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Abstract 

Temporal Processing of Speech 

in a 

Time-Feature Space 

Carlos Avendaiio, Ph.D. 
Oregon Graduate Institute of Science & Technology, 1997 

Supervising Professor: Hynek Hermansky 

The performance of speech communication systems often degrades under realistic envi- 

ronmental conditions. Adverse environmental factors include additive noise sources, room 

reverberation, and transmission channel distortions. This work studies the processing of 

speech in the temporal-feature or modulation spectrum domain, aiming for alleviation of 

the  effects of such disturbances. 

Speech reflects the geometry of the vocal organs, and the linguistically dominant com- 

ponent is in the shape of the vocal tract. At any given point in time, the shape of the 

vocal tract is reflected in the short-time spectral envelope of the speech signal. The rate of 

change of the  vocal tract shape appears t o  be important for the  identification of linguistic 

components. This rate of change, or the rate of change of the short-time spectral envelope 

can be described by the modulation spectrum, i.e. the spectrum of the time trajectories 

described by the short-time spectral envelope. 

For a wide range of frequency bands, the modulation spectrum of speech exhibits a 

maximum a t  about 4 Hz, the average syllabic rate. Disturbances often have modulation 



frequency components outside the speech range, and could in principle be attenuated 

without significantly affecting the range with relevant linguistic information. 

Early efforts for exploiting the modulation spectrum domain (temporal processing), 

such as the dynamic cepstrum or the RASTA processing, used ad hoc designed processing 

and appear t o  be suboptimal. As a major contribution, in this dissertation we aim for a 

systematic data-driven design of temporal processing. 

First we analytically derive and discuss some properties and merits of temporal pro- 

cessing for speech signals. We attempt t o  formalize the concept and provide a theoretical 

background which has been lacking in the field. In the experimental part we apply tem- 

poral processing t o  a number of problems including adaptive noise reduction in cellular 

telephone environments, reduction of reverberation for speech enhancement, and improve- 

ments on automatic recognition of speech degraded by linear distortions and reverberation. 

xii 



Chapter 1 

Introduction 

Speech is one of the most complex means of human communication. It involves several 

stages, from the coding of an idea in the transmitter's brain, t o  its successful decoding by 

the receiver. In this mode of human communication, the acoustic signal at the  output of 

the speech production system is the carrier of the message. The evolution of this signal 

has been influenced by the physical properties of both, the production system, and the 

perception apparatus in charge of decoding the message. 

The signal carrying the message is often corrupted by environmental agents during its 

transmission. Such factors could be other sound sources (noise), wave reflections (reverber- 

ation, echoes), linear and non-linear distortions introduced by the transmission medium, 

etc. If the signal is further converted t o  an electrical signal and sent through a com- 

munication link, degradations may include electronic noise, electromagnetic interference, 

distortion and noise introduced by the signal processing, etc. All of these problems will 

in general degrade the message retrieving performance of the receiver. 

The topic of this dissertation is the manipulation of the speech signal t o  reduce the 

adverse effects that  the communication environment has on the ability of the receiver 

(human or machine) t o  successfully decode the message. The type of processing tha t  we 

will study is intimately related t o  the nature of the speech signal. Our objective is t o  

describe this processing accurately, and show a few applications for which i t  has provided 

good results and/or increased our understanding of the technique. 

We begin by motivating the study of speech processing in general, and give some 

background on the main areas in which we are interested. 



1.1 Speech Processing Applications 

Since the  initial development of voice telecommunication systems, there has been an inter- 

est in eliminating agents that  impair remote human communication. The large amount of 

resources devoted t o  solve this problem by the telephone industry and the military, among 

others, has resulted in a rapid development of the speech signal processing area. 

In our modern capitalist society, service quality is strongly related t o  the success of 

telecommunication companies who compete against each other in the market. Any im- 

provement in delivering a cleaner signal will result in benefits for both, the customers and 

the service providers. To cite some other less money oriented applications, in the area 

of prosthetics, hearing impaired individuals would also greatly benefit from the develop 

ment of signal processing algorithms for hearing aids that  compensate for their hearing 

deficiencies. However, current hearing aids experience problems in the presence of room 

reverberation, background noise, and competing speakers. 

The rapid advance of speech recognition technology has created needs for new speech 

processing algorithms. Machines, lacking human capabilities, are even more vulnerable 

t o  environmental factors (with the state-of-the-art speech recognition systems available). 

Thus any advance in making machines more reliable in real environments will greatly 

benefit many applications. 

1.2 Relevant Background 

Short-Time ~ n a l ~ s i s  

Speech conveys the message in a sequential fashion. The frequency distribution of the 

speech signal changes in time rendering it a non-stationary signal. Given this non- 

stationarity, traditional speech analysis techniques segment the signal a t  time intervals 

over which i t  can be assumed t o  be stationary. In this way, powerful analysis and model- 

ing procedures developed for stationary signals can be applied t o  these short intervals. 



Modulation Spectrum 

This particular segmentation in time produces a two dimensional signal, where each time 

segment is analyzed and/or modeled and is represented by a feature vector, for example a 

frequency representation [14]. Thus, each component of this feature vector varies in time, 

according t o  the changes of the speech signal, describing a time trajectory. The spectral 

components of a time trajectory constitute its modulation spectrum. 

Effect of Adverse Environments 

Adverse environmental agents, such as additive noise, may have different modulation spec- 

trum properties than speech. Also, transmission media such as microphones, enclosures 

and communication channels in general modify the modulation spectrum properties in 

ways that  may impair intelligibility for humans, or affect the performance of actual au- 

tomatic speech recognizers. This suggests that  processing time trajectories of degraded 

speech could reduce the detrimental effects of the adverse environments in human-human 

and human-computer communications applications. 

Processing Strategy 

The contribution of this work is the processing of the temporal dimension of the  time- 

feature representation of the speech signal. The processing involves linear filtering of 

the time trajectories of speech features. We show that  for different applications, the 

appropriate feature space is different, possibly involving non-linear transformations, thus 

effectively making the overall processing non-linear. 

The originality and importance of this contribution is the fact that  the time trajectory 

filters are designed from training data. As we show, this design procedure has its value not 

only in optimizing the parameters of a system, but has provided us with insights about 

the temporal properties of speech. 



1.3 Outline 

This dissertation is divided into two major sections. In the first one, composed of C h a p  

ter 2, Chapter 3, Chapter 4, and Chapter 5, we develop the theory necessary t o  understand 

and design speech processing algorithms based on temporal processing. The second part of 

the dissertation contains Chapter 6, Chapter 7, Chapter 8, and Chapter 9, which describe 

applications of temporal processing t o  different speech communication problems. 

Chapter 2 contains a review of well known properties of the short-time analysis of sig- 

nals. This first discussion will introduce the necessary notation and fundamental concepts 

of the  short-time domain. In Chapter 3 and Chapter 4 we perform a detailed analysis 

of the temporal processing procedures which are the main topic of the dissertation. The 

analysis is based on the time domain formulation of the short-time transform, and requires 

only simple algebraic manipulations and well-known linear systems theory concepts. We 

mainly show that  when temporal processing is applied t o  time trajectories that  have been 

modified by a non-linear operation, an equivalent time-domain formulation does not exist. 

In Chapter 5 we present an analysis of the effects that  a convolutional distortion has on 

the short-time transform of a signal. This will be useful when we discuss the channel 

normalization applications in the second part of the dissertation. We also describe the 

principles under which traditional channel normalization techniques work. 

The second part of the work describes a series of applications of the data-driven tem- 

poral processing approach that  we investigated. We demonstrate a data-driven technique 

for temporal filter design (Chapter 8), and a multiresolution normalization technique for 

reducing the effects of reverberation in automatic speech recognition (ASR) (Chapter 9). 

For speech enhancement we present a chapter (Chapter 6) on additive background noise re- 

duction for cellular telephone communications, and one on reverberation reduction ( C h a p  

ter  7). We conclude the dissertation with Chapter 10, where we discuss our contributions 

and possible research directions for the future. 



Review 

Chapter 2 

of Short-Time Analysis of Signals 

In this chapter we review some basic concepts of the two-dimensional representation of 

signals and short-time analysis. First we introduce the computation of a two-dimensional 

signal representation. We look a t  the particular case where the representation is of the 

time-frequency type, specifically the short-time Fourier transform (STFT) and define the 

time trajectory concept. Then we briefly discuss the computation of other time-feature 

representations commonly used in speech processing and their relation to  the STFT. 

In the following analysis we refer particularly t o  speech signals, but it should be un- 

derstood that  the concepts are more general and can be applied t o  other signals. 

2.1 Time-Frequency Represent at ion of Signals 

The  acoustic speech waveform can be described as a sound pressure-versus-time signal. 

Given that  the spectral properties of this signal vary with time, we wish t o  obtain shorter 

segments and analyze them separately t o  find what are the properties in each segment, and 

how they change from segment to segment. This segmentation operation can be described 

as looking a t  the signal through a sliding window as shown in Fig. 2.1. The segmented 

speech can be written as 

s,(n, m )  = w(n - m>s(m>. (2.1) 

In (2.1) s (n)  is the sampled speerli signal and w(n) is the window function, which has 

been assumed t o  be symmetric. The fixed observatioil time is n and the running time is 



m. Throughout this dissertation we will use sampled signals and discrete-time/discrete- 

frequency signal processing for our experiments and implementations. Only for conve- 

nience is the following analysis carried out in the continuous frequency domain. 

Time-frequency 
representation 

Figure 2.1: Two-dimensional representation of a signal. As an example of a time-frequency 
representation, the short-time power spectrum is also depicted. 

If we describe s (n )  by a two-dimensional discrete-time sequence as in (2.1), we can 

obtain a frequency representation with respect t o  each of the time indices m and n. As in 

[49], applying the Fourier transform (FT) in each dimension (with respect t o  both time 

indices) we obtain the two-dimensional transform 

where we assumed that  the infinite summations converge. Applying the double inverse 

Fourier transform t o  (2.2) we obtain the inverse 
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Throughout this dissertation we will be describing one-dimensional signals by two- 

dimensional representations. The following definitions formalize the treatment of such 

representations, and the interpretation of the equations will be given as we encounter 

them along our analysis. 

Since the windowed signal (2.1) is two-dimensional, we can obtain its FT with respect 

t o  each time index. The FT of (2.1) with respect t o  the fixed time n can be written as 

n=-co 

with inverse 

In (2.4) the subindex 1 in S1(B, m) indicates that  the transform was applied with 

respect t o  the first argument (i.e. time index n) of s,(n,m). By taking the Fourier 

transform of (2.1) with respect t o  the running time m,  we obtain the frequency response 

of each time segment (indexed by fixed time n), 

- jwm 
B ( n , w )  = C sw(n, m)e , 

with inverse 

s , (n ,m)=-  s2(n,u)ejwmdw, 
2~ /" -" P7) 

where S2(n,w) is the one-dimensional transform with respect t o  the second argument 

of s,(n, m) (time index m). Given the previous definitions, the two-dimensional (or 

complete) transform can be obtained from the partial transforms (2.4) and (2.6) as 

00 

S(B, w) = s 2 ( n ,  w)e-js" = 2 s1 (e, m)e-jwm. 

The original signal s(n) can be recovered from the complete or partial transforms. 

First, using the inverse transforms (2.3), (2.5), or (2.7) we can obtain the windowed signal 



sw(n,  m) ,  and evaluating this two-dimensional signal a t  time m = n we can recover s(n) 

(within a scalar factor), i.e. 

I t  is evident that  in order to  recover the original signal s(n) from the two-dimensional 

representations we need t o  impose a constraint on the analysis window, namely w(0) f: 0. 

Equation (2.9) is not the only way of recovering s(n). The reader is referred t o  [49] for 

alternative inversion formulas. 

2.1.1 Relation to the Fourier Transform 

A relationship between the two-dimensional transform (2.2) with the Fourier transforms 

of the signal and window function, S(w) and W(w) respectively1, can be obtained. Sub- 

stituting w(n - m) by its Fourier integral in the definition of sw(n,  m) (equation (2.1)) we 

get 

* I "  
sw (n, m)  = C - / w ( ~ ) e j " ? ( ~ - ~ )  

2n -, s(m)dO, 
m=-oo 

and introducing this expanded form into (2.6), yields 

Recognizing the partial transform of (2.11) with respect t o  n ,  we obtain the relationship 

We observe from (2.12) the duality between the time domain sliding window concept, 

and a frequency domain sliding window interpretation, and both being inverse transforms 

of each other. 

'Do not confuse the Fourier transforms with the short-time functions which are functions of two 
variables. 



2.1.2 Discussion 

Before continuing our analysis, an intuitive interpretation of (2.2) and the partial trans- 

forms, and their implications for speech processing will be given. 

From the previous analysis we can immediately recognize a time-frequency represen- 

tation (2.6) which has been extensively used in signal processing. The pair (2.6) and (2.7) 

describes the well-known short-time Fourier transform (STFT) ([53], [3]). The usefulness 

of this transform is mainly observed in the frequency analysis of signals with time-varying 

spectra [14], such as speech and most signals in nature. The time span over which the 

spectrum of a time-varying signal can be considered stationary will determine the time du- 

ration of the window w(n) and consequently the frequency resolution of the representation. 

It is also well documented that  the STFT is not the only time-frequency representation for 

speech. Depending on the specific requirements of the analysis, different time-frequency 

representations are available [14]. 

2.1.3 Filter Bank Interpretation of the STFT 

The S T F T  can also be interpreted in terms of a filter bank [15]. This is clearly seen if, 

with aid of (2.1), we write (2.6) as the convolution sum 

where the *, operator is the linear convolution with respect t o  time index n. 

If we visualize the continuous frequency domain w as an infinite set of frequency bands, 

the  output corresponding t o  each band describes a time sequence that  is obtained by 

multiplying the signal s(n) by a complex exponential function with frequency w ,  and 

applying the low-pass filter with impulse response w(n) to  the product s(n)e-jwn. In 

Fig. 2.2 we show the equivalent operation for an arbitrary frequency band. 

We say that  the time sequence at the output of the filter is the time trajectory a t  

tha t  particular frequency band (i.e. S2(n,  wk)). The time trajectory is then obtained by 

evaluating the S T F T  a t  the desired frequency band. In this case the time trajectory is a 

complex sequence which describes the time evolution of the kth spectral component. 



Time trajetory at 
frequency ok 

Figure 2.2: Filter bank interpretation of the STFT 

The Modulation Frequency Concept 

Now, if we keep in mind the filter bank point of view, The two-dimensional FT (2.2) 

can be interpreted as a frequency analysis on the outputs of the filter bank, i.e. the 

time trajectories. The frequency domain described by the variable 8 is often referred 

as modulation frequency, and the power spectrum related t o  this domain as modulation 

spectrum [29]. In this dissertation we will use these terms whenever we refer t o  8. As will 

be seen later, the modulation spectrum of speech has some particular properties which we 

will exploit for enhancing degraded speech in different applications. 

2.2 Time-Feature Representations of Speech 

In the previous section we described a particular time-feature representation of a signal. 

The feature in that  case was the frequency spectrum, and the time-feature representation 

(i.e. the STFT) described how this feature varies with time. In the speech processing 

field, other features (described below) have been used for different applications [50]. 

As shown in [3], the STFT is a complete description of a time signal in the sense that  

the signal can be exactly recovered from its STFT by imposing only a few constraints 

during the analysis (e.g. w(0) # 0). However, for some applications one may be interested 

in only a few aspects of the speech signal. For example, in speech coding, where the 

goal is t o  describe a speech signal with as few parameters as possible, features like short- 

time spectral envelope (represented by e.g. linear predictive coding (LPC) coefficients), 

frame voicing, and frame pitch may be enough t o  describe speech in a useful way [6], 



[5]. In other applications like automatic speech recognition (ASR), short-time parameters 

containing relevant linguistic information are required. Parameters commonly encountered 

in tha t  field are the short-time LPC-cepstrum [5], mel-cepstrum [16], and perceptual linear 

prediction (PLP) coefficients [23]. 

Preprocessing of speech for noise reduction and/or channel normalization for ASR, 

like RelAtive SpectrAl (RASTA) processing [24] or cepstral mean subtraction (CMS) [51], 

involves applying linear filtering operations on some non-linear short-time feature domain. 

Examples of these features for ASR are the logarithm of the short-time spectrum, short- 

time cepstrum, me1 cepstrum, PLP cepstrum, LPC cepstrum, etc. In speech enhancement, 

processing may be applied to  the magnitude or some non-linear transformation of the 

magnitude of the STFT. For example in the spectral magnitude estimation for speech 

enhancement [35], [26]. 

Many of the short-time features previously mentioned can be derived from the STFT. 

For example, the critical band analyses involved in the me1 cepstrum and P L P  features 

consist of performing a weighted sum of the short-time power spectrum components. LPC 

parameters can also be efficiently computed by using the short-time power spectrum t o  

estimate the short-time autocorrelation function [37]. 

In this dissertation we will be applying modifications t o  the time dimension of some 

of the time-feature representations discussed above. The features used will depend on the 

particular application. 



Chapter 3 

Temporal Processing 

One way of modifying the modulation spectrum is filtering the time tmjectories of speech 

features. In this chapter we present a formal treatment of temporal processing, i.e. pro- 

cessing of the time trajectories of a signal. This procedure will be described in detail and 

some of its properties will be derived. 

Filtering of time trajectories has been applied in the past. However, t o  the  best of 

our knowledge, a rigorous analysis of its properties does not exist. As one of the original 

contributions in this dissertation, we present a formal analysis of temporal processing, 

and show that  filtering the time-trajectories in linear domains is a general case of other 

short-time modifications analyzed in the past [3], [49]. The results obtained will reveal 

some properties of this processing, and the existence of an equivalent time-domain linear 

filter. 

3.1 Filtering of the Time Trajectories 

Filtering the time trajectories of speech features is not a new concept. Blind deconvolution 

proposed by Stockham [57], and cepstral mean removal techniques in ASR have been 

quite successful [51]. These techniques are equivalent t o  filtering operations on the time 

trajectories of cepstral features. More recently, Hermansky and Morgan have applied 

bandpass filtering t o  the temporal dimension of logarithmic features [24] (A more detailed 

description of this technique will be given in Chapter 5). Hirsch has used used high-pass 

filtering in the trajectories of the short-time power spectrum t o  reduce reverberation [27]. 



In the area of speech enhancement, Langhans and Strube [33] applied temporal pro- 

cessing t o  additive noise and reverberation problems with limited success. 

