 

label. Label assignment was done based on knowledge of unique spectral patterns for a 

phoneme, by knowledge of coarticulatory effects, and by constraints imposed by English 

phonology. Even for highly complex sounds such as plosives, VZ was able to identify and 

classify plosives with great accuracy based on the characteristic patterns of the manner 



and place of the plosive. Vowel classification was done by first classifying the vowel as 

reduced or unreduced. For unreduced vowels, the characteristics of the Jakobson, Fant, 

and Halle set of distinctive phonetic features were used, such as diffuseness and acute- 

ness; these features are related to characteristics such as vowel height or place. Once a 

general classification had been made, a finer classification was obtained based on relative 

duration and detection of offglides. It is also interesting to note that by "computing a p  

propriate formant displacements," VZ was able to effectively normalize for the effects of 

coarticulation. Finally, VZ used phonological rules when necessary. These rules included 

phonetic-combination rules, such as the lack of the /dl/ combination in English, and rules 

about allophonic variation that can be predicted based on context, such as / t /  being 

unaspirated in an /st/ cluster but aspirated (/th/) in a word-initial position. 

The ability of VZ to read spectrograms and the analysis of his methods has several 

implications for automatic speech recognit ion. First, VZ's performance on phonetic clas- 

sification of continuous speech represents a roughly 50% reduction in error compared to 

current automatic speech-recognition systems when trained and evaluated on clean micro- 

phone speech (with about 85% accuracy for VZ and 70% accuracy for automatic methods). 

This indicates that the phoneme-level performance of ASR systems can still be greatly 

improved, which in turn should improve the performance of word-level recognition. Sec- 

ond, VZ did not make use of suprasegmental cues such as pitch contours (for tone and 

intonation), stress, and rhythm, except for occasional references to local duration and 

speech rate. If these suprasegmental features were available, the performance of VZ and 

automatic systems might further improve. Third, for units of classification, VZ "appears 

to use a mixture of phonemes, diphones, and sub-phonetic units," indicating that the use 

of all of these units may be advantageous in automatic speech-recognition systems. 

2.5 Weaknesses of HMM and HMM/ANN Systems 

Although the mathematics that define HMM and HMM/ANN systems are well formu- 

lated, the amount of data needed to train an HMM recognizer and the fragility of these 

systems when used under different conditions indicate that the HMM framework has some 



weaknesses when applied to speech recognition. In addition to the well-known issue that 

independence between the the values of each frame of speech can not be fully justified, 

there are other ways in which standard HMMs may not be best suited to speech recogni- 

tion. One major weakness of HMM systems is that because no speech-specific knowledge 

(other than perceptually-related warping of the spectrogram and data-driven clustering of 

phonetic categories) is used in computing the likelihoods of each phoneme at each frame, 

these values are estimates of not only the phonetic qualities of the speech, but also the 

channel and noise conditions of the training data. (Channel and noise distortions can be 

addressed by RASTA or CMS pre-processing, but complex distortions, such as  are found 

in telephone speech, are not easily factored out.) In addition, the system is tuned to 

the characteristics of the speakers in the training set, who may or may not represent the 

qualities of the speaker(s) in the test set. This union of phonetic and corpus-specific infor- 

mation in training makes recognition performance sensitive to factors that are unrelated 

to the phonetic content of the signal. 

There are several ways in which phoneme-specific knowledge is available but not used 

in HMM systems. First, one set of features is used to classify all phonemes in an HMM, 

whereas there is evidence that humans make use of a wide variety of cues. In particular, 

there is information about voicing, pitch, glottalization, bursts, and intensity that is de- 

tectable by humans but not well represented by the standard feature set. As perceptual 

studies indicate that humans make use of all available relevant cues, it is likely that the use 

of this information in computing the observation probabilities will improve the robustness 

of an HMM system. 

Second, the observation-probability classifier is trained to classify all frames within a 

(sub-)phonetic segment as a single (sub-)phonetic category. These estimates will be more 

unreliable at phonetic boundaries, because the speech signal is changing most rapidly 

during a transition, there are fewer transition examples than non-transition examples for 

training, and the data are more widely spread in the feature space due to coarticulation 

between two phonemes. However, perceptual studies by Furui, the analysis of spectrogram- 

reading techniques by Cole, and the (sometimes preliminary) speech-recognition and align- 

ment systems developed by Zue, Morgan, Hosom, and van Santen indicate that phonetic 



boundaries are well-motivated categories for classification, providing information that is 

complementary to the phonetic steady-state regions. The use of phonetic transition infor- 

mation in an HMM system may then also lead to more robust recognition, if the problems 

associated with an inherently large number of phonetic-transition categories can be ad- 

dressed. 

Third, although data-driven clustering of categories into phonetically-related groups 

is often done in order to make effective use of the training data, the relationships among 

phonemes that arise out of the physical constraints of the speech production process are 

not explicitly used. These relationships, if properly encoded, may provide additional 

structure to an HMM system for improved robustness. 

2.6 Summary 

There is a wide range of models of speech, depending on the application and the approach 

of individual researchers. From this array of models, we can draw some general conclusions 

that may be relevant in the design of automatic speech-recognition and phonetic-alignment 

systems. 

First, although no current automatic system makes use of all relevant information in 

the speech signal, humans seem to combine information from as many different relevant 

sources as  possible. This belief is seen in Liberman's statement that "every potential cue 

- that is, each of the many acoustic events peculiar to a linguistically significant gesture 

- is an actual cue. All possible cues have not been tested, . . . but no potential cue has 

yet been found that could not be shown to be an actual cue" [go]. Or, as Cole and Scott 

state, ". . . there are many different cues to each phonetic distinction, and listeners make 

use of all available cues" [28]. 

Second, there are several time-domain aspects of speech, notably coarticulation and 

duration, that are complex and not fully understood. Use of such information may improve 

automatic speech recognition performance (as was shown in Chung and Seneff's work), 

but improvements will be limited by the accuracy and robustness of the coarticulation and 

duration models. Current models, such as those proposed by Klatt, van Santen, Chung 



and Seneff, and ohman, are either still in the research stage or would be difficult to apply 

to the recognition of speech. 

Third, stochastic models of speech recognition usually perform better than rule-based 

models. This indicates that a small number of rules (or even a larger number of complex 

rules) does not robustly capture the variability found in continuous speech. However, as 

the success of statistical models depends on the way in which the data are represented [5] ,  it 

may be advantageous to utilize some of the known, fixed properties of speech in the design 

of statistical speech recognizers. This is, however, not easily accomplished; Fred Jelinek, 

who at the time was with a major IBM speech recognition project, somewhat facetiously 

claimed that the most effective technique IBM had found for decreasing error rates was to 

"fire a linguistn [105]. The reason that acoustic-phonetic or linguistic information has not 

been successfully integrated is not necessarily that our knowledge of linguistics is incorrect, 

but that it has proven very difficult to extract and reliably incorporate the features that 

represent this knowledge. As noted by Cole, this difficulty "stands as a major stumbling 

block to progress" [26]. 

Fourth, given the various models of human and machine speech recognition, it seems 

likely that the speech recognition problem is best approached at multiple levels, includ- 

ing specific acoustic features at a lower level, sub-phonetic (possibly including phonetic- 

transition) units at a higher level, as well as phonetic and syllabic levels. Examples of this 

hierarchical approach are seen in the TRACE model, as well as in Fletcher and Allen's 

model. The use of distinctive features in phonetics, in the TRACE model, and in spectre 

gram reading suggests that distinctive features may also be advantageous in approaches 

to automatic speech recognition. Results from the use of combined steady-state and tran- 

sition units by Morgan, Cravero et al., Hosom and Cole, and Glass and Chung indicate 

the potential of transition information. However, a clear advantage of the transition-based 

approach over context-dependent, general-purpose HMM or HMM/ANN systems has not 

been reported in the literature. 



Chapter 3 

Previous Work in Phonetic Alignment 

Of a review of 32 automatic alignment systems, 44% (14 systems) use HMM or HMM/ANN 

recognition to obtain the alignments, and another 25% (8 systems) use dynamic time 

warping (DTW). The remaining third (10 systems) employ a wide variety of approaches, 

including methods that use estimates of voicing [2], measures of spectral variation [116, 

1391, a hierarchical segmentation structure called a dendrogram [54,31], diphone detection 

[141, 731, multiple frequency bands [141], temporal decomposition [144], templates of 

phoneme sequences [9], and rules that encode acoustic-phonetic knowledge [89]. 

In this chapter, we will report on the agreement of manual alignments (inter-labeler 

consistency), discuss the HMM systems, the DTW approaches, a multiple-frequency-band 

method [141], two diphone-detection methods [141, 731, and a knowledge-based method 

[89]. Finally, we will describe the current state of the art in automatic phonetic alignment, 

based on the systems reviewed here. 

Automatic-alignment agreement with manual labels is most often reported in terms of 

what percentage of the automatic-alignment boundaries are within a given time threshold 

of the manually-aligned boundaries. For example, Brugnara et al. report that for their 

system, 88.9% of their automatic boundaries are within 20 msec of the manual boundaries. 

This type of result will be reported here as a percent "agreement" within the given thresh- 

old; in this example, Brugnara's system has 88.9% agreement within 20 msec. Results with 

a threshold of 20 msec will be reported when possible, as this threshold is commonly used 

and allows general comparison between systems. Relative differences in the agreement 

between two systems will be reported using the terminology "reduction in error," even if 

the alternate (although cumbersome) terminology such as "increase in agreement" may 



be technically more correct. 

3.1 Manual Phonetic Alignment 

Evaluation of manual phonetic alignments is subject to the same pitfalls as evaluation 

of automatic systems. As a result, manual alignment agreement is usually reported as 

inter-labeler agreement, with one set of manual alignments chosen as nominally "correct," 

and the other set of alignments measured in relation to the first set. 

Cosi et al. [32] reported on the manual alignment of 10 continuous-speech Italian 

sentences recorded at 16 kHz and aligned by three people. They found a mean deviation 

of 6 msec, about 55% agreement within 5 msec, and 93.5% agreement within 20 msec. 

Ljolje et al. [92] reported on the manual alignment agreement for 100 Italian utter- 

ances from two human transcribers, and found 80.0% agreement within 10 msec, 92.9% 

agreement within 20 msec, and 96.8% agreement within 30 msec. These results correspond 

well with those reported by Cosi. 

Wesenick and Kipp [I471 evaluated the manual alignment of German sentences by 

three transcribers. They found average agreement levels of 63% within 0 msec (perfect 

correspondence), 73% within 5 msec, 87% within 10 msec, and 96% within 20 msec. The 

transcribers used in this study were all graduate students in phonetics, and all had r e  

ceived an intensive training session. As part of this training, a number of conventions 

were established to ensure consistent labeling. One such rule was to always set a segmen- 

tation boundary where the values of the speech signal changed from negative to positive 

[146]. Not surprisingly, these results represent the best reported performance of human 

consistency on the task of phonetic alignment. 

Leung and Zue [89] evaluated 5 American English sentences as aligned by two people. 

The sentences were recorded using a microphone, and the text came from the Harvard 

list of phonetically-balanced sentences. Manual alignment required about 30 seconds per 

phoneme, and they reported approximately 80% agreement within 10 msec, 87% agreement 

within 15 rnsec, and 93% agreement within 20 msec. 

Cole et al. [25] reported on inter-labeler agreement for four languages, as labeled by 



both native and non-native speakers. For American English aligned by two transcribers 

(native speakers), they reported 79% agreement within 10 msec, which is marginally lower 

than the value reported by Leung. For German speech, they found 63% agreement within 

5 msec and 79% within 10 msec when comparing two native-speaker labelers, and 69% 

agreement within 5 msec and 81% agreement within 10 msec when comparing a native- 

speaker labeler and a non-native-speaker labeler. One point of interest is that although 

Wesenick, Cosi, Ljolje, and Leung performed their evaluations on 16-kHz microphone 

speech and Cole et al. performed their evaluation on 8-kHz telephone-band speech, the 

results are quite comparable. In addition, the results for Leung on English speech and the 

results for Ljolje on Italian speech are nearly identical, as are the results for English and 

German alignments reported by Cole. 

As none of the above evaluations were performed on the commonly-used TIMIT corpus 

of American English speech, we manually aligned 50 sentences from the test partition of 

TIMIT (1800 phonemes). We used the phoneme sequence as given in the TIMIT phoneme- 

label files, but removed all timing information prior to hand labeling. For evaluation, we 

(a) merged glottalized sounds with their surrounding voiced sounds, if possible, and (b) 

did not evaluate boundaries between stop closures and silence (as any such boundary is 

placed arbitrarily). We found 81.7% agreement with the standard TIMIT alignments with 

a threshold of 10 msec, and 93.5% agreement within 20 msec. These results correspond 

well with the results reported by Cosi, Ljolje, Leung, and Cole. 

In summary, there is fairly consistent agreement among humans labelers for continu- 

ous speech, even across language and channel conditions. There is an average agreement 

of 93.78% within 20 msec for the measured manual alignments, with a maximum of 96% 

within 20 msec for highly-trained specialists using a set of rigorous and well-defined con- 

vent ions. 

3.2 HMM systems 

As mentioned in Chapter 1, HMM and HMMIANN speech recognizers can be used to 

obtain phonetic alignments using a process called forced alignment. In forced alignment, 
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Figure 3.1: Inter-labeler agreement of alignments at various thresholds, as reported by six 
researchers. 

the HMM is used to recognize the input speech with the Viterbi search constrained to 

only the correct sequence of phonemes. The result of the Viterbi search contains the 

phonetic alignment (as well as the score for the known phoneme sequence). In cases 

where the words are known but the phoneme sequence is not, a dictionary can be used 

in combination with pronunciation rules to generate a phoneme sequence for each word; 

these sequences can then be concatenated together, with optional pauses between words, to 

arrive at a phoneme sequence for the entire utterance. Rapp noted that because "the task 

of phoneme alignment can be considered as simplified speech recognition, it is natural 

to adopt a successful paradigm of [automatic speech recognition], namely HMMs, for 

alignment" [123]. 

Wightman and Talkin [I491 developed an HMM-based system called "the Aligner," 

with the acoustic model training and Viterbi search implemented using the HTK Toolkit 

[150]. The Aligner uses a 10-msec frame rate and five mixture components per Gaussian 

to estimate the state occupation likelihoods. Non-speech sounds, such as breath noise 



and lip smacks, are collapsed into a single "silence" model. The system was trained on 

unvoiced and voiced stop closures, whereas most HMM systems train the stop closure 

and the stop burst as one unit. The system was trained using the TIMIT labels as an 

initial segmentation. In evaluation of their system, they did not use the TIMIT phonetic 

sequence directly, but they first mapped the words to canonical dictionary pronunciations, 

then performed forced alignment, and then mapped the forced-alignment phonemes to the 

TIMIT phoneme sequence; this allowed them to compare the phonetic boundary align- 

ments while still performing forced alignment from word-level information. Performance 

on the TIMIT test set was approximately 80% agreement within 20 msec. 

Brugnara et al. 115, 16, 31 developed an HMM forced-alignment system that uses spec- 

tral variation features in addition to the standard cepstral-domain features for computing 

state occupation likelihoods. The use of these additional features resulted in a 2% relative 

reduction in error. They also tried adjusting the phonetic alignments after the Viterbi 

search, based on the values of the spectral variation features, but found no improvement 

in performance. They evaluated this system on the TIMIT database, and reported 75.3% 

agreement within 10 msec, 84.4% agreement within 15 msec, and 88.9% agreement within 

20 msec. They also compared this system to an identical system trained without initializa- 

tion from the manual alignment information, and found that the system trained using the 

manual alignments had a 50% reduction in error compared to the system trained without 

manual alignments. 

Pellom [115, 1141 developed an HMM for forced alignment with a variety of speech en- 

hancement algorithms. This system uses a 5msec frame rate, &state monophone HMMs, 

gender dependent models, 16 Gaussian mixture components per state, and Gamma distri- 

bution transition probabilities. When phoneme-level transcriptions are not available, the 

system generates pronunciations using the CMU dictionary and word-juncture modeling. 

The system was trained and evaluated on TIMIT data that had been down-sampled to 

8 kHz, and agreement was 86.2% within 20 msec. Pellom evaluated the same system on 

the NTIMIT corpus of telephone-band speech and the CTIMIT corpus of cellular-band 

speech, using various noise-reduction techniques. For NTIMIT, the system with the best 

combination of speech enhancement algorithms had 76.8% agreement within 20 msec; for 



CTIMIT, the best-performing system had 66.7% agreement within 20 msec. 

Ljolje and Riley [93] built a three-state HMM system that has different types of pho- 

netic models, depending on the availability of training data. If enough data are available 

for a given phoneme in its left and right contexts, then a complete triphone model is used, 

although the left and right contexts are clusters of similar phonemes instead of individual 

phonemes. If sufEcient data are not available for a full triphone model, then a "quasi- 

triphonen model is attempted; this quasi-triphone model has the left state dependent on 

the left context, the middle state context independent, and the right state dependent on 

the right context. If sufficient data are not available for the "quasi-triphone" model, then 

left-context dependent and right-context dependent models are attempted. If sufEcient 

data are still not available, then context-independent phoneme models are used. The 

HMM uses full-covariance Gaussian probability density functions to estimate the state oc- 

cupation probabilities, a Gamma-distribution duration model, and a 10-msec £rame rate. 

The models were trained and evaluated on the TIMIT database. Two types of models 

were trained: those based on the manual alignments in the TIMIT database, and those 

based on a mixture of manual alignments and Viterbi re-estimation of the alignments. In 

either case, they found 80% agreement within 15 msec. 

Svendsen and Kvale I1361 first segment the speech into acoustically similar segments, 

and then use an HMM with the segment boundaries as anchor points during the Viterbi 

search. Segmentation is done using vector quantization, constrained so that all vectors in 

a cluster are contiguous in time (called sequence-constrained VQ or SCVQ). Using this 

method, they set a threshold to provide 2.5 times as many segment boundaries as phonetic 

boundaries, so that 98% of the manually-labeled phonetic boundaries are within 20 msec of 

a hypothesized segment boundary. Then, a three-state monophone single-mixture HMM 

(with the ability to skip the middle state) is trained on each phoneme. During the Viterbi 

search, a state transition is only allowed at the hypothesized segment boundaries. This 

system was trained and evaluated on the EUROMO corpus, which contains 16 kHz read 

speech from a small number of male and female speakers in different languages. Results 

on the single-speaker British-English test set showed 82.3% agreement within 20 msec, 

but this performance was probably negatively influenced by the lack of training data. 



Cox, Brady, and Jackson [33] developed an HMM system with a 10-msec frame rate 

to align read British-English speech for 2 adult males, 2 adult females, and one female 

child. The system was trained on manually-segmented data and then evaluated on the 

same training data. This method of training and testing on the same data was acceptable 

for their purpose (generating alignments for only those five speakers), but does not allow 

comparison of their results with speaker-independent systems. 

Ljolje, Hirschberg, and van Santen [92] trained a monophone (context-independent) 

three-state HMM system with Gaussian estimation of the state occupation likelihoods. 

Gamma distributions were used to model the phoneme durations, and the frame size was 

2.5 msec. The system was trained using an initial uniform-duration segmentation of the 

states instead of manual alignments. Training and evaluation was done on Italian utter- 

ances in carrier phrases. When mean biases were removed from the results, performance 

was 78.1% agreement within 20 msec. 

Pauws, Kamp, and Willems [I131 trained an HMM system using a three-step process, 

so that they did not have to initialize their training with manual alignments. Their pur- 

pose was to create alignments for use in text-to-speech, and they wanted high-accuracy 

alignments without the costs associated with manual alignment. Their system was trained 

and evaluated on isolated Dutch words recorded from a single speaker. In the first step, 

the speech was segmented into three broad phonetic classes, "silence," "voiced," and "un- 

voiced," using energy in different frequency bands, the zero crossing rate, and the spectral 

slope. This initial segmentation had 82% agreement within 20 msec. Given this segmen- 

tation, the next step was to use sequence-constrained vector quantization (SCVQ) within 

each broad phonetic class to align the phonemes. This process resulted in 70% agreement 

within 20 msec. In the third step, an HMM system was trained to recognize each phoneme, 

with the initial segmentation taken from the second-step results. This system used 6 states 

per phoneme for all phonemes except bursts, which had 2 states per phoneme. The frame 

rate of 5 msec enforced a minimum duration of 30 msec for non-burst phonemes and 10 

msec for bursts. Performance of this system was 89.5% agreement within 20 msec. Pauws, 

Kamp, and Willems then compared this system to a forced-alignment HMM system that 



was initialized with manual segmentations, as well as another system that was initial- 

ized with equal-duration segmentations. Performance of the manual-segmentation system 

was 96.0% agreement within 20 msec, and performance of the equal-duration system was 

76.14%. It should be noted, however, that the system trained with manual segmenta- 

tions was trained and evaluated on the same data, so that this result can not be used for 

comparison with speaker-independent alignment systems. 

Dalsgaard, Andersen, Barry, and Jorgensen [36, 37, 351 used a self-organizing neural 

network (SONN) to estimate the probabilities of distinctive phonetic features (such as 

"front," "central," "low," "high," and "labial," each with three possible values) in the 

speech signal. These distinctive features were subject to principle component analysis to 

determine the most relevant features for phonetic classification. The principle components 

were used to model phonetic likelihoods with Gaussian probability density functions, and 

then a Viterbi search was applied to these likelihoods to align the speech. Distinctive 

features were used so that the system could be easily applied to new languages. When 

evaluated on English speech from the EUROMO corpus using 15 principle components, 

agreement was 77.1% within 20 msec. 

Malfrere, Deroo, and Dutoit [96] compared alignments generated by dynamic time 

warping (DTW) of synthetic speech (TTSIDTW) with alignments generated by an HMM 

system. The HMM system was trained and evaluated on read French speech from a 

single speaker, and the system was initialized with the alignments from the TTS/DTW 

system (described below). The system was trained for several iterations using 16 Gaussian 

probability density functions per state. The alignments of this Gaussian system were then 

used to train a hybrid HMM/ANN system with a context window of nine frames. This 

final system had 84.0% agreement within 20 msec. 

Kipp, Wesenick, and Schiel [75, 1471 implemented an HMM system for use in cases 

where only the word-level transcription is available. This system performed simultaneous 

alignment of the canonical dictionary pronunciation and several pronunciation variants. 

The HMM system used context-independent models with between three and six states per 

phoneme, and a 10-rnsec frame rate. The HMM system was trained and evaluated on the 

PHONDAT-I1 corpus of German speech, and was initialized with manually-aligned data. 



The post-processing refinement adjusted the boundaries within a 10-msec window using 

simple timedomain techniques. This system had 84% agreement within 20 msec. 

In the approach developed by Stober and Hess, a baseline approach similar to semi- 

continuous HMMs (where all states in the HMM share the same set of Gaussians, with 

different mixture component weights for each state) was augmented with specific duration 

information that had been scaled to fit the length of the utterance. The duration informa- 

tion predicted from the length of the utterance was modified based on a "fitness function," 

which was computed using a genetic algorithm. This approach yielded agreement of 84% 

within 20 msec on the Bonner Prosodische Datenbank (BPD) corpus, and agreement of 

80% within 20 msec on the Phondat-I1 corpus. 

Rapp [I231 trained a forced-alignment system for German using Entropic's HMM 

Toolkit called HTK [150]. He used a 10-rnsec frame rate to report his results, but found 

that a 5-msec frame rate was also "acceptable." He reported 84.4% agreement within 20 

msec for German read speech. 

Wheatley, Doddington, et al. [I481 trained an HMM on specific non-speech sounds 

(silence, inhalation, exhalation, and lip smack) as well as using gender-specific phoneme 

models. They trained and evaluated their system on telephone-band continuous speech. 

Evaluation was done by automatically determining the phoneme sequence of each word, 

and then comparing the word-level alignments of the automatic system with manual word- 

level alignments. They reported that their system had a "failure rate" of 0.9% (2 out of 

212 sentences), and that "the overwhelming majority of words are correct at least to within 

a second; . . . the alignment is normally correct to within one or two 20-msec fiames." A 

lack of specific quantified results, and the fact that their system was trained and evaluated 

on telephoneband speech, makes a performance comparison with other systems difficult. 

In summary, the reported systems represent numerous refinements on the standard 

HMM procedure, but in all cases the basic process remains the same, namely estimating 

phonetic likelihoods at each frame, and then searching through these likelihoods with a 

constrained Viterbi search to determine the phonetic alignments. Direct comparison of 

the results from these systems is not possible, because even in the four cases where the 

systems have been evaluated on the same corpus (TIMIT), there are small differences in 



the implementation of the HMM systems that prevent a one-to-one comparison. In the 

case of Pellom's system, the TIMIT corpus was down-sampled to 8 kHz for training and 

evaluation, the frame rate was 5 msec, stop closures were merged with their succeeding 

plosives, and there were a total of 46 phonemes; in Brugnara7s system, training was done 

at 16 kHz, the frame rate was 5 msec, stop closures were not merged with their succeeding 

plosives, and there were a total of 48 phonemes. Ljolje and Riley trained at 16 kHz 

with a 10-msec frame rate, merged stop closures with their bursts, and used a set of 

47 phonemes. Wightman and Talkin trained at 16 kHz, used a 10-msec frame rate, did 

not merge stop closures, and used a set of 35 phonemes. If, however, we assume that 

the performance differences due to these variations are minimal (Wightman and Talkin 

claim "very similar" results for systems trained on 16 kHz and 8 kHz speech), then we can 

generally conclude that performance of HMM systems on the TIMIT database ranges from 

80% to 88.9% agreement within 20 msec. Performance on other databases and languages 

tends to be similar but slightly lower, with agreement levels &om 77% to 84% within 20 

msec. Only Wheatley et al. and Pellom evaluated systems on telephone-band speech, and 

severe performance degradation was reported; even systems with the best possible noise 

compensation had no more than 76.8% agreement within 20 msec for land-line telephone 

speech and 66.7% agreement within 20 msec for cellular speech. 

