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ABSTRACT 
"Dense-sampling" Inverse Modeling for Environmental and Coastal Systems 

Yongyan Wang 

Oregon Graduate Institute of Science & Technology, 1996 

Supervising Professor: Ant6nio M. Baptista 

Inverse modeling has been used sporadically in the analysis of environmental sys- 

tems, in particular when inputs (e.g. contaminant sources) or model parameters (e.g. dis- 

persion coefficients) are difficult to quantify directly. The concept is deceivingly 

straightforward: use selected measurements as fingerprints of system behavior, and use 

physically-based models to determine expected responses ("transfer functions") of the 

system to generic "unit forcings"; then, match fingerprints to transfer functions through 

optimization techniques, and use the same relationships to map the generic "unit forcings" 

into the actual forcing of interest. 

The first contribution of our research relates to the identification and overcoming 

of some of the fundamental difficulties that have plagued the actual implementation of the 

inverse modeling concept. One key difficulty is that inversion amplifies errors in the mea- 

surement of system fingerprints, often resulting in unstable or misleading results. We show 

that sensitivity to error amplification is characterizable by the condition number of the 

matrix that formulates the inversion. To reduce condition numbers and therefore sensitiv- 

ity to error amplification, we propose a "dense-sampling" inversion. This entails sampling 

the system fingerprints in time more frequently than the desired time interval for input 

characterization. As shown for the problem of sources of linearly transported tracers, the 

extra data makes the inversion dramatically more robust at a cost that should be marginal 

for most "tracers" that can be measured "continuously". 

The second contribution of our research relates to the application of the under- 

standing of the relationship between condition number and invertiability, to the design of 

efficient sampling networks. This is a question of huge practical importance. Millions of 

dollars are spent annually on environmental monitoring, but rarely is monitoring opti- 

mized in objective ways. We suggest, based on a specific example, that inversion model- 

ing theory can be applied prior to any instrument deployment, to guide the choice of the 



minimum number and location of sampling stations required to identify contaminated 

sources. This remarkable fundamental capability could and should be incorporated, in 

practice, in an iterative loop that does not initially require but takes advantage of monitor- 

ing results as they become available. 

The third and final contribution of this research pertains to the extension of our 

inversion modeling concepts and techniques to non-linear systems. We show, in particular, 

that dense-sampling is also effective for time-domain inversion of boundary conditions 

(tides and river discharges) for circulation models in coasts and estuaries, based on modest 

tidal gauge networks. Implementation is, in this case, based on an iterative loop consisting 

of linear inversion and non-linear forward modeling steps. A parallel effort of our research 

group, still in progress, suggests that the generation mechanisms of tsunamis can also be 

effectively inverted with extended dense sampling techniques, based on a combination of 

time explicit waveform data and instantaneous run-up data. 

Overall, we consider that the contributions of this research bring us within reach of 

the practical use of inversion modeling to characterize time-explicit environmental forc- 

ings that are difficult to measure directly, as long as a reasonable mechanistic model is 

available to describe the impact of such forcing. This still leaves open the need to address 

inversion modeling of a variety of important environmental problems, in particular those 

related to the fate and transport of critical non-conservative, non-linear tracers. 

xii 



CHAPTER 1 

Introduction and Overview 

1.1 Context and Scope 

Inverse modeling has been used sporadically in the analysis of environmental sys- 

tems, particularly when quantities that we usually think of as "known" (e.g., contaminant 

sources, hydrodynamic boundaries, and model parameters) are difficult to characterize 

directly. 

The general concept of inverse modeling is sound and attractive: use selected mea- 

surements as fingerprints of system behavior, and use physically-based models to deter- 

mine expected responses ("transfer functions") of the system to generic "unit forcings"; 

then, match fingerprints to transfer functions through optimization techniques; and use the 

same relationships to map the generic unit forcings into the actual forcing of interest. 

Unfortunately, there are substantial practical difficulties in the implementation of 

the inverse modeling concept. For instance, no current technique appears to have been 

successful in producing well resolved time-explicit inversion of contaminant sources. 

Most of the practical difficulties appear to be related to the high-sensitivity of inversion to 

observed errors of the system fingerprints. These errors are strongly amplified by most 

inversion formulations, resulting either in instability or in unreliable results. 

Practical difficulties in the application of inverse modeling concepts have moti- 

vated us to re-examine the available inverse modeling theories and to extend them. Con- 

sistently, the objectives of this research are (a) to identify areas of uncertainty in existing 

inverse modeling theories; (b) to expand the current understanding of inversion modeling 

theory by overcoming key restrictions; and (c) to develop a framework and criteria for 

practical inversion modeling of linear and non-linear environmental systems. 



1.2 Background 

1.2.1 Inverse modeling theory1 

Inverse modeling theory can be described based on three concepts, model (S), 

model space (8) and data space (2) (Menke, 1989), as illustrated in Figure 1.1. The rela- 

tionship is expressed as 2 = s (6) , where the linear or non-linear operator S represents the 

physics of the system. The model space t denotes model inputs, such as model pararne- 

ters, initial conditions, boundary conditions, and sourcelsink terms. The data space ( 2 )  
denotes the measurable variables, such as water elevation and contaminant tracer concen- 

tration. 

The establishment of the model ( 9 ,  called model identification, includes defining 

the system boundaries, system input ( t) ,  and system output (2). Based on the defined 

model, we can analyze the system in different ways. When the model space is known and 

the data space is unknown, forward modeling calculates the data space based on the model 

and model inputs. Alternately, if the data space is known and the model space is unknown, 

inverse modeling infers the model inputs j? from the model ( 9  and data space (2). Because 

inverse modeling matches the way we measure environmental and coastal systems, it is 

arguable that inverse modeling is more physically-based than the forward modeling. How- 

ever, because the solution of inverse modeling problems involves many unsolved theoreti- 

cal issues, inverse modeling is typically more difficult than forward modeling. 

Inverse modeling has been applied to different disciplines to solve different prob- 

lems. The model space (8 determines the application fields, which include seismology 

(Chen, 1987), oceanography (Bennett, 1992), geophysics (Parker ,1994, Hero and Taylor, 

1988, Copty et al., 1993, Dimri,1992), and environmental science (Yeh, 1986). Addition- 

ally, different model spaces can illustrate the applications of inversion methods in solving 

different problems. For instance, if t is a model parameter, the inversion is referred to as 

parameter estimation (Cheng and Yeh, 1992); if t is a model boundary condition, the 

1. Inversion methods fall into two categories (Tarantola, 1988): finite-dimensions 

and infinite-dimensions. This thesis addresses only finite-dimensions inversion, where, by 

definition, a finite number of parameters is required to define the system of interest. 



inversion is denoted as boundary inversion (Nuiiez, 1990); and if j is a contaminant 

source, the inversion is called source estimation (Gorelick et al., 1983, Wagner, 1992). It is 

easy to see that inversion theory has a broad field of application and can solve a wide vari- 

ety of problems. 

The variety of the inversion problems determine the variety of inversion formulas. 

This is exemplified by the fact that linear and non-linear inversion formulations can be 

either overdetermined, determined, or underdetermined numerical systems. This chapter 

introduces important concepts of inverse modeling theory and analyzes different inversion 

formulations based on the ratio of the number of knowns and unknowns. 

1.2.2 Concepts and their definitions 

As introduced by Courant and Hilbert (1962), mathematical well-posedness of a 

model describing a physical reality requires that three conditions be met. First, the solu- 

tion must exist. Second, the solution must be uniquely determined. Finally, the solution 

must be continuous. The first condition expresses the importance of correctly formulating 

the problem. If the inversion cannot properly formulate the physical reality, the inversion 

is not meaningful. In most cases, even if the model correctly formulates the reality, its 

solution still relies on powerful numerical techniques. For instance, the contaminant 

source estimation method developed in this research correctly formulates the relationships 

between the measured contaminant concentration and contaminant source. However, its 

inversion is not possible, because the formula can amplify round-off error and sampling 

error to create numerical instability. Obviously, even though the formulation is physically 

correct, it is not numerically solvable. In order to numerically solve the formulation, we 

developed the "dense-sampling" concept to reduce the sampling error amplification so 

that the inversion is solvable. Therefore, the developed inverse method meets the first cri- 

terion. It is worthwhile to point out that the inversion solvability is equivalent to the 

unknown's identifiability. When the inversion does not have a stable solution, the 

inverted unknown is defined as unidentijiable. Otherwise, the inverted items are identiji- 

able. The second criterion excludes the possibility of multiple solutions, which is posed as 

the inversion's non-uniqueness. The last criterion excludes the discontinuity between the 

model space and data space. If an inversion method does not satisfy the three criteria, it is 

defined as having ill-posedness. Obviously, an inversion is either well-posed or ill-posed, 

depending on its ability to represent a reality and the availability of numerical solutions. 



For an inverse problem 2 = s(i), sensitivity is defined as the variation of $ in 

response to a perturbation of 2 .  The perturbation can be represented by the relative errors 

IlAplllllpll and IlAdllllldll. For a linear system 2 = S$, the sensitivity is measured by the con- 

dition number S, as illustrated by the equation (Golub and Loan, 1983). 

II AP ll II Adll I cond (S) - 
llpll II dll 

Equation (1.1) shows that for a given "relative error7' in 2, the "relative error" in 

is large if the condition number is large. Hence, the condition number scales the sensitivity 

of a linear inversion. When the cond(S) is close to unity, the system is called well condi- 

tioned; on the contrary, when the cond(S) is very large, the system is called ill condi- 

tioned. 

Unfortunately, most inversion methods are highly sensitive, which hinders the 

development of time-domain inversion. This is because time-domain inversion has a large 

number of inverted unknowns which results in high inversion sensitivity. Sensitivity- 

reduction techniques, such as digital filtering, cannot effectively decrease the inversion 

sensitivity. Consequently, time-domain inversion is still in its infancy. Another example of 

high inversion sensitivity is that the application of the inversion methods in estimating 

model parameters has been widely accepted, even though they are still confronted with 

high inversion sensitivity. However, because the number of inverted parameters are rela- 

tively small compared to the amount of the sampled data, the inversion sensitivity can be 

controlled by techniques such as digital filtering. It is very difficult to balance the sarn- 

pling error reduction and the sampling information loss. The above examples illustrate 

that sensitivity reduction limits both the inverse-method's development and its applica- 

tion. 

Non-uniqueness refers to an inversion where multiple model spaces correspond to 

one data space. That is to say, one inversion has multiple inversion results. The non- 

uniqueness involves both numerical non-uniqueness and conceptual non-uniqueness. 

Numerically, the uniqueness of linear inversion is related to the ratio of the number of 

unknowns and the number of equations. When the number of equations is less than, equal 

to, or greater than the number of unknowns, the system is defined as an underdetermined, 

determined, or overdetermined system respectively. An underdetermined system has an 

infinite number of solutions hence its solution is non-unique. Numerically, its inversion 



result is the model space with the minimum Euclidean length (Press et al., 1992, Wunsch 

and Minster, 1982). Similarly, the inversion result of the overdetermined system is the 

least-square model space. In contrast, the inversion of a determined system has a unique 

result. It is obvious to see that the non-uniqueness of a linear inversion results from the 

different known-to-unknown ratios. 

The uniqueness of a non-linear inversion is based on the fact that non-liner inver- 

sion minimizes the objective function that measures the difference between the inverted 

data space and the measured data space. When the objective function has one global mini- 

mum and several local minima, the optimization can have several "solutions", correspond- 

ing to several inversion results. Because it is difficult to determine which solution 

corresponds to the global minimum, it is not easy to find the inversion result among sev- 

eral "inversion results". That is to say the non-uniqueness of nonlinear inversion does not 

have an easy solution. 

Conceptual non-uniqueness is derived from model conceptualization. Because one 

problem can be simulated by different models, its inversion can employ different models. 

Consequently, inversions with different models generate different inversion results. That 

is to say, the inversion is conceptually non-unique. It is important to point out that the 

model selection used in the inversion is mostly based on the modeler's conceptual under- 

standing of the inverted problem so that the conceptual uniqueness contributes to the 

majority of the inversion uniqueness (Mackas et al., 1987). 

