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Abstract

A Framework for Representing Non-Stationary Data

with Mixtures of Linear Models
Cynthia Archer

Supervising Professor: Todd K. Leen

In this thesis, we present a latent data framework that facilitates formalizing ob-
servations of data behavior into statistical models. Using this framework, we derive
two related models for a broad category of real-world data that includes images,
speech data, and other measurements from natural processes. These models take
the form of constrained Gaussian mixture models. Our statistical models lead to
new algorithms for adaptive transform coding, a common method of signal com-
pression, and adaptive principal component analysis, a technique for data modeling
and analysis.

Adaptive transform coding is a computationally attractive method for compress-
ing non-stationary multi-variate data. A classic transform coder converts signal
vectors to a new coordinate basis and then codes the transform coefficient values
independently with scalar quantizers. An adaptive transform coder partitions the
data into regions and compresses the vectors in each region with a custom transform
coder. Prior art treats the development of transform coders heuristically, chaining
sub-optimal operations together. Instead of this ad hoc approach, we start from
a statistical model of the data. Using this model, we derive, in closed form, a

new optimal linear transform for coding. We incorporate this transform into a new

xiv



transform coding algorithm that provides an optimal solution for non-stationary
signal compression. We evaluate our adaptive transform coder on the task of image
compression. Qur results show that a single adaptive transform coder can com-
press database images with quality comparable to or better than a set of current
state-of-the art coders customized to each image in the database.

Adaptive principal component analysis (PCA) is an effective modeling tool for
high-dimensional data. Classic PCA models high-dimensional data by finding the
closest low-dimensional hyperplane to the data. Adaptive or local PCA partitions
data into regions and performs PCA on the data within each region. Prior art under-
estimates the potential of this method by requiring a single global target dimension
for the model hyperplanes. We develop a statistical model of the data that allows
the target dimension to adjust to the data structure. This formulation leads to a
new algorithm for adaptive PCA, which minimizes dimension reduction error sub-
ject to an entropy constraint. The entropy constraint, which derives naturally from
the probability model, effectively controls model complexity when training data is
sparse. We evaluate our adaptive PCA models on two tasks; exploratory data analy-
sis of salinity and temperature measurements from the Columbia River estuary and
texture image segmentation. Our results show that entropy-constrained adaptive
PCA conforms to the natural cluster structure of data better than state-of-the-art

modeling methods.
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Chapter 1
Introduction

Signal classification, or recognition, includes a wide range of information processing
problems. Included in this field are diverse and compelling topics such as speech
recognition, detection of machinery faults, image compression, and medical diag-
nosis. Computer-based solutions to these problems have generally proved difficult
since the data are highly complex and closed form solutions rarely exist. Com-
mon approaches to signal classification make substantial simplifying assumptions.
One such assumption is that signals are wide-sense stationary, that is, their first
and second order statistical properties do not change across time or space [Hay91].
However, many signals of practical interest are not stationary. In digital images,
different image regions, e.g. a region showing a tree vs. a region showing a human
face, exhibit different statistical properties. In human speech, statistical properties
vary between phonemes.

Solution strategies for non-stationary signal classification generally fall into one
of two categories: development of complex non-linear models that capture the chang-
ing signal characteristics over the whole data space, or development of a collection of
simple linear models that assume the signal is wide-sense stationary in small regions
of the data space. Non-linear principal component analysis (PCA) for dimension
reduction [Kra91, DC93], implemented with multi-layer auto-associative neural net-
works, is an example of the first approach. Local PCA for dimension reduction
[KL97], which partitions the signal space into regions and performs classic PCA in
each region, is an example of the second approach. The second approach has the
advantage that a collection of linear models is less complex to develop yet performs

better than the non-linear approach.



1.1 Overview

Adopting a statistical framework provides an effective approach to these problems,
as these signals are often well characterized with mixtures of probability densities.
In order to develop appropriate models, we first develop a statistical framework that
allows us to formalize observations of signal behavior into a probability model of the
data of interest. A latent data framework is an effective tool for describing data be-
havior and making model choices. In this framework the observed or measured signal
is derived from some simple underlying distribution. This latent data is mapped
to the observed signal space with some linear transformation and distorted with
noise. Different choices of latent data distribution and mapping produce different
statistical models of the data.

Using this latent data framework, we derive models for a broad category of real-
world data that includes images, speech data, and other measurements of natural
processes. Data of this sort consist of collections of several distinct low-dimensional
patterns embedded in the high-dimensional observation space. These patterns can
be represented mathematically as low-dimensional hyperplanes. We develop two dif-
ferent latent data formulations that result in constrained Gaussian mixture models
(GMM) for data that is comprised of low-dimensional hyperplanes. The first has ties
to data compression and leads us to an algorithm for optimal adaptive transform
coder design. Adaptive transform coding is a computationally attractive method
for compressing non-stationary, multivariate signals. The second has ties to local
and probabilistic formulations of PCA. From this second model, we develop an algo-
rithm for entropy-constrained adaptive PCA, which can be used for data modeling
and analysis. Both the adaptive transform coding and adaptive PCA algorithms

improve on comparable state-of-the-art methods for compression and modeling.

1.2 Adaptive Transform Coding

Transform coders provide a lower complexity alternative to vector quantization.
They are typically used for high bit-rate compression of multidimensional signals
such as images. The Joint Photographic Experts Group (JPEG) standard for image
compression incorporates transform coding [Wal91].

A transform coder converts signal vectors to a new coordinate basis in order to



reduce statistical redundancy between vector components. Separate scalar quantiz-
ers then code each of the transform coefficients. This combination of redundancy
removal and efficient quantization produces a compressed representation but adds
distortion. The goal of transform coding is to minimize coding distortion while
reducing the signal representation below some target size.