3.3 The DTW Approach to Phonetic Alignment 

Dynamic Time Warping (DTW)' is a method that aligns two sets of features in time, 

so that the error between the two features is minimized. It is a dynamic-programming 

algorithm, as is the Viterbi search; the Viterbi search, however, uses likelihood estimates 

and transition probabilities instead of a set of reference features and a distance metric. One 

of the earliest publications on using DTW for phonetic alignment of speech was published 

by Michael Wagner in 1981 [143]. This system is composed of the following stages: 

1. LPC analysis is used to determine the energy, approximate formant values, degree 

of voicing, and fundamental frequency at each 5-msec frame. The voicing and fun- 

damental frequency values are computed from autocorrelation of the inverse-filtered 
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Figure 3.2: Agreement of HMM-based automatic alignment systems with manual align- 
ments at various thresholds. 

signal. (Methods of extracting voicing and fundamental frequency will be covered 

in more detail in Chapter 6). 

2. The signal is classified into voiced, unvoiced, and silence segments by comparing the 

values from Step 1 to predetermined thresholds. Segments of less than 20 msec are 

merged with surrounding segments. 

3. Formant tracking of the voiced regions is done using points of expected reliability 

("anchor points") in the signal. 

4. The speech is aligned at the segment level using DTW to match the segments found 

in Step 2 (the "given sequence of segments7') with the segments expected based on 

the phonetic transcription (the "expected series of segmentsn). A "distance table" 

of costs associated with mapping a given sequence of segments from the set {voiced, 

unvoiced, silence) to an expected sequence of segments from the set {vowel, un- 

voiced fricative, voiced fricative, unvoiced burst, voiced burst, nasal or semivowel, 



stop closure, pause) is used, allowing the three types of segments from the acoustic 

analysis to be mapped to a set of eight broad phonetic categories. 

5. The speech is aligned at the phoneme level, using DTW to match the phonetic 

transitions in the transcription with the phonetic transitions in the signal. The 

values for phonetic transitions in the signal are computed from the change in energy 

for the unvoiced regions and the change in formant values for the voiced regions; the 

values for phonetic transitions in the transcription are determined by table-lookup 

of "expectedn energy changes and formant changes for the given phoneme pair. 

This unique system, one of the first to use DTW and phonetic transition information 

in phonetic alignment, was reported to work "reliably" at the segment-alignment stage 

and "well" at the phonetic-alignment stage, based on a small corpus of two speakers. 

The author notes the advantage of using formant derivatives instead of absolute formant 

values, because "energy and formant derivatives are far more speaker-independent than 

absolute energies or formants" [143]. 

Malfrere, Deroo, and Dutoit [96] performed automatic alignment by dynamic time 

warping (DTW) of synthetic speech; this type of system will be referred to as a TTSIDTW 

system. This system generates the speech with the MBROLA speech synthesizer [43] 

(using a constant FO value), and computes 36 spectral-domain features and energy values 

from the synthetic speech at each 10-msec frame. The same set of spectral and energy 

features is computed for the input speech. Finally, dynamic time warping is used to time- 

align the two utterances so that the differences (Euclidean squared distances) between 

the two sets of spectral features are minimized. The advantage of this approach is that 

no training database is needed; the disadvantage is that the synthetic speech from a 

single speaker serves as the only template. The TTS/DTW system was compared with 

an HMM alignment system that had been initialized using the output of this TTS/DTW 

system (described in more detail in Section 3.2). They evaluated the performance of both 

systems on data from a single French speaker. Results for the TTS/DTW system were 

82.1% agreement within 20 msec; the HMM system attained agreement of 84.0% within 

20 msec. Given the simple and constrained nature of the TTS/DTW system, and the 



fact that the HMM system was trained using the output of the TTS/DTW system, it is 

interesting that the HMM system had only a 10% relative reduction in error. 

Campbell 1191 used a TTS/DTW system to align a corpus of Japanese speech. He 

used several TTS voices and prosodic contours to minimize the differences between the 

synthetic and input speech. This system had 69% agreement within 100 msec, which is far 

less accurate than his reported 97% agreement within 100 msec for two manually-generated 

alignments. Gong and Haton [58] performed phonetic alignment using the TTS/DTW 

approach, but performed an iterative process of alignment and speaker adaptation to 

minimize the differences between the synthetic and input speech. They evaluated their 

system by training two continuous-speech recognizers using the outputs of the baseline 

(first iteration) and final-iteration alignment systems, respectively. The recognizer trained 

on the final iteration's output had a 50% relative reduction in error, compared to the 

recognizer trained on the baseline system's output. Saito [I291 proposed the use of the 

change in the fundamental frequency (delta-FO) for the alignment of speech. In Saito's 

system, DTW was used to align a new utterance with a reference utterance; then the 

boundaries obtained from DTW were adjusted based on the local maxima and minima 

in the delta-F0 contour. Saito reported average boundary-error reductions of 29% and 

16% for two test speakers by incorporating the delta-F0 information into the alignment 

process. Svendsen and Soong 11371 used DTW to align the input speech with "speaker- 

independent" phonetic templates obtained from spectral averages of different speakers. 

They reported agreement of 32% within 15 msec, 72% within 30 rnsec, and 92% within 45 

msec. Falavigna and Omologo [45] also aligned the input speech with phonetic prototypes, 

but they used a spectral variation function to emphasize changes in the signal, and they 

also used the signal's energy contour to refine the DTW estimates. This system had 61% 

agreement within 20 msec when evaluated on an Italian continuous-speech corpus. Finally, 

Chamberlain and Bridle [20] modified the DTW algorithm for aligning two utterances, so 

that long samples of speech could be processed on low-memory machines. 

In summary, DTW has been used, typically in conjunction with synthetic speech, to 

align the input utterance with a reference utterance. Although the methods of report- 

ing performance are sometimes different than the standard method of percent agreement 



within a given threshold, results in general do not seem as good as with HMM-based 

systems. 
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Figure 3.3: Agreement of DTW-based methods of automatic alignment with manual align- 
ments at various thresholds. 

3.4 Other Methods of Automatic Phonetic Alignment 

The HMM and DTW approaches to phonetic alignment are certainly not the only ones; 

about one-third of phonetic-alignment systems reported in the literature use some other 

method. In this section, we describe some of these alternative systems, focusing on the 

ones that are more relevant to this thesis. 

An alignment system developed by van Santen and Sproat [I411 applies edge detectors 

to spectral-domain representations and energy information in different frequency bands. 

This information is combined with a set of phonetic sequences for each word to arrive at 

the aligned phonetic sequence. Their approach focuses on detecting phonetic boundaries 

(referred to as diphones) rather than the conventional HMM approach of estimating the 

likelihood of each phonetic category at every frame of speech. They note that the spectral 



cues to different types of phonetic transitions are contained in different frequency bands; 

for example, a boundary between an /f/ and an /s/ has a decrease in energy below 2000 

Hz and an increase in energy above 4000 Hz; a boundary between an /f/ and a vowel, 

however, has an increase in energy in the 800 Hz to 2500 Hz frequency rasge. The authors 

group the set of possible diphones into two classes, "broad" and "narrow." Broad diphones 

can be categorized by their manner of articulation (such as voiced burst or unvoiced 

fricative) and can be identified based on energy changes in broad regions of the spectrum. 

Narrow diphones are characterized by more subtle differences, such as formant movement 

or insertion of a glottal stop. To account for these two types of diphones, van Santen and 

Sproat use two representations of the speech signal; the first representation is energy in 

five different frequency bands (for classifying the broad diphones), and the second is a 

mel-frequency scale FFT representation (for classifying the narrow diphones). They then 

perform edge detection on the frequency bands, detecting both quick changes and less 

localized changes. The frequency-band information is combined in such a way that exact 

synchronicity in time is not required. This information is combined using Bayes' rule to 

estimate the "overall acoustic cost" of each diphone at each time frame. For the narrow 

diphones, the mel-FFT representation is used with vectors of weights that characterize 

each diphone to locate the time point of greatest change between the two phonemes. van 

Santen and Sproat reported 50% agreement within 2 msec and 95% agreement within 6 

msec for a single speaker when evaluated on the training data, and 90% agreement within 

20 msec when evaluated on a single test speaker. Although the use of a single speaker 

in the test corpus does not guarantee that the results will generalize to multi-speaker 

corpora, the extremely high agreement argues for the merit of this method. 

Karjalainen, Altosaar, and Huttunen [73] also used boundary detection to automati- 

cally align speech; in their case, they used a set of neural networks. In a method similar to 

the work of van Santen and Sproat, they classify LLcoarse categories" of boundaries, such 

as "stop to vowel" and "vowel to nasal"; unlike van Santen and Sproat, they consider all 

boundaries to be "coarse," instead of splitting the boundaries into two classes. Using such 

coarse boundary detectors, they use 64 categories to cover the Finnish language. A sim- 

ple rule-based parser is used to match the boundary-classification outputs with the text 



transcription. The authors use LPC coding with a perceptually-warped frequency scale 

as input to the networks. These features, with a 100-msec context window and 10-msec 

frame size, are passed to a set of 64 feed-forward binary-output neural networks to classify 

the speech frames into the 64 boundary categories. The outputs of the neural network are 

smoothed, and smaller output peaks axe removed. The outputs of the neural network are 

then matched to the transcriptions using a simple three-step rule-based algorithm. When 

evaluated on Finnish isolated words from a single speaker, recorded at 22 kHz, the mean 

alignment error on the test set was 8.7%; this compares favorably with an HMM-based 

alignment system trained on the same data, which had an error rate of 17.6% 

Leung and Zue [89] developed a three-step procedure to align a phonetic transcription 

with its corresponding speech. In the first step, a classification of speech into broad pho- 

netic categories is done, "to determine robust acoustic-phonetic events that are relatively 

context-independent." The classification is done using a binary decision tree; at each node 

in the tree, a binary decision is made based on features of the input signal. A 5-msec frame 

rate is used. At each frame, an M-dimensional vector is generated, where each element in 

the vector represents some acoustic-phonetic knowledge or information. The vector values 

are smoothed, clipped, and normalized. The speech is classified into a total of 6 cate- 

gories: sonorant, obstruent, voiced obstruent, silence, nasal and voice-bar, and &unlabeled 

segments" that correspond to an energy dip in the middle of sonorant regions. Given this 

coarse segmentation, dynamic programming is used with acoustic-phonetic rules to map 

each coarse segment onto one or more phonemes. For example, a phoneme is not allowed 

to match a category outside of its class (obstruent can not match silence); also, a plosive 

such as Ith/ is not allowed to match a long obstruent because of duration constraints. 

Then, to match segments that correspond to more than one phoneme, heuristic rules are 

used; for example, "pre- and post-vocalic liquids next to certain vowels are assumed to 

have a duration that constitutes one-third of the syllable nucleus." If clear acoustic cues 

are available, "further segmentation is accomplished by a proper selection of feature pa- 

rameters and algorithms based on contextual information." This system was evaluated on 

three speakers reading a set of phonetically-balanced sentences which had been manually 

aligned. Results were approximately 75% agreement within 10 msec and 90% agreement 



within 20 msec. 

3.5 State of the Art in Phonetic Alignment 

For the systems reviewed above that were evaluated on microphone-quality speech, per- 

formance ranged from 77% agreement [36] to 90% agreement [16, 891 within 20 msec; 

variables that may affect performance include the method of training the system, the 

number of speakers in the training and test corpora, the type of corpus (isolated word or 

continuous speech), and the language used in training and testing. Average performance 

is about 84% agreement within 20 msec, and HMM-based systems tend to out-perform 

other systems. If we focus on the TIMIT corpus of continuous English speech, then the 

reported performances range from about 80% [I491 to 90% [16] within 20 msec, with an 

average agreement of 85% within 20 msec. 

Pellom and Hansen [115, 1141 were the only authors to train on one set of channel 

conditions and evaluate on a different set; this study showed performance on clean micro- 

phone speech of 86.2% within 20 msec, 76.8% within 20 msec for artificial telephone-band 

speech, and 66.7% within 20 msec for artificial cellular speech. 

Manual alignment, in contrast, is reported to have inter-labeler agreement between 

92.9% [92] and 96% [I471 within 20 msec, with an average agreement of 93.78% within 

20 msec. Manual-alignment agreement on the TIMIT corpus is 93.49% within 20 msec, 

which is a 41% reduction in error when compared to the best reported automatic results 

of 88.9% within 20 msec for TIMIT. The manual alignments of TIMIT are consistently 

more accurate than the automatic alignments across all thresholds, with a minimum error 

reduction of 25% within 5 msec, and with error reduction increasing steadily to 50% within 

40 msec. 

Figure 3.4 shows manual alignment agreement (the dotted line) on the TIMIT corpus 

as reported here, and automatic alignment performance on TIMIT (the solid line) as 

reported by Brugnara. 
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Figure 3.4: Comparison of manual alignment performance on TIMIT (dotted line), and 
best automatic alignment performance reported for TIMIT (solid line). 



Chapter 4 

Baseline System for Forced Alignment 

In order to evaluate the method of phonetic alignment proposed in this thesis, it is neces- 

sary to have a baseline system that has been trained on the same data and evaluated using 

the same metrics. This section describes our baseline system, which was developed under 

the HMMIANN framework commonly used at CSLU for speech recognition systems. 

4.1 System Parameters 

Most of the parameters used in training the baseline alignment system were determined 

from our experiments on training high-performance digit recognition systems [68]. These 

previous experiments investigated the use of PLP and MFCC features, delta features, the 

number of cepstral coefficients, the duration constraints used in the Viterbi search, and the 

type of context-dependent categories used in recognition. The set of "best" parameters 

was obtained based on word-level results from a large set of parameter combinations. 

Training was done on the TIMIT corpus [52] (for samples of microphone speech), the 

OGI Stories corpus [27] (for samples of telephone-band speech), and the OGI Portland 

Cellular corpus [27] (for samples of telephone-band cellular speech). This variety of corpora 

was used to make the system robust to several channel conditions, instead of being specific 

to one type of channel. 

The TIMIT corpus (a joint effort between MIT, Texas Instruments, and SRI) con- 

tains read speech from 630 speakers from eight dialect regions of the United States. The 

sentences were designed to be phonetically rich, and were recorded with a Sennheiser noise- 

canceling, head-mounted microphone in a quiet environment. The speech was digitized at 



16 kHz with 16-bit resolution. The corpus contains waveform data, text transcriptions, 

and time-aligned phonetic labels. 

The OG1 Stories corpus contains utterances of extemporaneous speech, where each 

utterance is approximately 50 seconds in length. These data were recorded over telephone 

channels. Speakers were recruited from throughout the United States, and were asked to 

speak on the topic of their choice for one minute. A total of 692 utterances were recorded, 

of which more than 200 have been transcribed with timealigned phonetic labels. The 

data were recorded from an analog line, and digitized in 8 kHz 16-bit linear format. 

The Portland Cellular corpus consists of utterances obtained from speakers who were 

using cellular telephones. Like the Stories corpus, the Portland Cellular corpus contains 

extemporaneous speech on a topic of the speaker's choice, and 200 calls have been tran- 

scribed at the phonetic level. The data were captured digitally from a T1 connection and 

saved in 8 kHz, 8-bit p-law format. 

One of the first steps in training the baseline system was to automatically map the 

hand-labeled phonetic symbols in the training corpora to a consistent set of symbols 

suitable for training. This mapping consisted of removing diacritic symbols, mapping the 

phonetic symbols to the Worldbet system, if necessary, and mapping non-speech labels to 

the silence (/.pau/) label. In addition, very short pauses (with duration less than 20 msec) 

were removed to improve the number of available contexts, and glottalization labels were 

merged into the neighboring vowel (or sonorant) or split between surrounding vowels. 

The sub-phonetic categories in the baseline system are similar to those used by Ljolje 

and Riley. Each phoneme is split into one, two, or three sub-phonetic parts. If split into 

two or three parts, the left part is dependent on the context of the preceding phoneme's 

broad category, the center part (if any) is context independent, and the right part is 

dependent on the following phoneme's broad category. Phonemes that remain as a one  

part phoneme can either be context-independent (for example, the characteristics of /. pau/ 

do not depend on either the preceding or following phoneme) or dependent on the following 

phoneme (for example, burst sounds such as /th/ have characteristics that depend on the 

following vowel, but are always preceded by silence). The left and right contexts for 

each category are not phonemespecific, but contain clusters of phonemes grouped into a 



common broad category. The phoneme clusters that comprise each context are specsc 

to each target phoneme, and each cluster of phonemes was determined using a tree-based 

clustering procedure. 

Transition probabilities for each state were set to be all equally likely, so that the 

implicit Geometric distribution found in standard HMM systems was removed. To make 

use of a priors' information about phonetic durations, the search was constrained by spec- 

ifying minimum and maximum duration values of each category. The minimum duration 

for a category was set to be the value at the 2nd percentile of all duration values for that 

category, and the maximum duration was set to be the longest duration for that category 

found in the training data. Percentile values were used instead of the absolute minimum 

durations to remove outliers. During the search, hypothesized category durations beyond 

the minimum or maximum value were penalized by a value proportional to the difference 

between the proposed duration and the specified minimum or maximum duration. 

The speech data were converted to a 16 kHz sampling rate, if necessary. A 160 Hz high- 

pass filter was applied to make the microphone-speech training data more closely match 

the telephone-speech data, and to remove low-frequency breath noise that is sometimes 

present in microphone speech. The system was trained using 13 PLP features (12 cepstral 

coefficients and 1 energy parameter) as well as their delta values. A window size of 16 

msec was used with a frame rate of 5 msec. Cepstral-mean subtraction (CMS) was used 

to reduce convolutional noise. 

As many as 8000 samples of each sub-phonetic category were taken from each corpus, 

for a total of up to 24,000 training samples per category. A context window of 5 frames 

was used, with frames taken at -60, -30, 0, 30, and 60 msec relative to the frame of inter- 

est. The resulting set of 130 features was input to a fully-connected feed-forward neural 

network, which was trained using back-propagation to estimate the likelihood of each sub- 

phonetic category. The training was adjusted to use the negative penalty modification 

proposed by Wei and van Vuuren [I451 instead of division by priors. The network had 

130 inputs, 300 units in the hidden layer, and 614 outputs. A total of nearly 2 million 

examples were used during training, corresponding to about 1 GB of data. Training was 

done for 45 iterations. The network results for iterations 15 through 45 were then applied 



Table 4.1: Performance of the baseline alignment system on the TIMIT, NTIMIT, and 
CTIMIT corpora. The thresholds for agreement are specified in each column heading. 

I C o r ~ u s  I 5 msec I 10 msec I 15 msec 1 20 msec 1 25 msec 1 30 msec 1 35 msec ) 

to the forced-alignment task on a development set of the TIMIT corpus, and the "best" 

iteration was determined by selecting the iteration with the minimum alignment error. 

TIMIT 
NTIMIT 
CTIMIT 

4.2 Performance 

This baseline system was evaluated on the TIMIT, NTIMIT, CTIMIT, Stories, and Port- 

land Cellular corpora. The baseline method has 89.95% agreement within 20 msec on 

TIMIT, which is a 9% reduction in error compared to the best reported automatic- 

alignment results on this corpus [16]. However, the manual iater-labeler agreement of 

93.49% within 20 msec on TIMIT is still a 35% reduction in error compared to this base- 

line. For the NTIMIT corpus, the baseline system has 83.23% agreement within 20 msec. 

The inter-labeler agreement of 89.66% on NTIMIT thus represents a 38% reduction in 

error over the baseline system. When evaluated on the CTIMIT corpus, the baseline sys- 

tem has agreement of 68.20% within 20 msec; the inter-labeler agreement of 80.74% is a 

39% reduction in error over the baseline performance. The baseline system has 87.35% 

agreement within 20 msec on the Stories corpus, and 82.51% agreement within 20 msec on 

the Portland cellular corpus, indicating that the artifical means of creating the NTIMIT 

and CTIMIT corpora by sending the TIMIT data through telephone and cellular channels 

does not create data that are representative of actual telephone or cellular speech. The 

performance of the baseline system on the TIMIT, NTIMIT, and CTIMIT corpora at 

several thresholds is given in Table 4.1, and the level of inter-labeler agreement on these 

corpora is given in Table 4.2. 

The performance of this baseline system, the system in the literature with the best 
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Table 4.2: Level of inter-labeler agreement on the TIMIT, NTIMIT, and CTIMIT corpora. 
The thresholds for agreement are specified in each column heading. 

I Corpus 1 5 msec 1 10 msec 1 15 msec 1 20 msec 1 25 rnsec 1 30 msec 1 35 msec I 
-. - 

NTIMIT 46.23 71.94 84.29 89.66 92.34 93.91 95.14 
CTIMIT 44.51 61.87 73.61 80.74 84.65 87.92 91.03 

reported results on TIMIT, and manual alignments as evaluated on TIMIT are plotted 

in Figure 4.1. The performance of this system as compared to manual alignments on the 

NTIMIT and CTIMIT corpora are shown in Figures 4.2 and 4.3, respectively. (The levels 

of manual agreement on the TIMIT, NTIMIT, and CTIMIT corpora were obtained by 

manually aligning 50 randomly-selected sentences from each corpus, and comparing these 

alignment results with the canonical TIMIT alignments). 
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Figure 4.1: Performance on the TIMIT test set for manual alignments (dashed line), best 
reported results (by Brugnara et al., dotted line), and the baseline system used in this 
thesis (solid line). 
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Figure 4.2: Performance of manual labeling (dotted line) and baseline system labeling 
(solid line) on the NTIMIT corpus. 
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Figure 4.3: Performance of manual labeling (dotted line) and baseline system labeling 
(solid line) on the CTIMIT corpus. 



Chapter 5 

Proposed Approach 

With performance of state-of-the-art forced alignment being between 35% and 40% worse 

than observed manual alignments on TIMIT, NTIMIT, and CTIMIT, it is clear that 

performance improvement should be possible. Our approach to realizing performance gains 

is to understand and improve upon the weaknesses of current HMM/ANN systems. We 

continue to rely on the HMM/ANN model as a foundation, because of its solid framework 

and superior results when compared to other systems. However, given our knowledge of 

human speech production and recognition, we believe that the H.MM/ANN model can be 

improved to incorporate more of the information that is used by humans when recognizing 

speech, thereby bringing performance closer to that of human levels. Our hypothesis is 

that the integration of such acoustic-phonetic information into an HMM/ANN alignment 

system will significantly improve its agreement with manual alignments and its robustness. 

We base our thesis on the assumptions that the multiple-cue model of speech is valid, 

that invariant cues can be identified, and that special, inherently-complex decoders (as in 

Liberman's motor theory) are not required for automatic speech recognition. 

The proposed model addresses the integration of acoustic-phonetic information from 

three angles: with the integration of acoustic-level features, with the use of phonetic tran- 

sition information, and with the use of distinctive phonetic features. For the acoustic-level 

features, we supplement the current HMM/ANN spectral-domain features with specific 

acoustic-phonetic features believed to be important for speech perception. For phonetic 

transition information, we identify not only the context-dependent sub-phonetic categories 

of current HMM/ANN systems, but we simultaneously identify and integrate phonetic 

transition categories. For the distinctive phonetic features, we combine distinctive feature 



information representing phonetic manner, place, and height, to arrive at a phoneme-level 

representation. Each of these levels will be described in more detail in this chapter and 

the following chapters. 

In the implementation of this approach, we have assumed that the correct phonetic 

sequence of each word is known, in order to separate word-level influences from phoneme- 

level alignment performance. 

5.1 Acoustic-Level Features 

Current HMM/ANN systems use features that represent spectral information, energy, 

their delta values, and possibly their delta-delta values (acceleration coefficients) at each 

time frame. Usually the spectral information is warped to emphasize perceptually relevant 

aspects, and either cepstral-mean-subtraction (CMS) or RASTA processing is used to 

attenuate convolutional (channel) noise. This feature set represents a generic view of the 

speech signal with values that are useful for classification of all phonemes. However, such 

features do not give a complete representation of all relevant information in the speech 

signal. For example, knowledge that a frame of speech is voiced is clear evidence that the 

corresponding phoneme can not be a voiceless fricative or affricate; a frame with vowel-like 

spectral characteristics but a lack of voicing is more likely to be the consonant /h/ than if 

voicing were present. Also, knowledge that a kame of speech is glottalized increases the 

likelihood that the frame is at the beginning or ending of a word. The standard feature 

set, however, does not capture explicit information about voicing or glottalization. These 

types of features will be referred to here as "acoustic-level features," to distinguish them 

from other types of features such as phonetic transitions or distinctive phonetic features 

(described below in Sections 5.2 and 5.3). &om the results of the research by Liberman 

as well as Cole and Scott, it is believed that humans use as many relevant cues as possible, 

which motivates us to incorporate acoustic-level features that are complementary to the 

standard feature set. 

Perceptually-relevant features, such as voicing and formants, have been used before 

in speech recognition, but without dramatic success [65, 1301. Improvement has been 



limited because of insufficient accuracy in their extraction. Experiments that use the 

"correct" values for voicing, broad-category features, or formants (as determined by man- 

ual assignment or from the phonetic transcription), instead of values extracted from the 

speech signal, have demonstrated at least twice the amount of error reduction [65, 1301. 

