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Abstract 

Alternative strategies for mapping genes involved in common traits are needed 

due to the complexity of the underlying genetic and environmental causes.  

Improvements in technology have provided the ability to genotype increasing numbers of 

single nucleotide polymorphisms (SNPs) in multiple individuals in a cost effective 

manner.  The advent of whole genome expression profiling technology has enabled 

investigators to combine functional genomics with genetic variation such as SNPs and 

copy number polymorphisms to inform the choice of possible candidate genes for further 

study 

In this study, genes involved in age-related cognitive decline as defined by 

Alzheimer’s disease (AD) were identified through the use of current high-throughput 

technologies.   Gene profiling was used to identify functional candidates and associated 

pathways implicated in neuropathological phenotypes related to cognitive decline.  

Whole genome association (WGA) techniques were investigated to assess both the low 

level characteristics of the genotyping algorithms and the impact of DNA structural 

variation on the previous gene expression results.     
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Chapter I.  Introduction 

A. Overview 

 Historically, most advances in gene mapping have occurred through the use of 

linkage analysis in family studies of Mendelian diseases [1].  Translating these successes 

into finding genes involved in complex traits has been problematic.  The main challenges 

are that complex traits are comprised of multiple genes of varying effect sizes and that 

epistatic interactions among multiple genes and the environment contribute to the 

phenotype [1-4].  Studies testing for association of genetic variations and phenotype in 

unrelated individuals may have greater power to identify genes of lower effect size  than 

linkage analysis, but the sample sizes required to obtain significance across multiple 

genomic markers  made these studies cost prohibitive for many years [5, 6].   As 

improvements in technology provided the ability to genotype increasing numbers of 

single nucleotide polymorphisms (SNPs) in multiple individuals in a cost effective 

manner, association studies proliferated.  Despite a rise in the number of studies 

performed, few genes were replicated in other studies and therefore could not be 

identified unequivocally [3 , 7].  The lack of reproducibility of gene identification in 

complex traits is related to the low power of most association studies due to phenotypic 

heterogeneity and population heterogeneity, lack of controls for environmental factors 

and the only recent appreciation of the extent of genome complexity [3, 8].   

The objective of this research is to investigate alternative strategies for mapping 

complex traits.  The advent of whole genome expression profiling technology has 

enabled investigators to combine functional genomics with genetic variation such as 

SNPs to inform the choice of possible candidate genes for further study.  In addition, the 
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recognition of the scope and magnitude of common structural variation within the human 

genome has revealed the possibility that genomic variation other than SNPs could impact 

complex trait susceptibility.  Although the role of altered DNA structure in rare 

Mendelian diseases and genomic disorders has long been established, the dynamic range 

of non-disease variation in the human genome has only recently been appreciated.  

Studies mapping large scale DNA polymorphisms across the genome [8-15], have shown 

that much of the common variability in DNA structure normally impacts as much as 25% 

of the genome and is located in many known disease regions.  The advent of high 

throughput technologies allows current gene mapping studies to integrate the results from 

multiple strategies to identify genes involved in complex traits (Figure 1).  In this study, 

genes involved in age-related cognitive decline as defined by Alzheimer’s disease (AD) 

were identified through the use of current high-throughput technologies.   Gene profiling 

was used to identify functional candidates and associated pathways implicated in 

neuropathological phenotypes related to cognitive decline.  Whole genome association 

(WGA) techniques were investigated to assess both the low level characteristics of the 

genotyping algorithms and the impact of DNA structural variation on the previous gene 

expression results.     

B. Gene expression profiling to identify functional candidate genes 

Finding the genes involved in a complex phenotype such as healthy brain aging is 

challenging due to the biological complexity of the underlying genetic and environmental 

components.  A primary challenge is presented by the heterogeneity of the phenotype 

itself.  Individuals exhibit broad variation in the ability to maintain cognitive function 

during the aging process.  Clinically significant cognitive decline in the elderly is most 
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commonly caused by Alzheimer’s disease (AD).  Diagnostic neuropathological features 

of AD include extracellular amyloid plaques and intracellular neurofibrillary tangles 

(NFTs).   However, there is considerable neuropathological heterogeneity across 

individuals with clinical AD and individuals with no clinical signs of dementia, making 

division into “cases” and “controls” based on neuropathology problematic.  In particular, 

there is tremendous variability in the relationship between the amount and location of AD 

neuropathology in the brain and the clinical manifestation of AD symptoms [16, 17].  

Individuals with robust cognitive function may tolerate high levels of brain tissue injury 

presumptively indexed by amyloid plaques and NFTs, while others demonstrate loss of 

cognition with similar or even lower levels of lesion burden.  

 According to cognitive reserve theory, individuals differ in their capacity to 

maintain normative cognitive function and, accordingly, those with greater capacity are 

better equipped to delay or circumvent the damaging effects of brain lesions that in other 

less equipped individuals, lead to clinical manifestations of AD.  The theory postulates 

that this natural variability across individuals is due to differences in neural processing 

mechanisms [17].  The physiological basis of this mechanism is unknown, although it is 

likely to reflect environmental as well as genetic factors [18, 19].  Genetic variations can 

contribute to individual differences in normal cognitive function.  Interaction between 

these genetic differences and environmental factors over the lifespan can amplify 

variation in cognitive function later in life.  

There is growing evidence that variation in the quantity of a gene product, rather 

than simply presence or absence of product, can be responsible for the subtle effects of 
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complex traits [20-22].  Several recent studies have shown that variation in gene 

expression is heritable [23-25]  and can be mapped as a quantitative trait [25].      

We performed whole genome expression profiling of RNA obtained from frontal 

cortex of clinically non-demented and AD subjects to identify genes associated with brain 

aging and cognitive decline.  Genetic mapping information and biological function 

annotation were incorporated to highlight genes of particular interest.  The candidate 

genes identified in this study were compared with those from two other studies in 

different tissues to identify common underlying transcriptional profiles.  In addition to 

confirming sweeping transcriptomal differences documented in previous studies of 

cognitive decline, we present new evidence for up-regulation of actin-related processes 

and down-regulation of translation, RNA processing and localization, and vesicle-

mediated transport in individuals with cognitive decline.  

C. Low –level analysis of high-throughput genotyping 

 Studies investigating the relationship of specific DNA variants to human complex 

traits rely both on large numbers of subjects and large numbers of genetic markers 

located across the entire genome.  Because of these requirements, the technology 

necessary to economically identify and characterize genetic changes contributing to 

complex traits has been available only recently[26, 27].  Arrays consisting of SNPs at 

high density across the genome have been used successfully to detect genetic variation 

involved in complex human disease and drug susceptibility [3, 28-30].  Paired with the 

escalating technology to manufacture arrays with increasingly dense SNPs interrogated 

on one array is a corresponding rise in the challenge to distinguish genotypes for all SNPs 

across the array in all samples.  Genotyping algorithms for hybridization based 
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techniques are designed to convert the raw signal intensity values obtained from the array 

into SNP genotypes usable for analysis.  Inaccurate and incomplete genotype calls 

introduce variability into a data set resulting in increased rates of discordance and loss of 

power to answer higher level biological questions.  Therefore, the effectiveness of 

genotyping algorithms shapes the interpretation of experiments.   

 Affymetrix genotyping arrays consist of multiple probe sequences for every SNP 

interrogated [27] and algorithms vary in the statistical methodology used to summarize 

probe level data.  Similar to developments in gene expression microarray analysis [31-

33], assessment of the low-level performance of high throughput genotyping algorithms 

will allow possible improvements to be identified and help reduce the loss of data across 

samples.  With this in mind, we investigated the factors that might affect the performance 

of two genotyping algorithms for the commonly used Affymetrix GeneChip 100K 

Mapping Array genotyping platform. 

 The Affymetrix GeneChip 100K Mapping Array Set consists of two chips 

designed to genotype a total of 120,000 SNPs.  Each chip is hybridized with a DNA 

sample digested by either the XbaI or HindIII restriction enzyme.  There are 40 probes 

specific to each SNP target.  A probe is a 25 bp oligomer centered at the SNP site (Figure 

2).  Probes are organized into probe sets consisting of a quartet that interrogates each 

allele (A and B) on each strand with both a perfect match 25-mer complementary to the 

SNP sequence and a mismatch with the center 13th base substituted.  An additional four 

probe sets are similar in configuration but are center shifted from the SNP such that the 

center 13th base is either 1, 2, 3 or 4 base pairs away from the SNP site.  There are five 
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quartets tiled each for both the sense and antisense strands for a total of 10 probe quartets 

specific to each SNP. 

 The Affymetrix GeneChip 100K Mapping Array Set Dynamic Modeling (DM) 

algorithm is implemented in the Affymetrix GType software [34].  The DM algorithm 

processes each chip independently and each SNP one at a time.  Log likelihood estimates 

of the four possible genotype models (AA, AB, BB or NoCall) are calculated for each 

probe quartet (Figure 3).  The ten quartets are combined and evaluated for significance 

using the Wilcoxon signed rank test.  The model with the lowest p-value is the genotype 

call for that SNP.   

 The multi-chip genotyping algorithm (BRLMM) recently introduced for the 

Affymetrix GeneChip 500K Mapping array set 

(http://www.affymetrix.com/support/technical/product_updates/brlmm_algorithm.affx)  

is a Bayesian modification of the RLMM algorithm [35] whereby information from all 

SNPs across all chips in an experiment are used to model spatial clusters in a 

classification approach to genotype calling.  Non-biological variance is reduced through 

normalization across both chips and probe sets. 

The effectiveness of each algorithm in accurately calling SNP genotypes was 

originally determined by comparisons with HapMap genotyping data 

(http://www.affymetrix.com/support/technical/product_updates/brlmm_algorithm.affx  ).  

However, the influences of chip specific and experimental specific characteristics on 

algorithm performance were not investigated.  In this study, we used a combination of 

simulations and sample genomic DNA from control and Alzheimer’s disease patients to 
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investigate the sensitivity of these genotyping algorithms to chip type, background noise, 

experimental variability and sample characteristics.   

D. Integration of  genome wide copy number and gene expression 

 Gene expression levels vary in individuals within and across populations [24, 25, 

36-38].  Identification of specific genetic variants contributing to variation in gene 

expression has typically been focused on SNPs.  Mapping studies of variation in gene 

expression levels as quantitative traits have been focused on the impact of SNPs and have 

led to the identification of cis (genetic variants located on the same homolog as the 

transcript) and trans (genetic variants located elsewhere) acting SNPs.  The recent 

discovery of the extent of copy number variants (CNVs) across the human genome 

indicates that normal genetic variation encompasses a wider range of genomic 

architecture than previously thought and raises the question of whether these variants 

could influence complex traits [39-43].     

 Differences in copy number can impact transcription in several ways [44].  

Amplification or deletion of large stretches of DNA encompassing multiple genes may 

affect expression levels of all genes in the region.  Smaller copy number variable regions 

could impact dosage sensitive genes or unmask a recessive allele on the homologous 

chromosome.  CNV that overlap dosage sensitive genes can disrupt the genes leading to 

various outcomes such as reduced expression or altered transcripts.  Deletion of 

regulatory elements in CNVs near genes could reduce gene levels or unmask regulatory 

mutations.  A combination of several CNVs or CNVs interacting with specific SNPs 

could lead to altered expression whereas each one alone does not.   
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 Differences in copy number are known to affect the expression of single genes 

[45-51] as well as those within genomic regions altered in tumors [52].  However, gene 

expression levels do not automatically reflect copy numbers due to the complex 

regulatory mechanisms invovled in gene expression[53-55].  It is unclear to what extent 

changes in copy number affect normal gene expression [56]. 

 We set out to investigate the impact of copy number differences on the results of 

differential gene expression experiments.   Our previous study identified differentially 

expressed genes in subjects with cognitive decline relative to non-demented subjects [57].  

We used DNA from these subjects to identify copy number variants and compared three 

copy number estimation programs to determine the effectiveness of each algorithm in 

identifying CNVs in our samples.   

 Copy number variation in non-tumor tissues tends to be smaller in amplitude and 

more focused, therefore encompassing fewer SNPs.  Current algorithms for copy number 

estimation are optimized for the types of copy number changes seen in cancer tissues 

[58].  It is unknown to what extent these algorithms will detect the type of copy number 

variability generally seen in normal individuals.  To determine the contribution of CNVs 

to gene expression in our study, we compared the regions of copy number variability to 

the differentially expressed genes found in the previous study.     

Gene mapping in cognitive decline was investigated through the use of high-

throughput methods.  Chapter II describes the results of a whole genome gene profiling 

experiment in subjects diagnosed with AD and controls which addresses the phenotypic 

heterogeneity seen in this disease by stratifying AD subjects by severity of 

neuropathology.   Secondly, a whole genome sampling assay (WGSA) using the same 
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samples as in the gene expression profiling study was performed.  The purpose of the 

whole genome genotyping was to determine the effect that copy number variation might 

have on differential gene expression.  Chapter III details the comparison and 

considerations of algorithms used to summarize the probes and obtain genotypes on the 

Affymetrix 100K Gene Mapping Set.  Chapter IV details the comparison and 

considerations of the algorithms for determining copy number differences between 

samples and the impact of copy number differences on gene expression.  The appendix 

describes a method for integrating diverse biological information into a single list of 

genes prioritized by a weighting scheme. 
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Figure 1.  Integration of strategies for gene mapping in complex traits. 

  (modified from Frank A Middleton) 
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Figure 2.  Probe set design for the Affymetrix 100K mapping GeneChip.  Genotypes at 

each SNP are a summarization of 40 probes.  The perfect match (PM) and mismatch (M) 

probes for the two alleles A and B (4 probes/1 quartet).  There are 5 quartets per SNP 

which have the center base offset from the original SNP site (5 quartets = 20 probes).  

Both the sense and antisense strand are interrogated (20 probes x 2 strands = 40 probes). 

  (Modified from GType Mannual, Affymetrix, Inc.) 

 

 11 



AB

AB

AA

NC

AB

BB

ABAB

ABAB

AAAA

NCNC

ABAB

BBBB

 

Figure 3.  Individual probe intensities for six different probe sets on the Affymetrix 100K 

GeneChip.  Genotype calls are that of the DM and BRLMM algorithms.  Red lines are 

PM A, black lines are PM B, blue lines are MM A, and green lines are MM B.  

Genotypes in red are BRLMM genotypes and were called NC (not called) by the DM 

algorithm. 
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Chapter II.  Translational gene mapping of cognitive decline. 

Introduction 

The ability to maintain cognitive function during aging is a complex process subject to 

genetic and environmental influences. Alzheimer’s disease (AD) is the most common 

disorder causing cognitive decline among the elderly [59]. Among those with AD, there 

is broad variation in the relationship between AD neuropathology and clinical 

manifestations of dementia [17, 60].  These differences in protection from the effects of 

AD neuropathology may be due to genetic differences at several levels including the 

expression of gene products.  We suggest that differences in expression of genes in neural 

processing pathways are responsible for differences in the maintenance of cognitive 

function, and at least in part account for an important component of cognitive reserve. 

To address this hypothesis, we performed whole genome expression profiling on a 

set of well-characterized, clinically non-demented and AD subjects in order to identify 

genes, or gene pathways, that contribute to cognitive decline. Subjects were stratified into 

four groups based on cognitive status prior to death (non-demented or AD) and 

neuropathological status defined by three categories of intracellular neurofibrillary tangle 

(NFT) burden which is determined by the quantity of NFT in specific areas of the brain 

(Braak stage I/II, III/IV, and V/VI [61]) (Figure 1A). Non-demented subjects were 

represented in all three Braak-stage categories, whereas AD subjects were represented 

only in Braak stage V/VI.  We designed three comparisons to test three hypotheses 

(Figure 1B).  In the first comparison, we postulated that all non-demented subjects, taken 

as a whole (Groups 1, 2 and 3), would exhibit different gene expression profiles 

compared to AD subjects (Group 4), irrespective of NFT burden. We refer to this as the 
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Extreme Cognitive Phenotypes Hypothesis (Hypothesis I). In the second comparison, we 

proposed that individuals with lower NFT burden (Braak stage I/II and III/IV, Groups 1 

and 2) would display different expression profiles than those with higher NFT burden 

(Braak stage V/VI, Groups 3 and 4), irrespective of cognitive ability. We refer to this as 

the Neuropathologic Process Hypothesis (Hypothesis II). In the third comparison, we 

postulated that expression profiles in non-demented subjects with a high NFT burden 

(Group 3) would differ from those in AD subjects with similar NFT pathology (Group 4). 

We refer to this as the Cognitive Reserve Hypothesis (Hypothesis III).   

We interpret our gene expression results in the context of prior evidence from 

genetic linkage studies and biological function annotations to identify possible candidate 

susceptibility genes.  Furthermore, since genes that are differentially expressed across 

tissues involved in AD pathology would provide valuable insight into common 

underlying genetic mechanisms in brain aging, we compared genes identified in this 

study, using frontal cortex, with genes identified in two other expression studies using 

hippocampus [62, 63] and entorhinal cortex [62, 63]. Genes that were differentially 

expressed across the three studies, emphasizing common themes of pathology underlying 

dementia, are key candidates for further studies of genetic risk factors for cognitive 

decline.    

2.  Materials and methods 

2.1 Patient and control samples 

 Postmortem human brain tissue comprised primarily of gray matter from frontal 

cortex was obtained from the neuropathology core of the NIA-Layton Aging and 

Alzheimer's disease Center, Oregon Health & Sciences University (OHSU).  All subjects 

 14 



were characterized based on specific clinical and neuropathologic criteria [64] through 

studies performed by the NIA-Layton Aging and Alzheimer ’s disease Center. An 

extensive collection of clinical data, including cognitive and functional measures, and 

neuropathologic data was available for all subjects. Testing included annual cognitive, 

functional and neuropsychological examinations. At autopsy, portions of the brain were 

frozen at –80oC and the remainder was prepared for histological examination by fixation 

in 10% formalin.  All subjects were scored for neuritic amyloid plaques and 

neurofibrillary tangles according to NIA-Reagan criteria [64, 65]. 

 All subjects met the following minimal criteria for study inclusion:  post-mortem 

interval < 24 hours, neurological examination within one year of death, Caucasian, non-

detectable cancer metastases, and minimal degradation of brain-derived RNA for 

microarray analysis (see below).  AD subjects were also required to have age at onset > 

70 years and a clinical diagnosis of Probable AD.  AD subjects with a coexisting 

neuropathologic diagnosis of Parkinson’s disease, Lewy Body Dementia or 

Frontotemporal Dementia were excluded from the study.  Non-AD subjects were required 

to have a clinical diagnosis of “non-demented”, a CDR score of 0 and a Mini-Mental 

State Examination score (MMSE) > 25 (Table 1).  Braak stage [61] was used to further 

define all subjects with respect to severity of neurofibrillary tangle burden (Figure 4A). 

The study sample comprised fourteen subjects (7 male, 7 female).  Average age at death 

was similar across all groups (89.7 - 93.6 years).  Non-demented subjects had an average 

MMSE score of 28.4; AD subjects had an average MMSE score of 14.4 (Table 1).  

2.2 RNA isolation and hybridization 
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  Approximately 500 mg of fresh frozen brain tissue from each individual was 

processed for total RNA using the RNeasy kit (Qiagen Inc., Valencia, CA). RNA quality 

was assessed by UV absorbance measurement and electrophoresis on RNA NanoChips 

using the 2100 Bioanalyzer (Agilent, Palo Alto, CA). Samples were considered 

acceptable for labeling and further processing if UV260/280 ratios were greater than 1.7 

and Bioanalyzer profiles showed minimal degradation.  For determination of degradation 

status, Bioanalyzer profiles were referenced to a simultaneously processed control of high 

quality RNA whose profile correlated with good performance on an Affymetrix 

GeneChip array (Gene Microarray Shared Resource, OHSU).     

 Two ug of total RNA from each subject was amplified and labeled using the 

AMC one cycle cDNA, Affy IVT amplification/labeling protocol following 

manufacturer’s instructions (Affymetrix Inc., Santa Clara, CA).  Labeled targets were 

hybridized with Affymetrix GeneChip HG-U133 Plus 2.0 arrays. These arrays contain 

47,000 transcripts spanning the entire human transcriptome. Sample labeling and array 

hybridizations and processing were performed in the Affymetrix Microarray Core, Gene 

Microarray Shared Resource, OHSU.   

2.3  Realtime RT-PCR 

 Confirmation of array results was performed using TaqMan chemistry in qRT-

PCR.  Phenotypic heterogeneity as well as RNA quality profoundly effect gene 

expression levels.  Two additional non-demented subjects, conforming to the same 

rigorous phenotypic criteria, were included with the original set of subjects, in order to 

substitute for two non-demented subjects for which RNA had degraded in the interim 

between the microarray analysis and the validation procedure.  Polyadenylated mRNA 
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from the total RNA isolated from frontal cortex was reverse transcribed (Transcriptor RT, 

Roche Diagnostics Corp, IN) using oligo dT primers (Invitrogen, CA).  Specific primers 

corresponding to the short form of ITSN1 (Hs00495035_g1, Applied Biosystems, TX) 

were combined with cDNA and dNTPs in a master mix (FastStart DNA Master Hybrid 

Probes, Roche Diagnostics Corp, IN) and amplified by PCR in a SmartCycler (Cepheid, 

CA).  Human mRNA (Ambion, Inc, Tx ), treated in the same manner was used as the 

control sample.  Because standard housekeeping genes displayed variable expression 

levels across sample groups, qRT-PCR reference genes were chosen from the results of 

the HG-U133 Plus 2.0 arrays.  Two different genes (POL2RF, RTN2) were chosen based 

on their lack of differential expression across groups and for their relative levels of 

expression similar to ITSN1 in the non-demented group.  Samples were run in triplicate 

and the efficiency for each reaction was determined based on linear regression analysis of 

the exponential phase of the reaction [66] Relative gene expression of ITSN1 to each 

reference gene was calculated using the efficiencies and crossing threshold (Ct) of each 

reaction [67]: 

 Relative Ratio = Efficiency ITSN1 (Ct control – Ct sample) / Efficiency reference (Ct control – Ct sample)   

2.4 Statistical analysis 

 An overview of the entire analytical work flow is provided in Figure 2. 

Statistical analyses were performed in the R v2.0.1 system for statistical computation 

([68], http://www.R-project.org).  Packages included in the Bioconductor v1.6 suite of 

analysis tools for genomic data [69] were utilized for specific analyses, as well as custom 

scripts. 
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Hybridized arrays were rigorously evaluated for quality using the Affy package 

v1.5.8 [70] of the Bioconductor project. Computer-generated graphs of the hybridization 

intensities across the chips allowed a visual assessment of the consistency of the 

hybridization reaction. Model-based normalization procedures were used to correct for 

systematic biases. Scatter plots [71] were used to compare the shapes of the distributions 

before and after normalization. Post-normalization residual plots were used to assess the 

model fit across all arrays.   

Systematic errors cause technical variation which reduces the power of an array 

experiment to elucidate true biological variation. To minimize the impact of this variation 

on data analysis and biological interpretations [31], we used two different low level 

analysis approaches.  Each data set was analyzed separately, allowing us to compare the 

impact of the low level routines on the downstream analysis. The Robust Multi-chip 

Analysis (RMA) [31] is a model-based pre-processing algorithm used to correct for 

probe-level differences. RMA in the Affy package was performed on log-transformed 

hybridization intensities using RMA background correction, quantile normalization and 

median polish as a summary statistic. 

The Variance Stabilization and Calibration (VSN) [33] algorithm of the Affy 

package is a model-based normalization algorithm that specifically  transforms the data 

such that the variance is independent of the mean intensity. The VSN algorithm was 

performed on intensity values and summarized using the median polish algorithm.   

RMA and VSN processed data sets were analyzed to identify putative 

differentially expressed genes using Analysis of Variance (ANOVA) with the Linear 

Models for Microarray data analysis package (LIMMA v1.8.10) [72] of the Bioconductor 
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project. Individual linear models were fitted for each transcript across the groups. The 

first two hypotheses were formally tested as planned comparisons within this framework. 

Because each transcript is tested separately, and given the large number of 

transcripts on the array, the false positive error rate increases dramatically. Therefore, the 

q-value statistic [73], a minimum measure of the False Discovery Rate (FDR), was used 

to correct for multiple testing. The FDR is the number of predicted false positive results 

out of all significant tests. This measures the significance of each gene, taking into 

account that thousands of genes are being tested. Q-values were calculated from p-values 

generated in the LIMMA analysis using the QVALUE package v1.1 for R [73].     

 For each analysis, the final list of putative differentially expressed genes was 

defined as those probe sets with a q-value < 0.10 that occurred in both the RMA and 

VSN normalized data sets, in order to balance statistical rigor with maximal identification 

of candidate genes and given the discovery framework of this study.  

 It is noted that in the original experimental design, all three hypotheses were to be 

formally tested. However, during the QA/QC process for sample quality and 

hybridization, the loss of samples resulted in the third contrast being underpowered, 

leading to a different statistical approach for this comparison. Vector Projection is a 

dimension reduction technique for the rapid identification of genes with particular 

patterns of expression across groups  (Terry Speed, Department of Statistics, University 

of California, Berkley, and Genetics and Bioinformatics, Walter and Eliza Hall Institute 

Australia; and Ingrid Lonnstedt, Department of Mathematics, Uppsala University, 

personal communication to S. McWeeney, [74]). It is useful as an initial exploratory data 

analysis tool, particularly when limited sample sizes preclude formal trend analysis, as 
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was the case with Hypothesis III. Each gene has a vector of its normalized expression 

values across time. These values are projected onto the space spanned by the pattern of 

interest (vector of coefficients or weightings for group). In this case, the pattern of 

interest was a contrasting expression pattern between Cognitive Reserve (CR) and the 

other groups (i.e., identify genes up-regulated in CR and down-regulated in the other 

groups, or vice versa). Projection scores in the extreme tails of the normal Quantile-

Quantile (QQ-plot) were used to identify transcripts with the best fit to the pattern of 

interest.  The significance level was set at 0.1 for q-values in all expression analyses due 

to the gene discovery framework of this study.   

2.5 Determination of biological significance 

All transcripts on the array were annotated for gene name, function, and 

chromosome location using NetAffx (http://www.affymetrix.com/analysis/index.affx, 

NCBI build 35). These annotations were then used for subsequent downstream analysis.   

For overrepresentation analyses (linkage, chromosome bands, GO), all significance levels 

were set at 0.05. 

Transcripts that were differentially expressed in non-demented versus AD 

subjects (Hypothesis I) were analyzed for overrepresentation in specific chromosome 

regions in two ways. First, transcripts were annotated for cytogenetic bands and a χ2 test 

of independence was performed to determine if there was evidence for association of 

transcript expression and cytogenetic band location. Secondly, transcripts were examined 

for their presence in a chromosomal region known to be linked or associated with AD 

from previous studies.  Concordant linkage/association regions were identified [60]. The 

number of differentially expressed transcripts located in these regions was compared to 
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the number of transcripts in these regions on the Affymetrix HGU133 Plus 2 GeneChip 

array, using a one-tailed Fisher’s exact test to determine if the number of differentially 

expressed transcripts located in each region was greater than that expected by chance. 

Differentially expressed genes identified by ANOVA (q-value < 0.1) were 

assigned to Biological Process categories of the Gene Ontology (GO) Consortium 

(http://www.geneontology.org/ August, 2005). The GO is an international effort to define 

genes and their products using a controlled vocabulary. We used GOSTAT [75] to assess 

representation of differentially expressed genes in GO Biological Process categories. 

Identification of pertinent pathways depends on the availability of annotations mapped to 

the probe set. Differentially expressed genes were compared to all genes on the HG-

U133Plus2 GeneChip array, using a 2 x 2 contingency table and counting the number of 

appearances of each category for differentially expressed genes versus reference genes. 

The probability that differentially expressed genes fall within a category more often than 

what would be expected by chance was calculated by χ2 (Fisher’s Exact test if the counts 

within a category are below 5).  FDR was used to correct for multiple testing by 

controlling for interdependencies among the categories [76] given the hierarchical nature 

of the GO Ontology. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

(http://www.genome.jp/kegg/, September, 2005) was used to classify differentially 

regulated genes into canonical pathways for biological interpretation. Transcripts were 

annotated for their presence in a KEGG pathway and the significance of the number of 

genes differentially expressed in each pathway was determined by a one-tailed Fisher’s 

Exact Test.   

 21 

http://www.geneontology.org/
http://www.genome.jp/kegg/


2.6 Identification of genes in common across tissues 

Comparison of our study with two previously published gene profiling 

experiments [62, 63] was used to identify genes that would reveal common 

pathophysiological mechanisms. First, differential gene expression related to cognitive 

decline was determined by combining transcripts differentially regulated in the 

comparisons of AD versus non-demented subjects in hippocampus Blalock, 2004 #74, 

entorhinal cortex [63] and frontal cortex (this study). Because Blalock, et al  Blalock, 

2004 #74 used the Affymetrix HG_U133A GeneChip array, we used a subset of data 

from the other two studies that corresponded to the Probe IDs found on the Affymetrix 

HG_U133A GeneChip. Significance was set at p < 0.1 for each data set and the 

intersection of Affymetrix Probe Ids was defined as the set of transcripts in common. It is 

noted that we cite p-values rather than q-values for this component as that is what was 

reported by the other studies. Because there are often multiple transcripts mapping to one 

gene on the GeneChip array, we also generated a data set of the intersection of 

differentially expressed genes in common among the three experiments using the 

annotated gene symbol. Secondly, we compared the transcripts involved in NFT 

formation (Hypothesis II) with the differentially expressed transcripts obtained by 

Dunckley et al. [63] from neurons without NFTs from AD subjects versus adjacent 

neurons with NFTs. The final data set of transcripts involved in NFT formation was 

defined to be the intersection of Affymetrix HG_U133Plus2 Probe IDs differentially 

expressed in both data sets.  

3. Results 
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Putative differentially expressed transcripts were identified based on Hypothesis I 

(extreme cognitive phenotypes) and Hypothesis II (NFT formation) in order to identify 

genes involved in different, but overlapping, features of age-related pathological 

processes. Particular attention was focused on differentially expressed genes in 

chromosomal regions shown to be linked or associated with AD in previous studies [74]. 

In addition, we used the Gene Ontology (GO) Biological Process categories to identify 

cellular events influenced by the differentially expressed genes associated with cognitive 

decline. For the probe sets identified in our analyses, only a subset had available GO 

annotations (Table 2). The overall level of available gene annotation was 32% of the 

unique genes annotated for GO Biological Process terms. Subsequent analyses are 

dependent on these annotations.   

3.1 Extreme cognitive phenotypes 

We identified 8346 transcripts, representing 5096 genes, that were differentially 

expressed (q < 0.1) between non-demented and AD subjects (Hypothesis 1, Figure 4B) 

(Supplemental Table 1).  Cytogenetic band annotations were available for 6857 

transcripts, of which 339 (4.9%) were located in regions with higher numbers of 

differentially expressed transcripts than expected by chance (p < 0.05, Supplemental 

Table 2). Ten cytogenetic bands contained more differentially regulated transcripts than 

would be expected by chance (p < 0.05, Supplemental Table 2).  

All 8346 differentially expressed transcripts were annotated for location in a 

genomic region shown previously to be linked or associated with AD [60] (Supplemental 

Table 1). Of the total 8346, 873 transcripts were located within the sixteen linkage 

regions (Table 3).  Of the transcripts up-regulated in AD, 264 are located in linkage 
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regions. The most significant up-regulated transcript (35776_at) is the short form of 

Intersectin 1 (ITSN1), located in linkage region 21q22.1-q22.2. Affymetrix probe sets 

allow comparison of specific alternative transcripts in differential gene expression. For 

this gene, a different probe set interrogating the short form is also significantly up-

regulated (209297_at, q = 0.01) but the long form is not differentially expressed (q = 

0.25).  These results were confirmed by qRT-PCR (Figure 3) where the short form of 

ITSN1 is up-regulated in AD relative to two different reference genes (p = 0.009 and p= 

0.025).  The long form was not differentially expressed (data not shown).  The most 

significant down-regulated transcript, ATP6V1G2, is also located in a linkage region, 

6p21.3.  

 Cognitive decline, represented by AD subjects in our analysis, reveals a massive 

restructuring of cellular physiology (Table 4). Many of the most significant up-regulated 

categories are related to regulation of cellular functions.  Categories related to 

transcription and its regulation, including chromatin modification, are among the most 

highly represented. Transcripts for actin-related processes and phosphate transport are 

also up-regulated. 

 Widespread down-regulation occurs in energy pathways and nucleic acid-related 

categories. Additionally, secretory pathways, RNA-related categories including splicing 

and mRNA processing, many pathways related to protein metabolism including folding, 

localization, targeting, transport and translation are down-regulated.  Transcripts from 

genes involved in mitochondrial physiology are also down-regulated.   

We utilized the KEGG database to place the differentially regulated genes into 

canonical pathways (Table 5). Of the 5096 differentially expressed genes, 226 were 
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found to be clustered at levels greater than what would be expected by chance in 14 

KEGG pathways. Of these, nearly half (45.5%) are involved in energy metabolism 

(oxidative phosphorylation, ATP synthesis, carbon fixation and CO2 fixation). An 

additional 18% are involved in genetic information processing (transcription, translation 

and protein degradation). Carbohydrate (12.8%), amino acid (9.7%) and lipid (2.2%) 

metabolism are also represented. The percent of differentially expressed genes in each 

pathway (% abundance) varies from 37.2% - 71.4%. The pathway with the greatest 

percentage of differentially expressed genes (synthesis and degradation of ketone bodies) 

has the lowest number of total genes in the pathway. The pathway containing the greatest 

number of differentially expressed transcripts (50.7%) was oxidative phosphorylation. 

3.2 Neurofibrillary tangle formation 

We identified 528 transcripts, representing 492 genes, which were differentially 

expressed (q < 0.1) between subjects with low NFT pathology and those with high NFT 

levels (Hypothesis II, Figure 4B) (Supplemental Table 3). Of these, 98.9% were also 

differentially regulated in the Extreme Cognitive Phenotypes comparison. The six genes 

unique to Hypothesis II are close to the 0.1 threshold for significance (data not shown). A 

total of 49 transcripts were located in linked regions (Supplemental Table 3).   

Overrepresentation in GO Biological Process categories reflected the dependence 

on current annotation. Specifically, the significant categories were dominated by a small 

number of well studied genes with pleiotropic effects (data not shown). 

3.3 Cognitive reserve 

Vector projection analysis allowed initial determination of putative candidate 

genes involved in cognitive reserve.  Eleven transcripts, all located outside known AD 
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linkage regions, were identified as possible candidates (Table 6). Of these, only one 

(GSTT1, involved in glutathione metabolism) was also differentially regulated in the 

Extreme Cognitive Phenotypes comparison. All other genes are unique to the Cognitive 

Reserve analysis.    

3.4   Identification of common themes related to cognitive decline   

 We compared genes identified in this study, using frontal cortex, with genes 

identified in two other expression studies using hippocampus and entorhinal cortex. 

Blalock et al [62] compared hippocampal gene expression in non-demented and AD 

subjects stratified by severity of disease as measured by NFT count and MMSE scores. 

Dunckley et l [63] used laser capture microdissection (LCM) to obtain RNA from 

neurons in entorhinal cortex, and then compared gene expression patterns in NFT-

containing neurons and adjacent NFT-free neurons in AD subjects. Neurons without 

NFTs were also obtained from non-demented subjects for comparison.  

In order to identify genes common to the underlying process of cognitive decline, 

we combined the data sets across the three different tissues (Table 7A and Table 8). 

Pairwise comparisons for all transcripts on the HG_U133A GeneChip array showed 

similar concordance with our data and either of the other data sets. Concordance rates 

among any two data sets varied between 7.1% and 20.8%.  A total of 174 transcripts were 

concordant (FDR 10%) across all three data sets. More stringent criteria (FDR 5%) 

resulted in a loss of 30% of those transcripts.   The overall concordance rate for 

differentially-regulated transcripts across all three data sets ranged from 1.0% - 3.9%.  Of 

the 18 transcripts located in linkage regions (Table 8), six are involved in intracellular 

transport (ITSN1, ATP6V1G2, SYNJ1, SYNCRIP, DIRAS2) and three are related to 
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mitochondria (ATP5J, ATP5C1, MRPS10).  GO category analysis of the entire 

concordant transcript IDs demonstrated that the most significantly overrepresented GO 

category for up-regulated genes was signal transduction (data not shown).  Down-

regulated transcripts were most notably overrepresented in energy pathways and 

carbohydrate metabolism (data not shown). If the differentially expressed genes are 

mapped to gene symbol ID, the number of genes common to all three data sets increases 

(8.1-36.6%, FDR 10%) (Table 7B and Supplemental Table 4).    

 Dunckley et al [63] compared neurons with and without NFTs in AD subjects in 

order to investigate NFT formation. We compared low Braak stage subjects with high 

Braak stage subjects regardless of cognitive function for the same purpose. Transcripts 

differentially expressed in both data sets showed 39 (9.8%) concordant transcripts 

(Supplemental Table 5). Most are down-regulated in subjects with higher numbers of 

tangles (74.3%).   

4. Discussion 

Results of our human transcriptome profiling confirm many of the sweeping 

transcriptional differences associated with cognitive decline that have been previously 

documented, and implicate genes involved in transcriptional regulation, energy pathways, 

ion homeostasis dysregulation, apoptosis, and synaptic activity [62, 77-79]. In addition, 

our results reveal significant up-regulation of actin-related processes and down-regulation 

of translation, RNA processing and localization, and vesicle mediated transport (Tables 4 

and 5). This study identifies candidate genes, located in linkage regions, which had not 

been previously implicated in cognitive decline.   
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One difficulty with microarray results is that, because biochemical networks 

connect multiple physiological processes, a plausible biological mechanism for the 

implication of many genes can often be suggested. This is compounded when studying a 

complex trait impacting multiple cellular functions. We found that interpreting gene 

expression results in the context of genetic mapping studies and functional annotation 

allowed a more informed approach to identifying candidate genes in brain aging.   

4.1 Extreme cognitive differences 

We localized differentially expressed genes in healthy aging versus cognitive 

decline with reference to cytogenetic band annotations. In 14 genomic regions, more 

transcripts were differentially expressed than would be expected by chance 

(Supplemental Table 2), indicating possible co-regulation of genes in these regions by 

trans-acting factors. We identified functional changes of genes located in known AD 

linkage regions through differences in expression to identify cis-acting DNA 

polymorphisms. AD linkage regions did not overlap with the 14 genomic regions, 

indicating that the greater number of genes located within linkage regions was not 

coordinately regulated by trans-acting factors. The majority (87%) of transcripts were not 

found in linkage regions. However, differentially regulated genes located within the 

known AD linkage regions may contain cis-acting DNA polymorphisms that affect their 

gene expression and contribute to the linkage signal. Our results identified 873 possible 

candidate transcripts.   

Biological annotation of these transcripts revealed that a number of these genes 

are involved in synaptic dysfunction, which has been shown to be an early process in 

cognitive decline.  Synapse loss correlates positively with cognitive decline and indeed 
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may occur prior to clinical signs [80]. Enlarged endosomes appear early in the course of 

AD pathology and are not present in healthy aging [81]. While many synapse-specific 

genes and vesicle-mediated transport genes are generally down-regulated in our study, we 

have identified a significantly up-regulated transcript, ITSN1, which is located in linkage 

region 21q22 (Supplemental Table 1). ITSN1 has not been studied in cognitive decline, 

although it has been postulated that ITSN1 might affect APP processing [82] and 

vesicular trafficking in AD [83]. Analysis of the other published data sets also identified 

ITSN1 as consistently up-regulated (Supplemental Table 4).  

 ITSN1 is a scaffold protein involved in synaptic vesicle recycling [84] and 

caveolae internalization [85].  Overexpression of ITSN1 blocks clathrin-mediated 

endocytosis [86], internalization of caveolae [85] and Ras activation [87] (Figure 4). 

Inhibition of endocytosis has been shown to increase soluble APP alpha release [88-90]. 

The fundamental significance of ITSN1 is its role in linking the endocytic machinery at 

the synapse with both the actin cytoskeleton and signal transduction pathways. Signaling 

pathways are regulated through ITSN1 binding of SOS and activation of RAS [87] and 

Elk1 activation through a RAS-independent process involving JNK[91].  Rho/Ras 

signaling is related to actin cytoskeleton through the protein kinase ROCK1 [92] that is 

also up-regulated in AD brain tissue (Supplemental Tables 1 and 4).  The consistent 

findings across expression studies and the functional consequences of its overexpression 

provide compelling evidence for a central role for ITSN1 in the pathogenic mechanisms 

of cognitive decline.   

 Down-regulated transcripts include many genes involved in synaptic function 

(Supplemental Table 1) including synaptojanin 1 (SYNJ1) located in linkage region 
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21q22.2.  The most significantly down-regulated transcript across all brain tissues is 

ATP6V1G2 (Supplemental Tables 1 and 4) located in linkage region 6p21.3. ATP6V1G2 

is a membrane bound vacuolar-type ATPase that maintains the acidity of lysosomal 

vesicles [93]. Luminal acidification by V-ATPases is required for proper intracellular 

vesicle sorting and degradation of endocytosed proteins. The relationship of ATP6V1G2 

to the regulation of synaptic vesicle recycling or brain aging is unknown.    

In addition to appropriate retrograde transport of endosomes, synaptic plasticity is 

also dependent on the anterograde transport and localization of specific mRNA 

transcripts to the synapse. Protein synthesis occurring at the synapse is considered to be a 

fundamental part of healthy synaptic function. Dysregulation of microtubule subunits and 

molecular motors is seen in cognitive decline (Supplemental Table 1) and down-

regulation of all aspects of RNA function and transport is widespread in cognitive decline 

(Table 4). Two transcripts related to proper mRNA localization and translation at the 

synapse are located in linked regions. Synaptotagmin binding, cytoplasmic RNA 

interacting protein (SYNCRIP, 6q14-15 ) is a component of mRNA granules [94] binding 

mRNA and ensuring proper anterograde transport [95].  SYNCRIP interacts with various 

isoforms of the membrane-bound synaptotagmin [96]. Molecular motor trafficking on 

microtubules is postulated to be blocked by protein aggregates [97]. Failure of protein 

aggregates to be degraded through ubiquitin-mediated proteolysis has been shown to 

occur in AD [98, 99] and local protein degradation through the ubiquitin-proteosome 

pathway has been shown to affect synaptic plasticity [100].  Many transcripts involved in 

this pathway are down-regulated in cognitive decline (Supplemental Table 1). A recent 

study suggests that cell death due to polyglutamine protein aggregates can be reduced by 
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overexpression of RNA binding protein 3 (RBM3) [101]. RBM3 and its related gene 

CIRBP are down regulated in AD (Supplemental Table 1). These proteins are involved in 

response to stress [102].  RBM3 is located in a linkage region (Xp11.2) and has recently 

been shown to decrease microRNA (miRNA) levels with a parallel increase in protein 

synthesis [103].  MicroRNAs are small, highly conserved RNA molecules that regulate 

the expression of messenger RNA by binding to the 3'-untranslated regions (3'-UTR).  

Each miRNA is thought to regulate multiple genes and miRNA regulation is thought to 

influence many diverse cellular processes [104].  The contribution of miRNA regulation 

to cognitive decline is unknown, although miRNAs are postulated to be involved in 

processes related to synaptic plasticity [105]. 

4.2 NFT formation 

NFT formation precedes cognitive decline and is correlated with severity of 

dementia in AD [106]. We identified a subset of genes that were differentially regulated 

in non-demented versus AD subjects (Hypothesis I) and subjects with low versus high 

tangle burden (Hypothesis II) (Supplemental Table 3). Overall, fewer transcripts were 

related to NFT formation and these had higher q-values than transcripts identified in the 

comparison of Extreme Cognitive Phenotypes (Supplemental Tables 1 and 3). This 

relationship is evident in other gene profiling experiments in which more transcripts were 

correlated with cognitive scores than NFTs [62] and more transcripts were differentially 

expressed in non-demented versus AD neurons than in AD non-NFT neurons versus AD 

NFT neurons [63]. Genes identified in this comparison may be more relevant to initial 

stages of brain pathology during NFT formation. 

4.3 Cognitive reserve 
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 Discovery of genes involved in individual brain capacity to tolerate, or 

circumvent, neuropathologic damage during aging would increase our ability to predict 

risk of dementia and determine risk-reducing factors. Non-demented individuals with 

heavy NFT burden may have more versatile neuronal processing mechanisms than 

individuals who develop dementia [107]. Although the limited sample size precluded 

statistical analyses, exploratory data analysis uncovered several genes with different 

patterns of expression in these subjects (Table 6).    

Non-demented individuals with high Braak scores (Group 3) exhibited increased 

expression of a ribosomal structural gene (RPS4Y1) and the neuropeptide receptor 

bombesin-like receptor 3 (BRS3), compared with non-demented subjects with lower 

Braak scores (Groups 1 and 2) and AD subjects (Group 4). Bombesin-like neuropeptides 

are a family of G-protein-coupled receptors that have pleiotropic physiological effects, 

such as increasing hypertension and insulin secretion, stimulating gastric secretion, and 

modulating smooth muscle contraction [108]. Mice lacking BRS3 show mild obesity 

associated with hypertension, impairment of glucose tolerance and insulin 

resistance[109]. Dysregulated glucose metabolism has been shown to occur in AD 

pathology [110, 111]. Our results suggest the possibility that individual protection of 

brain tissue from the pathological effects of NFTs results from regulation of protein 

synthesis and glucose metabolism. 

 Of the genes that show lower expression in Group 3 subjects, one has been 

previously studied in AD. Glutathione S-transferase theta 1 (GSTT1) is involved in 

detoxification of environmental toxins, but its role in susceptibility to AD is inconclusive 

[112, 113]. Two genes are possibly involved in inflammatory processes. S100A8 is a 
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subunit of Calprotectin, a calcium- and zinc-binding protein up-regulated in many 

inflammatory conditions [114]. Neuronal pentraxin II (NPTX2) is postulated to be 

involved in uptake of pro-inflammatory molecules [115]. Rat NPTX2 is regulated by 

synaptic activity and promotes neuronal migration [116]. Rap guanine nucleotide 

exchange factor 2 (RAPGEF2) is also involved in synaptic physiology through binding to 

a synaptic scaffold protein, and is hypothesized to link synaptic plasma membrane 

vesicles with RAS signal transduction [117]. These results further illustrate the central 

roles of anti-inflammatory processes and regulation of synaptic activity in maintaining 

healthy neuronal function.  Additional experiments with larger sample sizes will be 

required to confirm the role of these genes in protection from brain tissue damage. 

4.4 Genes common to the pathological process across all tissues 

  Determination of concordance across three transcriptomal studies allowed us to 

identify   174 transcripts common to cognitive decline across entorhinal cortex, 

hippocampus and frontal cortex. Synaptic plasticity–related genes are dysregulated in all 

three tissues. Likewise, down-regulation of energy pathways and ubiquitin-mediated 

protein degradation is widespread. Genes that function in these pathways are likely to be 

important in processes underlying the development of AD pathology. It is important to 

note that differentially expressed transcripts unique to each study may be the result of 

tissue specificity or non-biological differences in study design. Continued comparisons 

across studies and tissues will allow us to further elucidate the underlying genetic 

mechanisms of cognitive decline. 

