Join-order Optimization
with

Cartesian Products

Bennet Vance
B.A., Yale University, 1976
M.S., Stanford University, 1981

A dissertation submitted to the faculty of the
Oregon Graduate Institute of Science and Technology
in partial fulfillment of the
requirements for the degree
Doctor of Philosophy
in

Computer Science and Engineering

January 1998

© Copyright 1998 by Bennet Vance
All Rights Reserved

it

The dissertation “Join-order Optimization with Cartesian Products” by Bennet Vance

has been examined and approved by the following Examination Committee:

David Maier
Professor
Thesis Research Adviser

/ﬁ/es Hook
ssociate Professor

Jonathan W;H‘povlé‘x -

Associate Professo

Len Shﬁpir;) - /
Professor
Portland State University

jii

Acknowledgments

This dissertation owes a debt to many individuals. Dave Maier, my adviser, deserves spe-
cial mention for his role in guiding and reviewing my work, and for bringing to this role
the same clarity, perceptiveness, and patience that distinguish his teaching in the class-
room. Jim Hook, Len Shapiro, and Jon Walpole also deserve credit for their considerable
efforts as readers on my dissertation committee. I am grateful for their comments and
encouragement, and for all that they have taught me over the years.

The following individuals gave me valuable feedback on earlier presentations of the ma-
terial in this dissertation: Khalid Alnafjan, Roger Barga, Roberto Bayardo, César Galindo-
Legaria, Goetz Graefe, Joe Hellerstein, Bala Iyer, Donald Kossmann, Guy Lohman, Bill
McKenna, Guido Moerkotte, and Vijay Sarathy. For their comments, questions, conver-
sation, and encouragement, I am deeply grateful.

Steve Otto generously gave of his time to explain to me the principle of Chained Local
Optimization. Scott Daniels, Leo Fegaras, Gail Mitchell, and Stan Zdonik helped shape
my thinking about query optimization. Scott Daniels and Jon Inouye gave me technical
assistance in setting up my experiments and in typesetting this document. Rik Smoody
contributed both moral and financial support to my research lab. Mike Carey has been
helpful in numerous ways, not least with bibliographic questions. For all these forms of
assistance, I am grateful.

Support for this work was provided in part by the Advanced Research Projects Agency,
ARPA order number 18, monitored by the US Army Research Laboratory under contract

DAAB-07-91-C-Q518, and by NSF grant IRI 91 18360. The support of these agencies is
gratefully acknowledged.

iv

Contents

Acknowledgments e e iv
Abstract L e e e e e e e e e e e xv
1 Introduction e 1
1.1 TheProblem it e e 1
1.2 Join-order Optimization in Practice 3
1.3 Claim and Synopsis of Dissertation 6
14 Contributions L e e e 8
1.5 Road Map it e e e e e e e e e e e e 9

2 Background and Related Work 11
2.1 Relational Databases 12
2.1.1 TIllustration of Basic Concepts 12

2.1.2 Further Details of the Sample Database 14

2.2 The Relational Algebra, 15
2.2.1 The Cartesian Product Operator 16

2.2.2 The Select Operator iinene.. 20

223 TheJoin Operator i ittt 23

2.24 SUMMALY v vt e e e e e e e e e e e e e e e e e e e 29

2.3 Query Processing i e e e e e e e e 29
2.3.1 ASample Query e e e e 29

2.3.2 Phases of Query Processing 30

2.3.3 Processing of the Sample Query 32

234 Discussion L e e e e 38

2.4 Cardinality Estimation and Predicate Selectivity 38
2.4.1 Concept and Properties of Selectivity 39

2.4.2 Difficulties with Selectivity 41

2.4.3 Discussion and Resolution 46

25 Join Graphs L L e e e e e e e 47
2.5.1 Conceptof Join Graphs 47

2.5.2 [Edge-labeled Join Graphs,, 48

2.53 RoleoftheJoin Graph 49
2.5.4 Complex Predicates and Hyperedges 50
2.6 Cost Models and Physical Properties 51
26.1 CostModels0 iiiniieeenan 51
2.6.2 AGenericCostModel00 iuen.. 52
2.6.3 Physical Properties e e 56
2.7 Approaches to Join-order Optimization. 57
2.7.1 Dynamic Programming 57
2.7.2 Rule-based Optimization 60
2.7.3 Heuristic and Sequencing Techniques 63
2.7.4 Stochastic Techniqueso 65
2.7.5 Hybrids and Frameworks, 66
2.7.6 SUMMATY ittt e e e e e e e e e e e e e 68
2.8 Summary and Discussion e e, 69
Cartesian Product Optimization 70
3.1 Preliminaries e e e e . 70
3.2 Solution using Dynamic Programming 71
3.2.1 Initialization and Two-way Products 72
3.22 Threeway Products 73
323 FinalResult. 74
3.3 The Blitzsplit Algorithm, 75
331 Declarations. e e e e e e e e 75
3.3.2 Procedure blitzsplit 77
3.3.3 Procedure init_singleton e 78
3.3.4 Procedure compute_properties i i e e 79
3.3.5 Procedure find bestsplit 79
3.3.6 Extracting the Best Expression 81
3.4 Complexity of the Algorithm 82
3.4.1 SpaceComplexity, 82
342 TimeComplexity i it it ittt 83
3.4.3 A Small Algorithmic Improvement 86
344 Discussion e e e e e e e e e e e e 87
3.5 Summary e e e e e e e 89

vi

4 Lightweight Implementation of Cartesian Product Optimization 90

4.1 Representation of Data Types e e e e e - 90
4.2 Set Operations using Integer Arithmetic 93
4.3 The Auxiliary Function least.subset 93
4.4 Procedure blitzsplit e e e e 94
4.5 Procedures init_singleton and compute_properties 95
4.6 The Auxiliary Function next_subset 96
4.6.1 Conception v v v vttt e e e e e e e e e e e 97
4.6.2 Implementation e 98
4.6.3 Generalization i e 99

4.7 Procedure find best_split oo oo, 100
4.8 Implementation of Concrete Codein C 102
4.9 Empirical Observations, 104
4.9.1 Selection of Sample Points 104
49.2 Timings e e e e 109

410 SUMMATY . . . v o it e 111
5 Support for Join Predicates, 112
5.1 Join Graphs, Subgraphs, Predicates, and Cardinalities 113
5.1.1 Induced Subgraphs, 113
5.1.2 Subgraphs and Join Expressions 114
5.1.3 Cardinality Recurrence, 116
514 Summary v vt i i e e e e e e e e e e e e e e 117

5.2 Cardinality in the Presence of Predicates. 117
5.2.1 Conception of Cardinality Computation 118
5.2.2 Realization of Cardinality Computation 121

5.3 Accommodating Redundant Predicates Ve e e e e 127
53.1 Tramsitive Chains it 128
5.3.2 Selectivity of a ChaininaSet. 131
5.3.3 Computing Selectivities of Chains 132
5.3.4 Relation-name Aliasest 135
5.3.5 Translation of Relation Names 137
5.3.6 Code for Computing Chain Selectivities 139
5.3.7 Changes to the Blitzsplit Algorithm 141

5.4 Summary and Discussion e e 144

vii

6 Performance Analysis R 146

6.1 Experimental Design, 146
6.1.1 Difficulties in Empirical Studies 147
6.1.2 Our Measurement Approach v 149
6.1.3 Shortcomings of our Parameterization 150

6.2 General Performance Traits 152

6.3 Execution Counts and Fingerprints 155
6.3.1 Join-query Fingerprints 156
6.3.2 Significance of Fingerprints 158

6.4 Fingerprints for Various Queries 160

6.5 Execution Counts under the Nested-Loops Model 164
6.5.1 Split-Graphs e 164
6.5.2 Split-Graph Shape and Cost-Function Execution Count 167

6.6 Fingerprints under the Nested-Loops Model 169
6.6.1 Trajectories as Seen through Split-Graphs 172
6.6.2 Behaviorof StarQueries 173
6.6.3 Behavior of Clique Queries 175

6.7 Summary and Discussion e e 178

7 Pruning Cost Computations 181

7.1 Pruning by Plan-Cost Thresholds 182

7.2 Experimental Runs with Plan-Cost Thresholds 184

7.3 Considerations in Choosing Plan-Cost Thresholds 187

74 Plan-Cost Slices. i e e e e 189

7.5 Summary and Discussion e e e 191

8 A Stochastic Extension. 193

8.1 Intuitions about Stochastic Optimization 194
8.1.1 Characteristics of Various Approaches 196
8.1.2 Incorporation of a Heuristic 198
8.1.3 Shapes of Join-Plan Spaces 200

8.2 Tightening and Iterated Tightening 200
821 ASampleProblem, 201
8.2.2 The Initial Join-processing Tree 201
8.2.3 Collapsing Subtrees to Pseudo-relations 203
8.2.4 Collapsing theJoin Graph 203
8.2.5 Encapsulation of Pseudo-relations 205
8.2.6 Subproblem Optimization and Grafting 205

viii

8.2.7 Tightening of Subtrees, 207

8.2.8 Iterated Tightening 207
8.29 SUMMALY . . . v v i it et e et e e e e e e e e e e e 209

8.3 An Algorithm for Tightening, 209
8.3.1 The Tightening Algorithm Proper 210
8.3.2 TypeDeclarationso eneen.. 210
8.3.3 Tmplicit FUNCEIONS . « « v v v v v e e e e e e e e e e e e .. 212
8.3.4 Functions for Tightening 213
835 Technical Issues. 0. 215

8.4 The Stochastic Bushwhack Algorithm 216
8.4.1 Pseudo-code for the Stochastic Bushwhack Algorithm 217
8.4.2 Technical Issues. 219

8.5 Summary and Discussion, 221
9 Performance of the Stochastic Extension 222
9.1 Conceptof Watersheds oo ol ool 223
9.2 Measurement Procedure 0., 225
9.3 Division of Plan Space into Watersheds 226
9.4 Frequency of Attaining Global Minima 229
9.5 Approximate Optima it 230
9.6 Optimization Time e 233
9.7 Quantifying the Quality-Effort Trade-off 236
9.7.1 An Optimization-Effectiveness Index 236
9.7.2 Attaining an Optimum with 99% Probability 237
9.7.3 The Recursive Bushwhack Algorithm and the “Kick” 238

9.8 Varying the Join Graph 240
9.9 Larger Numbersof Relations:........... 242
9.10 Varying the Queries e e e e 246
9.11 Varyingthe Cost Model 250
9.12 Summary and Discussion e e 250
10Conclusion e e e e e e 256
10.1 Physical Properties i i i i e e e e e 257
10.2 Top-down vs. Bottom-up. ittt it i e 258
10.3 Extension beyond Relational Systems 260
10.4 Conclusion e e e e e e e e e 261
Bibliography e e e 262

ix

A Complexity of Join Enumeration in Starburst 268

A.l1 The Starburst Join-Generation Mechanism 268
A.2 Overview of Complexity Calculation 270
A3 Calculating I, (k) -« oo v oo v 272
A4 Calculating Il - -« -« v o v i e e e e 275
A.5 Correction for Extraneous Terms 279

B Implementation of Blitzsplit AlgorithminC 281
C Parameterization of Test Queries 285
C.1 The Four Dimensions of Parameterization 285
C.1.1 Mean Cardinality i 285

C.1.2 Variability e e e e e e e e e 286

C.1.3 Join Graph e e e e e 286

C.14 CostModel ittt i, 290

C.2 Details of Cost-Function Computation 290
C.2.1 Decomposition of Cost Functions 291

C.2.2 Transformation of a Class of Cost Functions 292

C.2.3 Justification for the Transformation 293

C.2.4 Application to Sort-Merge Cost Model 295

C.2.5 Generalization of the Transformation 296
Biographical Note e 298

List of Tables

3.1 Dynamic programming table 72
3.2 Quantities relevant to time complexity of Cartesian product optimization . 88
4.1 Cartesian product optimization time for a given number of relations n . . . 110

xi

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

4.10

5.1
5.2
5.3
5.4

List of Figures

Left-deep and bushy expressions 5
A sample relational database 0000, 13
Examples of the relational Cartesian product 17
A three-way relational Cartesian product 19
Examples of the selection operation. 21
AnSQL query anditsresult o o, 30
Possible intermediate results in the evaluation of a three-way join 36
Joingraphs e 48
Join graphs labeled with selectivities 49
Declarations for the Blitzsplit algorithm 75
The Blitzsplit algorithm 76
Printing an optimal expression 82
Making execution of %% conditional 86
Concrete declarations i e 92
Least-subset function o oo, 93
Concrete blitzsplit e e 95
Concrete init_singleton and compute_properties 96
Next-subset function 97
Counting inside of a bit pattern 98
Concrete find best_split e e 101
Use of an asymmetric cost function 101
Cartesian product optimization time for 10 relations, as a function of mean

cardinality and ratio of maximum to minimum cardinality 106
Cartesian product optimization time for a given number of relations n . . . 110
Subsets and subgraphsinagraph., . 114
Subsets and subgraphs in the graph for § = {4,B,C} 115
Carvingupafan e, 120
Changes to declarations to support predicates 124

xii

5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4

6.5
6.6
6.7

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2

9.3
9.4

9.5

Changes to Blitzsplit algorithm to support predicates 125

Essential and redundant predicates 129
Adjacency inalongerchain 0 0L, 133
Relation-name aliases, 136
Code to calculate chain selectivities 140
Changes to declarations to support use of chains 142
Changes to Blitzsplit algorithm to support use of chains 143
Optimization times for 15-way joins under various conditions 153
Fingerprint for asamplequery 157
Fingerprints under the naivecost model 161

Split-graphs for a chain query with u = 10* and variability 0.5 under the

disk-nested-loops cost modelo 165
Chain-query fingerprints and split-graphs for various po 170
Star-query fingerprints and split-graphs forvarious 2 174
Clique-query fingerprints and split-graphs for various p. 176
Fingerprint with and without truncation by a plan-cost threshold 183
Optimization times for 15-way joins with plan-cost thresholds 186
Fingerprints truncated by successively larger plan-cost thresholds 188
A pathological functionshape 0oL, 195
Collapsing a join-optimization problem to a smaller problem 202
Tightened join-processing tree, before and after grafting 206
Tightening of asubtree, 208
Retightening the top-level tree after tightening of subtree 208
Tightening algorithm 0 .. 211
Function equivalents to cost annotations on treenodes 213
The Stochastic Bushwhack algorithm 218
Number of watersheds, and relative size of optimal watershed 227
Goodness of approximate optima, expressed as ratios of plan costs to opti-

malplancost e e e e e 231
Optimization times for the Stochastic Bushwhack algorithm 234

Time to obtain minimum cost with 99% probability, as function of n and
1 2 239
Profile of Bushwhack behavior for joins of 11 to 20 relations, with k from 4
to 13 (canonical test queries) oL 241

xiii

9.6

9.7

9.8

9.9

9.10

9.11

9.12

Al

C.1

Profile of Recursive Bushwhack behavior for joins of 21 to 30 relations, with

k-pct from 24 to 60 (canonical test queries)

Time needed to obtain a minimal plan with 99% probability (canonical test

QUETIES) & v v i e it e e e e e e e e e e

Number of distinct minima as a function of mean cardinality and variability

(m=20,k=8) e e

Profile of Bushwhack behavior as a function of mean cardinality and vari-

ability (n =20,k =8) e

Profile of Bushwhack behavior as a function of mean cardinality and vari-

ability, with perturbations (n =20,k=8)

Profile of Recursive Bushwhack behavior for joins of 21 to 30 relations, with
k-pct from 24 to 60 (canonical test queries, disk-nested-loops cost model)

Profile of Bushwhack behavior as a function of mean cardinality and vari-
ability (n = 20, k = 8, disk-nested-loops cost model)

Starburst join-generation algorithm

The “cycle+ 3” join-graph topology forn =15

xiv

Abstract

Join-order Optimization
with
Cartesian Products

Bennet Vance

Supervising Professor: David Maier

Join-order optimization plays a central role in the processing of relational database queries.
This dissertation presents two new algorithms for join-order optimization: a deterministic,
exhaustive-search algorithm, and a stochastic algdrithm that is based on the deterministic
one. The deterministic algorithm achieves new complexity bounds for exhaustive search
in join-order optimization; and in timing tests, both algorithms are shown to run many
times faster than their predecessors. In addition, these new, fast algorithms search a
larger space of join orders than is customary in join-order optimization. Not only do they
consider all the so-called bushy join orders, rather than just the left-deep ones, but—what
is more unusual—they also consider all join orders that contain Cartesian products. The
novel construction of these algorithms enables them to search a space including Cartesian

products without paying the performance penalty that is conventionally associated with

such a search.

Xv

Chapter 1

Introduction

This dissertation presents new results on the problem of join-order optimization. This
introductory chapter gives an overview of the problem, and summarizes the claims and
contributions of the present work. The introduction closes with a road map of the remain-

der of the dissertation.

1.1 The Problem

The problem of join-order optimization arises in the context of relational query processing.
Recall that to retrieve information from a relational database, one ordinarily poses a query
expressed in some variant of the language SQL (Structured Query Language) [11, 32].
Consider an SQL query of the form

SELECT +
FROM A, B,C
WHERE

where A, B, and C denote relations, and where the ellipsis (...) represents a predicate,
or possibly a conjunction of many predicates. (Chapter 2 gives a more concrete example
with additional detail; the present example is sketchy in the interest of brevity.) After
parsing this query, a relational database management system might represent it internally
as the join of A, B, and C, i.e., as the relational algebra expression A X B X C.

Now here is the problem. Because the join operator (X) is commutative and associative,

' the join of A, B, and C may be written as

(A B)XC, (1.1)
or as

(BX A) X C, (1.2)
or as

BX (AXC), (1.3)

or indeed in any of a number of other ways—12 of them altogether. These 12 different
expressions are semantically equivalent in the sense that they all evaluate to the same
result. But viewed operationally, they are not equivalent; for example, (A X B) X C
suggests first joining A with B, and then joining that intermediate result with C, whereas
B ™ (A M C) suggests first joining A with C, and then joining B with that intermediate
result. These operational differences are significant because the computational cost of
evaluating one expression (measured in disk and CPU time) may be vastly different from
that of evaluating another, semantically equivalent expression. To perform well, a database
management system must make a judicious choice of expressions to use as the basis for
query evaluation. The process of choosing from among the available alternatives is called
join-order optimization (or simply join optimization).

There are, as noted, 12 alternatives in the case of a three-way join (i.e., a join involving

three relations). In general, for an n-way join [29, 31, 54], the number of alternatives is

2n — 2)!
ﬁ. (1.4)
This quantity grows at an explosive, faster-than-exponential rate. The time complexity
of join-order optimization, however, is not quite as unfavorable as formula (1.4) might
lead one to expect; it is possible to search the space of alternatives exhaustively without
examining each alternative separately from the others. Even so, the time complexity of

join-order optimization remains exponential. Ibaraki and Kameda have shown the problem

to be NP-complete [25].

1.2 Join-order Optimization in Practice

The intractability of join-order optimization leads to a dilemma: To optimize, or not to
optimize? On the one hand, if one does not optimize, query evaluation may take an
inordinately long time; in this case, we shall refer to the query evaluation as having a high
cost. On the other hand, if one does optimize, it may turn out that the optimization itself
takes an inordinately long time, quite possibly defeating the purpose of optimization. In
the latter case, we shall refer to the optimization as being very time-consuming, or as
entailing a large computational effort. Thus, we make a verbal distinction between the
time or effort of optimization, and the cost of query evaluation, though it is actually time
we are concerned about in either instance.

In practice, the effort required for join-order optimization typically becomes preohibitive
when n (the number of relations being joined) reaches a value somewhere in the teens.
Values of n in this range can arise when users submit SQL queries with large numbers
of relations in the FROM clause, but they can also arise in other ways that users may
not even be aware of. For example, queries that make use of views [11, 32] often generate
hidden joins, as do queries with path ezpressions [8, 53, 62]. As databases become more
complex, and as they incorporate additional facilities that automatically generate joins
“underneath the covers,” queries with large values of n are likely to become more and
more common.

In the case of such queries, while the effort required for join-order optimization may be
excessive, the consequences of forgoing optimization are likely to be equally unacceptable.
The resolution of the dilemma is to compromise on what is meant by optimization. A
literal reading of the word “optimization” would require a join-order optimizer to choose,
from among the available alternatives, a join expression whose cost was minimal. Such
expressions are sometimes called ezact solutions to the optimization problem; they may
also be referred to as ezact optima or true optima. But a looser reading of the word
“optimization” allows for the selection of an alternative whose cost is merely low, and not
necessarily minimal. Such alternatives may be referred to as approzimate optima or near

optima. In general, an approximate optimum can be had for much less effort than an exact

one. The practical objective of join-order optimization is to strike a balance between the
quality of the solution obtained, and the ease of obtaining it.
Optimizers employ a variety of tactics for reducing optimization effort. In this work,

the following tactics shall concern us especially:

1. Ezclusion of Cartesian products. As will be explained in greater detail in Chapter 2,
some “joins” are actually Cartesian products, denoted by the operator x. For exam-
ple, consider an SQL query that includes A and B in the FROM clause, as in the
query illustrated at the outset. Depending on what was in the query’s WHERE
clause, the join of A and B might turn out to be a Cartesian product, and in that

case would ordinarily be written as A X B, rather than as A X B.

As a rule, Cartesian products entail very high evaluation costs; on this basis, most
query optimizers will not even consider expressions that involve Cartesian products
(unless they cannot be avoided). By excluding such expressions, a query optimizer
reduces the size of its search space, and reduces optimization effort accordingly. But
at the same time, it risks yielding a suboptimal solution in those cases where the

true optimum contains a Cartesian product [45].

2. Restriction of the search to left-deep join expressions. Left-deep expressions have
the form illustrated in Figure 1.1(a), with nesting of join operators occurring only
in the left-hand inputs. The more general space of bushy expressions, of which
Figure 1.1(b) is an instance, allows nesting in both the left-hand and right-hand

inputs.

The space of left-deep expressions grows far less quickly than the space of bushy
expressions; given n input relations, there are only n! different left-deep expressions,
in contrast to the ((2n — 2)!)/((n — 1)!) bushy expressions reported in formula (1.4)
above. On the other hand, the optimal bushy expression is sometimes far superior to

the best left-deep one [45], and never inferior, since the bushy expressions subsume

the left-deep ones.

A B A B C D E F
((AXB) N C)M D)X E) X F (AX(BXNC)) M ((DXE) X F)
(a) Left-deep (b) Bushy

Figure 1.1: Left-deep and bushy expressions

3. Use of stochastic search. This tactic has a rather different character from the previ-
ous two. The previous two tactics focused on reducing the size of the search space,
while the idea behind stochastic search is to explore the full “breadth” of the search

space—however large it may be—without searching it exhaustively.

Typically a stochastic search examines only a tiny fraction of the expressions in the
given space. Needless to say, by leaving much of the space unexamined, such a search

runs the risk of overlooking the truly optimal solutions.

In each instance, the guarantee of true optimality is sacrificed in the interest of making the
optimization process more tractable. (Optimizers use many other effort-reducing tactics
as well, some of which do not compromise optimality.)

Tactics 1-3 above need not be mutually exclusive. Much work on stochastic join-order
optimization has focused on the space of left-deep join expressions [26, 56]; and regard-
less of any other tactics they employ, nearly all join-order optimizers exclude Cartesian
products. In fact, in those instances where optimizers support consideration of Cartesian
products at all, they do so only as an option, or only in restricted contexts; exclusion of

Cartesian products has always been the default.

1.3 Claim and Synopsis of Dissertation

The claim of this dissertation is as follows: There is no benefit in excluding Cartesian
products in join-order optimization. We make this claim in the context of bushy join-
order optimization; it may well hold in the context of left-deep optimization as well, but
the bushy case is more interesting, and, at least on the surface, more challenging.

The defense of this claim rests on theoretical and empirical analyses of two new join-
order optimization algorithms presented in this work. The first of these algorithms per-
forms an exhaustive search; the second, a stochastic search. Both algorithms explore the
space of bushy expressions, and neither excludes Cartesian products.

The exposition takes the following shape. We begin by considering the question of
what is involved in optimizing expressions that contain only Cartesian products, and no
joins. We present an algorithm for exhaustively searching the space of bushy Cartesian
products, and show that the time complexity of this algorithm is actually lower than that
of the bushy exhaustive-search join-order optimizers described in the literature. Moreover,
by observing the numerical behavior of the pertinent complexity measures, we predict that
the Cartesian product optimization algorithm can be made to run very fast. Experiments
on an implementation of the algorithm bear out this prediction.

We then take the next step: to extend the Cartesian product optimization algorithm
so that it accommodates join operators as well. Such is the structure of the algorithm,
and such the nature of the extension, that the accommodation of joins need not impair the
optimizer’s speed; nor does it necessitate any restriction of the search space. As the algo-
rithm makes no fundamental distinction between join and Cartesian product operators, it
chooses Cartesian products over joins whenever they are appropriate.

With a join-order optimizer now in hand, we move on to empirical evaluation of our
method. Extensive timings show that our optimizer runs faster than previous join-order
optimizers by several orders of magnitude. Such comparisons must be treated with caution,
however; in some instances, the improvement can be partly attributed to the use of faster,
more modern hardware, or to simplifying assumptions in our timing experiments. For these

reasons the central claim of the dissertation narrowly focuses on inclusion of Cartesian

products, and not on optimizer speed. Nonetheless, the apparent large speed advantage of
our method is suggestive to say the least—particularly as it appears to hold even against
optimizers that were developed and benchmarked contemporaneously with our own.

To make the case that our method’s inclusion of Cartesian products is not a liability,
we must consider the effects of the simplifying assumptions in our experiments. One
cannot just do away with simplifying assumptions, for there is no such thing as “the
general case” in join-order optimization: All timings of join-order optimizers, and not just
ours, necessarily deal with special cases, and make simplifying assumptions of one kind
or another. (To date, the literature has not settled on any standard set of special cases
and assumptions, and there is considerable variety in the way these issues are handled in
different experiments.) To better understand the potential liabilities of our algorithm, we
investigate a pair of metrics that we refer to as cost-function ezecution counts.

By studying cost-function execution counts, we find that, as originally presented, our
method in fact can suffer as a result of its consideration of Cartesian products. But
the evidence of this effect also suggests corrective measures, which dramatically reduce
the effect. With the corrective measures in place, we see that as a rule, cost-function
execution counts need not be significantly higher when Cartesian products are included in
the search than when they are not. This result carries the implication that whether or not
our optimizer retains a speed advantage under varying assumptions, it is most unlikely to
become slower than other optimizers.

There remains an Achilles’ heel in our argument in defense of including Cartesian
products in the search. When the number of relations n becomes “large” —meaning some-
where in the teens, as noted above—all exhaustive-search optimizers become overwhelmed
by the exponential complexity of join-order optimization. But there are special cases
where join-order optimization without Cartesian products has merely polynomial com-
plexity [45], whereas the complexity of join-order optimization with Cartesian products is
always ezponential [6, 49]. In these special cases, our exhaustive-search method becomes
uncompetitive.

Yet we cling tenaciously to our claim that Cartesian products need not be excluded.

All that is needed at larger n is a more powerful optimization technique than exhaustive

search; and so we introduce a stochastic join-order optimization technique to extend the
power of our exhaustive-search method. Again we find that our stochastic technique
outpaces previous stochastic techniques by several orders of magnitude, while obtaining
solutions of extremely high quality. It performs especially well on the class of problems
whose complexity is polynomial when Cartesian products are excluded; but it achieves
this high level of performance without ezcluding Cartesian products.

Although the presentation of these results is set in a relational context, our techniques
extend naturally to object-oriented databases as well; the relevant principles are sketched

in the concluding commentary.

1.4 Contributions

In the course of defending the claim discussed above, this dissertation makes the following

contributions to the understanding of join-order optimization:

e It demonstrates that the worst-case time complexity of the Starburst optimizer, as

described by Ono and Lohman [44, 45], is O(4™).

o It gives the first detailed account of an exhaustive-search, bushy join-order optimiza-
tion algorithm with a worst-case time complexity of O(3"), and with a worst-case

space complexity of O(27).
o It shows how this algorithm can be implemented with very low overhead.

e It presents, in detail, a stochastic join-order optimization algorithm that achieves
extremely high-quality solutions in a small fraction of the time required by previous

algorithms.

e It takes the first steps toward a systematic approach to the benchmarking of join-

order optimization.

A few words of comment will help to clarify what is new, and what is not new, about our

complexity results.

Ono and Lohman [44, 45] were the first to observe that join-order optimization has time
complexity O(3") in the worst case. But interestingly, in analyzing their own algorithm for
the Starburst optimizer, they examined only the number of join expressions it considers,
and not the complexity of the loop that generates those join expressions. When the
generation loop is taken into account, the complexity of their pseudo-code proves to be
0(4"), as we shall show.

In the time since the work of Ono and Lohman, there may well have been variations
on their implementation that actually achieved O(3") time complexity. The literature
is inconclusive. Ganguly et al. [15] give O(3") as the complexity of bushy join-order
optimization, but again this complexity figure is based on the number of join expressions
considered, not on an algorithmic analysis. No evidence is presented of an implementation
that in fact achieves the stated complexity. As the Starburst example illustrates, it cannot
be taken for granted that execution time is proportional to the number of cases considered.

The pseudo-code in the present work addresses these matters with care, leaving no
doubt as to its O(3") time complexity; in empirical trials we also verify that the claimed
complexity is actually achieved. Very recent work by Pellenkoft, Galindo-Legaria, and
Kersten [46] presents an alternative approach to join-order optimization with worst-case
time complexity O(3")—though their approach has a higher space complexity than ours.

We shall comment on these matters further in due course.

1.5 Road Map

The remaining chapters of this dissertation are as follows:

2 Background and Related Work introduces concepts and conventions pertaining
to join-order optimization, discusses some of the difficulties inherent in the problem,

and surveys previous approaches to the problem.

3 Cartesian Product Optimization introduces the Blitzsplit algorithm for Carte-

sian product optimization, and analyzes the complexity of the algorithm.

10

10

Lightweight Implementation of Cartesian Product Optimization shows how
the abstractly presented algorithm of Chapter 3 can be given an extremely fast

concrete realization.

Support for Join Predicates discusses the accommodation of join predicates in
the Blitzsplit algorithm, which enables the algorithm to optimize joins, and not just

Cartesian products.

Performance Analysis gives empirical results on the Blitzsplit algorithm’s perfor-

mance in join-order optimization, and analyzes those results.

Pruning Cost Computations draws on observations from the performance anal-
ysis to show how the Blitzsplit algorithm’s performance can be improved through

pruning of cost computations.

A Stochastic Extension builds on the foundation of the deterministic Blitzsplit
algorithm, and describes the Stochastic Bushwhack algorithm for join-order opti-

mization.

Performance of the Stochastic Extension gives empirical results on the Stochas-
tic Bushwhack algorithm’s performance in join-order optimization, which suggest a
refinement to the Stochastic Bushwhack algorithm called the Recursive Bushwhack

algorithm.

Conclusion summarizes the ground covered, discusses several open issues, and of-

fers a few words of commentary.

Chapter 2

Background and Related Work

In the introduction, we saw the essence of the join-order optimization problem: Once a
database query has been translated into an algebraic expression, there are likely to be
many equivalent alternatives to that expression, and it is an optimizer’s task to choose
among them on the basis of expected evaluation cost. But that brief characterization
of the problem overlooks the many complications and subtleties involved in join-order
optimization.

In this chapter we examine the problem in more detail. We shall introduce various
concepts and conventions of join-order optimization, and point out difficulties that one
cannot readily overcome without making simplifying assumptions. We shall also discuss
the approaches that have been taken to solving the problem in previous work.

We begin by reviewing some of the fundamentals of relational databases and the re-
lational algebra. We go on to discuss the role of join-order optimization in the larger
context of query processing. We then describe some of the technical difficulties that arise
in join-order optimization in practice. Foremost among these difficulties is that of accu-
rately estimating the evaluation cost of a query expression. We shall go into some detail
in considering the nature of the estimation problem, and in describing the techniques that
have been developed to deal with it. In the course of the discussion, we shall lay the

conceptual groundwork for the remaining chapters of this dissertation.

11

12

2.1 Relational Databases

In this section and in the following two sections, we review some of the basics of relational
databases and relational query processing. We begin here by describing the representation

of data in relational databases and by introducing pertinent terminology.

2.1.1 Illustration of Basic Concepts

For illustration, Figure 2.1 presents a sample relational database that supports inventory
management and customer billing for an auto-parts dealer. This database consists of six
relations (also known as tables); each relation is a set of tuples (or rows), and each tuple
consists of a collection of attributes (or columns). Relations lend themselves to tabular
representation because the tuples within a given relation have a fixed number of attributes.
The names of these attributes are fixed as well, and because they are fixed, they appear
as column headings in the illustrated tables.

The Customer relation in the figure consists of two tuples, each representing a cus-
tomer of the auto-parts store, and each containing a c_.CUSTNO attribute and a C_NAME
attribute. The illustrated Customer relation informs us that there is a customer named
Kinbote, who has been assigned a customer number of 401, and another customer named
Quilty, whose customer number is 402. The customer number plays the role of primary
key for the relation; that is, each customer is assigned a unique customer number, and
consequently the tuple in the Customer relation that gives information about a particular
customer can be located using the customer number.

Note that the attribute names C_CUSTNO and C_NAME in the Customer relation both
begin with the prefix “c_.” The prefix serves as a reminder of the relation to which these
attributes belong. Throughout this dissertation we shall follow the convention of prefixing
each attribute name with the first letter of the corresponding relation name.

The Employee relation is analogous to the Customer relation, but gives information
about the store’s employees rather than its customers. In addition, the Employee relation
has a third attribute E.MGR that gives the employee number of each employee’s manager.

Thus, employee number 3, Tom, is managed by employee number 5, namely Ray; and Ray,

13

Customer Employee
C_CUSTNO | C_.NAME E_EMPNO | EXNAME | E.MGR
401 Kinbote 3 Tom 5
402 Quilty 5 Ray 5
Order Lineltem
O_ORDERNO | O_CUSTNO | O_SOLDBY L_ORDERNO | L_PARTNO | L_QTY
1001 401 3 1001 7007 2
1002 402 3 1002 7007 1
1002 8008 8
Part Source
P_PARTNO | P_DESCR S_PARTNO | S_.SUPPL
7007 Head Lamp 7007 Acme
8008 Spark Plug 8008 Acme
8008 Jolt
8008 Nuke
8008 Zap

Figure 2.1: A sample relational database

we see, is also managed by employee number 5—in other words, Ray is his own manager.

The Order relation records orders for parts. We see that order number 1001 was

placed by customer number 401 (Kinbote), and was taken by (or “sold by”) employee

number 3 (Tom); order number 1002 was placed by customer number 402 (Quilty), and

like the other order, was “sold by” employee number 3 (Tom). The 0_ORDERNO attribute

is the primary key of this relation, since it uniquely identifies each order. The o_cusTNO

and 0_SOLDBY attributes, on the other hand, are foreign keys. A foreign key may be

thought of as a kind of pointer or reference to another tuple; for example, the foreign key

values 401 and 402 in the 0_cUSTNO attribute of the Order relation refer to the tuples

for Kinbote and Quilty in the Customer relation. Through foreign keys, the disparate

relations of a relational database become connected so as to form a coherent whole.

Although a foreign key in one relation usually refers to a tuple of some other relation,

14

it is also possible for a foreign key to refer to a tuple of the same relation. The E_.MGR
attribute of the Employee relation, discussed above, is an instance of this special kind
of foreign key: the manager of one employee is just another employee (or possibly, as we

have seen, the same employee).

2.1.2 Further Details of the Sample Database

There are still three relations in the sample database that we have not mentioned: the
Lineltem, Part, and Source relations. These relations give additional information about
customer orders—specifically, about the parts that have been ordered.

The Order relation discussed above contains only some of the information about
customer orders. The reason why it gives only partial information is that order information
is somewhat complicated, and cannot easily be represented in tabular form. In a single
order, a customer may request various parts, each of which appears as a separate line
item on the customer’s invoice. The number of line items varies from order to order,
but since the format of the tuples of the Order relation is fixed, this format cannot
accommodate varying numbers of line items. Consequently, our sample database omits
line-item information from the Order relation, and instead places this information in
a separate relation—the Lineltem relation. Qur database thus decomposes the order
information into the Order and Lineltem relations.

Each tuple of the Lineltem relation represents one line item of one order. Accord-
ingly, a Lineltem tuple specifies the order to which it belongs (through the foreign key
L_ORDERNO), as well as the part ordered (L_PARTNO) and the qﬁantity ordered (L_QTY).
The part is identified only by a part number, which serves as a foreign key referencing the
Part relation. The Part relation, in turn, has a P_PARTNO attribute as its primary key,
and a P_DESCR attribute that gives brief descriptions of the parts.

The Source relation gives information about wholesalers (or other suppliers) from
whom parts can be obtained. The S_PARTNO attribute, a foreign key referencing the Part
relation, identifies a part, while the s_sUPPL attribute names a supplier who supplies that

part.

Thus, starting from the LineItem relation, we see that order number 1001 specifies a

15

request for 2 head lamps (i.e., part number 7007); according to the Source relation, this
part is supplied by Acme. Order number 1002 specifies a request for 1 head lamp, and in
a separate line item, a request for 8 spark plugs (i.e., part number 8008). As the Source
relation shows, the spark plugs can be obtained from any of four suppliers: Acme, Jolt,

Nuke, or Zap.

2.2 The Relational Algebra

The relational algebra [11, 32, 38] is an algebraic language for manipulating relations to
obtain new relations.

There are six fundamental operators in the relational algebra: select (o), project (x),
Cartesian product (x), set union (U), set difference (\ or —), and rename (p or 9).
In addition, expressions in the relational algebra frequently make use of several derived
operators that can be defined in terms of the fundamental operators. By far the most
important of the derived operators is join (X).

In the present work, we shall be concerned with just a few of the relational operators:
select, Cartesian product, and join. We review the definitions and essential properties of
these operators below.

In discussing these operators, and throughout this work, we shall use the capital letters
A, B, C, and so on, to represent arbitrary relations. These letters may also represent
relation-valued expressions, provided the internal structure of these expressions is of no
concern; but we shall use the letter E, sometimes with a subscript or prime (e.g., EY),
when we wish to focus attention on an expression’s structure. When we need to refer to
a large or indeterminate number of relations, we shall call them Ry, R;, Rz, and so on;
we will also use the letter R with other subscripts (or no subscript) to represent relations
in particular roles. The small letters p and ¢, occasionally with primes (p’ and ¢’), shall
represent predicates. The cardinality of a relation A (i.e., the number of tuples in A) will

be denoted |A|. Later on we shall introduce additional notation as needed.

16

2.2.1 The Cartesian Product Operator

In ordinary mathematical usage, the Cartesian product of two sets is the set of all ordered
pairs of elements drawn from the two sets. For example, the Cartesian product of {1,2,3}
and {a,b} is {(1, a), (1,b), (2,a), (2,D), (3,a), (3,b)}. Since a relation is just a set of tuples,
the set-theoretic notion of Cartesian product makes sense for relations as well. However,
the relational definition of Cartesian product differs subtly from the set-theoretic one.
In the relational Cartesian product, pairs of tuples drawn from the two operands are
concatenated to form new tuples, rather than simply being combined into ordered pairs.

Figure 2.2(a) shows the Cartesian product of the Lineltem and Part relations from
our sample database. Figure 2.2(b) shows the Cartesian product of same two relations
with their roles reversed—that is, with Lineltem as the right-hand operand of x, and
Part as the left-hand operand. Figure 2.2(c) shows another Cartesian product that has
Part as the left-hand operand—this time the right-hand operand is the Source relation.
In each instance, the result is a set of tuples, not a set of pairs of tuples; in other words,
the Cartesian product yields a result that is itself a relation.

