
A Meta-theory for Structured

Presentations in the COC

Sherri Shulman

B.S., Shimer College, 1973

M.S. Illinois Institute of Technology, 1979

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

February 1997

The dissertation "A Meta-theory for Structured Presentations in the COC" by Sherri

Shulman has been examined and approved by the following Examination Committee:

sis Research Adviser
/'

David Maier
Professor

Francoise Bellegarde
Research Associate Professor

Thaddeus Ckowalski
Director, AT&T Intelligent Voice

~ i c h a r d ~ i e b i r t z
Professor

Acknowledgements

I am very grateful t o my department for their patience in allowing me t o complete this

thesis. Jim Hook waded through several versions and helped me t o refine my thoughts and

presentation significantly. Ted Kowalski not only read and commented on my thesis, but

made a cross country round tr ip in one day t o attend my defense. Francoise Bellegarde

read my thesis, commented, and encouraged me t o persevere. Dave Maier provided ex-

tensive remarks on presentation and organization a t some cost (time and mental energy)

t o himself. I was and am appreciative of all the comments made and have learned a great

deal during my time at OGI.

There are others that I should acknowledge but this space is inadequate t o represent

their contributions.

Contents

... Acknowledgements III

...
Abstract . vm

1 Introduction: Structural Organization of Constructive Logics through
. Theory Presentations 1

. 1.1 The Calculus of Constructions a s a language of discourse 6
. 1.2 An Example of a Discourse of Theories 9

. 1.3 Another Example 13
. 1.4 Thesis Organization 20

. 2 History 21
. 2.1 Taxonomic Properties 21
. 2.2 Specification Languages 25

. 2.3 Higher-Order Logics and Philosophic Issues 27
. 2.3.1 Development of the notion of types 28

. 2.3.2 Intuitionism 29
. 2.3.3 The X-calculus 30

. 2.3.4 Proof Theory 30
. 2.3.5 Formulas as Types and the Curry-Howard Isomorphism 31

. 2.3.6 Higher-Order Types and Impredicativity 31
. 2.3.7 The Use of Higher-Order Logic in MF 33

. 2.4 Goals of This Research 36

. 3 Examples of Presentation Construction and Manipulation 39
. 3.1 The Form of the Underlying Logical Framework Statements 43

. 3.2 MF Constructions and the Structural Environment 44
. 3.3 The Presentation Base 47

. 3.4 An MF Derivation of a Presentation Base 50
. 3.4.1 Propositional Logic Example 51

. 3.4.2 The Group Example 53

. 3.4.3 Continuation of instantiate example 57
. 3.4.4 Generalize 61

. 3.5 Querying the Presentation Base 64

. 4 MF Definition and Semantics 67
. 4.1 MSC Terms . Level 1 70

. 4.1.1 Syntax 71
. 4.1.2 Semantics 71
. 4.1.3 Properties 72

4.2 MFsorts . Level 2 . 73
. 4.2.1 Syntax 73

4.2.2 Formation Trees . 77
. 4.2.3 Canonical Forms 85

. 4.2.4 Admissible Contexts 88
. 4.2.5 Semantics 100
. 4.2.6 Conversions 103

. 4.2.7 Properties 103
. 4.3 MFTheory Commands . Level 3 104

. 4.3.1 Frames 106

4.3.2 Presentation Base Commands, Expressions, and Queries 111

. 4.3.3 Semantics 112
. 4.3.4 Semantic Equations 113

. 4.3.5 Properties 119
. 4.4 Summary of Results 119

. 5 Comparisons and Conclusions 121
. 5.1 Automath 122

. 5.2 Clear 125
. 5.3 Institutions 130

. 5.4 Structure and Representation in LF 131

5.5 ELF . 133
. 5.6 Extended ML 133

. 5.7 Deliverables 134
. 5.8 Specware 135

. 5.9 Contributions of MF and Conclusions 138

6 Future Work . 142
6.1 Theory Specialization . 142

6.1.1 What is a suitable theory to discharge a context object C? 150
6.2 Additional relationships . 150

6.2.1 Horizontal Composition . 153
6.3 Extensions to Relate Structural Environments 158

6.4 Extensions Relating Object Level Statements 159
6.5 Exploring Different Roles . 159

Bibliography . 160

A Notational Index . 164

Biographical Note . 167

List of Figures

High Level View of MF . 40
. Presentation Base for A E combine B C 49

. Structure of the Presentation Base 54

AssocGrpl in the Presentation Base . 56
Instantiated Semigroup . 58
Instantiation with a Common Dependency 60
Ideal Presentation Base Structure . 62

Presentation Base with Multiple Extensions 63
Presentation Base after Generalize . 64

The Three Levels of MF . 68
Abstract Values . 70

Formation Tree for (A u B) u (B u C)) . 79
Reduced Formation Tree for (A u B) u (B u C) 83
Minimal Formation Tree . 98

Relationship of Clear to Institutions . 139

The Discharge Relationship . 146
Context and Discharging objects . 147
Relation of context and discharging theory 148
Multiple Dischargees Relationship . 152
Horizontal Composition of Applications . 154

vii

Abstract

A Meta-theory for Structured Presentations in the COC

Sherri Shulman

Oregon Graduate Institute of Science and Technology, 1996

Supervising Professor: James Hook

This thesis presents the specification and design for a meta-theory of constructive presen-

tations in the Calculus of Constructions. It describes a system that supports constructing

and sharing theories and theory fragments (called theory presentations) in a structured

way, the capability to discharge dependencies without rechecking type status unless the

type status has been destroyed, the capability to encode a consistent set of presentations,

the ability to discharge a presentation reference with consistent extensions of a presenta-

tion, and to translate a given structure into a target object language of the presentation.

This thesis differs from other work in the area by focusing on the structure and rela-

tionship of theory presentations. The structure of a theory presentation is the genealogy:

how the theory presentation was constructed from other theory presentations. This struc-

ture is isolated from the content by limiting manipulable theory presentations to those

that have been "named". The set of names theory presentations then becomes a persistent

base of artifacts available for construction.

viii

Chapter 1

Introduction: Structural Organization of

Constructive Logics through Theory
Presentat ions

A mathematical discourse presents the organization of mathematical theories and objects.

The most common forms of discourse include textbooks, journal articles, and lectures.

People organize what they consider to be the relevant knowledge for various purposes: for

collecting related information, for teaching a particular subject, for collecting and referring

to connected or related arguments, for presenting a new result in a required context or

setting. Arguments in one discourse might refer to arguments or results in another by

referring to the name of the argument or result as it is known in its defining discourse.

This scaffolding that surrounds the presentation of a theory or collection of theories is

usually not explicit. We usually have no need to refer to the organization of a book into its

chapters and sections. The purpose of the text is to convey the contents in whatever form

may be available. The text is then read by an individual, such as a logician or student.

The methods used by the reader to understand or analyze an argument may be unrelated

to the methods used to structure the presentation of the argument.

In the domain of automatic construction and analysis of arguments, we generally focus

on the tools that people use to understand an argument rather than the structure of the

books that people access for their knowledge. In this thesis we focus on this structure:

How can this structure be used effectively for both construction and analysis? What are

the advantages of promoting structure to a first class object for both construction and

analysis?

As logicians study language, they introduce terms that cover the concepts of the lan-

guage. In this thesis, we introduce concepts that are not covered by existing terminology.

In changing the domain of discussion, we modify existing terms to reflect a new usage, be-

cause our goal has changed. We specialize and adapt the classical definitions to the context

of the logical framework. These new meanings and usage are defined in this chapter.

There are three aspects to this organization of knowledge: the description of some

concept or argument or theory, the prior developments on which this description relies,

and the description of the structure of the prior developments (usually implicit by its

presence in the book). Theories may be described in many different languages, using

different presentation styles and discourses. A logical framework is a formal system that

may be used to codify such discourses of mathematical arguments. We use the term logical

framework in the same sense as is used by Harper, Honsell, and Plotkin [23]: a language

for defining formal systems. It must be sufficiently powerful to encode the statements in

the prior development and the current theory. The Calculus of Constructions [15] is such a

language, as is LF [23]. We present another approach to constructing a logical framework

in which the structure is defined and manipulated separately from the statements of the

theory.

An example of a mathematical discourse is the propositional logic defined using truth

and falsity. This presentation would depend on the prior development of a Boolean theory

giving meaning to TRUE and FALSE. The definitions of the new connectives of proposi-

tional logic are accomplished by defining what the resultant true or false value will be for

all combinations of connectives. The primitive objects of the propositional logic are the

propositional symbols. The constructors for producing new propositions are the logical

connectives (v, A, -+, -), and the properties of these connectives are defined in terms of

the resulting truth values from the Boolean theory.

The above description of the propositional logic uses an implicit abstraction of a dis-

course: a theory may be described by providing the primitives of the theory, the connectors

of the theory, and the properties of the connectors. This abstraction defines what informa-

tion needs to be provided, but not how it will be provided. The differences in discourses

may be seen in differences in how the information is described.

Alternatively, classical propositional logic may also be defined using natural deduction

methods: the set of proposition and property symbols remains the same, as does the

set of logical connectives. However, the discourse of natural deduction defines under

what conditions a formula may be introduced or eliminated, using axiom schema. The

primitives of natural deduction as a discourse are the axiom schema, which are composed

of premises and conclusions. Defining propositional logic in this discourse is done by

giving the meaning of each logical connective formula by showing what conclusions can be

drawn. Rather than discuss if a formula of propositions and connectives is true or false,

the schema rules encode when a formula is derivable.

These two presentations encode the same mathematical system in different discourses:

they differ in how the meaning of the system is presented. The discourse may be said to

define the meta-theory for the presentation. The propositional logic defined using truth

and falsehood can make statements about truth. The propositional logic defined using

axiom schema and natural deduction makes statements about derivability and derivations.

For any given discourse, one may introduce new theories. While mathematically a

theory designates a deductively closed set of sentences, in this thesis a theory refers to a

collection of statements true or provable in a context. When a new theory has been defined

the discourse may be thought of as extended by that theory. So the discourse of natural

deduction extended by the theory of propositional 1ogicProplogic can make use of the

methods of natural deduction as well as the statements of Proplogic. Other theories may

subsequently be defined in this discourse either using the theory Proplogic (i.e. using the

primitives of Proplogic) or independent of Proplogic. However in the discourses described

above, the concept of a theory is external. There is no way to designate that a theory being

elaborated requires the theory Proplogic. Our interest here is the discourse of theories:

how to specify what theories are required, what theories may be used, and how these

theories may be related to one another.

The goal of this research is the organization of bodies of knowledge that are internally

structured as collections of theories. We will call the language used to organize these

theories MF (Meta-Framework). In the current definition, the theories themselves are

defined in the Calculus of Constructions. The use of the Calculus of Constructions means

that the discourse used inside a theory is the Calculus of Constructions extended by any

theories required for further development. The theories required in constructing or using

a new theory are specified as the required environment. Manipulation and specification

of the environment is done with MF.

The new primitive objects introduced in MF are:

The theory as a linguistic unit. The semantics of a theory are similar t o that of en-

capsulation. I t not only identifies a linguistic part of the language but also identifies

a theory as a collection of features.

The environment of a theory, where the environment is the (structured) collection

of theories required.

Theories are constructed in relation t o other theories, starting with the empty or null

theory. New theories and their relationships are constructed and maintained by theory

combiners. A theory combiner is a function that maps theories and environments t o

new theories and environments. Theories may be derived from others through exten-

sion, unions, specializations, and generalizations. A theory constructed in this way has a

relationship t o the theory or theories it was based on.

The the6ry relationships supported are extension and specialization. A theory that

extends another is consistent with that theory. In this case, consistency is used t o denote

that one theory entails the other.

As an example, in constructing some theory A with a declared environment of the the-

ory Proplogic, one may assume the primitives of Proplogic, without knowing entirely what

is included in Proplogic, and one may not refer t o the constituents of Proplogic without

having the entire theory present. If two theories B and A are combined and their envi-

ronments are not independent, the resulting environment of the combined theories must

be determined. If they both use Proplogic, or a theory consistent with Proplogic, the re-

quired environment would be some theory C which satisfies the environment requirements

of both B and A: a theory consistent with Proplogic.

In the following, A and B refer t o arbitrary theories, constructed using arbitrary theory

combiners. A and B have environments EA and EB respectively. E ~ , A is the theory A

with its environment EA. T H (E A , A) is a function that maps a set of sentences t o its

deductive closure. As a shorthand, TH (A) denotes TH (EA, A). The environment closure

of a theory is the list of all the theories that a theory requires. A* or (EA)* denotes the

environment closure of the theory A or its environment EA.

The goals of such a system encompass constructing new theories in a manner that

preserves the theory structure and allows the following judgements t o be made:

Theory A is consistent with B, capturing the notion that A may be used wherever

B is needed, (TH(B) c T H (A))

Theory B requires theory A, or more generally, theory B requires a theory consistent

with A. (A E E~ or A E (,TB)*).

These judgements are then used t o answer questions about theories, such as:

What is the minimal environment of a theory, A? (The least E', s.t. E' 2 E and

T H (E f , A) = T H (E , A).)

Can theory A be used in place of B ? (T H (B) 2 TH (A).)

If two or more theories are combined, does the combination of their environments

have a unique and minimal solution? (Is there a minimal E s.t. T H (E , A . B) =

Th((EA, EB) , A . B)?, where - is a theory combiner.)

The Calculus of Constructions, like the Automath system, provides a logic into which

simple mathematical discourse may be embedded. In this thesis we expand this discourse

into richer notions of organization and theory combinations. The soundness of the resulting

system relies on the expansion into the base discourse: the theory organization is invisible

t o the Calculus of Constructions. This organization serves t o mediate between how people

organize knowledge and the requirements of the underlying formal system.

1.1 The Calculus of Constructions as a language of dis-

course

The MF language describes relationships among theories, relying on a base language that is

used to describe the theories themselves. The base language provides a default discourse in

which to describe theories. There are many potential candidates for such a base language.

Because the goal of this system is to facilitate the description of theories, we would

like the base language to be as expressive as possible. Some of the general attributes that

are desirable in the base language are:

The logic must be capable of describing what statements and derivations are legal

in a theory.

The logic should be capable of expressing the specification of a theory or problem.

The logic should be capable of expressing proofs of correctness in the logic.

The logic should be capable of stating and proving properties about the theory.

The key characteristic to a language's ability to generally describe theories using arbi-

trary discursive methods is the first item. Barendregt in Introduction to Generalised Type

Systems [4] characterizes type systems by the dependencies of the terms and the types

in the systems. In his model, languages that allow types to be dependent on terms are

capable of describing what is legal or provable in a theory. Languages with this facility are

often called logical frameworks because they are able to describe other logics or theories.

The Calculus of Constructions has all the above attributes. It is capable of defining

theories whose role is to act as a discourse for the further development of other theories.

And, it is sufficiently expressive to define the discourse of theories within the logic itself.

This thesis proposes that the discourse of theories is more productively supported outside

the logical framework or mathematical discourse. We will discuss this issue more fully

later in this chapter.

The Calculus of Constructions has the desired expressiveness as well as some partic-

ular characteristics: the explicit disjunction between assumptions and the values used to

discharge the assumptions, and the pragmatic consideration that an implementation exists

for the language. The Calculus of Constructions has an internal notion of context, encod-

ing what assumptions are made; higher-order types, allowing complex propositions and

properties to be expressed in the logic; a mechanism for associating constructive proofs

with types, enabling types to have executable members; and the ability to discharge con-

text elements with objects of the appropriate type, known as the cut rule, allowing types

and proofs to be used in other types and proofs. The existence of an implementation

allows further explorations to be conducted in a lab-like environment. Other logics could

be used as a base language supporting a discourse of theory management.

A weaker logic would result not only in a weaker discourse for building new theories,

but would also lack the scaffolding for building the theory structure. Without a notion

of context internal to the logic, a context would be part of the theory structure itself.

This lack of context in turn would necessitate support for discharge of assumptions in

the theory structure rather than in the logic. A less expressive language of types would

limit what theories could be built. Perhaps only one discourse would be definable, altering

the fit between a discourse and a target theory. A different notion of proof would alter

what properties the resultant theory would have: constructive, executable, intensional,

extensional, etc. A lack of the ability to define what is legal in the logic itself would

require a discourse to be described by augmenting the language with externally defined

constants, as in Automath.

While the Calculus of Constructions has many advantages, it has weaknesses as well

when considered as a vehicle for organizing knowledge. These weaknesses fall into two

areas: those that arise when the calculus is considered as a logical framework for developing

theories and those that arise when considering the calculus as a vehicle for implementing

a discourse of theories. Looking at the calculus as a logical framework, its discourse

forces a style that is particularly cumbersome for people to use and manage. Its strong

requirements for proof, while providing very nice formal properties such as termination

and consistency, also necessitates a great deal of detail to express, discharge, and formalize

even quite small theories. The cut rule, while providing a powerful and concise mechanism

to connect assumptions with objects that discharge them, is not capable of maintaining

that connection. Cut, combined with contexts, provides a flexible way t o abstract out

assumptions and then discharge them independently. But in theory management, the

connection between the assumptions and their discharges needs to be maintained as

well. Lastly, there is no internal notion of completeness criteria, either for assumptions

or for theories. Because a theory may be only partially described, we use completeness

t o refer t o how much of the theory is present or elaborated. As it stands now, a theory

defined in the Calculus of Constructions may be defined with a context that identifies what

particular constructions are required by the theory. Those constants are presumed t o be

defined elsewhere, in their own theories, that assure their correctness. However, there is no

requirement that the entire theory be present when the assumed constant is discharged. By

allowing contexts t o be expressed with minimal assumptions the Calculus of Constructions

supports the definition of new types and theories, even if those assumptions themselves

require the existence of other constructions or constants.

Looking at the calculus as a vehicle for implementing a discourse of theories, there are

comparable weaknesses. As an impredicative system (a system expecting the definition

of assumptions in the system itself) the calculus does not have the primitives associated

with theory construction, management, use, and reuse. These primitives would have

t o be developed within the discourse of the Calculus of Constructions. Because of the

constructive nature (both an advantage and a disadvantage, in some ways), these new

primitives would require proofs within the calculus. Because the same logic would be

used both for the discourse of theories as primitives and for the development of theories,

the discursive nature is confusing. This conflation of discourse theory with the object

theory leads t o a lack of clarity in what exactly is being described: At what level are we

discussing a theory? As an object t o be manipulated or as a set of logical statements

that constitute an argument? How are the connections maintained between contexts and

objects? Between theories and their component statements? This dichotomy parallels

the two activities mentioned above. The nature of theory construction, management,

and retrieval pertains t o the way people organize knowledge. The nature of analyzing a

theory pertains t o the way an argument is analyzed by logicians: the pieces need t o be

collected and presented in a consistent form t o the logician. At that point in time, the

structure of the theories that were used in building the argument is irrelevant. The dual

nature of construction vs analysis suggests that embedding a discourse of theories into

the Calculus of Constructions will not provide the level of clarity that we wish. When a

body of knowledge is presented in a book, we have an expectation that not only will the

subject matter be correct, but that it will provide us with a usable form for learning new

material and using this material at a later time. We expect the same from a formalized

notion of theory structure.

Using a logical framework such as the Calculus of Constructions to describe the theo-

ries and a specialized language to describe theory relationships provides several benefits.

There is no level ambiguity: statements concerning how theories relate to one another are

confined to the MF. The language of theory relationships and queries does not have the

same requirements as the language for defining theories. It need not be as expressive or

as general as the language of theories. By limiting the generality, the theory structure is

more evident and can be manipulated more directly.

1.2 An Example of a Discourse of Theories

Because the domain of a discourse of theories is the structure of theory dependencies,

rather than the specific details within the theory, in the following theory examples the

internal details will be sketches, while the structure will be fully elaborated.

Using a style based on that of the Calculus of Constructions (COC), we will develop

a presentation of a theory of the propositional logic, using a natural deduction style

discourse. Prop refers to the assertion of an arbitrary proposition. Thm refers to a

theorem. A proposition has a name, P-name and a value P-val, with the interpretation

being that P-val is a valid proposition and it may be referred to by P-name.

Prop P-name P-val

A theorem has a name T-name, value T-val, and a type T-type. It is interpreted as

an assertion that T-name is associated with T-val, with the type T-type.

Thm T-name T-type T-val

Both a proposition and a theorem may be assumed:

P-name : Prop

asserts that P-name is an arbitrary proposition.

asserts that T-name is a construction (a proof) of type Tdype.

The constructions (values or proofs) are constructed using abstraction ([- - -1) and func-

tion constructors (+):

[a : A][B : Prop](A + B) + B

describes a construction that is abstracted on an object a of type A and a proposition B.

The remainder of the construction is interpreted as a function that given a construction

of the type A + B will produce a construction of the type B.

A set of propositions and theorems may be preceded by a context of assumed propo-

sitions and types.

Using this sketch of the Calculus of Constructions, the theory of propositional logic

might be described as follows:

Context - [A : Prop

B : Prop]

Prop And

Prop Or

Prop Impl

Context ss [a : A

b : B]

[C : Prop](A + B + C) + C

[C : Prop](A + C) + (B + C) + C

[C : Prop](A + B) + (B + C) + C

Thm r\ A n d < A , B > [C:Prop][h :A+B+C](hab)

Thm V, Or < A, B > [C : Prop][hl : A + C][h2 : B + C](hl a)

Thm V, O r < A , B > [C : P r o p] [h l : A + C] [h 2 : B + C] (h 2 b)

Thm Imp1 < A, B > [C : Prop][hl : A + B][h2: B + Cl(h2 (hl a))

We will call this theory Proplogic. This theory might be specialized to Booleans by speci-

fying that the propositions be Booleans rather than arbitrary propositions. A less general

propositional logic theory might be defined using the discourse of True and False by defin-

ing suitable Boolean constants, defining what constitutes legal terms in the propositional

logic, and defining the semantics of each term by giving their Boolean values.

Similarly we might define a theory of natural numbers as:

Prop N at [A : Prop](A + A) + A + A

Theorem zero Nut [A : Prop][f : A + A][x : A]x

Theorem succ Nat + Nat [n : N a t] [A : Prop][f : A + A][x : A] (f (n A f x))

We will call this theory Natumlnum.

And for a theory of booleans:

Prop Boo1 [A : PropIA + A + A

T h m True Bool [A : Prop][vl : A][v2 : A]vl

T h m False Bool [A : Prop][vl : A][v2 : A]v2

which we will call Booleans.

Now, in this theory environment, we have access to the following discourses in which

to write new theories: the unextended calculus, called COC, the calculus extended by

Proplogic (COC + Proplogic), the calculus extended by Natumlnum (COC + Natumlnum),

COC + Booleans, COC + Proplogic + Natumlnum, and so on. (The + is used to indicate

extension.)

Suppose that we wish to develop a theory of finite state machines, calling it FSM.

What theory or discourse do we expect prior to this new theory development?

To express the states in the machine we can use the theory of nats, Natumlnum. To

express the functionality of each state we could use Proplogic with an interpretation of

booleans for the logical connectives. To specialize the theory Proplogic to booleans, we

want the value expressed to be in terms of Bool rather than an arbitrary C : Prop. Let

this specialized theory be Proplogic . Booleans. Then the new theory FSM will have an

environment of Proplogic - Booleans, Natumlnum. We will not give the details of FSM

here since they would quickly grow too cumbersome for this introduction.

T h e meaning of Proplogic . Booleans in a n environment is intuitively t h a t Proplogic

is specialized to Booleans, which is sufficient detail for this discussion. T h e specialization

of Proplogic t o Booleans requires t ha t t he specialized theory has the theory Booleans as

well as the theory Proplogic in i ts environment. T h e current theory structure of this

system can be represented as a set of relationships among the theories, where 5 shows

a n inclusion relation (if A < B then all t he s tatements of A are in B) , and 4 shows

a specialization (if A 4 B then the s tatements of B are statements of A specialized by

discharging assumptions with witnesses) and So represents t he theory tha t is included by

all subsequent presentations, in this case So is the empty theory.

Prop1 ogic - > s o

Naturalnum 2 so
Booleans > s o

Proplogic . Booleans 2 Booleans

Proplogic Booleans 4 Proplogic

FSM > Proplogic - Booleans

FSM - > Naturalnum

Now, we can further refine Proplogic t o include properties t ha t we wish t o express o r

prove, such as statements of soundness, completeness, and consistency. ' Perhaps we will

add the Peano axioms t o Natumlnum as well. Call these new theories Proplogic+ and

Naturalnum+. We may need a theory of equality t o augment these theories in this way:

call i t Equality. T h e new theory structure then satisfies t he following relationships, as well

as those above:
Proplogic+ - > Equality

Proplogic+ > Proplogic

Naturalnum+ 2 Equality

Natural num+ > Naturalnum

'While the properties of soundness, completeness, and consistency are part of the COC, a more spe-
cialized statement may be constructed that refers specifically to the statements in the propositional logic.
We could augment the theory with the set WFF' for the set of well-formed formulas. The theory may
be expanded to specify what formulas will be in this set and further what properties this set will have.
The statements that are made about the propositional logic are not restricted to the propositional logic
formulas themselves.

In this example, there are already environmental interactions that we would like to have

access to, for purposes of simplification, conciseness, explanatory reasons, or completeness.

In the interests of completeness, we may desire the most fully elaborated description

of a theory. After a theory has been expanded, as in the above example, that expanded

theory can be used to discharge any references to the unexpanded theory. So Proplogic+

may be used wherever Proplogic was expected, since it is an extension of Proplogic: it

adds information, but takes nothing away. In a subsequent reference to FSM, Proplogic+

might therefore be used to discharge the environmental dependency on Proplogic.

Another question that we would like to answer is what is the minimal environment

(the smallest extension of the environment) compatible with the environment specifica-

tions. If an extension to FSM is considered that requires Equality and Naturalnum+, the

environment Naturalnum+ is a solution because Naturalnum+ already requires Equality.

1.3 Another Example

Another view of the role of theory presentations may be seen in the description of a theory

of monoids.

In this description, the theory of monoids is elaborated in two aspects: first a notion

of an algebraic system is proposed, then the monoid is defined by successively adding to

theories for groupoids and semigroups.

Arity is a variant of the natural numbers, over types rather than propositions. The no-

tation {. . .), from the Lego implementation [32] of the Calculus of Constructions, denotes

a product (II) type. The form:

denotes that (name) when applied to elements of the appropriate type, as specified in

(context - elements) will be a Prop with value (propositionexpression). The form:

De f n(name)[(context - elements)] = (construction)

denotes that (name), when applied to elements of the appropriate type as specified in the

(context - elements), will produce a construction as shown in (construction). The type

of (name) is the type of (construction).

ThArity

Prop Arity { A : Type)(A -+ A) + A -+ A

Thm Zero Arity [A : Type][s : A + A][z : A]z

Thm Succ Arity + Arity [n : Arity][A : Type][s : A + A][z : A](s (n A s 2))

An algebraic system is an abstraction defining what information will be defined: a set

of carriers, A, and a set w of functions over A. Because this abstraction is being defined

independently, it uses its own notion of application rather than the cut rule, and it defines

a type to collect all of the functions over A, regardless of arity. List is first defined to

collect the arguments for this new application.