4.5 General considerations for transcriptomal studies  
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Central to the interpretation of biological significance of a particular differentially 

expressed transcript is the quality of the annotations obtained from publicly available 

databases.  Often, complete annotation is not available for all of the transcripts 

interrogated. The annotation that does exist is dynamic and constantly updated. Finally, 

while it is transcripts that are interrogated on the array, it is common practice to map 

these transcripts to a gene index (such as Unigene ID). There can often be a loss of 

information in such a mapping, as it ignores differences at the transcript level. A case in 

point highlighted in this study is ITSN1, which is commonly found in two isoforms, a 

short form and a long form. Additionally, over 19 alternatively spliced forms have been 

identified. Affymetrix GeneChip arrays target both the short and long forms of ITSN1. In 

all three data sets, it was the short form only (Probe ID 35776_at) that was differentially 

expressed. This finding was confirmed with qRT-PCR.  In the analysis of the microarray 

data, transcripts for the same gene are often seen as technical replicates, rather than 

biological variants, such that any gene with discordant ProbeSets is discarded from 

further analysis. This results in failure to detect unique isoforms and transcripts that may 

play a key role in the biological process under study.  

This highlights an important aspect of the dynamic and complex nature of the 

annotation process that may not always be appreciated. There has been a great deal of 

recent debate concerning the reliability of microarray gene expression on the same 

samples across different platforms [118, 119]. A key point that is often missed is that in 

order to compare the arrays, individual transcripts are mapped to gene indices, due to the 

fact that different transcripts are interrogated on different platforms. There is an inherent 

loss of information in this mapping as alternate transcripts (each potentially with different 
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expression patterns) are all mapped to the same gene identifier. Attempting to determine 

concordance based on gene annotation (such as gene symbol, name or Unigene ID) can 

be misleading and give overestimates of discordance, as described above.  

Validation studies of microarrays using qRT-PCR also can suffer from 

overestimates of discordance between the arrays and the RT-PCR when primers are not 

designed to the same targets as the array. Strong correlations are seen between qRT-PCR 

and microarray results when the same transcript targets are tested [120]. This is clearly 

demonstrated by ITSN1 in this study, where only one transcript variant is differentially 

expressed, making primer design even more critical.  These issues need to be considered 

in design of new studies and meta-analysis of existing data.  

 Functional genomics is often combined with whole genome association studies to 

improve the ability to locate susceptibility genes.  We performed a pilot study using a 

whole genome sampling assay (WGA) to assess the characteristics of the whole genome 

SNP arrays and the performance of the genotyping algorithms. 
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Chapter II.  Figures and Tables.   

 
Figure 1.  Subject Comparisons.  A) Subjects were separated into four groups based on 

Braak stage and cognitive health.  B) Two separate ANOVA comparisons performed.     

I. Extreme Cognitive Phenotypes were assessed by combining all non-demented subjects 

compared to AD subjects;  II. Neuropathological Process was assessed by comparing low 

Braak stage subjects with high Braak stage subjects regardless of cognitive ability;  III. 

Cognitive Reserve was assessed using Vector projection comparing non-demented, Braak 

V/VI subjects with AD subjects.  
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Figure 2.  Analytical Work Flow.   Raw data files were preprocessed and normalized 

using two different methods.  Each data set was analyzed separately by ANOVA 

(Hypotheses I & II) and Vector Projection (Hypothesis III).  Transcripts differentially 

expressed (DE) in both data sets (q-value < 0.1) were combined into one data set for 

downstream analysis.  DE transcripts were analyzed by χ2 for overrepresentation in 

categories of interest (chromosome location, known AD linkage regions and Gene 

Ontology Biological Process categories).  Concordance of DE transcripts with two 

previous studies was investigated.     

 37 



 

no
rm

al
iz

ed
 ra

tio

0

5

10

15

20

25

AD ND

POLR2F

AD ND

RTN2

      

 Figure 3.  Confirmation by qRT-

PCR of differential expression of 

the short form of ITSN1 between 

AD and ND (all p-values < 0.05).  

Two reference genes, polymerase 

II, RNA, subunit F (POLR2F) and 

reticulon 2 (RTN2), were used to 

normalize levels of ITSN1 within 

AD and ND samples.  Relative 

amounts of ITSN1 between AD and 

ND groups were significantly 

different for both reference genes, 

POLR2F p-value =0.009 and RTN2 

p-value = 0.025. 

 

Figure. 4.  Altered metabolism due to 

increased expression of Intersectin1.  

Solid arrows are direct consequences 

of higher levels of ITSN1 in 

published reports.  Dashed arrow 

refers to the downstream effects of 

the MAPK signaling cascade on the 

phosphorylation of Tau. 
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Table 1.  Subject Description 

 Non-demented AD 

Braak I/II III/IV V/VI V/VI 

Age 93.03 + 12.19 90.85 + 0.21 93.57 + 1.59 89.74 + 4.33 

MMSE 28.0 + 2.0 29.0 + 1.41 28.33 + 1.15 14.40 + 6.99 

Clinical DX ND ND ND PRAD 

 n=3 n=3 n=3 n=5 

Subjects were assigned to four groups based on Braak stage scoring (see Methods). 

MMSE, Minimental Status Exam; Clinical DX, clinical diagnosis; ND, non-demented; 

Braak, Braak stage; n, number of subjects. 

 
Table 2.  Number of differentially expressed genes for each analysisa. 
 
 Up Regulated Down regulated 

  
Cognitive  

Differences 
NFT  

Formation 
Cognitive 
Reserve 

Cognitive  
Differences 

NFT  
Formation 

Cognitive 
Reserve 

Probe IDsb 3703 249 50 4643 279 31 

Unique Genes 3664 249 48 4522 277 14 

Annotated Genes 849 (23%) 41 (16%) 23 (47%) 1771 (39%) 117 (42%) 7 (50%) 

GO IDs 4227 209 99 8211 520 44 

Unique GO IDs 965 134 74 1544 271 41 
a  Gene Ontology (GO) Biological process category annotations for the differentially 

expressed genes in each analysis.   
b  Probe IDs, the number of Affymetrix Probe IDs that were differentially expressed in 

each analysis; Unique genes, the number of unique genes corresponding to the Probe IDs;  

Annotated Genes, the number of unique genes that have annotations associated with them 

in the GO database; GO IDs, the number of appearances of GO IDs associated with the 

annotated genes; Unique GO IDs, the number of unique GO IDs associated with the 

annotated genes.  Numbers in paratheses indicate the percentage of unique genes that 

have associated GO annotations.
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Table 3.  Differentially expressed transcripts located in genomic regions linked to 

Alzheimer's diseasea.   

 # of transcripts  

Linkage Regions # DEb # on chipc p-valued

1p36 106 808 0.99 

1q23-31 78 511 0.70 

2p23-24 49 285 0.43 

4q35 15 84 0.44 

5p13-15 64 325 0.12 

6p21 92 750 0.99 

6q15-16 27 112 0.05 

6q25-27 46 280 0.55 

9p21 11 67 0.56 

9q22 26 219 0.96 

10q21-22 55 319 0.42 

10q25 22 120 0.37 

12p11-12 30 219 0.86 

19q13 144 1256 1.00 

21q21-22 66 499 0.96 

Xp11-21 42 321 0.94 
a Linkage regions are reproduced from Bertram and Tanzi {Bertram, 2004 #72}.  

Transcripts differentially expressed (DE) between non-demented and AD subjects 

(hypothesis I) were compared for overrepresentation in linkage regions. 
b DE, number of transcripts differentially expressed at q < 0.1 by ANOVA that are 

located in the linkage region 
c  Number of transcripts on the chip that are located in the linkage region 
d p-values are from Fisher's Exact test comparing transcripts DE at q < 0.1 to all 

transcripts on the Affymetrix HGU133Plus2 GeneChip in each linkage region. 
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Table 4.  Biological process categories significantly overrepresented in Cognitive 
Differences Hypothesis (non-demented vs. AD) 
A.  up regulated in AD    

Category # genes DEa
# genes on 

chipb FDRc  
regulation of cellular physiological process 208 2252 3.21E-05 

regulation of biological process 231 2578 3.21E-05 

regulation of cellular process 215 2365 3.21E-05 

regulation of physiological process 214 2376 6.34E-05 

regulation of transcription, DNA dependent 149 1533 6.35E-05 

regulation of transcription 154 1598 6.35E-05 

regulation of nucleic acid metabolism 155 1620 8.39E-05 

regulation of cellular metabolism 157 1650 8.94E-05 

transcription 159 1684 0.000115 

transcription, DNA-dependent 151 1587 0.000137 

regulation of metabolism 159 1733 0.000752 

negative regulation of cellular physiological process 48 384 0.0011 

actin filament-based process 17 88 0.00146 

negative regulation of physiological process 49 412 0.00451 

negative regulation of cellular process 49 416 0.0059 

chromatin modification 16 87 0.00717 

actin cytoskeleton organization and biogenesis 16 77 0.0114 

negative regulation of biological process 51 456 0.0189 

phosphate transport  14 78 0.0363 

nucleic acid metabolism 205 2502 0.0418 

    

B.  Down regulated in AD    

Category # genes 
# genes on 

chip FDR 
coenzyme metabolism 65 124 1.69E-32 

cofactor metabolism 70 145 1.42E-30 

oxidative phosphorylation 41 65 2.47E-27 

coenzyme biosynthesis 41 81 1.25E-18 

cofactor biosynthesis 45 96 6.15E-18 

biosynthesis 217 919 3.27E-17 

ribonucleotide biosynthesis 34 69 1.76E-14 

nucleoside phosphate metabolism 25 42 1.76E-14 

ATP biosynthesis 25 42 1.76E-14 

ATP coupled proton transport 23 38 1.30E-13 

energy coupled proton transport, down electrochemical gradient 23 38 1.30E-13 

ribonucleotide metabolism 34 72 1.58E-13 

ATP metabolism 25 44 1.76E-13 

group transfer coenzyme metabolism 28 54 4.57E-13 

ribonucleotide triphosphate biosynthesis 27 51 4.57E-13 

purine ribonucleotide triphosphate biosynthesis 27 51 4.57E-13 

purine nucleoside triphosphate biosynthesis 27 51 4.57E-13 

nucleoside triphosphate metabolism 27 52 1.27E-12 

generation of precursor metabolites and energy 128 504 1.33E-12 

 41 



intracellular transport 114 433 1.63E-12 

cellular biosynthesis 183 807 2.29E-12 

ribonucleoside triphosphate metabolism 27 53 2.55E-12 

purine ribonucleoside triphosphate metabolism 27 53 2.55E-12 

purine nucleoside triphosphate metabolism 27 53 2.55E-12 

purine ribonucleotide biosynthesis 30 64 7.52E-12 

purine nucleotide biosynthesis 31 68 1.18E-11 

nucleoside triphosphate metabolism 27 55 1.59E-11 

establishment of protein localization 108 417 2.77E-11 

purine ribonucleotide metabolism 30 66 3.22E-11 

purine nucleotide metabolism 31 70 4.56E-11 

purine nucleotide metabolism 107 415 4.80E-11 

protein transport 42 113 1.10E-10 

nucleotide biosynthesis 108 425 1.23E-10 

hydrogen transport 29 65 1.86E-10 

proton transport 28 64 1.19E-09 

nucleotide metabolism 51 159 2.90E-09 

intracellular protein transport 74 271 7.39E-09 

aerobic respiration 18 27 5.76E-08 

cellular respiration 18 29 3.12E-07 

ATP synthesis coupled electron transport 16 25 1.28E-06 

metabolism 933 6083 1.75E-06 

translation 42 138 1.75E-06 

RNA metabolism 82 340 1.75E-06 

ATP synthesis coupled electron transport 15 23 2.41E-06 

acety-CoA metabolism 15 24 5.36E-06 

main pathways of carbohydrate metabolism 29 84 5.82E-06 

energy derivation by oxidation of organic compounds 38 127 1.61E-05 

tricarboxylic acid cycle 13 20 2.10E-05 

acety-CoA catabolism 13 20 2.10E-05 

coenzyme catabolism 13 20 2.10E-05 

cofactor catabolism 14 23 2.23E-05 

secretory pathway 35 116 3.75E-05 

cellular metabolism 869 5712 6.16E-05 

macromolecule metabolism 462 2830 9.62E-05 

RNA processing 63 266 0.000178 

secretion 40 146 0.000178 

protein folding 49 192 0.000189 

mitochondrial electron transport, NADH to ubiquinone 12 20 0.000191 

mRNA metabolism 44 167 0.000211 

cellular macromolecule metabolism 436 2674 0.000251 

cellular physiological process 1164 7955 0.000273 

protein biosynthesis 95 455 0.000434 

RNA splicing, via transesterif 26 83 0.000452 

nuclear mRNA splicing, via spliceosome 26 83 0.000452 

RNA splicing, via transesterif 26 83 0.000452 

electron transport 70 312 0.000476 

establishment of localization 305 1803 0.000597 
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mRNA processing 39 147 0.000626 

transport 304 1801 0.000739 

localization 305 1810 0.000823 

RNA splicing 31 111 0.00151 

protein targeting 31 111 0.00151 

biopolymer metabolism 235 1361 0.00199 

macromolecule biosynthesis 102 513 0.00205 

Golgi vesicle transport 16 44 0.00229 

protein-mitochondrial targeting 10 18 0.00292 

sterol biosynthesis 12 25 0.00316 

primary metabolism 815 5466 0.00606 

protein metabolism 400 2514 0.00833 

mitochondrial organization and biogenesis 8 14 0.0141 

translational initiation 16 49 0.0175 

cellular protein metabolism 394 2496 0.0193 

inner mitochondrial membrane organization and biogenesis 5 6 0.0206 

mitochondrial inner membrane protein import 5 6 0.0206 

regulated secretory pathway 8 15 0.0248 

quinone cofactor metabolism 4 4 0.0275 

quinone cofactor biosynthesis 4 4 0.0275 

ubiquinone biosynthesis 4 4 0.0275 

ubiquinone metabolism 4 4 0.0275 

lipid biosynthesis 39 170 0.036 
a the number of differentially expressed genes (q< 0.1 by ANOVA) that are members of 

the category 
b the number of genes on the Affymetrix GeneChip that are members of the category 
c the FDR values are from χ2 analysis corrected for multiple testing (see methods) 

 
Table 5.  Canonical Pathways involved in healthy aging 
 
Pathway # genesa # genes in pathwayb p-valuec % Ad

Oxidative phosphorylation 66 130 0.000 50.769 

Proteasome 20 31 0.000 64.516 

ATP synthesis 22 40 0.000 55.000 

Infection 18 41 0.009 43.902 

Citrate cycle (TCA cycle) 12 25 0.014 48.000 

Synthesis and degradation of ketone bodies 5 7 0.015 71.429 

RNA polymerase 11 23 0.019 47.826 

Carbon fixation 10 22 0.037 45.455 

Phenylalanine 6 11 0.041 54.545 

Butanoate metabolism 17 44 0.044 38.636 

Amyotrophic lateral sclerosis (ALS) 8 17 0.049 47.059 

Reductive carboxylate cycle (CO2 fixation) 5 9 0.056 55.556 

Valine 16 43 0.068 37.209 

Aminoacyl-tRNA biosynthesis 10 25 0.088 40.000 
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a  the number of differentially expressed genes (q < 0.1 by ANOVA) that are members of 

the pathway 
b  the total number of genes in the pathway 
c  p-values are from a one-tailed Fisher’s Exact Test (see methods) 
d   % abundance of differentially expressed genes in that pathway 

 

Table 6.   Transcripts with maximum Differences between Group 3 (non-demented with 
high Braak score) and other Groups. 
A.  Transcripts with an increased transcript in non-demented, high Braak stage 
subjects.  
    

Probe ID Gene Symbol 
chromosome 
location 

207369_at bombesin-like receptor 3 BRS3 Xq26-q28 

226558_at 
hypothetical gene supported by AK096952; AK126241; 
BC068588 LOC441057 4p16.3 

238774_at Hypothetical protein LOC284058 LOC284058 17q21.31 
201909_at ribosomal protein S4, Y-linked 1 RPS4Y1 Yp11.3 
    
B.  Transcripts with a decreased transcript in non-demented, high Braak stage 
subjects.   
    
203815_at glutathione S-transferase theta 1 GSTT1 22q11.23 
224588_at    
227671_at    
203096_s_at Rap guanine nucleotide exchange factor (GEF) 2 RAPGEF2 4q32.1 
221728_x_at    
202917_s_at S100 calcium binding protein A8 (calgranulin A) S100A8 1q21 
213479_at neuronal pentraxin II NPTX2 7q21.3-q22.1 
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Table 7.  Concordance Rates per data set for Affymetrix HG_U133A GeneChip array.a
 
A.  Intersection using Probe ID    

  10% FDR 5% FDR 
  UP DN UP DN 

Blalockb 104 (8.4%) 493 (13.7%) 55 (9.4%) 392 (16.7%) 

Dunckley 252 (20.4%) 733 (20.4%) 117 (19.9%) 488 (20.8%) 

Blalock/Dunckley 451 (10.1%) 239 (8.4%) 254 (7.1%) 141 (10.0%) 

all 3 data sets 33 (2.6%) 141 (3.9%) 6 (1.0%) 54 (2.3%) 

     

B.  Intersection using Gene Symbol   

  10% FDR   

  UP DN   

Blalockb 258 (35.5%) 610 (27.5%)   

Dunckley 195 (26.8%) 812 (36.6%)   

Blalock/Dunckley 762 (21.7%) 554 (14.0%)   

all 3 data sets 59 (8.1%) 274 (12.3%)   
a  Concordance was determined for each pair of data sets by measuring the intersection of 

transcripts significantly differentially regulated at 10% and 5% FDR.  The number and 

percentage of transcripts concordant in each comparison is given.   
b  The concordance of each data set with our results, between Blalock, et al and 

Dunckley, et al, and the concordance among all three data sets is presented.    
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Table 8.  Transcripts differentially expressed in non-demented versus demented that are 

common to all data sets.a

Upregulated in AD    

Probe ID Symbol chromosome locationb

p-value 
Blalock 
et al 

p-value 
Dunckley 
et al 

35776_at ITSN1 21q22.1-q22.2 0.05 0.00 
201502_s_at NFKBIA 14q13 0.01 0.00 
202273_at PDGFRB 5q31-q32 0.07 0.00 
201125_s_at ITGB5 3q21.2 0.00 0.02 
202861_at PER1 17p13.1-17p12 0.04 0.00 
210473_s_at GPR125 4p15.31 0.07 0.01 
203685_at BCL2 18q21.33, 18q21.3 0.00 0.07 
210069_at CHKB /// CPT1B 22q13.33 0.02 0.06 
206766_at ITGA10 1q21 0.08 0.00 
221527_s_at PARD3 10p11.22-p11.21 0.02 0.04 
212346_s_at MXD4 4p16.3 0.08 0.02 
213044_at ROCK1 18q11.1 0.10 0.03 
203505_at ABCA1 9q31.1 0.01 0.01 
36829_at PER1 17p13.1-17p12 0.03 0.00 
217937_s_at HDAC7A 12q13.1 0.08 0.00 
214594_x_at ATP8B1 18q21-q22, 18q21.31 0.06 0.00 
209703_x_at DKFZP586A0522 12q13.12 0.04 0.00 
205168_at DDR2 1q12-q23 0.00 0.04 
221191_at DKFZP434A0131 7q11.23-q21.1 0.02 0.02 
203080_s_at BAZ2B 2q23-q24 0.07 0.04 
204060_s_at PRKX /// PRKY Xp22.3 ,   Yp11.2 0.00 0.01 

212122_at RHOQ /// LOC284988 2p21 ,   2q21.1 0.00 0.03 
209370_s_at SH3BP2 4p16.3 0.02 0.06 
202724_s_at FOXO1A 13q14.1 0.00 0.01 
205111_s_at PLCE1 10q23 0.03 0.00 
205288_at CDC14A 1p21 0.03 0.00 
204061_at PRKX Xp22.3 0.02 0.00 
202933_s_at YES1 18p11.31-p11.21 0.02 0.03 
209108_at TM4SF6 Xq22 0.01 0.00 
     
Downregulated in AD    

Probe ID Symbol chromosome location 

p-value 
Blalock 
et al 

p-value 
Dunckley 
et al 

214762_at ATP6V1G2 6p21.3 0.01 0.02 
221020_s_at MFTC 8q22.3 0.06 0.00 
210976_s_at PFKM 12q13.3 0.02 0.04 
219443_at C20orf13 20p12.1 0.07 0.01 
203889_at SGNE1 15q13-q14 0.05 0.09 
202325_s_at ATP5J 21q21.1 0.09 0.03 
201304_at NDUFA5 7q32 0.01 0.09 
204675_at SRD5A1 5p15 0.08 0.00 
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222005_s_at GNG3 11p11 0.03 0.00 
200720_s_at ACTR1A 10q24.32 0.06 0.00 
208934_s_at LGALS8 1q42-q43 0.02 0.01 
218291_at MAPBPIP 1q22 0.02 0.06 
206290_s_at RGS7 1q43 0.01 0.00 
206489_s_at DLGAP1 18p11.3 0.03 0.01 
218488_at EIF2B3 1p34.1 0.03 0.02 
213849_s_at PPP2R2B 5q31-5q32 0.01 0.02 
215161_at CAMK1G 1q32-q41 0.00 0.04 
204471_at GAP43 3q13.1-q13.2 0.03 0.00 
200039_s_at PSMB2 1p34.2 0.03 0.01 
213011_s_at TPI1 12p13 0.02 0.02 
206055_s_at SNRPA1 15q26.3 0.07 0.09 
209583_s_at CD200 3q12-q13 0.03 0.08 
203218_at MAPK9 5q35 0.09 0.09 
211023_at PDHB 3p21.1-p14.2 0.00 0.02 
210027_s_at APEX1 14q11.2-q12 0.02 0.03 
221471_at TDE1 20q13.1-13.3 0.02 0.01 
218332_at BEX1 Xq21-q23 0.06 0.00 
213666_at 6-Sep Xq24 0.00 0.03 
210014_x_at IDH3B 20p13 0.04 0.03 
201569_s_at CGI-51 22q13.31 0.07 0.00 
211276_at TCEAL2 Xq22.1-q22.3 0.02 0.00 
202634_at POLR2K 8q22.2 0.02 0.01 
207142_at KCNJ3 2q24.1 0.10 0.08 
221482_s_at ARPP-19 15q21.2 0.05 0.06 
206342_x_at IDS Xq28 0.10 0.00 
200822_x_at TPI1 12p13 0.04 0.03 
212990_at SYNJ1 21q22.2 0.06 0.02 
208870_x_at ATP5C1 10p15.1 0.03 0.08 
200613_at AP2M1 3q28 0.03 0.00 
218193_s_at GOLT1B 12p12.1 0.08 0.00 
217948_at DKFZP564B147 Xq26.3 0.02 0.02 
202961_s_at ATP5J2 7q22.1 0.10 0.02 
202279_at C14orf2 14q32.33 0.01 0.00 
218404_at SNX10 7p15.2 0.02 0.02 
204744_s_at IARS 9q21 0.05 0.04 
202596_at ENSA 1q21.2 0.00 0.09 
209075_s_at NIFUN 12q24.1 0.03 0.08 
205549_at PCP4 21q22.2 0.01 0.01 
218813_s_at SH3GLB2 9q34 0.07 0.01 
208308_s_at GPI 19q13.1 0.09 0.05 
208745_at ATP5L 11q23.3 0.04 0.04 
200001_at CAPNS1 19q13.12 0.10 0.07 
208906_at BSCL2 11q12-q13.5 0.08 0.08 
206089_at NELL1 11p15.2-p15.1 0.00 0.08 
205711_x_at ATP5C1 10p15.1 0.01 0.02 
219196_at SCG3 15q21 0.04 0.05 
209025_s_at SYNCRIP 6q14-q15 0.00 0.00 
212826_s_at SLC25A6 Xp22.32 and Yp 0.01 0.01 
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209482_at POP7 7q22 0.04 0.08 
211698_at CRI1 15q21.1-q21.2 0.01 0.10 
201849_at BNIP3 10q26.3 0.03 0.00 
201797_s_at VARS2 6p21.3 0.04 0.07 
205899_at CCNA1 13q12.3-q13 0.08 0.07 
201662_s_at ACSL3 2q34-q35 0.04 0.02 
209056_s_at CDC5L 6p21 0.01 0.02 
201524_x_at UBE2N 12q22 0.01 0.04 
219619_at DIRAS2 9q22.2 0.04 0.06 
206233_at B4GALT6 18q11 0.05 0.00 
213333_at MDH2 7p12.3-q11.2 0.02 0.09 
203079_s_at CUL2 10p11.21 0.02 0.03 
213902_at ASAH1 8p22-p21.3 0.04 0.01 
201400_at PSMB3 17q12 0.02 0.01 
215691_x_at C1orf41 1p32.1-p33 0.01 0.00 
217773_s_at NDUFA4 7p21.3 0.01 0.05 
201568_at QP-C 5q31.1 0.06 0.02 
206857_s_at FKBP1B 2p23.3 0.08 0.00 
214436_at FBXL2 3p23 0.03 0.01 
208977_x_at TUBB2 6p25 0.03 0.06 
200650_s_at LDHA 11p15.4 0.01 0.00 
216120_s_at ATP2B2 3p25.3 0.01 0.00 
212296_at PSMD14 2q24.2 0.07 0.00 
221437_s_at MRPS15 1p35-p34.1 0.09 0.01 
201381_x_at CACYBP 1q24-q25 0.07 0.00 
206381_at SCN2A2 2q23-q24 0.09 0.04 
209849_s_at RAD51C 17q22-q23 0.00 0.03 
206949_s_at RUSC1 1q21-q22 0.03 0.00 
208975_s_at KPNB1 17q21.32 0.04 0.08 
210406_s_at RAB6A /// RAB6C 11q13.3 ,   2q31 0.01 0.01 
200027_at NARS 18q21.2-q21.3 0.03 0.00 
209914_s_at NRXN1 2p16.3 0.08 0.02 
214005_at GGCX 2p12 0.06 0.00 
201597_at COX7A2 6q12 0.05 0.00 
213366_x_at ATP5C1 10p15.1 0.01 0.02 
219073_s_at OSBPL10 3p22.3 0.00 0.00 
208905_at CYCS 7p15.3 0.03 0.00 
217801_at ATP5E 20q13.32 0.03 0.05 
202309_at MTHFD1 14q24 0.00 0.00 
203894_at TUBG2 17q21 0.00 0.02 
209877_at SNCG 10q23.2-q23.3 0.02 0.09 
216903_s_at CBARA1 10q22.1 0.09 0.01 
202260_s_at STXBP1 9q34.1 0.08 0.00 
201837_s_at STAF65(gamma) 2pter-p25.1 0.00 0.00 
218226_s_at NDUFB4 3q13.33 0.06 0.00 
207081_s_at PIK4CA 22q11.21 0.02 0.07 
209142_s_at UBE2G1 1q42, 17p13.2 0.07 0.00 
220045_at NEUROD6 7p14.3 0.01 0.02 
202090_s_at UQCR 19p13.3 0.03 0.00 
200734_s_at ARF3 12q13 0.01 0.00 
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213726_x_at TUBB2 6p25 0.02 0.04 
201047_x_at RAB6A 11q13.3 0.06 0.07 
204141_at TUBB2 6p25 0.02 0.00 
210016_at MYT1L 2p25.3 0.01 0.03 
208936_x_at LGALS8 1q42-q43 0.01 0.00 
205691_at SYNGR3 16p13 0.01 0.00 
203001_s_at STMN2 8q21.13 0.09 0.00 
218732_at Bit1 17q23.2 0.10 0.05 
205113_at NEF3 8p21 0.01 0.05 
218106_s_at MRPS10 6p21.1-p12.1 0.06 0.05 
203846_at TRIM32 9q33.1 0.01 0.00 
209001_s_at ANAPC13 3q22.1 0.02 0.00 
203797_at VSNL1 2p24.3 0.01 0.07 
203303_at TCTE1L Xp21 0.05 0.00 
211071_s_at AF1Q 1q21 0.09 0.00 
204247_s_at CDK5 7q36 0.01 0.04 
221288_at GPR22 7q22-q31.1 0.01 0.07 
201434_at TTC1 5q32-q33.2 0.03 0.00 
212976_at TA-LRRP 1p22.2 0.03 0.07 
203667_at TBCA 5q14.1 0.01 0.05 
200625_s_at CAP1 1p34.2 0.02 0.00 
218467_at TNFSF5IP1 18p11.21 0.02 0.01 
204465_s_at INA 10q24.33 0.01 0.00 
202754_at R3HDM 2q21.3 0.02 0.01 
215518_at STXBP5L 3q13.33 0.05 0.00 
222125_s_at PH-4 3p21.31 0.02 0.02 
206051_at ELAVL4 1p34 0.09 0.03 
202336_s_at PAM 5q14-q21 0.10 0.00 
202022_at ALDOC 17cen-q12 0.02 0.08 
201980_s_at RSU1 10p13 0.01 0.01 
211069_s_at SUMO1 2q33 0.05 0.08 
201527_at ATP6V1F 7q32 0.06 0.05 

a Differentially expressed transcripts are q < 0.1 from ANOVA 

b Values in bold are chromosomal regions linked to AD 
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Supplemental Table 1.  Transcripts differentially expressed between non-
demented and AD subjects (Hypothesis 1).   
      
Up regulated in AD     
      

Probe ID symbol 
chromosome 
location 

rma 
qvalues 

vsn 
qvalues linked 

35776_at ITSN1 21q22.1-q22.2 0.006357 0.002705 Y 
1555842_at LOC284356 19q13.33 0.006357 0.004299 Y 
232002_at GPI 19q13.1 0.006554 0.004299 Y 
239449_at ANKH 5p15.1 0.006357 0.004331 Y 
235705_at TRIO 5p15.1-p14 0.006357 0.00438 Y 
212177_at C6orf111 6q16.3 0.006357 0.004873 Y 
233816_at SLC8A1 2p23-p22 0.00778 0.005188 Y 
244530_at FLJ25422 5p13.2 0.006554 0.005268 Y 
228028_at LOC150946 2p23.3 0.007969 0.005364 Y 
232621_at USP48 1p36.12 0.006357 0.005449 Y 
242022_at PBX1 1q23 0.011337 0.006493 Y 
243826_at NCOA1 2p23 0.007114 0.006511 Y 
244015_at EIF4G3 1p36.12 0.011625 0.006528 Y 
240008_at ARID1B 6q25.1 0.008594 0.007535 Y 
233041_x_at BTBD9 6p21 0.008819 0.007667 Y 
223915_at BCOR Xp11.4 0.010728 0.007673 Y 
225507_at C6orf111 6q16.3 0.009534 0.008666 Y 
233025_at PDZK3 5p13.3 0.010849 0.008751 Y 
231403_at TRIO 5p15.1-p14 0.009366 0.00898 Y 
232592_at RPL10A 6p21.3-p21.2 0.015604 0.009295 Y 
227901_at FLJ90723 5p13.1 0.017569 0.00957 Y 
240205_x_at KIAA0528 12p12.1 0.010782 0.009812 Y 
244753_at ACTN4 19q13 0.012393 0.009812 Y 
242578_x_at SLC22A3 6q26-q27 0.009218 0.009812 Y 
232601_at  10q22.3 0.013874 0.010076 Y 
241837_at ARID5B 10q21.2 0.013874 0.010231 Y 
209297_at ITSN1 21q22.1-q22.2 0.009065 0.010843 Y 
229145_at C10orf104 10q22.1 0.012807 0.0111 Y 
238672_at PEX6 6p21.1 0.017146 0.01172 Y 
212179_at C6orf111 6q16.3 0.009903 0.011901 Y 
229957_at BCKDHA 19q13.1-q13.2 0.015789 0.012059 Y 
213600_at SIPA1L3 19q13.13 0.014215 0.012189 Y 
211841_s_at TNFRSF25 1p36.2 0.01602 0.012383 Y 
236354_at ZMYND17 10q22.2 0.012511 0.012425 Y 
224667_x_at C10orf104 10q22.1 0.018266 0.012656 Y 
1554595_at SYMPK 19q13.3 0.025039 0.012715 Y 
230572_at FLJ30277 4q35.1 0.008594 0.012749 Y 
213647_at DNA2L 10q21.3-q22.1 0.012399 0.013196 Y 
234041_at FLJ20054 1q31.3 0.017089 0.013238 Y 
215109_at KIAA0492 1q25.1 0.014215 0.013266 Y 
238009_at SOX5 12p12.1 0.013658 0.013537 Y 
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1569519_at LOC439928 1p36.13 0.011156 0.013557 Y 
241509_at PLEKHA5 12p12 0.015277 0.013564 Y 
215907_at BACH2 6q15 0.017685 0.013653 Y 
243766_s_at TEAD2 19q13.3 0.02424 0.013703 Y 
230368_at ERF 19q13 0.018107 0.013879 Y 
214989_x_at PLEKHA5 12p12 0.008861 0.013891 Y 
233291_at ODZ3 4q35.1 0.016176 0.014175 Y 
210847_x_at TNFRSF25 1p36.2 0.021676 0.014837 Y 
211920_at BF 6p21.3 0.020535 0.015265 Y 
222310_at SFRS15 21q22.1 0.014903 0.016067 Y 

 
Downregulated in AD     
      
214762_at ATP6V1G2 6p21.3 0.006357 0.002268 Y 
212453_at KIAA1279 10q22.1 0.006554 0.00259 Y 
225936_at CRI2 19q13.2 0.006357 0.002961 Y 
229233_at NRG3 10q22-q23 0.006696 0.002976 Y 
203798_s_at VSNL1 2p24.3 0.006554 0.002976 Y 
218573_at MAGEH1 Xp11.22 0.008095 0.003081 Y 
208675_s_at DDOST 1p36.1 0.006554 0.003759 Y 
1557915_s_at GSTO1 10q25.1 0.006765 0.003823 Y 
214512_s_at PC4 5p13.3 0.006554 0.003823 Y 
208682_s_at MAGED2 Xp11.2 0.009387 0.004047 Y 
227669_at DKFZP564B167 1q24 0.006554 0.004299 Y 
1554351_a_at MGC3794 1q23.2 0.006554 0.004299 Y 
209326_at SLC35A2 Xp11.23-p11.22 0.007351 0.004299 Y 
205052_at AUH 9q22.31 0.009525 0.004299 Y 
218111_s_at CMAS 12p12.1 0.006554 0.004299 Y 
202675_at SDHB 1p36.1-p35 0.011337 0.004873 Y 
203405_at DSCR2 21q22.3 0.008133 0.004991 Y 
203613_s_at NDUFB6 9p21.1 0.010071 0.005188 Y 
209755_at NMNAT2 1q25 0.007565 0.005188 Y 
223123_s_at HT014 1p36.11 0.006357 0.005188 Y 
202325_s_at ATP5J 21q21.1 0.013137 0.005192 Y 
211662_s_at VDAC2 10q22 0.016572 0.005207 Y 
222991_s_at UBQLN1 9q22, 9q21.2-q21.3 0.009411 0.005218 Y 
200886_s_at PGAM1 10q25.3 0.013279 0.00534 Y 
204675_at SRD5A1 5p15 0.006554 0.005355 Y 
218824_at FLJ10781 19q13.32 0.010396 0.005449 Y 
218597_s_at C10orf70 10q21.1 0.010729 0.005449 Y 
228009_x_at ZNRD1 6p21.3 0.006554 0.005449 Y 
210232_at CDC42 1p36.1 0.006554 0.005566 Y 
225446_at WDR9 21q22.2 0.006554 0.005575 Y 
218682_s_at SLC4A1AP 2p23.3-p23.2 0.010767 0.005724 Y 
204230_s_at SLC17A7 19q13 0.014215 0.005724 Y 
212857_x_at PC4 5p13.3 0.02757 0.005724 Y 
215167_at CRSP2 Xp11.4-p11.2 0.009541 0.005724 Y 
224587_at PC4 5p13.3 0.01091 0.005724 Y 
222436_s_at VPS24 2p24.3-p24.1 0.014671 0.005724 Y 
202427_s_at DKFZP564B167 1q24 0.013215 0.006048 Y 
200820_at PSMD8 19q13.2 0.011601 0.006055 Y 
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200620_at C1orf8 1p36-p31 0.0298 0.006086 Y 
223247_at MGC5309 5p15.31 0.014891 0.006216 Y 
224586_x_at PC4 5p13.3 0.018107 0.006233 Y 
209158_s_at PSCD2 19q13.3 0.010921 0.006233 Y 
1558700_s_at LOC339324 19q13.12 0.008323 0.006286 Y 
1558201_s_at SLC4A1AP 2p23.3-p23.2 0.009501 0.006405 Y 
205355_at ACADSB 10q25-q26 0.008133 0.006493 Y 
205540_s_at RRAGB Xp11.22 0.006357 0.006493 Y 
218312_s_at FLJ12895 19q13.43 0.023917 0.006499 Y 
200622_x_at CALM3 19q13.2-q13.3 0.017856 0.006511 Y 
200623_s_at CALM3 19q13.2-q13.3 0.013941 0.006663 Y 
218545_at FLJ11088 12p11.22 0.010729 0.006678 Y 
238487_at LOC285831 6p21.32 0.009349 0.006904 Y 

 
The top 50 upregulated and top 50 downregulated transcripts are shown.  For the 

complete list of transcripts, see [ ]. 

 
Supplemental Table 2.   Cytogenetic bands containing an overrepresentation of 

differentially expressed transcripts.a 

 # of transcripts  

cytogenetic 
bands # DEb # on chipc p-valued

2p15 14 44 0.023 

3p24 30 102 0.007 

3p25 48 191 0.013 

3q25 37 143 0.02 

5q12 32 111 0.006 

6p25 29 116 0.043 

8q22 45 161 0.003 

10p13 26 80 0.004 

18p11 46 191 0.025 

20p12 32 94 0 
a Transcripts were tested for the number of differentially expressed transcripts that were 

overrepresented in a particular cytogenetic band by χ2 analysis. 

b DE, number of differentially expressed transcripts at q < 0.1 by ANOVA located in the 

cytogenetic band 

c  Number of transcripts on the Affymetrix HGU133Plus2 GeneChip that are located in 

the cytogenetic band 
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d p-values are from χ2 analysis and adjusted by simulation 

Supplemental Table 3.  Differentially expressed transcripts between low and high NFT 

pathology (Hypothesis 2). 

Upregulated in high Braak     
Probe ID Symbol chromosome location rma qvalues vsn qvalues linked 
239449_at ANKH 5p15.1 0.08326 0.0524 Y 
232621_at USP48 1p36.12 0.08326 0.0524 Y 
235705_at TRIO 5p15.1-p14 0.08326 0.0524 Y 
215109_at KIAA0492 1q25.1 0.08326 0.0524 Y 
242188_at RPL10A 6p21.3-p21.2 0.08326 0.0524 Y 
240008_at ARID1B 6q25.1 0.08326 0.0533 Y 
232002_at GPI 19q13.1 0.08976 0.05474 Y 
233816_at SLC8A1 2p23-p22 0.09738 0.05534 Y 
244015_at EIF4G3 1p36.12 0.09738 0.06065 Y 
244530_at FLJ25422 5p13.2 0.09621 0.0654 Y 
231403_at TRIO 5p15.1-p14 0.09947 0.07305 Y 
243826_at NCOA1 2p23 0.09921 0.07356 Y 
212179_at C6orf111 6q16.3 0.08788 0.07379 Y 
235788_at TRIM26 6p21.3 0.08788 0.07527 Y 
234041_at FLJ20054 1q31.3 0.09552 0.07787 Y 
241041_at SLC8A1 2p23-p22 0.09958 0.07787 Y 
212177_at C6orf111 6q16.3 0.08788 0.07787 Y 
220348_at KBTBD9 2p24.1 0.09621 0.08295 Y 
216628_at ITSN1 21q22.1-q22.2 0.09947 0.08804 Y 
243715_at RNF138P1 5q11.2 0.08326 0.0479 N 
230663_at FMNL2 2q23.3 0.08326 0.0479 N 
232286_at LAF4 2q11.2-q12 0.08326 0.0479 N 
237881_at IGF1R 15q26.3 0.08326 0.0479 N 
1566772_at SCHIP1 3q25.32-q25.33 0.08326 0.0479 N 
234628_at RAB28 4p15.33 0.08326 0.0479 N 
233648_at SIK2 11q23.1 0.08326 0.0479 N 
232606_at ANK2 4q25-q27 0.08326 0.0479 N 
1560924_at   0.08326 0.0479 N 
1560082_at   0.08326 0.0479 N 
1557745_at   0.08326 0.0479 N 
224098_at   0.08326 0.0479 N 
214656_x_at MYO1C 17p13 0.08326 0.0479 N 
242865_at SDFR1 15q22 0.08326 0.0479 N 
233056_x_at DLGAP4 20q11.23 0.0921 0.05053 N 
230791_at NFIB 9p24.1 0.08326 0.05114 N 
215591_at SATB2 2q33 0.08326 0.0524 N 
232599_at SEC15L1 10q23.33 0.08326 0.0524 N 
236610_at PDE4D 5q12 0.08326 0.0524 N 
244605_at   0.08326 0.0524 N 
225342_at AK3 9pter-p13 0.08326 0.0524 N 
224549_x_at   0.08326 0.0524 N 
244697_at ZBTB16 11q23.1 0.08788 0.0524 N 
241786_at PPP3R1 2p15 0.08326 0.0524 N 
1560865_a_at   0.08326 0.0524 N 
244055_at   0.08326 0.0524 N 
233219_at MKLN1 7q32 0.08326 0.0524 N 
242235_x_at NRD1 1p32.2-p32.1 0.08326 0.0524 N 
1559820_at APG10L 5q14.1-q14.2 0.08326 0.0524 N 
237174_at   0.09059 0.0524 N 
232935_at LHFP 13q12 0.08326 0.0524 N 
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238883_at THRAP2 12q24.21 0.08326 0.0524 N 
Downregulated in high Braak     
      
223247_at MGC5309 5p15.31 0.08326 0.0479 Y 
1557915_s_at GSTO1 10q25.1 0.08326 0.0479 Y 
214762_at ATP6V1G2 6p21.3 0.08326 0.0479 Y 
225936_at CRI2 19q13.2 0.08326 0.04874 Y 
1555935_s_at HUNK 21q22.1 0.08326 0.0524 Y 
218597_s_at C10orf70 10q21.1 0.09621 0.0524 Y 
218111_s_at CMAS 12p12.1 0.08788 0.0524 Y 
228009_x_at ZNRD1 6p21.3 0.08326 0.0524 Y 
219219_at FLJ20512 19q13.32 0.08788 0.0524 Y 
214512_s_at PC4 5p13.3 0.09621 0.0524 Y 
204675_at SRD5A1 5p15 0.08326 0.0524 Y 
227669_at DKFZP564B167 1q24 0.09621 0.0524 Y 
202675_at SDHB 1p36.1-p35 0.09621 0.0524 Y 
226896_at CHCHD1 10q22.2 0.08326 0.0524 Y 
222991_s_at UBQLN1 9q22, 9q21.2-q21.3 0.09738 0.05272 Y 
205549_at PCP4 21q22.2 0.08326 0.05465 Y 
1554351_a_at MGC3794 1q23.2 0.09327 0.05534 Y 
219693_at AGPAT4 6q26 0.09621 0.05545 Y 
219531_at Cep72 5p15.33 0.08326 0.05618 Y 
210959_s_at SRD5A1 5p15 0.08326 0.05753 Y 
218545_at FLJ11088 12p11.22 0.08915 0.05834 Y 
204331_s_at MRPS12 19q13.1-q13.2 0.08915 0.06761 Y 
1554133_at RUFY2 10q21.3 0.08326 0.06836 Y 
211704_s_at SPIN2 Xp11.1 0.08906 0.06926 Y 
229289_at LOC284361 19q13.33 0.08788 0.07158 Y 
201490_s_at PPIF 10q22-q23 0.09621 0.07163 Y 
218453_s_at C6orf35 6q25.3 0.09657 0.07329 Y 
231739_at C6orf31 6p21.32 0.09921 0.08384 Y 
1556029_s_at NMNAT2 1q25 0.09921 0.08439 Y 
221803_s_at NRBF2 10q21.3 0.09621 0.09144 Y 
202824_s_at TCEB1 8q21.11 0.08788 0.0479 N 
201848_s_at BNIP3 10q26.3 0.08326 0.0479 N 
203621_at NDUFB5 3q26.33 0.08326 0.0479 N 
223328_at SVH 7q22.1 0.08326 0.0479 N 
203830_at NJMU-R1 17q11.2 0.08326 0.0479 N 
223273_at C14orf142 14q32.13 0.08326 0.0479 N 
209096_at UBE2V2 8q11.21 0.08439 0.0479 N 
209036_s_at MDH2 7p12.3-q11.2 0.08326 0.0479 N 
202507_s_at SNAP25 20p12-p11.2 0.08326 0.0479 N 
218027_at MRPL15 8q11.2-q13 0.08326 0.0479 N 
205361_s_at PFDN4 20q13.2 0.08326 0.0479 N 
1567458_s_at RAC1 7p22 0.08326 0.0479 N 
224719_s_at GRCC10 12p13.31 0.08326 0.0479 N 
226338_at DKFZp762O076 8q21.3 0.08326 0.0479 N 
235916_at YPEL4 11q12.1 0.08326 0.0479 N 
228283_at MGC61571 3p24.1 0.08326 0.0479 N 
208868_s_at GABARAPL1 12p13.2 0.08326 0.0479 N 
209080_x_at TXNL2 6p25.3 0.08326 0.0479 N 
228614_at LOC205251 2q13 0.09621 0.0479 N 
202854_at HPRT1 Xq26.1 0.08326 0.0479 N 
207508_at ATP5G3 2q31.1 0.09023 0.0479 N 

The top 50 upregulated and top 50 downregulated transcripts are shown.  For the 

complete list of transcripts, see [ ]. 
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Supplemental Table 4.  Genes differentially expressed in non-demented versus demented 

common to all three data sets.a

Upregulated in AD   

Gene Symbol Gene Name q-value 
chromosome 
location 

MYO1C myosin IC 0.004 17p13 

NFKBIA 
nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha 0.005 14q13 

GEM GTP binding protein overexpressed in skeletal muscle 0.008 8q13-q21 
SRRM2 serine/arginine repetitive matrix 2 0.011 16p13.3 
RoXaN rotavirus X protein associated with NSP3 0.011 22q13.2 
RBM6 RNA binding motif protein 6 0.013 3p21.3 

BACH2 
BTB and CNC homology 1, basic leucine zipper transcription 
factor 2 0.014 6q15 

ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1 0.014 9q31.1 
ITGB5 integrin, beta 5 0.016 3q21.2 
PER1 period homolog 1 (Drosophila) 0.018 17p13.1-17p12 
ITSN1 intersectin 1 (SH3 domain protein) 0.018 21q22.1-q22.2 
TBX6 T-box 6 0.024 16p11.2 
BCL2 B-cell CLL/lymphoma 2 0.033 18q21.33, 18q21.3 
ALDH1A2 aldehyde dehydrogenase 1 family, member A2 0.037 15q21.3 
PABPN1 poly(A) binding protein, nuclear 1 0.040 14q11.2-q13 
IQGAP1 IQ motif containing GTPase activating protein 1 0.040 15q26.1 
FOXO1A forkhead box O1A (rhabdomyosarcoma) 0.043 13q14.1 
ROCK1 Rho-associated, coiled-coil containing protein kinase 1 0.043 18q11.1 
GRB10 growth factor receptor-bound protein 10 0.043 7p12-p11.2 
HDAC7A histone deacetylase 7A 0.051 12q13.1 
CSNK1A1 casein kinase 1, alpha 1 0.052 5q32 
CTBP2 C-terminal binding protein 2 0.052 10q26.13 