A property of relations that we have left implicit until now is that the attribute names
in a given relation are all distinct, so that each attribute name unambiguously identifies a
unique column of the relation. To preserve this property of relations under the Cartesian
product operator, we must forbid the construction of a product A x B if there is any
overlap between the attribute names of A and those of B; and in particular, we must forbid
products of the form A x A. However, it should be understood that these restrictions do
not alter the expressive power of the relational algebra: where necessary, conflicts among
attribute names can be resolved through the use of rename operators. (We do not discuss
rename operators in detail, as we shall have no need for them here.)

The relations shown in Figures 2.2(a) and (b) are actually considered to be the same
relation. In the tabular representation of a relation, the order of the rows and columns
has no significance from the standpoint of relational theory. It is merely convenient to
show the columns of a Cartesian product in the same order in which they appear in the

operands, and to show the rows in an order based on the order of the operand rows,

Lineltem x Part

L_ORDERNO | L_.PARTNO | L_.QTY | P_PARTNO | P_DESCR
1001 7007 2 7007 Head Lamp
1001 7007 2 8008 Spark Plug
1002 7007 1 7007 Head Lamp
1002 7007 1 8008 Spark Plug
1002 8008 8 7007 Head Lamp
1002 8008 8 8008 Spark Plug

(a) A relational Cartesian product

Part x Lineltem

P_PARTNO | P_DESCR L_ORDERNO | L_.PARTNO | L.QTY
7007 Head Lamp 1001 7007 2
7007 Head Lamp 1002 7007 1
7007 Head Lamp 1002 8008 8
8008 Spark Plug 1001 7007 2
8008 Spark Plug 1002 7007 1
8008 Spark Plug 1002 8008 8

(b) An alternative representation of the same product

Part x Source

P_PARTNO | P_DESCR S_PARTNO | S_SUPPL
7007 Head Lamp 7007 Acme
7007 Head Lamp 8008 Acme
7007 Head Lamp 8008 Jolt
7007 Head Lamp 8008 Nuke
7007 Head Lamp 8008 Zap
8008 Spark Plug 7007 Acme
8008 Spark Plug 8008 Acme
8008 Spark Plug 8008 Jolt
8008 Spark Plug 8008 Nuke
8008 Spark Plug 8008 Zap

(c) Another relational Cartesian product

Figure 2.2: Examples of the relational Cartesian product

17

18

with the leftmost attributes varying most slowly. But discounting order, the tables in

Figures 2.2(a) and (b) contain identical information.

Algebraic Properties of Cartesian Product The algebraic significance of the equiv-

alence of Figures 2.2(a) and (b) is that the relational Cartesian product is commutative:

For arbitrary relations A and B, we have
Ax B=Bx A. (2.1)

The same is not true for the set-theoretic Cartesian product, which is commutative only up
to isomorphism. For example, the set-theoretic product {1} x {a} is {(1, a)}, whereas the
product {a} x {1} is {(e,1)}. Although (1, a) contains the same information as (a, 1), the
two cannot be considered identical, because by definition they are ordered pairs—hence
order cannot be discounted.

In a similar vein, the relational Cartesian product is associative, while the set-theoretic
Cartesian product is associative only up to isomorphism. For example, in the set-theoretic
setting, the product ({1} x {2}) x {3} gives {((1,2), 3)}, whereas {1} x ({2} x {3}) gives
{(1,(2,3))}; evidently these two results differ structurally. But such structural differences
do not arise in relational Cartesian products, again because the operand tuples are com-
bined by concatenation, and not by pairing. For example, Figure 2.3 shows the three-way
Cartesian product of the Lineltem, Part, and Source relations. This product can be
regarded equally well as the product of the relation in Figure 2.2(a) and the Source re-
lation, or as the product of the Lineltem relation and the relation in Figure 2.2(c). In

general, for arbitrary A, B, and C, we have the law
(AxB)xC=Ax(BxC). (2.2)

It is important to emphasize that despite their structural differences, the relational and
set-theoretic Cartesian products are isomorphic to one another. One aspect of this iso-
morphism is that the cardinalities of both kinds of Cartesian products can be computed

in the same way. For arbitrary relations 4 and B,

|Ax B| = |A|-|B]. (2.3)

Lineltem x Part x Source

19

L_ORDERNO | L_PARTNO | L_QTY | P_PARTNO | P_DESCR S-PARTNO | S_SUPPL
1001 7007 2 7007 Head Lamp 7007 Acme
1001 7007 2 7007 Head Lamp 8008 Acme
1001 7007 2 7007 Head Lamp 8008 Jolt
1001 7007 2 7007 Head Lamp 8008 Nuke
1001 7007 2 7007 Head Lamp 8008 Zap
1001 7007 2 8008 Spark Plug 7007 Acme
1001 7007 2 8008 Spark Plug 8008 Acme
1001 7007 2 8008 Spark Plug 8008 Jolt
1001 7007 2 8008 Spark Plug 8008 Nuke
1001 7007 2 8008 Spark Plug 8008 Zap
1002 7007 1 7007 Head Lamp 7007 Acme
1002 7007 1 7007 Head Lamp 8008 Acme
1002 7007 1 7007 Head Lamp 8008 Jolt
1002 7007 1 7007 Head Lamp 8008 Nuke
1002 7007 1 7007 Head Lamp 8008 Zap
1002 7007 1 8008 Spark Plug 7007 Acme
1002 7007 1 8008 Spark Plug 8008 Acme
1002 7007 1 8008 Spark Plug 8008 Jolt
1002 7007 1 8008 Spark Plug 8008 Nuke
1002 7007 1 8008 Spark Plug 8008 Zap
1002 8008 8 7007 Head Lamp 7007 Acme
1002 8008 8 7007 Head Lamp 8008 Acme
1002 8008 8 7007 Head Lamp 8008 Jolt
1002 8008 8 7007 Head Lamp 8008 Nuke
1002 8008 8 7007 Head Lamp 8008 Zap
1002 8008 8 8008 Spark Plug 7007 Acme
1002 8008 8 8008 Spark Plug 8008 Acme
1002 8008 8 8008 Spark Plug 8008 Jolt
1002 8008 8 8008 Spark Plug 8008 Nuke
1002 8008 8 8008 Spark Plug 8008 Zap

Figure 2.3: A three-way relational Cartesian product

20

For example, from Figure 2.1 we see that the cardinality of the Lineltem relation is 3,
and that that of the Part relation is 2. Hence the cardinality of their Cartesian product
is seen in Figure 2.2(a) to be 3-2 = 6. The cardinality of the three-way Cartesian product
in Figure 2.3 is just the product of the cardinalities of the Lineltem, Part, and Source

relations: 3-2-5 = 30.

2.2.2 The Select Operator

The select operator has just one operand relation, and yields a subset of the tuples in that
operand as its result. The result omits all operand tuples that do not satisfy a specified
predicate. The usual notation for this operation is 0,(A), where A is a relation, and p is
the selection predicate.

Figure 2.4 illustrates the application of selection to the relations that appear in Fig-
ures 2.2 and 2.3. The examples in Figure 2.4 specify selection predicates that weed out
tuples in which there is a disagreement among the different “part number” attributes.
Thus, in Figure 2.4(a), the selection predicate is L_LPARTNO = P_PARTNO, so that the
result of the selection will retain only those tuples in which the Lineltem and Part at-
tributes are related. For example, in the second tuple of Figure 2.4(a), the appearance
of 1002 under L_ORDERNO, and Head Lamp under P_DESCR, reflects the fact that order
number 1002 includes a line item for a head lamp. By contrast, in the second tuple of
the Cartesian product in Figure 2.2(a), the appearance of 1001 together with Spark Plug
has no particular meaning—it is just one of all possible juxtapositions. Extracting the
meaningful tuples from a Cartesian product is one of the most imi)ortant uses of selection.

In Figure 2.4(d), the selection predicate is the conjunction L_PARTNO = P_PARTNO A
P_PARTNO = S_PARTNO, which weeds out any tuple in which the attributes L_PARTNO,
P_PARTNO, and S_PARTNO are not all three the same.

In the examples above, the predicates (or predicate conjuncts) all have the form
attribute = attribute. But a selection predicate may also compare an attribute to a con-
stant, and the comparison operator need not test for equality. For example, L.QTY < 5

would be an acceptable selection predicate.

01 _partno=p_parTno (Lineltem X Part)

L_ORDERNO | L_PARTNO | L_.QTY | P_PARTNO | P_DESCR
1001 7007 2 7007 Head Lamp
1002 7007 1 7007 Head Lamp
1002 8008 8 8008 Spark Plug

(a) A selection applied to the result in Figure 2.2(a)

01._parno=p_eartno(Part x Lineltem)

P_PARTNO | P_DESCR L_ORDERNO | L_.PARTNO | L_QTY
7007 Head Lamp 1001 7007 2
7007 Head Lamp 1002 7007 1
8008 Spark Plug 1002 8008 8

(b) A selection applied to the result in Figure 2.2(b)

UP.PARTNo:s_PARTNo(PaI't X Source)

P_PARTNO | P_DESCR S_PARTNO | S_SUPPL
7007 Head Lamp 7007 Acme
8008 Spark Plug 8008 Acme
8008 Spark Plug 8008 Jolt
8008 Spark Plug 8008 Nuke
8008 Spark Plug 8008 Zap

(c) A selection applied to the result in Figure 2.2(c)

O1._parTNO=P_pARTNOAP_PARTNO=s_PARTN0 (ineltem x Part X Source)

21

L_ORDERNO | L_PARTNO | L_.QTY | P_.PARTNO | P_.DESCR S_PARTNO | S_SUPPL
1001 7007 2 7007 Head Lamp 7007 Acme
1002 7007 1 7007 Head Lamp 7007 Acme
1002 8008 8 8008 Spark Plug 8008 Acme
1002 8008 8 8008 Spark Plug 8008 Jolt
1002 8008 8 8008 Spark Plug 8008 Nuke
1002 8008 8 8008 Spark Plug 8008 Zap

(d) A selection applied to the result in Figure 2.3

Figure 2.4: Examples of the selection operation

22

Whenever a relational expression involves selection, one must take care that the ex-
pression be well-formed. A selection 0,(A) is well-formed provided that all attributes
mentioned by p are in fact attributes of A, and provided that the comparisons involved
are type-correct. For example, o, qrv<s(Lineltem) is well-formed, but oy _qry<s(Part)
is not, since L_QTY is not an attribute of the Part relation. Likewise, the expression
0. _qrv="Zap'(Lineltem) is ill-formed, since L_QTY represents numeric data, while ‘Zap’ is

a text string.

Algebraic Properties of Select A selection operation whose predicate is a conjunction

can also be expressed as a succession of selections. That is, for all A, p, and g,

Opnqg(A) = ap(04(A)), (2.4)

and similarly for predicates of more than two conjuncts. Since Boolean conjunction is

commutative, it follows directly that

0p(04(A)) = o4(a,(A)). (2.5)

From these laws we see that each conjunct of a compound predicate can be viewed as a
selection predicate in its own right. It is a convention in the query-optimization literature
to use the term predicate to refer both to the whole of a predicate and to its individual
conjuncts. When there is no danger of confusion, we shall use the term both ways here as
well.

The significance of laws (2.4) and (2.5) lies largely in their interaction with the following
algebraic laws that relate o and x. Provided that both the left- and right-hand sides are

well-formed, we have, for arbitrary A, B, and p,
op(A x B) = 0,(A) x B (2.6)
op(A x B) = A x g,(B). (2.7)
Note that given a particular choice of A, B, and p, the well-formedness condition will

ordinarily be met by at most one of (2.6) and (2.7). Only in the degenerate case where p
mentions no attributes from A or B will both (2.6) and (2.7) hold at the same time.

23

Using (2.4) and (2.5) together with (2.6) and (2.7), one can carry out transformations

such as the following, in which we assume that p’ depends only on attributes of C:

Tprp!(A X 0o(B x C)) = 0p(0p1(A X 04(B x C))) (2.8)
= 0p(A X opr(04(B x C))) (2.9)
= 0p(A X g4(0x(B x C))) (2.10)
= 0p(A X 0¢(B X 0(C))). (2.11)

In this sequence of rewrites, the conjunct p’ has slid past two Cartesian product operators—
and also past the operator o,—to attach itself to a term deep inside the original expression.
Such transformations are often referred to as pushing down a predicate, or as pushing a
select past other operators.

As noted above, (2.6) and (2.7) are applicable only insofar as both sides of these
equations are well-formed. To illustrate a violation of the well-formedness condition,

consider the use of (2.6) to rewrite the expression

05 suprL="2ap'(Part x Source) (2.12)

to

05 surpL="Zap’(Part) x Source. (2.13)

The original expression makes sense, but the rewritten expression is nonsense, because

S_SUPPL is not an attribute of Part. On the other hand, the application of (2.7) to the

same expression would yield the legitimate rewritten form
Part X 05 syppr="zap'(Source). (2.14)

2.2.3 The Join Operator

As we saw above, Cartesian products often contain tuples in which unrelated information is
tacked together arbitrarily; these products become useful only after the meaningless tuples

are discarded. For this reason, Cartesian products are frequently subject to subsequent

24

selection—so frequently that the idiom o(...X...) has its own special notation. The join

operator (M) combines Cartesian product with selection:
def
AM, B = g,(A x B). ‘ (2.15)

In the context of join notation, the predicate p is referred to as a join predicate. If p is a
conjunction, then each of its conjuncts may be considered a separate join predicate.

Seen in the light of definition (2.15), the expressions in Figures 2.4(a), (b), and (c) can
all be viewed as examples of join operations. Indeed the join operations in these examples
are of a particular kind, and are referred to as equijoins—joins whose predicates specify
that certain attributes from the left-hand operand are equal to certain attributes from
the right-hand operand. (More generally, an equijoin may equate values derived from the
respective operand attributes.)

Shortly we will see that in Figure 2.4(d), the selection over a three-way Cartesian
product can be rewritten as a three-way join. We will also remark on the fact that the
join operator—and the equijoin in particular—is important to query processing for reasons
over and above notational convenience. But first let us consider some algebraic properties

of the two-way join.

Algebraic Properties of Two-way Join Given that the join operator is defined in
terms of the Cartesian product operator, it should come as no surprise that these two
operators have similar algebraic properties. Commutativity of join follows immediately
from (2.15) and from the commutativity of the Cartesian product. For example, in Fig-
ures 2.4(a) and (b), the Cartesian products inside the selection operations are equivalent
by commutativity; and since the selection predicate is also the same in both instances,
Figures 2.4(a) and (b) necessarily yield the same result relations (except for attribute

order). Using join notation, the equivalence of these two result relations may be stated as

Lineltem M, pyprno=p_rartvo Part = Part M, parrvo=r_rartvo Lineltem.
(2.16)
More generally, for arbitrary A, B, and p, we have

AX, B=BMX, A (2.17)

25

The join operator likewise inherits the Cartesian product’s amenability to predicate

pushing. For arbitrary A, B, p, and ¢, we have

0,(A X, B) = 0,(A) ¥, B (2.18)
op(A My B) = AN, 0p(B), (2.19)

subject to the same provisos regarding well-formedness that applied in the case of the
Cartesian product.

The Cartesian product may in fact be regarded as a special case of join. When the
join predicate is vacuously true, then the selection in the definition of the join operator
(2.15) has no effect, and the join degenerates to a Cartesian product. This special case is

important enough to state as a law:

Law For all A and B,
AMX,B=AXB (2.20)
when p = True.

The empty predicate may be thought of as a conjunction with zero conjuncts, and hence
as vacuously true. By a literal reading, therefore, the expression A X B must be taken as
synonymous with A x B [38].

However, more often than not we shall use the notation A X B informally to mean
“the join of A and B under whatever predicate or predicates belong to (or are applicable
to) the join.” Our uses of the unannotated symbol X in Chapter 1 were of this informal
variety—the predicates were implicit. The premise was that a collection of predicates had
been supplied in the WHERE clause of an SQL query, and that these were the predicates
we had to work with. Loosely speaking, the predicates that “belong to” a join of the form
A M B would be those that mention attributes from both A and B—and do not mention
attributes outside of A and B.

Note that in some expressions, it may happen that no predicates belong to a given join
operator. Thus, the unannotated expression A X B, with implicit predicates, may denote

either a bona fide join, or a Cartesian product.

26

Three-way Join and Join Associativity Now let us consider the matter of three-way
joins. In the expression in Figure 2.4(d), we have a selection over a three-way Cartesian
product. By splitting apart the conjuncts of the selection predicate, and by pushing down

one of the conjuncts, we can derive the equivalent expression

g P.PARTNO:S_PARTNO(aL_PARTNO=P_PARTN0(Lineltem X Part) X Source).
(2.21)

We can then use the join operator to abbreviate this expression as

(Lineltem ™My, _pARTNO=P_PARTNO Part) Mp_paRTNO=S_PARTNO SOUrce. (2-22)

Alternatively, we could have pushed down the other conjunct of the selection predicate to

obtain

o LJ’ARTNO:P_PARTNO(LineItem X Op_PARTNO=S_PARTNO (Part X Source));
(2.23)

the abbreviated form of the latter expression would then have been

Lineltem M, psrrno=rp_parTNO (Pal't Df’P.PARTNO:S.PARTNo Source). (2-24)

The equivalence of (2.22) and (2.24) seems to suggest associativity of the join operator.
But the question of join associativity is tricky. Suppose we commute the inner join in

(2.22) to obtain

(Part M,_pARTNO=P_PARTNO LineItem) Mp _parTNO=S_PARTNO SOUrce, (2-25)

and then attempt to change the association of this last expression. The resulting expres-

sion,
Part M _psrrno=p_rarTrO (LmeItem Mp_paRTNO=S_PARTNO Source), (2-26)

is not well-formed. This example shows that join associativity cannot be taken for granted.
There are several ways to present join associativity in a manner that guards against ill-
formed expressions. The most straightforward approach is simply to state an associativity

law with a well-formedness condition, as follows:

27

Law Foreall A, B, C, p, and q,
(AM, BY X, C =AM, (BNX, (), (2.27)
provided that both sides are well-formed.

But this formulation is unnecessarily restrictive, in that it requires that the join predicates
be the same on both sides of the equation.

Relaxing this restriction, one obtains an alternative, more widely applicable, law:

Law Forall A, B, C, p, q, P, and ¢,
(AN, B) X, C =AMy (B My C), (2.28)
provided that both sides are well-formed, and provided that pAg=p' A ¢ .

Note that if A, B, C, p, and ¢ are given, then it is always possible to find p’ and ¢’ that
satisfy the requirements of the law; and conversely, if A, B, C, p/, and ¢’ are given, then it
is always possible to find suitable p and ¢. However, when p and ¢ are among the givens,
it is not always possible to find suitable, nonvacuous p’ and ¢'; and the analogous caveat
applies when p’ and ¢ are given, and p and ¢ are to be found. Consequently, changing the
association of a three-way join may effectively result in the introduction of a Cartesian
product.

To conclude, if Cartesian products are to be avoided, then join is not always associative.
On the other hand, if the Cartesian product operation is considered to be merely a special
case of join, then join always is associative. Using our informal notation for join with

implicit predicates, we may state the general join-associativity law as follows:

Law Forall A, B, and C,
(AMB)MC =AM (BMXC), (2.29)
where the join operators are implicitly qualified by all applicable predicates.

The validity of (2.29) in general is a consequence of the following fact: Any predicate
applicable to (A X B) M C is also applicable to A X (B X (), and vice versa.

28

The Role of Join in Query Evaluation The join operator is not only a notational
convenience, but also plays an important role in efficient query evaluation.

As we have seen, the expression A X, B is algebraic shorthand for g,(A X B). It is
therefore certainly possible to compute the result of such a join by first computing the
Cartesian product A x B, and then applying the selection operation o,. But such an
approach to computing a join is likely to be extremely inefficient, for the following reason.

Suppose that A and B each have cardinality 1,000. Then there are 1,000,000 tuples
in the Cartesian product A x B, and the cost of computing this product is proportional
to its size. Now the selection operation may cause most of those 1,000,000 tuples to be
discarded, so the final result of 6,(A X B) may just have, say, 2,000 tuples. In such a case,
the computation of the intermediate result represented by the Cartesian product mostly
goes to waste.

Join-processing algorithms provide an efficient alternative. Where applicable, such
algorithms can compute A X, B directly, bypassing the Cartesian product computation.
(Join-processing algorithms are almost always applicable when A X, B is an equijoin; in
other cases, they may not be.)

There are numerous join-processing algorithms [43]; among the most widely used are
hash join, merge join, and indez-nested-loops join. Each of these algorithms has distinctive
performance characteristics, but generally the cost of computing A X, B with such an
algorithm is roughly proportional to the cardinality of one the relations A, B, or A X, B.
Usually (though not always) the cost is proportional to the cardinality of the largest of
these relations. |

In any event, if A and B each have cardinality 1,000, and if A M, B has cardinality
2,000, then the number of tuples that must be examined or generated in the course of join
processing will typically lie in the thousands, in contrast to the million-odd tuples that
must be processed when the join is computed by way of a Cartesian product. Examples

of this kind demonstrate the tremendous practical importance of the join operator.

29

2.2.4 Summary

In this section we have taken a brief tour of three relational operators—Cartesian product,
select, and join—that are central to the development of the ideas in this work. We have
seen that relational Cartesian product and join are commutative and associative (subject
to restrictions), and that selection operators can be “pushed past” both of the other
two operators. These algebraic properties provide the foundation for the manipulations
involved in join-order optimization.

In addition, we noted that the cardinality of a Cartesian product is equal to the product
of the cardinalities of its operands. The latter property will prove important in judging

the relative merits of different join orders.

2.3 Query Processing

Let us now briefly consider what happens, from start to finish, when an SQL query is

submitted to a relational database management system for processing.

2.3.1 A Sample Query

Suppose one wished to issue the following information retrieval request against our sample

database of Figure 2.1 above:

List the order number, part number, quantity ordered, and part description for

all orders for parts that can be supplied by Zap.

One might formulate this question as an SQL query in the manner illustrated in Fig-
ure 2.5(a). The symbol * in the query’s SELECT clause indicates that the query result
should include all attributes from all the relations mentioned in the FROM clause. Note
the predicates in the WHERE clause that equate a part-number foreign key with the
corresponding primary key in the Part relation. These predicates ensure that each tuple
of the query result will give coherent information about a particular part. In addition, the
predicate S_SUPPL = ‘Zap’ ensures that only those parts that are supplied by Zap will
appear in the query result. As it happens, the query result in this example consists of a

single tuple, as illustrated in Figure 2.5(b).

30

SELECT «

FROM Lineltem, Part, Source

WHERE L_PARTNO = P_PARTNO AND
P_PARTNO = S_PARTNO AND
S_SUPPL = ‘Zap’

(a) An SQL query

L_ORDERNO | L_.PARTNO | L_QTY | P_.PARTNO | P_DESCR S_PARTNO | S_SUPPL
1002 8008 8 8008 Spark Plug 8008 Zap

(b) The query result

Figure 2.5: An SQL query and its result

Examining the data in Figure 2.1 in terms of the illustrated query, one can see that
the query result shown makes intuitive sense. We next consider the process by which a

database system can obtain such a result mechanically.

2.3.2 Phases of Query Processing

To process a query and obtain a result relation, the query-processing subsystem of a

relational database management system goes through several phases, roughly as follows:

1. The translation phase. The query processing system’s parser translates the SQL
query into an internal representation. Let us assume that the internal representation

is an expression in the relational algebra.

2. The optimization phase. The system’s query optimizer may rewrite the relational
algebra expression obtained in the translation phase to a different but semantically
equivalent expression. Such rewrites are based on laws of the relational algebra, as
discussed in Section 2.2 above. The objective of rewriting is to obtain an expression

that has lower cost (i.e., that may be evaluated more efficiently) than the original.

31

In addition, the optimizer replaces the so-called logical operators of the rewritten
expression—operators such as join, select, and Cartesian product—with suitable
physical operators. For example, a given logical join operator will be replaced by a
merge join, hash join, or indez-nested-loops join operator, or by some other physical
join operator that specifies a particular join algorithm. Analogous physical alterna-

tives will also replace any other relational operators.

The expression that results when all logical operators have been replaced by physical
operators is called a query plan, or simply a plan. The term query plan has an
abundance of synonyms in the literature; a query plan may also be referred to as
a QEP (for query ezecution plan or query evaluation plan), as an access plan, an
operator lree, a processing tree, or a join-processing tree. (There are many additional
variants of these terms.) The latter terms involving the word tree reflect the fact
that query plans are often depicted graphically as in Figure 1.1 on page 5. We shall
have occasion to refer to plans as processing trees in the later part of this work, when

we shall deal with explicit representations of query plans as tree structures.

3. The execution or evaluation phase. The system’s erecution engine evaluates the
query plan. That is, it executes the algorithms specified by the query plan’s physical

operators, using the specified relations as inputs.

This characterization of query processing is inexact in various ways. For example, com-
mercial query processing systems cannot use the relational algebra as an internal repre-
sentation for queries, because the relational algebra has less expressive power than the full
SQL language. But for our purposes, the relational algebra is expressive enough. We shall
comment further on the form of the optimizer input later on.

Likewise, query plans in actual systems are not simply expressions involving physical
opérators. Rather, they are complex data structures that give the execution engine de-
tailed instructions on the handling of the query’s operators. However, we shall not burden
ourselves with such details here.

In fact, we shall further simplify by generally not distinguishing between logical and

physical join operators. (Much of the join-optimization literature does likewise.) We

32

may imagine that our execution engine supports only a single join algorithm; in that
case, all logical join operators map to the same physical join operator, and so there is
no need to specify the physical operator. Alternatively, allowing for the possibility of
multiple join algorithms, we may think of a logical join operator as representing the
lowest-cost alternative of the physical join operators. The latter interpretation requires a
more complicated cost model—a topic to which we shall return in Section 2.6 below—but

permits us to deal exclusively with logical join operators, without loss of generality.

2.3.3 Processing of the Sample Query

To make concrete the brief explanation of query processing just given, let us now consider

how it applies to the sample query of Figure 2.5(a).

Translation In the translation phase, this query must be translated into an expression
in the relational algebra. The first step in this translation is to construct the Cartesian

product of the relations in the sample query’s FROM clause:
Lineltem x Part X Source (2.30)

Because the Cartesian product is associative, this expression is unambiguous without
parentheses. But later on, it may become confusing to work with expressions whose
association is left unspecified. Let us therefore arbitrarily associate the product (2.30) to

the left:
(Lineltem x Part) x Source (2.31)

This Cartesian product will become the argument of a selection operation that applies the

complex predicate from the sample query’s WHERE clause:

O1._PARTNO=P_PARTNOAP_PARTNO=S_PARTNOAS_SUPPL="‘Zap’ ((LineItem x Part) x Source)

(2.32)

In (2.32) we now have a relational algebra expression that is equivalent to the sample
query. The translation was particularly simple in this case because the sample query’s

SELECT clause, through the symbol %, requested all attributes of the participating

33

tables. In the more general situation where only some of the attributes are requested, the
translation would have had to attach an additional operation (a projection). However, the
optimization problem remains essentially the same whether all attributes are requested,

or just a subset of them. For simplicity, we shall consider only the former case here.

Optimization (Part I) Let us suppose now that (2.32) becomes the input to a query
optimizer. The optimizer must find a query plan equivalent to (2.32) that can be evaluated
at low cost—preferably at a cost that is minimal for all alternative plans.

For the purposes of illustration, we will break the optimization process into two sub-
phases. The objective of the first subphase is to perform “pre-optimization” transforma-
tions that are not based on cost analysis, but are deemed advantageous on the basis of a
priori considerations. In particular, it may make sense to push all the conjuncts of the
selection predicate as far down as they will go—as well as to convert the Cartesian product

operators into joins. Thus, we obtain

(LmeItem M _pARTNO=P_PARTNO Part) Me_paRTNO=S_PARTNO (Us.SUPPLz‘Zap’(Source))-

(2.33)

The transformation of (2.32) into (2.33) is achieved through repeated application of the
predicate-decomposition rule (2.4), the predicate push-down rules (2.6) and (2.7), and the

definition of join (2.15). This transformation has heuristic merit because

1. It is generally beneficial to apply all predicates as “early” as possible, so as to reduce

the cardinalities of operands and intermediate results;

2. A Cartesian product that serves as the argument of a selection on fully pushed-

down predicates should always be converted to a join, for the reasons discussed in

Section 2.2.3 above.

There are exceptions to the first point, as we shall remark later, but overall it remains an
excellent heuristic. Note that the second point does not say that expressions with Carte-
sian products are necessarily inferior to expressions without them; it makes no judgment

about a Cartesian product that is not immediately surrounded by a selection.

34

With (2.33) we have completed the first optimization subphase. But before we proceed,

it is worth observing several facts about pushed-down predicates.

1. Predicates that mention attributes from only one relation, such as the predicate
S.SUPPL = ‘Zap’ in the sample query, are special. Such predicates can always
be pushed down past all the Cartesian product and join operators in a query, and
so become tightly bound to the relation to which they apply. In our example,
the predicate s_SUPPL = ‘Zap’ becomes attached to the Source relation in the
subexpression os_suppL=<zap’(Source). Because this subexpression contains no join
operators, it can be treated for the purposes of join-order optimization as an atomic
unit—as if it were a stored relation in the database. We may ignore predicates that
depend on only one relation, except inasmuch as they affect the characteristics (e.g.,

the cardinality) of that relation.

2. Predicates that mention attributes from zero relations—i.e., predicates that men-
tion no attributes at all—are also special. We have no such predicates in our sample
query, and for good reason: such predicates make no sense. A predicate that men-
tions no attributes must be equivalent either to the constant True or to the constant
False. In the former case, it has no effect on the query result; in the latter case, it
ensures that the query result will be empty. Neither behavior is likely to be useful,

and on this basis we discuss zero-relation predicates no further.

3. Once the zero-relation and one-relation predicates have been excluded from consid-
eration, we are left with the join predicates—predicates that become attached to
join operators in the course of predicate push-down. Assuming that these predicates
have been pushed down as far as possible, each conjunct will become attached to the

join operator to which it “belongs,” in the sense described in Section 2.2.3 above.

In light of the last observation, the following unannotated join expression may be regarded

as equivalent to (2.33):

(Lineltem X Part) XM (05 syppr=<zap’ (Source)). (2.34)

35

Later on, we will be able to profit from the fact that expressions such as (2.34) are

unambiguous.

Optimization (Part II) Above we derived the expression

('LineItem M, _pARTNO=P_PARTNO Part) Mp_paARTNO=S_PARTNO (GS§UPPL=‘Zap’(Source))
(2.35)
as the result of the first optimization subphase. We now consider the second subphase, in
which the optimizer performs a cost-based analysis of algebraically equivalent alternatives
to (2.35)—specifically, alternatives that can be reached by way of join commutativity
and associativity. In keeping with the predicate push-down heuristic discussed above, it
is customary to perform join reassociation in such a way that predicates remain pushed
down as far as possible in the reassociated expressions.
For simplicity, let us imagine that in the present example, the join commutativity and

associativity laws lead to only one algebraic alternative to (2.35), namely

Lineltem ™, ¢ rrno=p_parTNO (Part Mp_pARTNO=S_PARTNO (o's.SUPPL=‘Zap’(Source)))-
(2.36)
Then what the optimizer must do at this stage is to estimate the evaluation cost of each
of (2.35) and (2.36), and choose between them accordingly.

To give fair consideration to each expression, the optimizer needs to find the physical
operator (i.e., the algorithm) best suited to each logical operator in the expression, and
to base its cost estimates on the operator assignments so determined. However, it is
possible to make rough cost estimates without considering physical operator assignments,
by instead basing the estimates on properties of the logical expressions. In the case at
hand, one can get a sense of the relative costliness of (2.35) and (2.36) by considering the
cardinalities of the intermediate results that arise in each instance.

The intermediate result in the case of (2.35) comes from the subexpression

Lineltem ™, paprno=r_rartno Part, (2.37)

while the intermediate result in the case of (2.36) comes from the subexpression

Part Xp_psrrvo=s_partno (US.SUPPL=‘Zap’ (Source))- (2-38)

36

Lineltem My _psrrno=p_rarTno Part

L_ORDERNO | L_.PARTNO | L_.QTY | P_.PARTNO | P_.DESCR
1001 7007 2 7007 Head Lamp
1002 7007 1 7007 Head Lamp
1002 8008 8 8008 Spark Plug

(a) Intermediate result under left association

Part Mp parrnvo=s_rarTnO (‘7 $_SUPPL="‘Zap’ (Source))

P_PARTNO | P_DESCR S_PARTNO | S_.SUPPL
8008 Spark Plug 8008 Zap

(b) Intermediate result under right association

Figure 2.6: Possible intermediate results in the evaluation of a three-way join

Figures 2.6(a) and (b) shows the respective results of these two-way joins. (The relation in
Figure 2.6(a) is the same as that illustrated previously in Figure 2.4(a); and the relation
in Figure 2.6(b) is a subset of the relation illustrated in Figure 2.4(c)—namely, the subset
for which the value of the s_SUPPL attribute is ‘Zap’.) Evidently (2.37) yields a larger
intermediate result than (2.38), and since both (2.35) and (2.36) yield the same final
result, we see that (2.35) entails the generation of a larger number of tuples overall. Thus,
going by the number of tuples produced, one would have to conclude that (2.36) was the
more economical expression, and hence should be considered the optimal join plan (or the
basis for such a plan).

The cardinalities in our example are too small to be significant, but it is not hard to see
how the effect illustrated can result in vastly different intermediate result cardinalities for
different join orders. When the differences are large enough, the cardinalities alone suffice
to settle the question of which of two join orders is less costly. In cases where the differences
are subtler, more careful analysis is required: the optimizer must estimate the number of
disk blocks that would be read and written using each available join algorithm, as well as
the amount of CPU time the algorithm would expend in comparing and combining input

tuples to produce output tuples.

37

But whether or not such detailed analysis turns out to be necessary in a given instance,
the assessment of join order costs depends heavily on intermediate result cardinalities. To
a large extent, the problem of accurate cost estimation is a problem of accurate cardinality
estimation; and because we have thus far said nothing about how cardinality estimation

is accomplished, we shall return to this question in Section 2.4 below.

Execution Once the optimizer has created a query plan based on expression (2.38),
query execution is straightforward. Conceptually, at least, execution proceeds “bottom-
up,” starting with the innermost operators of the plan, and proceeding outwards.

As the first step in the execution of our sample query, a selection algorithm will cast
out tuples of the Source relation in which the s_suppL attribute is not ‘Zap’. Next, the
result of this selection will become the right-hand input to a join algorithm that will yield
the relation shown in Figure 2.6(b). (In an actual database system, these selection and
join steps might be combined into a single operation.) Finally, a second application of a
join algorithm will combine the Part relation with the intermediate result of Figure 2.6(b),
and so yield the final query result illustrated in Figure 2.5(b).

Query execution is often pipelined [17], meaning that successive operators run concur-
rently, and not in the strictly serial fashion suggested above. The primary motivation for
pipelining is to avoid storing intermediate results. Without pipelining, an intermediate
result is first produced as the output of one operator, and subsequently consumed as the
input of another operator. In between the execution of those two operators, the intermedi-
ate result must be stored in its entirety—which means that if it is large, it must be stored
on disk. Thus, the producing operator must write its output to disk, and the consuming
operator must read its input from disk.

When pipelined, the producing and consuming operators execute in tandem. Each
tuple emitted by the producing operator immediately becomes an input tuple of the con-
suming operator, and so neither operator has to access the disk. Consequently, pipelining
may substantially reduce execution costs, and careful cost analyses must take this effect
into account. On the other hand, pipelining does not change the number of tuples pro-

duced or consumed by an operator. Intermediate-result cardinalities give a good rough

38

gauge of execution costs whether or not execution is pipelined.

2.3.4 Discussion

In this section we have placed the problem of query optimization in context. The optimiza-
tion phase of query processing is sandwiched between a translation phase, which prepares
an SQL query for optimization, and an execution phase, which produces the query result,
and in which the execution costs that the optimizer has sought to minimize are actually
incurred.

Above we imagined the optimizer input to be an expression in the relational algebra.
As we noted, the relational algebra lacks the generality required to serve as the input
to commercial query optimizers; on the other hand, for the specialized problem of join-
order optimization, the relational algebra offers more generality than is really needed.
A join-order optimizer needs to know what relations are to be joined, and under what
predicates; beyond that, the information furnished by a relational algebra expression is
not useful, but merely distracting. For example, the initial join order that the input
expression happens to have will likely change in the course of optimization—and the same
goes for the assignment of join predicates to particular join operators. Accordingly, much
of the join-optimization literature supposes a simpler representation of the input query
that gives only the information required. We shall do likewise in the present work, as we
explain in more detail below.

In any event, it is not enough for an optimizer to be provided with the query to be
optimized. As we have seen, to do its job the optimizer must estimate costs, and to
estimate costs it must estimate cardinalities. The optimizer therefore requires, as part of
its input, the information on which these estimates are based. Our next concern is the

manner in which this information is provided.

2.4 Cardinality Estimation and Predicate Selectivity

To estimate the cost of a query plan, a query optimizer requires cardinality estimates

both for the query’s base relations (i.e., the relations stored in the database), and for the

39

intermediate and final result relations that the plan computes in the course of its execution.
Base-relation cardinalities tend to be readily available, as database management systems
typically maintain a tuple count for each relation stored in a database. But estimating
the cardinalities of the results of relational operations is another matter; it is a difficult
topic with an extensive literature of its own. Fortunately, we can avoid delving into this
topic in any depth.

In the study of join-order optimization, it is conventional to regard the problem of

estimating result cardinalities as consisting of two parts:

1. The first part of the problem is to estimate predicate selectivity values (to be defined

presently) for a query’s predicates. This part of the problem is hard.

2. The second part of the problem is to use the predicate selectivity values to compute

cardinalities. This part of the problem is straightforward.

By convention, join-order optimizers take the predicate selectivity values as given, so that
the hard part of the problem is relegated to another program component. All we need
to worry about here is the use of selectivity values in estimating cardinalities. But as we
shall see, even this relatively straightforward part of the problem is not without its tricky

aspects.

2.4.1 Concept and Properties of Selectivity

The notion of predicate selectivity may be defined informally as follows: The selectivity of
a selection predicate p is the probability that a given tuple will satisfy p.
To state the matter another way, when the selection operator o, is applied to some

relation A, the selectivity of p is the proportion of tuples of A that “survive” the selection:

selectivity(p) = Ia‘i’:?)l . (2.39)

It follows that, given the selectivity of p and the cardinality of A, one can estimate the

cardinality of o,(A) as

|op(A)| = selectivity(p) - | A|. (2.40)

40

For example, consider the selection 05 syppr=+zap’(Source). From Figure 2.1 we see that
the Source relation has five tuples, and that only one of them satisfies the predicate
S_SUPPL = ‘Zap’. Hence, selectivity(s_SUPPL = ‘Zap’) = 1/5. Conversely, if we were
given the selectivity value 1/5, together with the cardinality 5 of the Source relation, we
could predict that the result of the selection in question would have cardinality (1) -5 = 1.

It goes without saying that in general, a predicate’s selectivity depends on the con-
tents of the database, and is subject to change as the database evolves. In other words,
selectivity is not an intrinsic property of a predicate, but is a property of the predicate
with respect to the database state. In our examples of predicate selectivity, we take the

database state illustrated in Figure 2.1 as a given.

Selectivity of Join Predicates The example just given involved a predicate that men-
tioned only one relation. But the notion of selectivity applies equally to join predicates.
Consider the relationship between the relation illustrated in Figure 2.2(a) and that illus-
trated in Figure 2.4(a). The former relation, LineItem x Part, has cardinality 6, while
the latter relation, oy _parrnvo=e_rartvo(Lineltem x Part), has cardinality 3. The predicate
L_PARTNO = P_PARTNO therefore has selectivity 3/6, or 1/2.