In this dissertation we will describe the filtering of time trajectories of different features 

depending on the particular application. In contrast with previous works (e.g. RASTA 

processing) that  use ad-hoc designed filters, we use automatic data-driven filter design 

techniques. As will be discussed in later chapters, the optimization of the parameters of 

a system with the data-driven approach also provides insights about the speech signal 

properties under different adverse conditions. 

3.2 CIT-MIF Modification of the Short-Time Spectrum 

Modification of the short-time spectrum of speech has been previously studied in [I], [3], 

and [49]. In those contributions, fixed and time-varying multiplicative-in-frequency (MIF) 

modifications have been applied t o  the short-time spectrum. However, filtering of time tra- 

jectories has not been studied. In this section we derive the results for a convolutional-in- 

time and multiplicative-in-frequency (CIT-MIF) modification. The convolutional-in-time 

modification refers t o  the filtering along the time dimension of the short-time transform, 

while the multiplicative-in-frequency part indicates the general case in which different time 

trajectory filters can be applied a t  different frequency bands. 

For simplicity, the analysis is initially performed on modifications t o  the short-time 

spectrum. A more relevant (to this work) case where the filtering is applied t o  other 

speech features will be discussed in Chapter 4. 

3.2.1 Description of the CIT-MIF Modifications 

The modification of the frequency and modulation frequency components of a signal (in the 

sense of weighting the components), can be described in terms of applying a multiplicative 

modification F ( 0 ,  w) in the double transform domain, i.e. 

The modification in (ref2Dmod:eq) can be written as a filtering operation (convolution) 



in the fixed time domain n. The partial transform with respect t o o  of (3.1) can be obtained 

by integrating with respect t o  0 and using the identity (2.8), thus obtaining 

r=-03 

Equation (3.2) represents the CIT-MIF modification of the short-time spectrum (ob- 

serve that  the time dimension of the short-time transforms is convolved, while the fre- 

quency dimension is multiplied). We adopted this terminology t o  indicate the  specific 

operation upon the STFT,  and not t o  indicate the effect that  the modifications have 

on it. Both dimensions, time and frequency, are intimately related in the STFT,  and 

modifications on one will result in modifications in the other. 

We will also refer t o  the CIT-MIF modification as filtering of the time trajectories (or 

temporal filtering), and we will refer t o  F2(n,  w) as the time trajectory filters. Whenever 

F2(n, o) becomes a function of time only, i.e. F2(n,  w) = F2(n),  we will refer t o  it as  a 

CIT-only modification. 

3.2.2 Synthesis from the STFT 

The time domain effects of STFT modifications will in general depend on the synthesis 

formula used t o  obtain a time domain signal [3]. A general synthesis formula which 

makes use of a synthesis window was derived by Portnoff in [49]. The two commonly 

used synthesis procedures, the overlap-add (OLA) and filter bank summation (FBS), are 

particular cases of Portnoff's formula. For the purposes of completeness we derive the 

time domain expressions for the general case and later show the particular results when 

the synthesis methods are the FBS and OLA. 

Portnoff's time-invariant synthesis formula is written as 

where q(n) is the synthesis window. In the FBS synthesis method the synthesis window 

is a unit sample (delta) function, q(n) = 6(n) and the synthesis equation becomes 



For the OLA synthesis method, the synthesis window becomes q(n) = i, where w 0) 
W(0)  is the dc response of the analysis window and (3.3) becomes 

3.2.3 Time Domain Effects of CIT-MIF Modifications 

To see the effect of the proposed CIT-MIF modification on the time domain, we resyn- 

thesize the signal after modifying the STFT. Introducing the modified STFT (3.2) into 

Portnoff 's synthesis formula (3.3) we get 

which can be simplified t o  (see appendix A for a derivation of this result) 

y (n) = C s ( n  - m) f(m) = s(n) * f(n) 

where 

and 

f (n, rn) = f. IT F2(n, w)ejwmdw. 
2?r -, 

From (3.7) we see that  the time domain equivalent of filtering the time trajectories 

is the convolution of the input sequence with a time-invariant filter. For an arbitrary 

modification F2(n, w) of the STFT, the time domain equivalent filter will be constrained 

by the analysis and synthesis windows used. This can be seen in (3.8)) where both windows 

are convolved with the ISTFT (3.9) of the modification F2(n, w). 

The result in (3.7) suggests that  this method is equivalent t o  filtering the original signal 

in the time domain. However, depending on the synthesis method used, the  constraints 



on the time domain equivalent will be different and consequently the system design con- 

siderations will differ. Similar constraints for MIF-only modifications have been shown t o  

exist in [49] and [3]. 

3.2.4 Filter Bank Interpretation 

Even though (3.7) is the correct time domain formulation for CIT-MIF modifications of the 

STFT,  an alternative and more intuitive explanation with respect t o  the time trajectory 

filters can be derived by using the filter bank interpretation (2.13) of the STFT. 

To visualize the filter bank consider again an infinite number of frequency points wk 

indexed by k so that  we can exchange the inverse FT integral for a summation over a11 k. 

In this way the modification F2 (n, w )  becomes F2 (n, wk) which can be interpreted as a set 

of time trajectory filters, each operating on a frequency band with center frequency ok. 

With the above considerations the general synthesis equation (3.6) becomes 

and introducing the STFT definition (2.6) we can write 

which after some manipulation can be rearranged into the form 

In this form the effect of the synthesis in the time trajectory filters and on the time 

domain signal can be interpreted. In Fig. 3.1 we show a graphical description of the filter 

bank interpretation of (3.12). 

As was seen in (3.7), the time domain effect of the CIT-MIF modification is an equiva- 

lent linear time-invariant filter 7(n). The analysis in (3.12) shows that  this filter is the sum 

of bandpass filters whose base-band impulse response is given by "time-smeared" versions 



Figure 3.1: (a) filter bank interpretation of temporal processing. (b) equivalent system 

of the time trajectory filters F2(n, wk) (see Fig. 3.1). Obviously the smearing depends on 

the analysis and synthesis windows used. For the FBS and OLA synthesis methods the 

effect is described as follows. 

Modification Constraints in the FBS Synthesis Method 

Recall that  for the FBS method the synthesis window is a delta function and the synthesis 

equation is reduced t o  (3 .4) .  If we let q(n)  = 6(n) in (3.12) we obtain 

y ( n )  = s (n)  * .  w ( n )  *, F2(n, wk)ejWkn . I 
A simple block diagram interpretation of this result is shown in Fig. 3.2. For arbitrary 



time trajectory filters F2(n,  wk),  the modulation frequency range of the modifications will 

be determined by the analysis window bandwidth. 

Figure 3.2: (a) filter bank interpretation of temporal processing in the FBS method. (b) 
equivalent system 

The analysis window determines the bandwidth of each band of the STFT [3]. This 

means that  the modulation frequency range over which the modifications can be performed 

is maximum for the FBS method. 

Now we can see that  the advantage of time trajectory filtering is that  if the impulse 

response of the time trajectory filter is allowed t o  be longer than the analysis window 

length, additional modulation frequency resolution can be gained. This means that  the 



modulation frequency modifications can be made with any detail by just setting the a p  

propriate filter length. The trade-off is of course bounded by Heisenberg's inequality [14] 

since obtaining higher modulation frequency resolution implies that  more time informa- 

tion has t o  be accounted for in the time trajectory filtering operation, i.e. longer time 

trajectory filters. 

In the case studied in this chapter, where the CIT-MIF modifications are applied 

directly t o  the STFT,  the advantage of temporal processing over time-domain filtering is 

not obvious. The same modulation frequency modifications can be obtained by applying 

a long filter in the time domain (see equation (3.7)). However, in the next chapter, where 

we deal with non-linear transformations, we will show how temporal processing is indeed 

advantageous. 

Modification Constraints in the OLA Synthesis Method 

In the OLA synthesis case, the synthesis window is a constant (or rectangular window) as 

in (3.5), so (3.12) can be written as 

and we observe that  there exists a smearing (given by the summation over r) due t o  

the analysis filter as in the FBS method, but an additional smearing is introduced which 

depends on the properties of the analysis window. In practice, the analysis window has 

finite length so we can think about this additional smearing in terms of a rectangular 

synthesis window of the same length as w(n). In this case the summation over I in (3.14) 

is finite and the additional time-smearing on the time trajectory filters will be solely 

determined by the analysis window length. This is in contrast with the FBS method, 

where the smearing depends on the bandwidth of w(n). 

3.2.5 Discussion 

The range of modulation frequencies over which modifications can be made is thus reduced 

in the OLA case compared t o  the FBS method. In this sense we may be inclined t o  use 



the FBS synthesis. On the other hand, the OLA method can be extended t o  the more 

general weighted overlap-add (WOLA) [15] where a synthesis window is multiplied with the 

reconstructed segments before overlap-adding. In this case, proper choice of the synthesis 

window, i.e. having a bandwidth comparable to  that  of the analysis window, will allow us 

t o  overcome the modulation bandwidth constraints imposed by OLA. 

Moreover, the importance of using a synthesis window when STFT modifications have 

occurred has been pointed by Griffin and Lim [21]. They proposed that  the synthesis 

window be the same as the analysis window, i.e. q(n) = w(n), for which only some simple 

design constraints have t o  be imposed. 

For implementation purposes, the OLA and WOLA method offer advantages over 

efficient FBS implementations, like helical interpolation [42], in terms of simplicity and 

storage requirements. Following the previous discussion the WOLA synthesis seems t o  be 

the appropriate method if full advantage of temporal processing is desired. Throughout 

the work leading t o  this dissertation we found that  the OLA and WOLA methods seem 

t o  have similar performance for the speech processing applications that  we explored. A 

reason for this will become apparent when we look a t  the properties of the time trajectory 

filters tha t  we applied. 

3.3 Summary 

In this chapter we analyzed the particular case when the STFT is modified by applying 

a filtering operation t o  its time trajectories. We have called that  operation a CIT-MIF 

modification given that  the filters operate along the time dimension of the STFT in a 

convolutional way, and weight the frequency dimension in a multiplicative manner. 

Time domain equivalents for filtering the time trajectories of the STFT have been found 

for different synthesis methods. We described how the synthesis method might constrain 

the properties of the resulting resynthesized signal. The results found are consistent with 

those obtained for other types of STFT modifications which can be considered t o  be special 

cases of the CIT-MIF (see [49] and [3]). In the next chapter we consider the case when 

temporal processing is applied t o  non-linear transformations of the STFT. 



Chapter 4 

Temporal Processing in Non-Linear 

Domains 

In the previous chapter we described temporal processing in the STFT representation 

of signals. As we showed, filtering time trajectories in the short-time frequency domain 

has an interpretation in the time domain. Even when the action of the time-trajectory 

filters is restricted by the analysis/synthesis parameters, we can in principle implement 

the filtering scheme by proper design of an equivalent linear time-invariant filter T(n) (see 

equation (3.7)). 

As is common in many speech processing applications, modifications of the STFTM 

are often done in some non-linear domain. Short-time spectral estimators for speech 

enhancement have been successfully applied in non-linear functions of the spectrum such 

as square-root, logarithm and square law [48]. Homomorphic filtering or deconvolution 

techniques require non-linear domains such as the logarithmic power spectrum or the 

cepstrum [46], [57]. Other homomorphic deconvolution systems use power laws [34]. 

Continuing our contribution t o  the analysis of temporal processing, in this section 

we find that  when the processing is applied t o  a non-linear transform of the STFT,  the 

equivalent time domain filter is not easily found. In fact we show that  the time domain 

equivalent operation is time-varying and STFT dependent, even for simple non-linear 

transforms like the STFT magnitude. 



4.1 Temporal Processing of the STFTM 

We begin our study by considering the common case where only the magnitude of the 

S T F T  (STFTM) is processed and the STFT phase (STFTP) is left unmodified. The 

motivation behind this restriction is that  the relevant perceptual attributes of speech 

are considered t o  be included mainly in the STFTM rather than in the S T F T P  [35], 

[62]. Processing of the STFTM has been extensively applied in several areas of speech 

processing such as speech enhancement [13], time-scale modification of speech [52], and 

speech coding [18]. 

Another important reason for not modifying the STFTP is that  it is not bounded if 

looked at as a time signal [18], and this behavior may not make it suitable for filtering 

or other time dependent modifications. Furthermore, S T F T P  modifications may result in 

destruction of the pitch structure of the resynthesized speech [52]. 

4.1.1 Definitions of STFTM and STFTP 

We star t  by formalizing the definitions for the STFTM and STFTP. The STFT is a 

complex signal in its second argument and can also be written in terms of its real and 

imaginary parts [IS] 

S2(nlw) = a(n,w) + jb(n, w), (4.1) 

and in terms of polar coordinates as 

s2 (n, w) = 1 ~ 2 ( n ,  w) lejd(n9w)l (4.2) 

where 

and 

The magnitude and phase just defined above are also two dimensional signals and their 

treatment should follow the rules that  we formalized in Chapter 2 and Chapter 3. 



4.1.2 CIT-MIF Modification of the STFTM 

Now we begin investigating what is the time equivalent, if it exists, of applying a CIT-MIF 

modification t o  the STFTM. This is an important issue since i t  will help us t o  determine 

if the STFTM domain transformation of a signal is indeed necessary for implementing 

the desired CIT-MIF operation. The following analysis will also make evident some fur- 

ther complications that  arise when we wish t o  process some non-linear transform of the 

STFTM, such as the short-time power spectrum or the logarithmic short-time spectrum 

(see section 4.2). 

If the CIT-MIF modification is applied only t o  the time trajectories of )S2(n,  w)I, then 

the modified STFT Y2(n,w) can be written in terms of its magnitude and the original 

phase 4(n,  w) as 

with magnitude 
00 

IYz(n,w)l= C F2(n-r,w)lS2(r,w)l ,  
r=-03 

In equation (4.6) we have assumed that  the filtered STFTM is a valid magnitude, i.e. 

IY2(n, w)I 2 0. In general there is no guarantee that  negative numbers will not result from 

the time trajectory filtering operation. In practice it is common t o  set negative values 

t o  zero or take the absolute value of the right-hand side of (4.6) [35]. For purposes of 

simplifying our analysis we will assume that  IY2(n, w)I is a valid magnitude. 

To resynthesize a signal from the filtered STFTM we apply a synthesis equation, e.g. 

(3.4), t o  (4.5) t o  obtain 

where we have again assumed that  the filtered STFTM is a valid magnitude function. 

The FBS synthesis method is used in (4.7) only for simplicity and t o  illustrate our 

point. A similar analysis can be carried out with OLA or WOLA methods yielding similar 

results and with the additional "smearing" effects that  we have previously described. 



Time Domain Equivalent 

Since our aim is t o  find a time domain equivalent of filtering the STFTM, we would like 

t o  express (4.7) in terms of the input signal s(n). To achieve this it is necessary t o  first 

obtain an expression in terms of the STFT S2(n, w). This can be accomplished by adding 

and subtracting a phase term 4(r, w) t o  (4.7), i.e. 

which expresses y(n) in terms of the short-time transform S2(n, w). 

In (4.8) we observe that  the STFT is now being filtered by time-varying time trajectory 

filters which depend on the STFTP. We define these filters with the following notation: 

which can be interpreted as the time-varying filter response a t  time n t o  a unit sample 

applied r samples before [30]. With the introduction of this new notation (4.8) becomes 

which is the time domain equivalent form that  we were looking for. 

Filter Bank Interpretation 

As we did in section 3.2.4 we can use the filter bank interpretation t o  gain some more 

insight in terms of time trajectory filters. If we exchange the FT integral in (4.10) for a 

summation over k, then wk replaces w and we t o  obtain 



I t  can be shown (see Appendix B for a derivation) that  y(n) can be expressed in terms 

of the convolution of the input signal s(n) with the sum of a set of time-varying bandpass 

filters, i.e. 

(n) = C s (n  - m) I c gwk (n, m)ejwkn I , 
where the baseband time-varying filters are 

00 

gw, c.7 m) = C fWk (n,  r )w(m - r) .  
r=-00 

Apparently we have arrived t o  a time domain equivalent of filtering the time trajecto- 

ries of the STFTM. Note that  even if we could afford the time-varying filtering operation 

described by (B.4) notice that  the filters gw, (n, m) are dependent on $(n, w )  (see (4.9)). 

The time-varying filtering operation implies that  we know a t  least the phase of the STFT. 

So, for realizing the processing suggested in (4.12) we need t o  compute the STFT a pri- 

ori. The result is not surprising given that  we are constraining our processing t o  leave 

the S T F T P  unmodified. Furthermore, the previous analysis assumes that  the STFTM 

remains a valid STFTM after it is filtered in its time dimension. If we were t o  assume 

otherwise, an extra absolute value, or rectification operation (procedures with no real jus- 

tification) would have t o  be included which further complicate the time-domain equivalent 

analysis. 

What the previous analysis clearly indicates is that  when temporal processing in the 

S T F T  domain involves linear time-invariant filtering of the STFTM time trajectories, 

the time-domain equivalent implementation is not possible without prior knowledge of 

the original short-time transform and an implementation in the STFT domain is much 

simpler. 

4.1.3 Phase Effects 

We would also like t o  know what is the effect of a CIT-MIF modification of the STFTM 

on the phase of the resynthesized signal. Using the original the S T F T P  for resynthesis 

does not necessarily imply that  undesired phase distortion will result in the time domain 



signal. The following analysis is intended t o  give some insight into the problems that  

one may encounter in the design of time trajectory filters if a given time domain phase 

response is desired. 

The Fourier transform S(w) of a signal s(n)  can be obtained by evaluating its two- 

dimensional transform at modulation frequency 0 = 0, i.e. 

thus 
1 

S(w) = -S(O, w), 
W(0) 

which follow from (2.12). In terms of the STFT we can write 

where we used the identity (2.8). The magnitude and phase of S(w) are then 

-2 I C O  I 

and 

Phase Effects in Resynthesis 

Assuming that  the modified short-time transform Y2(n, w) is valid in the sense tha t  i t  has 

the properties of a S T F T  (see 1491 and references therein for details) we can also obtain 

the FT of y(n) as 

Recall from (4.5) that  the modified STFT can be written in terms of the modified short- 

time magnitude and the original short-time phase. Since we are interested in looking a t  

the phase of Y(u), let us introduce (4.5) and (4.6) into (4.19) t o  obtain 



from which we can easily find the phase 

00 CO 

LY (w) = L ( F2(n - r, w) IS2 ( r ,  w) ejrn("lw)) . 