ATP8B1 ATPase, Class I, type 8B, member 1 0.053 
18q21-q22, 
18q21.31 

NCOA3 nuclear receptor coactivator 3 0.054 20q12 
MACF1 microtubule-actin crosslinking factor 1 0.057 1p32-p31 
GTSE1 G-2 and S-phase expressed 1 0.059 22q13.2-q13.3 
PGCP plasma glutamate carboxypeptidase 0.059 8q22.2 
GPR107 G protein-coupled receptor 107 0.059 9q34.11 
LAMA4 laminin, alpha 4 0.062 6q21 
MAP2K7 mitogen-activated protein kinase kinase 7 0.065 19p13.3-p13.2 
DDR2 discoidin domain receptor family, member 2 0.067 1q12-q23 
ATBF1 AT-binding transcription factor 1 0.070 16q22.3-q23.1 

SLC4A4 
solute carrier family 4, sodium bicarbonate cotransporter, 
member 4 0.070 4q21 

TIMELESS Timeless homolog (Drosophila) 0.072 12q12-q13 
FBLN1 fibulin 1 0.072 22q13.31 
MXI1 MAX interactor 1 /// MAX interactor 1 0.073 10q24-q25 
LAMC1 laminin, gamma 1 (formerly LAMB2) 0.075 1q31 
FBXL11 F-box and leucine-rich repeat protein 11 0.075 11q13.2 
LOC51035 ORF 0.075 11q12.3 
BAZ2B bromodomain adjacent to zinc finger domain, 2B 0.077 2q23-q24 
TBL1X transducin (beta)-like 1X-linked 0.082 Xp22.3 

MAP2K3 
Mitogen-activated protein kinase kinase 3 /// Mitogen-activated 
protein kinase kinase 3 0.083 17q11.2 

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 0.084 7q21.1 
PLCE1 phospholipase C, epsilon 1 0.090 10q23 
USP22 ubiquitin specific protease 22 0.094 17p11.2 
CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) 0.095 1p21 
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LRRFIP2 leucine rich repeat (in FLII) interacting protein 2 0.098 3p22.3 
YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 0.098 18p11.31-p11.21 
TM4SF6 transmembrane 4 superfamily member 6 0.099 Xq22 
    
    
   
Downregulated in AD   
Gene Symbol Gene Name q-value Chr. Location 

ATP6V1G2 
ATPase, H+ transporting, lysosomal 13kDa, V1 subunit 
G isoform 2 0.002 6p21.3 

C20orf13 chromosome 20 open reading frame 13 0.004 20p12.1 
PCMT1 protein-L-isoaspartate (D-aspartate) O-methyltransferase 0.004 6q24-q25 
AUH AU RNA binding protein/enoyl-Coenzyme A hydratase 0.004 9q22.31 
HBXIP hepatitis B virus x interacting protein 0.004 1p13.3 

SGNE1 
secretory granule, neuroendocrine protein 1 (7B2 
protein) 0.005 15q13-q14 

SLC25A6 
solute carrier family 25 (mitochondrial carrier; adenine 
nucleotide translocator), member 6 0.005 Xp22.32 and Yp 

NDUFA5 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 
5, 13kDa 0.005 7q32 

SRD5A1 
steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 
alpha-steroid delta 4-dehydrogenase alpha 1) 0.005 5p15 

ACTR1A 
ARP1 actin-related protein 1 homolog A, centractin alpha 
(yeast) 0.006 10q24.32 

SYT1 synaptotagmin I 0.006 12cen-q21 
LGALS8 lectin, galactoside-binding, soluble, 8 (galectin 8) 0.006 1q42-q43 
PPP1R7 protein phosphatase 1, regulatory subunit 7 0.006 2q37.3 
RGS7 regulator of G-protein signalling 7 0.006 1q43, 1q23.1 
CALM3 calmodulin 3 (phosphorylase kinase, delta) 0.007 19q13.2-q13.3 
RAB2 RAB2, member RAS oncogene family 0.007 8q12.1 
CAMK1G calcium/calmodulin-dependent protein kinase IG 0.007 1q32-q41 
ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0.007 2q14.1 

PPP2R2B 
protein phosphatase 2 (formerly 2A), regulatory subunit B 
(PR 52), beta isoform 0.008 5q31-5q32 

ATP6V0C ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c 0.008 16p13.3 
PSMB4 proteasome (prosome, macropain) subunit, beta type, 4 0.008 1q21 
GAP43 growth associated protein 43 0.008 3q13.1-q13.2 

PSMB2 

proteasome (prosome, macropain) subunit, beta type, 2 
/// proteasome (prosome, macropain) subunit, beta type, 
2 0.008 1p34.2 

CXX1 CAAX box 1 0.008 Xq26 
ANXA7 annexin A7 0.008 10q21.1-q21.2 
RAD51C RAD51 homolog C (S. cerevisiae) 0.008 17q22-q23 

SMARCA2 
SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 2 0.009 9p22.3 

BEX1 brain expressed, X-linked 1 0.009 Xq21-q23 

MEF2C 
MADS box transcription enhancer factor 2, polypeptide C 
(myocyte enhancer factor 2C) 0.009 5q14 

MAPRE3 microtubule-associated protein, RP/EB family, member 3 0.009 2p23.3-p23.1 
SNX3 sorting nexin 3 0.010 6q21 
SRPK2 SFRS protein kinase 2 0.010 7q22-q31.1 

POLR2K 
polymerase (RNA) II (DNA directed) polypeptide K, 
7.0kDa 0.010 8q22.2 

KCNJ3 
potassium inwardly-rectifying channel, subfamily J, 
member 3 0.010 2q24.1 

SYNJ1 synaptojanin 1 0.010 21q22.2 
RIT2 Ras-like without CAAX 2 0.010 18q12.3 
ARPP-19 cyclic AMP phosphoprotein, 19 kD 0.011 15q21.2 
MRP63 mitochondrial ribosomal protein 63 0.011  

TIMM17A 
translocase of inner mitochondrial membrane 17 
homolog A (yeast) 0.011 1q32.1 
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RY1 putative nucleic acid binding protein RY-1 0.012 2p13.3 

ATP2A2 
ATPase, Ca++ transporting, cardiac muscle, slow twitch 
2 0.012 12q23-q24.1 

TPI1 triosephosphate isomerase 1 0.012 12p13 
HSPA9B heat shock 70kDa protein 9B (mortalin-2) 0.012 5q31.1 
ZNF207 zinc finger protein 207 0.012 17q11.2 

EIF2S1 
eukaryotic translation initiation factor 2, subunit 1 alpha, 
35kDa 0.012 14q23.3 

LDOC1 leucine zipper, down-regulated in cancer 1 0.013 Xq27 

ATP5C1 
ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 0.013 10p15.1 

BACH brain acyl-CoA hydrolase 0.013 1p36.31-p36.11 
MOCS2 molybdenum cofactor synthesis 2 0.013 5q11 
ARF3 ADP-ribosylation factor 3 /// ADP-ribosylation factor 3 0.013 12q13 

TDE1 
tumor differentially expressed 1 /// tumor differentially 
expressed 1 0.013 20q13.1-13.3 

CRI1 CREBBP/EP300 inhibitor 1 0.013 15q21.1-q21.2 

PSME3 
proteasome (prosome, macropain) activator subunit 3 
(PA28 gamma; Ki) 0.013 17q21 

PPP2R5C 
protein phosphatase 2, regulatory subunit B (B56), 
gamma isoform 0.014 14q32 

SNX10 sorting nexin 10 0.014 7p15.2 

PSMC2 
proteasome (prosome, macropain) 26S subunit, ATPase, 
2 0.014 7q22.1-q22.3 

GNAS GNAS complex locus 0.015 20q13.2-q13.3 
MTMR1 myotubularin related protein 1 0.015 Xq28 
IARS isoleucine-tRNA synthetase 0.015 9q21 
RGS4 regulator of G-protein signalling 4 0.015 1q23.3 

PTPRN2 
protein tyrosine phosphatase, receptor type, N 
polypeptide 2 0.015 7q36 

VDAC3 voltage-dependent anion channel 3 0.016 8p11.2 
MATR3 matrin 3 0.016 5q31.2 
SH3GLB2 SH3-domain GRB2-like endophilin B2 0.016 9q34 
GPI glucose phosphate isomerase 0.016 19q13.1 

SFPQ 
splicing factor proline/glutamine rich (polypyrimidine tract 
binding protein associated) 0.017 1p34.3 

SUPT4H1 suppressor of Ty 4 homolog 1 (S. cerevisiae) 0.017 17q21-q23 
PREP prolyl endopeptidase 0.017 6q22 
PAM peptidylglycine alpha-amidating monooxygenase 0.018 5q14-q21 

ATP5L 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit g 0.018 11q23.3 

TMEFF1 
transmembrane protein with EGF-like and two follistatin-
like domains 1 0.018 9q31 

CAPNS1 calpain, small subunit 1 /// calpain, small subunit 1 0.018 19q13.12 
RAP1GDS1 RAP1, GTP-GDP dissociation stimulator 1 0.018 4q23-q25 

ELMO1 
engulfment and cell motility 1 (ced-12 homolog, C. 
elegans) 0.018 7p14.1 

BSCL2 Bernardinelli-Seip congenital lipodystrophy 2 (seipin) 0.018 11q12-q13.5 
NELL1 NEL-like 1 (chicken) 0.018 11p15.2-p15.1 

ATP8A2 
ATPase, aminophospholipid transporter-like, Class I, 
type 8A, member 2 0.018 13q12-13 

SRPR signal recognition particle receptor ('docking protein') 0.018 11q24.3 
PIGK phosphatidylinositol glycan, class K 0.019 1p31.1 
FKBP1B FK506 binding protein 1B, 12.6 kDa 0.019 2p23.3 
RPL5 ribosomal protein L5 0.019 1p22.1 
SCG3 secretogranin III 0.019 15q21 
PLCB1 phospholipase C, beta 1 (phosphoinositide-specific) 0.019 20p12 
GC20 translation factor sui1 homolog 0.020 3p22.1 
VAMP1 vesicle-associated membrane protein 1 (synaptobrevin 1) 0.020 12p 

YWHAZ 
Tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta polypeptide 0.021 8q23.1 

BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 0.021 10q26.3 
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SSB Sjogren syndrome antigen B (autoantigen La) 0.021 2q31.1 
VARS2 valyl-tRNA synthetase 2 0.022 6p21.3 
CKMT1 creatine kinase, mitochondrial 1 (ubiquitous) 0.022 15q15 
CCNA1 cyclin A1 0.022 13q12.3-q13 

GNAO1 
guanine nucleotide binding protein (G protein), alpha 
activating activity polypeptide O 0.022 16q13 

UBE2N 
ubiquitin-conjugating enzyme E2N (UBC13 homolog, 
yeast) 0.023 12q22 

B4GALT6 
UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, 
polypeptide 6 0.023 18q11 

RAB7 RAB7, member RAS oncogene family 0.023 3q21.3 
MDH2 malate dehydrogenase 2, NAD (mitochondrial) 0.024 7p12.3-q11.2 
CSE1L CSE1 chromosome segregation 1-like (yeast) 0.024 20q13 

TAF9 
TAF9 RNA polymerase II, TATA box binding protein 
(TBP)-associated factor, 32kDa 0.024 5q11.2-q13.1 

PPP3CA 
protein phosphatase 3 (formerly 2B), catalytic subunit, 
alpha isoform (calcineurin A alpha) 0.024 4q21-q24 

UBC ubiquitin C 0.024 12q24.3 
ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 0.025 8p22-p21.3 

APP 
amyloid beta (A4) precursor protein (protease nexin-II, 
Alzheimer disease) 0.025 21q21.2, 21q21.3 

PSMB3 proteasome (prosome, macropain) subunit, beta type, 3 0.025 17q12 
CUL2 cullin 2 0.025 10p11.21 
RPL15 ribosomal protein L15 0.026 3p24.2 
GPAA1 GPAA1P anchor attachment protein 1 homolog (yeast) 0.026 8q24.3 
PEX7 peroxisomal biogenesis factor 7 0.027 6q21-q22.2 

NDUFA4 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 
4, 9kDa 0.027 7p21.3 

QP-C low molecular mass ubiquinone-binding protein (9.5kD) 0.027 5q31.1 
FBXL2 F-box and leucine-rich repeat protein 2 0.027 3p23 
RECQL RecQ protein-like (DNA helicase Q1-like) 0.027 12p12 
KIAA0436 putative prolyl oligopeptidase 0.027 2p22.1 
RANBP9 RAN binding protein 9 0.027 6p23 
NRXN1 neurexin 1 0.028 2p16.3 
IDS iduronate 2-sulfatase (Hunter syndrome) 0.029 Xq28 
GRIA3 glutamate receptor, ionotrophic, AMPA 3 0.029 Xq25-q26 
SYNGR1 synaptogyrin 1 0.029 22q13.1 
ATP2B2 ATPase, Ca++ transporting, plasma membrane 2 0.029 3p25.3 

ATP5O 

ATP synthase, H+ transporting, mitochondrial F1 
complex, O subunit (oligomycin sensitivity conferring 
protein) 0.030 

21q22.1-q22.2, 
21q22.11 

OPA1 optic atrophy 1 (autosomal dominant) 0.030 
3q28-q29, 3q28-
q29 

UBE2B 
ubiquitin-conjugating enzyme E2B (RAD6 homolog) /// 
ubiquitin-conjugating enzyme E2B (RAD6 homolog) 0.030 5q23-q31 

SCN2A2 sodium channel, voltage-gated, type II, alpha 2 0.030 2q23-q24 
SH3BGRL SH3 domain binding glutamic acid-rich protein like 0.031 Xq13.3 
KPNB1 karyopherin (importin) beta 1 0.031 17q21.32 
KATNB1 katanin p80 (WD repeat containing) subunit B 1 0.032 16q13 
ESD esterase D/formylglutathione hydrolase 0.033 13q14.1-q14.2 
GABRB3 gamma-aminobutyric acid (GABA) A receptor, beta 3 0.033 15q11.2-q12 
HSD17B12 hydroxysteroid (17-beta) dehydrogenase 12 0.034 11p11.2 
SYN2 synapsin II 0.034 3p25 

TOMM70A 
translocase of outer mitochondrial membrane 70 
homolog A (yeast) 0.034 3q12.2 

OLFM1 olfactomedin 1 0.036 9q34.3 
COX7A2 cytochrome c oxidase subunit VIIa polypeptide 2 (liver) 0.036 6q12 
STAT1 signal transducer and activator of transcription 1, 91kDa 0.037 2q32.2 
PINK1 PTEN induced putative kinase 1 0.037 1p36 
H2AFY H2A histone family, member Y 0.037 5q31.3-q32 
RTN4 reticulon 4 0.037 2p16.3 
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ORC5L origin recognition complex, subunit 5-like (yeast) 0.038 7q22.1 
OSBPL10 oxysterol binding protein-like 10 0.038 3p22.3 
SRP72 signal recognition particle 72kDa 0.040 4q11 
HMGN4 high mobility group nucleosomal binding domain 4 0.041 6p21.3 

MTHFD1 

methylenetetrahydrofolate dehydrogenase (NADP+ 
dependent) 1, methenyltetrahydrofolate cyclohydrolase, 
formyltetrahydrofolate synthetase 0.042 14q24 

PPP3CB 
protein phosphatase 3 (formerly 2B), catalytic subunit, 
beta isoform (calcineurin A beta) 0.042 10q21-q22 

PSMD1 
proteasome (prosome, macropain) 26S subunit, non-
ATPase, 1 0.042 2q37.1 

PPP1R11 protein phosphatase 1, regulatory (inhibitor) subunit 11 0.044 6p21.3 
SNCG synuclein, gamma (breast cancer-specific protein 1) 0.045 10q23.2-q23.3 
DNAJC8 DnaJ (Hsp40) homolog, subfamily C, member 8 0.045 1p35.3 
CBARA1 calcium binding atopy-related autoantigen 1 0.045 10q22.1 
YME1L1 YME1-like 1 (S. cerevisiae) 0.045 10p14 

PPP3R1 
protein phosphatase 3 (formerly 2B), regulatory subunit 
B, 19kDa, alpha isoform (calcineurin B, type I) 0.047 2p15 

STXBP1 syntaxin binding protein 1 0.047 9q34.1 
STOML1 stomatin (EPB72)-like 1 0.047 15q24-q25 
BBP beta-amyloid binding protein precursor 0.049 1p31.3 

NDUFB4 
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 
4, 15kDa 0.049 3q13.33 

SYT5 synaptotagmin V 0.049 19q, 11p 
HSPA8 heat shock 70kDa protein 8 0.049 11q24.1 
PMPCB peptidase (mitochondrial processing) beta 0.050 7q22-q32 

GNB1 
guanine nucleotide binding protein (G protein), beta 
polypeptide 1 0.050 1p36.33 

TUBB tubulin, beta polypeptide 0.050 6p21.33 
PIK4CA phosphatidylinositol 4-kinase, catalytic, alpha polypeptide 0.050 22q11.21 

UBE2G1 
ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, C. 
elegans) 0.050 1q42, 17p13.2 

LXN latexin 0.052 3q25.32 
ARL7 ADP-ribosylation factor-like 7 0.053 2q37.1 
VAMP2 vesicle-associated membrane protein 2 (synaptobrevin 2) 0.054 17p13.1 
TUBB2 tubulin, beta, 2 0.054 6p25 
RTN1 reticulon 1 0.054 14q23.1 
RAB6A RAB6A, member RAS oncogene family 0.055 11q13.3 
PFDN4 prefoldin 4 0.056 20q13.2 
MYT1L myelin transcription factor 1-like 0.057 2p25.3 
SYNGR3 synaptogyrin 3 0.058 16p13 
PAI-RBP1 PAI-1 mRNA-binding protein 0.058 1p31-p22 
STMN2 stathmin-like 2 0.058 8q21.13 
NEF3 neurofilament 3 (150kDa medium) 0.059 8p21 
PDE4DIP phosphodiesterase 4D interacting protein (myomegalin) 0.060 1q12 
SCAMP1 secretory carrier membrane protein 1 0.061 5q13.3-q14.1 
TRIM32 tripartite motif-containing 32 0.062 9q33.1 
VSNL1 visinin-like 1 0.062 2p24.3 
TCTE1L t-complex-associated-testis-expressed 1-like 0.063 Xp21 

GNAL 
guanine nucleotide binding protein (G protein), alpha 
activating activity polypeptide, olfactory type 0.063 18p11.22-p11.21 

IDH3B isocitrate dehydrogenase 3 (NAD+) beta 0.065 20p13 

GAD2 
glutamate decarboxylase 2 (pancreatic islets and brain, 
65kDa) 0.065 10p11.23 

STK24 serine/threonine kinase 24 (STE20 homolog, yeast) 0.066 13q31.2-q32.3 
TTC1 tetratricopeptide repeat domain 1 0.069 5q32-q33.2 

COX11 

COX11 homolog, cytochrome c oxidase assembly 
protein (yeast) /// COX11 homolog, cytochrome c oxidase 
assembly protein (yeast) 0.069 17q22 

ARPC2 actin related protein 2/3 complex, subunit 2, 34kDa 0.071 2q36.1 
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TA-LRRP T-cell activation leucine repeat-rich protein 0.072 1p22.2 
CACNB2 calcium channel, voltage-dependent, beta 2 subunit 0.074 10p12 
TBCA tubulin-specific chaperone a 0.074 5q14.1 
CDC27 cell division cycle 27 0.078 17q12-17q23.2 
SNRPA1 small nuclear ribonucleoprotein polypeptide A' 0.078 15q26.3 

R3HDM 
R3H domain (binds single-stranded nucleic acids) 
containing 0.082 2q21.3 

ELAVL4 
ELAV (embryonic lethal, abnormal vision, Drosophila)-
like 4 (Hu antigen D) 0.088 1p34 

DUSP6 dual specificity phosphatase 6 0.089 12q22-q23 
ALDOC aldolase C, fructose-bisphosphate 0.091 17cen-q12 
TMEM4 transmembrane protein 4 0.095 12q15 

SLC25A12 
solute carrier family 25 (mitochondrial carrier, Aralar), 
member 12 0.095 2q24 

RSU1 Ras suppressor protein 1 0.097 10p13 
CDC5L CDC5 cell division cycle 5-like (S. pombe) 0.098 6p21 
ATP6V1F ATPase, H+ transporting, lysosomal 14kDa, V1 subunit F 0.099 7q32 
RAB11A RAB11A, member RAS oncogene family 0.100 15q21.3-q22.31 

a Differentially expressed transcripts are q < 0.1 from ANOVA 
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Supplemental Table 5.  Transcripts differentially expressed in NFT formation that are 
also found in Dunckley et al.a

Upregulated in high Braak    

Probe Set ID Symbol Gene 
q-
value 

p-value 
Dunckley, 
et al 

232286_at LAF4 Lymphoid nuclear protein related to AF4 0.0833 0.0335 

201502_s_at NFKBIA 
nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha 0.0879 0.0731 

235305_s_at FLJ10948 Hypothetical protein FLJ10948 0.0907 0.0469 
239892_at RARS Arginyl-tRNA synthetase 0.0833 0.0867 
233626_at NRP1 Neuropilin 1 0.0833 0.0796 
222186_at ZA20D3 Zinc finger, A20 domain containing 3 0.0833 0.0263 
215109_at KIAA0492 KIAA0492 protein 0.0833 0.0928 
214656_x_at MYO1C myosin IC 0.0833 0.0757 
1554963_at   0.0833 0.0926 
228214_at   0.0947 0.0542 
     
Downregulated in high Braak    

Probe Set ID Symbol Gene 
q-
value 

p-value 
Dunckley, 
et al 

203415_at PDCD6 programmed cell death 6 0.0833 0.0252 

202854_at HPRT1 
hypoxanthine phosphoribosyltransferase 1 (Lesch-
Nyhan syndrome) 0.0833 0.0091 

202930_s_at SUCLA2 succinate-CoA ligase, ADP-forming, beta subunit 0.0833 0.0407 
204905_s_at EEF1E1 eukaryotic translation elongation factor 1 epsilon 1 0.0833 0.0756 
207235_s_at GRM5 glutamate receptor, metabotropic 5 0.0833 0.0229 
241998_at  Similar to RIKEN cDNA D630023F18 0.0833 0.0094 
230839_at HRMT1L4 HMT1 hnRNP methyltransferase-like 4 (S. cerevisiae) 0.0833 0.0418 
221805_at NEFL neurofilament, light polypeptide 68kDa 0.0833 0.0022 
228062_at NAP1L5 nucleosome assembly protein 1-like 5 0.0833 0.0144 
203594_at RTCD1 RNA terminal phosphate cyclase domain 1 0.0833 0.039 
203830_at NJMU-R1 protein kinase Njmu-R1 0.0833 0.0961 

205123_s_at TMEFF1 
transmembrane protein with EGF-like and two 
follistatin-like domains 1 0.0833 0.0358 

232305_at HMGCLL1 
3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase-
like 1 0.0833 0.0946 

236738_at LOC401097 Similar to LOC166075 0.0833 0.0421 
206339_at CART cocaine- and amphetamine-regulated transcript 0.0833 0.0735 

209303_at NDUFS4 
NADH dehydrogenase (ubiquinone) Fe-S protein 4, 
18kDa (NADH-coenzyme Q reductase) 0.0838 0.039 

209096_at UBE2V2 ubiquitin-conjugating enzyme E2 variant 2 0.0844 0.077 
222230_s_at ACTR10 actin-related protein 10 homolog (S. cerevisiae) 0.0879 0.0139 
233135_at  Homo sapiens, clone IMAGE:5199801, mRNA 0.0879 0.0505 
218545_at FLJ11088 GGA binding partner 0.0891 0.0631 
201823_s_at RNF14 ring finger protein 14 0.0891 0.0753 
229506_at  CDNA clone IMAGE:5263177, partial cds 0.0900 0.0259 
223503_at DKFZP566N034 Hypothetical protein DKFZp566N034 0.0956 0.0439 
204807_at TMEM5 transmembrane protein 5 0.0962 0.0359 
227669_at DKFZP564B167 DKFZP564B167 protein 0.0962 0.043 
212434_at GRPEL1 GrpE-like 1, mitochondrial (E. coli) 0.0974 0.0773 
212551_at CAP2 CAP, adenylate cyclase-associated protein, 2 (yeast) 0.0974 0.0224 

213149_at DLAT 
dihydrolipoamide S-acetyltransferase (E2 component 
of pyruvate dehydrogenase complex) 0.0995 0.0069 

231102_at CROT carnitine O-octanoyltransferase 0.0996 0.0274 
a Differentially expressed transcripts are q < 0.1 from ANOVA 
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Chapter III.  Impact of Genotype call Rate on Complex Trait Studies:  Low-Level 

Analysis of Genotyping Algorithms on the Affymetrix 100K Gene Mapping set. 

Introduction 

 Advances in the ability to identify Human DNA sequence variation across the 

genome have led to improved understanding of the relationship of genetic variation to 

human complex phenotypes and have highlighted the need for the proper tools to identify 

all types of DNA variation accurately and precisely with high sensitivity [2, 5, 7, 121].  

Common genetic variants influence gene expression levels in individuals [122-124] and 

in some instances are involved in susceptibility to disease [3, 30, 121, 125].  In addition 

to variation in expression, variation at the sequence level may be due to polymorphisms 

in copy number variable regions.   Genome wide techniques for studying genetic 

association to disease rely on the extent of linkage disequilibrium (LD) between the SNP 

marker tested and the genetic alteration involved in susceptibility [4-6].  The highly 

parallel nature of these technologies demands extremely accurate and complete genotype 

calling algorithms.  It is important to assess the impact of the genotype call rate on 

complex trait studies.  Therefore, we investigated the low-level performance of the 

Affymetrix GeneChip 100K mapping set algorithm [34] to determine the sensitivity of 

the algorithm to noise, chip features, experimental variation and sample characteristics.  

We also compared the performance of the standard Affymetrix Dynamic Modeling 

algorithm with the recently released BRLMM algorithm Affymetrix instituted for the 

genotyping the 500K mapping set 

(http://www.affymetrix.com/support/technical/whitepapers/brlmm_whitepaper.pdf,  

http://www.broad.mit.edu/gen_analysis/genotyping/brlmm_affy_ncrr.html)   
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2.  Methods:  

2A.  DNA and Hybridization:   

 DNA from subjects with a clinical diagnosis of no dementia within a year of death 

(N= 30) or Probable Alzheimer’s disease (N= 25) [65]was used in this study.  All 

subjects were participants in studies performed by the Layton Aging and Alzheimer ’s 

disease Center, Portland, Oregon and included the 14 subjects from the previous gene 

expression profiling study (chapter II)  DNA was isolated from either whole blood or 

postmortem human frontal cortex brain tissue.  DNA from whole blood was isolated 

using the QIAmp DNA blood kit (Qiagen, Valencia, CA).  For deceased subjects, 

approximately 100 mg of brain tissue (previously frozen at -80oC) was processed for 

genomic DNA using the Wizard Genomic DNA purification Kit (Promega, Madison WI) 

following manufacture’s instructions.   

Isolated genomic DNA from each subject was digested and labeled following 

manufacturer’s instructions (Affymetrix Inc., Santa Clara, CA). Briefly, 250ng of 

genomic DNA was digested with a restriction enzyme (XbaI or HindIII), ligated to an 

appropriate adapter for each enzyme, and amplified by PCR using a single primer.  The 

PCR products were then digested with DNaseI, labeled and hybridized separately to the 

Affymetrix GeneChip Mapping 100K array chips. The arrays were scanned and 

genotypes called by the DM and BRLMM algorithms. These arrays contain probe sets to 

interrogate 58960 (XbaI) and 58974 (HindIII) SNPs across the entire human genome.  

Sample labeling and array hybridizations and processing were performed in the 

Affymetrix Microarray Core, Gene Microarray Shared Resource, Oregon Health & 

Science University. 
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2B.  Genotyping Algorithms 

2.B1.  Dynamic Modeling Algorithm (DM) 

 The sensitivity of the DM algorithm was assessed through simulation and with 

original data.  For simulation studies, each step of the DM algorithm as described [34] 

was implemented in the R v2.3.1 system for statistical computation [126].  Packages 

included in the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/) 

were utilized for specific analyses as described below. 

 Custom scripts were written to follow the steps of the DM algorithm and create 

summary tables for each simulation condition at each step of the algorithm.  Data 

obtained from DNA hybridized SNP chips were used to determine the hybridization 

intensity distribution.  All SNPs for each called genotype were used to fit the genotypes 

separately to distributions utilizing the R package MASS v4 function fitdistr[127]).  The 

lognormal distribution was chosen for all simulations.   

 Variables tested in the simulations included: overall chip intensity, background 

intensity, feature pixel number, and feature pixel intensity standard deviation (SD) (Table 

1).  Custom scripts were written to simulate 10 probe quartets for each overall chip 

intensity (high, medium, low) and background intensity (high, low).  All combinations of 

these data sets (six in total) were used separately to simulate different pixel numbers and 

different SD so that the only difference among data sets was the variable to be tested. A 

total of 100 SNPs were simulated for each condition. 

 The final step in the DM genotyping algorithm is determining the SNP call based 

on the lowest p-value from the Wilcoxon signed rank test.  In addition, a custom  

summary score was created and compared to the DM summarization.  The summary 
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score of a probe quartet was the total count for each genotype model among the 10 SNP 

quartets for each SNP.  The genotype model with the highest summary score was labeled 

the genotype call for that SNP [34]. 

 In order to test the sensitivity of the DM algorithm to sample characteristics and 

chip features, the recommended settings of DM in the GType operating system 

(Affymetrix) were used to genotype DNA samples hybridized to both HindIII and XbaI 

chips.  

2.B2.  BRLMM: 

 The same DNA samples were also genotyped using the BRLMM algorithm as 

recommended for the Affymetrix GeneChip 500K mapping set 

(http://www.affymetrix.com/support/technical/whitepapers/brlmm_whitepaper.pdf) with 

the following modifications:  XbaI and HindIII digested DNA samples were genotyped 

by the DM algorithm (Affymetrix GType software) at a sensitivity threshold of 0.25.  

Samples with DM call rates > 80% were combined into one data set per chip type and the 

BRLMM algorithm applied to each data set.  All further analyses were performed on the 

DM genotyped and the BRLMM genotyped samples. 

2.C.  SNP Genotype Call characteristics: 

 The DM algorithm calls as implemented in R were compared to the simulated 

SNP genotype calls and the simulated SNP characteristics to determine the sensitivity of 

the DM algorithm to the various conditions.  In order to assess the effectiveness of the 

BRLMM algorithm, the performance on the biological data set of the BRLMM algorithm 

was compared to the DM performance relative to chip features, experimental conditions 

and sample characteristics. 
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 Characteristics of the SNPs per sample were tested for NoCalls (missing data) 

across samples and across SNPs using hierarchical cluster analysis (Hmisc v3.0  package 

for R, available on the CRAN and [128]) in which the fraction of NoCalls in common 

between any two SNPs was used as the similarity measure.  Correlations among 

continuous variables were also investigated through hierarchical cluster analysis using [1- 

(correlation among all samples)] as the distance metric.  

 To determine if the distribution of NoCalls was dependent on neighboring SNPs, 

a Chi-square test of the number of NoCalls across all chromosomes was performed.  The 

number of samples with NoCalls was dichotomized into two extreme groups of SNPs 

with <5 samples with NoCall and SNPs with >10 samples with NoCalls and the patterns 

across all chromosomes analyzed by Chi-square analysis. 

 SNPs were tested for deviation from Hardy-Weinberg equilibrium expectation 

(Genetics for R , [129]) using the exact test [129].  Samples were examined within the 

control and AD phenotypes and the false discovery rate (FDR, [130]) was calculated to 

correct for multiple testing. 

2.D.  PCR Fragment length 

 DNA fragment size information for every SNP was obtained from the Mapping 

100K annotation file 

(http://www.affymetrix.com/support/technical/annotationfilesmain.affx).  SNPs were 

binned by DNA fragment length and analyzed for a greater number of NoCalls across 

samples per SNP than would be expected by chance using chi-square analysis.   
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2.E.  Concordance of underperforming SNPs with SNPs involved in copy number 

variation 

 Copy number estimation of genomic regions was performed using the Copy 

Number Analyser for GeneChip (CNAG v2) [131].  A region of genomic copy number 

change is determined relative to a chosen reference array set.   Copy number regions are 

estimated for each array individually in comparison to non-demented samples (see 

chapter 3).  Briefly, CNAG selects the maximum number of sample references such that 

the standard deviation of intensity values across all SNPs on chip is minimized.  

Therefore, from the data set of all non-demented subjects, each array for an AD subject is 

matched with different control arrays.   

 Pearson's Chi-Square test was used to examine the impact of SNPs with possible 

genotyping errors on copy number estimation.  As a surrogate for genotyping errors, 

NoCall SNPs were used.  SNPs not called by the DM and BRLMM algorithms were 

compared to regions of copy number change across the genome under the null hypothesis 

that there is no association between NoCall SNPs and CNV regions.   The alternative 

hypothesis is that there are more differences in the numbers of NoCall SNPs located in 

CNV regions than would be expected by chance.    

3.  Results:  

3.A.  DM Model Simulations 

 A summary of all simulations shows that the performance of the DM algorithm is 

most affected by the overall chip intensity and the background intensity (Table 2).  High 

overall chip intensity and a low background were the conditions under which the DM 

algorithm performs best (maximum concordance rate of 84%).  Low overall intensity and 
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high background had the highest rates of SNPs that could not be discriminated by the DM 

algorithm (maximum concordance rate of 15%).  Both homozygous and heterozygous 

simulated SNPs were affected by the same conditions.  Calls for heterozygous SNPs were 

more affected (maximum concordance rates of 72 vs. 84 for the homozygous SNPs). 

 Because the individual probe quartets within a SNP often showed the correct call 

even for low intensity chips (21-48%), a summary score of probe quartet genotype calls 

was created. The DM algorithm genotype calls were compared to a genotype call based 

on a summary score where the genotype model most often called among the 10 SNP 

quartets is labeled the genotype (Table 3).  The DM call is based on p-values and so only 

SNPs with significant p-values are given a genotype call.  Both homozygous and 

heterozygous simulated SNPs were called correctly more often by the summary score 

than the DM algorithm.  Calls for SNPs simulated with high and medium intensity were 

increased to 85-100% call rates (17-66% improvement).   Calls for low intensity chips 

were also improved 69 - 72% but the overall call rates were lower (78 - 87 %).  High 

background affected the SNP calls to a greater extent across all chip intensities reducing 

the call rates for both DM and the summary score by 6-50%.  Low intensity chips have 

the greatest impact on SNP call rates in which only 15% of the homozygous SNPs could 

be genotyped by the DM algorithm.  Heterozygous SNPs could not be called correctly by 

the DM algorithm on low intensity chips.  In cases where there were errors in calls, probe 

quartets within heterozygous simulated SNPs more often called a homozygous genotype 

than a null model (Table 3B).  At medium chip intensity/high background and for low 

chip intensities, probe quartets called a homozygous model more often (49-78% vs. 12-

48% for correctly called heterozygous). 
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 Although the summary score increased the number of correctly called genotypes, 

it also increased the false positive call rate (Figure 1).  The summary score calls 

genotypes irrespective of model p-value.  A comparison of the SNP calls for the 

summary score versus p-values and conditioned by DM call shows that all DM 

genotyped calls are genotyped correctly by the summary score.  DM NoCalls are most 

often called correctly by the summary score for both homozygous and heterozygous 

SNPs (92% and 88%, respectively).  However, the summary score has a false positive 

rate of 21% across all simulations (Figure 1 and Table 3). 

3.B.  Comparison of DM and BRLMM genotyping algorithms 

 Performance based on restriction enzyme digest was examined in genotype calls 

for a sample of 55 XbaI and HindIII chips (DM threshold 0.25).  XbaI chips had lower 

call rates overall (93.59%, CI(92.82, 94.36) vs. 97.73%, CI(97.17, 98.28)  for HindIII and 

higher variability (SD=3.22 vs. 2.12) (Table 4, Figure 2).   

XbaI and HindIII chips (DM call rate of > 80%) were examined separately with 

the BRLMM algorithm.   The call rates of both chip types were increased with the 

BRLMM algorithm (XbaI= 98.53%, 95% CI (98.27, 98.79) and HindIII = 99.26% , 95% 

CI (98.91, 99.61)) and the variability was reduced (SD =1.01 and 1.34 for XbaI and 

HindIII, respectively).  XbaI hybridized chips have a lower intensity than HindIII chips 

(10.71, 95% CI (10.63, 10.79) vs. 10.96, 95% CI (10.89, 11.04))  (Table 4, Figure 2).  

 Although the BRLMM algorithm is more efficient at calling genotypes, the XbaI 

hybridizations are still more variable than the HindIII hybridizations.  The XbaI chips 

also have lower overall hybridization intensity which highlights the relationship between 

low intensity and higher variance.   
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3.C.  Effect of sample characteristics on call rates. 

 Sample characteristics were summarized by sample (Table 5).  Overall chip 

intensity had the most effect on the call rate (Figure 3).  Low chip intensity was related to 

lower call rates in both XbaI and HindIII samples.  Variability in call rates and chip 

intensity was seen for chips hybridized on the same day (Figure 3a and 3b).  Higher 

variability in XbaI chips call rates is seen within hybridization dates (Figure 3b).   

 Sample source and phenotype were examined and showed no effect on call rate 

(Figure 4).  Overall chip intensity was correlated with the call rate while the PCR yield 

was more correlated with the discordance between the DM and BRLMM algorithms 

(Figure5). 

3.C.1.  Characteristics of the NoCalls across samples 

 Characteristics of the NoCall data were examined by number of SNPs with 

NoCalls per sample (Figure 6) and by correlation across samples (Figure 7).  Both the 

DM and BRLMM algorithms showed the higher variability of the NoCalls among the 

XbaI samples (Figure 6), although the BRLMM algorithm consistently reduced the 

number of NoCalls.  The HindIII chips had the lowest NoCall rate with the BRLMM 

algorithm (50 out of 55 chips were less than 1000 NoCalls).   

 The patterns of NoCall SNPs were examined by clustering across all samples 

using only NoCall data (Figure 7).  The similarity measure for clustering was the fraction 

of NoCalls in common between any two samples.  The HindIII samples that have the 

highest NoCall rate cluster together while the HindIII samples with lower NoCalls do not 

show a pattern of similar NoCall SNPs when examined across all samples when 

genotyped with the BRLMM algorithm.  XbaI digested samples show a pattern of 
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similarity based on both numbers of NoCalls and similarity of NoCalls per SNP across 

samples for both the DM and BRLMM algorithms (Figure 7).  We tested whether the 

pattern of NoCalls was related to phenotype by conditioning on case/controls status in the 

DM genotyped samples (Figure 8).  Similar NoCall patterns were seen for controls and 

AD cases in that samples were related to NoCalls by both number of NoCall SNPs and 

concordance of NoCall SNPs. 

 All calls in each sample were compared between the DM and BRLMM 

genotyping algorithms (Table 6).   Discordant calls ranged between 526 and 11,986 and 

were correlated to the call rates; higher call rates led to higher concordant calls.  

Genotyping calls can be discordant due to  either a difference in call between the two 

algorithms or a call and a NoCall.  The difference in call rates between the two 

algorithms was generally due to the BRLMM algorithm’s ability to call SNPs that the 

DM algorithm did not.  This can be seen in the difference between total discordant calls 

and the proportion of discordant calls that are genotyped by both algorithms.  For 

example, of 4426 discordant calls for sample 464, 4243 SNPs were not called by one 

algorithm and called by the other.  Only 183 were genotyped by both algorithms.  The 

proportion of SNPs that were discordant and called by both algorithms ranged from 

0.024-0.067 with the lowest call rates having the highest non-NoCall discordant rate 

(0.067 discordance and 80% call rate).   

Possible pairwise combinations of discordant calls between the two algorithms 

are:  

1)  call/ NoCall,   

2) homozygous / heterozygous     
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3)  homozygous AA / homozygous BB.   

Of the discordant calls genotyped by both algorithms not NoCall, all were due to 

one algorithm calling a heterozygote and the other a homozygote (Table 6).  For example, 

of the 183 discordant but not NoCall calls for sample 464, all of these are called 

heterozygote by one algorithm and homozygote by the other, resulting in 4.1% of the 

discordant SNPs (0.3% of the total number of SNPs on the Chip) for this sample 

discrepant for genotype. 

 The distributions of NoCalls across all samples per SNP were determined (Figure 

9).  Both chips showed most SNPs have only a few number of samples with NoCalls.  

However, there are SNPs that are not genotyped across a number of samples.  It is also 

noted that XbaI digested samples show the most variability.   

3.C2.  Effect of chromosome position and DNA fragment length on NoCalls 

 Although most SNPs have only a few samples with NoCalls, some SNPs show a 

tendency for NoCalls across multiple samples and it is important to know whether the 

SNPs with many samples of NoCall are located near one another.  Therefore, we 

investigated whether the neighboring SNPs had an effect on the NoCall rate. 

Based on the XbaI chip and genotypes from the DM algorithm, there is a 

significant difference between SNPs with low numbers of NoCall samples (<5) and those 

with a higher number of samples (>10) not called (p-value = 0.001, Table 7).  However, 

this is due to fewer NoCalls than expected for all but chromosomes 5 and 6.  

Chromosome 6 shows the highest number of NoCalls across all samples with the DM 

algorithm on XbaI chips.  This chromosome does not show a difference with the 

BRLMM algorithm (data not shown).  Chi-square analysis of XbaI DM NoCall SNPs 
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binned across chromosome 6 showed no significant difference between low and high 

numbers of samples with NoCall SNPs (p-value = 0.3080).  

We were also interested in the structure of the DNA fragments used to PCR 

amplify the fragments for hybridization.  Length of DNA fragment has been shown to 

increase variability in some studies [131, 132, 133, 2005 #157].  We tested whether the 

number of SNPs with NoCalls across multiple samples was related to PCR fragment 

length by grouping the SNPs into bins depending on the size of the XbaI restriction 

enzyme fragment length on which they are located.  The XbaI digested DNA fragments 

ranged for 198 to 2120 bp and were binned into groups of about 250 bp apart (Table 8).  

Chi-square analysis showed that as fragment length increased, the number of SNPs with 

NoCalls across >10 samples was greater than expected by chance.  The BRLMM 

algorithm showed the same result, although many fewer SNPs were affected by the 

fragment length bias. 

Because of the difficulty of the DM to distinguish between some of the 

heterozygote and homozygote calls, we next tested if the fragment length was related to 

genotype calls.  Four individual samples of various call rates and chip intensities were 

tested by chi-square analysis (Table 9).  For each sample, as the fragment increased there 

was an increase in the number of NoCalls observed and a corresponding decrease in the 

number of heterozygote calls above what would be expected by chance (Table 9A).  The 

BRLMM algorithm was able to distinguish heterozygotes except for the largest fragment 

length for sample 1433B3 which had the lowest call rate (92.81%) and the lowest overall 

chip intensity (10.34).  
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3.C3.  Characteristics of the SNP calls across all samples 

 The proportions of the calls determined by both algorithms are similar for the 

homozygous genotypes (Table 10).  However, the DM algorithm has more difficulty 

calling heterozygotes.  The BRLMM algorithm “rescues” the heterozygote calls as shown 

by the increase in AB call rate with the BRLMM algorithm.  This results in a decrease in 

the number of SNPs that are invariant across all samples (Table 10).  

 One quality control measure for the whole genome association studies using high 

density SNPs is to remove SNPs that are out of Hardy-Weinberg equilibrium (HWE) 

under the assumption that there are genotyping errors in one of more samples [134, 135].  

HWE was calculated for all samples as well as AD and controls separately (Table12).  

Control samples had a higher number of SNPs out of HWE (80-232) than AD cases (42-

109) after correcting for multiple testing (Table 11A).  The number of SNPs significantly 

out of HWE decreased 1.2 - 4.3% when SNPs for which >1  or 2 samples (Table 11B) 

had a NoCall were removed from the analysis.   

Because of the relationship between the NoCalls and the fragment length, we 

tested whether the SNPs significantly out of HWE were more likely to be those on longer 

fragment lengths.  A chi-square analysis showed that an excess of SNPs significantly out 

of HWE (p-value <0.05) were observed on larger fragment lengths (Table 12).  This was 

seen in all SNPs out of HWE and uncorrected for multiple testing and also in controls 

(Table 12A and B).  AD cases did not show this bias (Table 12C).   Fragment length and 

intensity values were significantly associated for four individual samples of various 

overall chip intensities (10.34 - 11.99) and DM call rates (82.92 – 97.39) (Table 13).   In 

all four samples, intensity values per SNP decreased as the fragment length increased.  
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Smaller fragments (<1160 bp) tended to have higher than expected intensity values 

(>2975) and larger fragments (>1400) tended toward the lower intensities (<2417).   

The relationship between NoCalls and SNPs significantly out of HWE  was 

investigated by chi square analysis (Table 14).   SNPs significantly out of HWE (p < 

0.05) were more likely to be SNPs with higher numbers of NoCalls across all samples 

(Table 14A).  SNPs with <5 NoCalls across all samples were less likely to be out of 

HWE than expected by chance where as SNPs with 5-35 NoCalls across all samples were 

more likely to be out of HWE than expected by chance   Unlike the fragment length, the 

association of HWE with NoCalls was true for both the controls and the AD cases (Table 

14B and C).   

3C4.  Underperforming SNPs impact downstream analyses. 

 A total of 720 SNPs on the Affymetrix GeneChip Mapping 100K set were located 

within CNV regions of which, there were 219 DM NoCall SNPs and 74 BRLMM NoCall 

SNPs.   NoCall SNPs from both genotyping algorithms were significantly more likely to 

be located within CNV regions than expected by chance (DM p-value = 3.706 x10 -12 and 

BRLMM p-value = 2.029x 10-14) indicating a potential relationship between CNV and 

genotype call rate.     

4.  Discussion:  

 High throughput genotyping technologies promise to dramatically increase our 

ability to detect associations between phenotypic traits and genetic variants.  However, 

the data generated by these methods must be examined closely for inaccuracies as even a 

small percentage has a large effect on the total data set.  Genotype calling seems a 

deceptively simple task.  In reality, this is a complex process involving a number of 
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assumptions and summarizations over multiple probe sets per SNP.  The DM algorithm is 

the standard genotyping algorithm for the Affymetrix 100K Mapping Set.  Many 

association studies use this platform and are therefore subject to the inherent difficulty 

with calling heterozygote SNPs.   Therefore, we set out to determine:  

1) the sensitivity of the DM to chip features in order to discover in which 

instances the DM algorithm has difficulty making genotype calls and  

2) whether the BRLMM algorithm recommended for the 500K Mapping Set can 

be used to improve the genotyping call on the 100K Mapping GeneChips. 

Sensitivity of the DM algorithm to chip features 

  Simulation studies demonstrated the DM algorithm’s dependence on the overall 

chip intensity and the relationship between intensity and variability.  The DM algorithm 

shows best performance when overall chip intensity is high and the background is low.  

Variability is greater when the chip intensity is low.  Heterozygous SNPs are more 

problematic for the DM algorithm than the homozygous SNPs and are more often not 

called (higher probability of the null model or low confidence in p-value for a genotype 

model).  Other chip features such as pixel number and standard deviation do not affect 

the genotype call rate. 

 The DM algorithm uses a non-parametric summarization method to determine the 

final SNP call.  Thresholds for the Wilcoxon signed rank test p-values change the 

stringency of the call rate.  At an unadjusted p-value <0.05, no false positive calls were 

seen.  A summary score summarization method across all genotype models improves the 

genotype calling rate but at the cost of increasing the false positive call rate.  The main 

difficulty for the DM algorithm lies with the discrimination of the heterozygote SNPs 
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which is directly related to chip intensity through the log likelihood model assumptions.  

This becomes increasingly problematic as the genotyping chips become denser because a 

small percentage of NoCalls translates into an ever increasing number of missing SNP 

calls.   