More generally, when a selection operation is applied to a Cartesian product A X B,
the relationship expressed in (2.39) becomes

.. lop(Ax B)] |AX, Bl |AMX, Bj
l frrd = P —_ p .
selectivity(p) |A x B| |A x Bj |A] - |B|

(2.41)

Hence, given the selectivity of p and the cardinalities of A and B, one can estimate the

cardinality of A M, B as
|A ™, B| = selectivity(p) - |A| - |B|. (2.42)

Selectivity of Conjunctions Now observe what happens when we replace the predicate

p in (2.39) with the conjunction p A g, and then apply transformation (2.4):

lopag(A)l - lop(oq(A4))
|A] Al

selectivity(p A q) = (2.43)

41

Multiplying both the numerator and denominator of the right-hand side by |o,(A)|, and

then rearranging and simplifying, we obtain

lop(og(A))] |og(A)|

selectivity(p A ¢) = TA] o ()| (2.44)
_ lop(ag(4))] | |og(4)|
=Tl 4] (2.49)
= selectivity(p) - selectivity(q). (2.46)

Through the combined application of (2.40), (2.42), and (2.46), an optimizer can estimate
all join-result cardinalities, given just the base-relation cardinalities and the selectivities

of individual predicate conjuncts.

2.4.2 Difficulties with Selectivity

There are several difficulties with the idea of basing cardinality computations on predicate
selectivities. To begin with, the selectivity estimates furnished to optimizers tend in
practice to be rather haphazard; often they are pure invention. Consequently, even if
an optimizer succeeds in finding the query plan with lowest estimated cost, there is no
assurance that that plan is in fact the cheapest, or for that matter, that it is much good
at all.

There are also technical and conceptual difficulties with the notion of selectivity. We

discuss several of these difficulties below.

Non-independence of Predicates Consider the cardinalities of the relations illus-
trated in Figures 2.2(a) and (c) and in Figure 2.3; their cardinalities are 6, 10, and 30,
respectively. Now consider the cardinalities of the selections from these relations illus-
trated in Figures 2.4(a), (c), and (d); the selection results have cardinalities of 3, 5, and

6, respectively. Dividing the latter cardinalities pairwise by the former, we obtain the

42

following selectivity values for the predicates that appear in Figure 2.4:

selectivity(L_LPARTNO = P_PARTNO) = 3/6 = 1/2 (2.47)
selectivity(P_PARTNO = S_PARTNO) = 5/10 = 1/2 (2.48)

selectivity(L_PARTNO = P_PARTNO A P_PARTNO = S_PARTNO) = 6/30=1/5

(2.49)

Evidently something is not right here, since the third predicate is the conjunction of the
first two, and so by (2.46), its selectivity should be the product of the first two selectivities,
ie., 1/2-1/2 = 1/4.

The problem is that—even under the assumption of a fized database state—a given
predicate’s selectivity is not a fixed quantity, but depends on the predicate’s context
within a query. In particular, as this example shows, the selectivity of one predicate can
be influenced by another predicate in the same selection; selectivities can also be influenced
by prior selections.

How important are such effects? Since in practice selectivities are only estimates,
and are not very accurate in the first place, it cannot do much harm to ignore the kind
of variability we have illustrated, provided the discrepancies are small. In the world of
join-cardinality estimation, the difference between 1/4 and 1/5 is hardly noticeable.

On the other hand, the sample database in Figure 2.1 could easily have been con-
structed in such a way as to create a more dramatic discrepancy. Keeping the Part relation
as is, and holding the selectivities of L_PARTNO = P_PARTNO and P_PARTNO = S_PARTNO
at 1/2, the selectivity of their conjunction could have been driven as low as 0 (by making
the L_.PARTNO and S_PARTNO values disjoint), or as high as 1/2 (by making the L_PARTNO
and S_PARTNO values all equal to, say, 7007). Such constructions are somewhat patholog-

ical, but they illustrate the potential for error when predicates are assumed independent.

Redundant Predicates Even without pathologies in the stored data in a database,
under some circumstances the assumption of predicate independence is not even approxi-

mately valid, but is just plain wrong. A case in point is when a query contains redundant

predicates.

43

Consider the predicate L_PARTNO = S_PARTNO. We can determine its selectivity by
examining the relation in Figure 2.3, which incorporates both the L_PARTNO and S_PARTNO
attributes. These two attributes are equal in just 12 of the relation’s 30 tuples, and so
when considered in isolation from other predicates, the predicate L_LPARTNO = S_PARTNO
is seen to have a selectivity of 12/30 = 2/5.

Now consider again the selection result illustrated in Figure 2.4(d). Let E denote the

selection in question; i.e.,

E= UL.PARTNO:P-PARTNOAP.PARTNO:S-PARTNO(Llneltem x Part X SOlll‘CG)-

(2.50)

Suppose we were to define a new relation E' as the following selection on E:

E' = 01 _partno=s_partno(E). (2.51)

If we attempted to estimate the cardinality of E’ by blindly applying formula (2.40), we
would multiply the selectivity 2/5 of the selection predicate by the cardinality 6 of the
selection argument, and so obtain an estimated result cardinality of (2/5) -6 = 2.4.

But the true result cardinality is 6; E' will be exactly the same as E. For as we
can see from Figure 2.4(d), the L_PARTNO and s_PARTNO attributes of each tuple of E
are already equal, and so the selection in (2.51) has no effect. Indeed the predicate
L_PARTNO = S_PARTNO must be satisfied by the tuples of E, because it is logically implied,
through transitivity, by the predicates L_PARTNO = P_PARTNO and P_PARTNO = S_PARTNO
that were applied in the construction of E.

In this example, the redundant predicate L_.PARTNO = S_PARTNO throws off our car-
dinality estimate by a factor of 5/2. It should be underscored that the only reason the
effect is not worse is that our examples have dealt with small relations. Our sample
database consists of relations with cardinalities of 2, 3, and 5, and not coincidentally, the
selectivity values we have encountered have been close to the reciprocals of these figures.
If our sample relations had instead had cardinalities on the order of 1000, we could have
expected to encounter selectivities on the order of 1/1000. Erroneously incorporating such
selectivity values into our cardinality calculations would have caused us to underestimate

result cardinalities by several orders of magnitude.

44

One might think to eliminate the problem of redundant predicates by identifying and
removing the redundancies. But redundant predicates actually serve a useful purpose.
Consider the following variation on (2.50), in which the Cartesian product has been re-

ordered so that the LineItem and Source relations are combined first:

Ey = UL.PARTNO:P.PARTNOAP.PARTNO:S_PARTNO((LmeItem X Source) X Pal't)-

(2.52)

Pushin\g down the predicates as far as possible, we obtain

(LineItem X Source) ML_parTno=p_parTNOA Part. (2.53)
P_PARTNO=S_PARTNO

Even with the predicates pushed down, this expression contains a Cartesian product be-
tween LineIltem and Source. But by applying and pushing down the redundant predicate
L_PARTNO = S_PARTNO, we can transform (2.53) into

’ .
E] = (Lineltem X, pirrno=s_partvo Source) Xy _partvo=p_partnon Part,
F_PARTNO=S.PARTNO

(2.54)

in which the operator between Lineltem and Source has now become a join. As a result,
(2.54) can be expected to yield a lower cost estimate than (2.53). In the event that the
cost of (2.54) should turn out to be optimal, the redundant predicate will have played
a vital role—for without this predicate, the optimizer would have produced an inferior
“optimum.”

The potential benefits of redundant predicates are significant enough that many query
processing systems, far from eliminating redundancies, actively seek them out [7, 16].
These systems analyze the predicates that appear explicitly in a user query, and then
construct additional predicates that can be inferred from the explicit ones. Because of such
policies, it is essential that an optimizer be prepared to make adjustments for predicate

redundancies when carrying out cardinality estimation.

Foreign-Key Predicates The technical problems noted above reflect a deeper concep-

tual difficulty with the notion of selectivity. One can appreciate this conceptual difficulty

45

by taking a closer look at the behavior of the foreign-key predicates we have been using
in our examples.

Consider once again the join
Lineltem M, psprrno=p_partno Part, (2.55)

whose result is depicted in Figure 2.4(a). In light of the fact that L_PARTNO is a foreign
key referencing the P_.PARTNO attribute of the Part relation, one can deduce that the
cardinality of the join result must be the same as that of LineItem: for each tuple in
LineIltem (cf. Figure 2.1), there is ezactly one tuple in Part whose P_PARTNO attribute
agrees with the foreign key L_PARTNO. The join between Lineltem and Part may be
conceived of as “filling out” the Lineltem relation with additional information about
each part it mentions—in other words, the intent of this join is to widen the Lineltem
relation without adding or subtracting any tuples.

However, the notion of selectivity disregards such semantic considerations. It uniformly
imposes the view that a join result represents some fraction of the tuples of a Cartesian

product. Formula (2.42) would have us compute the cardinality of (2.55) as
s - |Lineltem| - |Part|, (2.56)

where s is the selectivity of the predicate L_PARTNO = P_PARTNO. For this formula to work
here, s must necessarily be the reciprocal of |Part|, since we have already established that
the join in (2.55) preserves the cardinality of the Lineltem relation. In this situation,
the value of the selectivity s has nothing to do with the join predicate per se; instead, the
role of the selectivity is to undo the effect of multiplying |Lineltem| by |Part|.

There is nothing harmful about computing selectivities by working backwards from
a known result cardinality, provided that it is possible to do so. But the motivation
for introducing selectivities in the first place was that estimating result cardinalities is
exceedingly difficult—so working backwards from result cardinalities plainly cannot be a
good general strategy. The concept of selectivity attempts to grapple with the estimation
problem by treating selection as quasi-stochastic; unfortunately, the semantic content of

selection predicates often makes their behavior highly non-stochastic.

46

2.4.3 Discussion and Resolution

In their classic paper on the System R optimizer, Selinger et al. [50] make an intriguing
observation regarding errors in cost estimation. Although the System R optimizer proved
to be rather poor at estimating the costs of plans, Selinger et al. found that the rankings
of plans by their estimated costs tended to coincide with rankings based on true costs.
Consequently the optimizer’s inability to judge costs accurately usually did not impair its
ability to find an optimal plan.

However, there are certainly situations in which inaccurate cost estimates have adverse
effects, and research since the time of System R has sought to improve the quality of car-
dinality estimates (and hence cost estimates) through a variety of sophisticated techniques
[5, 14, 31, 35, 47]. Antoshenkov [1] goes further, and cites instability in cardinality com-
putations as grounds for rejecting point-valued estimates altogether. Noting that roughly
half the problem reports regarding query processing in DEC’s Rdb system were related to
errors in cost estimation, Antoshenkov mentions cases in which the optimizer chose query
plans that were suboptimal by several orders of magnitude. Ultimately the responsibility
for these poor plan choices lay with wildly inaccurate cardinality computations.

Antoshenkov’s solution to the problem is complex, and involves cooperation between
the optimizer and the plan-execution component of a query-processing system. As such,
his solution is incompatible with the conventional decomposition of query processing into
three independent phases. In the present work, we will stick to the traditional style of
estimation based on selectivities, despite its inadequacies. Selectivity-based estimation
remains standard in the join-optimization research literature.

In the following, we will generally assume predicate selectivities to be fixed, as is
done traditionally. However, we make an exception for the case of redundant predicates,
whose practical importance cannot be ignored. We shall assume that any identification
or construction of redundant predicates has already taken place before invocation of our
optimization algorithms. These algorithms must be informed of redundancies by the caller;
they will then take measures to ensure that selectivities are appropriately adjusted during

the calculation of join-result cardinalities.

47

2.5 Join Graphs

Next we turn our attention to join graphs, which provide a way of representing the pred-

icate relationships among the different relations in a query.

2.5.1 Concept of Join Graphs

Consider the query

Customer Mg cystno=o_custno Order Mo oaperno=L_orpErRNO

Lineltem M _p prno=p_partno Part Mp_paprno=s_rartno Source.

(2.57)

A join graph (or query graph) for this query appears in Figure 2.7(a). The nodes of
the graph represent relations, and the edges represent join predicates. For example, the
predicate C_.CUSTNO = O_CUSTNO appears as an edge connecting the Customer and
Order nodes because this predicate mentions attributes in those two relations. When a
query’s graph has a simple linear form, as in this instance, the query is called a chain
query.

By contrast, a query such as

(Customer Mg _cysrnvo=o.custno Order Mo sorpy=£_eMeno (2.58)
Employee) M, onperno=L_oroerno Lineltem,

whose graph (Figure 2.7(b)) has a single relation at its hub, with spokes radiating outward
to the remaining relations, is said to be a star query. Other join graphs whose topolo-
gies are sufficiently distinctive to earn them special titles are the cycle and the clique
(Figures 2.7(c) and (d)). In a clique, every pair of relations is related by some predicate.

It should be noted that the relations at the nodes of a join graph need not all be
distinct, since a query may involve multiple instances of the same relation under different
aliases. However, it is always the case that an n-way join maps to an n-node join graph.
To reduce confusion, we shall assume in the following that the n relations in a query are

in fact distinct; but our results in no way depend on this assumption.

48

Customer
Customer Lineltem Source
o— & ——@) Order
Order Part
Lineltem
(a) Chain (b) Star
(c) Cycle (d) Clique

Figure 2.7: Join graphs

2.5.2 Edge-labeled Join Graphs

It is sometimes convenient to label the edges of a join graph with the corresponding
predicate selectivities. For example, Figure 2.8(a) shows such a labeling of the join graph
for (2.58). (The relation names have been abbreviated to reduce clutter.) With the
addition of the selectivity labels, we are better equipped to understand the relationship
between different kinds of join graphs. Indeed, we shall see shortly that an edge labeled
with selectivity 1 is equivalent to no edge at all. Figure 2.8(b) uses this fact to transform
the graph of (2.58) into an equivalent clique with three dummy edges. But what is the
justification for these claims of equivalence?

The answer is that each dummy edge may be thought of as representing a predicate
such as (C_NAME = C_NAME) A (E.NAME = E_NAME), which induces a connection between
Customer and Employee since it mentions an attribute from each. This predicate, and
others of the same flavor, have selectivity 1 because they are vacuously true—hence the
labels of 1 on the dummy edges. It should now be evident that since the meaning of a

query is unchanged by the addition of vacuously true predicates, Figure 2.8(b) is (in some

49

C
1/
12 9
E 1/2 L
(a) Query (2.58) (b) Query (2.58) as a clique

Figure 2.8: Join graphs labeled with selectivities

sense) just as good a graph for query (2.58) as Figure 2.8(a).
A corollary of this observation is that the notion of a join graph is somewhat ill-defined,
inasmuch as different but algebraically equivalent formulations of the same query may have

different join graphs. Still, the concept of join graphs has its uses, which we touch on next.

2.5.3 Role of the Join Graph

Join graphs are of interest for at least two reasons. First, a labeled join graph concisely
captures much of the information needed to specify a given join-optimization problem.
In fact, Steinbrunn [54] characterizes the input to a join optimizer as being exactly the
join graph. In most of what follows, that characterization works well for us, too, provided
that we think of our graphs as being labeled with relation cardinalities in addition to
relation names. But at certain points—to handle predicate redundancies, for example—
we will need to supplement the join graph with further information (or use more elaborate
labels).

The second reason why join graphs are of interest is that the speed or effectiveness of a
join optimizer often varies with the topology of the join graph. Graphs of large diameter,
such as chains and cycles, are easier to cope with than small-diameter graphs such as
stars. Graphs of low density (i.e., with few predicates) also tend to be easier to cope with
than high-density graphs.

The worst-case join graph by any measure is the clique, for it is both minimal in
diameter and maximal in density. Just how important cliques are in practice is not entirely

clear. In queries involving many relations, cliques can arise only in the presence of an

50

absurd number of predicates—for example, a 15-way join does not become a clique until
it has () = 105 predicates. But if a query-processing system automatically generates
new predicates by exploring the implications of a query’s explicit predicates, cliques could
come about routinely. Furthermore, as illustrated above in Section 2.5.2, any query at all
can be turned into a clique through the addition of vacuous predicates. So whether or
not cliques are truly important in their own right, an optimizer’s ability to accommodate

them serves as an indication of its resiliency in the face of arbitrary join graphs.

2.5.4 Complex Predicates and Hyperedges

It was an unstated assumption of the previous sections that each join predicate in a query
mentions attributes from precisely two relations; and further, that given a pair of relations,
there may be at most one predicate relating them. If these assumptions were not satisfied,
the correspondence between predicates and join-graph edges would fall apart.

One can easily imagine reasonable collections of predicates that do not conform to these
assumptions, although often in such situations conformance can be achieved through minor
rearrangements. To take a very simple example, consider the pair of predicates A_CITY =
B_CITY and A_STATE = B_STATE, where the attributes A_CITY and A_STATE belong to
some relation A, and B_CITY and B_STATE to B. This pair is not permissible, since both
predicates refer to the two relations A and B. But by conjoining these two predicates
as (A_CITY = B_CITY) A (A_STATE = B_STATE), one obtains a single predicate, which
then conforms to our requirements. Under the assumption of predicate independence, the
selectivity of this conjunction is just the product of the selectivities of the original two
predicates.

Conversely, a predicate of the form A_VALUE < B_VALUE < C_VALUE, which is equiv-
alent to (A_VALUE < B_VALUE) A (B_.VALUE < C_VALUE), violates the restriction that a
predicate may refer to only two relations. But this time conformance can be achieved by
splitting the conjunction into two separate predicates A_VALUE < B_VALUE and B_VALUE <
C_VALUE. (Determining the selectivities appropriate to these predicates is nontrivial, but
that cannot be helped.)

These examples show that our assumptions about the forms that predicates may take

51

are perhaps not excessively restrictive. Nevertheless, they are restrictive to some degree,
and preclude predicates such as A_VALUE + B_.VALUE < C_VALUE, which is inherently
ternary and cannot be split in two. In the framework of join graphs, ternary predicates
correspond to hyperedges—edges with possibly more than two “endpoints”; graphs con-
taining such edges are called hypergraphs [38]. So to support ternary, and more generally,
n-ary predicates, an optimizer would have to accept join hypergraphs as its input.
Hypergraphs have a variety of applications in query processing besides the represen-
tation of n-ary predicates. For this reason, one does encounter méntion of hypergraphs
in the query-optimization research literature—but rarely in connection with n-ary predi-
cates. Research on join-order optimization techniques appears to make no provisions for
hypergraphs or hyperedges [54]. The present work will likewise focus on conventional join

graphs with binary edges.

2.6 Cost Models and Physical Properties
2.6.1 Cost Models

It was observed above that one may think of the input for a join-optimization problem as
being a labeled join graph. However, quite apart from such complications as redundant
predicates, which we leave aside for the present, the labeled join graph does not by itself
determine a least-cost plan for the join. The best plan also depends on what cost model
is used to estimate the expected CPU and disk time consumption of alternative plans. As
we have noted, there are many join-processing algorithms [43], and as many models (or
more) for estimating their costs. Consequently, two optimizers, given the same join graph
as input, could generate two completely different join-evaluation strategies as output, and
yet each might be able to claim (legitimately!) that it had found the unique least-cost
plan—according to its own cost model.

Fair comparison of different optimizers requires use of the same cost model in each. In
a sense, one would like to treat the cost model as an optimizer input along with the join
graph. It may not be realistic (or even desirable) to expect an optimizer to accept this

input in the form of a run-time parameter of the optimizer invocation. But it is desirable

52

for an optimization technique to be adaptable to a variety of cost models, even if the
adaptation entails changing a portion of the optimizer implementation. Such flexibility
not only facilitates comparisons with other optimization techniques, but also simplifies
optimizer maintenance in a changing environment.

Join-optimization techniques permit flexibility in the cost model to varying degrees.
We shall touch further on this matter in Section 2.7 below. For now, we introduce the

approach to cost modeling that we will rely on in the present work.

2.6.2 A Generic Cost Model

Following Steinbrunn [54, 55], the present work will allow for flexibility in the cost model
by making use of a single generic cost model. This generic model is parameterized by a

cost function, as described below.

Premises and Cost Equations Our generic cost model depends on the following three

premises:

e Each join operator in a query plan entails a cost that is independent of the costs
of the other operators in the plan, and that can be determined by a cost function
K(Routy Rins, Rrhs). The arguments of the cost function are, respectively, the result

of the join, its left-hand input, and its right-hand input.

e The cost of fetching each base relation from the database is independent of the join
order—the data from each relation must be fetched regardless of how the relations
are combined. Therefore, the cost of accessing the base relations is immaterial, and
may be taken to be zero. (By taking the cost of accessing base relations to be zero,
we will underestimate the costs of all plans, but always by the same amount—so the

outcome of optimization will be unaffected.)

e The cost of a plan is simply the sum of the costs of the operators in the plan.

Note that none of these premises is strictly valid. Because of considerations such as
memory contention, operator pipelining, and interactions of join algorithms with data-

fetching mechanisms, our somewhat simplistic framework will not be able to capture all

53

the fine points of cost modeling. But through parameterization of the cost function «, it
affords enough generality to subsume most of the cost models that appear in the literature.

Qur premises yield the following recursive definition of query-plan cost:

cost(R) =0 (2.59)
cost(Eq M E;) = cost(Eg) + cost(Ey1) + &([Eq M En], [Eo), [EA]), (2.60)

where R names a base relation, Eg and E, are subplans, and [E] is the denotation of E
(i-e., the relation to which E evaluates). Equations (2.59) and (2.60) shall provide the

basis for all our discussions of cost in the remainder of this work.

Application of the Cost Equations As an illustration of the application of (2.59)
and (2.60), let us introduce a naive cost function kg that makes the cost of evaluating a

given join equal to the cardinality of the result. That is,

KO(Routa thsa Rrhs) = |Rout|- (261)

Given this cost function, let A and B be base relations, and consider the cost of the plan
A ™M B whose result is some relation that we shall refer to as Rq. Then by (2.59) and
(2.60), we obtain

cost(A M B) = cost(A) + cost(B) + ko([A X B], [A], [B]) (2.62)
= 0+ 0+ Ko(Ras, A, B) (2.63)
= |Ras|. (2.64)

That is, the cost of the plan is equal to the cardinality of the result. Going a step further,
let C be another base relation, and let us then consider the cost of the plan (A M B) X C,

whose final result we shall call R,;.. Now we have

cost((A M B) X C) = cost(A X B) + cost(C) + xo([(A X B) X C], [A® B}, [C])
(2.65)
= |Ras| + 0 4 Ko(Rabey Rab, C) (2.66)

= |Ras| + | Rabel- (2.67)

54

The cost of the compound plan proves to be the sum of the costs of its two join operations;
these costs are equal, respectively, to the cardinality of the intermediate result R,;, and

to the cardinality of the final result Rgp,.

Multiple Physical Join Operators On the surface, it may appear that our “generic
cost model” supports only those cost models that assume a single physical join operator.
However, one can support multiple physical join operators under the generic cost model
by recognizing that the applicable physical operator for a given join is always the least
costly of the available alternatives (cf. Section 2.3.2).

For example, suppose a query-processing system supports two physical join operators,
bakash and b4 (where nl stands for nested-loops). Suppose that the costs of these operators
are modeled respectively by the cost functions Kp.s4 and k.. Then we may define a new

cost function

K'bcst(Rout’ th.s; Rrhs) = min(ﬂhash(Routa th.n Rrhs)a Knl(Rout) th.n Rrhs))
(2.68)

that represents the cost of the best physical instantiation of a given generic join operator.
By extending this technique, one can accommodate an arbitrary number of alternative
physical operators. At the conclusion of optimization, each generic join operator in the
optimal query plan can be replaced by the physical operator that yields the lowest cost
for the join in question. Thus, neither the assumption of a single, generic join operator,
nor that of a single, generic cost function, necessarily precludes the modeling of multiple

physical join operators.

Abstract Interpretation of the Cost-Function Arguments Now it may be a mat-
ter of some concern that if we interpret (2.60) literally, it seems to require full evaluation
of the query plan whose cost we are trying to estimate. That is, the arguments of « are
relations, and the only way to obtain those relations is to evaluate each join in the plan.

On the other hand, we saw above that under our naive cost model with cost function
Ko, the cost of the plan (A M B) X C was simply |Ras| + |Rabc|- Hence, to estimate the

plan cost in this instance, it would suffice just to compute (or estimate) the cardinalities

55

of R,y and Rgic. If we went to the trouble of computing the relations themselves, and not
just the cardinalities, we would waste a tremendous amount of effort.

It is possible to interpret (2.60) in a way that does not necessitate full evaluation
of the relations. We may regard the denotation brackets [-] as designating an abstract
interpretation [9] of the expression they surround, and we may take the arguments of the
cost function k to be not relations, but partial representations of relations. In the example
at hand, the partial representation of a relation might consist of its cardinality, together
with additional information to assist in estimating the cardinalities of subsequent join
results. This representation presumably would not contain any tuples of the relation. The
notation |R,y in (2.61) should then be understood as the extraction of the cardinality
from the representation R,,;, and not as a tuple-counting operation.

Because cardinalities are so important to cost estimation, they will play a role in any
imaginable cost model. From the standpoint of code reuse, it therefore makes sense for
an optimizer to provide a cardinality-estimation mechanism separate from the code that
implements individual cost models. The algorithms that we shall present in this work will
incorporate cardinality-estimation mechanisms independent of the cost model.

But from the standpoint of program decomposition, the estimation of cardinalities
ought by all rights to fall within the purview of the cost model. Our optimization tech-
niques are in no way concerned with cardinalities for their own sake; we compute the
cardinalities simply so that we can make them available to the cost function, which may
then do with them as it pleases.

One can conceive of cost models that take into account not only the cardinalities of
join inputs and join results, but also their widths, or indeed other properties that might
affect costs. There is nothing in our framework that precludes such models. Qur code to
compute cardinalities should be seen as a replaceable module whose purpose is to meet
the needs of the cost model, whatever those might happen to be. In this sense, the code
to compute cardinalities is not really a part of our optimization algorithms, but serves as

an illustration of one way in which these algorithms may be parameterized.

56

2.6.3 Physical Properties

Properties such as cardinality are known as logical properties of relations because they
are independent of implementation considerations; one can speak of the cardinality of a
relation in the abstract even if the relation is never stored in a computer. But it makes no
sense to speak of the sort order or location of a relation when the relation is viewed as a
mathematical abstraction. Such properties make sense only with reference to a relation’s
physical repr’esentation in memory, or on disk, or on a print-out. Consequently these
properties are called physical properties.

If one ignores physical properties, then optimality in a join plan implies optimality in
its subplans as well, exactly as one would expect. Consider the case where the best plan for
joining A, B, C, and D turns out to be (B X (A X C)) X D. In this case one may deduce
that the best plan for joining A, B, and C must necessarily be B X (A X C). For suppose
there were a better plan—say C X (B X A). Then (C X (B M A)) X D would have to be a
better plan than (B X (A X C)) M D, since the only difference between the two is that the
new plan computes its left-hand input more efficiently. Thus, in supposing B ™ (A X C)
to be suboptimal, we have arrived at a contradiction; it follows that B X (A M C) is
optimal after all.

The necessity of optimality in all subplans of an optimal plan is referred to as the
principle of optimality [15, 24]. Unfortunately, the principle of optimality breaks down
when costs are influenced by physical properties. Imagine that the join of the previous
paragraph were being performed on a distributed system consisting of two processing units
named t and k (for Tokyo and Kyoto).! In this scenario, one of the physical properties of
each relation is its location.

Let us say that A and B reside on processing unit ¢ in Tokyo, while C and D reside
on k in Kyoto; as a mnemonic device we will now refer to these relations as A;, By, Ck,
and Dj. Part of the join optimizer’s job is then to determine at what location each join
should be performed. A join at processing unit ¢t will be denoted l>t<1, and at k, l§1 The

inputs to a given join operation need not be computed (or reside) at the location where

!This example is adapted from Lanzelotte et al. [34].

87

the join will take place, but remote inputs will incur a communication penalty that will

drive up the estimated cost of the join. Under these circumstances, it is imaginable that

Ci ™ (Be ™ Ay) (2.69)
could be a better plan than
k k
B, X (A; X Cy), (2.70)

and yet be less well suited to a subsequent join with Dy: for the final join result in (2.70)
is computed in Kyoto, where Dy already resides, while the final result in (2.69) would
have to be transferred from Tokyo to Kyoto (or else D would have to be transferred from
Kyoto to Tokyo). Consequently, it is possible for (B; & (A¢ & Cy)) & Dy to be optimal
while B, & (A¢ % Cy) is suboptimal.

This problem is not special to distributed join processing. One encounters similar
phenomena in connection with sort orders, or with any other physical property.

Some of the join-optimization techniques described in the literature make provisions
for physical properties, while others do not. The present work does not address the issue
of physical properties, although in Chapter 10 we do comment on what might be involved

in adapting our techniques to accommodate them.

2.7 Approaches to Join-order Optimization

We now briefly discuss the different approaches that have been taken to join-order opti-
mization. Some of the techniques we describe are specific to join-order optimization; others
are more general, and were designed to optimize queries involving arbitrary operators, not
just join operators. However, as join-order optimization remains a central concern for all

query optimizers, it makes sense to include general-purpose query-optimization techniques

in our discussion.

2.7.1 Dynamic Programming

System R The System R optimizer [50] was the first to apply dynamic programming

to join-order optimization. This optimizer constructed only left-deep plans, and excluded

58

Cartesian products except where they could not be avoided.

In Chapter 3, we shall discuss in detail our own approach to optimization by way of
dynamic programming. Here we give only a brief sketch of the principle involved. System
R and other dynamic programming optimizers proceed in phases. In the early phases,
they build candidate subplans involving just a few relations; in later phases, they build
larger candidate subplans involving many relations. The larger subplans are built up from
the smaller ones in such a way that the subplans retained at the end of each phase are
optimal. The final phase constructs a plan involving all the relations in the query; this
plan is then optimal for the query. For obvious reasons, this approach to optimization is
often referred to as bottom-up optimization.

For example, suppose System R were to optimize the join of relations A, B, C, and
D. In Phase 1, it would find the optimal manner of accessing the data in each of the
individual relations A, B, C, and D. In Phase 2, it would find optimal subplans for joins
involving two relations; i.e., for the join of A and B, for the join of B and C, for the
join of C and D, and so on. In Phase 3, it would find optimal subplans for joins of three
relations; i.e., for the join of A, B, and C, for the join of B, C, and D, and so on. In
Phase 4, it would find an optimal plan for the join of A, B, C, and D. This final plan

would contain subplans that had been constructed in the earlier phases of optimization.

Starburst and the Complexity of Dynamic Programmming The Starburst opti-
mizer [45] extended the techniques used in System R and provided greater generality and
flexibility. When requested to do so, the Starburst optimizer can produce bushy plans,
as well as plans that contain arbitrary Cartesian products. But the mechanisms used in
the Starburst optimizer are conceptually no different from those used in the System R
optimizer.

Ono and Lohman [44, 45] analyze the time complexity of optimization in Starburst
under a variety of circumstances. For chain join graphs, the time complexity is O(n?)
(where n is the number of relations in the-query) to find optimal left-deep plans without
Cartesian products, and O(n®) to find optimal bushy plans without Cartesian products.

These cases are noteworthy because the complexity is polynomial. For star join graphs, the

59

time complexity is O(n2") to find optimal plans without Cartesian products. Interestingly,
the complexity in the case of a star is independent of whether the search is confined to
left-deep plans. When arbitrary Cartesian products are considered, the time complexity of
optimization becomes O(n2") for left-deep search, and O(3") for bushy search, regardless
of the join graph. The complexity figures that apply when arbitrary Cartesian products
are considered also apply when the join graph is a clique. Thus O(n2") represents the
worst-case complexity for a left-deep search, and O(3") the worst case for a bushy search.

Ono and Lohman do not discuss the space complexity of Starburst, but it is almost
certainly O(2") in the worst case. We base this conjecture on the similarity between the
information stored by Starburst and that stored by the dynamic programming algorithm

we shall present and analyze in Chapter 3 below.

Problem with the Starburst Complexity Figures Unfortunately, the Starburst
time-complexity figures given by Ono and Lohman do not tell the whole story. Ono and
Lohman base their time-complexity figures on the number of “feasible joins” for combining
subplans to obtain larger plans. A “feasible join” is a join expression that meets the criteria
of the optimization problem at hand—for example, in a left-deep search, only a left-deep
join expression would be considered “feasible,” and in a search that excluded Cartesian
products, a “feasible” join expression would have to be free of Cartesian products. Their
premise is that in the course of optimization, the optimizer will examine each feasible join,
and that each feasible join can be examined in constant time. Hence the time required for
optimization should be proportional to the number of feasible joins.

However, before the feasible joins can be examined, they must be constructed, or enu-
merated. Ono and Lohman present pseudo-code for enumerating the feasible joins [44],
but disregard the time contribution of this code. Analysis by the present author reveals
that in general, enumerating the feasible joins can take more time than examining them;
the worst-case time complexity of feasible-join enumeration in Starburst is O(4"). In-
tuitively, the reason for this phenomendn is that Starburst’s algorithm for enumerating
feasible joins uses a generate-and-filter mechanism. It generates all the joins that might

be feasible, discarding those that are not. In the worst case, it discards many more joins

60

than it retains. Appendix A gives the details of the author’s analysis.

2.7.2 Rule-based Optimization

Principle of Rule-based Optimization and Application to Join Optimization
Rule-based optimizers such as Exodus [19] and Volcano [20, 40] strive for extensibility
through a general-purpose search mechanism that can easily be reconfigured to accommo-
date new operators and new transformation rules. Configuration is accomplished through
a special rule-definition file, or through a collection of functions that define the operators
and transformation rules of the query algebra. Given an input expression over the oper-
ators of the algebra, the optimizer applies the specified transformation rules until it has
explored the space of all expressions equivalent to the input. The optimizer attempts to
find a low-cost plan corresponding to each expression encountered, and chooses the best
such plan as the optimum for the given input expression.

The standard approach to configuring a rule-based optimizer for join-order optimiza-
tion is to include the join commutativity and associativity laws, (2.17) and (2.28), as
transformation rules. As we remarked earlier, join associativity can be stated in several

ways; the formulation given in (2.28),
(A ™y, B) X, C=A D (B Mg C), (2.71)

is the one that corresponds most closely to the formulation ordinarily used in rule-based op-
timizers. Recall, however, that this formulation of join associativity had a well-formedness
condition attached to it, as well as a constraint relating p and ¢ to p’ and ¢’. Rule-based
optimizers in the style of Exodus and Volcano require that segments of code (e.g., C code)
be supplied along with the transformation rules to ensure satisfaction of any preconditions
on rule applicability, and to compute any portions of the transformed expression (such as

the predicates p’ and ¢) that cannot be obtained automatically through application of the

rule.

Complexity of Volcano with Standard Rule Sets One of Volcano’s principal in-

novations was the use of memoization to improve the performance of rule-based query

61

optimization. In Volcano (unlike Exodus), representations of subexpressions are shared
across all expressions in which they occur; in addition, all possible transformations of a
given subexpression are stored with the subexpression, so that when this subexpression is
next encountered, none of these transformations need to be repeated.

Volcano’s use of memoization has the interesting consequence that the space com-
plexity of join-order optimization in Volcano corresponds to the time complexity figures
given by Ono and Lohman, as noted above. In effect, Volcano’s memo structures store
representations of the “feasible” joins in the sense of Ono and Lohman, and each such
join is represented exactly once. It follows that space complexity for bushy join-order
optimization in Volcano is O(3") in the worst case.

McKenna [20, 40] carried out extensive empirical studies of Volcano performance,
which proved to be roughly comparable to that of Starburst. But the first analytical
treatment of the subject was given by Pellenkoft, Galindo-Legaria, and Kersten [46], who
have shown Volcano’s worst-case time complexity in bushy join-order optimization to be
O(4™). (The present author [61] had previously conjectured, incorrectly, that Volcano’s
time complexity was just a constant multiple of its space complexity—hence O(3").) We
thus see that Starburst and Volcano yield a worst-case time complexity of the same order—
O(4")—despite their use of unrelated search algorithms. There is no evident structural

explanation for this similarity in performance; it appears to be purely coincidental.

Duplicate-free Rule Sets In the case of Volcano, the fact that the time complexity
grows faster than the number of feasible joins is due to the existence of multiple distinct
paths of transformation steps from a given expression to another, equivalent expression.
For example, suppose relation A is connected to B through predicate p, and B to C
through predicate g. Then the expression (A X, B) M, C can be transformed into its
mirror-image, C' X, (B X, A), through any one of the following paths of transformation

steps using the join commutativity rule (2.17) and the join associativity rule (2.28):
L (AM, B)M, C ~ (BM AKX, C ~ CMK, (BN, A).

2. (A¥, B)X, C ~ CMNg(AM, B) ~ C My (BNX, A).

62

3. (A, B)X, C ~ AN, (BXC) ~ AN (CX; B) ~
(CH B)M, A~ C ™y (B X, A).

(Additional paths are also possible.) Note that paths 1 and 2 are essentially the same.
One may think of (A M, B) X, C as being the join E ¥, C, where E in turn is the join
A ™, B. What happens in path 1 is that first A and B are commuted inside E to give a
new subexpression E’, and then E’ is commuted with C. In path 2, by contrast, first E is
commuted with C, and then A and B are commuted inside F to give E’. In other words,
both paths involve the same pair of independent transformation steps; these independent
steps are just carried out in different orders. Most rule-based optimizers work in such
a way that no duplication of effort is entailed by the existence of distinct paths such as
paths 1 and 2, in which the only difference is in the ordering of independent transformation
steps.

However, path 3 differs more fundamentally from paths 1 and 2, and entails duplication
of effort. To circumvent this kind of duplication of effort, the present author [60] and
Galindo-Legaria and his colleagues [13, 46] have independently devised formulations of
join commutativity and associativity under which transformation paths obey the following
property: The path from an expression E to another expression E’, if one exists, is
unique up to reordering of independent transformation steps. Pellenkoft et al. refer to a
formulation that yields this property as a duplicate-free rule set.

When Volcano is configured with a duplicate-free rule set for join commutativity and
join associativity, its worst-case time complexity drops to O(3"). But there is a catch.
Under the conventional formulation of join commutativity and associativity, if E and E'
are equivalent join expressions, and neither one contains Cartesian products, then there is
guaranteed to exist a path from E to E’ such that no expression along the path contains
Cartesian products.? This guarantee is lost under duplicate-free formulations. Conse-
quently, for queries that yield a low optimization complexity when Cartesian products are
disallowed (e.g., chain queries), optimization effort could be much greater under duplicate-

free rule sets than under conventional rule sets.

?This guarantee is taken for granted in the literature, though to the author’s knowledge, it is nowhere
proved; nor is the author aware of any simple proof of its validity.

63

At this writing, it is not known whether it is possible to construct a rule-based join
optimizer, or indeed any join optimizer, such that with Cartesian products e)ﬁcluded,
optimization effort is bounded by a constant multiple of the number of feasible joins in an
arbitrary join query.

The following questions related to duplicate-free rule sets also remain open:

1. Under what conditions do duplicate-free rule sets exist? Is there an algorithm for
determining whether an arbitrary, given rule set can be reformulated as a duplicate-

free rule set?

2. In those cases where a duplicate-free formulation of a given rule set exists, is there

an algorithm for constructing the duplicate-free formulation mechanically?

The duplicate-free rule sets that have been devised to date have been ad hoc construc-
tions. It appears difficult to extend them with additional transformation rules without

compromising the duplicate-free property.

2.7.3 Heuristic and Sequencing Techniques

The approaches to join-order optimization discussed above differ in their search techniques,
but both perform an ezhaustive search. It is natural to wonder whether it is possible
somehow to calculate or construct an optimal plan (or nearly optimal plan), without
having to go to the trouble of searching for it.

Heuristic join-optimization techniques aim to obtain satisfactory query plans by direct
construction. Typically they use cardinalities and predicate selectivities as guidelines
in deciding how to proceed, but without performing any explicit cost estimation. A
consequence of the lack of cost estimation is that heuristic join optimizers are somewhat
inflexible: they cannot be adapted to different cost models, and hence cannot take into
account the performance of new join algorithms that might become available.