T hList

Prop list [A : Prop] { A : Prop){B : Prop)

(A + B + B) + B - + B

Thm Nil list A [B : Prop][Cons : A -+ B + B][nil : Blnil

Thm Cons A + list A -+ list A [a : A][/ : list A]

[B : Prop][cons : A -+ B + B][nil : B](cons a(1 B cons nil))

ThAlgsys

Prop

Prop

Prop

Prop

Thm

Thm

Thm

arityzero [A : Prop]

ZeroProp([A : Prop]A)A

arityN [A : Prop][n : Arity]

(n Prop ([B : Prop](arityZero A) + B)(arityZeroA))

Omega

{ n : Arity)arityN A n

AP [n : Arity]

{ f : arityN A n){l : list A)(arityNAn)

map0 (Ap Zero)

[f : arityNA Zero][l : list A] f

map1 (Ap (Succ Zero))

[f : arityNA (Succ Zero)][l : list A](l(arityNA (Succ Zero))

([a : A][B : arityNA (Succ Zero)]([b : A](B a))) f)

map2 (Ap (SUCC (SUCC Zero)))

[f : arityNA (Succ (Succ Zero))][l : list A](l(arityNA (Succ (Succ Zero)))

([a : A][B : arityNA (Succ (Succ Zero))]([b : A](B a))) f)

De fn Map0 [f : arityNA Zero][l : listA] = (maPo f 1)

De fn Map1 [f : arityNA (Succ Zero)][l : list A] - -

(mapl f I) (dummy A a)

De f n Map2 [f : arityNA (Succ (Succ Zero))][l : list A] =

(map2 f I) (dummy Aa)(dummy A a)

T h e map constructions use t h e arguments list I as an iterator t o apply t he function

f . T h e representation type for t h e list is t h e type of f . This representation type is used

t o collect t h e cumulative results of t he application. Because of uniformity constraints

in t h e Calculus of Constructions, t he result of map is a function of t h e same arity as

t h a t of t h e original function. In general, for f : arityN A n , we have t h e definition

t h a t mapn f I : arityN A n. T h e Map definitions then apply this function t o dummy

arguments t o retrieve the result.*

Equality and pair theories are used t o express the postulates of the monoid theory:

T hEqualit y

Prop Eq [A:Prop][x ,y :A] { P : A + Prop)(Px) + (Py)

Thm ref 1 { A : Prop){x : A)(Eq A x x)

[A : Prop][x : A][P : A + Prop][prf : (Px)]prf

T hPair

Prop And [A, B : Prop] {C : Prop)(A + B + C) + C

Thm pair { A , B : Prop)A + B + (And A B)

[A, B : Prop][a : A][b : B][C : Prop][p : A B + C](p a b)

To define a groupoid we need only define the binary function cdot, using an environment

of ThArity, ThList, and ThAlgsys:

ThGroupoid (ThArity, ThList, ThAlgsys)

Prop cdot arityN A (Succ(Succ Zero)))

A semigroup adds the associative law t o the groupoid. It therefore needs an equality

theory as well:

ThSemigroup (ThGroupoid, ThEqual ity)

Prop Assoc [cdot : arityNAn] { x , y , z : A)(Eq A (Map2 cdot

(Cons (Map2 cdot(Cons x (Cons y Nil)))(Cons z Ni l)))

(Map2 cdot(Cons x (Cons (Map2 cdot(Cons y (Cons t Ni1)))Nil))))

The monoid is defined by adding the nullary function Identity t o w and the identity law

2Also, to be correct, map should map over the list's reversal.

describing its behavior to the postulate:

~ h ~ o n o i d (ThSernigrozlp, ThPair)

Prop Ident ari tyNA Zero

Prop Le ftIdentityLaw

{ x : A) (Eq A(Map2 cdot(Cons(Map0 Ident Ni l) (Cons x nil)))^)

Prop RightIdentityLaw

{z : A)(Eq A(Map2 cdot(Cons x(Cons(Map0 Ident Ni1)Ni l)))x)

Prop Identity (And Le f tIdentityLaw RightIdentityLaw)

Some of the details are left out because they involve proofs on specific values of func-

tions and would be provided for specific semigroups or monoids. For instance, cdot must

be associative but we can't demonstrate associativity until cdot is instantiated with a

particular binary function. At that time, we can provide proofs that a particular alge-

braic system is a groupoid, semigroup, or monoid by providing the constructions for the

following propositions:

(1) Prop Groupoid [A : Prop][cdot : arityNA(Succ(SuccZero))]

trivially true: the type of cdot

is the definition of a binary operation

(2) h o p Semigroup [A : Prop][cdot : arityNA (Succ (Succ Zero))]

And((Groupoid A cdot), (Assoc A cdot))

(3) Prop Monoid [A : Prop][cdot : arityN A (Succ (SUCC Zero))]

[ident : arityNAZero]And((Semigroup A cdot), (Identity ident))

The resulting structure would look like:

ThMonoid

ThMonoid

ThSemigroup

ThSemigroup

T hSemigroup

T hGroupoid

ThAlgsys

ThAlgsys

ThPair

ThSemigroup

ThEquality

ThGroupoid

ThAlgsys

T h Algsys

ThArity

ThList

This example points out some inadequacies still remaining in using this theory dis-

course. As mentioned earlier, we often use an implicit abstraction that guides us in

describing theories. In this last example we first thought of the abstraction of an algebraic

system that would later be instantiated with the necessary components for each theory

of interest (monoid, for example). The algebraic system is defined to be a set R and a

carrier set. R could have been defined as a set: (arityNA n) + Prop, using a theory

of sets. Then, functions could have been inserted in R. This detail was not included: it

adds significantly to the amount of detail that needs to be carried along. Moreover, it is

hard to distinguish the relationship of a theory of P that uses algebraic system theory to

structure its information from the relationship of P to any theories that P may extend or

specialize. Additionally, some of the theories that we use (such as equality) are not used in

an essential way: we would not classify a semigroup as an extension of equality, although

we use equality to specify the postulates in a semigroup. This observation points out the

different roles a theory may play: abstraction and use. These roles are not adequately

supported as yet. We will discuss these issues in Chapter 6.

Both the examples above may be described in the native Calculus of Constructions

without using the theory discourse. A common method of doing this kind of development

is to use the context as the means of both describing the necessary pieces and of later

discharging those pieces with actual constructions. The description of the monoid might

then look like:

Context G

[A B : Prop] ;

[Arity : Prop];

[Succ : Arity- > Arity];

[Zero : Arity];

[List : Prop- > Prop];

[Cons : A- > (ListA)- > (ListA)];

[Nil : (Lis tA)];

[arityzero : Prop- > Prop];

[arityN : Prop- > Arity- > Prop];

[Ap : Arity- > Prop];

[n : Arity];

[map : (ari tyNA n) - > (ListA)- > (Ap n)] ;

[And : Prop- > Prop- > Prop];

[pair : AndAB];

[Assoc : (arityNAn) - > Prop];

. . . Propositions and theorems for the monoid

such as those for the identity function

This context captures the constants and their types needed by the monoid. However

the identification of where these constants are defined, what theory produced them, and

what other statements must hold true has been lost. Two constants with the same types,

but belonging t o different theories with different behaviors might be confused. It would be

impossible t o recognize redundancy, as in multiple uses of Cons, for instance, in different

theories.

1.4 Thesis Organization

The goal of this research is to provide a framework for managing the elaboration of theories.

We propose organizing the development, use, and re-use of constructions by organizing

them into theory presentations. A theory in the Calculus of Constructions is a set of types

and constructions and all logical propositions that describe the required elements and their

behavior. A theory may not be finitely representable and it may be only partially defined

at any point. We call the finite or partial representation of a theory a theory presentation.

A theory presentation comprises the assumptions or proofs that it depends on and the

propositions that directly characterize the theory as elaborated so far. There are many

similarities with this approach and CLEAR [ll]. We will discuss the relation of theory

presentations to CLEAR in Chapter 5 .

Using theory presentations as the basic object of analysis, we focus on how the theory

presentations are constructed from more basic theory presentations, where a more basic

theory presentation may be a required discourse or a partial description of the theory under

construction. How the theory presentation is constructed can be viewed as its genealogy.

Using this genealogical structure, it is possible to determine when a dependency of a theory

presentation on another theory presentation is discharged and if a theory presentation is

valid in another context of theory dependencies. Ultimately, in a sufficiently rich base

of theory presentations, it may be possible to construct complex theory presentations

that are correct by construction using the genealogical structure, the theory presentation

relationships, and, only secondarily (through the underlying logical framework), the type

information.

The remainder of this thesis is organized as follows: Chapter 2 gives the background of

relevant developments in type theory development, proof theory, and logic, specification

languages and knowledge organization languages. Chapter 3 describes some examples of

theory presentations, environments, and constructions. Chapter 4 describes the formal

system of the discourse of theories. Chapter 5 is a comparison of this system with others

of similar or overlapping goals. Chapter 6 concludes with suggestions for future work.

Chapter 2

History

This thesis draws upon several areas. In part, the ideas stem from the recent interest in

higher-order constructive logics in the context of computer science. In part, the suggestions

in this thesis have grown out of interests in methodological, taxonomical, and specification

activities when applied to organizing complex bodies of knowledge. Lastly, in reviewing the

philosophical history of the field associated with language, type, and proof development,

I conceived the idea that perhaps the key to controlling the complexity was to introduce

a new entity altogether: structure as a first class object rather than as an artifact of some

other organization.

To display these different threads, I will focus on four relevant research areas: the

database and A1 worlds for taxonomic properties; specification languages; the role of

higher-orde; logics in theory construction, analysis, and use; and philosophic speculations

on what a logician is analyzing: the structure versus the content of an argument. Our

goal is to support the view that the structure of an argument itseIf is an object of logical

analysis.

2.1 Taxonomic Properties

The organization of large bodies of knowledge, with complex relationships and interde-

pendencies among its components, has been the target of both artificial intelligence and

database research. The particular results that contributed to the ideas in this thesis are

the work of A%-~ac i [I] and its formalization in order-sorted equational logic by Smolka

and it-~aci [47].

~ i t - ~ a c i introduced the notion of inheritance hierarchies built up from feature types.

Feature types are ordered by subtyping and the elements of a feature type are records.

The features of a feature type prescribe the fields of its record elements. Unification

over feature type terms determines if two feature type terms have an intersection and

constructs a feature term that denotes this intersection. Feature terms denote sets and

subsets of sorts rather than elements of sorts, acting as descriptions of what the elements

must conform to. As more information is accumulated as t o what the elements are, or

how t o discriminate one set of elements from another, that information is added t o the

feature type as an additional feature or as a refinement of an existing feature.

While there are differences in the kinds of taxonomic data covered by A&-Kaci and

later by Smolka and A%-Kaci, there are relevant similarities as well. The original terms

introduced by A%-Kaci ($-terms) were conceived as organizing and defining inheritance

hierarchies that represented the subset structure of information. The hierarchy could then

be incorporated into a logic query language such as LOGIN [I]. The information in these

kinds of hierarchies is typically set descriptions, such as the description of a set of students

by describing the characteristics of what is a student; the description of the set of part-

time students similarly (a subset of students); the description of the set of students with

a particular major, etc.

Their later development incorporated the $-term approach with order-sorted equa-

tional logic. Order-sorted equational logic can be used t o specify inheritance hierarchies as

well, but the inheritance hierarchy is a constructor hierarchy of elements, rather than set

descriptions. The hierarchy is organized around how a member of the set is constructed,

yielding an initial algebra approach t o specificatians. However, the elements being de-

scribed are constructor elements, called constructor types. These constructor types can

be used t o define data types by describing the required constructors. The information in

these kinds of hierarchies is typically data-type descriptions, such as what constructors

are necessary for the natural numbers, for the negative numbers, and ultimately the full

set of negative and positive numbers (integers).

The resulting formalization allows both feature types and constructor types t o coexist

in one inheritance hierarchy. The characteristics of the information in this hierarchy share

some important attributes with a hierarchy of theory presentations. A theory presentation

hierarchy needs to capture several aspects:

What components a theory requires. Like the constructor theory above, where the

integers require nut and negint, theory presentations are generally constructed in

a context of other theory presentations.

Theory presentation developments represent a genealogy of sorts. The theory pr+

sentation is a description of what is known about the theory up to this point in its

elaboration. At each iteration of development, the description of what the theory

must look like is further refined, thus limiting which actual theories will satisfy the

requirements.

The hierarchy of theory presentations is a modification of the inheritance hierarchy in

order-sorted equational logic. Part of the information organized in this hierarchy is the

structural information: what theory presentations are required to provide a valid context

for this theory presentation development. This structure corresponds to the constructor

theory aspect. Part of the information required for a theory presentation is what features

belong to the theory. Using the terminology of features and feature terms, we can look a t

the examples sketched in Chapter 1. The theory of booleans presented there could be said

to have three features: a notion of what a Boo1 is, what True is, and what False is. The

theory presentation asserts that a theory of booleans is a theory that includes elements

for these three features. If this theory is extended in Booleans+, we can encode the

extension by asserting the relationship (~oo leans+ > Booleans), which in the context

of inheritance hierarchies asserts that Booleans+ inherits all the features of Booleans.

Then we can add the new features, such as boolean operations, V and A. Booleans is the

structural requirement for Booleans+. The new features further refine the information

known about the theories that conform to this description.

As described, the theory presentations have been concerned with structure and collec-

tivity. Structure refers to where a theory presentation is in a hierarchy of theory presen-

tations. Collectivity refers to what statements are collected in the theory presentation.

These two aspects together form a description of the theory. Feature terms viewed as a

description are similar t o a signature with no interpretation. In the feature term view, the

theory presentation Booleans describes the set of all theory presentations that have the

features Bool, True, and False. But the members of this set have not yet been defined.

So, Bool has no interpretation yet. In the inheritance hierarchy formalization, the values

are constructed by constructors, assumed t o be minimal elements in the hierarchy. Using

this approach, Bool might be interpreted as a Prop: i.e. the feature Bool is defined as

an arbitrary proposition. Or if more information is known, Bool might be a particular

construction that has the desired attributes.

Because of constraints of the underlying logic used in this thesis, sorts and feature terms

have a rigid structure. The theory presentations describe a set, but the set is ordered. A

theory presentation describes a set: for instance Booleans describes the set of all extensions

of Booleans. But if there is more than one way t o describe the proposition Bool, they

must be differentiated in some way. Perhaps they assume different theory presentations

in the context in which they are defined. Or their definitions are such that only some of

the definitions for True or False will still be valid. This difference entails an entirely new

theory presentation t o introduce new values: Booleans'. Booleans', while containing the

same features as Booleans, has different values for these features. So even if we believe

that both Booleans' and Booleans both describe the same theory (semantically), in the

hierarchy they describe different sets. If the fact of their connection is a desired piece of

information, then they need t o be described in that way: i.e. that Bool is an arbitrary

P r o p rather than a specific proposition with a value.

So there is additional structural information required of the sets being described in

a theory presentation hierarchy: we cannot connect t o arbitrary descriptions and we can

only conclude theory presentations are the same if they denote the same structure. Addi-

tionally, because the intent is t o describe a growing, evolving system, combined with the

structural meaning, some semantics have been changed. In the original formalization of

A % - ~ a c i , the subtype relationship is set inclusion. So, the set of student is constructed

by constructing all the members of part-time-student and full-time-student. The sub-sort

relationship is equated with subsets: part-time-student U full-time-student student. For

theory presentations, however, we are more concerned with manipulating the descriptions

rather than managing the collection of elements. Continuing the student example, from

a theory presentation perspective, the theory student could come first with the theory

of part-time-student and the theory of full-time-student defined as extensions t o student.

The meaning would then be the features of a part time student are distinct from those

of a full time student, and a student defines those features that are common t o both.

The theory presentation view is that part-time-student 2 student and full-time-student 2

student, where the part-time-student and full-time-student descriptions are extensions of

student. While the set of student contains both the elements in the set of part-time-student

and those in full-time-student, the opposite is true for the descriptions: the description

student is contained in both full-time-student and part-time-student. In the order-sorted-

equational view, only minimal sorts have constructors: i.e. t o construct a student, you

either construct a part-time-student or a full-time-student, assuming these are minimal

feature terms or constructor terms. However, in the theory presentation hierarchy, i t

makes sense t o construct an element at any point: the theory of student is well-formed in

the underlying logic, and has associated values. The additional information in the part-

time-student theory is not present in the theory of students, so no conclusions based on

this information will be available. This contrasts t o the feature term approach, where a

student must be either one or the other or there is another category which is minimal: an

as yet undefined student.

2.2 Specification Languages

The works in specification languages that are most pertinent here are those used to describe

data-types, such as CLEAR ([22]), OBJ ([Ill), KL-ONE ([6]), and successors of these

languages. The role of specification languages or knowledge description languages is t o

encode the relationships that we want t o maintain, as described in the section above.

These relationships become part of the descriptive component of the formal system. This

'In this discussion of the feature logic, we use 5 to mean extension. So in the expression A 5 .B, B is
an extension of A, meaning that additional information is added. In the feature logic defined by Ait-Kaci,
the meaning of 5 was reversed. In the expression A 5 B, A is an extension (or refinement) of B. This led
to the definition of a minimal sort (in LOGIN) with respect to <. In this thesis we conform to the notion
of subsort as extension, so the use of the term minimal can be misleading.

descriptive component has two aspects: one t o construct or describe the formal system

(the relationships) and the other t o inspect the formal system.

Such a formal system describes a hierarchy. The language used t o construct the hier-

archy may also be used as a query t o inspect the hierarchy for a solution, sometimes in

conjunction with unification. It's difficult t o completely separate the language from the

persistent (or semi-persistent) artifacts that they describe and introduce.

The work reported by Gert Smolka [46] describes a feature logic that generalizes and

unifies formalisms developed for knowledge representation, such as A%-~aci 's $-terms

and linguistic structures of Rounds, Kasper, and Dorre [17], [27]. This work specifies a

set description logic and identifies which interpretations are admissible. An interpretation

assigns a set of elements t o each sort.

This work is more extensive than needed for theory presentations: i t provides descrip

tive terms that would construct theory presentation terms with no meaning. The main

thrust of Smolka's work is t o unify different descriptive mechanisms (of which this work

presents one) and t o show the properties that these logics have.

MF is a logic of theory presentations that forms a subset of the descriptive features

presented by Smolka. In particular, his feature term logic allows partial descriptions of

feature terms in a wide variety of ways:

By referring t o a sort specifically, such as part-time-student.

Referring t o a feature in a feature sort: f : s, equivalent t o referring t o the set of all

feature terms that have the feature f of sort s.

Referring t o two paths through the feature terms: p q is equivalent t o referring

t o the set of all feature terms whose values for these two paths agree. An exam-

ple might be the subset of student described by part-time-student.majorJfull-time-

student.major, which would describe the subset of students with the same major as

each other.

Referring t o two paths through the features where the path values disagree. Again,

an example might be the subset of students that don't work might be those who are

retired, independently wealthy, or too young for a work permit.

Referring to the intersection of two feature term descriptions, capturing the set for

whom both descriptions hold true.

Referring to the union of two feature term descriptions, capturing the set for whom

one or the other description holds true.

Referring to the complement: all feature terms that don't match the feature term

description.

While this generality makes sense where the goal is to be as descriptive as possible as

to the kind of knowledge represented, the goal of the research described in this thesis is

to describe knowledge arranged in a particular way. The structure of theory presentations

has certain requirements that are reflected in the organization of the inheritance hierarchy

and thus need to be maintained in the logic that constructs and queries this hierarchy.

Some of the descriptions are irrelevant in the domain of theory presentations. Because the

central item of interest is how the theories are structured, and not the particular values, it

is less meaningful to refer to agreement and disagreement of values. For a similar reason,

it is not as meaningful in this environment to speak of the theory that is either an s or a

t, unless there is some connection between the theories s and t. If that is the case, that

connection should be made explicit, in another theory U. MFsupports theory presentation

extension, intersection, and union.

2.3 Higher- Order Logics and Philosophic Issues

As mentioned in the introduction, to some degree the logic chosen as the base of a system

such as this is not central to this research. However, the existence of higher-order logics

and their fruitfulness as languages for specifying theories, properties, and other aspects of

computable artifacts has motivated much research in the area of logical frameworks. The

focus of this section is to trace the relevant contributions of higher-order logics and the

associated philosophic issues that contributed both to their development and use.

This overview of the developmental history of higher order logic systems covers:

1. Type theory developments, such as Russell's notion of types.

2. Philosophical origins. Brief overview of Brouwer's (and Heyting's) questions con-

cerning classical reasoning.

3. The definition of the X-calculus, in particular the typed X-calculus, and i ts role as a

computational model (Church, R w e r , Kleene) .

4. Gentzen's contribution of natural deduction with its 'natural' map onto logical rea-

soning, allowing the idea of a proof t o be treated as a syntactic ~ b j e c t . ~

5. The Curry-Howard isomorphism: i.e. the correspondence between logical formulas

and types.

6. The correspondence between proofs and terms of functional types.

7. The role of impredicativity and higher order types.

2.3.1 Development of the notion of types

The theory of types originated with Russell [40] with the goal of resolving the contradic-

tions of assuming a set of all sets (predicates not predicable of themselves). This contra-

diction arises in an attempt t o formalize mathematics by reducing mathematics t o logic.

In this school, logic is prior t o mathematics and provides the justification and meaning of

the mathematical statements.

The theory of types gave meaning t o a statement, by restricting statements t o those

having appropriate typings, yielding true or false values. Statements that could not be

typed in this sense were meaningless.

'Note, that this is one area that I elaborate and extend. For me a proof is not limited to a proof
of the proposition or conjecture, but includes the proof in a particular context (environment). So, while
Gentzen's natural deduction specifies how a particular construction is formed, it does not specify in what
way the underlying logic has been extended, or in what way the context has been defined, instantiated, or
discharged.

2.3.2 Intuitionism

The intuitionistic (constructive) view of logic due t o Brouwer [7] arose in a similar context:

tha t of trying t o understand the logical underpinnings of mathematics. Brouwer, however,

questioned the logical constants from the standpoint of questioning when a statement can

be judged true or what is a valid proof of a proposition [25] [20] [51]. From that stance

he limits the logical constants and valid inference rules t o those that embody his notion

of truth as proof. The basic premise is t o deny the validity of the excluded middle as a

means of establishing truth (proof) since, while classically true, the proof itself would not

necessarily give any information as t o what exactly was being proven. So one can only

conclude A V B if there is a proof of one or the other of the propositions. Similarly for

A V T A . And for the proof of a proposition involving the existential quantifier, one must

provide the object t o which the proposition refers.

Having articulated this new notion of proof or truth, it was natural t o attempt t o use

this new logic t o formalize mathematics, in the same spirit as Russell did with classical

logic. This new notion of proof had the particular advantage that when an intuitionistic

proof of a mathematical proposition exists, the proof itself yields an object that is the

realization of the proposition. For Brouwer, in a sense, the mathematical object is more

fundamental than the logic that describes it. So a proof of a logical statement describing

this real object must produce this object if we are t o believe it exists. The object justifies

the meaning of the logical statement.

There have been substantial attempts t o formalize the constructive portion (i.e., the

real portion) of mathematics (Bishop [5], Heyting [25], and Kreisel [28]). While there is

a certain philosophical distinction in determining which of mathematics or logic is prior

(which provides the meaning for the other), t o some extent it is moot. In both approaches

there is an attempt t o elaborate a portion of mathematics formally in a logic. For the

intuitionists, the logic is philosophically justified by this more stringent notion of proof and

then used t o see what portion of mathematics might be said t o be real. For the classical

logician, the logic is justified logically as it were, and then shown that it is sufficient t o

describe existing mathematics. For both the goal is t o describe mathematics whatever the

semantics ascribed t o this description might be.

2.3.3 The A-calculus

The A-calculus [12] and combinatory logic [16] were developed as devices t o study rules

[2], [3]a, where the rules are represented as functions.

Looking a t the functional definition as embodied in the A-terms led t o many results

from the perspective of what is computable via these functional definitions - what termi-

nates and what can be represented. Again, as in the logics above, the system of A-terms

was intended as a foundation for mathematics [2]. This goal was not entirely realized,

though many more limited goals were. In the context of the A-calculus, many properties

of functions have been examined, such as the correspondence of A-terms with functions

(in particular the partial recursive functions), the normal form properties of the typed

A-terms, termination properties of these terms, computational models, etc.

2.3.4 Proof Theory

Proof theory is the study of formal arguments; in particular, it characterizes how we know

an argument t o be valid [38], [39]. Proof theory has been a topic for both classical and

constructive logic. In particular, for constructive logic, proof theory is of interest because

of the relation of a proof t o a construction. Informally, constructive logic implies that one

has proved a proposition if one has provided a construction demonstrating that proposi-

tion. So the relation of a proof t o a construction is very close. Proof theory studies the

process by which a construction is found and how we know that the construction demon-

strates the proposition. So proof theory consists in part in analyzing the (constructive)

logical connectors t o determine their intent, elaborating (explicitly) the connectives and

what constitutes a proof for each connective. Gentzen's formal system [19] analyzed the

deductive operations of constructive logic into its component parts and transformed the

study of proof theory from an intensional analysis t o an analysis of extensional objects:

the proof is a derivation from initial premises t o the desired conclusion. Gentzen's system

formalized the notion of a proof, changing i t from a process t o a syntactic, manipulable

object, exposing regularities in the structure of proofs. In particular, syntactic proofs

were susceptible t o manipulation, a normal form, and had termination properties similar

t o those for the A-calculus.

2.3.5 Formulas as Types and the Curry-Howard Isomorphism

In the previous section, we discussed how proofs came t o be viewed as syntactic objects.

Alternatively, in Heyting's semantics [26], proofs were given a meaning as abstract con-

structions. For instance, the proof of a sentence A A B is a pair (p, q) consisting of a proof

p of A and a proof q of B. A proof of A + B is a function f which maps each proof p

of A t o a proof f (p) of B. This semantics corresponds closely t o the intuitionistic logic of

Brouwer.

Given this view of semantics and the syntactic view of proofs, we can see a corre-

spondence between a proof (a syntactic object) and the abstract construction that is its

denotation. To complete this correspondence abstract constructions can be formalized as a

system of typed terms describing these semantic objects. The Curry-Howard isomorphism

describes this connection between the syntactic proofs and the semantic objects that they

denote. Once the semantic objects were formalized, formulas (proofs or deductions) could

be identified with the typed terms of the abstract constructions. The typed terms have

an operational side not present in the proof. This operational aspect is closely tied t o

typed terms in computer science. The proofs have a logical aspect not present in the

typed (functional) terms. By establishing the isomorphism between the two, we are able

t o move between the two worlds as needed.

2.3.6 Higher-Order Types and Impredicativity

Russell's initial description of a type theory was naturally higher-order. There are types

of objects and types of types (sets of sets), and so on. The utility of higher-order types

is partially dependent on what one wants t o say and how one wants t o say it. Automath

[8] is first-order; de Bruijn justifies this restriction t o first-order by referring t o additional

axioms (extra-logical notions) that extend the power of the language. Under the proviso

that one is willing t o assume certain propositions as proven, a first-order language can be

extended t o encode quantification over appropriate sets.

However, things being as they are, once a concept exists it is hard t o restrain oneself

from utilizing it and seeing where i t leads. In the Hilbert tradition, the more things that

can be expressed, formalized, and proven in a particular formalization, the closer we are

t o some (uniform) ideal of definition. The formalization of mathematics in a first-order

language extended with appropriate axioms leads directly t o the question as t o what

additional power (if any) or expressivity (if any) is t o be gained by removing the axioms

and going t o a more fully higher-order language.

Because of the desire t o formalize mathematics, and because of the incompleteness

theorems of Goedel [48], higher-order types were explored t o attain the expressivity neces-

sary t o define mathematics in a uniform context in a way that avoided the incompleteness

problems. Hierarchies of types allowed the consistency and meta-logical properties of each

level t o be expressed a t a higher level. The properties of constructive languages, with

higher-order types, were of particular interest: what these languages can express, their

decidability properties, and their consistency properties.

Associated with higher-order types is the consideration on how the system is formed:

is it predicative or impredicative? Predicativity refers t o those systems that are predicated

on predefined assumptions. In contrast, impredicative languages and systems expect the

definition of assumptions in the language itself, reducing the a priori information that

must be assumed. To some extent, each language has a predicative and an impredicative

component, where the predicative component is what primitives are predefined (assumed)

in the language. Languages that are generally referred t o as impredicative, such as the

calculus of constructions, have very few primitive definitions: it supports the concept of

the proposition, but not any particular propositions. Using this notion of a proposition,

one can define (for instance) a proposition that captures the properties of integers, lists,

stacks, and so on. Systems such as Martin Lof's predicative system [33] provide definitions

and behaviors for primitive constants, such as the recursive rules for different constructors.

These rules are then used in building new types and propositions.

In the drive t o formalize mathematics foundationally, the ultimate goal is for a system

that is entirely formalized without any extra-logical components. In such a system, we

do not need access t o beliefs or terms constructed or formed outside the bounds of the

system. Impredicative definitions often seem circular as they don't refer t o anything

outside themselves. However, there are always extra-logical constants: ones tha t we believe

t o be intuitively true or valid in some external sense (see RussellIs comments on Peano

[~ o I) .

As mentioned above, first-order languages may be extended with axioms allowing

higher-order concepts t o be expressed; this extension is obviously predicative. Their p r o p

erties and our understanding of the meaning of the statements produced in such a system

are contingent on our understanding or believing the predicative base. If we go t o an

impredicative system, first-order languages are no longer sufficient. So the conjunction of

higher-order types with impredicativity provides the base for a pure, uniform, formaliza-

tion of constructive mathematics and computer science [14, 15, 29, 301.

2.3.7 The Use of Higher-Order Logic in MF

Taking these developments together has led t o systems, both predicative and impredica-

tive, exploring what portions of mathematics and computer science are definable.

Martin-Lof concluded at one point with the comment [33]:

. . . formalization taken together with the ensuing proof-theoretical analysis effectu-
ates the computerization of abstract intuitionistic mathematics that above all Bishop

has asked for. What is doubtful at present is not whether computerization is possible,
because we already know that, but rather whether these proof-theoretical computa-

tion procedures are at all useful in practice. So far, they do not seem to have found a

single significant application.

Many of the questions confronting researchers today are formal: how t o do a particular

thing in the context of constructive definitions of programming and specification activi-

ties. But, in a sense, the flavor is foundational. While the overall goal of intuitionistic

philosophy was t o expose the foundations of mathematics, it has met a more limited and

fruitful domain in the field of computer science. As Martin-Lof [34] believed, if we view

a program as the design of a method for computing a value, then the construction of a

program (function) is identical t o the construction of a proof of a mathematical object

(value).

The research has been driven from two directions. Looking at the logic itself, some re-

search has aimed at giving a computational meaning to new logical connectives. The logic

may be expanded either in its connectives, its domain of quantification, or both. Similarly,

some research has started with existing computational forms: where a computational form

exists, find a suitable meaning expressed in the logic. Both of these perspectives use the

type system as an intermediary between the logic and the computational form [4]. Using

the type system as an initial point is often confused with the logic, because of the pervasive

viewpoint of the proposition as types.

An orthogonal research area has been to investigate the meta-theory associated with

the connection of a computable artifact, its type, and its meaning in the logic. When we

interpret a X-term as the type A + B, which in a system of total functions is a type

equivalent to the proposition VA.B, we make claims that are outside the logic. If we want

to investigate this claim, we need to look at the connection between the artifacts, rather

than at the artifacts. Systems such as Harper, Honsell, and Plotkin's LF [23] encode this

position in their judgement-as-types paradigm. The kinds of judgement that a system

makes can be treated as types. This view of judgements is reminiscent of the role that

proof theory took on as it became a manipulable artifact. Until this view took root, proof

was external to formalization. With a change in viewpoint, the connection among certain

kinds of proofs, X-terms, and typing could be investigated.

The problem being investigated in this thesis is a generalization of what a proof is

and what kinds of judgements can be made. As logics have become more powerful, more

expressive, and capable of expressing and manipulating larger portions of mathematics and

computer science the unit of interest is not solely an individual proof or judgement. There

is now a need to look at sequences of proofs, where the sequence represents some portion

(whole or part) of mathematics or computer science. Where an individual proof requires

a context of other proofs, a sequence of related proofs may require a prior sequence. I

call the sequence of proofs a theory or theory presentation. A theory presentation is only

well formed if the assumed theory presentations are available, much as a proof is only

well-formed if the assumed proofs are available.