Phase Distortion in the Time Domain 

Now suppose that  we would like t o  find out a constraint on the temporal processing 

such that  no phase distortion will result in the resynthesized time domain signal. This 

constraint can be formally expressed as 

where Y(w) is the FT of the resynthesized signal y(n). Using the phase obtained in (4.21) 

and the phase term (4.18), the condition for no phase distortion in the time domain (4.22) 

can be expanded as 

One way of achieving this condition is t o  set the time trajectory filters t o  have the 

form F2(n,w) = cr,S(n - A), where a, is a real frequency weighting factor and A is a 

time delay factor. This form is just a scaling of the time trajectories (all-pass linear phase 

filters), and the modulation frequency modifications possible with this design are limited 

t o  a constant gain factor. 

Other filter designs could meet condition (4.23), but the desired modulation frequency 

modifications would be harder t o  achieve with the introduction of the additional constraint. 

Moreover, we must know what the original STF'TP is in order t o  design temporal filters 

that  will introduce no phase distortion in the time domain. This is in accordance with the 

results previously obtained for the time domain equivalent of filtering the STFTM (see 

4.12). 



We might not always be interested in avoiding phase distortion in the time domain. 

An arbitrary phase response may be achieved by replacing the right-hand side of (4.23) 

with the desired phase. For this, the time trajectory filters would also have t o  be designed 

with prior knowledge of the STFTP of the signal. 

In contrast, for time-domain filtering (e.g. Wiener filtering) the phase distortion re- 

strictions are not as severe, i.e. the design does not depend on the signal. For example, FIR 

symmetric filters (generalized linear phase [45]) which introduce no phase distortion are 

easily designed and implemented. Also, arbitrary phase responses can be approximated 

by FIR or IIR time domain filters [55]. 

4.2 Temporal Processing in Other Non-Linear Domains 

As we pointed out before, applying temporal processing in non-linear domains may have 

certain advantages. Recently, there has been an increasing interest in applying a type 

of homomorphic filtering technique known as RelAtive SpecTrAl (RASTA) processing 

t o  reduce channel effects in ASR [24]. RASTA does this by band-pass filtering time 

trajectories of parametric representations of speech in a domain in which the disturbing 

noisy components are additive (see Chapter 5). For convolutional noise, the representation 

is a logarithmic function of the short-time spectrum of the corrupted speech. 

Several other examples exist that  suggest that  non-linear domains are advantageous in 

speech processing. This calls for some description of temporal processing in such domains. 

Let us now formalize the temporal processing procedure by creating a more general 

notation. If temporal processing is applied t o  a non-linear function of the STFTM we can 

write the  modified STFTM as 

where we have used the symbol N t o  denote a memoryless non-linear function (e.g. power- 

laws, logarithms, etc) of the STFTM, with inverse N-'. For many applications where 

resynthesis is not a concern, or only some features of the STFT need t o  be preserved, the 

STFTM term in (4.24) may be replaced by some other set of features like critical band 



energies [12], LPC smoothed logarithmic spectrum [4], etc. 

4.2.1 Time Trajectory Filters 

In other works that  apply filtering to  the time trajectories in non-linear domains (e.g. 

[24], [28]) the filters F2(n,  w) used were designed ad hoc, or heuristically. Moreover, the 

same filter was applied t o  all time trajectories. A major contribution of this dissertation 

is that  the time trajectory filters will be derived systematically from training data. With 

this approach, the filters can be designed for each time trajectory independently. 

4.2.2 Time-Domain Signal Resynthesis 

If we wish t o  resynthesize a time-domain signal we can do it by using the original phase 

(delayed t o  compensate the group delay caused by the time trajectory filters), i.e. 

A block diagram representation of this operations is shown in Fig. 4.1. At the synthesis 

stage we put an inverse STFT (ISTFT) block which means that  the synthesis method could 

be any of those described above. The block z-A indicates a time delay in the discrete-time 

of A samples. 

The memoryless non-linear operations and the STFT dependence make this scheme 

a processing domain which can not be directly related t o  any time domain processing. 

Many possibilities exist in this domain and the following chapters of this dissertation will 

present some of which have proven useful in speech processing applications. 

4.3 Summary 

When the CIT-MIF modification is applied t o  the STFTM only, and the original short- 

time phase is used for resynthesis, the time domain equivalent filter is shown t o  be time 

varying and S T F T P  dependent. Thus there is no simpler way of implementing the  desired 

operation than the straightforward STFT domain filtering. Further complications arise 



when the time trajectory filtering is applied t o  a non-linear function of the STFTM since 

there is no equivalent linear filter in the time domain that  can accomplish such operation. 

The previous arguments confirm that  non-linear STFT domains are an open field t o  explore 

new temporal processing applications. 

In summary, up t o  this point we have set the theoretical background necessary t o  

develop useful applications of temporal processing of speech. We can now proceed t o  

show some implementations of this technique towards the solution of real speech processing 

problems. 



Figure 4.1: Block diagram of temporal processing on the STFTM 
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Chapter 5 

Temporal Processing for Channel 

Normalization 

Another known application of temporal processing is in the area of automatic speech recog- 

nition (ASR). Temporal processing has been used t o  reduce the effects of convolutional 

distortions introduced by the communication channel [24], [41]. In this chapter we review 

the basic concepts involved in temporal processing for channel normalization. We perform 

an analysis t o  show the effect of the channel in the short-time representation of speech. 

Our goal is t o  gain a clear understanding of the true effects of the convolutional distortion 

on the STFT and the validity of the approximations used in practical implementations. 

We will review in more detail the RASTA processing technique that  has previously 

been cited. Also, the motivation behind cepstral mean subtraction (CMS) and its relation 

t o  temporal processing will be briefly mentioned. We show a simple analysis t o  point 

out how the ratio between the length of the channel impulse response and the short-time 

analysis parameters determine the limitations on the approximations made by channel 

normalization techniques. 

The chapter is intended t o  give a theoretical background needed t o  present the last 

two applications of temporal processing that  we discuss in this dissertation (Chapter 8 

and Chapter 9). 

'The term "channel" will be used to refer to the transmission medium 



5.1 Background 

The idea of channel normalization is based on the homomorphic filtering theory developed 

by Oppenheim [46]. For convolved signals, separation by subtraction is possible in some 

transform domain where the signals become additive, i.e. logarithmic spectrum and c e p  

strum. This is true provided that  we know the cepstrum or logarithmic spectrum of one 

of the components. When no explicit knowledge about any of the components is available, 

blind deconvolution methods may be applied. In these methods any a priori knowledge 

about the  signals involved can be used to  improve the results. 

The pioneering work on blind deconvolution presented in [57] inspired some of the 

most popular channel normalization techniques used nowadays. In that  work, the goal 

was t o  restore old audio recordings by removing the convolutional distortions introduced 

by primitive recording systems. Since no explicit knowledge of the signal or recording 

apparatus were available, the authors had t o  make some assumptions about the original 

signal. For this they used a recently recorded version of the recording that  they wanted 

t o  restore ("Vesti la Guibba" by Enrico Caruso). The recent version was recorded with 

modern equipment and was sung by a tenor with voice characteristics similar t o  those of 

Caruso. The average spectrum of this new version was used as an estimate of Caruso's 

original performance. Dividing the average spectrum of the old recording by this new 

average, they obtained an estimate of the transfer function of the old recorder. The 

assumption in this case was that  the transfer function of the modern equipment would 

approximate a flat response. From the estimate of the old recorder they designed an 

inverse filter. Processing the old recording with this filter restored Caruso's original voice. 

In the context of ASR, the channel involved can be the microphone used t o  capture 

the speech signal, the handset, the telephone channel, etc. These channels have relatively 

short impulse responses. Additionally, the speech can be further distorted when produced 

inside enclosures by the impulse response between the speaker and the transducer. Room 

impulse responses are generally longer and present other difficulties (in Chapter 9 we 

develop a technique t o  deal with this situation). 



Speech communication between humans suffer little degradation under channel distor- 

tions when the impulse responses involved are short (assuming that  the bandwidth of the 

channel is large enough t o  preserve intelligibility) [63]. ASR systems, on the other hand, 

perform poorly if there are channel discrepancies between training and testing da ta  [51]. 

We will now review two common channel normalization techniques which have a rela- 

tion with homomorphic blind deconvolution, CMS and RASTA processing. Assumptions 

made by these techniques as well as their temporal processing properties will be briefly 

discussed. 

5.1.1 Cepstral Mean Subtraction 

Following the  reasoning in [57], suppose that  we segment a corrupted speech signal x(n) 

into D (possibly overlapping) segments. The corrupted signal can be written as 

and the segments as 

xi(n) = si(n) * h(n),  i = 1, 2, ..., D. 

In (5.1) s(n) is the speech signal and h(n) is the transmission medium. The segments 

in (5.2) are not necessarily non-overlapping. Also, in (5.2) we have assumed that  there 

are no truncation effects, i.e. the impulse response of the channel is much shorter than 

the segment length. This approximation will introduce an error but we will discuss its 

relevance later in the chapter. We have also assumed that  the segments are longer than 

the impulse response of the channel and shorter compared t o  the length of the speech 

sample, so tha t  the available number of frames D is large. 

Taking the F T  and the logarithm of each segment we obtain 

where Xi (o), S;(w) and H (w) are the Fourier transforms of x; (n),  s; (n) and h(n) respec- 

tively. Performing an inverse Fourier transform (IFT) on (5.3) we obtain the cepstrum 

A 

2; (n) = Si (n) + h (n) . (5.4) 



The main idea behind CMS is that  averaging (5.4) over several segments will yield an 

estimate of the channel cepstrum, i. e. 

assuming that  the average speech signal cepstrum vanishes [5 ] .  Thus CMS consists of 

subtracting the average in (5.5) from each segment of the distorted signal. 

The last assumption is not valid in general for speech signals, so CMS removes not 

only the effect of the channel but also anything in the speech signal that  is constant 

and common t o  all segments [5]. If we were to  use the average S ( n )  as an estimate of 

the channel for cepstral deconvolution, the resulting reconstructed signal would suffer 

unwanted distortion. This is the reason why Stockham, et. a1 opted for using an estimate 

of Caruso's speech for the blind channel estimation in [57]. 

For some applications in speech recognition, the technique is successful because it 

achieves channel independence, i.e. regardless of what the channel is (as long as it is 

much shorter than the analysis window length), or what the long-term average properties 

of speech are, the recognizer is consistently presented with features whose time average 

value has been removed. 

From the temporal processing point of view, the mean subtraction can be seen as 

a non-causal FIR filter (see [24] for more details). The properties of the implied filter 

depend on the available number of segments over which the averaging is performed, but in 

general such a moving average will have a high-pass magnitude frequency response. The 

segmentation and Fourier transformation in (5.2) and (5.3) can be viewed as an STFT. 

Then, mean subtraction can be viewed as a CIT-only modification, given that  all the 

implied filters have the same impulse response for all frequency or quefrency bands. 

5.1.2 RASTA Processing 

For the past several years, speech recognition researchers have been working on the in- 

corporation of temporal auditory masking into speech processing [24]. As an engineering 

simulation of this powerful auditory constraint they proposed t o  filter out slow and fast 



changes in the trajectories of the logarithmic short-time spectrum of speech. This op- 

eration can be written using equation (6.1), and the short-time feature after RASTA 

processing becomes 

Y(n,wk) = exp { ~ ( n  - r ) l o g [ ~ ( r ,  W ~ I  3 

r=-00 1 (5.6) 

where A(n, wk) could be the STFTM or a critical band integrated spectrum [16], [23]. 

Sometimes RASTA is applied t o  short-time cepstrum trajectories [41],[51]. 

Notice that  we have dropped the subindex "2" from the short-time notation in (5.6). 

Throughout the rest of this dissertation we will drop this subindex and it should be 

understood that  all short-time functions are frequency transforms with respect t o  the 

second argument (as in (2.6)). 

The RASTA filter is a band-pass filter which has a spectral zero a t  zero modulation 

frequency and a pass-band approximately from 1 Hz t o  16 Hz (see Fig. 8.2). It is imple- 

mented as an IIR filter and the same filter is used for all frequency bands, i.e. a CIT-only 

modification. Additionally, the impulse response of RASTA is causal (except for two taps 

that  look 20 ms into the future). 

We see that  RASTA follows the mean subtraction idea by removing the dc component 

of the trajectory. It also attenuates low and high modulation frequencies. In contrast with 

the CMS filters (which may vary depending on the averaging time used), the transition 

band of RASTA is fixed. Another property is the low-pass characteristic that  attenuates 

higher modulation frequencies. While attenuation of such frequencies seems t o  bring 

advantages, it is the flat pass-band between 1 and 16 Hz that  preserves the perceptually 

relevant modulation frequency range [12], [4]. 

The parameters that  control the response of the RASTA filter were experimentally 

obtained in a series of speech recognition experiments. In Chapter 8 we will use real 

speech da ta  t o  derive RASTA-like filters, and we will gain understanding on the properties 

of the modulation spectrum of the da ta  and the resulting filters, which validate many ideas 

behind RASTA processing. 



5.2 Convolutional Distortions 

As we stated in the previous section, channel normalization techniques that  involve tem- 

poral processing make a series of assumptions about the effects of the channel on the 

short-time representation of speech. I t  is usually assumed that  the short-time spectrum of 

the corrupted signal is equivalent t o  the short-time spectrum of the original signal multi- 

plied by the Fourier transform of the corrupting channel [44], [51], [5]. It is our objective 

in this section t o  analyze in detail the true effects and understand t o  what extent can 

channel normalization techniques can be effective. 

We also set the necessary background that  will help us t o  develop the last application of 

this dissertation, which deals with normalization of channels with long impulse responses, 

e.g. room reverberation. 

5.2.1 Effects of the Channel on the STFT 

Let the corrupted speech signal be defined as in (5.1), which can be explicitly written as 

00 00 

x(n) = x h(r)s(n - r )  = s ( r )h (n  - r). (5.7) 

We would like t o  know if there is any relation t o  describe the S T F T  of x(n) in terms of 

the S T F T  of the speech signal s(n). Taking the STFT of (5.7) we obtain 

00 

X (n, W )  = w(n - m)z(m)e-jwm 

or equivalently 

By making the change of variables m' = m - r and interchanging the order of summa- 

tion we arrive at the following expression: 



00 00 

X (n, w) = s ( r )  w (n  - m' - r) h(ml) e - j ~ ( ~ ' + ' ) ,  

letting m = m' and rearranging the terms we get 

which can finally be written in terms of the STFT of s(n) as 

with 

h, (n) = h (n) e-jwn . 

Filter Bank Interpretation 

The result in (5.12) can be explained in a more intuitive way by using the filter bank 

interpretation discussed in section 2.1.3. In Fig. 5.1 we show the block diagram filter 

bank interpretation of the original problem, i.e. equation (5.8), and the equivalent system 

described by (5.12). Simple block diagram operations can lead t o  the result in (5.12). 

What  the previous analysis shows is that  the effect of the channel is not multiplicative 

in the  short-time frequency domain. It remains as a convolutional distortion and the 

channel normalization techniques rely on the approximation (5.3). So we can ask why is 

i t  that  channel normalization has been successful? Somehow the multiplicative property 

must show in some cases. 

Intuitively we can see that  depending on the properties of the window w(n) and the 

channel h(n),  the convolution can approximate a multiplication. For example, if the 

window has very narrow bandwidth then when it is convolved with the modulated channel 

response i t  will serve as a frequency analyzer t o  the channel. Equivalently, if the window 

is long compared t o  the channel, the convolution can be turned into multiplication. In the 

next section we formalize this intuition. 



Figure 5.1: E f i c t  of the channel on  the S T F T .  (a)  Filter bank interpretation. (b)  Equiv- 
alent system. 

Approximate Effects of the Channel on the STFT 

First,  let us interchange the summation order in equation (5.10) and rewrite it as 

CO 

X ( n ,  w )  = x s(r)e-jwr 5 w (n  - m - r )  h(m)e-jwm. (5.13) 
r=-CO m=-03 

Suppose tha t  the window function w ( n )  is long compared t o  the length of the impulse 

response h ( n ) ,  so that  w ( n )  is approximately constant over the duration of h ( n ) .  Then 

and (5.13) becomes 



and recognizing the summation over r as the STFT of s(n),  and the summation over m 

as the FT of h(n),  i.e. 

H (w) = h(m) e-jwm 

we finally arrive t o  an equation in terms of the STFT of the clean signal 

Equation (5.17) represents the desired condition for channel normalization, i.e. the 

channel shows as a multiplicative (rather than convolutional) factor in the short-time 

representation of the signal. 

Frequency Domain Interpretation 

The approximation for the channel effects on the short-time spectrum obtained in (5.17) 

represents the desired condition for channel normalization. The assumption (5.14) used 

t o  obtain this approximation can also be interpreted from the frequency domain point of 

view. 

Taking the FT with respect t o  time n of the left hand side of (5.14) we get 

00 

h(m) w (n  - m)eViwm = H (w) *, [W (-w)e-jWn], (5.18) 
m=-co 

where W(w) is the Fourier transform of the window function, and the operator t ,  denotes 

convolution with respect t o  the frequency variable. The FT of the right hand side of (5.14) 

is 
00 

h (m) w (n) e-jwm = w (n) H (w) = an H (w) . 
m=-cu 

where a, = ~ ( n )  is a constant for the fixed time transform. We observe that  for (5.18) 

and (5.19) t o  be similar we require that  the window frequency response approximate a 

delta (unit sample) function of frequency, i.e. a filter with very narrow passband 



In the limit, for an infinitely long constant amplitude window the short-time transform 

would approximate the F T  of the signal, and the channel effect would be exactly multi- 

plicative. This result is not surprising since it just states the convolution theorem for the 

Fourier transform [45]. 

Discrete Time Implementation Considerations 

From the previous section we conclude that  the channel effect is never really multiplicative 

in the STFT domain. However, we want t o  get as close t o  this approximation as possible 

in order t o  be able t o  use homomorphic filtering-based normalization. We now discuss 

some considerations for the design and implementation of useful systems. 

Practical implementations use finite length analysis windows. The length of the 
0 

window determines the minimum of sampling points required in the frequency domain 

(Nyquist theorem). Thus, assuming that  the channel has finite length, the minimum 

length of the analysis window must be a t  least that  of the channel. This minimum re- 

quirement is not expected to  yield good resuIts since the approximation (5.17) requires 

the window t o  be constant over the duration of the channel for all n, and a finite length 

rectangular window will not fulfill this requirement at the end points. 