As a result of the discrepancy between the theoretically-possible results and the actually 

obtained results from extracted parameters, we focus on developing methods for robust 

extraction of perceptually-relevant features. 

Several criteria were used in selecting the features for investigation. First, we focused 

on features that are not well represented by the standard spectral-domain features; we 

assumed that if the standard feature set implicitly captures the information of interest 

(such as formant movement), then the neural-network classifier will not benefit greatly 

from redundant information supplied in a different form. Second, as models of phoneme 

duration, coarticulation, and other time-domain aspects of speech are still in preliminary 

stages [79, 221, we restricted our investigation to features that are local in time and can 

be determined using fixed time windows. Third, we applied our knowledge of speech pro- 

duction, human speech recognition, and automatic speech-recognition systems to identify 

features that may provide relevant information about phonetic identity. Fourth, extrac- 

tion of a feature from the speech signal must be computationally tractable, as the final 

alignment system is required to be significantly faster than manual alignment. 

Based on these criteria, we developed a list of five features that merited further in- 

vestigation. These features are intensity discrimination, voicing, fundamental frequency 

(FO), glottalization, and burst-related impulses. 

Intensity Discrimination. We implement a measure of intensity discrimination in au- 

tomatic speech recognition. Intensity discrimination has been modeled in psycho- 

logical studies as a relative change in energy on the log scale [102]. This model has 

been found to provide a good description of human detection of intensity changes. 

As changes in intensity provide useful information about phonetic transitions, a 

perceptually-motivated model of intensity discrimination may be useful in automatic 

phonetic alignment. 



Voicing. Voicing is a measure of periodicity in the waveform that occurs when the vocal 

folds vibrate. Voicing information can be used to distinguish between phonemes 

(such as /s/ and /z/, or /h/ and a vowel); the time from the current frame until 

the onset of voicing (voice-onset time) also provides information about the identity 

of plosive consonants ( /ph/, /th/, /kh/, /b/, /d/, /g/, /g/, and /&I). Extracting 

information about voicing is a well-researched area, and yet a definitive, reliable 

method does not exist. Voicing extraction is particularly difficult on telephone-band 

speech, in which the lower regions of the frequency spectrum (which may contain 

the first few harmonics related to voicing) are severely attenuated. 

Fundamental Fkequency. Fundamental frequency, or FO, is the rate at which the vocal 

folds vibrate during voiced speech. As Saito noted [129], a change in FO may indicate 

a phonetic boundary between voiced consonants and vowels. Methods of extracting 

FO are also quite numerous, but again a definitive, robust method is still an area of 

research, and FO extraction on telephone-band speech is considered a difficult topic. 

Glottalization. Glottalization is defined as aperiodic or extremely slow vibration of the 

vocal folds, which sometimes occurs at word boundaries. Glottalization may be the 

only cue that identifies a word boundary, if the spectral characteristics of the ending 

phoneme of the first word and the beginning phoneme of the second word are the 

same. (Examples of this can be seen in the words "heavy yoke" and "E.E.") 

Impulses. Impulses are defined here as the sudden increase in energy that occurs at the 

beginning of a burst. Identification of impulses helps to identify plosive consonants 

and locate their initial boundary. There are some previously-published methods 

for identifying bursts, and we will review the literature and propose and evaluate a 

perceptually-motivated method. 

The feature set we consider for this thesis is not a complete set, in that it does not 

attempt to represent all of the features that are believed to be used by humans during 

speech recognition, nor all of the possible features that could be used. The set is, however, 

composed of features that are thought to be relevant to speech perception, are not well 



represented by current spectral-domain features, have well-researched models, do not rely 

on higher-level phonetic knowledge, and are computationally tractable. 

Integration of these features into a speech recognition system can be accomplished by 

early integration (during phonetic classification by the ANN or GMM), middle integration 

(during the Viterbi search), or late integration (by performing post-Viterbi combination 

of word-level outputs). Early integration has the advantage that decisions are made while 

all of the relevant information is available and can be combined in a non-linear way. As 

the neural network can easily take any fixed number of values as input and arrive at a 

theoretically optimal classification of the input space, we integrate the proposed additional 

features into the alignment system by appending them to the existing set of PLP features 

for input to the neural network. 

The contribution of this thesis to the area of feature extraction for phonetic alignment 

is in the development of new methods for robust extraction of acoustic-level features. 

5.2 Phonetic Transit ion Information 

5.2.1 Motivations for Phonetic Transitions 

In most HMM and hybrid HMM/ANN systems, the categories for recognition are context- 

dependent sub-phonetic units that are trained on all frames within a sub-phonetic seg- 

ment. For example, in our baseline system, a category can correspond to a whole, half, or 

third of a phoneme, and the left and right sub-phonetic categories are dependent on the 

preceding and following phonetic contexts, respectively. Each state in the HMM is then 

associated with a single phonetic-based category, and the state transition information is 

determined using a priori information in the training set. As a result of this framework, 

the likelihood of a state transition is not dependent on information in the speech sig- 

nal being recognized. Furthermore, classification results may be less reliable at phonetic 

boundaries, because the speech signal has a higher degree of variability during a transi- 

tion, there are fewer transition examples than non-transition examples for training, and 

the data are more widely spread in the feature space due to coarticulation between the 



two phonemes. However, perceptual studies by Furui [51], the analysis of spectrogram- 

reading techniques by Cole [29], the (sometimes preliminary) speech-recognition systems 

developed by Zue and Glass, Cravero, Morgan, and Hosom [56,34, 106, 671, and the p h e  

netic alignment system developed by van Santen and Sproat [I411 indicate that phonetic 

boundaries are well-motivated categories for classification, providing useful information 

that is complementary to the phonetic steady-state regions. The development of an HMM 

system that incorporates acoustics-dependent phonetic transition information may then 

lead to more robust recognition and alignment. 

5.2.2 Previous Approaches to Phonetic Transitions 

In the MIT SUMMIT system [56], the likelihoods of "events" are computed, where an event 

corresponds to a significant change in the signal acoustics. Given a particular segmen- 

tation from a segment-based recognizer, each event may be considered either a phonetic 

boundary or internal to a phoneme. The likelihood of each observed event's acoustics is 

then determined, and the total likelihood of the series of events in the segmentation is 

computed by multiplication. This likelihood can be integrated with the segment-based 

phoneme likelihood by assuming independence and multiplying the values. 

In a system developed at OGI [67], a hybrid HMM/ANN system classifies speech into 

context-independent phonemes or phonetic transition regions (modified diphones). The 

diphone units used in training are up to 120 msec in length; if a phoneme in the training 

set is longer than 120 msec, then a context-independent phonetic category is created in 

the middle of that phoneme. During the Viterbi search, the context-independent steady- 

state region is made optional, in order to account for rapid speech. In this approach, 

the probabilities of steady-state and transition categories are considered independent, just 

as all categories are considered independent in a standard HMM system. However, a 

relationship between these two types of categories is enforced during the Viterbi search, 

namely that steady-state and transition categories must occur in alternating sequence. 

In a system developed at CSELT [34], the units for classification are context indepen- 

dent phonemes and phonetic transitions, as in the OGI system. A major difference is that 

the CSELT system does not model every possible phonetic transition, but only the ones 



that are thought to be perceptually important. Similarly, some phonemes (such as plo- 

sives) are not modeled by context-independent units. This approach reduces the number 

of categories in a general-purpose recognizer to 123 (22 for context-independent phonemes, 

and 101 for phonetic transitions). A second difference is that in the OGI system, phonetic 

transition regions are allowed to occur over a variable number of frames, whereas in the 

CSELT system, the phonetic transitions are restricted to a contiguous series of four frames 

(40 msec). 

In the Stochastic Perceptual Auditory-event-based Model (SPAM) approach [106], 

transition-based recognition and phonetic-category recognition are performed indepen- 

dently and then combined after each Viterbi search. The transition-based recognizer 

has phonetic-transition categories and a single "non-transitioning state" ("nts") category. 

The transition categories are associated with states that have no self-loop, and these 

states are separated by the "nts" state which does have a self-loop. This recognizer and 

a standard context-independent phonetic-category recognizer are run separately, and the 

Viterbi-search results from each recognizer are combined to obtain a single score for each 

word. Although this approach overcomes the weakness of using a single classifier for 

both phonetic-category and transition recognition, it is similar to the SUMMIT system in 

that the transition and phonetic-category information are combined at a late stage in the 

recognition process. 

In the theoretical domain, Bourlard and Morgan proposed Discriminant HMMs, in 

which the likelihood of a state is estimated given an observation of speech data. This is 

in contrast to the standard HMM approach, in which the likelihood of an observation is 

estimated given a particular state. In Discriminant HMMs, the likelihood of observing a 

given state is dependent not only on the observation vector, but also on the prior state, 

which can be represented as 

~(q:lqk-l,xn, 6 )  

where q: is state m at time n; is state k at the previous time n - 1, xn is the 

observation data, and 8 is the set of model parameters. This dependence of the current 

state on the previous state is related to the topic of state transitions, in that in both 

cases the relationship between the previous state, the current state, and the observed 



speech must be learned. Although this technique is appealing, they reported that "facing 

numerous problems, this approach was however simplified by . . . disregarding the previous 

state in the conditional." Division by the state priors then reduces this technique to the 

more conventional HMM framework. 

Bengio proposed the use of asynchronous Input-Output HMMs (called asynchronous 

IOHMMs or just IOHMMs) to the problem of speech recognition [8]. In standard HMMs, 

the speech observations are considered outputs (states "generate" observations), and the 

state sequence that best matches this known output is computed. In IOHMMs, in contrast, 

the speech observations are considered the input and the phoneme sequence is the output. 

Both the state emission probabilities and the state transition probabilities are dependent 

on the observed speech input. For the task of speech recognition, in which the input 

sequence of speech observations is generally longer than the output sequence of phonemes, 

there is an additional "emit-or-not distribution"; when a state is entered, a decision is 

made whether or not to emit a phoneme output based on this emit-or-not distribution. The 

stated potential advantages of IOHMMs over conventional HMMs include the following: 

(a) Training is discriminant (which is also true for hybrid HMM/ANN systems), 

(b) The emission and transition distributions can be modeled using ANNs (whereas in 

conventional HMM/ANN hybrids, only the emission distributions are modeled by 

ANNs), and 

(c) The reduction from the large number of possible outputs in standard HMMs (the 

number of possible output observations) to the smaller number of possible outputs 

in IOHMMs (the number of phonemes) "reduces the problem of imbalance between 

transit ion probabilities and emission probabilities." 

We are not aware of any implementations of IOHMMs for speech recognition, which 

limits discussion to the theoretical domain. 

Finally, Riis and Krogh [I271 proposed an approach called "hidden neural networks" 

(HNNs); as part of this approach, neural networks can be used to independently estimate 

the probability of state occupation as well as the probability of state transition. Riis and 



Krogh give no details about how the transition networks should be implemented, but they 

report that they "did not observe any improvements using transition networks," and so 

in their final system all models "use standard HMM transition probabilities." As a result, 

their final system is similar in many ways to more standard HMM/ ANN systems, although 

the method of training the ANNs differs. 

5.2.3 Proposed Approach to Phonetic Transitions 

Our proposed approach to integrating transition information is motivated by the impor- 

tance of phonetic transitions and by the desire to integrate this information with phonetic- 

category information early in the decision-making process. In standard HMMs, the prob- 

ability of an observation sequence given a state sequence is defined as the multiplication 

of the likelihoods of each observation at  each state: 

where 0 is the observation sequence (010203.. . oT) from time 1 to time T and q is the 

state sequence (q1q2q3.. . qT). In our system, we define the probability of an observation 

sequence given a state sequence to be the multiplication of the likelihoods of each obser- 

vation given the current state and the transition from the previous state to the current 

state: 
rn 

where t r a n ~ ( q ~ - ~ , q ~ )  represents the transition from state qt-1 to state qt. In the case 

where qt-1 is the same state as qt, trans(qtWl, qt) represents the probability of a self-loop, 

independent of which state is currently occupied. We can then use Bayes7 rule to transform 

this so that the state information is dependent on the observation vector: 

We then assume independence between the state transition and the state occupation 

probabilities: 



and factor this into three separate parts: 

Finally, noting that a neural network estimates the probability of each state given an 

observation vector, and that our training has been modified to implicitly divide by the 

prior probability of the state, we obtain 

~ ( o t  Itrans(qt-1, qt ) , qt ) = ANNtrans,,-, ,qt (ot ) - ANNphonq, (ot ) p(ot ) (5.6) 

where ANNtrans,,-,,,,(ot) is the neural-network estimate of the state transition prob- 

ability from state qt-1 to state qt given the observation ot, and ANNphon,,(ot) is the 

neural-network estimate of the phonetic-category probability at state qt given the ob- 

servation. (For ANNtran~~,- , ,~,(o~),  if the phoneme corresponding to qt is equal to the 

phoneme of state qt-1, then the estimate is of the likelihood of remaining in the same 

phoneme, regardless of the identity of the particular state.) Because p(ot) is constant for 

any given utterance, the multiplication of the neural-network outputs is a scaled estimate 

of the likelihood of the observation sequence given the state sequence. 

This framework allows us to include, for each observation, information about the state 

occupation and state transition likelihoods. We construct two separate networks, one each 

for estimating transition probabilities and phonetic-category probabilities. The transition 

classifier estimates the probability of phonetic transitions, with a single "non-transitioning 

state" (as in the SPAM model) to estimate the probability of a self-loop or phoneme- 

internal transition. For the work done in this thesis, the transition classifier depends on 

the use of distinctive phonetic features, which will be discussed below, and so a discussion 

of the implementation details will be postponed until Chapter 7 

In summary, the transition-based systems that have been implemented perform late 

integration of phonetic category and phonetic transition probabilities, or use a single classi- 

fier to estimate both (context-independent) phonetic steady-state and phonetic transition 

probabilities. The theoretical approaches that have been proposed have, upon implemen- 

tation, not included transition probabilities that are dependent on the input observations. 



The proposed approach combines the phonetic category and phonetic transition informa- 

tion at an early stage in the classification process, trains separate classifiers for phoneme- 

based and transition-based recognition (thereby making context-dependent modeling of 

the phonetic categories more practical), allows discriminative training of the transition 

probabilities, and is computationally tractable. 

5.3 Distinctive Phonetic Features 

5.3.1 Motivations for Distinctive Phonetic Features 

In most HMM and HMM/ANN systems, the basic unit of recognition is the phoneme. Ac- 

cording to linguistic theory, each phoneme can be further decomposed into some number of 

independent and distinctive features; the combination of these features serves to uniquely 

identify each phoneme. The use of distinctive features in phonetics, in the TRACE model, 

and in spectrogram reading suggests that these features may also be advantageous in a p  

proaches to automatic speech recognition. The motivations for using distinctive phonetic 

features are varied, and include the belief that distinctive features will "minimize extra- 

linguistic information'' such as speaker variability and signal distortions [82, 771, or that 

they will provide better modeling of coarticulation [77]. Another motivation is based 

on belief in Liberman's motor theory, which postulates that phonetic recognition is only 

possible through the identification of physical motor gestures, and such gestures may be 

closely related to, or mapped to, distinctive features. 

In our case, the primary motivation for using distinctive phonetic features is to increase 

the amount of training data per node in the neural-network. By training on sets of 

independent distinctive phonetic features, each with a smaller number of categories than 

the context-dependent phonetic and phonetic-transition categories, and by then combining 

the probabilities of these (independent) categories according to perceptually-motivated 

rules, the networks can be trained with more data per node. A second motivation is to 

allow our proposed system to be easily extended to other languages; for example, we hope 

that by the addition of a distinctive feature such as lip rounding, we can gracefully extend 

our system that has been trained on English speech to process German speech as well. 



If a phonetic-based system were used, the network would have to be entirely retrained. 

A third motivation is to enable research on pronunciation modeling. For example, the 

final vowel in the word "seven" can be pronounced in many ways; instead of mapping 

the wide variety of pronunciations to a single quasi-phonetic unit (as is done currently), 

and instead of providing a large number of alternative pronunciations in the dictionary, a 

more elegant solution may involve specification of a word in terms of features that uniquely 

specify that word. In the case of "seven" in a digit-recognition system, nearly any vowel 

is permissible, and with the use of distinctive phonetic features, it may be easily possible 

to specify an inclusive pronunciation such as "any vowel" or "any mid vowel" without 

resorting to a fixed number of alternate phonetic pronunciations. This approach reduces 

the search space by simplifying the pronunciation models and provides generalization to 

pronunciations that the creator of the lexicon may not have considered. Finally, we note 

the possibility of using distinctive phonetic features in a chained HMM, which may allow 

the features to overlap naturally and provide better coarticulatory modeling. 

The topic of distinctive phonetic features can be split into two issues: what features 

will be used, and how these features will be combined into a phoneme-level representation. 

The number of possible distinctive features is quite large; a published review of distinctive 

features revealed about 40 different feature combinations used in various research studies 

(not necessarily providing unique coverage of all phonemes) [38]. As a result, the set of 

distinctive features used in the research and development of a speech recognizer and the 

values that these .features can acquire will depend on the goals of the research. 

5.3.2 Previous Work on Distinctive Phonetic Features 

Kirchhoff used a set of five features, where each feature had from three to ten values 

[77]. Each feature was learned with a separate neural network, and the distinctive-feature 

network outputs were combined with the use of another network that mapped distinctive 

feature values to phonemes. Kirchhoff found that an HMM/ANN system trained in this 

way had word-level performance comparable to a baseline HMM/ANN system. Combina- 

tion of the baseline and distinctive-feat ure systems by multiplication of the phonemelevel 

neural-network outputs resulted in significantly better word-level performance across a 



range of noise conditions. 

Koreman, Andreeva, and Barry [82] used Kohonen networks (neural networks that are 

capable of unsupervised learning) to classify standard cepstral features into 14 distinctive- 

feature values using three classes (Place, Manner, and Voicing). The distinctive-feature 

outputs from the Kohonen networks were used as input to a standard HMM system for 

recognition of consonants in English, German, Italian, and Dutch. They found that this 

system performed much better than a baseline HMM system on infrequently-occurring 

consonants, especially language-specific consonants. This supports our motivation of using 

distinctive phonetic features for multi-language system development. 

In work related to the motor theory, Deng and Sun [42, 411 created an automatic 

speech-recognition system that recognizes five articulatory features (lips, tongue blade, 

tongue dorsum, velum, and larynx) as an intermediate stage between the acoustic signal 

and its phonetic representation. Each feature has a range of values; five values for the lip 

positions, seven for the tongue blade, twenty for the tongue dorsum, two for the velum, 

and three for the larynx. In this system, changes in the feature values are not required 

to be synchronized with the phonetic boundaries, allowing a more flexible modeling of 

coarticulation. The combination of distinctive features is obtained by using separate 

HMM states for the different possible feature combinations; the total number of required 

states is reduced by using context-independent categories. Evaluation of this system on 

the TIMIT database resulted in performance comparable to a context-dependent HMM 

system, and significantly better performance than a context-independent baseline HMM. 

In similar work, Erler and F'reeman [44] used a feature set with seven distinctive 

features, where each feature consisted of a set of between two and six values. These features 

were derived from the work of Browman and Goldstein on articulatory speech synthesis. 

This larger feature set resulted in over 7000 states in an ergodic (fully-connected) HMM. 

Recognition through the HMM states was performed using analysis-by-synthesis instead 

of the standard Viterbi search, "in order to determine the intended articulations" rather 

than the realized articulations. In the analysis-by-synthesis method, candidate utterances 

are converted to articulatory targets, and rules are applied to find the possible paths 

through the model represented by the candidate targets. The likelihoods of these paths 



are computed given the input speech observations, and the path with the highest likelihood 

is selected. They obtained phoneme-level accuracy of 79.6% on a large-vocabulary isolated 

word task, which is comparable to the baseline result of 79.9%. 

Hiibener and Carson-Berndsen [69] trained GMM classifiers on 24 binary-valued dis- 

tinctive features; the features were motivated by the work of Hess and modified according 

to performance of the classifiers. They obtained fiame-level phonetic accuracy from 77% 

to 98% on a single speaker, depending on the type of features used to specify the phoneme. 

They then used the distinctive-feature outputs in two ways: (a) to train an HMM system, 

which resulted in phoneme-level performance comparable to a baseline system, and (b) as 

input to a L'phonological event parser" that uses distinctive features to construct syllable 

and phonological hypotheses. This parser is able to specify topdown constraints, allow- 

ing only permissible syllable and phonetic structures. Using this parser, they obtained a 

phoneme recognition rate of 73%. 

Schmidbauer [I311 used the distinctive features of Manner, Place, and Height, with 

seven values for Manner, seven Place features, and five Height values. These features 

were then used as input to an HMM system for phonetic classification. Schmidbauer 

used formant values, energy, zero crossings, and a "voice-bar" feature instead of cepstral- 

domain features in order to classify the distinctive features. Evaluation of phoneme-level 

performance on a set of three speakers resulted in a 10% reduction in error compared to a 

baseline (context-independent) HMM system trained with mel-frequency cepstral features. 

As noted in Section 4.2, Dalsgaard and Andersen [35, 371 used distinctive features to 

phonetically align speech in an HMM framework. Dalsgaard and Andersen used a self- 

organizing neural network to estimate the probabilities of distinctive phonetic features. 

These features were subject to principle component analysis to determine the most relevant 

features for phonetic classification. The principle components were used as input to a 

standard HMM system. Distinctive features were used so that the system would be easily 

applicable to new languages. When evaluated on English speech from the EUROMO corpus 

using 15 principle components, agreement was 77.1% within 20 msec. 



5.3.3 Proposed Approach for Distinctive Phonetic Features 

In our approach, we use three distinctive features (Manner, Place, and Height I), where 

each feature has a set containing six to eleven values. The basis for our feature set comes 

fiom Ladefoged 1851, although we have modified it slightly to ensure coverage of 43 English 

phonemes using an economical number of features. For steady-state phonetic categories, 

we use a combination of context-dependent and context-independent categories, depending 

on the type of feature. Training and recognition is done with a neural-network classifier 

using standard cepstral-domain features as well as the acoustic-level features described in 

Section 5.1 and Chapter 6. The distinctive-feature information that is output from the 

neural network is combined using Massaro's Fuzzy-Logic Model of Perception (FLMP) 

[loo] to obtain a context-dependent phoneme-level representation prior to the Viterbi 

search. Both phonetic steady-state and transition probabilities are obtained in this way. 

This approach to using distinctive features will be discussed in more detail in Chapter 7. 

The contribution of this thesis to the area of phonetic modeling in HMM systems is 

in the combination of distinctive phonetic features using perceptually-motivated rules to 

arrive at context-dependent within-phoneme probabilities as well as phonetic-transition 

probabilities. Previous approaches to integrating distinctive features have either used 

a "higher-level" GMM or neural-network classifier to classify the distinctive features into 

phonemes, or the states in the HMM have been specified as a combination of distinctive fea- 

tures. Because one of our motivations is to increase the amount of training data per node 

in the network, passing the distinctive feature values to another phoneme-specific classifier 

would defeat this purpose. The FLMP provides a perceptually-motivated approach that 

does not require training, but still maps from distinctive features to phonemes. Although 

the FLMP has been illustrated theoretically in terms of distinctive features [Ill], a com- 

plete speech recognition or alignment system using FLMP for combination of distinctive 

features has not been reported in the literature. 

'We will follow Ladefoged's example [85] and use capital letters when naming a feature, and enclose 
the values that the feature may have in square brackets. 



5.4 System Overview 

The proposed alignment system can now be described in terms of its component parts. 

This system is illustrated in Figures 5.1 and 5.2. Figure 5.1 shows the inputs to one of the 

neural networks, with the standard PLP feature set as well as the other acoustic-level fea- 

tures. The number of outputs from all networks is much smaller than if context-dependent 

phonemes were being classified. Figure 5.2 shows how each of the networks from Figure 5.1 

are connected; there are three distinctive-feature networks for the within-phoneme clas- 

sification, with one network each for estimating Manner, Place, and Height. These three 

networks are combined using FLMP to arrive at a phonetic-level representation. In addi- 

tion, there are three distinctive-feature networks for phonetic transition estimation, with 

one network each for Manner, Place, and Height. These transition networks are also com- 

bined using FLMP. Finally, the within-phoneme probability outputs are used to estimate 

the observation probabilities, and the phonetic-transition outputs are used to estimate 

the state transition probabilities, in an HMM framework. This combination of networks 

is illustrated in Figure 5.2 with the within-phoneme classifier on top, the transition clas- 

sifier on the bottom, and the synchronous traversal of the within-phoneme categories and 

transition probabilities indicated by double vertical lines. 
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Figure 5.1: Features and neural network for proposed method. 



b 
Phoneme 

Figure 5.2: Combining the distinctive feature outputs using within-phoneme and phonetic 
transition networks in the proposed method. 



Chapter 6 

Acoust ic-Level Features 

In this section, the acoustic-level features that are used as input to the neural network 

classifier will be described in detail. As mentioned in Chapter 5, a set of five features 

was selected for consideration; these features are used in addition to the standard PLP 

features that represent the spectral-domain information with a 16-msec window. 

6.1 Intensity Discriminat ion 

Intensity discrimination is motivated by perceptual studies on the smallest detectable 

change in intensity, conducted by several psychologists and summarized by Moore [102]. 