Because of the similarity of theory dependencies to proof dependencies, some systems

have reflected some of the meta-theory of a sequence of proofs into the logic itself. Systems

such as LF [23] define the primitives that allow more complex and interrelated structures

to be constructed. Designs such as the work on structure and representation in L F s [24]

define higher level structures at a significantly more general level, facilitating a formalism

that can be used to describe a system that encodes a meta-theory. Rather than having a

framework that allows a discourse or meta-theory to be defined, this supports a framework

for the direct definition of a meta-theory that may subsequently be used to describe specific

logical arguments. The meta-theory is embedded in the formal system as well as the object

logic.

To explore the role of theories and how they relate to one another, I propose that the

necessary formalism should primarily focus on the structure and relationships of theories.

This exploration can be done most effectively by isolating the structure rather than em-

bedding it in another formal system. Girard suggests that proof theory is the logic of

logic [20]. Research in proof theory focuses on the proofs independent of the content of

what is being proved. Similarly, I suggest that the formalization of theories should be

constructed independent of the content of the theories. Higher-order logics open up the

potential to describe these structures because of their expressivity; this expressivity allows

them to both express more complex artifacts necessitating a greater need for a unifying

formalism as control and suggests the construction of a solution. However, intermingling

the structure with the contents has the effect of confusing the issue as to what exactly is

being referred to. Moreover, the needs of theory presentation and structure may not be

the same as the needs of the theory contents itself.

The process of generalizing from a proof to a sequence of proofs, and from a proof

context to a theory environment introduces a new object of discourse (the structure) and

abstracts away irrelevant detail (the particular proofs). Isolating the treatment of theories

from the treatment of their contents focuses on the different requirements, judgements,

and roles of the two. The research described in this dissertation focuses on the required

judgements and role of theories, relying on a suitably expressive underlying logic to express

the contents of the theories. The correctness of the theories produced is assured by the

constraints of the underlying logic. The correctness of the theory connections is assured

by the formalization of the meta-theory, which has been shown t o preserve the correctness

of the underlying logical argument.

2.4 Goals of This Research

As mentioned in the previous section, this thesis examines a new metaphor for describing

logical arguments.

When the focus of a logical argument is on how the set of proofs is organized, the

structural choices are made explicit t o the user. Rather than starting from the notion of a

proof, the metaphor is inverted and the argument starts from the top: what a collection of

proofs is intended t o represent or denote, independent of the nature of a particular proof.

The question that I look at is not how an individual construction (proof) is formed or

other properties of a construction per se. There is substantial work on supporting proof

construction a t present, in several variants of constructive type systems, with varying

properties.

Dummett [18] states that what we know is entirely determined by use.

The meaning of a mathematical statement determines and is exhaustively deter-
mined by its use. The meaning of such a statement cannot be, or contain as an
ingredient, anything which is not manifest in the use made of it, lying solely in the

mind of the individual who apprehends that meaning.

So we can legitimately ask t o what use we want t o put these systems. My goal is t o

answer questions such as:

1. What theories d o I require t o make a particular theory well-formed?

2. When can I judge that a theory reference (dependency) has been discharged?

MF uses the structure of theories as well as the properities of the underlying logical

framework t o judge when a theory presentation is well-formed and when theory references

have been discharged.

Some of these questions rely on a notion of persistence and reusability. The goal is

not merely t o serialize a set of propositions in some order specified by the book as in

Automath, but t o encode this order and dependencies such that the order becomes an

elementary object in itself. This tangible representation of the order should allow the

exposure of regularities in structure much like the regularities exposed via Gentzen's and

Prawitz's tangible representation of proof theory.

In that context I suggest tha t the elementary objects be theory presentations and

theory environments. The role of theory environments in this sense breaks into two aspects:

1. Definition: the environment defines implicit abstraction.

2. Use: the environment provides any assumptions required for use.

The role of theories is t o collect the pieces of information of the theory, in whatever form

it is presented, and t o maintain that unity.

I am interested in constructing presentations in a particular structured way that will

preserve relationships among theories such that those relationships can be used t o dis-

charge dependencies or assumptions. This structure would also accommodate theory

changes, both those that maintain relationships among presentations and those that don't,

and a framework t o accommodate state changes in dependencies such as versions.

This approach was suggested by the structural treatment of theories in Clear [lo, 111.

A similar structural approach is also being used by Harper, Sannella and Tarlecki [24]

t o describe a treatment and meta-theory for theories They are working on structuring

theories in LF, which itself is a means to uniformly express the meta-theory of an object

logic via encoding. The approach of MF is distinguished from theirs in the following

characteristics:

MF establishes an ordering on the objects induced by the structure of the theory

(how it was built).

MF allows limited higher-order quantification over theories.

MF uses the order of theories as constraints t o identify when a theory dependency

is discharged.

a MF uses a database for the persistent portion of the design process. This persistent

database also allows assumptions to be discharged with preexisting theory presen-

tations. These theory presentations can be-viewed as expanding the predicative base

of the discourse for a particular argument.

MF is based on a particular logic (the theory of constructions)[l4]. However, the

initial goal of the research presented here is to explore the particulars of directly

manipulating theories through their structure. The general mechanism of encoding

and treating the object level indirectly has an associated cognitive cost of sometimes

making it difficult to understand the distinction between the objects and their meta-

theory. By abstracting out the structure we hope to better understand it's role in

theory development.

I use a formalization based on the inheritance hierarchies of A&-~ac i and Smolka, and

an associated logic based on Smolka's generalization of inheritance hierarchies. Together

these allow the user to describe, manipulate, and use the theory presentation that comprise

a particular discourse. They encode the structure of the logical argument, and allow the

argument to be recreated with the required theories.

This research presents a promising solution to organizing this particular kind of knowl-

edge (the discourse). I see this framework as a first step towards a full system to manage,

construct, and organize theory presentations such that the presentations can be (re-)used,

shared, contrasted, and validated in the relevant theory environment. Rather than view

the process of constructing theories as isolated from the process of making specifications or

statements about computational entities, the goal is to elaborate and manipulate explicitly

the process via the structure it imposes.

Chapter 3

Examples of Presentation Construction

and Manipulation

MF defines a language to manage sequences of statements in a logical framework. For the

purposes of the definition of MF we chose the Calculus of Constructions as implemented

in LEG0 [31] [32], although any logical framework with certain properties will do (see

Chapter 1).

The goal of this chapter is to give an understanding of the components of MF by intro-

ducing some terminology that will be used throughout the description of MF, presenting

an example of an MF style derivation, and showing how an MF derivation is translated

into statements in the underlying logical framework. The full definition of MF is given

in Chapter 4. The purpose of the MF language is to provide structure to unstructured

collections of LFstatements. Without going into the full details of the MF language we let

the term "MF statement" refer to any legal term in MF that denotes an LF statement '.
MF is defined in three levels, corresponding to the abstractions introduced (see Figure

3.1). Figure 3.1 shows the construction of two theories (A and D) from theories B anc C.

The Level 3 operators (combine and extend) correspond to Level 2 operators (U and 0).

LF statements are given identifiers (c;) and values (x;), and are accessed in MF through

feature identifiers (L ;) . The lowest level (Level 1) maps identifiers to LF statements re-

sulting in a flat context, supporting only /?-reduction. The next level (Level 2) introduces

the concept of a sequence of statements, supporting sequence combination using theory

'I am using the term MF statement to cover any of: identifier symbols for LF encodings (c,), type
symbols for the c, (&), and feature symbols (L ;) , that refer to c, . All of these MF expressions are interpreted
as LF statements, although they occur at different levels in the MF system.

Structured Theories

A = combineB C

D = extendA [(~ l , c1, xi), (~ 2 , c2, %a)]

I

Sequences of Statements

BUC

A @ L 1 C) C1, L2 C) C2

I

LF Statements

Figure 3.1: High Level View of MF

presentation constructors (structured theory operators). Each statement in a sequence is

identified by an MF identifier, called a feature. The top level (Level 3) introduces the

concept of a named theory presentation, allowing sequences of statements to be named

and used in the construction of new theory presentations and supporting queries of the

persistent structure theory presentations. Each level is interpreted by the structures of

the next lower level, so that ultimately MF theory presentations are interpreted by the

underlying logical framework.

An MF statement is a reference to an encoding of a legal statement in the underlying

logical framework. In the LEG0 implementation of the Calculus of Constructions, the

legal statements include propositions, types, theorems, and definitions. In an LF, a se-

quence of legal statements may be used to describe theories, statements about theories,

specifications, properties of specifications, etc. These statements become part of the LF

context, and the L F may be regarded as having been extended with these statements, prw

viding a new environment for further definition. Statements introduced in this extended

L F may refer t o any statement in the context. However, the L F context is global and flat:

all statements are introduced into a global context, accessible t o all, without regard t o

dependencies.

Contrary t o this flat environment, when a sequence of L F statements is introduced,

the intent is that some statements belong together, and when taken together describe a

meaningful theory. In M F we can name this sequence so that when we reference the name

we will access the entire sequence. We call this named sequence of statements a theory

presentation. For example, the statements introduced in a theory presentation (A) may

refer t o other LFstatements (coy ..., cj). In this sense, A is only meaningful in the L F when

the L F has been extended with the necessary LF statements co, ..., cj, assuming that the

statements co, ..., c j themselves are meaningful in the LF.

However, it is not really sufficient t o extend the LFsolely with the required statements.

If the intent of a theory presentation is t o collect the statements necessary t o describe a

theory, we should not separate a statement from the other statements occurring in a

theory presentation. To express this requirement, M F defines a structural environment

for a theory presentation. The strvctuml environment required by a theory presentation A

is the collection of theory presentations in which all the L F statements required by A are

introduced. The structural environment of a theory presentation A denotes the portion of

the flat, global LFcontext that is required by the statements defined in A as well as those

that are dictated by the theory presentation in which each c; is introduced. The structural

environment is an MF structure that is mapped to the flat L F context, as required.

In MF a theory presentation is defined by identifying the introduced L F sequence

of statements and the structural environment required by these statements. Newly intro-

duced LFstatements can make use of any statements present in the LFcontext determined

by the structural environment and are presumed t o be correct assuming the statements in

the context are correct (recall that ultimately the correctness is checked by the underlying

LF). The M F relationship of a theory presentation t o another is only captured at the

level of theory presentations, rather than at the level of M F statements or LFstatements.

To demonstrate this: an LF statement may reference another L F statement directly by

referring t o its L F identifier. If we refer t o the LF identifier of the statement co by id(co),

statement cl may reference statement co by referring t o id(co) in its L F definition. Now,

co may be introduced into MF in theory presentation A, and cl in theory presentation

B. In that case, we have the dependency that B requires A. We d o not, however, have

any MF dependency on the individual statement as identified by the LF identifier or an

MF statement that identifies an individual statement. This form of dependency relation

means that the correctness of the dependency relation in the LF is dependent on a correct

identification of which theory is required.

In the logical framework there is no explicit distinction between the context for a

sequence of statements and the statements themselves. A statement is introduced in a

particular context (the statements and assumptions known prior t o the introduction of

the statement). After the statement has been introduced, the context has been extended.

MF provides this missing structure and connection between the introduced statements of a

presentation and its context by constructing a persistent hierarchy (partial order) of theory

presentations relating all presentations t o their environments. The partial order is defined

as A < B if A is in the environment of B, meaning that B is an extension of A. We use the

terms structural environment and environment interchangeably, reflecting the structured

nature of MF environments in contrast t o the flat contexts of LF. The presentation base

refers t o the persistent hierarchy. The structural environment of a theory presentation A

is the downward closure of the presentation A in the presentation base, and determines

the required theory presentations for A.

Once a theory presentation is defined and its relationship t o other theory presentations

recorded in the presentation base, i t is given a meaning based on the interpretation it is

given in the underlying LF. The meaning given t o an LF encoding of an LF statement is

the meaning given by the LF t o the translation of the statement. The meaning given to a

sequence of encodings of LF statements (co, - - - , c j) is the meaning given t o each statement

in order. The meaning of a theory presentation in the empty environment is simply the

meaning given t o the sequence of statements that compose the theory presentation. The

meaning given t o a theory presentation in a non-empty environment is the meaning given

t o the environment (preserving the dependencies specified in the partial order, such that

if A < B then the meaning of A must be determined prior t o the meaning of B, since the

statements in B may make use of any statement in A), followed by the meaning given t o B.

Ultimately, the meaning of a structured MF theory presentation is the meaning given t o the

flat sequence of statements that the theory presentation denotes in the LF, as generated by

the (informal) rules above. We can manipulate the theory presentations in the presentation

base so long as the meaning given t o the theory presentations is not altered, allowing us

t o combine environments in a variety of meaning-preserving transformations.

3.1 The Form of the Underlying Logical Framework State-

ments

In order t o support some of the theory constructors of MF, we assume that the statements

in the logical framework have a specific form. While a logical framework may include a

variety of statement types, they all can be translated into a definition, having the following

form:

(L F identifier, [Context, Construction, Type])

This pair captures all statements that may be made. All statements must have an iden-

tifier identifying the context of assumptions under which this definition was made, the

construction (or proof object) the identifier denotes, and its type. Not all the components

are required. For instance, the L E G 0 declaration

[A : Prop]

asserting that we assume the existence of a Prop referred t o by the identifier A, would

have the pair (A, [n, 0, Prop]).

A sequence of L F statements that are t o be encapsulated into a theory may have a

hypothetical context. This context holds assumptions in the form of declarations. This

context is intended t o be discharged at some later time. We assume that sequences of

statements having a context of this type have been translated such that the hypothetical

context is defined in the context of each statement, as in the following example.

[A : Prop] The hypothetical component.

[B : A- > A]

[C : A]

Pl=Ml:Tl Aproofobject.

P2 = M2 : T2 A proof object.

.. .
Pn = Mn : T,, A proof object.

The above context and proof objects can be translated into the following proof objects,

equivalent to the proof objects above.

. . .

Pn[A: Prop][B: A- > A][C: A] = Mn : Tn

A consequence of this assumption is that we can't really insure linguistically that a

sequence of assumptions all be discharged from one theory, although MF will support the

application of a theory in the form above to another theory. I.e., there are no existing

constraints that would require that A, B, and C above are all discharged from the same

theory. A discussion on this limitation and planned extensions are discussed in Chapter

6.

3.2 MF Constructions and the Structural Environment

To construct a theory presentation we need to identify the required structural environment

and any introduced L F statements. We define the structural environment of a theory

presentation according to the way that the theory presentation was constructed. The L F

statements are recorded using features.

To distinguish the MFstatement from the ZF statement, to allow them to be accessed

independently, and to support P-reduction in MF, each MF statement is represented as a

feature of a theory presentation. For example, if we introduce the MF theory presentation

A, intended t o represent the sequence of L F statements co, ..., cj, each c; is represented as

a feature of the theory presentation A having a feature identifier L;. In the presentation

base, LF statements are referred t o by their feature identifier2.

In MF the four methods of theory construction (and an abbreviated syntax for each)

are:

Combine: combine 2 (or more) theory presentations into one theory presentation.

C = combine A B

Combining two theories results in a new theory presentation that is the result of

combining the meanings of the two theories. The simplest notion of the combination

of two theories is simply concatenation. The new theory presentation C will refer

t o this combination.

Generalize: two (or more) theory presentations can be generalized, constructing a

new theory presentation that is the intersection of both. If a theory presentation

is viewed as a flat sequence of statements including the statements in its context,

this intersection is the sequence of statements that are common t o both theory

presentations. If a theory presentation is viewed as a structural environment and

a sequence of newly introduced statements, the generalization is the intersection of

the two structural environments: i.e. the common structural environment t o the

two theory presentations.

F E generalize D E

If D is a combination of A and B , and if E is a combination of B and C, then the

common structural environment of D and E is the theory presentation B. The new

theory presentation F will refer t o this generalization.

2Because features ultimately map to LF statements with LF identifiers, we can think of the feature
identifier as the LF identifier. And, if two arbitrary theories are to be allowed to be combined in arbitrary
ways, this 1-1 correspondence is appropriate: both the feature identifier space and the LF identifier space
require uniqueness. However, to leave open the possibilities of re-using the same construction in different
theories, outside the theory presentation structure, and also to leave open the possibilities of extending
MF to allow for multiple uses of features, the two name spaces are distinct.

Extension: an existing theory presentation can be extended by introducing new

- statements.

B extend A [(L;, c;, xi), * , (~ n , Cn, xR)]

Features L; identify in MF the indicated LF statement c;, with the value of x;.

The value x; is assumed to have the LFencoded form [Context, Construction, Type]

described in the previous section.

Extension corresponds to adding more statements to a theory presentation. The

new theory presentation B is said to have features L;, ..., I,, each denoting an LF

identifier ci, - . . , c,, having values xi, . - , s,, respectively.

Instantiation: an existing theory presentation can be instantiated by applying the

statements of one to selected statements of another. The indicated statements of

A (designated by the list [LA,]) are applied to the corresponding statements of B

(designated by the list of [L~,]) . In the newly constructed theory presentation, the

new statements have feature identifiers specified by the list [LC,], and each has a new

LF identifier cl, . . , c, respectively.

C r instantiate A B[LA], . . . , LA,] [L B ~ , . . . , LBn] [L C ~ , - , L ~ ,] [c ~ , . . . , c,]

To give an intuition for instantiate, we will have to use a slight abuse of notation.

If we assume that LA, refers to the i'th feature defined in the theory presentation A,

and similarly for B, and LA,(L~,) is a term that will be given an interpretation in

the LF through /3-application, then the the above construction can be thought of as

defining a new extension to the combination of A and B, where the extension has

features defined by the triples:

(LCI ~ 1 , LA1 (LBI ' ' 7 LB,))

(LC2 , C'2, LA2 (LEI ' ' ' LB,))

. . .
(L C ~ , C ~ , L A ~ (L B ~ , - " , L B ~))

When given a meaning in the LF this will result in the application of the LF state-

ments denoted by the indicated features of A: L A , , . - ., LA, to the indicated features

of B: L B ~ , . . , LB,. If the indicated statements are so constructed that this a p

plication is type correct, meaning tha t the statements denoted by LA, , . , LA, are

abstracted on assumptions of the types denoted by the statements LB, , . . , LB,, this

will result in the discharge of the specified assumptions.

The theory presentation B is in the structural environment of A (B < A) if

1. A = combine --. B - . - o r A -= combine . - - C ... and B < C.

Or:

2. A E generaliie C D and B < C'and B < D

Or:

3. A ~ e x t e n d B - . - o r A ~ e x t e n d C - - . a n d B < C

Or:

4. A r instantiate B C. - . or A = instantiate C B or A = instantiate D E and

B < D o r B < E

3.3 The Presentation Base

A presentation base is a persistent structure composed of identifiers bound t o sequences

of features in a structured hierarchy that determines the structural environment for each

theory presentation.

Presentation commands allow a new presentation t o be added t o the presentation base

by specifying the introduced statements, the feature identifiers each statement will be

known by in MF, and the required structural environment using presentation constructors

(combine, generaliie, extend, instantiate). Presentation constructors identify the

direct ancestors (and direct descendents) of a theory presentation in the partial order,

and hence a location in the partial order.

The presentation base determines all the theory presentations that have been con-

structed (named). It defines a closed world of existing building blocks, and how they are

all related. Because the structural environment of a theory presentation identifies how

the L F context will be extended, we can think of the theory presentations as the building

blocks for the context. Specifying which building blocks are required determines where a

new theory presentation will reside in the partial order. The hierarchy of these building

blocks gives a map showing which blocks are needed to (re)build any piece. For instance,

the construction that combines two sequences into one sequence can be used to construct

a new theory presentation by the presentation command:

A E combine B C

Now A is a new theory presentation identifier with no introduced statements, with a

structural environment of B and C. In the partial order, the new theory is related to its

constituents by B < A, C < A and A is a direct descendent of both B and C. To give

a meaning to A in LF, we would give a meaning to B and then to C. If B had been

constructed by the presentation command (So is the empty theory presentation):

B = extend SO[(LI, CI, xi), (~ 2 7 C2? XZ)]

and C by:

C - extend SO[(L~, ~3,53) , (~4 , ~ 4 , 54)]

the presentation base would look like the one shown in Figure 3.2.

A presentation command modifies a presentation base as shown in Figure 3.2, adding

new relationships. Presentation constructors may be used independent of a presentation

command. When used independently, a presentation constructor expression describes how

a presentation is constructed and the meaning associated with such an expression is the

theory presentation whose structure matches the indicated construction. For instance,

the presentation constructor expression combine B C above describes the presentation

A: this is how A was constructed, by combining the meanings for B and C. The the-

ory presentation A can be referenced either by the presentation identifier (A) or by an

expression that matches its construction: combine B C. Because the meaning of A is

a consistent extension of the meanings B and C , the theory presentation A can be used

anywhere B or C can be used. So, it we wanted to know all theory presentations that

were consistent with (for example) C , A would be one of those theory presentations.

Figure 3.2: Presentation Base for A = combine B C

The presentation base can be accessed in several ways:

1. It (or parts of it) can be used as a structural environment for introducing new

sequences and constructing new presentations bound to presentation identifiers.

2. It can be used to "reconstruct" a sequence of LF statements for any identifier for

interpretation and type checking in the LF.

3. Any identifier in the presentation base represents not only the sequence of LF state-

ments that compose it but also the extensions to that sequence. These are all the

consistent extensions for any MF theory presentation. A presentation expression de-

notes all theory presentations whose construction is consistent with the construction

specified in the presentation expression. These can be viewed as all theories that

have a common context and at least the indicated introduced statements. So that,

in the fragment above, B denotes B and combine B C, since combine B C is a

consistent extension of B.

3.4 An MF Derivation of a Presentation Base

We will use the MF calculus to construct the examples from Chapter 1, to reconstruct the

statements, and to query the resulting presentation base.

3.4.1 Propositional Logic Example

We assume that we have an initial presentation base with only the empty theory (So) and

an environment mapping identifiers ci to LF encodings 3, such as

co The And proposition

cl The Or proposition

cz The Imp1 proposition

c3 The A theorem

cq The VI theorem

cg The V, theorem

etc.

For instance, the And proposition would be encoded as:

(And, co, [[A : Prop, B : Prop, C : Prop], (A + B + C) + C, Prop])

This specifies that And is the feature identifier, co is the LF identifier, [A : Prop, B :

Prop,C : Prop] is the context required for this constructions, (A + B -+ C) + C is

the construction, and Prop is its type. Because we are not concerned with the actual LF

values, we will refer to the LF encodings for an identifier c; as v;

We can construct the theory Proplogic by

Proplogic = extend So [(And, co, vo), (Or, cl, vl), ., (Arrow, c6, v6)]

This states that the theory Proplogic is an extension of the empty theory, with the

features And, Or, etc. The features And, Or, etc. are bound to the LF identifiers which

in turn are bound to the LF statements for the associated LF proposition. For example,

And is bound to the LF identifier co, which is bound to the value [[A : Prop, B : Prop, C :

Prop], (A + B + C) -+ C, Prop]. MF is not concerned with the particulars of an

LF statement, only with recording the relationship that statement has to the theory

presentations.

3Each c; represents a specific statement in the logical framework, and is used both as the MF identifier
and as the LF identifier for the associated statement.

To continue, we could introduce Naturalnum by:

Natumlnum E extend So [(Nut, c7, u7)l (zem, cs, us), (succ, c9, us)]

And the theory Booleans:

Booleans s extend So [(Bool, ~ 1 0 , ulo), (True, ell, ull), (False, c12, u n)]

If we assume that the values for the statements co, cl, . , ce are organized with a

context as specified in Section 3.1 they can be applied in the LF. We can then instantiate

the theory Proplogic to the Booleans by:

PropBools -= instantiateProplogic Booleans[And, Or, Impl, A, VI, V,, AmwJ[BoolJ

[AndBool, OrBool, ImplBool, ABool, VIBool, V, Bool, + Bool]

[band, bor, bimpl, bA, bVl, bV,, b +]

This will apply the indicated features of Proplogic ([And, Or, Impl, A, VI, V,, Arrow]) to

the feature Bool in Booleans resulting in a new theory presentation with features AndBool,

OrBool, ImplBool, ABool, VfBool, V,Bool, and + Bool whose statements are specialized

to the Booleans through the witness Bool. This instantiation is only meaningful if the

statements of Proplogic are abstracted on an LF statement that has the same LF type as

the statement associated with Bool in the theory presentation Booleans. Because MF does

not know about the internal structure of any LF statement, instantiation has an ordering

requirement: substitution is accomplished by LF application rather than direct substitu-

tion. This means that in the application above, the statement associated with the feature

Bool will be substituted for the first abstraction of the features And, Or, Impl, A, Vl, V,.

The example in Chapter 1 was not organized in this way, although it can be. (We present

a more detailed example of instantiation later in this chapter.)

3.4.2 The Group Example

Next we present the complete example from Chapter 1:

ThA rit y

ThList

Th A IgSys

ThEquality

ThPair

ThGrO

ThGroupoid

ThSGrO

ThSemigroup

ThMonoidO

ThMonoid

extendSo[Arity , cis, uls), (ZeroAr, cis, v16), (SuccAr, c17, v17)]

I extendSo[(list, cis, ~ 1 8) ~ (Nil, c191 ~ 1 9) ~ (Cons, ~ 2 0 , vzo)]

= extendSo[(arityZero, c21, vzl), (arityN, ~ 2 2 , v22), (Omega, c23, ~ 2 3) ~ . .]
= extendSo[(Eq, c321~32)l (dl ~ 3 3 , v33)]

= extendSo[(And, c a , v34), (Pair, ~ 3 5 , v ~ ~)]

combine ThArity ThList ThAlgSys

= extend ThGrO[(cdot, ~ 3 6 , v ~ ~)]

= combine ThGroupoid ThEquality

= extend ThSGrO[(Assoc, c37, v37)]

= combine ThSemigroup ThPair

= extend ThMonoidO[(Ident, C38, v ~ ~) ~ (LeftId, ~ 3 9 , v ~ ~) , (Rightld, c40, v ~ o) ,

(Identity, c41, v4i)I

The above MF derivation gives the Presentation Base shown in Figure 3.3.

We can now extend this. In Chapter 1 we defined 3 propositions that condense what

we need to provide to demonstrate that we have a Groupoid (proposition (I)), a Semigroup

(proposition (2)), and a Monoid (proposition (3)) . If we want to construct a particular

groupoid, called Groupoidl, we would have to provide a binary operator, show that it is

binary (of the type cdot). Assuming that ~ 4 2 is an encoding of an LF statement demon-

strating a proof object for the proposition cdot, and that c43 is one demonstrating it is

binary (of the type Groupoid), the following will accomplish this:

Groupoidl extend ThGroupoid [(aCdot, 1242, v4*) (GroupoidCdot , ~ 4 3 , v ~ ~)]

We may then wish to extend this to a semigroup by showing that it is associative (assuming

the cq4 is a proof object of the type Assoc, as defined in the complete context for this

Figure 3.3: Structure of the Presentation Base

example in Chapter 1):

IntemedGrp = combineGroupoid1 ThSemigroup

AssocGrpl E extendIntemedGrp[(PrfAssoc, ~ 4 4 , v ~ ~)]

However, while AssocGrpl is now a groupoid with an associative binary operator and so is

a semigroup, it has no relationship to any theory that makes statements about semigroups

in the Presentation Base. (See Figure 3.4.)

Instantiation is the means by which LFstatements introduced in a theory presentation

can be applied to other statements intended to discharge specific dependencies. Let the

theory presentation SemiGrpStmts be a theory composed of such statements. Proposition

(2) (which is not included in any theory) states that something is a semigroup if it has

a substructure that is a Groupoid and the operator is associative. To assure that all

statements are indeed about a semigroup, each statement will be contextualized with the

necessary assumptions:

Cs, [A : Prop] [b : cdot][g : (Groupoid A cdot)] [p : (Assoc A cdot)] Statement Body.

Cs2 [A : Prop][b : cdot][g : (Groupoid A cdot)][p : (Assoc A cdot)] Statement Body.

SemiGrpStmts G extend ThSemigroup[(~,, , c,, , v,, ,), (L,, , c,, , v,,), - - -1

Assuming that GroupoidCdot is of the type (Groupoid A cdot), we can instantiate Semi-

GrpStmts by:

SGrp E instantiate SemiGrpStmts Groupoidl [L,, , is,, . -1 [A aCdot GroupoidCdot]

[NL,], NL,,,.--] - - -
SGrp is now instantiated with all the statements from the groupoid to discharge its de-

pendency on a group.

ASGrp G instantiate SGrp AssocGrpl [NLS1 , , NbS2, . . -1 [PrfAssoc] - - -

We have an intermediate step that serves to name the combination, as a consequence of the decision
to only allow named constructions. This can be fairly cumbersome but can be obviated by a macro
constructor that performs the two steps automatically. Or, more generally, MF could allow local naming
in some contexts. This issue will be discussed more in extensions and conclusions.

ThGmupoid

/ ThSemigmup

Figure 3.4: AssocGrpl in the Presentation Base

ASGrp now has all the semigroup dependencies discharged. This approach will allow

SemiGrpStmts t o be instantiated with any number of specific semigroups. The resulting

Presentation Base is shown in Figure 3.5.

We glossed over a few details in the discussion above. Where did the context element

[A : Prop] come from? How is it discharged? Is there a relationship between the A

in SemiGrpStmts, SGrp, and ASGrp? In general, theories are dependent on some set

of assumptions, which may or may not be discharged. If we discharge a dependency

[A : Prop] with another [B : Prop], it is still dependent on the assumption tha t there is

an arbitrary proposition that we will call B. More than one theory may be dependent on

an arbitrary 3. How can we express that theories are dependent an an arbitrary B, but

that the B must be the same for all? We address this restriction next.

3.4.3 Continuation of instantiate example

In Chapter 1 we gave a general context that specifies the assumptions needed without

committing t o any proof object. There may be more than one representation of a theory

of list, or of arity, for example. A context such as the one in Chapter 1 only commits

to the type. If we have a common context of expectations, we can express a conditional

theory, where we expect t o discharge some or all of the conditions later.