A long and smooth window which tappers down the end points is then desirable. 

Commonly used windows with this property (Hamming, Hanning, Kaiser) have wider 

bandwidths. To fulfill the frequency domain requirement (narrow bandwidth) they also 

need t o  be longer. 

The type of the window will determine the bandwidth and the amount of frequency 

aliasing introduced [45]. Aliasing will introduce errors which we have not considered in our 

analysis, and it is also desired t o  minimize these effects. Hamming and Hanning windows 

(just t o  mention two commonly used) have lower side-lobes and meet this requirement. 

Based on the above considerations, it is reasonable to  use a window with low aliasing, 

smooth edges, and long enough t o  satisfy the frequency and time domain conditions re- 

quired. I t  is our experience that  a Hamming window with a length a t  least 4 times the 

channel length provides a good approximation t o  (5.17) [9]. 



5.2.2 Discussion 

Fortunately, some commonly encountered channels, like telephone channels, have short 

impulse responses compared t o  the analysis window lengths needed for speech analysis. 

As speech is non-stationary, windows longer than 32 ms are rarely used. We have observed 

tha t  for the TIMIT and NTIMIT~ databases, the approximation in (5.17) is reasonable. 

However, if the channel is related t o  the impulse response of a room, such approx- 

imation is not valid, unless long windows are used. Such long windows limit the time 

resolution needed for ASR feature computation. In Chapter 9 we will develop a multires- 

olution technique t o  overcome these limitations. 

5.3 Summary 

In this chapter we have described two common channel normalization procedures based 

on temporal processing, and briefly discussed their motivation. We have shown that  the 

condition assumed by these techniques is only approximately met. The channel shows up 

as a multiplicative term on the STFT only when the analysis window length is greater 

than the  impulse response of the channel. In the frequency domain, the pass-band of the 

window should be as narrow as possible. 

With this background we can now proceed t o  present our work on temporal processing 

for ASR channel normalization applications. 

2NTIMIT consists of the same speech data in TIMIT passed through a telephone channel. 



Chapter 6 

Noise Reduction 

In this chapter we present an application of temporal processing t o  the reduction of ad- 

ditive background noise in telephone communications. As is often the case with speech 

enhancement systems based on short-term spectral estimation [13], [35], our noise suppres- 

sion algorithm is based on modifying the STFTM and resynthesizing a processed signal 

by using the S T P T P  of the original noisy speech. 

In contrast with the mentioned methods, we perform the modification by filtering 

the trajectories (CIT-MIF modification) of the STFTM. The design of appropriate time 

trajectory filters is a major contribution that  we present in this chapter. We illustrate how 

these filters can be designed based on training data, and then analyze their properties. 

We conclude the chapter by demonstrating an adaptive noise reduction algorithm [lo]. 

The adaptive technique is based on selecting a set of pre-computed filters t o  process the 

STFTM trajectories of noisy speech. The responses of the pre-computed filters depend 

solely on the signal t o  noise ratio of the time trajectories, and does not depend on the 

center frequency of the band. This allows for a compact design in which the estimate of 

the signal t o  noise ratio a t  each frequency band is used as a filter bank design criterion. 

6.1 Background 

The enhancement of noisy speech is of great importance in voice communication systems 

tha t  are t o  be used in real acoustic environments. For telecommunications applications, 

the need for speech enhancement systems increases with the spread of mobile telephony. 

Calls may originate from noisy environments such as moving cars or crowded public places. 



The objective of a speech enhancement algorithm for a human-human communication 

is the improvement of the perceptual aspects of the speech signal, such as quality and intel- 

ligibility [17]. Quality is a subjective measure which indicates how pleasant or disturbing 

the signal is t o  the listener, while intelligibility is an objective measure of the amount 

of information in the signal that  can be retrieved by the listener. These two perceptual 

aspects are not necessarily equivalent. 

In applications such as hearing aids and transcription of forensic material, intelligibility 

improvement may be paramount. For other applications it may suffice t o  reduce the noise 

level t o  a degree a t  which listeners prefer the processed speech t o  the original noisy signal, 

even if intelligibility is not increased. Moreover, in most known cases, quality improvement 

can be achieved only a t  the expense of intelligibility [17], [35]. 

Depending on the particular application, the noise can be introduced t o  the commu- 

nication link a t  different points. It could be introduced by the communication channel a t  

the transmission point before the signal is transmitted, a t  the receiver side, or at several 

processing stages. One of the main problems of reducing noise in telephone communi- 

cations is that  the speech signal is corrupted before entering the system and there is no 

possibility t o  process i t  beforehand. Except for a very few cases, we do not have a noise 

pick-up microphone which could provide a reference signal t o  the noise and make noise 

cancelling strategies feasible. As pointed out by Ephraim [17], this situation constitutes 

one of the most difficult problems for speech enhancement. 

To show the usefulness of temporal processing of speech we will devote this chapter of 

the dissertation t o  the enhancement of noisy speech in cellular telephone communications. 

Throughout the rest of the chapter we will refer t o  the speech enhancement problem as 

noise reduction t o  stress the fact that  our goal is the enhancement of speech by reducing 

the background noise level, in contrast t o  enhancement systems that  deal with other 

disturbances like reverberation [8], missing frequency extrapolation techniques [ll], or 

noise cancelling algorithms. Let us first motivate the use of temporal processing t o  tackle 

this problem. 



6.2 Motivation 

The corrupting background noise encountered in mobile telephony can be stationary, or a t  

least changes rather slowly compared t o  the rate of change of speech. Relevant modulation 

frequency components of speech are mainly concentrated between 1 and 16 Hz [4], with 

higher energies around 3-5 Hz [29]. Slowly-varying or fast-varying noises will have com- 

ponents outside the speech range. For example, steady tones will only have modulation 

frequency components a t  dc, i.e. (0 = 0 Hz). 

A system capable of modifying the modulation frequency content of a noisy speech 

signal in a controllable way could be useful for speech enhancement. As we discussed in 

Chapter 3, temporal processing can achieve such modifications. Based on prior work in 

the area (to be discussed next), we decided t o  apply time trajectory filtering t o  the noise 

reduction problem. 

6.2.1 Previous Work 

RASTA processing, a technique which modifies the modulation spectra by filtering the 

time trajectories of a time-feature representation of speech, has been successfully applied 

in channel normalization for ASR. A more detailed description of RASTA in the context 

of channel normalization was given in Chapter 5. It has also been recently applied to  

enhancement of noisy speech [25]. In that  case, RASTA filtering was applied t o  the 

magnitude (or t o  the cubic-root compressed power spectrum) of the S T F T  of noisy speech, 

while keeping the phase of the original signal. 

The spectral modifications caused by RASTA are of the CIT-only type because the 

same time trajectory filter is used for all frequency bands. The modified STFTM is 

The RASTA filter R(n) is implemented as an autoregressive-moving average (ARMA) 

infinite impulse response (IIR) band-pass filter, with a magnitude frequency response 

which suppresses modulation frequencies below 1 Hz and above 16 Hz. Applying rather 



aggressive fixed RASTA filters (designed for suppression of convolutional distortions in 

ASR) for additive noise reduction yields results similar t o  spectral subtraction [13], i.e. 

enhanced speech often contains musical noise and the technique typically degrades clean 

speech. 

As in spectral subtraction, the appearance of musical noise is also related t o  the fact 

that  for (6.1) t o  be a valid STFTM, negative values resulting from band-pass filtering 

the time trajectories (RASTA suppresses the dc component) have t o  be removed prior t o  

resynthesis. 

The RASTA filter was optimized t o  improve the performance of speech recognizers 

in the presence of convolutional distortions. Under those optimal parameters there may 

not necessarily be a performance improvement if our application is different, such as noise 

reduction. Furthermore, applying the same filter to  all frequency bands may be justified 

for the original problem [12], but there is no reason t o  impose such a constraint in a system 

that  deals with a different situation. 

6.3 RASTA-Like Noise Reduction Technique 

We consider a scheme where the CIT-MIF modifications replace the RASTA filter. The 

operations involved in the technique are conceptually described by equation (4.25). In 

practice, the CIT-MIF modification is implemented with a finite number of time trajectory 

filters. We call this time trajectory filters, RASTA-like filters. We let the filters be non- 

causal finite impulse response (FIR) filters. For the nonlinear function in (4.25), we use a 

power-law. Under these requirements (4.25) becomes 

Fz (r, wk) ISz (n - r, wk) l1I7 ej4(n-A9wk) e ,  jwkn (6.2) 

where the filters F2(n, uk) ,  as well as the parameters y and A, are still t o  be determined. 

The number of frequency bands is I<. Since speech is a real signal, its STFTM is a 

'We use this term to indicate that the filter attenuation at dc in modulation spectrum is strong, e.g. 
> 20 dB. 



symmetric function of frequency, and only 5 + 1 (if I< is even as is often the case in 

efficient F F T  implementations) filters need t o  be specified. 

Without loss of generality we assume that  all filters have the same length M = 2L + 1. 

2xk The frequency sampling is set according to  the Nyquist criterion, i.e. wk = r, where 

k = 0, ... ,I<- 1 and K 2 N ,  with N being the STFT analysis window length. In (6.2) we 

have used the FBS synthesis formula only t o  illustrate the technique. OLA synthesis was 

used for all our simulations with no substantial difference in the results. 

6.3.1 Filter Design 

To design the RASTA-like filters we generated a database from a pair of parallel record- 

ings of clean and noisy speech. This database consisted of approximately 2 minutes of 

speech of one male talker recorded over a public analog cellular line from a relatively quiet 

laboratory. The speech was artificially corrupted by additive noise recorded over a second 

cellular channel from: 

a car driving on a freeway with the windows closed, 

a car driving on a freeway with one window open, and 

a busy shopping mall. 

The STFTM of each recording was estimated using the parameters shown in Table 6.1. 

Each filter F2(n,  wk) was designed t o  optimally (in the least squares sense) map a time 

window (corresponding t o  the length of the filter M) of the noisy speech time trajectory 

at frequency wk, t o  a single point of the corresponding time trajectory of the clean speech. 

If the STFTs of the clean speech and noisy speech are denoted by Sz(n ,  wk) and 

X2(n,  wk) respectively then we estimate the time trajectory of the clean speech 1,!?2(nl wk)l 

by 

The RASTA-like filter coefficients are found such that  lS2(n, wk) Illy is the least squares 

estimate of the compressed time trajectory (S2(n, wk)('/7 for each frequency band wk. This 



Table 6.1: Noise Reduction Parameter Values 

procedure is just a Wiener filter design on the compressed time trajectories of clean and 

noisy speech. 

Number of Samples at 8 kHz Parameter 

STFT window t v ~ e  

S T F T  D F T  length Ii' 
Filter length M 

A = L  

6.3.2 Tests 

Value 

Hamming 

In a series of informal listening tests involving processed samples under different parameter 

settings, we determined the best setting based on the quality improvement of the processed 

sample. The parameter values for which we obtained the best quality results are shown 

in Table 6.1. The third column in the table shows the value of the parameters in number 

of samples for an 8 kHz sampling rate. 

32 ms 
264 ms 
128 ms 

6.3.3 Parameter Values 

256 
33 
16 

For the analysis we used a STFT window with the same length as the discrete Fourier 

transform (DFT). It is well known that  if modifications of the STFT are t o  be performed, 

the length of the D F T  (K) should be larger than the length of the analysis window t o  

avoid time aliasing during resynthesis [I]. We found no difference between the results 

obtained by oversampling the D F T  in the STFT (i.e. I( > N) and setting its length equal 

t o  the analysis window length (Ii' = N).  This may be explained by the fact (as discussed 

next) that  the STFTM modifications were relatively mild so that  their influence may not 

last more than N time samples. We did not extensively test these parameters, but rather 

fixed the analysis with values commonly used in traditional short-time analyses of speech. 

To set the length of the time trajectory filters we systematically increased the number 
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Figure 6.1: Block diagram of noise reduction system. x ( n )  is the noisy speech, and Z(n) 
the processed speech. The compression is y = 1.5. 
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of taps from M = 5 t o  M = 97 in 4 t ap  steps. As we increased M we observed a 

better performance in the mean squared error sense as expected. The perceptual quality 

improved as M increased, but beyond M = 33 it did not improve significantly. For lengths 

greater than M = 65 the perceptual quality started t o  degrade (due t o  the appearance of 

- 

- 

echoes). 

The best y was found by varying its value from y = 0.5 t o  y = 5 in 0.5 steps. A very 

noticeable quality improvement was found when we tested y = 1.5 compared t o  lower 

O(n,wk 1 O(n-~,ok)  

L $  

values. As the value increased beyond y = 1.5, the improvement was not perceptually 

- 
z -L 

significant. Interestingly, this value of y seems t o  correspond t o  the exponent of the 

loudness-intensity power law relationship encountered in psychoacoustics [39]. 

A block diagram of the noise reduction system with these parameters is depicted in 

Fig. 6.1. Notice that  we have shown a filtering operation for each of the K time trajectories. 

However, i t  should be understood that  given the symmetry of the STFTM, we only need 

t o  filter the first 5 + 1 trajectories and copy the result t o  the remaining trajectories so 

as t o  achieve a symmetric processed STFTM. We also show a rectification stage before 



resynthesis that  is needed t o  maintain positive magnitude values. 

6.3.4 Evaluation 

Once the best parameters were set we conducted an evaluation t o  compare the performance 

of the new system t o  spectral subtraction [13]. The evaluation consisted on processing 

a noisy speech sample with the two techniques, and compute a perceptually-based dis- 

tance between the processed samples and the original noise-free speech. The noise was 

artificially added and it was car noise similar t o  the noise used t o  train the RASTA-like 

filters. The distance measure we used was the normalized averaged mean squared error 

between logarithmic critical band energies. The critical band energies were simulated by a 

weighted summation over the STFTM frequency components of the signals. The weighting 

coefficients (critical band shapes) used were the same as those described in [23]. 

In Table 6.2 we show the results obtained for a noisy speech sample with a signal t o  

noise ratio of 5 dB. The spectral subtraction algorithm used is described in [31]. 

Table 6.2: Averaged Mean Squared Error 

In the last column of Table 6.2 we report the result obtained when clean speech was 

processed by the RASTA-like filters. This result indicates that  the system introduces a 

small amount of distortion. 

6.3.5 Properties of RASTA-Like Filters 

Clean Speech 

Frequency Responses 

RASTA-like 
filtering 

3.11 

Filter magnitude frequency responses are shown in Fig. 6.2 (darker shades represent larger 

values). Filters for different frequency channels differ. The whole frequency band between 

Clean 
RASTA-like 

0.97 

Noisy 

3.84 

Spectral 
subtraction 

5.71 
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Figure 6.2: Frequency responses of RASTA-like filters

0 and 4 kHz appears to be sub-divided into several regions, each characterized by its own

RASTA-like processing.

The highest gain RASTA-like filters are applied in the frequency bands between 300 Hz

and 2300 Hz. Frequency responses of typical filters in this region (slice A in Fig. 6.3) are

shown in Fig. 6.3(A). Typically, filters in this frequency band have a band-pass character,

emphasizing modulation frequencies around 4-5 Hz. Comparing to the original ad hoc

designed RASTA filter, the low frequency band-stop is much milder, being only at most

10 dB down from the maximum.

Filters for very low frequencies (0-100 Hz) are high-gain filters with a rather flat fre-

quency response (slice C in Fig. 6.2 and Fig. 6.3(C)) 2. Filters in the 150-250 Hz and the

2700-4000 Hz regions are low-gain low-pass filters (slice B in Fig. 6.2 and Fig. 6.3) with

at least 10 dB attenuation for modulation frequencies above 2 Hz. The low frequency

pass-band of these filters are typically below the pass-band of the high-gain band-pass

filters of Fig. 6.3(A).

2The reason for this behavior will be explained later in section 6.4.2.
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Figure 6.3: Frequency response of filters at different bands. The labels i n  this figure cor- 
respond to the regions with the same label i n  Fig. 6.2 

Impulse Responses 

The impulse responses of the filters are approximately symmetric with near linear 

phase and consequently approximately constant group delay (see Fig. 6.4). That  is the 

reason why the phase delay term A was chosen t o  be half the filter length, i.e. the position 

of the t a p  with highest magnitude, and center of symmetry. This delay was our choice 

since we designed the filters t o  be non-causal and looking the same number of frames into 

the past as in the future. 

Discussion 

We mentioned in section 6.3.1 that  oversampling the STFT in frequency did not change the 

results. This can be explained by looking a t  the dc attenuation of the resulting RASTA- 

like filters, which is low at high energy frequency bands. Assuming that  the time trajectory 

filters were single t ap  filters (M = I), the equivalent time domain impulse response of this 

MIF modification would not require a large number of taps thus making the time domain 

aliasing almost negligible for practical purposes. In the following section we discuss our 
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Figure 6.4: Impulse responses of RASTA-like filters at (a) region A Fig. 6.2, (b)  region B 
in Fig. 6.2, and (c) region C in Fig. 6.2. For comparison, the dark bar on the time axis 
corresponds to the length of the analysis window, i.e. 32 ms. 

results from the Wiener filter point of view. 

6.3.6 Wiener-Like Behavior of RASTA-Like Filter Bank 

To test the advantage of the CIT-MIF modification over an MIF-only modification, 

we designed a time domain Wiener filter on the same noisy and clean da ta  [22]. As 

was shown in [3], a time-invariant MIF-only modification of the S T F T  is equivalent t o  

a time domain time-invariant linear filter. As we discussed in Chapter 3, the CIT-MIF 

modification of the STFT can also be implemented as a linear time-invariant filter in the 

time domain. In this sense the advantage of increased modulation frequency resolution 

(due t o  the temporal filter) is tested. However, the proposed noise reduction operates on 

the STFTM for which there is no time domain equivalent, and the advantage of this fact 

over time domain processing is also tested. 

The length of the Wiener filter was set t o  I( taps t o  achieve the same frequency 

resolution as the STFT. The magnitude frequency response of the filter is shown by the 

solid line in Fig. 6.5. For comparison, the norm of the RASTA-like filters, designed on 

magnitude spectrum (i.e. y = I), are shown in the figure by the dashed line. 
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Figure 6.5: Wiener filter response and norm of RASTA-like filters. 

Listening Tests 

Informal listening comparisons between the quality of speech processed by the time-domain 

Wiener filter and these RASTA-like filters indicate that  processing the STFTM and the 

additional modulation frequency resolution gained with the CIT-MIF perform better (in 

the perceptual sense) than the time domain Wiener filtering. 