In the psychological studies, two-alternative forced-choice experiments were conducted, 

and subjects were asked to indicate which of the two stimuli contained the signal with 

an increased intensity. As Moore reports, despite variations in the methods and stimuli, 

a general pattern of intensity discrimination is clear. This pattern can be modeled as 

follows: 

where AL is a measure related to the perceived change in intensity, I is the intensity of 

the signal, and A I  is the change in intensity. Intensity, as defined by Moore, is the sound 

power transmitted through a given area in a sound field, although it can also be used to 

describe "any quantity relating to the amount of sound, such as power or energy" [103]. 

A fixed threshold for a change in perceived intensity can be determined; if the absolute 

value of AL is below this threshold, then the intensity change is not detected. Typical 

thresholds for detection are between 0.5 and 1 dB. 



When classifying phonetic transitions in automatic phonetic alignment, we believe it 

will be useful to have some measure of change in intensity that is related to perception; 

a small change in absolute energy during a (loud) vowel is of far less importance than a 

small change in absolute energy during a silent region (which may indicate the beginning 

of a plosive phoneme). As a result, we apply the formula given by Moore directly, with 

intensity measured by the energy of the signal, and the window sizes for computing I and 

A I  dependent on whether we are interested in long-term or brief changes in the signal. 

For a general measure of phonetically-relevant changes in the signal, we use a window size 

of 250 msec for I and a window size of 40 msec for AI. The window length for I was 

chosen to correspond to roughly the duration of one syllable, and the window length for A I  

corresponds to the minimum duration of a speech segment required for assigning phonetic 

quality and "the interval in which acoustic stimulation begins to assume an independent 

identity," as reported by Greenberg [59]. As can be seen in Figure 6.1, this measure of 

intensity discrimination provides a reasonable indication of the onsets and offsets of major 

phonetic events, as local maxima and minima in the intensity-discrimination measurement 

correspond to major phonetic changes. Inspired by the work of van Santen and Sproat 

on multi-band phonetic alignment [141], the work of Sharma and Hermansky on multi- 

band speech recognition [138], and the Fletcher-Allen model of speech perception [I], we 

compute intensity discrimination not only for the entire frequency band, but also for seven 

bark-scale frequency bands, each with a width of one bark. 

This measure of intensity discrimination may be useful not only as a feature for de- 

tecting phoneme-level changes in the signal, but also for detecting other events in which 

changes in intensity are a factor. This will be elaborated on in the following sections on 

voicing, glottalization, and burst detection. 

6.2 Voicing 

6.2.1 Previous Work on Voicing Determination 

A significant amount of research has been done on reliable determination of voicing; a 

brief review of 20 conference proceedings from 1981 through 1998 yielded 15 papers on 
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Figure 6.1: Intensity discrimination for continuous telephone-band speech (for the utter-
ance "of science and technology f[or]"). Each panel shows the following: (a) time marks,
(b) waveform, (c) spectrogram, (d) intensity discrimination of the entire frequency range,
and (e) manual phonetic labeling of the utterance.

the topic (2 in 1998 alone); we were able to find an additional 13 journal articles. The

number of papers on this topic and its continued presence as a subject of research is an

indicator not only of its importance, but also of its difficulty. Determination of voicing is

particularly difficult on telephone-band speech, where the lower 200 or 300 Hz region of the

signal (where the fundamental frequency is usually found) has been severely attenuated.

Methods of voicing determination can usually be grouped into one of three general cate-

gories: frequency-domain signal analysis methods, methods that use filtering of the signal

followed by autocorrelation, or statistical pattern classification methods using features

from (both) the frequency and time domains. We will review three of the most common

methods (one from each category) and a method that is similar in several respects to our

proposed method.

One of the oldest techniques for voicing determination is based on the cepstrum, which

is simply the spectrum of the log spectrum of a signal. This method, proposed by Noll

in 1967 [110], is motivated by the fact that the log spectrum of a signal containing voiced

speech will have harmonics at multiples of the fundamental frequency, given an analysis



window longer than one pitch period. These harmonics can then be viewed as a periodic 

signal that can be subject to further frequency analysis; computation of the spectrum 

of this harmonic signal will result in a sharp peak with a "quefrency" location (X-axis 

value) directly proportional to the period of the original speech waveform. A voicing 

decision can then be made based on the strength of this "cepstral" peak, using a fixed 

threshold as a decision boundary. No11 proposed weighting the cepstral values more heavily 

toward higher quefrencies, and weighting the voicing decision based on the values of the 

surrounding cepstral peaks. 

Another approach is called the Simplified Inverse Filter sacking (SIFT) method, 

which was proposed by Markel in 1972 [99]; variants on this approach are quite common 

in the literature. The SIFT method, as defined by Markel, works as follows: 

1. The speech is low-pass filtered to 800 Hz and downsampled to 2000 Hz, 

2. A 32-msec Hamming window is applied to each analysis frame, 

3. LPC analysis of order 5 is applied to the windowed speech, 

4. Inverse filtering of the down-sampled speech is performed, using the filter coefficients 

from LPC analysis, 

5. Autocorrelation of the inverse-filtered signal is done, 

6. The largest autocorrelation peak is found, 

7. Interpolation is done on the region containing the peak, to estimate the height and 

location of the peak with reduced quantization error, 

8. A voicing decision is made, based on the height of the interpolated peak. 

According to Markel, the low-pass filtering is done in order to reduce the computational 

load. The LPC analysis and subsequent inverse filtering remove the formant structure 

from the signal, resulting in a signal that (in theory) contains peaks directly related to the 

fundamental period. These peaks occur when there is an abrupt change in the signal that 

is not well predicted by low-order LPC analysis; such events are common at the instant 



of glottal closure. Autocorrelation is used to detect periodicity in the inverse-filtered 

waveform, and interpolation is done to address quantization error. The voicing decision is 

made by comparing the autocorrelation peak to a fixed threshold, as well as to previous 

voicing-decision values. 

A third method of voicing determination is to treat it as a problem for statistical 

pattern recognition. One of the earliest of these approaches was developed by Atal and 

Rabiner in 1976 [4]. In this method, a GMM classifier is used, with five input features 

that are known to be correlated with voicing. These five features are computed for each 

frame with a window size of 10 msec; the features include the energy of the signal, the 

number of zero-crossings in the waveform, the spectral slope (as measured in dB/octave, 

which is the first coefficient from LPC analysis), the second coefficient from LPC analysis, 

and the normalized 12th-order LPC prediction error. Using these features as input to 

the GMM, they reported 98% frame-level accuracy on a test set of two speakers, each 

reading one sentence recorded in an anechoic chamber. A similar approach was reported 

recently by Suh et al. [135], who used six features as input to a recurrent neural network. 

These features were the energy in the frame; a modified zero crossing rate, called the level 

crossing rate; the derivative of the level crossing rate; the normalized energy in the range 

from 180 to 1000 Hz; the normalized energy in the range from 1000 to 2300 Hz; and the 

normalized energy in the range from 180 to 4000 Hz. Normalization of the energy bands 

was done by subtraction of the energy in the range from 4000 to 8000 Hz. They reported 

92.5% accuracy on a test set of 44 spontaneous sentences read by 17 speakers. They then 

reported that integration of the voicing feature into a 5000-word recognizer resulted in a 9% 

reduction in error. Using a similar technique (but with different features and using a feed- 

forward neural network), Hosom [65] reported 93.4% voicing classification accuracy on a 

test set of 500 telephone-speech digit utterances; incorporation of this voicing information 

into a digit-recognition system also yielded a 9% reduction in error. 

A method of pitch extraction proposed by Fujisaki and Tanabe [49,50] is, in its imple- 

mentation, similar in several respects to our proposed method for voicing determination. 

The motivation for their method was in observing that the spectral envelope of a signal can 

be effectively removed by computing spectra with two window lengths. In their method 
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Figure 6.2: Pitch extraction method proposed by F'ujisaki and Tanabe. (Figure from 
Fujisaki and Tanabe, 1972). 

(illustrated in Figure 6.2), the power spectrum of a signal with a window approximately 

equal to one pitch period is computed, resulting in the spectral envelope of the signal 

without any harmonics. This spectrum is called Pz(w). Then, the power spectrum of 

the same signal, but with an analysis window of several pitch periods, is computed. This 

spectrum, called PI (w), has the same envelope as P2(w) but includes harmonics at mul- 

tiples of the fundamental frequency. Then the effect of the vocal tract resonances can be 

removed by dividing the small-window spectrum by the large-window spectrum, yielding 

a spectrally-flat series of harmonics called Pd(w). The inverse Fourier transform of Pd(w) 

can be considered the autocorrelation of the excitation source; if the source is periodic, 

then the autocorrelation will contain a peak that has a time position corresponding to 

1 \ 1 1  I I \ I I  m I 



the fundamental period of the source. As Fujisaki and Tanabe note, the autocorrelation 

is "exempt from subsidiary peaks due to formants, and yet can serve as a measure of 

periodicity." 

6.2.2 Proposed Method for Voicing Determination 

Our proposed voicing-determination method is inspired by viewing a spectrogram with 

a very short analysis window; a sample waveform and its corresponding narrow-window 

("wideband") spectrogram is shown in the second and third panels of Figure 6.3. When 

viewed in such a way, the pitch pulses in the signal are identifiable by dark regions of 

energy at regularly-spaced intervals corresponding to the fundamental frequency, as noted 

by Rabiner [118]. This voicing information is present at frequencies greater than 300 Hz, 

as well as in speech with severely attenuated higher frequencies such as nasal sounds. 

Our proposed method is motivated by applying intensity discrimination with a very short 

analysis window to identify periodic energy changes in the speech signal. 

In the proposed method, we first band-pass filter the speech from 160 to 700 Hz, 

thereby removing strong low-frequency noise found in breathy sounds and some plosives, 

and focusing analysis on the region of the first formant. Then we compute the intensity 

discrimination of the filtered speech using short-duration analysis windows: 45 msec for 

the baseline intensity (I) in the denominator, and 4 msec for the change in intensity (AI) 

in the numerator. The window size of 45 msec corresponds to a duration of at least two 

pitch periods, as we want to ensure that this reference intensity level includes any FO- 

related impulses. The window size of A I  must be short enough to detect pitch-related 

energy changes within even short pitch periods. The resulting intensity discrimination 

yields a series of regularly-spaced pulses for voiced speech (corresponding to the periodic 

energy changes resulting from opening and closure of the vocal folds), and irregular pulses 

for unvoiced speech (corresponding to aperiodic energy fluctuations in the region of the 

first formant). An example pulse train is illustrated in the fifth panel of Figure 6.3. 

Autocorrelation is applied to this pulse train, and thresholds (based on the autocorrelation 

peaks, relative energy levels, and durations of the autocorrelation peaks) are used to 

determine the voiced regions. The peaks in the autocorrelation result are enhanced by 
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Figure 6.3: Illustration of voicing computed by proposed method for the utterance "my
research." Panel (a) shows time marks in msec, (b) shows the waveform, (c) shows the
broadband spectrogram, (d) shows the phonetic transcription, (e) shows the computed
pulses train, (f) shows the enhanced autocorrelation, and (g) shows the binary voicing
decision from the proposed method. A frame rate of 0.5 msec is used for visual clarity.

performing two autocorrelation computations for each frame: one forward in time from

the current frame, and the other backward in time from the current frame. Making the

(somewhat dubious) assumption that these two autocorrelation results are independent

because they occur at different times in the signal, we combine the two results at each

frame to obtain one "enhanced" autocorrelation value per frame. This technique has the

effect of accentuating the peaks and valleys of the autocorrelation result, and in informal

tests provides better voicing-determination results than without the enhancement. The

proposed voicing-determination method uses 17 parameters, which were first set to initial



values based on general knowledge of their effects, and then refined by iteratively changing 

each parameter and evaluating its effect on a development set of about 60 utterances of 

hand-labeled speech. 

Voicing determination is then defined by o w  model as the ability to detect periodic 

intensity changes in the first-formant region of the signal. This definition is built upon our 

knowledge of the voicing source, which specifies periodic changes in intensity affecting all 

frequency bands, and our knowledge of the sounds of voiced speech, which have a strong 

resonant energy in the lower frequency region (160 to 700 Hz) due to the first formant. 

An advantage of the proposed method over SIFT-based methods is that LPC analysis 

of the signal is not required in the proposed method; the error peaks resulting from LPC 

analysis in SIFT are not guaranteed to correspond directly to glottal pulses. Specifically, 

the shape of the LPC residual may vary depending on the analysis order, the abruptness 

of glottal closure, and the amount of noise in the signal. An advantage of the proposed 

method over cepstral-domain methods is that our method requires only a few harmonics 

for accurate voicing determination; cepstral-based methods require harmonics throughout 

the spectrum. (Harmonics may be lacking in the higher frequencies due to noise or to 

spectral zeros related to the production of lateral or nasal sounds.) 

In the statistical pattern-classification approach, the correlations between the input 

features and voicing result is not always a cause-and-effect relationship. For example, 

(unvoiced) breath noise may have a spectral slope characteristic of voiced speech, (un- 

voiced) whispered speech may have the formant structure of (voiced) vowels, front vowels 

in additive noise may have a very high zero-crossing rate normally associated with un- 

voiced sounds, and unvoiced bursts may have large energy usually associated with voiced 

sounds. As a result, the overall correlation between the features and the voicing prop 

erty can be low under several conditions. The proposed method bases its decision on 

features directly related to the consequences of voicing, and so the features therefore have 

a higher correlation with voicing under various circumstances than the features used in 

the pattern-classification approach. 

Finally, the proposed technique is different in several respects from the one proposed 

by Fujisaki and Tanabe; in their method, the window length of the narrow window should 



be about one pitch period, whereas in our case, the narrow window (corresponding to AI) 

should be much shorter than one pitch period. Also, in the Fujisaki and Tanabe approach, 

the entire spectrum of the signal is computed for both the narrow and wide windows, with 

the intent being to normalize for the shape of the spectral envelope. If some frequency 

regions of the signal contain noise with a higher energy level than the harmonics, then 

the energy level of this noise at those frequencies will be made equal to the energy level 

of the harmonics at other frequencies. This strong noise level at different regions of the 

spectrum may yield spurious peaks in the subsequent inverse Fourier transform. In the 

proposed method, the relative energy of the signal at one frequency band is computed 

for the narrow and wide windows, with the intent being to capture the time-synchronous 

relative changes in the energy due to the glottal-source excitation; noise at frequencies 

beyond the 200 to 700 Hz range does not affect the proposed method. 

Currently, we use only one frequency band for voicing determination, because the har- 

monics of voiced speech do not always occur at the same instant in time. (The vertical 

bands of energy corresponding to a glottal pulse may shift slightly as a function of fre- 

quency.) As noted by Moore [104], it is likely that humans use multiple frequency bands 

when determining pitch; the use of multiple frequency bands may apply to voicing deter- 

mination as well. The use of multiple frequency bands would be a simple extension of our 

proposed method; in the same way that a single band is now used, voicing determination 

for multiple bands could be computed, and the autocorrelation results then combined us- 

ing a technique such as voting. The reason why such an extension has not been pursued as 

part of this thesis is the time required for autocorrelation. Given our current processing 

power (200 MHz Pentium Pro) and the requirement that our final phonetic-alignment 

system operate significantly faster than manual alignment, the use of multiple frequency 

bands was considered prohibitive. 

Given results from voicing determination, the voice-onset time (VOT) can be defined 

as the time from the current frame until the closest change from unvoiced to voiced speech. 

A limit of 150 msec is imposed on the search for the closest change in voicing, as changes 

beyond 150 msec are not likely to be related to the phoneme at the current time frame. 

For this thesis, voicing information is composed of both a binary measure of the presence 



of voicing, and a measurement of VOT. 

6.2.3 Results of Voicing Determination 

One weakness of most papers on voicing determination is that analysis is typically done 

on a fairly small test set, usually from a small number of speakers and recorded over a 

single channel. Very few papers evaluate their proposed method on a publicly-available 

corpus or over different channel conditions. To evaluate the relative merit of our proposed 

algorithm, we implemented the SIFT algorithm as described by Markel, and modified 

it to use our proposed method's technique of merging short-duration frames (in which 

voiced speech is required to have a minimum duration of 30 msec, and unvoiced speech 

is required to have a minimum duration of 15 msec). We then evaluated the original 

SIFT method, the modified SIFT method, and our proposed method on the test portions 

of the TIMIT [52], OGI Stories, OGI Numbers, OGI Portland Cellular, and OGI Kids' 

corpora [27, 1321. In order to focus on the regions of speech in which voicing is easily 

determined, and in order to avoid having to hand-label these corpora according to their 

voicing characteristics, we mapped each phoneme to a type of voicing. Vowels, nasals, 

retroflex sounds, liquids, and glides were mapped to voiced speech; unvoiced fricatives, 

unvoiced plosives, unvoiced closures, and silence were mapped to unvoiced speech; all 

other phonemes (voiced fricatives, voiced bursts, and voiced closures) were not evaluated 

as their voicing properties may vary depending on context and speaker style. In addition, 

the 10 msec before and after each phonetic boundary was not evaluated, because humans 

disagree on phonetic boundary placement about 20% of the time with a 10-msec interval. 

Evaluation was done on a frame-by-frame basis. 

As can be seen in Figure 6.4, the proposed method is significantly better than either 

of the SIFT methods, with reductions in error of at least 58%, 39%, 68%, 83%, and 

42% for the TIMIT, Stories, Numbers, Portland Cellular, and Kids' corpora, respectively. 

Note that the SIFT results may not represent state-of-the-art in voicing determination, 

but they provide a well-known baseline against which other methods can be compared. 

The accuracy of the pattern-recognition-based voicing determination method developed by 

Hosom in 1996 and evaluated on the OGI Numbers corpus [65] is included in Figure 6.4; 



.SIFT (original) 

a SIFT [modified) 

I Proposed 
85 

E3Stohasic Method 
80 

TlMlT Stories Numbers Portland Kids 
Cellular 

Figure 6.4: Results of voicing determination on various corpora (indicated on the hori- 
zontal axis) by the original SIFT method, the modified SIFT method, and the proposed 
method. In addition, results of a recently-developed method similar to Atal and Rabiner's 
stochastic pattern-classification method is plotted for the Numbers corpus. 

this more current method of voicing determination was found to be significantly more 

accurate than the similar stochastic method developed by Atal and Rabiner [4]. It can be 

seen that the proposed method still has a 62% reduction in error over this more current 

method on that corpus. It is also interesting to note that the potentially high fundamental 

frequency and first-formant values of the children's speech did not adversely affect the 

performance of either the proposed method or the SIFT method. 

It should also be noted that the proposed method performs competitively on cellular- 

band speech, even though cellular speech was not used at all in the development or re- 

finement of parameters. This indicates that the LPC residual is not a reliable indicator 

of glottal excitation for cellular speech, whereas the intensity discrimination measure- 

ment used in the proposed method is not adversely affected by typical channel conditions. 

The high accuracy for the Kids corpus may be due to several factors: the children were 

prompted for single words, which may have resulted in better-than-average enunciation, 

and because only single words were uttered, glottalization may not have been as prevalent 

as in a continuous-speech corpus such as TIMIT, Stories, or Portland Cellular. 



6.3 Fundamental Frequency 

6.3.1 Previous Work on Fundamental Frequency 

Development of a robust method of extracting fundamental frequency is still an area of 

research, despite numerous papers and journal articles on the subject. Extraction of the 

fundamental frequency, or FO, is related to voicing determination, in that there is no 

fundamental frequency when the speech is unvoiced, and most or all voiced speech has a 

fundamental frequency (depending on whether or not one considers glottalized speech to 

be voiced speech). However, instead of a binary decision about whether or not the vocal 

folds are vibrating, the rate of vibration of the vocal folds must be estimated. 

Methods for determining FO can be grouped into the same three areas as voicing 

determination, and many of the methods used for voicing determination require only slight 

modification to extract FO. For example, in the same way that the strength of a cepstral 

peak can be used to determine voicing, the location of this peak on the X (quefrency) axis 

can be used to determine FO. 

The SIFT method of voicing determination can also be used to estimate FO, because 

the location of the autocorrelation maximum on the X (samples) axis is an estimate of 

the fundamental period (in samples). We have modified the SIFT algorithm to extract FO 

values with greater accuracy. In the original SIFT algorithm, LPC analysis of order 5 is 

used. This value produces good results for voicing determination, but for pitch extraction 

a secondary peak in the autocorrelation result, corresponding to a strong first formant, 

is often observed. Such a secondary peak can cause the extracted FO value to be double 

or triple the correct value. As Markel was concerned with a fast implementation, he was 

constrained to use only one LPC analysis for voicing and FO determination. Given current 

processing power, however, we performed voicing determination using LPC order 5, and 

on the frames of voiced speech we performed FO extraction using a second LPG analysis 

with order 9. This higher order was determined by evaluating FO-extraction results of a 

small development set using orders 5, 7, 9, and 11. 

A pattern-classification approach to FO extraction was developed by Barnard, Cole, 

Vea, and Alleva [5].  They used a neural network classifier which had as its inputs the 



amplitudes of peaks in a low-pass filtered waveform and their time differences. This 

network then classified each input peak as associated with a glottal pulse or a formant 

resonance. The pitch could then be computed from the peaks identified as glottal pulses. 

They reported accuracy of 97.5% on a 20-speaker subset of the TIMIT corpus, classifying 

each peak in voiced speech as glottal-pulse-related or not, and comparing these outputs 

with manual determination of which peaks were related to glottal pulses. 

In a method developed by Harris and Nelson [62], phase tracking of the pulses in 

voiced speech is accomplished by correlating the speech signal with a time-varying filter 

that is matched to previous waveform pulses. An initial filter is created from the first 

identifiable pulse in the waveform, with the pulse centered within the filter. Future pulses 

are determined by an iterative process of matching the current filter with the signal and 

then updating the filter. The current filter is matched with the signal by computing the 

minimum distance: 

where f (t) is the current filter, g(t) is the waveform, T is a variable timing offset for the 

waveform, and a and @ are arbitrary scalars for which d(f ,g,) is minimum. Harris and 

Nelson give an efficient method of determining this minimum distance, in which cr and j3 

are computed directly, and T is determined by iterating over a set of values that covers the 

expected range of fundamental periods. The value of T that corresponds to the minimum 

distance indicates the position of the pulse, and can be used to compute the fundamental 

fi-equency. Filter updating is done by applying a non-uniform weighted average of the most 

recent filter with the most recently aligned pulse. (The weighted average is maximum at 

the point of maximum energy of the pulse.) An extension to this procedure accentuates 

the periodicity of the signal by minimizing points in the waveform with a high variance. 

This method of FO extraction, which we will call the Harris and Nelson method, was 

implemented in the CSLU Toolkit by Johan Schalkwyk, and serves as a baseline method 

for comparison, along with the SIFT method implemented for this thesis. 



6.3.2 Proposed Method of Fundamental Frequency Extraction 

In the same way that the SIFT or cepstral methods of voicing determination can be 

extended to FO extraction, we have extended our proposed voicing method to return 

estimates of the fundamental frequency. As in the SIFT method, voicing is determined 

based on autocorrelation results, and the fundamental frequency is computed from the 

index number of the autocorrelation peak: 

where F, is the sampling frequency and k is the index of the autocorrelation result corre- 

sponding to the autocorrelation peak. In the SIFT method, Markel considered that the 

2000-Hz sampling rate necessitated interpolation of the autocorrelation results to deter- 

mine the peak location with less quantization error. In our method, we use a sampling 

rate of 8000 Hz to compute the pulse train, which is reduced during autocorrelation to 

4000 Hz to improve processing speed. We then determine the F0-related autocorrelation 

peak from the highest autocorrelation index. (Unless the pitch is extremely low, there will 

often be more than one autocorrelation peak, and the higher peaks are required to be at 

multiples of the index of a primary peak.) The use of these higher autocorrelation peaks 

to determine FO, with an effective sampling rate of 4000 Hz, results in a quantization step 

between 0.44 Hz and 1.77 Hz. As a result, we do not use interpolation in determining the 

FO value. 

A post-processing step is also implemented in our method, in which sudden doubling 

or tripling of the FO value is checked for. If such an event happens, an FFT of the speech 

signal is computed, and a check is made to locate peaks below the harmonic associated 

with the larger FO value. If such peaks are found, then it is assumed that the lower pitch is 

the correct one, and the higher pitch value is reduced. Also, if the pitch value is halved for 

a duration of less than 30 msec, it is assumed that the higher pitch value is correct, and the 

lower values are multiplied by a factor of two. If the voicing determination indicates that 

a frame is voiced but there is no autocorrelation peak, then the FO value is interpolated 

from surrounding peaks. Finally, spurious peaks and dips in the FO contour are removed. 

It is arguable that in some cases (such as at the end of a word) the FO value may in fact 
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suddenly decrease, and that such post-processing is fixing imaginary errors. However, it

can also be argued that such dramatic changes in FO are, when of short enough duration,

not relevant to the phonetic or perceived content. As our interest is in FO changes that are

related to phonetic content, and as we have a separate detector for glottalization (which

would presumably detect a sudden decrease in FO at the end of a word), it is felt that

such post-processing is beneficial for the ultimate goal of phonetic alignment.
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Figure 6.5: Example of FO extraction for the utterance "I guess I'll just read in a article
in a..." (telephone speech). Panel (a) shows time marks in msec, (b) shows the wave-
form, (c) shows the broadband spectrogram, (d) shows the manual phonetic labeling, (e)
shows the pitch values extracted using the proposed method, and (f) shows the enhanced
autocorrelation. A frame rate of 0.5 msec is used for visual clarity.

An example of pitch extraction with the proposed method on telephone-band sponta-

neous speech is given in Figure 6.5. As the voicing decision is made prior to FOextraction,



several frames have FO values but no autocorrelation peaks. These regions are all less than 

20 msec in length, and the FO values have been interpolated from surrounding values. 