For instance, we might express the dependencies of a theory presentation (i-e. the

statements of a theory presentation) by a context t o be discharged. We can define L F

encodings for ~ 5 0 , ~ 5 1 , ~ 5 2 formulated with a common context expressing this dependency:

~ 5 0 = [A : Prop][L : Prop + Prop][C : A + (L A) + (L A)][N : (L A)]. - -
C51 = [A : Prop][L : Prop + Prop][C: A + (L A) + (L A)][N: (L A)] . . .

c52 = [A : P r o p] [L : P r o p + P r o p] [C : A + (L A) + (L A)] [N : (L A)] . - a

Now we can construct a theory with these statements without any dependencies on

the theories that might be used t o discharge these assumptions in each context:

The [A : Prop] in the context above is an assumption that must be discharged, along

with the expectation that a witness for L, C, N will be provided. We will alter the definition

of ThList t o provide a consistent theory for use in instantiation:

c18 = list [A : P r o p] [B : P r o p] (A + B + B) + B + B

c19 = Nil [A : Prop] [B : Prop][C : A + B + B] [N : B] N

cz0 = Cons [A : Prop] [a : A][I : list A][B : Pmp][C : A + B + B] [N : B]

(C a (1 B C N))

This version of the theory ThList has all its statements dependent on A such that all

can be applied meaningfully. So if we applied them all t o the proposition Nut, we would

be referring t o a list of Nats.

How do we discharge the dependencies of the theory presentation S with the witnesses

of ThList while preserving the overall dependency on an arbitrary A? We continue the

example by providing a theory presentation whose sole purpose is t o capture the role of

the common hypothetical dependency, allowing us t o provide a common dependency on

an arbitrary A.

C53 = A (O,O,Prop)

AHyp = extend So [(FeatureA, ~ 5 3 , v53)]

Now we can discharge the dependency in ThList by:

ThListDisch = instantiate ThList A H y p [list, Nil, Cons] [FeatureA] [Alist, ACons, ANid

[al, ac, an]

Similarly, we can discharge the dependency in 3

SDisch = instantiate S A H y p [Xone, Xtwo, Xthree] [FeatureA] [axone , ax two, axthree]

[aXo, aX1, ax21

These two theories only differ from their parent theory in that they are no longer

dependent on a witness for A. We can now instantiate SDisch with witness from ThList-

Disch:

T r instantiate SDisch ThListDisch [axone , aXtwo, axthree]

[Alist, ACons, A Niy [nXone, nXtwo, nXthree] [aLXo , aLXl , aLX2]

The new presentation base structure is shown in Figure 3.6.

so

-
S AHYP ThList

(A :Prop)

SDisch ThListDisch

T (statements of

Figure 3.6: Instantiation with a Common Dependency

Sis different from a theory that is specifically dependent on a particular list theory: it

can be used with a variety of theory presentations with LF statements of the appropriate

types. The resulting theory presentation T has each of the statements of S specialized to

the witnesses provided by the theory ThList via ThListDisch. The introduced statements

of ThListDisch are:
Alist (list (FeatureA))

ACons (Cons (FeatureA))

ANil (Nil (FeatureA))

The introduced statements of SDisch are:

axone (Xone (FeatureA))

axtwo (Xtwo (FeatumA))

axthree (Xthree (FeatureA))

The introduced statements of T are:

nXone (axone (Alist Acons A Nil))

nXtwo (axtwo (Alist Acons A Nil))

nXthree (axthree (Alist Acons ANil))

3.4.4 Generalize

Lastly, we may construct a series of theory presentations whose structure is too specific.

It may be that we did not analyze the structure of our presentation well enough to identify

all the common subcomponents and ended up with a hierarchy that does not represent

the commonalities between theory presentations that are related semantically. As an

example, using the theory presentations Proplogic and Booleans, we might construct the

theory presentation PropBools as shown earlier. But perhaps we want to extend PropBools

with some proofs about the behavior of A and V, for instance DeMorgan's laws, calling

this new theory presentation PB'. We might also wish to introduce a set of statements

capturing resolution (PB"). Ideally, we would like a structure that captures them both as

extensions of a common theory presentation, as in Figure 3.7.

However, if we constructed the three theory presentations via the following sequence

so

PropLogic Booleans

PropBools

Resolution El
Figure 3.7: Ideal Presentation Base Structure

Figure 3.8: Presentation Base with Multiple Extensions

of presentation commands:

PB = instantiate ProplogicBooleans(- . .) (. . -)
r instantiate ProplogicBooleans(- - -) (- . .)

PB' = extend='(~ e ~ o r y a n ' s ~ a w s)

P?" = instantiate Proplogic Booleans (. - -) (. - -)

We would get a presentation base that looks like the one shown in Figure 3.8.
-1 -11

In this second case, there are three distinct identifiers (PB, PB , PB) that all denote

the same semantic element. It is now much harder t o see that PB' and PB" are both

extensions of the same central theory.

Having constructed this somewhat non-ideal structure, is there any way t o recapture

the more general structure? The MF constructor generalize allows us t o construct a new

so

PropLogac Booleans

Figure 3.9: Presentation Base after Generalize

theory presentation that is the intersection of the two structural environments.

- 1 A N
Generalization = generalize PB PB PB

This new theory presentation represents a presentation that is composed of all the com-

ponents that two (or more) theories have in common. A generalization adds no new

information (no new L F statements are added); rather it adds a structural element that

clarifies in what way the theories are related. See Figure 3.9.

3.5 Querying the Presentation Base

Besides providing a repository for theory presentations for purposes of construction, a

presentation base also serves as a (semi-)permanent library of theory presentations. To

support reuse of theory presentations, we need t o be able t o retrieve theory presentations

easily. We have already seen that we can retrieve a theory presentation by accessing

its identifier. However, there are several ways in which a theory presentation may be

described :

By its theory presentation identifier.

By the way it was constructed.

By the features it includes.

These presentation expressions are interpreted in the structure defined by the pre-

sentation base. When interpreted as a query, a presentation expression really asks the

question: are there any theory presentations that have been constructed (named) that

match this description. Because the presentation base primarily records extensions, the

answer to a query is really a set: the set of all theory presentations that are consistent

extensions of the given presentation expression.

In our presentation base constructed in this chapter (see Figure 3.3), the presentation

expression combine ThArity ThList matches the set: { ThGrO, ThGroupoid, ThSGrO,

ThSernigroup, ThMonoidO, ThMonoid }. In the presentation base, this set has a LUB: the

theory presentation ThGrO. This theory presentation is representative of the set: all other

members of the set are consistent extensions of ThGrO. This same set can be described

by the features it includes. The expression

[(Arity, cia), (ZeroAr, cls), (SuccAr, c17), (list, cis), (Nil, cig), (Cons, c2o)

lists all the features and their values as determined by the Level 1 identifier and asks for

the set of theory presentations in which all these features are defined. (Not all the features

need be listed.)

When constructing new theory presentations, the structural environment can be spec-

ified using any presentation expression. So in a new theory presentation, if a dependency

requires both a list theory and an arity theory, then the presentation command

N r extend (combine ThList ThArity) (- . -)

will evaluate the expression (combine ThList ThArity) returning the representative mem-

ber (if i t exists) of the set of the consistent extensions of the theory denoted by the ex-

pression combine ThList ThAn'ty if it exists. In our presentation base, this would be the

set ThGro, ThGroupoid, ..., with the representative member being ThGrO. This would

position N as an extension of ThGrO. While it would be feasible t o construct the combi-

nation "on the fly". as i t were, E/IF does not do so. Because of the persistent nature and

the requirement that constructed objects have names, unnamed "local" objects are not

defined.

Chapter 4

MF Definition and Semantics

This chapter presents the formalization of MF. MF has three levels of description. At the

base MF relies on a logical framework (an LF). On top of the LF, MF describes a space of

encodings of LF statements (Level 1) . Built on this layer, MF defines a space of structured

sequences, allowing sequences of LF statements t o be constructed by combining other

sequences (Level 2). At the top, MF distinguishes between sequences of LF statements

that are describable from those sequences that have actually been specified, and checked

in the LF (Level 3). There are three classes of judgements used in the description of MF,

corresponding t o the three levels. The M S C t e m judgement identifies Level 1 statements.

The MFsort judgements identify Level 2 statements. The MFsort judgements are divided

into four forms, reflecting the specifics of construction. The MFtheory judgement identifies

Level 3 statements. Figure 4.1 shows an abbreviated sequence of theory presentation

definitions: Theory T l introduces an extension of the empty theory, So, with features 11

and LZ, mapping t o LF identifiers and values c l , X I and cz, x2 respectively. This results in

the Level 2 environment being extended with the value for T I (defined in Section 4.2) and

the Level 1 environment extended with the mapping between the LF identifiers and the

LF values.

In this chapter we define the syntax and semantics of Levels 1, 2, and 3, and show the

relationship between the levels.

The full set of judgement forms of MF are:

1. MSCterm These terms are the Level 1 terms that directly represent LF statements,

or applications of LF statements. MSCterms mediate between the LF and Level 2

Level 3
I I

Tl = extend SO (LI, CI, XI), (~ 2 , ~ 2 , 5 2)

T2 = extend So (~ 3 , c3, 23)

T3 E instantiate T2 TI [~3] [LI , ~ p] [~ 4] [c4]

Level 2 4 Modify the Level 2 environment
I

--- -- -

Level 1 Modify the Level 1 environment

u1 (cl) = 21

u1 (c2) = 22

u1 (c3) = x3

u1 (c4) = [T3.~4]2z~2 = [T ~ . L ~] ~ u ~ ([T ~ . L ~] ~ ~ u ~ , [T ~ . L ~] ~ u ~) = C ~ (C I , ~ 2)

Figure 4.1: The Three Levels of MF

statements and are described in Section 4.1.

2. MFsort These terms define the structured space of theory presentations (Level 2).

The four forms of MFsorts discriminate among constant theories, theories adding

only structural information, and theories adding L F statement information (either

directly through extension or indirectly through instantiation). These four forms

are described in Section 4.2. The Level 2 terms represent the algebra of operations

over an abstract value space of constructible Level 1 terms.

3. MFtheory These terms represent theories that have been constructed according t o

the formation rules of Level 2 and been bound t o an identifier. An M F theory

presentation distinguishes between theories that have been constructed (i.e. given a

name bound t o a construction) as opposed t o those that are constructible (defined

by the MFsorts). Currently, no distinction is maintained based on the type-checking

status of a theory: an M F theory describes both checked and unchecked theory

presentations. Level 3 is composed of M F theories and is described in Section 4.3.

We use the phrases MSCterm and Level 1 term, MFsort and Level 2 term, and

MFTheory and Level 3 term interchangeably.

M F judgements are specified using the operator ::. For example, t o express that A is

an MSEterm we write A:: MSC term. We also use :: as the M F type judgement within a

level (for example, A :: 8 x 8 in Level 2). The notation : is used t o identify type judgements

in the LFand in the meta-notation used in describing the semantics of MF. The notation

kLF is used as a meta-judgement, stating that an L F type judgement is valid. The notation

FMF is used t o indicate that an M F judgement is valid.

M F has a t its base a set of statements in the logical framework that represents all

possible statements. In one form or another, all three levels need t o know about these

underlying L F statements. While each level (in introducing its own language and seman-

tics) might introduce a new identifier t o refer t o the same L F value, we allow the same

meta-variable t o refer t o the L F identifier: c;.

(c;, (Context, LFval, LFtyp)) An explicit L F define.
(ci, (cj,(cj,i ...icj,))) An L F define constructed via an MF instantiation

using L F application.
Each cj, is assumed t o have been introduced in a
preceding definition in the context
and c; is assumed t o be fresh in the LF context.

Figure 4.2: Abstract Values

4.1 MSC Terms - Level 1

L F statements are the set of legal propositions, types, or theorems valid in the LF. These

statements may be bound t o an L F identifier for later use in other L F statements, as

discussed in Section 3.1. The only statements that M F may refer t o are named L F state-

ments. We assume an infinite set [TI of identifier symbols, ranged over by c; and type

symbols d;, where each c; maps t o an encoding of a statement in the logical framework

and ti is its type in MF. Each c; represents a specific statement in the logical framework,

and is used both as the M F identifier and as the L F identifier for the associated statement.

The set [AbstrVals] is the set of legal (unnamed) L F statements. There are two forms of

supported L F statements: those introduced as a proposition, type, or theorem and those

introduced by L F application (P reduction). The association of the L F statement and its

identifier is represented by a pair, the L F identifier and the value t o be bound t o the L F

identifier: [TI x [AbstrVals], with the meanings shown in Figure 4.2.

These two forms of abstract values represent the judgements in LF:

(1) LFdefines ci r = xi : a;

The identifier c; identifies the L F value x; that , given witnesses for the context I', has the

L F type a;.

(2) L F applications C; = cjl (cj, 1 . . ' 7 cj,)

The identifier c; identifies the L F value specified by the application. The L F type is derived

from the types of the cj, (cj2, - - - , cj,) according t o the L F typing rules.

The sets [defines] and [apps] refer t o the two forms of [AbstrVals] when a distinction

must be made.

4.1.1 Syntax

MSEterms consist of identifiers in the set [r] and applications of identifiers in the set [r],

providing the interface between M F and the logical framework. For each identifier c E [r]

we have an M F type symbol E E [?I, its corresponding type.

MSEapplict ype
c; :: MSC term

l < i < n
C ~ (C ~ , " ' , C ~) :: El(&,... ,~ln)

4.1.2 Semantics

The language of Level 1 has no assignment or means of affecting an environment: it's

just the space of constructible values. The environment is specified in Level 3, and within

Level 1 the type environment and valuation environment are assumed t o be predefined.

The set of L F statements, [+I, is represented either as an introduced define or as an

application: C([r] x [AbstrVals]) + [apps] ', associating the L F identifiers t o the unnamed

L F statements or performing an application. The set [TI: is the set of MSC terms con-

structible via the above rules. We let T' be the type environment, where c; € dom (r') for

all c;. The set [rl] is the set of all valuation environments ul, such that u1 (c;) E [rl(c;)]I.

For Level 1 types, the meaning of an identifier is its associated encoding of an L F state-

ment. The valuation environment has the type: u1 : [TI + [AbstrVals]. We shorten r' t o

.rr when the level is obvious, as in [r]: instead of [TI:, .

'The notation C represents the set of the sums. So C([T] x [AbstrVals]) + [apps] is the set all LF
statements, each statement being either an introduced define or an application.

The semantic function has the type:

The definition of the semantic function is:

Note that in the equations above, the use of an apparent application is syntactic: no

functional application is performed. This is a textual term that will be evaluated by the

underlying LF, assuming that it understands P reduction. Each c; in an application is as-

sumed t o already be defined in the L F environment. Level 3 is responsible for maintaining

such an environment.

We extend this semantic evaluation t o sequences of MSC terms:

We will use only the abstract syntax pairs defined above in Figure 4.2, assuming a

translator of these pairs t o the concrete syntax of a particular logical framework, so that

[c;] lul has meaning if the corresponding L F statement has meaning in a suitable context

in the LF.

4.1.3 Properties

The soundness of M F is based on soundness in the underlying LF. The intent is that M F

manages and structures correct sequences of LFstatements. The L F acts as the model for

MF. Every M F Level 1 term denotes a statement in the LF, identified by an L F identifier

c or application of L F identifiers.

A sequence of L F statements c l , - - - , c, represents the following judgement:

meaning that in the L F context defined by the sequence c l , - - . , c n - ~ , the type judgement

determined by ([cn]lul is valid in the LF. When the above relationship is true for the M F

sequence cl , . . . , c, we say that c l , . . , c,, is valid, written kMF cl , , C , valid. A sequence

of M S C t e m s is sound if the above relation is true.

We define an equivalence class (=LF) on MF sequences based on their relation in the

LF. For any sequence of propositions P, context I' in an LF, and valid MF sequences M,

N ,
M =LF N if:

(r, [Mlu' ~ L F P) (r, [N b l ~ L F P)

This equivalence allows us to identify sequences that differ only in non-essential order. We

will make use of this in Levels 2 and 3 to identify when two LF contexts are equivalent.

4.2 MFsorts - Level 2

The MFsorts describe all possible theories that can be derived from the base of encoded

LF statements using the structured theory operations. This section defines the language

of Level 2: the structured theory operations. The term MFsort is used to refer to con-

structible theories.

4.2.1 Syntax

The Level 1 terms are defined by the encoded LF statements. In Level 2, these same terms

are treated & constants. Level 2 terms describe sequences of LF statements. Each LF

statement in a sequence is introduced via an identifier called a feature identifier. Features

support three distinct roles in MF:

They capture the aggregate nature of a sequence. In this sense they act like labels of

a product type. The product type is composed of all the individual features (fields).

They record a history of applications. One of the structured operations of theory

presentations is instantiation or theory application, which supports applying the

statements of one theory to statements of another. Level 2 records this instantiation

through application of the indicated features, providing a record of which features

are used to discharge which assumptions.

Lastly, features provide a map from the MF structural view to an LF identifier (or

application of LF identifiers), tying the Level 2 theory organization to the underlying

LF.

We assume a set [w] of identifiers for feature identifiers. The type categories for our

language are defined as:

T ::= t 1 T ~ (T ~ , - - - , T ~) LF statements and applications

y ::= ~1 I+ T~ & &L, t) T,, Sequences of LF statements L; E [w]

8 ::= a 1 8 + y 1 el u fI2lel n e2 Structured elements

The type category T represents the types of LF statements, and specify the Level

1 terms. Level 1 terms are referred to by directly specifying the Level 1 identifier of

an encoding of a LF statement, or by specifying an application. The type category y

represents the tupling of arbitrary LF statements, where each statement is identified by

a feature identifier. Tupling is the means by which LF statements are associated with a

theory and support theory instantiation. Each y type specifies the feature identifiers of

an extension to a theory presentation, mapping each feature identifier to a r type.

The type category 8 represents the phrase types of the language, describing the space of

constructible theories (theory presentations). These phrase types define the terms of Level

2, the MFsorts. The four forms of 8 types represent the four methods used in structuring

theories. The phrase type a is the type of the empty theory. The phrase type B + y is the

type of an extension theory. Any theory may be extended by a sequence (an element of y

type), resulting in a new theory. Theories may be composed of existing theories, adding

no new LF information. The phrase types 81 U 82 and 81 n 82 capture these composite

theories. 81 U 8 2 is the type of a theory where two theories are combined: a theory of

this type has all the sequences denoted by either of the subtheories of type 81, 82. 8, no2
is the type of a theory where two theories share one or more sequences: a theory of this

type has the sequences that are present in both of the subtheories. Theories may also be

constructed by adding new sequences of statements (tuples) through instantiation. The

phrase type B + y captures these theories as well, where y is the type of the extension (a

sequence), constructed through instantiation.

We use x; for terms of r types, L; for identifiers of tuple components (feature identifiers),

F; for terms of y types (the sequences), and A, B for terms of 0 types.

r - intml
c :: E - Level 2 constants (LFstmtsl)
c :: E

Feature identifiers identify the sequence components of an MFsort. The following three

rules are feature tuple introduction and projection.

(Featuresl)

Multiple projections are equivalent to the sequence of individual projections:

The requirement that the feature identifiers L be fresh assures that every new statement

introduced in an extension is unique in MF. Because of sequentiality requirements, not

all projections are semantically sound in the LF even when they are projected from se-

mantically sound terms. Soundness is handled by restrictions on projections and only

guaranteed through checking in the LF.

The least theory is the empty theory (the empty tuple or sequence). (This can be

augmented by an initial environment and phrase type environment allowing more than

one of minimal theories.)

The MF Level 2 operators, n, U, 0, and . support operations on sequences (not sets)

and are left associative and of equal priority. Parentheses may be used to group terms.

The sequence operator U combines sequences. The operator n combines only the common

sequences of two (or more) MFsorts. The operator @ adds a new sequence to an existing

sequence. The operator - adds a new sequence by instantiating (applying) elements of a

sequence with (to) witnesses from another sequence.

'ln the semantics section, the initial environment could in fact be augmented to allow an arbitrary
collection of minimal theories, that would have no structural component, and therefore would not be
susceptible to reduction, and would serve the same role as the empty theory (the constant theories).

a - intro

U - intro

l l - intro

0 - intro

The empty theory
So ::a

We introduce three type coercions, allowing all types to be treated as extensions types.

(The symbol t- indicates a coercion; 8; F yj states that the type 8; is coerced to the type

~j ->
CI B + l l t) T ~ & - - - & L , I+ rn I- LI t) T ~ & " ' & L ~ t) 7, (Coercel)

L 1 6 T l & " ' & L n + + T n I- Lr i l t) T j , & ~ * ~ & ~ ' ~ , c -) T ~ ~
CII (Coerce2)

I where L ' ; ~ , . . . , L ; , L ~ , . . * , L ~

CIII

el uo2 I- L1 + + T ~ & - - . & L , t) Tn

If B1 F ~ 1 t) T ~ & . - - & L , ++ T,

and 8 2 F ~ , + 1 ++ T,+~& - *&L, I+ Tn

The conversions corresponding to these coercions are defined in Section 4.2.6.

Coercion I allows us to drop structural information outside of an extension. Coercion I1

allows us to drop features. Coercion I11 allows us to view a structured theory presentation

as an unstructured flat sequence. Because coercions allow us to drop information, they

can only be used where the information dropped is preserved elsewhere in the context.

There is no coercion from a n type: theory intersection can be represented by the

union of theory presentations. This will be discussed more fully in Section 4.2.5. For now

we assume that A n B =def A1 U - - U An, for some sequence of MFsorts Ai.

There is one remaining theory constructor: theory instantiation. Theory instantiation

is defined using the property of P reduction in the underlying LF. The features of a theory

(A) may be specialized using features of another theory (B), by specifying the features

of A to be instantiated, the features of B (to be used as witnesses), and new feature

identifiers for the newly constructed extension.

Because of order dependencies in the LF, an extension requires a specific order. Pro-

jections and coercions (which remove components and thus violate the order determined

by the extension) are only allowed during instantiations, which preserve the original in-

formation and order in the context.

The term for the instantiation is:

A ' B [LAlI 1 ' ' ' 7 LA^,] [1Bil 1 ' ' ' t LB, ,] 7 ' ' ' 1 LCln] =de f

(A U B)

O L C] ~ I+ A.LA]~ (B.(LB~~,~-~,LB~,))&-~-&

LCl,, A -LA] , (B-(LBil 7 ' . ' 1 LB;,))

Note that instantiate introduces an application of M F features values in one theory t o

feature values' of another, each feature given a new identifier. This is the rule that lets us

build new theories dependent on witnesses provided by other theories. Recall the group

example from Chapter 3. While this rule is the most complicated, it is the rule that must

keep track of the most structural information.

The type rules above describe the structured space of MFsorts.

4.2.2 Formation Trees

We use labeled binary trees t o represent MFsorts, called formation trees. These formation

trees give a concrete representation for the MFsorts. We first introduce formation trees

capturing the structure of MFsorts. Then we show that we can construct a reduced for-

mation tree from any formation tree (flattening the structure t o a sequence of extensions)

that is consistent with the formation tree. Lastly we define a minimal formation tree that

maintains consistency with the formation tree and removes any duplication of context

elements introduced by the sequence operators. Formation trees allow us t o unambigu-

ously define equality of MFsorts, as well as the ordering requirement on the extensions t o

MFsorts, which is used t o define a context in the LF.

We offer some basic definitions t o support formation trees.

Definition 1 (Labeled Trees) A labeled tree is a tree T with a function associating

some object (the label) with every node.

Definition 2 (Paths in a Binary Tree) A path in a binary tree is a binary sequence

where

1. The root of the tree has the path 8.

2. If a is a path to a node in the tree, then a10 is the path of the root of the left sub-tree

and all is the path of the root of the right sub-tree of the node at a. The symbol I
denotes concatenation in the path.

Definition 3 (Formation Tree) A formation tree is a finite binary labeled tree T

whose nodes are labeled with terms of MFsorts and y type, satisfying the following condi-

tions:

1. The leaves are labeled with terms of y type or terms of o type.

2. If a node at path a is labeled with an MFsort A U B or A n B, then its immediate

successors at paths a10 and 011 are labeled with A :: BA and B :: OB respectively.

3. If a node at path o is labeled with an MFsort A @ F, then its immediate successors

at paths a10, all are labeled A :: BA and F :: y respectively.

Figure 4.3 shows the formation tree for the MFsort (AuB)u (BuC) , where A = S o a p A ,

B = S o O F B , a n d C = S o O F c .

We denote the formation tree for a phrase S of type 0 by FT(S) . We also identify an

interior label with its operator, rather than the full term, so a label of A U B would be

identified with the label U. For the remainder of this discussion, we assume that formation

trees do not include the label n, because in Section 4.2.3 we define n in terms of U . We

Figure 4.3: Formation Tree for (A U B) U (B U C))

use the path symbol a to refer to both a node in a formation tree and the formation tree

rooted at the node a.

There is a unique formation tree associated with a given MFsort. The proof is by

induction on the structure of the space of MFsort terms. For an expression of the form

A U B, the formation tree will be the tree with the node at path 0 labeled with U, the

node at the path 010 will be the root of the formation tree for A, and the node at the path

011 will be the root of the formation tree for B. For a formation tree of the form A @ F,

the formation tree will be the tree with the node at path 0 labeled with 0, the subtree

rooted at the path 010 will be the formation tree for A, and the node at path 011 will be

the node labeled with F .

We define the support of an MFsort:

Definition 4 (Support of an MFsort) The support of an MFsort is the set of terms

of y type and a type that occur as labels on the leaves of the associated formation tree. The

support can be uniquely represented by the set of binary paths to leaves given in Definition

For the formation tree given in Figure 4.3, the support given as a set of paths would

be:

 lol lo lo^ ~1010l110101110,0101111,01110~0,0~1~0~1,0~1~1~0,0)1)1~1)

corresponding to the labels:

The extension MFsorts requires a particular order. In the MFsort A @ L ~ I+ 2 1 , - , L, ++

x,, the components of the extension (xi) define ZFstatements. These L F statements may

refer to other Z F statements that are defined by the MFsort A. Extensions therefore

induce an order dependency on the formation tree.

Definition 5 (Order Dependency) An order dependency in a formation tree is de-

fined as follows: If a node at path a has a label of @, then the node at path 011 with the

label of F :: y has an order dependency on the support of the formation tree rooted at the

path 010. If the support of the formation tree rooted at the path a10 is the set of paths

{ a l , - . , a;- I) , then this order dependency is written as {a1 < a l l , 0 2 < all, . - -, a;-1 <
011) or we can write {a l , . . -, a,-1) < a1 1 as a notational shorthand.

The formation tree for an MFsort determines an ZF context, by specifying the order

of L F statements. If a node a t path aln has an order dependency on the node a t path

alm, for paths n and m , then the LF meaning denoted by the label of the node at path

a (m must be present in the LF context in order for the label of the node at path aln to

have an LF meaning. This order requirement will be discussed further in Section 4.2.4.

The support of a node a in a formation tree Ti can be constructed based on the

structure of the formation tree.

support (a) =

label(a) = So :: o + { a)

label(o) = U + support (ol0) U support (a l l)

label(a) = @ support(al0) U { a l l)

The order dependency is defined similarly. We define a > {a1 , uz, . - , am) to be the

partial order { a > a l l . - , a > a,). I f the set S has the form {a1 > 02, - . . , on >),

then a > S is defined to be the partial order { a > 0 1 , . - . ,a > a,) U S .

label(a) = So :: a a { a)

label(a) = U a onier(al0) u onier(al1)

label(a) = @ + onier(al0) < {al l}

The order dependency for the formation tree of Figure 4.3 is:

corresponding to the order dependency expressed as labels:

The support and order dependency for a formation tree T are referred to as (NT, < T),

where NT is the support of T and < T is the order dependency, both expressed using labels

rather than paths. Two MFsorts are equal if they denote the same semantic object, which

is sometimes hard to determine. However, we can define a syntactic equality of MFsorts

based on formation trees, and show that if two terms are syntactically equal then they

denote the same semantic object:

Definition 6 (Equality of Formation Trees) Two formation trees, T I and T2 , are

equal (zFT) if

1 . They have the same support (NTl = NT2).

2. They obey the same order dependencies: (E <<T, Fj) E (NT,, <T,) # (fi < T ~ 4) E

(NT~, <T*)-

For example, the trees associated with (A U B) U (B U C) and (A U B) U C have equal

formation trees.

Because we have the condition that features can only be introduced into an extension

if they are unique 3, in the current definition we cannot have an MFsort that has a term of

3The uniqueness requirement is preserved by the uniqueness of the feature identifiers. It is possible
that two distinct labels will refer to identical LF values. However, these will not be judged identical in MF
because the feature identifiers are unique.

7-type with two different order dependencies. However, to allow for possible future work

(discussed in Chapter 6), the definition of equality includes this condition.

Equality of formation trees is too limiting, as there are many contexts that will corre-

spond to the order dependencies of a particular formation tree. So we define consistency

on formation trees:

Definition 7 (Consistent Formation Trees) Formation tree TI is consistent with

formation tree Tz (TI E T2) if:

For instance, F T ((A U B) U C) L F T (A U B).

MFsorts and their formation trees do not define a unique LF context, as mentioned

before. Rather, they define a set of contexts, all of which obey the order dependencies of

the formation tree. A particular LF context has the order of the context elements fixed.

We define a Reduced F o n a t i o n Tree R F T that captures this fixed nature and gives a

standard form for formation trees.

Definition 8 (RFT) A reduced formation tree (R F T) has the form:

The tree with a single node labeled A :: a is an RFT.

If T is an R F T , and F :: y , then the tree having 0 labeled with 0, 010 the root of the

tree T , and 011 the noded labeled F :: y is an RFT.

The reduced formation tree for our example of Figure 4.3 is the tree associated with

((((So O FA) O FB) O FB) O Fc), shown in Figure 4.4. A reduced formation tree flattens

the structure of an MFsort expressing any MFsort as a sequence of extensions.