BRLMM algorithm improves the genotyping call rate 

 Because the BRLMM algorithm is substantially different from the DM algorithm 

and does not rely on the same log likelihood models, we compared the sensitivity of the 

DM and BRLMM algorithms.  Experimental data on the performance of the two 

Affymetrix chip types showed that the main difference in call rates is between the XbaI 

and HindIII chips and is due to the heterozygote dropout seen with the DM genotyping 

algorithm.    Sample characteristics had no affect on genotyping calls for either algorithm.  

 Overall chip intensity and PCR fragment length had the most important effects on 

chip call rates.  Chip intensity is related to the effeciency of the restriction enzyme 

digestion [26] and the PCR fragment amplification [131, 132] of the genomic DNA.  

Hybridization efficiency to the probes is related to the GC content of each specific probe 

and the GC content of the digested fragment [131, 132].  Higher GC content probes do 

not hybridize well to the target.  Higher GC content target fragments and higher fragment 

length affect PCR efficiency.  In our experiments, the longer PCR fragment lengths were 

related to higher NoCall rates.  Lower overall chip intensity occurs when higher levels of 

the longer fragment lengths are not amplified in the PCR.    SNPs located on longer PCR 

fragment lengths tend to be out of HWE more than expected by chance because they are 

more often not called due to DM algorithm’s difficulty in distinguishing genotypes with 

the lower intensity levels of these SNPs. 
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 The BRLMM algorithm partially corrects for these probe specific effects in the 

first steps of the algorithm where quantile normalization across all arrays and allele 

specific intensities are modeled to summarize probe intensities from a probe set into a 

single value ([31], 

http://www.affymetrix.com/support/technical/whitepapers/brlmm_whitepaper.pdf).  This 

is reflected in the reduced variance, improved call rate and fewer numbers of SNPs out of 

HWE.   

  The influence of NoCall SNPs on CNV regions was used as a surrogate for 

estimating the effect of genotyping errors on downstream analyses.  Significant 

differences in the proportion of CNV variants between those with NoCall SNPs and those 

without highlight the difficulty of genotyping SNPs in regions of genomic complexity.  

This difference may be for several reasons. The greater number of NoCall genotypes in 

these CNV regions may reflect the complexity of the underlying chromosomal structure.   

It may be harder to type the SNPs located in CNV regions due to possible variability in 

SNP genotype for the different copies [136].  The more sophisticated BRLMM algorithm 

is able to call more SNPs with more subtle variations in intensity values among 

genotypes.  Thus, the genotypes in these regions would be represented by the genotype of 

the most numerous alleles and not a reflection of the complete allele pattern in the 

multiple copies. 

 Accurate genotyping is critical for the ability to answer interesting biological 

questions about the effect of genetic sequence variation on phenotypes.  Low-level 

analysis helps identify the strengths and weaknesses and overall performance of a 

genotyping algorithm.  We have shown that SNPs with NoCalls are generally found 
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across the genome and across samples at a low percentage and that the algorithms are 

sensitive to specific experimental vagaries and not to particular sample characteristics.  

This implies that samples with overall low call rates are most likely different in other 

ways.  They may be possibly contaminated or they may have more interesting genetic 

variability such as copy number variations.   CNV regions do not meet the assumption of 

diploidy for the genotyping algorithms and would be called as NoCalls.  Other DNA 

sequences that do not hybridize well to the probes such as stretches of G/C or A/T or 

SNPs elsewhere in the target sequence may increase the NoCall rate as well as the cause 

false positive copy number estimations.  The practice of discarding samples with low call 

rates upon repeated hybridization should be reconsidered as it may be abandoning 

samples with interesting genetic phenomena.    

 We have shown that the BRLMM algorithm improves the call rates for the 100K 

mapping array set and that overall chip intensity due to the variation in PCR fragment 

length is the most important experimental variable that affects call rates.  This variability 

could be due to the PCR amplification step of the PCR product fractionation step.  

Several more issues need to be addressed to improve performance.  The effect of 

combining chips into the BRLMM analysis from different hybridization batches was not 

investigated.  This may introduce variation into the genotyping clusters and reduce 

genotyping call rates.  In addition, more work needs to be done to investigate probe 

specific effects on call rates and the consequence of removing problematic probes from 

the analyses.   As the technology advances and arrays become progressively more dense, 

it will be important to continually re-evaluate the sources of variability for each different 

platform. 
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 These results provide a basis for studying the impact of sequence variation on 

genetic association studies of SNPs and copy number variations to susceptibility to 

disease as well as the effects of CNV on gene expression (Chapter IV).   
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Chapter III Figures and Tables. 
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Figure 1. Score Calls for SNPs relative to p-value and DM call.  For each simulated SNP, 
the maximum number of probe quartets called for each genotype model is given (maxaa, 
maxab, maxbb, maxn) relative to whether the SNP was called by the DM algorithm (DM 
call vs DM NoCall).   
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Figure 2.  Variability of XbaI and HindIII chips genotyped by the DM or the BRLMM 
algorithms.  Genotypes were called for all samples with DM call rate >80%. 
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Figure 3.  Overall chip intensity vs. DM call rate.  The overall chip intensity for all 
samples was compared for both chip types.  The greater variation in intensity among the 
XbaI digested samples shows the dependence of the call rate on chip intensity.  A.  
Overall chip intensity of XbaI and HindIII versus the DM call rate.  B.  Hybridization 
date is shown by chip type. 
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Figure 4.  DNA source and phenotype had no effect on call rate. 
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Figure 5.  Clustering of sample characteristics.  Continuous variables of all samples were 
clustered based on the distance metric (1-[correlation among all samples]). 
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Figure6.  Number of SNPs not called (NoCalls) per sample for each chip type and each 
genotyping algorithm. 
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Fig. 7.  Similarities among samples for SNPs which have NoCalls.  The 
similarity measure is the fraction of NoCalls (missing data) in common 
between any two SNPs.   

 
 
 
 
 

 86 



X0
18

_H
1B

1H
1_

94
6B

3
X0

00
1H

.1
BH

1_
46

4T
3

X5
6H

.1
AH

1_
13

09
T3

X4
5H

.1
BH

1_
14

88
T3

X6
4H

.1
AH

1_
13

90
X3

0H
.1

AH
1_

11
53

B3
X5

5H
.1

AH
1_

71
9T

3
X0

05
_H

1B
1H

1_
53

8B
3

X0
22

_H
1B

1H
1_

10
09

B3
X0

44
_H

1B
1H

1_
14

76
T3

X0
00

8H
.1

AH
1_

59
7B

3
X0

00
4H

.1
AH

1_
51

5B
3

X3
5H

.1
AH

1_
13

95
B3

X5
8H

.1
AH

1_
15

38
T3

X0
00

6H
.1

AH
1_

55
5B

3
X1

2H
.1

AH
1_

78
3B

3
X0

00
3H

.1
AH

1_
49

7B
3

X0
41

_H
1A

1H
1_

14
56

B3
X4

0H
.1

AH
1_

14
33

B3
X2

1H
.1

AH
1_

99
3B

3
X2

6H
.1

AH
1_

10
65

B3
X0

00
9H

.1
AH

1_
61

5B
3

X3
6H

.1
AH

1_
13

99
B3

X3
1H

.1
AH

1_
11

66
B3

X3
7H

.1
AH

1_
14

01
B3

0.
04

0.
03

0.
02

0.
01

0.
00

Fr
ac

tio
n 

M
is

si
ng

dm.hind.AD

X0
27

_H
1A

1H
1_

10
81

B2
X4

9H
.1

BH
1_

86
9T

1
X6

1H
.1

BH
1_

48
6T

2
X6

3H
.1

BH
1_

69
9T

2a
X5

4H
.1

AH
1_

13
76

T2
X6

0H
.1

AH
1_

15
47

T2
X5

0H
.1

BH
1_

33
4T

2
X3

3H
.1

BH
1_

13
17

T2
X5

7H
.1

BH
1_

86
2T

1
X2

3H
.1

BH
1_

10
13

B1
X6

2H
.1

BH
1_

69
7T

2a
X4

2H
.1

BH
1_

14
66

T2
X4

8H
.1

BH
1_

81
0T

1
X0

29
_H

1A
1H

1_
11

16
B1

X5
1H

.1
AH

1_
10

14
T2

X5
3H

.1
AH

1_
12

29
T2

X0
14

_H
1A

1H
1_

84
0B

1
X0

19
_H

1A
1H

1_
95

6T
1

X3
9H

.1
AH

1_
14

32
B1

X0
38

_H
1A

1H
1_

14
30

B1
X0

47
_H

1B
1H

1_
15

42
T1

X1
5H

.1
AH

1_
84

8B
1

X0
00

7H
.1

AH
1_

58
8T

1
X5

2H
.1

AH
1_

10
62

T1
X5

9H
.1

AH
1_

15
24

T2
X2

0H
.1

AH
1_

95
8B

1
X2

5H
.1

AH
1_

10
52

T1 X2
8H

.1
AH

1_
11

04
B2

X4
3H

.1
AH

1_
14

69
B1

0.
04

0.
03

0.
02

0.
01

0.
00

Fr
ac

tio
n 

M
is

si
ng

dm.hind.ctrl

X5
8X

.1
AH

1_
15

38
T3

X5
5X

.1
AH

1_
71

9T
3

X0
00

1X
.1

AH
1_

46
4T

3
X5

6X
.1

AH
1_

13
09

T3
X3

6X
.1

AH
1_

13
99

B3
X2

6X
.1

AH
1_

10
65

B3
X1

2X
.1

AH
1_

78
3B

3
X0

00
6X

.1
AH

1_
55

5B
3

X4
0X

.1
AH

1_
14

33
B3

X3
5X

.1
AH

1_
13

95
B3

X0
41

_X
1A

1H
1_

14
56

B3
X0

44
_X

1A
1H

1_
14

76
T3

X0
05

_X
1B

1H
1_

53
8B

3
X0

18
_X

1B
1H

1_
94

6B
3

X0
22

_X
1A

1H
1_

10
09

B3
X0

00
9X

.1
AH

1_
61

5B
3

X2
1X

.1
AH

1_
99

3B
3

X3
1X

.1
AH

1_
11

66
B3

X3
7X

.1
AH

1_
14

01
B3

X0
00

4X
.1

AH
1_

51
5B

3
X3

0X
.1

AH
1_

11
53

B3
X4

5X
.1

AH
1_

14
88

T3
X6

4X
.2

AH
1_

13
90

X0
00

3X
.1

BH
1_

49
7B

3
X0

00
8X

.1
AH

2_
59

7B
3

0.
07

0.
05

0.
03

0.
01

Fr
ac

tio
n 

M
is

si
ng

dm.xba.AD

X5
3X

.1
AH

2_
12

29
T2

X2
8X

.1
AH

1_
11

04
B2

X5
2X

.1
AH

1_
10

62
T1

X5
9X

.1
AH

1_
15

24
T2

X2
0X

.1
AH

1_
95

8B
1

X2
5X

.1
AH

1_
10

52
T1

X0
00

7X
.1

AH
1_

58
8T

1
X1

5X
.1

AH
1_

84
8B

1
X3

9X
.1

AH
1_

14
32

B1
X5

1X
.1

AH
1_

10
14

T2
X4

3X
.1

AH
1_

14
69

B1
X0

47
_X

1B
1H

1_
15

42
T1

X0
14

_X
1A

1H
1_

84
0B

1
X0

27
_X

1A
1H

1_
10

81
B2

X0
38

_X
1A

1H
1_

14
30

B1
X0

19
_X

1A
1H

1_
95

6T
1

X0
29

_X
1A

1H
1_

11
16

B1
X4

9X
.1

AH
1_

86
9T

1
X5

0X
.1

AH
1_

33
4T

2
X2

3X
.1

AH
1_

10
13

B1
X5

7X
.1

BH
1_

86
2T

1
X6

2X
.1

AH
1_

69
7T

2a
X6

1X
.1

BH
1_

48
6T

2
X3

3X
.1

AH
1_

13
17

T2
X6

3X
.1

AH
1_

69
9T

2a
X4

2X
.1

AH
1_

14
66

T2
X4

8X
.1

AH
1_

81
0T

1
X5

4X
.1

AH
1_

13
76

T2
X6

0X
.1

AH
1_

15
47

T2

0.
06

0.
04

0.
02

0.
00

Fr
ac

tio
n 

M
is

si
ng

dm.xba.ctrl

 

DM XbaI 
 AD only       Controls only 

DM HindIII  
 AD only           Controls only 

Figure 8.  Similarities of NoCalls in SNPs within each phenotype. 
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Figure 9.  Distribution of the number of samples with a NoCall per SNP. 
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Chapter III.  Tables. 
 
 
Table 1.  Parameters for Simulations 
  
Parameter Values 
Intensity  
        Chip High, medium, low 
        Background High, low 
Standard Deviation 0.2, 0.5 
Pixel Number 9, 20 

 
 
Table 2.  Summary of DM Model calls for AA and AB SNP simulations 

A.  All SNPs were simulated as AA        

  intensity 
Bck 
grd SD 

# 
pix 

# 
SNPs 
simul 

# 
called 
snps 

# 
quartets 
called 

as 
highest 
maxn 

# 
quartets 
called 

as 
highest 
maxaa 

# 
quartets 
called 

as 
highest 
maxbb 

# 
quartets 
called 

as 
highest 
maxab concur 

1 high low 0.2 9 100 82 8 870 10 112 82 
2 high low 0.2 20 100 82 8 870 10 112 82 
3 high low 0.5 9 100 84 8 866 9 117 84 
4 high low 0.5 20 100 84 8 866 9 117 84 
5 high high 0.2 9 100 43 38 752 32 178 43 
6 high high 0.2 20 100 43 38 752 32 178 43 
7 high high 0.5 9 100 43 38 746 30 186 43 
8 high high 0.5 20 100 43 38 746 30 186 43 
9 med low 0.2 9 100 69 19 813 15 153 69 
10 med low 0.2 20 100 69 19 813 15 153 69 
11 med low 0.5 9 100 69 19 804 15 162 69 
12 med low 0.5 20 100 69 19 804 15 162 69 
13 med high 0.2 9 100 19 92 620 80 208 19 
14 med high 0.2 20 100 19 92 620 80 208 19 
15 med high 0.5 9 100 19 92 609 80 219 19 
16 med high 0.5 20 100 19 92 609 80 219 19 
17 low low 0.2 9 100 15 142 547 118 193 15 
18 low low 0.2 20 100 15 142 547 118 193 15 
19 low low 0.5 9 100 12 142 541 115 202 12 
20 low low 0.5 20 100 12 142 541 115 202 12 
21 low high 0.2 9 100 9 191 478 189 142 9 
22 low high 0.2 20 100 9 191 478 189 142 9 
23 low high 0.5 9 100 11 191 479 188 142 11 
24 low high 0.5 20 100 11 191 479 188 142 11 
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B.  All SNPs were simulated as AB        

  intensity 
Bck 
grd SD 

# 
pix 

# 
SNPs 
simul 

# 
called 
snps 

# 
quartets 
called 

as 
highest 
maxn 

# 
quartets 
called 

as 
highest 
maxaa 

# 
quartets 
called 

as 
highest 
maxbb 

# 
quartets 
called 

as 
highest 
maxab concur 

1 high low 0.2 9 100 66 1 127 116 756 66 
2 high low 0.2 20 100 66 1 127 116 756 66 
3 high low 0.5 9 100 72 1 110 107 782 72 
4 high low 0.5 20 100 72 1 110 107 782 72 
5 high high 0.2 9 100 24 14 180 210 596 24 
6 high high 0.2 20 100 24 14 180 210 596 24 
7 high high 0.5 9 100 31 14 167 192 627 31 
8 high high 0.5 20 100 31 14 167 192 627 31 
9 med low 0.2 9 100 38 11 174 152 663 38 
10 med low 0.2 20 100 38 11 174 152 663 38 
11 med low 0.5 9 100 46 11 162 136 691 46 
12 med low 0.5 20 100 46 11 162 136 691 46 
13 med high 0.2 9 100 5 65 277 240 418 5 
14 med high 0.2 20 100 5 65 277 240 418 5 
15 med high 0.5 9 100 8 65 265 224 446 8 
16 med high 0.5 20 100 8 65 265 224 446 8 
17 low low 0.2 9 100 0 105 284 280 331 0 
18 low low 0.2 20 100 0 105 284 280 331 0 
19 low low 0.5 9 100 1 105 286 275 334 1 
20 low low 0.5 20 100 1 105 286 275 334 1 
21 low high 0.2 9 100 0 141 334 315 210 0 
22 low high 0.2 20 100 0 141 334 315 210 0 
23 low high 0.5 9 100 0 141 331 314 214 0 
24 low high 0.5 20 100 0 141 331 314 214 0 
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Table 3. DM algorithm calls vs. summary score calls 
     
A.  AA Simulated genotypes     
    Percent called correctly Percent Summary Score  

Intensity background 
DM 
algorithm 

Summary 
score 

Called 
BB 

Called 
AB NoCall 

hi hi 43 98 0 0 0 
hi low 82 99 0 0 0 
med hi 19 85 0 7 1 
med low 69 100 0 0 0 
low hi 9 78 4 0 11 
low low 15 87 1 3 5 
              
B.  AB Simulated genotypes     
    Percent called correctly Percent Summary Score  

Intensity background 
DM 
algorithm 

Summary 
score 

Called 
AA 

Called 
BB NoCall 

hi hi 24 88 4 8 0 
hi low 66 100 0 0 0 
med hi 5 48 30 19 3 
med low 38 97 1 2 0 
low hi 0 12 48 30 10 
low low 0 35 32 28 5 

 
Table 4.  Variability among hybridizations of XbaI and HindIII SNP chips genotyped by 
the DM amd BRLMM algorithms. 
A.  XbaI chips          
 DM algorithm BRLMM algorithm   

 call %AA %AB %BB call %AA %AB %BB 

raw 
intensity 

meana

raw 
intensity 

SD 
Mean 93.59 37.33 26.02 36.65 98.53 29.08 34.86 34.60 10.71 1.25 
SD 3.22 1.01 1.69 0.76 1.01 0.54 0.59 0.85 0.31 0.09 
CV 3.44 2.70 6.48 2.08 1.02 1.86 1.70 2.46 2.89 7.37 
Lower95 92.82 37.08 25.62 36.47 98.27 28.94 34.71 34.38 10.63 1.23 
Upper95 94.36 37.57 26.43 36.83 98.79 29.22 35.01 34.82 10.79 1.28 
Min 82.92 35.64 19.78 35.48 92.81 28.01 32.05 29.59 9.98 1.09 
Max 99.27 40.82 28.80 39.59 99.67 31.17 35.83 35.52 11.32 1.63 
              
B.  HindII chips              
Mean 97.73 38.03 24.79 37.18 99.26 26.03 36.97 36.26 10.96 1.34 
SD 2.12 0.76 1.45 0.72 1.34 0.37 0.67 0.65 0.28 0.13 
CV 2.17 1.99 5.87 1.93 1.35 1.41 1.82 1.79 2.58 9.69 
Lower95 97.17 37.83 24.41 36.99 98.91 25.93 36.80 36.09 10.89 1.31 
Upper95 98.28 38.22 25.17 37.37 99.61 26.12 37.15 36.43 11.04 1.38 
Min 89.21 37.28 18.74 36.55 92.89 25.36 33.80 33.27 9.84 0.76 
Max 99.64 41.32 26.17 40.27 99.92 27.08 37.58 36.92 11.57 1.59 
a  raw intensity of the entire chip         
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Table 5.  Characteristics for all samples 

Sample ID chip phenotypea source exprb Chip Lot 
Hybridization 

Date gender 
50X.1AH1.334T2 Xba 2 Tissue N 4004432 5.24.2006 M 
0001X.1AH1.464T3 Xba 3 Tissue Y 4004432 5.24.2006 F 
002.X1A1H1.486B2 Xba 2 Blood Y 4004322 12.12.2005 F 
61X.1BH1.486T2 Xba 2 Tissue Y 4004432 5.22.2006 F 
0004X.1AH1.515B3 Xba 3 Blood N 4004432 3.21.2006 F 
005.X1A1H1.538B3 Xba 3 Blood N 4004322 12.12.2005 F 
005.X1B1H1.538B3 Xba 3 Blood N 4004432 12.21.2005 F 
0008X.1AH1.597B3 Xba 3 Blood N 4004432 3.21.2006 M 
0008X.1AH2.597B3 Xba 3 Blood N 4009296 3.24.2006 M 
010.X1A1H1.697T2 Xba 1 Blood Y 4004322 12.12.2005 M 
010.X1B1H1.697T2 Xba 2 Blood Y 4004432 12.21.2005 M 
62X.1AH1.697T2a Xba 2 Tissue Y 4004432 5.24.2006 M 
011.X1A1H1.699T1 Xba 1 Blood Y 4004322 12.12.2005 M 
63X.1AH1.699T2a Xba 1 Tissue Y 4004432 5.24.2006 M 
55X.1AH1.719T3 Xba 3 Tissue N 4004432 3.21.2006 M 
48X.1AH1.810T1 Xba 1 Tissue Y 4004432 5.24.2006 F 
014.X1A1H1.840B1 Xba 3 Blood N 4004322 12.12.2005 M 
014.X1B1H1.840B1 Xba 1 Blood N 4004432 12.21.2005 M 
57X.1BH1.862T1 Xba 1 Tissue N 4004432 5.22.2006 M 
49X.1AH1.869T1 Xba 1 Tissue Y 4004432 5.24.2006 M 
018.X1A1H1.840B1 Xba 2 Blood N 4004322 12.12.2005 M 
018.X1B1H1.946B3 Xba 3 Blood N 4004432 12.21.2005 M 
019.X1A1H1.956T1 Xba 2 Blood N 4004322 12.12.2005 M 
022.X1A1H1.1009B3 Xba 1 Blood N 4004322 12.12.2005 M 
23X.1AH1.1013B1 Xba 1 Tissue Y 4004432 5.24.2006 M 
51X.1AH1.1014T2 Xba 2 Tissue N 4004432 3.21.2006 M 
027.X1A1H1.1081B2 Xba 1 Blood N 4004322 12.12.2005 M 
28X.1AH1.1104B2 Xba 2 Blood N 4004432 3.21.2006 F 
029.X1A1H1.1116B1 Xba 1 Blood N 4004432 12.12.2005 M 
30X.1AH1.1153B3 Xba 3 Blood N 4004432 3.21.2006 M 
53X.1AH1.1229T2 Xba 2 Tissue Y 4004432 3.21.2006 F 
53X.1AH2.1229T2 Xba 2 Tissue Y 4009296 3.24.2006 F 
56X.1AH1.1309T1 Xba 3 Tissue Y 4004432 5.24.2006 F 
33X.1AH1.1317T2 Xba 2 Tissue Y 4004432 5.24.2006 F 
54X.1AH1.1376T2 Xba 2 Tissue N 4004432 3.21.2006 M 
034.X1A1H1.1390T3 Xba 1 Blood Y 4004432 12.12.2005 F 
64X.1AH1.1390 Xba 3 Tissue Y 4004432 5.24.2006 F 
35X.1AH1.1395B3 Xba 3 Blood N 4004432 3.21.2006 F 
038.X1A1H1.1430B1 Xba 3 Blood N 4004432 12.12.2005 F 
041.X1A1H1.1456B3 Xba 3 Blood N 4004432 12.12.2005 M 
42X.1AH1.1466T2 Xba 2 Tissue Y 4004432 5.24.2006 M 
43X.1AH1.1469B1 Xba 1 Blood N 4004432 3.21.2006 M 
044.X1A1H1.1476T3 Xba 3 Blood N 4004432 12.12.2005 M 
45X.1AH1.1488T3 Xba 3 Tissue Y 4004432 5.24.2006 M 
58X.1AH1.1538T3 Xba 3 Tissue N 4004432 3.21.2006 F 
047.X1A1H1.1542T1 Xba 1 Blood N 4004432 12.12.2005 F 
047.X1B1H1.1542T1 Xba 1 Blood N 4004432 12.21.2005 F 
60X.1AH1.1547T2 Xba 2 Tissue Y 4004432 3.21.2006 F 

 92 



  

Sample ID chip phenotypea source exprb Chip Lot 
Hybridization 

Date gender 
50H.1BH1.334T2 Hind 2 Tissue N 4004265 5.23.2006 M 
0001H.1BH1.464T3 Hind 3 Tissue Y 4004265 5.23.2006 F 
002H.1A1H1.486B2 Hind 2 Blood Y 4004265 2.2.2006 F 
61H.1BH1.486T2 Hind 2 Tissue Y 4004265 5.22.2006 F 
0004H.1AH1.515B3 Hind 3 Blood N 4004265 3.12.2006 F 
005.H1B1H1.538B3 Hind 3 Blood N 4004265 12.21.2005 F 
0008H.1AH1.597B3 Hind 3 Blood N 4004265 3.12.2006 M 
010H.1A1H1.697T2 Hind 2 Blood Y 4004265 2.2.2006 M 
62H.1BH1.697T2a Hind 2 Tissue Y 4004265 5.23.2006 M 
011H.1A1H1.699T1 Hind 1 Blood Y 4004265 2.2.2006 M 
63H.1BH1.699T2a Hind 1 Tissue Y 4004265 5.23.2006 M 
55H.1AH1.719T3 Hind 3 Tissue N 4004265 3.12.2006 M 
48H.1BH1.810T1 Hind 1 Tissue Y 4004265 5.23.2006 F 
014H.1A1H1.840B1 Hind 1 Blood N 4004265 2.2.2006 M 
57H.1BH1.862T1 Hind 1 Tissue N 4004265 5.22.2006 M 
49H.1BH1.869T1 Hind 1 Tissue Y 4004265 5.23.2006 M 
018.H1B1H1.946B3 Hind 3 Blood N 4004265 12.21.2005 M 
019H.1A1H1.956T1 Hind 1 Blood N 4004265 2.2.2006 M 
022.H1B1H1.1009B3 Hind 3 Blood N 4004265 12.21.2005 M 
23H.1BH1.1013B1 Hind 1 Tissue Y 4004265 5.23.2006 M 
51H.1AH1.1014T2 Hind 2 Tissue N 4004265 3.12.2006 M 
027H.1A1H1.1081B2 Hind 2 Blood N 4004265 2.2.2006 M 
28H.1AH1.1104B2 Hind 2 Blood N 4004265 3.12.2006 F 
029H.1A1H1.1116B1 Hind 1 Blood N 4004265 2.2.2006 M 
30H.1AH1.1153B3 Hind 3 Blood N 4004265 3.12.2006 M 
53H.1AH1.1229T2 Hind 2 Tissue Y 4004265 3.12.2006 F 
56H.1BH1.1309T1 Hind 3 Tissue Y 4004265 5.23.2006 F 
33H.1BH1.1317T2 Hind 2 Tissue Y 4004265 5.23.2006 F 
54H.1AH1.1376T2 Hind 2 Tissue N 4004265 3.12.2006 M 
034H.1A1H1.1390T3 Hind 3 Blood Y 4004265 2.2.2006 F 
64H.1AH1.1390 Hind 3 Tissue Y 4004265 5.24.2006 F 
35H.1AH1.1395B3 Hind 3 Blood N 4004265 3.12.2006 F 
038H.1A1H1.1430B1 Hind 1 Blood N 4004265 2.2.2006 F 
041H.1A1H1.1456B3 Hind 3 Blood N 4004265 2.2.2006 M 
42H.1BH1.1466T2 Hind 2 Tissue Y 4004265 5.23.2006 M 
43H.1AH1.1469B1 Hind 1 Blood N 4004265 3.12.2006 M 
044.H1B1H1.1476T3 Hind 3 Blood N 4004265 12.21.2005 M 
45H.1BH1.1488T3 Hind 3 Tissue Y 4004265 5.23.2006 M 
58H.1AH1.1538T3 Hind 3 Tissue N 4004265 3.12.2006 F 
047.H1B1H1.1542T1 Hind 1 Blood N 4004265 12.21.2005 F 
60H.1AH1.1547T2 Hind 2 Tissue Y 4004265 3.12.2006 F 
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Table 5.  Characteristics for all samples, con't 

Sample ID AA DM AB DM BB DM MCRd MDR 
MDR - 
MCR 

PCR 
yield 
(ug) 

brlmm 
call 

50X.1AH1.334T2 37.02 26.34 36.64 96.8 99.83 3.03 69.39 99.47 
0001X.1AH1.464T3 37.71 25.37 36.92 93.57 99.3 5.73 64.71 98.55 
002.X1A1H1.486B2 36.73 26.97 36.3 93.19 98.91 5.72 56.1 98.96 
61X.1BH1.486T2 36.63 27.26 36.11 96.35 99.67 3.32 47.46 98.88 
0004X.1AH1.515B3 36.35 28.01 35.65 92.36 99.15 6.79 72.54 98.89 
005.X1A1H1.538B3 37.96 24.87 37.16 86.42 97.1 10.68 68.9 97.35 
005.X1B1H1.538B3 36.74 26.71 36.55 93 99.21 6.21 45.4 98.97 
0008X.1AH1.597B3 37.78 25.61 36.61 85.16 96.73 11.57 74.07 97.24 
0008X.1AH2.597B3 35.75 28.67 35.59 97.47 99.95 4.88 74.07 99.56 
010.X1A1H1.697T2 37.61 24.77 37.63 84.88 97.15 12.27 65.4 96.86 
010.X1B1H1.697T2 36.41 27.52 36.07 95.95 99.72 3.77 47.7 99.61 
62X.1AH1.697T2a 36.75 26.94 36.31 96.4 99.71 3.31 45.09 99.32 
011.X1A1H1.699T1 37.6 24.88 37.53 93 99.01 6.01 53.2 99.04 
63X.1AH1.699T2a 37.32 25.86 36.82 92.95 98.91 5.96 58.95 98.7 
55X.1AH1.719T3 36.21 27.72 36.06 95.62 99.54 3.92 62.19 99.4 
48X.1AH1.810T1 36.69 27.17 36.14 95.02 99.11 4.09 56.7 97.93 
014.X1A1H1.840B1 36.97 26.11 36.92 92.18 98.74 6.56 53.9 98.62 
014.X1B1H1.840B1 39.28 21.68 39.03 83.78 96.27 12.49 44.6 95.81 
57X.1BH1.862T1 36.74 26.9 36.35 97.35 99.76 2.41 49.05 99.15 
49X.1AH1.869T1 35.89 28.06 36.05 97.89 99.83 1.94 65.52 99.57 
018.X1A1H1.840B1 37.34 25.8 36.86 90.95 99.01 8.06 54.5 98.68 
018.X1B1H1.946B3 37.03 26.13 36.84 92.02 99.17 7.15 41.9 98.69 
019.X1A1H1.956T1 39.48 22.84 37.68 91.5 98.7 7.2 58.7 98.52 
022.X1A1H1.1009B3 36.67 26.97 36.37 92.6 98.89 6.29 52.4 98.78 
23X.1AH1.1013B1 36.48 27.34 36.18 96.77 99.8 3.03 62.37 99.43 
51X.1AH1.1014T2 36.59 27.21 36.19 93.98 99.34 5.36 69.3 99.23 
027.X1A1H1.1081B2 37.42 25.42 37.16 90.77 98.27 7.5 53.7 98.32 
28X.1AH1.1104B2 36.21 27.94 35.85 94.62 99.66 5.04 70.74 99.28 
029.X1A1H1.1116B1 37.25 25.97 36.78 92.63 99.06 6.43 54.2 98.59 
30X.1AH1.1153B3 36.55 27.31 36.14 92.81 99.39 6.58 70.11 99.26 
53X.1AH1.1229T2 37.04 26.7 36.26 93.2 99.26 6.06 63.09 98.75 
53X.1AH2.1229T2 35.69 28.8 35.51 98.52 99.99 4.88 63.09 99.65 
56X.1AH1.1309T1 36.94 26.12 36.94 93.56 99.19 5.63 60.66 98.8 
33X.1AH1.1317T2 37.34 26.39 36.28 94.18 99.27 5.09 60.48 98.9 
54X.1AH1.1376T2 36.94 26.83 36.23 94.07 99.16 5.09 59.94 98.7 
034.X1A1H1.1390T3 37.94 25.02 37.03 92.04 98.79 6.75 52.7 98.55 
64X.1AH1.1390 39.36 21.82 38.82 87 97.15 10.15 61.92 96.82 
35X.1AH1.1395B3 38.13 24.88 36.99 87.64 97.68 10.04 65.16 98.12 
038.X1A1H1.1430B1 38.35 24.29 37.37 87.14 97.62 10.48 55.7 97.68 
041.X1A1H1.1456B3 37.36 25.93 36.71 89.04 97.58 8.54 48.5 96.76 
42X.1AH1.1466T2 37.61 25.03 37.36 94.13 99.29 5.16 54 98.65 
43X.1AH1.1469B1 37.6 25.92 36.48 91.4 98.85 7.45 66.33 98.92 
044.X1A1H1.1476T3 37.74 25.3 36.96 90.05 98.5 8.45 49.3 98.04 
45X.1AH1.1488T3 36.23 28.13 35.64 97.68 99.87 2.19 53.37 99.48 
58X.1AH1.1538T3 36.04 28.48 35.48 96.74 99.81 3.07 63.54 99.64 
047.X1A1H1.1542T1 37.71 25.07 37.22 89.57 98.46 8.89 55 98.1 
047.X1B1H1.1542T1 37.34 25.22 37.44 91.88 98.79 6.91 53 98.24 
60X.1AH1.1547T2 36.72 27.41 35.87 94.32 99.2 4.88 57.87 99.02 
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Sample ID AA DM AB DM BB DM MCRd MDR 
MDR - 
MCR 

PCR 
yield 
(ug) 

brlmm 
call 

50H.1BH1.334T2 37.85 25.32 36.82 98.87 99.99 1.12 56.34 99.82 
0001H.1BH1.464T3 37.5 25.62 36.89 98.62 99.99 1.37 52.16 99.8 
002H.1A1H1.486B2 37.48 25.8 36.72 98.65 99.99 1.34 62.3 99.86 
61H.1BH1.486T2 37.44 25.84 36.72 99.26 100 0.74 55.36 99.69 
0004H.1AH1.515B3 37.7 25.49 36.81 97.89 99.93 2.04 70.7 99.68 
005.H1B1H1.538B3 37.94 24.96 37.1 95.85 99.63 3.78 56.4 99.12 
0008H.1AH1.597B3 37.59 25.49 36.92 98.19 99.91 1.72 81.6 99.77 
010H.1A1H1.697T2 37.76 25.01 37.23 97.64 99.93 2.29 68.9 99.67 
62H.1BH1.697T2a 37.8 24.77 37.43 98.38 99.99 1.61 54.99 99.7 
011H.1A1H1.699T1 38.15 24.5 37.35 96.42 99.81 3.39 18.2 99.53 
63H.1BH1.699T2a 37.7 25.35 36.95 98.97 99.99 1.02 54 99.78 
55H.1AH1.719T3 37.69 25.26 37.05 98.62 99.94 1.32 59.8 99.84 
48H.1BH1.810T1 37.74 25.45 36.8 98.65 99.97 1.32 55.8 99.58 
014H.1A1H1.840B1 37.81 25.23 36.96 98.23 99.96 1.73 64.6 99.84 
57H.1BH1.862T1 38.03 24.83 37.14 98.56 100 1.44 48.78 99.75 
49H.1BH1.869T1 37.41 25.71 36.88 99.35 100 0.65 56.88 99.88 
018.H1B1H1.946B3 37.28 26.17 36.55 98.72 99.96 1.24 46.5 99.85 
019H.1A1H1.956T1 37.95 25.21 36.84 97.68 99.82 2.14 54.9 99.72 
022.H1B1H1.1009B3 38.46 23.78 37.76 96.48 99.78 3.3 46.4 99.02 
23H.1BH1.1013B1 38.03 24.9 37.07 98.48 99.96 1.48 52.47 99.79 
51H.1AH1.1014T2 37.63 25.42 36.95 98.81 99.97 1.16 73.9 99.94 
027H.1A1H1.1081B2 37.72 25.67 36.6 99.39 100 0.61 43.4 99.92 
28H.1AH1.1104B2 37.48 25.88 36.64 98.31 99.96 1.65 62.3 99.79 
029H.1A1H1.1116B1 37.32 25.91 36.77 98.8 99.97 1.17 48.8 99.9 
30H.1AH1.1153B3 37.47 25.5 37.02 98.2 99.93 1.73 51.3 99.85 
53H.1AH1.1229T2 37.78 25.5 36.72 99.15 99.96 0.81 61 99.9 
56H.1BH1.1309T1 37.6 25.45 36.95 98.56 99.94 1.38 54.72 99.8 
33H.1BH1.1317T2 37.54 25.7 36.76 98.68 100 1.32 54.27 99.8 
54H.1AH1.1376T2 37.77 24.91 37.31 98.54 99.97 1.43 53.5 99.83 
034H.1A1H1.1390T3 37.83 25.28 36.89 98.42 99.97 1.55 62.6 99.81 
64H.1AH1.1390 37.96 25.03 37.01 97.92 99.93 2.01 57.15 99.5 
35H.1AH1.1395B3 37.88 24.79 37.33 98.05 99.9 1.85 66.2 99.76 
038H.1A1H1.1430B1 40.12 20.43 39.45 82.71 97.55 14.84 63.1 94.16 
041H.1A1H1.1456B3 41.32 18.74 39.93 81.82 96.36 14.54 46.6 94.26 
42H.1BH1.1466T2 38 24.79 37.21 98.5 99.97 1.47 50.13 99.47 
43H.1AH1.1469B1 38.04 24.62 37.34 98.47 99.94 1.47 64.9 99.85 
044.H1B1H1.1476T3 38.26 24.1 37.65 96.49 99.9 3.41 43 99.13 
45H.1BH1.1488T3 38.2 24.34 37.46 98.14 99.94 1.8 57.78 99.81 
58H.1AH1.1538T3 37.34 26.08 36.58 99.21 99.97 0.76 68.9 99.88 
047.H1B1H1.1542T1 38.95 22.8 38.25 94.6 99.69 5.09 52 98.51 
60H.1AH1.1547T2 37.58 25.66 36.76 98.71 99.99 1.28 56.7 99.82 
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Table 5.  Characteristics for all samples, con't 

Sample ID 
AA 

brlmm 
AB 

brlmm 
BB 

brlmm 

raw 
intensity 

mean 

raw 
intensity 

SD 
50X.1AH1.334T2 28.02 35.88 35.57 10.55 1.29 
0001X.1AH1.464T3 29.15 34.88 34.51 9.98 1.2 
002.X1A1H1.486B2 28.99 35.1 34.86 11.16 1.26 
61X.1BH1.486T2 29.21 35.01 34.66 10.68 1.29 
0004X.1AH1.515B3 29.45 34.87 34.57 10.84 1.26 
005.X1A1H1.538B3 29.57 34 33.79 10.89 1.21 
005.X1B1H1.538B3 29.06 34.86 35.04 10.95 1.36 
0008X.1AH1.597B3 29.6 34.07 33.57 10.43 1.11 
0008X.1AH2.597B3 28.9 35.38 35.27 10.67 1.39 
010.X1A1H1.697T2 28.53 34.7 33.62 10.49 1.27 
010.X1B1H1.697T2 28.64 35.62 35.35 11.27 1.14 
62X.1AH1.697T2a 28.59 35.56 35.17 10.63 1.19 
011.X1A1H1.699T1 28.95 35.08 35.01 11.08 1.27 
63X.1AH1.699T2a 29.22 34.85 34.63 10.33 1.15 
55X.1AH1.719T3 29.26 35.02 35.12 10.94 1.28 
48X.1AH1.810T1 30.1 34.08 33.75 10.35 1.28 
014.X1A1H1.840B1 28.71 34.83 35.08 11.11 1.23 
014.X1B1H1.840B1 28.69 33.41 33.71 10.27 1.12 
57X.1BH1.862T1 28.07 35.66 35.42 10.72 1.42 
49X.1AH1.869T1 28.81 35.23 35.54 10.67 1.27 
018.X1A1H1.840B1 28.95 34.71 35.01 10.96 1.3 
018.X1B1H1.946B3 28.9 34.8 35 10.72 1.32 
019.X1A1H1.956T1 28.38 35 35.14 11.19 1.2 
022.X1A1H1.1009B3 28.68 34.96 35.15 11.06 1.24 
23X.1AH1.1013B1 28.71 35.43 35.28 10.32 1.28 
51X.1AH1.1014T2 28.69 35.3 35.24 10.92 1.37 
027.X1A1H1.1081B2 29.35 34.5 34.47 10.99 1.23 
28X.1AH1.1104B2 28.9 35.2 35.18 10.67 1.34 
029.X1A1H1.1116B1 28.98 34.83 34.79 10.71 1.4 
30X.1AH1.1153B3 29.2 35.01 35.05 10.54 1.29 
53X.1AH1.1229T2 29.07 35.05 34.62 10.8 1.37 
53X.1AH2.1229T2 28.83 35.48 35.34 10.91 1.63 
56X.1AH1.1309T1 29.45 34.58 34.77 10.44 1.19 
33X.1AH1.1317T2 29.59 35.05 34.26 10.03 1.14 
54X.1AH1.1376T2 28.92 35.05 34.74 10.82 1.32 
034.X1A1H1.1390T3 28.84 34.99 34.72 10.85 1.29 
64X.1AH1.1390 28.91 34.06 33.86 9.6 1.08 
35X.1AH1.1395B3 29.05 34.8 34.27 10.72 1.16 
038.X1A1H1.1430B1 29.54 34.29 33.86 10.94 1.27 
041.X1A1H1.1456B3 29.65 33.71 33.41 10.8 1.29 
42X.1AH1.1466T2 28.64 35.05 34.95 10.11 1.22 
43X.1AH1.1469B1 28.61 35.48 34.83 10.62 1.29 
044.X1A1H1.1476T3 28.87 34.68 34.49 10.95 1.31 
45X.1AH1.1488T3 28.87 35.5 35.11 10.71 1.33 
58X.1AH1.1538T3 29.1 35.44 35.1 11.24 1.32 
047.X1A1H1.1542T1 28.66 34.68 34.76 11.01 1.34 
047.X1B1H1.1542T1 28.28 34.74 35.22 11.07 1.35 
60X.1AH1.1547T2 29.56 34.97 34.5 10.76 1.27 
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Sample ID 
AA 

brlmm 
AB 

brlmm 
BB 

brlmm 

raw 
intensity 

mean 

raw 
intensity 

SD 
50H.1BH1.334T2 25.92 37.43 36.47 11.26 1.45 
0001H.1BH1.464T3 26.29 37.05 36.45 11.07 1.44 
002H.1A1H1.486B2 26.19 37.17 36.5 11.01 1.44 
61H.1BH1.486T2 26.19 37.09 36.41 11.19 1.56 
0004H.1AH1.515B3 26.26 37.12 36.3 11.04 1.28 
005.H1B1H1.538B3 26.28 36.75 36.09 11.09 1.46 
0008H.1AH1.597B3 26.35 37.03 36.39 10.97 1.23 
010H.1A1H1.697T2 25.63 37.25 36.79 11.11 1.34 
62H.1BH1.697T2a 25.61 37.22 36.87 11.08 1.36 
011H.1A1H1.699T1 25.84 37.19 36.5 11.03 1.26 
63H.1BH1.699T2a 25.85 37.34 36.6 11.31 1.49 
55H.1AH1.719T3 26.06 37.18 36.6 10.82 1.37 
48H.1BH1.810T1 26.2 37.12 36.26 11.06 1.46 
014H.1A1H1.840B1 26.05 37.27 36.52 10.78 1.4 
57H.1BH1.862T1 25.62 37.49 36.64 10.76 1.54 
49H.1BH1.869T1 26.07 37.16 36.65 11.21 1.42 
018.H1B1H1.946B3 26.55 37 36.3 11.33 1.48 
019H.1A1H1.956T1 26.01 37.36 36.34 11.11 1.36 
022.H1B1H1.1009B3 25.38 37.08 36.55 10.69 1.5 
23H.1BH1.1013B1 25.82 37.42 36.56 10.97 1.38 
51H.1AH1.1014T2 25.79 37.4 36.75 11.23 1.38 
027H.1A1H1.1081B2 25.83 37.59 36.5 11.57 1.42 
28H.1AH1.1104B2 26.56 37.02 36.21 10.91 1.3 
029H.1A1H1.1116B1 26.36 37.04 36.51 11.27 1.4 
30H.1AH1.1153B3 26.15 37.05 36.64 10.85 1.25 
53H.1AH1.1229T2 25.85 37.52 36.53 11.3 1.39 
56H.1BH1.1309T1 26.32 37.04 36.45 10.92 1.34 
33H.1BH1.1317T2 26.47 37.05 36.28 10.98 1.48 
54H.1AH1.1376T2 25.57 37.33 36.93 11.23 1.4 
034H.1A1H1.1390T3 26.01 37.34 36.45 11.27 1.34 
64H.1AH1.1390 26.02 37.19 36.3 10.83 1.35 
35H.1AH1.1395B3 25.65 37.3 36.81 10.96 1.27 
038H.1A1H1.1430B1 25.59 34.52 34.04 10.17 1.16 
041H.1A1H1.1456B3 25.45 34.94 33.87 9.84 1.18 
42H.1BH1.1466T2 25.64 37.27 36.56 11.02 1.53 
43H.1AH1.1469B1 25.36 37.59 36.91 11.04 1.3 
044.H1B1H1.1476T3 25.61 36.94 36.58 11.06 1.59 
45H.1BH1.1488T3 25.47 37.51 36.83 10.85 1.4 
58H.1AH1.1538T3 26.34 37.13 36.41 11.47 1.36 
047.H1B1H1.1542T1 25.38 36.75 36.38 10.88 1.5 
60H.1AH1.1547T2 26.37 37.11 36.34 11.11 1.35 

 
a  1= Non-demented, low NFT, 2= Non-demented, mid tangles, 3= AD cases, high tangles  
b Y = RNA from these samples were hybridized to HG-U133.Plus 2 expression arrays  
c DM call = genotyping call rate from the Dynamic Modeling (DM) algorithm.  AA DM 
is the homozygous AA only call rate.  
d.  %MCR is the call rate based on the MPAM algorithm.  %MDR is the difference 
between the call rate and the detection rate as determined by the MPAM algorithm  
(Affymetrix). 
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Table 6.  Number of discordant genotype calls between the DM and BRLMM algorithms 