Transform coders use one of two types of scalar quantizers: fixed-rate or entropy-
constrained. Fixed-rate quantizers use the same number of bits to code every signal
vector. Entropy-constrained or variable-rate quantizers adjust the number of bits
used to code a signal vector according to its entropy. For the same amount of
coding distortion, variable-rate quantizers provide more compression than do fixed-
rate quantizers and are generally preferred. However, fixed-rate coding is more
robust for applications requiring transmission of the compressed signal over noisy
channels. For more information on signal compression, see Gersho and Gray’s text
[GG92].

Classic transform coding assumes that the correlations between signal vector
components are the same everywhere in the signal space. However, most signals of
interest, e.g. digital images, are non-stationary. To capture these local variations
and thereby reduce distortion in the compressed representation, adaptive transform
coding methods partition the signal space into regions and compress the signal vec-
tors in each region with a separate, unique transform coder. However, adaptive
transform coders require substantial space in which to store the coder parameters.
This overhead makes adaptive transform coding ineffective for the compression of
individual signals. Consequently, adaptive transform coding is limited to the com-
pression of databases of related signals, since the overhead can be amortized over
the entire database.

Much prior art treats the problem of designing adaptive transform coders heuris-
tically, chaining sub-optimal operations together in a somewhat ad hoc manner.
For example [CS77, DH95, TB99] all employ partial optimization, combining sub-
optimal space partitioning methods with the PCA transform and (sometimes) opti-
mally designed quantizers. While the PCA transform is traditionally considered the
best linear coding transform, it only minimizes coding error when the data density
is Gaussian.

Our development is unique in that we establish a statistical model for transform



coding that leads to a generalized Lloyd algorithm for both global and adaptive
transform coder design. An essential part of our work is a new orthogonal trans-
form, the coding optimal transform (COT), that minimizes coding error. OQur new
design algorithm minimizes compression distortion by concurrently optimizing the
partition of the signal space, the local transforms, and quantizers. We present this
development in three chapters: evaluation of the coding optimal transform for global
transform coding, evaluation of coding optimal partition using PCA based, fixed-
rate, adaptive transform coders, and evaluation of entropy-constrained adaptive

transform coding on a realistic image compression application.

1.3 Adaptive PCA

Global PCA models high-dimensional data by finding the “closest” low-dimensional
hyperplane to the data. PCA minimizes the mean-squared dimension reduction error
or reconstruction distance between example data and this hyperplane. To model
non-stationary data, adaptive or local PCA methods partition data into regions and
perform PCA on the data within each region. Adaptive PCA has the potential to be
an effective tool for data modeling in situations where there is insufficient training
data to develop full covariance models, yet simple spherical models provide too little
modeling flexibility.

Despite their success, previous authors [KL97, HRD95, TB99] under-utilize the
potential of adaptive PCA models by choosing a single global target dimension. This
constraint neglects the variability of intrinsic data dimension that is observed in real
world data. Our development is unique in that we develop a statistical model of
the data that permits the local dimension to vary. This formulation leads to a new
algorithm for adaptive PCA, which minimizes reconstruction distance subject to an
entropy-constraint. The entropy-constraint is not introduced in an ad hoc manner,
but is naturally derived from the probability model. This constraint can be used
to control model complexity when training data is sparse. In addition, it allows
the local dimension to adjust to the data structure. Consequently, different model
forms, from spherical to full covariance, can appear in a single adaptive model. This

flexibility allows us to effectively model non-stationary data.



1.4 Organization

This thesis is organized into three primary sections: the statistical framework, adap-
tive transform coding, and adaptive PCA. Chapter two describes our statistical
framework based on a latent data description of the signal of interest. Chapters
three, four, and five cover our adaptive transform coding work. Chapters six and
seven cover our work with variable dimension and entropy-constrained adaptive

PCA.

1.4.1 Statistical Framework (chapter two)

In this first chapter, we present a latent data framework from which we derive our
adaptive transform coding and adaptive PCA algorithms. This framework is an
extension of that presented by Basilevsky [Bas94|, Tipping and Bishop [TB99], and
Roweis and Ghahramani [RG99]. This statistical framework can be used to derive
a number of common density models and related signal processing algorithms. We
present three example algorithms: K-means clustering, entropy-constrained vector

quantization, and global PCA.

1.4.2 Coding Optimal Transform (chapter three)

A significant contribution of our transform coding work is the coding optimal trans-
form (COT), which minimizes coding error rather than some other cost function,
such as dimension reduction error. This transform has apparently not been discussed
in the compression literature, although developing an optimal transform coder design
algorithm is impossible without it. We develop optimal global transform coder design
algorithms that incorporate the COT for both fixed-rate and entropy-constrained
compression. In addition, we compare compression performance of COT and PCA
transform based global coders on benchmark images. We found that the COT differs
enough from the PCA transform to provide up to 1 dB improvement in signal-to-
noise ratio (SNR).



1.4.3 Fixed-rate Adaptive Transform Coding (chapter four)

We develop the statistical model and algorithm for optimal fized-rate adaptive trans-
form coding. However, in order to facilitate comparisons with prior work, we use
PCA transform based coders rather than the COT. The PCA transform does not
minimize coding error and careful implementation is required to avoid convergence
problems. Image compression experiments on both video images and magnetic res-
onance images show that fixed-rate adaptive coders can improve SNR by 2.5 to 3.0
dB compared to global coders and by 0.5 to 3.0 dB compared to other published

fixed-rate methods.