Steinbrunn [54, 55] surveys a variety of heuristic techniques, explaining their mech-
anisms and examining their performance. As Steinbrunn shows, these techniques are
extremely fast—which one would expect, since they have no searching to do—but gener-

ally deliver query plans of very poor quality. When cost estimates are applied to the plans

64

obtained, the estimates are often orders of magnitude higher than those of the optimal
plans for the same queries. Because these techniques yield such poor results, we shall
discuss them no further.

Remarkably, however, there is an optimization technique that, with essentially no
search, can directly construct optimal join plans—though only under special conditions.
We shall refer to this technique and its derivatives as sequencing techniques. The original
application of sequencing to join-order optimization, which is due to Ibaraki and Kameda

[25], imposes the following restrictions:
e The join graph must be acyclic.
e Only left-deep plans are considered.
e Cartesian products are excluded.

e The cost function k must be expressible as k(R ,ut, Riksy, Rras) = |Riks| - gp(Rrhs) for
some family of functions g,, where p designates the predicate that qualifies the join
of Ry, and Rhs. (Since the plans must be left-deep, R.;s will always designate an
individual relation; and since the join graph must be acyclic, only a single predicate

will belong to each join in any plan that is free of Cartesian products.)

Ibaraki and Kameda observed that under these assumptions, the problem of join-order
optimization almost reduces to a sequencing problem that appears in the operations-
research literature. The sequencing problem in question can be solved by an algorithm of
time complexity O(n logn), where n corresponds to the number of nodes in the join graph.
But to map the join-optimization problem to the sequencing problem, one must designate
an “initial” node in the join graph. Since there is no way to determine the best “initial”
node a priori, the technique of Ibaraki and Kameda applies the sequencing algorithm for
each possible choice of “initial” nodes, and takes the best result. Thus, the sequencing
algorithm is applied n times, and so the net time complexity of join-order optimization
by this technique is O(n?log n).

Krishnamurthy, Boral, and Zaniolo [33] subsequently noticed that a portion of the

computation in each of the n applications of the sequencing algorithm was redundant. By

65

eliminating this redundancy, they obtained an O(n?) algorithm for join-order optimization,
given the same restrictions as in the method of Ibaraki and Kameda. Krishnamurthy et
al. also sought to extend the technique by relaxing these restrictions; for example, they
propose a mechanism for accommodating arbitrary join graphs, and not just acyclic ones.
But in the process, they give up the guarantee of optimality, and thus their technique
becomes a heuristic one. Steinbrunn’s measurements [54] show that this heuristic extension
generates plans of mediocre quality.

More recently, Swami and Iyer [59] have proposed another technique based on se-
quencing. Their approach begins by applying the technique of Krishnamurthy et al., and
then seeks to improve the resulting plan by perturbing it in small ways. In its use of
perturbations to improve a plan, the technique of Swami and Iyer borrows from stochastic

join-optimization techniques, which we discuss next.

2.7.4 Stochastic Techniques

Stochastic techniques for join-order optimization operate on the principle that if one con-
structs a large number of distinct plans for a join query, then just by blind luck, the best
of these plans is likely to be of high quality.

Most stochastic techniques incorporate a strategy of “improvement.” Given an arbi-
trary plan, they make small exploratory changes to it; changes that turn out to make the
plan better are considered desirable, and are generally retained, while changes that make
the plan worse are generally not retained. (However, these policies are not absolute; in
some cases, a change that makes the plan worse will be retained in the expectation—or
at least the hope—that it will lead to a subsequent improvement.) In this manner an
optimizer can gradually evolve a mediocre plan into a much better one.

Stochastic optimization of join orders was first investigated by Ioannidis and Wong
[27], and many variations on the theme have been proposed since. Stochastic techniques
cannot guarantee optimality, but often they can generate high-quality plans for moderate
effort, and with few restrictions. For joins of very large numbers of relations, the stochastic
techniques may provide the best hope of offering a reasonable balance between plan quality

and affordability of optimization. We shall discuss several stochastic techniques in more

66

detail in Chapter 8, in the context of presenting our own stochastic technique.

2.7.5 Hybrids and Frameworks

Not all join-optimization techniques fit neatly into one of the classifications listed above.
Swami [56] investigated a variety of hybrids built from combinations of optimization tech-
niques; Swami’s hybrids all incorporated a stochastic component. The technique of Swami
and Iyer mentioned in Section 2.7.3 above, though primarily based on sequencing, might
also be considered a hybrid on the basis of its use of stochastic perturbation to improve
its result.

Much of the more recent effort in query optimization research has focused on reducing
the difficulty of constructing, extending, and modifying query optimizers. Production
optimizers require ongoing maintenance because the other components of query-processing
systems tend to be enhanced over time. New features in SQL sometimes require optimizer
support if these features are to deliver adequate performance; improvements to a system’s
execution engine, such as addition of new algorithms or support for parallelism, likewise
call for optimizer support.

In principle, rule-based optimizers ought to be easy to build and maintain, but in
practice they often are not. To construct a rule-based optimizer using a tool such as
Volcano, one must supply not only the transformation rules, but also support functions
written in a language such as C. Typically these support functions run to many thousands
of lines of code, sometimes with the result that the custom-built portion of the optimizer
outweighs the portion supplied by the optimizer-generator tool. Maintenance of optimizers
that include such large amounts of custom code can be a burden. At the same time,
optimizer generators in the style of Volcano lack flexibility inasmuch as they impose a
fixed, transformational search strategy.

Several newer optimizer frameworks seek to overcome some of the limitations of op-
timizer generators in the style of Volcano. Cascades [18], OPT++ [28], and EROC [41]
are three such frameworks that have several characteristics in common, as well as many

individual differences. Among the characteristics they share are the following:

e All are constructed out of C++ classes. This application of object-oriented software

67

engineering appears to improve modularity and flexibility of optimizers.

o All support class hierarchies for representing arbitrary query expressions. In Volcano,
join and selection predicates were opaque to the built-in mechanisms, and had to be
handled entirely through custom support functions. But in Cascades, OPT++-, and
EROC, such predicates are represented as subexpressions that can be manipulated

in the same ways as top-level query expressions.

e All are designed with a view to providing power and flexibility in their search mech-

anisms.

The kinds of power and flexibility these frameworks provide varies from one framework to
the next.

Cascades emphasizes greater control over a search strategy that is essentially the trans-
formative strategy of Volcano. By applying heuristics to the order in which different por-
tions of the search space are explored, an optimizer built with Cascades can reduce its
exploration effort. Moreover, unlike Volcano, Cascades can interleave the application of
transformation rules on logical expressions with the construction of physical plans. In
doing so, Cascades opens up the possibility of pruning away some of the logical transfor-
mations that can be applied to a query—a possibility that Volcano did not offer. Shapiro
et al. [51] present a modified version of Cascades called Columbia that uses a variety of
pruning techniques to improve on the performance of previous rule-based optimizers—but
does so without sacrificing the optimality of the generated plans.

The design of OPT++ emphasizes an optimizer’s adaptability to changing require-
ments. OPT4+ can be configured to carry out its search in the manner of Starburst or
in the manner of Volcano; relatively few changes are required to switch between these two
search paradigms, despite their rather different character. OPT++ also easily supports
other search strategies, such as stochastic search strategies; and regardless of the search
strategy, OPT++ can be made to restrict the search to left-deep plans, or to plans without
Cartesian products. In addition, the modular design of OPT++ facilitates support of new
logical or physical operators as a query-processing system evolves.

EROC takes a pragmatic, eclectic approach to supporting optimizer construction. The

68

EROC class library may be thought of as a toolkit for building optimizers from ready-made
components. The toolkit includes classes for general-purpose data structures that tend to
arise in optimization, as well as more specialized classes that deal with searching and other
domain-specific operations. McKenna et al. describe how this toolkit was used to build
an unconventional, hybrid optimizer that combines Starburst-style enumeration of join
orders with Volcano-style plan generation and pruning. The hybrid was easy to construct
and performs well in empirical tests.

As previously noted, the primary goals of these frameworks are to provide flexibility
and adaptability. The ability to optimize joins of very large numbers of relations does not
appear to have been a design goal in any of the frameworks. However, these frameworks
have been designed so as to provide competitive performance in the optimization of joins
of moderate numbers of relations. For example, Kabra and DeWitt [28] present join-
optimization timings that show that when emulating Volcano’s search strategy, OPT++
performs nearly identically to Volcano itself. No such direct comparisons are available
for Cascades and EROC, but both have performed well when applied to the TPC/D
benchmark queries [4, 41].

2.7.6 Summary

In this section we have discussed the approaches to join-order optimization that appear in
the literature: dynamic programming, rule-based optimization, heuristic and sequencing
techniques, stochastic techniques, and hybrids. We mentioned representative systems and
algorithms that exemplify each of these approaches, and we also discussed frameworks
that assist in the development of optimizers whose approach to join-order optimization
can be adapted to changing needs.

Dynamic programming remains the predominant approach used by commercial op-
timizers, though some database vendors prefer to use rule-based optimization. When a
system encounters queries too complex to optimize exhaustively, heuristic techniques are
the preferred fallback. To the author’s knowledge, stochastic techniques are not yet used
in commercial optimizers, perhaps because they entail a greater optimization effort than

simple heuristic techniques, without a guaranteed payback.

69

2.8 Summary and Discussion

In this chapter we have introduced some of the vocabulary, concepts, conventions, and
stumbling blocks associated with join-order optimization. We reviewed selected funda-
mentals of relational databases and the relational algebra, and presented a context for
query optimization by describing the phases of query processing. We introduced the no-
tion of predicate selectivity, and showed how it is used in the estimation of intermediate-
result cardinalities. We described the representation of a query as a join graph, and noted
that conventional join graphs preclude predicates involving more than two relations. We
presented a generic cost model that can be parameterized to predict join-processing costs
under a variety of assumptions; and we discussed the effect of physical properties on
join-processing costs, observing that the principle of optimality is lost in the presence of
physical properties. Finally, we discussed the approaches to join-order optimization that
have appeared in the literature, of which a subset are in use in commercial optimizers as
well.

We have seen that some of the trickiest aspects of join-order optimization are related
to predicates. The conditional nature of join assoc_iativity, for example, comes as a conse-
quence of join predicates. The problems with the notion of selectivity, and more generally,
the difficulty of cardinality estimation, also arise because of predicates. Join graphs have
utility only because they shed light on predicate relationships; in the absence of predicates,
they could be dispensed with.

These observations lead to the following idea for decomposing the problem of join-
order optimization: First solve the problem in the absence of predicates, and then try to
add predicates back to the solution to the simpler problem. In the following chapters we

explore such a decomposition of join-order optimization, and so obtain the results outlined

in the introduction.

Chapter 3

Cartesian Product Optimization

In this chapter, we address the question of how to optimize the computation of a Cartesian
product. We begin by presenting the solution steps for a sample optimization problem,
and then give an algorithmic generalization of this solution. We go on to analyze the
algorithm’s complexity, and to discuss the ramifications of our analysis.

Although optimization of Cartesian product computations is of little practical interest
in itself, we will see later that our Cartesian product optimizer can serve as the back-
bone of a join optimizer. By deferring such distractions as predicates until later we may

concentrate all our attention on the essential structure of our algorithm.

3.1 Preliminaries

Suppose we wish to find the optimal expression for computing the Cartesian product
AxBxCxD. (We assume that only a dyadic x operator is available.) Before proceeding,
we need a cost model and some information about A, B, C, and D (e.g., their cardinalities).

Let us say that A, B, C, and D have cardinalities 10, 20, 30, and 40, respectively, and
let us assume for the present an extremely straightforward cost model—again deferring
consideration of more complicated alternatives until later. For now we define the cost of
evaluating a Cartesian product operator to be the cardinality of the result, in keeping
with the cost function k¢ defined in equation (2.61). Thus, since A has cardinality 10 and
B has cardinality 20, the cost of the operation A x B is 10 - 20 = 200.

To determine the cost of evaluating a compound expression such as (A x B) x C,

we shall sum together the cost of each x operator in the expression, in accordance with

70

71

equations (2.59) and (2.60). In the present situation, those cost equations simplify to
cost(R) =0 (3.1)
cost(Eg x Ey) = cost(Eg) + cost(Ey) + |Eg x Ey]. (3.2)

For example, with |A| = 10, |B| = 20, and |C| = 30, we have cost((A x B) x C) =
cost(A X B) + cost(C) + |Ax B x C| =200+ 0+ 10-20 - 30 = 200 + 6000 = 6200.

Note that the cost model given by ¢ is symmetric in that cost(Eg x E1) = cost(E; X
Eg). In general a cost model need not be symmetric, and in most of what we do below
we will make no assumption of symmetry. (We will point out the situations in which

symmetry makes a difference.)

3.2 Solution using Dynamic Programming

Table 3.1 illustrates how dynamic programming can be exploited to find the cheapest way
of computing our four-way Cartesian product. The idea is to build a table that records the
best strategy for computing each possible subproduct of the four-way product in question.
Each entry (i.e., each row) of the table corresponds to one subproduct.

The table is constructed in such a way that we can extract the optimal expression
for the four-way product as follows. First, we consult the table’s final entry, Entry 15,
which says that the “Best Split” for {4, B,C, D} is {4, D}, {B,C}; that is, the product
of {A, B,C, D} is best computed as Eg X E;, where Ep computes the product of {4, D}
and E; computes the product of {B,C}.

Next observe that we wish Ej to be optimal for computing the product of {A, D}; such
an optimum is furnished by Entry 7 in the table. An optimal E; is furnished by Entry
8. By recursively consulting the table in this manner we can derive an optimal expression
for the four-way product—in this case, (A x D) x (B x C).

A bit of notation will prove convenient. Let S* denote the optimal expression for
computing the product of S. Then Entry 15 of our table may be read as saying, in part,
that {4, B,C, D}* = ({4, D}*) x ({B,C}*); similarly for the other entries. Singletons
are special: the optimal expression for any individual relation R is evidently just R; thus,
{R}*=R.

72

Entry Relation Set Cardinality Best Split Cost
1 {4} 10 0
2 {B} 20 0
3 {C} 30 0
4 {D} 40 0
5 {A,B} 200 {A},{B} 200
6 {AC} 300 {A}, {C} 300
7 {A,D} 400 {A},{D} 400
8 {B,C} 600 {B},{C} 600
9 {B,D} 800 {B},{D} 800

10 {C,D} 1200 {C},{D} 1200
11 {A,B,C} 6000 {A, B}, {C} 6200
12 {A,B,D} 8000 {A, B}, {D} 8200
13 {A,C,D} 12000 {A,C},{D} 12300
14 {B,C,D} 24000 {B,C},{D} 24600
15 {A,B,C,D} 240000 {A,D},{B,C} 241000

Table 3.1: Dynamic programming table

Now that we have seen how the table will be used, let us consider how its entries are

constructed.

3.2.1 Initialization and Two-way Products

In any application of dynamic programming, the dynamic programming table is filled in
entry by entry until the table is completely filled. Entries for “smaller” subproblems are
always filled in before entries for “larger” subproblems; in this way, the solutions for the
smaller subproblems can be used to assist in solving the larger subproblems.

The first four entries of our sample table describe degenerate “products” involving
just a single relation in each instance. Since the “product” of a single relation R is just R
itself, there is no Best Split to record for the singleton sets of relations. Thus, the role of
Entries 1-4 is to record the cardinalities of the relations A, B, C, D—these are assumed
given—together with cost values of 0 reflecting cost equation (3.1).

Entries 5-10 record information about two-way products. Consider Entry 5 as an
example. Here the Cardinality field refers to the cardinality of A x B—hence the value
10 - 20 = 200. The Best Split field gives an encoding of the best (i.e., cheapest) way

73

to compute the product of A and B. We know that there are just two expressions that
compute this product—A x B and B X A—and because our cost model is symmetric,
neither expression is better than the other. But in the general case that will not be
true, and so we must distinguish between the two. In the present instance we arbitrarily
designate A x B as the best choice. We encode this choice as the pair of sets {A},{ B},
representing, respectively, the relations that appear to the left of the x operator, and
those that appear to the right. Finally, the Cost field gives the cost of the expression
designated by the Best Split field; in this case the cost simply equals the cardinality, since
both the left- and right-hand inputs of A X B are just relation names and not complex

subexpressions.

3.2.2 Three-way Products

The benefits of dynamic programming begin to be felt, if only in a small way, when we
come to the three-way products. Again, let us consider a particular table entry, Entry 11,
as an example. Here the objective is to find the best way to compute the product of A,
B, and C. There are actually twelve possible alternatives, but we need not examine each
of these alternatives individually. Instead, we reason as follows.

Any expression that computes our three-way product must have the form Ey x E; for
some Ey and E,;. Our strategy will be to ignore the substructure of Ey and E;, and to
think only about which relations participate in each of these subexpressions. Observe that
each of A, B, and C must appear exactly once in the whole expression Eyx Ey. Therefore,
the set of relations appearing in Eg must be some nonempty, proper subset of {A, B,C},
and the relations in F; must be the complement (with respect to {A, B,C}) of those in
Ey.

For example, suppose that the set of relations appearing in Eg is {A,C}—in other
words, suppose that Ey computes the product of A and C. Then the set of relations
appearing in E; is constrained to be exactly {B}. Now the cost of Ey X E; is cost(Eq) +
cost(Ey) 4+ 10 - 30 - 20 by equation (3.2). The cost of Ey, in turn, cannot be less than the
cost of the best expression for the product of {4, C}, which was computed in Entry 6 to be

300. The cost of F) is zero, since E} is just B, which involves no computation. It follows

74

that with Ep computing the product of {A,C} and with E; computing the product of
{B}, the cost of Ey x E; is at best 300+ 0+ 10 - 30 - 20 = 300 4 6000 = 6300.

Now recall that we defined the shorthand {A4,C}* to mean the best expression for
the product of {A,C}, whatever that expression might be; recall also that {B}* should
be understood as a synonym for B (the idea being that B is the only expression for the
product of the singleton {B}, and hence the best such expression). Thus, we may read
Entry 6 of Table 3.1 as saying that cost({A4,C}*) = 300, and Entry 2 as saying that
cost({ B}*) = 0; and we may now restate the conclusion of the preceding paragraph in the
concise form of an equation: cost({A,C}* x {B}*) = 300+ 0+ 10 - 30 - 20 = 6300.

As it happens, {4, C}* x {B}* is not the best expression for the product of {A, B,C};
a superior alternative is found in {A, B}* x {C}*. The cost of the latter is given by
cost({A, B}*) + cost({C}*) + 10 - 20 - 30, which works out to 200 + 0 + 6000 = 6200, as
can be seen by consulting Entries 5 and 3 of the table. If we were to consider the other
four possible splits of {A, B,C} into pairs of nonempty subsets, we would find that none
does better than the pair {A, B}, {C}. Accordingly, Entry 11 of the table shows this pair
as the Best Split for {A, B,C}. The corresponding cost of 6200 is entered alongside.

Note that although the table nowhere explicitly records the best ezpression for the
product of {A, B, C}, that expression can be inferred from the Best Split field for {A, B,C}
together with the Best Split field for {A, B}.

3.2.3 Final Result

The handling of the four-way product in Entry 15 is conceptually identical to that of the
three-way products. The only difference is that the four-way product involves more work—
in the general asymmetric case, a total of fourteen splits of {A, B, C, D} must be examined
to determine which one is best. On the other hand, a naive exhaustive search without
dynamic programming would entail the examination of all the 120 different expressions
that compute the four-way product. Moreover, determining the cost of each of those 120
compound expressions would involve more work than determining the cost associated with
a given split. These facts, taken together, justify going to the trouble of constructing a

table such as Table 3.1 when seeking the best expression for a four-way product.

75

The benefits of dynamic programming become glaringly apparent only when one con-
siders products over somewhat larger sets. But this small example at least illustrates the

principles involved.

3.3 The Blitzsplit Algorithm

Naturally enough, the procedure we used above to fill in Table 3.1 by hand can also
be carried out automatically by a computer program. Figures 3.1 and 3.2 give abstract
pseudo-code for such a program, which we call the Blitzsplit algorithm. This pseudo-code
is abstract in the sense that it uses features that are not generally supported in computer
languages, such as the choose-such-that and for-each-such-that statements. The use
of sets as array indexes also departs from the more conventional use of integers in this
role. Later we will see how to map these abstract pseudo-operations onto efficient, concrete

implementations. But for the present let us focus on higher-level matters.

3.3.1 Declarations

Figure 3.1 contains two declarations. The first of these introduces a new type rel_data
that describes the information we need to know about the relations whose product is
to be optimized. With our simple cost model, we just need to know their cardinalities.
Therefore rel_data is declared as an array indexed by relation names that associates a

cardinality with each such name. This declaration assumes that the type relation_name

type rel_data = array indexed by relation_name of
record
cardinality : real
end

var table : array indexed by set[relation_name] of

record
cardinality : real
best_lhs : set[relation_name]
cost : real

end

Figure 3.1: Declarations for the Blitzsplit algorithm

76

procedure blitzsplit(R : set[relation_name), rel_data : rel_data)
for each R€ R do
init_singleton(R, rel_data)
end for

form:=2to [R| do
for each § C R such that |S|=m do
compute_properties(S)
find _best _split(S)
end for
end for
end procedure

procedure init_singleton(R : relation_name, rel_data : rel_data)
table[{ R}].cardinality := rel_data[R].cardinality
table[{ R}).best lhs := ()
table[{ R}].cost := 0.0

end procedure

procedure compute_properties(S : set[relation_name])

choose U/ such that C U C S

V=§-U

table[S].cardinality := table[U].cardinality * table[V].cardinality
end procedure

procedure find_best_split(S : set{relation_name])
best_cost_so_far := oo
for each Sy, such that § C Sp, € S do
Srhs := S — Sihs
operand_cost := table[Sys).cost + table[S,). cost
dependent _cost := operand_cost + k**"(S, Sy, Srhs)
if dependent_cost < best_cost_so_far then
best_cost_so_far := dependent _cost
table[S).best_lhs := Sy,
end if
end for
table[S).cost := best_cost_so_far + k°%(S)
end procedure

Figure 3.2: The Blitzsplit algorithm

77

has been defined previously. The precise nature of the type relation_name is unimportant,
so long as it can be used as an array index.
The second declaration in Figure 3.1 allocates a global variable table—a table very

much like Table 3.1, with several minor differences:

e Table 3.1 was annotated with Entry numbers, which were convenient to have in
Section 3.2 above for the purposes of discussion. But the Blitzsplit algorithm will

have no use for these numbers, and so they are omitted from table.

e Lacking any notion of Entry numbers, the Blitzsplit algorithm instead accesses table
entries on the basis of the Relation Set for which they provide information. Accord-
ingly, table is represented as an array indezed by sets of relation names; and since
these sets of relation names must be known before the corresponding table entries
can be accessed, it would be redundant to store these sets inside the table. Hence

table contains no field that corresponds to the Relation Set column of Table 3.1.

e We are left with the Cardinality, Best Split, and Cost columns of Table 3.1, and
these are faithfully reflected in the cardinality, best_lhs, and cost fields of the table
elements. However, the best_lhs field records just the left-hand component of the
best split, leaving the right-hand component implicit. Nothing is lost in this way,
since the left-hand component fully determines the right-hand component in the

context of a given table entry.

Thus, although table differs from Table 3.1 in a few details, its information content is

essentially the same.

3.3.2 Procedure blitzsplit

Let us now turn to the first procedure in Figure 3.2, procedure blitzsplit. The arguments to
this procedure are a set R of relation names and an array rel_data containing information
about the relations named in R. The objective of blitzsplit is to find the least costly way
of computing the Cartesian product of those relations.

The body of procedure blitzsplit consists of two for-loops. The first for-loop fills in

the table entries for the singleton subsets of R; these entries correspond to Entries 1-4

78

of Table 3.1. The second for-loop (which has yet another for-loop nested inside of it)
successively fills in the table entries for subsets of R consisting of 2 relation names, then
for subsets consisting of 3 relation names, and so on. At the completion of these two loops,
table has been entirely filled in. Embedded within the completed table lies an encoding
of the best expression for the product of R. (Extraction of this expression is discussed in
Section 3.3.6 below.)

The real work in filling in the table is done by the subprocedures init_singleton,
compute_properties, and find_best_split, discussed below. But the correctness of those
subprocedures hinges on a dynamic programming assumption that concerns procedure
blitzsplit: The subprocedures assume, when filling in the table entry for a given subset S
of R, that the entries for all nonempty, proper subsets of § have already been completed.
We shall refer to this assumption as the subsets-first assumption. It is satisfied in the
blitzsplit procedure of Figure 3.2, because smaller sets of relation names are always dealt
with before larger ones.

In Chapter 4 we will see that there are also other good ways to satisfy this assumption.
For simplicity, the pseudo-code of Figure 3.2 specifies a deterministic order in which the
subsets of R are to be processed. But in prescribing a particular order, the pseudo-code is
actually overspecifying the processing of the subsets. Slavish adherence to this prescription
is not necessary; what is important is that all nonempty subsets of R be processed, and

that the validity of the subsets-first assumption be upheld.

3.3.3 Procedure :init_singleton

The role of procedure init_singleton is to consult the input information given in rel_data,

and using that information, to create entries in table for singleton sets:

e The cardinality field for a given singleton product {R} is simply copied from the
cardinality of R as furnished by rel_data.

e The best_lhs for { R} is assigned the empty set for lack of a better value—the best_lhs
field actually has no meaning for singleton sets. (Recall that in Table 3.1 the Best
Split field was left blank in the entries for singletons.)

79

e The cost of {R} is set to 0.0 in accordance with equation (2.59) of our generic cost

model.

3.3.4 Procedure compute_properties

Table entries for non-singleton sets of relation names are filled in in two steps. First, pro-
cedure compute_properties computes the cardinality field; second, find_best_split computes
both the best_lhs and the cost fields. Here we consider compute_properties.

In Section 3.2 above we glossed over the computation of the Cardinality values in
Table 3.1 because those computations were so straightforward. That the cardinality for
{4, B,C, D} should be 10 - 20 - 30 - 40 = 240000, for example, requires no explanation.
However, this naive cardinality computation involves 3 multiplications, and more gener-
ally, for a set of m relation names, m — 1 multiplications. It is preferable to obtain the
result cardinality with a single multiplication. Observe that the set {A, B,C, D} may be
arbitrarily split into two nonempty subsets—for example, {A,C} and {B, D}—and the
cardinalities associated with these subsets, 300 and 800 respectively, may be multiplied
together to obtain the cardinality 240000 for {A, B,C, D}.

Procedure compute_properties takes advantage of this observation, together with the
subsets-first assumption, to compute the cardinality field for a given set S. Thus, § is split
arbitrarily into two nonempty subsets ¥ and V, and the cardinelity entries for those two
subsets are multiplied together. In this way all product cardinalities are obtained without

any loop structure inside of procedure compute_properties.

3.3.5 Procedure find_best_split

Procedure find_best_split examines all splits of a given set & into pairs of nonempty subsets
and selects as the best split the pair that yields the lowest total cost. The left-hand
component of that pair is recorded in the best_lhs field for §, and the corresponding cost
is placed in the cost field.

That is the gist of find_best_split, but it is not the whole story. Because find_best_split
is called from inside a loop (actually, a nested pair of loops) in procedure blitzsplit, the code

within find_best_split’s own loop is the most speed-critical part of the whole algorithm. It

80

proves to be worth going to some trouble to pare this code down to its bare essentials.
Thus, to reduce the effort needed to compute costs, we permit the cost function & to
be broken apart into a split-independent component x°“ and a split-dependent component

K% such that
K(Rouh thav Rrhs) = K'out(Rout) + K”m(Rouh thu Rrhs)- (33)

(We shall assume that both components are non-negative.) For example, the cost function

ko(Rout, Riksy Rrhs) = |Rout| can be decomposed into
K'(o)ut(Rout) = lRoutl (3-4)
and

R(s)pm(Routa Ry, Rrhs) =0. (35)

Using this decomposition, find_best_split avoids computing the total cost for the expression
associated with each split. Instead it computes a total cost just once, outside the loop, after
the best split has already been determined. This shortcut has the following straightforward
justification.

Let Sis and S,y denote, respectively, the left- and right-hand sides of some split of S.
Then by equation (2.60) the total cost of the expression S}, X Sk, is

COSt(SI’;u) + cost (S:hs) + K’('Sf SIII.” Srhs)-

(Here we let the sets S, Sis, and S,45 act as representations for the Cartesian products of
the sets they contain.) Using the decomposition of into x°* and x*”!*, this total cost

may be rewritten as

cost(S},) + cost(S%,,) + KPHU(S, Sihsy Sphs) + £°4(S).

rhs

To minimize this cost over all possible choices of Sy, and Sy, it suffices to minimize
cost(Sh,) + cost(SH,) + &S, Sine Srhs)s

since the term x°“(S) is independent of Sj, and S,,. Hence, the latter term may be

disregarded during the search for the minimum.

81

The first two terms of cost(S};,) + cost(S%,) + £P%(S, Sisy Srhs) are very easy to com-
pute. By the subsets-first assumption, the values cost(S};,,) and cost(S*,,) may simply
be fetched from the cost fields of the table entries for Sy, and Syps, respectively. Conse-
quently, the “operand cost” cost(S};,) + cost(S};,) can be obtained with a single addition.
The difficulty of computing the term fc""’"‘(S s Sthsy Srihs) Will depend on the function k; but
for our sample cost function ko, this computation is trivial, since xg” m(S s Sthsy Srhs) = 0.
In this instance, then, the entire partial cost cost(S},) + cost(Sy,,) + K*PY(S, Sths, Srhs)
can be computed with a single addition.

Procedure find_best_split seeks to minimize this partial cost by keeping a running
best value for it in the variable best_cost_so_far as the loop scans through all possible
combinations of Sy, and Sp4,. The running best value is revised downward each time a
better partial cost is encountered; when that occurs, the left-hand component of the split
that engendered the new minimum is recorded as the best_lhs for S. Thus, the best_lhs
field may be overwritten many times, and might be more aptly named best_lhs_so_far.
But by the end of the scan, whatever remains in best_lhs will in fact be the left-hand side
of the absolute best split (or one such in the case of ties); and best_cost_so_far will contain
the corresponding partial cost. The total cost is then obtained by adding on the term
£°%(8S), and the result is placed in the cost field.

The shortcut of computing only partial costs inside the loop in find_best_split helps
to tighten the loop, but unfortunately the effectiveness of this shortcut is very much
dependent on the cost function x. However, the cost function need not be as trivial as
Ko to make the shortcut beneficial. Even with more complex cost models, the amount of
computation required inside the loop in find_best_split can often be kept small on average.
Later we shall discuss techniques for mitigating the expense of computing x°?" inside the

loop.

3.3.6 [Extracting the Best Expression

After the table array has been filled in, a small amount of extra work is required to extract
the expression that represents the optimal computation of the given Cartesian product.

Depending on context, one may wish to extract that expression as a tree, or as a string,

82

procedure print_ezpression(S : set[relation_name))
if § = {R} for some R then
print_relation_name(R)
else
print “(”
print_ezpression(table[S).best_lhs)
print “x”
print_ezpression(S — table[S].best lhs)
print)”
end if
end procedure

Figure 3.3: Printing an optimal expression

or in some other form.

As an example of such an extraction, Figure 3.3 gives pseudo-code that prints the
expression. If procedure blitzsplit was used to construct a table for some collection R of
relation names, then print_ezpression may be invoked on any nonempty subset S of R—
including R itself. The output will be an optimal expression for computing the product
of the relations named in S. We assume the existence of a previously defined procedure

print_relation_name to print the relation names at the leaves of the expression tree.

3.4 Complexity of the Algorithm

We shall now examine the complexity of the Blitzsplit algorithm. We begin with a rough
assessment of its space complexity, and then proceed with a somewhat more detailed
analysis of its time complexity. We then make several observations that follow from the

complexity analysis.

3.4.1 Space Complexity

Let n be the number of relation names in the set R. Then R has 2™ subsets, and there is
an entry in table for each of these (except the empty set). The Blitzsplit algorithm uses no
other data structure of any significant size. Hence the space complexity of the algorithm
is O(2"). (We will give a more precise estimate when we discuss concrete representations

for our data types.)

83

3.4.2 Time Complexity

For the time complexity we shall give more than just a big-O analysis, since we are
interested in the detailed performance characteristics of the algorithm. We assume that
sets of relation names are of bounded size, and hence that primitives on them are constant-
time operations; we also assume that per-iteration loop overheads are constant. One way
to satisfy these assumptions is shown in Chapter 4 below.

Observe first that procedure blitzsplit makes n calls to init_singleton, and approxi-
mately 2" calls to each of compute_properties and find_best_split (because there is one call
for each nonempty subset of R, and R, being an n-element set, has 2" subsets). The
net contribution of init_singleton is plainly insignificant, while the net contribution of the
straight-line code in compute_properties and find_best_split is 2"Ts,ps.¢ for some constant
Tsubset-

There is, in addition, a loop in find_best_split. Consider the execution of find_best_split
for some particular argument S, and suppose that |S| = m; i.e., suppose that S is a set
containing m relation names. Then S has altogether 2™ subsets, hence 2™ — 2 nonempty,
proper subsets. The loop inside find_best_split iterates once for each such subset, hence
approximately 2™ times for the given argument S.

We have just counted the number of loop iterations in one call to find_best_split, but
now we must count the number of iterations over all such calls. Observe the point where
find_best _split is called, inside the nested pair of loops in procedure blitzsplit. Inside this
pair of loops, § is successively bound to different subsets of R, and find_best _split is called
for each such binding. Indeed, eventually every subset of R (except the singleton subsets
and the empty set) will have been bound to § and passed as an argument to find_best_split.
Unfortunately, the number of iterations of the loop in find_best_split varies dramatically
with the number of relations in S. So we must separately consider the 2-relation subsets,
the 3-relation subsets, and in general, the m-relation subsets of R.

The number of m-relation subsets of the n-relation set R is (,’;) Hence find_best_split
will be called () times with an m-relation argument. As the number of loop iterations for

each such call is about 2™, the aggregate number of loop iterations for all the m-relation

84

subsets of R, for a given m, is about (;)2"‘. This formula must be summed over all values
of m from 2 to n to take account of the 2-relation subsets of R, the 3-relation subsets, and
so on up to the sole n-relation subset of R (namely R itself). Therefore the total number

of iterations for all calls to find_best_split is Sn _, (*)2™; but it will be convenient to

work with the simpler sum loop_count = 3 _ (*)2™, which overestimates the true total

by a negligible amount.

To obtain a closed form for loop_count, recall the binomial expansion (z + y)* =
Yom=o (2)z™y"™. Taking z = 2 and y = 1, we obtain (2+1)" =" _ (F)2m.1%™ =
Ym0 (2)2™ = loop_count. That is, loop_count = (2+ 1) = 3". Thus, in aggregate, the
time contributed by the loop in find_best_split is 3"T},,, for some constant Ti,,p.

(Another way to see that there are altogether approximately 3" iterations through
the loop in find_best_split is this: In any split of a subset S of n relation names, a given
name among the n will appear in the left-hand component of the split, in the right-hand
component, or neither. So each of the » names falls in one of three conceptual buckets
labeled “left,” “right,” and “discard.” Conversely, distributing the n names among three
such buckets determines a subset of the names (namely, those not “discarded”) and a split
of that subset. Thus, splits of subsets of n names are in one-to-one correspondence with
assignments of those names to three buckets. There are 3" such assignments, hence 3*
splits of subsets. All these splits will be examined in the course of the Blitzsplit algorithm’s
execution, except the handful that would leave the “left” or “right” bucket empty.)

To assess the contribution of the conditionally executed code within the loop body,
we use a statistical argument. Consider a particular execution of find_best_split. On
each iteration through the loop, the if condition is satisfied only when the split under
consideration improves upon the best so far. Assume the splits are examined in random
order. Then the probability that the split considered on the ith iteration is better than
the first ¢ — 1 is 1/4, since any of the first ¢ splits is equally likely to be the best among
the ¢. Hence the expected number of executions of the conditionally executed code is

given approximately by the harmonic series Hom = 212:1 1/i, where again m = |§|. In

85

aggregate, the number of executions of this code across all calls to find_best_split is
< (n
cond_count = Zz (m) Hym. (3.6)
m=

Once again, to simplify we change the bounds of the summation, giving

2 /n
cond_count =~ E . (m) Hoym. (3.7
m=

Using the fact Hy = Ink + vy, where y = 0.57721 ... [29], we obtain

cond_count = Z (:1) (In2™ 4+ 7), (3.8)

m=0
which expands to
" [n “fn
(m) min2+ Z (m) o (3.9)
m=0 m=0

or

In 2:;) (;)m+7 Xn: (:1) (3.10)

m=0
Now recall that Y7 _o () = 2", and that 3", _ (*)m = (n/2)2". (For an explanation
and interpretation of the former identity, see the text by Liu [36]; the latter identity can be
derived from the former through straightforward manipulation.) Applying these identities

to (3.10) finally yields
cond_count = (In 2/2)n2" 4 2. (3.11)

Let us disregard the y2" term; it is relatively small, and in any event, its effect on execution
time can be absorbed by the term 2"T,y,.; discussed above. We may thus view the net
contribution of the conditionally executed code as (In2/2)n2"T,nq for some constant
Teond-

Then for some Ti,0p, Tcond, and Tyypser, the execution time of the Blitzsplit algorithm

is closely approximated by

3nTloop + (ln 2/2)n2nTcond + 2" Tsupset- (312)

86

3.4.3 A Small Algorithmic Improvement

From the foregoing analysis we can also deduce the number of executions of the cost-
function components x°* and &*”"*. Since the split-independent component x°% appears
outside the loop in find_best_split, we may conclude that x°“* executes approximately 2*
times (i.e., the same number of times as find_best_split itself). On the other hand, the
split-dependent component k*?% appears inside the loop, and hence, according to our
analysis, executes approximately 3™ times.

If x°% should turn out to involve nontrivial computation, its execution count of 3"
could prove to be a bottleneck. To reduce that bottleneck, we may alter the body of the
loop in find_ best_split as illustrated in Figure 3.4. Instead of using a single if statement,
the revised loop body of Figure 3.4 contains two nested if statements, and predicates the
computation of k*?% on the condition operand_cost < best_cost_so_far. Since failure of
this condition also implies dependent_cost £ best_cost_so_far, the net effect of the pair of
if statements in Figure 3.4 is the same as that of the single if statement in Figure 3.2.

However, the number of executions of k*”" may be reduced considerably. From our
analysis above, we may infer that the statements outside the outer if are executed 3
times, while those inside the inner if are executed about (In2/2)n2" times. Then the
execution count of x*”# in Figure 3.4 must lie somewhere between those two quantities.

It is difficult to give a more precise analytical characterization of the execution count of

for each Sy, such that § C Sy € S do
Srhs =8 — Sips
operand_cost := table[Sip,).cost + table[S,,).cost

if operand_cost < best_cost_so_far then
dependent _cost := operand_cost + £°P"(S, Sipsy Srhs)
if dependent_cost < best_cost_so_far then
best_cost_so_far := dependent_cost
table[S).best lhs := Sy,
end if
end if

end for

Figure 3.4: Making execution of x*?%* conditional

87

kP4, But later we shall study this quantity empirically, and we shall see that at least for
some cost functions, the execution count of k*?% runs closer to (In2/2)n2" than to 3". In
such instances, the restructuring of the loop body as illustrated in Figure 3.4 significantly

reduces the algorithm’s sensitivity to the expense of computing &*P*.

3.4.4 Discussion

In Section 2.7 we noted that the exhaustive-search join-optimization algorithms used by
Volcano and Starburst have a worst-case time complexity of O(4"). It is encouraging that
the Blitzsplit algorithm’s O(3") complexity is lower, but this complexity comparison by
itself does not tell us a great deal. Constant factors must also be taken into account; in
addition, one must bear in mind that in typical cases, the Volcano and Starburst algorithms
perform much better than they do in the worst case—and so the O(4™) complexity is not
necessarily very meaningful.