ID sample 
discordant 
rate 

DM 
minimum 
call rate 

# discordant 
calls 

# discordant 
SNPs called 
by both 
programs 

proportion 
discordant 
SNPs called 
by both 
programs 

#  calls 
AB/AA 

#  calls 
AB/BB 

0001X.1AH1.464T3 464 7.51 92.49 4426 183 0.041 106 77 
0003X.1BH1.497B3 497 1.94 98.06 1143 50 0.044 17 33 
0004X.1AH1.515B3 515 4.25 95.75 2504 98 0.039 50 48 
0006X.1AH1.555B3 555 9.91 90.09 5842 260 0.045 156 104 
0007X.1AH1.588T1 588 7.63 92.37 4500 188 0.042 106 82 
0008X.1AH2.597B3 597 1.35 98.65 798 21 0.026 10 11 
0009X.1AH1.615B3 615 4.78 95.22 2817 100 0.035 53 47 
005.X1B1H1.538B3 538 5.38 94.62 3174 91 0.029 47 44 
014.X1A1H1.840B1 840 7.61 92.39 4485 157 0.035 90 67 
018.X1B1H1.946B3 946 6.34 93.66 3736 125 0.033 72 53 
019.X1A1H1.956T1 956 6.55 93.45 3860 131 0.034 76 54 
022.X1A1H1.1009B3 1009 5.65 94.35 3332 115 0.035 60 55 
027.X1A1H1.1081B2 1081 7.56 92.44 4457 201 0.045 121 79 
029.X1A1H1.1116B1 1116 6.76 93.24 3984 161 0.040 90 71 
038.X1A1H1.1430B1 1430 9.31 90.69 5487 302 0.055 175 127 
041.X1A1H1.1456B3 1456 11.64 88.36 6860 355 0.052 200 155 
044.X1A1H1.1476T3 1476 8.20 91.80 4833 204 0.042 124 80 
047.X1B1H1.1542T1 1542 7.50 92.50 4422 109 0.025 57 52 
12X.1AH1.783B3 783 9.17 90.83 5406 255 0.047 149 106 
15X.1AH1.848B1 848 8.73 91.27 5146 221 0.043 114 107 
20X.1AH1.958B1 958 6.82 93.18 4021 155 0.039 94 61 
21X.1AH1.993B3 993 6.75 93.25 3977 148 0.037 74 74 
23X.1AH1.1013B1 1013 3.15 96.85 1856 56 0.030 29 27 
25X.1AH1.1052T1 1052 8.15 91.85 4806 191 0.040 122 68 
26X.1AH1.1065B3 1065 9.49 90.51 5597 277 0.049 151 126 
28X.1AH1.1104B2 1104 2.99 97.01 1764 60 0.034 35 25 
30X.1AH1.1153B3 1153 4.38 95.62 2583 71 0.027 43 28 
31X.1AH1.1166B3 1166 5.05 94.95 2978 90 0.030 49 41 
33X.1AH1.1317T2 1317 6.32 93.68 3725 144 0.039 62 82 
35X.1AH1.1395B3 1395 8.61 91.39 5079 197 0.039 113 84 
36X.1AH1.1399B3 1399 7.62 92.38 4494 147 0.033 76 71 
37X.1AH1.1401B3 1401 5.70 94.30 3359 128 0.038 73 55 
39X.1AH1.1432B1 1432 8.91 91.09 5253 229 0.044 129 100 
40X.1AH1.1433B3 1433 20.33 82.92 11986 805 0.067 443 362 
42X.1AH1.1466T2 1466 7.11 92.89 4191 159 0.038 81 78 
43X.1AH1.1469B1 1469 6.06 93.94 3573 106 0.030 57 49 
45X.1AH1.1488T3 1488 2.13 97.87 1257 48 0.038 28 20 
48X.1AH1.810T1 810 6.77 93.23 3989 194 0.049 98 96 
49X.1AH1.869T1 869 2.04 97.96 1200 37 0.031 20 17 
50X.1AH1.334T2 334 3.36 96.64 1982 62 0.031 32 30 
51X.1AH1.1014T2 1014 3.81 96.19 2245 63 0.028 30 33 
52X.1AH1.1062T1 1062 9.68 90.32 5710 240 0.042 142 98 
53X.1AH2.1229T2 1229 0.89 99.11 526 29 0.055 17 12 
54X.1AH1.1376T2 1376 5.35 94.65 3157 129 0.041 76 53 
55X.1AH1.719T3 719 3.62 96.38 2137 62 0.029 32 30 
56X.1AH1.1309T1 1309 6.64 93.36 3912 142 0.036 83 59 
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57X.1BH1.862T1 862 3.10 96.90 1826 59 0.032 35 24 
58X.1AH1.1538T3 1538 1.94 98.06 1144 28 0.024 14 14 
59X.1AH1.1524T2 1524 5.79 94.21 3415 159 0.047 93 66 
60X.1AH1.1547T2 1547 4.88 95.12 2877 113 0.039 74 39 
61X.1BH1.486T2 486 4.58 95.42 2698 89 0.033 43 46 
62X.1AH1.697T2a 697 3.61 96.39 2127 53 0.025 25 28 
63X.1AH1.699T2a 699 6.85 93.15 4039 135 0.033 76 59 
64X.2AH1.1390 1390 2.72 97.28 1601 44 0.027 23 21 
  
 
Table 7.  Chisquare Test of the number of NoCalls across all samples per chromosome. 
       (p-value = 0.001) 
 

 observed expected 
chr > 10 < 5 > 10 < 5 
1 459 1611 467 1603 
2 546 1835 538 1843 
3 355 1327 380 1302 
4 420 1432 418 1434 
5 466 1452 433 1485 
6 497 1420 433 1484 
7 389 1267 374 1282 
8 345 1166 341 1170 
9 215 829 236 808 

10 296 1019 297 1018 
11 276 1005 289 992 
12 265 970 279 956 
13 260 907 263 904 
14 232 694 209 717 
15 149 514 150 513 
16 85 421 114 392 
17 71 341 93 319 
18 193 631 186 638 
19 37 126 37 126 
20 102 359 104 357 
21 110 353 105 358 
22 23 112 30 105 
23 102 417 117 402 
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Table 8.  Chisquare test of the number of NoCall SNPs relative to PCR fragment length 
A.  DM algorithm       B.  BRLMM algorithm      
 p-value = 2.2 x 10 -16      p-value = 2.2 x 10 -16     
 Number of SNPs within each bin   Number of SNPs within each bin 

Observed b Expected   Observed  Expected  
# NC across samples # NC across samples  # NC across samples # NC across samples

Fragment 
Length 
Binsa 0 > 10 < 5 0 > 10 < 5  

Fragment 
Length Bins 0 > 10 < 5 0 > 10 < 5 

(198,439] 871 115 537 837 155 532  (198,439] 1167 14 342 1114 10 399 
(439,680] 6187 688 3421 5656 1046 3594  (439,680] 8167 60 2069 7529 68 2699 
(680,920] 6137 536 3254 5453 1008 3466  (680,920] 7980 45 1902 7259 66 2602 
(920,1160] 6183 705 3476 5693 1053 3618  (920,1160] 8132 44 2188 7578 69 2717 
(1160,1400] 5436 888 3596 5449 1008 3463  (1160,1400] 7411 44 2465 7254 66 2600 
(1400,1640] 3946 1072 3100 4459 825 2834  (1400,1640] 5472 57 2589 5936 54 2128 
(1640,1880] 2491 1268 2260 3306 611 2101  (1640,1880] 3359 78 2582 4401 40 1578 
(1880,2120] 873 668 772 1271 235 807  (1880,2120] 1073 47 1193 1691 15 606 
  
a  PCR fragment lengths were divided into bins of 240 bp 
b   Number of NoCall samples in each bin with 0, > 10 NoCalls, or <5 NoCalls



Table 9.  Chisquare test of the numbers of calls per genotype for all SNPs for 4 individual samples 
 
Sample 1433B3;  DM call rate = 82.92;  BRLMM call rate = 92.81;  overall chip intensity 
= 10.34          
A.  DM algorithm         B.  BRLMM algorithm       
 p-value = 2.2 x 10 -16       p-value = 3.58 x 10 -6       

 Observed # of each genotype Expected # of each genotype   
Observed # of each 

genotype 
Expected # of each 

genotype 
Binsa AA AB BB NC AA AB BB NC  Bins AA AB BB NC AA AB BB NC 
(198,439] 475 330 426 292 515 279 469 260  (198,439] 115 446 547 415 109 488 474 451 
(439,680] 3402 2082 3194 1618 3485 1883 3170 1758  (439,680] 707 3217 3355 3017 739 3300 3204 3052 
(680,920] 3333 1960 3169 1465 3360 1816 3056 1695  (680,920] 668 3143 3083 3033 713 3182 3089 2943 
(920,1160] 3528 1970 3184 1682 3508 1896 3191 1769  (920,1160] 764 3314 3210 3076 744 3322 3225 3072 
(1160,1400] 3422 1739 3107 1652 3358 1815 3054 1694  (1160,1400] 791 3190 3001 2938 712 3180 3087 2941 
(1400,1640] 2701 1399 2467 1551 2748 1485 2499 1386  (1400,1640] 554 2574 2592 2398 583 2602 2526 2407 
(1640,1880] 2120 895 1751 1253 2037 1101 1853 1028  (1640,1880] 416 2070 1787 1746 432 1929 1873 1784 
(1880,2120] 813 322 707 471 783 423 712 395  (1880,2120] 185 792 623 713 166 741 720 686 
                   
                   
Sample 1062T1;  DM call rate = 90.59;  BRLMM call rate = 98.13;  overall chip intensity = 
10.35          
A.  DM algorithm         B.  BRLMM algorithm       
 p-value = 2.2 x 10 -16       p-value = 2.4 x 10 -9       

 Observed # of each genotype Expected # of each genotype   
Observed # of each 

genotype 
Expected # of each 

genotype 
Bins AA AB BB NC AA AB BB NC  Bins AA AB BB NC AA AB BB NC 
(198,439] 493 384 458 188 531 341 508 143  (198,439] 51 498 508 466 29 532 443 519 
(439,680] 3559 2425 3326 986 3592 2303 3432 970  (439,680] 239 3554 3134 3369 193 3599 2996 3508 
(680,920] 3399 2387 3346 795 3463 2220 3309 935  (680,920] 156 3402 2956 3413 186 3470 2889 3383 
(920,1160] 3610 2400 3530 824 3615 2318 3454 976  (920,1160] 191 3604 2995 3574 194 3622 3016 3532 
(1160,1400] 3521 2151 3329 919 3460 2219 3306 934  (1160,1400] 180 3528 2812 3400 186 3467 2887 3380 
(1400,1640] 2806 1715 2754 843 2832 1816 2706 765  (1400,1640] 136 2813 2327 2842 152 2837 2362 2766 
(1640,1880] 2177 1185 1973 684 2100 1346 2006 567  (1640,1880] 101 2202 1665 2051 113 2104 1752 2051 
(1880,2120] 835 433 776 269 807 517 771 218  (1880,2120] 41 839 621 812 43 808 673 788 

 
a  PCR fragment lengths were divided into bins of 240 bp 



Table 9.  Chisquare test of the numbers of calls per genotype for all SNPs for 4 individual samples, con’t 
 
Sample 1081B2; DM call rate = 92.89;  BRLMM call rate = 98.16;  overall chip intensity 
= 10.99          
A.  DM algorithm         B.  BRLMM algorithm       
 p-value = 2.2 x 10 -16       p-value = 2.2 x 10 -16       

 Observed # of each genotype Expected # of each genotype   
Observed # of each 

genotype 
Expected # of each 

genotype 
Binsa AA AB BB NC AA AB BB NC  Bins AA AB BB NC AA AB BB NC 
(198,439] 500 426 499 98 528 365 522 108  (198,439] 30 493 502 498 28 524 447 524 
(439,680] 3538 2776 3408 574 3573 2465 3526 732  (439,680] 145 3517 3219 3415 189 3540 3024 3543 
(680,920] 3459 2607 3422 439 3445 2377 3400 706  (680,920] 109 3443 2944 3431 183 3413 2915 3416 
(920,1160] 3625 2623 3553 563 3596 2481 3550 737  (920,1160] 142 3603 3052 3567 191 3563 3044 3566 
(1160,1400] 3479 2273 3516 652 3442 2375 3398 705  (1160,1400] 170 3443 2775 3532 183 3411 2913 3413 
(1400,1640] 2803 1752 2847 716 2817 1943 2780 577  (1400,1640] 202 2754 2317 2845 149 2791 2384 2793 
(1640,1880] 2106 1140 2024 749 2089 1441 2062 428  (1640,1880] 189 2081 1701 2048 111 2069 1768 2071 
(1880,2120] 783 403 761 366 803 554 792 164  (1880,2120] 89 773 665 786 43 795 679 796 
                   
                   
Sample 1390T3;  DM call rate = 97.39;  BRLMM call rate = 99.5;  overall chip intensity 
= 11.05          
A.  DM algorithm         B.  BRLMM algorithm       
 p-value = 2.2 x 10 -16       p-value = 2.2 x 10 -16       

 Observed # of each genotype Expected # of each genotype   
Observed # of each 

genotype 
Expected # of each 

genotype 
Bins AA AB BB NC AA AB BB NC  Bins AA AB BB NC AA AB BB NC 
(198,439] 490 517 507 9 535 413 535 40  (198,439] 6 491 520 506 8 537 441 538 
(439,680] 3537 3108 3541 110 3619 2795 3613 269  (439,680] 16 3549 3175 3556 51 3628 2980 3636 
(680,920] 3455 2872 3512 88 3489 2695 3484 259  (680,920] 12 3461 2925 3529 49 3498 2874 3506 
(920,1160] 3682 2907 3648 127 3642 2814 3637 270  (920,1160] 28 3690 2986 3660 51 3652 3000 3660 
(1160,1400] 3510 2663 3569 178 3486 2693 3481 259  (1160,1400] 24 3521 2799 3576 49 3496 2872 3504 
(1400,1640] 2858 2047 2912 301 2853 2204 2849 212  (1400,1640] 52 2862 2263 2941 40 2861 2350 2867 
(1640,1880] 2179 1347 2043 450 2115 1634 2112 157  (1640,1880] 90 2187 1662 2080 30 2121 1742 2126 
(1880,2120] 842 416 792 263 813 628 812 60  (1880,2120] 61 848 598 806 11 815 670 817 

 
a  PCR fragment lengths were divided into bins of 240 bp



Table 10.  Proportion of calls of all SNPs across all samples 
  Average proportion of all SNPs 

Total number of 
SNPs 

  hetAA hetAB hetBB 

all 
samples 
AB hets 

invariant 
across all 
samples 

DM XbaI 0.3704 0.2639 0.3657 9 4399 
DM HindIII 0.3797 0.2489 0.3714 13 9483 
BRLMM XbaI 0.3535 0.2952 0.3513 9 5421 
BRLMM HindIII 0.3724 0.2624 0.3652 13 8869 

 
 
Table 11.  SNPs significantly out of Hardy-Weinberg Equilibrium 
 
A.  SNPs for which all samples were used in 
calculating HWE     
  unadjusted p-value for samples: FDR  
  all AD ctrl ctrl AD 
DM.Hind Minimum p-val 8.03E-16 2.65E-07 1.79E-08 0.000102213 0.0012662 

 
number of SNPs with 
p-val <0.05 2970 1883 1942 107 47 

DM.Xba Minimum p-val 8.03E-16 4.28E-08 1.79E-08 0.000216225 0.0022358 

 
number of SNPs with 
p-val <0.05 5593 3160 3639 232 109 

BRLMM.Hind Minimum p-val 8.03E-16 2.65E-07 1.79E-08 0.0000852 0.0009497 

 
number of SNPs with 
p-val <0.05 2268 1485 1661 83 44 

BRLMM.Xba Minimum p-val 8.03E-16 4.28E-08 1.79E-08 0.000131596 0.0014228 

 
number of SNPs with 
p-val <0.05 3024 1878 2160 89 60 

       
B.  SNPs with 0, 1 or 2 NoCalls 
across all samples      
  unadjusted p-value for samples: FDR  
  all AD ctrl ctrl AD 
DM.Hind Minimum p-val 8.03E-16 2.65E-07 1.79E-08 0.0002162 0.001266 

 
number of SNPs with 
p-val <0.05 1919 1240 1362 57 25 

DM.Xba Minimum p-val 8.03E-16 4.28E-08 1.79E-08 0.0002162 0.002236 

 
number of SNPs with 
p-val <0.05 1767 1126 1287 70 34 

BRLMM.Hind Minimum p-val 8.03E-16 2.65E-07 1.79E-08 0.0000851 0.000978 

 
number of SNPs with 
p-val <0.05 2130 1423 1580 69 35 

BRLMM.Xba Minimum p-val 8.03E-16 4.28E-08 1.79E-08 0.0001423 0.0012758 

 
number of SNPs with 
p-val <0.05 2431 1541 1810 65 40 
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Table 12.  Relationship between SNPs out of HWE and fragment length 
 
A. HWE all uncorrected p-val   
p-value = 2.2 x 10 -16    
 observed expected 
Frag. lengtha p>0.05 p<0.05 p>0.05 p<0.05 
(198,439] 1393 130 1380 143 
(439,680] 9414 882 9331 965 
(680,920] 9189 738 8997 930 
(920,1160] 9499 865 9393 971 
(1160,1400] 9026 894 8991 929 
(1400,1640] 7259 859 7357 761 
(1640,1880] 5208 811 5455 564 
(1880,2120] 2013 300 2096 217 
     
B.  HWE corrected p-val for controls   
p-value = 0.00074    
 observed expected 
Frag. length p>0.05 p<0.05 p>0.05 p<0.05 
(198,439] 1520 3 1518 5 
(439,680] 10265 31 10260 36 
(680,920] 9909 18 9893 34 
(920,1160] 10337 27 10328 36 
(1160,1400] 9874 46 9886 34 
(1400,1640] 8087 31 8090 28 
(1640,1880] 5987 32 5998 21 
(1880,2120] 2299 14 2305 8 
     
C.  HWE corrected p-value for AD cases  
p-value = 0.9432     
 observed expected 
Frag. length p>0.05 p<0.05 p>0.05 p<0.05 
(198,439] 1521 2 1521 2 
(439,680] 10281 15 10281 15 
(680,920] 9915 12 9912 15 
(920,1160] 10350 14 10349 15 
(1160,1400] 9903 17 9905 15 
(1400,1640] 8105 13 8106 12 
(1640,1880] 6010 9 6010 9 
(1880,2120] 2309 4 2310 3 

 
a  PCR fragment lengths were divided into bins of 240 bp and the number of SNPs out of 
HWE (p<0.05) was compared among bins by χ2 analysis. 
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Table 13.  Relationship of PCR fragment length and Average Intensity values per SNP. 
 
Sample 1081B2; DM call rate = 92.89;  BRLMM call rate = 98.16;  overall chip intensity = 10.99     
p-value = 2.2 x 10-16          

Observed Expected 
Intensity value binsb Intensity value bins Fragment 

Length 
Binsa

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

(198,439] 210 283 317 354 359 305 305 305 305 304 
(439,680] 1189 1529 1988 2408 3182 2061 2063 2060 2060 2053 
(680,920] 976 1369 1871 2477 3234 1987 1989 1986 1986 1979 

(920,1160] 1355 1808 2206 2450 2545 2074 2077 2074 2073 2066 
(1160,1400] 1955 2171 2213 2060 1521 1986 1988 1985 1984 1978 
(1400,1640] 2390 2137 1716 1257 618 1625 1627 1624 1624 1618 
(1640,1880] 2491 1741 1034 576 177 1205 1206 1204 1204 1200 
(1880,2120] 1139 679 357 116 22 463 463 463 463 461 

           
Sample 1062T1;  DM call rate = 90.59;  BRLMM call rate = 98.13;  overall chip intensity = 10.35     
p-value = 2.2 x 10-16          

Observed Expected 
Intensity value bins Intensity value bins Fragment 

Length 
Bins 

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

(198,439] 244 273 298 333 375 305 305 305 305 303 
(439,680] 1586 1706 1898 2202 2904 2063 2061 2060 2061 2051 
(680,920] 1443 1621 1876 2200 2787 1989 1987 1986 1987 1978 

(920,1160] 1768 1921 2123 2235 2317 2077 2075 2073 2074 2065 
(1160,1400] 2091 2074 2062 2049 1644 1988 1986 1984 1986 1976 
(1400,1640] 2073 1930 1697 1431 987 1627 1625 1624 1625 1617 
(1640,1880] 1759 1579 1269 934 478 1206 1205 1204 1205 1199 
(1880,2120] 756 603 475 321 158 464 463 463 463 461 

a  PCR fragment lengths were divided into bins of 240 bp  
b   Intensity values of SNPs were divided into bins and the number of SNPs in each bin was compared by χ2 analysis



Table 13.  Relationship of PCR fragment length and Average Intensity values per SNP, con’t. 
 
Sample 1433B3;  DM call rate = 82.92;  BRLMM call rate = 92.81;  overall chip intensity = 10.34     
p-value = 2.2 x 10-16          

Observed Expected 
Intensity value binsb Intensity value bins Fragment 

Length 
Binsa

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

(198,439] 241 240 333 340 369 305 305 305 305 303 
(439,680] 1605 1725 1926 2265 2775 2064 2060 2061 2059 2052 
(680,920] 1494 1751 1998 2193 2491 1990 1986 1987 1986 1978 

(920,1160] 1838 2010 2091 2241 2184 2078 2074 2074 2073 2065 
(1160,1400] 2097 2069 2077 1933 1744 1989 1985 1985 1984 1977 
(1400,1640] 2035 1852 1644 1413 1174 1627 1624 1625 1624 1618 
(1640,1880] 1705 1495 1187 969 663 1207 1204 1205 1204 1199 
(1880,2120] 709 560 448 343 253 464 463 463 463 461 

           
Sample 1390T3;  DM call rate = 97.39;  BRLMM call rate = 99.5;  overall chip intensity = 11.05     
p-value = 2.2 x 10-16          

Observed Expected 
Intensity value bins Intensity value bins Fragment 

Length 
Bins 

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

[ 814, 
1941) 

[1941, 
2417) 

[2417, 
2975) 

[2975, 
3852) [3852,16301] 

(198,439] 49 125 233 373 743 305 305 305 305 303 
(439,680] 506 1072 1792 2706 4220 2062 2063 2060 2059 2051 
(680,920] 531 1130 1997 2727 3542 1988 1989 1986 1986 1978 

(920,1160] 897 1910 2530 2855 2172 2076 2077 2074 2073 2065 
(1160,1400] 1798 2571 2734 2044 773 1987 1988 1985 1984 1976 
(1400,1640] 2794 2651 1718 786 169 1626 1627 1624 1624 1617 
(1640,1880] 3460 1785 584 161 29 1206 1206 1204 1204 1199 
(1880,2120] 1678 474 113 45 3 463 463 463 463 461 

 
a  PCR fragment lengths were divided into bins of 240 bp  
b   Intensity values of SNPs were divided into bins and the number of SNPs in each bin was compared by χ2 analysis 



Table 14.  Relationship between SNPs out of HWE and Number of NoCalls across 
samples 
 
A.  HWE all uncorrected p-val   
p-value = 2.2 x 10 -16    
 Observed Expected 
# NC across 
samplesa p>0.05 p<0.05 p>0.05 p<0.05 
(0,5] 21270 1626 19855 3041 
(5,10] 5522 1280 5899 903 
(10,15] 2075 879 2562 392 
(15,20] 728 494 1060 162 
(20,25] 324 233 483 74 
(25,30] 132 70 175 27 
(30,35] 69 30 86 13 
(35,40] 21 3 21 3 
(40,47] 9 2 10 1 
     
     
B.  HWE corrected p-val for controls   
p-value = 2.2 x 10 -16    
 Observed Expected 
# NC across 
samples p>0.05 p<0.05 p>0.05 p<0.05 
(0,5] 22827 69 22766 130 
(5,10] 6748 54 6763 39 
(10,15] 2918 36 2937 17 
(15,20] 1202 20 1215 7 
(20,25] 541 16 554 3 
(25,30] 200 2 201 1 
(30,35] 99 0 98 1 
(35,40] 24 0 24 0 
(40,47] 11 0 11 0 
     
C.  HWE corrected p-value for AD cases  
p-value = 2.9 x 10 -12    
 Observed Expected 
# NC across 
samples p>0.05 p<0.05 p>0.05 p<0.05 
(0,5] 22868 28 22835 61 
(5,10] 6775 27 6784 18 
(10,15] 2931 23 2946 8 
(15,20] 1212 10 1219 3 
(20,25] 553 4 556 1 
(25,30] 202 0 201 1 
(30,35] 99 0 99 0 
(35,40] 24 0 24 0 
(40,47] 11 0 11 0 

 
a    The number of NoCalls was divided into bins and the number of SNPs out of HWE 
(p<0.05) was compared among bins by χ2 analysis. 
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Chapter IV.  The Effect of Copy Number Variation on Gene Expression in Age-

related Cognitive Decline  

Introduction: 

 Techniques for studying genome wide phenomena have revealed the complexity 

of cellular processes and the underlying genetic variation contributing to them.  The 

appreciation of the dynamic nature of the human genome has expanded our view of the 

ways in which DNA sequence variation can contribute to phenotypic differences.  

Genomic structural variation from 1 base pair to many megabases in size have been 

associated with various disease processes [43].   Gene expression levels in particular have 

been shown to be affected by the more subtle variations in DNA sequence such as SNPs 

[3, 38, 122, 123].  Larger variations in DNA structure such as amplifications and 

deletions of chromosomal DNA have been known to affect gene expression levels in 

cancer cells [52-55] and have recently been shown to affect expression in normal 

individuals[56].  However, it is unknown how individual copy number variants may 

impact differential gene expression as determined in whole genome profiling studies 

from studies investigating diseases other than cancer.   

 We set out to investigate the influence of normal copy number variation (CNV) 

on our gene expression study (Chapter II, [57]) using Affymetrix 100K GeneChips.  

Because the majority of copy number studies concern cancer cells, the algorithms for 

estimating copy number are optimized for the particular genomic characteristics of cancer 

DNA anomalies.  We evaluated several algorithms with respect to the hybridization assay 

protocol and characteristics of the DNA fragments hybridized to the chips (Chapter III) to 

determine the most robust algorithm for detecting copy number variation across samples 

 108 



of non-cancer cells.  We highlight the algorithmic factors necessary for effective 

normalization across arrays in an experiment and the effect it has on the ability of the 

various algorithms to detect and estimate CNVs.  We found that  both common copy 

number variation as well as the individual copy number variation among the samples 

could contribute to differential gene expression in gene profiling studies.   

2.  Materials and Methods:  

2A.  DNA isolation and Hybridization:   

 DNA from subjects with a clinical diagnosis of no dementia within a year of death  

(N= 30) or Probable AD (N= 25) [65]was used in this study.  All subjects were 

participants in studies performed by the Layton Aging and Alzheimer ’s disease Center, 

Portland, Oregon which maintains an extensive collection of well characterized sample 

material and clinical data.  DNA was isolated from either whole blood or postmortem 

human frontal cortex brain tissue.  DNA from whole blood was isolated using the QIAmp 

DNA blood kit (Qiagen, Valencia, CA).  For deceased subjects, approximately 100 mg of 

brain tissue (previously frozen at -80oC) was processed for genomic DNA using the 

Wizard Genomic DNA purification Kit (Promega, Madison WI) following 

manufacturer’s instructions.   

Isolated genomic DNA from each subject was digested and labeled following 

manufacturer’s instructions (Affymetrix Inc., Santa Clara, CA). Briefly, 250ng of 

genomic DNA was digested with a restriction enzyme (XbaI or HindIII), ligated to an 

appropriate adapter for each enzyme, and amplified by PCR using a single primer.  The 

PCR products were then digested with DNaseI, labeled and hybridized separately to the 

Affymetrix GeneChip Mapping 100K array chips. The arrays were scanned and 
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genotypes called by the DM and BRLMM algorithms. These arrays contain probe sets to 

interrogate 58960 (XbaI) and 58974 (HindIII) SNPs across the entire human genome.  

Sample labeling and array hybridizations and processing were performed in the 

Affymetrix Microarray Core, Gene Microarray Shared Resource, Oregon Health & 

Science University. 

2B.  CNV program evaluation: 

 Three programs were chosen for evaluation:  dChipSNP[137], PLASQ [138] and 

CNAGv2 [131].  Each program was evaluated using the default settings and a common 

reference data set.  Copy number estimation is based on a DNA change relative to a 

reference sample(s).  Non-demented samples were used as the reference set in this study.  

Nine samples were chosen as the reference set due to the memory constraints of the 

PLASQ program.  Program choice was driven by the ability of the program to determine 

CNV on the Affymetrix 100K mapping platform and public availability of the program.  

The Affymetrix CNAT 3.0 algorithm was not used in the comparison because upon initial 

evaluation, it did not provide for normalizing across samples.  The three chosen 

algorithms are model based and use the information from the probes and targets across 

the samples to estimate copy number.   

 CNV results from all analyses were imported into a custom designed Microsoft 

Access database for storage and comparison. 

2C.  Gene Expression Profiling: 

Differential gene expression of subjects with clinical diagnosis of AD (5 subjects) 

relative to non-demented subjects (9 subjects) using Affymetrix GeneChip HG-U133 

Plus 2.0 arrays was performed in a previous study (Chapter II, [57]).  All samples used 
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for gene expression were also used in this study and augmented by an additional non-

demented (N=25) and Probable AD (N=14) subjects.  Probe sets were annotated for 

genomic region using Affymetrix annotation files 

(http://www.affymetrix.com/support/technical/byproduct.affx?product=100k).  Genomic 

location was used to compare probe sets with the copy number variable regions in this 

study.  Probes sets within these regions were flagged based on their differential gene 

expression in the whole genome expression study.  

2D.  Statistical Analysis and Annotation: 

 Statistical analyses were performed in the R v2.3.1 system for statistical 

computation ([126], http://www.R-project.org) using standard libraries and custom built 

scripts.  Copy number variable regions found on the array were annotated for gene name, 

function, and chromosome location using NetAffx 

(http://www.affymetrix.com/analysis/index.affx) for PLASQ and CNAG.  The dChipSNP 

annotation file  was used for dChipSNP.  All annotations were done using NCBI build 

35.   Annotation files were compared by Probe set ID and chromosome location.  

Discrepancies were evaluated using Blast ([139], NCBI).  

Published CNV regions were obtained from the Database for Genomic Variants 

([140], http://projects.tcag.ca/variation/) and compared to the CNV regions in this study 

using genomic location. 

Differentially expressed genes identified in the previous study ([57], Chapter. II) 

were assigned to Biological Process categories of the Gene Ontology (GO) Consortium 

(http://www.geneontology.org/ DATE).  We used GOSTAT [75] to assess representation 
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of differentially expressed genes within CNV regions compared to all genes within CNV 

regions by χ2 analysis with a FDR adjusted significance level of 0.05 [76].  

Results: 

3A.  Concordance among Copy Number Estimation Programs is Low 

Both dChipSNP and CNAG were evaluated using the Hidden Markov Model 

(HMM) option as this has been the most robust under the cancer tissue model [15, 58].  

HMMs are statistical models in which the most likely hidden parameters are inferred 

from a sequence of observable parameters [141].  The copy number at a particular SNP is 

considered to be a “hidden” state and the process is assumed Markovian in that the 

probability of the copy numbers at the SNP previous and next SNPs are independent of 

the copy number at the present SNP.  This results in a most likely “path” of copy 

numbers at each SNP along a chromosome.  The PLASQ algorithm was evaluated using 

the default parameters.  PLASQ is a model based algorithm that specifically models the 

location of the Probe set offsets and utilizes a circular binary segmentation algorithm 

[142] to identify segments of copy number changes along the chromosome.   

There is a large discrepancy between the identified amplifications and deletions 

based on the choice of method (Table 1).  PLASQ identified mostly deletions (11099 vs. 

61 amplifications) while dChipSNP identified 83007 amplifications and 21340 deletions.   

CNAG identified fewer SNPs overall (2638) and all of these were included in both 

dChipSNP and PLASQ.   

 There is greater overlap between samples showing CNV with CNAG and 

dChipSNP than with PLASQ.  Although PLASQ and dChipSNP had more CNV SNPs in 

common (10302), only 3703 were concordant as amplifications or deletions.  Of the 2612 
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deletions concordant among all 3 programs, 2304 are on chromosome 23.  This is due to 

the dosage difference of the X chromosome between males and females. 

 Gene annotations were based on NCBI build 35 for all three programs.  Because 

of the dynamic nature of annotations among databases and sources, we compared the 

annotations provided by each program.   The SNP IDs showed discrepancies for 40 genes 

(Table 2) between dChipSNP and Affymetrix annotations.  PLASQ and CNAG 

annotations were identical to those of Affymetrix.  Alignments of SNP probe sequences  

using BLAST showed homology to sequences on chromosomes listed in the dChipSNP 

annotations.  Therefore, the dChipSNP annotations were used in all analyses. 

 The dChipSNP and CNAG programs were first analyzed using the HMM features 

available in each program because HMMs have been shown to give the accurate results.  

However, these algorithms were optimized for cancer phenotypes because of the high 

frequency of copy number changes in cancer cells [58].  Chromosomal aberrations in 

cancer cells generally involve large sections of highly variable DNA.  It was unclear 

whether HMM would be applicable to this study due to the smaller predicted size of the 

variable regions in normal CNV. Therefore, a trimmed analysis (dChipSNP mannual) and 

a median smoothing  method in dChipSNP were also considered.  The trimmed analysis 

is most likely to identify rare copy number variants and not common CNV regions across 

the samples because it selects for the extreme values. Therefore, it was not continued 

because the copy number changes in normal individuals and possibly those of interest in 

AD may have higher frequency in the population and only the outliers are detected in a 

trimmed analysis.  Based on the median smoothing method, there was a bias due to the 

date the samples were hybridized to the chips (Figure 1).  Both the DM and BRLMM call 
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rates as well as the overall chip intensity showed this dependence on hybridization date 

(Table 3).   

CNAG corrects for both PCR fragment length and GC content [131] which the 

previous study determined are the primary cause of batch effects (Chapter III).  Although 

both PLASQ and dChipSNP are model based algorithms, they were not as effective in 

correcting for the batch effects seen in this study.  Therefore, the rest of the analyses were 

done using CNAG. 

3B.  Reference Data Set Affects Copy Number Detection: 

 The copy number of a particular sample is estimated relative to a reference 

sample.  For the previous analyses, samples from the same nine non-demented subjects 

were used as the reference.  To investigate the effect of reference set on copy number 

detection and estimation, several other references data sets were used.  For a normal 

population the common options for a copy number reference are: 1) to choose one sample 

and compare all other samples to it, 2) choose a set of all control samples as a reference 

data set and compare all case samples to this data set.  Because one purpose of this study 

is to determine the effect of copy number variation on gene expression, another option for 

a reference set is to use the non-demented samples from the gene expression study and 

compare all other samples to it.  The severe batch effects necessitated the use of CNAG 

which has an alternate strategy for choosing a reference data set.   

 Data sets were examined for the purpose of reducing the batch effects. One option 

is to choose a fixed number of reference samples to compare to all other samples.  A 

second option is to allow the program to chose within a given reference data set, the “best 

fit” of the number of samples that give the lowest SD across all SNPs.  This means that 
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the reference data set will be different for each sample.  These two options were 

investigated with the following reference data sets:   

1) the nine expression non-demented samples as the fixed set (expr all) 

2) the nine expression non-demented samples as the best fit set (expr best fit 

3) nine non-demented samples not part of the expression study as the fixed set 

(samp) 

4) a set of non-demented samples with low DM call rates as the best fit set (low) 

5) a set of non-demented samples with high DM call rates as the best fit set (high) 

6) the total number of non-demented samples as the best fit set (total bestfit) 

 The reference data set using ‘options 6’,  the total number of non-demented 

samples in the study, gave the lowest mean and SD across intensity ratios (Table 4).  All 

other reference data sets were comparable to each other.  This is probably due to both a 

larger sample size and allowing the CNAG algorithm to choose only those samples that 

match the test sample in intensity values across all SNPs.  This will reduce the variability 

of the test sample/reference set ratio and increase the ability to identify copy number 

variants.  

 Comparison of the CNV regions as estimated by CNAG using each reference data 

set shows the dependence of CNV determination on reference samples.  The expression 

samples, whether at the fixed or best fit setting, gave the highest number of CNV regions 

(Table 5A) or SNPs (Table 5B).   The total reference data set gave the least number 

(CNV 526).   
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2C.  Data Quality Affects CN Estimation: 

 All samples hybridized to the HindIII and XbaI chips were tested for data quality 

based on the following criteria:  genotyping call rate, variability of log2 intensity ratios 

across all SNPs on the chip and the ratio of copy number variable (CNV) regions on the 

two chips based on the CNAG algorithm. 

 Differences of hybridization quality were seen between the HindIII and XbaI 

chips where the HindIII chip gave consistently higher call rates (Table 4).  The BRLMM 

algorithm generally gave improved call rates over the DM algorithm for all samples.  

Nevertheless, there were two HindIII samples (1430B1, 1456B3) and one XbaI (1433B3) 

with BRLMM call rates of < 93%.  These samples also had higher variability of log2 

intensity ratios across all SNPs on the chip (Table sample characteristics).  Standard 

deviations (SD) across all chips were less than 0.4 for all samples except these three. 

 To determine whether the variability in intensity values was sample dependent or 

hybridization dependent, the ratio of CNV regions of the chips relative to each other was 

determined (Table 6A).  All ratios were between 0.18 and 6.5 except for two samples, 

1430B1 (ratio HindIII: XbaI = 181), and 1433B3 (ratio HindIII: XbaI = 0.12).  Sample 

1456B3 had a ratio of 3.4 using only one best fit reference sample and a ratio of 57.31 

using the best fit 3 reference samples.  A ratio different from 1 shows an imbalance in 

hybridizations between chips and suggests technical difficulties.  These three samples 

(1430B1, 1433B3, 1456B3) were removed from the final data set. 

 Removing these problematic samples from the final data set reduced the 

variability across all SNPs (Table 7).   The reduced data set shows a decrease in CNV 

regions and CNV SNPs (Table 8).  Contiguous CNV SNPs are considered one CNV 
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region.  The concordance of CNV regions and CNV SNPs between the data sets using all 

control samples as references (total refs) and the data set without the three samples 

(reduced set) showed that 97% of the reduced set is concordant with the full data set 

(Table 8). 

 The reduced data set, therefore, was chosen as the final data set.  Analyses of 

CNV on chromosome 23 was done separately using the reduced data set and only same 

sex references were used to determine copy number on the X chromosome (Table 7). 

 Finally, all SNPs that had an intensity log2 ratio = 0 across all samples were 

removed from further analysis (12 SNPs). 

 Throughout the analyses, the HindIII and XbaI chips were analyzed separately.  

The rationale for this was twofold.  First, the pattern of variability across the two chips 

was different as shown by the genotyping call rates and the SD across all SNPs.  

Secondly, the control references used to determine CNV were different for each sample 

and for each chip due to the criteria of fitting only those sample references that did not 

increase the SD across the SNPs.  Therefore, CNV regions on each chip are relative to 

only those samples used as the references and may be different for the two chips.  The 

number of CNV per sample varies from 0 to 6 across all samples (data not shown). 

3D.  Distribution of CNV regions: 

 A total of 295 regions across the genome were found to be copy number variable 

(Table 9A).  All chromosomes contained regions of CNV.  All samples in the study 

except for one had CNV regions (Table 10).  Of these, 268 showed a gain in DNA, 19 a 

loss and 8 regions had samples with either a loss or a gain.  All chromosomes showed 

multiple CNV regions with the larger chromosomes containing more regions.  
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Chromosome 4 had the highest number of CNV regions (26), whereas chromosome 22 

had the least (3).  None of the discrepant SNPs (Table 2) were located in CNV regions. 

 CNV regions were identified based on 1- 36 SNPs with the largest region being 

on chromosome 23.  Multiple samples with copy number variants were found in 29 

regions.  Twelve of these regions have been previously published.  Regions on 

chromosomes 14 and 15 were the most variable across the samples in this study (10 and 

26 samples, respectively). 

 Genomic regions previously associated with AD through genetic mapping studies 

were compared to CNV regions (Table 11).  All AD linked regions (87.5%) except 1q23-

31 and 9p21 contain CNV regions.  Twelve of these CNV regions are supported by more 

than one SNP and 8 CNV regions in 3 AD linked regions are represented by more than 

one sample.    

3E.  Comparison with CNV regions previously published: 

 Previously published CNV regions were downloaded from the Database of 

Genomic Variants (http://projects.tcag.ca/variation/).  A total of 2191 loci are known to 

be CNV.  Of the 295 regions found in this study, 68 have been identified previously 

(Tables 9B and 12).   Five regions are located within AD linked regions (Table 11). 

 CNV regions supported by more than one sample found in this study but not in 

previous studies were located in 19 regions on 11 chromosomes (Tables 10 and 12).  Six 

of these regions were supported by more than one SNP.   

 The reference data set defines the copy number change in a data set.  Therefore, 

copy number variants may show gains or losses differently from study to study.  This has 
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implications for a meta analysis and suggests that a literature based approach may not be 

as informative for absolute CN variability estimates.   

3F.  Comparison of CNV regions with differentially expressed probe sets: 

 Previously studied gene expression differences in AD subjects relative to controls 

were used to determine the possible effect of CNV regions on gene expression results.   

All probe sets on the HG133 Plus2 array were combined with the CNV regions found in 

this study (Table 13).  Of the 54,000 probes sets on the array, 855 were located in the 

CNV regions.  Of these, 119 probe sets were differentially expressed and 112 were 

located within the coding regions of the genes (Table 13).  Seventy-one were located in 

previously published CNV regions.  Multiple samples were variable for 38 probe sets 

located in 7 CNV regions.   

 Analysis for over or under representation of Biological Processes in the GO 

categories for the differentially expressed genes relative to all genes in the CNV regions 

showed no processes significantly over or under represented than expected by chance.  

4.  Discussion: 

 Recent discoveries of the extent of copy number variants (CNVs) across the 

human genome indicate that normal genetic variation encompasses a wider range of 

genomic architecture than previously thought and raises the question of whether these 

variants could influence complex traits.  To determine the impact of CNVs on gene 

expression, we compared copy number variation and gene expression in a population of 

cognitively healthy individuals and individuals with Alzheimer’s disease (AD).  We 

identified 280 loci across the genome that are copy number variable in our population.  

Nineteen of these regions were unique to this study.  Comparison with differentially 
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expressed genes revealed that 119 differentially expressed probe sets were located within 

copy number variable regions.  Overall, 22.9% of differentially expressed genes in our 

population could be affected by copy number variability.  

4.1 Copy number algorithm affects identification of CNV 

 The significance of the impact due to the underlying model used to determine the 

CNV regions is highlighted by the low concordance of copy number variable regions 

identified by the different algorithms.  Of the three algorithms tested in this study, only 

CNAG corrects for the PCR fragment length and the GC content of the probes.  This is 

crucial for reducing the variability in the data and obtaining accurate relative copy 

numbers.  The option available in the CNAG algorithm that compares all reference 

samples to each test sample and selects the least variable reference sample set based on 

standard deviation across all the samples.  This is a stringent method of CNV detection 

which should allow for more false negatives while controlling for fewer false positives.  

Chips processed in the same batch had lower standard deviation than those across 

batches.  Thus, the reference samples selected tended to be samples hybridized in the 

same batch as the test samples.  For an unpaired experimental design, batch effects had 

the greatest impact on relative intensity values between test and reference samples.  Copy 

number algorithms correcting for batch effects are more accurate in identifying copy 

number differences.  

 CNV regions comprising single SNPs are of lower confidence than CNV regions 

with more than one SNP.  Nevertheless, these SNPs were kept in the analysis as CNVs 

<100kb in length are more numerous in the genome than CNVs >100kb [13].  Studies 
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using arrays of higher SNP density would provide higher resolution to refine the regions 

of CNV. 

4.2 CNV regions impact differentially expressed genes 

 Gene regulation is a complex process and CNV is one possible mechanism for 

altering expression of genes located within the CNV region and of genes in downstream 

cascades.  This study shows that differentially expressed genes are located within CNV 

regions and that nearly all samples had CNV regions impacting these genes.  Many of the 

CNVs were found in one or a few individuals suggesting substantial individual 

differences in gene copy number across the genome [8, 143].  The most common genes 

affected by CNVs were the olfactory receptors and the immunoglobulin genes as has 

been seen in previous studies [8].  Overall,  22.9% of the differentially expressed probe 

sets were possibly affected by CNV suggesting a role for CNV in functionally relevant 

genetic variation.  Expression within a CNV region was not necessarily affected by the 

number of genes suggesting that gene expression regulation networks can absorb much of 

the “normal” copy number variation.   Nevertheless, these results indicate the need for 

considering the possibility of an underlying copy number difference in the altered 

expression in gene profiling studies.   

4.3 Considerations for Copy Number Determination in non-cancer tissues 

 As stated earlier, the algorithms used to determine copy number differences in 

this study were designed and optimized for cancer tissues which have a substantially 

different type of structural variation and genomic distribution from normal cells.  All 

subjects in this study would have CNVs characteristic of normal individuals as any 

structural variation characteristic of AD would still be more focused and of smaller 
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magnitude than those seen in cancer cells.   Smaller, more focused segments of CNV and 

fewer copy number extremes present a challenge for the current algorithms.  Major 

considerations were to explore appropriate reference data sets and to accommodate for 

batch effects within a study.   Intensity differences across batches increase the log2 ratio 

variability and decrease ability to identify copy number changes.  CNAG adjusts for 

batch effects by correcting for the PCR fragment length and probe GC content.  

Improvements in modeling the underlying process as well as increased SNP density are 

needed to increase the ability to identify copy number variants. 

 We evaluated the impact of CNV on gene expression within the limitations of our 

sample size, SNP coverage and CNV resolution.  Caveats about these data are as follows:  

 1) there will be some CNVs not identified because the reference data set changes 

based on minimum standard deviation  

2) some CNVs could be artifacts based on the number of SNPs used to call a 

CNV  

3) the resolution of the chip to identify CNVs is dependent on SNP density and so 

will vary across the genome 

4) likewise, boundaries of CNVs are dependent on local SNP density and 

therefore, CNVs smaller than interSNP density will be missed 

 5) inversions and balanced rearrangements will not be detected 

 As seen in other studies [8], the majority of CNVs are gains, probably owing to a 

greater tolerance in the genome for large gains versus deletions.  This also probably 

reflects the difficulty of detecting deletions due to the greater variability in lower 

intensity ranges. 
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 Although it lacks the power to investigate CNV effects on phenotype, this pilot 

study suggests that CNV effects may be individual and gene specific.  This has been seen 

in other studies  where an increase in CN variability is seen in a trait, but the specific 

region affected varies among individuals [144, 145].    
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Chapter IV.  Tables. 
 