1.4.4 Entropy-Constrained Adaptive Transform Coding
(chapter five)

We develop the statistical model for entropy-constrained transform coding and the
resulting generalized-Lloyd algorithm for optimal adaptive transform coder design.
We then evaluate our algorithm by using it to compress a both benchmark images
and database of synthetic aperture radar (SAR) images. Compression experiments
on benchmark images demonstrate that our coders improve compressed image SNR
by 0.25 to 1.25 dB over adaptive coders that use the Discrete Cosine (DC) and
PCA transforms. Overhead considerations limit adaptive transform coding to the
compression of databases of related signals Our results from the SAR database show
that a single adaptive transform coder with either DCT or COTs can compress
database images with SNRs comparable to those achieved by using a customized
global coder for each image in the database.

Figure 1.1 summarizes the transform coding work presented in chapters three,
four, and five. The first two columns list the algorithm and the associated key
concepts. Each algorithm is found by minimizing a cost function with respect to
the model parameters. The equation number of this cost function is listed in column
three and column four gives the section where the derivation is performed. Column

five gives the figure which summarizes key evaluation results.



| Algorithm | Key Concept | Cost Function | Section | Results |
mixture model Eqn. 3.9 3.2

global transform | coding optimal transform Eqn. 3.15 3.3.2 | Fig. 34

coding (TC) fixed-rate quantizers Eqgn. 3.24 3.42 | Fig. 3.7

variable-rate quantizers Eqn. 3.21 3.4.2 | Fig. 3.6

fixed-rate (local) optimal partition Egn. 4.13 43.1 | Fig. 4.5
adaptive TC

variable-rate coding optimal transform Eqgn. 5.21 5.3.2 | Fig. 5.5

adaptive TC optimal partition Eqn. 5.13 5.3.1 | Fig. 5.6

Figure 1.1: Summary of Transform Coding Chapters

1.4.5 Variable Dimension Adaptive PCA (chapter six)

We briefly discuss our early work with variable-dimension local PCA that, along with
our compression work, led us to consider a new approach to local or adaptive PCA.
In this work, we develop a resource allocation approach to dimension selection. Our
algorithm allocates dimensions to different regions so as to minimize the dimension
reduction distortion while keeping the average dimension below some target value.
Our results show that allowing the dimension to vary from region to region, instead
of selecting a single global dimension, substantially reduces dimension reduction

error.

1.4.6 Entropy Constrained Adaptive PCA (chapter seven)

We present the development of our statistical model for adaptive PCA and the
resulting entropy-constrained algorithm. This algorithm adjusts the model param-
eters to minimize the dimension reduction error between the model and sample
data subject to a penalty on the entropy. We evaluate the modeling quality of our
entropy-constrained adaptive PCA on several data sets: a mixture of five Gaus-
sians, measurements of salinity and temperature in the Columbia estuary, and high-
dimensional image texture data. Adaptive PCA models conform to the natural clus-
ter structure even when the data set is too small to develop accurate full-covariance
models. In addition, comparisons to an entropy-constrained vector quantizer demon-
strate that adaptive PCA models can classify data as accurately as spherical models
while using substantially fewer components.

Figure 1.2 summarizes the adaptive and local PCA work presented in chapters



| Algorithm | Key Concept | Cost Function | Section | Results |
variable dimension allocation of Eqn. 6.3 6.3 Fig. 6.2
local PCA dimension resources
mixture model Eqn. 7.12 7.2
adaptive PCA entropy penalty Eqn. 7.15 7.3 Fig. 7.12,
for complexity control 7.13,7.14

Figure 1.2: Summary of Adaptive PCA Chapters

six and seven. The first two columns list the algorithm and the associated key
concepts. Each algorithm is found by minimizing a cost function with respect to
the model parameters. The equation number of this cost function is listed in column
three and column four gives the section where the model parameter derivation is

performed. Column five gives the figure which summarizes key evaluation results.



Chapter 2
Statistical Framework

In this chapter, we present our latent data framework from which we can derive a
number of common density models and signal processing algorithms. This latent
framework extends that presented by Tipping and Bishop [TB99] for PCA and both
Basilevski [Bas94] and Roweis and Ghahramani [RG99] for factor analysis. This
framework allows us to develop explicit statistical models of the data of interest,
which facilitates the selection and development of effective processing methods. We
first describe the general latent data framework and how it can be used to derive
signal processing algorithms. We then present three example algorithms that fit
into this framework: K-means clustering [Mac67], entropy-constrained vector quan-

tization [CLG89], and principal component analysis (PCA).

2.1 Latent Data Model

The latent data framework is based on the presumption that observed signals are
not as complex as they appear. Instead they have some simple latent structure
that is obscured by linear transformations and noise. Our goal is to recover this
underlying structure in order to reduce the size of the signal representation.

We envision a d dimensional latent data space S, where data from the latent
space is mapped to a d dimensional observation space X. The latent data, s, is
modeled with a simple mixture density of the form

M
p(s) = X ma p(s|a) (2.1)

a=1
where 7, are the mixing coefficients and p(s|) is often a spherical Gaussian or delta

function. The location of each latent mixture component is given by the conditional

9
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Figure 2.1: PCA Model. Structure of latent variable space, S, and mapping to observed space,
X. The data density in the latent space consists of a single three dimensional Gaussian. This
latent data is mapped to the observed data space by an orthogonal transform, W, which stretches
and rotates the data.

mean 7, = E[sla]. Previous formulations (e.g. [TB99, RG99]) use a single normal
distribution in the latent space, rather than this more general mixture distribution.
Linear maps with translation p, and rotation plus scaling transform W, embed
the latent data m the observed space, X. The embedded data is corrupted with
additive Gaussian noise, e, ~ N(0, ®,) where @, is diagonal for factor analysis and
spherical for PCA and K-means clustering. Figure 2.1 illustrates this mapping from
latent to observed space. The observed data generated from a sample s drawn from

latent component o 1S
T =Wals =) + ta + € (2.2)

with conditional densities

p(zls, o) = N(ﬂ’a + Wols — na), 2,) (2.3)

The latent data density and mapping induces a mixture of constrained Gaussian

densities on z of the form

p@) = [ S plals a)p(sle)rads

= 3 meplale) (2.4)

where 7, are the same mixing coefficients given in (2.1) and

plzla) = N(ka, Za) (2.5)
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The form of X, is constrained by the latent density and the transform W,. We will
discuss different covariance constraints and resulting models throughout this thesis.