However, for these tests we did not consider the effect that  the residual noise may 

have on the listeners. It was obvious that  the reduction of the noise level was perceptually 

greater with the RASTA-like filters, but the quality of the residual noise was different 

compared t o  the Wiener filter results. While the residual from Wiener filtering appears 

t o  be louder, it does not have level fluctuations present in the residual obtained from the 

temporal processing. 

Compared t o  the spectral subtraction results (see section 6.3.4), both Wiener and 

RASTA-like filters produce a less annoying residual. 



6.4 The Effect of Signal to Noise Ratio on the Properties 

of the RASTA-Like Filters 

Two important aspects of the RASTA-like filters of the previous section were observed: 

1. The magnitude frequency response of filters corresponding t o  frequency regions of 

high speech energy showed suppression of low (0 < 2 Hz) and high (6 > 8 Hz) 

modulation frequencies, while enhancing modulations around 5 Hz. Filters a t  regions 

of low spectral energy were low-pass or flat. 

2. The dc gain of the filters was high at high signal t o  noise ratio (SNR) time trajectories 

and low a t  low SNR time trajectories, thus following the Wiener principle of optimal 

noise suppression. 

The observations above suggest two possibilities. One is that  the filter characteristics 

may depend on the energy of the speech signal relative t o  the noise level at each time 

trajectory. Thus a filter bank could be designed based on these local SNR levels (frequency- 

specific SNR levels) rather than on specific noisy training data. 

The second possibility is that  the shape of the RASTA-like filters might depend on the 

center frequency of the trajectory, while the gain might depend on the frequency-specific 

SNR. To find out what are the factors that  determine the frequency response of the filters 

we performed the following experiments. 

6.4.1 Preliminary Studies 

The first question tha t  we formulated based on our observations was whether the filter 

responses depend only on the local SNR or if they also depend on the center frequency wk 

of the time trajectory for which they are designed. 

To answer this question we constructed a database by corrupting a sample of clean 

speech (approximately 180 s in length, taken from the TIM IT^ database) with additive 

3 ~ I M I T  is a speech database recorded by Texas Instruments (TI) and the Massachusetts Institute of 
Technology (MIT). 



white Gaussian noise (AWGN) a t  different overall SNR levels (20, 15, 10, 7, 5, 3, 0, -3, 

-5, -7, -10, -15, -20 dB). These SNR levels were computed as 

where v(n) is the noise sequence, and the summation over n goes for the time length of 

the speech signal. 

Given that  the speech signal energy is not uniformly distributed in frequency, by 

computing the STFTM of a database set we can identify the SNR for each particular 

frequency band. This follows from the fact that  we know both the clean signal and the 

noise sample, and we can individually compute their STFTs. This frequency-specific SNR 

can be computed as the ratio of the total power of the time trajectories of the STFTMs 

of speech and noise signals a t  the given frequency band, i.e. 

where the summation over n goes for the length of the STFT, and V2(n,wk) is the S T F T  

of v (n) . 
For each database set we designed a RASTA-like filter bank following the procedure 

described in section 6.3.1, with the parameters shown in Table 6.1. Thus, a total of 1677 

RASTA-like filters were designed. 

6.4.2 SNR-dependent RASTA-like Filters 

Fig. 6.6 shows the filter characteristics for different SNR levels. Each plot in the figure 

shows the magnitude frequency responses of filters derived a t  a given SNR for several 

frequency bands (dotted lines), together with the mean response (solid line) of the filters. 

We computed the frequency response of the filters for a given frequency-specific SNR only 

at some representative wk s covering the frequency range of interest (0 Hz t o  4 kHz in 

this case). The representative wk s were selected by sampling an SNR versus frequency 

plane. This plane was constructed by computing the frequency specific SNR levels at 129 

equally spaced frequency bands for each of the 13 databases of section 6.4.1. Thus, the 



plane consisted of 1677 points, each corresponding t o  the SNR condition under which each 

of the 1677 filters was designed. For a given SNR we found all points on the plane which 

lied close (f 0.01 dB) t o  that  value. 

Even when this procedure did not yield an equally spaced frequency sampling, the 

selected wk s covered the whole frequency range with less than 10 bands (or about 300 Hz) 

separation between them. 

MODULATION FREQUENCY [Hz] 

Figure 6.6: Filter frequency responses (dotted lines) and mean response (solid lines) for 
several frequency-specific SNR levels 

Observations 

For a wide range of SNR values we made the following observations. As the frequency- 

specific SNR decreases, the magnitude frequency response of the  filters changes from 

a flat response (i.e. no filtering, see Fig. 6.6(a)), through 



a a strong band-pass response enhancing modulation frequencies around 5 Hz (i.e. 

speech enhancement, see Fig. 6.6(c) and Fig. 6.6(d)), t o  

a low gain, low cut-off frequency low-pass response (i.e. suppression of the  given 

component, Fig. 6.6(f)). 

Notice that  the attenuation of the dc component (i.e. 0 = 0) increases with decreasing 

frequency-specific SNR. The results obtained in this section confirm the idea that  the 

RASTA-like filters are strongly dependent on the SNR of the time trajectory and relatively 

independent of the center frequency wk. Similar behavior was observed when the filters 

were designed from a smaller database created by artificially adding car noise t o  the 

clean speech. 

Discussion 

With the conclusions drawn from this preliminary study we can interpret the results 

obtained in section 6.3.5. Filter responses in region A of Fig. 6.2 can easily be interpreted 

given that  speech energy and noise energy are comparable in the 500-2500 Hz range and 

the filters tend t o  enhance speech modulation frequencies as in Fig. 6.6(b-d). 

Higher frequency regions (above 3000 Hz) have low speech energy and consequently low 

SNR, and the filters tend t o  suppress those bands (see Fig. 6.6(e-f)). For the low frequency 

bands in region C of Fig 6.2, the filter responses appear t o  be all-pass. An explanation 

t o  this is that  for deriving the filter bank in section 6.3.1, we generated our database by 

artificially adding noise t o  a clean cellular telephone speech sample. Analysis revealed that  

the additive noise lacked components a t  those low frequencies and the filters just tried t o  

map the uncorrupted speech sample t o  itself, yielding the all-pass characteristic. 

6.5 Adaptive System Design 

Based on our observations about the nature of RASTA-like filtering for noise reduction, 

in this section we describe an adaptive RASTA-like noise reduction technique intended for 

40nly -20, -10, -3, 0, 3, 10 and 20 dB overall SNR levels were used. 



applications in services such as voice mail where the noisy speech recording is available for 

non-real time processing. With some modifications, the system is in principle also suitable 

for real-time processing. 

As mentioned before, one of the problems that needs to be considered in mobile tele- 

phone communications is that, in general, background noise has different characteristics 

from one call to the next. A successful noise suppression system needs to use some strategy 

to deal with this factor. 

The observations described in the previous sections allow us to design a noise reduction 

system which adapts to a specific noise condition. This extension makes the system a p  

plicable in realistic situations with noises and speech of unknown variance and coloration. 
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Figure 6.7: Block diagmm of the adaptive system. x ( n )  is the input corrupted speech, S(n) 
is the estimate of the clean speech ( y = 1.5) 



The system configuration is shown in Fig. 6.7. To assemble the appropriate filter 

bank for a particular noisy speech recording we compute the frequency-specific SNR for 

each STFTM time trajectory over the whole recording, and select a RASTA-like filter 

from a basis set of a few pre-computed basic filter shapes. After all filters for all time 

trajectories are selected, we proceed t o  filter the compressed STFTM trajectories, expand 

and resynthesize using the OLA synthesis technique. 

6.5.1 SNR Estimation 

In practical situations we do not know the frequency-specific SNR levels so an estimation 

procedure is required. We are primarily interested in the internal consistency of the 

estimate (rather than in the accuracy of the actual SNR estimate) as a measure of its 

usefulness for selecting a set of filters. 

For this purpose we apply a noise estimation procedure proposed by Hirsch [28], in 

which the noise power a t  each magnitude STFT trajectory is estimated by computing a 

histogram of its amplitude. The peak of the smoothed histogram is chosen as the noise 

amplitude estimate. Since we do not know the power of the clean speech signal, we use the 

power of the available noisy signal, thus obtaining an estimate of the noisy signal t o  noise 

ratio. For our purpose, the performance of this estimator was found t o  be reasonable. 

6.5.2 Filter Design 

Pre-computation of the Filters 

To design the set of basic RASTA-like filters we used the same clean and noisy da ta  as 

reported in section 6.4.1 above. For this, we assumed that  the additive noise sources 

of interest have Gaussian distributions. This constitutes the most general case where the 

noise has components at all modulation frequencies. In the case of colored noise sources, if 

the correlation time of the source is shorter than the analysis window length, the coloration 

of the noise is irrelevant. This is because individually, the subband noise components from 

a colored Gaussian noise signal behave in the same way as if they were derived from a 

white source (in terms of its time trajectory distribution, regardless of its variance which 

is determined by the subband energy). 



To derive a set of SNR-specific filters we averaged the magnitude frequency responses 

of filters computed a t  a given SNR, and designed a non-causal linear phase FIR filter from 

the averaged response. We excluded filters with center frequencies below 100 Hz from the 

average because their responses were found t o  deviate slightly from the average (mainly 

in the dc gain factor). The linear phase assumption is justified from the observation that  

all the filters computed for the preliminary study section above are approximately linear 

phase. A total of 25 filters, each corresponding t o  a frequency-specific SNR in 1 d B  steps, 

was found t o  perform reasonably well. 

Construction of the Filter Table 

In order t o  calibrate the SNR estimator which is used during processing (i.e. t o  find a 

mapping between the estimated and actual frequency-specific SNR levels) the SNR levels 

corresponding t o  each filter were estimated using the histogram technique. The 25 filters 

were stored in a table along with their corresponding estimated frequency-specific SNR 

levels. 

6.5.3 Operation of the System 

During the  operation of the adaptive noise reduction system on data  with unknown noise 

(e.g. real telephone calls), the SNR is estimated for each time trajectory and a proper 

filter bank is built by selecting the appropriate filters from the table. 

Although originally designed for the off-line applications in enhancement of noisy voice- 

mail recordings [lo], the technique is not constrained t o  non-real time processing. We did 

not yet extensively experiment with the real-time processing, but the frequency-specific 

SNR estimation procedure can be done in real time if a first estimate is computed during 

the first few seconds of a conversation and updated periodically over the length of the 

sample. As such, this adaptive update has the ability t o  adapt t o  time-varying conditions. 



6.6 Noise Reduct ion Results 

To evaluate the performance of the system under different conditions we conducted the 

following set of tests: 

6.6.1 Known noise 

To test the system independently of the SNR estimator, we artificially corrupted the 

clean speech (with colored Gaussian noise) and applied the processing with prior exact 

knowledge of the frequency-specific SNR. The result indicated a strong suppression of 

background noise while preserving the speech signal with very minor audible distortions. 

The residual noise has a very different character than the original disturbance. While 

the noise is not as annoying as the musical noise in spectral subtraction, i t  presents 

periodic level fluctuations. These fluctuations are related t o  the enhancement of certain 

modulation frequencies imposed by the filters in the medium SNR range (see Fig. 6.6). 

The modulation frequencies of the residual noise around 5 Hz are also enhanced and can 

be heard as a periodic disturbance. The distortion of speech is minimal compared t o  the 

distortion introduced by spectral subtraction. 

Example 

In Fig. 6.8 we show an example of the performance of the adaptive RASTA-like filtering 

for the case in which the SNR is known. Part  (a) shows the waveform and spectrogram 

of the original clean speech. The noisy waveform and spectrogram are shown in part (b) 

of the figure. The noise was additive colored Gaussian noise, artificially added t o  produce 

an overall SNR of 10 dB. In part (c) of the figure we show the waveform and spectrogram 

of the noisy speech after processing. 

Since the frequency-specific SNR levels are available, this example shows the best 

performance that  we can obtain with the adaptive algorithm. Even when the level of 

perceived noise is considerably reduced and the quality improved, the SNR after processing 

was only 11.62 dB. This shows that  there may be some distortion of the speech signal 

introduced by the processing, and that  the SNR improvement on the time signals is not a 
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Figure 6.8: Waveform and spectrogram of (a) original clean speech signal, (b) the noisy
signal, and (c) the processed noisy signal.

good indicator of performance.

6.6.2 Unknown noise

Applying the algorithm based on the frequency-specific SNR estimates, we found very

similar results. However, the noise level was underestimated and the suppression was

slightly milder. Tuning the estimated to real SNR map, or biasing the SNR estimator

itself might be helpful, but a better and more robust solution to the SNR estimation

problem needs to be found if we want to take full advantage of the adaptive structure.
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For a wide range of noise types and levels present in real cellular telephone calls we

found a noticeable suppression of the perceived noise. In several informal preference tests

we presented the subjects with 6 pairs of representative (real telephone calls) noisy and

processed samples, and asked them which of the samples did they prefer. We found that

more than 50% of the time subjects preferred the processed samples.

Other researchers have evaluated this adaptive system by comparing its performance

with spectral subtraction and a novel dual Kalman filtering approach [43]. The evaluation

criteria was the SNR improvement in the time-domain signals. They found that for a

sample of speech corrupted by colored noise, the SNR improvements were 4.87 dB, 5.71 dB,

and 5.27 dB for spectral subtraction, dual Kalman filtering, and adaptive RASTA-like

filtering respectively.
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Figure 6.9: (a) Noisy speech signal (above) and corresponding spectrogram (below). (b)
time signal (above) and spectrogram (below) of the same noisy segment after processing.



Example 

Here we show an example of noise suppression for the real case where the noise is unknown, 

Fig. 6.9 shows the waveform and corresponding spectrogram of a real noisy cellular tele- 

phone call and the time signal and spectrogram of the same sample after processing. 

In situations similar t o  this example we observed that  there is some distortion of the 

speech signal which can be attributed t o  the inaccuracy of the SNR estimator. However 

the quality improvement after applying the processing is considerable. 

6.7 Summary 

In this chapter we presented an application of temporal processing t o  the reduction of noise 

in telephone communications. The CIT-MIF modifications were applied t o  the compressed 

STFTM and implemented as FIR RASTA-like filters. Our novel approach of designing 

the time trajectory filters from training data  proved t o  be powerful. A few observations 

on the properties of the filters designed from a particular training set lead t o  a study of 

the factors which affect their characteristics and ultimately t o  the design of an adaptive 

noise reduction technique. 

Our evaluations indicate that  the algorithm generalizes quite well over different types 

and levels of noises. An important feature is that  the optimization of the system based on 

speech allows for a reduced audible speech distortion compared t o  other methods. While 

the adaptive system was originally designed t o  process voice-mail recordings i t  can be 

modified t o  operate on real time situations. 



Chapter 7 

Reverberation Reduction 

In this chapter we explore speech reverberation reduction using the CIT-MIF modification 

of the short-time spectrum. The principle is the recovery of the average envelope modu- 

lation spectrum of the original (anechoic) speech. Previous work using these principle has 

been reported in [33] and [27], where high-pass filtering and inverse modulation transfer 

functions respectively, have been used. Based on our previous experience with modulation 

spectrum modifications for additive noise reduction (Chapter 6), we apply the data-driven 

RASTA-like filter design technique t o  the reverberant speech. Comparing our results with 

other works we discuss the effectiveness and limitations of this type of approaches [26]. 

7.1 Background 

Recent advances in teleconferencing, multi-media and mobile hands-free telephony have 

spurred an interest in reducing the effect of room reverberation in speech communications. 

In the past, the problem has been approached from several different perspectives depending 

on the particular application. While several viable solutions exist in situations where more 

than one channel is available (multi-microphone systems) [2], [47], single channel systems 

still pose a formidable challenge. 

For single channel systems two main approaches have been taken. One approach 

consists of estimating some properties of the room from the corrupted da ta  and applying 

deconvolution techniques t o  recover the speech. The main drawback in such cases is that  

some simplifying assumptions about the speech and channel have t o  be made, thus yielding 

only suboptimal solutions [60],[56]. 



In a different approach, an attempt is made t o  recover the energy envelope of the 

original (anechoic) speech by applying a theoretically derived inverse modulation transfer 

function (defined below), or ad hoc high-pass filtering [27]. Such approaches were moti- 

vated by studies on the the effect of reverberation on the modulation index (also defined 

below) of speech and the reduction of intelligibility in reverberant environments [29]. 

7.1.1 The MTF and MI 

In this section we briefly discuss two concepts that  will be necessary t o  motivate our signal 

processing procedures. 

The Modulation Transfer Function 

The modulation transfer function (MTF) was first introduced as part of a procedure t o  

assess the performance of optical systems [29]. In sound transmission in rooms, the M T F  

refers t o  the transfer function that  characterizes a system in terms of the  changes in 

the modulation depth of a temporally sine-wave modulated test signal (e.g. a white noise 

sequence). The modulation depth reduction can differ for different modulation frequencies, 

thus the modulation depth reduction as a function of modulation frequency constitutes 

the M T F  [29]. 

To determine if the M T F  of a system will affect the transmission of a signal it is 

necessary t o  determine which modulation frequencies are present in the signal, which are 

more important, and how they will become affected. 

The Modulation Index 

The modulation index (MI) is a measure of the energy distribution in modulation fre- 

quency domain. As in the M T F  case, the MI can also vary between analysis frequency 

bands. An example of MI computation is depicted in Fig. 7.1. The squared magnitude of 

a time trajectory (originally Langhans and Strube used 4 octave frequency bands) is ana- 

lyzed in its modulation frequency components. Then the modulation magnitude frequency 

response is normalized by the mean energy I, computed from the squared magnitude of 

the trajectory. 



For example, for a temporally sine-wave modulated white noise sequence the MI for all 

frequency bands will be identical and will consist of a unit pulse located a t  the frequency 

of the sine wave. 

MODULATION INDEX 

Frequency 
analysis 

Clean 

Reverberant 
speech 

MODULATION FREQUENCY [Hz] 

Figure 7.1: Modulation index computation. After Houtgast and Steeneken (1985). 

7.1.2 Effects of Reverberation on Speech 

Linear System 

Reverberation can be formally described in terms of a linear system characterized by the 

impulse response between source and receiver in the room. Reverberant speech is then 

modeled as the convolution of speech with this impulse response. The effective length (the 

Tso or reverberation time 1541) of this impulse response can be very long. In fact, most of 

the times i t  is longer than the interval over which the speech signal can be considered as 

stationary (i.e. around 20-40 ms). 