It is therefore interesting to look at actual join-optimization timings for systems that
use the Volcano and Starburst algorithms as reported in some of the recent literature.
The measurements for Volcano [17] and OPT++ [28] show optimization timings in the
range of seconds for a join of eight relations. Optimization time for a ten-way join runs
to tens of seconds, as reported by Kabra and DeWitt [28], and as can be inferred by
extrapolation from the performance graph given by Graefe and McKenna [17]. Kabra
and DeWitt also graph timings for bushy join optimization allowing Cartesian products;
from the standpoint of complexity, these timings do reflect the worst case, and run to
hundreds of seconds for a ten-way join. The EROC timings [41] appear to be consistent
with the Volcano and OPT++ timings, though direct comparison is problematical because
of differences in the kinds of queries that were tested.

We do not yet know the values of the time constants Tioop, Tcond, and Tyypset in for-
mula (3.12) for the execution time of the Blitzsplit algorithm. Even so, by examining the
figures in Table 3.2 we can begin to get a feeling for what the algorithm can and cannot
do, given an execution time of 3"T},0p + (In 2/2)n2"Tpnd + 2" Tsubset for some values of
Tis0ps Teondy and Tsypser. In the table, the variable c, is used as shorthand for (In 2/2)n2".

Thus, successive columns of Table 3.2 give, for a range of values of n, the execution count

88

n 3" ¢p = (In2/2)n2" 2" /e, /2"
2 9 2.8 4 32 07
4 81 22.2 16 37 14
6 729 133.1 64 55 21
8 6 561 709.8 256 92 28
10 59 049 3 548.9 1024 166 3.5
12 531441 17034.8 4 096 31.2 4.2
14 4 782 969 79 495.7 16 384 60.2 4.9
16 43 046 721 363 408.7 65 536 1185 5.5
18 387420 489 1635339.4 262 144 2369 6.2
20 3486784401 7268175.0 1048576 479.7 6.9
22 31381059609 31979969.9 4194304 9813 7.6

Table 3.2: Quantities relevant to time complexity of Cartesian product optimization

for the unconditional code inside the loop in find_best_split, for the conditional code inside
the loop, and for the code outside the loop.

The first observation to draw from these numbers concerns what the Blitzsplit algo-
rithm cannot do. On today’s hardware, this algorithm cannot hope, even under the best
of circumstances, to make short work of problems with n equal to 20 or more. If we
assume a machine cycle time of 5 nsec, and optimistically suppose that an iteration of
the inner loop in find_best_split can execute in, say, 4 cycles, then Tj,,, = 20 - 102 sec.
Under these highly optimistic assumptions, the algorithm’s execution time with n = 18
will already have reached 38 . T}y, 22 (0.387-10%) - (201079 sec) = 7.74 sec. With n = 19,
the time will be 3 times that—about 23 seconds—and with n = 20, the time will exceed
one minute. Clearly, then, for expeditious optimization of 20-way joins, we must look to
a new generation of processors or a faster algorithm.

On the other hand, one cannot fail to be struck by the fact that for smaller n, the
values of 3" are not really very large at all. When n = 8, 3" is only a few thousand.
To perform competitively with the algorithms mentioned above, the Blitzsplit algorithm
would have to optimize an 8-way Cartesian product in a matter of seconds, and hence,
the time constants Tiosp, Teond, and Tsypser Would have to be on the order of a millisecond.

But it is imaginable that these constants could be made far smaller than that, and we

89

shall see that indeed they can be.

It is the constant Tjo0p, above all, that we will want to make small, and in seeking to
do so, we will have an advantage over transformation-based algorithms such as Volcano’s.
For in contrast to those algorithms, ours need not concern itself with complex predicate
manipulations each time it constructs a new expression (i.e., each time it considers a
new pairing of sets of relations). Later, when we address join optimization, and not just
Cartesian product optimization, our algorithm will need to manipulate predicates, too.
But the structure of the algorithm is such that these predicate manipulations will never
need to enter the inner loop where the alternative pairings of sets of relations are examined.

There are other observations to be drawn from Table 3.2. The ratios in the last two
columns of the table shed light on the relative contributions of Tis0p, Teond, and Tyupset
to the algorithm’s total execution time. We see that as n rises to the mid-teens, only a
hundredth of the inner-loop iterations execute the conditional code inside the loop. Thus,
to the extent that the improvement suggested in Section 3.4.3 above succeeds in bringing
the k°Pit-execution count close to (In 2/2)n2", it significantly reduces the criticality of the
x**Ht function.

At the same time, perhaps the most striking feature of the ratios in the table’s last
two columns is how small they are overall. The smallness of these ratios means that while
the constant T,,p is certainly the most critical of the three, none of them can be ignored:

profligate computation in any part of the algorithm will make itself felt.

3.5 Summary

We began this chapter by illustrating the technique of dynamic programming as applied
to Cartesian product optimization. We then formalized the technique in abstract pseudo-
code for the Blitzsplit algorithm, and analyzed the algorithm’s complexity. From that
analysis it became apparent that the algorithm ought to perform competitively with the
Volcano and Starburst join-optimization algorithms, provided the abstract pseudo-code
can be mapped onto an efficient concrete realization. Finding such a realization will be

our next concern.

Chapter 4

Lightweight Implementation of

Cartesian Product Optimization

The analysis of the previous chapter suggested that despite the exponential complexity of
the Blitzsplit algorithm, it ought to have no difficulty in optimizing Cartesian products
of moderate numbers of relations. However, to make a more precise assessment of its
capabilities, one must consider the algorithm’s implementation.

In the present chapter we undertake to translate the abstract code given in the previous
chapter into a more concrete form. Our objective will be to devise an implementation that
achieves low values for the time constants Ti,0p, _Tco,,d, and T,ubser; We shall also seek to
achieve efficiency in space usage.

We shall continue to express the algorithm in a kind of pseudo-code, but this time
around the pseudo-code will be more concrete, and will avoid using sets as array indexes,
or instructions such as choose-such-that and for-each-such-that. At the end of the
section we will discuss the mapping of this concrete pseudo-code into an even more concrete
form: C code. The discussion will conclude with observations about empirical performance

measurements taken on C code.

4.1 Representation of Data Types

Let us refer to the relation names in R as Rg, Ry, ..., Rn—1. Then in our concrete
pseudo-code we will identify these names by their integer indexes; inside the code, Rq will
be just 0, R; just 1, and so on up to n—1. What these numerical names lack in mnemonic

value they will make up for in programming convenience.

90

91

Undoubtedly the implementation detail that most affects the performance of the Blitz-
split algorithm is the representation of sets of relation names. Bit vectors are a natural
representation for sets over finite domains—especially over small domains. The domain of
interest in the present instance is very small indeed: it consists of the n relation names in
R. Since we do not expect n to run as high as 20—and certainly no higher than 32—we
may encode a set of relation names as a single 32-bit integer. This representation is not
only compact, but also provides for extremely rapid execution of the set manipulations
we require in the algorithm.

Specifically, we will assign sets of relations names to integers in the following manner.
We will represent the singleton {Ry} by the integer 2°; {R;} by 2!; and so on, so that in
general {R;} becomes 2. Representations for larger sets will be obtained by summation;
for example, {Ro, Rz} becomes 2° 422 = 1 4+ 4 = 5 (or 101 in binary), and {Ro, By, Rs}
becomes 2° 4+ 2! +2° = 142+ 32 = 35 (or 10011 in binary). This encoding of sets is
called the characteristic vector.

Note that a given small integer can have two completely different interpretations as
a relation name on the one hand, and as a set of relation names on the other hand.
The integer 5 representing the relation name Rs should not be confused with the integer
5 representing the set {Rg, R2}. To minimize such confusion, our pseudo-code will use
separate type names for integers in these two roles.

The code in Figure 4.1 is adapted from Figure 3.1; the portions that are new or
changed are highlighted in shadowboxes. The limit we have placed on the problem size,
maz_n = 18, reflects the observations of Section 3.4.4. The type relation_name has now
become a subrange of the integers, as discussed above. The new type setrep, also an
integer subrange, will now be used where formerly we specified set[relation_name).

We have been forced tointroduce the constant maz _n mainly because our new, concrete
declaration for table reserves space for an array and has to say how much space is needed.
In an actual implementation, one might prefer to allocate space for table dynamically to
avoid waste. Indeed, one of the useful properties of the integer representation of sets is
that it is dense in the sense that every integer in the range [0, 2" — 1] is the representation

for some subset of R = {Ro,Ry,...,R,_1}. Because of this property, a dynamically

92

const maz_n = 18
type relation_name =0..(maz_n — 1)
type setrep=10..(2m%-" - 1)

type rel_data = array indexed by relation_name of

record
cardinality : real
end
var table : array indexed by of
record

cardinality : real

best_lhs

cost : real
end

Figure 4.1: Concrete declarations

allocated table with index raﬁge [0,2™ — 1] wastes no space on table entries for sets that
do not exist. (It does waste space by reserving an entry for the empty set of relations,
which “exists” but plays no part in the Blitzsplit algorithm. However, the entry for the
empty set is the only one that is wasteful in this way.)

Moreover, the compactness of the integer representation for sets has the consequence
that each entry of the table need occupy only 20 bytes: 8 bytes for each of the reals
cardinality and cost, and 4 bytes for the bit-vector best_lhs.! The O(2") space complexity
estimate given previously may now be refined to 20 - 2* bytes. For n = 16, the space
requirement comes to about 1.3MB, a relatively modest amount by current standards; for
n = 18, the requirement is 5.2MB—more substantial, but still not outrageous. (Space
usage will rise by a small factor—ordinarily between 1.2 and 4, depending on the cost

model and whatnot—when we extend the table entries in later chapters.)

!We assume IEEE double-precision floating point except where otherwise noted, not because the prob-
lem demands high precision, but because we may encounter a wide range of exponents.

93

4.2 Set Operations using Integer Arithmetic

We will assume that the available operations on integers include the usual two’s com-
plement addition, subtraction, and negation, as well as several bit-oriented operations:
bit-wise and, here denoted &; bit-wise negation (or one’s complement negation), here de-
noted ~; and binary left-shift of the constant 1, here denoted 2*, where k is the shift
distance. When its operands represent sets, & may be thought of as the set-intersection

~

operator; ~ may be thought of as set complement (with respect to the domain). Note
that when we use the operation 2* to promote a relation name into a singleton set, the
exponent k should be thought of as having type relation_name, while the result should be
thought of as having type setrep.

Our code will take advantage of the fact that integer subtraction, as in z—y, represents

set subtraction when the set represented by y is contained in the set represented by z;

and that addition, as in = + y, represents set union when = and y represent disjoint sets.

4.3 The Auxiliary Function least_subset

At several points we will make use of the function least_subset illustrated in Figure 4.2.
Given the input 27424423, to take one example, this function returns 23; given 215425, it
returns 2°. It always returns the low-order bit of its input, so in some sense it is returning
the “least” nonempty subset of the set represented by the input. It achieves this result
through a well-worn bit-manipulation trick that can be explained as follows.

The two’s complement of a binary number is obtained by inverting all bits, then adding
one. For example, if we assume 8-bit words, 10011000, when inverted, becomes 01100111,
and then adding one yields 01101000. But observe that if the original binary number had
exactly k trailing zero-bits (in our example, k = 3), these become one-bits when inverted,

and then adding one to them has the effect of restoring them to zero-bits through carry

function least_subset(s : setrep) : setrep
return s & —s
end function

Figure 4.2: Least-subset function

94

propagation. The carry finally propagates into the (k + 1)st-lowest bit, which, having
previously been inverted from one to zero, is restored to one. At that point the carry
propagation stops, and all higher-order bits remain inverted. In short, an alternative
description of the two’s complement operation is that it inverts all bits to the left of the
lowermost one-bit. In our example, the high-order bits 1001 changed to 0110, but the
lowermost one-bit and the trailing zero-bits were unaffected. Hence the bit-wise and of a
binary number with its two’s complement erases its high-order bits and preserves just the

lowermost one-bit.

4.4 Procedure blitzsplit

Armed with least_subset, let us now consider the concrete realization of the procedures
of the Blitzsplit algorithm, beginning in Figure 4.3 with procedure blitzsplit. The first
argument to this procedure is now simply an integer specifying the number n of relations
over which we wish to compute a Cartesian product. Since we are assuming the relations
will be identified by index values in the range [0,n — 1], there is no need to pass a set of
relation names to blitzsplit.

In the first loop of blitzsplit, R now is an integer rather than a relation name, and
the iteration over set elements in the pseudo-code is realized by simply counting from 0
to n — 1. The second loop has also turned into a simple counting loop and is no longer
a nested pair of loops. Here s is a setrep, i.e., an integer corresponding to a set S in the
abstract code; to bind s to the representations of all nonempty subsets of {Ry, ..., Rn—1},
we simply step through the integers from 1 to 2™ — 1. There are two details that must be
observed to ensure the soundness of this implementation.

First, the procedures compute_properties and find_best_split should be called only with
arguments representing sets of at least two relation names; but sequentially stepping
through the integers from 1 to 2" — 1 yields the singleton sets intermixed with all the
others. To get around this difficulty, the test “if least_subset(s) # s ... ™ bypasses the
singleton sets: a bit pattern is equal to its low-order bit just when there is exactly one bit

in the pattern to begin with.

95

procedure blitzsplit, rel_data : rel_data)

for[RZ=0tO n—lldo
init_singleton(R, rel_data)
end for

fors:=1to 2" -1do
if least_subset(s) # s then
compute_properties(s)
find _best _split(s)
end if
end for

end procedure

Figure 4.3: Concrete blitzsplit

Second, recall that compute_properties and find_best_split rely on the subsets-first as-
sumption. That is, to be sure they will work correctly, we must apply them to all subsets
of a set 7 before applying them to 7 itself. But this requirement will indeed be satisfied
if we step through the integers sequentially, for the following reason: If § C 7, and s and
t are their respective integer representations, then s < t, since s is just ¢ with some of its
bits zeroed out. (Note, though, that the converse does not hold; for example, 2° < 2! but

{Ro} € {R:1}.) Consequently, s will be encountered before ¢ in sequential iteration.

4.5 Procedures wnit_singleton and compute_properties

The realizations of init_singleton and compute_properties (Figure 4.4) contain no surprises.
Aside from the fact that the set variables S, U, and V, which appeared in script in the
abstract code, have been replaced with the setrep variables s, u, and v, there are just

three small changes.
e The empty-set constant has been replaced by its integer representation, 0.
e Instead of {R} we now write 2F to create a singleton set.

e The nondeterministic choose-such-that statement in compute_properties has been
replaced by a deterministic assignment statement (the highlighted statement in Fig-

ure 4.4).

96

procedure init_singleton(R : relation_name, rel_data : rel_data)
table[|2F |].cardinality := rel_data[R)].cardinality
table[| 22 |]. best_Ihs := @

table[| 2R |].cost := 0.0
end procedure

procedure compute_properties(

u := least_subset(s)

vi=Ss—u
table[s).cardinality := table[u].cardinality x table[v].cardinality
end procedure

Figure 4.4: Concrete init_singleton and compute_properties

The use of the highlighted assignment statement as a replacement for the original choose-
such-that statement is justified as follows. Since the argument s of compute_properties
is a set of at least two relation names, any singleton subset of it is a nonempty, proper
subset. So the least_subset in particular, being a singleton, satisfies the conditions of the
choice; and since the choice was not otherwise restricted, this choice is as good as any

other.

4.6 The Auxiliary Function nezt_subset

In find_best_split we face a new problem when we try to make concrete the for-each-
such-that loop that scans through all possible splits of a given set S. In the abstract
code, the loop body executes once for each possible binding of Sj, to a nonempty, proper
subset of §. For a loop in the concrete code to achieve the same effect, its loop variable
must be bound successively to each integer representing a nonempty, proper subset of S.
In other words, given a seirep s representing a set S, the concrete code must somehow
step through all the integers whose bits are a nonempty, proper subset of the bits in s.
If the bits in s are contiguous—for example, if s = 24423 4-22—then stepping through
the subsets is easy. In that case one may just start with 22, and on each iteration add
2?2 until one reaches 2% 4+ 23 + 22, But if s has “holes” in it, as in 210 4 27 4 26 4 22,

the stepping cannot be accomplished by iterated addition of the lowermost bit, because

97

during some of those additions carry bits will spill into the holes and will not propagate

as they should. However, this problem has a remarkably straightforward remedy.

4.6.1 Conception

The auxiliary function nezt_subset in Figure 4.5 provides the means for stepping through
all the subsets of set s without tripping over the holes in its bit pattern. The conception
behind nezt_subset is to build “bridges” over the holes, thereby linking together the islands
of one-bits in s. Then during addition, carry bits will propagate from one island to the
next by crossing the bridges. Once the addition is completed, the bridges may be removed.

The particulars of this process are illustrated in Figure 4.6. In the first line of the
figure, our example set s = 210 4 27 4 26 4 22 is represented as a 12-bit binary number;
the labels across the top of the figure reflect the positions of the bits. Just below the
binary representation of s is a depiction of the islands of one-bits that lie within s. In
this depiction, the zero-bits appear as blanks so as to create a visual contrast between the
islands and the holes. (Inasmuch as islands has a numerical value, it is the same as that
of s, namely 2!° + 27 + 26 4 22, Throughout the figure, blanks are to be interpreted as
having zero value.) The next line depicts bridges of one-bits that span the holes between
the islands. Numerically, bridges is just the one’s complement of s.

Subsequent lines in the figure illustrate the process of iterating through the subsets of
s. Starting with four zero-bits in the positions that lie within the islands (“start”), we
first fill in the holes between these bits with bridges (“build bridges”). Then we add 1
at the low-order bit (“increment”); this addition ripples through bit-values 2° and 2! and
winds up turning on the bit for 22, After the bridges have been stripped away (“burn
bridges”), we are left with the bit pattern 0,0,0,1 in the island bit positions.

The figure shows three more iterations as the island bits run through the values 0,0,1,0,

then 0,0,1,1, and finally 0,1,0,0. In effect we are counting in binary within the island bits,

function nezt_subset(subset : setrep, s : setrep) : setrep
return s &(subset — s)
end function

Figure 4.5: Next-subset function

98

11 10 98 76 543 2 10

s 6 1 00 11 000 1 0O
islands 1 11 1
bridges 1 11 111 11
start 0 00 0
build bridges 1 0 11 00 111 0 11
increment 1 0 11 00 111 1 00
burn bridges 0 00 1
build bridges 1 0 11 00 111 1 11
increment 1 0 11 01 000 O 00
burn bridges 0 01 0

build bridges 1 0 11 01 111 0 11

increment 1 0 11 01 111 1 00
burn bridges 0 01

build bridges 1 0 11 01 111 1 11
increment 1 0 11 10 000 O 00
burn bridges 0 10 0

Figure 4.6: Counting inside of a bit pattern
just as if there were no holes, and the islands were contiguous.

4.6.2 Implementation

We can now explain the expression s&(subset — s) in the definition of next_subset.

We are given a value subset that lies within the islands defined by s, and we are to
find the next binary value that lies within those islands. The first step is to build bridges,
which we achieve by adding the binary number bridges to subset; but since bridges is just
the one’s complement of s, the result of this first step is subset + ~s. (Observe that the
bits in subset and ~s are necessarily disjoint.)

The next step is to add 1, which yields subset + ~s+ 1. But ~s+ 1 is just the two’s

99

complement of s, i.e., —s, so at the end of the second step we have subset — s.

Finally, in the third step, a bitwise and with s destroys bridges and preserves only
island bits. Thus we have s &(subset — s).

The foregoing explanation notwithstanding, the appearance of subtraction in the ex-
pression s &(subset — s) may seem counterintuitive. But it makes perfect sense if one
considers particular special cases. One important case is seen when s is the maximal set
consisting of all one-bits. Since the pattern of all one-bits represents —1 in two’s comple-
ment arithmetic, s & (subset—s) = —1 &(subset—(—-1)) = —1 &(subset+1) = subset+1. In
other words, when the set s is all-inclusive, nezt_subset simply steps sequentially through
the integers. The cases where s is the two’s complement representation of —2, —4, etc.,
are similar—nexzt_subset then steps by 2 through the even integers, or by 4 through the
multiples of four, and so on.

Note also that in the special case where subset equals 0, nezt_subset returns s &(0—s) =
s & —s. Thus, next_subset(0, s) is the same as least_subset(s). There is nothing surprising
about these facts, but if nothing else they are reassuring, for they show that next_subset

behaves as it ought in the cases that are easiest to understand.

4.6.3 Generalization

The function nezt_subset presented above counts upward in binary inside the island bits
of a bit pattern. But counting downward inside a bit pattern is also easily achieved by
means of the function prev_subset(subset,s) = s&(subset — 1). The asymmetry between
this definition and that for nezt_subset stems from the fact that the zero-bits between the
islands in s already form effective bridges for the propagation of borrows, and hence do
not need to be altered prior to the subtraction of 1.

More generally, the subtrahend 1 in prev_subset can be replaced by any value that
lies within the island bits of s, and subtraction will continue to work correctly inside the
island bits, just as if these bits were contiguous. Thus, if & lies within the island bits of
s, one can define prev_subset(subset, s) = s &(subset — k) to step through the subsets by
some stride determined by k. Note that any odd stride (i.e., odd with respect to the island
bits) may be used to cycle through all the subsets before any subset is repeated.

100

Although we use only nezt_subset in the present work, it is conceivable that one could
profit by choosing strides other than 41 for stepping through the subsets in alternative
orders. In particular, the assumption in Section 3.4.2 that the subsets are visited in a
random order might come closer to being satisfied (at least in appearance) with some
different stride. Use of a large stride with frequent wrap-around can ensure that none of

the bits within s remains in the same state for a long time.

4.7 Procedure find_best_split

With the function nezt_subset in hand, we obtain a concrete realization of procedure
find_best_split without difficulty (Figure 4.7). For simplicity, in this realization of the
code we assume that the cost function & is the naive cost function k¢. In particular, we
assume that x®P4¢(. . .) =0, and so dependent_cost and operand_cost are one and the same.

For the most part this concrete code is a fairly direct transcription of the abstract
procedure find_best_split in Figure 3.2, but (aside from the omission of dependent_cost)
there is one detail of the concrete code in which we have cheated a bit. Rather than
use nezxl_subset to iterate through all the subpatterns of s, as one might expect, we have
instead used nezt_subset to iterate through just half of those patterns. Suppose s is
27 425 + 22, Then the new variable high_part acquires the value 27 + 28, i.e., all bits of s
save the least bit. It is high_part, not s, that we iterate through, so on successive iterations
of the loop, lhs takes on the values 25, then 27, and finally 27 + 26. The effect of leaving
the bit 22 out of the iteration is that we consider only those splits that place R; on the
right-hand side of the Cartesian product expression. Symmetry assures that if there is a
least-cost plan with R on the left, then there is a plan of equally low cost with R; on the
right—because the right- and left-hand sides of the expression are interchangeable. So we
do not lose anything by consigning some particular relation (R3 in our example) to the
right-hand side. We do however gain approximately a factor of two in speed.

That gain appears to rely on the symmetry of our cost model. But even when the
cost model is not symmetric, it is beneficial to structure the iteration as we have done in

Figure 4.7. Imagine a cost model such that s, and hence k" too, is asymmetric with

101

procedure find_best_split(s : setrep)
best_cost_so_far := oo
high_part := s — least_subset(s)
lhs =0
while lhs < high_part do
lhs := nezt_subset(lhs, high_part)
rhs :=s — lhs
operand_cost := table[lhs].cost + table[rhs).cost
if operand_cost < best_cost_so_far then
best_cost_so_far := operand_cost
table[s].best ths := lhs
end if
end while
table[s].cost := best_cost_so_far + table[s).cardinality
end procedure

Figure 4.7: Concrete find _best_split

if operand_cost < best_cost_so_far then
dependent_cost := operand_cost + k*P%(s, lhs, rhs)
if dependent_cost < best_cost_so_far then

best_cost_so_far := dependent_cost
table[s).best _lhs := lhs
end if

dependent _cost := operand _cost + k**"(s, rhs, lhs)
if dependent_cost < best_cost_so_far then
best_cost_so_far := dependent _cost
table[s].best_lhs := rhs
end if
end if

Figure 4.8: Use of an asymmetric cost function

respect to the left-hand and right-hand inputs. Then the if statement inside the while
loop of Figure 4.7 must be replaced by the more complicated if statement of Figure 4.8.
By computing dependent_cost twice, with the roles of lhs and rhs reversed the second
time, Figure 4.8 compensates for the fact that lhs takes on only half of the candidate
patterns: the other half are all taken on by rhs. The functionality is therefore the same
as if lhs iterated through all the subpatterns of s, but the loop overhead is only half as
great.

In fact, the savings are not confined to loop overhead. As noted in our discussion of

102

complexity, the frequency with which the test operand_cost < best_cost_so_far evaluates
to true tends to be low, and so the entire body of the if block of Figure 4.8 is often skipped
over. Because of this effect, asymmetric cost models need not entail significantly greater

optimization effort than symmetric ones.

4.8 Implementation of Concrete Code in C

Although we have translated the abstract code of Figure 3.2 into a more concrete form in
the figures of this chapter, the result is still pseudo-code. To execute this code and measure
its performance, one must take the further step of translating the concrete pseudo-code
into an actual programming language such as C. Appendix B (page 281) shows the result
of such a translation, in which numerous small improvements have been made along the
way. The most significant differences between our concrete pseudo-code and the C

implementation are the following:

e The table table, which in the pseudo-code has three fields per entry, has been de-
composed vertically in the C code. That is, it has been made into three separate
arrays, named t_cardinality, t_best_lhs, and t_cost, each with a scalar element

type. This decomposition appears to improve processor-cache performance.

e The C code has two versions of find_best_split, and so to scan a given subset of
relations, one of the two verstons is chosen on the basis of the number of relations

in the subset.

— The function find best_split2, for sets of three or more relations, begins
with three lines of code (labeled with the comment “heuristic to reduce initial
best_cost_so_far”) that could just as well be omitted as far as functionality is
concerned. The idea behind the heuristic is to examine, before any others, two
splits of s in which the relations of the left-hand or right-hand side are known
to “go well together”—in the sense that these sets of relations participated
in an optimal split- for some subset of s. One thereby hopes to lower the

frequency with which the condition operand_cost < best_cost_so_far is satisfied.

103

(The author now believes that this heuristic has little or no value in join-order
optimization.)

— In addition, find best split2 unrolls its loop four times. A further economy
is made possible by the fact that successive values produced by nezt_subset fall
into a cyclic pattern. By precomputing the pattern that nezt_subset would pro-
duce on four successive calls, one cuts the number of nezt_subset computations

by a factor of four.

— Both of the C versions of find_best_split avoid computation of the floating-point
sum table[lhs].cost + table[rhs].cost if it can be ascertained that the sum is not

needed.

e In representing real numbers, C distinguishes between 4-byte “floats” and 8-byte
“doubles.” In our application, we may encounter extremely large exponents that
can be accommodated only by doubles;? floats are inadequate in general. However,
we reason that any Cartesian product with cost exceeding 10%° is of no practical

interest. On this basis we use floats for cost values.

As a consequence, if the least-cost solution to a given Cartesian product optimiza-
tion problem does exceed 10%° (COST_LIMIT in the code), our C implementation of
blitzsplit will return empty-handed. But if there exists any solution with a cost of
10% or less, we are still assured of finding it, and indeed of finding the cheapest such

solution.

e To achieve further savings in floating-point manipulations, we sometimes compare
floats using integer operations. That is, we take the raw 32-bit encodings of floats,
and pretend that these 32-bit values are integers. It is a property of many floating-
point representations, including those of the IEEE standard, that if only non-

negative, finite values are considered, smaller integers encode smaller floating-point

2Most newer machines conform to the IEEE floating-point standard, in which the range for double-
precision values exceeds 600 orders of magnitude. However, some older architectures, such as the VAX,
use exponent fields of the same width for doubles as for floats. On such architectures one needs to simulate
wide-range floating-point arithmetic—for example, using (integer, float) pairs—to avoid overflow on join
problems involving many large relations and many small selectivities.

104

values, and larger integers encade larger floating-point values. This property justifies

our use of integer < to compare floating costs.

The improvements listed above have proved to be beneficial to the performance of the
algorithm in tests run on a Sun SPARCstation 2.2 Whether these benefits carry over
to other platforms has not been investigated; presumably at least some of them do. In
all likelihood many other improvements of a similar nature are possible, some platform-

dependent, and some not.

4.9 Empirical Observations

Later, in Chapter 6, we will present a detailed analysis of our algorithm’s performance on
join-optimization problems. But there is merit in taking a preliminary look at performance
now. Patterns seen in the measurements here will provide intuition behind decisions to be
made when we generalize the algorithm beyond Cartesian products. They will also give
us clues about how to attack the much more difficult problem of measuring performance
subsequently, when we must worry about the join-graph topology, selectivity values, and

the cost model in addition to the variables we will consider here.

4.9.1 Selection of Sample Points

To measure our optimizer’s performance, we must select a sample Cartesian product query,
or a set of such queries, to use as input. How should we select those samples? Even at this
stage we are dealing with a query space that has many degrees of freedom; it is not obvious
how to find sample points in that space that will be representative of the remainder of the
space. However, we have nothing to lose by surveying a cross section of the query space in
the hope of discovering regularities. As a first step let us therefore examine the subspace

in which the number of relations n is fixed at 10.

3The performance judgments reported here, and the Sun timings reported in this chapter, are based
on measurements taken on a lightly loaded Sun 4/75 running under SunOS 4.1.3_.U1 Version B at circa
40MHz with a 64KB unified instruction + data cache; the C compiler was gcc version 2.5.8 invoked as gcc
-02.

’ 105

Thus, we are assuming that the optimization problem involves n = 10 cardinalities to
be given as input. Each cardinality may vary independently, so we are still faced with
the challenge of exploring a 10-dimensional problem space. But common sense suggests
that it may not be necessary to vary each cardinality independently; instead it may be
more profitable to identify important features of the input configurations, and to consider
variations in those features. One interesting feature is the geometric mean of the 10
cardinalities. A second feature is the spread of the cardinalities—the ratio between the
maximum and minimum among them. Let us see what we can learn by varying just these
two features.

(Note that what we call the spread of the cardinalities is closely related to the statistical
concept of variance [23]. In varying the geometric mean and spread of the cardinalities,
we are effectively varying the first two moments of the distribution of the cardinalities’
logarithms.)

Since we have just replaced 10 dimensions with merely 2 features, there are still 8
degrees of freedom left over that we must resolve in some manner. We do so as follows.
Upon choosing a mean cardinality u and a spread S, we assign cardinalities to Ry through
Rg such that Rg is smallest and Ry largest, with the cardinalities of the remaining relations
spaced evenly between these extremes on a logarithmic scale. Hence |Ry| - |Rg| = u? and
|Rg|/|Ro|l = S, and there is a constant ratio p = SY/° such that |R;,|/|R;i| = p for i from 0
to 8. For example, if z = 10° and S = 10°, then |Ry| = 10%° ~ 3.162, while |Rg| = 10°° =
3.16-10%, so that |Rg|-|Rg| = 1095.10%5 = 101° = u2; moreover p = §1/° = (10°)1/9 = 10,
and hence the R; form the sequence 3.162, 31.62,316.2,...,3.162-10%. We use this policy
to assign cardinalities to the input relations in all the measurements reported in this
chapter.

Figure 4.9 shows how optimization time varies with our two selected features. The
overall shape of Figure 4.9(a) is attributable to the fact that the total number of iterations
of the loop in find_best_split is constant ezcept when the Cartesian product under consid-
eration entails costs exceeding COST_LIMIT (10°). Such costs arise when mean cardinality
reaches about 10%®, for then the cardinality of the result, a 10-way Cartesian product,

becomes 103510 = 10%*—hence the total cost of the product cannot be less than 103%.

106

time in secs.

1
1e9 1e9 max/min cardinality
mean cardinality ratio
(a) The big picture
time in secs.
0.03
0.025
0.02
1
1
2 3 7 . -
4 561789 9 max/min cardinality
mean cardinality ratio

(b) Close-up view of rear corner of big picture

Figure 4.9: Cartesian product optimization time for 10 relations, as a function of mean
cardinality and ratio of maximum to minimum cardinality

As mean cardinality rises above 103, one starts to encounter products of fewer than 10
relations whose cardinality exceeds 103%, and to avoid overflowing its cost variables, our
implementation will refrain from optimizing such products. Consequently, optimization
time falls off steeply beyond this point. But for mean cardinalities below this threshold,
the picture is basically a large plateau.

At the rear corner of the plateau, however, there is a sharp upward aberration. This
aberration is brought into focus in the close-up view of Figure 4.9(b). The shape of this

corner surface is attributable to variations in the frequency with which the if conditions

107

are satisfied in the loop in find_best_split. When the costs of alternative splits considered
in find_best_split are spaced far apart, it is often possible to dismiss an uncompetitive split
with a cursory glance at its left- or right-hand component alone. More effort is needed to
decide whether alternatives are competitive when the costs are close together.

The spacing of costs of alternative splits depends both on the mean cardinality and
on the spread of the cardinalities. When mean cardinality is 1 and the spread factor is 1,
all intermediate results for all subsets also have cardinality 1; in this situation, there is no
variation at all in the costs of alternative splits.* If mean cardinality rises but the spread
remains at 1, there will be variation due to the fact that products of larger numbers of
relations have greater cardinality than products of smaller numbers of relations. On the
other hand, if the cardinality remains at 1 but the spread increases, there will be variation
simply because different products will be made from different mixes of relations.

As the figure shows, the interplay between mean cardinality and spread is complex,
but well-behaved. There is no evidence of discontinuities anywhere in the surface; it seems
a good bet that the worst time that appears in the figure is not far from the worst time
possible. It is also notable how quickly the optimization time drops off from the corner
mound; mean cardinalities as low as 5 yield times that are not far different from the
average over the whole plateau.

When mean cardinality is 5 or greater, the spread of the cardinalities no longer seems
to make a great deal of difference. From this observation we leap to the conjecture that
the 8 degrees of freedom that we threw away earlier probably would not make a great deal
of difference either. The measurements in the figure are based on cardinalities equally
spaced (logarithmically) between the minimum and the maximum. What would happen
if the cardinalities were spaced irregularly? One cannot say for certain without making
innumerable measurements, but it seems most implausible that the individual spacings

should have a big effect when the aggregate spacing—the ratio between the maximum and

minimum—evidently does not.

‘However, somewhat paradoxically, this case is not the very worst one. With no variation in costs, the
best ths for a given set will be fixed on the first iteration of the loop in find_best_split, and will never be
bested; the innermost if will fail on all subsequent iterations. A harder case is when there is almost no
variation, but just enough to leave room for updates to best_ths.

108

The 8 degrees of freedom we discarded determine not only the spacing between the
cardinalities, but also the order of the cardinalities. The measurements shown in the figure
are based on Ry being smallest, B, being next smallest, and so on. Might one obtain
different measurements with a different ordering? In fact, the ordering of the cardinalities
does affect performance; the ascending order we have used here is actually not an especially
favorable one. At present we do not know how to predict which orderings will do better
and which will do worse (though a simple descending order often gives noticeably better
results than an ascending order). Our ignorance on this point represents an opportunity
for further improvement in the implementation—for nothing stands in the way of adding
a preprocessing step that rearré,nges the input cardinalities (in effect by renaming the
relations) to obtain a more favorable ordering. But lacking a solid understanding of the
issue, for the present we shall stick with a simple ascending order. The performance figures
given here should be regarded as conservative with respect to order; it is possible to do
better.

Our cross-sectional measurements and the conclusions and conjectures we drew from
them were based on a fixed number of relations n = 10. With different n one obtains
numerically different results, but qualitatively the effects described here and displayed in
Figure 4.9 are entirely typical.

The smooth and generally flat shape of the optimization time function makes it possible
to give a fairly informative characterization of the implementation’s performance at a given

n with just two measurements:

e A “typical” performance figure, meant to be representative of the plateau, and taken
at the sample point with mean cardinality 50 and spread 10. These parameters take
us a safe distance from the rear corner mound, and at the same time, even with
n = 18, keep clear of the drop-off that results when costs exceed 103%. (Note that
with n = 18, a mean cardinality of only 100 falls off the edge of the plateau, since

100'8 = 10218 = 10%.)

e A “near-worst” figure, taken at mean cardinality 1.01 and spread 1.01. We know of

no sample point that yields higher timing figures.

109

4.9.2 Timings

Based on the “typical” and “near-worst” sample points discussed above, we now present
optimization times for n ranging from 3 to 18. Table 4.1 gives both typical and near-worst
times measured on a Sun SPARCstation 2 and on a Hewlett-Packard Series 9000/755.%
Figure 4.10 gives only the typical times, in the form of a graph.

One will note, referring to the graph, a sudden jump in the Sun timings at n = 15
and in the HP timings at n = 17. We conjecture that these jumps reflect the points at
which the array of costs no longer can be held in processor cache. Because of these jumps,
it is unreasonable to try to fit all the Sun measurements or all the HP measurements to
a function of the form 3"Ty,0p + (In2/2)02"T'p0d + 2" Tyypset, i.€., to the execution times
predicted by formula (3.12). However, it is an interesting exercise to attempt such a fit by
excluding the points beyond the jump—thus, excluding n > 15 on the Sun and n > 17 on
the HP. The dashed curves in the graph illustrate such a fit, and show that formula (3.12)
indeed fits the measured timings quite well for the points that precede the jumps. From
these curve fittings, we infer that Tj,,, is about 180 nsec on the Sun, and about 50 nsec
on the HP.

It is notable that if the (In2/2)n2"Ty,q term of formula (3.12) is dropped, it is not
possible to obtain curves that fit the measured data anywhere near as well as the curves
seen here. Thus, our statistical argument regarding the execution frequency of the con-
ditional code in find_best_split appears to be borne out empirically, despite the fact that
our implementation of the algorithm visits the subsets in an order that is anything but
random. The success of the model may just be a lucky accident, but in any event, it does
appear that the execution count of the conditional code is roughly proportional to n2".

These last remarks apply only to optimization problems whose cardinality configura-
tions lie in the plateau of Figure 4.9(a). When the cardinalities are all very small, the
execution frequency of the conditional code will be higher. On the other hand, when

the cardinalities are greater than those in the plateau, not only will the conditional code

All Hewlett-Packard timings were measured on a lightly loaded HP 9000/755 running under HP-UX
09.03 at 97MHz with 256KB each of instruction and data cache; the C compiler bundled with HP-UX was
invoked as cc -Aa +03. The code in Appendix B differs slightly from the version used for these timings.

8

15
16
17
18

time in seconds

110

Sun SPARCstation 2

HP 9000/755

typical near-worst typical near-worst

0.000 033 0.000 033 0.000015 0.000015
0.000 089 0.000 090 0.000041 0.000041
0.000 229 0.000 236 0.000099 0.000 100
0.000 566 0.000 607 0.000228 0.000235
0.001 37 0.001 58 0.000519 0.000 556
0.003 34 0.004 21 0.001 20 0.001 34
0.008 2 0.0115 0.002 80 0.003 36
0.020 8 0.0323 0.006 77 0.008 67
0.054 2 0.0924 0.016 9 0.023 2
0.144 0.269 0.043 5 0.064 0
0.397 0.792 0.116 0.181
1.15 2.39 0.320 0.521
5.36 9.37 0.90 1.52

18.8 32.1 2.60 4.49

60 104 16.5 23.0

187 326 62 87

Table 4.1: Cartesian product optimization time for a given number of relations n

1000
100

1.0

0.1

0.01
0.001
0.0001
0.00001

time in secs.

10r

] 1 1 1 1)] 1

|
- Sunmeasured * o .+
Sun fitted curve " o5, .]