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-
bility models to data by maximizing the log likelihood of the model for some training
data set {z,, n =1... N}. The log likelihood of the data for this family of models

is given by
N M
L= log ( > wap(xn|oz)) (2.6)
n=1 a=1

To simplify (2.6), we introduce the the density z(a, z,) over the unknown compo-

nent assignments.

N M oo
L= z;llog ( > 2(a, mn)M) (2.7)

a=1 z(a, IEn)

where 3, z(a, z) = 1. Using Jensen’s inequality to bring the sum over a outside

the logarithm function, we find £ is bounded below by the ezpected log likelihood

M N

L2>{L) =" (2(e, zn) og map(zna) — 2(a, z,) log z(a, 2,)) (2.8)

a=1n=1
with equality when the z(a,z,) are the posterior probabilities p(a|z,) [RG99,

NH98]. This choice of z produces soft-clustering models.

The EM algorithm maximizes the likelihood (2.6) by iteratively finding the par-
tition given by the posteriors (E step) and maximizing the model parameters (M
step). The E step updates the posterior probabilities based on the current estimate

of the model parameters.

_ ToP(Znla)
plafen) = Yp msP(zn|0) (29)

The M step updates the model parameters so that the expected log likelihood (2.8) is
maximized. The maximum likelihood estimates of the priors 7, and the component

means [i, are given by .
Mo =2 > plajza) (2.10)

Y5 P(@]Zn) s
, = =nlonn 2.1
# Y plalz,) (2.1)



12

The maximum likelihood estimates of the model covariance matrices ¥, are found
by solving

)(Zn — pa)(Tn — ou'a)T
Yoo P(za)

where 6%, is a matrix of small arbitrary changes in X,.

0 = Trace |65 (55! — £t Zn P2l 571 (2.12)

2.2 Hard-clustering Algorithms

Many signal processing applications, such as compression or on-line classification,
benefit from incorporating hard-clustering methods that assign each data item to
one and only one model component. For example, compression involves finding a
compact representation for data and hard assignments can be coded more efficiently
than posterior probabilities. For exploratory data analysis, hard clustering is easier
to visualize and interpret. On-line and embedded classification applications have
tight memory and computational time constraints. Hard clustering implementations
require less memory and processing time than comparable soft clustering methods
making them more suitable for such applications.

The EM algorithm provides a template for deriving hard-clustering algorithms
from these latent data probability models. To achieve hard-clustering, instead of

the soft clustering provided by p(a|z), we choose z(a, z,,) to be

1 p(alz,) > p(vlze) Vy # a

s (2.13)
0 otherwise

2(a, x,) = {
With this hard-clustering model, the final term in the expected log likelihood (2.8)
becomes zero since z(a, T,) In z(a, ,) = 0 Yo, n. Choosing hard-clustering (2.13)
and expanding (L) (2.8) using (2.5) yields the cost function

M N
C=> Y za,z) (logﬂ'a — %ln |Za] — %(mn — 1) T8 (2 —~ /.Lu)) (2.14)

a=1n=1
The EM procedure inspires a generalized Lloyd algorithm that iteratively opti-
mizes the partition and model parameters to minimize modeling cost (2.14). The
hard assignments given in (2.13) lead to a partition of the data into regions R, such

that
N

> f(@) =Y za, za)f(2) (2.15)

T€ER, n=1
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for any function f(z). The parameter estimators are the same as the maximum
likelihood estimators with the posteriors replaced by the hard assignments (2.13).
The equations for the priors become

N,
= —Z (alan) = 3 (2.16)

where N, are the number of data items assigned to component a. The equations

for the means become

1
= Zn:z(akcn)mn = — Z Tn (2.17)

a T€RA

The minimum cost estimates of the covariance matricies are found by solving

0 = Trace [6Z4(Z;" - 2- Z (Tn — fta)(Tn — pa)T23}) (2.18)
°‘ T€ERq

2.3 Algorithms from Latent Data Framework

A number of commonly used algorithms and density models fit into this latent
data framework, including K-means clustering, entropy-constrained vector quanti-
zation and PCA. K-means clustering and entropy-constrained vector quantization
are commonly used to design vector quantizers or to coarsely cluster data prior to
other processing. PCA is a common technique for reducing the dimension of input
data. In this section, we examine how these common algorithms are derived from

our latent data framework.

2.3.1 K-means Clustering and Vector Quantization

Both Nowlan [Now91] and Chou [CLG89] note the correspondence between a mix-
ture of spherical Gaussians and vector quantization (VQ) or K-means clustering.
VQs code each data vector with the closest, in terms of some distance metric (e.g.
Euclidean distance), of a small set of reproduction vectors [GG92]. To replicate this

structure, the latent space density becomes a mixture of delta functions

8) = Mo 6(s —1a) (2.19)
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The single transform is the identity matrix, W = I, and the noise is spherical
€ ~ N(0,02I). The observed data is given by £ = s — 74 + fo + €4. The density on
observed data z is therefore a mixture of Gaussians (2.4), with spherical components
p(z|a) = M(uqa, 021). The noise variance is not fit to data, but is selected to control
model complexity. In the limit that all the noise variances are identical and go to
zero, the EM algorithm for fitting the mixture model reduces to K-means clustering
[Mac67) or equivalently, the Linde-Buzo-Gray (LBG) algorithm for (fixed-rate) VQ
design [LBG80]. Explicit hard clustering is not required, since in the E step, the
posterior probabilites

1
plafs) = —1 2 2 2 2
1+ X0 exp (5 [l8n — plI2 — 202In7,) = (|20 — pal|? ~ 202 In7,)))

(2.20)

become zero or one in the limit that the noise variance goes to zero,

1 if ||zn — pal]® < — . |? V a
plalz,) = [|zn . pall> < l|zn — pyll2 V v # (2.21)

0 otherwise

The M step optimizes the prior probabilities 7, and component means u, using
(2.16) and (2.17), respectively.