Figure 4.4: Reduced Formation Tree for (A U B) u (B U C)

An RFT has the properties:

a All the right leaves (all all for all paths in the tree) have nodes whose labels are

terms of y types.

a All the internal nodes are labeled with the operator @.

a There is a unique left hand leaf a10 having the label A :: a."

Any formation tree can be converted to an RFT using the following rules. Let a be a

node, and RFT(a) be the reduced formation tree of the formation tree rooted a t a.

41f MF is extended with multiple constant theories, these can all be combined into one large minimal
constant theory, because they have no dependencies among them.

1. RFT-1: If a is labeled with a term of type a, the RFT(u) is the node labeled with

the same label.

2. RFT-2: If a is labeled with a term of type y, the RFT(u) is the node labeled with

the same label.

3. RFT-3: If a is labeled with a term of 0, the RFT(a) has a root labeled with 0 and

a left subtree RFT(u(0) and a right subtree RFT(aJ1).

4. RFT-4: If a is labeled with a term U, the RFT(u) is the RFT(a(1) with the

RFT(al0) replacing the unique left-hand leaf in RFT(ul1).

Proposition 9 Every formation tree can be reduced to a redvced formation tree using the

rules RFT-1 through RFT-4.

Proof The proof is by induction on the structure of formation trees.

If the tree is a single node labeled by A :: a, then the RFTis just that node. (RFT-1)

The smallest tree including an extension must have the form So F, :: a + yj. If the

root node of the tree is labeled O, then 011 is a node with a label of F, :: y; (by the

definition of formation trees and O introduction). If 010 is labeled with So :: a, then

RFT(0IO) is the node with the label So :: a by rule RFT-I. RFT(011) is the node

with the label F; :: y; by rule RFT-2. The result is a reduced formation tree.

We assume that for formation trees of heights less than or equal to n > 1, that

we can construct a reduced formation tree using rules RFTI-4. Let T be a tree of

height n + 1. T can have the form:

TI F. TI is a formation trees of height less than or equal to n, and F is a a single

node labeled with F :: y. We can construct the reduced formation tree for TI by the

induction hypothesis: RFT (TI). Then using RFT-3 we can construct the reduced

formation tree for T.

TI U T2. TI and Tz are two formation trees of heights less than or equal to n, so

they each can be converted to the reduced formation trees RFT(Tl) and RFT(T2)

by the induction hypothesis. RFT(T2) therefore has a unique leaf with the label

A :: a. Replacing this unique leaf with the reduced formation tree RFT(Tl) will be

a reduced formation tree. using RFT-4.

Proposition 10 For any formation tree T , RFT(T) E T.

Proof

NT E NRFT(=) by rules RFT-1 and RFT-2, the only rules dealing with the leaves.

If F, > Fj in T , then F; had a label of type y; in T occurring at path all. N j must

be a node with a label having a type of yj somewhere in the formation tree a10 (by

the construction of formation trees and the definition of the order function) and the

node at a has a label of 3. By RFT-3, RFT(o) will also have its root labeled by

0, and the label of 011 in RFT(a) will be the label of I;;:. Similarly, in RFT(a)

010 will contain the label of Fj. Therefore, onier(RFT(0)) will generate the order

dependency corresponding to Fi > Fj .

This proof does not refer to Rule RFT-4. The rule RFT-4 does not generate any order

dependencies. Hence if a node a in the formation tree Ti is labeled with a U, there will

be no dependencies from a node in the subtree all on a node in the subtree a10 or vice

versa. I

Because the formation tree for an MFsort expression is unique, we sometimes say A

for FT(A) when it is clear from the context if we are looking a t a formation tree or an

expression.

4.2.3 Canonical Forms

We define a canonical form allowing us to express all the MFsort expressions using only

the operators U and 0.

Definition 11 (Canonical Form) .The canonical form for an MFsort expression is
an ezpression that uses only U and @ for constructors. A tree in canonical form has nodes

labeled only with U, @, So :: a, or F :: y.

First we define what the intersection of Level 2 terms A and B is.

Definition 12 (Tree Intersection) A subtree Ti in FT(A) is in the intersection of

FT(A) and FT(B) i f thek is a subtree Tj in FT(B) such that Ti =FT T j . A mazimal

subtree is the largest tree Ti with this property. We define the intersection set of two (or

more) formation trees to be the the set of maximal subtmes common to both (or all).

Definition 13 (Tree Union) A set of formation trees, all of whose nodes are labeled by

U or @ can be combined into a new formation tree. We can take the union of a set of

formation trees by replacing every pair of formation trees in the set by a new formation

tree composed of a mot labeled with a U with 010 identified with one member of the pair,

and 011 identified with the other member of the pair. We can continue this until only one

formation tree remains in the set.

There are many formation trees that may result from a tree union, but they are all

equal formation trees (= F T) .

Definition 14 (Tree Subtraction) We can subtract a subtree from a formation tree

by replacing the subtree with the formation tree labeled by So : a. If TI is a subtree of T ,

then T - TI is the formation tree resulting from the subtraction.

We can simplify the resulting tree: A u So =FT So U A -FT A

The tree resulting from tree subtraction may not be consistent with the original as

it may not preserve the order dependencies of the original tree. Tree subtraction must

therefore only be used where the dependencies are preserved elsewhere in the tree.

Definition 15 (A n B) The intersection of the MFsorts A and B is formed by taking the

intersection of their formation trees and then taking the union of all the formation trees

in the intersection set.

A n B = (A l ~ - . . U A m)

where { A 1 , . . - , A,) is the intersection set of the FT(A) and FT(B)

Intuitively, the intersection of two theories denotes all the sequences they have in

common. Each sequence is introduced in one theory presentation, so this is equivalent t o

saying that the intersection of two theories denotes all the theory presentations the two

theories have in common.

Proposition 16 All MFsorts can be expressed using only the theory constructors U and

0 .

Proof We have already defined instantiation (.) in terms of U and 0. So the only case

remaining is the constructor n.

The smallest tree is the single node labeled with So :: a. So n So = So which has no

operators and thus corresponds t o an MFsort in canonical form.

We assume that all trees of height less than or equal t o n > 1 can be expressed in

canonical form. Let T be a tree of height n + 1. If the root of T is labeled by U or @

then this is in canonical form by definition. If the root of T is labeled by n, then this

is a tree intersection. The subtrees of T a t paths 010 and 01 1 are in canonical form

by the induction hypothesis. Taking the union of the trees in the intersection set of

these two subtrees (Definition 15) will yield a formation tree in canonical form.

Proposition 17 The theory constructors preserve consistency:

Proof

Case F T (A) E F T (A n B): By Definition 15, A n B = A1 U - U A, for all A; in the

intersection set of A and B.

1. NAnB = NA,u...uA,. Because each A; is a subtree of both A and B, the terminal

leaves of A1 U . . U A, are also in FT(A). So each node in NAnB must also be

in NA.

2. If there is an order dependency in F T (A n B) , then there is a leaf in F T (A n B)

that generated that dependency. That leaf must therefore occur as a leaf in

one of the subtrees in the intersection set of A and B. Hence i t is in both A

and B, and so FT(A) contains the same order dependency.

Case F T (B) C F T (A n B): this is the same as the case above.

Case F T (A U B) E FT(A): Because FT(A) is a subtree of F T (A U B) and U

introduces no additional order dependencies on the nodes in A, the conditions for

consistency are satisfied.

Case F T (A U B) FT(B): this is the same as the case above.

Case F T (A @ F) C FT(A): The FT(A) is a subtree of FT(A @ F) , and hence the

conditions for consistency are satisfied.

4.2.4 Admissible Contexts

We need t o characterize what an admissible context is in an L F because L F contexts are

used t o model theory presentations. Admissible contexts characterize legal contexts and

how these contexts are related. We show that formation trees define admissible contexts,

and there is an ordering relation on Level 2 terms that is consistent with the ordering

relation on admissible contexts. Thus, every theory presentation can be put in the form

of an admissible context. In fact, that is what we have to do if we want t o discharge

assumptions of a theory presentation with L F statements. We let the MFsort A be the

formation tree associated with A throughout. We also let [-I2 be the semantic function for

Level 2 terms (defined in Section 4.2.5). In this section on admissible contexts, we assume

that we are able t o assign some meaning t o Level 2 terms, although the actual definition is

not given until the next section. We let u2 be a Level 2 environment, assigning meanings

t o predefined identifiers. The superscript on the environments and the semantic functions

distinguishes among the environments and semantic functions for -each Level.

We propose a model suggested by the term model defined by Thomas Streicher [50],

and based on the semantics function of Level 2 terms. This model meets the criteria that

only provably well-defined contexts, types, and objects are given an interpretation. The

advantage of this model is that it incorporates the context for all terms in the elements of

the model, which is required for soundness in an LF.

Definition 18 (Pre-Context) A pre-context is a syntactic expression of the form

where yi are all pairwise distinct variables.

Definition 19 (Admissible Context) A pre-context is in cr-normal form if y; = v;, 1 5
i < n . A pre-context is admissible if I' is in a-normal form and the context r is well

formed in the LF (I' FLF *).

All the results that follow are developed around formation trees with the understanding

that the same results apply isomorphically t o the semantic elements.

Definition 20 (The Context for a Formation Tree) The context of a formation tree

is defined on its structure:

Ctxt(0, u2) =

label (a)=U Ctx t (a~O) ,C tx t (aJ1)

label(a) = @ + Ctxt (010) , [label(ol l)] 2 u 2

label(a) = So + [SoI2u2

Definition 20 results in a sequence of the meanings given t o each y term occurring on

the leaves of the formation tree. We simplify this notation and refer t o the context defined

for a Level 2 term A as simply C t x t (F T (A)) , assuming the existence of the environments

u2 or more simply, Ctxt (A) .

Contexts impose a total order on the partial order of dependencies in a formation tree.

The context defined above for a formation tree is identical t o the context associated with

the reduced formation tree, for any formation tree. This is easily shown by induction on

the structure of the reduced formation tree.

Contexts have a sequential order by definition allowing any context element to refer to

any preceding context elements. However, not all context elements refer to prior portions

of the context.

Definition 21 (Independent Contexts) Two contexts r and A are independent i f

I' F L ~ * and A FLF *, and dom(r) n dom(A) = 0

All contexts can be broken up into closed components, called sections.

Definition 22 (Sections of a Context) The section for an identifier x in a context I'
is defined by

A , x : A

where

1. Each unbound identifier y in the term A is in the domain of A (dom(A)).

2. The context A is a section for each such y E dom (I') .

Definition 23 (Minimal Section) A section A, x : A is minimal for x ifVy E dom(A)

either

1. y is an unbound identifier in A OR

2. if y is not an unbound identifier in A, then there is some z : B in dom(A) s.t. y is

unbound in B.

Definition 24 (Parent of a Context) Contexts are related to one another by a parent

relation, denoted by (I . For any context I', variable identifier c; not in the domain of r,
and LF type A;:

r(1 : A~

We abbreviate a sequence of contexts related by (I to r(*lI', CI : A1,. . . , ck : Ak.

Contexts can be combined under certain conditions. From a purely logical standpoint,

any two contexts can be combined by concatenation. If there are any duplicate context

entries, the duplication is irrelevant. The definition of a context is generally as a sequence,

and the most rightmost entry for an identifier is taken t o be the definition (this definition

is used in the COC implementation [15], [31]).

However, from a pragmatic standpoint, different implementations treat contexts dif-

ferently. For instance, i t is ill-defined in the LEG0 implementation [32] for a context

t o introduce a second value or type for an identifier in the context. In MF, we do not

currently allow an identifier t o have more than one definition. Therefore, however many

times that identifier is included in the context i t must have the same definition. However,

both in the interests of providing for future extensions allowing identifiers t o be bound

t o more than one definition in MF, and t o define precisely how two or more contexts are

related, we need t o have a precise definition of how contexts can be combined, and how

tha t combination relates t o other combinations. Any two contexts that are independent

can be freely combined. Two contexts that are not independent may be combined using

the following criteria.

Definit ion 25 (Combin ing C o n t e x t s) If I' and A are two LF contexts such that I' kLF

* and A kLF *, and if dom(A) n d o m (r) = y l , - - . , y , and y; : A A I' =. yi : A A A , then

they can be combined: r o A .

Propos i t ion 26 The result of combining two well formed LF contexts is a well formed

LF context.

P r o o f If the contexts I', A are independent they can be combined freely: I' o A =

r , A k L F *, A o r = A l r k L F * , and ~ , A = L F A , r .

If I' and A have overlapping domains, choose in each the minimal section that includes

the overlapping context elements, say I'; and A ; . Under the assumption that each identifier

maps t o the same type and value then r; = A;. By definition, the remaining portions of

the two contexts are independent. Let r - I'; be the remaining portions of I', and A - A;

be the remaining portions of A, then

I?;, (I' - I'i) =LF

and

A;, (A - A ;) =LF A

Now, I' and A can be combined as follows:

I ' o A = A O I' = F A = I';, (I' - r i) , (A - A;) FLF *
I'B r;, (A - Ail, (I' - I';) ~ L F *
rc = A;, (r - rill (A - A;) kLF *
I'D E A;, (A - A;), (I' - r i) kLF *

and I', A =LF A, I' =LF FA =LF FB =LF rc =LF I'D. I

Definition 27 (Equivalence Class of contexts) We refer to the equivalence class

defined by this equality relation as [r], for any context I': the set of all contexts that are

equivalent in the LF.

Definition 28 (Union of admissible contexts) The union of admissible contexts (UC)

is defined to be the combination defined in Definition 25.

Proposition 29 The union of two admissible contexts is an admissible context (uc).

Proof

1. If the two admissible contexts are independent, then they are admissible.

2. If the two admissible contexts (A, I') have overlapping domains, then using Definition

25 we can select the minimal section (A;) containing the overlapping definitions. The

context A; is admissible, because if not there would be some context element y : A

such that y is unbound in some context element z : B in A;. But if so, then it must

be in both A and r , because these are admissible by assumption. Therefore, it must

also be in A;.

The two contexts A; and A - A; are now independent. The context A; is admissible.

But A - Ai may not be admissible, because it may contain unbound references to

variables defined in A. However, because Definition 25 places A; first in the context,

A - A; is also admissible. I

Definition 30 (Intersection of admissible contexts) The intersection of admissi-

ble contexts (nc) is defined to be the overlapping section in Definition 25.

Proposition 31 The intersection of two admissible contexts is an admissible context

tnc).

Proof Context intersection is similar to the union of two admissible contexts, except

that we drop the portions of the context that that are not in the overlapping section.

Because the overlapping sections are admissible, the intersection is admissible. I

The context defined by a formation tree in Definition 20 is not identical to the defi-

nition of admissible contexts defined in Definition 19. To see this, consider a new theory

constructed using one of the theory operators U, n, a. We get a new formation tree that

parallels the construction and because it parallels the construction of the theory presen-

tation, it retains any duplication of sequences and as such is not an admissible context.

Proposition 32 Suppose a formation tree T denotes an admissible contezt. Then

The contexts defined for the formation trees at the paths 010 and all are both ad-

missible contezts if the label of a is U.

The contexts for the formation tree at path a10 is an admissible context if the label

of a is a.

Proof

If the label of the node at path a is U, both subtrees will define admissible contexts

because the node at path a denotes an admissible context, and there are no order

dependencies generated by U, each subtree denotes an section of the context defined

by the formation tree.

If the label of the node at path a is a, then the tree rooted at path 010 is an admissible

context, but the node at path a11 has an order dependency on the support of the

tree at path 010, so there is only one admissible context: the one denoted by the

tree at path a itself. I

We define a minimal formation tree that preserves all the sequences of the original

formation tree but removes all duplication, to support the relation of a formation tree to

an admissible context.

Definition 33 (Minimal Formation Trees) A minimal formation tree (minFT(T))

for the tree T is a formation tree where the intersection set of all subtrees is empty (or is

= {So)).

Proposition 34 We can construct a minimal formation tree for any formation tm.

The tree containing only the node labeled by So :: a is minimal.

T has the form that the mot is labeled O, 010 has a label of So :: a , and 811 has a

label of F; :: y;, then minFT(T) = T .

We assume that we can construct a minimal formation tree for all trees of height

less than or equal to n > 1. Let T be a tree of height n + 1.

1. T = TlUT2. TI and T2 are minimal formation trees by the induction hypothesis.

Let {A,) be the intersection set of T I , and T2 (Definition 12). We can remove

the subtrees (Definition 14) of TI and T2 associated with each A; E {A,):

T j - {A,) is the result of removing each of the subtrees {A;) from the tree T j .

Then minFT(A U B) = Al U A2 U . . -U A, U (TI - {A,)) u (T2 - {A,)). All the

A; in the intersection set are subtrees of a minimal subtree and so are minimal.

TI - {A,} n T2 - {A,) = {So) by construction, so T is minimal.

2. T = TI n T2. TI and Tz are minimal formation trees for by the induction

hypothesis. Let {A,} be the intersection set of TI and T2 (Definition 12). Then

minFT(An B) = A1 U A 2 ~ - - . U A n .

3. T = Tl 0 F. For an extension (a), because the features are newly introduced

corresponding to newly introduced LF constants, i f TI is a minimal formation

tree for the MFsort A, then the formation tree for A @ 4 is also a minimal

formation tree.

Proposition 35 For any formation tree T , minFT(T) =FT T .

Proof

- If T has the form of the base case (0 has the label 0,810 has the label So, 011

has the label F; :: y;), this is immediately true. No nodes are added or removed.

- We assume that for trees T of height less than or equal t o n > 1 tha t NminFT(T) =

NT. Let T be a tree of height n + 1. T may have the form:

* TI U T2. If the intersection set of Tl and T2 is empty then it is trivially

true that NTlUT2 = NminFT(T1 uTp), as no subtrees are removed. Suppose

the intersection set of TI and T2 is Al , . , A,. If the sequence F is in TI

and T2, then i t is in one of the A; in the intersection set, and hence in the

minimal tree. If the sequence F is not in either Tl or T2, then i t is not in

any of the A; in the intersection set, but must be in either TI - {A,) or

7'2 - {An).

* Tl n T2. If the largest subtree of TI n T2 is the node So, then i t is trivially

true that NTlnT2 = NminFT(TlnT2), as there are is only one subtree in

common and it is minimal. By Definition 15, (TI n T2) = Al U A2. . -A,

for the intersection set {A,). So this reduces t o the case for U.

* TI O F . Because Tl has the property by assumption, NminFT(Tl) = NFT(T,)l

and the newly introduced sequence is not a sequence in Tl by the definition

a1 N r n i n ~ ~ (~ l @ ~) = NFT(T~@F)-

Let S = minFT(T) . Then F; <T Fj * F, <s Fj

- If T is the node So this is trivially true, because there are no dependencies.

- If T is the tree who root is labeled with @ and whose tree at 010 is labeled with

So :: cr and whose node at 011 is labeled with F :: y, this too is trivial, because

minFT(T) = T.

- We assume that for trees of height less than or equal t o n > 1 that dependencies

in such trees are preserved in the minimal tree. Let T be a tree of height n + 1.

Then T may have the form:

* TI U T2. Then F; < Fj must be in either Tl or in T2 o r both, because the

label U introduces no new dependencies.

F, < T ~ Fj. Then i t is not in the intersection set but is in TI - {A,).

So it is in the minimal tree as well. The case for F; <T, Fj is similar.

Fi < Fj is in both TI and in T2. SO the nodes that generated this

dependency are in a subtree in the intersection set, so i t is in the

minimal tree.

* TI n T2. If F; < Fj is a dependency generated in both TI and T2, then the

subtree generating the dependency is in a tree in the intersection set and

this case reduces t o the case for U. If i t is not in both, then i t won't be in

any tree in the intersection set in either the tree T or in minFT(T).

* TI @ F. If F; < T ~ Fj, then i t must be in minFT(T) because Tl is minimal

by the induction hypothesis and the construction of the minimal tree for

@ does not alter the the tree.

Let S = minFT(T). Then F; <s Fj + F; <T Fj-

- If S has the form So :: o or a root labeled with @ with 010 labeled with So :: o

and 011 labeled with F :: y, then S = T by construction.

- We assume that for minimal trees of height less than or equal t o n > 1 that

dependencies in the minimal trees are also in the original tree. Let S be a

minimal tree for T of height n + 1. Then S may have the form:

* S1 U S2. If F; <<s Fj then either it occurs in S1 or S2. Because these are

minimal trees that preserve dependencies, the dependency is also in the

original tree T.

* S1 0 F. This argument is similar t o the 0 case above.

* Sl n S2 can not occur (by construction).

P ropos i t ion 36 The minimal formation tree denotes an admissible context if each intro-

duced sequence F; and its support denote an admissible context .

Proof

The formation tree consisting of a single node labeled by So :: a determines an ad-

missible context: the empty context. (If we expand MF t o include constant theories,

these constant theories would be assumed t o determine an admissible context.)

Assume we have formation trees of height less than or equal t o n > 1 denoting

admissible contexts. Let T be a formation tree of height n + 1.

- T may have the form Tl of height n extended with a sequence. The path 011

of the minFT(T) will have the label F :: y for the newly introduced sequence.

The path 010 will have the formation tree rninFT(Tl). This is an admissible

context if the following condition holds:

If Ctxt(minFT(T1)) FLF [[f12u2]'u1 : *
then Ctxt(minFT(T)) ELF *

Meaning, that if the introduced sequence is valid in the indicated context, then

the context extended by the sequence is an admissible sequence, assuming the

environments u2 and ul.

- T may have the form TI U T2 Tl = rninFT(A) and T2 = minFT(B), each of

height less than or equal to n If TI and T2 have no sub-trees in common, then

AUB determines an admissible context, because they are mutually independent

and each denotes an admissible context by assumption.

If minFT(A) and minFT(B) have some sub-trees in common, then these trees

will be in the intersection set {A,} of TI and T2. Because Tl and T2 both denote

admissible contexts, each subtree denotes an admissible context by Proposition

32 except those subtrees labeled with a term of type category y. Because a

subtree F labeled with a term of type category y introduces an order depen-

dency, if F is in Tl and in T2 it must occur a t some paths alll and a211 in

Tl and T2, respectively. As each tree in the intersection set is maximal, if F

is in some Ak in the intersection set, it must also be the case that the subtree

denoted by al10 (0210) must also be in Ak, as well as the tree denoted by a1

Figure 4.5: Minimal Formation Tree

(a2). So all trees in the intersection set are rooted with nodes having a label of

@ or U, meeting the criteria of Proposition 32.

- The case for the intersection of two MFsorts A and B denoting admissible

contexts reduces to the case for the union.

We assume from here on that a formation tree denotes a minimal formation tree and

hence an admissible context under the above conditions.

Figure 4.5 shows the minimal tree for the formation tree of Figure 4.3.

Definition 37 (Parent of a Level 2 term) Level 2 terms are related to one another

by a parent relation (<,), based on the (I relation for are contexts. A <, B if

a F T (A) is a subtree of F T (B) This condition ensures that B is constructed from A.

a Ctxt(A)(18Ctxt(B) This condition states that the context defined for A is a parent

of that defined for B .

While contexts are related to other contexts by context elements (individual declara-

tions of the for y : A), theory presentations are related to one another by sequences. Each

presentation constructor adds one or more sequences to another. .

Proposition 38 Presentation constructors preserve the <, relationship such that if A

and B denote admissible contexts:

A < , A U B

B < , A U B

A n B < , A

A n B < , B

A < , A Q F

Proof Assume that A and B are theory presentations denoting admissible contexts.

Case 1. If A and B are independent, then Ctxt(A), Ctxt(B) =,y Ctxt(B), Ctxt(A).

And by the definition of Ctzt and (I * :

Ctxt (A) (I* Ctxt (A U B)

Ctxt(B)(I* Ctxt(B U A)

Case 2. A and B denote contexts with overlapping domains. Using Definition 20,

we can extract the overlapping elements:

Ctxt(A U B) =LF A , (Ctxt(A) - A) , (Ctxt(B) - A)

Ctxt(A U B) =LF A, (Ctxt(B) - A) , (Ctxt(A) - A)

and by Definition 21, A = Ctxt(FT(A) n F T (B)) , leaving us with:

A, Ctxt (A) - A = Ctxt (A) (I * Ctxt (A U B)

A, Ctxt (B) - A = Ctxt (B) (I * Ctxt (B u A) = Ctxt (A U B)

Case 3. A @ F denotes an admissible context. Ctxt(A @ F) = Ctxt(A), I[q by the

definition of Ctxt , so

Ctxt (A) (I* Ctzt (A) , [a.
Case 4. If A and B denote independent contexts, then the intersection is empty. If

they have overlapping contexts, then we can form the canonical expression for them,

which is Case 1.

4.2.5 Semantics

Before defining the semantics, we give an intuition for what these composite terms mean.

MF constructs new types by constructing new sequences, with the intent that these se-

quences will determine an LF context. The natural way to represent these sequences is

via a n type, such that if p is an element of such a product type, p(1) will be the first

element in the sequence, etc. When sequences are combined, we again have a n type,

such that if q is an element of such a product type, q(1) will be the first sequences in the

sequences of sequences, etc. (This is essentially the structure of the RFT for a formation

tree.)

1. Each y term denotes a sequence of statements in the LF, called y sequences.

2. A constant theory of type cr has no structure for MF and can be treated as the

empty theory (the empty sequence, denoted by 0).

3. A term A@ Fl is a concatenation of a y sequence onto a theory. Each extension adds

one y sequence onto an existing theory: In this sense, a theory is just a sequence of

y sequences. We use a comma to indicate a sequence of y sequences.

4. A U B: a union of all the statements in each theory. Each term A, B denotes the

sequence of y sequences(s) that appear as extensions in their construction. The union

of the two is the concatenation of these y sequences, yielding another sequence of y

sequences.

5. A r l B : an intersection of all the statements in each theory. The meaning of the

intersection is all the y sequences common to both theories. Intersection will be

represented as a union of theories using the canonical form defined in 4.2.3.

6. A. B [L ~ , , - -, L ~ ,] [L ~ ~ , - . , Lj,][1ill - - - , Li,]: instantiation constructs an extension from

applications of the features specified for A to the features specified for B.

So, ultimately, the meaning of MFsorts is a structured sequence of sequences. Addi-

tionally, we make use of a particular view of MFsorts. Every MFsort can be viewed as

introducing some extension (i.e. some sequence). The term A :: a denotes a constant

theory and has no structure in MF, meaning that the theory A introduces the empty

sequence (or one presumed empty in MF: () :: yo). Similarly, a term A U B :: U BB

denotes a theory that is composed of the sequences defined by A and by B, but itself

introduces no new sequence (A U B introduces no additional L F content). However, terms

A @ F :: BA + YF do introduce a new sequence: the sequence denoted by F.

This view of MFsorts matches the view presented in a formation tree, which reduces

an MFsort to the sequence of terms of y types introduced using the @ operator.

As in Level 1, Level 2 has no means of introducing or assigning values to identifiers.

We assume a predefined phrase type environment, n2, that maps predefined identifiers

(defined in Level 3) to types.

We introduce the following sets:

[TI; The set of phrases of type T in n2

[y]: The set of phrases of type y in n2

[B]: The set of phrases of type 8 in lr2

[w] The set of identifiers for features

[8] The set of identifiers for 8 types

The meanings of the T types are the Level 1 terms used to identify the abstract values.

The sets of possible meaning associated with T types ([TI) are:

The y types are sequences of LF statements, each statement denoting an element of

[TI. Elements of the y type determine an extension to an LFenvironment. The sets of

possible meaning associated with y types are:

This set denotes all sequences of Level 1 terms. This set includes a lot of junk, in the

sense that not all sequences will be meaningful in LF. Constraints on what are meaningful

sequences are handled separately, because what is meaningful in an LF depends partially

on what has already been defined in the LF.

The set of possible meanings associated with 8 types is:

The possible meanings for the terms of 8 type are the set of sequences of sequences of L F

statements, corresponding t o the context defined for a minimal formation tree.

The set [n2] denotes the set of n2-compatible valuation environments: the set of all

functions u2 from identifiers t o values such that for all identifiers L E [el, u 2 (~) E [n2(L)].

The semantic function has the type:

1.1: : [el: + (In2] + [el)

1.1: : [rl: + (in2] -) PI)
In the following equations, we use the comma (,) t o denote context concatenation.

The meanings of MFsorts are admissible contexts, and we use the Uc operator from the

previous section to combine admissible contexts. The semantic functions are defined by5:

5Note that in the semantic functions for projection we use positional rather than named projections,
corresponding to the semantic sets associated with sequences.

4.2.6 Conversions

We define conversion functions for the coercions defined in Section 4.2.1.

Convert1 [8 + ~1 c) rl& . . . &Ln c) Tn 1- L 1 c) r1& . . . &Ln ++ rn]pLi = p(2) (i) (Convert 1)

when Lti , = ~k

These conversions allow us to drop information. The first conversion would allow

us t o coerce A @ F to F. The second would allow us to select parts of a sequence:

And t) co, Or I+ cl , Imp1 I+ c2 t- And t) co. The last conversion allows us to select

feature from any part of a structured type: (So O Fl) u (So @ F2) I- (So @ Fl) @ F2. This

last is equivalent to the flattening done when a formation tree is converted to a reduced

formation tree.

4.2.7 Properties

This section demonstrates the properties of Level 2, notably soundness and completeness.

We define soundness based on the underlying LF.

Definition 39 (Soundness) If an MF sequence is judged valid in MF (meaning that we

judge that it denotes an admissible context), then the denotation of that sequence is valid

in the underlying LF.

Definition 40 (Completeness) MF is complete i f it is sound and i f an LF sequence is

valid in the underlying LF, then it's representation in MF is also valid in MF.

Proposition 41 (Proof of Equal Terms in Level 2) If two terms have equal forma-

tion trees then they denote contexts in LF that are equal in the LF (=LF).