In summary, well-posedness implies that the inversion can be inverted, and has a 

unique continuous result. Sensitivity is the necessary and sufficient condition of identifi- 

ability. Non-uniqueness, dominated by conceptual non-uniqueness, makes inversion mod- 

eling more difficult than predictive modeling. Our limited ability to detect and solve ill- 

posedness suggests the need for theoretical development. 

1.2.3 Sensitivity of different inversion methods 

1.2.3.1 The overdetermined inversion problem 

The overdetermined inversion problem has a larger number of knowns than 

unknowns. Its standard solution is the least square method (Press et al., 1992). The over- 



determined problem is often exemplified by parameter estimation, in which the number of 

model parameters is generally smaller than the number of measurable data. 

In subsurface hydrology, inversion is commonly used to estimate model parame- 

ters (Xiang and Elsworth, 1992). Consider, for example, the system illustrated in Figure 

1.2 and assume that the groundwater flow is described by equation (1.2). 

where xi is the coordinate index, x, is the coordinates of sampling wells, h is the head, 

Q,(t) is the pumping flux time history at the wells, 6 is the delta function, and S and Tare 

the storage and the transmissivity coefficients. By assuming H as a vector of nodal head 

magnitudes, the discretization of this equation and leads to 

Equation (1.3) can be arranged in the form ET=b, where E is an (m+n)*k matrix, T 

is a k vector, and b is an (m+n) vector. Note that m, n, and k are the number of data sets, the 

number of nodes, and the number of parameters respectively. Because the number of equa- 

tions is greater than the number of unknowns, equation (1.3) represents an overdetermined 

inversion problem, which has a least-square solution. Note that the model space of the 

inversion is the storage coefficient (S )  and transmissivity (2'). The data space is the mea- 

sured water head (h). 

Overdetermined inversion has controllable sensitivity. Xiang and Elsworth (1992) 

explicitly mentioned the method's high sensitivity by stating that "the noise in head distri- 

bution will largely affect the accuracy of the estimated parameters.", and suggests that 

"using a digital filter to reduce the noise level is an acceptable procedure. The comparison 

shows that the least-square method combined with a digital filter gives stable results." 

This stable inversion of the overdetermined problem can be explained by the fact that the 

overdetermined system has limited power to reduce sampling noise, so that the overdeter- 

mined parameter inversion, after the sampling noise is digitally filtered, can generate a sta- 

ble inversion result. This is why parameter estimation generally leads to stable inversions. 



1.2.3.2 The underdetermined inversion problem 

The underdetermined inversion problem occurs when the number of knowns is 

smaller than the number of unknowns. Because their inversions are generally numerical 

unstable, underdetermined inversion must use different optimization algorithms in order 

to reach stable results. Some of the algorithms are the Conjugate Gradient method (Neu- 

man et al., 1980), the Gauss-Newton method with Rosen's gradient projection (Yeh and 

Yoon, 1981), the maximum likelihood method (Carrera and Neuman, 1986), and the Krig- 

ing method (Kitanidis and Vomvoris, 1983). In this review, we discuss the underdeter- 

mined inversion by velocity inversion using linear and quadratic Lagrange multiplier 

optimization. 

In oceanography, velocity inversion estimates the simultaneous reference velocity 

around a closed path in the ocean (Wunsch and Minster, 1982), as illustrated in Figure 1.3. 

The idea is that the total water influx equals the total water outflux, as formulated by equa- 

tion (1.4). In the equation, Azmn is the thickness of the m-th water layer at the n-th station; 

 AX^ is the distance between the nth station pair; imn and bn denote the inverted velocity; 

M is the number of layers; and N is the number of stations. 

By assuming 

A,, = Az,,Axn 

and 

equation (1.4) is a linear equation A ~ = c ,  where matrix A represents the model (9, vector b 

the model space, and vector C the data space. The application of the method to the analy- 

sis of the velocities of the Atlantic ocean yields an underdetermined inversion. The num- 

ber of equations (M=5) is less than the number of unknowns (N=43). In order to stabilize the 

inversion, the method adds the additional constraint that the inversion results have the 



smallest Euclidean length (b*b)lf2. This constraint can be formulated by either a strong 

constraint, equation (l.7), 

or a weak quadratic constraint, equation (1.8): 

where h, w,, W ,  are Lagrange multipliers. As a result, the underdetermined inversion is 

formulated by A ~ = C  and equations (1.7) or (1 3) .  

The underdetermined inversion has a small known-to-unknown ratio (<<I). There- 

fore, under-determined inversion results are more sensitive to the sampling error than 

overdetermined inversion. This is why this inversion method applies the ( b  b )  l" con- 

straint to increase the known-to-unknown ratio so as to decrease the inversion sensitivity. 

However, even though ( b  b )  ' I 2  prevents instability, it has more numerical meaning than 

physical meaning. 

1.2.3.3 Quasi-determined inversion problem 

Quasi-determined inversions have a known-to-unknown ratio approximately equal 

to unity. Because their inversions' known-to-unknown ratios are similar, they share simi- 

lar theoretical limitations. These limitations are exemplified by an example of water mass 

analysis. 

The water analysis for a binary mixture is shown in Figure 1.4, where X, and Xb 

are concentrations of tracers a and b in the water container 0, P, and Q. 0 and P denote 

water sources and Q represents the mixed water. By assuming the mixture is a simple mix- 

ture (vO+vp=vQ) and considering the concentrations are positive values, the inversion is 

formulated by equations (1.9) and (1.10). By solving the two equations, the inversion esti- 

mates model space {fl,xP} from the model (equation (1.9)) and data space {x:, xf ). 



Generally, a water mass analysis estimates M water sources from the measured N 

tracers. The general formulations is: 

Minimization of 

(AX - b )  (AX - b )  (1.11) 

subject to 

where A, x, b ,  F, and h have dimensions of L x M, M x 1, L x 1, K x M, and K x 1, respectively 

(L=N+I,  K=M). The solution method is the Karush-Kuhn-Tucker theorem (Peressini et al., 

1988). 

Mackas et al. (1987) applied the method to the analysis of the water sources of the 

British Columbia coast. The five water sources (M=5) are Juan de Fuca, the California 

Undercurrent, Coastal Deep, Offshore, and Subarctic water sources. The six tracers (N=6) 

are temperature, salinity, nitrate, phosphate, silicate, and oxygen. Obviously, the known- 

to-unknown ratio (615) is very close to 1. Therefore, the inversion is quasi-determined. Its 

solution involves the least square objective function and predefined inversion limits 

( X  2 0 ) .  Similar to the underdetermined inversion, the quasi-determined inversion uses 

additional information ( X  2 0 )  to increase the inversion's know-to-unknown ratio, so as to 

reduce the inversion sensitivity. 

In summary, the inversion of overdetermined, quasi-determined, and underdeter- 

mined problems illustrates the different approaches to reduce inversion sensitivity. Over- 

determined inversion minimizes the least-square distance between the measurable values 

and the inverted values. Because the least square method has only limited capability in 

sensitivity reduction, it cannot guarantee a stable solution. Quasi-determined and underde- 

termined inversions impose limit constraints on inversion to reduce the inversion sensitiv- 

ity. However, because the inversion is numerically stable, the solution sometimes remains 

meaningless (Carrera and Neuman, 1986). Obviously the inversion method still has no 

general guidelines for sensitivity reduction. 



1.2.4 Special topics in inversion methods 

1.2.4.1 Noise reduction and prior-knowledge representation 

The inverse methods discussed in section 1.2.3, solve for the model space based on 

model space and data space (Figure 1.1). However, in reality, we frequently have addi- 

tional information about model space and data space. This information is referred to as 

prior knowledge. For example, in some cases, we know that different sampling data have 

different levels of sampling errors, and we want this prior knowledge to be represented in 

the optimization so that the data with small sampling error contribute more to the objec- 

tive function than those with large sampling errors. Another example is that the field mea- 

surement and other publications provide many pieces of "prior-knowledge", such as the 

inverted variable range. This "prior-knowledge" should enhance the inversion perfor- 

mance. The methods of utilizing "prior-knowledge" to enhance the inversion are dis- 

cussed below. 

Different from the sensitivity reduction by increasing the known-to-unknown ratio 

(discussed in section 1.2.3), another noise reduction approach is to modify the objective 

function through prior knowledge. The method is called the weighted least square inver- 

sion. Generally, the objective function of linear inversion AX = b  is ( A X  - b)  T ( ~ ~  - 6 )  . HOW- 

ever, when data have different error magnitudes, the objective function should have large 

weighting factors for the most accurate data. This idea leads to the weighted least square 

method, in which the objective function ( A X -  b l T w '  ( A X -  6 )  is scaled by the weighting 

factor matrix W 

The use of "prior-knowledge" is able to eliminate the inversion's non-uniqueness 

problem. This is because the prior-knowledge represents the expected model space. When 

the objective function has several local minimums, this "prior-knowledge" assists the opti- 

mization to select the local minima that is close to the prior-knowledge. As a result, prior- 

knowledge eliminates the numerical non-uniqueness. 

As an example, Bentley (1993) formulated the problem of parameter estimation 

for a groundwater flow model as a weighted least square inversion. He stated the problem 

as: 

Minimize J: 



T 
J = ( h  - h * )  C$ ( h  - h * )  + h x ( f i  - p * )  c-,' (8 - p * )  

Subject to the equation: 

a h  
NQ ( 8 )  ( @ )  ( h - h )  I -  Q ( - )  = 0 ax ax ay ay 

p = l  

and to the boundary condition 

In the above equations, i, h are vectors of calculated and measured heads; j, p 

are vectors of the inverted parameter values and prior-known values; CM and Cp are the 

covariance matrix, representing the "prior-knowledge"; h is a weighting parameter repre- 

senting the relative importance of governing equation and prior knowledge of parameters; 

h  is the hydraulic head; T is the transmissivity; B  and h, are leakage parameters; I is infil- 

tration; Qp is pumping rate for well p; HE is the value of the specified head; q~ is the value 

of the specified flux. The equation shows that the major difference between the weighted 

least square method and the least square inversion methods is that the weight lease-square 

inversion introduces the weighted objective function to represent prior knowledge. For 

example, the first term of equation (1.13) indicates that the solution keeps the minimum 

weighted distance to the sampled head. Similarly, the second term of equation (1.13) states 

that inversion results also minimize the weighted distance to the prior-known parameter. 

By taking into account the prior knowledge about unknowns, the method provides 

a solution for both the sampling noise reduction and the non-uniqueness problems. How- 

ever, this approach has several drawbacks. First of all, it is not a systematic approach to 

improve the inversion. In fact, the calculation of the covariance matrix is a serious practi- 

cal issue that can introduce artificial effects. Secondly, the selection of weighting factor h 

is a trade off between the enforcement of the governing equations against stability of the 

iterative solution. Its selection is still a open topic. Finally, the method is an optimization 

method, which can easily lose physical meaning in the optimization process. All in all, this 

approach is one of the most effective sampling noise reduction methods based on prior- 

knowledge representation. 



1.2.4.2 Non-linear inversion 

Non-linear inversion is another interesting topic. In the terminology of model, 

model space, and data space, the non-linear problem represents the situation where model 

space is not linearly related with the data space. The corresponding nonlinear inversion is 

illustrated by the boundary inversion of a hydrodynamic model (Nuiiez, 1990). The non- 

linear model is the shallow water equation, the model space is the measured water eleva- 

tion, and the data space is the water elevation boundary. The non-linear inversion 

estimates the water boundary conditions based on the hydrodynamic model and the mea- 

sured water elevation. Its solution involves two steps. The first phase establishes the linear 

inversion; and the second phase solves the non-linear inversion by iterations between lin- 

ear inversions and nonlinear simulations. 

The non-linear model is represented by the shallow water equation (1.15). 

t: time 

x, y cartesian coordinates 

u, v: depth averaged components of velocity 

q : surface elevation relative to mean sea level 

h: depth to mean sea level 

g: acceleration due to gravity 

f: Coriolis factor 

cf: bottom friction coefficient 

h: linearized friction factor 

The model space is the boundary condition (yi), which is the weighted ( c i )  sum- 

mation of the unit forcing $i (t)  . 