Entropy-constrained VQ [CLG89] is derived from a similar probability model
with identical and non-zero noise variances for all components 02 = o2, Va. In this

case, the observed component densities become
p(zla) = N (ita, 0°1) (2.22)

Expanding the cost function (2.14) using (2.22) yeilds the cost function for vector

quantization
1 S T 2 1 2
C= &_2 Z Z Z(O,', xn) ((mn - Na) (IL',, - Ha) + 20 (_ log o, + -2-10g0’ )) (223)
a=1n=1

The noise variance o? acts as a LaGrange multiplier combining the mean-squared
coding cost, ﬁza Yo 2(a, To)||Tn — ial?, and differential entropy, —m,Inm, +
%log o?. The differential entropy consists of a discrete entropy term —m, In 7, plus
the log of a quantizer bin size }logo? [CT91]. Choosing o is equivalent to placing
a constraint on the entropy. Note that the entropy constraint arises naturally from

the probability model and is not an arbitrary addition.
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The generalized-Lloyd algorithm for entropy-constrained VQ design iteratively
optimizes the partition (encoder) and the model parameters (decoder) [CLG89].

The partition, or assignment of data to components, defines regions
Ro = {z | (& — pal® = 20* logma) < (||z — p,|* — 20° logm,) Vy#a} (2.24)

As in the fixed-rate vector quantizer above, the M step optimizes the prior prob-
abilities 7, and component means f, using (2.16) and (2.17), respectively. Note
that since the %log(f2 term does not affect the optimization of the partition or
model parameters, (i, and 7,, it can be dropped from the cost function to make the

correspondence between this formulation and classic derivations exact.

2.3.2 Principal Component Analysis

Probabilistic formulations of PCA have been developed by several researchers in-
cluding [TB99, Bas94, Row97]. PCA reduces the dimension of data by projecting it
to the hyperplane defined by the leading eigenvectors of the data covariance matrix
as illustrated in Figure 2.2. To replicate this structure, the d dimensional latent

data s consists of a single Gaussian, p(s) = N (7, p?I) with mean 7 and variance p?.

X2

reconstruction distance

‘u/

Us

7

Figure 2.2: Dimension Reduction via PCA. PCA reduces the dimension of data z by projecting
it to hyperplane defined by the PCA transform U. The reconstruction distance or dimension
reduction error is the orthogonal distance between the data point and the hyperplane.

X

The observed data is generated from the latent data via

z=W(s—n)+p+e (2.25)
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where p is a translation, W is a rotation and scaling, and ¢ is a noise source. The
embedding transform W has two parts; an orthogonal transform U and a diagonal
stretching transform I' such that W = U ['z. Zero entries in the stretching trans-
form I' suppress variables so that the model dimension ¢ < d. Consequently, I' is
effectively ¢ x ¢ and U is d x q. Following the action of W, the data is smeared
with spherical Gaussian noise N'(0,0%I). Figure 2.1 illustrates the data structure
and mapping to the observation space.
The conditional density of x given s is

p(zls) = N(u+W(s - n),0°]) (2.26)
The latent density and mapping induce a density on the observed data given by

p() = [p(als)p(s)ds
= N(p,o’14+UTUT) (2.27)

where, without loss of generality, we chose the latent variance p? to be one. We
make no assumptions concerning the latent mean 7.

To simplify the cost function (2.14), we first find the inverse of £ = o1+ UTU7.
Applying the Sherman-Morrison-Woodbury formula [GL89] to ¥ yields

51— ;15(1 _UUT) + UAUT (2.28)

with ¢ X ¢ diagonal matrix A = " + ¢%I. Expanding the cost (2.14) using (2.28)
yields the cost function for PCA

c =2 (;(xn — )T = UUT)(on — )+

1 1 d

20 [5 In|A/o?| + §(xn — W) TUA U (2, — ) + 3 lno2J) (2.29)
The noise variance o? combines the dimension reduction distortion, %Zn(mn -
w)¥(1 — UUT)(z, — p), and differential entropy, log|A/o?| + £ + £Ino® The
differential entropy is the sum of a discrete entropy and the log of a quantizer bin size
[CT91]. The discrete entropy 1 log |A/o?|+% is the sum of the entropy due to coding
the data with a quantizer of bin size o and half the dimension 1. The dimension
term comes from simplifying the Mahalanobis distance Trace[A™'UT (5 5, (zn —
p)(xn — p)T)U] = q. Choosing o2 is equivalent to choosing the target dimension.
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The design algorithm for PCA optimizes the model parameters; there is no
partitioning step, since there is only one component. The component mean p is
given by (2.17). The U transform is constrained to be orthogonal, that is, UTU = L.
Minimizing cost (2.29) with respect to W = UT'Z, while meeting the orthogonality

constraint, yields the relation
UTS = AUT (2.30)

where S = & ¥, (2n — 1) (z, — )T is the data covariance [Row97]. The columns of U
are the eigenvectors of the data covariance S and A is a diagonal matrix containing
the leading ¢ eigenvalues of S. The stretching matrix I' = A — o?1.