Proof If two terms have equal formation trees then they obey all the same order de-

pendencies. Therefore, the paths that describe all the possible admissible contexts derived

from these trees all determine contexts in the same equivalence class, and are therefore

equal in the LF (= L ~) . I

Proposition 42 (Soundness) MF Level 2 terms are sound provided all the extensions

are valid in the LF in the defined context for each extension.

Proof MF Level 2 terms include terms that introduce no additional LF content (n, U)

and those that do (a, -).

1. If the MFsorts A, B are valid, meaning that they denote admissible LF contexts,

then A n B and A U B are valid in the LF (provable by the structure of the formation

trees and combination of admissible contexts).

2. If an MF Level 2 term introduces a 7 extension, such as A @ F, then the result is

judged valid only if

2 2 1 1 C t x t (F T (A)) ELF [[FP u 1 u.

MF can record valid relationships, but it relies for its validity on the underlying logical

framework.

Proposition 43 (Completeness) Level 2 is complete.

Proof It is trivially true that any valid sequence in LF can be represented by a Level

2 term, so MF is complete. I

4.3 MFTheory Commands - Level 3

The purpose of Level 3 is to provide a persistent aspect to MF. Level 2 provides

descriptive support: a Level 2 term can describe the structure of a theory presentation.

However, Level 2 does not support naming of theory presentations nor inspecting a current

set of theory presentations, two aspects required for reuse. The persistent nature of the

Level 3 presentation base supports reuse, both in construction (i.e. reusing existing theory

presentations to build new ones) and in queries (inspecting the presentation base for its

current state).

Level 3 distinguishes those MFsorts that have been constructed and named from the

space of all possibly constructible theories: these named artifacts and their relation to

other named artifacts are kept in a Presentation Base, allowing theories to be retained

and described by their relation to other theory presentations. There are three principle

methods of interacting with a presentation base:

1. We can examine a presentation base for all theories that are consistent extensions

of a description.

2. We can reconstruct a theory presentation from a presentation base (i.e., reconstruct

a sequence of L F statements from a Level 3 theory presentation).

3. We can add to the presentation base by binding an identifier to a Level 2 value and

defining the dependencies in the presentation base.

The presentation base is structured as a partial order whose nodes are identifiers of

Level 2 terms. The presentation base is extended through presentation commands that are

isomorphic to the Level 2 constructors: combine, generalize, extend, and instantiate

(U, n, @, .), differing in that the result of a presentation command is a modification of the

presentation base. The state gives for each theory presentation, the relation that theory

presentation has to its constituents (often called a location in the presentation base), a

Level 3 environment that maps each identifier to the extension introduced by that identifier

(a term of y type), a Level 2 environment binding each Level 2 identifier to its admissible

context, and a Level 1 environment binding each Level 1 identifier to an element of the set

[AbstrVals]. From this state a Level 2 term and environment, and a Level 1 environment

can be reconstructed, allowing the Level 3 term to be interpreted a t Level 2, and hence in

Level 1 and the LF. The Level 3 environment retains the textual record of the extensions

to provide an actual history of feature introduction.

For example, if we have a presentation as specified in Figure 3.3, we could add to the

presentation base by

ListAndEquality E combine ThList ThEquality

which would result in the following changes in the state of the presentation base:

ThList < ListAndEquality Add t o the partial order.

ThEquality < ListAndEquality Add t o the partial order.

u3(ListAndEquality) = () The empty sequence.

u2(Lis t~ndEqual i ty) = [ThList U ~ h E q u a l i t ~] ~ u ~ The meaning of ListAndEquality

is the meaning of the corresponding

Level 2 term.

No features added.

No Level 1 abstract pairs added.

This Level 3 command only has meaning in a presentation base where ThList and ThEquality

are identifiers in the domain of u2. The Level 2 environment is extended by mapping

ListAndEquality t o the meaning of the equivalent Level 2 term in the indicated environ-

ment.

Similarly, if we had

ExtendedList E extend ThList (L ; , c;, ([Context;], LFval;, LFtyp;))

we would see:

ThList < ExtendedList Add t o the partial order.

ThList O L; ci The Level 2 term.

u3(ExtendedList) = (L ; I+ c;) The introduced extension: the u3

environment.

u2(ExtendedList) = [ThList @ L; c, c;j2u2 The meaning of the new theory presentation.

u1 (c;) = ([Context;], LFval;, LFtyp;) The abstract value pair: the u1 environment.

4.3.1 Frames

The presentation base is represented as a frame, similar t o Kripke's frames. (The treatment

given below is derived from the presentation by Anil Nerode and Richard Shore, [35].)

Frames are a method for organizing sets of related statements in a language. Usually they

are defined by specifying a set of worlds, a relation on this set, and a (classical) structure

for each set, giving i ts meaning in terms of the language of the statements in the set. In

our case, each world is a presentation base structure: a set of named Level 2 terms, an

ordering on these terms, and environments. The language of these worlds is the set of

named theory presentations bound in each world. The relation between these worlds is

a relation based on set containment: each world extends a previous world by naming a

new theory presentation through binding operators known as presentation commands. We

don't however have a simple (classical) structure for any set such that for any statement

in the language of the set, we can determine if the statement is true or false (valid or

invalid). We use instead the model of admissible contexts defined in Section 4.2.4.

We can now define a structure representing the presentation base.

Definition 44 (PB-Structure) A PB structure is a 5-tuple

where

N is a set of nodes, where a node is an identifier of a Level 2 term.

< p is the partial order on N , defined by <p.

u3 is a function that assigns to each n E N the term of y type indicating what

extension was introduced, if any.

u2 is a function that assigns to each n E N the admissible context associated

with the identifier.

u1 is a function that assigns to each c; introduced in an extension for each

n E N the associated value as an LF encoded term.

The set N is the set of named theory presentations. We let n3 be the type environment

for a presentation base, assigning t o each A E domn3 a type such that [u3 (~)B2u2 :: n3(A).

This type environment maps all identifiers t o a type in the y category of types from Level

2. This type environment serves t o provide a record of what features were introduced for

each theory presentation. This type environment 7r3, the valuation environment u3 and the

order < p are sufficient t o rebuild a Level 2 term from a presentation base structure that

is semantically equivalent t o the original term used in its construction. The Level 3 type

environment and valuation environment only specify the extensions (if any) introduced

in each theory presentation. The rest of the Level 2 term can be reconstructed from a

presentation base structure. Each PB structure also implicitly defines type environments

n2 and n1 such that u2(A) :: n2(A) and ul(c) :: nl(c) (or equivalently, u2(A) E [n2(A)],

denoting all the admissible contexts defined by the equivalence class for the formation tree

for A and ul(c) E [nl(c)], denoting all abstract value encodings for an L F identifier).

PB structures are related t o one another.

Definition 45 (sps) If PB is a set of PB structures, and p;, p j E PB, then Pi I P j if

then
Ni C N j

meaning: n; < p n j E p; j n; < p n j E pi

L u; meaning: ug(n) = u;(n) Vn E Ni

u? 2 u; meaning: u?(n) = u;(n) Qn E N;

uf 5 u j meaning: u;' (c) = u,! (c) Qc E dom (ul)

Definition 46 (Structure M) A structure M for a language N of identifiers over a set

of Level 2 terms consists of a set of admissible contexts such that the admissible contexts

form a set of trees related by the (I* relationship.

The structure M supports a meaning function for any PB structure p with identifiers n,

each n E N mapping t o an admissible context, when interpreted in the environment u2.

The set of contexts forms a set of trees (T, (I) , where each T denotes an admissible context,

and the contexts determined by the trees are related by the (I relation. The definition

of the Level 2 formation trees, the semantic functions and the admissible contexts they

denote form the required set of set of admissible contexts, each related t o one another

by (I*. The proof that the contexts are related by the (I* relation is by induction on the

structure of terms, formation trees, and contexts. These contexts can all be combined via

rules for combining contexts defined in Section 4.2.4.

A PB structure p defines a context based on the contexts of its nodes (the Level

2 terms). Each n in a PB structure specifies a context, defined by the formation tree

constructed for the identifier n in the PB structure p. We identify this formation tree a t

node n in a presentation base structure p by FT(n ,p) . The formation trees for each n

can all be combined using the rules for combining formation trees. If each n represents an

admissible context, then the result of combining each n will also be an admissible context.

We will refer to the context defined by a PB structure p at all nodes as Ctxt(p).

Definition 47 (Frames) Let C = (P , s p , { M (P)) ~ ~ ~ ~ ~) where P is a set of PB struc-

tures, s p is a relation on P , and { M (P)) ~ ~ ~ is a function assigning to each p E P a

structure M (p) for the language N (the set of identifiers in the PB structure).

C is a fmme if for every p;,pj in P, p; L p pj implies that Npi 2 N,,, M(p;) C_ M (p j) ,

and the interpretations of all n E Npi is the same in M(p;) and M (p j) .

M (p) is the model for p E P. Each element of the set N in a presentation base structure

maps to an admissible context.

Note that M (p) is a model for a PB structure because it maps each identifier in a

presentation base structure to an admissible context that is its meaning in an underlying

LF. For p E P we take M (p) to be the set of admissible contexts constructed for all n in

the set of nodes of the PB structure p. If p <p q we say that p is accessible from q. This

requires a formalization of what kinds of PB structures are accessible from one another.

Proposition 48 (Relation of Contexts for PB structures) If p;,pk are PB structures

such that p; <p pk, then there is some sequence ofpresentation base structures:

such that for each pj,p; <p pj < p pk adds one node to the preceding PB structure in the

sequence (by definition of and where the contexts defined by each PB structure will

be related b y the context relation: Ctxt (p;) (I* Ctxt (p j) (l*Ctxt (pk) .

Proof

The PB structure pr, may add 1 node n top;. So Npk = Np, U { n) , and NP, C_ NPk.

M(p;) defines an admissible context for all the nodes in pi. The new node n may

have two cases:

1. The node n adds no new information, so there is no added sequence. When

M(pk) is extended with the admissible context defined for n (FT(nlpk)), the

formation tree (context) will already be in the intersection, and hence Ctxt(p;) =

Ctzt (~ k)

2. The node n adds a new sequence to an existing node, so there will be a subtree

in FT(n,pk) whose root has a label of O and the label of 811 is labeled with the

extension introduced in n. The subtree at 010 is already present by assumption.

When the trees are combined, the subtree at 010 will be in the intersection and

hence will be prior to the context associated with the introduced extension of

n:

C t ~ t (p ~) (l * C t ~ t (p ~) ~ ~ ~ : xn : Tn

where x1 : 71, - . -, x, : T,, is the context associated with the extension introduced

by n.

a We assume that for pk adding n > 1 nodes that we have a sequence:

Now if pk adds n + 1 nodes to p;, then there must be a sequence where we have a pi,

adding n nodes to p; and pk adds 1 node to pi,. Then the same reasoning applies

as in the case above.

A Presentation Base is a Frame where the set P is constructed through presentation

commands, each preserving the relationship of PB structures in the set P through the

(I* relation of their associated contexts. Each PB structure in the Frame represents a

snapshot of the state of the context, and hence the state of a LF. We use the terms

Presentation Base and Frame interchangeably.

'Note that a presentation base structure is not a Presentation Base. A frame which includes a set of
presentation base structures is a Presentation Base. This is an unfortunate similarity. A Presentation
Base represents a growing state. Each presentation base structure is a snapshot in that growth. However,
the Presentation Base (the frame) also includes the history, in the sense of the growth of a development.

4.3.2 Presentation Base Commands, Expressions, and Queries

This section defines the presentation base terms, which are the commands, expressions,

and queries that access a PB structure and derive a new PB structure.

In this section, we use A, B for theory identifiers, e; for expressions, f;, g;, h; for feature

identifiers, pi for presentation base structures, and f for a frame. We abbreviate the list

of features [fo,. . -, fn] as [f;], and let [fIA be a list of features in the theory presentation

A. We use the same identifier space as Level 2: the set [el of structured theory identifiers.

Syntax

MF Level 3 has three kinds of phrases, corresponding t o the way in which we interact

with a presentation base. We can examine a frame t o find all presentation base structures

in which a theory presentation is defined (exp). We can query a frame t o find a value

(an L F theory) for a theory presentation (qry). We can extend a frame by adding a new

presentation base structure conforming t o the structure specified in Definitions 44 and 47

(cmd).

The three phrase types are:

6 ..- ..- exp 1 qry 1 cmd Phrase Types

Fintr ::= (L, c;, A-val;) I (L;, c;, A-val;), Fintr L; E [w], c; E [r]

A-val; E [AbstrVals],

Flist ::= [L ~ , - - - , L ,] L; E [w]

Clist ::= [c1,---,c,,,] c; E [r]

FClist ::= [(LI, cl), . . . , (L,, c,)] cj E [TI L; E [u]

Identifier P E [el (Expressionsl)
P :: exp

Combine

Generalize

el :: exp e2 :: exp
combine el e2 :: exp

el :: exp e2 :: exp
generalize el e2 :: exp

el :: ezp e2 :: exp f :: Flist g :: Flist h :: Flist c :: Clist
Instantiate (Expressions4)

instantiate el e2 f g h c :: exp

e :: exp f :: Fintr
Eztend

Command

extend e f :: exp

F :: exp

e :: exp
P = e : : c m d P E [dl

e :: exp

(Commands 1)

(Queries 1)

Not all expressions that are syntactically well formed have a meaning in a presentation

base structure. The meaning of an expressions in a presentation base structure is limited

t o those theory presentations that have been bound t o an identifier.

4.3.3 Semantics

Our presentation base is a frame, meaning that i t encompasses a set of PB structures in

a particular relationship. We can define a maximal and minimal PB structure as being

the greatest (least) presentation base structure p; in a frame according t o the presentation

base structure order (Sp) in the frame.

The set Fmme is the set of frames whose presentation base structures meet the con-

sistency requirements above.

The phrase types for Level 3 are:

[exp] = The set of expressions

[cmd] = The set of commands

[qry] = The set of queries

The sets of possible meanings of the phrase types are defined as follows:

[exp] = Fmme + Fmme

[cmd] = PBStructure + Fmme + Frame

[qry] = PBStructure + Fmme + [O]

The sets of meanings are intuitively:

[exp] determines a map from a Fmme t o a Fmme: restricting a frame t o those

PB structures in which the expression has meaning. The minimal p in the frame

is the least PB structure where a node identifier has a meaning with the indicated

properties.

[cmdJ extends a frame with a new P B structure in which a new identifier is bound

t o a Level 2 value that has the indicated meaning within the new P B structure in

the frame. (We assume the most recent (maximal) P B structure is selected, though

there is potential for selecting other structures).

[qryB is map from a PB structure t o the meaning of a theory presentation identifier

in a PB structure in the frame.

The semantic functions for the Level 3 phrases have the types:

[.BE : [expI+ [expl

[-Ic : [cmd] + [cmd]

8 . 1 ~ : [q r d + [q r ~ l

[.IN : [e ~ p] -+ PBStructure + [8]

The semantic function [.IN evaluates an expression t o an identifier bound in the in-

dicated P B Structure having the characteristics of the expression. This function uses the

ordering defined in Proposition 38. The semantic function [e lN gives a theory presentation

identifier C such that C is the least theory presentation in the presentation base structure

having the property that C > p e , for any expression e (assuming that e is in canonical

form). The value of [- I N will be the theory presentation that has the closest structure t o

the structure of the expression e , if one exists. The theory presentation having the closest

structure t o an expression e is defined t o be the least theory presentation e' such that

e 5 el.

The semantics function [- I N is used by the other semantic functions t o restrict meaning

t o those theory presentations that have been identified through some presentation base

command.

4.3.4 Semantic Equations

The equations make use of the coercions defined in Section 4.2.6. The coercion A I- B is

a filter on a set, selecting only those elements whose types A may be coerced t o B. In

the section on the commands, we use a notation extending environments. The notation

{unlun(C) = V) specifies that the environment un is extended such tha t the identifier C

is now in the domain of un having a value of V .

Naming

[extend e [(h i , c i , x i) , - ', (I , , Cn, x ~)]] N P =

let A = [eINp

and { B I B > A E p

& x2(B) I- L I c) c ~ & . - - & L , I+ c,)

and B' = the least such B

in B'

[combine el e2INp =

let A = el]^ p

and B = [e 2 I N p

and { C I C > A E ~ & C ~ B E ~)

and C' = the least such C

in C'

[generalize el e2INp =

let A = [e l l N p

and B = [e2JN p

and { C I C < A E p&C 5 B E p)

and C' = the greatest such C

in C'

[ins tant ia te el e2 [flA [slB [hIclNp =

let A = [ellN p

and B = [e2IN p

and { C J C L A E ~ & C L BE^&
7r2(C) I-

L C ~ C) T ~ (A . L A ~) (~ ~ ~ (B . L B ~) , . - -, R ~ (B . L ~ ,)) & . . .&

LC, I+ 7 r 2 (A . ~ ~ m) (7 r 2 (B . ~ ~ l) , * , 7r2(B.~~,)))

LAi E [f l ~

LBJ E [~ I B
LCk E [h]c

and C' = the least such C

in C'

[[(&I, ~ l) r ' ' *, (Ln, c n)]] ~ P =

let {BIB E Np&7r2(B) I- ~1 c) el&. - -&L, I+ c,)

and B' = the least such B

in B'

The definition of the semantic function for extensions can be written differently al-

lowing more-flexibility in how a PB structure is examined for consistent types. In the

definition above, extensions are identified by their feature identifier and the identifier of

the Level 1 term that this feature identifier denotes. This expression is equivalent t o ask-

ing: are there any theory presentations in the presentation base structure p; having the

features ~ 1 , - - -, L, mapping t o values el, . . . , c,. We could drop the c;, which would equate

t o the question: are there any theory presentations having the features ~ 1 , --., L,. Or we

could add in the abstract value information, asking: are there any theory presentations

having features t l , - -, L,, mapping t o values c l , - - -, c, which in turn map t o L F encodings

X1,.-.,Xn.

All expressions that refer t o a least or greatest in the set are not defined if there is no

least or greatest member, modulo =FT. If this happens, it means that the expression is

underdetermined, and refers t o more than one theory presentation, none of which can be

said t o be a better fit than the others. If there has been specifically a theory presentation

constructed and hence bound that had precisely those characteristics, there would in fact

be a least (or greatest) in the indicated presentation base structure.

Queries

Queries evaluate expressions to a name that matches the construction specified and

evaluate that identifier in the environment denoted by the presentation base structure.

For example, the query Q(combine A B) will evaluate the presentation expression

combine A B t o find the identifier of a theory presentation in the P B structure p that

is an extension of the combination of A and B. It will then evaluate this identifier in the

environment specified by p t o an admissible context, giving an L F theory presentation

including both the statements of A and of B.

Expressions

Expressio'n evaluation selects from the frame all the P B structures where the expression

has meaning. For example, [combine A BIEf returns a new frame all of whose P B

structures have an identifier whose meaning is consistent with (is an extension of) the

combination of A and B.

Commands

Commands add a new P B structure t o the set P, returning a new frame. The new PB

structure in the frame has a new node added whose meaning is the admissible context

denoted by the expression.

In the following equations, the operator I is used t o indicate that a set or function is

extended with a new value or mapping. So {u31u3(C) = 0) specifies that the environment

u3 is extended such that it now maps the identifier C to the empty sequence. C is presumed

to be fresh.

[C E combine el e2Ic p f =

let A = [e l lNp

and B = [e2INp

and P' = (N p ' J { C) , { I p IC 2 A ? C 2 B } ,

{u31u3(C) = 01,
{u21u2(C) = [A U Bj2u2) , u l)

in ~ ' = (P ~ ~ { P ' } ? { < P ~ P < P P ') ,

{M(P))PEP,IM(P') = Ctxt(pt))

[C - generalie el e2Icp f =

let A = [elINp

and B = [e2BNp

and P' = (Np U { C) ? { I p IC I A, C I B) ,

(u31u3(C) = 0 1 7
{u21u2(C) = [A II B]2u2) , u l)

in f' = (Pf u { p f) , { < P Ip < P P')?

{M(P))P€P,IM(P') = Ctxt(pt))

[C extend el [(& I , C I , x i) , , Ln, C n , x ~)]] c P f =

let A = [ellNp

and P' = (Np U {C) , { I p IC L A, 1,
{u31u3(C) = ~1 C) c ~ , * . . , L ~ C) cn),

{u21u2 (C) =

[A @ [L ~ C) C ~ , . - - , L , ~ cn,12u2),

{u1Iu1(c1) = X I))

in f' = (P f U {P'), {<P I P <P P I) ,

{M(P)IP€P,~M(P') = Ctzt(p'))

[C r instantiate el ez [f lA[s]B[h]c[~;l , . . , c;,]]cp f =

let A = [elBNp

and B = [e2lNp

and PI= (NpU{C) ,{ Ip IC2 A , C 1 B) ,

{u3)u3(C) = tcl C) A.tA1 (B . L ~ ~ , . , B-LB,),

- - - , L C , I+ A . L ~ , (B . L ~ ~ , . - - , B.LB,)),

{u2 1 u2 (C) =

[A U B @ u3(C)I2u2),

1 1 . {u lu (~ 2 ,) =
2 2 1 1 [[A - L A ~ (B-LBl 7 . ' B-LB,)] u] U ' ' .,

2 2 lu l u1(cirn) = [[A-LA, (B - L B ~ ' . ., B-LB,)] 21 1
in f' = (P f U {P') , {<P I P <P P'),

{ M (P)) ~ E P ~ I M (P ') = Ctxt(pt))

[C [(LI~cI) , (~ n , cn)]]cpf =

let A = [[(Ll, ~ 1) ' ' ' (&TI c~)]]NP

and Pi+l = (N p u (C), {C 2 A),

{u3(C) = 0 1 7
{u2((C = [AI2u2),

ul)

in f' = (PBf u {P'), {<P IP <P P'),

{M(P))PEP, lM(p') = Ctxt(p'))

4.3.5 Properties

The consistency of Level 3 relies on Level 2. The structure of the frames preserves the Level

2 meanings such that if p; <p pj and p; and pj are admissible, then Ctxt(p;)(J8 Ctxt(pj)

and M(p;)(l8M(pj).

4.4 Summary of Results

This concludes the formalization of MF. We have shown a formalization that limits ma-

nipulable objects to named theory presentations and supports persistence through the

frame structure of Level 3. Level 3 supports re-use and queries by allowing us to retrieve

theory presentations that are consistent with a structural specification as embodied by

the presentation expressions. We separate the persistent character of a development from

the space of all constructible artifacts, limiting the world of theory presentations to those

we have identified.

Level 2 gives a semantics to the structure of theory presentations with little expectation

or knowledge of the underlying base language. We relate the theory of sequences to admis-

sible contexts in the underlying language, provide a syntactic approach to manipulating

theory presentations (the formation trees), and show a correspondence to the semantic ob-

jects (the admissible contexts) under certain restrictions (no collision of identifiers unless

they map to the same values).

Feature terms were originally introduced to provide a way to locate theory presenta-

tions with certain characteristics through unification. This may still be possible in future

developments. However, in the current system they serve a simpler role.

Features support a global name space so there are no duplication of feature identifiers.

The meaning of a sequence is given as the list of feature identifiers as a way to describe what

elements are introduced in the sequence without reference to the actual values. Feature

terms provide a mechanism to identify when elements in a sequence are introduced in one

theory presentation a s opposed to several unrelated presentations. They provide a level

of independence that allows us to provide a different interpretation for features (allowing

features to represent the sequence independent of the meaning given to the elements of

the sequence). However, the features of MF terms, as they exist now, are much closer to

record labels than to true feature terms.

In Chapter 6 we discuss some proposed future extensions of MF that would allow us

to explore more complex maps from one presentation base structure to another.

Chapter 5

Comparisons and Conclusions

As noted earlier, the research presented here draws on several research communities:

database and knowledge representation, type theory, and specification languages. Un-

til recently, no one of these areas provided work that was directly comparable t o MF. The

goal of MF was t o find a way t o make better use of the expressivity and the power of

the higher-order constructive logics. These logics are used most often t o capture speci-

fications (of programs or mathematical theories) and t o express properties (of programs

or mathematical theories). The research reported here explores the use of structure t o

achieve this goal: maintaining a strong separation of structure and theory content, defer-

ring commitment of the nature of a base language or the primitives required for theory

development, providing a theoretical structure t o support persistent storage of and access

t o this structural information, and, lastly, preserving the semantic conditions (i.e., the

necessary context) needed by a particular specification through the structural relation-

ships.

By intent, MF does not provide any support for a specific methodology of algorithm

development nor does it make use of any automated support tools that aid in refinement.

A consequence of a strong separation of structure from content is that specific algorithm

development is associated with the content. There are existing tools and systems that

focus on this content-oriented development (such as KIDS [45] and NuPRL [13]). Ad-

ditionally, MF does not provide any support for a realization of a specification. Again,

there are systems whose sole goal is t o take constructive specifications and extract their

computable component (such as Christine Paulin-Mohring7s [36]). These different compo-

nents (structure, algorithm refinement, and program realization) could be used together

to provide support for the different aspects of program development: algorithm design,

refinement, implementation, and verification.

I will look a t systems that have provided similar or overlapping .capabilities: Autornath

[8], CLEAR [ll], Institutions [21], [41] , consequence relations in LF [24], ELF [37], Ex-

tended ML [42], a system of Delivembles [9], and Specware [49]. Each of these formalizes

a particular activity associated with program or theory development, with the Specware

system being the closest in terms of its stated goals.

5.1 Automath

The goal of Automath ([8]) was to develop a system for writing mathematical theories

such that verification of the correctness could be performed. Some of de Bruijn's identified

criteria were to:

1. Define a system that will accommodate all theories involved because many errors

occur in the assumptions as to the nature of the theories.

2. Provide a notion of a book of theorems (although the notion of a book appears

implicit with respect to the logic).

3. Implement the basic proof methodology as functions, P-reduction, and typing.

4. Allow type inclusion and partial typing (Aut-QE). Aut-QE allows a restricted form

of sub-typing: the type expression T : type may be used in place of T : [u : Ultype

which may in turn be used in place of T : [u : U][v : Vltype.

5. Distinguish a proposition from its proof(s): for an arbitrary proposition p, the proof

of p has the type proof (p). Proofs are therefore not confused with the type or

proposition, as may occur in COC.

While their primary goal was to provide a means to fully prove the correctness of

theories, the project incorporated many of the themes of MF. Their focus on checking or

validating a proof obscures some assumptions that the theorist may already have made.

These assumptions-span several activities in the specification or theory development pro-

cess:

1. We can only prove statements that can actually be expressed: the proofs in the sys-

tem are highly influenced by the language provided and the meta-theory supported.

Fixing on a particular language, as Automath does, commits to some extent the

kinds of theories that will be explored.

2. The exposition of mathematical theories is dependent on the use of axioms, defini-

tions, lemmas, theorems, and proofs. These meta-logical concepts must be indepen-

dent of the underlying language if we are to be able to explore their role and their

properties.

3. The interpretation of the theories should be expressible as well and independent of

the underlying language.

4. Automath distinguished informally the role of a book and the context of mathemat-

ical theories. A book is a complete presentation of a mathematical theory or set of

theories while a context is defined to be:

The set of assumptions considered valid a t a point in time.

The set of variables active at that point.

The set of all theorems, lemmas, assumptions that have been previously devel-

oped.

How this distinction can be captured is left unexplored in Automath.

While the above were concerns discussed in the Automath literature, they were not all

equally well explored in the Automath project. In particular, two (related) goals are to

maintain a distinction between the object and meta-level and facilitate understanding

about how theories are constructed. Level confusion is a very common problem in the

domain of theory specification. It is a common pitfall to try and put too much information

at one level, obscuring what one is trying to emphasize. MF makes a strong distinction

between the structural (the meta-level) and the underlying logical framework (the object

level).

As part of the investigation, several Automath languages were developed, each having

different capabilities as a base language, such as type variables, A-expressions, higher-order

capabilities, pair extensions, syntactic handling extensions. Some of these modifications

were to the underlying language, while some were more in the nature of pre-processor.

Automath is an initial definition of a family of languages: its primary aim was to explore to

what extent these languages could implement their program of automating mathematical

proofs.

Some things that were not included in Automath:

1. The underlying language was not necessarily constructive. So, while theories could

be constructed and proved, the resulting objects were not necessarily executable.

2. The part of the context consisting of previously developed notions was implicit in the

theory construction. So the order of the required contexts and the resulting context

itself was not something that we could make judgements about or manipulate.

3. They did not investigate theory construction as a process, but as a static description.

4. They did not have general higher order types, by intent. This limited their unifor-

mity, although at least one of the Automath languages was higher order, Aut-SL

[81

By using a constructive, higher order language as the base language for theory con-

struction in MF, we are able to provide a fully expressive language in which to describe

arbitrary theories. By separating the structural information from the statements that

compose the theories, we can explore the ways in which theories are related to their com-

ponents, independent of the interpretation or meaning of the theories. The construction

of a theory presentation represents a particular sequence. More than one sequence may

map to the same theory. The sequence is represented in MF through the < p relation-

ship on theory presentations. In MF, the equivalent concept of the Automath book is

the downward closure or structural environment defined by a theory in a presentation

base structure. Unlike Automath, multiple books may exist at the same time, sharing

parts through their structure. Automath also had no modularity of theories: there was

no structure aside from the primitive notions of theorem (lemma, etc). The burden of

completeness is still on the theorist.

Automath was a very early system. Many of the issues that are explored in MF are a

direct outgrowth of the work in Automath. MF has taken much further the separation of

the structure from the presentation of a theory.

5.2 Clear

Clear ([Ill) is a specification language that supports algebraic specification of theories.

Clear theories have a well-defined structure of sorts, operations, and equations, which

are interpreted in a category of theories. Theories are constructed from other theories by

specifying theory morphisms: how the signatures are changed, additional sorts, operations,

and equations.