The data space is the measured water elevation (qi), which is the weighted sum- 

mation of the unit-forcing response 4 ( t )  . 

The linear inversion solves the weighting factor (ci) by minimizing the 

(9 - fi) 2, where 9 is the inverted water elevation. Then, inverted boundary condition yi 

can be calculated by equation (1.17). 

The non-linear inversion is conceptualized in Figure 1.5, where Y represents the 

model space, X denotes the data space, and the curve describes the non-linear model. The 

figure suggests that the first linear inversion (step (1)) has a large inversion error. The sec- 

ond inversion (steps (3) (4)) has a smaller inversion error. After several iterations (step 

(5)), the inversion converges to the true boundary condition. Clearly, nonlinear inversion 

can be accomplished by the iterated linear inversions. 

Figure 1.5 conceptually shows how non-linear inversion is solved by iterations of 

linear inversions. First of all, the non-linear inversion requires a solid linear-inversion 

methodology. Secondly, it requires a well behaved non-linear model to represent the non- 

linear system. Finally, the non-linear inversion solves the problem in an iteration fashion. 

Undoubtedly, the conceptual diagram can be applied to solve other non-linear inversions. 

1.3 "Dense-sampling" inversion formulation 

The "dense-sampling" inversion modeling method developed in this thesis can 

invert general time-variant linearlnonlinear systems, such as those represented by hydrau- 

lic transport and hydrodynamic models. The following two sections overview the "dense- 

sampling" inversion method and its application. They also compare the "dense-sampling" 

method with the available inversion methods. 



1.3.1 "Dense-sampling" inversion method 

The concept of the "dense-sampling" described. in Chapter 2 reduces the high 

inversion sensitivity. The idea of the "dense-sampling" is to use more measured data to 

invert one unknown by selecting an inversion time resolution coarser than the sampling 

time resolution. In the context of the know-to-unknown ratio, the "dense-sampling" con- 

cept is capable of converting underlquasi determined inversion problems to overdeter- 

mined inversion problems. Additionally, it can increase the know-to-unknown ratio of an 

overdetermined inversion problem. Consequently, the "dense-sampling" concept success- 

fully suppresses the inversion's high sensitivity. This solution is demonstrated in the con- 

text of both linear (Chapter 2) and nonlinear (Chapter 4) inversion problems. 

The linear inversion solved by the "dense-sampling" method is described in Chap- 

ter 2, where the "dense-sampling" method Iinearly inverts a contaminant source. The 

model is represented by the advection-diffusion equation; the model space is spatial-tem- 

poral variation of the contaminant source; and the data space is the concentration of the 

measured tracer concentration. The "dense-sampling" method converts a quasi-deter- 

mined inversion into an overdetermined inversion to suppress the sampling errors, thus 

allowing a successful estimation of the contaminant source. 

Non-linear inversion using the "dense-sampling" method is illustrated in Chapter 

4, through the deformation of boundary conditions for the circulation in a confined surface 

water environment. The model is represented by the shallow water equations; the model 

space corresponds to the water elevationlflux boundaries; and the data space is the mea- 

sured water elevation. One important point is that the "dense-sampling" method effec- 

tively reduces the inversion sensitivity so that the non-linear inversion is possible. Another 

important point is that the "dense-sampling" method is capable of non-linearly converging 

to the result by iteration between linear inversions and nonlinear simulations. This method 

is the first time-domain water source estimation method. 

The concept of "dense-sampling" also solves the inversion's invertiability (identifi- 

ability) issue. This is because the identifiability is determined by the inversion sensitivity. 

Indeed, when the inversion sensitivity is high, the inverted unknown is not identifiable. 

Therefore, by reducing the sensitivity of the inversion, we also inherently solve the inver- 

sion "identifiability" problem. The solution of the "identifiability" has two parts. First of 



all, the "dense-sampling" concept converts high sensitive inversions to low sensitive 

inversions, so that non-identifiable problems become identifiable. Secondly, the method 

discovers that the unknown's identifiability is equivalent to the inversion-equation's solv- 

ability. The solution of the identifiability leads to a method for design of sampling net- 

works for both water elevation and pollutant tracer measurements. The idea is that the 

source identifiability is equivalent to the inversion's solvability. And the equation's solv- 

ability is scaled by its condition number. Therefore, the inversion's identifiability can be 

scaled by the condition number. Consequently, the "dense-sampling" concept creates the 

sampling network design method based on the condition number. Detail discussion of the 

method is in Chapter 3. 

1.3.2 Comparison of the proposed method with previous methods 

The diagnostic analysis of the "dense-sampling" method suggests that this method 

is more sound than the existing inverse methods, because it systematically reduces the 

inversion sensitivity, expresses the source identifiability, and accomplishes the non-linear 

inversion. 

Reducing inversion sensitivity has been the major challenge in developing and 

applying inversion methods. The problem is that the inversion result is so sensitive to the 

sampling error that even round-off error in the sample data can generate numerical insta- 

bility. Consequently, the inversion has no solution. Generally, the inversion sensitivity is 

positively correlated with the ratio of available information in 2 to the unknown informa- 

tion in j. This relationship can be expressed as the ratio of the number of equations and 

constraints to the number of unknowns (RECU), expressed as follow: 

Dimension-of-@ 
Sensitivity .c RECU = 

~irnension-of-2 

Equation (1.19) shows that increasing the number of knowns or decreasing the 

number of unknowns can reduce the inversion sensitivity. That is to say in order to reduce 

the inversion sensitivity, more information is required to generate equations and con- 

straints. For instance, the example of the underdetermined inversion (section 1.2.3.2) adds 

the minimum norm constraint to increase the RECU. Similarly, the example of the quasi- 

determined inversion (section 1.2.3.3) applies physical constraints (water fractions are 



non-negative values) to increase the RECU. Intentionally, these methods are trying to sup- 

press the inversion sensitivity by increasing the RECU. 

Superior to the above sensitivity reduction efforts, the "dense-sampling" inverse 

modeling formulation develops the "dense-sampling" concept to reduce the inversion sen- 

sitivity. The method increases RECU dramatically so that the underdetermined and quasi- 

determined inversions are converted to overdetermined inversions. Along the way, 

"dense-sampling" can also effectively increase the RECU of the overdetermined inver- 

sion. Consequently, the "dense-sampling" inverse modeling formulation successfully 

reduces the inversion's sensitivity. In other words, we will show in this thesis that the long- 

existing problem of error reduction, universally encountered in inversion can be solved by 

the "dense-sampling" concept, at least in the context of our applications. 

The solution of the inversion sensitivity also implies the solution of the source 

identifiability. In fact, the "dense-sampling" concept provides a new approach to defining 

the inversion's identifiability. The approach is based on the fact that the inversion's identi- 

fiability is equivalent to the inversion's stability, which can be scaled by its condition num- 

ber. Therefore, the method discovers that the condition number of the inversion equation 

can represent the source identifiability. When the condition number closes to unity, the 

inversion has low inversion sensitivity and the inverted model space is defined as identifi- 

able. Otherwise, a large condition number indicates high inversion sensitivity, which 

defines the inverted data space as non-identifiable. Clearly, the theory is able to predict the 

unknown's identifiability by investigating the condition number of the inversion matrix. 

In contrast to the proposed theory, available inversion methods (e.g. Kool and 

Parker, 1988, Yeh and Sun, 1984) have neither the essential and sufficient condition for 

identifiability nor the effective ways to increase the identifiability. For example, some 

inversion methods reduce the inversion sensitivity by digitally filtering the sampled data 

(ThiCbaux and Pedder, 1987, Xiang and Elsworth, 1992). As a result, they can not control 

the balance between information loss and error elimination. Also, they can neither predict 

the invertiability prior to inversion, nor provide suggestions for improving the identifiabil- 

ity. In summary, we conclude that the developed method defines the inversion's identifi- 

ability as the solvability of inversion equation and provides a numerical variable 

(condition number) to express the unknown's identifiability. 



The uniqueness problem exists in the proposed method as well as in the available 

inversion methods. The existing inversion method uses optimization techniques to solve 

the inverse problem. Therefore, they have numerical non-uniqueness when the objective 

function has several local minimums. Nevertheless, because the developed method solves 

the equation by the least square method, which does not have numerical non-uniqueness, 

the "dense-sampling" approach eliminates the numerical non-uniqueness. This means the 

developed method does not have mathematical non-uniqueness. By this comparison, it is 

easy to conclude that the developed method has a better chance to correctly approach the 

solution of conceptual non-uniqueness. 

1.4 Reader's guide to the thesis 

Chapter 1 both reviews the previous inverse modeling methods and compares 

them with the proposed "dense-sampling" method. First, the chapter discusses the concept 

of the inverse modeling. Second, it summarizes important concepts describing inverse 

modeling methods. Third, it groups the inverse modeling methods in three categories 

according to the known-to-unknown ratio. Finally, the chapter compares the available 

inversion methods with the "dense-sampling" inverse theory, in regard to the method's 

sensitivity to sampling error, identifiability index, the conceptual non-uniqueness and 

mathematical non-uniqueness, and the non-linear inversion. 

Chapter 2 discusses the linear formulation of the "dense-sampling" inverse model- 

ing formulation and its application in identifying contaminant source. The chapter concen- 

trates on describing the "dense-sampling" formulations and diagnostically analyzing its 

effectiveness in reducing both random error and systematic error. Readers should pay spe- 

cial attention to the system inputs, system outputs and the system characterization. Once 

you have understood the concept of "dense-sampling," you are able to explain why the 

method can reduce both random error and systematic errors. 

A sampling-network design method is pursued in Chapter 3, which extensively 

discusses the source identifiable index - the condition number of the transfer function. 

Since the condition number expresses the inversion's invertiability, it is a universal index 

for different inversion methods, such as contaminant source identifiability and water 

source identifiability. This chapter investigates the factors affecting the condition number 

magnitude. Moreover, the chapter demonstrates the designed sampling network for moni- 



torial the contaminant source of St. John's landfill environment. Finally, the chapter vali- 

dates the designed sampling network by the contaminant source characterization method. 

Readers are advised to go through Chapters 1 and 2, before reading Chapter 3. In addition, 

a sound knowledge about linear system theory (Golub and Loan, 1983) and singular value 

decomposition (Press et al., 1992) is helpful in understanding the content. 

Chapter 4 highlights non-linear inversion of the "dense-sampling" inverse theory. 

In the nonlinear inversion, the system is the shallow water equation, which is solved by 

the time domain model ADCIRC (Luettich et al., 1991). The system inputs are the oce- 

aniclriverine boundary conditions (time series), and the system outputs are the measured 

water elevation (time series). The non-linear relationships of advection, bottom friction 

and finite amplitude are inverted through an iterative process involving linear inversions 

and non-linear flow simulations. 

Chapter 5 summarizes our conclusions and suggests directions for future research. 



Inverse Modeling 

Figure 1.1 The concept of inverse modeling 
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Figure 1.2 Diagram showing the groundwater flow simulation 



Figure 1.3 Locations of Atlantes 215 stations used to invert the reference velocity 
around a closed path from Wunsch and Minster, 1982) 

Source A Mixed Water Q Source B 

Figure 1.4 Diagram showing simple mixing and water mass analysis 
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Figure 1.5 The diagram showing the concept of non-linear inversion 
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CHAPTER 2 

Identifying the time history of 
contaminant sources in surface waters: a 

linear time-domain inversion method 

2.1 Abstract 

This chapter describes a new method to estimate time series of spatially-distrib- 

uted tracer sources in surface water environments. In our method, the measured tracer 

concentrations are formulated as the convolution of the source time series with the system 

transfer functions. To obtain source time histories, the method relies on the observation of 

tracer concentrations at selected stations and numerical simulations of flow and transport 

processes. By having a sampling resolution higher than the inversion resolution, with 

which we want to characterize sources ("dense-sampling"), results are stable and mean- 

ingful. Through diagnostic modeling, we demonstrate the capability of the method with 

regard to the identification of source time history and reduction of random and systematic 

errors. We also explore the sensitivity of the method to the number and the location of 

sampling stations. The study suggests that (a) source scenarios can be recovered perfectly 

if the synthetic observations are not contaminated by errors, (b) the inversion method is 

robust enough to "filter" out random error and selected system errors, and (c) the inversion 

method is capable of identifying more sources than the number of existing stations. 