6.3.3 Results of Fundamental Frequency Extraction 

A major difficulty in determining the accuracy of a method for extracting FO is in finding 

the correct values for the fundamental frequency. In some papers (for example, Barnard 

et al. [5]), the correct FO values are determined by visually inspecting the waveform and 

locating waveform peaks that are related to vocal fold vibration. Because this method of 

determining FO values is time-consuming and labor-intensive, evaluations based on such 

values are usually limited to a small test set. Another solution is to use Electroglottography 

(EGG) measurements of the instant of glottal closure. The EGG "registers laryngeal 

behavior indirectly by measuring the change in electrical impedance across the throat 

during speaking" [98], thereby measuring the glottal vibrations without processing of the 

acoustic waveform that has been filtered by the vocal tract. The value for FO is then 

estimated from the EGG signal by the following equations: 

FO = 
1 

(I)n-pn-l)+(pn+l-~n) 
otherwise (6.6) 

2 

where FO is the estimated fundamental frequency, and pn is the location of the nth 

pitch mark (in seconds). According to a tutorial written by Krzysztof Marasek of Stuttgart 

University [98], the EGG is a "very precise and robust carrier of FO even for moderately 

pathological voices." As part of the text-to-speech development effort at CSLU, a corpus 

of 500 files of read utterances from a single speaker with EGG measurements has been 

created; these data are referred to here as the MWM-EGG corpus. The FO values were 

determined for each 5 msec frame using the EGG data. 

The FO values determined from the EGG data of the MWM-EGG corpus were com- 

pared with the FO values determined by the proposed method, the original SIFT method, 
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Figure 6.6: Results of FOextraction for the original SIFT method, modified SIFT method,
proposed method, and Harris and Nelson method. Evaluation was performed on the
MWM-EGG corpus of read speech, with reference FO values computed from EGG data.
The left group of values shows average absolute error, and the right group shows standard
deviation.

the modified SIFT method, and the CSLU Toolkit's implementation of the Harris and

Nelson method. At any given frame, a comparison of FO values was only done if both the

EGG result and the measured result had FO values greater than zero (indicating voiced

speech); this was performed to separate the evaluation of voicing determination from FO

accuracy. Results are shown in Figure 6.6. It can be seen that not only is the average ab-

solute error for the proposed method at least 45.3% closer to the EGG data (as compared

to the next-best modified-SIFT method), but the standard deviation of the results from

the proposed method is 42.7% smaller than the modified SIFT method.

6.4 Glottalization

6.4.1 Previous Work on Glottalization Detection

A literature review of glottalization revealed no automatic methods for determining when

speech is glottalized or not, although one paper did determine that glottalization is a

characteristic of speech that can be detected by human listeners [70]. We are aware of one



unpublished method of automatic glottalization determination, developed by Cole in the 

1970's at Carnegie Mellon University. 

In Cole's method, an estimate of the median pitch is used to detect sudden decreases 

in the fundamental frequency that are characteristic of glottalization. First, the signal is 

passed through a 1000-Hz low-pass filter to smooth the waveform. Then, the peak-to-peak 

(PtP) amplitude of the signal is computed at each frame. The window size for determining 

the PtP amplitude is set to 1.3 times the median fundamental period. Because of this 

specific window size, pitch periods that are fairly close to or greater than the median value 

result in large PtP amplitude values. If, however, the FO value drops below 77% of the 

median value, then there will be a lack of glottal pulses within an analysis window, and 

the PtP amplitude will drop. When the analysis window is shifted forward in time so 

that it includes a glottalpulse, then the PtP amplitude will again increase. As a result, 

non-glottalized voiced speech has consistently large PtP values, but glottalized speech has 

dips and peaks in the PtP values. This is illustrated in Figure 6.7, which shows a sample 

waveform containing normal speech as well as glottalized speech. Glottalization can then 

be determined based on the presence or absence of spikes in the PtP amplitude signal. 

Although this is the only previously-attempted method of automatic glottalization 

determination that we are aware of, it would also be possible to train a stochastic classifier 

to identify glottalization given standard PLP features. Such a classifier might be able to 

account not only for the irregular pulses found in glottalized speech, but also for the 

resonance characteristics that are present at  each glottal pulse. The difficulty in training 

such a classifier is similar to the problem of using simple energy or waveform values to 

train a voicing determination classifier: the relationship between the features used as 

input (time-domain energy or waveform samples) and the desired output classes (periodic 

signal or aperiodic signal) is quite indirect, and if the network does not learn the correct 

mapping, then generalization will be poor [5]. 

6.4.2 Baseline Methods for Glottalization Detection 

In order to measure the relative effectiveness of our proposed system (described below in 

Section 7.4.3), we trained two baseline ANN classifiers that identify glottalization using 



95

;>' -i~

,.r

---

Figure 6.7: Illustration of Cole's method for detecting glottalization for the utterance
"water all year." In each panel are (a) time marks, (b) the waveform, (c) the spectrogram,
(d) the phonetic labels, (e) the estimated FO values, and (f) the results of peak-to-peak
glottalization detection. The spikes in this bottom output indicate the estimated location
of glottal peaks. A frame rate of 1.0 msec is used in this example.

PLP features alone; the two baseline systems differ only in the size of their context window.

The first system, referred to as "Baseline A" , was trained with the standard PLP feature

set (with delta values) and a standard context window of frames at -60, -30, 0, 30, and

60 msec relative to the frame of interest. The second system, referred to as "Baseline

B", was trained using the standard PLP feature set (with delta values) and a more dense

context window of frames from -60 to +60 msec relative to the frame of interest, at 5

msec intervals (for a total of 25 frames per context window). Both systems have two

context-independent output categories, "glottalized" and "non-glottalized." Training was

done with approximately 20,000 examples per category. Training, development, and final



evaluation of the two systems were done using the TIMIT, Stories, and Portland Cellular 

corpora. 

6.4.3 Proposed Met hod for Glottalization Detection 

In the proposed method of glottalization determination, we modify the method developed 

by Cole. In our method, we use intensity discrimination as described in Section 7.1 

to locate glottalization peaks, instead of using the PtP waveform amplitude, which can 

vary according to the microphone characteristics, degree of overall loudness, and type of 

phoneme. First, a glottalization pulse train is computed using intensity discrimination to 

identify possible points of glottalization. Then the pulse train values are passed, along 

with PLP coefficients, to a neural network for final classification. The neural network uses 

a context window of 25 frames spanning 120 msec. The use of the glottalization pulse 

train and the PLP coefficients allows classification based on the spectral characteristics of 

the signal. 

We use our proposed method of FO extraction (described in Section 7.3) to estimate 

the FO value for determining window sizes. A window size of 45 msec is used for the 

reference intensity (I), a length of twice the estimated fundamental period is used for 

the window size of the intensity change (AI), the intensity delta values are computed 

using a 6-msec window, and a cutoff threshold of 0.06 is used. The reference intensity 

window size is set to be long enough to include at least two pitch periods, and other 

values were determined by evaluating a number of possible sets of values. For each set of 

values, a development-set analysis was done to determine the relative number of insertions 

and deletions. The resulting receiver-operating characteristics (ROC) curve is shown in 

Figure 6.8. Based on this figure, we selected three sets of values with which to train and 

evaluate neural-network based glottalization classification. The results of neural-network- 

based classification with each set are given in Table 6.1. The set of values that yielded the 

best classification results (2.0 times the fundamental period for the window size of AI, a 

6-msec window for computing the delta values, and a threshold of 0.06) was selected as 

the final set of parameter values. 

As in the baseline systems, training was done on 20,000 examples of each of the two 
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Figure 6.8: Plot of insertion errors (horizontal axis) against deletion errors (vertical axis) 
for various sets of parameter values, given glottalization pulse train information. Values 
are connected with lines according to the window size of A1 for visual clarity; the legend 
indicates the delta and threshold values for each set of window sizes. The three sets of 
values chosen for further evaluation using neural-network classification are indicated by 
the larger points. 

categories, and the training, development, and final evaluation were done on the TIMIT, 

Stories, and Portland Cellular corpora. Output from the proposed method is illustrated 

in Figure 6.9, including the glottalization pulse train and neural-network results. 

6.4.4 Results of Glottalization Detection 

Results for the two baseline systems and the proposed method are given in Table 6.2. In 

these results, the insertion rate is measured according to the number of frames for which 

glottalization is detected but not present within 20 msec, relative to the total number of 

non-glottalized frames. The deletion rate is measured according to the number of frames 

for which there is glottalization but glottalization is not detected within 20 msec, relative to 



Table 6.2: Error rates of glottalization detection for three methods (Baseline A, Baseline 
B, and Proposed Method) for three test-set corpora. 

Table 6.1: Glottalization detection error rates on the TIMIT development set using a 
neural-network classifier with a glottalization pulse train and PLP features as input. The 
parameter values used in computing each pulse train are specified in the first three columns. 

the total number of glottalized Games. The reported error result is the sum of the relative 

insertion rate and relative deletion rate. It can be seen that the performance of Baseline 

A is always worse than that of Baseline B and the proposed method, but that the relative 

performance of Baseline B and the proposed method varies according to the evaluation 

corpus. For the TIMIT corpus, the proposed method has an 8.69% relative reduction in 

error, but for the Stories and Portland Cellular corpora, the proposed method has relative 

increases in error of 2.01% and 2.12%, respectively. A statistically significant difference 

can be claimed between Baseline B and the proposed method for all three corpora, using 

McNemar's test [55]. Therefore, the use of glottalization peaks in the neural-network 

classifier does not always yield superior performance, given a sufficiently large context 

window of PLP features. However, the nearly 9% reduction in error on the TIMIT corpus 

does, in our opinion, make the use of glottalization peaks worthwhile if extremely high 

accuracy is desired overall. 

classification error (%) 
11.87 

threshold 

0.06 
A I  window size (msec) 

2.0 
range of delta (rnsec) 

6.0 

Relative 
Reduction 

in Error (%) 
8.69 
-2.01 
-2.12 

Corpus 

TIMIT 
Stories 
Portland 
Cellular 

Significance 
Level 

(%) 
p < 0.001 
p < 0.001 
p < 0.001 

Baseline B 
error rate 

(%) 
13.23 
17.43 
16.54 

Baseline A 
error rate 

(%) 
14.16 
20.95 
21.27 

Proposed Method 
error rate 

12.08 
17.78 
16.89 
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Figure 6.9: Illustration of the proposed method for detecting glottalization for the ut-
terance "water all year." In each panel are (a) time marks, (b) the waveform, (c) the
spectrogram, (d) the phonetic labels, (e) the estimated FO values, (f) the glottalization
pulse train (with a 5-msec frame rate), and (g) the results of neural-network classification.

6.5 Impulses

6.5.1 Previous Work on Impulse Detection

Several papers have been published on impulse detection for locating the instant of burst

release in plosive phonemes; these methods include neural-network classification [78],

HMM classification [109, 108], rule-based methods [97], thresholding of energy deriva-

tives in various frequency bands [91, 107], and the use of support vector machines (SVM)

[109, 108]. Here we will describe a derivative-of-energy method (because of its intuitive

nature) and the SVM method (because its reported accuracy is the best found in the liter-

ature, testing has been done on the commonly-available TIMIT corpus, and a comparison



between the SVM method and other methods has been given). 

In the derivative-of-energy method develop by Liu [91], the following procedure is used: 

1. A smoothed spectrogram is obtained by first computing the FFT using a 6-msec 

window at every 1-msec frame, and then smoothing these results with a 20-msec 

window. 

2. The maximum spectral value in each of five frequency bands is determined from the 

smoothed spectrogram. 

3. A measure of change, called rate-of-rise (ROR), is computed by taking differences 

of the spectral maxima at +25 msec and -25 msec relative to the frame of interest 

(a 50-msec window), for each frequency band. 

4. A cutoff threshold of f 9 dB is applied to each of the five ROR measurements, and 

peaks beyond this threshold are detected. 

5. For each detected peak, the time position of the peak is adjusted using a spectrogram 

with a 10-msec smoothing window, a ROR computation with a 26-msec window, and 

a 6 dB cutoff threshold. 

6. A voicing determination is made at each boundary based on the ROR measurement 

of the lowest-frequency band. 

7. A burst determination is made based on the ROR measurements of the other fre- 

quency bands, with the requirement of a minimum duration of unvoiced speech 

preceding the burst. 

Liu evaluated this method on a corpus of four speakers reading 20 sentences each, with 

varying amounts of additive noise. As the main focus of this research was on the de- 

tection of all acoustic landmarks (including voicing and sonorant/consonant boundaries), 

evaluation of only the burst-detection component was not reported. 

The SVM method, as described in two papers by Niyogi et al. [log, 1081, works 

by classifying a set of binary features ("burst" and "non-burst") using a support vector 

machine; SVMs are binary classifiers that are considered to provide good generalization 



to unseen data. Niyogi et al. implemented two SVMs that are capable of linear and non- 

linear classification, respectively. The input to the SVM at each 1-msec frame consists 

of log energy of the entire spectrum, log energy of the frequency region from 3 to 8 kHz, 

and a spectral flatness measure, all computed with a 5-msec window. A detected burst 

is considered to be correctly classified if it occurs within 20 msec of the closure-burst 

label boundary as obtained from the TIMIT phonetic alignments. Tkaining was done on 

randomly-selected dialect regions of 40 sentences from the training partition of the TIMIT 

corpus, with 133 positive examples and 10760 negative examples. Testing was done on 

the test partition of one dialect region of the TIMIT corpus, using 320 sentences from 32 

speakers. Niyogi et al. constructed ROC curves for their various classification methods, 

varying a parameter called U that "controls the trade-off between empirical fit to the data 

and capacity of the learning machine" [108]. In addition, they evaluated a phoneme-based 

HMM approach and a derivative-of-energy approach on the same data. Due to the large 

number of examples of non-bursts compared to the number of examples of bursts, an ROC 

curve in which performance is computed based on the total number of frames yields an 

extremely low number of false acceptances compared to the number of false rejections. To 

address this issue, Niyogi et al. constructed their ROC curves by evaluating the number of 

detected bursts with respect to the number of burst and non-burst phonemes instead of the 

number of burst and non-burst fntmes. Their ROC-curve results (with false-rejection rate 

on the X axis and correct-acceptance rate on the Y axis) are reproduced in Figure 6.10. 

It can be seen that the best performance is obtained by the non-linear SVM, with an 

equal-error rate of about 12% and a total error rate of 24%. The linear SVM has an 

equal-error rate of about 16%, the derivative-of-energy approach has an equal-error rate 

of about 20%, and the HMM approach has a total error rate of 36%. 

6.5.2 Proposed Method for Impulse Detection 

In our proposed method, we use knowledge of the physical processes involved in production 

of bursts in order to classify burst-related impulses. A burst is created by closure of the 

oral cavity in order to produce an increase in air pressure, which is followed by a sudden 

release of the constriction, causing an abrupt increase in energy of the signal. Because of 
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Figure 6.10: ROC curve of false rejection and false acceptance error rates for linear SVM 
(LINEAR), non-linear SVM (SVM), delta-energy (A ENERGY), and HMM (HMM) meth- 
ods of impulse detection. Based on figure from Niyogi, Burges, and Ramesh, 1999 [108]. 

this process, bursts are characterized by about 15 to 30 msec of low energy (during the 

closure), which is followed by a sudden increase in energy (at the instant of release), which 

is followed by a gradual decline in energy (during the release). Furthermore, the radiation 

characteristic of sound emanating from the mouth causes the burst a t  the instant of release 

to take on the qualities of an impulse, with a relatively flat spectrum and short duration. 

Other research [I331 has shown that the burst does not have a completely flat spectrum, 

but is shaped to some degree by the type of burst. The proposed method then detects 

burst-related impulses by applying the following criteria: 

There must be a relative increase in energy at the instant of release, 

The increase in energy must occur over most frequency bands, and 



The burst must have certain spectral properties that distinguish it from environ- 

mental noise (such as clicks). 

These criteria can be satisfied by using the measure of intensity discrimination to 

estimate relative changes in energy, using the FLMP [loo] to combine the frequency-band 

information into a single measurement, and using a neural-network classifier to incorporate 

spectral properties into the classification process. 

The proposed method then works as follows: 

1. Intensity discrimination is applied to bark-scale frequency bands. The window sizes 

for I and A1 are small, in order to maximize the discrimination of impulses. 

2. Equal-loudness weighting of the frequency bands is applied to the results of intensity 

discrimination, in order to give the frequency bands that are perceptually stronger 

greater weight in the final result. 

3. Assuming independence of the frequency bands, the weighted results of intensity 

discrimination are combined using the FLMP. Each band is assumed to provide 

evidence for one of two conditions: a burst, or lack of a burst. 

4. A threshold is used to select a number of "candidate bursts" for further processing. 

5. A neural network is used to evaluate all candidate bursts, with input from the FLMP 

result and several frames of spectral information (PLP coefficients), and a binary 

burst/non-burst output. 

Results from this process are illustrated in Figure 6.11, which shows an example wave- 

form (containing letters of the alphabet) and its corresponding spectrogram, the higher 

six bands of intensity discrimination, the combined result of intensity discrimination, and 

the results of neural-network classification. 

This method has two advantages over a derivative-of-energy approach. First, in most 

derivative-of-energy approaches (and in the SVM method), the absolute change in energy 

is computed; this absolute change can be influenced by "external" factors such as recording 

volume and speaking style. The use of intensity discrimination in the proposed method 



normalizes for these sources of variability in a perceptually-motivated way. Second, a 

derivative-of-energy approach is unable to distinguish between burst-related impulses and 

impulses due to other factors. The proposed method accounts for the differences between 

these two types of impulses by taking into consideration the spectral properties of bursts 

and non-bursts. This method also provides an advantage over the SVM method in that 

the specific relationship between different frequency bands during an impulse is accounted 

for in the proposed method, while the SVM method relies on only two measures of energy 

at each frame. Finally, although support vector machines are thought to generalize well 

on test data, their run-time performance can be "abysmally slow" [I?'], which is a factor 

that must be taken into account if real-time processing is desired. 

6.5.3 Implementation of Proposed Method 

This method uses four parameters for locating candidate bursts: the window sizes for I and 

AI,  the window size for computing the delta in AI, and the threshold value. Initial values 

for these parameters were determined from speech-specific knowledge and visual inspection 

of their effects. These initial values were then modified in small increments, and the 

resulting candidate bursts were evaluated on a development partition of the TIMIT corpus. 

Then, several sets of parameters with the best performance were selected for locating the 

candidate peaks on which to train neural networks. Finally, the set of parameters and the 

neural network with the best performance on the development-set data were selected as 

the final system. 

Evaluation was done in the same way as Niyogi et al., with a detected impulse con- 

sidered correctly detected if it lies within 20 msec of the manually-labeled closure-burst 

boundary, and the percentage of insertions and deletions measured relative to the number 

of plosive and non-plosive phonemes. The evaluation of the four parameters was done on 

the TIMIT corpus, training of the networks was done on the TIMIT, Stories, and Port- 

land Cellular corpora, development-set evaluation of the networks was done on the TIMIT 

corpus, and test-set evaluation was done on the TIMIT, Stories, and Portland Cellular 

corpora. A variety of corpora were used in training the networks and in final evaluation, 

in order to build and evaluate a system on different channel conditions. Development-set 



evaluation of parameters and networks was done on the TIMIT corpus, in order to have 

a single evaluation result on which to base the parameter and network selection. 

The results of evaluation of the various parameter values are plotted in Figure 6.12, 

which shows the general trend for the set of all parameters. It can be seen that the number 

of insertions ranges from about 30% to about 75%, and the number of deletions ranges 

from 1.25% to 6%. As the neural network is trained only on the detected candidate bursts, 

insertion errors can be reduced by the network, but deletion errors can not be recovered 

from. This means that the final system will have more than 1.25% deletion errors, which 

we considered acceptable. The initial networks were trained with 13 PLP coefficients, no 

delta values, and a context window of frames at -5, 0, and 5 msec relative to the frame of 

interest. Once the final parameter set was chosen, then network training was changed to 

include delta values and a larger context window of frames from -30 to +30 msec relative 

to the frame of interest (at 5-msec intervals). aaining was done on 2000 examples from 

the TIMIT corpus, 4000 examples from the Stories corpus, and 2000 examples from the 

Portland Cellular corpus; these values were selected to provide nearly equal quantities of 

positive and negative examples. The sets of parameter values used in training the neural 

networks and the resulting development-set performance of the networks are specified in 

Table 6.3. As in the baseline systems, training was done on 20,000 examples. 

6.5.4 Results of Impulse Detection 

From the development-set results, the parameter set of {I window size = 22.0, A1 window 

size = 24.0, delta window size = 14.0, and threshold = 0.075) was selected for the final 

system. Test-set evaluation was done on 1344 sentences (6261 bursts and 45420 non- 

burst phonemes) from the TIMIT corpus, 42 sentences (2629 bursts and 19967 non-burst 

phonemes) from the Stories corpus, and 33 sentences (946 bursts and 8431 non-burst 

phonemes) from the Portland Cellular corpus. Results of these evaluations are given in 

Table 6.4. 

It can be seen from this table that the total error rate on the TIMIT corpus is 13.20%, 

which is a 45% reduction in error compared to the best total error rate reported by 

Niyogi et al. on this corpus. Also, it is interesting to note that the increased noise, 



Table 6.3: Sets of parameter values used for detecting candidate impulses, and performance 
of neural networks trained on the resulting candidate peaks (development-set results). The 
parameter set number in the left-most column can be used to locate the performance of 
this parameter set without neural-network classification by referring to Figure 6.12. 

Table 6.4: Insertions, deletions, and total error rate for each of three corpora (test-set 
results). 

Network 
Error 

(ins%+del%) 
14.81 
15.34 
14.94 
15.05 
16.02 
15.34 
15.41 
16.10 

different channel conditions, and lower sampling rate did not greatly affect the deletion 

rate, but had a dramatic impact on the insertion rate. One possible explanation for this 

is that people change their speaking style to compensate for degraded channel conditions, 

thereby enunciating bursts clearly enough to be detected at roughly the same rate for 

any channel. The increased noise for the Stories and Portland Cellular corpora may 

explain the increased insertion rate, as these channels are more likely to have non-speech 

phenomena that resemble burst-related impulses. Finally, performance of this method 

(without optimizing the code in any way) is close to real-time on a Pentium Pro 200 MHz 

Threshold 

0.075 
0.10 

0.075 
0.075 
0.075 
0.05 
0.05 
0.05 

computer. 

Delta Window 
Size 

(met> 
14.0 
18.0 
12.0 
12.0 
12.0 
10.0 
8.0 
8 .O 

Total Error (%) 
13.20 
19.91 
33.34 

A1 Window 
Size 

24.0 
24.0 
24.0 
24.0 
24.0 
18.0 
20.0 
20.0 

Parameter 
Set 

Number 

1 
2 
3 
4 
5 
6 
7 
8 

Deletions (%) 
8.06 
8.34 
8.08 

Corpus 

TIMIT 
Stories 

Portland Cellular 

I Window 
Size 

(msec) 
22.0 
16.0 
22.0 
20.0 
16.0 
20.0 
20.0 
16.0 

Insertions (%) 
5.14 
11.56 
25.26 
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Figure 6.11: Illustration of proposed method of burst detection. The panels show (a)
time marks, (b) the waveform for "P T K, A E IOU" uttered with background noise,
(c) the spectrogram, (d) the word-level time-aligned transcription, (e)-(j) the intensity
discrimination results for six of the frequency bands, (k) the result of combining the
frequency bands using FLMP (with potential impulses indicated by arrows), and (1) the
neural-network output of impulse detection (with detected impulses indicated by arrows).
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Chapter 7 

Implement at ion of Distinctive Phonetic 

Features and Phonetic Transitions 

As described in Chapter 5, the system proposed in this thesis combines phonetic transition 

information and distinctive phonetic features to better utilize acoustic-phonetic informa- 

tion. Moreover, we have argued that some of this information is not modeled effectively by 

current HMM systems. In this section, we describe how the distinctive phonetic features 

and phonetic transitions have been implemented in our proposed alignment system. 

7.1 Set of Distinctive Phonetic Features 

The distinctive phonetic features used for this thesis are Manner, Place, and Height. This 

set was chosen to be as small as  possible in order to better assume independence of the 

values (a larger set may have necessitated redundant features), while being large enough 

to uniquely specify 43 English phonemes as well as pauses and breath noise. In some 

linguistic theories, distinctive phonetic features are restricted to have binary values, such 

as [+voice] and [-voice]. As Ladefoged notes, however, when the values of a feature are 

mutually exclusive (such as [labial], [alveolar], and [dorsal] for the Place feature), it can be 

more natural to allow the features to take on multiple values. Furthermore, the use of a 

set of mutually exclusive values in a single neural network allows discriminative training, 

which is not easily possible if a set of binary-valued networks are created. Because of 

these advantages, and the desire to use a small number of independent features, we use 

multi-valued features. 