Table 1. Concordance of SNPs among CN programs 
 

A.  Total number of SNPs concordant among the 3 methods 
  PLASQ dchip cnag 
 PLASQ 11160 10302 2638 
 dchip  104347 2638 
 cnag   2638 
     
 PLASQ/dchip/cnag = 2638  

 
Table 2.  Discrepancies between the Affymterix and dChipSNP annotations 
 

Affymetrix dChipSNP 
probeID chr pos probeID chr pos 

SNP_A-1648117 1 37194096 SNP_A-1648117 8 37132222 
SNP_A-1678541 2 7599411 SNP_A-1678541 5 7599149 
SNP_A-1725297 2 25127948 SNP_A-1725297 3 25127909 
SNP_A-1756770 2 35027805 SNP_A-1756770 3 35024569 
SNP_A-1695177 2 39527680 SNP_A-1695177 3 39513268 
SNP_A-1681558 2 108947883 SNP_A-1681558 4 109049099 
SNP_A-1707690 3 18595288 SNP_A-1707690 11 18603021 
SNP_A-1643381 3 22132614 SNP_A-1643381 20 22179614 
SNP_A-1720364 3 39561067 SNP_A-1720364 12 39561067 
SNP_A-1708353 3 73985190 SNP_A-1708353 8 73872597 
SNP_A-1753744 3 86003512 SNP_A-1753744 14 84923800 
SNP_A-1723789 3 116417029 SNP_A-1723789 6 116355906 
SNP_A-1704638 4 26882729 SNP_A-1704638 16 26941778 
SNP_A-1686768 4 52935752 SNP_A-1686768 14 51856040 
SNP_A-1754495 4 54567036 SNP_A-1754495 8 54454443 
SNP_A-1748811 4 104367631 SNP_A-1748811 13 103267631 
SNP_A-1717206 4 136045098 SNP_A-1717206 7 136003885 
SNP_A-1705265 4 136382126 SNP_A-1705265 5 136430443 
SNP_A-1753755 5 5453387 SNP_A-1753755 11 5461120 
SNP_A-1755468 5 24958546 SNP_A-1755468 14 23878834 
SNP_A-1710238 5 80558774 SNP_A-1710238 13 79458774 
SNP_A-1658231 6 66419538 SNP_A-1658231 10 66094135 
SNP_A-1690305 6 118221091 SNP_A-1690305 10 117895688 
SNP_A-1671975 7 19682770 SNP_A-1671975 16 19741822 
SNP_A-1674753 7 33916496 SNP_A-1674753 9 33916496 
SNP_A-1756363 7 83012428 SNP_A-1756363 11 83061088 
SNP_A-1704345 8 405401 SNP_A-1704345 18 405401 
SNP_A-1741271 8 62090667 SNP_A-1741271 16 63308379 
SNP_A-1682585 9 113115250 SNP_A-1682585 7 128603353 
SNP_A-1744215 9 130697593 SNP_A-1744215 11 130730035 
SNP_A-1647874 10 25804577 SNP_A-1647874 21 25804577 
SNP_A-1667621 10 64877754 SNP_A-1667621 12 64877754 
SNP_A-1664929 10 97536416 SNP_A-1664929 13 96436416 
SNP_A-1645865 11 58376174 SNP_A-1645865 18 58374163 
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SNP_A-1738821 11 81581498 SNP_A-1738821 13 80481498 
SNP_A-1737106 12 21619612 SNP_A-1737106 21 21619612 
SNP_A-1670271 12 41776810 SNP_A-1670271 15 41705574 
SNP_A-1708602 12 41941636 SNP_A-1708602 14 40861924 
SNP_A-1665266 13 38936088 SNP_A-1665266 23 38210772 
SNP_A-1658886 22 45975243 SNP_A-1658886 23 45264971 

 
Table 3.  Affect of Hybridization Date on log2ratio data a
 

chip intensity 
Expr 
bestfitb expall low high samp 

Total 
bestfit 

XbaI 8.55E-05 2.68E-07 2.81E-07 2.89E-06 1.56E-06 6.51E-05 0.0006809 
HindIII 0.06601 4.99E-08 4.99E-08 1.36E-06 1.28E-07 1.73E-06 3.33E-06 
        

 
a  p-values from the Kruskal-Wallis rank sum test.  Only dates on which >2 samples were 
hybridized wer e used. 
b  reference data sets are named as follows:   

1) the nine expression non-demented samples as the fixed set (expr all) 
2) the nine expression non-demented samples as the best fit set (expr best fit 
3) nine non-demented samples not part of the expression study as the fixed set 
(samp) 
4) a set of non-demented samples with low DM call rates as the best fit set (low) 
5) a set of non-demented samples with high DM call rates as the best fit set (high) 
6) the total number of non-demented samples as the best fit set (total bestfit) 

 
Table 4.  Summary statistics for array data across all samplesa

 
HindIII          

 
DM 
call 

BRLMM 
call intensity 

Expr 
bestfit.SD expall.SD samp.SD low.SD high.SD 

Total 
refs.SD 

Mean 97.656 99.226 10.954 0.253 0.253 0.251 0.259 0.262 0.172 
SD 2.175 1.378 0.289 0.086 0.086 0.080 0.091 0.086 0.061 
Max 99.640 99.920 11.571 0.524 0.524 0.607 0.692 0.568 0.514 
Min 89.210 92.890 9.843 0.145 0.145 0.174 0.154 0.159 0.112 
          
XbaI          

 
DM 
call 

BRLMM 
call intensity 

Expr 
bestfit.SD expall.SD samp.SD low.SD high.SD 

Total 
refs.SD 

Mean 94.116 98.540 10.688 0.259 0.259 0.240 0.247 0.254 0.169 
SD 2.811 1.028 0.303 0.070 0.069 0.044 0.050 0.059 0.035 
Max 99.270 99.670 11.323 0.471 0.471 0.435 0.394 0.462 0.323 
Min 82.920 92.810 9.975 0.143 0.143 0.154 0.152 0.162 0.113 

a  reference data sets are named as follows:   
1) the nine expression non-demented samples as the fixed set (expr all) 
2) the nine expression non-demented samples as the best fit set (expr best fit 
3) nine non-demented samples not part of the expression study as the fixed set 
(samp) 
4) a set of non-demented samples with low DM call rates as the best fit set (low) 
5) a set of non-demented samples with high DM call rates as the best fit set (high) 
6) the total number of non-demented samples as the best fit set (total bestfit) 
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Table 5.  Copy number variable regions based on CNAG analysis using different 
reference sample sets a
                     

A. regions 
expr 
bestfitb

expr 9 
fixed 

Low DM 
call rate 

High DM call 
rate 

9 fixed 
samples 

Total refs 
bestfit 

expr bestfit 1076 726 301 564 379 310 

expr 9 fixed  1038 322 626 403 279 
Low DM call 
rate   605 335 385 263 
High DM call 
rate    719 442 267 
9 fixed 
samples     593 269 
Total refs 
bestfit      526 

   
B. SNPs 

expr 
bestfit 

expr 9 
fixed 

Low DM 
call rate 

High DM call 
rate 

9 fixed 
samples 

Total refs 
bestfit 

expr bestfit 
95 
(12073) 83 (9575) 57 (5688) 61 (8139) 55 (6108) 49 (5568) 

expr 9 fixed  
110 
(11953) 80 (5981) 85 (8925) 79 (6500) 61 (4742) 

Low DM call 
rate   

247 
(10141) 85 (5986) 

131 
(6209) 95 (4084) 

High DM call 
rate    95 (10100) 84 (7165) 66 (4414) 
9 fixed 
samples     

179 
(8510) 86 (3911) 

Total refs 
bestfit      

119 
(5935) 

a  autosomes only 
b  reference data sets are named as follows:   

1) the nine expression non-demented samples as the fixed set (expr 9 fixed) 
2) the nine expression non-demented samples as the best fit set (expr bestfit 
3) nine non-demented samples not part of the expression study as the fixed set (9 
fixed samples) 
4) a set of non-demented samples with low DM call rates as the best fit set (low 
DM call rate) 
5) a set of non-demented samples with high DM call rates as the best fit set (high 
DN call rate) 
6) the total number of non-demented samples as the best fit set (total refs bestfit) 

 
Table 6.  Copy numbers for HindIII and XbaI chips a
 A.  total best fit reference data setb B.  reduced total reference set 
sample hind xba ratio hind xba ratio 
X464T3 3 15 0.2 3 15 0.200 
X497B3 112 17 6.5882353 112 17 6.588 
X515B3 6 10 0.6 6 10 0.600 
X555B3 7 10 0.7 7 10 0.700 
X588T1 42 12 3.5 42 12 3.500 
X597B3 44 30 1.4666667 44 30 1.467 
X615B3 23 15 1.5333333 23 15 1.533 
X538B3 8 15 0.5333333 8 15 0.533 
X840B1 7 22 0.3181818 7 22 0.318 
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X946B3 8 10 0.8 8 10 0.800 

X956T1 64 21 3.047619 64 21 3.048 
X1009B3 8 27 0.2962963 8 27 0.296 
X1081B2 2 10 0.2 2 10 0.200 
X1116B1 25 19 1.3157895 25 19 1.316 
X1430B1 5263 29 181.48276 0 29 0.000 
X1456B3 34 10 3.4 0 10 0.000 
X1476T3 2 11 0.1818182 2 11 0.182 
X1542T1 10 13 0.7692308 10 13 0.769 
X783B3 12 10 1.2 12 10 1.200 
X848B1 2 10 0.2 2 10 0.200 
X958B1 11 10 1.1 11 10 1.100 
X993B3 14 16 0.875 14 16 0.875 
X1013B1 14 25 0.56 11 25 0.440 
X1052T1 11 34 0.3235294 11 34 0.324 
X1065B3 3 10 0.3 3 10 0.300 
X1104B2 3 34 0.0882353 3 34 0.088 
X1153B3 3 34 0.0882353 3 34 0.088 
X1166B3 8 13 0.6153846 8 13 0.615 
X1317T2 7 18 0.3888889 7 18 0.389 
X1395B3 5 10 0.5 5 10 0.500 
X1399B3 9 22 0.4090909 9 22 0.409 
X1401B3 13 36 0.3611111 13 36 0.361 
X1432B1 2 10 0.2 2 10 0.200 
X1433B3 14 117 0.1196581 14 0 Inf 
X1466T2 10 14 0.7142857 13 14 0.929 
X1469B1 7 27 0.2592593 7 27 0.259 
X1488T3 6 23 0.2608696 6 23 0.261 
X810T1 14 14 1 14 14 1.000 
X869T1 9 29 0.3103448 16 27 0.593 
X334T2 11 36 0.3055556 11 36 0.306 
X1014T2 16 31 0.516129 16 31 0.516 
X1062T1 2 15 0.1333333 2 15 0.133 
X1229T2 7 29 0.2413793 7 29 0.241 
X1376T2 13 15 0.8666667 8 15 0.533 
X719T3 10 13 0.7692308 10 13 0.769 
X1309T1 14 11 1.2727273 14 11 1.273 
X862T1 7 24 0.2916667 6 24 0.250 
X1538T3 7 10 0.7 7 10 0.700 
X1524T2 7 11 0.6363636 7 11 0.636 
X1547T2 9 32 0.28125 9 32 0.281 
X486T2 10 15 0.6666667 17 15 1.133 
X697T2a 11 24 0.4583333 8 26 0.308 
X699T2a 8 10 0.8 9 11 0.818 
X1390T3a 10 28 0.3571429 10 28 0.357 

a   Autosomes only.  Copy numbers other than two. 
b   total best fit  reference data set compared to the total best fit set  with the three low 
quality sampels removed.
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Table 7.  Effect of data quality on variability across SNPs. 
 HindIII  XbaI 
  total.sda CNVshort CNV23 total.sd CNVshort CNV23 
Mean 0.172 0.163 0.177 0.169 0.165 0.179 
SD 0.061 0.036 0.038 0.035 0.028 0.037 
Median 0.156 0.155 0.166 0.163 0.163 0.175 
Min 0.112 0.112 0.112 0.113 0.113 0.113 
Max 0.514 0.263 0.283 0.323 0.233 0.279 

a  total best fit  reference data set compared to the total best fit set  with the three low 
quality sampels removed.  
 
Table 8.  Concordance of autosomal CNV between reference data sets 

 regions SNPs 

  
Total refs 
bestfit a

reduced set 
b

Total refs 
bestfit reduced set 

Total refs 
bestfit 45(481) c 41(311) 119(5935) 101(607) 
reduced set  42(321)   107(613) 

a  full data set 
b  reference data set with 3 low qualitly samples removed 
c  deletions (amplifications) 
 
Table 9.  Pattern of CNV regions and SNPs across chromosomes.    
 
A.  Number of CN differences in this study  B.  Known CNV regionsa

 CNV regions CNV SNPs   # regions concordant 
chr loss gain loss/gain loss gain  chr loss gain loss/gain 
1 0 12 0 0 16  1 0 2 0 
2 1 18 0 3 77  2 0 4 0 
3 3 16 0 13 44  3 2 4 0 
4 2 26 0 3 46  4 0 1 0 
5 2 21 0 5 34  5 0 3 0 
6 0 23 0 0 53  6 0 5 0 
7 0 21 0 0 69  7 0 2 0 
8 2 15 1 18 22  8 2 4 1 
9 1 6 1 3 20  9 0 1 1 

10 1 12 2 5 28  10 0 4 1 
11 1 16 0 1 37  11 1 2 0 
12 1 8 0 3 10  12 0 2 0 
13 1 7 0 2 10  13 0 0 0 
14 2 14 1 28 28  14 1 7 1 
15 0 6 2 0 58  15 0 1 2 
16 0 4 0 0 10  16 0 1 0 
17 0 5 0 0 10  17 0 3 0 
18 0 3 0 0 5  18 0 0 0 
19 0 6 0 0 10  19 0 0 0 
20 0 5 0 0 17  20 0 1 0 
21 2 4 0 11 6  21 0 1 0 
22 0 3 0 0 3  22 0 2 0 
23 0 17 1 1 222  23 0 6 0 

 
a  Known CNV regions were obtained from Database for Genomic Variants ([137], 
http://projects.tcag.ca/variation/) and compared with regions found in this study.

 128 

http://projects.tcag.ca/variation/


Table 10.  CNV regions for all samplesa

 
sample chip CNb chr cytoband StartSNPc StartPos EndSNP EndPos linkedd more 

than 
1 
SNPe

more 
than 1 
samplef

regiong # 
samplesh

Published 
regioni

588T1 hind 5 1 p36.22 65 9898974 66 9924378 Y 1 0 1 1 0 
597B3 hind 6 1 p36.12 183 21121210 183 21121210 Y 0 0 2 1 0 
697T2a xba 5 1 p35.1 57539 34168985 57539 34168985 N 0 0 3 1 0 
1390 xba 5 1 p34.3 57603 38018699 57603 38018699 N 0 0 4 1 0 
588T1 hind 6 1 p32.3 489 50766343 489 50766343 N 0 0 5 1 0 
588T1 hind 5 1 p32.1 705 59378042 706 59436588 N 1 0 6 1 0 
597B3 hind 6 1 p31.3 829 64332630 829 64332630 N 0 0 7 1 0 
1547T2 hind 6 1 p31.1 1057 72104806 1057 72104806 N 0 0 8 1 0 
1013B1 xba 5 1 p22.1 58999 94031284 58999 94031284 N 0 0 9 1 0 
1488T3 xba 5 1 q25.3 60452 177707522 60453 177707748 N 1 0 10 1 0 
956T1 hind 6 1 q41 4062 218728033 4062 218728033 N 0 0 11 1 1 
1466T2 hind 4 1 q44 4521 242779667 4522 242780409 N 1 0 12 1 1 
588T1 hind 0 2 p24.3 4751 12255441 4753 12255820 Y 1 0 13 1 0 
1052T1 xba 6 2 p21 63000 45253577 63000 45253577 N 0 0 14 1 0 
810T1 xba 6 2 p16.3 63056 47985466 63056 47985466 N 0 0 15 1 0 
1430B1 xba 4 2 p13.3 63721 70796231 63725 70975597 N 1 0 16 1 0 
956T1 xba 6 2 p12 63803 76475818 63803 76475818 N 0 0 17 1 1 
1390 xba 5 2 q11.1 64104 95606297 64104 95606297 N 0 0 18 1 1 
1430B1 xba 5 2 q11.2 64150 101375977 64152 101495148 N 1 0 19 1 0 
497B3 hind 3 2 q14.1 6798 116629374 6824 117245131 N 1 0 20 1 1 
597B3 hind 6 2 q21.3 7132 136300896 7132 136300896 N 0 0 21 1 0 
1104B2 xba 3 2 q21.3 64760 137094155 64783 137459907 N 1 0 22 1 0 
1052T1 xba 6 2 q31.1 65751 173183764 65751 173183764 N 0 0 23 1 0 
486T2 hind 5 2 q31.2 8269 179038313 8270 179038998 N 1 0 24 1 0 
597B3 hind 6 2 q32.2 8559 190829101 8559 190829101 N 0 0 25 1 0 
810T1 hind 6 2 q36.2 9400 225729560 9400 225729560 N 0 1 26 3 0 
334T2 hind 6 2 q36.2 9400 225729560 9400 225729560 N 0 1 26 3 0 
1547T2 hind 6 2 q36.2 9400 225729560 9400 225729560 N 0 1 26 3 0 
956T1 hind 6 2 q36.3 9519 230126120 9519 230126120 N 0 0 27 1 0 
1013B1 hind 5 2 q37.1 9578 235240125 9578 235240125 N 0 0 28 1 0 
1166B3 hind 3 2 q37.3 9604 241800408 9609 242399567 N 1 1 29 3 1 
1433B3 hind 3 2 q37.3 9604 241800408 9609 242399567 N 1 1 29 3 1 
1052T1 hind 5 2 q37.3 9606 241802208 9606 241802208 N 0 1 29 3 0 
1052T1 hind 3 2 q37.3 9607 242141304 9609 242399567 N 1 0 30 1 0 
615B3 hind 3 3 p26.3 9610 48603 9623 186745 N 1 0 31 1 1 
1309T1 hind 0 3 p26.3 9689 1510440 9690 1511278 N 1 0 32 1 1 
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334T2 xba 3 3 p26.3 67210 1643488 67222 1686749 N 1 0 33 1 0 
783B3 hind 1 3 p26.1 9838 4110776 9847 4136335 N 1 0 34 1 1 
956T1 hind 5 3 p21.31 10748 44828819 10750 44858975 N 1 0 35 1 0 
1013B1 xba 0 3 p21.31 68245 45192647 68245 45192647 N 0 0 36 1 0 
597B3 hind 5 3 p14.3 10845 55348944 10845 55348944 N 0 0 37 1 0 
1014T2 hind 6 3 p14.3 10868 56656693 10868 56656693 N 0 0 38 1 0 
597B3 hind 6 3 p14.2 10939 60189407 10939 60189407 N 0 0 39 1 0 
956T1 hind 6 3 p14.1 11178 66795667 11178 66795667 N 0 0 40 1 0 
956T1 hind 6 3 p13 11359 73989706 11359 73989706 N 0 0 41 1 0 
956T1 xba 6 3 q11.2 69108 97317545 69108 97317545 N 0 0 42 1 0 
1430B1 xba 6 3 q12.2 69181 102254723 69181 102254723 N 0 0 43 1 1 
597B3 hind 6 3 q13.31 12073 116705694 12073 116705694 N 0 0 44 1 0 
1052T1 xba 6 3 q13.33 69627 121161492 69627 121161492 N 0 0 45 1 0 
1466T2 xba 5 3 q23 69972 143280552 69972 143280552 N 0 0 46 1 1 
1052T1 xba 6 3 q25.1 70186 152942205 70186 152942205 N 0 0 47 1 0 
1166B3 xba 5 3 q27.3 70866 188644318 70866 188644318 N 0 1 48 2 0 
1309T1 xba 6 3 q27.3 70866 188644318 70866 188644318 N 0 1 48 2 0 
588T1 hind 5 3 q29 13560 197963623 13561 198449496 N 1 0 49 1 1 
1013B1 xba 4 4 p15.2 71530 26115291 71533 26115900 N 1 0 50 1 0 
1014T2 xba 6 4 p14 71787 37005212 71787 37005212 N 0 0 51 1 0 
538B3 hind 6 4 q12 14746 59689945 14746 59689945 N 0 1 52 2 0 
1469B1 hind 6 4 q12 14746 59689945 14746 59689945 N 0 1 52 2 0 
588T1 hind 6 4 q13.1 14772 60870592 14772 60870592 N 0 0 53 1 0 
1052T1 xba 4 4 q13.1 72293 62566178 72294 62566224 N 1 0 54 1 0 
597B3 hind 6 4 q13.2 15006 68577813 15006 68577813 N 0 0 55 1 0 
334T2 hind 0 4 q21.22 15371 83208150 15371 83208150 N 0 0 56 1 0 
334T2 hind 4 4 q21.22 15372 83239664 15374 83246577 N 1 0 57 1 0 
464T3 hind 5 4 q21.23 15436 86201336 15436 86201336 N 0 1 58 4 0 
1488T3 hind 5 4 q21.23 15436 86201336 15436 86201336 N 0 1 58 4 0 
334T2 hind 5 4 q21.23 15436 86201336 15436 86201336 N 0 1 58 4 0 
699T2a hind 5 4 q21.23 15436 86201336 15436 86201336 N 0 1 58 4 0 
1052T1 hind 6 4 q22.1 15614 91598041 15614 91598041 N 0 0 59 1 0 
1014T2 xba 6 4 q22.3 73068 94178695 73068 94178695 N 0 0 60 1 0 
697T2a xba 4 4 q22.3 73160 97585566 73162 97834662 N 1 0 61 1 0 
588T1 hind 6 4 q24 15984 107872099 15984 107872099 N 0 0 62 1 0 
1166B3 xba 5 4 q25 73515 112835774 73515 112835774 N 0 0 63 1 0 
588T1 xba 6 4 q26 73632 120076082 73632 120076082 N 0 0 64 1 0 
956T1 hind 6 4 q27 16315 121928243 16315 121928243 N 0 0 65 1 0 
1153B3 xba 4 4 q27 73691 121997169 73693 122018813 N 1 0 66 1 0 
1065B3 hind 5 4 q28.1 16373 124471655 16373 124471655 N 0 0 67 1 0 
869T1 hind 5 4 q28.1 16425 126736617 16427 126755739 N 1 0 68 1 0 
1014T2 xba 5 4 q28.2 73866 129417818 73866 129417818 N 0 0 69 1 0 
588T1 xba 6 4 q28.2 73891 130916643 73891 130916643 N 0 0 70 1 0 
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699T2a hind 0 4 q28.3 16546 131897592 16547 131898171 N 1 0 71 1 0 
1433B3 hind 5 4 q28.3 16690 139002535 16690 139002535 N 0 0 72 1 1 
1062T1 xba 6 4 q31.21 74171 143600755 74171 143600755 N 0 0 73 1 0 
588T1 hind 5 4 q31.3 17046 155757047 17048 155766635 N 1 0 74 1 0 
958B1 hind 3 4 q32.2 17224 162311318 17230 162359542 N 1 0 75 1 0 
464T3 xba 6 4 q34.1 74872 173140931 74872 173140931 N 0 1 76 4 0 
1476T3 xba 6 4 q34.1 74872 173140931 74872 173140931 N 0 1 76 4 0 
862T1 xba 6 4 q34.1 74872 173140931 74872 173140931 N 0 1 76 4 0 
699T2a xba 6 4 q34.1 74872 173140931 74872 173140931 N 0 1 76 4 0 
588T1 hind 6 4 q35.2 17888 188944515 17888 188944515 Y 0 0 77 1 0 
1488T3 xba 6 5 p15.2 75461 9930169 75461 9930169 Y 0 0 78 1 1 
1014T2 hind 4 5 p14.1 18567 28803744 18569 28947927 N 1 0 79 1 0 
1430B1 xba 5 5 q11.2 76352 54289338 76353 54326926 N 1 0 80 1 0 
1052T1 xba 5 5 q11.2 76407 57087315 76407 57087315 N 0 0 81 1 0 
1547T2 hind 6 5 q12.1 19286 60508810 19286 60508810 N 0 0 82 1 0 
1052T1 xba 6 5 q13.1 76668 67696704 76668 67696704 N 0 0 83 1 0 
946B3 hind 4 5 q13.2 19555 72077661 19559 72216133 N 1 0 84 1 0 
597B3 hind 4 5 q14.1 19723 79541752 19724 79780662 N 1 1 85 2 0 
1013B1 hind 6 5 q14.1 19724 79780662 19724 79780662 N 0 1 85 2 0 
597B3 hind 6 5 q14.1 19725 79797970 19725 79797970 N 0 0 86 1 0 
699T2a hind 6 5 q14.3 19840 84010157 19840 84010157 N 0 0 87 1 0 
1014T2 xba 5 5 q14.3 77030 85380111 77032 85464871 N 1 0 88 1 1 
597B3 hind 5 5 q14.3 20005 91161653 20005 91161653 N 0 0 89 1 0 
862T1 xba 0 5 q21.3 77626 109452450 77628 109453291 N 1 0 90 1 0 
1390 xba 6 5 q22.1 77702 111453254 77702 111453254 N 0 0 91 1 0 
1309T1 hind 0 5 q22.2 20487 111710742 20488 111711216 N 1 0 92 1 0 
1062T1 xba 6 5 q23.2 78132 125467810 78132 125467810 N 0 0 93 1 0 
956T1 hind 6 5 q23.3 21011 129544898 21011 129544898 N 0 0 94 1 0 
588T1 hind 6 5 q31.3 21194 140537521 21194 140537521 N 0 0 95 1 1 
464T3 xba 5 5 q32 78549 145019024 78551 145019413 N 1 1 96 2 0 
1376T2 xba 4 5 q32 78549 145019024 78551 145019413 N 1 1 96 2 0 
1014T2 xba 5 5 q32 78631 147855944 78632 147857643 N 1 0 97 1 0 
956T1 hind 6 5 q34 21769 162599727 21770 162599993 N 1 0 98 1 0 
1547T2 hind 6 5 q35.1 21997 170695382 21997 170695382 N 0 0 99 1 0 
956T1 hind 6 6 p25.3 22173 2204327 22173 2204327 N 0 0 100 1 0 
597B3 hind 6 6 p22.2 22779 24753174 22779 24753174 N 0 0 101 1 0 
862T1 hind 5 6 p21.31 22942 36118128 22942 36118128 Y 0 1 102 2 0 
697T2a hind 5 6 p21.31 22942 36118128 22942 36118128 Y 0 1 102 2 0 
497B3 hind 3 6 p21.1 23026 41376510 23040 42959475 Y 1 0 103 1 1 
1052T1 xba 6 6 q12 80862 65739442 80862 65739442 N 0 0 104 1 0 
810T1 xba 6 6 q12 80894 66572761 80894 66572761 N 0 0 105 1 0 
597B3 hind 6 6 q13 23643 70297715 23643 70297715 N 0 0 106 1 0 
597B3 xba 5 6 q13 81088 72646417 81090 72783765 N 1 0 107 1 0 
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1390 xba 6 6 q14.1 81221 79016785 81221 79016785 N 0 0 108 1 1 
1466T2 xba 6 6 q14.3 81436 86011003 81436 86011003 N 0 0 109 1 0 
719T3 xba 4 6 q16.1 81617 93552796 81619 93553574 Y 1 0 110 1 0 
956T1 hind 6 6 q16.3 24474 101905980 24474 101905980 Y 0 0 111 1 0 
1014T2 hind 4 6 q22.1 24753 115417501 24756 115420450 N 1 0 112 1 1 
1430B1 xba 6 6 q22.1 82191 116911322 82191 116911322 N 0 0 113 1 0 
1430B1 xba 5 6 q22.31 82354 122735532 82357 122848520 N 1 0 114 1 1 
588T1 hind 6 6 q22.31 25043 125539447 25043 125539447 N 0 0 115 1 0 
956T1 hind 5 6 q23.2 25266 132725748 25269 132769586 N 1 0 116 1 0 
956T1 hind 6 6 q23.3 25328 135385192 25328 135385192 N 0 0 117 1 0 
956T1 hind 6 6 q24.1 25417 139543034 25417 139543034 N 0 0 118 1 0 
956T1 hind 5 6 q24.2 25514 143850706 25516 143917617 N 1 0 119 1 1 
956T1 hind 6 6 q25.1 25669 150701028 25669 150701028 Y 0 0 120 1 0 
1309T1 hind 5 6 q25.1 25670 150772388 25671 150772680 Y 1 0 121 1 0 
956T1 hind 6 6 q25.1 25690 151791227 25690 151791227 Y 0 0 122 1 0 
956T1 hind 6 7 p21.3 26322 10458942 26322 10458942 N 0 0 123 1 0 
719T3 hind 6 7 p15.3 26797 21469329 26797 21469329 N 0 1 124 2 0 
862T1 hind 6 7 p15.3 26797 21469329 26797 21469329 N 0 1 124 2 0 
1062T1 xba 5 7 p15.1 84367 28138715 84367 28138715 N 0 0 125 1 0 
697T2a xba 5 7 p14.1 84589 37000570 84590 37000595 N 1 0 126 1 0 
956T1 hind 4 7 p13 27387 43309005 27392 43661716 N 1 0 127 1 0 
597B3 hind 6 7 p11.2 27606 54184265 27606 54184265 N 0 0 128 1 0 
1390 hind 5 7 p11.2 27643 56471248 27645 56479844 N 1 0 129 1 0 
993B3 hind 3 7 q11.21 27653 61534066 27659 62122172 N 1 0 130 1 1 
497B3 hind 3 7 q11.21 27674 65551174 27685 67019849 N 1 0 131 1 1 
597B3 hind 6 7 q11.22 27752 70966450 27752 70966450 N 0 0 132 1 0 
956T1 hind 6 7 q21.11 27867 79185389 27867 79185389 N 0 0 133 1 0 
497B3 hind 3 7 q21.11 28053 85064707 28071 85771585 N 1 0 134 1 0 
993B3 xba 6 7 q21.13 85633 89764266 85633 89764266 N 0 0 135 1 0 
597B3 hind 6 7 q21.3 28305 94919442 28305 94919442 N 0 0 136 1 0 
956T1 hind 5 7 q22.2 28439 103610597 28441 103762352 N 1 0 137 1 0 
588T1 hind 5 7 q31.1 28605 109786112 28606 109819795 N 1 0 138 1 0 
515B3 hind 4 7 q31.32 28919 122781982 28921 123001226 N 1 0 139 1 0 
1390 xba 6 7 q32.1 86465 126052305 86465 126052305 N 0 0 140 1 0 
956T1 xba 5 7 q32.1 86518 128719303 86518 128719303 N 0 0 141 1 0 
1390 xba 6 7 q33 86723 136663169 86723 136663169 N 0 0 142 1 0 
946B3 hind 6 7 q35 29408 146996311 29408 146996311 N 0 1 143 3 0 
1009B3 hind 6 7 q35 29408 146996311 29408 146996311 N 0 1 143 3 0 
1116B1 hind 6 7 q35 29408 146996311 29408 146996311 N 0 1 143 3 0 
588T1 hind 6 8 p23.3 29537 1132808 29537 1132808 N 0 0 144 1 0 
597B3 hind 6 8 p23.2 29582 2951410 29582 2951410 N 0 0 145 1 0 
1014T2 xba 5 8 p23.2 87339 6154607 87340 6155384 N 1 0 146 1 0 
1488T3 hind 5 8 p23.1 29954 12029748 29954 12029748 N 0 0 147 1 1 
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597B3 hind 6 8 p21.2 30324 24078370 30324 24078370 N 0 0 148 1 0 
956T1 hind 6 8 p12 30515 32428808 30515 32428808 N 0 0 149 1 0 
588T1 hind 6 8 p11.23 30659 38815153 30659 38815153 N 0 0 150 1 0 
588T1 hind 6 8 q11.23 30853 53912575 30853 53912575 N 0 0 151 1 1 
1466T2 hind 5 8 q13.1 31180 67079691 31181 67080307 N 1 1 152 4 0 
334T2 hind 5 8 q13.1 31180 67079691 31181 67080307 N 1 1 152 4 0 
1376T2 hind 5 8 q13.1 31180 67079691 31181 67080307 N 1 1 152 4 0 
486T2 hind 5 8 q13.1 31180 67079691 31181 67080307 N 1 1 152 4 0 
497B3 xba 5 8 q21.13 89141 84313002 89142 84313924 N 1 0 153 1 0 
497B3 hind 4 8 q21.3 31780 90190503 31783 90271004 N 1 0 154 1 1 
956T1 hind 6 8 q23.3 32389 116058634 32389 116058634 N 0 0 155 1 0 
597B3 hind 6 8 q23.3 32430 116954963 32430 116954963 N 0 0 156 1 1 
1013B1 hind 5 8 q24.11 32486 118662965 32487 118663176 N 1 1 157 3 0 
1466T2 hind 5 8 q24.11 32486 118662965 32487 118663176 N 1 1 157 3 0 
1488T3 hind 5 8 q24.11 32486 118662965 32487 118663176 N 1 1 157 3 0 
486T2 hind 6 8 q24.21 32739 128341145 32739 128341145 N 0 0 158 1 0 
597B3 xba 3 8 q24.23 90410 137748647 90423 137892295 N 1 1 159 5 1 
869T1 xba 1 8 q24.23 90410 137748647 90423 137892295 N 1 1 159 5 1 
869T1 hind 1 8 q24.23 32969 137758726 32974 137882148 N 1 1 159 5 1 
1009B3 xba 1 8 q24.23 90412 137820222 90423 137892295 N 1 1 159 5 1 
1229T2 xba 1 8 q24.23 90412 137820222 90423 137892295 N 1 1 159 5 1 
1547T2 xba 1 8 q24.23 90412 137820222 90423 137892295 N 1 1 159 5 1 
1052T1 xba 5 9 p24.2 90686 3786061 90686 3786061 N 0 0 160 1 0 
1116B1 hind 3 9 p23 33427 10604555 33438 10765059 N 1 0 161 1 1 
840B1 xba 4 9 p12 91775 42925816 91776 42930351 N 1 1 162 4 1 
1052T1 xba 4 9 p12 91775 42925816 91776 42930351 N 1 1 162 4 1 
1229T2 xba 4 9 p12 91775 42925816 91776 42930351 N 1 1 162 4 1 
1376T2 xba 0 9 p12 91775 42925816 91776 42930351 N 1 1 162 4 1 
334T2 hind 6 9 q21.11 34191 69089826 34191 69089826 N 0 0 163 1 0 
588T1 hind 5 9 q21.2 34436 77099406 34437 77210528 N 1 0 164 1 0 
1524T2 xba 5 9 q22.32 92227 93776663 92227 93776663 Y 0 0 165 1 0 
597B3 hind 6 9 q31.1 34906 103639109 34906 103639109 N 0 0 166 1 0 
1390 hind 0 9 q31.1 34952 105223959 34954 105240419 N 1 0 167 1 0 
1430B1 xba 6 10 p13 93266 13871718 93266 13871718 N 0 0 168 1 0 
956T1 xba 6 10 p12.2 93495 24542800 93495 24542800 N 0 0 169 1 0 
1052T1 xba 5 10 p12.1 93525 25500769 93525 25500769 N 0 0 170 1 0 
1466T2 hind 5 10 p11.1 36357 39114808 36357 39114808 N 0 1 171 2 1 
486T2 hind 5 10 p11.1 36357 39114808 36357 39114808 N 0 1 171 2 1 
1317T2 xba 5 10 q11.21 93857 43840664 93859 43952268 N 1 0 172 1 0 
1401B3 xba 0 10 q21.1 94084 56014991 94085 56015341 Y 1 0 173 1 0 
1116B1 hind 3 10 q22.1 36959 73708187 36966 74238077 N 1 0 174 1 1 
1052T1 xba 6 10 q23.2 94839 86804174 94839 86804174 N 0 0 175 1 0 
956T1 hind 5 10 q23.2 37236 88585539 37236 88585539 N 0 0 176 1 1 
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1542T1 hind 0 10 q23.31 37271 90515304 37273 90516359 N 1 0 177 1 0 
956T1 hind 5 10 q23.31 37275 90589976 37276 90610172 N 1 0 178 1 0 
588T1 hind 6 10 q25.1 37666 108675202 37666 108675202 Y 0 0 179 1 0 
1104B2 hind 5 10 q26.13 38077 126075966 38077 126075966 N 0 0 180 1 0 
588T1 hind 6 10 q26.13 38088 127376593 38088 127376593 N 0 0 181 1 0 
840B1 xba 3 10 q26.3 95875 135164239 95879 135228726 N 1 1 182 5 1 
1116B1 xba 3 10 q26.3 95875 135164239 95879 135228726 N 1 1 182 5 1 
1153B3 xba 3 10 q26.3 95875 135164239 95879 135228726 N 1 1 182 5 1 
1547T2 xba 3 10 q26.3 95875 135164239 95879 135228726 N 1 1 182 5 1 
1376T2 hind 0 10 q26.3 38159 135211857 38159 135211857 N 0 1 182 5 1 
1547T2 hind 5 10 q26.3 38159 135211857 38159 135211857 N 0 1 182 5 1 
1390 hind 0 11 p15.4 38164 3359636 38164 3359636 N 0 0 183 1 1 
1469B1 xba 3 11 p15.4 95901 4387439 95917 4499428 N 1 0 184 1 1 
1390 xba 6 11 p15.4 95989 5860853 95989 5860853 N 0 0 185 1 1 
1390 xba 6 11 p15.2 96129 12879375 96129 12879375 N 0 0 186 1 0 
1395B3 hind 4 11 p13 38843 34612512 38845 34686463 N 1 0 187 1 0 
597B3 hind 6 11 p12 38952 37835219 38952 37835219 N 0 0 188 1 0 
1466T2 hind 5 11 p11.12 39135 51207947 39135 51207947 N 0 0 189 1 0 
1014T2 xba 5 11 q12.1 97139 59115152 97139 59115152 N 0 0 190 1 0 
862T1 xba 4 11 q14.1 97461 81554687 97463 81556741 N 1 0 191 1 0 
1390 xba 6 11 q14.1 97523 83991296 97523 83991296 N 0 0 192 1 0 
597B3 hind 6 11 q14.3 39670 88660169 39670 88660169 N 0 0 193 1 0 
956T1 hind 5 11 q21 39817 94043963 39818 94053739 N 1 0 194 1 0 
597B3 hind 6 11 q22.1 39934 98106915 39934 98106915 N 0 0 195 1 0 
486T2 hind 6 11 q23.1 40274 110552629 40274 110552629 N 0 0 196 1 0 
486T2 hind 6 11 q24.1 40496 122658485 40496 122658485 N 0 1 197 2 0 
1390 hind 5 11 q24.1 40496 122658485 40496 122658485 N 0 1 197 2 0 
588T1 hind 5 11 q24.2 40548 126107010 40548 126107010 N 0 0 198 1 0 
597B3 hind 6 11 q25 40613 133028029 40613 133028029 N 0 0 199 1 0 
956T1 hind 6 12 p12.3 40902 16182184 40902 16182184 Y 0 0 200 1 1 
588T1 hind 6 12 p11.22 41261 29512321 41261 29512321 Y 0 0 201 1 0 
956T1 hind 6 12 q13.11 41651 46575640 41651 46575640 N 0 0 202 1 0 
1390 xba 5 12 q14.1 99918 58421669 99920 58460760 N 1 0 203 1 0 
1062T1 xba 6 12 q14.1 99943 59831574 99943 59831574 N 0 0 204 1 1 
810T1 xba 5 12 q21.2 100334 74579384 100334 74579384 N 0 0 205 1 0 
588T1 hind 6 12 q21.33 42523 87828345 42523 87828345 N 0 0 206 1 0 
1542T1 xba 0 12 q23.1 100909 98791609 100911 98791950 N 1 0 207 1 0 
597B3 hind 5 12 q24.33 43176 128303727 43176 128303727 N 0 0 208 1 0 
588T1 hind 6 13 q13.1 43530 31509971 43530 31509971 N 0 0 209 1 0 
597B3 hind 6 13 q14.11 43897 42361754 43897 42361754 N 0 0 210 1 0 
956T1 hind 6 13 q14.3 44118 51693873 44118 51693873 N 0 0 211 1 0 
588T1 hind 6 13 q21.2 44310 59485089 44310 59485089 N 0 0 212 1 0 
719T3 hind 0 13 q22.1 44693 72922299 44694 72922493 N 1 0 213 1 0 
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1052T1 xba 6 13 q31.2 103281 87190881 103281 87190881 N 0 0 214 1 0 
588T1 hind 6 13 q32.1 45346 96361414 45346 96361414 N 0 0 215 1 0 
956T1 hind 5 13 q33.3 45747 106977436 45750 107003052 N 1 0 216 1 0 
597B3 xba 4 14 q11.2 104008 19285288 104012 19490525 N 1 1 217 10 1 
1052T1 xba 3 14 q11.2 104008 19285288 104012 19490525 N 1 1 217 10 1 
1399B3 xba 3 14 q11.2 104008 19285288 104012 19490525 N 1 1 217 10 1 
1488T3 xba 1 14 q11.2 104008 19285288 104012 19490525 N 1 1 217 10 1 
1547T2 xba 4 14 q11.2 104008 19285288 104012 19490525 N 1 1 217 10 1 
486T2 xba 4 14 q11.2 104008 19285288 104012 19490525 N 1 1 217 10 1 
697T2a xba 3 14 q11.2 104008 19285288 104016 19560452 N 1 1 217 10 1 
615B3 hind 4 14 q11.2 45852 19387587 45853 19440006 N 1 1 217 10 1 
1116B1 hind 4 14 q11.2 45852 19387587 45853 19440006 N 1 1 217 10 1 
810T1 hind 4 14 q11.2 45852 19387587 45853 19440006 N 1 1 217 10 1 
1547T2 hind 5 14 q11.2 45852 19387587 45853 19440006 N 1 1 217 10 1 
486T2 hind 4 14 q11.2 45852 19387587 45853 19440006 N 1 1 217 10 1 
1153B3 xba 1 14 q11.2 104088 21703480 104103 21981289 N 1 1 217 2 1 
1390 xba 6 14 q11.2 104103 21981289 104103 21981289 N 0 1 217 2 1 
956T1 hind 6 14 q12 45974 25343544 45974 25343544 N 0 0 218 1 1 
597B3 hind 6 14 q12 46057 27739847 46057 27739847 N 0 0 219 1 0 
1052T1 xba 5 14 q21.2 104746 44308706 104746 44308706 N 0 0 220 1 1 
1390 xba 6 14 q22.2 104967 54156618 104967 54156618 N 0 0 221 1 0 
1430B1 xba 5 14 q23.1 105065 58179764 105066 58254253 N 1 0 222 1 0 
956T1 hind 6 14 q23.3 47060 65715747 47060 65715747 N 0 0 223 1 0 
1390 xba 5 14 q31.1 105575 80407821 105576 80433395 N 1 0 224 1 0 
597B3 hind 6 14 q31.1 47362 81787150 47362 81787150 N 0 0 225 1 0 
1401B3 xba 1 14 q31.3 105780 85967953 105792 86037625 N 1 0 226 1 0 
1014T2 xba 5 14 q32.12 105901 91024899 105901 91024899 N 0 0 227 1 0 
555B3 hind 3 14 q32.33 47775 104475429 47779 106241517 N 1 1 228 4 1 
810T1 hind 3 14 q32.33 47776 105832953 47779 106241517 N 1 1 228 4 1 
958B1 hind 4 14 q32.33 47778 106226043 47779 106241517 N 1 1 228 4 1 
1399B3 hind 4 14 q32.33 47778 106226043 47779 106241517 N 1 1 228 4 1 
497B3 xba 3 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
615B3 xba 3 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
538B3 xba 4 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
840B1 xba 4 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
956T1 xba 1 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1009B3 xba 3 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
993B3 xba 1 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1013B1 xba 3 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1317T2 xba 1 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1399B3 xba 1 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1401B3 xba 3 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1488T3 xba 1 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
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869T1 xba 4 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
334T2 xba 3 15 q11.2 106087 19208413 106099 20689912 N 1 1 228 26 1 
1014T2 xba 3 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
1229T2 xba 1 15 q11.2 106087 19208413 106091 19989036 N 1 1 228 26 1 
597B3 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
615B3 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
538B3 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
840B1 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
956T1 hind 0 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1009B3 hind 4 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1542T1 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
993B3 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1013B1 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1317T2 hind 0 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1399B3 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1433B3 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
810T1 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
869T1 hind 4 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1014T2 hind 4 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1229T2 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
719T3 hind 4 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1309T1 hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1538T3 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1524T2 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
486T2 hind 3 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
697T2a hind 1 15 q11.2 47780 19852603 47784 19943075 N 1 1 228 26 1 
1062T1 xba 5 15 q11.2 106107 21646501 106107 21646501 N 0 0 229 1 0 
497B3 hind 3 15 q14 48144 37839046 48176 41999160 N 1 0 230 1 1 
956T1 hind 5 15 q21.3 48501 53995275 48503 53998510 N 1 0 231 1 0 
1390 xba 6 15 q21.3 106862 54133947 106862 54133947 N 0 0 232 1 0 
597B3 hind 5 15 q22.2 48684 60359341 48684 60359341 N 0 0 233 1 0 
1014T2 hind 6 15 q26.3 49210 98927879 49210 98927879 N 0 1 234 2 0 
1309T1 hind 5 15 q26.3 49210 98927879 49210 98927879 N 0 1 234 2 0 
956T1 xba 5 16 p13.3 107681 2747264 107682 2887015 N 1 0 235 1 0 
588T1 hind 3 16 p11.2 49573 32411529 49578 35003380 N 1 1 236 2 1 
1052T1 hind 4 16 p11.2 49573 32411529 49576 33463919 N 1 1 236 2 1 
697T2a xba 6 16 q22.1 108472 64398361 108472 64398361 N 0 0 237 1 0 
1052T1 xba 6 16 q23.3 108814 81578029 108814 81578029 N 0 0 238 1 0 
1116B1 xba 4 17 q12 109298 31462117 109301 31503652 N 1 1 239 2 1 
1013B1 xba 4 17 q12 109298 31462117 109301 31503652 N 1 1 239 2 1 
1469B1 hind 4 17 q21.31 50824 41550514 50827 41724181 N 1 1 239 2 1 
1401B3 hind 5 17 q21.31 50826 41644356 50827 41724181 N 1 1 239 2 1 
597B3 hind 6 17 q22 50953 49004409 50953 49004409 N 0 0 240 1 0 
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699T2a hind 5 17 q23.3 51123 59640322 51123 59640322 N 0 0 241 1 0 
810T1 xba 6 18 q21.1 110877 45572501 110877 45572501 N 0 0 242 1 0 
956T1 hind 5 18 q22.2 52831 65887683 52832 65888907 N 1 0 243 1 0 
1466T2 xba 5 18 q23 111664 71729056 111665 71729235 N 1 0 244 1 0 
1052T1 xba 5 19 p13.2 111736 9464695 111737 9464751 N 1 0 245 1 0 
1014T2 xba 5 19 p13.11 111765 16317260 111767 16452464 N 1 0 246 1 0 
588T1 hind 6 19 q12 53210 35362367 53210 35362367 N 0 0 247 1 0 
464T3 xba 6 19 q13.43 112069 61295070 112069 61295070 Y 0 0 248 1 0 
1466T2 hind 3 19 q13.43 53394 63276577 53396 63458980 Y 1 1 249 4 0 
1376T2 hind 4 19 q13.43 53394 63276577 53396 63458980 Y 1 1 249 4 0 
515B3 hind 5 19 q13.43 53396 63458980 53396 63458980 Y 0 1 249 4 0 
1153B3 hind 4 19 q13.43 53396 63458980 53396 63458980 Y 0 1 249 4 0 
1401B3 xba 3 20 p13 112082 95685 112087 200721 N 1 0 250 1 1 
699T2a hind 5 20 p12.3 53482 5376300 53483 5376494 N 1 0 251 1 0 
597B3 hind 6 20 p12.1 53686 13035735 53686 13035735 N 0 0 252 1 0 
862T1 xba 4 20 p12.1 112479 15598897 112485 15600148 N 1 0 253 1 0 
1166B3 xba 6 20 p11.23 112613 19982495 112613 19982495 N 0 0 254 1 0 
597B3 hind 3 21 p11.2 54388 9928594 54390 10019412 N 1 0 255 1 1 
597B3 hind 6 21 q21.2 54690 23311584 54690 23311584 Y 0 0 256 1 0 
1401B3 hind 1 21 q21.2 54699 23661293 54707 23805469 Y 1 0 257 1 0 
1390 xba 6 21 q21.2 113638 25067057 113638 25067057 Y 0 0 258 1 0 
862T1 hind 0 21 q22.11 55038 34196798 55039 34197111 N 1 0 259 1 0 
956T1 hind 6 21 q22.13 55110 37014570 55110 37014570 N 0 0 260 1 0 
1399B3 xba 4 22 q11.1 114206 15263131 114207 15570421 N 1 1 261 2 1 
1014T2 xba 5 22 q11.1 114207 15570421 114207 15570421 N 0 1 261 2 1 
597B3 hind 6 22 q11.22 55315 20776031 55315 20776031 N 0 0 262 1 0 
946B3 hind 4 23 p22.33 55700 677050 55700 677050 N 0 1 263 3 1 
956T1 hind 3 23 p22.33 55700 677050 55716 3316027 N 1 1 263 3 1 
334T2 hind 0 23 p22.33 55700 677050 55700 677050 N 0 1 263 3 1 
956T1 hind 6 23 p22.33 55717 3686178 55717 3686178 N 0 0 264 1 0 
588T1 hind 5 23 p22.31 55759 7649712 55760 7650390 N 1 0 265 1 0 
464T3 xba 5 23 p22.11 114736 22594910 114737 22597318 N 1 0 266 1 0 
1052T1 xba 3 23 p21.1 114897 35002772 114933 40393087 Y 1 1 267 2 1 
1081B2 xba 4 23 p11.4 114919 37926792 114921 37978787 Y 1 1 268 2 0 
1052T1 xba 4 23 p11.4 114934 40958413 114936 41146967 Y 1 0 269 1 0 
956T1 xba 5 23 p11.3 114964 45448103 114964 45448103 Y 0 0 270 1 0 
1065B3 xba 5 23 p11.23 114979 48918038 114979 48918038 Y 0 0 271 1 1 
497B3 xba 3 23 q12 115010 64965125 115018 65600282 N 1 0 272 1 0 
956T1 hind 5 23 q21.1 56225 77347614 56226 77426206 N 1 1 273 4 0 
848B1 hind 4 23 q21.1 56225 77347614 56226 77426206 N 1 1 273 4 0 
1466T2 hind 5 23 q21.1 56225 77347614 56226 77426206 N 1 1 273 4 0 
697T2a hind 5 23 q21.1 56225 77347614 56226 77426206 N 1 1 273 4 0 
1390T3 xba 6 23 q23 115324 114623485 115324 114623485 N 0 0 274 1 0 
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1081B2 xba 3 23 q24 115368 118876414 115378 120796067 N 1 0 275 1 1 
956T1 hind 6 23 q25 56587 122556844 56587 122556844 N 0 0 276 1 0 
956T1 hind 3 23 q25 56588 122765447 56601 124002324 N 1 0 277 1 0 
597B3 hind 6 23 q27.1 56721 139718845 56721 139718845 N 0 0 278 1 1 
956T1 hind 6 23 q28 56819 147227404 56819 147227404 N 0 0 279 1 0 
1542T1 xba 3 23 q28 115720 149973397 115737 154409808 N 1 0 280 1 1 
a  CNV regions indentified per sample 
b  CN, copy number of the region per samples 
c  StartSNP, SNP index where the CN region begins; StartPos, chromosome position where the CNV region begins 
d  Y, CNV regions located in a known AD linked region 
e  1, CNV regions containing >1 SNP  
f  1, CNV regions indentified by >1 sample 
g  index for CNV regions 
h  Number of samples for each region 
i  1, region is known in the published database 
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Table 11.  Number of Unique CNV regions located with in known AD linkage regions 
 

 # of CNV regions 
linked 
regionsa total # 

> 1 
SNPb > 1 samplec codingd

Published 
regione

1p36 2 1 0 Y 0 
1q23-31 0 0 0 NA 0 
2p23-24 1 1 0 N 0 
4q35 1 0 0 N 0 
5p13-15 1 0 0 Y 1 
6p21 2 1 2 Y 1 
6q15-16 2 1 0 N 0 
6q25-27 3 1 0 Y 0 
9p21 0 0 0 NA 0 
9q22 1 0 0 N 0 
10q21-22 1 1 0 Y 0 
10q25 1 0 0 N 0 
12p11-12 2 0 0 N 1 
19q13 3 2 4 Y 0 
21q21-22 3 1 0 N 0 
Xp11-21 4 3 2 N 2 

 
a  Known AD linkage regions [69] 
b  1, CNV regions containing >1 SNP 
c  1, CNV regions indentified by >1 sample 
d  Y, CNV region is located in a coding region 
e  1, region is known in the published database 
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Table 12.  Comparison of CNV regions with known CNV regionsa. 
 