HP measured * O
L. HP fitted curve ~ * -~ AR .J
v .t
L RE. S e o
g7
.. rE
u - ...
L S
= L A -
¥ e
_,.0’ I 2
[~ .,’ AR -
T

pos A | 1 | 1 | | |

2 4 6 8 12 14 16 18
number of relations

Figure 4.10: Cartesian product optimization time for a given number of relations n

111

be executed less frequently, but the function find_best_split will be skipped altogether
for many sets of relations. When join predicates are added to the picture, we will be
able to capitalize on the latter effect in ways that are not possible in Cartesian product

optimization.

4.10 Summary

In this chapter we have descended from high-level algorithmic matters into a detailed
investigation of implementation considerations. We drew on a combination of lightweight
data representations and coding tricks in the pursuit of high performance.

Our empirical results validate our approach, at least in the limited context of Cartesian
product optimization. They also reveal performance properties of our algorithm that
would have been difficult to predict from first principles. Especially interesting is the
algorithm’s insensitivity to variations in the spread of the input cardinalities except at
very low mean cardinalities—and the consequent flatness of the optimization time function
over a wide range of possible inputs. That flatness allows us to say with some confidence
that the performance trends seen in Table 4.1 and Figure 4.10 are not a fluke of our chosen
sample points, but are representative. |

Having obtained what we needed from this venture into implementation details, we
shall revert in the remaining chapters to a more abstract treatment of the subject, and

say no more about bit manipulations, floating-point representations, or cache effects.

Chapter 5

Support for Join Predicates

In the last two chapters we focused on Cartesian product optimization. Because there were
no join predicates to contend with, the cardinality of the product over a set {A, B,C'} was
simply |A| - |B| - |C|; consequently, computation of cardinalities was a trivial part of the
problem. But now, when we take join predicates into account, we have a little more work
to do to compute cardinalities.

Suppose the join of {A, B,C} can be computed by the expression (A X, B) M, C,
where p, ¢, and r are predicates. Then the join-result cardinality (henceforth, just join
cardinality) is |A| - |B| - |C| - selectivity(p) - selectivity(q) - selectivity(r). So if we can identify
such an expression for joining {4, B, C}, it will be straightforward to obtain the cardinality
of the result. But given just {A, B,C}, how can we deduce p, ¢, and »? Worse, what
if there is another expression for the join of {A, B,C} that uses different predicates—
say (C M; A) M, B? Which expression should we take as the basis for our cardinality
computation?

As we shall see shortly, the worries lurking behind these questions are unfounded. All
sensible expressions that join {4, B,C} must involve exactly the same predicates, and
these predicates can be deduced without actually constructing any of the join expressions
in which they participate. In fact, although the computation of cardinalities in the presence
of predicates is more complicated than in the Cartesian product case, the extra effort
required is surprisingly slight.

In this chapter we present techniques for accommodating join predicates under two
sets of assumptions. First, we consider the case where the predicates are independent, and

second, we develop a mechanism that compensates for redundant predicates. But before

112

113

getting deeply into either of these topics, let us start off with a few general observations

about join graphs and join-result cardinalities.

5.1 Join Graphs, Subgraphs, Predicates, and Cardinalities

Consider the join graph in Figure 5.1(a). Its nodes are labeled with the relation names
A, B, C, and D; we will identify its edges by the names AB, ZZ', EE’, 71-5, and 6'3,
and these names will also serve to identify the corresponding predicates. Following graph-
theoretic convention, we may characterize the graph as an ordered pair G = (R, P),
where R is the node set {A, B,C, D}, and the edge set P is the set of predicate names
{4AB,AC,BC,AD, CD}.

5.1.1 Induced Subgraphs

Now suppose we are interested in the cardinality that results from a join over the subset
S = {A,B,C}. Let Q be the set of edges wholly contained in S (i.e., those with both
endpoints in §)—namely {ZB, AC, EZ'} Then the subgraph (S, Q) of G, illustrated in
Figure 5.1(b), is called the subgraph of G induced by §. One can see that in the course
of a join of the relations named in &, the predicates that will be applied will be exactly
those in the subgraph (S, @)—no more and no fewer. No more, because predicates not
in Q refer to relations not in S, so these predicates cannot possibly be evaluated when
only the relations in § are available. No fewer, because there is no benefit in deferring the
application of a predicate once its referent relations have become available.

It follows that the join cardinality of S can be computed by multiplying together
the cardinalities of all the relations, and the selectivities of all the predicates, that are
represented in the induced subgraph (S, Q) shown in Figure 5.1(b).

A word of caution should be added to the assertion above that there is no benefit
in deferring the application of predicates. This assertion rests on the assumption that
predicate evaluation is cheap. Other optimizers make the same assumption, and rule out
deferral of predicate application in multiway joins. That is, if (A Mya, B) X, C is a

valid join expression, most optimizers will not consider the alternatives (A X, B) M5, C

114

S B——=C B——

YA,

emccran,

(a) Sets of relation names in a (b) A subgraph
join graph

Figure 5.1: Subsets and subgraphs in a graph

and (A X, B) X,., C. However, those alternatives could be preferable to the original
expression if p or g involve expensive computations. Hellerstein and Stonebraker [22] de-
scribe a cost-based predicate-placement technique that achieves huge gains when expensive
predicates are deferred.

We have not investigated the applicability of their technique in the context of the
Blitzsplit algorithm. In the present work, we assume that predicates are cheap to evaluate,
and that they should therefore be evaluated as early as possible. In other words, they

should be pushed down as far as possible.

5.1.2 Subgraphs and Join Expressions

The observations of the foregoing paragraphs tell us which predicates should be applied
in the course of a join over &, but they do not directly tell us how to construct actual join
expressions that apply those predicates. They do however give us the latter information
by implication.

Suppose we split S into two disjoint subsets &/ and V, as illustrated in Figure 5.2.
Then what was true for S must also be true for & and V: The predicates applied in the
course of a join over U/ will be just those in the subgraph induced by U, and the predicates
applied in a join over V will be those in the subgraph induced by V.

Now let i* denote the best expression for joining ¢, and V* the best for V (cf. page 71),

and consider a join of &#* and V*. Since all relations in S participate in this join, all

115

———————

il R N et

Figure 5.2: Subsets and subgraphs in the graph for § = {4, B,C}

predicates wholly contained in S should also participate. But some of those predicates
may also be wholly contained in &/ and therefore already participate in &#*, and similarly
for V. Then it is the predicates that are left over—those that span & and V—that must
qualify the join of &* and V*. In our example, the predicates spanning & and V are AB
and ZZ', so the correct expression for joining U* and V* is U* M = V*.

Because the predicates qualifying a join are completely determined by the join graph
and by the relation names on the left- and right-hand sides, we may omit predicate anno-
tations without ambiguity: Z/* X V*, given the join graph G above, means U* M5 = V*,
and cannot mean anything else. In the general case,

U NV = U Mo V*
(5.1)
where conj= /\{p | p spans Y/ and V}
whenever Y and V are disjoint sets of relation names. The predicates that span &/ and V

are precisely those that belong to the join of 4* and V* in the sense described previously

in Section 2.2.3.

116

5.1.3 Cardinality Recurrence

Now to compute the join cardinality of S, we may multiply together the join cardinality

of U, the join cardinality of V, and the selectivities of all predicates spanning &/ and V:

cardinality(S§) = cardinality(U) - cardinality(V) -

H{selectivity(p) I p spans U and V}
(5.2)
where UNV =10

and Huy=a2_.

The validity of (5.2) follows immediately from the fact that the join of S can be computed
by the join expression of (5.1) (given that NV =0 and HUV = 8).

But this explanation may not satisfy completely. Is it not possible that the right-hand
side of (5.2) could depend on the choice of &/ and V? That no such danger exists, and that
the right-hand side of (5.2) gives the correct cardinality regardless of the particular choice
of U and V, can be seen by considering separately the cardinalities and the selectivities
that must participate in this product.

The cardinality of each relation in & must show up in the product exactly once, and
indeed it will; for a given relation in § is either in ¢/, in which case its cardinality appears
as a factor in cardinality(U), or it is in V and contributes a factor to cardinality(V). The
given relation cannot be in both & and V, and hence never contributes more than one
factor to the product. These observations are valid whenever U and V are disjoint and
their union is S.

As for the selectivities, recall that the join cardinality of & must include a selectivity
factor for each predicate in the subgraph induced by §. These predicates, as noted above,
fall in three camps: those wholly contained in ¥/, those wholly contained in V, and those
that span &/ and V. Those wholly contained in &/ contribute their selectivities as factors
in cardinality(U), and similarly for V; so the predicates that remain are just those that
span U and V. But since we explicitly include the selectivities of these predicates in
formula (5.2), these, too, are accounted for. Moreover, these three sets of predicates are

disjoint, so no predicate is counted more than once.

117

5.1.4 Summary

We now have some basic facts about join predicates and join cardinalities at our disposal,
and we will proceed to apply them in the context of the Blitzsplit algorithm. All the
cardinality computations in the sections that follow are based, directly or indirectly, on
equation (5.2).

Refer to equation (5.2) once again. If & and V are both nonempty, then by the
subsets-first assumption, the values cardinality(U{) and cardinality(V) will be readily avail-
able when it comes time to compute cardinality(S) in the Blitzsplit algorithm. Con-
sequently the problem of computing cardinalities reduces to the problem of computing
[T{selectivity(p) | p spans U and V}; products of this form will command much of our

attention as we proceed.

5.2 Cardinality in the Presence of Predicates

In this section we shall present a technique for computing cardinalities in the presence of
simple, independent predicates. Qur objective will be to enhance the Blitzsplit algorithm
so that the cardinality associated with each set § in the dynamic programming table
reflects the appropriate predicates (i.e., the predicates in the join subgraph induced by
S). Our technique will apply to arbitrary join graphs (excluding hyperedges).

We will use the observations of Section 5.1 above to incorporate predicate selectivities
into our cardinality computations with just three multiplications per entry in the dynamic
programming table. (Since we already required one multiplication in the Cartesian product
case, the selectivity computations effectively require only two multiplications per table
entry.) Achieving this efficiency in computing the cardinalities will depend in part on
adding another field to each entry in the dynamic programming table. By extending the
table in this way, we will be able to further capitalize on the sharing of computation that
dynamic programming makes possible.

First we present the conception behind our approach, and then its realization in ab-

stract pseudo-code.

118

5.2.1 Conception of Cardinality Computation

Our strategy takes advantage of the fact that an order may be imposed on the relation
names in the input. Conceptually it does not matter what the order is, as long as it is well-
defined and total; but for concreteness let us say that the orderingis A< B<C < Din
our example above. This ordering has nothing to do with cardinality or any other property
of relations—it is just an arbitrary ordering on the names.

We develop the conception as follows. First we define two operations, least_subset and
fan_sels, that rely on the ordering of the relation names. Then we show how to com-
pute fan_sels, and finally we show that the cardinality computation is straightforwardly

expressed in terms of least_subset and fan_sels.

Operation least_subset We have already seen an operation with this name in Chap-
ter 4. Here the definition will be slightly different, but as it turns out, equivalent, which
justifies our reuse of the name. What we need now is that least_subset(S) should be the
singleton set { R} such that R < R’ for all R’ in S. For example, least_subset({A,C, D}) =
{A}, and least_subset({B,C}) = {B}. Our new definition matches the behavior of
the least_subset function of Chapter 4 if one takes the ordering on Ry,...,R,—; to be
Ry <...< Rp_;.

Recall that our goal in Chapter 4 was to split a set § into two disjoint subsets I/ and
V; taking Y = least_subset(S) proved to be a convenient route to that goal. That &/ ended
up being a singleton, and moreover, a particular, well-defined singleton, was an accident
of the implementation, and completely irrelevant from the standpoint of the specification.

Here the situation is entirely different: all details of the behavior of least_subset take
on logical significance. At this stage least_subset should be thought of not as an implemen-
tation device, but as an abstract operation in its own right—albeit one with a very precise
specification, and one for which we are lucky enough to have an efficient implementation

waiting in the wings.

Operation fan_sels Before defining fan_sels, we must introduce the notion of a fan of

predicates for a set S. Again consider the set S of Figure 5.2. Since U is a singleton, the

119

edges emanating from Y toward the relation names in V resemble the spokes of a folding
fan. In this example there are just two spokes, AB and 71?’, so it is not much of a fan; but
one can well imagine if V were a larger set such as {B,C, E, J, K, L}, then there could be
as many as six spokes, and the resemblance to a folding fan would emerge more strongly.

There may be many fans embedded in the subgraph induced by a set S, but when
we speak of the fan of S, we shall mean specifically the fan of predicates reaching from
least_subset(S) to the remaining relations in S. Because A is least in {4, B,C, D}, the
fan we used in our illustration above was in fact the fan of $ = {A, B, C}.

Now to the definition of fan_sels. In the example of Figure 5.2, fan_sels(S) is just the
product of the selectivities of AB and AC. More generally, for any S, fan_sels(S) is the

product of the selectivities of the predicates in the fan of S:

fan_sels(S) = H{selectivity(p) ’ p spans Y and V}

where U = least_subset(S) (5.3)

and V=8-U.

One will note the similarity between this product and the []J-expression that appears in
equation (5.2). The only difference is that our present characterization of the product is
more restrictive: here Y must be least_subset(S). This restriction will prove crucial to

computing fan_sels easily in the context of the Blitzsplit algorithm.

A recurrence for fan_sels A free-standing computation of fan_sels would presumably
require a loop or recursion to iterate through the selectivities to be multiplied together.
However, our use of fan_sels will not be free-standing; rather, it will occur in the context of
a dyramic programming algorithm, and we will compute fan_sels(S) for every nonempty
subset S of some set R. If we memoize the result of each such computation in our
dynamic programming table, then we have the option of expressing the results of the
later computations in terms of the earlier results—relying, as usual, on the subsets-first
assumption. By constructing a recurrence relation for fan_sels, we will be able to avoid
looping or recursion in the computation of fan_sels for any particular set S.

Suppose as before that § = {4, B,C} has been split into & = {A} and V = {B,C}.

120

———— e L eetea Lemmeg

I” w Z \\\ g ' .'.' Z Y
’ ,‘-\\ ,“\\ \ :. ,"‘s\o. PP R
Vi ! Baic), “WB KoC
S MLt ‘-‘\\ ’."'-‘\\ _ls
S22 -./f——‘ UUWY, J\ f Tiuuz
u ‘I A \, -..'.;, A ‘3‘:
So P \\‘_'/,-';
Bintatelleie - :;.u.:- !
(a) A split of V (b) Subfans of S=U UV

Figure 5.3: Carving up a fan

Figure 5.3(a) illustrates how V may be further subdivided into subsets W and Z. Now
consider the sets if UW and U U Z shown in Figure 5.3(b). Since A is least in S, A must
necessarily also be least in each of the sets / UW and WU Z. It follows that the predicates
spanning & and W constitute the fan of # U W, and the predicates spanning &4 and 2
constitute the fan of &/ U Z. Moreover, these fans are disjoint (since W and Z are disjoint)
and their union is the fan of S (since WU Z =V and WUV = §). From these facts we

deduce the recurrence

fan_sels(S) = fan_sels(U U W) - fan_sels(U U Z)

where U = least_subset(S) (5.4)
and WNnzZz=40
and WUZ=8-U.

In the figure, both W and Z are singletons, but in general they need not be; (5.4) holds for
any split of V into disjoint W and Z. One may visualize the more general case by thinking
of the solid lines in Figure 5.3(b) as representing not individual predicates, but bundles of
predicates connecting U to W and U to Z, respectively. (Nor does the correctness of (5.4)
depend on U being a singleton. The necessity of U = least_subset(S) being a singleton
will be explained shortly in Section 5.2.2.)

121

Computing cardinality Combining equations (5.2) and (5.3), we immediately obtain
cardinality(S) = cardinality(U) - cardinality(V) - fan_sels(S)

where U = least_subset(S) (5.5)
and V=§-U.

Now we are done, for by applying first equation (5.4) and then (5.5), we obtain a cardinality
for S that takes the appropriate selectivities into account; and it does so with just three
multiplications, as promised—provided only that we extend our dynamic programming

table so that it can store fan_sels(S) with each set of relations S.

5.2.2 Realization of Cardinality Computation

It is straightforward to implement the technique just described as program code. But the
foregoing discussion left some loose ends, and these need to be tied up in the code, for
computers are famously obstinate about failing to infer one’s intent even when it ought
to be obvious.

One thing that ought to be obvious is that selectivities cannot be conjured up out of
thin air. Yet in our just-concluded discussion of cardinality computations, in which we
purportedly took selectivities into account, we never once referred to the predicate selec-
tivities that presumably would be supplied by the caller as input to the join optimizer.
Plainly we must have omitted something. Our omission was to give recurrence relations
without addressing the initial conditions. The recurrence relations themselves were legit-
imate, but for some sets § the recurrences shed no light. Of particular interest are the
cases of recurrence (5.4) when S is a singleton, or when § is a set of exactly two relation
names.

Consider first the case where S is a singleton. What is the fan of a singleton? If
we split singleton S into U = least_subset(S) and V = S — U, then Y = S and V = 0.
Then the fan of S is the set of predicates spanning & and the empty set, which is just
an empty set of predicates. Therefore fan_sels(S) is the empty product, i.e., 1. Note
also that if the empty set V were to be split into W and Z, then both W and Z would
have to be the empty set themselves. It would then follow that UW = U = S and

122

UUZ =U =S. Then what recurrence (5.4) says about fan_sels(S) for singleton S is
that fan_sels(S) = fan_sels(S) - fan_sels(S), which is consistent with fan_sels(S) = 1; so
we are still respecting (5.4) even in the singleton case.!

When S has exactly two elements, then if Y = least_subset(S) and V = S—U, evidently
V must be a singleton. Consequently if V is split into W and Z, then either W = V and
Z =, in which case WUW = S and UUZ = U, or just the reverse (i.e., W=0and Z =V,
in which case WUW = U and YU 2 = §). Then recurrence (5.4) degenerates into the
tautology fan_sels(S) = fan_sels(S)-1 (or, equally unhelpful, fan_sels(S) = 1-fan_sels(S)).

This tautological recurrence is the crux of the matter: the tautology tells us that when
S is a two-element set, we are free to set fan_sels(S) to whatever value we choose. In
choosing this value, we must respect the selectivity information that is to be supplied as
input to the optimizer. Observe that the fan of a two-element set consists of the one
predicate, if there is one, that connects the two elements of the set. Then for fan_sels(S)
we may take the externally supplied selectivity of the predicate in question. On the other
hand, if there is no predicate connecting the two elements of the set, we again have the
empty product, or 1, as the appropriate value for fan_sels(S). Another way to explain
the choice of 1 for fan_sels(S) in this situation is to imagine that the only join graphs we
deal in are cliques. Then to transform a nonclique graph into a clique, it is necessary to
add dummy edges; these dummy edges will have selectivity 1 (cf. Section 2.5.2).

The singleton sets and sets of two elements are the only anomalous cases. When S
has three elements or more, then if if = least_subset(S) and V = & —U, we can be certain
that V has at least two elements. Consequently there exists at least one pair W, Z of
nonempty, proper subsets of V that qualify as a split of V. In this case we are assured that
recurrence (5.4) will give us a straightforward means of computing fan_sels(S) in terms of
previously established results. But note that this assurance is obtained only by virtue of
the fact that U = least_subset(S) is guaranteed to be a singleton; and it is for this reason,

and no other, that we insisted that least_subset(S) be a singleton when we defined it in

' The equation fan_sels(S) = fan_sels(S) - fan_sels(S) has a second solution fan_sels(S) = 0. However,
if fan_sels(S) = 0 for singleton &, then one may deduce fan_sels(S) = 0 for all S. Such an interpretation
of the recurrence is mathematically consistent, but of no apparent utility.

123

Section 5.2.1 above.
Let us now go through the abstract code of the Blitzsplit algorithm piece by piece,
revising where necessary to support selectivity computations, and taking care not to misuse

the recurrences.

Declarations Figure 5.4 revises the declarations for the Blitzsplit algorithm. The verti-
cal dots indicate that we still have a type rel_data, but since it is unchanged from Figure 3.1
(page 75), it is not shown here. However, we have declared a new type predicate (shad-
owboxed) that characterizes a predicate: a predicate record identifies the relation names
mentioned by the predicate—these are the predicate’s endpoints when it is viewed as an
edge in the join graph—as well as the predicate’s selectivity. As long as hyperedges are
excluded, a predicate will have exactly two endpoints, hence the endpoints field will be a
set of exactly two relation names.

As was true of the rel_data entries, one can imagine that there might be additional
fields in the predicate entries that would be necessary to support some cost models. For
example, for some cost models it might be helpful to have access to the tezt (or the
abstract syntax tree) of the predicates.

Aside from the addition of a predicate type, we have made one other change to the

declarations: the addition of the fan_sels field in the table entries.

Procedure blitzsplit Let us now turn to the procedures of the Blitzsplit algorithm,
starting with the top-level procedure blitzsplit. The algorithm appears in Figure 5.5 with
revisions to support predicates.

The top-level procedure blitzsplit has two differences from the version of Figure 3.2.
First, blitzsplit now has an additional argument, which identifies the predicates and their
properties. Second, two new loops have been added to blitzsplit to initialize the fan_sels
fields of the table entries for sets of two relation names.

The first loop assigns a default fan_sels value of 1 to every set of two relation names
(and also, incidentally, to every singleton set, since we did not specify that R and R’

should be distinct). In effect, this loop generates a clique of dummy edges in the join

124

type predicate =
record
endpoints : set[relation_name]
selectivity : real
end

var table : array indexed by set[relation_name] of
record

| fan_sels : real

cardinality : real
best_lhs : set[relation_name]
cost : real

end

Figure 5.4: Changes to declarations to support predicates

graph, and assigns a selectivity of 1 to each such edge. Where a pair of relation names has
an actual edge connecting them, the dummy edge will be replaced with the actual one in
the second loop.

The second loop iterates through each predicate name supplied in the input, looks
up the set of two relation names that the predicate connects, and assigns to that set
a fan_sels value equal to the predicate’s selectivity. Thus, the dummy selectivities are
replaced wherever actual selectivities are available.

All initialization of the fan_sels entries for the singleton and two-element sets is there-
fore completed before the start of the final loop in blitzsplit, where the entries for smaller

sets will be consulted in the computation of entries for larger sets.

Procedure tnit_singleton Procedure init_singleton has been changed to initialize the
fan_sels fields of singleton sets to 1 in accordance with the observations of the beginning of
this section. This initialization is not really needed, since it is performed redundantly by
the first of the new loops in blitzsplit, as noted above. On the other hand, init_singleton
is the obvious place for this initialization, and there is no harm in performing it twice.

(This initialization is cheap, and its execution count is only n.)

125

procedure blitzsplit(R : set[relation_name], rel_data : rel_data,
P : set[predicate)

N

for each R € R do
init_singleton(R, rel_data)
end for

for each R, R' € R do
table[{R, R'}].fan_sels := 1.0
end for
for each p € P do
table[p.endpoints].fan_sels := p.selectivity
end for

for m:=2to |R| do

end for
end procedure

procedure init_singleton(R : relation_name, rel_data : rel_data)
table[{ R}].fan_sels := 1.0
table[{ R}].cardinality := rel_data[R].cardinality
table[{ R}].best lhs := 0

table[{ R}].cost := 0.0

end procedure

procedure compute_properties(S : set[relation_name))
U = least_subset(S)

Vi=8§-U
W := least_subset(V)
Z2=V-W

table[S).fan _sels := table[U U W].fan _sels x table[U U Z].fan_sels

table[S).cardinality := table[U].cardinality » table[V].cardinality
* table[S].fan_sels

end procedure

Figure 5.5: Changes to Blitzsplit algorithm to support predicates

126

Procedure compute_properttes The meat of the changes is in compute_properties,
the present version of which is a fairly direct transcription of equations (5.4) and (5.5) for
computing fan_sels and cardinality, respectively.

Several points about this code are worth noting. First, although compute_properties
will never be called with a singleton argument S, it will be called for two-element sets.
Since we know two-element sets to be an anomalous case, we must pay special attention
to how they are handled. If S has two elements, both &/ and V will be singletons, W will

be the same as V, and Z will be empty. Therefore, we will perform the assignment
table[S).fan_sels := table[S).fan _sels x table[U].fan _sels,

which will be useless but harmless: it will multiply the fan_sels value associated with S
by 1.0. A possibly more pleasing though less compact alternative would be to check for
empty Z, and to skip the assignment in that case.

Second, although we have argued that it is essential that I/ be obtained via least_subset,
it is not essential that W also be obtained in this manner. In defining W to be equal to
least _subset(V), the revised code overspecifies. What is really intended is this: “W should
be any nonempty, proper subset of V, except in the case where V is a singleton, for in that
case, V has no nonempty, proper subsets; so in that case, W should be any subset of V at
all.” That is what is intended, but it is easier just to say, “W := least_subset(V),” which
is close enough—and which certainly conforms to the intent.

Finally, the interested reader is referred again to the C code in Appendix B. That im-
plementation of the Blitzsplit algorithm does not support predicates; even so, the program
already calculates W and Z, and, in fact, already checks for empty Z. Consequently, the
changes required for the C code to support predicates and selectivity computations are

very slight indeed.

Summary Support for predicates entails changes to each procedure in the Blitzsplit
algorithm of Figure 3.2 except find_best_split—the vertical dots at the bottom of Figure 5.5
indicate that find_best_split remains as before.

The loops added to blitzsplit have O(n?) time complexity, and contribute little to over-
all execution time of the algorithm. Because the O(3") and O(n2") parts of the algorithm

127

are completely unaffected by the changes, and because the time needed by the O(2") part
has presumably no more than tripled (where there was one floating multiplication before,
there are now three), one would expect the impact of the changes on the algorithm’s speed
to be small, especially for larger n. Measurements bear out this expectation; under the
naive cost model (i.e., using the cost function ko defined on page 53), the slowdown at
larger n does not exceed a few percent.

The impact on space complexity is also small. We have added an 8-byte field to each
entry of table. At the beginning of Chapter 4 we estimated the size of an entry at 20
bytes, but we subsequently brought the figure down to 16 bytes by representing costs in
a 4-byte floating-point format. Now we are bringing it back up to 24, a 50% increase
over 16. But total space usage for n = 16 remains just 1.6MB—a 20% increase over our
original estimate.

A final issue that we have yet to address is extraction of the optimal plan from the
completed table. The process is essentially the same as before, but to be thorough we ought
now to annotate the join operators with the predicates attached to them. However, we
have made no provision to store those annotations! But they can easily be reconstructed
when the optimal plan is extracted from the dynamic programming table. The expense of
this reconstruction is small, since the reconstructed annotations are needed only for the

n — 1 operators of the optimal plan.

5.3 Accommodating Redundant Predicates

The issue of redundant predicates was first raised in Section 2.4.2. Now we consider the
problem in more detail, and propose a mechanism for dealing with it.
Recall queries (2.50) and (2.51) from page 43, and consider the following reformulation

of (2.51) as a multiway join query:

(Lineltem M _psrrno=p_partvo P art) Mp_rarTNo=s_rartnOA Source. (5.6)
L.PARTNO=S_PARTNO

The difficulty we encounter in a query of this kind is that the predicate L_PARTNO =
S_PARTNO makes no difference to the result of the query, since this predicate is implied

by the other two (L_PARTNO = P_PARTNO and P_PARTNO = S_PARTNO). Because the

128

predicate L_LPARTNO = S_PARTNO could equally well be omitted from the query without
affecting the result, its selectivity in the context of this query must be 1. But in other
contexts the selectivity of this same predicate may be nowhere near 1. We must therefore
allow L_PARTNO = S_PARTNO to have its own independent selectivity s, but we must then
ignore s (or correct for it) in queries in which L_PARTNO = S_PARTNO turns out to be

redundant, as it is here.

5.3.1 Transitive Chains

The situation just described, abstracted somewhat, is depicted graphically in Figure 5.6(a).
The graph represents the three-way join of relations A, B, and C under predicates 21\9,
T?E’, and ZE’, whose selectivities are taken to be 1/2, 1/2, and 2/5, respectively. We shall
assume that these predicates have a particular form: ABis Az < B-zZ, BC is B.z < c.z,
and AC is A_z < Cc_z, where < is some transitive relation (not necessarily an equivalence
relation). Under these circumstances we shall say that ﬁ, IIS’Z', and AC belong to a
transitive chain.

Formally, we define a transitive chain c to be a triple ¢ = (R, P,, <) satisfying these

conditions:

e R is a set of relation names; in our example, R, = {A, B,C}. (In general, R, will
be a subset, and typically a proper subset, of the set R of relation names supplied

as input to the join optimizer.)

e P.is a set of predicate names such that the graph (R, P,) is a clique; in our example,

p. = (4B, BC, iC).

® < is a total order on the relation names in R.. (In general <. will not necessar-
ily coincide with the relation-name ordering < introduced in Section 5.2.) In our

example, A <. B <.C.

e Whenever R<. R' <. R" for some R, R',R" € R, then the predicate named RR"
is logically implied by the conjunction of RR' and R'R". In our example, since

A< B<.C, the predicates 71?3, EE’, and AC must be such that AC is logically

129

1/2 1/2 1/2

(a) (b)

1/2

2/5

o Amemcaelacaao-C

(c) ()
Figure 5.6: Essential and redundant predicates

implied by AB and BC. This requirement is satisfied by our example predicates,

since A_z < C_z is indeed implied by A.z < B.z AB.z < C_z.

Note that the relations and predicates of a query such as query (5.6), in which the transitive
relation < is in fact the equivalence relation =, can be mapped onto the transitive-chain
formalism in several different ways. In each such mapping, R, would contain Lineltem,
Part, and Source, and P, would contain the three predicates that appear in the query.
But <. could equally well be any total order on the names LineItem, Part, and Source,
and the conditions of the formalism would be satisfied.

Let us now return to the more abstract example depicted in Figure 5.6(a). We will refer
to AB and BC as the essential predicates of the chain, since neither can be inferred as a
logical consequence of two or more other predicates in the chain; ZE', on the other hand, is
a redundant predicate, because it can be inferred from AB and BC. In Figure 5.6(a), the
essential predicates are shown as solid lines, and the redundant predicate AC as a dotted

line. When < happens to be an equivalence relation, the distinction between essential and

130

redundant predicates becomes somewhat arbitrary. However, we still make the distinction
in that case, arbitrary though it may be, because it will permit us to treat all chains in
the same manner.

Figure 5.6(a) may serve as the join graph for a variety of join expressions. Among the

possibilities are the following:

(A K><]A_z:<B_:z: B) NB.::<C_::AA_::<C-: C (5.7)
A NA_::<B-::/\AJ<C.J: (B NB.::<C_J: C) (58)
(AMy 2oz C) My r<Brasr<cs B (5.9)

Now plainly the predicate A.z < c_z is redundant in both (5.7) and (5.8); it could be
omitted from either without making a jot of difference. But what about expression (5.9)?
Omitting A.z < c_z would affect the efficiency of evaluation of (5.9), for without this
predicate, the join of A and C would become a Cartesian product. Nonetheless, the
omission of this predicate would in no way affect the final result of (5.9), because the
presence of the two predicates A_z < B_z and B_z < C_z assures that A_z < c_z must hold
for any result tuple. Consequently, for the purposes of determining the result cardinality
of expression (5.9), we may regard A_z < C_z as being entirely redundant, just as it was
in (5.7) and (5.8).

These examples illustrate the fact that join remains commutative and associative when
redundant predicates come into play—as indeed it must, since redundant predicates are
still predicates, and what is true of join in the general case must also hold in the special
case where the predicates happen to conform to a particular structure. Therefore we may
legitimately continue to speak of the join cardinality of a set of relations, and to base our
cardinality computations on join graphs and not on join expressions.

The only new development with the introduction of transitive chains is that in a given
join graph, some edges may represent redundant predicates whose selectivities ought to be
excluded from the cardinality computation. We will deal with this new development by
completely separating the transitive chains from the other predicates in a join optimization
problem. To this end, we will require that the Blitzsplit algorithm be given an additional

argument that characterizes the transitive chains; and in the interest of simplicity, we will

131

assume initially that we are dealing with just a single chain ¢. The cardinality computation

for a relation set S will then proceed in three steps:

1. We will compute a preliminary result cardinality for § by the method of Section 5.2,

taking into account only the ordinary, nontransitive predicates.

2. Then we will compute the selectivity of ¢ in S, as explained in detail below, to

account for the transitive predicates.

3. We will multiply the preliminary result cardinality for & by the selectivity of ¢ in &

to obtain a final result cardinality for S.

The first step involves nothing new, and the third is immediate, so it is the second step

to which we must turn our attention.

5.3.2 Selectivity of a Chain in a Set

Let us explore further the example discussed above. Given a chain ¢ with A<. B <.C,
we saw that in the join of {A, B,C}, the predicates AB and BC were essential and
AC was redundant. The selectivities of the two essential predicates ought to be factors
in the cardinality computation for {A, B,C}, while the redundant predicate should be
disregarded. Altogether, then, the predicates of the chain will contribute a factor of
selectivity(ﬁ) . selectivity(f?-a) = 1/2-1/2 = 1/4. On this basis we may say that the
selectivity of ¢ in {A, B,C} is 1/4.

Until now we have been focusing on the set {A, B,C} because our example chain ¢
involves exactly the relations A, B, and C. But what is the meaning of the selectivity of
c in sets other than {A, B,C}? Let us first consider subsets of {A, B,C}.

In the singleton {A}, no predicates come into play, and so the selectivity of ¢ in {A}
is 1. Similarly for {B} and {C}.

In {A, B}, only AB comes into play (Figure 5.6(b)), and we may ignore BC and
AC. Then the selectivity of c in {A,B} is selectivity(ﬁ) = 1/2. Similarly for {B,C}
(Figure 5.6(c)). The case of {A,C} is interesting (Figure 5.6(d)). Here the only predicate
that comes into play is ZZ', which was redundant in the join of {A, B,C}. But AC is

132

not redundant in the join of {A, C}. As we have already remarked, the join A ™, ,<c . C
would become a Cartesian product if the predicate were omitted. Predicate AC is shown
in Figure 5.6(d) as a dashed and not a dotted line because it has become essential in the
present context. Accordingly, the selectivity of ¢ in {A,C} is selectivity(z-(j’) = 2/5.

Next consider a superset of {4, B,C}. Suppose we are faced with computing the join
cardinality of {A, B,C, D}. If we retain our example chain ¢ without changes, then the
join graph for {A, B,C, D} will include Figure 5.6(a) as a subgraph. Once again AB and
BC will be essential, and AC will be redundant, exactly as in the join of {A, B,C}. The
presence of D makes no difference at all to the effect of the chain c; the selectivity of ¢ in
{A, B,C, D} is just 1/4.

Finally, consider the set {A, B, D}, which is neither a subset nor a superset of the
set {A, B,C?}. In the join of {A, B, D}, AB is the only predicate from ¢ that comes into
play, and so the selectivity of ¢ in {A, B, D} is 1/2. Again the presence of D makes no
difference.

Generalizing from these examples, one can see that the selectivity of a chain ¢ in an
arbitrary set § is equal to the selectivity of ¢ in SNR.. Consequently, if we can determine
the selectivity of ¢ in just the subsets of R, (including R. itself), we will obtain a complete

characterization of the chain’s effect in all sets.

5.3.3 Computing Selectivities of Chains

The technique we shall use to compute chain selectivities should come as no surprise. We
will use dynamic programming to compute the selectivity of a chain ¢ in all subsets of R..
This computation will be performed using an auxiliary table separate from the table that
we have used in the Blitzsplit algorithm up to this point.

The recurrence that will permit us to apply dynamic programming to chain selectivity
computation is straightforward. Before we present it, however, it may be helpful to look
at a few examples of chains involving a larger number of relations than we have considered
so far.

Suppose the chain ¢ traverses the relations in R, = {A, B,C, D, E}, with

A<CB<cC<cD<CE'

133

PR S
-’ \\ RN
P} RRSLINY \\
'\tlw.‘ C-:q‘-—D— E' H
« e * 4
“s_ 1 ,"
c ! I R i Y
S N\ t . .)
’ \ | S B
4 “ 1 []
’/ \\ v U V!
L . Vol uuw
’ \ VLAY
’ . !
Vs N \\ ._;I
A e E .2
(c) (d)

Figure 5.7: Adjacency in a longer chain

As illustrated in Figure 5.7(a), most of the chain’s predicates are redundant in the join of
{A, B,C, D, E'}. Only the four predicates connecting adjacent relation names are essential;
we define relation names R and R” to be adjacent in S with respect to <. just if R and
R" are distinct and there is no R’ in § that comes between R and R" in the ordering
<c. When two relation names R and R” are not adjacent, and there is an R’ such that
R<.R'<.R" or R" <. R' <. R, then the definition of transitive chains provides that RR"
is logically implied by RR" and R'R" , and hence is redundant.

Now, keeping ¢ the same, consider what happens if we remove D from the set of relation
names to be joined (Figure 5.7(b)). The removal of D has caused C' and E to become
adjacent, and consequently CE is essential in the join of {A, B,C, E}. In effect, CE takes
the place of CD and EE’, which disappeared along with D. Altogether the removal of

D resulted in a loss of two essential predicates and a gain of one, for a net loss of one.

134

The reader can verify that the removal of any other individual relation name would have
similarly reduced by one the total number of essential predicates in the join. The total is
now three.

Going a step further and removing B from the join graph in Figure 5.7(b), we obtain
in Figure 5.7(c) a graph for the join of {A,C, E}. The removal of B has resulted in a net
loss of one more essential predicate, and now there are two such predicates remaining. In
fact, Figure 5.7(c) has exactly the same form as Figure 5.6(a). The fact that {A,C, F} is
embedded in a chain involving 5 relations has no bearing on the join graph for {A,C, E'},
and all that matters to the determination of the essential predicates in {A,C, E} is the
restriction of <. to {A,C,E}. We care about the larger chain in which {A,C,E} is
embedded only insofar as it will affect the placement of information about {A,C, E} in
the dynamic programming table for the chain.

The foregoing observations may be summarized as follows. Given ¢ = (R, P;, <) and
nonempty § C R, the essential predicates from P, in the join of S are just the |S| -1
predicates RR" with R and R" adjacent in § with respect to <.. The selectivity of cin S
is the product of the selectivities of these |S| —1 predicates. Note that even the somewhat
degenerate examples of Figures 5.6(b)~(d) conform to this rule: when S contains but two
relation names, they are necessarily adjacent, and the lone predicate connecting them is
therefore always essential. Indeed the rule holds for singleton sets S as well, since the
graph for such a set admits no predicates at all, and hence no essential predicates.

Figure 5.7(d) illustrates the decomposition of a set of relation names—in this instance,
{A, B,C, D, E}—into two overlapping subsets—namely, {A, B,C} and {C, D, E}—whose
essential predicates together comprise the essential predicates of the whole. The selectivity
of the chain in {A, B,C, D, E} is therefore the product of its selectivities in these two
subsets. Our recurrence for computing the product of a set’s essential selectivities is
based on this decomposition.

To state the recurrence, we need to introduce a variant of the least_subset operation
described in Section 5.2 above. Let least_in_c be the operation identical to least_subset
except that least_in_c orders relation names by <. rather than by <. In other words,

least_in_c is chain-specific; if we encounter a new chain ¢/, we must replace least_in_c with

135

the operation least_in_c’ based on <y. The desired recurrence is then
sel_c(S) = sel.c(UUW) - sel_c(V)

where S C R,
UUY =8, (5.10)
U<,
and W = least_in_c(V).

The notation U <.V should be understood to mean that every element of {f precedes every

element of V in the ordering <.

5.3.4 Relation-name Aliases

We assumed above that there is a distinct <, for each chain, and correspondingly a dis-
tinct least_in_c. But while these assumptions were useful in defining recurrence (5.10),
it might be undesirable to have to support a multiplicity of least_in_c functions in an
implementation. The least_subset function corresponding to the relation-name ordering
< of Section 5.2 had the attractive property that a simple and highly efficient concrete
realization of it had already been given in Chapter'4. Arbitrary least_in_c functions corre-
sponding to arbitrary orderings <. might be more difficult to realize; both the simplicity
and efficiency of the optimization code could suffer.