To find the optimal dimension g, we evaluate the change in cost due to increasing
the dimension by one. If we order the entries in A from largest to smallest, then

increasing the dimension from g — 1 to ¢ results in a change of cost

A A
AC=In ;g - (;—g -1) (2.31)
where )\, is the ¢" entry in A. Since Inz < z — 1, increasing the dimension will
decrease the cost (AC < 0) until A, = 0. In addition, the model dimension is
constrained to be no larger than the number of stretching values greater than zero,
so A, > 0. These two conditions set the optimal dimension ¢ equal to the number

of eigenvalues )\ greater than the noise variance o2.

2.4 New Algorithms from Our Framework

In the next chapters, we develop new algorithms for adaptive transform coding and
adaptive PCA using our latent data framework. Both these algorithms are based
on modeling the data as a collection of hyperplanes, although the underlying latent
data models differ. Adaptive transform coding is based on a discrete latent data
model with the components constrained to lie at the vertices of a rectangular grid.
Adaptive PCA is based on a mixture of spherical Gaussians latent data model. In
both cases, linear transforms embed the latent data in the observation space and
the data is corrupted by spherical Gaussian noise.

Our adaptive transform coding model leads to a generalized Lloyd algorithm
for transform coder design. This algorithm integrates optimization of all transform
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coder parameters: the data partition, the transforms, and the quantizers. We de-
scribe the derivation and evaluation of our adaptive transform coding algorithm in
the next three chapters.

Our adaptive PCA model leads to a generalized Lloyd algorithm for adaptive
PCA. This algorithm minimizes dimension reduction distortion subject to a penalty
on model entropy. The entropy-constraint provides complexity control, which allows
our models to conform to the natural cluster structure of data. We describe the

algorithm derivation and evaluation of adaptive PCA in the last chapters.



Chapter 3
The Coding Optimal Transform

In order to develop our adaptive transform coding algorithms, we first had to solve
the problem of optimal global transform coding. This chapter presents our develop-
ment and evaluation of a generalized-Lloyd algorithm for transform coding. Some
of the material in this chapter was published at the Data Compression Conference
in 2001 [ALO1a].

We develop a statistical model for transform coding that leads to a new algorithm
that integrates all optimization steps into a coherent and consistent framework. Each
iteration of the algorithm is designed to minimize coding distortion as a function
of both the transform and quantizer designs. Our algorithm is a constrained ver-
sion of the generalized-Lloyd or LBG algorithm for vector quantizer design. The
reproduction vectors are constrained to lie at the vertices of a rectangular grid.

A significant result of our approach is a new transform basis specifically designed
to minimize mean-squared quantization distortion for both fixed-rate and entropy-
constrained coding. For Gaussian distributed data, this transform reduces to the
PCA transform, or equivalently, the Karhunen-Loeve transform (KLT). However, in
general the coding optimal transform (COT) differs from the KLT enough to provide
up to 1 dB improvement in compressed signal-to-noise ratio (SNR) on images. We
describe a practical algorithm that finds the COT for a given signal. In addition, we
present image compression results demonstrating the SNR improvement achieved

with our algorithm relative to KLT based transform coding.

19
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3.1 Introduction

Transform coding is a low-complexity alternative to vector quantization and is
widely used for image and video compression. A transform coder compresses multi-
dimensional data by first transforming the data vectors to new coordinates and then
coding the transform coefficient values independently with scalar quantizers. A key
goal of the transform coder is to minimize compression distortion while keeping the
compressed signal representation below some target size. While quantizers are typi-
cally designed to minimize compression distortion [L1082, FM84], this is not the case
for the transform. The coordinate transform has been fixed a priori, as in the dis-
crete cosine transform (DCT) used in the JPEG compression standard [Wal91]. The
transform has also been adapted to the signal statistics using the Karhunen-Loeve
transform (KLT) as in recently published transform coding work [DH95, ECG99).
These transforms are not designed to minimize compression distortion, nor are they
designed (selected) in concert with quantizer development. For instance, the design
goal of the KLT is to concentrate signal energy into a few components.

We develop a statistical model for transform coding. This development leads
to a new algorithm for transform coder design that concurrently optimizes both
transform and quantizers. Our algorithm is a constrained version of the Linde-
Buzo-Gray (LBG) algorithm for vector quantizer design [LBG80]. A significant
result of our approach is a new transform basis designed to minimize mean squared
compression distortion. In this chapter, we derive the conditions this coding-optimal
transform (COT) must satisfy to minimize distortion. In addition, we describe a
simple algorithm for determining the transform. We conclude by presenting results
from image compression experiments that compare the compression performance of
COT-based transform coders with KLT-based transform coders.

3.2 Transform Coder Model

A transform coder converts a signal to new coordinates and then codes the transform
coeflicients independently of one another with scalar quantizers. One can think of a
transform coder as a vector quantizer with the M reproduction vectors constrained
to lie at the vertices of a rectangular grid. The grid is defined by orthogonal axes, s,

J =1...d and d sets of scalar reproduction values, one for each dimension. There
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are M, possible reproduction values on the s, axis, thus the total number of grid ver-
tices is M = T]; M. Encoding a d-dimensional data vector with a vector quantizer
requires O(Md) add/multiply operations for the distance calculations and O(M)
compare operations. A transform coder requires O(d?) add/multiply operations for
the transform and naively O(3_; M,) compare operations. However, efficient binary
search techniques can be used to encode the scalar transform coefficients reducing

the number of compare operations to O(log, M).

Figure 3.1: Orientation of quantizer grid in signal space. The gquantizer reproduction vectors qq,
g 2

a=1...M, lie at the vertices of a rectangular grid. The grid is oriented to the signal vectors z

(indicated by the gray area) with orthogonal transform, W.