The features, their values, and the linguistic meaning associated with these values are 

given in Table 7.1. These values are based on Ladefoged [85], and have been modified in 

order to achieve a set of 35 unique phonemes (not including diphthongs, silences, or breath 

noise), as specified in Table 7.2. As an example of a modification for this thesis, Ladefoged 

states that all consonants except for /w/ and /j/ are of maximum height, and yet based 

on preliminary results from neural-network outputs we found that the consonants /1/ and 

/.I/ are better represented by height values of [h2] and [h4], respectively. In addition, the 

diphthongs and affricates are represented by their component phonemes, as specified in 

Table 7.3. The phonemes /h/, /h/, and /.br/ are affected strongly by their context, and so 

the assigned Place value of [unk] ("unknown") is given a value at run-time of the highest 

probability from the set of Place values [fnt], [mid], and [bck]. This assignment is made 

based on the assumption that the current phoneme has a place of articulation similar to 

its surrounding vowels. A Height value of [unk] (for /.br/) is assigned a default value of 

[max]. Although 43 phonemes (including the eight English diphthongs and affricates) can 

be identified, discrimination is not possible for the following phonemes (listed in Table 7.4): 

/3/ and /a/, the retroflex sounds /d and /s/, and the flaps /rd/, /I-,/, and /rn/. For the 

purposes of phonetic alignment, distinguishing between these phonemes is only important 

when they occur in sequence, such as in the word "jurors" (/& u q, s z/). In such cases, 

we rely on the phonetic transition classifier to determine at which time point the transition 

between the two phonemes occurs. 

While the proposed set of distinctive phonetic features was designed for American 

English, we hope that only minor modifications will be needed to extend this set to be 

useful for many of the world's languages. For example, the addition of a Rounding feature 

may be necessary for German, or a [trill] value may be added to the Manner feature 

for distinguishing the Spanish /r/ phoneme from the American English 14. In theory, 

however, even some phonemes that do not occur in American English can be specified in 

terms of the existing set of features. As an example, the voiced alveolar approximant /I/ 

(in some British-English variants of the word "red" /I E d/ [86]) can be represented with 

a Manner value of [approximant] , a Place value of [alveolar], and a Height value of [h2]. 



Table 7.1: Values for each of the three distinctive phonetic features used in this study. 

Features 
Manner 

Value 
vow 
aPP 
nas 
asp 
frc 
vfr 
stp 
vst 

Meaning 

Place 

Height 

vowel 
approximant 
nasal 
aspiration 
fricative 
voiced fricative 
stop (plosive) 
voiced stop (voiced plosive) 
flap 
breath noise 
closure 

flp 
bre 
clo 
fnt 
mid 
bck 
ret 
lat 
lab 
den 
alv 
dor 
clo 
max 
hl  
h2 
h3 
h4 
clo 

front 
mid 
back 
retroflex 
lateral 
labial 
dental 
alveolar 
dorsal 
closure 
maximum height 
very low height 
low height 
high height 
very high height 
closure 



Table 7.2: Phonetic Symbols in Worldbet (column 1) and IPA (column 2), and their 
corresponding Manner, Place, and Height values (columns 3, 4, and 5). Examples with 
each phoneme in an English word are given in the final column. 



continued from previous page 
I Worldbet I IPA (1 Manner ( Place ( Height 1) Example 

I 

n-( In alv 
f f fic lab 

1 0 11 frc I den 
I 11 L 

s I s I1 frc I alv 
I s 

I I I I 

I J 11 frc I fnt 
11 vfr I lab 
11 vfr I den 

I II I 

z l z II vfr 1 alv - 
I - 

-. 

I z 1 3  II vfr I fnt 
1 -  

II clo I clo 

max w i s e r  
max fine 
max - thigh 
max gign 
max - shine 
max vine 
max 11 - this 

I I I II 

. br - 11 bre ( unk 1 unk - 

Table 7.3: Diphthongs and their corresponding component phonemes, as used in the 
proposed system. 

Diphthong/Affricate 

ei 

Left Phoneme 

E 
Right Phoneme 

1 



Table 7.4: Phonemes not distinguished by proposed distinctive-feature set, and their min- 
imal pairs 

7.2 Combining Distinctive Phonetic Features 

Given the set of distinctive phonetic features described in the previous section, the remain- 

ing issue is how the values of these features will be combined to produce a phoneme-level 

representation. In the proposed system, we construct context-dependent steady-state 

phonemes from the distinctive feature information using a combination of both context- 

dependent and context-independent distinctive features. The context-dependent frame- 

work is the same as in our baseline phonetic recognition system, in that a given phonetic 

category can be dependent on the context of the preceding phoneme, be dependent on the 

context of the following phoneme, or be context independent. 

For the Manner feature, context-independent categories are used, because in general 

the manner of articulation is not greatly influenced by the preceding or following phonemes 

(with the exceptions of approximants and vowels in the context of approximants or vowels). 

The resulting network has 11 categories, one for each type of manner of articulation. 

For the Place feature, both context-dependent categories and context-independent 

categories are used. The closure, labial, dental, alveolar, and dorsal categories are con- 

sidered context independent, and other categories (front vowel, mid vowel, back vowel, 

retroflex, and lateral) are context dependent. Currently, the distinction between context- 

independent and context-dependent categories is based on the presence or absence of 

Word Pronunciation 

k 3 t  
k a t  

f .E i: 
f p i :  
w a r d *  
w a1 rt ac 
w a1 m 

Phoneme 

3 

a 

4 
3' 

r d  

rt 

rn 

Minimal-Pair Word 

caught 
cot 

free 
furry 
wider 
whiter 
whiner 



formant values, although in future alignment systems all Place categories may be context- 

dependent. The context values are also based on place of articulation, and so there are 10 

possible contexts. In determining the context of a plosive closure, the closure is mapped 

to the place of articulation of its corresponding plosive. So, for example, a front vowel 

in the context of a following /ph/-closure is represented as "fnt+labn (where + indicates 

transition), and a front vowel in the context of a following /th/-closure is represented as 

*fnt+alv." This allows classification of unreleased plosives based on the closure alone, using 

information in the surrounding phonemes' resonant-frequency trajectories. The resulting 

network has 108 output categories. 

For the Height feature, context-independent categories are used in order to simplify 

the construction of context-dependent phonetic-level categories (with context based solely 

on place of articulation), although future alignment systems may use context-dependent 

Height categories. In order to account for the fact that the property of Height may be 

influenced by coarticulation (thus implying an advantage to context-dependent categories), 

a large number of hidden nodes are used in this network, as in the context-independent 

phonetic-level "big dumb neural network" systems proposed by Bourlard and Morgan [lo]. 

The resulting network has 300 hidden nodes and six output categories (one for each Height 

value). 

The Manner, Place, and Height categories are combined to arrive at a phoneme-level 

representation that is context-dependent (as illustrated in Figure 5.2), where the context 

is based on the place of articulation of the neighboring phoneme. The values of each 

feature are combined using the Fuzzy Logic Model of Perception (FLMP), which assumes 

independence between each distinctive feature. As suggested by Zadeh and reported in 

Oden and Massaro [Ill], we use exponential weighting factors to adjust the relative im- 

portance of each feature in its contribution to the resulting phoneme. The values for these 

weighting factors have been determined empirically by an iterative process of modifying a 

weight and evaluating its effect on alignment accuracy, until further improvement on the 

development set is not obtained. 



7.3 Implement at ion of Phonetic Transition Informat ion 

The phonetic transition categories are derived using the distinctive features described in 

Section 7.1. As in the steady-state networks, the distinctive-feature transition networks 

have their outputs combined to arrive at phoneme-level transition probabilities. The out- 

puts of each transition network are the possible combinations of values for each distinctive 

feature, as well as a single "non-transition" category. For the Manner transition network 

(with 11 values for Manner) there are 122 outputs, for the Place transition network (with 

10 values for Place) there are 101 outputs, and for the Height transition network (with 6 

values for Height) there are 37 outputs. 

As an example of how these networks are combined to determine phoneme-level tran- 

sition probabilities, we can consider the transition from /ph/ to /a/, as in the word "pot." 

The /ph/ phoneme has the values [stp] for Manner, [lab] for Place, and [max] for Height, 

and /a/ has the values [vow] for Manner, [bckl for Place, and [hl] for Height. The proba- 

bility of a transition from /ph/ to /a/ given a certain observation is then the combination 

of the probabilities of "stp+vow" , "lab+bck" , and "max+hl" for that observation. Con- 

sidering these probabilities to be equivalent to "fuzzy truth valuesn, we can then use the 

FLMP to arrive at a final probability of transition from /ph/ to /a/: 

(7.1) 

where >- indicates transition, X and Y are phonemes, M (X) is the Manner of phoneme X, 

P ( X )  is the Place of phoneme X ,  and ? l ( X )  is the Height of phoneme X. As in the steady- 

state estimation, empirically-derived exponential weights are used to adjust the relative 

importance of each feature, although these weights are not indicated in Equation 7.1. 

Given the within-phoneme ("steady-state") probabilities and the phonetic transition 

probabilities for each observation, we can then estimate the most likely phonetic sequence 

by combining these probabilities during the Viterbi search. Combination of the proba- 

bilities during the search allows relatively early integration of the within-phoneme and 

transition information. (A comparison with other systems that combine transition and 

within-phoneme probabilities is given in Section 7.5.) 



7.4 Training Issues 

The data from manually time-aligned phonetic transcriptions were used to select the 

within-phoneme and phonetic transition training samples. First, the same mapping pro- 

cedure that was used in the baseline system was applied to remove diacritics and short 

pauses. Then, phonetic labels were mapped to their respective distinctive features. For 

training the transition networks, the region of f 5 msec from each phonetic boundary was 

marked as a transition region. With a frame rate of 5 msec, this yielded two training 

samples for every phonetic boundary. 

The corpora used for training were the TIMIT [71], Stories [27], and Portland Cellular 

[27] corpora (the same corpora and data files that were used in the baseline recognition 

system). They were selected to provide a variety of channel conditions for training. The 

speech data were converted to a 16 kHz sampling rate, if necessary, and high-pass filtered 

at 160 Hz before computing the PLP features, in order to make the microphone-speech 

training data more closely match the telephone-speech data. Each network was trained 

using the same 5-msec frame size as in the baseline system. 

For the within-phoneme classification networks, the feature set consisted of PLP fea- 

tures with the same 120-msec context window used in the baseline system, as well as the 

acoustic-level features thought to be relevant to the particular distinctive feature. For the 

transition networks, the same PLP features were used, but with a more narrow 60-msec 

context window. Table 7.5 lists the acoustic-level features used as input to each type of 

network. 

For the within-phoneme ( "steady-state" ) networks, FO values were provided to the 

network to give information about the speaker's gender. Because FO is highly correlated 

with gender, and because gender correlates with vocal tract length and thus iduences 

the locations of formant frequencies, FO values may allow the network to better learn 

the formant frequencies associated with Manner, Place, and Height. Voicing and voice- 

onset time provided the Manner network with information about voicing, and provided 

the Place and Height networks with information about the location of the current frame 

with respect to any surrounding consonants. Such consonants may have a coarticulatory 



Table 7.5: Acoustic-level features used in each type of distinctive-feature network. 

Network 

Steady-State Manner 

1 burst-related impulses, and intensity discrimination 
- 

Acoustic-Level Features 
FO, voicing, voice-onset time, glottalization, burst-related 

Steady-State Place 
Steady-State Height 
Phonetic Transition 

effect on the current frame; the closer the current frame is to the consonant, the stronger 

impulses, and intensity discrimination 
FO, voicing, voice-onset time, and intensity discrimination 
FO, voicing, voice-onset time, and intensity discrimination 
FO, delta-F0, voicing, voice-onset time, glottalization, 

the coarticulatory effects can be. 

These PLP and acoustic-level features were input to a fully connected feed-forward 

neural network, which was trained using back-propagation to estimate the likelihood of 

each category. The training was adjusted to use the negative penalty modification pro- 

posed by Wei and van Vuuren [145], as in the baseline system, and training was stopped 

after 45 iterations. During the Viterbi search, the baseline method of applying duration 

limits using penalties was used. The network results for iterations 15 through 45 were 

applied to the forced-alignment task on a development set of the TIMIT corpus, and the 

"best" iteration was determined by selecting the iteration with the minimum alignment 

error. 

7.5 Comparison with Previous Work 

If we compare the number of categories required to compute context-dependent phonetic 

probabilities using distinctive phonetic features (125) with the number of categories re- 

quired for a context-dependent phoneme-level classifier (about 600), the distinctive-feature 

approach uses about one-fifth the number of categories. If we compare the number of cat- 

egories required to compute transit ion information using distinctive phonetic features and 

the FLMP (260) with the number of categories required to compute transition information 

using only phoneme-level information (1444 for a set of 38 phonemes), the distinctive- 

feature approach again requires about one-fifth the number of categories. This reduction 



is possible because of the explicit model for combining the distinctive-feature information. 

The result of this reduction in the number of categories is that for a fixed amount of 

training data, there is a much greater number of training samples per category with the 

distinctive-feature approach than with the baseline phonetic approach. This is especially 

advantageous when using neural networks for classification, as learning tends to be poor 

for categories that have a relatively small number of training samples. 

In the proposed system, transition information that depends on the observed speech 

frame is incorporated with the within-phoneme probabilities during the Viterbi search; 

this allows both acoustics-based transition probabilities and context-dependent phonetic 

probabilities to influence the most likely path through the HMM. In contrast, the SUM- 

MIT system utilizes the transition information after the search has determined the most 

likely sequence of segments. The SUMMIT approach may be helpful in estimating over- 

all word likelihoods, but the transition information does not influence the segmentation 

boundaries. The SPAM system uses the Viterbi search for both within-phoneme and 

phonetic transition categories, but combines the within-phoneme and transition results 

at the word level, after each Viterbi search. This late-integration approach is unable to 

take into account the timing relationship between phonemes and phonetic transitions. 

In the diphone-based system developed at OGI prior to this thesis [67], the constraint 

that phonetic steady-state and transition categories must occur in alternating order is 

enforced during the Viterbi search, but the state occupation probability does not depend 

on transition probabilities. 

The proposed system uses context-dependent within-phoneme categories, which is 

made possible by the use of separate within-phoneme and phonetic transition networks. 

The OGI diphone [67] and CSELT [34] systems use context-independent categories, in 

order to improve the number of training samples per category in the single classifier. In 

addition, in order to keep the number of categories as small as possible, the OGI diphone 

system was trained only on the small-vocabulary digits task, and the CSELT system has 

a reduced set of transition and phonetic categories. 

In the Discriminant HMM approach [lo], the previous state is included in the esti- 

mate of the current state. This requires the classifier to have state information as an 



input, and Bourlard reported that the resulting complexity prevented the full Discrim- 

inant HMM approach from being implemented in practice [lo]. The IOHMM approach 

[8] requires a third "emit-or-not" distribution in addition to the state occupation and 

transition probabilities; this extra distribution is not required in the proposed system. In 

the HNN approach [127], two networks are trained for each category; one to estimate the 

state occupation probability, and the other to estimate the state transition probability. 

It may be because of this large number of required networks that the final HNN system 

uses the traditional HMM approach to state transitions instead of observation-dependent 

transition probabilities. 

The proposed system is the only known system in which the FLMP is used to combine 

distinctive features to arrive at a phoneme-level probability estimation. Other systems that 

employ distinctive features use the distinctive-feature results as input to a phoneme-level 

GMM or ANN classifier [76, 82, 69, 131, 361, or require a large number of combinations of 

distinctive-feature HMM states [41, 441. 



Chapter 8 

Evaluation Methodology 

8.1 Agreement 

For evaluating the relative performance of the baseline and proposed automatic alignment 

systems, we measure both agreement with manual alignments and robustness. In addition, 

we investigate the performance of several aspects of the proposed system, and conduct tests 

to evaluate its usefulness in practical applications. 

Agreement with manual alignments is measured for a set of 13 corpora. Judgements 

about the quality of alignment agreement are determined based on the commonly-used 

threshold of 20 msec, but we also present results for other thresholds. Significance of the 

difference between the baseline and proposed methods is computed for each corpus using 

McNemar7s test, with a significance level of 0.05. In addition, we compare the results of 

the baseline and proposed methods with levels of inter-labeler agreement. 

8.2 Robustness 

In measuring robustness, we evaluate both systems on the many variations of the TIMIT 

corpus. The data for the original TIMIT corpus were recorded with a close-talking noise- 

canceling head-mounted S e ~ h e i s e r  microphone (model HMD-414) [53] and digitized at 

16 kHz7 and so the speech data in this corpus are of high acoustic quality. Other variations 

of this corpus have been created; each (except for the FFM-TIMIT corpus) was created 

by playing the original TIMIT speech through a speaker, recording it via some telephone 

or microphone channel, and shifting the resulting speech in the time domain so that 



the channel-distorted speech is aligned with the original TIMIT speech. In this way, 

the phonetic labels that correspond to the original TIMIT speech also correspond to the 

TIMIT variants. The FFM-TIMIT corpus was recorded simultaneously with the recording 

of TIMIT, using a Breul & Kjaer 1/2" free-field microphone (model 4165). The label 

alignments of FFM-TIMIT were then increased by 1.25 msec to account for the distance 

(time delay) between the Sennheiser and Bruel & Kjaer microphones. As a result, the 

FFM-TIMIT corpus has microphone characteristics different from TIMIT, but the data 

have not been subjected to post-processing loudspeaker and channel distortion. 

Because the phonetic alignments of the speech in the TIMIT variants are the same but 

the recording conditions differ, differences in automatic-alignment results, when evaluated 

on these corpora, must be due to the effect of the channel and loudspeaker conditions. 

For any given boundary, we can measure the standard deviation of alignments for that 

boundary, using either the proposed or baseline alignment systems. For example, if we 

evaluate the baseline system on a boundary between /.pau/ and /J/ in a given file, there 

will be one result from each TIMIT corpus, for a total of 12 results. The standard deviation 

of these 12 results can be computed, providing a measure of the robustness of the baseline 

system on that phonetic boundary. We can then compute an average standard deviation 

for both systems, and evaluate each system's robustness with respect to a change in channel 

conditions. 

An advantage of this approach to measuring robustness is that it does not rely at 

all on the manual boundary information. A disadvantage of this approach is that the 

change in channel conditions can increase the signal-to-noise ratio and obscure certain 

phonetic events. If such channel conditions were present during a real communication, 

we may assume that the speaker would change his or her speaking style to improve the 

communication of important events in the speech signal (known as the Lombard effect). 

With the various TIMIT corpora, the speaking style is not altered, and it is possible that 

the increased noise makes the detection of certain acoustic-phonetic events impossible. In 

cases with a low signal-to-noise ratio, we would predict that our proposed method has 

no advantage over the baseline system, because the proposed method relies on extracting 

acoustic-phonetic cues for improved performance. (We would also expect, under such 



conditions, a noticeable decrease in the consistency of manual alignments. Such a decrease 

was found in the manual alignments of NTIMIT and CTIMIT reported in Section 4.2.) 

If the speaking style were altered in noisy environments to emphasize the phonetically- 

relevant aspects (which would occur in normal communication), we expect our proposed 

system to have better performance than the baseline system. We then note that under 

"real-life" circumstances with these various channels, the proposed method may be more 

accurate than is reflected in the observed results from TIMIT variants. 

8.3 Other Issues 

Once we have evaluated the relative performance of the two systems, it is important 

to identify which acoustic-phonetic features contribute to performance gains, and so we 

evaluate the alignment of specific phonetic boundaries for which we expect acoustic- 

phonetic features to improve performance. Specifically, we evaluate the alignment of 

voiced-unvoiced boundaries, boundaries between voiced consonants and vowels (for which 

FO information may be useful [129]), boundaries between glottalized phonemes, silence- 

fricative boundaries (for which intensity discrimination may be useful), and closure-burst 

boundaries. These tests evaluate the effectiveness of the entire system, including phonetic 

transitions, distinctive features, and acoustic-level features, on specific types of bound- 

aries. In addition, we evaluate the proposed system without the use of phonetic transition 

probabilities to determine the effect of transition information separately from distinctive 

features or acoustic-level features. Finally, we train a baseline system with acoustic-level 

features as input to the neural network, to evaluate the effectiveness of these features 

without the use of transition information or distinctive features. 

Having measured the agreement with manual alignments and robustness of the base- 

line and proposed systems, questions remain about the usefulness of the proposed method. 

First, is the proposed method notably faster than manual alignment? If not, then the ben- 

efits of this method currently apply only to cases in which the use of human labelers is 

impractical or prohibitively expensive. To answer this question, we measure the execu- 

tion time of the proposed method, and compare this with the time required for manual 



alignment. Second, are the results of the proposed alignment system sufficiently different 

from the baseline system to have an effect on applications that use automatic phonetic 

alignment? A positive answer to this question indicates that the proposed system is of 

practical importance. For this reason, we train and evaluate a recognizer on the task of 

alpha-digit recognition (recognition of the letters of the alphabet, the ten digits from zero 

through nine, and the digit "oh"). We use the OGI Alphadigits corpus, which contains 

telephone-band speech of continuously-spoken letters and digits, with six letters or digits 

per utterance. As this corpus has no manual phonetic labels, automatic alignment is nec- 

essary in order to train an HMMjANN alpha-digit recognizer on this corpus. We label the 

training data with both the baseline and proposed alignment methods (using canonical 

pronunciations for each letter and digit), and train separate recognizers on each set of 

labels. Test-set evaluation is performed, and the two systems are checked for statistically 

significant differences using McNemar's test, with a significance level of 0.05. 

8.4 Summary 

In summary, we evaluate the baseline system and proposed system using a measure of con- 

sistency with manual alignments and a measure of robustness. We base the final decision 

of success of this method on whether or not the proposed system shows better performance 

than the baseline system in both of these measures, although individual researchers are 

encouraged to form their own conclusions from the data. We investigate the effectiveness 

of various aspects of the proposed method. We also report on the execution time required 

by the proposed method, as it should be notably faster than manual alignment in order to 

be of practical use. We further evaluate the usefulness of the proposed method by training 

and evaluating two alpha-digit recognition systems, trained on labels generated from the 

baseline and proposed methods, respectively. 



Chapter 9 

Results and Discussion 

9.1 Agreement with Manual Alignments 

The 14 corpora used in evaluating agreement levels are described in Table 9.1. The 

results for the baseline and proposed alignment systems on these corpora are presented in 

Table 9.2. The relative reduction in error between the baseline and proposed systems is 

shown in Figure 9.1, according to the formula 

E (hseline) - E(proposed) 
x 100% . 

E (baseline) (9.1) 

where E(base1ine) is the percent error (disagreement) of the baseline system with a 20- 

msec threshold, and E(proposed) is the error (disagreement) of the proposed system with 

a 20-msec threshold. The average reduction in error across all 14 corpora is 27.92%, with 

a minimum reduction of 20.36% for Switchboard and a maximum reduction of 41.42% 

for the MWM Diphone corpus. Based on a 20-msec threshold, all of the results from the 

proposed system are significantly better than the baseline results, using McNemar7s test 

with a significance level of 0.05 (all p values are less than low5). 

One reason why the reduction in error on Switchboard is the lowest of the corpora that 

we tested may be because the phonetic labeling of this corpus does not distinguish between 

the closure and burst portions of plosive phonemes. Because there is no labeling of the 

instant of burst onset, we combine the closure and burst outputs from the forced-alignment 

systems when evaluating on this corpus. As the proposed system has a large reduction 

in error over the baseline system at labeling closure-burst boundaries (see Table 9.7) the 

lack of this type of boundary reduces the relative effectiveness of the proposed system. 



Table 9.1: Corpora used' in comparing performance of the baseline and proposed methods 
to manual alignments. 

Corpus 
TIMIT 

Stories 

Portland Cellular 

FFM-TIMIT 

Switchboard 

Kids' Speech 

Names 

Numbers 

Spelled and Spo- 
ken Words 

Description 
Speech recorded with a head-mounted, noise-canceling micro- 
phone in a clean environment. The corpus consists of read, 
phonetically-balanced sentences. Over 1,300 files are available 
for testing. 
Telephone speech from 688 people across the United States. 
Each file contains extemporaneous speech of about 1 minute in 
length. Over 200 files have been phonetically transcribed and 
time-aligned, and 40 of these files are used for test-set evalua- 
tion. 
Cellular-telephone speech from 515 people in the Portland, Ore- 
gon area. Each file contains extemporaneous speech of about 1 
minute in length. 200 files have been phonetically transcribed 
and time-aligned, and 33 of these files are used for test-set eval- 
uation. 
Recorded at the same time as TIMIT, using a Breul & Kjaer 
free-field microphone. Significant amounts of very-low-frequency 
noise. 
Cellular-telephone speech from a large number of people on var- 
ious topics. Phonetic labeling of this corpus has been provided 
by Joe Picone. Over 1,200 files are available for testing, although 
the files are of different lengths. 
Head-mounted microphone speech recorded onto computer with 
a SoundBlasterTM audio card. The speech was collected from 
children in grades K through 10. Isolated, prompted words fiom 
grades 1 through 10 have been phonetically aligned, and 168 of 
these files are used in this evaluation. 
Telephone speech of 30,000 first and last names from people 
across the United States. Over 6,500 utterances have been tran- 
scribed and time-aligned at the phoneme level, and 1,280 files are 
used in this evaluation. 
Telephone speech of various numbers, such as ZIP codes or ad- 
dress numbers. Collected from a large number of people across 
the United States. Over 6,500 utterances have been transcribed 
and time-aligned at the phoneme level, and almost 1,300 files are 
used in this evaluation. 
Telephone speech of locations, people names, the alphabet, and 
spelled names. Collected from 4,000 people across the United 
States. 



continued from previous page 

Corpus 
Multi-Language 

(no ".nitlV or non-standard phonemes) are used in this evalua- 
tion. This results in test-set 30 files. Non-English phonemes were 

Description 
Telephone speech from 189 people speaking extemporaneous Ger- 

- - 

Telephone Speech 
(MLTS), German 

man speech for about 1 minute. Of these files, 104 have been 
manually transcribed and aligned at the phoneme level. Of these 
104 files, half of the ones for which all phonemes can be identified 

Multi-Language 
Telephone Speech 
(MLTS), Spanish 

mapped to their closest English representation. 
Telephone speech from almost 200 people speaking extempora- 
neous Spanish speech for about 1 minute. Of these files, 108 have 
been manually transcribed and aligned at the phoneme level. Of 
these 108 files, half of the ones for which all phonemes can be 
identified (no ".nitlV or non-standard phonemes) are used. This 
results in 30 test-set files for evaluation. Non-English phonemes 

Multi-Language 
Telephone Speech 
(MLTS), Man- 
darin 

were mapped to their closest English representation. 
Telephone speech from over 160 people speaking extemporaneous 
Mandarin speech for about 1 minute. Of these files, 70 have been 
manually transcribed and aligned at the phoneme level. Of these 
70 files, half of the ones for which all phonemes can be identified 
(no ".nitlv or non-standard phonemes) are used. This results 
in 15 test-set files for evaluation. Non-English phonemes were 

Multi-Language 
mapped to their closest English representation. 
Telephone speech from 161 people speaking extemporaneous - - 

Telephone Speech 
(MLTS), Japanese 

phrases, from a single American speaker. In evaluating alignment 
methods on this corpus, only the boundary of the target diphone 
was used when com~utine: the ameement score. 