We can get by with a single least_subset function for all chains if we are willing to use
different names, or aliases, for the same relation in different contexts. The approach of
using aliases is best illustrated by considering an optimization problem involving more than
one chain; our pseudo-code below will provide for just one chain, but the extrapolation to
more than one chain, using relation-name aliases, will be straightforward.

Suppose, then, that our join optimization problem involves relations F, G, H, I, and
J. Suppose further that F, G, and I participate in a chain ¢ with F <. I <G (we shall
refer to this chain informally as the FIG chain); and that F, I, and J participate in a
separate chain ¢/ with J <+ I <o F (the JIF chain). Now in Chapter 4 we found it
convenient to refer to relations by the generic names Ry, R;, etc., with the understanding

that these names were just stand-ins for the actual names by which the relations might

136

aciual generic
name name
F <ot > Ry
names
G < ke R inc
H eieeaeeeee » R '
? > {Rj}
] <o » R '
J R3 “““ AR
L R REE TR > 4 ——— SeoNo !
svasa | M {R3)
map_to_a {}

Figure 5.8: Relation-name aliases

be known externally to the optimizer. [n the present example, Ry might stand for F, and
R, for G, and so on. This association between actual and generic names is depicted in
Figure 5.8 by the bidirectional arrows at the left-hand end of the figure.

The assignment of actual names to generic names is unconstrained; an assignment in
which Ry stands for J, R, for J, and so on, would werk just as well as the assignment
in Figure 5.8. However, if we take as given that Ry < By < ..., then the assignment of
actual names to generic names will affect the implicit ordering of the actual names. For
example, the assignment in Figure 5.8 implies the ordering F < G < H < T < J.

Ordinarily we are not much concerned with this ordering, for while the ordering makes
a difference to the details of our cardinality computations in Section 5.2, it makes no dif-
ference to the end results of those computations. But the introduction of chains changes
the picture somewhat; some orderings may now appear more attractive than others. In-
deed, it is tantalizing to observe that there exist assignments of actual to generic names
that yield orderings consistent with the FIG chain (i.e., with F < I < G), and that there
also exist assignments consistent with the JIF chain. If we were to take a F1G-consistent
assignment, then we could use our efficient implementation of least.subset for least_in_c
as well; alternatively, if we were to take a JIF-consistent assignment, our implementation

of least_subset could double as the implementation of least_in_c’.

137

Unfortunately, though, there can exist no assignment consistent with both FIG and
JIF. In a similar vein, it would appear that no single implementation can serve for both
least_in_c and least_in_c’, since these functions are intrinsically incompatible. For ex-
ample, the FIG chain requires least_in_c({F,I}) = {F}, whereas the JIF chain requires
least_in_c'({F,I}) = {I}.

Yet there is nothing to stop us from circumventing the difficulty by using different
sets of names in different contexts. In our computations involving the FIG chain, let
RS stand for F, and RS for I, and R§ for G. (These names appear in the right-hand
portion of Figure 5.8.) It is to be understood that, by default, indexed names are always
ordered according to their indices; thus R§ < R§ < Rj, reflecting the ordering F <. I <. G.
Then we will have least_subset({R§, RS}) = {R§}, which we may interpret as saying
that least_in_c({F,I}) = {F}. On the other hand, in our computations involving the
JIF chain, let Rﬁ' stand for J, and R‘;' for I, and R‘{,’ for F. Then we may interpret
least _subset({RS , RS'}) = {RS'} as saying that least_in_c'({F, I}) = {I}.

By now we have introduced up to three distinct aliases for each of the actual relation
names in our example. This profusion of aliases will cause no trouble as long as we take
care to use the aliases in a consistent manner. In a given context we will restrict ourselves
to using aliases only of like kind. Specifically, in contexts having nothing to do with chains,
we will use the unadorned generic names Ry, Ry, etc., and no others; in the context of
selectivity computations for the FIG chain, we will use only the names R§, RS, and R$;
and for the JIF chain, we will use only the names Rg', Rf’, and Rg'. By separating the use
of distinct classes of names into mutually exclusive contexts, we pave the way for reusing
the same concrete representations for these names across contexts. In Chapter 4, we
represented Ry by the integer k; we may continue to do so, and we may likewise represent

% and R‘,:: by the integer k, since the meaning of k will be unambiguous in a given context.

The same efficient implementation of least_subset may be used in all contexts.

5.3.5 'Translation of Relation Names

There remains just one more issue to be addressed in connection with relation-name aliases.

If a given relation is to be known by more than one name, we need a way to translate

138

among the different names as we move from one context to the next. When we give
pseudo-code for handling chains below, it will be seen that it suffices to translate from
names of the form Ry to chain-specific names of the form R{ and Rj'—-—transla.tions in the
other direction, or between pairs of chains, are not needed.

The right-hand portion of Figure 5.8 illustrates the translations applicable to our
example. The mapping map_to_c, represented by the solid arrows, yields aliases consistent
with the FIG ordering. For example, map_to_c takes Ry, representing F', to R§, which
(in the context of the FIG chain) again represents F. In the same spirit, map_to_c takes
R3, representing I, to R, and R,, representing G, to RS, as required to obtain the FIG
ordering. By contrast, the mapping map_to_c’, represented by the dashed arrows, yields
aliases consistent with the JIF ordering.

In one detail, the description just given of the mappings map_to_c and map_to_c’
is not strictly accurate. Qur description implied that these mappings were functions of
type relation_name — relation_name—that is, functions which, given a relation name as
input, produce another relation name as output. But it will prove more convenient to
associate with these mappings the typing relation_name — set[relation_name]. Rather
than mapping Ry to R§, as suggested above, map_to_c will actually map Ry to the singleton
{R§}, and similarly for the other cases. The advantage in taking the codomain of these
mappings to be set[relation_name] is that this typing admits the empty set as a possible
result. For example, since H (represented by R;) does not participate in the FIG chain,
there is no sensible choice of names in ¢ that map_to_c can map it to; the empty set is
therefore a logical alternative. Similar considerations naturally apply to map.to.c’. In
Figure 5.8, note that both the solid and dashed arrows emanating from R; lead to the
empty set, reflecting the fact that H participates in neither the FIG nor the JIF chain. |

Now suppose one wished to use map_to_c to map a set of generic names to a set of
names in ¢. For example, suppose one wished to obtain the set of names in ¢ corresponding
to the set {Rg, Rz, R3}—which represents the set of actual names {F, H,I}. One could
accomplish this mapping by applying map_to_c to each of the elements Rg, Rz, and Rj3 in
succession—thus obtaining { R}, {}, and { R{}—and then taking the union of these results

to obtain {R§, R{}—which represents {F, I} in c. In short, a set representing {F, H, I} is

139

mapped to a set representing {F, I} in c.

Recall from Section 5.3.2 our observation that the selectivity of a chain cin aset §is
the same as the selectivity of ¢ in SNR,. In other words, relation names in S that do not
participate in ¢ are irrelevant to the selectivity of ¢ in S. In our example, the selectivity
of the FIG chain in {F, H, I} is the same as its selectivity in {F,I}. Consequently, the
fact that map_to_c in effect maps {F, H, I} to {F, I}, and simply discards H, is not only
not harmful, but to the contrary, is exactly what we want. Our table of selectivities for
the FIG chain will be indexed by sets of names in ¢. Given a set S of generic names, we
may use map_-to_c to map S to a possibly smaller set S, of names in ¢; then taking S,
as an index into the table of selectivities, we will obtain the selectivity of S in ¢, without

ever explicitly computing an intersection of the form SNR..

5.3.6 Code for Computing Chain Selectivities

We shall break our discussion of the code for handling transitive chains into two parts.
In this, the first part, we shall focus on the construction of a table of selectivities for a
given chain ¢, and in the second part we will address the changes required of the Blitzsplit
algorithm to incorporate such a table in its cardinality computations.

The construction of a table of selectivities for chain ¢ can take place entirely within the
context of the chain; that is, for now we may take all relation names to be names in ¢—
names of the form R§, RS, etc. Later on, when we address the Blitzsplit algorithm proper,
the names in ¢ will have to coexist with other kinds of names. To avert the possibility that
names in ¢ might then be confused with names in other chains, or with generic names, we
shall give each kind of name a different type in the pseudo-code. Specifically, the names
R§, RS, and so on, will be referred to as having type relname_in_c.

Figure 5.9 gives pseudo-code to construct a table sel_c of selectivities of a chain c in all
subsets of R, (including the empty subset!). The code opens with the declaration of a new
type pred_in_c, which is exactly the same as the type predicate, except that it specifies a
predicate’s endpoints using relation names in ¢ rather than ordinary relation names. This
type declaration is followed by a declaration of the table sel_c, the table of selectivities of

c in subsets of R.. This dynamic programming table will have one entry for each subset

140

type pred_in_c =
record
endpoints : set[relname_in_c]
selectivity : real
end

var sel.c:array indexed by set[relname_in_c] of real

procedure build_chain_table(R. : set[relname_in_c], P, : set[pred_in_c])
sel_c[0] := 1.0

for each R,R' € R, do
sel_c[{R}]:=1.0
sel_c[{R,R'}]:=1.0

end for

for each p, € P, do

sel_c[p..endpoints] := p..selectivity
end for

for m :=2 to |R,| do
for each S, C R. such that |S.| = m do
U, := least_subset(S,)
V.:=8. - U,
W, := least_subset(V,.)
sel_c[S,.] := sel_c[U, UW,] * sel_c[V,]
end for
end for
end procedure

Figure 5.9: Code to calculate chain selectivities

of R., and accordingly is indexed by sets of relation names in ¢. The number of entries in
this table is therefore 2/R<l; for typical chains one may expect this table to be quite small.

The procedure build_chain_table for filling in the table of chain selectivities is basically
a pseudo-code transcription of recurrence (5.10), wrapped in a loop that iterates through
all subsets of R. in a manner that conforms to the subsets-first assumption. The code

prior to the loop initializes the table entries for empty, singleton, and two-relation subsets

of R..

141

5.3.7 Changes to the Blitzsplit Algorithm

To accommodate redundant predicates; the Blitzsplit algorithm itself must be revised to
make use of the selectivities provided by the procedure build_chain_table discussed above.

Figure 5.10 shows revisions to the declarations for the Blitzsplit algorithm. The type
map_to_c defines a representation for the mapping from relation names of the form R; to
sets of relation names of the form R$. This mapping is represented as an array of sets of
relation names in ¢. (As before, we may assume that these sets will in turn be represented
as integers. Thus, in the optimization of a join of n relations, a mapping of type map_to_c
can be expected to be realized as an array of n integers.)

The dynamic programming table table is augmented with two new fields. The field
names_in_c holds, for each set §, the subset of relation names in & that map to names
in R.; this subset is represented as a set of relation names in ¢. This set will serve as an
index into the table sel_c to obtain the selectivity of ¢ in S. The second field added to
table is pre_card, which represents the result cardinality of S before the chain selectivity
is taken into account.

Given these changes to the declarations, Figure 5.11 shows the needed revisions to the
procedures of the algorithm. The revised a.lgorithm takes a chain as input in addition
to its other inputs. The chain is specified through the sets R, and P, and through a
mapping map_to_c of type map_to_c. Thus, the ordering of the relation names in R, is
implicit—we assume that this ordering is provided by the type relname_in_c; it is the role
of the mapping map_to_c to map relation names in R to names in R, in such a way that
the names in R, are ordered appropriately for the chain.

Given these inputs, procedure blitzsplit begins by invoking build_chain_table to ini-
tialize the table sel_c. The only other change to procedure blitzsplit is that it helps
init_singleton to initialize the names_in_c fields of the singleton sets. If a set R does
not participate in the chain ¢, then map_to_c[R] will just be the empty set; if R does
participate in the chain, then map_to_c[R] will be a singleton set of the form {R°}.

Procedure init_singleton initializes the new pre_card field in the same way as the

142

see also declarations in Figure 5.9

type map.to_c = array indexed by relation_name of set[relname_in_c]

var table : array indexed by set[relation_name] of
record

names_in_c : set[relname_in_c]

fan_sels : real
| pre_card :reall

cardinality : real
best_lhs : set[relation_name]
cost : real

end

Figure 5.10: Changes to declarations to support use of chains

cardinality field, because a singleton set of relations cannot involve any redundant predi-
cates, and hence there is no distinction to be made between pre_card and cardinality for
singletons.

In compute_properties, the names_in_c field is computed using a trivial recurrence. If
we temporarily disregard the type distinction we are now making between relation names
in general and relation names in ¢, the recurrence may be stated as follows:

SNR, = UNRHU(VNR,)
(5.11)
where HUV =S8.
This recurrence is a direct consequence of the distributivity of set intersection over set
union, and draws on the fact that the names.in_c field of each set S may be loosely
thought of as representing S N R..

Then the pre_card field is computed as cardinality was computed before the intro-
duction of redundant predicates—for pre_card represents cardinality before redundant
predicates are taken into account. Finally, cardinality itself combines the cardinality in

pre_card with the selectivity of ¢ in S, as given by the auxiliary table sel_c.

143

procedure blitzsplit(R : set[relation_name), rel_data : rel_data, P : set[predicate],
R. : set[relname_in_c|, P. : set[pred_in_c], map_to_c : map_to_c|)

build_chain_table(R., P.)

for each R € R do

init_singleton(R, rel_data, map_to_c[R]
end for

end procedure

procedure init_singleton(R : relation_name, rel_data : rel_data,

U, : set[relname_in_c]

S

table[{ R}].names_in_c := U,
table[{ R}].fansels := 1.0
table[{ R}].pre-card := rel_data[R].cardinality

table[{ R}).cardinality := rel_data[R)].cardinality
table[{R}).best lhs := @
table[{R}].cost := 0.0

end procedure

procedure compute_properties(S : set[relation_name])
U := least_subset(S)

V:i=8S-U
W := least_subset(V)
Z=V-W

table[S].names_in_c := table[U].names_in_c U table[V].names_in_c
table[S).fan _sels := table[U U W).fan _sels * table[U U Z].fan_sels
table[S]. pre-card | := table[) | pre-card | table[V] |pre-cand |

* table[S).fan _sels
table[S].cardinality := table[S].pre_card * sel_c[table[S].names_in_c]
end procedure

Figure 5.11: Changes to Blitzsplit algorithm to support use of chains

144

5.4 Summary and Discussion

In this chapter we have shown how the Blitzsplit algorithm can be extended to accommo-
date predicates by adjusting its cardinality computations with the appropriate predicate
selectivity factors. We began by restricting our attention to collections of independent
predicates, and then went on to consider collections of predicates that were related to
one another through logical implications. In both cases, we were able to modify the
Blitzsplit algorithm’s cardinality computations without changing any code in procedure
find_best _split, which is responsible for the O(3") and O(n2") components of the algo-
rithm’s complexity. The code we added had time complexity O(2"), and the changes we
sketched also had only a small effect on space complexity.

It is quite conceivable that variations on the techniques illustrated here could be used
to support predicates under different sets of assumptions as well. For example, one might
wish to provide for predicates that were statistically correlated, though free of any log-
ical interdependencies. Another interesting and useful extension would be support of
hyperedges in the join graph. These extensions would probably prove more challenging
to support than the cases illustrated here, but there is no evident reason why it should
not remain possible to compute cardinalities in time O(2") by taking advantage of the
dynamic programming context. Regardless of what kinds of predicates are supported,
there are only O(2") sets of relations for which a result cardinality needs to be computed;
and as we have seen, the computations for a given set can be shortened through judicious
use of information previously computed for smaller sets.

However, the foregoing remarks oversimplify somewhat, for the presence of predicates
can affect time complexity in subtle ways that we have not yet discussed. Our comments
above presumed that because the code for find_best_split remained unchanged when pred-
icates were added, it could be taken for granted that the time spent in find_best_split
would also remain unchanged. That presumption is not quite correct. The addition of
predicates to a given Cartesian product optimization problem can in fact cause the time
spent in find_best_split to go up—or down—for the following reason: Predicates change

the costs associated with sets of relations in ways that can affect the execution frequency

145

of the conditional code in find_best_split. Because of this effect, the Blitzsplit algorithm
will prove sensitive to join-graph topology, even though our predicate-handling technique
treated all join graphs as if they were cliques. Empirical studies of this sensitivity to
join-graph topology, as well as other performance traits of the algorithm, will be the focus

of the next chapter.

Chapter 6

Performance Analysis

We now examine the performance of the Blitzsplit algorithm in the presence of predi-
cates. The mission of this chapter is two-fold: to present measurements of the algorithm’s
performance on a wide range of input queries, and to offer detailed explanations for the
performance behavior we observe. Our explanations will be informal, but in principle
it ought to be possible to recast these explanations in the form of mathematical models.
Such models might be expected to have the power to predict performance of our algorithm
under a greater variety of conditions than we consider in our measurements. Thus, the
performance observations of this chapter are chiefly empirical, but have been conducted
with a view to pursuing a more analytical treatment in future work.

We begin by discussing our experimental design for measuring the performance of our
join optimizer. After presenting a summary of the measurements we obtained using this
design, we go on to attempt to interpret these results. Our interpretive efforts lead to
an investigation into the frequency with which the Blitzsplit algorithm needs to carry out
complete cost computations on the various “splits” of sets of relations that it examines in

its inner loop. We conclude with a commentary on the implications of this analysis.

6.1 Experimental Design

In this section we present our approach to benchmarking the Blitzsplit join optimizer. We
begin by discussing general problems in studying performance of a join-order optimizer.
We then describe our way of dealing with those problems, and present the salient features

of a parameterization of the join-query space that we use in our empirical studies. (The

146

147

full details of this parameterization are relegated to Appendix C.) We also point out some
of the limitations of this parameterization, which should be regarded as a starting point,

not the last word, in the systematic study of join-optimizer performance.

6.1.1 Difficulties in Empirical Studies

Earlier, in Chapter 4, we examined the Blitzsplit algorithm’s performance in Cartesian
product optimization. We noted there that it was difficult to obtain a thorough character-
ization of performance because of the large dimensionality of the space of possible queries.
We sidestepped the difficulty by considering only a fixed number of relations in each query,
and by parameterizing the base-relation cardinalities along just two dimensions.

Those techniques of dimensionality reduction remain applicable here. However, now we
face new difficulties, because the introduction of predicates also introduces many additional
dimensions to the space of possible queries. In the worst case, there are n(n—1)/2 predicate
selectivities, which may all vary independently. Moreover, in the space of selectivity
combinations there is no obvious analogue to the two-dimensional parameterization that
we used to generate cardinalities in Chapter 4.

A further complication in studying performance of join-order optimization is that
it no longer suffices to use just the naive cost model ko that we applied to Cartesian
products. In essence there is only one way to compute a Cartesian product, and the cost
of this computation is always roughly proportional to the product of the input cardinalities
(and hence to the result cardinality). But there are many alternative join-computation
strategies; join-optimization performance measurements lack realism if they fail to take
these alternatives into account.

The present study is not the first to encounter these complications. Join-order op-
timization, unlike Cartesian product optimization, has an extensive literature. But in
turning to previous performance studies as a guide, one finds no ready solutions to the
problem of constructing effective test suites. These studies have not converged on a sin-
gle, standard benchmark for join-order optimization, but instead take many disparate
approaches, each with its own particular strengths. Reproducing the experimental condi-

tions of these various approaches may involve guesswork; in some instances, the published

148

description of the measurement methodology is evidently intended only to give a sense of
the approach, not to permit duplication of the experiments {20, 28].

Even when the descriptions are more thorough [54, 55], experimental conditions may
be difficult to duplicate because of their dependence on the use of a particular pseudo-
random number generator and seed. (Understandably, published accounts of the experi-
ments rarely (if ever) specify such details as random number generation.) Random number
generation arises when a benchmark seeks to report average behavior of an optimization
method over some class of queries. The corresponding variances are usually not reported,
but one suspects that they are often large,! and that the observed averages are not neces-
sarily close to the true averages. In such cases, the choice of random number generators
is an issue, as one might observe rather different averages if a different random number
generator were used.

The lack of a single, commonly accepted, and well-defined benchmark for join-order
optimization makes it difficult to compare different algorithms on the basis of speed and
effectiveness. Presentations of new algorithms in the literature generally do include such
comparisons with earlier algorithms [12, 59]; producing these comparisons necessitates
reimplementing the earlier algorithms [12] unless pre-existing implementations are readily
available. This reimplementation effort is unfortunate both because of the labor it entails,
and because of the danger that it could introduce performance bugs (or indeed other bugs)
in some of the algorithms involved. Such bugs could conceivably go undetected.

Some benchmarks yield misleading results. Steinbrunn [54] reports an instance of unin-
tentional benchmark bias in measurements he and his collaborators had made in an earlier
study. In the earlier study [55], they had found that a join-optimization heuristic known
as RDC performed competitively with other heuristics; however, subsequent experiments
using a more sophisticated cost model revealed that the RDC heuristic was actually rather

fragile, and worked well only under special conditions.

'Graphical presentations of averages at each of various parameter settings give clues about variance
even when the variance is not reported. Smooth graphs tend to correspond to low variances. Jagged
graphs may be a sign of [arge variances—though not necessarily: in Chapter 9 we shall see graphs in which
the jaggedness is intrinsic, and not due to measurement uncertainties.

149

6.1.2 Our Measurement Approach

It is beyond the ambitions of the present work to propose a standard benchmark for join-
order optimization. At the same time, there is no single previous benchmark that appears

adequate for our purposes. Qur measurement approach is based on the following premises:

e Our test queries should be easy to duplicate.

e Reported performance should give a sense of which queries are easiest to optimize,
and which are hardest. Averages taken across multiple queries obscure the patterns

of variation, and are therefore to be avoided.

e Cardinality values that occur in actual queries cannot be assumed to fall within
any particular range. Hence the test queries should cover a very wide range of

cardinalities.
e The test queries should use a variety of distinct join-graph topologies.

e Measurements should be run using several different cost models, as no single cost
model can be considered definitive. Using cost models that have appeared in previous

studies is preferable to inventing new cost models.

To satisfy the last two requirements, we borrow from the comprehensive survey by
Steinbrunn et al. [54, 55]. Steinbrunn’s measurements were run using several different
join-graph topologies and cost models; here we use a subset of those topologies and cost
models. But we depart from Steinbrunn in the assignment of cardinalities and selectivities.
We parameterize the base-relation cardinalities along two dimensions, as in Chapter 4; we
calculate the selectivities according to a formula that tends to minimize the variability
in the intermediate-result cardinalities yielded by different sets of relations. Thus, our
test queries remain entirely deterministic, and are parameterized along four dimensions in
total: one for the cost model, one for the join-graph topology, and two for the base-relation
cardinalities. We shall comment on particular details of this parameterization below; the
complete details are summarized in Appendix C.

Aside from the fact that we have added two new dimensions for the cost model and

join-graph topology, the present parameterization differs from that of Chapter 4 in two

150

respects. First, here we fix the number of relations n at 15 rather than at 10. One
obtains qualitatively similar behavior across the different values for n, but the effects we
shall observe become quantitatively more interesting with larger n; the choice of 15 is
near the upper end of the query sizes that can be handled in reasonable time. Second,
we have replaced the “max/min” cardinality parameter with a parameter we simply call
“yariability,” which ranges from 0 to 1. When variability is 0, the base-relation cardinalities
are all equal; as variability rises, the cardinalities spread out. Thus, variability plays much
the same role as the max/min parameter; the difference is that the new parameterization
does not yield fractional cardinalities between 0 and 1, which cannot arise in base relations

in actual queries.

6.1.3 Shortcomings of our Parameterization

Our join-graph parameter ranges over four diverse topologies: the chain, the cycle aug-
mented with three cross-edges (which we refer to as “cycle+ 3”), the star, and the clique.
Althougil these alternatives provide diversity, they also leave huge gaps in the sense that
the topology of a given actual query might not be especially similar to any of the four we
consider.

Moreover, for a given join-graph topology, we let the cardinality rank of each relation
determine its position in the join graph. For example, in the ster graph, we always place
the relation with the largest cardinality at the hub of the star. In the case of chain and
“cycle+3” graphs, we assign the relations to the positions in the join graph in such a way
that each predicate tends to connect a relation whose cardinality is below the median to
another relation whose cardinality is above the median. (The details of these policies are
given in Appendix C.) The predicate connections of an actual query might be organized
in an entirely different manner. Limited experimentation with variations on our default
cardinality arrangements has so far failed to turn up any cases where optimization times
depart by a large amount from the optimization times reported below; but our failure up
to this point to find such cases may merely mean that we have not yet looked hard enough.

A further deficiency in the join-graph parameterization is that we make no allowance

for varying the selectivities independently from the base-relation cardinalities. Within

151

each topology, the selectivity of a given edge is completely determined by the cardinalities
of the relations it connects, in accordance with the formula in Appendix C. Thus, our
measurements give no systematic account of the manner in which performance may vary
depending on selectivity values.

This deficiency may not in fact be grave, for we have observed from ad hoc experiments
that performance is not especially sensitive to the selectivity values. But we presume that
the selectivity values must make a difference in some situations, for the simple reason
that the join-graph topology itself makes a difference. In limiting cases (i.e., as certain
selectivity values approach 1), distinct topologies can “morph” into one another. In the
regions of transition there would have to be sensitivity to the selectivities. However, our
measurement strategy fails to identify those regions.

Instead, for a given join-graph topology our formula for computing selectivities is
intended to give near-worst-case values, so that our measured timings are more likely to
overstate than understate the timings that would be obtained with different selectivities.
Later in this chapter we give evidence that our choices are in fact near-worst-case. At
the same time, that evidence will suggest that extensive additional measurement would
be needed to gauge the performance of our algorithm under less pessimistic conditions.

Finally, our parameterization of the cost model leaves much to be desired. The three
models we use, which are defined in detail in Appendix C, are the naive model introduced
in Section 3.2 (o), a sort-merge cost model (k,m), and a disk-nested-loops model (k4n)).
There is precedent for these cost models, as all three are drawn from the performance
analysis of Steinbrunn et al. [55]; moreover, they are appealing choices for benchmarking
purposes because of their simplicity, and because they are very different from one another.
But they lack realism. Steinbrunn’s revised survey [54] abandons the cost models of the
earlier version, and instead adopts a single, more complicated and more realistic cost
model that combines features of the earlier cost models, as well as adding new features.
One surmises that it was chiefly this change in cost models that revealed the fragility of
the RDC heuristic, as noted above.

The use of simplistic cost models may not have such severe consequences here as

it did in benchmarking the RDC heuristic. Since our optimization method is a form of

152

exhaustive search, the quality of the solutions obtained is not an issue, as it is for stochastic
and heuristic methods. What is at issue here is merely the time required for optimization.
The simplicity of the cost models used here has the virtue of revealing fundamental effects
in the performance of the Blitzsplit algorithm. Future studies will be needed to examine

how these effects are altered by the use of more realistic cost models.

6.2 General Performance Traits

The parameterization of the join-query space discussed above, and mapped out in detail
in Appendix C, served as the basis for empirical measurements of the performance of the
Blitzsplit algorithm with predicates. Here we present a summary of those measurements,
together with general observations about their significance.

The array of graphs in Figure 6.1(a) shows HP 9000/755 timings of runs of the Blitzsplit
algorithm taken over our 4-dimensional parameter space with » = 15. The rows and
columns of the array represent two axes of the space, a cost-model axis and a join-graph-
topology axis; and within each cell inside the array, two more axes are represented—a
long axis for mean base-relation cardinality, and a short axis for the variability among
the base-relation cardinalities. Moving left-to-right along the long axis corresponds to
increasing mean base-relation cardinality, and moving back-to-front along the short axis
corresponds to increasing variability among the base-relation cardinalities. (Again, refer
to Appendix C for details.) Figures 6.1(b) and (c) show two of the array cells in enlarged
form, with labeled axes to give a sense of scale. Note that the vertical axis represents
optimization time (and not plan cost).

Figure 6.1 shows that under the naive cost model, 15-way joins are optimized in times
comparable to those we obtained for 15-way Cartesian products in Chapter 4. On the HP,
the latter were typically optimized in about 0.9 seconds; here it is harder to say what is
“typical,” but optimization time under the naive model rarely falls outside the range 0.6-
1.1 seconds. Incorporating predicates appears to make the execution time of the Blitzsplit
algorithm more variable, but not necessarily greater.

The chaise-longue-like shapes in the figures reflect two basic performance properties

153

ic6 led 7 variabifity (c6 1c8 [variability
mean cardinality ¢ mean cardinality

(b) ko/chain (¢} Kgni/cycle 43
Iigure 6.1: Optimization times for 15-way joins under various conditions

of our algorithm. [irst, as we saw already to be the case for Cartesian products in
Chapter 4, performance degrades (sometimes dramatically) as the mean cardinality of the
base relations approaches 1; but mean cardinality does not have to be large to escape
this effect. Second, performance is substantially affected by the cost model, but the
performance differences diminish as mean cardinality increases (and also, in the case of
cliques, as variability increases).

We shall investigate these effects in detail as we proceed, but here we comment briefly
on what is new in the present performance graphs in comparison with those of Figure 4.9.
In Chapter 4 we were dealing with just a single cost model, the naive cost model repre-

sented by the cost function xg. Because the split-dependent component K(’)pm of that cost

function was trivial, it did not matter how many times KS”" was executed in procedure

154

find_best_split (page 76). At low mean cardinalities, the execution frequency of the con-
ditional code in find_best_split increased, but since the code in question did not perform
much computation, the effect on overall execution time was not dramatic.

Here we are dealing with several different cost models, and we see just how much the
execution count of xK°P% can vary, and how much difference it can make when it does vary.
When we introduced a nested if structure in Section 3.4.3 to reduce the execution count
of k*?'* (cf. page 86), we observed that with that structure, the x*PYi‘-execution count
could be expected to lie between (In 2/2}n2" and 3™. At the left-hand edge of the graphs
in Figure 6.1, where mean cardinality is 1, the x*%‘-execution counts are presumably
close to 3%; and we see that when x°?'* involves nontrivial computation, as it does in the
disk-nested-loops model (k4,), the evaluation of k*' evidently represents the bulk of the
optimization effort. As the mean cardinality moves away from 1, it is apparent that the
k*Ph_execution count drops precipitously. The structuring technique of Section 3.4.3 thus
appears to be validated empirically.

A second point of contrast to note between Figure 4.9 and Figure 6.1 concerns the
behavior of the Blitzsplit algorithm at higher cardinalities. In Figure 4.9(a) we saw that
as mean cardinality increased, optimization time fell off rapidly because of cost overflows.
But it was also the case that those cost overflows reflected optimization failures: when
cost overflowed, no optimal plan could be found.

Here the decline in optimization time with increasing cardinalities is less pronounced,
because the presence of predicates has a moderating effect on intermediate-result cardi-
nalities; and when the cardinalities are moderated, cost overflows naturally occur much
less frequently. Nonetheless, they do still occur, and the reductions in optimization time
at higher cardinalities are apparent in Figure 6.1. But notably, the occurrence of cost
overflow in the presence of predicates does not necessarily reflect an optimization failure.
It is possible for cost to overflow for some sets of relations § € R, and for an optimal plan
for the join of R to be found nonetheless. In Chapter 7 we shall make use of this effect to

improve on the performance graphs shown in Figure 6.1.

155

6.3 Execution Counts and Fingerprints

The observations of the previous section suggest, not surprisingly, that variability in the
execution count of k°P% accounts for most of the variability in the Blitzsplit algorithm’s
optimization time for different queries. It is also the x*”!*-execution counts that determine
what sort of degradation in performance we will encounter if we move to more elaborate
cost models, in which computation of x*?%¢ will involve more work. One might even hope
that by understanding k*"'*-execution counts, one could predict the performance of our
optimizer under a new cost model for which it had not yet been tested.

Unfortunately, such predictive power may be difficult to achieve. A complicating factor
in the study of x*P"-execution counts is that these counts are not independent of the cost
model. Thus, when we change cost models, we can expect changes in both the number of
k*Plit_executions and in the time required for each of them. Nonetheless, x**/-execution
counts offer valuable insight into the algorithm’s behavior, and we shall study them in
depth.

To establish a baseline, we shall begin by considering &*?'-execution counts under
the naive cost model. Under this model, the time required for each x*P'*-execution is
zero, and the number of k*"/*_executions is exactly equal to the number of updates of
best_cost_so_far. (We are assuming that the invocation of x*”% is enclosed in the nested
if structure of Figure 3.4 (page 86).) Since we have an analytical estimate for the latter
quantity (namely (In2/2)n2" in the “average” case), it follows that this same formula
predicts the typical x*P"-execution count under the naive model. By comparing actual
execution counts against the prediction, we may gain insight into influences on cost-
function execution counts that did not enter into our original estimate.

Subsequently we shall study k*P“‘-execution counts under the disk-nested-loops cost
model. For completeness, perhaps we ought to study x*?"*-execution counts under the sort-
merge cost model as well. However, the graphs in Figure 6.1 suggest that our algorithm’s
performance characteristics under the sort-merge cost model do not differ greatly from
those under the naive cost model, and lack the interesting features seen under the disk-

nested-loops cost model. Our inclusion of the sort-merge cost model up to this point has

156

served chiefly to show that a nontrivial cost computation need not inflate optimization

times significantly.

6.3.1 Join-query Fingerprints

split_gxecution counts, let us now narrow our focus. Rather

To get a better handle on &
than considering the total number of executions of x*”" in the optimization of a query,
we shall look at the x*?"-execution count during just a small portion of the optimization
run.

Recall that the main loop in procedure blitzsplit (page 76) successively processes sets
consisting first of two relation names, then three relation names, and so forth. In par-
ticular, there comes a time when all the sets of seven relation names are processed; and
for the present we shall focus our attention on the processing of just these seven-relation
sets. (It is immaterial to the present discussion that the processing of seven-relation sets
may in reality be interleaved with the processing of sets of other sizes, as we saw in
Chapter 4.) Thus, staying within the context of 15-way join optimization, we consider the
number of executions of k*?% in the processing of sets such as { Ry, Ry, Rz, R3, R4, Rs, Rs},
{R2, R4, Re, Rs, R10, R12, R14}, and so on.

Assuming that it is reasonable to study sets of a particular size, why is seven a good
size to look at? One might equally well have chosen to examine sets of a different size,
but the size seven has the advantage of lying approximately midway between the smallest
and largest sizes, and therefore holds promise of being at least somewhat representative
of other sizes. Moreover, in a 15-way join optimization problem, there are many seven-
relation sets to be processed. To be precise, there are (175) = 6435 such sets; only the
eight-relation sets occur in equal abundance, since (185) = (175) At sizes beyond eight (or
below seven), the numbers of sets taper off: there are 5005 sets of size nine, 3003 of size
ten, and so on. Because they are few in number, the very largest and very smallest sets
presumably do not have a major influence on performance. Consequently, our observations
regarding the seven-relation sets are likely to remain pertinent even if it should turn out
that these sets are not especially representative of the sets lying at the extremes.

Now let us consider the optimization of a specific 15-way join problem from our tests

157

le40 T = T T T T
1e35 [e 7
1e30 [R
le2s I g
K*YS) te20 [7
felS T 7]
lelO [7

les5[* T
1 1 | |] 1

0 10 20 30 40 50 60

Number of executions of &*P/it(§, - —)
Figure 6.2: Fingerprint for a sample query

of Section 6.2, namely the star query whose base relations have a mean cardinality of 10*
and variability of 0.5. [n other words, the problem we are considering corresponds to the
point at the very center of the surface in the xo/star cell of Figure 6.1. Supposing that this
problem js submitted to blitzsplil for optimization, the question we now seek to answer is
the following: What determines the number of executions of x*”"* during the processing
of the seven-relation sets?

One way to characterize the executions of x*""! for the seven-relation sets—and by
extension, for the query as a whole—is to take a fingerprint of the optimization process
in the manner illustrated in Figure 6.2. There are 6435 points in the plot—one for each
seven-relation set. The position of each dot is determined by properties of the set S that

the dot represents, as (ollows.

o The z-coordinate is the number of executions of x°?* that occur in the search for the
best split of §. The z-axis runs from 0 to 63 because our algorithm will loop through
63 splits of each seven-relation set. (A seven-relation set actually has 27T -9 =126
possible splits, but recall that under symmetric cost models, only half of them, or

63, need to be considered.)

158

e The y-coordinate (which is scaled logarithmically) is the value obtained for x°*(S).
The y-axis runs only as high as 100 because we deem cost distinctions above this
value to be of no interest: as noted in Section 4.8, plans whose costs are this large
cannot possibly have practical utility. In our plots, y values larger than 103 are

shown as being equal to 1038,

Since in the example at hand we are using the naive cost model kg, and since xk3*(S) =
Cardinality(S), an alternative reading of the y-coordinates is that they represent the join
cardinalities of the various seven-relation sets.? With other cost models, too, one may
expect a close connection between x°“(S) and the join cardinality for S; so a reading of
the y-coordinates as a representation of join cardinality should be at least approximately
valid for a variety of cost models.

There is a tendency for multiple points in the plot to fall so close to one another that
they would be indistinguishable from a single point if they were plotted with absolute
fidelity. To counter this effect, with the aim of allowing each set S to make a contribution
to the plot, we have smeared the points out somewhat from their true positions. (The
displacement is within £0.4 on the z-axis, and within a factor of /10 on the y-axis.)
Despite the smearing, there are still areas in the plot where points occur in such heavy
concentrations that they pile up on top of one another. The blotch at coordinates (5, 10%)
is one such area, whose actual density is not evident from the plot, This small blotch
actually comprises about 3000 points, or nearly half of the points in the entire plot. The
fingerprints of all our star queries have such a blotch, and in examining the plots it is

helpful to think of these corner blotches as loci of enormous mass, like neutron stars.

6.3.2 Significance of Fingerprints

Having discussed above the mechanics of reading Figure 6.2, we now turn to the interpre-
tation of the information in the plot.

At the most basic level, a fingerprint that lies mostly near the left-hand edge of the plot
is good news; a fingerprint near the right-hand edge of the plot is bad news. The further

2Recall that Cardinality(S) refers not to the cardinality of the set 8 of relation names, but to the
cardinality of the relation that results from the join of the relations named by §.

159

to the right the fingerprint’s center of mass, the more effort the optimizer is expending in
calculating the split-dependent costs given by x°?%t. The vertical positions of the points,
by contrast, have no immediate bearing on optimization effort. But the vertical position
is informative in other ways, and later we will see that it bears on optimization effort after
all.

Note that, for the query at hand, the plot indicates that there are two categories of
seven-relation sets: those whose join cardinality (as depicted by vertical point position) is
low, and those whose join cardinality is high. This dichotomy has a simple explanation.
The query described by the plot is a star query, with some relation at the hub of the star;
consequently, the seven-relation sets may be divided into those that include the hub, and
those that do not. The sets lacking the hub induce join subgraphs with no edges, and
hence join as Cartesian products—giving large result cardinalities; whereas the sets that
include the hub induce join subgraphs that are themselves stars, and join to yield results
of modest cardinality. Indeed, because the selectivities in our test queries are chosen to
counteract the variation in the base-relation cardinalities, the join cardinalities of all sets
that include the hub are actually identical.

split_oyecution

Next let us examine in more detail the z-coordinate values, i.e., the &
counts exhibited for the various seven-relation sets. Recall the reasoning we pursued in
Section 3.4.2 in obtaining our estimate for the total execution count of the innermost
conditional block in find_best_split. We assumed that the splits would be examined in
random order; from this assumption we argued that in find_best_split’s search for the best
split of a given m-relation set S, the expected number of executions of the innermost
block was Hym =~ mln2. Given the naive cost model, k*?!t is executed if and only if
the innermost block is executed, so we should expect the k*?-execution count also to be
about mIn 2. Here we are looking at seven-relation sets, but m is effectively 6 since only
26 splits are to be considered. Hence, on average, we expect to see 61n 2 = 4.2 executions
of k*Pl for each seven-relation set.