Deconvolution techniques take advantage of this model and are effective when some 

knowledge about the room response can be obtained. In situations where several channels 

and/or a reference signal are available, an estimate of the room's characteristics can be 

derived, and inverse filtering can be applied t o  recover the original speech ([47], [59]). In 

real applications sending a reference signal is not feasible, and current blind identification 



techniques t o  estimate the impulse response from several observations yield poor estimates 

in the  presence of noise [7]. 

When the impulse response is available, the inverse filtering approaches have had 

as main problem the non-minimum phase nature of the reverberation process [59], thus 

making its inversion not a feasible procedure (if the application makes prohibitive the 

introduction of delay t o  stabilize the inverse filter). With the availability of multiple 

microphones (at least 2) exact inverse filtering has been achieved in [38] where the Multi- 

INput/output Theorem (MINT) was derived. It is rather unfortunate that  room impulse 

responses are hardly available, making the inversion methods impractical. 

Envelope Smearing 

As speech is produced inside an enclosure, the finer details of its time-intensity distribution 

are blurred before reaching the listener. This modification results from the superposition 

of the reflected sound waves with different delays and intensities t o  the original (direct 

path) waveform [29]. 

In the absence of discrete echoes, the effect of such a superposition results in rever- 

beration tails on the energy envelope of the signal. These tails have an approximately 

exponentially decaying envelope with a time constant determined by the room's dimen- 

sions, wall reflectivities and the positions of the source and receiver. 

Tails produced by past acoustic events fill in low energy regions between consecutive 

sounds reducing the modulation depth of the original envelope, and thus modifying its MI 

[29]. The M T F  of the room can be derived from it's impulse response and thus the effect 

of the room on the M T F  of speech is predictable [54]. This motivates the application 

of inverse MTF's t o  recover the original modulations present in the original (anechoic) 

speech. Notice that  in this case the phase modifications in the fine structure are not 

considered. 



7.2 Using the MI Concept for Reverberation Reduction 

We have achieved a considerable reduction of additive noise by filtering compressed STFTM 

time trajectories of noisy speech (see Chapter 6). The magnitude frequency response of the 

data-derived filters showed that ,  in the presence of additive noise, modulation frequencies 

characteristic of clean speech (around 4-5 Hz) need t o  be enhanced, and other frequencies 

outside this range attenuated. This gave us some indication that  the data-derived filters 

were partially compensating for the deteriorating effects of some disturbances on the MI 

of speech. 

From Fig. 7.1 we observe that  the MI of speech is considerably modified in the presence 

of room reverberation. Our previous experience with the data-derived filters, which are 

capable of modifying the modulation spectrum, indicates that  the data-driven approach 

can also be used t o  design a system t o  reduce reverberation. 

7.3 Preliminary Experiments 

In this section we describe the preliminary experiments that  we performed t o  understand 

the effects of two different envelope modification techniques proposed in the past. The 

modification of the modulation frequency components (or modification of the MI) t o  reduce 

the effect of reverberation was the prime motivation behind both techniques presented in 

[33] and [27]. Those techniques used time trajectory filters designed heuristically [27], or 

based on analytic forms for the inversion of the M T F  of simple reverberation models [33]. 

7.3.1 High-Pass Filtering of the STFT Power Spectrum 

Hirsch reported an improvement on the computer recognition of reverberant speech by 

using high-pass filtering of the STFT power spectrum trajectories [27]. Improvement of 

the subjective quality of the reconstructed speech after filtering was also reported and this 

constitutes the  object of our investigation. 

We hypothesized that  the main effect of the high-pass filtering was due t o  the fact that ,  

after filtering, a considerable number of points in the resulting power spectra were negative 

and thus eliminated during rectification. The filter in [27] was a high-pass filter with a real 



zero at dc, thus removing the mean of the time trajectories makes an important percentage 

(depending on the filter characteristics) of the power spectrum energies negative. The 

necessary rectification step in Fig. 6.1 sets all these values t o  zero, thus effectively removing 

them. After filtering, a high percentage of negative values correspond t o  low energy regions 

likely t o  contain reverberation tails. While removal of low spectral energy values reduces 

the reverberation effects considerably, it may also cause a loss of useful speech information 

and distortion of the perceived speech signal. 

We performed two simple experiments t o  test our hypothesis. In the first experiment 

we applied full-wave rather than half-wave rectification (thus negative values were not 

effectively removed) and found no reduction of the reverberation. 

In the  second experiment we center clipped the STFT power spectrum of reverberant 

speech below a certain threshold (20% of the maximum value). The result was very similar 

t o  that  obtained with high-pass filtering. 

Although some improvement of the MI is evident after the processing using Hirsch's 

filter, i t  appears that  the main effect of the high-pass filtering technique is in removing 

the low-energy spectral values, rather than achieving a restoration of the MI. 

7.3.2 Inverting a Theoretical MTF 

Langhans and Strube applied a theoretically derived inverse M T F  t o  reduce reverberation 

[33]. In their method the inverse M T F  (IMTF) was applied in critical bands simulated 

by a weighted sum of the STFT power spectrum trajectories. The IMTF used was the 

inverse of a first order low-pass characteristic with a cut-off frequency proportional t o  the 

reverberation time (Tso) considered (this is analytically derived for artificial reverberation 

[54]). The modulation frequencies above 10 Hz were not allowed t o  exceed in amplitude 

above a certain threshold t o  avoid strong fast fluctuations, and those above 40 Hz were 

further attenuated. 

The results obtained with this technique were not reported t o  be very satisfactory. We 

decided t o  investigate the matter comparing the theoretical curve t o  the transfer function 

of the filters obtained from our data-driven approach. 



7.4 Technique 

In this section we briefly review the RASTA-like filter bank technique and its design from 

clean and reverberant speech data. 

The technique used in Chapter 6 consists of the following steps. First the STFTM 

of the degraded speech is computed using the STFT. After application of a fixed zero- 

memory non-linearity, each time trajectory of this new representation is filtered by a da ta  

designed RASTA-like filter. After filtering, the result is transformed back t o  the STFTM 

domain by applying the inverse non-linearity, and combined with the original short-time 

phase t o  yield a resynthesized time domain signal. 

Since in the particular case of MI recovery we are after compensation of the short-term 

power spectrum, we use y = 0.5 in Fig. 6.1, i.e. we perform the linear filtering on the 

short-time power spectrum, 

L 

I & ( ~ , w ~ ) I ~  = F2(r?wk)lX2(n-r,wk)12, 
r=-L 

(7.1) 

where X2(n,  wk) corresponds t o  the STFT of the reverberant data. To compare t o  other 

techniques we applied the temporal filtering t o  the outputs of critical bands simulated by 

a weighted summation of STFTM components. 

7.4.1 Filter Design 

As in Chapter 6, the temporal filters are FIR non-causal filters derived by solving the 

Wiener-Hopf equation for the minimization of the Euclidean distance between the filtered 

power spectrum time trajectories of the corrupted speech and the  corresponding desired 

trajectories of clean speech [22]. 

A filter is designed for each frequency channel. For the compensation of the effects of 

additive noise in Chapter 6, filter lengths were typically chosen t o  be the average duration 

of a syllable, i.e. about 200 ms (section 6.3.1). For reducing reverberation we use filters 

whose length is greater than the reverberation time TGO of the impulse response used t o  

corrupt the data. 

For the experiments described in the next section, the da ta  used were generated by 



convolving clean speech (sampled a t  8kHz) with artificial room impulse responses. For 

these impulse responses, reverberation tails were produced using Schroeder's model (i.e. a 

decaying exponential envelope modulated by a white noise sequence [54] and early echoes 

were simulated by randomly spaced non-zero taps with random values [40]. The reason 

for using this simple model was that  its M T F  can be analytically derived. 

7.5 Experiments 

Using the data-driven approach we found the optimal time trajectory filters and compared 

them with the theoretical transfer function used in [33]. 

7.5.1 Data-Derived Filters 

A set of filters was obtained using artificially reverberated speech in the way described 

in section 7.4.1. In this experiment we used simulated critical band energies of corrupted 

and clean speech. These energies were produced by a weighted sum over the S T F T  power 

spectrum time trajectories in one third octave rectangular windows. This smoothing was 

necessary only t o  compare our results to  those described in [33]. The reverberation time 

used t o  obtain the results reported here was TGO = 0.75 s but we got similar results under 

other test conditions. Filter lengths M were chosen to  be a t  least twice as long as the 

reverberation time considered. The time trajectory sampling rate in this experiment was 

set t o  250 Hz. 

Resulting Filters 

Fig. 7.2 shows the filter for the critical band with center frequency a t  1 kHz. The filters 

for other critical bands have very similar shapes (since the M T F  produced by the artificial 

reverberation is the same for all frequency bands). At low modulation frequencies we can 

see a close correspondence between the data-derived and theoretical frequency responses. 

However, at higher modulation frequencies the filter characteristics differ significantly: the 

data-derived filters exhibit a strong low-pass character, suppressing modulation frequencies 

above 10 Hz. 
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Figure 7.2: Magnitude frequency response of a data-derived filter (at 1 kHz center frequency 
band) compared to the theoretical curve. 

We have observed such suppression of higher modulation frequencies in many of the 

filters which we have designed for noisy and linearly distorted speech [26], [12]. It appears 

that  high modulation frequencies of the short-time spectrum of speech are highly corrupt- 

ible by many kinds of distortions, and the data-derived filters always tend t o  alleviate 

this. The frequency response a t  high modulation frequency can be explained by the lower 

signal energy at those particular modulation frequencies in the speech signal. (Notice that  

Langhans and Strube elected a t  least not t o  enhance such higher modulation frequencies 

in their attempt for the reverberation reduction in spite of the fact that  their theoretically 

derived compensation filter suggested t o  do so [33]). 

The impulse responses of the filters obtained were not symmetric in this case. In 

contrast t o  the case of additive noise reduction, the time trajectory filter obtained for this 

da ta  is acting as an inverse filter since the disturbance shows as a convolution in the time 

trajectories. This fact explains the limited success obtained when applying the  filters t o  

test da ta  with different reverberation parameters. 



For subsequent tests we decided t o  design linear phase filters from the magnitude 

frequency response obtained with the data. In this way we could test the effectiveness of 

modulation frequency modification, regardless of the phase distortion introduced by the 

original filters. 

7.5.2 Results 

To test the system we reverberated a speech sample with artificial impulse responses. The 

responses used were different than the impulse response used for training. The reverbera- 

tion time for this testing responses was set to  be similar t o  the reverberation time of the 

training data. Our observations on the data-derived filters indicated a strong dependence 

on the reverberation time, so we did not expect any improvements if the reverberation 

time of the training and testing data  differed significantly. 

MODULATION FREQUENCY [Hz] 

Figure 7.3: Modulation index at 1 kHz for clean speech, reverberant speech and processed 
speech. 

After processing the smoothed power spectrum trajectories with the data-derived filters 

we resynthesized the signal by applying the envelope modification t o  the original S T F T  

(see [33] and [8] for details). We observed that  a reduction of the reverberation was 



audible. However, no improvement over using the theoretical IMTF was apparent. 

A reasonable question t o  ask in this case is if the filtering really compensated for the 

reduction of the modulation index of the corrupted speech. Fig. 7.3 shows the modulation 

index of the l k H z  centered bands of original speech, reverberant speech, and reconstructed 

speech after temporal processing with the data-derived filters. Restoration of the modula- 

tion frequencies which were suppressed by reverberation is significant in the reconstructed 

speech and was consistently found also a t  other frequency bands. 

Unfortunately, we must conclude that  even when the desired restoration of suppressed 

modulation frequencies is achieved, the recovery of the modulations alone does not guar- 

antee good quality speech. In this scheme the resynthesis procedure makes use of the 

original corrupted phase which undoubtedly contributes t o  the perceived artifacts. 

7.6 Summary 

We have obtained a filter-bank from training data  for processing the simulated critical 

bands of reverberant speech. Results show that  these filters approximate some of the 

characteristics of the theoretical transfer functions used in the past. Listening tests indi- 

cate that  an audible reduction of reverberation is achieved but artifacts in the processed 

speech signal are somewhat severe. Although no formal intelligibility tests were carried 

out, i t  is likely that  the restoration of the MI might not improve intelligibility in our 

system. This result indicates that  the MI is not necessarily a good indicator of quality or 

intelligibility of the impaired speech. 

Another conclusion we can draw from our results is that  the average modulation spec- 

trum, as is representative of the MI, is not as important perceptually as the short-time 

spectra. 



Chapter 8 

Data-Driven Filter Design for Channel 

Normalization in ASR 

In this chapter we design a system that  will reduce convolutional distortions on the  basis of 

training data.  As mentioned above, previous techniques have used ad hoc designed filters 

for this purpose. For example, the initial ad hoc form of the RASTA filters was optimized 

on a relatively small series of ASR experiments with noisy telephone digits. Optimizations 

using ASR experiments are costly and there is no guarantee that  the solutions obtained 

will not be specific t o  a given ASR problem. Any data-based optimization which would 

avoid using a specific ASR paradigm is desirable. 

Here, using our data-driven design of temporal filters we find a set of filters that  resem- 

ble filters used in previous filtering techniques confirming their validity for approaching 

the problem. The evaluation of our technique is based on comparisons against previously 

used filters (which have been successfully applied t o  ASR) and not in any particular ASR 

paradigm. 

8.1 Motivation 

Relatively unconstrained data-driven systems are the mainstream in today's ASR. These 

systems acquire their parameter values from large amounts of training da ta  and are sus- 

ceptible t o  failure when used in situations that  assume different conditions than those 

encountered during the training. 

'ASR systems, like HMM-based recognizers, can be highly structured systems but their parameter 
values may not be constrained. 



I t  is our belief that  more knowledge-constrained designs will result in simpler and 

ultimately more reliable systems. However, if we are t o  hardwire any constraints into the 

system, i t  is crucial that  these constraints be based on well tested, reliable and relevant 

knowledge. 

Some reasonable constraints may be implied by properties of the human hearing process 

and researches have been relatively successful when incorporating them into ASR [23], [24]. 

On the other hand, i t  is hard to  deny the power of real speech data. Thus, we support 

using the speech data,  as long as they are used in a way t o  provide permanent and reusable 

knowledge. 

Thinking along these lines, we came t o  realize that  since speech developed t o  optimally 

use the properties of human auditory perception, any relevant auditory knowledge may 

have its counterpart in the structure of the acoustic speech signal. The constraints derived 

from the da ta  may either correct or support knowledge-based constrained designs. 

8.2 Filter Design by Constrained Optimization 

In this section we find a set of time trajectory filters for channel normalization by con- 

structing a constrained optimization program. The least squares technique used in previ- 

ous chapters is not suitable for approaching this problem. This is because if our aim is t o  

achieve channel invariance of the features, any objective function involving a particular 

channel will yield a processing strategy with poor generalization power. 

To approach the  problem, the filter design criterion is the minimization of distance 

between the processed features when they are obtained from speech corrupted by several 

communication channels. 

In the procedure shown in Fig. 8.1, a speech signal s(n) is corrupted by J different 

channels Hj ( z ) ,  with j = 1,2 ,  ..., J. After an appropriate feature extraction procedure we 

have a set of JI< corrupted logarithmic time trajectories Xj(n,  k), where 
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Figure 8.1: Problem setup block diagram 
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which each critical band k is integrated, and ak(u) is a weighting factor. Notice that  we 

have again dropped the STFT subindex "2" from the input speech S T F T  and simulated 

critical bands notation. Throughout this chapter we will use the subindex as a means t o  

- 
+ 

enumerate a feature set and not t o  indicate transformation with respect t o  an argument 

Feature 
extraction 

hJ(d  

as in previous chapters. 

From now on we will call X ( n ,  k) the critical band trajectories omitting the term 

X, ( n , ~  % (n,K) 

logarithmic. Notice that  in Fig. 8.1 we also show a set of trajectories of clean speech 

denoted by Xa(n,  k), which will be used t o  set the constraints described in the next 

- 4  F(n,K) I b 

section. 



Objective 

Ideally we would like to  apply a CIT-MIF modification F ( n ,  k) (implemented as a set of 

temporal filters) on the time trajectories such that  the outputs 3 (n,  k) for the kth feature 

are as similar as possible t o  each other, that  is, we seek channel independence. A trivial 

solution t o  this problem is t o  set each filter t o  F ( n ,  k) = 0, so the need t o  constrain the 

solution t o  some reasonable value is obvious. As will be seen later, the constraints will 

determine specific behavior of the filters. 

8.2.1 Technique 

Considering tha t  the effect of the channel can be approximated as multiplicative in the 

short-time frequency domain, and approximately additive in the critical bands (see C h a p  

ter 5 and the discussion on this issue in [9]), we chose our CIT-MIF modification t o  be 

implemented as FIR filters. The objective function t o  derive the RASTA-like filter for 

each critical band can be written as 

From (8.3) we see that  the objective functions are defined as the expected value (with 

respect t o  time) of the Euclidean distance between the outputs Yj(n, k) of the F ( n ,  k) filter 

produced by X ( n ,  k) for j = l,...,J. These quadratic functions have a global minimum at 

F ( n ,  k) = 0 ,  where 0 is a vector with all elements equal t o  0. To avoid the trivial solution 

in which all filter coefficients are set to  zero we need to  impose a set of constraints. 

8.2.2 Experimental Design 

To derive the filters, three parallel speech recordings were used. A sample of clean speech 

was taken from the TIMIT database (approximately 2 minutes). The other two samples 

were taken from the corresponding speech of the NTIMIT database (telephone channel) 

and TIMIT recorded through a cellular telephone channel. Auditory frequency band 

trajectories for the three recordings were computed by a weighted sum of their short-term 

power spectrum as proposed in [23]. The logarithm of these trajectories was taken t o  



produce Xo(n, k), Xl(n, k) and X2(n, k) respectively. The subindex now serves as a label 

for each database. The same design was applied to each critical band independently. For 

simplicity we will drop the frequency index k and it should be understood that the following 

procedure was applied K times, one for each simulated critical band independently. This 

band independent design is just our choice; the technique is more general and can be 

applied to a Multi-Input Multi-Output (MIMO) system. 