Key words: inversion, singular value decomposition, source identification, source estima- 

tion, sampling network design 

2.2 Introduction 

Source characterization is a limiting factor in regional-scale analysis of water qual- 

ity issues. A common use of environmental modeling is to estimate pollutant sources in an 

environmental system from the measurable information. In this context, the source charac- 

terization needs to discover the source location, source spatial distribution and source tem- 

poral variations. Despite its obvious importance and the intensive investigations in both 



surface and ground water environments, there are few successful source estimation meth- 

ods. Although mathematical models are reasonably well developed to simulate the mea- 

surable variables according to initial conditions, boundary conditions, model parameters, 

and source variations, the question of how to quantify the source variations with respect to 

model inputs has not been completely resolved. In this research, we address the problem 

in the context of inverse modelling and provide a suitable solution. 

The theoretical challenges of the source temporal inversion can be exemplified by 

the model parameter inversion. This is because the inverse modeling conceptually inverts 

"model input" from "model output". The model output refers to the measured pollutant 

tracer concentration. The model input includes pollutant source and model parameters. 

Consequently, the source identification inversion and parameter inversion share the same 

theoretical limitations. Because, unlike the parameter estimation, the source characteriza- 

tion methods are scarce, a good understanding of their common theoretical limitations is 

helpful in developing the source estimation method. 

One difficulty associated with parameter estimation and source identification stems 

from the fact that the inverse results, such as model parameters and source magnitudes, are 

highly sensitive to the sampling error. Even round-off error in the measured variables can 

result in unstable inversions. To achieve a stable inversion, we must either minimize the 

sampling error or reduce the sensitivity of the inversion. Since there is always round-off 

error in the measured variables, we can not totally eliminate the sampling errors by 

increasing the accuracy of the measurements. Consequently, the only solution is to 

decrease the inversion sensitivity. It is quite clear that the reduction of the inverse sensitiv- 

ity critically determines the success of the inversion. 

A second difficulty related with the parameter estimation and source estimation is 

non-uniqueness. Non-uniqueness represents the cases where the inversion of model 

parameters and pollutant sources has multiple results. The non-uniqueness problem is 

closely related to the invertiability of parameter estimations and pollutant sources. "Identi- 

fiability" has been defined in several different ways (Yeh, 1986), but the term is used in all 

cases to describe the degree to which the input parameters of a specific model can be iden- 

tified by the sampled information. Based on this definition, it is intuitively obvious that 

there should be a numerical variable to represent identifiability. Based on statistical con- 



cepts, Yeh and Sun (1984) developed the parameter identifiability index. However, scien- 

tists have not found a numerical index that can indicate the source identifiability. 

The third difficulty of the inversion is its inability to estimate source spatial and 

temporal variations. The reason is that the number of unknowns required to represent the 

spatial and temporal variation of a source is so large that the inversion's high sensitivity 

makes a stable inversion impossible. That is why parameter estimation and constant 

source estimation have had same success, whereas identification of spatial and temporal 

variation of sources has not been achieved. 

All three difficulties are associated with high inversion sensitivity. The first prob- 

lem states that when the inversion has high sensitivity, a solution is not possible. The sec- 

ond problem is equivalent to saying that when the inversion sensitivity of one station and 

one source is high, the station can not identify the source. The third challenge is due to the 

fact that inversion sensitivity increases dramatically with the number of unknowns. Con- 

sequently, the large number of inversion unknowns, representing the source's spatial-tem- 

poral variation, results in high inversion sensitivity and unstable results. In summary, the 

high inversion sensitivity makes both parameter estimation and source identification diffi- 

cult to achieve. 

In this research, we propose a "dense-sampling" inverse method to address the 

above three difficulties. The approach applies the "transfer function" concept to formulate 

the relationships between the source-spatial-temporal distribution and the measured pol- 

lutant concentrations. Additionally, the research develops the "dense-sampling" concept to 

decrease the inversion sensitivity by increasing the inversion's equation-to-unknown ratio. 

In fact, the "dense-sampling" concept converts under-determined quasi-determined inver- 

sions to the overdetermined inversions. By applying the concepts of "transfer function" 

and "dense-sampling", the method develops systematic solutions for the three inversion's 

difficulties. First of all, the method decreases the inversion sensitivity to overcome the first 

difficulty. Second, the method discovers the inversion sensitivity index--condition number 

which can determine the source invertiability before the inversion. As a result, the method 

solves the second difficulty. Finally, the method can successfully achieve temporal inver- 

sion of the unknowns. The solution of the three difficulties are demonstrated in this chap- 

ter. 



2.3 Background and overview 

The source identification method has not been well established to estimate pollut- 

ant sources in either surface water or groundwater environments. In spite of this, several 

conventional approaches have been proposed. These approaches can be grouped into four 

broad categories: conceptual-argument approach, statistical methods, trial-and-error simu- 

lations, and inversion methods. 

The purely conceptual argument finds the source locations and their magnitudes 

based on the prior-knowledge of sources, measured pollutant concentration (Wechsler et 

al., 1982), and remote-sensing image (Ishaq and Huff, 1979). One problem with this 

approach is that source identification is very inaccurate when pollutant transport is very 

active. Another problem is that the approach can not estimate source temporal variation. 

Thus, conceptual argument approaches only answer the source location and magnitude, 

leaving the source spatial and temporal variation unsolved. Different from the purely con- 

ceptual argument approach, the statistical methods use techniques such as regression anal- 

ysis and factor analysis to estimate the source locations and source types. Even though the 

statistical methods can estimate the source location and source magnitude, they also fail to 

deal with source temporal variability (Grimshaw and Lewin, 1980; Ginn and Cushman, 

1990). Another method for source identification is the trial-and-error simulation approach, 

in which the system's sources and model parameters are manually adjusted until an 

acceptable agreement between the measured pollutant concentration and the modeled con- 

centration is obtained. However, the trial-and-error approach relies heavily on the model- 

er's experience and his or her understanding of the modeled processes. Due to the 

subjective nature of the approach, the results are not optimized. 

The inverse modeling approach is very attractive in estimating pollutant sources. 

In this approach, the inversion estimates the source from the measurable variables (like 

water head, pollutant concentration) and model simulations (like water flow equation and 

advection-diffusion equation). Consequently, the inverse approach shows the most prom- 

ising results in achieving source identification. 

One study about source identification in the groundwater environment is that of 

Gorelick et al. (1983). As an optimization approach, the method generates a series of con- 

straints by the flow and transport model. Then, the method applies least-square regression, 



integer programming and linear programming methods to determine source locations and 

source magnitudes. Since the method assumes that the source magnitude is constant, it can 

only select the source's location and magnitude. The method can not address the source 

identifiability issue or describe source temporal variability. 

Wagner (1992) presented a methodology for simultaneously estimating model 

parameter and pollutant sources. The method combines ground water flow and contami- 

nant transport simulations with non-linear maximum likelihood method (Canera, 1984, 

Carrera and Neumann, 1986) to determine the source scenario and model parameters. 

Similar to the previous case, the method can only estimate constant source magnitudes. 

Even though the method uses the 1st-order uncertainty analysis to assess identifiability, 

the statistical analysis can not provide a solid-mechanism to design a sampling network. 

Again, the method does not numerically approach the identifiability issue and can not 

accomplish the source temporal inversion. 

This research develops a source temporal-inversion method, which systematically 

address the theoretical issues of inversion. This chapter diagnostically analyzes the meth- 

od's capability in addressing the sensitivity reduction and the source identifiability by 

demonstrating the source-temporal inversion and sampling network design. 

2.4 Problem description and formulation 

Source time series cannot be estimated easily and accurately. Generally, their tem- 

poral variations are estimated by measuring pollutant concentrations near pollutant 

sources. However, without considering hydraulic transport, and the source-station loca- 

tion, the measurements cannot accurately estimate pollutant source. This research formu- 

lates the relationships between the source magnitudes and the measured concentration 

magnitudes by considering the pollutant transport and source-station location. Conse- 

quently, the research solves the source temporal inversion problem. Mathematically, the 

research characterizes the pollutant transport through the "transfer functions". Accord- 

ingly, the measured tracer concentrations are the convolution of the source time series and 

the transfer functions. Along the way, the source time series are the deconvolution of the 

measured concentration and the transfer function. 



2.4.1 Formulation of the "dense-sampling" inverse method 

The "dense-sampling" inversion method is based on the concept of the transfer 

function. The "transfer function" of station i and source j is defined as the measured con- 

centration (o) at station i in response to a unit forcing at source j (Figure 2.1). In the sur- 

face water environment, the transfer function is a function of source location j, station 

location i, release time to and sampling time t. Therefore, it is represented a s q ,  j , tn  ( t )  . 
For a conservative tracer, the measured concentration time series (C)  is represented as the 

convolution of the source strength (S) and transfer function (a), as shown in equation 

(2.1). 

In the equation, t r  is a variable for linear interpolation of the transfer function, and station 

index i changes from 1 to the number of stations, N,. The equation shows that the mea- 

sured tracer concentration at station i and time t, Ci(t) is the summation of N, sources over 

Nr release times. Equation (2.1) represents a system with N ,  x N ,  equations and N~ x N ,  

unknowns. When N a / N s  = 1, the system yields an unique solution. When N a / N s >  1, the 

system is overdetermined and has a unique least square solution. When N a / N s  < 1, the sys- 

tem is underdetermined and has an infinite number of solutions. Clearly, one of the limita- 

tions of the method is that it requires N a / N s  t 1. That is to say the number of stations must 

be equal to or larger than the number of sources. Additionally, in most cases, equation 

(2.1) is close to singular. That means that any sampling error in C can generate large inver- 

sion errors in S. 

In order to eliminate both the singularity and station/source ratio constraints, we 

propose the "dense-sampling" concept, which is represented by the "dense-sampling" 

parameter ND, 

where ~ t , ~ , , , , ,  is the inversion time resolution and ~ t ~ ~ ~ ~ , ~ , ,  is the sampling time resolution. 



The idea of dense sampling is that the sensitivity of the inversion can be reduced at the 

expense of the temporal resolution of the inverted source. The sampling rate at the moni- 

toring stations, and the value of ND, effectively control the achievable temporal resolution 

for S.  While the Nyquist frequency for the sampling instrument may impose a limit on the 

temporal resolution of S, this limit will for many environmental applications be quite 

acceptable. 

By introducing ND, equation (2.1) becomes the "dense-sampling" formulation. 

In the equation, jl is the time index ( t  = (jl x ND) x At), j2 is a variable for the 

linear interpolation of the transfer function, and S is the inverted source. It is important to 

point out that the number of unknowns of the "dense-sampling" equation decreases to 

and the number of equations is the same N, x N,.  Therefore, by selecting the "dense-sam- 

pling" parameter ND to satisfy equation (2.5), 

there is always one unique least-square solution. Obviously, equation (2.5) shows that ND 

determines the ability of station in identifying contaminant source. 

"Dense sampling" has both theoretical and practical advantages. First, equation 

(2.3) correctly formulates the relationship between the source strength and the sampled 

concentration magnitude. Additionally, equation (2.5) suggests the idea of sampling net- 

work design by the fact that N, can be less than N,. Furthermore, the inversion sensitivity 

of equation (2.3) can be effectively reduced by increasing ND. Consequently, the method 

can accomplish the time-domain contaminant source estimation. 



2.4.2 Source identifiability 

Based on the "dense-sampling" formulation (2.3), this research shows that the 

inversion's solvability determines the source identifiability. That is to say, the high inver- 

sion sensitivity indicates the low source identifiability and vice versa. Additionally, 

because the inversion sensitivity can be measured by the condition number of equation 

(2.3) and the condition number decreases dramatically as ND increases, the "dense-sam- 

pling" inverse method is able to increase the source identifiability by increasing the 

"dense-sampling" parameter ND. Clearly, the dense-sampling scheme converts non-identi- 

fiable source to identifiable source and provides the condition number to measure the 

source identifiability. Detailed discussion about the condition number and its ability to 

improve the inversion efficiency is presented in Chapter 3. 