Chr 
Start 
SNPb End SNP 

Variation 
IDc Startd Stop KnownGenes 

1q44 4521 4522 3338 242733187 243066985 TFB2M\tC1orf71\tSMYD3 
chr2_cent 64104 64104 528 95520061 95773837 TRIM43 
2q37.3 9604 9609 3410 242139945 242221648 STK25\tBOK\tFARP2 
3p26.3 9610 9623 3412 46156 773503 CHL1 
3p26.3 9689 9690 3414 1400003 1563295 CNTN6 
3q12.2 69181 69181 3440 102096077 102259187 ABI3BP 
3q23 69972 69972 2476 143239239 143577329 MGC40579\tXRN1 
3q23 69972 69972 3451 143211568 143612534 MGC40579\tTFDP2\tXRN1 

3q29 13560 13561 568 196922245 198866401 

FLJ25996\tMFI2\tMUC20\tLOC440993\tPCYT1A\tPAK2\tDLG1\tBDH1\tPIGX\tMUC4\tNCBP2\tS
ENP5\tRNF168\tOSTalpha\tTFRC\tZDHHC19\tLRRC33\tC3orf34\tTNK2\tMGC33212\tTM4SF19\t
PIGZ\tWDR53 

3q29 13560 13561 43 198380968 198552148 DLG1 
3q29 13560 13561 3473 198343363 198986178 DLG1\tBDH1\tFYTTD1 
5q31.3 21194 21194 714 140516163 140568127 PCDHB11\tPCDHB16\tPCDHB7\tPCDHB8\tPCDHB9\tPCDHB10 

5q31.3 21194 21194 3578 140137124 140808866 

PCDHAC1\tSLC25A2\tPCDHB16\tPCDHB2\tPCDHAC2\tPCDHB7\tPCDHB15\tPCDHGA10\tPCD
HGB2\tPCDHGA12\tPCDHB9\tPCDHGA9\tPCDHGA8\tPCDHGB3\tPCDHGB6\tPCDHGA5\tPCD
HA6\tPCDHA8\tPCDHA13\tPCDHB5\tPCDHB13\tPCDHA3\tPCDHGA4\tPCDHA4\tPCDHGA7\tP
CDHB4\tPCDHB11\tPCDHA2\tPCDHGB5\tPC 

6p21.1 23026 23040 3609 41696767 41807431 MDFI\tTFEB 
6p21.1 23026 23040 2626 41706502 41749467 MDFI 
6q22.31 82354 82357 3636 122765634 122925836 HSF2\tSERINC1\tPKIB 
6q24.2 25514 25516 2656 143861702 143866797 FUCA2 
7q11.21 27674 27685 3683 65845580 66303403 SBDS\tFLJ10099\tRSAFD1 
8p23.1 29954 29954 2736 11882733 12646342 FAM86B1\tDEFB134\tDUB3\tLONRF1 
8p23.1 29954 29954 3720 11778967 12611672 DEFB134\tDEFB136\tDUB3\tFAM86B1\tDEFB137 
8p23.1 29954 29954 349 11908066 12332070 FAM86B1\tDUB3 
8q11.23 30853 30853 3733 53823346 54105603 GPR7 
9p12 91775 91776 2818 42050602 43951965 ZNF658B 
10q22.1 36959 36966 3809 74105644 74277126 C10orf42 
10q23.2-
10q23.31 37236 37236 3815 88505038 89299742 C10orf116\tBMPR1A\tMMRN2\tSNCG\tMINPP1\tGLUD1\tFAM35A 
10q26.3 95875 95879 3830 135111207 135279389 SPRN\tSYCE1\tFLJ44653\tMTG1\tCYP2E1 
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10q26.3 95875 95879 2896 134907049 135321566 
DRD1IP\tSPRN\tVENTX\tSYCE1\tKNDC1\tMTG1\tCYP2E1\tPAOX\tC10orf125\tFLJ44653\tADA
M8\tZNF511\tECHS1\tUTF1\tPRAP1\tTUBGCP2 

10q26.3 95875 95879 370 135130574 135413628 SYCE1\tCYP2E1\tFLJ44653\tDUX4 
10q26.3 95875 95879 2162 135117752 135279389 SPRN\tSYCE1\tMTG1\tCYP2E1\tFLJ44653 
11p15.4 38164 38164 3833 3193088 3758005 NUP98\tZNF195\tART1\tART5\tC11orf36\tCHRNA10 
11p15.4 95901 95917 2899 4466861 4519034 OR52K1 
11p15.4 95989 95989 2903 5824631 5964189 OR52E5\tOR52L1\tOR56A3\tOR52E4\tOR52E8 

11p15.4 95989 95989 3836 5686953 5927293 
OR52N4\tOR52N2\tOR56A3\tOR56B1\tOR52E4\tOR52E5\tOR52E6\tOR52N5\tTRIM22\tOR52N
1\tOR52E8 

14q11.2 104008 104012 2175 19440982 19574860 OR4K5\tOR4K13\tOR4K15\tOR4K1\tOR4K14 
chr14_ce
nt-
14q11.2 104008 104012 3929 18732531 19626027 

OR4K5\tOR4K13\tOR4K15\tACTBL1\tOR4Q3\tOR4L1\tOR4K14\tLOC440157\tOR4K2\tOR4M1\t
OR4K1\tOR4N2 

14q11.2 104008 104012 376 19273689 19767232 
OR4K5\tOR4K13\tOR4K15\tOR11H6\tOR4K2\tOR4M1\tOR4Q3\tOR4L1\tOR4K1\tOR4K14\tOR4
N2\tOR4N5\tOR11G2\tOR4K17 

14q11.2 104008 104012 3036 19272965 19608948 OR4K5\tOR4K13\tOR4K15\tOR4K2\tOR4M1\tOR4Q3\tOR4L1\tOR4K1\tOR4K14\tOR4N2 
14q11.2 45852 45853 316 19267456 19468888 OR4K5\tOR4K2\tOR4M1\tOR4Q3\tOR4N2 
14q32.33 47775 47779 2176 105294030 105477141 KIAA0125 
14q32.33 47775 47779 3950 104584391 105020471 PACS2\tJAG2\tBTBD6\tMTA1\tGPR132\tCRIP2\tNUDT14\tBRF1 
15q11.2 106087 106099 1281 20484859 20567999 NIPA2\tCYFIP1 
15q11.2 106087 106091 443 18870124 20077222 OR4M2\tLOC283755\tLOC400968\tPOTE15\tOR4N4 
15q11.2 106087 106091 2182 19808433 19975452 OR4M2\tOR4N4 
15q11.2 106087 106099 352 20459937 21183722 NIPA1\tGOLGA8E\tNIPA2\tCYFIP1 

15q11.2 106087 106091 3070 18403665 21241985 
NIPA1\tGOLGA8E\tNIPA2\tTUBGCP5\tCYFIP1\tOR4M2\tLOC283755\tFLJ36144\tLOC400968\tP
OTE15\tOR4N4 

15q15.1 48144 48176 3959 38619837 38782403 CCDC32\tCASC5\tRAD51\tRPUSD2 

15q15.3 48144 48176 3960 41610450 41935933 
STRC\tMAP1A\tSERINC4\tHISPPD2A\tMFAP1\tCKMT1A\tCATSPER2\tCKMT1B\tSERF2\tELL3\
tHYPK\tPDIA3\tWDR76 

15q15.3 48144 48176 1282 41676268 41726934 STRC\tCATSPER2\tCKMT1B 
15q15.1 48144 48176 785 40121667 40290274 PLA2G4D\tVPS39\tPLA2G4F\tTMEM87A 
15q15.3 48144 48176 3079 41619215 41845926 STRC\tCATSPER2\tCKMT1B\tPDIA3\tHISPPD2A\tCKMT1A 
15q15.1 48144 48176 3078 39834465 39909909 MAPKBP1\tPLA2G4B 
16p11.2 49573 49576 2214 32541841 32746227 TP53TG3 
16p11.2 49573 49576 2212 32646445 32828220 FLJ43855 
16p11.2 49573 49576 324 32082890 33533065 TP53TG3\tFLJ43855 
16p11.2 49573 49576 4002 31658070 34219714 LOC124411\tTP53TG3\tZNF267\tFLJ43855 
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17q12 109298 109301 3142 31429427 32016863 
TBC1D3C\tCCL4L1\tZNHIT3\tCCL4L2\tCCL3L1\tCCL3L3\tPIGW\tCCL4\tZNF403\tCCL3\tMYOH
D1\tTBC1D3B 

17q12 109298 109301 4031 31309398 31981395 
CCL16\tTBC1D3C\tCCL3\tMYOHD1\tCCL18\tTBC1D3B\tCCL15\tCCL14\tCCL4L1\tZNHIT3\tCCL
4L2\tCCL3L1\tCCL3L3\tCCL23\tPIGW\tCCL4\tZNF403 

17q21.31 50824 50827 327 41515374 42125543 LOC474170\tNSF\tARL17P1\tKIAA1267\tLRRC37A 
17q21.31 50824 50827 2227 41572525 41734030 KIAA1267\tLRRC37A 
17q21.31 50824 50827 3147 41518102 42223353 LOC474170\tNSF\tARL17P1\tKIAA1267\tLRRC37A\tWNT3 
17q21.32
-
17q21.31 50824 50827 4038 41439751 42632332 

LOC474170\tWNT9B\tGOSR2\tARL17P1\tLRRC37A\tCDC27\tRPRML\tNSF\tKIAA1267\tMAPT\t
WNT3 

20p13 112082 112087 2249 37211 226388 ZCCHC3\tC20orf96\tRP5-1103G7.6\tDEFB127\tDEFB129\tDEFB126 
21p11.2 54388 54390 1305 9978594 9986010 TPTE 
chr21_ce
nt-
21p11.2 54388 54390 3224 9941889 10105718 BAGE\tBAGE2\tTPTE\tBAGE5\tBAGE4\tBAGE3 
chr22_ce
nt 114206 114207 4115 14509865 15652016 XKR3\tCESK1\tOR11H1 
Xp22.33 55700 55716 3260 2696752 3169853 ARSH\tXG\tARSF\tGYG2\tARSE\tARSD 
Xp22.33 55700 55716 4142 1865728 3187726 XG\tGYG2\tARSE\tCD99\tARSH\tARSF\tZBED1\tARSD 

Xp11.23 114979 114979 2278 48817974 49065087 
GAGE4\tGAGE7B\tCCDC22\tGAGE5\tCACNA1F\tPPP1R3F\tGAGE8\tGAGE1\tGAGE6\tGAGE2\
tGAGE7\tFOXP3 

Xq24 115368 115378 668 119789968 119818984 RP6-166C19.1 
Xq24 115368 115378 4168 119183307 119364831 LAMP2\tATP1B4\tFAM70A 
Xq27.2-
Xq27.1 56721 56721 4175 139711783 140559532 SPANXD\tSPANXB1\tSPANXA1\tLDOC1\tSPANXA2\tSPANXB2\tSPANXE\tSPANXC 
Xq28 115720 115737 3259 151900926 152045136 PNMA6A\tMAGEA1 
Xq28 115720 115737 3273 151572622 151688320 MAGEA3\tCETN2\tCSAG1\tCSAG2\tNSDHL\tMAGEA2B\tMAGEA12\tCSAG3A\tMAGEA2 
Xq28 115720 115737 673 153081928 153109733 FLNA 
Xq28 115720 115737 672 151934123 152001387 MAGEA1 
Xq28 115720 115737 1870 154338367 154341268 TMLHE 
Xq28 115720 115737 674 153126494 153149694 RPL10\tEMD 
Xq28 115720 115737 4178 151881624 151947652 PNMA6A\tPNMA3 

 
a  Known CNV regions were obtained from Database for Genomic Variants ([137], http://projects.tcag.ca/variation/) and compared 
with regions found in this study.  This gene list has been filtered to include only unique genes. 
b  StartSNP, SNP index where the CN region begins 
c   Index ID of CNV region in the Database for Genomic Variants 
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Table 13.  Comparison of expression probe sets and CNV regionsa

 
sample Chr Probe Set ID Gene.Title diff.exprb codingc publishedd

588T1 chr1p36.22 226532_at Leucine zipper and CTNNBIP1 domain containing 0 1 0 
597B3 chr1p36.12 201935_s_at eukaryotic translation initiation factor 4 gamma, 3 0 1 0 
588T1 chr1p33 218080_x_at Fas (TNFRSF6) associated factor 1 0 1 0 
597B3 chr1p32-p31 205805_s_at receptor tyrosine kinase-like orphan receptor 1 0 1 0 

597B3 chr1p32-p31 211057_at 
receptor tyrosine kinase-like orphan receptor 1 /// receptor tyrosine 
kinase-like orphan receptor 1 0 1 0 

1547T2 chr1p31.1 1553194_at neuronal growth regulator 1 1 1 0 
1488T3 chr1q25.2 1553376_a_at chromosome 1 open reading frame 125 0 0 0 
1466T2 chr1q44 233578_at chromosome 1 open reading frame 101 0 1 1 
810T1 chr2p16.3 232364_at F-box protein 11 0 1 0 
1430B1 chr2p13.3 1570337_at folliculogenesis specific basic helix-loop-helix 0 1 0 
1430B1 chr2p13.3 1552410_at C-type lectin domain family 4, member F 0 1 0 
1430B1 chr2p13 220428_at CD207 molecule, langerin 0 1 0 
1430B1 chr2q33.1 202918_s_at preimplantation protein 3 1 1 0 
1430B1 chr2q11.2 1560871_a_at Similar to regulatory factor X domain containing 1 0 1 0 
597B3 chr2q21 1557386_at Lactase 0 0 0 
1052T1 chr2q31.1 239798_at Pyruvate dehydrogenase kinase, isozyme 1 0 0 0 
486T2 chr2q31.2 224002_s_at FK506 binding protein 7 0 1 0 
597B3 chr2q32.2 213374_x_at 3-hydroxyisobutyryl-Coenzyme A hydrolase 0 0 0 
956T1 chr2q36.3 226281_at delta-notch-like EGF repeat-containing transmembrane 1 1 0 
1433B3 chr2q37 235624_at High density lipoprotein binding protein (vigilin) 0 1 1 
1166B3 chr2q37.3 225652_at FERM, RhoGEF and pleckstrin domain protein 2 0 1 1 
1166B3 chr2q37 200778_s_at septin 2 0 1 1 
1166B3 chr2q37.3 201314_at serine/threonine kinase 25 (STE20 homolog, yeast) 1 1 1 
1166B3 chr2q37.3 1553046_s_at galactose-3-O-sulfotransferase 2 0 1 1 
1433B3 chr2q37 200015_s_at septin 2 /// septin 2 0 1 1 
1433B3 chr2q37.3 1559038_at similar to septin 2 0 1 1 
1433B3 chr2q37.3 1559617_at Sialidase 4 0 1 1 
1166B3 chr2q37.3 241918_at transmembrane protein 16G 0 1 1 
1433B3 chr2q37.3 219674_s_at hypothetical protein PRO2900 0 1 1 
1166B3 chr2q37.3 223349_s_at BCL2-related ovarian killer 0 1 1 

615B3 chr3q13.33 228940_at 

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa /// 
similar to NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 
15kDa 0 1 1 

334T2 chr3q29 1556103_at Tyrosine kinase, non-receptor, 2 0 1 0 
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956T1 chr3p21.31 219306_at kinesin family member 15 0 1 0 
1014T2 chr3p14.3 209285_s_at chromosome 3 open reading frame 63 0 1 0 
597B3 chr3p14.2 206492_at fragile histidine triad gene 1 1 0 
1052T1 chr3q13.3 209945_s_at glycogen synthase kinase 3 beta 0 1 0 
588T1 chr3q29 213184_at SUMO1/sentrin specific peptidase 5 0 1 1 

588T1 chr3q28-q29 243629_x_at 
Antigen p97 (melanoma associated) identified by monoclonal 
antibodies 133.2 and 96.5 0 1 1 

588T1 chr3q29 229703_at Discs, large homolog 1 (Drosophila) 0 1 1 
588T1 chr3q29 225657_at hypothetical protein BC007882 1 1 1 
588T1 chr3q29 201521_s_at nuclear cap binding protein subunit 2, 20kDa 0 1 1 
588T1 chr3q29 220041_at phosphatidylinositol glycan, class Z 0 1 1 
588T1 chr3q29 208875_s_at p21 (CDKN1A)-activated kinase 2 0 1 1 
1052T1 chr4q13.1 209866_s_at latrophilin 3 0 1 0 
1014T2 chr4q22 221364_at glutamate receptor, ionotropic, delta 2 0 1 0 
697T2a chr4q22.3 241479_at Hypothetical LOC441031 0 1 0 
956T1 chr4q25-q26 220792_at PR domain containing 5 0 1 0 
1014T2 chr4q26 201701_s_at progesterone receptor membrane component 2 1 1 0 
1062T1 chr4q31.21 223878_at inositol polyphosphate-4-phosphatase, type II, 105kDa 0 1 0 
1430B1 chr5q11.2 208394_x_at endothelial cell-specific molecule 1 0 1 0 
946B3 chr5q13.2 1557278_s_at Transportin 1 0 1 0 
597B3 chr5q14.1 224167_at spermatogenic leucine zipper 1 0 1 0 
597B3 chr5p15.2-q14.3 1554638_at zinc finger, FYVE domain containing 16 0 1 0 
1309T1 chr5q22.2 220120_s_at erythrocyte membrane protein band 4.1 like 4A 0 1 0 
956T1 chr5q23.3 242100_at chondroitin sulfate synthase 3 0 0 0 
588T1 chr5q31 221450_x_at protocadherin beta 13 0 0 1 
588T1 chr5q31 232099_at protocadherin beta 16 0 0 1 
588T1 chr5q31 231725_at protocadherin beta 2 1 1 1 
588T1 chr5q31 231738_at protocadherin beta 7 0 0 1 
1014T2 chr5q31-q33 216939_s_at 5-hydroxytryptamine (serotonin) receptor 4 0 1 0 

956T1 chr6p25.2 1558882_at 
similar to HIV TAT specific factor 1; cofactor required for Tat activation 
of HIV-1 transcription 0 1 0 

597B3 chr6p22.3-p22.2 206017_at KIAA0319 0 1 0 
697T2a chr6p21.3-p21.2 202530_at mitogen-activated protein kinase 14 0 1 0 
497B3 chr6p21.31 223516_s_at chromosome 6 open reading frame 49 1 1 1 

497B3 chr6p21.1 206961_s_at 
Trf (TATA binding protein-related factor)-proximal homolog 
(Drosophila) 0 1 1 

497B3 chr6p21.1 1561959_x_at KIAA0240 0 1 1 
497B3 chr6p21 1562028_at Cyclin D3 0 1 1 
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497B3 chr6p21.1 238028_at similar to AI661453 protein 0 1 1 
497B3 chr6p21.1-p12.1 224247_s_at mitochondrial ribosomal protein S10 1 1 1 
497B3 chr6p21.1 217493_x_at natural cytotoxicity triggering receptor 2 0 1 1 
497B3 chr6p21 1564029_at ubiquitin specific peptidase 49 0 1 1 
497B3 chr6p21.1 235528_at guanylate cyclase activator 1B (retina) 0 1 1 
497B3 chr6p21 221866_at transcription factor EB 0 1 1 
497B3 chr6pter-p12.1 202495_at tubulin-specific chaperone c 1 1 1 
497B3 chr6p21.1 203612_at bystin-like 0 1 1 
497B3 chr6p21.1 206062_at guanylate cyclase activator 1A (retina) 0 1 1 
497B3 chr6p21.2-p12.3 206625_at retinal degeneration, slow 0 1 1 
497B3 chr6p21.3-p21.1 205261_at progastricsin (pepsinogen C) 0 1 1 
497B3 chr6p21 205375_at MyoD family inhibitor 0 1 1 
497B3 chr6p21.1 1552494_at taube nuss homolog (mouse) 0 1 1 
497B3 chr6p21.1 219907_at fibroblast growth factor receptor substrate 3 0 1 1 
497B3 chr6p21.1 1561770_at Ribosomal protein L7-like 1 0 1 1 
497B3 chr6p21.1-p12.1 239783_at Transcriptional regulating factor 1 0 1 1 
497B3 chr6p21.1 229763_at forkhead box P4 0 1 1 
497B3 chr6p21.1 215558_at Ubiquitin protein ligase E3 component n-recognin 2 0 1 1 
497B3 chr6p21.1 229914_at FLJ38717 protein 1 1 1 
597B3 chr6q12-q13 1552922_at regulating synaptic membrane exocytosis 1 0 1 0 
1430B1 chr6q22.31 208671_at serine incorporator 1 1 1 1 
1430B1 chr6q22.31 209657_s_at heat shock transcription factor 2 0 1 1 
588T1 chr6q22-q23 203786_s_at tumor protein D52-like 1 1 1 0 
956T1 chr6q23.1-23.3 243697_at Monooxygenase, DBH-like 1 0 1 0 
956T1 chr6q23-q24 1560346_at HBS1-like (S. cerevisiae) 0 0 0 
956T1 chr6q23-q24 218603_at headcase homolog (Drosophila) 0 1 0 
956T1 chr6q24 223120_at fucosidase, alpha-L- 2, plasma 0 1 1 
956T1 chr6q24.2 1556859_a_at hypothetical protein LOC285740 0 1 1 
956T1 chr6q25.1 220329_s_at chromosome 6 open reading frame 96 1 1 0 
956T1 chr7p 207775_at hypothetical protein MGC4859 similar to HSPA8 1 1 0 
862T1 chr7p15.3 206663_at Sp4 transcription factor 0 1 0 
1062T1 chr7p15.2-p15.1 225798_at juxtaposed with another zinc finger gene 1 1 1 0 
956T1 chr7p13 1569659_at HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 0 1 0 
956T1 chr7p12-p14 202693_s_at serine/threonine kinase 17a (apoptosis-inducing) 0 1 0 
956T1 chr7p13 209445_x_at hypothetical protein FLJ10803 1 1 0 

497B3 chr7p22 210933_s_at 
fascin homolog 1, actin-bundling protein (Strongylocentrotus 
purpuratus) 0 1 1 

497B3 chr7q11.21 218008_at hypothetical protein FLJ10099 0 1 1 
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497B3 chr7q11.21 218310_at RAB guanine nucleotide exchange factor (GEF) 1 0 1 1 
497B3 chr7q11.21 1561964_at hypothetical LOC441245 0 1 1 
497B3 chr7q11-q22 215192_at postmeiotic segregation increased 2-like 4 0 1 1 
497B3 chr7q11.21 213474_at Potassium channel tetramerisation domain containing 7 0 1 1 

497B3 
chr7q11.21 /// 
chr7q11.23 1554089_s_at 

Shwachman-Bodian-Diamond syndrome /// Shwachman-Bodian-
Diamond syndrome pseudogene 0 1 1 

497B3 chr7q11.21 222669_s_at Shwachman-Bodian-Diamond syndrome 1 1 1 
497B3 chr7q11.21 239896_at RAB guanine nucleotide exchange factor (GEF) 1 pseudogene 0 1 1 

497B3 chr7q11.21 238921_at 
hypothetical protein LOC641767 /// hypothetical protein LOC644794 /// 
hypothetical protein LOC649972 0 1 1 

497B3 chr7p11.2-q11.2 231521_at Stromal antigen 3-like 0 1 1 
597B3 chr7q11 223885_at calneuron 1 0 1 0 
993B3 chr7q21.13 219455_at hypothetical protein FLJ21062 0 1 0 
515B3 chr7q31.32 1568924_a_at hypothetical protein FLJ35834 0 1 0 
515B3 chr7q32 215850_s_at NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa 0 1 0 

1390 chr7q31.3-q32.1 216992_s_at glutamate receptor, metabotropic 8 0 1 0 
956T1 chr7q32.1 212814_at KIAA0828 protein 0 1 0 

1390 chr7q33-q34 211737_x_at 

pleiotrophin (heparin binding growth factor 8, neurite growth-promoting 
factor 1) /// pleiotrophin (heparin binding growth factor 8, neurite 
growth-promoting factor 1) 0 1 0 

1390 chr7q33-q34 209465_x_at 
pleiotrophin (heparin binding growth factor 8, neurite growth-promoting 
factor 1) 0 1 0 

1116B1 chr7q35-q36 219301_s_at contactin associated protein-like 2 1 1 0 
597B3 chr8p23.2 1553405_a_at CUB and Sushi multiple domains 1 0 1 0 
956T1 chr8p21-p12 208232_x_at neuregulin 1 1 1 0 
588T1 chr8p11 1554690_a_at transforming, acidic coiled-coil containing protein 1 0 1 0 
1430B1 chr10p13 208476_s_at FERM domain containing 4A 1 1 0 
956T1 chr10p12.1 1560115_a_at KIAA1217 0 1 0 
1401B3 chr10p11.2-q21 1560330_at protocadherin 15 0 1 0 
1116B1 chr10q22.1 225320_at coiled-coil domain containing 109A 0 1 1 
1116B1 chr10q22.1 214338_at DnaJ (Hsp40) homolog, subfamily B, member 12 0 1 1 
1116B1 chr10q22.1 216903_s_at calcium binding atopy-related autoantigen 1 0 1 1 
1116B1 chr10q22.1 243335_at Chromosome 10 open reading frame 42 0 1 1 
956T1 chr10q22.3 243275_at Bone morphogenetic protein receptor, type IA 1 0 1 
588T1 chr10q26.2 1557591_at hypothetical protein LOC283038 0 1 0 
1547T2 chr10q26.3 233084_s_at synaptonemal complex central element protein 1 0 1 1 
840B1 chr10q24.3-qter 1431_at cytochrome P450, family 2, subfamily E, polypeptide 1 1 1 1 

1390 chr11p15.5 204234_s_at zinc finger protein 195 0 0 1 
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1469B1 chr11p15.4 232829_at olfactory receptor, family 52, subfamily K, member 3 pseudogene 0 1 1 
1390 chr11p15.2 1553322_s_at TEA domain family member 1 (SV40 transcriptional enhancer factor) 0 1 0 

1395B3 chr11p12 232360_at ets homologous factor 0 1 0 
1014T2 chr11q12-q13 201800_s_at oxysterol binding protein 0 1 0 

1390 chr11q14.1 206253_at discs, large homolog 2, chapsyn-110 (Drosophila) 0 1 0 
597B3 chr11q14-q21 206630_at tyrosinase (oculocutaneous albinism IA) 0 1 0 
956T1 chr12q13.11 204253_s_at vitamin D (1,25- dihydroxyvitamin D3) receptor 0 1 0 

1390 chr12q13 210807_s_at solute carrier family 16 (monocarboxylic acid transporters), member 7 0 1 0 
588T1 chr13q13.1 204072_s_at furry homolog (Drosophila) 0 1 0 
597B3 chr13q13.3 227609_at epithelial stromal interaction 1 (breast) 0 1 0 
956T1 chr13q14.3 1556876_s_at TPTE pseudogene 1 0 1 0 

588T1 chr13q21.2 220997_s_at 
diaphanous homolog 3 (Drosophila) /// diaphanous homolog 3 
(Drosophila) 0 1 0 

588T1 chr13q21.2 242102_at Diaphanous homolog 3 (Drosophila) 0 1 0 
1153B3 chr14q11.2 211902_x_at T cell receptor alpha locus 0 1 1 

1153B3 
chr14q11.2 /// 
chr14q11 209671_x_at 

T cell receptor alpha locus /// T cell receptor alpha locus /// T cell 
receptor alpha constant /// T cell receptor alpha constant 0 1 1 

1153B3 
chr14q11.2 /// 
chr14q11 210972_x_at 

T cell receptor alpha locus /// T cell receptor delta variable 2 /// T cell 
receptor alpha variable 20 /// T cell receptor alpha constant 0 1 1 

1153B3 chr14q11 209670_at T cell receptor alpha constant /// T cell receptor alpha constant 0 1 1 

1153B3 chr14q11.2 234388_at 
T cell receptor alpha locus /// T cell receptor alpha chain /// 
Rearranged T-cell receptor alpha-chain mRNA, variable region 0 1 1 

1153B3 chr14q11.2 217143_s_at T cell receptor alpha locus /// T cell receptor delta locus 0 1 1 

1153B3 chr14q11.2 217056_at 
T cell receptor alpha locus /// T cell receptor, clone IGRA15 /// T-cell 
receptor alpha chain V-region /// TCRA PS7 mRNA 0 1 1 

1390 chr14q22.2 230503_at Sterile alpha motif domain containing 4A 0 0 0 
1430B1 chr14q23.1 219179_at dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis) 0 1 0 

1390 chr14q31.1 233859_at chromosome 14 open reading frame 145 0 1 0 
1014T2 chr14q31-q32 210760_x_at Thyroid hormone receptor interactor 11 0 1 0 
1014T2 chr14q32.12 220369_at KIAA2010 0 1 0 

555B3 chr14q32.33 211636_at 

immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant alpha 1 /// immunoglobulin heavy constant alpha 2 (A2m 
marker) /// immunoglobulin heavy constant alpha 2 (A2m marker) /// 
immunoglobulin heavy constant gamma 1 (G1m marker) /// immuno 0 1 1 

555B3 chr14q32.33 228558_at chromosome 14 open reading frame 80 0 1 1 

555B3 chr14q32.33 211647_x_at 
Immunoglobulin heavy constant gamma 1 (G1m marker) /// 
Immunoglobulin heavy constant gamma 1 (G1m marker) 0 1 1 

555B3 chr14q32.32-q32.33 211640_x_at 
Immunoglobulin heavy variable 1-69 /// Immunoglobulin heavy variable 
1-69 0 1 1 

 147 



555B3 chr14q32.33 1558437_at 

Immunoglobulin epsilon chain constant region=membrane-bound form 
{M:A, alternatively spliced, exon C4, membrane domain exon 1} 
[human, B cell myeloma U-266, mRNA Partial, 230 nt] /// Epsilon , 
IgE=membrane-bound IgE, epsilon m/s isoform {alternative splic 0 1 1 

555B3 chr14q32.33 211637_x_at Hypothetical protein LOC90925 /// Hypothetical protein LOC90925 0 1 1 
555B3 chr14q32.3 211783_s_at metastasis associated 1 /// metastasis associated 1 0 1 1 

555B3 chr14q32.33 212827_at 
immunoglobulin heavy constant mu /// immunoglobulin heavy constant 
mu 0 1 1 

555B3 chr14q32.33 212778_at phosphofurin acidic cluster sorting protein 2 0 1 1 
555B3 chr14q32.3 1568929_at Metastasis associated 1 0 1 1 

555B3 chr14q32.33 211835_at 

immunoglobulin heavy locus /// immunoglobulin heavy constant alpha 
1 /// immunoglobulin heavy constant alpha 2 (A2m marker) /// 
immunoglobulin heavy constant delta /// immunoglobulin heavy 
constant gamma 1 (G1m marker) /// immunoglobulin heavy constant 
ga 0 1 1 

555B3 chr14q32.33 230877_at immunoglobulin heavy constant delta 0 1 1 

555B3 
chr14q32.33 /// 
chr16p11.2 211868_x_at 

immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant gamma 1 (G1m marker) /// immunoglobulin heavy constant 
gamma 3 (G3m marker) /// similar to Ig heavy chain V-III region VH26 
precursor /// myosin-reactive immunoglobulin heavy chain va 0 1 1 

555B3 chr14q32.33 213512_at chromosome 14 open reading frame 79 0 1 1 
555B3 chr14q32.32-q32.33 240915_at immunoglobulin heavy variable 1-69 0 1 1 
555B3 chr14q32.33 206478_at KIAA0125 0 1 1 
555B3 chr14q32 209784_s_at jagged 2 0 1 1 
555B3 chr14q32.33 1558438_a_at Immunoglobulin heavy constant gamma 1 (G1m marker) 0 1 1 
555B3 chr14q32.33 209374_s_at immunoglobulin heavy constant mu 0 1 1 

555B3 chr14q 203754_s_at 
BRF1 homolog, subunit of RNA polymerase III transcription initiation 
factor IIIB (S. cerevisiae) 0 1 1 

555B3 chr14q32.3 208978_at cysteine-rich protein 2 1 1 1 

555B3 chr14q32.33 234477_at 
immunoglobulin heavy constant alpha 1 /// similar to Ig heavy chain V-
II region SESS precursor 0 1 1 

555B3 chr14q32.33 211430_s_at 

immunoglobulin heavy locus /// immunoglobulin heavy constant 
gamma 1 (G1m marker) /// immunoglobulin heavy constant gamma 2 
(G2m marker) /// immunoglobulin heavy constant gamma 3 (G3m 
marker) /// immunoglobulin heavy constant mu /// anti-RhD monoclonal 
T1 0 1 1 

555B3 chr14q32.33 205081_at cysteine-rich protein 1 (intestinal) 0 1 1 
555B3 chr14q32.33 231910_at Nudix (nucleoside diphosphate linked moiety X)-type motif 14 0 1 1 

555B3 chr14q32.33 217169_at 
immunoglobulin heavy constant alpha 1 /// similar to Ig heavy chain V-
III region VH26 precursor 0 1 1 
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555B3 chr14q32.33 216706_x_at 

immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant delta /// immunoglobulin heavy constant gamma 1 (G1m 
marker) /// immunoglobulin heavy constant mu 0 1 1 

555B3 chr14q32.33 216542_x_at 
immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant gamma 1 (G1m marker) 0 1 1 

555B3 
chr14q32.33 /// 
chr14q32.32-q32.33 216541_x_at 

immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant gamma 1 (G1m marker) /// immunoglobulin heavy constant 
gamma 3 (G3m marker) /// immunoglobulin heavy variable 1-69 0 1 1 

555B3 chr14q32.33 217022_s_at 
immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant alpha 2 (A2m marker) 0 1 1 

555B3 chr14q32.33 1564499_at chromosome 14 open reading frame 81 0 1 1 
555B3 chr14q32.3 221140_s_at G protein-coupled receptor 132 0 1 1 
555B3 chr14q32.33 220377_at family with sequence similarity 30, member A 0 1 1 
555B3 chr14q32.33 222914_s_at transmembrane protein 121 1 1 1 

555B3 chr14q32.33 217198_x_at 

immunoglobulin heavy locus /// immunoglobulin heavy constant delta 
/// immunoglobulin heavy constant gamma 1 (G1m marker) /// anti-
RhD monoclonal T125 gamma1 heavy chain 0 1 1 

555B3 chr14q32.33 218399_s_at cell division cycle associated 4 0 1 1 
555B3 chr14q32 225389_at BTB (POZ) domain containing 6 0 1 1 

555B3 
chr14q32.33 /// 
chr16p11.2 217369_at 

immunoglobulin heavy constant gamma 1 (G1m marker) /// similar to 
Ig heavy chain V-III region VH26 precursor /// anti-RhD monoclonal 
T125 gamma1 heavy chain 0 1 1 

555B3 chr14q32.33 217360_x_at 

immunoglobulin heavy constant alpha 1 /// immunoglobulin heavy 
constant gamma 1 (G1m marker) /// immunoglobulin heavy constant 
gamma 3 (G3m marker) /// similar to Ig heavy chain V-III region VH26 
precursor /// similar to Ig heavy chain V-III region VH26 p 0 1 1 

555B3 chr14q32.33 1558378_a_at chromosome 14 open reading frame 78 0 1 1 

555B3 chr14q32.33 217217_at 
Variable region of IgA (VH4 family) /// Immunoglobulin heavy constant 
gamma 1 (G1m marker) 1 1 1 

555B3 chr14q32.33 1558581_at Hypothetical protein LOC647310 0 1 1 

555B3 chr14q32.33 215949_x_at 

immunoglobulin heavy constant mu /// similar to Ig heavy chain V-III 
region VH26 precursor /// similar to Ig heavy chain V-III region VH26 
precursor 1 1 1 

555B3 chr14q32.33 215721_at 
immunoglobulin heavy constant gamma 1 (G1m marker) /// similar to 
Ig heavy chain V region 102 precursor 0 1 1 

1401B3 
chr15q11.2 /// 
chr14q11.2 1560734_at 

olfactory receptor, family 4, subfamily N, member 4 /// olfactory 
receptor, family 4, subfamily Q, member 3 0 1 1 

1401B3 chr15q11.2 1564856_s_at Olfactory receptor, family 4, subfamily N, member 4 0 1 1 
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334T2 chr15q11.2 1552696_at non imprinted in Prader-Willi/Angelman syndrome 1 1 1 1 
1229T2 chr15q11.2 1564855_at Olfactory receptor, family 4, subfamily M, member 2 0 1 1 
334T2 chr15q11.2 227967_at tubulin, gamma complex associated protein 5 1 1 1 
334T2 chr15q11 208923_at cytoplasmic FMR1 interacting protein 1 0 1 1 

334T2 
chr15q11.2 /// 
chr15q13.1 217520_x_at 

hypothetical protein LOC283683 /// similar to programmed cell death 6 
interacting protein 0 1 1 

334T2 chr15q11.2 212129_at non imprinted in Prader-Willi/Angelman syndrome 2 0 1 1 

334T2 
chr15q13.1 /// 
chr15q11.2 222149_x_at 

golgi autoantigen, golgin subfamily a, 8G /// golgi autoantigen, golgin 
subfamily a, 8D /// golgi autoantigen, golgin subfamily a, 8E /// golgi 
autoantigen, golgin subfamily a, 8C /// golgi autoantigen, golgin 
subfamily a, 8F 0 1 1 

497B3 chr15q14 1561405_s_at cation channel, sperm associated 2 0 1 1 
497B3 chr15q15.2 1561705_at Tau tubulin kinase 2 0 1 1 
497B3 chr15q14 1552680_a_at cancer susceptibility candidate 5 0 1 1 
497B3 chr15q15.1 1563079_at Hypothetical protein LOC645022 0 1 1 
497B3 chr15q15.1 1557864_x_at Phospholipase A2, group IVE 0 1 1 
497B3 chr15q15.1 1562163_at Nucleolar and spindle associated protein 1 0 1 1 
497B3 chr15q15-q21 203050_at tumor protein p53 binding protein, 1 0 1 1 
497B3 chr15q15.1-q21.1 1558273_a_at TYRO3 protein tyrosine kinase 0 1 1 
497B3 chr15q15.1 1566209_at Mitogen activated protein kinase binding protein 1 0 1 1 
497B3 chr15q15.1 202826_at serine peptidase inhibitor, Kunitz type 1 0 1 1 
497B3 chr15q15 202712_s_at creatine kinase, mitochondrial 1B /// creatine kinase, mitochondrial 1A 1 1 1 
497B3 chr15q15.1 1560814_a_at coiled-coil domain containing 32 0 1 1 
497B3 chr15q14 1561320_at P21(CDKN1A)-activated kinase 6 0 1 1 
497B3 chr15q15.3 1561306_s_at stereocilin /// similar to stereocilin /// similar to stereocilin 0 1 1 
497B3 chr15q24.2 1566934_at TYRO3P protein tyrosine kinase pseudogene 0 1 1 
497B3 chr15q14-q15 1552276_a_at vacuolar protein sorting protein 18 0 1 1 

497B3 chr15q15.3 1555255_a_at 
Histidine acid phosphatase domain containing 2A /// hypothetical 
protein LOC649951 0 1 1 

497B3 chr15q15.3 1569470_a_at FERM domain containing 5 0 1 1 
497B3 chr15q15.1 1569065_s_at hypothetical protein LOC643338 0 1 1 
497B3 chr15q11.1 1556607_at EH-domain containing 4 0 1 1 

497B3 chr15q22 200007_at 

signal recognition particle 14kDa (homologous Alu RNA binding 
protein) /// signal recognition particle 14kDa (homologous Alu RNA 
binding protein) 0 1 1 

497B3 chr15q15.1 1558947_at Opa interacting protein 5 0 1 1 
497B3 chr15q14 1560081_at hypothetical protein LOC90408 0 1 1 
497B3 chr15q14 1564640_at MAX gene associated 0 1 1 
497B3 chr15q15.1 1553907_a_at exonuclease 3'-5' domain-like 1 0 1 1 
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497B3 
chr15q15-q21.1 /// 
chr9p11.2 1554741_s_at 

fibroblast growth factor 7 (keratinocyte growth factor) /// keratinocyte 
growth factor-like protein 1 /// similar to Keratinocyte growth factor 
precursor (KGF) (Fibroblast growth factor 7) (FGF-7) (HBGF-7) /// 
similar to Keratinocyte growth factor precurs 0 1 1 

497B3 chr15q15.1 1554914_at phospholipase A2, group IVD (cytosolic) 0 1 1 
497B3 chr15q14 1557628_s_at hypothetical protein LOC283745 0 1 1 
497B3 chr15q15.1 220082_at protein phosphatase 1, regulatory (inhibitor) subunit 14D 0 1 1 
497B3 chr15q15.1 219861_at DnaJ (Hsp40) homolog, subfamily C, member 17 0 1 1 
497B3 chr15q15.1 231431_s_at hypothetical LOC388114 /// hypothetical protein LOC649557 0 1 1 
497B3 chr15q15.3 236018_at Leucine carboxyl methyltransferase 2 0 1 1 
497B3 chr15q15.1 220071_x_at centrosomal protein 27kDa 1 1 1 
497B3 chr15q15.2 231080_at Congenital dyserythropoietic anemia, type I 0 1 1 
497B3 chr15q15.1 230843_at Family with sequence similarity 82, member C 1 1 1 

497B3 chr15q15.1 230832_at 
Rtf1, Paf1/RNA polymerase II complex component, homolog (S. 
cerevisiae) 0 1 1 

497B3 chr15q21 220067_at spectrin, beta, non-erythrocytic 5 0 1 1 
497B3 chr15q15.3 217756_x_at small EDRK-rich factor 2 0 1 1 
497B3 chr15q15.1 217781_s_at zinc finger protein 106 homolog (mouse) 0 1 1 
497B3 chr15q15 235452_at Creatine kinase, mitochondrial 1A 0 1 1 
497B3 chr15q15.3 219518_s_at elongation factor RNA polymerase II-like 3 0 1 1 
497B3 chr15q15.3 218680_x_at Huntingtin interacting protein K 0 1 1 
497B3 chr15q15.2 235340_at glucosidase, alpha; neutral C 0 1 1 
497B3 chr15q15.2 218776_s_at transmembrane protein 62 0 1 1 
497B3 chr15q11.2-q21.3 219095_at phospholipase A2, group IVB (cytosolic) 0 1 1 
497B3 chr15q15.1 219270_at ChaC, cation transport regulator-like 1 (E. coli) 0 1 1 
497B3 chr15q15.1 229579_s_at dispatched homolog 2 (Drosophila) 0 1 1 
497B3 chr15q15.1 218441_s_at RNA polymerase II associated protein 1 0 1 1 
497B3 chr15q15 227033_at protein disulfide isomerase family A, member 3 1 1 1 
497B3 chr15q15.1 230485_at hypothetical protein LOC644844 0 1 1 
497B3 chr15q15.1 225843_at zinc finger, FYVE domain containing 19 0 1 1 
497B3 chr15q15.1 226314_at dermatan 4 sulfotransferase 1 0 1 1 
497B3 chr15q14 226530_at Bcl2 modifying factor 0 1 1 
497B3 chr15q15.3 226562_at zinc finger protein 690 0 1 1 
497B3 chr15q13 226921_at ubiquitin protein ligase E3 component n-recognin 1 0 1 1 
497B3 chr15q15.1 225357_s_at INO80 complex homolog 1 (S. cerevisiae) 0 1 1 
497B3 chr15q15.2 227108_at START domain containing 9 0 1 1 
497B3 chr15q15.1 227272_at FLJ43339 protein 0 1 1 
497B3 chr15q14-q15.1 227846_at G protein-coupled receptor 176 0 1 1 
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497B3 chr15q14 223525_at delta-like 4 (Drosophila) 0 1 1 

497B3 
chr15q14 /// 
chr15q15.3 217588_at 

cation channel, sperm associated 2 /// cation channel, sperm 
associated 2 pseudogene 0 1 1 