The compression and restoration processes replace each signal vector with one of
a small set of reproduction vectors. The encoder assigns the transform coeflicients
of a data vector to codewords. The decoder replaces each codeword with the associ-
ated reproduction value. Figure (3.1) illustrates the structure of a two-dimensional
transform coder. The r values indicate the scalar reproduction values; ry, is the it?
value along the s; axis. The coordinates of the reproduction vectors, ¢o, 0 =1... M
are combinations of the scalar reproduction values [r;, 795, ..., 7a)", 2 = 1... M,
Jj=1...M;, etc. A reproduction vector ¢, represents all the data vectors in region
R, of the data space. We will refer to the regions defined by the assignment of
signal values to reproduction values as the partition.

The d x d orthogonal transform, W, defines the orientation of the quantizer grid
in the data space. In the data coordinate basis, the reproduction vectors are given
by Wq,. Conversely, in the transform basis, the data vectors arc s = W7z,

To replicate the transform coder structure, we envision the data as drawn from a
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d dimensional latent data space, S and embedded in an observation or measurement
space X, also d dimensional. The density on the latent space is a mixture of delta

functions ”
p(s) = ) mab(s — qa) (3.1)
a=1

where the latent values, ¢4, lie at the vertices of a rectangular grid as illustrated in
Figure 3.2. The grid is defined by the s axes and a set of grid mark values, {r,},
where 7, is the i*" grid mark along the s, axis. There are M possible grid mark
values on the sy axis and the total number of grid vertices M = {[; M;. Thus the
coordinates of some g, can be written as [ry;, 79, . . ., rax)F. In addition, we constrain

the mixing coefficients, 7,, to be the product of prior probabilities, py;, so that
Mo =[] pui (3.2)
J

By incorporating these constraints into (3.1), we can write the density on s as
product of marginal densities (for the full derivation, see Appendix A)

d My

p(s) =[] Do psb(ss — 1) (3.3)

J=] =1

We will use both formulations of the latent density (3.1) and (3.3) for our algorithm

development.

52| Qg X2 Wag+p
x=Ws+pu

— rzlifﬁg—/\
FE_ S1 ' >Sz X1

Figure 3.2: Structure of latent variable space, S, and mapping to observed space, X. The data

density in the latent space consists of 4 mixture of delta functions where the mixture components,
Qa, are constrained to lie at the vertices of a rectangular grid. This grid is mapped to the observed
data space by an orthogonal transform, W, and corrupted with additive Gaussian noise.

The latent data is mapped to the observation space by an orthogonal transfor-
mation, W, and corrupted with additive Gaussian noise ¢ ~ N(0,0%1), with mean
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zero and variance o1, as illustrated in figure 3.2. The observed data generated from

a sample s drawn from latent component « is
z=W(s—qs) +pu+e (3.4)
with conditional densities
p(als, @) = Np+ W (s — ga), 0°I) (3.5)

The latent density and mapping induces a mixture of constrained Gaussian den-

sity on x of the form
p@) = [ ¥ map(als,@)d(s - ga)ds
M
= ) Tap(zle) (3.6)
a=1

with marginal density
p(zla) = N(p+ Wa, 0°T) (3.7)

The Expectation-Maximization algorithm (EM) [DLR77] fits parametric proba-
bility models to data by maximizing the log likelihood of the model for some training
data set {z,, n =1...N}. The log likelihood is given by

L= Z log (Z ToP(Zn|t) ) (3.8)

a=1
Introducing the density z(«, z,,) over the unknown component assignments and using

Jenkin’s inequality, allows us to simplify (3.8). The log likelihood £ is bounded below
by the ezpected log likelihood

N
£ 2 (0= 33 sloa) log ma— §log2na?) = gislen — = Wl -
n=1 a=1
N M
Z Z @, z,) In z(a, T,) (3.9)

with equality when z(a,z) = p(a|z) is the posterior probability of component «
conditioned on the data vector z [NH98].
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The EM algorithm provides a template for deriving a transform coding algorithm
from this probability model. To achieve hard-clustering needed for transform coding,

we choose z(a, z,) to be

z,) = { 1 plalza) > p(1lan) V7 # & (3.10)

0 otherwise

With this hard-clustering model, the final term in the expected log likelihood (3.9)
becomes zero since z(e, z,) In z(a, z,) = 0 Vo, n. Consequently, (L) reduces to the

cost function

M N
C=Y 3 2a,z.) (Hzn — 1 — Waqal|® - 20°log 7ra) (3.11)

a=1n=1

This cost function consists of two terms combined with the multiplier 2¢%: the aver-
age coding distortion ¥, 3, z(a, z, )|z — W.||? and the entropy — ¥, 74 log 7.
This entropy-constrained cost function (3.11) is the same as that found by minimiz-
ing coding distortion subject to an average bit-rate constraint (e.g. [CLG89]). In
the limit as the noise variance o2 goes to zero, and there are a fized number of code

vectors, we recover the cost function for fized-rate transform coding.

3.3 Optimal Transform Coding

Our generalized Lloyd algorithm for transform coder design iteratively optimizes
the partition (encoder) and model parameters (decoder) to minimize the coding
cost (3.11). The transform coder parameters are the orthogonal transform W, the
number of reproduction values in each quantizer M;, J = 1...d, and the repro-
duction values rj;, J = 1...d, ¢ = 1...M; that form the reproduction vectors
go,0 = 1... M. We first describe optimizing the partition followed by transform

and then quantizer optimization.