The method application includes the system characterization, system measure- 

ment, and system inversion. The system characterization calculates the transfer functions 

among every source-station pair and assembles the transfer function matrix A. At this 

stage, we assume that source locations, source spatial distributions, and station locations 

are known. The second step samples the tracer concentration time series and forms vector 

B. Note that station locations for tracer measurement must be the same as the station loca- 

tions used to calculate the transfer functions. The third step estimates the source 2 by solv- 

ing the deconvolution equation A?=;, where matrix A includes the transfer function and 

vector 5 consists of the measured tracer concentrations. In this step, the "dense-sampling" 

parameter ND determines the known-to-unknown ratio. 

2.5 Numerical experiments 

This section numerically analyzes the method by inverting pollutant sources of a 

synthetic surface water environment. The advantages of analyzing the method in a syn- 

thetic reality are that the method can be tested for a variety of hypotheses and the inver- 

sion results can be evaluated by comparing with the imposed sources. Accordingly, the 

designed synthetic reality is simple enough for method testing while it is sufficiently com- 

plex to include different factors for diagnostic analysis. 



2.5.1 Synthetic St. John's Landfill surface water environment 

The proposed method is diagnostically analyzed in the synthetic St. John's Landfill 

surface water environment, which has fully controlled water circulation, hydraulic trans- 

port, sampling scheme, and source scenarios (Figure 2.2). The finite element grid of the 

synthetic St. John's Landfill surface water system includes 1957 nodes and 713 elements. 

The water circulation is simulated by solving the 2-D depth averaged shallow water equa- 

tions in the frequency domain (Westerink et al., 1987). To make the test simpler, we used 

the M2 tide only. The hydraulic transport is modeled by the advection-diffusion equation 

(Baptista, 1987). The diffusion coefficient is 1 m/s2. For the purpose of computation effi- 

ciency, the simulated time interval is 1.24 hours, i.e. one tenth of the M2 period, so that the 

model can read the foot of the characteristic lines of one tidal cycle instead of backward 

tracking the entire simulation time. The total simulation time is 200 time steps, which has 

many integer factors for dense-sampling. The eight sources and eight stations are spatially 

equally distributed along the slough. This source-station configuration is able to represent 

the spatial pattern of source-station response for the entire slough. Clearly, the synthetic 

St. John's Landfill environment is sophisticated enough to evaluate the source temporal 

inversion method regarding the sampling network design and the sampling error reduc- 

tion. 

2.5.2 Integrity test 

The integrity test recovers time history of four sources by sampling concentrations 

at four stations (Figure 2.3). Because the sampling error is zero, the test can investigate 

method ability in reducing the effect of the round-off errors. Also, the four source time 

series vary dramatically during the sampling period. Therefore, the test can show the 

effects of source variations on the inversion results. Furthermore, the four sources are spa- 

tially overlapped so that the test is able to show the method's robustness to invert spatially 

overlapped sources. Clearly, the integrity test evaluates the method's performance without 

introducing sampling error. 

The integrity test follows the inversion's three steps: system characterization, sys- 

tem measurement, and system inversion. The first step evaluates the transfer functions to 

characterize the system's hydraulic transport. This is exemplified by the transfer function 

between source 1 and station 1 (Figure 2.4). Firstly, the transfer function corresponding to 



each release time shows a periodic variation, as a result of tidal advection. In addition to 

the periodic variation, transfer function decreases due to the diffusion process. This is 

shown by the fact that the transfer function magnitude, after a short diffusion period, is 

higher than the transfer function magnitude after a long diffusion period. Finally, the trans- 

fer function matrix is a triangular matrix, which indicates the inverted source time-step 

equals the sampling time step. Obviously, the transfer function characterizes the hydraulic 

transport. 

The second step simulates the situation with four pollutant sources and four sam- 

pling stations (Figure 2.5). The concentrations at the four sampled stations share both a 

long term trend and a short term trend. In the long trend, the sampled concentration begins 

from a zero initial condition and increases to a specific value. In the short trend, the sam- 

pled concentrations demonstrate a 12.4-hour variation in response to the tidal signal. It is 

clear that the measured tracer concentration illustrates the hydraulic transport of the syn- 

thetic reality. 

The third step uses inversion to recover the four source time-series. The inversion 

results (Figure 2.6) provide insight into the proposed method. First of all, the inverted 

source 4 has large inversion errors when ND=2. This is because the round-off errors in the 

measured concentration are amplified by the high inversion sensitivity to create inversion 

errors. However, when ND=lO, the sources are recovered without inversion errors. The 

reason is that the "denser inversion (ND=lO)" can reduce the inversion sensitivity more 

efficiently than the "less-dense inversion (ND=2)". The comparison shows the ability of 

the "dense-sampling" concept to effectively reduce the impact of round-off error, and to 

achieve temporal inversion of the source. Most notably, the method can recover sources 

with large temporal variations, like source 3, suggesting that the content of temporal vari- 

ability does not affect the inversion performance. Also of significance, the proposed 

method is capable of distinguishing between sources that are spatial overlap (Figure 2.3), 

a characteristic of interested to environmental systems (e.g. point sources overlapping on 

non-point sources). Finally, we stress that the effective sampling error reduction achieved 

by "dense-sampling" has a price, that of losing time resolution. As illustrated in Figure 

2.6, a larger ND (10 versus 2) is more effective in reducing inversion sensitivity. However, 

time resolution in the inverted time series is 5 times lower for ND=10 than for ND=2. 



2.5.3 Error reduction by the "dense-sampling" method 

The ability to average different kinds of errors determines the success of the 

inverse methods (Xiang and Elsworth,l992). This section demonstrates the method capa- 

bility in reducing both the random error and systematic error. 

2.5.3.1 Random error reduction 

The ability of the method to reduce random error is demonstrated by estimating the 

four sources with different sampling error levels. Again, the developed method effectively 

inverts the four sources (Figure 2.7). Because 10% random sampling error is higher than 

round-off error, a larger ND is required (ND=20) than in the case discussed earlier. Also the 

figure clearly shows that the method can carry out stable inversion when the random sam- 

pling error is as high as 10%. 

The inversion parameter1 can also efficiently measure the inversion sensitivity, 

because it eliminates the effects of error magnitude and sampling number on the inversion 

sensitivity. indicates that the "dense-sampling" method is very effective in averaging 

sampling errors to stabilize inversion results. For example, when ND=2, the sensitivity 

parameter of 96.07 reveals that the sampling error can be amplified as much as 96 times. 

However, when ND increases from 2 to 40, the inversion sensitivity decreases dramati- 

cally. Moreover, the table shows that the "dense-sampling" technique is able to average as 

large as 10% relative sampling error, which is higher than a common instrumental error. 

Therefore, it shows that the method is capable of real-world inversion. In summary, the 

graphical comparisons and sensitivity analyses indicate that the "dense-sampling" tech- 

nique is robust enough to filter out the random sampling error. 

Norm (L2)  
1. The inversion parameter is defined as Inversesensitivity = 1 rel-Error1 

Because it minimizes the effects of the error magnitude and the sampling number on the 

error amplification, it can precisely measure the inversion sensitivity. As illustrated in , 
when the sampling error changes from 1% to lo%, the inversion parameter doesn't 

change. This confirms that the inversion parameter is not a function of sampling errors. 



Table 2.1 Relationship between the inversion parameter and the "dense-sampling" 
parameter ND with different sampling error levels 

Table 2,la: No Sampling Error 

Table 2.lb: Relative Sampling Error = 1 % 

ND 

2 

4 

10 

20 

25 

40 

Table 2.1~: Relative Sampling Error = 5% 

source 1 

017796 

0.0 17897 

0.018373 

0.022653 

0.022822 

0.028347 

ND 

2 

4 

10 

20 

25 

40 

source 2 

0.01 8957 

0.019161 

0.02 1 197 

0.025 173 

0.034347 

0.041784 

source 1 

0.021811 

0.0 19257 

0.0 18877 

0.02249 1 

0.022730 

0.028060 

ND 

2 

4 

10 

20 

source 3 

0.027099 

0.025813 

0.023073 

0.025 163 

0.0291 84 

0.053586 

source 2 

0.0267 17 

0.020806 

0.021441 

0.026222 

0.035 177 

0.043445 

source 4 

11.25980 

2.007610 
- 

0.018132 

0.025984 

0.028398 

0.066 180 

source 1 

0.063574 

0.036763 

0.024 130 

0.023891 

source 3 

0.079328 

0.034600 

0.0245 10 

0.023668 

0.029632 

0.055865 

source 2 

0.08 1795 

0.0367 13 

0.025812 

0.030945 

source 3 

0.349123 

0.102649 

0.043862 

0.026942 

source 4 

96.07 190 

3.783030 

0.0275 18 

0.027353 

0.030075 

0.067946 

source 4 

438.0770 

10.88590 

0.101509 

0.039845 



Table 2 .1~:  Relative Sampling Error = 5% 

Table 21d: Relative Sampling Error = 10% 

ND 

25 

40 

2.5.3.2 Systematic error reduction 

source 1 

0.023889 

0.026970 

*D 

2 

4 

10 

20 

25 

40 

Systematic error reduction is more difficult than random error reduction. This is 

because systematic sampling error induces both amplitude-related inversion error and 

phase-related inversion error, while random sampling error only introduces amplitude- 

related inversion errors (Figure 2.8). 

This experiment evaluates the method's capability in reducing both types of sys- 

tematic errors. The phase-related systematic error is induced by phasing out a 6.2 hours 

the sampling "clock". Intuitively, phase errors in sampling data should lead to phase errors 

in the identified results (square symbol in Figure 2.8). The result suggests that the method 

successfully averages the 6.2-hours tidal clock error. The reason is that the inversion time 

interval (At x ND = 24.8hours) is larger than the tidal clock error (6.2 hours). Therefore, 

"dense-sampling" can effectively average, in this case, the phase-related systematic sarn- 

pling errors. However, when the phase error becomes very large, equal or larger than the 

inversion time interval, the inversion's capability of reducing the phase error becomes less 

effective. Larger phase-related errors can destabilize inversion results. Therefore, the 

source 2 

0.039256 

0.050445 

source 1 

0.122847 

0.065795 

0.034700 

0.029394 

0.028237 

0.025747 

source 3 

0.040496 

0.066101 

source 2 

0.156267 

0.0629 16 

0.035994 

0.037649 

0.045654 

0.059763 

source 4 

0.0457 10 

0.078047 

source 3 

0.690246 

0.196080 

0.077066 

0.044301 

0.063794 

0.080590 

source 4 

865.6630 

19.76480 

0.199655 

0.062 198 

0.073 173 
- - -  

0.095500 



experiment shows that the method can effectively reduce the phase-related systematic 

error when the inversion time interval is larger than the phase-related systematic error. 

The amplitude-related systematic sampling error are produced by an incorrect dif- 

fusion coefficient (D,=2.0 m2/s, instead of the value D,=l .0m2/s used in the definition of 

the synthetic reality). The larger diffusion coefficient introduces the amplitude-related 

inversion errors (Figure 2.8). It is interesting to note that amplitude-related inversion 

errors are quite different for different sources. Sources 1 and 4 have negative errors, while 

sources 2 and 3 have positive errors. The reason is that, when the synthetic reality has a 

large diffusion coefficient (Dx=2.0 m2/s), its hydraulic transport changes. With the same 

source spatio-temporal scenario, the sampled tracer concentration becomes higher at some 

stations and lower at other stations than their true values. Therefore, based on the wrong 

sampling information, some of the inverted sources (1  and 4) have negative errors and 

some of the inverted sources (2 and 3) have positive errors. 

The relative locations of sampling stations, land boundaries, and flow boundaries 

also play an important role in transforming the sampling error into the inversion error. For 

instance, the inverted source 1 generally has a larger phase error than other sources. This is 

due to the fact that source 1 is located in the dead end slough, where diffusion becomes 

more dominant than advection compared with other parts of the slough. Additionally, sta- 

tion 1 is placed at the edge of dead-end slough and main channel where advection is more 

dominant than diffusion. Therefore, when the tracer of source 1 leaves the dead-end 

slough, it seldom moves back. As a result, station 1 can not respond to the tracer lost to the 

main channel. 