Using (8.3) we find the objective function for J = 2 

that in matrix notation can be written as 

where 

~ j ( n )  = [Xj(n), Xj(n - I ) ,  ..., Xj(n - L + l)lT, j = 1,2 

and the filter vector 

Taking the expected value in (8.3) we arrive to our cost function in matrix notation 

whereRU = R +  a and RXj,,; refers to the cross-correlation matrix between Xj(n) and 

X;(n). Minimizing (8.4) leads to the following equation 

(RX1,Xl + RX2,XZ - RZ1,X2)f = 0, (8.7) 

which has as solution f = 0.  It could be argued that if the matrix (RZl,,, + R,,,,, - R~,,,,) 

is rank deficient, f would have a different solution, however there is no reason why such 

condition should hold. In fact, the experimental design revealed that the matrix is always 

full rank. It is now obvious why we need to constraint the solution. Two constraints 

(j=1,2), one for each of the outputs of the filter need to be set. 



Constraints 

To avoid the trivial solution which sets all output signal values to  zero, a reasonable 

constraint is t o  restrict the energy at the output of the filter Y,(n) t o  be a fraction of the 

energy of the input signal. While this constraint avoids the trivial solution, it imposes 

no restriction on the characteristics of the output signal and thus i t  will be less effective 

if we need t o  preserve relevant information about speech. Interestingly, by using this 

constraint we found that  the filters had very similar responses (i.e. band-pass with strong 

dc suppression and narrow pass-band) as the so called delta cepstrum processing [20]. 

A more reasonable constraint was found by not allowing the distance between the 

filter outputs %(n, k) and the original uncorrupted speech features Xo(n, k) (see bottom 

of Fig. 8.1) t o  be large. This similarity constraint can be more or less restrictive depending 

on the amount of error allowed, and the resulting filters will have different characteristics 

depending on this factor. Notice that the availability of clean speech is necessary only 

for this particular constraint and is not a general requirement of the technique. Speech 

corrupted by any another channel (with no strong zeros) can be used as a reference. 

The constraints proposed above can be written as: 

E {[Zo (n) - (n)12} < c j  . 
In these constraints we removed the dc component from the original clean speech features 

and from the output of the filter t o  obtain z o ( n )  and %(n) respectively. This normal- 

ization is needed in order t o  make a fair comparison of the clean and corrupted features 

(since adding or removing a constant in the logarithmic domain corresponds t o  modifying 

the power of the signals in the linear domain). Writing (8.8) in matrix notation we get 

Here PG0 is the  power of z o ( n ) ,  Zj is a vector with all elements equal t o  the mean of 

X j  (a) ,  and u ; ~ , ~ ,  is the cross-correlation vector between %(n) and X j  (n). 

The constraints were initially chosen setting cj 3 dB below the power of the inputs t o  

the  filter (i.e. 1 IXj2 I I) and were varied (decreased) systematically until no feasible solution 



could be found. The last feasible point found was chosen t o  be the solution. We call the 

result the Constraint-Optimized (COP) filter. The optimization problem described by 

(8.4) and (8.9) is non-linear (quadratic) with non-linear (quadratic) constraints and was 

solved using sequential quadratic programming (SQP)2 [19]. 

- COP 
- - RASTA 

MODULATION FREQUENCY [Hz] 

Figure 8.2: Magnitude frequency response of COP and RASTA filters 

8.3 Results 

The resulting filter for the critical band a t  1 kHz can be seen in Fig. 8.2. In the figure, 

the magnitude frequency response of the COP filter is compared t o  the original RASTA 

filter. We can observe a close similarity. A dc suppression of modulation frequencies is 

evident, while attenuation of higher modulation frequencies is also achieved. 

Another interesting property that  we observed was that  the C O P  filters did not differ 

significantly at different critical bands. COP filters for several bands are shown in Fig. 8.3. 

They seem t o  differ only in the dc gain factor which can be attributed t o  the  differences 

'We used the Matlab Optimization Toolbox for this purpose. 



MODULATION FREQUENCY [Hz] 

Figure 8.3: Magnitude frequency response of COP filters for different critical bands 

in energy across frequency components inherent of speech signals. 

In terms of the impulse response, we designed the filters t o  be non-causal by delaying 

the  reference sequence Xo(n) in (8.9). The delay corresponded t o  half the length of the 

FIR filter L which we chose t o  be about 1 s long (101 taps long a t  a feature extraction 

rate of 100 Hz). The resulting impulse response was near t o  symmetric. 

8.3.1 Constraint effects 

We mentioned before that  the constraints determined some specific properties of the re- 

sulting COP filters. We observed that  as the value of cj decreased, i.e. tighter constraint, 

the filter gain increased approaching values close t o  0 d B  in the passband, and its fre- 

quency response became flatter (less dc suppression). For very relaxed constraints the 

gain was low and the passband of the filter narrowed. 



8.4 ASR Experiment 

To test the performance of the COP filters in a recognition task we performed an ASR 

experiment 3. The experiment was conducted on the Bellcore isolated-digits database 

which consists of the ten isolated digits (zero, oh, one, two, three, four, five, six, seven, 

eight, nine) and two control words (yes,no). The training set consisted of 150 speakers and 

50 speakers comprised the test set. Each speaker uttered the vocabulary once. The features 

used were 5th order LPC cepstra and energy, along with their delta and acceleration 

features. The recognizer was an HTK/HMM-based isolated word recognizer. Each word 

model consisted of 8 states with 4 mixtures per state. 

Two recognizers were trained and tested. One used RASTA filters (same filter at all 

subbands) and the other used the COP filters described in section 8.3. Both recognizers 

had similar performance (around 7% word error rate). 

8.5 Summary 

In this chapter we have derived a filter bank for channel normalization. To design the 

filters, a non-linear constrained optimization technique was used. The technique used 

real speech and channel data. The results indicate that  the filters resemble those which 

have been successfully used in ASR recently (RASTA). It is evident that  a dc suppression 

is necessary t o  approximate the channel independence condition. However, the low-pass 

response a t  higher modulation frequencies found in these data-derived filters is not an 

obvious characteristic and it is consistent with the ad hoc designed RASTA filter. 

Although the ASR experiments showed no performance improvement (or deterioration) 

over RASTA, the usefulness of the work described in the chapter is related to  validation 

and understanding of successful temporal processing strategies that  are currently used for 

channel normalization. 

3Thanks to Sangita Tibrewala for performing the experiment. 



Chapter 9 

Multiresolution Channel Normalization 

for ASR in Reverberant Environments 

In this chapter we show that  by using high frequency resolution (long-time window) anal- 

ysis during the channel normalization steps of the feature extraction process, the per- 

formance of a speech recognizer under reverberant conditions is significantly increased. 

The technique is based on multirate signal processing concepts. High frequency reso- 

lution (large number of bands) is used a t  initial analysis stages where normalization is 

performed. Then, a frequency-time resolution trade-off is used t o  increase the rate at 

which the  time information is sampled (short-time domain), yielding an appropriate do- 

main t o  derive ASR features. For a reverberation time of about 0.5 s the new technique 

achieves significant performance improvement of a speech recognizer under reverberation, 

while gracefully decreasing performance on clean speech. 

Our main contribution in this chapter is that  we introduce the concept of using long 

analysis windows when the transmission channel involved has a long impulse response. 

While no data-driven designs were performed, the technique is suitable for that  approach. 

The time trajectory filters that  we use t o  prove our concept are fixed mean removal high- 

pass filters. 

9.1 Introduction 

Reverberant environments are common and can severely impair the performance of auto- 

matic speech recognition systems. One of the main problems is related t o  the long impulse 



response involved in the reverberation process, which in general is longer than the time 

intervals over which the speech signal is considered stationary. 

Conventional channel normalization techniques, such as RASTA and CMS have been 

successful in reducing the artifacts due t o  channels such as handset microphones and 

telephone lines, which in general have short impulse responses and can be considered as 

invariant or at least slowly varying. As we discussed in Chapter 5, the reason why such 

techniques work is that  with the currently used analysis parameters (20 ms time windows 

and 10 ms overlap) the effect of the channel can be considered as multiplicative in the 

short-time frequency representation of speech (see the approximation in (5.17)). 

However, the impulse response of a room can be rather long (up t o  several seconds, 

depending on wall reflectivities, distance between source and receiver, etc.). The conven- 

tional short-time analysis, with its fine time resolution (of the order of 10 ms, inherited 

from speech coding and dictated by the quasi-stationarity assumptions for speech signals) 

is not able t o  capture the impulse response properties in a single frame. 

From the frequency domain point of view, frequency resolution of the conventional 

short-time analysis is not high enough t o  reflect all details of the transfer function of 

the reverberant environment. This means that  for a given frame, the transfer function 

is undersampled and the additional frames needed t o  resolve i t  make the channel effects 

closer t o  convolutional in the time dimension of the STFT,  rather than multiplicative in 

the frequency dimension of the STFT (see (5.12)). 

Either way we look a t  it ,  the effect of the reverberation can not be approximated as 

multiplicative within a single analysis window of the conventional short-term analysis. 

Therefore, techniques which are typically applied in handling convolutional distortions 

such as RASTA or CMS, and which assume this condition do not perform well on the long 

impulse responses associated with room acoustics. 

9.1.1 Background 

In spite of the efforts by many researches during the last 50 years, there has been very little 

success in reducing reverberation in speech communications. The effects of reverberation 

on the details of the amplitude and phase of the speech signal are complicated and difficult 



t o  reverse if no knowledge of the room response is available. 

In ASR applications, the efforts for reduction of the effects of reverberation have been 

mainly adaptations of techniques used for reverberation reduction in speech enhancement, 

such as microphone arrays [36], and channel identification and inversion procedures. Such 

techniques attempt t o  recover the speech signal with good perceptual quality and intelli- 

gibility. 

In ASR there is no need t o  resynthesize a speech signal, thus the short-time phase 

of the signal is typically not required, and the exact recovery of the spectral envelope 

is also not necessary. As a matter of fact, the frequency resolution of some of the most 

successful ASR analysis techniques (such as PLP [23], or me1 cepstral analysis [16]) is 

rather low. So in ASR, the deterioration of phase or any spectral details of speech caused 

by reverberation may not be as damaging as in speech enhancement applications. 

9.1.2 Problem 

As we pointed out at the beginning of this chapter, the main problem that  ASR re- 

searchers have faced when dealing with reverberation is related t o  the time-frequency 

resolution trade-offs of the analysis techniques. It is a fact that  short-time spectral infor- 

mation is required in current ASR systems, but if we wish t o  apply traditional channel 

normalization t o  this representation the results may not be satisfactory. However, if clas- 

sical channel normalization techniques were applied in a medium-time1 representation, 

the approximation in (5.17) would be better. The problem is that  these medium-time 

parameters may not have enough temporal resolution for recognition purposes. Next we 

describe our approach t o  solve this problem. 

9.2 Multiresolution Concept 

A signal can be described by many different invertible time-frequency representations. In 

Fig. 9.1 the signal x(n) has been described by two different time-frequency representations, 

'We use this term to refer to a short-time analysis where the window is at least 10 times longer than 
the 20 ms windows of typical short-time analyses. 



X (n2, uk) and X (nl , O m ) .  If the time-frequency representations are properly sampled (see 

[3] for a discussion on this point) then the signal x(n) can be recovered from both. 

Figure 9.1 : Multiresolution Processing Concept. 

In principle, if both time-frequency representations are linear and invertible, then 

we can obtain one from the other by a linear transformation matrix 2.  In Fig. 9.1 the 

transformation matrix is denoted by A. Thus the signal x(n) can be first transformed 

t o  the time-frequency representation X (nl, Om),  and recovered from X ( n z ,  wk) by going 

through the transform matrix A. 

The idea of applying this transformation between time-frequency representations for 

channel normalization is the following. The impulse response of a room is long compared 

t o  the  analysis window length commonly used in feature extraction for ASR (e.g. 25 ms). 

2~lthough this is intuitively correct we did not prove that this can be accomplished for all possible 
cases. For the purposes of this dissertation we found that the matrix could be found for the time-frequency 
representations that we used. 



So, in order t o  satisfy the condition (5.17), which represents the best case for channel nor- 

malization, we need t o  use a long analysis window. We can do this by using a medium-time 

transform X(nl, 8,). For example, for an impulse response 0.5 s long, an analysis win- 

dow 2 s long would be adequate to  render the channel as an approximately multiplicative 

term. This representation has low time resolution and high frequency resolution (e.g. the 

window length is 214 time samples a t  8 kHz sampling rate). In this domain we can apply 

temporal processing as we would when reducing the effects of the handset microphone or 

telephone channels in conventional ASR. 

The problem is now that  the normalized parameters are not in a domain appropriate 

for ASR. To solve this we could go t o  the time domain signal and then compute the 

proper short-time transform for ASR, i.e. X ( n 2 ,  wk) .  However, we can go directly t o  

the short-time transform if we apply the transformation matrix A directly t o  the modified 

medium-time transform, avoiding the resynthesis of a time-domain signal. We call this last 

step partial resynthesis for reasons that  will become clear when we describe the technique 

formally in section 9.3. 

The important point is that  the partial resynthesis trades time resolution for frequency 

resolution. Based on the conceptual idea that  we have just described, we now present an 

outline of the algorithm. 

9.2.1 The Algorithm 

The algorithm is basically an extension of the traditional short-term analysis and temporal- 

processing-based channel normalization techniques. It does, however, use rather long 

effective analysis windows compared t o  the impulse response of the room. It can be 

summarized in the following steps: 

1. Perform a high frequency resolution (long time window) analysis. 

2. Apply temporal processing for channel normalization. 

3. Partial resynthesis t o  obtain a short-time representation. 

4. Compute features for ASR. 



For step 1 we found that  a window a t  least twice as long as the reverberation time 

(Tso) of the room was adequate. This step yields the proper medium-time representation. 

The temporal processing in step 2 can be any standard method such as mean removal 

or some adaptation of RASTA 3. In principle we could also apply our data-driven filter 

design for this purpose. 

After normalization, the high frequency resolution of the initial medium-time analysis 

is traded for time resolution which is needed t o  compute the ASR features. This step 

involves transforming the modified medium-time representation t o  a short-time represen- 

tation. Conceptually this is accomplished by the transformation matrix A. The term 

partial resynthesis indicates the intuition behind this operation. One can think of the 

partial resynthesis as combining a set of adjacent frequency bands t o  yield a single fre- 

quency band. The procedure reduces the frequency resolution which can then be traded for 

time resolution (uncertainty principle), yielding a time trajectory with the time-frequency 

dimensions suitable for ASR. 

The next section describes the algorithm in a formal mathematical notation. We 

chose t o  use an M~~ band filter bank model [61], t o  gain intuition into the time-frequency 

trade-offs involved in the technique. Also, the filter bank model is very general and leads 

naturally t o  the partial resynthesis concept. 

9.3 Technique 

Now we describe in detail the multiresolution technique for channel normalization. It uses 

a high frequency resolution (i.e. very long effective analysis window) filter bank analysis 

at the first stage. So if s(n) is the speech signal, h(n) is the impulse response of the room, 

and x(n) = s(n) * h(n) is the corrupted speech input, then the filter bank outputs are 

given by 

3Note that the RASTA filter was designed for a particular sampling rate of the time trajectories 
(100 Hz). If we want to apply any RASTA-like filtering we need to consider the sampling rate of the 
medium-time trajectories, which can be considerably lower. 



where nl = n M  is the decimated time, m = 1,2,  ..., M ,  and w,(n) are band-pass filters 

with discrete center frequencies Q, = and passbands equal t o  (0, - &) < $2, < 
(Q, + &) t o  avoid aliasing due t o  the decimation by M .  The variable 0, denotes the 

sampled frequency for the initial high resolution analysis. 

Conceptually (9.1) represents a critically sampled M~~ band filter bank [61], [58]. It 

should be understood that  different types of filter banks may offer other advantages, and 

we just used this particular one t o  simplify the visualization of the idea. The M~~ band 

filter bank offers the advantage that  the modulation properties of the decimation and inter- 

polation operations, together with appropriate band-pass filters, avoids the introduction 

of frequency modulators in our analysis [15]. 

If aliasing is neglected, and the number of bands M  is high, then the effect of rever- 

beration becomes approximately multiplicative: 

This is because, as we discussed in Chapter 5, if the number of bands is high, then 

their bandwidths are narrow (see (5.20) and the effective window length is large so that  

the approximation (9.2) can be made. In fact, for a critically decimated filter bank the 

effective window is at least as long as the decimation ratio, in this case M .  

Once the multiplicative property is achieved, we can apply temporal processing for 

channel normalization t o  the bank outputs. We will apply normalization t o  the envelope 

of the time trajectories, and keep the original phase (possibly adding a delay t o  compensate 

for the group delay introduced by temporal processing) for the partial resynthesis. This 

is an important point, since disregarding the phase would prevent us from preserving the 

timing information of the short-time trajectories. 

If we write the logarithmic envelope medium-time trajectories as  



then the normalized trajectories can be written as 

where the time trajectory filters are denoted by F(r ,  am) and the phase term g5(nl, R,) 

is tha t  of the original medium-time trajectory (9.2). 

To arrive t o  the appropriate short-time representation necessary for feature extraction, 

we need t o  increase the time resolution of the medium-time trajectories. This is only 

possible if we integrate adjacent medium-time trajectories into a lower frequency resolution 

representation (uncertainty principle [14]). 
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Figure 9.2: Block diagram of the multiresolution normalization technique. 
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where L = M / K  is an integer, na = nl /L  is the interpolated time, and gl(nl) are inter- 

polation bandpass filters (see Fig. 9.2). The center frequencies of these filters are equally 

spaced and their bandwidths equal t o  2. So, t o  obtain the new frequency sampling 

wk = y, we upsample and add L adjacent time trajectories. Upsampling with bandpass 

filters serves as a frequency modulation step that  allocates the interpolated trajectories in 

the proper frequency band before addition. 

The new frequency sampling wr, is L times coarser than the medium-time frequency 

sampling 0,. The time resolution increase is also equal t o  L. The new resolution of these 

normalized trajectories is adequate for feature extraction and subsequent steps in the ASR 

system (e.g. typical short-time analysis). 

A block diagram of the multiresolution normalization technique is depicted in Fig. 9.2. 

We would like t o  stress the point that  this is a conceptual description and the technique is 

more general. The sampling rate conversion operations illustrate the changes in resolution 

which are the key points of the method. Other filter bank configurations are possible, and 

the decimation/interpolation operations are not strictly required. 

9.3.1 Implementation 

Analysis 

For the current implementation we have used a DFT-based filter bank [15]. The analysis 

window length was chosen t o  be larger than a t  least 2 times the reverberation time (Tso in 

samples) of the room response considered. In practice we could estimate the reverberation 

time and determine the necessary number of bands. A fixed system with a large initial 

number of bands may be more practical. The overestimation of the number of bands can 

only lead us t o  a better approximation t o  the multiplicative condition (5.17). 