This expectation is nearly met in the case of the sets that contain the hub; these
sets all entail exactly 5 executions of k*”!, On the other hand, in the case of the sets

that do not contain the hub, the observed x°?% execution counts fall in the range 10 to

160

17—substantially above the predicted average. The explanation for this effect is not im-
mediately obvious; in particular, in the case of the naive cost model, there is no apparent
reason why the cardinality of a set should have anything to do with the number of execu-
tions of k**", (The situation is quite different in the case of the disk-nested-loops model,
as we shall see presently.)

We attribute the discrepancy between the predicted and observed behavior to the fact
that the alternative splits are not, in fact, examined in random order. It may be possible to
reduce the discrepancy by changing the algorithm to examine the splits in a different (but
still deterministic) order, or by permuting the names of the base relations Ry through R4
so that their cardinalities are not necessarily in ascending order. However, investigation

of these possibilities shall be left to the future.

6.4 Fingerprints for Various Queries

Let us now see what we can learn about different kinds of queries by examining their
fingerprints. Figure 6.3(a) shows the fingerprints obtained under the naive cost model
from a variety of queries. All the queries represented are 15-way join problems, constructed
according to the parameterization discussed in Section 6.1.2 above. Henceforth we shall
refer to such queries as our basic test queries. The variability of the mean base-relation
cardinalities is fixed at 0.5 for all the queries considered in Figure 6.3. There remain two
parameters that vary: the join-graph topology, and the mean base-relation cardinality
(denoted y in the figure). The first, second, and third columns of plots depict, respectively,
fingerprints for chain, star, and clique queries. (We omit the cycle+ 3 topology because its
characteristics are very similar to those of the chain.) Plots in successive rows of the figure
represent queries whose mean base-relation cardinalities range from 4.64 to 10%. (We do
not consider the effects of varying u between 1 and 4.64. Behavior in this low range is
likely to be interesting and complex (though fingerprints for queries with u ezactly equal
to 1 are boring, one-point blobs); but for the present it may be just as well not to become
embroiled in any more complexity than necessary.)

It is at once apparent that the fingerprints within each topology grouping have their

4.64

100

104

10

108

3000

2000

1000 |

chain

star

clique

161

\

(a) As function of join-graph topology and mean base-relation cardinality

chain

star

clique

A

(b) Cumulative point densities at each k*/i-execution count (with p = 108)

Figure 6.3: Fingerprints under the naive cost model

162

own distinctive features. We already discussed above the general appearance of a star-
query fingerprint, and we see here that all the star queries depicted in Figure 6.3 have the
same character. Now let us make sense of the fingerprints for chains and cliques.

The chain-query fingerprints show that the join cardinalities of the seven-relation sets
span a wide range, more or less continuously—certainly with no large gaps. But the points
representing these sets become very sparse at both the low and high ends of the range.
(The thinning at the upper end is obscured in the plots where large numbers of points
jam up against the ceiling at 1038, but still occurs in principle.)

Both the smoothness of the distribution and the thinning at the extremes can be
understood in terms of the join graph. The seven-node subgraphs of a fifteen-node chain
join graph may have anywhere from zero to six edges. Those with zero edges represent
joins that are actually Cartesian products, just as in the case of the star queries; the join
cardinalities of the corresponding seven-relation sets will generally be large. But whereas
in the case the star query, roughly half the seven-node subgraphs lack edges, the same
holds for only a small handful of subgraphs in the case of the chain. Likewise, whereas in
the case of the star, roughly half the seven-node subgraphs have siz edges, and hence, in
general, low join cardinalities, in the case of the chain the seven-node subgraphs with six
edges are again something of a rarity. Most of the subgraphs have between two and four
edges, and yield cardinalities of intermediate but highly nonuniform magnitude.

The clique-query fingerprints are the most compact. Again an explanation is found in
the join graph. Any seven-node subgraph of a clique is itself a clique; thus, these seven-
node subgraphs are all topologically isomorphic. Consequently, any variability in the join
cardinalities of the corresponding relation sets is due solely to variability in the values that
annotate the join graph—i.e., the base-relation cardinalities and the predicate selectivities.
In the queries under study, the variation in the base-relation cardinalities is significant—
they range from /i to u’—but the predicate selectivities are computed in such a way
that they partially compensate for the variation in the base-relation cardinalities. The net
effect is that the smallest join cardinalities for the seven-relation cliques are much larger
than in the case of chains and stars, while the largest join cardinalities are much smaller

for cliques than for chains and stars.

163

We noted in Section 6.3.2 above that in the case of the star query, there was an
unexpected correlation between a point’s z- and y-coordinates. Here we see that this
correlation appears, to varying degrees, in the fingerprints for the chain and clique as
well: in each instance, the point clusters slope upwards as z increases. However, while the
correlation is in evidence within each fingerprint, there appears to be no similar correlation
across fingerprints. That is, the successive fingerprints for u = 4.64,100,104,..., show
ever-increasing join cardinalities for the seven-relation sets, as evidenced by the increasing
upward reach of the point clusters; but these clusters show no corresponding horizontal
movement. We conjectured in Section 6.3.2 that the correlation seen inside an individual
fingerprint was due to obscure details of our implementation, and not to any intrinsic
difficulty in finding the best split for a set with a large join cardinality. The present
evidence supports this conjecture, inasmuch as large cardinalities per se are not associated
with high execution counts for x*P!¥,

Thus far we have not ruled out the possibility that there is hidden horizontal movement
from one fingerprint to the next. One can imagine the center of mass of the points
migrating slowly to the right with increasing u, even as the envelope of the points remains
stationary. To eliminate this possibility, one may plot the point densities in the manner
illustrated in Figure 6.3(b). The graphs in this portion of the figure show, for the case
p = 108, the number of fingerprint points lying along the vertical line determined by
each z-value. The peak of the point densities for the chain query lies at z = 6; for the
clique query, at £ = 13; and there are two peaks for the star query—one at z = 5 (the
position of the blotch), and another at 2 = 13 (the mode of the points representing hubless
sets of relations). The same peaks are obtained when one plots the corresponding graphs
for the other values of p; indeed, the graphs for the different u are so similar as to be
virtually indistinguishable. Because they add no new information or insight, we omit the

point-density graphs for u = 4.64 through 10°.

164

6.5 Execution Counts under the Nested-Loops Model

From the foregoing analysis under the naive cost model, we now have a baseline for
further fingerprint studies. The naive-cost-model fingerprints showed the ways in which
the behavior of our implementation departs from the ideal behavior predicted by our
theoretical model. We found that even when x*P!it = 0, the number of executions of x*PH
was somewhat larger than expected. In the case where x* £ 0, we have no quantitative
expectation—only the expectation that the execution counts for &°?%¢ should increase
further still. Here we present empirical results on the extent of that increase under the

disk-nested-loops cost model.

6.5.1 Split-Graphs

Before discussing fingerprints under the disk-nested-loops cost model, we introduce one
additional visual aid, to which we give the name split-graph. Figure 6.4 illustrates two
such graphs. A split-graph may be thought of as an exploded view of a single dot in a
fingerprint plot. That is, each dot in the fingerprint represents a seven-relation set; the
split-graph for such a set gives information that helps to explain why the dot for that set
lies where it does in the fingerprint.

Both the split-graphs in Figure 6.4 pertain to the optimization under the disk-nested-
loops model of the 15-way chain query with u = 10% and variability 0.5. (These particulars
are not important at this stage, and are given only for completeness.) Figure 6.4(a)
gives information about the set {Rg, Ry, R3, Rs, Rs, R12, R13}, and Figure 6.4(b) gives
information about the set {Ro, R2, Rg, R7, Rg, Rg, R11}. The captions of the two graphs
refer to these sets as “easy” and “hard,” respectively, for reasons that will be explained
in Section 6.5.2 below.

To interpret the information in the graphs, recall that there are 27 — 2 = 126 possible
splits of a seven-relation set; but since we are working with a symmetric cost model, any
split (U4, V) is equivalent—where cost is concerned—to its mirror image (V,U). Hence
there are 63 distinct splits that find_best_split must consider when it is invoked on either

of the sets under discussion (or, indeed, on any other seven-relation set). Each of these 63

cost

cost

led0
le35
1€30
1€25

1e20 [
lels [{isii
lel0 i
les [

1

(a) Costs of all splits of the “easy” set {Ro, R1, R3, Rs, Rs, R12, R1a}

led0
1e35
1e30
le25

1e20 .~
lels fti
tel0 fi}
les

1

(b) Costs of all splits of the “hard” set {Ro, R2, Rs, R7, Rs, Rg, R11}

165

Figure 6.4: Split-graphs for a chain query with g = 10* and variability 0.5 under the

disk-nested-loops cost model

splits is represented in the graphs of Figure 6.4 at a separate position on the z-axis.

Now, find_best_split goes through several steps in considering the viability of a par-

ticular split of a set S into two sets Sy, and S, (c¢f. Figure 3.2, page 76). First, the

costs of Sy, and Sy4, are added to obtain operand_cost, and then fc"”"‘(S s Slthsy Srhs) is

added to operand_cost to give dependent_cost. If dependent _cost is less than the current

best_cost_so_far, then dependent_cost becomes the new value of best_cost_so_far. Thus, it

166

is the value of dependent_cost that determines how each split stacks up against the others.
The splits in each graph in Figure 6.4 are arranged in order of decreasing dependent_cost,
and the solid curve in the graphs plots the descent of dependent_cost as one moves from
the poorest split to the best split for the set. (Note that the order in which the splits
appear in the split-graphs has nothing to do with the order in which they are examined
by find_best_split. Note also that splits whose dependent_cost values are equal are ordered
arbitrarily.)

It is the value of dependent_cost that ultimately determines the viability of a split,
but the value of operand_cost also holds considerable interest: Whenever operand_cost
by itself exceeds best_cost_so_far, there is no need to go to the trouble of comput-
ing K*P%(S, Sinsy Srhs) (cf. Section 3.4.3, page 86). But how often, one may ask, does
operand_cost exceed best_cost_so_far? The graphs in Figure 6.4 take a step towards an-
swering this question by showing the values of operand_cost for each split, as well as the
values of dependent_cost. The values of operand_cost appear as vertical dotted spikes that
reach up towards the curve depicting dependent_cost.

The lower, “filled-in” portion of each of the graphs thus represents operand costs,
while the white space sandwiched between the operand_cost and dependent_cost values
represents the difference between the two—in other words, the white space represents the
contribution of kP!,

Note, though, that it is easy to be deceived about the quantities represented by the
white space. In some split-graphs there is only a narrow band of white space, and the area
it occupies is small in comparison with that of the filled-in space below it. In most such
cases, one would be mistaken in inferring that dependent_cost is chiefly determined by
operand_cost, and that x*?"* makes only a small contribution towards the total. Because
the vertical axis of the graphs is scaled logarithmically, the linear distance representing the
k*Plit contributions is drastically compressed; in most of the graphs we will examine, the
contribution of k*? actually vastly overshadows that of operand_cost, and yet appears
visually as the smaller of the two.

In this sense, the split-graphs are misleading. But however deceptive they may be

numerically, they tell the truth about the relative significance of operand_cost and kP!

167

in optimization. We shall see later that in some situations, the numerical value of x*P"
makes no difference whatsoever; and in those situations where it does make a difference,
it generally matters only inasmuch as it exceeds operand_cost by at least an order of
magnitude.

One final descriptive matter: The horizontal, dashed lines in the graphs show the
successive values taken on by best_cost_so_far during find_best_split’s processing of the
sets in question. There are three such lines in Figure 6.4(a), and seven in Figure 6.4(b);
but because some of these lines fall so close to one another, they are not all distinguishable.
What appear to be thick, dashed, horizontal lines are actually clumps of several thinner

lines.

6.5.2 Split-Graph Shape and Cost-Function Execution Count

As noted above, we refer to the set depicted in Figure 6.4(a) as an “easy” set, and to the
set in Figure 6.4(b) as a “hard” set. The reason for these designations derives from the
number of executions of k"% in the processing of each of the sets: five executions for the
“easy” set, and forty-five executions for the “hard” set.

This difference in the number of executions of x*?** is extreme, but not surprising
in light of the relative contributions of the operand_cost values in the two cases. In
the case of Figure 6.4(a), by the time the second value of best_cost_so_far has been set,
the operand_cost values for nearly all splits protrude above the level of best_cost_so_far.
Consequently, there is no need to evaluate x°?¢ for these splits—they can be thrown out
on the basis of their operand_cost value.

By contrast, in Figure 6.4(b), most of the operand_cost values do not protrude above
the level of best_cost_so_far even after best_cost_so_far has been reduced to its final, lowest
value. As a result, the loop in find_best_split can eliminate a split on the basis of its
operand_cost value in only a handful of instances. In all the remaining instances, evaluation
of k°?! is required to determine that the split is not competitive.

There appears to be a component of “luck” in the fact that only five 7} executions
are needed to process the set of Figure 6.4(a). Perhaps the word luck does not quite

apply, since our algorithm is deterministic and will always process the given set in the

168

same way. But one can well imagine that if the splits were processed in a different order,
the execution count for x??# might turn out to be somewhat larger. Even so, the odds
that it would be much larger are slim. We will find that while there is no guarantee of a
low x*?!*_execution count in a set whose split-graph has the appearance of Figure 6.4(a),
the preponderance of such sets nonetheless do yield very low x®"!‘-execution counts.

Here, then, we see a striking effect. It would not be surprising to find that evaluation
of k*P%* could generally be avoided when the contribution of k*”!* was small compared
to that of operand_cost; for then the situation would be only marginally different from
the situation that obtains under the naive cost model, where x*?* contributes nothing
at all. But in Figure 6.4(a) we have values of k** that exceed the corresponding values
of operand_cost typically by five orders of magnitude—and yet, for the most part, these
monstrous quantities turn out to be irrelevant.

Evidently the crucial feature of Figure 6.4(a) that leads to a low execution count for
k*Plit is simply this: Most of the values of operand_cost are larger than some of the values
of dependent_cost. Seen in this light, the numerical values contributed by x*”/** do indeed
appear to be beside the point, except in a few instances. Specifically, it is important that
there exist several splits for which operand_cost and &°?%t are both small in comparison
with the operand_cost values encountered in most of the other splits. The existence of
several such relatively low-cost splits makes it likely that in the processing of the set,
best_cost_so_far will quickly fall to a level that undercuts the bulk of the operand_cost
values.

In Figure 6.4(b), it is precisely the absence of low-cost splits, in the sense just described,
that makes it necessary to evaluate k°?t for nearly all splits. The smallest values of x*PH
are huge (that is, really huge), and consequently the smallest values of dependent_cost are
also huge. Most of the values of operand_cost are very small by comparison.

We may go one step further and observe that the existence of low-cost splits for a set
S is not entirely accidental, but is associated with another property of sets of relations
that we have remarked on before. Consider again the induced join graph for S. When
this graph contains many edges, there are many ways the edges can be apportioned when

S is split into two sets Sy, and Syp,. That is, some edges may end up belonging to Sis,

169

and some to S,;,, while those that belong to neither will furnish join predicates for the
join of Sips and Syp,. As it happens, the set depicted in Figure 6.4(a) induces a join graph
with a relatively large number of edges. The resultant variations in predicate assignments
in the splits of this set are reflected in the gradual, sloping descent of dependent_cost in
Figure 6.4(a).

By contrast, if the join graph for S has no edges, or few edges, there are few ways
to apportion the edges in the splits of S. Accordingly, the dependent_cost curve for such
sets characteristically consists of a relatively small number of discrete, nearly flat steps,
connected by abrupt transitions, as in Figure 6.4(b).

This contrast has another manifestation as well. When a set S induces a join-graph
with many edges, as in Figure 6.4(a), the associated join cardinality will generally be
relatively small. When the join-graph has few edges, as in Figure 6.4(b), one may expect
to encounter larger join cardinalities. Thus, sets that appear low down in a fingerprint
plot will tend to have “easy” split-graphs, while sets that appear higher up will tend to
have “hard” split-graphs.

6.6 Fingerprints under the Nested-Loops Model

We now examine fingerprints under the disk-nested-loops cost model. In particular, we
shall observe the evolution of the fingerprints under increasing mean base-relation cardi-
nalities. As the fingerprints evolve, the dots representing individual sets will be seen to
migrate in ways that are tied to the split-graphs for those sets. The patterns that emerge
from these observations will help to explain the peculiar bulges in the performance graphs
of Figure 6.1.

We begin by considering chain queries. The left-hand column of Figure 6.5 shows
fingerprints of 15-way chain queries under the disk-nested-loops model. The queries shown
are taken from our repertoire of basic test queries, with the mean base-relation cardinality
u ranging from 4.64 to 108, and with the variability held fixed at 0.5.

The middle and right-hand columns of the figure show split-graphs that correspond
to the fingerprints in the left-hand column. The sequence of split-graphs in the middle

170

)}’ ﬁngerpmnt {ROIRIIR3IR5>R8\R12|RIS} {RObRZ» R61R7\RB|R9\R11}

(3,1.2¢1) (8,3.1e2)

4.64
| i S . — | e rrrEET—T—
(3.4.6e4) (17,7.4¢8)

100
(5,1.0¢10) (45,2.8e18)

104
(9,2.4e15) 1.0e28)

108

10®

Figure 6.5: Chain-query fingerprints and split-graphs for various g

column traces the trajectory of an arbitrarily chosen “easy” set, while the sequence in the

right-hand column traces the trajectory of an arbitrarily chosen “hard” set.

(The “easy” setis { Ra, Ry, R3, Rs, Rs, R12, R13}; in accordance with the chain topology

described in Appendix C, the induced join graph of this set has four predicate edges, which

connect the following pairs of relations: Ro—Rg, Ri-Rg, Rs~Ri3. and Rs—Ry3. The “hard”

set is { Ro, R2, Rg, R7, Rg, Ra, R11}. The induced join graph of this set has two predicate

edges, which form the connections Ro~Rg and Ra~Rg.)

171

As noted previously, each split-graph corresponds to an individual point in the corre-
sponding fingerprint. The coordinates in the upper right-hand corner of each split-graph
show the positions of those points in the adjacent fingerprint.

Let us now examine the sequence of fingerprints; we will come back to the split-graphs
in a moment. We see that as cardinality increases, the fingerprint drifts upwards—but it
also spreads out. The fingerprint’s center of mass moves farther and farther to the right,
reflecting increasing numbers of executions of x***. These increasing execution counts
correspond to the rise in optimization time observed as mean cardinality ranges up to
about 104 in the kgyi/chain cell of Figure 6.1.

As cardinality rises above 104, the rightward drift of the cloud of points in the fin-
gerprint sequence continues unabated, yet Figure 6.1 shows that optimization time starts
to drop off in this region. This drop is due to a separate effect, also evident in the
fingerprint sequence. With the larger cardinalities, we encounter increasing numbers of
sets S for which the split-independent cost k°“(S) rises above 10% and overflows the
single-precision floating-point representation that we use for plan costs. As explained in
Chapter 4, we skip the loop in find_best_split when we encounter such sets. Thus, we start
to obtain substantial savings when there are many such sets.

Sets whose split-independent cost overflows appear in the fingerprints as points that
are jammed up against the upper boundary of the plot. They are shown as having
y-coordinates of 1038, though their true y-coordinates may be much higher. Their z-
coordinates show the number of executions of k*”" that would be required if costs were
maintained in double-precision floating-point, and the loop in find_best_split were executed
for these sets as for all other sets. But since that loop is in fact skipped for the sets in
question, the actual number of executions of k®?¢ for these sets is zero. To visualize their
effect on optimization time, one can imagine the points representing these sets as simply
being removed from the fingerprint plots once their split-independent cost overflows.

In the sequence of fingerprints in Figure 6.5, the dot representing a particular set may
trace a trajectory that begins in the lower left-hand corner of the plot, then gradually
moves upward and to the right until finally the dot jams up against the top of the plot.

The effort involved in processing the set increases with the dot’s motion toward the right,

172

but when the dot bumps into the upper boundary, the effort abruptly drops back to
zero. The abruptness of this drop is not evident in Figure 6.1, because the effect of any
individual set on optimization time is small. But as more and more sets are gradually

removed from consideration, the cumulative effect becomes large.

6.6.1 Trajectories as Seen through Split-Graphs

The trajectories of the dots representing different sets are plainly not all alike. It is
apparent from the gradual dispersion of the dots that some of them are drifting rightward
far more quickly than others.

The reason for the variation in drift rates can be understood in terms of split-graphs.
Though “easy” and “hard” are relative terms, these classifications are useful in explaining
drift rates. The dot for the “easy” set depicted in the middle column of Figure 6.5 drifts
slowly—its z-coordinate successively take on the values 3, 3, 5, 9, and 11 as the mean base-
relation cardinality runs from 4.64 to 108. The z-coordinate for the “hard” set depicted
in the right-hand column, by contrast, progresses rapidly through the values 9, 17, 45, 50,
and 55.

It is interesting to note that in both the sequences of split-graphs, the values of x®P'
increase much more quickly than the operand_cost values (i.e., the band of whitespace
occupies an increasingly large proportion of the area under the dependent._cost curve).
There appears to be some difference between the “easy” set and the “hard” set in the rate
of growth of the whitespace, but not enough of a difference to account for the divergence
of the execution counts in the two cases.

Instead, the effect at work is that “easy” sets tend to remain “easy” as cardinalities
increase: in these sets, as noted above, there exist splits for which both dependent_cost and
Kk*Plit are relatively small. The splits that possess this trait tend to retain the trait even
when the cardinalities increase. The split-graphs for the “hard” set, on the other hand,
show a gap at the right-hand edge between the dependent_cost curve and the operand_cost
spikes below it. At low cardinalities, this gap is not readily discernible, but it is still
present. In other words, the “hard” set does not fundamentally change its character with

the changing cardinalities. It always possesses the character of a “hard” set, only the

173

consequences are less severe at lower cardinalities. As long as the whitespace at the right-
hand edge of the split-graph is narrow compared to the range spanned by the operand_cost

values, one can expect to obtain relatively low x*-execution counts.

6.6.2 Behavior of Star Queries

We shall not give detailed consideration to the “cycle+3” topology, because its character-
istics are very similar to those of the chain topology. But the optimization of star queries
under the disk-nested-loops cost model reveals interesting differences from what we saw
in the case of the chain. We shall now analyze the star in the same manner that we just
analyzed the chain.

The surface in the kg4,/star cell of Figure 6.1 differs only subtly from the 4.1/ chain
cell to its left. Both have qualitatively the same shape; in both cases, as cardinality rises,
optimization time first increases, and then later drops off again. But in the star-query
case the effects are more compressed and more exaggerated.

These differences are reflected in the star-query fingerprints in Figure 6.6. About
half the points in these fingerprints—those constituting the blotch in the lower-left hand
corner—remain fairly stationary throughout the sequence. But the remaining mass of
points moves quickly to the right as cardinality rises, accounting for the corresponding
rapid increase in optimization time. At the same time, this mass of points also moves
upward rather quickly; before long, large numbers of these points are jammed up against
the upper boundary of the fingerprint. Once again, the accumulation of points at this
boundary corresponds to a reduction in optimization time as the loop in find_best_split is
skipped for larger and larger numbers of sets.

Like the corresponding figure for the chain-query case, Figure 6.6 includes two columns
of split-graphs alongside the fingerprints. As before, the middle column traces the trajec-
tory of an arbitrarily chosen “easy” set, and the right-hand column trace the trajectory
of an arbitrarily chosen “hard” set. The fingerprint dot for the “easy” set remains within
the blotch at the lower-left corner throughout the fingerprint sequence. The dot for the
“hard” set belongs to the mass of dots that moves upward and rightward.

(Here, the “easy” set is {Ro, R3, R4, R, R7, R12, R14}. In accordance with the star

174

7’ fingerprint {Ro, R3, Rs, Re. Ry, Ri2, Rus) {Ro, R1, Ry, Rs, Rs, Rio. Rz}
(7,1.4¢0) (26, 2.8¢3)
4.64
- Sril e, - Hh AR zxaTA
(5.7.4e1) (53,5.4el1)
100

HiH]
Hilt]

104

-~ |5

(62,1.4¢24

108

{62,3.9¢36)

108

Figure 6.6: Star-query fingecprints and split-graphs for various p

topology described in Appendix C, its induced join graph has predicate edges between

R4 and each of the other relations in the set—i.e., six predicates altogether. The “hard”

set is {Ro, Ry, R4, Rs, Rs, R1o, R12}, whose induced join graph has no predicate edges at

all.)

In the case of the chain, the distinction between “easy” and “hard” sets was one of

degree, but here it is absolute. Sets that contain the hub of the star are “easy”; the

rest are “hard.” The “easy” sets all induce join graphs with six predicates—a sufficient

number that the split-graphs for such sets show a dependent_cost curve that descends

175

very smoothly and gradually, in the manner seen in the middle column of Figure 6.6.
The “hard” sets induce join graphs with no predicates; the resultant split-graphs in the
right-hand column of Figure 6.6 show dependent_cost curves that are essentially one flat
plateau except near the left-hand edge.

In light of the appearance of these split-graphs, the behavior of the star-query finger-
prints is entirely unsurprising. In the “easy” graphs, the lowest dependent_cost values un-
dercut nearly all the operand_cost values; in the “hard” graphs, the lowest dependent._cost
values undercut almost none of the operand_cost values.

One feature of the “easy” split-graphs deserves comment. The band of whitespace in
these graphs grows to be quite wide at the larger cardinalities, but the gap between the
dependent_cost curve and the operand_cost values always closes near the right-hand edge
of each graph. The reason for this closing of the gap is that near the right-hand edge of the
graph, one encounters the left-deep splits—the splits in which the right-hand side consists
of a single relation.® Given a star join-graph topology, it is only in the left-deep splits that
both the left-hand side and right-hand side are free of Cartesian products. Consequently,
the products of the input cardinalities are lowest for the joins formed from the left-deep
splits; and in our test queries, the total cost of such a join can be expected to be roughly
comparable to the total cost of the join at its left input, since both these joins involve

cardinalities of similar magnitude.

6.6.3 Behavior of Clique Queries

Figure 6.1 showed that the optimization times for clique queries are elevated relative to
the times for chains and stars. However, even in the case of cliques there was a hint of
the same pattern exhibited by the other topologies—an increase in optimization time as
cardinality rises from low to moderate, and then a drop as cardinality rises still further,
from moderate to high.

The fingerprints and split-graphs in Figure 6.7 give another perspective on the difficult

3Some of the splits in question are technically right-deep rather than left-deep. But since we are
assuming symmetrical join costs, we need not make a distinction between left-deep and right-deep. We
shall maintain the convention of referring to splits of either kind as left-deep.

176

H ﬁngeﬁof”ini {Ro. Rz, Rs, R7,Rg, Ro, R1y) {R4, R, Rg, Ry, Ri2, Rz, g}
(34,8.1el) (30,4.2¢2)
4.64
(54,1.4¢7) (60, 1.3c9)—l
100

(61,9.1e14) (63,1.6e19)

104

108

108

Figure 6.7: Clique-query fingerprints and split-graphs for vartious p

character of the clique queries. As before, the figure shows two columuns of split-graphs, for
the sets { Ro, Ra, Rs, R7, R, Ro, R1} and {Ry4, Rg, Rs, Ryy, Ri2, R)3, Ry}, respectively. In
this instance, there is little justification for calling one of the sets “easy” and the other
“hard.” One might more accurately characterize them as being “horrible” and “even more
horrible.” In the case of the clique, there are no “easy” sets.

(Both the sets represented in these split-graphs induce join graphs that are cligues, as
do all subsets in a clique topology; but one difference between the two sets represented

here is that the “even more horrible” set contains relations of larger cardinalities. As

177

explained in Appendix C, in our basic test queries, the relation Ry is assigned the lowest
cardinality of any relation, and the cardinalities ascend with the relation indices, so that
R4 has the highest cardinality.)

In fact, the clique behavior exhibited in Figure 6.7 is in several respects qualitatively

different from the behavior we have observed for chains and stars:

e As just noted, in the clique there are apparently no “easy” sets. All points in its

fingerprint move in more or less the same way as cardinality increases.

o In the split-graphs for the clique query, low operand_cost values correlate with high
dependent_cost values—just the opposite of what occurs in the chain- and star-query

split-graphs.

e At no stage in the clique-fingerprint evolution do we find points jamming up against
the upper boundary of the fingerprint plot. Yet Figure 6.1 does show a pronounced

drop in clique-query optimization time at high cardinalities.

Presumably all the seven-relation sets behave more or less similarly because they are
all topologically isomorphic; i.e., the join subgraphs they induce are all subcliques. What
little difference one does find among the different sets is due to variations in the base-
relation cardinalities and predicate selectivities. These variations are moderate in our test
queries, and as we have seen before, it is the larger differences related to the presence or
absence of predicate connections that distinguish “easy” from “hard” sets.

These comments explain why all the sets behave alike; but why do all the sets exhibit
“hard,” rather than “easy” behavior? The answer to this question is bound up with the
negative correlation between the operand_cost and dependent_cost values in the split-graph
for any given set. In the case of the chain and the star, high values for dependent_cost and
operand _cost both tended to be associated with the presence of Cartesian products in one
or both operands; hence these values were positively correlated. Here, Cartesian products
are not an issue. Instead, high values for dependent_cost are associated with splits that
assign roughly equal numbers of relations to the left-hand side and the right-hand side:

such splits yield joins that have a large number of join predicates, and hence the product

178

of the operand cardinalities is large in proportion to the result cardinality. This large

:{,’.lzua and thereby pushes up the value of

product appears as a term in the cost function &
dependent_cost. But these same splits, in which the numbers of relations on the left and
right are roughly balanced, are the ones that give the lowest operand_cost values. When
one operand contains more relations that the other, its cost is significantly higher, and
drives up the sum of the operand costs.

Finally, we turn to the question of why the drop in optimization times at high car-
dinalities is not reflected in our fingerprints. The explanation is simple: our fingerprints
represent only the seven-relation sets. Fingerprints of the eight-, nine-, and ten-relation
sets would show point clusters at higher and higher levels, and the larger the sets, the more
points would be jammed up against the upper boundary of the plot. In fact, the same
is true in the case of the chain and star queries—though we did see points accumulating
at the upper boundary even in the seven-relation fingerprints, the effect would have been
stronger had we examined the behavior of slightly larger sets. Note, however, that the

influence of the sets that are much larger—e.g., those of thirteen, fourteen, and fifteen

relations—is small, because as noted earlier, the number of such sets is small.

6.7 Summary and Discussion

In this chapter we have attempted a systematic exploration of the performance character-
istics of the Blitzsplit algorithm. Such an exploration presents challenges because there is
no standard assessment procedure for join-order optimization.

We began by defining a parameterization for a suite of basic test queries that we
submitted to the Blitzsplit algorithm for optimization. Using relatively simple cost models,
we obtained timings that are very favorable compared to those that have been reported
for other methods. Moreover, we gave evidence that our worst-case timings occur only
under rare conditions, and that for a broad spectrum of queries the optimization time falls
well below the worst case. At the same time, our performance graphs revealed sensitivity
to the cost model, and displayed mysterious bulges for which there was no immediate

explanation.

179

We then sought to understand the algorithm’s performance in more detail, espe-
cially with a view to anticipating what kind of effects we would encounter under more
computation-intensive cost models. To that end, we investigated the aspects of a query
that affected the number of executions of the split-dependent component x°?%¢ of the cost
function k—for it is this component of cost to which the algorithm will inevitably show
the greatest sensitivity.

We introduced query fingerprints and split-graphs for the purpose of probing the x*P%-
execution counts. We found that the somewhat mysterious patterns in Figure 6.1 are not
so mysterious after all, but have straightforward explanations in terms of our fingerprint
plots and split-graphs.

One can extrapolate from these explanations and begin to make some predictions
as well. For example, one might predict that redistributing the selectivities among the
predicates (preserving the product of these selectivities) ought not to change the overall
shapes of the fingerprints, but would presumably cause some additional spreading of the
fingerprint dots along the vertical axis. It is therefore not surprising that in our ad hoc
experiments with altered selectivities, we observed performance very similar to that of our
basic test queries. One can imagine going further, and attempting to quantify the effects
of such changes by constructing analytical models. However, such a modeling effort is
beyond the ambitions of the present work, and will have to be left to the future.

The applicability of some of our observations to actual query processing may be ques-
tioned. In particular, the relevance of the disk-nested-loops cost model is suspect, since,
aside from being fairly simplistic, it assigns prohibitively high costs to queries involving
large cardinalities. One could not possibly hope to execute our basic test queries at large
cardinalities if the execution costs were in fact those given by the disk-nested-loops model.

However, this deficiency in the disk-nested-loops model does not necessarily compro-
mise the utility of our measurements and analysis. On the contrary, it is a reasonable
conjecture that the effects observed under this model illustrate the worst-case behavior of
our algorithm with regard to the x*?"*-execution counts. Cost models that do not include
a term proportional to the product of the join-input cardinalities can be expected to yield

split-graphs with narrow bands of whitespace. In cost models that do include such a term,

180

the band of whitespace will become wide, sooner or later, as cardinality increases.

More sophisticated cost models create a synthesis of these two alternatives, giving con-
sideration to nested-loops strategies where they are feasible, and avoiding them elsewhere.
One may expect the behavioral characteristics of such a synthesis to be intermediate be-
tween those of our naive model and those of our disk-nested-loops model. By focusing
separately on two distinct potential sources of cost, these simplistic models bracket the

range of behaviors one would be likely to encounter in realistic cost models.

Chapter 7

Pruning Cost Computations

We now consider further improvements to the Blitzsplit algorithm based on the obser-
vations of the previous chapter. To motivate these improvements, let us briefly review
both what is good and what is bad about the algorithm’s performance, as shown by our
observations.

What is good is its sheer speed under simple cost models. With the Blitzsplit algo-
rithm, we obtained optimization times that, even in the worst case, were lower by several
orders of magnitude than those that have been reported for other methods.

But one must be cautious in interpreting these timings. Earlier studies of join-
optimization performance suggest that when heavier-weight join-enumeration strategies
are used, the effort of join enumeration is the limiting factor in join-optimization perfor-
mance [40, 45]. Under those conditions, one can equally well measure performance using
a simple cost computation or a more complicated one—the effort involved in the cost
computations is dominated by the join-enumeration effort in either case. However, once
the join-enumeration effort is pared down to almost nothing, as the Blitzsplit algorithm
has done, the tables are turned. Cost computations emerge as a significant and possibly
the dominant component of optimization time.

Seen in this light, what is bad about our algorithm’s performance is that it does
not do a good job of economizing on the number of executions of the cost function .
Assuming, as we have done, that the computation of is separated into a split-independent
component x°* and a split-dependent component x*”/*, we have seen that we need to be
especially concerned about the number of executions of k*?%!, Even under the idealized

assumptions of Sections 3.4.2 and 3.4.3, the x*Plt_execution count does not necessarily

181

182

compare favorably with the cost-function execution counts that would be obtained with
algorithms that consider only “feasible” sets of relations in the manner of Starburst or
Volcano. For when the join-graph topology is a chain, for example, the complexity of
optimization in Starburst or Volcano is polynomial in the number of relations n; whereas
our algorithm necessarily has ezponential complexity—and in particular, gives a x*P%t
execution count of (In2/2)n2" according to our idealized analytical estimate.

Moreover, the fingerprint studies of the previous chapter show how far the actual
k*Plit_execution counts can diverge from the ideal. In terms of x*”!!-execution counts, our
algorithm appears to be paying a heavy price for including consideration of Cartesian
products.

At the same time, the fingerprint studies suggest a way of avoiding the penalty as-
sociated with Cartesian products. Except in the case of the clique—whose difficulty has
nothing to do with Cartesian products in the first place—the points that lie furthest to the
right in the fingerprint plots also tend to be found high up in the plots. The techniques
described below take advantage of this fact to cut the x*?!*-execution counts, sometimes

drastically.

7.1 Pruning by Plan-Cost Thresholds

As a first measure to avoid the penalty incurred by Cartesian products, we apply a simple
pruning technique that we refer to as pruning by plan-cost thresholds. The idea behind this
technique is simply to remove from the fingerprints all points above a particular threshold.

This technique is implemented by means of a small change to the code in find_best_split
(cf. page 76). Recall that x°* represents the component of a cost function x that depends
only on the set S of relations whose join is to be optimized, and not on any particular split
of § into left- and right-hand sets of relations. Consequently, k°“*(S) can be computed for
the set S, once and for all, outside the inner loop that examines the individual splits of S.
As described in Section 4.8, our actual implementation of the Blitzsplit algorithm entirely
skips the inner loop in find_best_split whenever x°“*(S) threatens overflow, i.e., whenever

k°%(S) exceeds 10%%. But the threshold 103% can just as well be replaced by some other

183

. .__,,,3_‘"""' -
“tLad (ol

(a) Full fingerprint (b) Truncated fingerprint

Figure 7.1: Fingerprint with and without truncation by a plan-cost threshold

threshold 7 chosen to reduce the effort in optimization.

The effect of such a change at the level of fingerprints is illustrated in Figure 7.1.
Figure 7.1(a) shows the fingerprint under the disk-nested-loops model of the basic chain
query with mean cardinality 10* and variability 0.5. In Figure 7.1(b) we see the result
of removing the dots for all sets S such that x°“!(S) lies above the threshold 7 = 1014,
(The value 10'* has no special significance; we comment further on the choice of 7 below.)
Evidently, Figure 7.1(b) reflects a much lower total kP4 execution count than does the
original fingerprint in Figure 7.1(a). Imposition of the threshold has eliminated many
dots, and moreover has removed them mostly from the right-hand half of the fingerprint,
the province of “hard” sets.

Under the naive cost model as well, plan-cost thresholds can remove large numbers of
sets from a fingerprint. The absence of “hard” sets under the naive cost model makes the
effect of the thresholds only slightly less compelling. Indeed, plan-cost thresholds make
sense for any cost model & for which the split-independent component k! is nonzero. If
K4 js zero, all the points in a fingerprint plot will be glued to the z-axis, and a plan-cost
threshold will have no effect. But any realistic cost model ought to have a non-zero split-
independent component that charges some cost proporiional to output cardinality. The
cost need not be large to make the plan-cost thresholds effective.

There remains the question of how to choose a threshold r. Plainly, the lower the
threshold, the greater the savings in optimization time. But in lowering the threshold too
aggressively, one runs the risk of rendering some queries unoptimizable. That is, if the

threshold is set below the cost of the optimal plan for a given query, the optimizer will be

184

unable to find any plan for that query. (Note, though, that in no case will the optimizer
commit the insidious error of mistaking a suboptimal plan for an optimal one. If any plan
is found, it will be optimal.) There is no obvious criterion for choosing a threshold that

strikes a good compromise. Below we consider several perspectives on this problem.

7.2 Experimental Runs with Plan-Cost Thresholds

Our first attack on the setting of threshold values is straightforward if ad hoc, and gives
us the experimental results reported below. We reason as follows:

If a query is expected to execute quickly, then it is imperative that it also be optimized
quickly, for in general one would like optimization time to be smaller than (preferably,
much smaller than) execution time [30]. By the same token, if the query execution will
be extremely long, then it is probably acceptable to allow more time for optimization, as
long as the optimization time is still small compared to the execution time.

On this basis, it seems reasonable to choose a plan-cost threshold that represents a
query-execution time on the order of one hour. The optimizer will then directly find
optimal plans for queries whose estimated execution time (after optimization) is below
one hour. On the other hand, given a query that cannot run in under one hour, the
optimizer will fail to find a plan; it will then be necessary to take remedial action. The
remedial action we take is to reoptimize with a higher threshold—for lack of a better
value, we set the second threshold at 10° hours. The second threshold will clearly suffice
for any query that one may reasonably hope to execute. But for the sake of completeness
we make allowance for a third optimization pass if the second threshold is still too low. It
will turn out that this third pass is required for some of our basic test queries.

In our experimental runs with plan-cost thresholds, we make no attempt to reuse
information from one optimization pass to the next; each optimization pa