2.5.4 Sampling network design 

The sampling error reduction tests require that the number of stations must equals 

the number of sources. Releasing this limitation is important, and leads to the following 

questions: 

What is the minimum number of stations that can monitor all the pollutant sources? 

Where should these stations be located? 

What is the sampling frequency and sampling time? 



The following experiment answers the three questions by designing a sampling 

network for monitoring the eight sources of the synthetic St. John's landfill environment. 

The tested environment includes eight pollutant sources and eight sampling sta- 

tions (Figure 2.2). The condition numbers between the 8 sources and the 8 stations are tab- 

ulated in Table 2.2. One point of interest is that small condition numbers are diagonal 

elements, indicating that station i can efficiently identify source i, which is closely located. 

In addition, when the difference between source index i and station index j is big, their 

condition number is also big. This is due to the fact that when i and j are different, the 

source i is located away from station j. Therefore, station i can not identify source j. 

Clearly, the condition number table signifies the source identification of the synthetic St. 

John's Landfill surface water environment. This statement can be further validated by 

investigating each row and column of the table. 

In Table 2.2, each column demonstrates the response of one source at different sta- 

tions. For example, the small condition numbers in the third column are 110 for station 2, 

95 for station 3 and 410 for station 4. This suggests that source 3 can be identified by sta- 

tions 2, 3 and 4. 

Table 2.2 Source identifiability table for the eight source and eight station case, with 
"dense-sampling" parameter, ND, of 20 

Station 8 4.7E+3 3.58+2 1.6E+4 1.8E+5 I 6.2E+9 5.2E+15 1 INF I 



For this synthetic case, we empirically choose 5000 as the identifiability criterion. 

Any condition number smaller than 5000 indicates identifiability between the source and 

station. By applying this criterion to every column of Table 2.2, we conclude that source 1 

can be identified by station 1; source 2 can be identified by stations 1 ,2 ,3  and 4; source 3 

can be identified by stations 2, 3 and 4; source 4 can be identified by station 2, 3 and 4; 

source 5 can be identified by station 3, 4 and 5; source 6 can be identified by station 5; 
source 7 can be identified by station 6; source 8 can be identified by station 7. On the other 

hand, applying the criterion to every row, we find that station 1 can identify sources 1 and 

2; station 2 can identify sources 2, 3 and 4 and so on. Therefore, in order to identify the 

eight sources we need at least 5 stations (stations 1 ,4 ,5 ,6  and 7). Obviously, the condition 

number table optimally selects the station numbers and station locations. The sampling 

frequency and sampling time are 114464 s and 248 hours, according to the transfer func- 

tion. 

In Table 2.2, each row shows the response of one station to different sources. For 

instance, the fourth row has four small condition numbers1, illustrating that station 4 can 

identify sources 2 through 5. Similarly, station 1 can identify sources 1 and 2. The differ- 

ent number of sources that are identifiable by stations 2 and 4 shows that the condition 

number table represents the effects of the hydraulic transport on the source identification. 

For instance, the 4th station can identify more sources than any other station. One reason is 

that the tidal boundary expands the source response area for station 4. The other reason is 

that the dead-end land boundary is located far away from station 4, so that it does not 

restrict the source response area of station 4. These two reasons explain why station 4 can 

identify more sources than other stations. In contrast, station 1 can identify fewer sources 

than all other stations. This is because the station 1 is located inside the dead-end slough 

and the dead-end land boundary restricts the station response area. It is quite clear that the 

effects of land and tidal boundaries on source identifiability is expressed by the condition 

number of the transfer function. 

As an extreme design, the table indicates that we can use 2 stations (stations 1 and 

4) to identify 5 sources (sources 1 ,2 ,3 ,4  and 5), when the sampling resolution=4464 sec- 

1. We empirically define "small" condition number as numbers below 5,000 in 

this chapter. Further numerical investigations are discussed in Chapter 3. 



onds, number of sampling steps=200 and ND=20. According to the designed sampling net- 

work, we successfully estimate the five sources time series (Figure 2.9). That is to say, the 

designed sampling network is validated. With this simplified test, we demonstrate the abil- 

ity of the developed method to optimally select the station number, station location, sam- 

pling frequency and sampling time for an environmental field survey. 

2.6 Summary and conclusions 

This research develops a time-explicit inverse method for estimating time history 

of pollutant sources. In the method, we apply the transfer function concept to formulate 

the relationship among the source strength, hydraulic transport, and the measured concen- 

tration. In addition, we developed the "dense-sampling" concept to reduce the inversion 

sensitivity. Consequently, the method can suppress both random errors and systematic 

errors to achieve a stable and meaningful inversion. Moreover, the research shows that the 

source identifiability can be determined by the condition number, so that it can guide a 

field survey, an issue that is further explained in the next chapter. In summary, the research 

successfully addresses three important inversion challenges: inversion sensitivity reduc- 

tion, source identifiability, and source-temporal inversion. 

The diagnostic analysis of the method illustrates that (a) the pollutant source sce- 

narios can be recovered perfectly if the synthetic observations are not contaminated by 

errors and if the number of observation stations equals the number of sources to identify; 

(b) the inversion method is robust enough to "filter" out both random error and systematic 

errors, if the time interval of sampling is appropriately (often, an order of magnitude) 

denser than the time-interval at which we want to recover the time-history of the sources; 

(c) the inversion method is capable of identifying more sources than the number of sam- 

pling stations; however, the larger the ratio between the number of sources and sampling 

stations, the less time-resolution should be expected from the inversion; (d) the inversion 

method inherently provides a mechanism (condition number) to guide the choice of the 

sampling location and sampling schemes. 

There are several avenues for extension of the method. For instance, when bio-geo 

chemical processes are involved, we need to combine parameter estimation with the 

source identification. Also, the inclusion of more than one pollutant would be a natural 

extension. Moreover, we do not have a universal criterion for the source identifiability. 



Searching for this general criterion will be accomplished by the theoretical analysis of the 

method. Furthermore, the method still requires the prior knowledge of source locations 

and their spatial distributions. It is obvious that their solutions can definitely enhance the 

proposed source estimation method. 
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Figure 2.1 Conceptual diagram of the transfer function (a) of a generic surface 
water environment. In the figure, 6 ( to)  represents a unit source; i and j are the 

station index and the source index; t and to represent the sampling time and source 
release time respectively. 
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Figure 2.2 Synthetic St. John's Landfill surface water environment. Its water 
circulation is modeled by the shallow-water equation. Its hydraulic transport is 

simulated by the advection-diffusion equation. It has 8 spatially distributed sources 
and 8 sampling stations. 



Figure 2.3 The method integrity test case, which has 4 stations and 4 sources 



Z (Transfer function) 

Figure 2.4 The transfer function between station 1 and source 1, where X is the 
sampling time, Y is the release time, and Z is the magnitude of the transfer function. 
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Figure 2.5 Measured tracer concentrations at the four sampling stations. Note that 
when the sampling error is zero, the inversion corresponds to tests of the basic 
integrity of the method. When the concentrations has 10% sampling error, the 
corresponding inversion illustrates the ability of the method to reduce random- 

sampling error. 



Figure 2.6 Inverted 4 source time series from the method's integrity test. Note that 
when ND=2, while round-off errors are amplified eventually leading for unstable 

inversion (source 4) when ND=lO, round-off errors are suppressed (source 4). 
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Figure 2.7 The comparison of the estimated time-history of the sources with varying 
sampling random errors. The dense-sampling parameter ND is 20 in all cases. 
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Figure 2.8 Estimated source histories by four stations, when systematic errors exist. 
The systematic errors include 6.4 hours sampling time-shift errors and 100% 
diffusion coefficient error. E is the time-shift error and At is the sampling time 

interval (1.24 hours). 
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Figure 2.9 Estimated source histories based on the designed sampling network. Note 
that the number of stations (2) is less than the number of sources (5). 
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CHAPTER 3 

A sampling network design method for 
monitoring pollutant sources using 

inverse modeling 

3.1 Abstract 

This chapter presents a sampling network design method for surface water quality, 

based on the inverse modeling. A sampling network design consists of selecting the num- 

ber and location of sampling stations as well as deciding the sampling frequency and total 

sampling time. The inverse modeling technique developed in this research formulates the 

source-station response as the convolution between sources and their transfer functions. 

From this formulation, the proposed inverse method measures the source-station response 

by a numerical index - the condition number of the transfer function. The sampling net- 

work design, therefore, utilizes the condition number to select a minimum number of sta- 

tions to identify all the pollutant sources. The proposed sampling-network design includes 

the following five steps: (1) simulating the water circulation and the hydraulic transport of 

the surface environment, (2) activating the system with different pollutant sources, and 

measuring the response at different sampling stations to evaluate the system's transfer 

functions, (3) tabulating condition numbers of the transfer function by station and sources, 

(4) designing the sampling network from the condition number table, and (5) validating 

the designed sampling network by inverting the imposed source. The proposed method 

has been successfully tested in the synthetic St. John's Landfill surface water environment 

by designing its sampling network to recover eight imposed sources. The test illustrates 

that the condition number can determine the number and location of stations, the sampling 

frequency, and the total sampling time. 

Key words: inversion, singular valve decomposition, source identification, source estima- 

tion and source network design 



3.2 Introduction 

The extensive use of water resources has increased the need to design a sampling 

network in order to monitor pollutant sources. Unfortunately, there exists little compara- 

tive research on methods for selecting station numbers, station locations, and the sampling 

frequency that can measure the source spatial and temporal variations. 

The sampling network design has been investigated more extensively for ground- 

water problems than for the surface water problems. There are three approaches for 

designing a subsurface water-quality monitoring network: (1) optimization methods, (2) 

simulation approaches, and (3) variance reduction techniques. The optimization approach 

formulates a sampling network endeavoring to minimize the standard deviation between 

the measured data and the modeled data in selecting of the best sampling spatial pattern 

and spatial density. The optimization approach can be further categorized as the analytical 

optimization method (Hsueh and Rajagopal, 1988 and Loaiciga, 1988), integer program- 

ming approach (Carrera et al., 1984), and mixed integer programming approach (Hsu and 

Yeh, 1989). Because the optimization approaches rely on the comparison between the 

measured data and the modeled data, the method can not be used to design the sampling 

network if there is no available sampling data. The simulation methods (Meyer and Brill, 

1988; Massann and Freeze, 1987 a, b; Andricevic and Georgiou, 1991) choose the sam- 

pling locations for water quality monitoring via numerical models. In the Monte Carlo 

approach, statistical properties (mean and covariance) of the measured tracers are gener- 

ated by repeated simulations of different synthetic plumes. Then, the method selects sam- 

pling locations to best represent the generated statistical behaviors. 

The simulation methods are statistical approaches, which can not address the spec- 

ification of sampling frequency. Therefore, its designed sampling network does not have 

enough information for practical implementation. Different from the two approaches, the 

variable reduction method chooses the sampling network in an iterative way (Christakos 

and Olea, 1992, Christakos and Killam, 1993, and Shakrokh, 1985). With each iteration, 

the method adds one more sampling site that contributes most to the reduction of the esti- 

mated error (mean or covariance). Along the way, additional sampling stations are added, 

one at a time, until the variance of estimation cannot be further reduced or the addition of 

further sites is deemed economically impractical. Obviously, the variable reduction 

method has the same limitations as the optimization and modeling approaches. 



The existing sampling network design methods rely on statistical variables, like 

mean and covariance. Consequently, they do not work in applications where there is no 

sampling data. For example, because discarded sewage-dumping-sites generally do not 

have sampling data available, the discussed methods cannot design their sampling net- 

work. Moreover, because the available sampling network design methods are not associ- 

ated with the sampling schemes, they cannot decide the sampling frequency and the total 

sampling time. As a result, they can locate the sampling stations, but can not guide sam- 

pling processes. At worse, their designed sampling network cannot be feasibly calibrated 

and validated. The above three major shortcomings justify a new approach for designing a 

sampling network. 