The basic theory operations in Clear are:

introduce a theory: introduce the sorts, operations, and equations of a theory.

combine two or more theories: combination is interpreted as the coproduct (colimit)

of the theories in the category of theories.

enrich a theory: add new sorts, operations, and equations.

instantiate a theory, replacing sorts or operations with new ones.

use pushouts t o apply generic theories t o their actual arguments, constructing a

theory morphism (a procedure).

use diagrams as environments t o keep track of shared theories.

Theory morphisms preserve structure and allow sharing of common structure: If a

theory is constructed from two theories that share a common substructure, only one such

substructure will be identified. Theories with their supporting substructure are known as

based theories.

Procedures may be constructed that take theory arguments and produce a method

that can produce a new theory when applied to appropriate arguments. The match of

actual theory argument to formal theory argument is made via a fitting morphism. The

resulting theory has as part of its base the actual theories that were used in the procedure.

Additionally, theories may be constrained to be free with respect to their constructors:

the algebras satisfying the theory must produce all their elements only from the specified

operations and the elements must all be distinct, except where equality equations force

them to be equal. These are called data theories.

In contrast, MF theory presentations have no specific structure or type. There are no

theory presentation procedures nor are there any data theories. However, both of these

facilities are supported in a uniform way by the underlying logical framework. This lack of

(internal) structure limits (in some ways) what can be done with presentations a t the meta-

theoretic level, while allowing the base language the expressive freedom to support a notion

of theory appropriate to the problem domain. In MF a presentation is constructed from

other presentations only by extension, inclusion, generalization, or instantiation. Because

a signature of sorts and operations cannot be assumed, nor the presence of equations, the

structural operations on presentations are confined to a more abstract notion of structure.

Constraints on models, such as those presented by freeness constraints of data theories,

are properties of the base language, rather than MF. Parameterization (the construction

of theory morphisms) is treated similarly.

The MF approach presents some advantages. By changing the underlying base lan-

guage of MF, one can change not only how one presents a theory, but also the domain

of discourse. As an example, if the underlying base language were a language of deliv-

erable~ (as discussed in Section 5.7), then the denotation of a presentation would be the

deliverables, the structure would correspond to the derivation of the deliverables. If the

underlying base language were order-sorted equational algebras, we would have a system

very similar to that of Clear.

The aspect of MF and Clear that is most comparable is the role of structure. Be-

cause Clear is defined in the category of theories, an environment is represented as a

diagram in this category. As in Chapter 3, the structural environment of a theory refers

t o i ts environment or context. For theories that introduce no new informational con-

tent, such as A U B, the structural environment is the theory A (and its structural en-

vironment) and the theory B (and its structural environment). -For theories tha t in-

troduce new information, such as the extension A @ FA, the structural environment is

the theory A (and its structural environment). A diagram in Clear is very similar t o

the structural environment in MF: the structural environment is a description of a (por-

tion of a) lattice in a presentation base structure. In Clear, if we had two specifica-

tions: total-order and partial-order, and we intended t o specify a topological sort, we

might enrich the colimit of total-order and partial-order with the operations and equa-

tions for a topological sort, assuming that the existing specification had the required

theory specifications for total order and partial order. In MF, we would construct a

similar sounding specification: ex tend(combine total-order partial-order)Veaturelist],

where (combine total-order partial-order) is the required structural environment and

Featurelist] are the introduced features: the operations and equations for the topological

sort.

In Clear the colimit specifies a diagram in the category of theories. In MF, the struc-

tural environment has no meaning unless the presentations total-order and partial-order

are defined in the specified presentation base structure, and there is some theory pre-

sentation A in the presentation base such that A is an extension of both total-order and

partial-order. The new theory will then be an extension of A. This constraint restricts

theory presentations in M F t o those that have been identified by a designer. This identi-

fication makes the statement that the theory composed of (total-order U partial-order) is

something meaningful that we wish t o retain in our structure.

The lattice associated with the structural environment (total-order~partial-order) has

a least upper bound: A. The formation tree for A identifies exactly how A was constructed,

and the denotation of A would be a sequence of statements in the underlying logical

framework. If we hypothesize a map m from one presentation base structure t o another,

preserving the structural relationships (and the intended meanings), then if A is defined in

the presentation base structure p, then m (A) is defined in the presentation base structure

m(p), and the structural environment for m(A) in m(p) is consistent structurally with the

structural environment for A in p (meaning that if A 5 A' in p, then m(A) 5 m(A') in

m(p)). In this sense, the structural environment acts t o parameterize a theory over many

compatible environments. The actual environment is derived from the presentation base.

The structure can be thought of as capturing the interpretation relationship: the map m

maps specifications t o interpretations. (For some thoughts on extensions t o the role of

structural environment, see the Chapter 6.)

The example above can be thought of as instantiating an environment, in the sense

that the description of a structural environment in a theory presentation construction

may be instantiated by more than one actual environment. A related idea is presen-

tation specialization (or theory instantiation). Clear has the notion of a theory apply

that allows a Clear procedure t o have a parameter. The application of a Clear proce-

dure t o a theory (under a fitting morphism demonstrating the correctness of the appli-

cation) is another theory specification. Like environment instantiation in MF, a theory

may be applied t o many different theory parameters, with different fitting morphisms.

In MF the equivalent t o a Clear apply is accomplished by theory instantiation. Because

the underlying language t o MF is expected t o be a logical framework with P-reduction,

MF relies on this capacity t o support theory application. In the initial design, a the-

ory presentation is assumed t o have a common context on which all the sentences are

abstracted. (There are various relaxations t o this constraint suggested in Chapter 6.)

A theory can be specialized t o particular values by instantiation. If P3 is the theory

presentation ins tan t i a te PI P2[f11 f2][gl,g2,g3][hl, h2][c11c2], then P3 has a structural

environment of PI U P2, with PI having the features fi and f2, and P2 having the features

91, 92, and g3 and is extended with features hl , h2 such that the denotation of hl is the

denotation of fl applied to the denotations of gl, g2,g3, and similarly for ha. Structurally,

this application can be captured as:

hl t-, Pl.fl(P2.gllP2.g2,P2.g3)

h2 I+ Pl.f2(P2.gl,P2.g~,P2.g3)

meaning that the features fl , f2 in theory presentation PI are applied t o the features

gl1g2,g3 in theory presentation P2, discharging the (assumed) context elements in the

underlying object theory.

In Clear, the dependence of a theory specification on a parameter theory is indicated

byspecifying a formal parameter X with a theory Umetasortn. For instance, we might

have a procedure Q with a parameter X : Poset, meaning that X needs to be a partially

ordered set, where Poset itself is a theory specification. The result of the application

is a Clear specification. In MF, Q would not be a distinguished linguistic element (a

procedure). Q itself would be an MF theory presentation whose underlying sentences

must have the form that they are abstracted on the required object level witnesses, for

instance a 5 operator. Because the burden of fitting the witness to the assumption needs

to be checked at the object level, theory instantiation has a component that is structural

(which theory presentation and which features in the theory presentation are used to

discharge assumptions) as well as an object language level component (proof that the

witness is indeed of the correct type to discharge the assumption). Chapter 6 discusses

extensions to the theory instantiation model that manipulates the abstraction contexts

directly.

The remaining roles of the MF environment have no counterpart in Clear. The per-

sistent presentation base is an extension of t he Clear environment: Clear environments

are not persistent. The structural environment is a mediator between the presentation

base and the designer, by constraining what presentations are to be referenced. During

construction, it identifies a location (a node in a diagram, a position in the presentation

base lattice) in the presentation base. During a query, it identifies possible solutions (di-

agrams, structural environments). It acts as both a prescription for how the underlying

logical system must be extended to support a presentation, and as a descriptor of the

logical system produced by these extensions.

The essential differences between Clear environments and MF environments and pre-

sentation base is the persistence and reusability of the presentations and environments in

MF, the freeing of parameterized specifications from a specific presentation to satisfying

structural environments (lattices, diagrams), and the move of the details of presentation

instantiation (application) to the object level.

5.3 Inst it utions

~ h k goal of Goguen and Burstall's work on Institutions ([21], [41]) is to:

1. Support as many computer science features as possible independently of the under-

lying logical system.

2. Facilitate the transfer of results from one logical system to another.

3. Permit the combining of different logical systems naturally.

To accomplish this, they formalize the role of a logical system very abstractly to

allow multiple formal systems to be cast in the role of an Institution. They introduce

a satisfaction relation between models and sentences that allows a change in notation,

focusing on the language features being defined rather than the specific syntactic and

semantic details used to define the language feature. An institution is a category of

signatures with associated sets of sentences, models, and a satisfaction relationship. In

particular, Clear is a specification language designed to work with any institution. Because

a central feature of specification languages is to facilitate the construction of large theories

from available smaller theories, Institutions formalize this feature as a colimit of the small

theories connected by theory morphisms.

Goguen and Burstall state several main results from this research, two of which are

of particular interest in the context of the research presented here. The first main result

states that any institution that allows signatures to be fitted together will allow theories

to be fitted together, where signatures define the notation, and theories are collections

of sentences over a particular signature. Another result shows how theory structures are

preserved during institution morphisms.

MF is not really an institution. Institutions are semantically organized, describing

generalities of logical systems and supporting morphisms between logical systems. Much

as Clear is a specification language designed to work with any institution, MF is a spec-

ification language that can work with a variety of underlying logical systems, and hence

with a variety of institutions. But, because MF has no innate language of specification,

the underlying language to MF must itself be an institution. The definition of institution

provides a specific structure t o the base language. An institution is defined by giving a

signature, a functor mapping each signature t o a set of sentences over that signature, a

functor associating a model t o each signature, and a satisfaction relation between models

and sentences that is preserved over signature morphisms. Because M F may rely on an

institution, if an institution allows signatures t o be fitted together, then MFwill as well. If

the L F supports the fitting together of signatures through ,f?-reduction, matching operator

names t o operator names, and functions t o functions, then the model of M F theory appli-

cation and the facility provided by the L F correspond directly. If we had an institution

that supported signature fitting via a different mechanism than P-reduction, assuming the

different mechanism were comparable, a map defining the institution's signature fitting

mechanism in terms of the M F notion of theory application would be sufficient.

The preservation of theory structure during institution morphisms supports the M F

separation of structure from content, where the content is expressed in the institution and

the structure is expressed in an M F presentation base structure. If an institution morphism

preserves theory structure, then the structure as expressed in MFwill be preserved as well.

Institutions contrast with the work on structure and representation in L F presented

in the next section. The Institution abstraction is based on model theory, whereas con-

sequence relations are based on proof theory. M F is closer t o the proof theoretic school

in its syntactic treatment of theory structure. What is particularly appealing about the

institution concept is its ability t o capture what properties are necessary in the institution

and t o provide for institution morphisms, allowing a change in the base language, while

preserving the structure of a theory development.

5.4 Structure and Representation in LF

Harper, Sannella, and Tarlecki have proposed a framework for structured theories in a logi-

cal framework by lifting presentations in the object logic t o the metalogic of the framework

([24]). Like the work on Institutions, it provides an abstract and unifying way of viewing

logical systems.

Because one of the goals is t o conduct all the inferential activity of the object logic in

the logical framework, LF must represent the object logic in sufficient detail t o capture the

relevant properties. They study the use of theory structure in order t o control behavior in

the LF encoding of the object logic. They take this idea further in searching for a structure

for logical systems themselves, allowing them t o be defined in a similar modular fashion,

with the ultimate goal of defining both theories and logics in one logical framework.

This uniform approach t o structure is common. It has the advantage (much like Ex-

tended ML) that one formal system may be used t o describe differing properties so that

only one formal system need be examined. The LF type system supports the encoding

of various object logic properties, such as all syntactic apparatus, judgement forms, and

inference rules. They introduce the abstraction of a logical system as a family of con-

sequence relations indexed by signatures. This is similar t o the abstraction proposed in

Institutions, except that Institutions use a model-theoretic view of logical systems, while

this view uses only the consequence relation.

Harper, Sannella, and Tarlecki7s system is very general, categorizing the underlying

logical systems in an abstract and complete framework. However the notion of structure

is an embedded one: one cannot view the structure of a problem separate from the details

of the implementation. Their view is t o use structure t o aid in the specification of logical

systems in the metalogic. I am not concerned with taking over the function of the object

logic. In fact, I want t o use the object logic properties t o d o what they are intended t o

do. My goal is t o facilitate structured descriptions in an arbitrary logic, putting the least

restrictions on how the logic is used, while allowing the structure t o be fully specified.

In terms of modular re-use, this kind of generality seems t o be mandatory. Much like

the Smalltalk system provides a structured hierarchy t o facilitate re-use, a structural

presentation hierarchy gives a map or derivation of desired components. The work on

structure and representation in LF intends t o use structure t o facilitate proof search and

other object-level activities that are encoded in the metalogic. MF uses structure in an

entirely orthogonal way: t o organize development, t o locate common developments, and

t o describe structural constraints.

MF is logic independent and LF independent. By changing the logical framework used

as the base language, one may change the kinds of logical systems that can be described

in MF. Questions still to be explored are how MF can be used with different L F s and or

logical systems, each describing a different aspect, a s in Institution changes.

5.5 ELF

ELF, a language for logic definition and verified metaprogramming by Frank Pfenning [37]

again attempts to define a meta-language for proof manipulation that is independent of

any particular logical system. Independence from particular logical systems is a strong

motif, leveraging off of the common factors of logical systems. The goals of ELF are

disjoint from those of MI? it is of interest here because it provides yet another example

of the kinds of base languages that might be explored with MF.

The goal of ELF is to manipulate proof objects produced by meta-programs such as

theorem provers and type inference systems. Using an operational interpretation for types,

ELF is able to construct terms that can represent object-logic proofs

ELF provides meta-programming support to be used with logical frameworks. It s u p

ports the logician in constructing proofs in a logic, while LFsupports the ability to describe

the logic. MF fits in by describing the structure of a development. As well as exploring

how structure can be preserved in going from one logical framework to another, I would

like to explore the relationships between them. Is the structure of a logical system related

to the structure of the ELF description? How would one incorporate a meta-programming

aid such as ELF in a structural environment such as MF? They both use an LFdescription

as a base.

5.6 Extended ML

Donald Sannella and A. Tarlecki have defined an extended version of ML to facilitate

the production of correct programs from requirements [42]. Extended ML is a specifica-

tion framework for program development in Standard ML. The design choices made in

Extended ML were influenced by this restricted goal. Rather than aiming at a general

specification language, such as Clear, Extended ML embodies a particular methodology

and development style for program development for successive decomposition of ML mod-

ules until an executable program is reached. The Extended ML language accommodates

both specifications and executable modules in a single uniform framework. This pro-

cess allows a development to exist in mixed-mode: partially specification and partially

executable.

Extended ML's methodology is oriented around signatures (with axioms restricting the

values given to the signature) and implementations (called structures). Structures may

be built from other structures, and signatures from other signatures, yielding a hierarchy

of development. This hierarchy however is not accessible as a manipulable object.

MF does not provide a methodology to support the construction of theories nor does

it provide support for successive decomposition of specifications into executable modules.

What it does provide in the context of program development is a tangible scoping mech-

anism. Like suggestions for LCF in Structured Theories in LCF [44], MF environments

can be used to limit the context of search (for a solution or a proof) to a problem. Ex-

tended ML's use of signatures with axioms provides much of the detail not present in

MF environments. Combining MF with an Extended ML base could provide both the

structuring support needed by Extended ML and the interface restrictions needed in the

base language.

5.7 Deliverables

James Hugh McKinna in his thesis Delivembles: A Categorical Approach to Progmm

Development in Type Theory [9] investigates Burstall's notion of deliverables: a program

along with its proof of correctness. The objects in this system are more stringently defined

than in ours: an object in MF may indeed fit the descriptions of a deliverable, although it

need not. But, in general, the aim of MF is the construction of correct programs, whether

they are delivered in a formal structure of a deliverable or not.

The language of the deliverables could be used as the underlying base language, allow-

ing deliverables to be defined in the structured environment of MF. If we could describe a

map between an LFdescription and a system of deliverables, MF could conceivably be used

both as a development environment and a verification environment, providing different ca-

pacities for the same MF specification. Changing the underlying base language promotes

different features, altering what is expressed. Theory development over a base language

that provides a notion of deliverable could be developed in the same way as is currently

presented in MF, but the result, rather than being a COC presentation, would be the

set of deliverables. Allowing a change in deliverables also suggests that several activities

such as developing proofs of correctness or extracting computational components might

have parallel development environments. The goal of distinguishing propositional from

computational information in Delivembles is reminiscent of MFs goal of distinguishing

structure from content.

5.8 Specware

Specware [49] was developed in the context of the KIDS (Kestrel Interactive Development

System) [45] project at Kestrel Institute. Specware is defined in the context of a category of

specifications and specification morphisms. Much like CLEAR, diagrams in this category

describe system structure. A Specware specification is a finite presentation of a theory in

a higher-order logic.

Specware has a specification language (Slang) and a built-in sort Boolean (with asso-

ciated operators) as well as universal and existential quantification. Slang also has a set

of sort constructors supporting N-ary products and coproducts, function sorts, subsorts

(as pullbacks), quotient sorts, and sort axioms (restricted to renaming).

At the specification level, there are three structural morphisms: translation of a spec-

ification by renaming rules, putting specifications together using a colimit, and importing

a specification and extending it with a definitional extension.

In comparing the different systems looked at in this chapter, a common problem is

finding the correct level of comparison. In Specware, there are three tangible levels. The

meta-level manipulates structure in either the category of Specifications or the category of

Interpretations, allowing for naming diagrams. The language Slang is the object language

for this meta-level. The second level is the language of the theories. Slang also forms this

language of theory specifications and interpretations, similar to Clear. There is a third

level that corresponds to an implementation language, derived from the specification, such

as Lisp, C, Ada, etc.

Dividing MF up in a similar way, we too have a meta-level: the language of structural

expressions described in Level 2. MF Level 3 names presentations, performing the same

function as the named diagrams in Specware as well as defining the presentation base. The

language of specifications in MFis however intentionally sparse. In trying to localize what

are true structural effects distinct from object-level information, MF has no counterpart

to the Slang language. Instead, a specification is represented structurally as a collection

of features defined in a particular context (structural environment). A feature acts as a

tag: a notification that there is some object level informational content present at this

point. There is no commitment to what a feature might be. It could be a hypothesis

intended to be discharged. It could be a proof. It could be an operator. What can be

described in a system such as MF is dependent on the logical framework that underlies

the structural component. In this case, the assumed logical framework was the Calculus

of Constructions, allowing a full range of expression for specifications.

As previously mentioned, because MF does not commit to a particular model of specifi-

cation, some things are more easily expressible in MF than in Specware. Similarly, because

Specware does have a model of decomposition, some things are more easily expressible in

Specware. For instance, Specware supports different kinds of theories: problem specifica-

tions, implementations, and interpretations. MF does not have a notion of different kinds

of theories, although each kind can be represented in MF. The more general approach

of MF gives the user more flexibility while the Specware provides greater methodological

support.

Specware maintains a distinction between a specification and an interpretation. Some

theories are intended to be specifications: they do not have implementation information

and are intended to be refined. Ultimately, a specification is intended to be refined via

an interpretation, which gives more detailed information. For example, if we intend to

interpret a total order specification as a sequence, we first give a definitional extension to

the sequence to include all the total order operations implemented as a sequence, calling

this new theory presentation total-order-as-seq. We then give a renaming morphism from

the total order to total-order-as-seq, that will allow us to map each total order operation

to the equivalent operation implemented as a sequence. This pair of morphisms (the

extension and the renaming) is then seen as an interpretation of total order as a sequence,

with total-order-as-seq being a mediating specification.

Interpretations can be composed via pushouts, because the definitional extensions are

closed under composition, and the renaming morphisms can be combined (assuming they

do not conflict). This sequence of pushouts is called vertical composition.

Interpretations can also be combined horizontally, allowing interpretations to be fit-

ted together, assuming that a pullback exists (meaning the common part of two inter-

pretations, if any, is compatible), explicitly indicating how one interpretation specializes

another, and using a strong equality for morphisms that allows them to be checked syntac-

tically. This fitting together of interpretations supports the same refinement relationship

as in the category of specifications: if S1 refines S2 and if Il and I2 are interpretations for

SlandS2, respectively, then Il refines I2 in the category of interpretations.

Unlike Specware, MF does not have a distinct notion of a category of interpretations

separate from the specifications. Like other decisions made in the separation of structure

from content, the structure determines equally a specification or an interpretation. The

meaning of a theory presentation in MF is its object-level statements, which are recorded

via feature values in a particular context. To accomplish the equivalent an interpretation

in MF, we would use application. Application is vertical composition in that it is imple-

mented as an extension of two theory presentations. If we had a theory presentation for a

total-order, where we might intend to implement the total order via different data struc-

tures, we would allow for this possibility by providing a context intended to be discharged

delineating what components needed a witness. We might then also have a theory pre-

sentation for a sequence. At some future point, we could apply total-order to a sequence,

providing the necessary feature correspondence, and have a theory that is specialized to

sequences behaving as total-onlers. If we also had a theory presentation for a list, we could

similarly apply total-order to a list (assuming the constructions were type correct in the

underlying logical framework). Further, if the sequence theory had a context that could

be discharged allowing it to be interpreted as yet another data structure we could have

the following (allowing for some simplification of notation): totalorder sequence (a total

order interpreted as a sequence), totalorder list (a total order interpreted as a list), and

sequence-list (a sequence interpreted as a list). We could also get totalorder.(sequence-list)

(a total-order interpreted as a list acting as a sequence).

The question of horizontal composition is somewhat different. Suppose that we have

totalorder - sequence, and a partialorder - sequence. We could also say that we had a defi-

nitional extension of the colimit of totalorder and partialorder providing the specification

of a topologicalsort. Similarly, we could extend totalorder sequence and partialorder .
sequence to get a topologicalsortwithsequences. Is there then a relationship between

topologicalsort and topologicalsortwithsequences? If we can now discharge the required

features of topologicalsort with the appropriate features we could get an identical theory

in the underlying object language, yet these two theory presentations were derived via

MF combinations that are unrelated. In MF, this relationship is not explicit, though

it is derivable by defining a relationship between feature specifications and introducing

a derivable relationship. This is discussed in more detail in the next chapter on future

extensions.

5.9 Contributions of MF and Conclusions

Institutions, Clear, and (to a less extent) Specware are based on a semantic approach to

program development. Clear gives a notation for operators on theories, where theories

are sentences in a logical system. Institutions generalize the relationship of the theories

to the models and gives the conditions necessary for proving that satisfaction of theories

by models is preserved under transformations.

A consequence of the semantic approach is that the same semantic theory content is

embedded in more than one place. A Clear specification includes not only the structural

pieces and how they are connected, but also a definition of a theory (in Clear a theory

is a signature and a set of equations). The denotation of a specification in Clear is a set

of sentences in some logical system. In this sense, we could say that Clear combines a

Figure 5.1: Relationship of Clear to Institutions

logical system (the one for defining the operations and equations) as well as a rich set

of structured operations for fitting together these sentences. When combined with an

institution (or several institutions), we would have the relationship shown in Figure 5.1.

(Each of LS1, LS2, and LS3 represents a different logical system.)

By using morphisms from the Clear specification to other logical systems, and from

logical systems to other logical systems, a Clear specification can be made to apply to

different theories over different logical systems (assuming that semantic conditions are

met for the morphisms).

This combining of content and structure in Clear makes it difficult to see what contri-

bution each makes in theory development. Moreover, the question arises as to the nature

of the actual language used in Clear. Is it distinguished in some way? Are the elements

provided necessary? Unique?

Specware continues in this tradition. While retaining a similar style of specification

language, the Specware developers further refined specifications into the roles that a spec-

ification may take (problem type, specification, refinement, interpretation). Structure

(diagrams and shapes) is more intrinsic than in Clear, supporting sequential and parallel

composition. The question that MF explores is to what degree these structural benefits

can be realized without the associated semantic content.

In our description of Automath, we mentioned a goal of distinguishing a theory from

its interpretation(s). Specware supports this distinction by distinguishing the category of

specifications from interpretations, and showing that refinements preserve the structural

relationships. MF does not support the roles of interpretations and specifications. The

relationship of a specification to an interpretation can be captured via theory specializa-

tion and P-reduction (and environment instantiation). Using theory specialization has

the advantage of allowing any theory presentation to assume a different role at different

times. The disadvantage of this approach is that it does not support the distinction of

a specification from an interpretation in a meaningful way at the level of the MF the-

ory presentation language. This distinction is an aspect that we would like to explore

more. Can we answer questions such as determining what are all the interpretations for

a specification in a given presentation base? Can we compare interpretations? Are inter-

pretations themselves related if they were not constructed explicitly via one or more of

the MF commands? Some of these issues are discussed in Chapter 6.

As shown by the survey above, much work centers on unifying a view of some aspect

of program development (refinement, proof, specification) over a wide variety of logical

systems. Automath, as an early system, looked at a family of logical systems, in an attempt

to do a very general task. Subsequent research has looked more to generalizing what these

families need look like in order to accomplish a given t a s k (design, specification, proof,

etc.) Work such as Clear, Institutions, structure and representation in LF, and ELF all

try to abstract out an essential component of theory building, program specification, and

proofs of correctness. and formalize that component regardless of the underlying logical

system. Like them, MF also tries to abstract out a critical component of theory building.

The use of these abstractions categorizing the logical systems themselves are suggestive. I

would like to investigate combining MF with different base languages providing different

facilities, and combining MF with a more general system, using the structural component

of MF to structure the activity of the companion language.

In contrast, systems such as Extended ML and Deliverables attempt to do very specific

tasks in a specific language. I would like to push the structural abstraction to these more

specific languages to investigate what leverage they provide, both alone and in conjunction

with a logical framework.

MF limits its theory combining operations to strictly structural relationships, making

it an appropriate model to investigate to what extent structure can be shared independent

of particular underlying languages. This limitation allows us to both use MF across a wide

variety of similar languages as well as with more special-purpose languages such as those

suggested in the work on Deliverables.

One of the complexities in designing and thinking about MF has been the role of names

and identifiers and issues relating to Level 3. Because designers manipulate finite textual

realizations or approximations of theories, the design of MF has focused quite a bit on

handling the relationship of these textual pieces. The focus on named textual artifacts

has dictated many of the decisions and interpretations of MF.

The nature of ensuring independent name spaces, supporting renaming to allow distinct

identifiers to refer to the same values has not been fully formalized. The initial decision to

use /3-reduction to handle these details seemed a pragmatic choice: it off-loaded the details

of tracking what values were assigned to which identifiers, simplifying the nature of the

environment at the MF level and allowing us to rely on the underlying logical framework,

which needed to keep track of these details in any case.

Use of /3-reduction as the vehicle to discharge witnesses had the unfortunate conse-

quence of also limiting what could be expressed about the action of discharging assump

tions and the subsequent relationship of theory presentations that had been instantiated.

The following chapter discusses some of these issues.

Chapter 6

Future Work

Many alternatives were shelved during the design of MF that are appropriate to discuss

here. Because the goal of MF was to explore the structural components independent of

the underlying object language, some issues were problematic. The most significant of

these is the role of parameterization in specifications development, and to what degree

this parameterization can be expressed structurally.

6.1 Theory Specialization

As noted in the previous chapter, there are two views of looking at theory presentation

specialization or instantiation. One we have denoted by the instantiation of a structural

environment and the other by theory specialization (or theory instantiation). In MF the

specification of a structural environment in a theory presentation combining operation

allows the specification writer to articulate at a theory-presentation level what the re-

quirements of this theory are. So we might say that a theory P requires theory Q. But,

this does not let us say what elements of Q are really required or why. In this model

of theory instantiation, theories are opaque, highlighting what is purely structural from

what is dependent on the internal values of the theory.

The other model of specializing a theory presentation is more dependent on the nature

of the underlying object language. A theory itself is a set of sentences that is the denotation

of a theory presentation. This set of sentences, when expressed in the object language

directly, may have a context of expectations. For instance, if a theory T assumes that it will

be provided with values of types X : xtype, Y : ytype, and Z : ztype, the sentences of T will

be well formed assuming that witnesses can be provided. The context for these sentences

encapsulates what assumptions the theory has vis a vis witnesses to be provided. These

kinds of theories can be checked in a logical system such as the Calculus of Constructions.

They will be provisional on providing constructions for the assumptions X, Y, 2.

The manner of supporting this second kind of parameterization in MF is dictated by

our view of structure and our goal to refrain from putting roles and conditions on kinds of

specifications. The current MF approach specified in Chapter 4 assumes that this context

of expectations is implicit: it is the responsibility of the object language to define and

manage the context. In the Lego version of the Calculus of Constructions, for instance,

this context can be specified on a statement-by-statement basis, or as a global context.

Whichever method is chosen, MF has (currently) no knowledge of the context per se,

outside of the assumption that a theory presentation to be instantiated with witnesses

from another theory must all be abstracted uniformly on the same context elements. This

means that if [f;] are features in the presentation P, [gj] in some presentation Q, and if

we expect to be able to discharge assumptions in P with witnesses defined in Q, then the

[f,] must all be abstracted on some xl : xltype, - . -, x, : x,type such that fj(gl, . -,g,) is

well formed and FLF gj : xjtype for 1 5 j 5 n.

This approach has several limitations. First, it places a strong constraint on the struc-

ture of the sentences in the theory. While some constraints on the structure is reasonable

(if the set of sentences is to be discharged in common, they should have the same struc-

ture), this approach has the potential for becoming an organizational headache, some of

which MF is intended to ameliorate. Secondly, if a theory presentation is constructed by

a theory presentation combination operator, there is no reason to suppose that each of

the constituent theories will have been constructed with the same purpose in mind, so

their sentences may not be abstracted in the same order, even if some of the same expec-

tations are present. Because P-reduction is order dependent, it may require some work to

discharge the desired elements. This in-depth knowledge of the internal representation of

the sentences in a theory is not the way that we would ultimately like to handle theory

specialization structurally.