Japanese speech for about 1 minute. Of these files, 64 have been 
manually transcribed and aligned at the phoneme level. Of these 
64 files, half of the ones for which all phonemes can be identified 
(no ".nitln or non-standard phonemes) are used. This results 
in 24 test-set files for evaluation. Non-English phonemes were 

MWM Diphones 
mapped to their closest English representation. 
High-quality microphone speech of diphones in nonsense carrier 



Table 9.2: Percent agreement with manual alignments for the baseline and proposed meth- 
ods, and relative reduction in error for the proposed method. The TIMIT, Stories, and 
Portland Cellular corpora were the corpora used in training and development. 

The Numbers corpus may have lower-than average reduction in error because of the 

small number of bursts in the vocabulary, and because the boundary between /ou/ and 

/d in the word "four" is often indistinct, making manual alignment difficult. The MWM 

Diphone corpus may have relatively better performance because of the clear articulation 

of diphones that accentuates the acoustic-phonetic properties of the speech. 

The agreement levels for the baseline and proposed system on all corpora at thresholds 

from 10 msec through 50 msec (at 10-msec intervals) are given in Tables 9.3 and 9.4, 

respectively. The results of the baseline and proposed system are compared with inter- 

labeler agreement in Table 9.5. It can be seen that manual labeling yields, on average, 

a 41.9% reduction in error over the baseline system and a 13.5% reduction in error over 

the proposed system. It is also interesting to note that for two of the five corpora in this 

evaluation, the proposed method has somewhat better agreement with the reference labels 

than a human labeler. 

Relative R e  
duction in 
Error (%) 

26.07 
22.42 
22.85 
36.48 
20.36 
34.43 
25.94 
21.17 
31.34 
40.88 
22.26 
22.93 
22.30 
41.42 

Proposed 
Method 
Agreement 
(%I 
92.57 
90.62 
90.24 
88.89 
85.06 
74.02 
86.67 
85.96 
80.11 
87.49 
79.33 
82.82 
83.41 
83.88 

Corpus 

TIMIT 
FFM-TIMIT 
Stories 
Portland Cellular 
Switchboard 
Kids 
Names 
Numbers 
Spelled & Spoken 
MLTS-German 
MLTS-Mandarin 
MLTSSpanish 
MLTS- Japanese 
MWM Diphone 

Baseline 
Agreement 
(%I 

89.95 
87.91 
87.35 
82.51 
81.24 
60.38 
82.00 
82.19 
71.03 
78.84 
73.41 
77.71 
78.65 
72.48 



The closeness of the proposed method's results to the levels of inter-labeler agreement 

is encouraging, although the results for Mandarin speech indicate that there are corpora 

for which the proposed method does considerably worse than manual alignment. The 

poor results for Mandarin may result from the coarse mapping of Mandarin to English 

phonemes, in which it is difficult to assign a single English phoneme to a target Mandarin 

phoneme. 

Figure 9.1: Graph of relative reduction in error from the baseline to the proposed method, 
for each corpus. 

9.2 Robustness Measurements 

The robustness of the baseline and proposed systems was evaluated by computing the 

standard deviation of results for each phonetic boundary as evaluated on 12 TIMIT cor- 

pora, and then finding the average standard deviation of all boundaries. The TIMIT 

corpora used in this evaluation are described in Table 9.6. Because the waveforms of the 

speech files in the original HTIMIT corpus may be shifted by up to 50 msec [125], we 

used a version of HTIMIT developed by Sarel van Vuuren that has the speech data more 



Table 9.3: Agreement levels for the baseline system on all corpora at several thresholds. 

closely aligned with the original TIMIT waveforms. 

The average standard deviations of the alignments are 5.54 for the proposed method 

Agreement 
within 50 
msec (%) 
98.45 
97.85 
97.27 
95.86 
94.70 
77.37 
94.49 
95.12 
88.83 

93.12 
91.62 
92.71 
93.81 
93.58 

and 6.55 for the baseline method. The proposed method therefore has, on average, 15.4% 

Agreement 
within 40 
msec (%) 
97.39 
96.52 
95.98 
93.83 
92.84 
73.53 
92.52 
93.17 
85.21 

91.09 
88.59 
90.43 
91.45 
90.15 

less standard deviation on these corpora; this difference is statistically significant using a 

Agreement 
within 30 
msec (%) 
95.21 
93.92 
93.27 
89.87 
89.41 
68.46 
89.17 
89.49 
79.90 

87.23 
83.28 
86.34 
87.47 
84.92 

large-sample hypothesis test with a significance level of 0.05. 

Agreement 
within 20 
msec (%) 
89.95 
87.91 
87.35 
82.51 
81.24 
60.38 
82.00 
82.19 
71.03 

78.84 
73.41 
77.71 
78.65 
72.48 

Corpus 

TIMIT 
FFM-TIMIT 
Stories 
Portland Cellular 
Switchboard 
Kids 
Names 
Numbers 
Spelled and Spo- 
ken Words 
MLTS-German 
MLTS-Mandarin 
MLTS-Spanish 
MLTS- Japanese 
MWM Diphone 

We also note that manual alignments of the NTIMIT corpus have notably less inter- 

Agreement 
within 10 
msec (%) 
72.95 
69.03 
70.77 
65.04 
61.80 
43.79 
63.76 
64.80 
54.33 

59.66 
53.39 
58.65 
57.92 
49.13 

labeler agreement (71.94% within 10 msec) than the Stories corpus (79% within 10 msec), 

and that inter-labeler agreement on the CTIMIT corpus is dramatically worse than on the 

NTIMIT corpus. These results support our claim that the addition of artificial channel 

distortion to the TIMIT corpus results in a decline in the presence of acoustic-phonetic cues 

in the new corpus (under the assumption that humans actually do use acoustic-phonetic 

cues when aligning speech, rather than some process closer to the motor theory). This, 

in turn, indicates that the relative robustness of the proposed method may be greater for 

non-artificial corpora, as this method relies on acoustic-phonetic information. 



Table 9.4: Agreement levels for the proposed system on all corpora at several thresholds. 

Table 9.5: Comparison of baseline and proposed methods' agreements with manual agree 
ments for five corpora. 

Agreement 
within 50 
msec (%) 
98.89 
98.40 
97.40 
96.94 
94.99 
86.11 
95.90 
95.55 
91.70 

95.45 
92.98 
93.14 
93.44 
96.34 

Agreement 
within 20 
msec (%) 
92.57 
90.62 
90.24 
88.89 
85.06 
74.02 
86.67 
85.96 
80.1 1 

87.49 
79.33 
82.82 
83.41 
83.88 

Corpus 

TIMIT 
FFM-TIMIT 
Stories 
Portland Cellular 
Switchboard 
Kids 
Names 
Numbers 
Spelled and Spo- 
ken Words 
MLTS-German 
MLTS-Mandarin 
MLTS-Spanish 
MLTS-Japanese 
MWM Diphone 

di re emend 
within 30 
msec (%) 
96.39 
95.32 
94.31 
93.27 
90.69 
79.41 
91.76 
90.78 
85.73 

91.37 
85.87 
87.90 
88.72 
90.92 

Proposed 
to Manual 
Reduction 
in Error 
(%I 
12.38 - 
-6.28 
-4.20 

51.12 

14.65 

Agreement 
within 10 
msec (%) 
80.01 
76.26 
80.24 
78.13 
71.81 
59.80 
75.86 
74.78 
69.15 

77.74 
65.22 
72.17 
71.73 
65.73 

Agreement 
within 40 
msec (%) 
98.08 
97.38 
96.22 
95.57 
93.31 
83.01 
94.40 
93.59 
89.44 

93.84 
90.34 
90.90 
91.69 
94.42 

Proposed 
Method 
Agree- 
ment (%) 

92.57 
80.24 
72.17 

65.22 

77.74 

Baseline 
to Manual 
Reduction 
in Error 
(%) 
35.22 
28.16 
29.87 

63.53 

52.90 

Corpus 
(threshold) 

TIMIT (20%) 
Stories (10%) 
MLTS- 
Spanish 
(10%) 
MLTS- 
Mandarin 
(10%) 
MLTS- 
German 
(10%) 

Inter- 
Labeler 
Agree- 
ment (%) 

93.49 
79 
71 

83 

79 to 81 

Baseline 
Agree- 
ment (%) 

89.95 
70.77 
58.65 

53.39 

59.66 



Table 9.6: Corpora used in evaluating robustness of baseline and proposed methods (de- 
scriptions from [71, 14, 125, 52, 531). 

I I phone. This is the reference from which all other TIMIT variants I 

Corpus 
TIMIT 

Description (from documentation) 
Recorded with Sennheiser noise-canceling, head-mounted micro- 

FFMTIMIT 
are derived, except for FFMTIMIT. 
Recorded at same time as TIMIT, using Breul & Kjaer free- 
field microphone. Phonetic boundaries from TIMIT have been 

NTIMIT 
adjusted to correspond to FFMTIMIT data. 
TIMIT utterances passed through NYNEX telephone network. 

CTIMIT 

I hole membrane). 
HTIMIT CB4 I ITT carbon-button (6 hole membrane/attached transducer). 

The waveforms have been adjusted in the time domain to align 
with the corresponding TIMIT waveforms. There is a maximum 
time discrepancy of 10 msec between the TIMIT and NTIMIT 
data. 
3367 TIMIT utterances recorded over cellular telephone channels 

HTIMIT CB1 

HTIMIT CB2 

HTIMIT CB3 

"from a specially equipped van in a variety of driving conditions, 
traffic conditions, and cell sites in southern New Hampshire and 
Massachusetts." 
Northern-Telecom G-type carbon-button telephone transducer 
(center hole membrane). 
Northern-Telecom G-type carbon-button telephone transducer (6 
hole metal). 
Northern-Telecom G-type carbon-button telephone transducer (6 

HTIMIT EL1 

HTIMIT EL2 

- ,  

I HTIMIT EL4 i Radio Shack Chrono~hone-255 electret tele~hone. I 

Northern-Telecom unity electret telephone transducer (3-line ' 
grill). 
Northern-Telecom Unity Noisy-Environment electret telephone 

HTIMIT EL3 
transducer (2-line grill). 
Unknown manufacture electret (64hole grill). 



9.3 Agreement for Specific Cases 

We now present levels of agreement with specific types of manual boundaries for the 

baseline and automatic methods. The voicing detector should have a positive effect on 

voiced-unvoiced boundaries, the FO information should have an effect on the boundaries 

between vowels and voiced consonants, the glottalization detector should have an effect on 

boundaries between glottalized phonemes, the measure of intensity discrimination should 

have an effect on silence-fricative boundaries, and the impulse detector should have an 

effect on the boundaries between closures and bursts. The agreement with manual align- 

ments for the baseline and proposed methods for each of these boundary types is given 

in Table 9.7 based on a 20 msec threshold. It can be seen that the reduction in error for 

voiced-unvoiced boundaries, silence-fricative boundaries, and closure-burst boundaries is 

fairly high for all three corpora, ranging from 33% to 63%. The vowel-consonant bound- 

aries have only a 4.5% reduction in error on TIMIT, but 16.6% and 20.4% for Stories and 

Portland Cellular, respectively. The boundaries for glottalized phonemes show a 9.3% 

relative 9'ncrease in error for the proposed method on TIMIT, a 7.7% decrease in error for 

Stories, and a 30.4% decrease in error for Portland Cellular. 

Based on these results, the voicing, intensity discrimination, and impulse-detection 

features seem particularly effective in the proposed method, with somewhat less effective- 

ness for the FO information, and possibly negative effects for the glottalization feature. 

In looking at TIMIT data, we noted that sometimes the speech that is labeled with the 

glottalization label can have two interpretations. One interpretation is to mark glottal- 

ized speech, as characterized by irregularity in the glottal pulses. Another interpretation 

is indication of the silence region of a glottal stop, where the stop is characterized by a 

brief period of glottalization prior to or following a period of closure. In the second case, 

the glottalization detector output should be low and the likelihood of silence much greater 

during the closure region that is labeled as glottalization. This inconsistency between the 

acoustics and the labeled speech may quite possibly have an adverse effect on the proposed 

method's alignments. Because of this, the Stories and Portland Cellular corpora (which 

appear to have glottalization labeled more consistently) may be more indicative of the 



performance of the proposed system at aligning boundaries in glottalized regions. 

In order to test whether or not the neural network simply failed to properly learn 

the glottalization feature, we conducted a simple post-processing on the output of the 

proposed system's alignments. This post-processing procedure consists of the following 

steps: 

1. Search for frames at which glottalization is detected. 

2. Determine the phoneme at which glottalization occurs and the adjacent phoneme 

closest to the glottalization. 

3. Determine where glottalization begins and ends by searching forward and backward 

from the glottalized frame until the detected probability of glottalization becomes 

zero for at least two frames. 

4. If maximum glottalization in this region is strong (> 0.70), then 

(a) if the boundary between the current phoneme and adjacent phoneme is a voiced- 

unvoiced boundary, then move the phonetic boundary so that the glottalization is 

included in all of the voiced phoneme, or 

(b) if the phoneme and adjacent phoneme are both voiced, then move the phonetic 

boundary to the middle of the detected glottalization. 

Results of this post-processing, in terms of percent agreement within 20 msec, are 91.20%, 

87.35%, and 85.02% for TIMIT, Stories, and Portland Cellular, respectively. This corre- 

sponds to an 18.44%, 29.61%, and 34.83% relative increase in error over the results without 

post-processing, indicating that at least simple algorithms to adjust glottalization bound- 

ary alignments serve only to increase the error rate. This lends some support to the belief 

that the neural network has properly learned the information about glottalization. 

In order to test whether the increase in error on the TIMIT corpus is due to labeling 

the regions of acoustic silence as well as regions of glottalization with the same label, we 

performed another evaluation of the glottalization boundaries. In this second evaluation, 

a neural network trained to recognize silence was used to check if each region labeled /q/ 

contained silence. Boundaries with the /q/ label were only evaluated if the /q/ region 



did not contain silence. Results for this evaluation were 74.65% within 20 msec for the 

baseline system and 75.25% within 20 msec for the proposed system, or a 2.3% reduction 

in error using the proposed system. This confirms that the increase in error in the original 

experiment was due to the labeling discrepancy, although the reduction in error on TIMIT 

is not as large as on the Stories or Portland Cellular corpora. 

In addition to the results for boundaries that may be affected by acoustic-level features, 

we present in Table 9.8 results for the 20 most common distinctive-feature combinations 

as evaluated on the TIMIT corpus. As expected, the proposed system shows very little 

improvement on approximant-vowel boundaries, because there are few cues to the exact 

boundary between an approximant and vowel. In addition, the proposed system has worse 

results than the baseline for vowel-to-silence and vowel-to-voiced fricative boundaries. We 

have noticed this characteristic in visual inspection of results of the proposed method, and 

believe that it is due to the difference in time between attenuation of the first formant 

and attenuation of the second formant at the end of a vowel. Often, the first formant 

is attenuated after the second formant, creating a region at the end of a vowel that can 

appear similar to a voiced closure. The proposed method may classify the attenuated- 

second-formant region as silence, whereas the end of a vowel is usually manually labeled 

at the point where both the first and second formants have become attenuated. Thus, 

the proposed method has a tendency to label the vowel-silence boundary too early. This 

may be resolved in the future by specifying unvoiced and voiced closures as separate 

categories in the proposed system. For the Place distinctive feature, boundaries involving 

alveolar sounds are often worse in the proposed method than in the baseline method. We 

hypothesize that alveolar consonants may show greater coarticulatory effects than other 

consonants, and that modeling alveolar sounds as context-independent may have been an 

over-simplification. For the Height feature, the [h3] to [max], [h4] to [h3], and [hl] to [h2] 

transitions are labeled with better consistency in the baseline method. It is possible that 

Height values for some phonemes are not categorized properly, and that adjustment of 

these values may improve performance in these cases. 



Table 9.7: Agreement with manual labels for specific types of phonetic boundaries, for the 
baseline and proposed methods on three corpora. The relative reduction in error is given 
in the third row of each corpus. 

9.4 Influence of Acoustic Features, Distinctive Features, and 

Transit ions 

In order to estimate the relative influence of the combined acoustic-level features, the 

distinctive phonetic features, and the use of the proposed transition probabilities, we 

trained a alignment system that is identical to the baseline system, except that it uses 

the acoustic-level features as additional input to the neural network, and we evaluated the 

proposed method without the use of acoustics-dependent transition probabilities. 

The baseline system with acoustic-level features has 185 inputs, 300 hidden units, and 

614 outputs. It was trained on up to 8000 samples per category (for a total of nearly 

2 million examples) for 45 iterations, and the best iteration was selected by evaluating 

forced-alignment performance on a development set. 

The proposed method was evaluated without the use of acoustics-dependent transition 

probabilities by setting all of these probability values to 1.0; the standard duration limits 

were still applied. 

closure / 
burst 
agree- 
ment 

96.65 
98.57 
57.31 

94.19 
97.85 
62.99 

87.45 
94.47 
55.94 

silence / 
fricative 
agree- 
ment 

81.38 
93.86 
67.02 

77.09 
86.55 
41.29 

58.54 
75.40 
40.67 

glottal- 
ized 
agree- 
ment 

74.57 
72.20 
-9.32 

74.33 
76.31 
7.71 

72.39 
80.78 
30.39 

r 

corpus 

TIMIT 

- 

Stories 

Portland 
Cellular 

voiced / 
unvoiced 
agree- 
ment 

91.06 
94.78 
41.61 

89.10 
92.76 
33.58 

85.83 
93.24 
52.29 

method 
or 
reduc- 
t ion 
in error 

baseline 
proposed 
reduction 
baseline 
proposed 
reduction 
baseline 
proposed 
reduction 

vowel / 
voiced 
conso- 
nant 
agree- 
ment 
90.54 
90.97 
4.54 

87.58 
89.64 
16.59 

85.56 
88.51 
20.43 



Table 9.8: Agreement with manual labels for specific types of distinctive-feature bound- 
aries, for the baseline and proposed methods, evaluated on the TIMIT corpus with a 
20-msec threshold. 

Results for the original baseline system, the baseline system with acoustic-level fea- 

tures, the proposed system without transition probabilities, and the complete proposed 

system are given in Table 9.9. It can be seen that the use of acoustic-level features ac- 

counts for a 9.05%, 5.69%, and 8.98% reduction in error over the baseline system on the 

TIMIT, Stories, and Portland Cellular corpora, respectively. The use of the complete 

proposed system accounts for a 28.28%, 32.22%, and 27.76% reduction in error over the 

system that does not use acoustics-dependent transition probabilities. The use of distinc- 

tive phonetic features alone accounts for a 13.35% and 20.70% increase in error over the 

baseline system that uses acoustic-level features on the TIMIT and Stories corpora, and 



Table 9.9: Results for the proposed system with and without acoustic-level features and 
acoustics-dependent transition probabilities. 

a 3.39% decrease in error on the Portland Cellular corpus. These results assume minimal 

interaction between the effects of these three types of acoustic-phonetic features. 

9.5 Processing Time 

complete 
version of 
proposed 
method 

2 

92.57% 
90.24% 
88.89% 

The proposed method operates in about 14 times real-time on a 200-MHz Pentium Pro, 

which is notably faster than the 150 to 400 times real-time performance of manual align- 

ment, and about 4 times as slow as the baseline system. There are a large number of 

opportunities to reduce the processing time, as little effort was paid to this aspect during 

implementation. The first method of improving the execution time is to simply clean and 

optimize the code for computing the acoustic-level features. Currently, each feature uses 

its own module, and there is a great deal of redundancy that can be eliminated. In addi- 

tion, the code for implementing the use of distinctive phonetic features was written to be 

flexible rather than fast; optimizing this code will also reduce the required execution time. 

Other methods, such as using a 10-msec frame rate, smaller neural networks, or applying 

a pruning threshold to the Viterbi search, will reduce the execution time, but may also 

reduce the accuracy of the results somewhat. 

proposed 
method, no 
transit ion 
probabilities 
89.64% 
85.60% 
84.62% 

baseline plus 
acoustic- 
level 
features 
90.86% 
88.07% 
84.08% 

corpus 

TIMIT 
Stories 
Portland Cellular 

baseline 
system 
agreement 

89.95% 
87.35% 
82.51% 



9.6 Usefulness of Improved Labels 

In order to test whether the improvements in automatic alignment can have a significant 

effect on an application that uses phonetic alignments, we trained two HMM/ANN rec- 

ognizers on the alpha-digits task. For the first recognizer, the labels for training were 

generated using the baseline forced-alignment system, and for the second recognizer, the 

labels were generated using the proposed method. In other respects the recognizers were 

identical; both were trained on the same speech files using as many as 8000 samples per 

category, both used fully-connected feed-forward networks with 300 hidden nodes, were 

trained for 30 iterations, and had the best iteration selected by word-level evaluation on 

the development set. The one minor difference between the two systems was that, because 

of the differences in labeling, the number of samples of each category was slightly different. 

As a result, the system trained on baseline alignments had three infrequent classes tied to 

more frequent classes (for a total of 271 output categories), whereas the system trained on 

the proposed system's alignments had four infrequent classes tied to more frequent classes 

(for a total of 270 output categories). 

The test-set results were 86.88% word accuracy for the baseline system and 88.21% 

word accuracy for the system trained on labels from the proposed alignment method. 

This 10% reduction in error is significant at the 5% level using McNemarls test, with 

p=0.028. The results of the system trained on the proposed alignment method's labels 

are close to other reported results on this corpus. Hamaker et al. [61] reported results 

of 87.8% for a bstate triphone HMM system built using the HTK [I501 software package 

and results of 88.90% for a syllable-based system. We also note that our results were 

obtained using general-purpose alignment systems; even better results may be obtained 

if task-specific alignment systems are used. In addition, we look forward to training a 

recognition system that uses the proposed alignment method's acoustic-phonetic features, 

as well as the improved phonetic labels. 



Chapter 10 

Conclusion 

10.1 Summary 

In summary, the proposed method of automatic phonetic alignment using acoustic-phonetic 

information has significantly better agreement with manual alignments and is more ro- 

bust than a state-of-the-art baseline system. On 13 corpora used for measuring agreement 

with manual alignments, the proposed method has an average 28% reduction in error over 

the baseline system, with reductions in error ranging from 20% to 41%. In some cases, 

the results of the proposed system are comparable to the agreement between two manual 

alignments. In measuring robustness, the proposed method has 14% less standard devi- 

ation in alignments when evaluated on 12 versions of the TIMIT corpus, even though in 

some cases the artificial means of creating the channel distortions reduced the prominence 

of acoustic cues that the proposed method uses. 

Based on results from using acoustic-level features without distinctive phonetic features 

or transition information, and from using the proposed system without transition informa- 

tion, we conclude that the transition information provides the greatest relative improve 

ment in performance, the acoustic-level features provide the next-greatest improvement, 

and the use of distinctive features may increase or decrease performance, depending on 

the corpus used for evaluation. The acoustic-level features that have the greatest effect 

on overall performance are the impulse detection, intensity discrimination, and voicing 

features. 

In addition to these results for automatic alignment, we have shown how intensity 

discrimination can be used in voicing, glottalization, and impulse detection. We have 



proposed and implemented a method of voicing determination that has average accuracy 

of 97.3% on five corpora, including microphone, telephone, and cellular speech. This r e p  

resents an average 58% reduction in error over our best baseline system (which uses an 

improved version of the SIFT algorithm). The FO-extraction method that was developed 

for this thesis has accuracy of 96.88% on a corpus of read speech, with the "correct" funda- 

mental frequency values taken from EGG data. This level of accuracy is a 45% reduction 

in error compared to our best baseline system. We also implemented a glottalization detec- 

tion algorithm that has an average 88% accuracy on three corpora (including microphone, 

telephone, and cellular speech), which is a modest improvement over a baseline system. 

Finally, we proposed and implemented a method for the detection of burst-related im- 

pulses. This method has an equal-error rate of less than 7% on the TIMIT corpus, which 

is a 45% reduction in error compared to the best reported results on TIMIT. 

We have also proposed and implemented a means of using acoustics-dependent tran- 

sition information in the HMM framework. This method allows the use of separate rec- 

ognizers for context-dependent phoneme and phonetic transition classification, performs 

integration of the phoneme-based and phonetic-transition-based classification results at  an 

early stage in the alignment process, is computationally tractable, and has been shown to 

improve the performance of automatic alignment. One aspect of successful implementation 

of this method is the use of distinctive phonetic features. In our method, the distinctive 

phonetic features are combined using the FLMP instead of a higher-level classifier or a 

complex set of HMM states. 