The purpose of this chapter is to introduce a new sampling network design meth- 

odology that relies on solid mathematical and physical concepts. The idea is based on the 

fact that when a pollutant enters the environment, it leaves identifiable "fingerprints" in 

the environment. By proper monitoring of these "fingerprints,'? we can revert back to the 

original spatio-temporal distribution of the source. This idea leads to the development of 

the time-explicit source characterization method (Chapter 2). Equally important, these 

"fingerprints" characterize the magnitude of the source-station response, such that they 

can guide the field survey. This idea lead to the development of this sampling network 

design method. From this prospect, the developed sampling network design method is 

more theoretically robust than the applications presently available. First, it does not use 

the sampling information. The method designs the sampling network based on its physical 

and mathematical description. Therefore, it is not limited by the field data. Secondly, the 

design can determine the station numbers, station locations, as well as the sampling fre- 

quency and the total sampling time. Finally, the designed sampling network can be both 

calibrated and validated by the source characterization method (Chapter 2). 

This research investigates the relationships among the source location, source 

number, station location, station number, sample frequency, and the total sampling time, 

which are exemplified by the following practical questions: What is the minimum number 

of stations needed to recover all sources? Where should these stations be located? What is 

the sampling frequency and the total sampling period? How does one calibrate and vali- 

date the designed sampling network? The successful answers to the above questions are 

demonstrated by the method's diagnostic analysis in the synthetic St. John's Landfill sur- 

face water environment. 



3.3 Sampling network design and the inverse modeling 

The developed method designs the sampling network based on a numerical vari- 

able generated by the time-explicit source identification method (Chapter 2). In the source 

identification method, the "transfer function" expresses the relationship between the pol- 

lutant source strength and the measured pollutant magnitude. This relationship can be 

measured by its condition number. By understanding this relationship, the basic idea of 

designing a sampling network is to use the condition number of the transfer function to 

select the station number, station locations, the sampling frequency, and the total sampling 

period, so that all the pollutant sources can be monitored. This section, following the 

"dense-sampling" inversion formulation (Section 2.4. l),  discusses the source identifiabil- 

ity and the sampling network design method. 

3.3.1 Source identfiability 

Because equation (2.3) associates a pollutant source term with its response at a 

sampling station, the formulation numerically defines the source identifiability. As discov- 

ered in this research, source identifiability is equivalent to the solvability of the dense- 

sampling inversion formulation. Consequently, source identifiability is determined by the 

singularity of the inversion formulation. Also, the singularity of the inversion formulation 

is measured by its condition number. Therefore, the condition number of the inversion 

equation can measure the pollutant source identifiability. 

The condition number is defined as the error amplification factor1 of a matrix 

equation AX = B (Golub and Loan 1983). 

Il Axil Il Abll - = cond (A) - 
ll xll II  bll 

In equation (3. I), llxll corresponds to the norm of an identified source, and llbll cor- 

responds to the norm of a measured concentration. Equation (3.1) shows that a large 

cond(A), signifying the sampling error, can generate large errors in the identified source. 

In the extreme case, the round-off error in vector B can be amplified to infinity in vector x. 

The criterion of source identifiability can be defined such that the amplified inversion error 

doesn't exceed the acceptable error, as shown in equation (3.2). 



II Axil II Abll 2 cond (A) x - 
( (XI(  acceptable 11 b l l  measured 

The identifiable criterion of the condition number is determined by the following 

factors: sampling error in vector b, acceptable inversion error in vector x, and machine 

accuracy. For instance, if we assume the sampling error is zero, there exists only the 

round-off error. The relative error of a single precision variable in FORTRAN is lo-'. So, 

if the acceptable error in the identified source is the condition number should not be 

larger than lo4. For the double precision variable, the criterion is 1o12. However, the sarn- 

pling error is always larger than the round-off error. Therefore, IIL\bll/llbll is generally deter- 

mined by the relative sampling error. It should also be noted that the condition number 

evaluated in equation (3.10) is the error amplification factor for equation (3.9), not for the 

original AX = 6 .  The relationship of error amplification by equation Zz = d and equation 

AX = b varies from system to system. For the synthetic St. John's landfill surface water 

system, their relationship is evaluated in the diagnostic analysis. 

1. The condition number is evaluated by the Singular Value Decomposition (SVD) technique. In 

the SVD technique, any m-by-n matrix A can be decomposed in the following form 

where U is an m-by-m orthogonal matrix, V is an n-by-n orthogonal matrix, and C is an m-by-n diagonal 

matrix withe.. = 0 if i # j  and O i i  = O i  2 0. oi is the singular value of A. With simple matrix manip- 
1J 

ulation, the original equation AX = B becomes 

T T where z = V x and d = U b.  The condition number of matrix A can be evaluated from the singular 

number according to equation (3.10) 

Omax cond (A) = - (3.10) 
Omin 

where om, and o ~ ,  are the largest and smallest singular values of A. 



3.3.2 Sampling network design 

The proposed sampling network design method is based on the source identifiabil- 

ity index - the condition number of the transfer function. The above discussion concludes 

that the transfer function formulates the relationship of the measured concentration (time 

series), the hydraulic-transport characteristics (transfer function), and the pollutant source 

(time series). The condition number of the transfer-function determines the identifiability 

of a source by a station. The idea of the sampling network design is illustrated by the fol- 

lowing application steps. 

The first step calculates the transfer functions, which represent the source-station 

response. Secondly, we evaluate the condition number of the transfer function to measure 

the source-station response magnitude. The condition number of each source by each sta- 

tion is tabulated to form the condition number table. Third, the condition number table 

determines the station locations and station number such that each source can be identifi- 

able by one station. Consequently, all source temporal and spatial variations can be recov- 

ered by the least number of stations. Finally, the designed sampling network is validated 

by the source estimation method (Chapter 2). Obviously, the above steps demonstrate that 

the developed design method selects the station number and station locations by the condi- 

tion number table, determines the sampling frequency and total sampling time from the 

those of the transfer function, and validates the designed sampling network by the source 

characterization method. 

In order to understand the sampling network method, we design the following 

numerical experiments to investigate factors affecting the magnitude of the condition 

number. The next section first describes the testing environment, then analyzes the condi- 

tion number magnitude regarding the transport characteristics (condition number spatial 

variation), sampling scheme (number of sampling data), and inverse method (dense-sam- 

pling parameter). Later, the experiment numerically suggests that the condition number is 

the source identifiability index. Finally, it designs a sampling network for the synthetic 

reality and validates the design by the source estimation method. 



3.4 Numerical experiments and results 

3.4.1 Synthetic St. John's Landfill surface water system 

The proposed method is diagnostically analyzed in the synthetic St. John's Landfill 

surface water environment, which has fully controllable water circulation, hydraulic trans- 

port, sampling scheme, and source scenarios (Figure 3.2). The finite element grid of the 

synthetic St. John's Landfill surface water system includes 1,957 nodes and 713 elements. 

The water circulation is simulated by solving a 2-D depth averaged wave equation (West- 

erink et al., 1987). To make the test simpler, we use the moon tide to represent the bound- 

ary condition. The hydraulic transport is modeled by the advection-diffusion equation. 

The diffusion coefficient in x and y is 1 m/s2. For the purpose of computational efficiency, 

the simulated time interval (1.24 hr) is one tenth of the M2 period, so that the model can 

read the foot of the characteristic lines of one tidal cycle instead of backward tracking the 

entire simulation time. The total simulation time is 200 time steps, which has many integer 

factors for dense-sampling. The eight sources and eighteen stations are spatially equally 

distributed along the slough. This source-station configuration is able to represent the spa- 

tial pattern of source-station response for the entire slough. 

3.4.2 Condition number spatial variation 

The spatial variation of the condition number is determined by natural processes. 

In the synthetic reality, these natural processes include advection and diffusion. Advection 

affects the source identifiability by changing the tracer moving path. For example, when 

the pollutant tracer moves into the dead-end slough, the advection determines that the 

tracer must move along the land boundary. Thus tracer concentration in the dead-end- 

slough is higher than that in the main slough. Consequently, the stations inside the dead- 

end slough have higher source response than those in the main slough. Similarly, the diffu- 

sion influences the source identifiability by changing the tracer concentration. Diffusion 

decreases the tracer concentration. As a result, diffusion generally decreases the source 

identifiability. The relationship between the natural processes and the source identifiability 

can be demonstrated by the condition number's spatial variation. 

Figure 3.3 plots the condition number spatial variation of source 3. It is obvious 

that condition number is inversely proportional to the distance from the source. For 



instance, station 5, the station staying closest to source 3, has a low condition number. 

This means that station 5 is one of the stations that can identify source 3. Additionally, the 

magnitude of the condition number is also governed by the land boundary. For example, 

the condition number of station 4 is less than that of station 5, even though station 5 is 

closer to source 3 than station 4. The reason is that station 4 is located in the dead-end 

slough so that it has a better chance to identify source 3 than stations in the main slough. 

This is why station 4 has a better response to source 3 than station 5. As such, Figure 3.3 

illustrates the effects of natural processes and the land boundary on the condition number. 

Figure 3.3 can also determine the spatial density of the sampling stations. The syn- 

thetic reality is a quasi 1-D environment. The spatial variation of condition number is 

almost linear within a certain range. This is illustrated by the fact that the condition num- 

bers of stations 6 and 7 can be linearly interpolated from the condition numbers of stations 

5 and 8. This linear relationship further implies that the distance between source 3 and its 

identifiable stations could not be greater than two miles. Otherwise, the station's condition 

numbers would approach infinity. At this point, the figure can determine that the distance 

between two stations is two miles. To sum up, the condition number spatial variation is 

dependent upon the hydraulic transport characteristics. 

3.4.3 Condition number and the number of sampling data 

The relationship between the number of sampling data and the condition number is 

tested in an ideal case, where the transfer function is a non-zero constant value. This is 

because the condition number is determined by the hydraulic transport characteristics, 

number of sampling data, and the "dense-sampling" parameters. In order to investigate the 

relationship between the condition number and number of sampling data, the system char- 

acterization must be independent of the sampling time. This is done by assigning the trans- 

fer function a constant value. As a result, the condition number is a function of the number 

of sampling data and the dense-sampling parameter ND. 

Figure 3.5 shows the relationship between the condition number and the number of 

sampling data. First of all, the condition number increases as the number of the sampling 

data increases. When the sampling steps are greater than 200, this trend approaches a lin- 

ear pattern. This is quite clear when ND= 10, where the plot is almost a straight line when 

the number of sampling data increases from 200 to 600. Secondly, the condition number 



decreases as ND increases. This illustrated, when Ns=200, log(condition number) 

decreased from about 4.5 to approximately 3.5, as ND increases from 5 to 20, Thirdly, the 

condition number increases as Ns increases. The figure shows that, when ND=20, the 

log(condition number) increases from 3 to 4 when Ns increases from 180 to 290, which 

demonstrates that the increment due to the increment of the number of the sampling data 

can be compensated by a denser inversion (ND increases from 20 to 60). This suggests that 

in order to identify more source data or invert a long period of unknown data, a denser 

inversion is necessary. 

3.4.4 Condition number variation with the "dense-sampling" parameter 

When the source responses at a station is small, the condition number of the trans- 

fer function approaches infinity. This means that the inversion amplifies the sampling error 

towards infinity. As a result, the source is unidentifiable. This experiment demonstrates the 

improvement of the source identifiability by showing how the condition number reduced 

by dense-sampling. 

In Figure 3.5, the dashed line represents the condition number variation for the 

constant transfer function. The condition number reduction by the dense-sampling concept 

is explained by the fact that more sampling information is used to invert one unknown. 

Because the additional sampling information reduces the linearity of the transfer function, 

its inversion has a smaller condition number. The dashed line also illustrates that the incre- 

ment of source identifiability is the trade-off of inversion resolution. In this test case, the 

total sampling data is 600. When the dense-sampling parameter (ND) is 10, the 600 sam- 

pling data estimates 60 source data. But when ND=20, the 600 sampling data only estimate 

30 source data. Indeed, the dense-sampling method converts the unidentifiable source to 

identifiable source and at the same time increases the identified source temporal resolu- 

tion. 