However, such a filter bank would introduce unnecessary delay, not mentioning the 

arithmetic complexity increment and the slight performance degradation on clean speech 

(see section 9.4). 



Channel Normalization 

At the channel normalization step we have experimented with fixed length mean subtrac- 

tion. The channel normalization was performed on the logarithm of the medium-time 

magnitude components. After mean removal we reconstruct the complex signal using the 

phase of the original medium-time representation (see (9.4)). Modification of the phase is 

not done for the same reasons as in the noise reduction system (Chapter 6). Phase is not 

a bounded, and its modification can cause destruction of the temporal information during 

partial resynthesis. 

Added t o  the inherent time delay of the long analysis window, we have t o  estimate 

the mean of the trajectories which is a non-causal long-delay procedure. The total delay 

introduced makes this system less suitable for real time applications. 

For the initial testing of our algorithm we used fixed room impulse responses. The 

use of mean subtraction in this case is justified by the fact that  the channel modifies only 

the dc component of the medium-time modulation spectrum (ignoring analysis artifacts). 

However, in real time situations, where the room impulse response may be slowly varying, 

a different time trajectory filtering strategy may be required. The data-driven approach 

which we demonstrated in this dissertation could be used t o  obtain the optimal tempo- 

ral processing strategy. At this point, the lack of realistic data  has prevented us from 

optimizing the system with the data-driven technique. 

Partial Resynthesis 

After normalizing and reconstructing the medium-time trajectories, we proceed with the 

partial resynthesis. Since we used a DFT-based analysis bank, the partial resynthesis can 

be accomplished easily by designing a transformation matrix A that  maps the medium- 

time representation t o  the short-time representation. The computation of this matrix is 

given in Appendix C. 

Once we have a short-time representation the following steps will depend on the ASR 

system and feature extraction procedure. In general, ASR does not require the phase at 

this stage. What is important is that  now we have a short-time representation which has 



been normalized and in shape t o  be fed t o  a standard recognizer. 

9.4 Experimental Results 

In this section we show the results obtained with the multiresolution normalization tech- 

nique. First we show how the technique achieves channel independence by inspecting 

spectrograms. Then we describe a preliminary ASR experiment with results that  support 

our observations and the technique in general. 

9.4.1 Channel Independence 

For this experiment speech was artificially degraded by convolving it with a fixed impulse 

response of a reverberant room 4.  The room had a reverberation time of about Tso = 0.56 

seconds. We applied the multiresolution technique using the parameters in Table 9.1. The 

DFT-based filter bank used a 2 s Hanning window with 50% frame overlap. 

Table 9.1: Multiresolution Normalization Parameter Values 

Parameter 

Reverberation time Tso 
Mean computation interval 

Sampling frequency 

The normalization used was mean subtraction over a sample length of 10 s. The 

transformation matrix A for partial resynthesis transforms each high frequency resolution 

frame from the medium-time representation X(nl,Om) t o  a set of low frequency resolution 

frames of the short-time representation X ( n z ,  om) (see Appendix C). 

Value 

0.56 s 
10 s 

8 kHz 
Analysis window length 

Medium-time sampling frequency 
Number of medium-time bands M 

Interpolation ratio L 
Short-time sampling frequency 
Number of short-time bands I< 

4The room impulse response used was obtained in the varechoic chamber at Bell Laboratories in Murray 
Hill. The data were made available by Jim West and Gary Elko. 

2 s 
1 s 

16384 
64 

10 ms 
256 
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Figure 9.3: Channel independence results for multiresolution normalization. Critical band
energy spectrograms of (a) clean and (b) the corresponding reverberant speech. Critical
band spectrograms of (c) clean and (d) reverberant speech after multiresolution normaliza-
tion.

After partial resynthesis, we integrated the resulting short-time magnitude into crit-

ical bands using the simulated filters reported in [23]. We applied the procedure to the

clean and reverberated speech samples. For comparison we computed a similar critical

band spectrum directly from the clean and reverberated speech but without applying any

processing.

In Fig. 9.3(a) and (b) we show critical band energy spectrograms of the clean and the

reverberant speech respectively. Below we show the critical band energies for (c) clean and

(d) reverberant speech after the multiresolution normalization was applied. Similar results

were observed in a variety of experiments where we tested the channel independence for

different reverberation times.

We can observe that the reverberation causes a considerable time smearing of the

features (Fig. 9.3(b)). In contrast, if the multi-resolution processing is applied, the clean



and processed features are very similar, thus indicating that  the technique could bring 

advantages in improving the performance of a speech recognizer, i.e. the features are 

more channel independent. 

9.4.2 ASR Experiments 

We conducted preliminary speech recognition experiments t o  test the performance of the 

new technique 5 .  The baseline system was an HMMIMLP hybrid speaker independent 

recognizer trained on the numbers database corpus from CSLU. The database consists of 

telephone-quality continuous digit strings. The features used were 8th order RASTA-PLP 

cepstral coefficients and first order delta coefficients. 

Table 9.2: % Word Recognition Error 

11 BASELINE 1 1  MULTIRESOLUTION I 

The same recognizer was then trained on the features derived by the new technique 

from clean speech. Both recognizers were tested with reverberant data. The results in 

Table 9.2 show that  for reverberant data  there is a considerable performance improvement, 

55% reduction in error rate over the conventional baseline, when the new multiresolution 

technique is applied. However, we can also observe a slight degradation on the performance 

for clean speech. 

To the best of our knowledge, the only technique that  has been compared t o  ours is 

based on the modulation spectrogram [32]. In a personal communication with the authors 

of that  work, they reported a word recognition error of 10.2% on clean and 29.3% on 

reverberant speech, using the same data  of our experiment. 

Clean 
Reverberant 

- 

'Thanks to Sangita Tibrewala for conducting the experiment 

8.6 
34.8 

13.5 
22.8 



Experiments Conclusion 

Further optimization of the technique parameters and the corresponding recognition ex- 

periments might be needed t o  improve the performance obtained in this preliminary test. 

Properties of the new features obtained with multiresolution normalization are not yet 

investigated. While the appear t o  be very similar and have about the same information 

content of regular critical band energies, their discriminative power may not be as good. 

The original medium-time phase was not modified in these experiments. It is not clear 

how should it be manipulated, and this fact undoubtedly limits the effectiveness of our 

system. 

Another possibility is that  the filter bank structure and parameters used might still 

need to be further optimized. We observed that  the power spectrum trajectories had some 

artifacts related t o  the aliasing of the particular filter bank utilized in this experiment. In 

any case the recognition improvement for reverberant speech is significant and suggests 

that  multiresolution normalization is a feasible technique which deserves further work and 

attention from the ASR community. 

9.5 Summary 

In this section we have described the motivation and implementation of a multiresolution 

channel normalization technique. The technique is able t o  overcome the problems related 

with long impulse responses found when traditional normalization procedures are applied 

t o  the short-time representation of speech. 

Recognition experiments indicate that  if an algorithmic delay of a few seconds is per- 

mitted, the technique alleviates the effects of reverberation improving the recognition 

performance. A degradation of accuracy on clean speech was found in the preliminary 

experiments. This suggests that  the technique reduces the discriminability of speech. 

However, the filter bank parameters were not optimized and the reduction of performance 

can also be attributed t o  analysis artifacts. 

I t  was shown that  the technique is basically a generalization of temporal processing, 

where the time and frequency resolution of the time trajectories is exchanged in order 



to,  first obtain the desired conditions for normalization, and then generate a short-time 

representation adequate t o  ASR. 

While no data  were used to  design the temporal filters in our experiments with fixed 

impulse responses, the optimization of the system for more realistic data  (time-varying 

impulse responses) could in principle be achieved through our data-driven approach. 



Chapter 10 

Conclusion and Future Directions 

In this dissertation we showed that  temporal processing of spectral features is a relatively 

new and interesting domain, and a fertile ground for innovative applications in the area 

of speech processing. In our attempt t o  fulfill this purpose, we developed a series of algo- 

rithms which alleviate the detrimental effects of several environmental factors on speech 

communications. 

As one our contributions t o  the speech processing field, we performed a detailed anal- 

ysis of several properties of temporal processing setting a theoretical background which 

was lacking in the understanding of this technique. 

Another major contribution was the development of techniques t o  design temporal 

filters from realistic data. The data-driven approach which we pursued in this work proved 

t o  be of great value, not only in the optimization of our algorithms, but in increasing our 

understanding of the temporal properties of speech signals in adverse environments. 

While our work was focused on the human speech signal, the techniques and theory 

described here can be applied t o  other signals. The hope of this author is that  this 

work will stimulate an interest in temporal processing, not only for speech researchers, 

but for scientists and engineers working in other areas where these concepts could be 

advantageously applied. 

10.1 Summary and Future Work 

Based on prior work on temporal processing in the area of automatic speech recognition 

[24], we applied linear filters t o  the time trajectories of speech. An interesting and useful 



approach was t o  derive temporal filters from real data. Previous investigators had used 

ad hoc filters, and the data-driven design opened a whole new set of possibilities for 

temporal processing. The analysis of the resulting filters raised many questions regarding 

the properties of temporal processing. In this dissertation we answered some of these 

questions and with the new knowledge designed useful speech processing algorithms. 

Next we will comment on our accomplishments, summarize our contributions, and 

indicate possible future research on the applications described in the dissertation. 

10.1.1 Noise Reduction for Speech Enhancement 

Noise reduction for speech enhancement has been a topic of interest for many years. In 

section 6.1 we discussed this problem and briefly described common approaches t o  deal 

with it. What we consider t o  be a favorable outcome of our research in this topic is that  

we were able t o  design a system which is tailored t o  the speech signal. By this we mean 

tha t  the data-driven design procedures used yielded a processing which exploited specific 

properties of speech, namely the behavior of the modulation spectrum of speech under 

different noise conditions. 

An issue that  we did not address in detail in this dissertation was the formal perceptual 

evaluation of the system. Even when the disturbance level is always reduced by our system 

and our informal listening tests indicate quality improvement, we can not conclude on the 

basis of a formal evaluation. Future research in this system should include perceptual 

evaluations as well as the investigation of ways of reducing or modifying the residual 

noise. 

Real time implementation issues were not considered in detail in our work. In princi- 

ple our system has a short algorithmic delay and requires simple basic signal processing 

operations available in any digital signal processor. Interesting research would be its 

implementation in speech coders, where algorithmic delays must be kept very low. 

Another topic which we just briefly studied was the implementation of temporal pro- 

cessing by non-linear systems, such as artificial neural networks. Research in this area is 

still open and may yield improved noise reduction, specially if one utilizes some adaptive 

strategy such as the one we described in section 6.5. 



10.1.2 Reverberation Reduction for Speech Enhancement 

Reducing the effects of reverberation from a reverberated speech signal has been a topic 

of intense research in the past, and unfortunately there are very few approaches which 

yield acceptable results. 

In our study of temporal filtering we found that  reverberation reduction is a natural 

extension of the noise reduction algorithm. Reverberation modifies the modulation spec- 

trum in a characteristic manner. We found that  applying our data-designed filters indeed 

modified the modulation spectrum in the expected way. However, for the reasons that  we 

mentioned in section 7.5.2 the system did not improve the speech in a noticeable way. 

For future work, the analysis parameters should be investigated. As we showed in 

Chapter 9, promising results in ASR are obtained for long impulse responses when the 

analysis windows are longer. A topic of future research is indeed the application of the 

multiresolution concepts t o  the reverberation reduction problem. 

10.1.3 Data-Driven Design of Temporal Filters for Channel Normaliza- 
t ion 

As another extension of data-driven temporal processing design we considered channel nor- 

malization filters for ASR. In this dissertation we developed a technique t o  automatically 

derive filters from training data,  regardless of any particular speech recognition paradigm. 

The value of the technique is in that  it avoids cumbersome and time consuming ASR ex- 

periments needed t o  optimize the time trajectory filters, and it provides an understanding 

of the conditions necessary for the feature trajectories t o  be channel independent. 

Analysis of the resulting filters also provide us with a better understanding of the 

reasons why previously used filters, which were heuristically derived, have been successful. 

The set of constraints that  we imposed on the filter design were just a few among a 

large number of alternatives. Work in the selection of other meaningful constraints needs 

t o  be considered for the future. The features used, as well as the data,  were our choice. 

Results may be different if other features and/or databases are used (e.g. other ASR 

system requirements), and future research should also consider these differences. 

The optimization technique that  we used t o  solve the constrained optimization program 



was chosen for its availability and known capabilities t o  handle non-linear problems. If 

other concerns, such as speed or accuracy are important, then future work should focus 

on the optimization procedure. 

As our cost function we used a mean squared error difference between time trajectories. 

Other cost functions based on maximizing discriminability between classes (e.g. linear 

discriminant analysis), should be pursued. In fact, ongoing work in our laboratory is 

focusing on this kind of cost functions [12]. 

10.1.4 Multiresolut ion Channel Normalization for Reverberation Re- 
duction in ASR 

The effect of room acoustics on the speech signal is detrimental t o  ASR, and new applica- 

tions in hands-free environments require a solution t o  this problem. The multiresolution 

technique which we developed in Chapter 9 is an important contribution towards the 

solution of the problem. As a generalization of temporal processing, our research in mul- 

tiresolution normalization provided us with alternative perspectives on how t o  approach 

certain problems related t o  traditional speech analysis techniques. 

The technique suffers from the inherent delay of temporal processing. What makes it 

more or less practical in real applications will be determined by the length of the impulse 

response of the channel, since this will determine the minimum window length. Also, the 

type of filter used will introduce delay. In the case of mean subtraction, the delay could 

make the technique completely inadequate for real time situations. However, if a causal 

high-pass filter with short impulse response could be used instead, the algorithmic delay 

could be significantly reduced. 

In this dissertation we did not apply the data-driven approach t o  design the  temporal 

filters. Our goal was mainly t o  prove the concept of using long windows. The choice 

of the fixed mean removal filters simplified our experiments and allowed us t o  test and 

optimize other parts of the system, necessary t o  prove the concept. A data-driven filter 

design technique, like the one presented in Chapter 5, can be applied t o  optimize the 

multiresolution technique This is where we consider that  much of the future efforts should 

be focused on. 



Multiresolution normalization, while theoretically well based, has implementation is- 

sues that  still need t o  be studied. Future work is needed t o  improve the analysis and 

partial resynthesis filter banks. Aliasing and noise have not been considered in our anal- 

ysis, and while our experiments served to  prove our idea, we believe that  the recognition 

results could be significantly improved by further investigating these problems. 
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Appendix A 

Derivation of (3.7) and (3.8) 

Here we derive the proof of (3.7) and (3.8). Recall the synthesis equation (3.6) 

Replacing the definition of the STFT of s ( n )  (2.6) in the equation above yields 

interchanging the order of summation and integration we get 

and recognizing the term in brackets as the inverse Fourier transform of the modification 

F2 (n, w )  (see also (3.9)) we obtain 

By making the changes of variables m' = n - m, r' = n - r ,  and 1' = n - 1 and changing 

the  order of the summations we finally get 

00 00 00 

y ( n ) =  x z w ( m f - r ' )  z q(l ') f(rt- l ' ,m')s(n-m') ,  
m'=-00 r ' = - ~  l'=-w 

(A.4) 

from which (3.7) and (3.8) immediately follow. 



Appendix B 

Derivation of (4.12) 

To derive (4.12) first recall the synthesis equation (4.11) 

Y(n) = x x fwk (n,  n - r)S2(r,  wk)ejWkn, 

Introducing the definition of the STFT (2.6) into the equation above we get 

after changing the summation order and making the changes of variable m' = n - m and 

r = r' we obtain 

00 00 

~ ( n )  = s(n - m') fwk (R, n - rl)w(ml - n + r')BWkml, 

which can be further rearranged by changing variables r = n - r' and m' = m t o  yield 

We can see from (B.3) that  the term in brackets can be interpreted as a time-varying 

filter which now is a function of n and m. By expanding that  term we obtain 



for which we can assign a time-varying function 

and by substituting this new function into (B.3) we finally obtain (4.12). 



Appendix C 

The Transformation Matrix A 

In this appendix we show how the transformation matrix A in Fig. 9.1 can be obtained. 

We show the simple case where the medium-time and short-time analyses are obtained by 

rectangular windows with no overlap. The same procedure can be used t o  obtain matrices 

for transformations requiring other conditions (e.g. zero-padded sequences, overlap, non- 

rectangular windows, etc.) . 
A frame of the medium-time transform is obtained by applying the DFT t o  a windowed 

segment of the time domain signal x(n). If the window is rectangular with length N, then 

a t  time n = no the frame can be written as 

where 

x =  no), X ( ~ O  + 1)) ..., x(n0 + N - l)lT, 

and the D F T  matrix DN has elements 

A frame from the short-time transform can be obtained in the same way. Let the short- 

time window length be M = NIL so that  several short-time frames can be computed from 

the same segment x used t o  obtain a single frame from the medium-time transform. Each 

short-time frame can then be written as 



where 

and DM is the M -dimensional D F T  matrix. In this particular case, where there is no 

window overlap in the short-time analysis and L is an integer, we can use (C.2) and (C.4) 

t o  write the following identity 

A more general case where the short-time analysis uses window overlap can be written as 

where B is a sparse matrix that  depends on the window overlap conditions. For (C.5) 

matrix B reduces t o  an N -dimensional identity matrix. 

Our goal is t o  find a transformation matrix A such that  we can obtain L frames of the 

short-time frequency representation from a single frame of the medium-time transform, 

i.e. 

Using (C.3) and (C.l) we can write (C.7) in terms of the D F T  matrices as 

The sparse matrix in the right-hand side of (C.8) is an [LM, LM]  matrix, where 0 

are [M, MI matrices with all elements equal t o  0. Using identity (C.5) it follows that  the 

transformation matrix is 



We see that  the matrix A is an [N, N]  square matrix that  depends only on the DFT 

matrices DN and DM. In this example the the only matrix that  needs t o  be inverted is 

DN which, by virtue of the unitary property of the DFT, is invertible. However, other 

analysis conditions (e.g. non-rectangular windows, non-zero overlap, zero-padded DFTs, 

etc.) may lead t o  non-square matrices (overdetermined systems), which would require 

pseudoinverse methods for their inversion [22]. It is out of the scope of this dissertation 

t o  discuss such cases, and for purposes of the implementation described in Chapter 9 we 

found that  least squares solutions provided the desired results. 
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