3.3.1 Partition Optimization

To optimize the partition or encoder, each data vector is assigned to the reproduction

vector ¢, that represent is with the lowest cost. This assignment partitions the data
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into regions R, such that

N

o flz) =" za.z,)f(x) (3.12)

ZERA n=)
for any function f(x). The regions R, are defined by subregions Ry, associated with
the scalar reproduction values. The partition defines subregions R, such that each
transform coefficient s; = W7z, belongs to the scalar reproduction value 7,; that

represents it with the lowest entropy-penalized distortion,
RJi = {SJ | (”SJ — ’I‘J1|]? + 20‘21_}1') < (“SJ — TJ}C||2 =+ QOQle) Vk 76 2} (313)

where [;; = — log py; is the code word length. For fixed rate coding, the partition
is given by (3.13) with 62 set to zero. Figure 3.3 demonstrates the transform and

coding process.

i W,
e : :
R, . ’22.
@ -
>- nnnnn -i: --------- YT, I ; ............ E --------- ’. e
’11 — 12 413 W,
R,% T :
N :
-— A —A
RH Rlz R13

[igure 3.3: Transform Coding a Data Vector. Projecting data vector x with transform W yields
coefficient values W'z = s; and W)z = s3. The data space is partitioned into subregions with
boundaties indicated by dotted lines. Coefficient 5, is in subregion Ry and s; is in subregion Raa,
hence z is represented by reproduction vector g, = [r11,722]7. The region R, associated with g,
(shaded) is the intersection of Ry; and Rs,.

3.3.2 Transform Optimization

To optimize the transform, we find the center 4 and orientation W of each quantizer

grid that minimizes the coding cost function (5.13). The minimum cost estimators
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for the grid center place the grid at the mean of the data.
u= J—if_ ‘L; x (3.14)

To optimize the transform, we find the orientation of the quantizer grid which
minimizes distortion (3.11). The transform W is constrained to be orthogonal, that
is WTW = 1. The cost function to be minimized is thus

M n n n

C=% Y lloe—p=- Y Wigul?+ X 3 vk(WEW, — bk,1) (3.15)
a=1z€R, J=1 K=1L=1

where W; is the J®* column vector of W, qx is the K** coordinate of reproduction

vector ¢, and 7y is a Lagrange multiplier. Minimizing C' with respect to the

transform matrix element Wy ; yields

D tar D (@) Wik =3 tax 3 (z—p)TWy (3.16)
a TERG a TER,
If we define the outer-product matrix @
Q=6 > (z—puT (3.17)
a T€R,

then (3.16) requires QW = WTQT. This symmetry condition along with the or-
thogonality condition uniquely defines the coding optimal transform (COT) W.

By using the conditions for the coding optimal transform, we can determine
this transform for two cases of interest, Gaussian data and high-resolution coding.
Gersho and Gray [GG92] and Mallat [Mal99] have shown, by using high-resolution
distortion approximations, that the optimal coding transform for Gaussian data, is
the KLT. Using (3.16) it is possible to show that this is the case, regardless of bit-
rate. For a alternate approach to this proof, see [GZV00]. The product of @ (3.17)
and W is given by

M
QW = az::lqa '/Ra sTp,(s)d%s (3.18)

where s = WT(x — ) and W is orthogonal. We need two results to show QW is
symmetric when W is the KLT or PCA transform. First we note that for Gaussian
p:(z) = N(0,X), W diagonalizes the covariance X, hence p,(s) is the product of

marginals
ps(s) = l;[ ps(s7) (3.19)
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Second, the reproduction values which minimize mean-squared distortion are given

by
_ SR skPx(sk)dsk

KT fn e Prc(sx)dsk
where R,k is subregion associated with R, and the sx axis. Substituting (3.19)
and (3.20) into (3.18), it is straightforward to show that QW is symmetric, hence
the KLT is the coding optimal transform when the data is Gaussian. Note that the

(3.20)

partition (encoder) need not minimize mean squared error, so this result applies to
entropy-constrained and uniform quantizers, as well as fixed-rate quantizers.

In the case of high-resolution coding, the reproduction values are so numerous
and closely spaced that the data density in each region R, is uniform, p.(z|z €
R,) = constant. When the reproduction values are given by minimum error quan-
tizers (3.20), QW is symmetric for any orthogonal W. Consequently, in the high-

resolution limit, distortion does not depend on the orientation of the quantizer grid.

3.3.3 Quantizer Optimization

Quantizer optimization is most conveniently performed in the transform coordinates.
To rewrite the cost in terms of the transform coefficients s; = WT(z—~pu), J =1...d,
we start the derivation from the product of scalars formulation (3.3) for the latent
density instead of (3.1). The resulting cost function, which is equivalent to (3.11),

18
d M;

C = Z Z Z (ISJ - TJ,'|2 - 20’21.],') (321)

J=1i=1s;€Ry;
where the l;; = —logpy; is commonly interpreted as the code word length.

To optimize the quantizer reproduction values, we adjust the number of repro-
duction values in each coordinate M; and the value of each r;; to minimize the cost
(3.21). Minimizing the cost (3.21) with respect to the reproduction values places
each reproduction value at the mean of the transform coefficients s; = W7 (x — )
in Ry;. !

T = SJ%;J‘ Sy (3.22)
where N;; are the number of transform coefficients in R;;. The entropy term does

not affect this optimization, so (3.22) specifies optimal reproduction values for both
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fixed-rate and entropy-constrained transform coding. The prior probabilities p; are
given by
psi = Ni/N (3.23)

Determining the quantizer sizes is performed differently for entropy-constrained
and fixed rate transform coding. For entropy-constrained transform coding, select-
ing the noise variance or Lagrange multiplier is equivalent to selecting an entropy
constraint. The entropy constraint determines the number of reproduction values
M, in each scalar quantizer. The entropy terms in (3.21) move the partition away
from the minimium distortion solution, so that reproduction values with low prior
probabilities may have no data items assigned to them. Reproduction values with
Ps; = 0 can be removed from the coder, reducing the value of M;. Consequently,
selecting a large value for 02 produces small quantizers and low bit-rate cod