10.2 Future Work 

There is still a large amount of work that can be done in developing and extending the 

method described in this thesis. Results of this method may be further improved by 

continued investigation of distinctive phonetic features and by the use of acoustic-level 

features that represent time-varying information (such as coarticulation or prosody). The 

proposed method will also have wider application if the distinctive phonetic feature set 

can be made more language-independent. In addition, a real-time implementation of this 



forced alignment method is important for accurate, real-time synchronization of speech 

with automated talking agents, such as the CSLU Toolkit's Baldi. 

The proposed method can also be extended to use phonological rules to adjust the 

phonetic transcriptions based on the acoustic evidence. Such adjustment may be use- 

ful if the transcriptions are obtained from dictionary pronunciations rather than manual 

determination of each word's phonetic content. For example, if the words that need to 

be aligned are "cost too much," and a dictionary pronunciation is used for each word, 

then the resulting phoneme sequence will be /k a s th  [.pau] tb u [.pau] m A tf/, where 

square brackets indicate an optional phoneme. However, it is quite likely that the two 

/th/ phonemes are merged into a single /th/,  resulting in the sequence /k a s [.pau] th u 

[.pau] m A g/ .  Such rules can be used to obtain a phonetic sequence that is more likely 

to match the speech signal. Forced alignment can be done with and without such rules, 

and the phonetic sequence with the best score can be chosen as the correct sequence. 

The alignment systems that have been developed for this thesis are general-purpose 

systems. In the same way that task-specific or speaker-specific recognizers usually out- 

perform general-purpose recognizers on that task or speaker, it is probable that a task- 

specific or speaker-specific alignment system will have better results than the systems im- 

plemented here on a given task or speaker. For example, in aligning the high-quality speech 

of a single speaker to be used in text-to-speech synthesis, we noted that the automatically- 

aligned boundary between a vowel and an /n/ tended to occur later than expected. It was 

found that this speaker strongly articulated the /n/ and that formants for this phoneme 

in the 2000-Hz region were stronger than average. This caused the distinctive-feature net- 

works to return values more appropriate for a vowel than for a consonant during the /n/, 

thereby resulting in a poor boundary placement. There are two approaches to a solution 

to such problems. First, there is a data-driven approach, in which a new alignment system 

is trained on the given task or speaker. This assumes that there is at least some amount 

of data for this task or speaker that have been accurately aligned. Second, there is a 

knowledge-based approach, in which the errors are analyzed, and changes are made to the 

existing system to address the cause of these errors. In the case of the data mentioned 

above, the description of an /n/ in terms of distinctive phonetic features could be modified 



to include properties of the observed In/,  such as a Height value of [h4] instead of [max]. 

The data-driven and knowledge-based approaches can, of course, be combined. 

Finally, we are excited about the prospects of using the methods described in this 

thesis for training speech recognition systems. Although the acoustic-level features can 

be easily integrated into recognition systems, the Viterbi search that uses the transition 

probabilities and distinctive phonetic features was written specifically for forced alignment. 

Some additional effort will be required to extend the current implementation to be capable 

of word recognition. We hope to begin work on these improvements shortly. 
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Appendix A 

Stochastic Frame-Based Speech 
Recognit ion 

A. l  HMM Framework 

The basic framework for HMM speech recognition is illustrated in Figures A.1, A.2, and 

A.3. As mentioned in Section 2.3.2, a typical HMM system works by dividing the speech 

into short frames, where each frame corresponds to a state in a state sequence. Phonetic- 

based recognition is performed on each frame, and the most likely word-level path through 

the state sequence is computed using a dynamic-programming search called a Viterbi 

search. The notation and explanations in this chapter are based on a book by Rabiner 

and Juang [I191 and papers by Bourlard, Renals, Morgan, and others 1124, 11, 121. 

In Figure A.1, an HMM for a simple two-word vocabulary is shown. Each state is 

associated with phonetic likelihoods, and states are connected by unidirectional links. In 

this figure, each state is marked by a phonetic symbol; these symbols can be thought of as 

the most likely phonetic observation that will occur in that state. A series of connected 

states forms a word, and word-ending states can be connected to word-beginning states 

in order to create a continuous-speech recognizer. Each arc between two states has an 

associated probability of transitioning from its 'Lprevious" state to its LLcurrent" state. 

These probabilities are referred to as "transition probabilities," and are denoted aij (where 

i is the previous state and j is the current state). In most HMM systems, each state has 

a self-loop (a i i ) ,  which allows the HMM to remain in the same state for more than one 

time frame. 



In a given state, the probabilities of observing each phoneme in that state are referred 

to as L'observation probabilities," and are denoted bj(ot) or bj(k), where j is the given state, 

ot is the observation of the speech signal at time t (where an "observation" is described 

by the features of the speech signal at time t ) ,  and k is the kth phonetic symbol associated 

with ot . In this framework, both the transitions between states and the phonetic categories 

within each state are stochastic. As a result, the state occupation sequence is not directly 

obtainable from the observed speech, but is "hidden"; this hidden stochastic process (or 

doubly stochastic process) is the reason for the terminology "hidden Markov model." 

According to this model, the likelihood of a hypothesized utterance is equal to the 

probabilities of being in each state corresponding to that utterance, multiplied by the 

probabilities of transitioning between the states in the utterance: 

where U is a hypothesized utterance with states ql ,  q2, q3,. . . q ~ ;  p(otlq) is the probability 

of a given speech observation ot in state q, which is equal to b,(ot); is the a 

priori probability of transitioning from the n - l th state to the nth state, which is equal to 

a,-1 ,, ; and N is the number of (possibly non-unique) states in the hypothesized utterance, 

where each state corresponds to one time frame. 

In Figure A.l, each phoneme is associated with one state; in more typical HMM 

systems, one phoneme is associated with three states, and each state is dependent not 

only on the current phoneme, but also the previous and next phonemes (a three-state 

triphone model). Figure A.2 shows one section of a three-state triphone HMM for the 

word "yes" ; due to space considerations, only the states for the phonemes /j/ (/j/ in 

Worldbet) and /c/ (/E/ in Worldbet) are shown. This figure also shows the probabilities 

associated with each state at one hypothetical time (or frame), and the probabilities of 

the utterance being in each state at that time. As the figure indicates, the state with 

the most likely observation probability (0.96 for sil-j+E) does not always correspond to 

the state with the greatest total likelihood up through the current time (state j-E+s in 

this illustration). The notation "P-C+N" in each state is used to represent the current 

phoneme C in the context of the preceding phoneme P and the next phoneme N. 



The process by which an HMM can be used to recognize speech is illustrated in Fig- 

ure A.3. Short-term spectral-domain features (with a typical window length of 16 msec) 

are computed from the input speech; often, the delta values of these features are also 

computed in order to capture some of the dynamics of the speech signal. These features 

are computed at short, regularly-spaced frames (with 5 to 20 msec per frame), and are 

usually modified to emphasize the perceptually-relevant aspects of the signal [63, 391. For 

classification of a single frame, a context window is taken; this context window includes 

the features for the current fiame and may include features in surrounding frames. In the 

case where Gaussian mixture models are used to estimate the phonetic likelihoods, the 

context window usually covers only the one frame of interest, and the delta features are 

used to implicitly include information about surrounding frames. With an ANN classifier, 

multiple frames are often used in the context window, in addition to delta features. The 

frames in the context window are passed to a classifier, which is usually a Gaussian mix- 

ture model or a neural network. The classifier estimates the likelihood of each phonetic 

category at that frame of speech. Classification is done for all frames, and this F x C ma- 

trix of probabilities (where F is the number of frames, and C is the number of categories) 

is passed to the Viterbi search. The Viterbi search computes the most likely sequence of 

states, given the phonetic likelihoods at each state (frame), the transition probabilities as 

determined from the training corpus, and the vocabulary and grammar constraints. The 

output of the Viterbi search contains not only the most likely word sequence, but also the 

times at which each state is occupied. 

Given this framework, there are four remaining issues: what features are used for 

classification, how to estimate the observation probabilities, how to estimate the transition 

probabilities, and how to improve these estimates. 

A. 2 Features for Classification 

The features used by an HMM for classification are called observations. Each observation 

represents information in the speech signal at one time frame. There are two commonly 

used feature representations, called PLP and MFCC. 



Figure A.l:  HMM state sequence for a two-word vocabulary. 

Perceptual Linear Prediction (PLP) [63] modifies linear-predictive coding in order to 

enhance the perceptually-relevant aspects of the signal. Linear-predictive coding (LPC) 

is a representation of one window of the speech signal; it is usually thought of as a 

spectral-domain representation. In speech recognition, these LPC coefficients are usually 

converted to the cepstral domain, in which lower-order coefficients represent low-frequency 

change in the spectrum (such as spectral tilt), and higher-order coefficients represent high- 

frequency change in the spectrum (such as the harmonics present in voiced speech). A 

small number of these cepstral coefficients are used in recognition systems because they are 

approximately independent of each other, which is advantageous when using a Gaussian 

mixture model (GMM) to classify the speech sounds, and because a small number of 

cepstral coefficients can represent the spectral envelope, which contains information about 

the resonant frequencies of the signal. PLP is related to LPC, except that the model of the 

speech signal is modified to emphasize the perceptually-relevant aspects. PLP modeling 

of speech is done in the following stages: 

1. windowing of the speech signal around the frame of interest; 



Figure A.2: Expanded HMM state sequence for the first two phonemes (/j/ and /E/) of 
the word "yes." 

2. computation of the power spectrum of the windowed speech, using the FFT; 

3. warping the FFT representation along the perceptually-relevant Bark scale; 

4. critical-band filtering of the Bark-scale FFT, roughly approximating the properties 

of human auditory filters; 

5. equal-loudness preemphasis of the critical-band filter outputs, compensating for the 

non-uniform sensitivity of human hearing at different frequencies; 

6. amplitude compression of the pre-emphasized filter outputs, approximating the power 

law of hearing; and 

7. LPC modeling of the resulting compressed and pre-emphasized filter outputs. 
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Figure A.3: Graphical overview of the recognition process, illustrating recognition of the
word "yes."

8. usually, the LPC coefficients are converted to cepstral coefficients.

Mel-Frequency Cepstral Coefficient (MFCC) features [39] are similar to PLP features

in that a perceptual warping of the frequency-domain information is done. However,

MFCC does not use LPC modeling of the spectrum, it does preemphasis differently, and

it does not do amplitude compression. MFCC modeling is done in the following stages:

1. preemphasis of the windowed speech signal, using a constant factor;

2. windowing of the speech signal around the frame of interest;

3. computation of the power spectrum of the windowed speech, using the FFT;



4. warping the FFT representation along the Me1 scale; 

5. conversion of the mel-scale representation to cepstral coefficients. 

A.3 Estimating the Observation Probabilities 

A.3.1 Gaussian Mixture Model Method 

In HMM systems that use Gaussian mixture models (GMMs) to estimate the observation 

probabilities bj(ot), the GMM has the form 

where bj (ot) is the probability of a given speech observation ot in state j; cjk is a mixture 

coefficient for the kth mixture in state j; and h/ is a Gaussian probability density function 

(p.d.f.) for the observation ot, with mean vector pJk and covariance matrix Ujk for the 

kth mixture component in state j .  

The initial estimates of bj(ot) can be obtained by one of several methods. Accord- 

ing to Rabiner, "experience has shown that good initial estimates are . . . essential (when 

dealing with multiple mixtures) in the continuous-distribution [GMM] casen [120]. For 

the single-mixture case, one method of obtaining initial estimates of bj(ot) is to associate 

phonetically-labeled training data with the correct state sequence, and compute the means 

and covariance matrices of the features for each segment. These means and covariance 

matrices then specify bj(ot). The phonetically-labeled data can be obtained from manual 

labels or automatic alignment methods. 

A method of obtaining initial values for bj (ot) when using multiple mixtures is based 

on k-means clustering. First, the training data are segmented into states given the current 

HMM, using the Viterbi algorithm. From this segmentation, k-means clustering is used 

to cluster the data for each state j into M mixtures (where M is the number of mixtures 

per state). The means and covariance matrices of each mixture can be computed, and 

the mixture weights cjm can be adjusted based on the relative number of data points in 

each mixture. These new means, covariances, and mixture weights form new estimates of 

bj(ot). 



The transition probabilities aij can be estimated using the formula 

- expected number of transitions from state i to state j 
aij = 

expected number of transitions from state i (A.3) 

with the values in the numerator and denominator obtained from counting occurrences 

of these events in the training data. These new estimates for bj(ot) and aij are used to 

construct a new HMM, and Viterbi segmentation is repeated until the HMM parameters 

are stable. 

Once an initial estimate has been obtained, further refinement is possible, as will be 

discussed in Section A.4. 

A.3.2 Neural-Network Method 

The estimates of state occupation can also be determined using a neural-network classifier. 

Given an accurate alignment of the training data, each observation of a frame of data can 

be trained to correspond to a given phonetic category. This training will, with sufficient 

data and nodes in the network, result in output values that are a posteriori probabilities of 

each category or state, given the input data: p(jlot). These probabilities are "discriminant 

by nature," in that "models are trained to suppress incorrect classification as well as to 

accurately model each class separately" [ll]. In addition, the input features do not have 

to be independent, allowing the neural network to have a context window of several frames 

of input, and thereby capturing some dynamic behavior in a way not possible with delta 

values. 

For HMM systems, what bj(ot) should estimate is not, however, p(jlot), but p(otlj). 

A scaled estimate of p(ot(j),  called @(ot 1 j), can easily be obtained using Bayes' rule, by 

dividing the neural network outputs by the class prior probabilities: 

where p(ot j) is related to p(otl j )  by 



For any observation at time t ,  p(ot) will be the same for all states and will not influence 

the final result [124]. These scaled likelihoods p(ot lj) can then be used in the HMM model 

for bj(%). 

As an alternative to dividing the neural network output by the class priors, the neu- 

ral network learning algorithm can be modified so that the class prior is approximately 

''flattenedn or factored out during training [145]. The output of such a network is approx- 

imately proportional to the a posteriori probability divided by the class prior probability, 

and is called p(j(ot), where 

As a result, p(j(ot) can then be used in the HMM model as a scaled estimate of p(ot(j) or 

bj (ot). Based on several informal experiments, we have found that this modified training 

provides better word-level recognition results than division by class priors. 

A.4 Estimating the Transition Probabilities 

The transition probabilities, a,j, can be initially assigned random or (more typically) 

uniform values. If the k-means method is used to determine initial estimates of bj(ot), 

then values for aij are estimated as well. Such methods are "adequate for giving useful 

reestimates of these parameters in almost all cases" [120]. These initial values can then 

be iteratively improved, as will be described in Section A.5. 

If aij is used without modification in an HMM system, the duration model has an 

implicit Geometric distribution, meaning that with increasing time there is notably less 

likelihood of remaining in a given state [18]. This Geometric model does not fit well with 

observed duration distributions found in speech data; the data are better fit by a Gamma 

distribution. To resolve this issue, the structure of the HMM can be modified to better 

approximate the true duration distributions [121]. Another simple but effective method is 

to replace the standard aij probabilities by penalties during the Viterbi search. The value 

of the penalty depends on how long a state is occupied. In the Burshtein model [18], a 

true Gamma distribution is obtained; in the baseline CSLU recognizers [68], a penalty is 

applied if the state duration is too short or too long, but no penalty is applied for "typical" 



durations. 

A.5 Updating the Probability Estimates 

Given initial estimates of aij and bj(ot) from the training data, these estimates can be 

improved using the L'forward-backward" method. The forward-backward method is an 

iterative procedure that takes as input an initial HMM and observation sequence. Given 

these parameters, we can compute the probability of a partial observation sequence from 

time tl to time tt (corresponding to olozos.. . ot) and ending in state i at time tt, using 

a recursive procedure. This probability is called the forward probability, and is denoted 

ctt(i). In a similar way, the partial observation sequence going backward in time from 

t = T to t = t + 1 ( o ~ o ~ - ~  . . . o ~ + ~ )  and ending in state j can be computed (where T 

is the final time); this probability, called the backward probability, is denoted /3t+l(j). 

Given at(i),  pt+l ( j) ,  aij, and bj(ot+l), we can compute the probability of being in state i 

at time t and in state j at time t + 1, which is called &(i, j). &om &(i, j), we can compute 

the probability of being in state i at time t given the entire obseriration sequence, which is 

called .yt (i) . If we define re-estimation formulae for aij and bj (k) (in this case, defining bj (k) 

for discrete categories instead of continuous probability distribution functions, although 

the same ideas apply) as 

- expected number of transitions from state i to state j 
aij = 

expected number of transitions from state i (A.7) 

T-1 

- expected number of times in state j ,  observing symbol vk 
bj(k) = 

expected number of times in state j (A.9) 
T 



then we can use Et(i, j) and yt(i) to re-estimate aij and b j (k ) .  This re-estimation can 

be applied iteratively to generate new estimates of aij and b j ( k )  until a local maximum- 

likelihood estimate is obtained. 

The forward-backward method can be used to achieve improvement in recognition 

performance with either the Gaussian-mixture-model or neural-network approaches [122, 

1531. 



Appendix B 

Glossary of Speech Terminology 

A* search: a heuristic search that is able to return the N-best search paths through a 

network of states. 

acoustic-phonetic information: distinct events in the speech signal (acoustics) that 

correspond to specific phonetic characteristics 

acute: a high value for the average of the first two formants, or a high second formant. 

affricate: a phoneme composed of a stop followed immediately by a Gicative, such as /g/ 
or /Q/ .  

approximant: sounds produced in which the articulators are moderately close (without 

producing frication), such as /j/, /I/, / d ,  and /w/. 

articulators: the physical parts of the speech-production mechanism, such as the lips or 

tongue. 

autocorrelation: a measurement of how closely a segment of a signal matches the signal 

later in time; this measurement can be used to determine periodicity in a signal. 

Bark scale: a perceptually-based warping of the frequency scale emphasizing the lower 

frequency regions. Similar to the Me1 scale. 

bigram: two adjacent words (or phonemes, in the case of phoneme-level recognition) 

burst: see plosive. 

channel: according to Webster7s dictionary, a path along which information passes in 

the form of an electrical signal. Typical channels in speech recognition include head- 

mounted or stand-alone microphones, land-line telephones, or cellular telephones. 



closure: silence or the silent region preceding a burst. 

coarticulation: the effect that one phoneme has on its neighboring phonemes; this effect 

is manifested as a smooth change in formant frequencies from one phoneme to the 

next. 

compact: in some references, compact means a sound with frequencies concentrated in 

one region of the spectrum, computed as the difference between the first and second 

formants; in other references, compact indicates a high first formant. 

critical band: a pass-band filter in the auditory system. 

CVC: a consonant-vowel-consonant sequence. 

deltas, delta values: a measure of change in a parameter; note that delta values are 

usually not computed by simply taking the difference between successive values, but 

using a function that estimates the rate of change with a context window of several 

values. 

dendrogram: a hierarchical representation of segments in a speech signal, with longer 

segments at the top of the hierarchy, and higher-level segments divided into sub- 

segments at lower levels. 

diffuse: in some references, diffuse means a sound with frequencies spread across the 

spectrum, computed as the difference between the first and second formants; in 

other references, diffuse indicates a low first formant. 

diphone: the region from the middle of one phoneme to the middle of the next phoneme, 

or alternatively, the transition region between two phonemes. 

distinctive (phonetic) features: according to Ladefoged, a distinctive feature is "a 

phonetic property that can be used to classify sounds." This broad definition allows 

a large number of possible distinctive features. Common features include voicing, 

manner, place, and height. 

dynamic time warping (DTW): a dynamic-programming technique to align two sim- 

ilar signals in time 

forced alignment: automatic alignment of the phonemes in an utterance by constraining 

the search in a phonetic recognizer to the known sequence of phonemes. 

formant: an energy resonance at a particular frequency that is a direct result of a voiced 

sound source passing through the vocal tract. There are a number of formants in 



voiced speech, which are typically referred to by number, with the first formant 

being the one lowest in frequency. The first three formant frequencies of a neutral 

vowel are typically located at 500, 1500, and 2500 Hz. 

frication: sound produced by forcing air through a narrow constriction at the lips or 

along the vocal tract. 

fricative: a sound that is produced by forcing air through a narrow constriction at the 

lips or along the vocal tract, such as /f/, is/ ,  and /I/. 

fundamental frequency (FO): the rate at which the vocal folds vibrate during voiced 

speech. 

fundamental period: the inverse of the fundamental frequency, which is equivalent to 

the time from one pitch-related pulse to the next 

glide: sounds such as /d or /j/. 

glottalization: aperiodic or extremely slow vibration of the vocal folds, which sometimes 

occurs at word boundaries. 

grapheme: a unit of a writing system, such as a letter or character. 

grave: a low value for the average of the first two formants, or a low second formant. 

harmonic: according to Webster's dictionary, "a component frequency of a complex wave 

. . . that is an integral multiple of the fundamental frequency" 

height: a distinctive feature that classifies phonemes according to the vertical position of 

the tongue in the mouth. The Height feature is related to the location of the first 

formant. 

inverse filter: a filter that removes the effects of its counterpart filter; for example, an 

inverse filter for a 200-Hz low-pass filter would be a 200-Hz high-pass filter. 

Kohonen network: a neural network that is capable of unsupervised learning. Also 

called a "self-organizing map." 

larynx: the upper part of the trachea containing the vocal cords. 

lateral: articulation in which the air flows around the sides of the tongue, as in the /I/ 
sound. 

linear-predictive coding (LPC): a representation of a signal in terms of filter coeffi- 

cients. 



liquid: sounds such as /1/ or /w/. 

manner: a distinctive feature that classifies phonemes according to their sound source (as 

in vowels or fricatives) or special positions of the articulators (as in approximants). 

Me1 scale: a perceptually-based warping of the frequency scale, emphasizing the lower 

frequency regions. Similar to the Bark scale. 

multivariate gaussian: a Gaussian (or Normal) probability distribution in multiple di- 

mensions. 

nasal: a sound produced with airflow through the nose, such as /m/, /n/, or /q/. 

observation: the output of a state in an HMM, described by the features of the speech 

signal at a given time. 

obstruent: a sound that is a plosive, affricate, or fricative. 

offglide: the final portion of a diphthong, such as the /i /  in /ei/ 

phoneme: a unit of a spoken language that is perceived to be a single sound in that 

language 

phonotactics: according to Webster's dictionary, "the area of phonology concerned with 

the analysis and description of the permitted sound sequences of a language" 

pitch period: the time from one pitch-related pulse to the next, which is equivalent to 

the inverse of the fundamental frequency 

place: a distinctive feature that classifies phonemes according to the horizontal position 

of the tongue in the mouth (as in front, middle, or back). The Place feature is 
related to the degree of separation of the first and second formants. 

plosive: a sound produced by a buildup of air pressure behind a constriction in the mouth, 

followed by sudden release of the constriction, as in /ph/, / th/,  and /kh/. 

power spectrum: the energy (power) of a signal at each frequency for one time frame. 

retroflex: a sound produced with the tip of the tongue and back part of the alveolar 

ridge, such as /d. 

sonorant: sonorant a sound that is a nasal, liquid, or glide. 



spectral envelope: the overall shape of the spectrum, as indicated by the peaks of each 

harmonic. The spectral envelope contains information about a voice's formants, 

whereas the harmonics contain information about the fundamental frequency. 

spectrogram: a display of the characteristics of a signal in terms of time, frequency, and 

energy. 

"steady-state" region: the region of a phoneme that is not as much influenced by 

coarticulation. In fluent speech, most phonemes are influenced throughout by coar- 

ticulation, in which case the steady-state region is the region that best characterizes 

the phoneme (as opposed to the phonetic transition regions). 

stop: according to Ladefoged, a stop is "complete closure of two articulators", such as 

happens with plosives. 

VCV: a vowel-consonant-vowel sequence. 

vector quantization: representation of a vector that may take on continuous values 

using a finite-sized codebook of vectors. 

velum: the soft palate (the soft structure at the roof of the mouth). 

Viterbi search: a dynamic-programming search that finds the single most-likely path 

through a sequence of states, based on each state's occupation probabilities and 

transition probabilities. 

voice bar: a low-frequency, periodic resonance that sometimes occurs prior to voiced plo- 

sives. This resonance is the result of the vocal folds vibrating before the constriction 

in the vocal tract is removed. 

voiced: a speech signal that has periodic vibration of the vocal folds (voicing). 

voice-onset time: the time from the impulse in a plosive until the beginning of voicing 

in a plosive-vowel phoneme pair. 

voicing: a measure of periodicity in the waveform that occurs when the vocal folds vi- 

brate. 



Appendix C 

Worldbet and IPA Phonetic Symbols 

Worldbet and IPA Phonetic Symbols for American English: 

I Worldbet, I Example 1 Worldbet, I Example I 
1 IPA I 1 I IPA I I 

3 sure 
tS tj church - 
dZ & judge 
1 1 lent 
9r X - rent 

. g g gander j j Yes 
m m - me w w - went 
n n - knee m= m bottom 

N ?I sing n= n button 
th-( rt writer N= JJ easing - 
d-( f d  rider 
n-( rn winner 
f f fine 
T 0 - thigh 
s s - sign 

- s  I - shine 
h h - hope 
h-v h she had 

1-v v I vine I 
this 
resign 

kc - -can 
bc - -ban 
dc - -dan 

, 
gc - gander 
tSc - - church 
dZc - judge 
-? 3 (glottalized) 
.br - (breath) 
.pau - (closure) 

L 
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