497B3 chr15q15.1 203051_at bromo adjacent homology domain containing 1 0 1 1 
497B3 chr15q15.1 225567_at Hypothetical LOC388114 0 1 1 
497B3 chr15q13.3 221940_at RNA pseudouridylate synthase domain containing 2 0 1 1 
497B3 chr15q15.1 223771_at Transmembrane protein 87A 0 1 1 
497B3 chr15q15.1 229232_at leucine rich repeat containing 57 0 1 1 
497B3 chr15q15.1 225164_s_at eukaryotic translation initiation factor 2 alpha kinase 4 0 1 1 
497B3 chr15q15.1 225300_at chromosome 15 open reading frame 23 0 1 1 
497B3 chr15q14-q15 225311_at isovaleryl Coenzyme A dehydrogenase 0 1 1 
497B3 chr15q14-q15 223084_s_at cyclin D-type binding-protein 1 1 1 1 
497B3 chr15q15.1-q21.1 210944_s_at calpain 3, (p94) 0 1 1 
497B3 chr15q15.1-q21.1 207106_s_at leukocyte tyrosine kinase 1 1 1 
497B3 chr15q21 207121_s_at mitogen-activated protein kinase 6 0 1 1 
497B3 chr15q15.2 207911_s_at transglutaminase 5 1 1 1 
497B3 chr15q13.3 207993_s_at calcium binding protein P22 1 1 1 
497B3 chr15q13.3 241990_at ras homolog gene family, member V 0 1 1 
497B3 chr15q15-q21.1 205782_at fibroblast growth factor 7 (keratinocyte growth factor) 1 1 1 
497B3 chr15q15.3 240048_at stereocilin 0 1 1 
497B3 chr15q15.1 209130_at synaptosomal-associated protein, 23kDa 0 1 1 
497B3 chr15q15 210388_at phospholipase C, beta 2 0 1 1 
497B3 chr15q15.1 235958_at Phospholipase A2, group IVF 0 1 1 
497B3 chr15q15-q21 240274_at Erythrocyte membrane protein band 4.2 0 1 1 
497B3 chr15q13-qter 203151_at microtubule-associated protein 1A 0 1 1 
497B3 chr15q15-q21 203406_at microfibrillar-associated protein 1 1 1 1 
497B3 chr15q15 203755_at BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) 0 1 1 
497B3 chr15q14-q21 205874_at inositol 1,4,5-trisphosphate 3-kinase A 0 1 1 

497B3 chr15q11.2-q21.3 204125_at 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly 
factor 1 0 1 1 

497B3 chr15q15 211337_s_at gamma tubulin ring complex protein (76p gene) 1 1 1 
497B3 chr15q15.2 243949_at Similar to kinesin-like motor protein C20orf23 0 1 1 
497B3 chr15q15 204867_at GTP cyclohydrolase I feedback regulator 0 1 1 
497B3 chr15q15.1 205023_at RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) 0 1 1 
497B3 chr15q15.3 205519_at WD repeat domain 76 0 1 1 
497B3 chr15q15.3 238424_at adenosine deaminase-like 0 1 1 

497B3 chr15q15-q21 210746_s_at 
erythrocyte membrane protein band 4.2 /// erythrocyte membrane 
protein band 4.2 1 1 1 

497B3 chr15q15.1 239470_at hypothetical protein LOC644809 0 1 1 
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497B3 chr15q15.2 237288_at transglutaminase 7 0 1 1 
497B3 chr15q15.1 212156_at vacuolar protein sorting 39 (yeast) 0 1 1 
497B3 chr15q24.1 213455_at hypothetical LOC283677 0 1 1 
956T1 chr15q 213012_at neural precursor cell expressed, developmentally down-regulated 4 1 1 0 
1014T2 chr15q26.3 1554456_a_at lines homolog 1 (Drosophila) 0 0 0 
956T1 chr16p13.3 1552349_a_at protease, serine, 33 0 1 0 

956T1 chr16p12.3 200085_s_at 

transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin 
B) /// transcription elongation factor B (SIII), polypeptide 2 (18kDa, 
elongin B) 0 1 0 

956T1 chr16p13.3 220051_at protease, serine, 21 (testisin) 0 1 0 
956T1 chr16p13.3 205847_at protease, serine, 22 0 1 0 
956T1 chr16p13.3 216629_at Serine/arginine repetitive matrix 2 0 1 0 
956T1 chr16p13.3 222170_at Hypothetical LOC440334 0 1 0 
956T1 chr16p13.3 228058_at similar to common salivary protein 1 0 1 0 

956T1 chr16p12.3 213877_x_at 
transcription elongation factor B (SIII), polypeptide 2 (18kDa, elongin 
B) 0 1 0 

956T1 chr16p13.3 226079_at hypothetical protein BC014089 0 1 0 

1052T1 chr16p11.2 239993_at 

similar to protein phosphatase 2A 48 kDa regulatory subunit isoform 1; 
serine/threonine protein phosphatase 2A, 48kDa regulatory subunit; 
PP2A, subunit B, PR48 isoform; PP2A B subunit PR48; NY-REN-8 
antigen /// similar to protein phosphatase 2, regulatory 0 1 1 

588T1 chr16p11.2 1553914_at hypothetical protein MGC34800 0 1 1 
1052T1 chr16q13 216336_x_at metallothionein 1M 1 1 1 
1052T1 chr16p11.2 216193_at hect domain and RLD 2 pseudogene 1 1 1 

1052T1 
chr16p13 /// 
chr16p11.2 220167_s_at 

TP53TG3 protein /// similar to TP53TG3 protein /// similar to TP53TG3 
protein /// similar to TP53TG3 protein 0 1 1 

588T1 chr16p11.1 1561518_at hypothetical protein LOC283914 0 1 1 

588T1 chr16p11.2 217384_x_at 

similar to Ig heavy chain V-III region VH26 precursor /// similar to Ig 
heavy chain V-III region VH26 precursor /// similar to Ig heavy chain V-
III region VH26 precursor 0 1 1 

1052T1 chr16q24.2-q24.3 204726_at cadherin 13, H-cadherin (heart) 1 1 0 
1469B1 chr17q21.31 237962_x_at KIAA1267 0 1 1 

1469B1 
chr17q21.32 /// 
chr17q21.31 1555794_at 

ADP-ribosylation factor-like 17 pseudogene 1 /// ADP-ribosylation 
factor-like protein 0 1 1 

1469B1 chr17q24.3 230056_at fetal Alzheimer antigen 0 1 1 
1469B1 chr17q21.31 230388_s_at hypothetical protein LOC644246 /// hypothetical protein LOC649063 0 1 1 
1469B1 chr17q21.31 229857_s_at Hypothetical protein LOC644246 0 1 1 

810T1 chr18q21.1 202002_at 
acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-
Coenzyme A thiolase) 0 1 0 
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1052T1 chr19p13.2 1553276_at zinc finger protein 560 0 1 0 
1014T2 chr19p13.11 243482_at Epidermal growth factor receptor pathway substrate 15-like 1 1 1 0 
1014T2 chr19p13.11 1552421_a_at calreticulin 3 0 1 0 
464T3 chr19q13.42 213402_at hypothetical protein LOC126208 0 1 0 
1376T2 chr19q13.43 217593_at zinc finger protein 447 0 1 0 
1466T2 chr19qter 204937_s_at zinc finger protein 274 1 1 0 
1376T2 chr19p12 1569637_at zinc finger protein 100 0 1 0 
1466T2 chr19q13.43 218735_s_at zinc finger protein 544 0 1 0 
1376T2 chr19q13.43 219765_at zinc finger protein 329 1 1 0 
1376T2 chr19q13.43 218735_s_at   0 1 0 
1401B3 chr20p13 231905_at chromosome 20 open reading frame 96 0 1 1 
1401B3 chr20p13 233160_at defensin, beta 129 0 1 1 
699T2a chr20p12.3 224826_at hypothetical protein KIAA1434 1 1 0 
699T2a chr20p13 233630_at CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 2 1 1 0 
699T2a chr20p12.3 229992_at hypothetical protein LOC149837 0 1 0 
1166B3 chr20p11.2 219913_s_at Crn, crooked neck-like 1 (Drosophila) 0 1 0 
1166B3 chr20p11.23 233389_at chromosome 20 open reading frame 26 0 0 0 
597B3 chr21p11 220205_at transmembrane phosphatase with tensin homology 0 1 1 

862T1 
chr21q22.1-
q22.2|21q22.11 200818_at 

ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit 
(oligomycin sensitivity conferring protein) 1 0 0 

956T1 chr21q22.2|21q22.13 1557900_at single-minded homolog 2 (Drosophila) 0 1 0 
1399B3 chr22q11.1 220508_at T-complex protein 1 0 1 1 
1399B3 chr22q11.2 233469_at TPTE pseudogene 0 1 1 

 
a  Locations of probe sets from the HG-U133 Plus 2 GeneChip were compared to CNV regions.  This gene list has been filtered to 
include only unique genes. 
b  1, probe sets differentially expressed in AD vs. controls 
c  1, probe sets located in coding regions 
d  1, probe sets located within known CNV regions published in the Database for Genomic Variants 
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Chapter V.  Conclusions 

A.  Summary 

 Advances in technology have led to a dramatic increase in the ability to identify 

genes involved in susceptibility to common complex traits and to elucidate underlying 

biological processes [8, 27, 146].  High throughput, whole genome gene profiling and 

whole genome genotyping assays are at the heart of these accomplishments.  Combining 

these techniques can reveal unpredicted and surprising molecular mechanisms for 

phenotypic outcomes.  However, there are challenges in using them for biological 

discovery.   Novel sophisticated techniques require novel analytic methods.   The 

difficulty is to create robust analytic methods capable of distinguishing biological 

meaningful signals of varying effect size from a background of complex variability and 

with the additional statistical considerations of small sample sizes and multiple testing 

issues.  

This research focused on utilizing these high throughput methods as alternative 

strategies for gene mapping in Alzheimer’s disease, a common multifactorial disease 

involving multiple cellular processes and environmental influences. Alzheimer’s disease 

is the most frequent cause of cognitive decline in the elderly and afflicts approximately 

26 million individuals worldwide [59].  We proposed that using gene expression results 

to inform decisions of candidate gene association studies for AD would improve our 

ability to choose rational gene candidates. 

Our first step was to conduct a gene profiling approach to dissecting the complex 

phenotypes involved in age-related cognitive decline. Comparison of our results with two 

previously published studies using a comparable microarray platform revealed common 
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pathways underlying cognitive decline in three different brain tissues. Novel genes in 

pathways previously recognized as crucial to healthy brain aging have been identified.  

Sweeping transcriptional differences associated with cognitive decline implicated genes 

involved in transcriptional regulation, energy pathways, ion homeostasis dysregulation, 

apoptosis, and synaptic activity. In addition, our results reveal significant up-regulation of 

actin-related processes and down-regulation of translation, RNA processing and 

localization, and vesicle mediated transport. This study identifies 873 candidate genes, 

located in linkage regions, which had not been previously implicated in cognitive decline.  

Dysregulated genes that are both involved in known AD critical pathways and located in 

linkage/association regions represent potential candidates for gene association studies. 

 Recent studies into the genetics of gene expression [122-124] have shown that 

transcriptional response to environmental and cellular perturbations may vary from 

person to person based on specific genetic sequence.  Advances in genotyping technology 

have led to a dramatic drop in cost per SNP and allowed us to test the extent to which our 

gene expression profiling results were affected by copy number variation by performing 

whole genome SNP genotyping in the same subjects.  Low level analysis of two different 

genotyping algorithms demonstrated the importance of determining the sensitivity of an 

algorithm to the physicochemical properties of the probes on the array.   We found that 

genotyping call rates across the Affymetrix 100K Mapping Set arrays can be improved 

by choosing an algorithm such as BRLMM that corrects for the length of the PCR 

fragment hybridized to the chip and the GC content of the probe itself.  The improvement 

in data quality increases power to discover disease susceptibility genes. 
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 Although advances in genomic technology have begun to revolutionize human 

biology and genetics medicine, they have been focused largely on the nature and pattern 

of SNPs within the human genome.  Recent studies have shown the importance of larger 

DNA sequence polymorphisms up to 2Mb in size.  There has been considerable progress 

in understanding the common patterns of SNPs, but the extent and impact of structural 

variation in normal individuals is still being determined.  We tested the effect of CNV on 

genotyping call rate and on gene expression patterns.  Several issues were identified in 

this approach:  1) the importance of identifying the features requiring normalization 

across the samples, 2) the impact of reference data set choice has on the detection and 

estimation of copy numbers differences, 3)  there is an increase in NoCall rate in CNV 

regions due to the polymorphic nature of SNPs and 2) there is a decreased density of 

SNPs in duplicated regions of the genome which limit our power to detect CNV regions 

across the genome.  This relates to the studies showing that genetic complexity of 

structural genetic variation decreases the linkage disequilibrium (LD) in surrounding 

areas of the genome [8, 147].  Because of this, the SNPs captured on the manufactured 

genotyping arrays are not necessarily effective proxies for nearby CNV  and therefore, it 

is important to investigate the association of CNV with a complex trait separately from 

association with SNP and disease. 

B.  Future Directions 

Whole genome association studies have an advantage over candidate gene studies 

in that novel genes and biological pathways not previously thought to be involved can be 

discovered.  Both whole genome and candidate gene studies will be needed to replicate 

and confirm candidates found in this study.    Effects of the massive transcriptional 

 157 



response to cognitive decline reflect the complex interplay between transcriptional 

regulation and metabolism in response to the environment.  A major new emphasis in 

genomic medicine will be untangling what the specific genetic variants do within each 

environmental and biological process.   Multiple molecular changes can result from 

environmental stressors, but not all of these changes are linked to increased disease risk.  

In particular, a late onset disease has its beginnings years earlier and has shaped 

downstream cellular effects over time.   In addition, long term environmental 

contributions to chronic disease are likely different from acute environmental effects.  

Additional studies are needed to address these issues and refine the role of gene 

expression and DNA structural variability in complex traits.  An important issue in this 

study is that the brain tissue used is comprised of mixed cell types from end stage AD.   

Experiments from early stages of disease would be useful to identify genes in the 

begining stages of the neurodegenerative process.  Likewise, using single cells in place of 

mixed tissues, would identify cell specific gene expression changes.  Replication of these 

experiments or combination with other metadata is necessary to see global transcriptional 

reprogramming due to cognitive decline versus stochastic changes due to natural 

plasticity of the regulatory system [148].  Investigations into splice variants and tissue 

specificity of these variants will be important to elucidate the role of specific isoforms in 

the disease process.  Whole genome experimental designs are particularly useful for 

discovery of regulatory regions of the genome ignored by candidate gene studies.  

Epistatic interactions among SNPs within and among genes, CNVs, SNPs x CNVs and 

environmental interactions could have either synergistic or compensatory effects 
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depending on the genotypes.  This is a particularly challenging problem due to the high 

dimensional nature of the technology and the lack of a priori hypotheses[149].    

The integration of expression and genomic sequence variation will lead to a better 

understanding of diseases and designing improved treatments.  Fine tuning the SNP array 

experiments in terms of staging of disease and single cell types as discussed earlier would 

provide the same deeper understanding of the disease process.   

The newer platform chips, Affymetrix 5.0 Assay and 6.0 Assay, are considerably 

different with respect to density and probes on the array.  Determining which probes are 

underperforming across multiple samples will allow the SNPs affecting whole genome 

association studies to be identified and removed.  SNPs underperforming across multiple 

populations may suggest structural differences in populations.  Also, the use of chips with 

higher density SNPs will allow finer mapping of copy number breakpoints.  As 

genotyping platforms and algorithms continually evolve, there is an ongoing need for 

testing and evaluation to determine under what conditions these algorithms improve the 

sensitivity and specificity of the genotype calls.   

 The etiology of most common complex traits has multiple genetic and 

environmental factors.  Also, the chronic effects of late onset diseases shape downstream 

cellular effects over time but are not subject to evolutionary constraints that select for 

particular mutations.  This may make the identification of genes involved in these 

phenotypes more difficult because of possible increase in the number of genes involved 

and the possibility that CNV have rearranged on multiple haplotype backgrounds (ie., 

decreased linkage disequilibrium).  Such genes will likely have smaller effect sizes 

requiring much larger sample sizes in order to identify them.  To make such studies 
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practical, consortium based approaches such as the Wellcome Trust Case Control 

Consortium (WTCCC) which has recently identified 24 genetic risk factors for seven 

common complex diseases [30] will be needed.  Finally, given the complex nature of 

these phenotypes, identification and characterization of confounding factors is a key 

component in analyzing population data.   Movements such as the recent NIH call (RFA-

HG-07-005) to set up a consortium of sites to perform whole genome association studies 

on tissue repositories linked to electronic medical records will be an important resource 

for investigators studying the genetics of common complex traits, allowing critical 

annotation to help define patient phenotypes. 

 160 



Literature 

1. Chakravarti, A. and P. Little, Nature, nurture and human disease. Nature, 2003. 

421(6921): p. 412-4. 

2. Altshuler, D. and A.G. Clark, Genetics. Harvesting medical information from the 

human family tree. Science, 2005. 307(5712): p. 1052-3. 

3. Altshuler, D. and M. Daly, Guilt beyond a reasonable doubt. Nat Genet, 2007. 

39(7): p. 813-5. 

4. Ardlie, K.G., L. Kruglyak, and M. Seielstad, Patterns of linkage disequilibrium in 

the human genome. Nat Rev Genet, 2002. 3(4): p. 299-309. 

5. Risch, N. and K. Merikangas, The future of genetic studies of complex human 

diseases. Science, 1996. 273(5281): p. 1516-7. 

6. Carlson, C.S., et al., Mapping complex disease loci in whole-genome association 

studies. Nature, 2004. 429(6990): p. 446-52. 

7. Glazier, A.M., J.H. Nadeau, and T.J. Aitman, Finding genes that underlie 

complex traits. Science, 2002. 298(5602): p. 2345-9. 

8. Redon, R., et al., Global variation in copy number in the human genome. Nature, 

2006. 444(7118): p. 444-54. 

9. Sharp, A.J., et al., Segmental duplications and copy-number variation in the 

human genome. Am J Hum Genet, 2005. 77(1): p. 78-88. 

10. Wong, K.K., et al., A comprehensive analysis of common copy-number variations 

in the human genome. Am J Hum Genet, 2007. 80(1): p. 91-104. 

11. Hinds, D.A., et al., Common deletions and SNPs are in linkage disequilibrium in 

the human genome. Nat Genet, 2006. 38(1): p. 82-5. 

 161 



12. Iafrate, A.J., et al., Detection of large-scale variation in the human genome. Nat 

Genet, 2004. 36(9): p. 949-51. 

13. Conrad, D.F., et al., A high-resolution survey of deletion polymorphism in the 

human genome. Nat Genet, 2006. 38(1): p. 75-81. 

14. McCarroll, S.A., et al., Common deletion polymorphisms in the human genome. 

Nat Genet, 2006. 38(1): p. 86-92. 

15. Sebat, J., et al., Large-scale copy number polymorphism in the human genome. 

Science, 2004. 305(5683): p. 525-8. 

16. Schmitt, F.A., et al., "Preclinical" AD revisited: neuropathology of cognitively 

normal older adults. Neurology, 2000. 55(3): p. 370-6. 

17. Katzman, R., et al., Clinical, pathological, and neurochemical changes in 

dementia: a subgroup with preserved mental status and numerous neocortical 

plaques. Ann Neurol, 1988. 23(2): p. 138-44. 

18. Lee, J.H., Genetic evidence for cognitive reserve: variations in memory and 

related cognitive functions. J Clin Exp Neuropsychol, 2003. 25(5): p. 594-613. 

19. Scarmeas, N. and Y. Stern, Cognitive reserve: implications for diagnosis and 

prevention of Alzheimer's disease. Curr Neurol Neurosci Rep, 2004. 4(5): p. 374-

80. 

20. Singleton, A., A. Myers, and J. Hardy, The law of mass action applied to 

neurodegenerative disease: a hypothesis concerning the etiology and 

pathogenesis of complex diseases. Hum Mol Genet, 2004. 13 Spec No 1: p. R123-

6. 

 162 



21. Farrall, M., Quantitative genetic variation: a post-modern view. Hum Mol Genet, 

2004. 13 Spec No 1: p. R1-7. 

22. Jais, P.H., How frequent is altered gene expression among susceptibility genes to 

human complex disorders? Genet Med, 2005. 7(2): p. 83-96. 

23. Yan, H., et al., Allelic variation in human gene expression. Science, 2002. 

297(5584): p. 1143. 

24. Cheung, V.G., et al., Natural variation in human gene expression assessed in 

lymphoblastoid cells. Nat Genet, 2003. 33(3): p. 422-5. 

25. Morley, M., et al., Genetic analysis of genome-wide variation in human gene 

expression. Nature, 2004. 430(7001): p. 743-7. 

26. Cutler, D.J., et al., High-throughput variation detection and genotyping using 

microarrays. Genome Res, 2001. 11(11): p. 1913-25. 

27. Kennedy, G.C., et al., Large-scale genotyping of complex DNA. Nat Biotechnol, 

2003. 21(10): p. 1233-7. 

28. Roses, A.D., et al., Complex disease-associated pharmacogenetics: drug efficacy, 

drug safety, and confirmation of a pathogenetic hypothesis (Alzheimer's disease). 

Pharmacogenomics J, 2006. 

29. Kerb, R., Implications of genetic polymorphisms in drug transporters for 

pharmacotherapy. Cancer Lett, 2006. 234(1): p. 4-33. 

30. Genome-wide association study of 14,000 cases of seven common diseases and 

3,000 shared controls. Nature, 2007. 447(7145): p. 661-78. 

31. Irizarry, R.A., et al., Summaries of Affymetrix GeneChip probe level data. Nucleic 

Acids Res, 2003. 31(4): p. e15. 

 163 



32. Li, C. and W. Hung Wong, Model-based analysis of oligonucleotide arrays: 

model validation, design issues and standard error application. Genome Biol, 

2001. 2(8): p. RESEARCH0032. 

33. Huber, W., et al., Variance stabilization applied to microarray data calibration 

and to the quantification of differential expression. Bioinformatics, 2002. 18 

Suppl 1: p. S96-104. 

34. Di, X., et al., Dynamic model based algorithms for screening and genotyping over 

100 K SNPs on oligonucleotide microarrays. Bioinformatics, 2005. 21(9): p. 

1958-63. 

35. Rabbee, N. and T.P. Speed, A genotype calling algorithm for affymetrix SNP 

arrays. Bioinformatics, 2006. 22(1): p. 7-12. 

36. Monks, S.A., et al., Genetic inheritance of gene expression in human cell lines. 

Am J Hum Genet, 2004. 75(6): p. 1094-105. 

37. Schadt, E.E., et al., Genetics of gene expression surveyed in maize, mouse and 

man. Nature, 2003. 422(6929): p. 297-302. 

38. Cheung, V.G., et al., Genetics of quantitative variation in human gene expression. 

Cold Spring Harb Symp Quant Biol, 2003. 68: p. 403-7. 

39. Buckland, P.R., Polymorphically duplicated genes: their relevance to phenotypic 

variation in humans. Ann Med, 2003. 35(5): p. 308-15. 

40. Carter, N.P., As normal as normal can be? Nat Genet, 2004. 36(9): p. 931-2. 

41. Check, E., Human genome: patchwork people. Nature, 2005. 437(7062): p. 1084-

6. 

 164 



42. Hegele, R.A., Copy-number variations add a new layer of complexity in the 

human genome. Cmaj, 2007. 176(4): p. 441-2. 

43. Sharp, A.J., Z. Cheng, and E.E. Eichler, Structural variation of the human 

genome. Annu Rev Genomics Hum Genet, 2006. 7: p. 407-42. 

44. Feuk, L., A.R. Carson, and S.W. Scherer, Structural variation in the human 

genome. Nat Rev Genet, 2006. 7(2): p. 85-97. 

45. McLeod, H.L. and W.N. Keith, Variation in topoisomerase I gene copy number 

as a mechanism for intrinsic drug sensitivity. Br J Cancer, 1996. 74(4): p. 508-12. 

46. Franchina, M. and P.H. Kay, Allele-specific variation in the gene copy number of 

human cytosine 5-methyltransferase. Hum Hered, 2000. 50(2): p. 112-7. 

47. Townson, J.R., L.F. Barcellos, and R.J. Nibbs, Gene copy number regulates the 

production of the human chemokine CCL3-L1. Eur J Immunol, 2002. 32(10): p. 

3016-26. 

48. Linzmeier, R.M. and T. Ganz, Human defensin gene copy number 

polymorphisms: comprehensive analysis of independent variation in alpha- and 

beta-defensin regions at 8p22-p23. Genomics, 2005. 86(4): p. 423-30. 

49. Bolt, H.M. and R. Thier, Relevance of the deletion polymorphisms of the 

glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. 

Curr Drug Metab, 2006. 7(6): p. 613-28. 

50. Cabrejo, L., et al., Phenotype associated with APP duplication in five families. 

Brain, 2006. 129(Pt 11): p. 2966-76. 

 165 



51. Shaw-Smith, C., et al., Microdeletion encompassing MAPT at chromosome 

17q21.3 is associated with developmental delay and learning disability. Nat 

Genet, 2006. 38(9): p. 1032-7. 

52. Myers, C.L., et al., Accurate detection of aneuploidies in array CGH and gene 

expression microarray data. Bioinformatics, 2004. 20(18): p. 3533-43. 

53. Stransky, N., et al., Regional copy number-independent deregulation of 

transcription in cancer. Nat Genet, 2006. 38(12): p. 1386-96. 

54. Furge, K.A., et al., Comparison of array-based comparative genomic 

hybridization with gene expression-based regional expression biases to identify 

genetic abnormalities in hepatocellular carcinoma. BMC Genomics, 2005. 6(1): 

p. 67. 

55. Kloth, J.N., et al., Combined array-comparative genomic hybridization and 

single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex 

genetic alterations in cervical cancer. BMC Genomics, 2007. 8: p. 53. 

56. Stranger, B.E., et al., Relative impact of nucleotide and copy number variation on 

gene expression phenotypes. Science, 2007. 315(5813): p. 848-53. 

57. Wilmot, B., et al., Translational gene mapping of cognitive decline. Neurobiol 

Aging, 2006. 

58. Daruwala, R.S., et al., A versatile statistical analysis algorithm to detect genome 

copy number variation. Proc Natl Acad Sci U S A, 2004. 101(46): p. 16292-7. 

59. Brookmeyer, R., et al., Forecasting the global burden of Alzheimer’s disease. 

Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2007. 3(3): 

p. 186-191. 

 166 



60. Bertram, L. and R.E. Tanzi, Alzheimer's disease: one disorder, too many genes? 

Human Molecular Genetics, 2004. 13 Spec No 1: p. R135-41. 

61. Braak, H. and E. Braak, Argyrophilic grain disease: frequency of occurrence in 

different age categories and neuropathological diagnostic criteria. J Neural 

Transm, 1998. 105(8-9): p. 801-19. 

62. Blalock, E.M., et al., Incipient Alzheimer's disease: microarray correlation 

analyses reveal major transcriptional and tumor suppressor responses. Proc Natl 

Acad Sci U S A, 2004. 101(7): p. 2173-8. 

63. Dunckley, T., et al., Gene expression correlates of neurofibrillary tangles in 

Alzheimer's disease. Neurobiol Aging, 2005. 

64. Mirra, S.S., et al., The Consortium to Establish a Registry for Alzheimer's Disease 

(CERAD). Part II. Standardization of the neuropathologic assessment of 

Alzheimer's disease. Neurology, 1991. 41(4): p. 479-86. 

65. Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. 

The National Institute on Aging, and Reagan Institute Working Group on 

Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. 

Neurobiol Aging, 1997. 18(4 Suppl): p. S1-2. 

66. Ramakers, C., et al., Assumption-free analysis of quantitative real-time 

polymerase chain reaction (PCR) data. Neurosci Lett, 2003. 339(1): p. 62-6. 

67. Pfaffl, M.W., A new mathematical model for relative quantification in real-time 

RT-PCR. Nucleic Acids Res, 2001. 29(9): p. e45. 

68. Team, R.D.C., R: A Language and Environment for Statistical Computing. 2005, 

R Foundation for Statistical Computing: Vienna, Austria. 

 167 



69. Gentleman, R.C., et al., Bioconductor: open software development for 

computational biology and bioinformatics. Genome Biol, 2004. 5(10): p. R80. 

70. Gautier, L., et al., affy--analysis of Affymetrix GeneChip data at the probe level. 

Bioinformatics, 2004. 20(3): p. 307-15. 

71. Dudoit, S., et al., Statistical methods for identifying differentially expressed genes 

in replicated cDNA microarray experiments. Statistica Sinica, 2002. 12: p. 111-

139. 

72. Smyth, G., Linear models and empirical bayes methods for assessing differential 

expression in microarray experiments. Statistical Applications in Genetics and 

Moliecular Biology, 2004. 3(1): p. 1-23. 

73. Storey, J.D. and R. Tibshirani, Statistical significance for genomewide studies. 

Proc Natl Acad Sci U S A, 2003. 100(16): p. 9440-5. 

74. Scearce, L.M., et al., Functional genomics of the endocrine pancreas: the 

pancreas clone set and PancChip, new resources for diabetes research. Diabetes, 

2002. 51(7): p. 1997-2004. 

75. Beissbarth, T. and T.P. Speed, GOstat: find statistically overrepresented Gene 

Ontologies within a group of genes. Bioinformatics, 2004. 20(9): p. 1464-5. 

76. Benjamini, Y. and D. Yekutieli, The Control of the False Discovery Rate in 

Multiple Testing under Dependency. The Annal of Statistics, 2001. 29(4): p. 

1165-1188. 

77. Colangelo, V., et al., Gene expression profiling of 12633 genes in Alzheimer 

hippocampal CA1: transcription and neurotrophic factor down-regulation and 

 168 



up-regulation of apoptotic and pro-inflammatory signaling. Journal of 

Neuroscience Research, 2002. 70(3): p. 462-73. 

78. Loring, J.F., et al., A gene expression profile of Alzheimer's disease. DNA Cell 

Biol, 2001. 20(11): p. 683-95. 

79. Yao, P.J., et al., Defects in expression of genes related to synaptic vesicle 

trafficking in frontal cortex of Alzheimer's disease. Neurobiol Dis, 2003. 12(2): p. 

97-109. 

80. Scheff, S.W., et al., Hippocampal synaptic loss in early Alzheimer's disease and 

mild cognitive impairment. Neurobiol Aging, 2005. 

81. Cataldo, A.M., et al., Endocytic pathway abnormalities precede amyloid beta 

deposition in sporadic Alzheimer's disease and Down syndrome: differential 

effects of APOE genotype and presenilin mutations. Am J Pathol, 2000. 157(1): p. 

277-86. 

82. O'Bryan, J.P., R.P. Mohney, and C.E. Oldham, Mitogenesis and endocytosis: 

What's at the INTERSECTIoN? Oncogene, 2001. 20(44): p. 6300-8. 

83. Keating, D.J., C. Chen, and M.A. Pritchard, Alzheimer's disease and endocytic 

dysfunction: Clues from the Down syndrome-related proteins, DSCR1 and ITSN1. 

Ageing Res Rev, 2006. 

84. McPherson, P.S., B.K. Kay, and N.K. Hussain, Signaling on the endocytic 

pathway. Traffic, 2001. 2(6): p. 375-84. 

85. Predescu, S.A., et al., Intersectin regulates fission and internalization of caveolae 

in endothelial cells. Mol Biol Cell, 2003. 14(12): p. 4997-5010. 

 169 



86. Pucharcos, C., X. Estivill, and S. de la Luna, Intersectin 2, a new multimodular 

protein involved in clathrin-mediated endocytosis. FEBS Lett, 2000. 478(1-2): p. 

43-51. 

87. Tong, X.K., et al., Intersectin can regulate the Ras/MAP kinase pathway 

independent of its role in endocytosis. J Biol Chem, 2000. 275(38): p. 29894-9. 

88. Chyung, J.H. and D.J. Selkoe, Inhibition of receptor-mediated endocytosis 

demonstrates generation of amyloid beta-protein at the cell surface. J Biol Chem, 

2003. 278(51): p. 51035-43. 

89. Carey, R.M., et al., Inhibition of dynamin-dependent endocytosis increases 

shedding of the amyloid precursor protein ectodomain and reduces generation of 

amyloid beta protein. BMC Cell Biol, 2005. 6: p. 30. 

90. Savdie, C., et al., Cell-type-specific pathways of neurotensin endocytosis. Cell 

Tissue Res, 2005: p. 1-17. 

91. Mohney, R.P., et al., Intersectin activates Ras but stimulates transcription 

through an independent pathway involving JNK. J Biol Chem, 2003. 278(47): p. 

47038-45. 

92. Maekawa, M., et al., Signaling from Rho to the actin cytoskeleton through protein 

kinases ROCK and LIM-kinase. Science, 1999. 285(5429): p. 895-8. 

93. Sun-Wada, G.H., Y. Wada, and M. Futai, Diverse and essential roles of 

mammalian vacuolar-type proton pump ATPase: toward the physiological 

understanding of inside acidic compartments. Biochim Biophys Acta, 2004. 

1658(1-2): p. 106-14. 

 170 



94. Bannai, H., et al., Efficiently finding regulatory elements using correlation with 

gene expression. J Bioinform Comput Biol, 2004. 2(2): p. 273-88. 

95. Kanai, Y., N. Dohmae, and N. Hirokawa, Kinesin transports RNA: isolation and 

characterization of an RNA-transporting granule. Neuron, 2004. 43(4): p. 513-25. 

96. Mizutani, A., et al., SYNCRIP, a cytoplasmic counterpart of heterogeneous 

nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J 

Biol Chem, 2000. 275(13): p. 9823-31. 

97. Salehi, A., J.D. Delcroix, and D.F. Swaab, Alzheimer's disease and NGF 

signaling. J Neural Transm, 2004. 111(3): p. 323-45. 

98. Dimakopoulos, A.C., Protein aggregation in Alzheimer's disease and other 

neuropathological disorders. Curr Alzheimer Res, 2005. 2(1): p. 19-28. 

99. Layfield, R., J. Lowe, and L. Bedford, The ubiquitin-proteasome system and 

neurodegenerative disorders. Essays Biochem, 2005. 41: p. 157-71. 

100. Hegde, A.N., Ubiquitin-proteasome-mediated local protein degradation and 

synaptic plasticity. Prog Neurobiol, 2004. 73(5): p. 311-57. 

101. Kita, H., et al., Modulation of polyglutamine-induced cell death by genes 

identified by expression profiling. Hum Mol Genet, 2002. 11(19): p. 2279-87. 

102. Wellmann, S., et al., Oxygen-regulated expression of the RNA-binding proteins 

RBM3 and CIRP by a HIF-1-independent mechanism. J Cell Sci, 2004. 117(Pt 9): 

p. 1785-94. 

103. Dresios, J., et al., Cold stress-induced protein Rbm3 binds 60S ribosomal 

subunits, alters microRNA levels, and enhances global protein synthesis. Proc 

Natl Acad Sci U S A, 2005. 102(6): p. 1865-70. 

 171 



104. Mattick, J.S. and I.V. Makunin, Small regulatory RNAs in mammals. Hum Mol 

Genet, 2005. 14 Spec No 1: p. R121-32. 

105. Martin, K.C. and K.S. Kosik, Synaptic tagging -- who's it? Nat Rev Neurosci, 

2002. 3(10): p. 813-20. 

106. Bierer, L.M., et al., Neocortical neurofibrillary tangles correlate with dementia 

severity in Alzheimer's disease. Arch Neurol, 1995. 52(1): p. 81-8. 

107. Stern, Y., What is cognitive reserve? Theory and research application of the 

reserve concept. J Int Neuropsychol Soc, 2002. 8(3): p. 448-60. 

108. Ohki-Hamazaki, H., M. Iwabuchi, and F. Maekawa, Development and function of 

bombesin-like peptides and their receptors. Int J Dev Biol, 2005. 49(2-3): p. 293-

300. 

109. Ohki-Hamazaki, H., et al., Mice lacking bombesin receptor subtype-3 develop 

metabolic defects and obesity. Nature, 1997. 390(6656): p. 165-9. 

110. de la Monte, S.M. and J.R. Wands, Review of insulin and insulin-like growth 

factor expression, signaling, and malfunction in the central nervous system: 

relevance to Alzheimer's disease. J Alzheimers Dis, 2005. 7(1): p. 45-61. 

111. Mosconi, L., Brain glucose metabolism in the early and specific diagnosis of 

Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol 

Imaging, 2005. 32(4): p. 486-510. 

112. Bernardini, S., et al., Glutathione S-transferase P1 *C allelic variant increases 

susceptibility for late-onset Alzheimer disease: association study and relationship 

with apolipoprotein E epsilon4 allele. Clin Chem, 2005. 51(6): p. 944-51. 

 172 



113. Stroombergen, M.C. and R.H. Waring, Determination of glutathione S-

transferase mu and theta polymorphisms in neurological disease. Hum Exp 

Toxicol, 1999. 18(3): p. 141-5. 

114. Hermani, A., et al., S100A8 and S100A9 activate MAP kinase and NF-kappaB 

signaling pathways and trigger translocation of RAGE in human prostate cancer 

cells. Exp Cell Res, 2006. 312(2): p. 184-97. 

115. Hsu, Y.C. and M.S. Perin, Human neuronal pentraxin II (NPTX2): conservation, 

genomic structure, and chromosomal localization. Genomics, 1995. 28(2): p. 220-

7. 

116. Tsui, C.C., et al., Narp, a novel member of the pentraxin family, promotes neurite 

outgrowth and is dynamically regulated by neuronal activity. J Neurosci, 1996. 

16(8): p. 2463-78. 

117. Ohtsuka, T., et al., nRap GEP: a novel neural GDP/GTP exchange protein for 

rap1 small G protein that interacts with synaptic scaffolding molecule (S-SCAM). 

Biochem Biophys Res Commun, 1999. 265(1): p. 38-44. 

118. Marshall, E., Getting the noise out of gene arrays. Science, 2004. 306(5696): p. 

630-1. 

119. Fathallah-Shaykh, H.M., Microarrays: applications and pitfalls. Arch Neurol, 

2005. 62(11): p. 1669-72. 

120. Dallas, P.B., et al., Gene expression levels assessed by oligonucleotide 

microarray analysis and quantitative real-time RT-PCR -- how well do they 

correlate? BMC Genomics, 2005. 6(1): p. 59. 

 173 



121. Chanock, S.J., et al., Replicating genotype-phenotype associations. Nature, 2007. 

447(7145): p. 655-60. 

122. Dermitzakis, E.T. and B.E. Stranger, Genetic variation in human gene expression. 

Mamm Genome, 2006. 17(6): p. 503-8. 

123. Cheung, V.G., et al., Mapping determinants of human gene expression by 

regional and genome-wide association. Nature, 2005. 437(7063): p. 1365-9. 

124. Spielman, R.S., et al., Common genetic variants account for differences in gene 

expression among ethnic groups. Nat Genet, 2007. 39(2): p. 226-31. 

125. Couzin, J. and J. Kaiser, Genome-wide association. Closing the net on common 

disease genes. Science, 2007. 316(5826): p. 820-2. 

126. Team, R.D.C., R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. 2006: Vienna, Austria. 

127. Venables, W.N. and B.D. Ripley, Modern Applied Statistics with S. Fourth 

Edition ed. 2002, New York: Springer. 

128. Harrell, F.E., Jr., Hmisc. 2006. 

129. Warnes, G. and F. Leisch, The Genetics Package. 2005. 

130. Benjamini, Y. and Y. Hochberg, Controlling the false discovery rate: a practical 

and powerful apporach to multiple testing. J Royal Stat Soc, 1995. Ser B 57: p. 

289-300. 

131. Nannya, Y., et al., A robust algorithm for copy number detection using high-

density oligonucleotide single nucleotide polymorphism genotyping arrays. 

Cancer Res, 2005. 65(14): p. 6071-9. 

 174 



132. Komura, D., et al., Noise reduction from genotyping microarrays using probe 

level information. In Silico Biol, 2006. 6(1-2): p. 79-92. 

133. Ishikawa, S., et al., Allelic dosage analysis with genotyping microarrays. 

Biochem Biophys Res Commun, 2005. 333(4): p. 1309-14. 

134. Hosking, L., et al., Detection of genotyping errors by Hardy-Weinberg 

equilibrium testing. Eur J Hum Genet, 2004. 12(5): p. 395-9. 

135. Wittke-Thompson, J.K., A. Pluzhnikov, and N.J. Cox, Rational inferences about 

departures from Hardy-Weinberg equilibrium. Am J Hum Genet, 2005. 76(6): p. 

967-86. 

136. Fredman, D., et al., Complex SNP-related sequence variation in segmental 

genome duplications. Nat Genet, 2004. 36(8): p. 861-6. 

137. Lin, M., et al., dChipSNP: significance curve and clustering of SNP-array-based 

loss-of-heterozygosity data. Bioinformatics, 2004. 20(8): p. 1233-40. 

138. Laframboise, T., D. Harrington, and B.A. Weir, PLASQ: a generalized linear 

model-based procedure to determine allelic dosage in cancer cells from SNP 

array data. Biostatistics, 2007. 8(2): p. 323-36. 

139. Altschul, S.F., et al., Basic Local Alignment Search Tool. J. Mol. Biol., 1990. 215: 

p. 403-410. 

140. Zhang, J., et al., Development of bioinformatics resources for display and analysis 

of copy number and other structural variants in the human genome. Cytogenet 

Genome Res, 2006. 115(3-4): p. 205-14. 

141. Eddy, S.R., What is a hidden Markov model? Nat Biotechnol, 2004. 22(10): p. 

1315-6. 

 175 



142. Olshen, A.B., et al., Circular binary segmentation for the analysis of array-based 

DNA copy number data. Biostatistics, 2004. 5(4): p. 557-72. 

143. Tuzun, E., et al., Fine-scale structural variation of the human genome. Nat Genet, 

2005. 37(7): p. 727-32. 

144. Sebat, J., et al., Strong association of de novo copy number mutations with autism. 

Science, 2007. 316(5823): p. 445-9. 

145. Friedman, J.M., et al., Oligonucleotide microarray analysis of genomic imbalance 

in children with mental retardation. Am J Hum Genet, 2006. 79(3): p. 500-13. 

146. Abecasis, G., et al., Human Genome Variation 2006: emerging views on 

structural variation and large-scale SNP analysis. Nat Genet, 2007. 39(2): p. 

153-5. 

147. Locke, D.P., et al., Linkage Disequilibrium and Heritability of Copy-Number 

Polymorphisms within Duplicated Regions of the Human Genome. Am J Hum 

Genet, 2006. 79(2): p. 275-90. 

148. Stern, S., et al., Genome-wide transcriptional plasticity underlies cellular 

adaptation to novel challenge. Mol Syst Biol, 2007. 3: p. 106. 

149. Kraft, P., Multiple comparisons in studies of gene x gene and gene x environment 

interaction. Am J Hum Genet, 2004. 74(3): p. 582-4; author reply 584-5. 

 

 176 



Appendix: 

Integration of Methods:  Application of Multiple Attribute Decision Making 

I.  Description of the research question: 

Neurodegeneration due to Alzheimer’s disease (AD) is the most frequent cause of 

cognitive decline in the elderly and afflicts approximately 26 million individuals 

worldwide[59].  The common, late-onset form of AD is a multifactorial disease involving 

multiple cellular processes and environmental influences.  Linkage and whole genome 

association studies show evidence for genes on 11 chromosomes[60].  Choosing specific 

genes from among the many possible candidates within the linkage region for followup 

association studies relies heavily on prior biological knowledge and assumptions. 

However, these methods have had limited success in clearly identifying susceptibility 

genes.  Using gene expression results to inform decisions of candidate gene association 

studies for AD would improve our ability to choose rational candidates.  We used 9 

clinically non-demented and 5 AD cases to investigate differential gene expression across 

the entire human genome using Affymetrix HG-U133Plus2 GeneChips (manuscript 

submitted) and determine genes involved in AD pathology.  In order to prioritize genes 

for subsequent candidate gene studies in an unbiased fashion, we devised a Multiple 

Attribute Decision Making (MADM) strategy to create a disease score for integrating 

empirical data from diverse biological methods.  

II.  MADM method in AD  

The goal is to prioritize all of the genes on the GeneChip in terms of their relative 

probability of success in future candidate gene association studies.  We wanted to select 
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among differentially expressed genes in a formalized framework for judging important 

biological information.   

Alternatives:  we defined all of the genes on the GeneChip as the set of 

alternatives from which we wanted to chose a final list of genes for further candidate 

gene studies.   

Attributes:  the single most important feature of a MADM analysis is the choice 

of attributes.  The types of information pertaining to the problem of AD pathology were 

organized in a hierarchical fashion.  At the top is the highest goal:  to prioritize genes for 

further studies.  Secondly, we wanted to capture as many novel genes as possible.  

Subattributes were chosen to be independent from one another.  Choices that did not 

provide new knowledge were discarded due to overlapping information content.  We 

chose gene expression q-value, presence in a known linkage/ association region for AD, 

and overexpression in the Gene Ontology (GO) Biological Process category 

(http://www.geneontology.org).  

Units of Measure:  Attributes in which the higher the value corresponds to a 

greater preference were counted as 1or 0 such as 1) presence of a gene in a linkage region 

and 2) overrepresentation in a GO category.   Each gene with a measurement of 1 for 

these attributes was counted in the final MADM score.  The q-value is quantitative and 

more significant at lower values than the higher values. The lower the score is, the greater 

the preference.   To allow for combining with other attributes so that the higher values 

correspond to greater preference, q-value was normalized by:   

 
  min(j) / xij
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In this case, min(j ) is the minimum of all q-values and xij is the q-value(j) for 

every gene i. 

 Attribute Weights:    Each attribute was weighted based on the importance of the  

biological information assessed.  We considered presence in a linkage /association region 

to be the most important criterion for inclusion in a candidate gene study and was given a 

weight of 0.5.  Overrepresentation in the GO biological Process category was weighted as 

0.3 and q-value was used to prioritize the biological information by significance of gene 

expression (0.2).  The final decision hierarchy is shown in Figure 1.   The final score for 

each gene was the sum of the values across the attributes for each genes multiplied by 

their weights.    

 

       Vi =  ∑
=

n

j

ijjxw
1

 
where w is the weight for each attribute j and xij is the value (or normalized value) 

for each gene (i) at that attribute j.   

III.  Results 

 For this weighting scheme, the closer the MADM score is to 1 the better it is.  The 

final gene list included 210 genes with a score > 0.8.  The highest score was 0.922.  

Genes on this list all had a q-value < 0.50 and 35 genes had a q-value < 0.01.  All genes 

were located in AD linkage/association regions and were overrepresented in GO 

Biological Process categories.  The difference in the MADM gene list and the original 

gene list lies in the  

IV.  Discussion 
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The difference in the MADM gene list and the original gene list lies in the 

conscious decision to require genes of interest to be located in AD linkage/association 

regions and overrepresentation in GO Biological Process categories.  The original gene 

list was sorted by q-value and interesting genes identified by manual curation.  MADM 

methods allow for subsequent research objectives to be precisely defined.  Candidate 

gene studies based on the MADM list would reflect the predefined criteria as determined 

by the problem of interest. 

The choice of problem description should be general enough to capture the 

appropriate choice and specific enough to define independent attributes.  In our study, we 

were most interested in discovery of novel genes involved in AD pathology.  Other 

possible questions would necessitate additional attributes and weighting schemes or new 

hierarchies to be created.  For example, to identify a combination of novel genes and 

previously studied AD genes, additional attributes would be added to the hierarchy and 

weights would be modified to reflect the importance of gene discovery versus gene 

confirmation.   A focus on healthy cognitive aging within the comparisons of the 

experiment, would necessitate the creation of different hierarchies. 
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Figure 1.  MADM decision heirarchy. 
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