An alternative is to specify (as in Clear) an explicit parameter with that parameter

having a theory presentation name as a "metasortn. This explicit parameter commits the

witnessing values to belong to a particular theory. If we require a < operator, must we

select a specification for partial orders? In that case, if we had an appropriate 5 operator

elsewhere in the presentation hierarchy, we would be unable to use it as a witness. In

the end, this approach does not seem to provide any more than the instantiation of a

structural environment.

A second kind of parameterization can be specified by supporting the construction a

different kind of specification: a context-object. In a way, a context object can be thought

of as a completely hypothetical specification, having no computational or constructive

content. Then, if a specification is to be parameterized in the same sense as the Clear

specification procedures, it could be defined as an extension of this context object, the

context object functioning as the specification parameter. Discharging the elements of the

context object would be accomplished via substitution: if Q is a theory whose elements

were to be used to discharge the hypotheses in a context object C, we would have to

construct a substitution R mapping the identifiers in C to the values Q.

Another alternative is to have the parameterizations be identified as feature terms and

use feature term unification to identify appropriate witness for the discharging relationship.

This would be another way to specify a context-object. A disadvantage to this approach

is that the context-object would never denote an admissible context: It would always have

to be instantiated with a non-hypothetical specification.

The disadvantage of the context object approach is that substitutions would end up

affecting the object language: they are not really a property of the structure, but rather

affect particular references to object level values. Secondly, introducing these distinguished

theories requires a commitment to what kind an object is. The position of MF is that

the decision as to what kind of object a specification is should be undetermined in MF: it

consists of a role a presentation plays. So a theory might at one point be used as a context

for another, while at a different point of development it might be used as a witness.

The goal of this section is to explore ways in which a theory may be parameterized in

a way that is compatible with the structural focus of MF and give it a semantics that is

consistent with those of the existing relationships in MF.

In the existing formalization of MF, the only relationships between theory presentations

is the extension relationship. The different theory presentation combination operators all

construct theory presentations tha t are ultimately extensions of their constituents. This

has the advantage that the state of the logical system can be read from the relationships.

To extend the underlying logical system with all the elements required for an arbitrary

theory P, we would only need t o extend the underlying logical system with all the con-

stituents of P in the presentation base: the downward closure.

By loosening this requirement on the kinds of relationships theory presentations may

have, we can introduce a different kind of relationship between theories and hence a

different kind of theory presentation object. By introducing a context-object along with

a discharge relationship, we can make explicit the role that a context plays distinct from

the sentences in the theory. In Figure 6.1 we show four theory presentation objects: a

context-object C, a witnessing-object D, which may be any suitable theory presentation

(suitability is discussed below), a theory presentation E abstracted on C, and a theory

E' with the same extension as E but whose assumptions have been discharged with the

elements from D.

The relationship between C and D is no longer one of extension. Because we need not

discharge all of the assumptions of C at once and we need not use all of the values of D

t o discharge assumptions, the relationship is somewhat more complex. If we wished t o

discharge assumption c2 from C with value d3 from D , we could do so if this substitution

was (type) correct in the logical system. This means that if C is a valid context (cl :

cltype, c2 : cztype, - - - , cn-1 : type ~ - L F cn : cntype), and D is a valid context, then

the selected value(s) from D may be used t o discharge the selected assumptions from

C provided that cl : cltype, dl : dltype, d2 : d2type, d3 : d3type kLF ds : c2type. I.e.,

if we assume any context elements preceding both the assumption t o be discharged and

the witness used t o discharge the assumption and we can demonstrate that the proposed

witness has the type of the assumption, then the selected item(s) may be used t o discharge

the indicated assumption and may be used freely in any theory that depends on this

assumption. The new context that has been discharged in this way will (or may) have

some remaining assumptions, as well as some values that were not used t o discharge any

Figure 6.1: The Discharge Relationship

D C::
context objec' disch

v

v

E'

(E u D)

E disch

Figure 6.2: Context and Discharging objects

assumptions.

We hav; two choices here as well. The discharge relationship could be represented as a

value replacement: the assumption to be discharged is given the value of the discharging

witness (as shown in Figure 6.1). The resulting context is an extension of C in the

sense that it extends the name space of C , it adds a value, but makes no other changes.

As shown, the resulting context is not an extension of D: it only has those pieces of

D that are required for the witnessing element to be well formed in the logical system.

This is a problem in that it violates one of our conditions: to preserve the unity of theory

presentations. All of D is no longer present, so any constraints on the use of the discharging

values of D are not guaranteed to be present in the logical system. Moreover, the extension

relationship between D and the new context no longer exists. We can "fix" this by having

the discharge relationship in MF include all of the sentences of the discharging theory

ext d e d W / (E) t
1 eztended W / (E)

1 k(c + D) o extended w/(D)-'

Figure 6.3: Relation of context and discharging theory

presentation. In that case, the new context is an extension of D as well '.
If we designate extendedW/(E) to be the extension associated with the theory E,

extendedW/(D) to be the extension associated with the witnessing theory D, ez t endedW/(C)

to be the extension associated with C and R (C + D) to be the replacement (witness-

ing) substitution generated by the discharge relationship *, then we can represent the

discharged context as (extendedW/(R(C + D) (C))) (D) : the extension of the witnessing

theory D by the extension associated with the context object C , with the appropriate val-

ues substituted to establish the witnesses. The actual application of E to D is then just

an extension of the discharged context CdischD with the same extension of the original

unspecialized theory E.

'This argument assumes that the assumption type cztype and the discharging type d3type are identical.
Otherwise, a proof would be required demonstrating that the two were identical. This is doable, if the
types really are provably equal, but considerably more complicated to express. In general, this will expand
in complexity, because the proof of the equality of the types may depend on previous values substituted
by previous discharged assumptions that were generated along the way.

2This notation is deliberately simplified to explicate the structure. In fact, constructing the new dis-
charged context CdischD would require that the contexts be interleaved to preserve ordering requirements.
The extension eztendedW/(D) extends a context with the elements of D, preserving the context depen-
dencies.

The following table gives the results of the extensions and witnessing substitutions:

R (C + D) The witnessing substitution mapping values of D t o identifiers

of C.

R(C + D)(C) A new object C', that performs the substitution indicated.

This object is only well formed if the definitions of D are in the

environment.

extended W/(D) The extension introduced in D.

extendedW/(D)(C) A new object that extends C with the extension introduced in D.

This object is only well formed if the environment of C has all the

definitions required by D.

The discharged context CdischD has all the elements of D. It also has all the elements

of C: because the name space is preserved, and this is only a substitution of values, the

change between the discharged context and the context object is that value information

has been added t o type information. So the discharged context is an extension of both C

and D.

The new theory E' extends both C and CdischD (shown in Figure 6.1): the renaming

substitution does not affect E, since E only has knowledge of the elements of C , so the

extensions of El and E are identical, the only difference being that El has the context

CdischD, which has specific values for some (or all) of the assumptions of C.

This gives us the following relationships:

CdischD > C

CdischD > D

E > C

E' > CdischD

El > C

Additionally, E' is an extension of E in that it has all the same features, it has the same

name space, and the only distinction is that is has had its context extended by the features

of D and some elements of C have been given values from D. Certainly from a model

theoretic point of view, rather than a syntactic point of view, everything provable in E is

still provable in El.

An alternative approach to the discharge relationship is to use name replacement,

replacing the context elements in C entirely with the witnesses in D, and providing a

renaming substitution for the specialized theories rather than for the context objects.

However, this changes the name space and requires the continual application of renaming

substitutions to make the same arguments.

6.1.1 What is a suitable theory to discharge a context object C?

The suitability of a theory to discharge a context object relies on the underlying logical

system.

As referred to earlier, we can formalize the required relationship between a context

object and a witnessing theory through the provability relationship of the underlying

logical framework. Assuming that the witnessing theory is independent of the context

object, the meaning associated with each can be denoted by a formation tree, which in turn

will specify a context. This context can be partitioned into the appropriate independent

pieces, allowing a suitable context to be constructed.

The meaning associated with a context object C is then formed in the same way as

the meaning of any theory presentation. The meaning of the witnessing theory is formed

in the same way (which may be any theory presentation in MF). The meaning is mapped

into an admissible context, which may then be partitioned according to the elements to

be discharged.

We let the notation E - Dunder(R(C + D)) indicate the context application of a

theory E, abstracted on a context object C , to a witnessing theory D, under the indicated

witnessing substitution R(C + D). Then the suitability conditions for this application

can be expressed by:

Ctxt - up
Ctzt(C) I-LF C : * Ctxt(C),Ctxt(D) F L F R (C + D)(C) : * E > C

Ctxt(E), Ctxt(D) FLF E . D under (R(C + D)) : * (1)

6.2 Additional relations hips

There are several additional relationship to be explored among context objects and dis-

charging witnesses. First, there may be more than one discharging witness. This is shown

in Figure 6.4. Each D; may be a witness for C (indicated by the arrows labeled by d for a

discharging relationship). I t is possible that each Di discharges the same assumptions, or

they may discharge different assumptions. If they discharge the same assumptions, they

are related in a sense (all the theory presentations that can be used t o discharge C) . The

Di d o not have the same extension, and i t is not the case that any D; might be used in

place of another. But, any D; can be used in place of C. This gives a more constrained
. . . .

notion of extension.

In this respect, C acts as a filter, describing what the witnesses must minimally look

like. As such, it acts much like a structural environment acts, only with a tighter connec-

tion t o the underlying logical framework. A structural environment denotes a (sub-)lattice

in a presentation base structure. Similarly, C may denote a (sub-) lattice, where each spec-

ification in the sub-lattice is one that can be used t o discharge the context object.

Alternatively, each Di may discharge a disjoint set of assumptions. In that case, each

D; represents a different view of what witnesses are being provided. If it were the case that

each D; were totally disjoint and that the collection of D; were able t o discharge all the as-

sumptions from C, we could have the sequence (using a simplified notation for application,

ignoring the witnesses and statements being discharged): (. - - ((E - Dl) D2) - - - D,), where

each application discharged a different group of assumptions. Each application would have

the correct relationship: E . Dl would have some part of its context undischarged and the

resulting theory would be one that had some assumptions remaining. Each application

would discharge the indicated assumption. The use of application t o discharge assump

tions points out the regularity of the discharging relationship: the difference between a

context object and a theory presentation is one of role. Any theory presentation may act

as a context object for another. MF cannot determine the correctness of such an appli-

cation. Nor can it determine if the indicated assumptions are truly assumptions. The

act of discharging a context of assumptions is no different than the MF notion of the-

ory specialization. Ultimately they both rely on the correctness of the underlying logical

framework. MF only records the relationships and maintains correctness given meaning

preserving combining operations. We would like t o examine the relationships between

Figure 6.4: Multiple Discharges Relationship

these sequences of theory specializations. If Em Dl dl is a well formed theory specializa-

tion discharging some set of assumptions dl , and if (E . Dl d l) . d2 further discharges some

set of assumptions d 2 , what is the relationship that MF can conclude from the underlying

structure?

Specware defines a distributive law stating that if they have 2 diagram refinements,

A, : dl + d2 and A2 : d2 + d3 that can be composed, then they satisfy the distributive

law:

la21 o IAlI = In2 o All

This captures the relationship from refinements in one category t o refinements in another

(specifications and interpretations). In MF, diagram refinements are captured by the-

ory specialization (or structural environment instantiation) with no distinction between a

category of specifications and interpretations.

Specware distinquished the kind of horizontal composition they provide from that de-

fined in Sannella and Tarlecki [43], saying that their "distributive law is a generalization of

Sannella and Tarlecki's, which uses parameterization and does not handle colimits; more-

over, it's semantically ~ r i e n t e d . ~ Similarly, MF theory instantiation is not semantically

oriented (although it obeys the semantic conditions of Sannella and Tarlecki). To move

from parameterization to colimits, one needs to be able to combine the parameterizations

appropriately. In the case of MF, using the context object-discharge relationship, this

means that context objects should be combinable. Indeed, since a context object may

be any object (only its role has really changed), it is the discharge relationship that is a t

issue.

Looking at Figure 6.5, the relationship between the diagram dl and d2, is a discharge

(or theory instantiation) relationship as discussed in the previous section. If E' now takes

on the role of a context object, and D' is a theory that can discharge assumptions in El,

then the relationship between the diagram d2 and ds is also one of a discharge (theory

instantiation). If El is a specialization of E, and E" is a specialization of El, and if the

set of assumptions discharged is disjoint, then EN is also a specialization of E.

In the next section we explore some of the relationships that can be captured struc-

turally by the composition of theory instantiations by examining a case study.

6.2.1 Horizontal Composition

Horizontal composition as defined by Sanella and Tarlecki [43] expresses the relationship

between parameterized theories and their arguments (written in an MF style notation):

given theory presentations P, PI, Q, and Q', if P > P1 and Q > Q', then P(Q) > P1(Q').

In the following tables, we give a set of theory instantiations and explore the way

in which the different instantiations are related to one another. This section examines

the relationship of theory instantiations as they currently exist in MF: through theory

specialization rather than through a context-object discharge relationship.

Figure 6.5: Horizontal Composition of Applications

We assume a presentation base structure with the following theory presentations:

A f l , fi Theory presentation A has features fi, f2

A' g3 Theory presentation A' extends A with g3

B gl,g2 Theory presentation B has features gl , g2
B' g3 Theory presentation B' extends B with g3

These have the relationships: A 5 A', B 5 B'. The theory presentations A and A' may

be instantiated with witnesses from B and B' (assuming the witnesses are of correct type

in the LF):

c = A . B [fllf21 kl l [hl , h21 hl - f l (9l)

h2 ++ f2 (91)

D = A . B [f l 1 f21 [91,92] [h3, h41 h3 t+ fl(91,92)

h4 f2(gl,g2)

E _ A . B ' [f i , f i] [gl,92] [hsl96] h5 fl(gt,92)

h6 f 2 (91 92)

F E ' 4 . B ' [f l , f2] [91,92193] [h7,h8] h7 * fl(91 i 921 93)

h8 '-) f 2 (9 1 , 921 93)

G = C . B [hlih2] [g ~] [h g , hlo] h9 I+ hl(92) fl(g1) (9 2)

hl0 h2(92) f 2 (9 1) (9 2)

H = A' . B [f l , f 2 , f31 kl l [hll, h12, h131 hll - f l (9l)

hl2 t+ f2(gl)

h13 C) f3 (91)

I A' ' B [fly f 2 , f3] [gl,g2] [h14, h15, h16] h14 C) f l (gl l 9 2)

h15 * f2(91,92)

h16 +b f3 (91 9 2)

J = A'. B' [f i , f i r f3I [91,92] [h17,h18, h19] hl7 C) fi(gl,g2)

h18 f2(91,!?2)

h19 f3 (91 92)

Ii- = A' ' B' [f l y f z l f31 [9i1 921 931 [h20, h21, hzz] h20 ++ fi (91,92,93)

h2l fZ(91i 92993)

h22 t+ f3(91,92i 93)

We propose two different relationships capturing the different cases in the table above.

Theories where their structural environments are related and the statements t o be

discharged are related are also related. In the case of theory presentation D and El

A U B 5, A U B'. D and E each introduce an identical extension. Similarly, G and

D have related structural environments. The structural environment for G includes

C which is not present in D. C and H are also related in this way: H has both a

larger environment specified and it discharges an additional statement.

Theories where their structural environments are related but where one discharges

more assumptions than the other. This is the case for C and D. They each are

composed of A and B, but D has more assumptions discharged than C. Everything

true in C is also true in Dl since D i s quantified over all witnesses having the

indicated type.

Neither of these relationship is currently derivable in MF because they each have

different genealogies: each is constructed via a distinct path. However, by introducing

some new rules, we can derive these relationships.

Let A, A', B, B' be theory presentations and FA, FA', FB, FBI be feature identifier

lists for statements to be discharged and statements to use as witnesses, where A. BFA FB

is the application of A to B discharging the statements indicated in FA with witnesses

indicated in FB. We introduce an ordering on feature identifier lists:

The following rules are a first cut at capturing the above relationships:

Ext 1

Using these rules we can now conclude that:

C + D

D 4 F

J 4 K

I I J

H I J

D I E

D I G

(DRell)

MF theory instantiation includes more information than the horizontal compositions

of Sannella and Tarlecki, in that they indicate which statements are to be discharged and

what assumptions are t o be used and the relationship of any resulting theories depends on

t h e relationship of these discharging witnesses and statements t o be discharged. The case

of D and E fit the model of horizontal composition in that they have identical specifications

of what is t o be discharged and what witnesses are t o be used. The refinement relationship

(4) is not an extension relationship but a specialization. Everything true in C is also true

in Dl since C is universally quantified on the undischarged witnesses, so in some sense it

is similar t o extension. We would like t o be able t o use this refinement relationship in the

same way that we use extension: if C 4 D and if E > C, then we should be able t o satisfy

any references t o C (in the structural environment of E) by Dl replacing the meaning

of C by the meaning of Dl and providing the necessary substitutions or applications.

To carry along this information about the discharging witnesses and the statements t o

be discharged, it seems more appropriate t o use the model of the context object (which

makes the discharge relationship explicit) rather than @-reduction.

6.3 Extensions to Relate Structural Environments

Most of the work in MF has related t o the individual theory presentation. The presentation

base structure is the framework that can be used t o extend this work t o the relationship

of structural environments. As mentioned several times, each theory presentation A in

some presentation base structure p; defines a presentation base structure, p j , where each

of the theory presentations in p j is in the structural environment of A. We want t o explore

issues of mapping between different interpretations, different specifications and different

refinements, and how the structure is preserved under these mappings. The presentation

base structure should be able to support these relationships.

We also presented the frames as though they were linear developments. However,

we can support alternate developments by allowing a presentation base structure t o be

selected anywhere in the development.

Unlike Specware, there is no commitment t o what a presentation base structure means.

While some presentation base structure may take on the role of an interpretation for

another, this is not part of the defined methodology of MF. Exploring the issues of how

such maps between presentation base structures interact, what conditions need to be met,

how they compose, are further areas that we wish to investigate.

6.4 Extensions Relating Object Level Statements

MF purposely refrained from making statements about the relationship of the underlying

object level statements. We can introduce relationships among these statements as well,

so that we can make judgements as to the equality of two theory presentations based

not only on their structure, but also on declared or defined equalities of the underlying

statements.

6.5 Exploring Different Roles

MF focused on structural relationships through extensions. Often, theory presentations

play different roles that can't be distinguished using extension. These include differences

such as the role of specifications, interpretations, abstractions, templates, and so on. Now

that the basic formalization is in place, we can explore how these other roles can be

supported and how they relate to MFs more structural view.

Additionally, now that a structural definition is in place, we might explore how different

properties of a base language might be described and then used. This might open up the

ability to use specialized syntax appropriate to different domains.

Bibliography

[I] A~T-KACI, H., AND NASR, R. LOGIN: A logic-programming language with built-in

inheritance. Journal of Logic Progmmming 3 (1986), 185-215.

[2] BARENDREGT, H. P. The type free lambda calculus. In Mathematical Logic, J. Bar-

wise, Ed. North Holland, 1977, pp. 1091-1132.

[3] BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics, second ed.,

vol. I1 of Studies in Logic and the ~ou~dat ions of Mathematics. North-Holland, 1984.

[4] BARENDREGT, H. P. Introduction to generalized type systems. Journal of Functional

Progmmming 1, 2 (1991), 125-154.

[5] BISHOP, E. Foundations of Constructive Analysis. McGraw Hill, 1967.

[6] BRACHMAN, R. J., AND SCHMOLZE, J . An overview of the KL-ONE knowledge

representation system. Cognitive Science 9, 2 (1985), 171-216.

[7] BROUWER, L. E. J . Historical background, principles and methods of intuitionism.

South African J. Sci, 49 (1952), 139-146.

[8] BRUIJN, N. G. D. A survey of the project AUTOMATH. In To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, J . P. Seldin and

J. R. Hindley, Eds. Academic Press, 1980, pp. 579-606.

[9] BURSTALL, R., A N D MCKINNA, J . Deliverables: an approach to program develop

ment in the calculus of constructions. In Proceedings of the First Annual Workshop

on Logical Frameworks (Antibes, France, 1990), pp. 113-122.

[lo] BURSTALL, R. M., AND GOGUEN, J . A. Putting theories together to make spec-

ifications. In Proceedings of the Fifth International Joint Conference on Artificial

Intelligence (Cambridge, Mass., 1977), pp. 1045-1058.

[l l] BURSTALL, R. M., A N D GOGUEN, J . A. The semantics of Clear, a specification

language. In Lecture Notes in Computer Science, vol. 86. Springer-Verlag, 1980,
pp. 293-329.

[12] CHURCH, A. The Calculi of Lambda Conuersion. Princeton University Press, 1941.

[13] CONSTABLE, R. L., ET AL. Implementing Mathematics with the Nuprl Proof Deuel-

opment System. Prentice Hall, 1986.

[14] COQUAND, T., AND HUET, G. Constructions: A higher order proof system for

mechanizing mathematics. In Lecture Notes in Computer Science, vol. 203. Springer-

Verlag, 1986, pp. 151-184.

[15] COQUAND, T., AND HUET, G . The calculus of constructions. Information and

Computation 76 (1988), 95-120.

[16] CURRY, H. B., AND FEYS, R. Combinatoy Logic, vol. I. North-Holland, 1958.

[17] DORRE, J. , AND ROUNDS, W. C. On subsumption and semiunification in feature

algebras. In Proceedings Symposium on Logic in Computer Science (1990), IEEE

Computer Society Press, pp. 300-310.

[18] DUMMETT, M. Truth and Other Enigmas. Duckworth, 1978.

[19] GENTZEN, G. Investigations into logical deduction. In The Collected Papers of

Gerhad Gentzen, M . E. Szabo, Ed. North-Holland, 1969, pp. 68-131.

[20] GIRARD, J.-Y. P m f Theoy and Logical Complexity, vol. 1. Bibliopolis, 1987.

[21] GOGUEN, J., A N D BURSTALL, R. Introducing institutions. In Lecture Notes in
Computer Science, vol. 164. Springer-Verlag, 1983, pp. 221-256.

[22] GOGUEN, J . A., AND TARDO, J. An introduction to OBJ: A language for writing and
testing software. In Specification of Reliable Software. IEEE Press, 1979, pp. 170-189.

[23] HARPER, R., HONSELL, F., AND PLOTKIN, G. A framework for defining logics.
In Proceedings Symposium on Logic in Computer Science (Washington, D.C., 1987),

IEEE Computer Society Press, pp. 194-204.

[24] HARPER, R., SANNELLA, D., AND TARLECKI, A. Structure and representation in

LF. In Proceedings Symposium on Logic in Computer Science (Washington, D.C.,

1989), IEEE Computer Society Press, pp. 226-241.

[25] HEYTING, A. Intuitionism, an Introduction. North-Holland, 1956.

[26] JEAN-YVEW GIRARD, Y. L. , AND TAYLOR, P . Proofs and Types. Cambridge

University Press, 1989.

[27] KASPER, R. T., AND ROUNDS, W. C. A logical semantics for feature structures. In

Proceedings of the 24th Annual Meeting of the Association for Computational Lin-

guistics (Columbia University, 1986).

[28] KREISEL, G. Interpretation of analysis by means of constructive functionals of fi-
nite type. In Constructivity in Mathematics, A. Heyting, Ed. North Holland, 1959,

pp. 101-128.

[29] Luo, Z. cc? and its meta theory. Tech. Rep. ECSLFCS-88-58, LFCS Report Series,

1988. University of Edinburgh, Department of Computer Science.

[30] LUO, Z. A higher-order calculus and theory abstraction. Tech. Rep. ECSLFCS-88-
57, LFCS Report Series, 1988. University of Edinburgh, Department of Computer

Science.

[31] LUO, Z. ECC, an extended calculus of constructions. Tech. Rep. ECSLFCS-90-

118, LFCS Report Series, 1989. University of Edinburgh, Department of Computer

Science.

[32] Luo, Z., POLLACK, R., AND TAYLOR, P. How to use Lego. Tech. Rep. ECS-
LFCS-92-211, LFCS Report Series, 1992. University of Edinburgh, Department of
Computer Science.

[33] MARTIN-LOF, P. An intuitionistic theory of types: Predicative part. In Logic Collo-
quium '73, H. E. Rose and J. C. Shepherdson, Eds. North Holland, 1975, pp. 73-118.

[34] MARTIN-LOF, P . Constructive mathematics and computer programming. In Sixth

International Congress for Logic, Methodology, and Philosophy of Science (1982),

North Holland, pp. 153-175.

[35] NERODE, A., AND SHORE, R. A. Logic for Applications. Springer-Verlag, 1993.

[36] PAULIN-MOHRING, C. Extracting F,'s programs from proofs in the calculus of con-

structions. In Conference Record of the Sizteenth Annual ACM Symposium on Prin-

ciples of Programming Languages. ACM, 1989, pp. 89-104.

[37] PFENNING , F. ELF: A language for logic definition and verified metaprogramming.
In Proceedings Symposium on Logic in Computer Science (Washington, D.C., 1989),

IEEE Computer Society Press, pp. 313-323.

[38] PRAWITZ, D. Natural Deduction. Almqvist & Wiksell, 1965.

[39] PRAWITZ, D. Ideas and results in proof theory. In Proceedings of the Second Scan-
dinavian Logic Symposium (Amsterdam, 1971), North-Holland, pp. 235-307.

[40] RUSSELL, B. Principles of Mathematics. Norton, 1938.

1411 SANELLA, D., AND TARLECKI, A. Building specifications in an arbitrary institution.

In Lecture Notes in Computer Science, vol. 173. Springer-Verlag, 1984, pp. 337-356.

[42] SANNELLA, D. Formal program development in extended ML for the working pro-

grammer. In Proceeding 3nI BCS.FACS Workshop on Refinement (1990).

1431 SANNELLA, D., AND TARLECKI, A. Toward formal development of programs from

algebraic specifications: Implementations revisited. Acta Infmrmatica 25 (1988),

233-282.

[44] SANNELLA, D. T., AND BURSTALL, R. M. Structured theories in LCF. In Proc. of
the 8th Colloquium on Algebra and Trees in Programming (1983), pp. 377-391.

[45] SMITH, D. R. KIDS - A Knowledge-Based Softwqare Development System.
AAAI/MIT Press, 1991, pp. 483-514.

[46] SMOLKA, G. A feature logic with subsorts. Tech. Rep. 33, LILOG, 1988.

[47] SMOLKA , G., AND A'I'T-KACI, H . Inheritance hierarchies: Semantics and unification.
J. Symbolic Computation 7 (1989), 343-370.

[48] SMORYNSKI, C. The incompleteness theorems. In Mathematical Logic, J. Barwise,
Ed. ~ o I t h Holland, 1977, pp. 821-866.

[49] SRINIVAS, Y. V., A N D JULLIG, R. Specware: Formal support for composing software.

Tech. Rep. KES.U.95.5, The Kestrel Institute, Palo Alto, Ca., 1995.

[50] STREICHER, T. Semantics of Type Theory. Birkhauser, 1991.

[51] TROELSTRA, A. S. Aspects of constructive mathematics. In Mathematical Logic,
J. Barwise, Ed. North Holland, 1977, pp. 973-1052.

Appendix A

Notational Index

[A bstr Vals]

[+I
7r1

blP
u1 E [nl]

1.1' : [TI -+ ([.'I + [+I)
L;

[wl
7-

identifier of LF statements

type of LF statements

set of identifiers for L F statements, c; E [TI
set of types of i t LF statements, ti E [f]
set of Level 1 terms denoting it LF statements,

Encodings of LF statements

meanings of L F identifiers

type environment for Level 1 identifiers

set of environments compatible with r1

evaluation environment for Level 1

semantic function for Level 1 terms

meta-variable ranging over feature identifiers

set of feature identifiers, L; E [w]

Level 2 type of an L F statement

Level 2 meta-variable for types of an extension

Level 2 type of the empty theory

Level 2 meta-variable for types of structured theories

Type coercion.

Level 2 meta-variable for terms of type T;

Level 2 meta-variable for terms of type y;

Level 2 meta-variable for terms of type 8;
Formation tree for an MFsort
Meta-variable for formation trees

A path in a formation tree

Support and order for a formation tree

Consistency relation between formation trees

Equality of formation trees

< P

Ctxt (Ti)
l - 9 A

Formation tree consistency

Reduced formation tree

Minimal formation tree

Theory combination

Theory intersection

Theory extension

Combination of admissible contexts

Intersection of admissible contexts

Concatentation

The phrase type environment for Level 2 terms

The parent relationship on contexts

The ancestor relationship on contexts

Ordering relation on Level 2 terms

The fiat L F context defined by a formation tree

Meta-variables for LF contexts

The set of phrases of type T in the environment n2

The set of phrases of type y in the environment n2

The set of phrases of type 8 in the environment n2

The set of identifiers for T types

The set of identifiers for y types

The set of identifiers for features

The set of identifiers for B types

The meanings for the Level 2 terms that denote individual Z F

statements

The meanings for the Level 2 terms that denote sequences of Z F

statements

The meanings for the Level 2 terms that denote sequences of

sequences

constructed using the theory presentation constructors

The semantics function for Level 2 terms

The set of phrases of Level 3 expressions

The set of phrases of Level 3 commands

The set of phrases of Level 3 queries

The semantic set for expressions

The semantic set for commands

The semantic set for queries

The meaning of a Level 3 phrase as an identifier

The meaning of a Level 3 phrase as a command

The meaning of a Level 3 phrase as a query

The meaning of a Level 3 phrase as an expression

The empty theory

The partial order on theory presentation identifiers

The Level 3 valuation environment

The Level 2 valuation environment
The Level 1 valuation environment

The Level 3 meta-variable for frames

The Level 3 meta-variable for presentation base structures

The meta-variable used for features in Level 3

The set of paths that are consistent with the order dependency

of the formation tree

The set of contexts for each path in a given environment

Ctxt(pi) The L F context defined by a presentation base structure

<P The ordering relation on presentaiton base structures

Biographical Note

Sherri Shulman lives in Portland, Or. with her husband and three children.