In Figure 3.5, the lines, other than the dashed line, illustrate the condition number 

reduction of source 3 and station 1-11. Different from the dashed line, these condition 

numbers are determined by both ND and the hydraulic characteristics. There are three 

salient items to note in this figure. First, the comparison of the ideal transfer function with 

the synthetic reality illustrates the effects of ND and system characteristics. The decrement 

of the condition number is obvious when ND=lO, 20, 30. Secondly, the condition number 



shows an obvious increment at ND=40. This is because the synthetic system is driven by a 

tidal period of 12.4 hours. The inversion for ND=40, corresponds to the inversion period of 

49.6 hours. By comparing the signal period (12.4 hours) and the identified source time 

interval (49.6 hours), we can see that the "dense-sampling" inversion averages the tidal 

signal, so that the transfer function matrix becomes more singular than the less dense-sam- 

pling inversion. This explains the condition number increment when ND=40. When 

ND>40, the decreasing trend is, once again, the effect of dense-sampling. Finally, at the 

extreme case where ND equals the sampling number, the method has the minimum condi- 

tion number, and the identified source data is the averaged source magnitude for the entire 

148.8 hours. From the Figure 3.5, it is obvious that the "dense-sampling" scheme is capa- 

ble of decreasing the condition number in a natural environment. 

3.4.5 Condition number as the identifiability index 

The application of the condition number as the source identifiability index requires 

a condition number criterion below which the source is defined as identifiable and above 

which the source is unidentifiable. The criterion may be different for different environ- 

ments. Its further understanding depends on a theoretical analysis of the method. In this 

research, we define this criterion by a numerical experiment in which source 6 is inverted 

by different stations, corresponding to different condition numbers. By inspecting the rela- 

tionship between the inversion results and the inversion's condition number, we define the 

source identifiability criterion for the synthetic St. John's Landfill environment. 

In Figure 3.6, the "Y-axis" is the identified source 6 history by station8 through 15, 

with different values of condition numbers. The "X-axis" is the time index. In this experi- 

ment, the relative sampling error is 5%, the dense-sampling parameter (ND) is 20, and the 

sampling number is 200. The figure demonstrates that stations close to the source can bet- 

ter identify source 6. The improvement can be measured by the condition number of the 

transfer function. For instance, stations 12, 11, and 10 are the three stations that are close 

to source 6. Their condition numbers lo3.', 1 0 ~ . ~ )  are also smaller than the other 

sources. It is not surprising to see that station 12, with the smallest condition number, has 

the most accurate inversion. A similar relationship is true for stations 11 and 10. However, 

when the condition number increases to lo7.', station 8 can not produce a stable inversion 

due to the amplified sampling error. Furthermore, stations with high condition numbers, 

lo8 (station 14), 1013.6 (station 15) produce unstable inversions. Based on these experi- 



ments, we can define the low criterion of the condition number, for ND=20 and the number 

of steps equal to 200, as lo5. Any condition number smaller than 1 6  indicates an identifi- 

able source. When lo5< condition number < lo7, the source is defined as quasi-identifi- 

able. This is because a condition number within this range can be decreased below 10' by 

a denser inversion (Figure 3.6), so that the source becomes identifiable. When the condi- 

tion number is larger than lo", the source is referred to as non-identifiable. The establish- 

ment of the criterion concludes that the condition number can represent the source 

identifiability. 

3.4.6 Sampling network design and validation 

This section applies the method by designing the sampling network of the syn- 

thetic St. John's landfill environment. The synthetic reality includes 8 sources and 18 sta- 

tions. The sources and stations are spatially distributed so that they can represent the 

source-station response of the entire system. The first step calculates the transfer functions 

of the environment. For the case where there are 8 sources and 18 stations, we get 

8 x 18 = 144 transfer functions. 

The transfer function of source 6 to station 13 is illustrated in Figure 3.7. The "X- 
axis" corresponds to different release times. The "Y-axis" represents the sampling time. 

The "Z-axis" displays the transfer function magnitude. Obviously, for a release time, the 

response-magnitude (Z) shows a 12.4 hour periodic pattern, in response to the moon-tide- 

generated advection. Additionally, the response magnitude also decreases due to the diffu- 

sion. The effects of advection and diffusion on the source identifiability can be measured 

by the condition number. 

The second step tabulates the condition number of every source and station (Table 

3.1). In the row, the table illustrates the response of each station to different sources. For 

instance, the 9th row, representing station 9, has five condition numbers that match the 

identifiability criterion. This means that station 9 can identify five sources (2 - 6). Because 

the 9th row has the largest number of condition numbers that are smaller than lo5, station 

9 is able to identify more sources than any other station. Physically, this is because station 

9 is located in the most dynamic part of the slough; therefore, it responds to more sources 

than any other station. For the same reason, stations 14 through 18 cannot identify more 



than two sources each. In summary, the table shows the effectiveness of the station in 

identifying different sources. 

In the table, the columns represent the eight sources. Column 5, for example, 

determines how many stations can identify the corresponding source. For instance, the 

5th-column, corresponding to source 5, has seven condition numbers that fall within the 

identifiable criterion. This means the 5th-source can be identified by seven stations (6-12). 

The above conclusion is not surprising when we check the map of the synthetic reality and 

notice that all of the seven stations are within two miles of source 5. 

The optimally designed sampling network selects the minimum number of stations 

necessary to identify all sources. Therefore, each source must be identified by at least one 

station. That is to say, each column (source) should have at least one condition number 

that is less than lo5. Meanwhile, the design must also keep the selected column numbers 

(the number of stations) at a minimum. Applying the above two rules to Table 3.1, we can 

design the sampling network for the synthetic reality. The sampling stations are 4, 9, 13 

and 16. ND equals 20, sampling At is 1.24 hours and the number of sampling data is 200. 

The designed sampling network is validated by successfully inverting the 8 sources from 

the sampled information at four stations (Figure 3.8). 

3.5 Conclusions and final remarks 

A sampling network design method is proposed for monitoring contaminant 

sources. The method systematically provides the spatial and temporal sampling pattern, 

which is not available from other available methods. Secondly, the method is associated 

with the source characterization method. On the one hand, the sampling network design 

can guide the source characterization method. On the other hand, the source characteriza- 

tion method can validate the designed sampling network. Therefore, the integrity of the 

sampling network design method and the pollutant source characterization method pro- 

vides a systematic technique for environmental practice. Finally, the developed method is 

independent from its applications. The pollutant transport models used in this research 

could have been groundwater or atmospheric models. Therefore, the combination of the 

sampling network method and the source characterization method has broad application 

possibilities. 



The method however has several limitations. The sampling network design 

method, for example, is based on the time-explicit source characterization method, which 

assumed the transport processes only include advection and diffusion. Consequently, the 

source identification method and the sampling network design method can not be directly 

applied to non-linear transformation processes to solve problems like bio-geo-chemical 

transformation. The solutions to this type of problem must rely on the application of the 

"dense-sampling" formulation to estimate model parameters through an iterative scheme 

(Chapter 4). A second limitation is that the proposed method still cannot be accomplished 

via automatic or even semiautomatic means. Even though the method does provide a theo- 

retical basis for the automatic sampling network design, a successful automatic design 

method depends on spatial interpolation of the condition number and on non-linear pro- 

gramming optimization. The research of the automatic sampling network design will be a 

very interesting upcoming research. 
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Figure 3.1 Conceptual diagram of the transfer function (a) of a generic surface 
water environment. In the figure, 6 ( t o )  represents a unit source; i and j are the 

station index and the source index; t and to represent the sampling time and source 
release time, respectively. 
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Figure 3.2 Synthetic St. John's Landfill surface water environment. The tidal-driven 
system has 8 sources and 18 stations. 
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Figure 3.3 Condition number spatial distribution of source 3 and station 8. Note that 
the figure utilizes the station index to represent the spatial index. 
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Figure 3.4 Relationship between the condition number and the number of the 
sampling data. Note that the condition number of the transfer function is calculated 

from the constant transfer functions. 
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Figure 3.5 Relationship between the condition number and the "dense-sampling" 
parameter. Note that the condition numbers are calculated for source 3 and stations 

1-11. 
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Figure 3.6 Source 6 is identified by different stations with different condition 
numbers. Clearly, when condition num ers < lo5, the station can precisely invert the I source. When condition numbers > 10 , the station can't obtain a stable inversion. 
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Figure 3.7 Transfer function between source 6 and station 13. Note that the transfer 
function has a periodical pattern due to the moon-tide-advection and a decrease in 

time as a result of diffusion. 
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Figure 3.8 The validation of the designed sampling network. The 8 sources are 
identified based on the designed sampling network. 
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- - 
- INF INF INF INF INF INF INF 9.1 - 
- INF INF INF INF INF INF 14.7 4.0 - 
- INF INF INF INF INF INF 9.4 2.6 - 
- INF INF INF INF INF 13.6 5.6 3.7 - 
- INF INF INF INF 12.7 8.3 2.7 8.4 - 
- INF INF INF 14.4 8.7 4.9 3.0 13.4 - 
- INF 11.2 10.0 8.6 3.8 2.8 5.8 17.6 - 
- 12.5 7.4 6.1 5.2 2.7 3.1 9.5 INF - 
- 12.6 5.8 4.5 3.1 2.4 3.3 12.0 INF - 

- 7.9 3.3 2.6 2.5 3.1 4.3 14.6 INF - 
- 7.2 2.5 2.2 2.4 3.3 7.9 19.0 INF - 
- 7.3 2.5 2.0 1.9 3.6 9.5 INF INF - 
- 7.3 2.4 1.7 2.6 4.7 10.5 INF INF - 
- 6.3 1.9 2.0 2.6 6.9 12.3 INF INF - 
- 3.7 2.5 4.2 5.2 9.8 15.7 INF INF - 
- 3.0 4.5 6.9 8.3 12.4 17.3 INF INF - 

- 7.5 2.5 2.1 2.5 7.7 13.1 INF INF - 
- 8.5 2.4 2.1 2.4 8.5 13.2 INF INF - 

I I I I I I I I 0 
0 

Table 3.1 Condition number table of the synthetic St. John's Landfill surface water 
environment. Note that the table has 8 sources and 18 stations and the condition 

number is in log scale. It indicates that the 8 sources can be identified by stations 4,9, 
13, and 16. 

1 2 3 4 5 6 7 8 
Source Index 
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CHAPTER 4 

A method of estimating oceanic and 
riverine boundary conditions for 

hydrodynamic models using inverse 
modeling 

4.1 Abstract 

This research develops a method for estimating the water sources of a confined 

water environment relying on measured water elevations and hydrodynamic models. 

Water sources can be represented of either water elevation or flux boundary conditions. 

This chapter discusses the theoretical and practical issues critical for the water sources 

estimation method. Then, we demonstrate the robustness of the method regarding nonlin- 

ear inversion, sampling error reduction, simultaneous water elevation and flux boundary 

inversion, and sampling location selection. Later, the chapter applies the method to esti- 

mate the oceanic boundary of the Tejo estuary in Portugal, which has irregular bathymetry 

and land boundaries. 

Key words: Inversion, singular valve decomposition, boundary inversion 

4.2 Introduction 

A major problem confronting environmental hydrologists, when modeling an envi- 

ronment, is the lack of accurate and complete water source information. Although argu- 

ably an accurate oceanic boundary can be obtained at least when tides are dominant, the 

same is not true for non-tidal water boundaries. Lakes and rivers, for example, are influ- 

enced by a number of different water sources, such as ground water exchange, evaporation 

and precipitation, up and down stream river flows, factory discharges, and sewage over- 

flows. These source terms are either too difficult or too expensive to measure. As a result, 

their hydrodynamic simulations rely on trial-and-error bases. Clearly, the accuracy of 

hydrodynamic simulations is always hampered by the uncertainty of the water sources. 



This chapter presents an innovative methodology for estimating water sources 

accurately. The method is demonstrated when we use it to solve the following persistent 

questions: (1) How can we know if the sampled water elevation data is sufficient to esti- 

mate unknown water sources? (2) How can we determine the spatial and temporal sarn- 

pling pattern that can account for all unknown water sources? (3) How can we estimate 

water sources from the measured water elevation with the help of highly accurate water 

circulation models? 

In answering the first question, we show the method's capability of determining if 

the available data is sufficient for estimating the water sources. In answering the second 

question, we demonstrate the method's ability to design a sampling network for improving 

the water source measurements. Obviously, the successful solutions of the three questions 

prove the robustness of the method developed in this research. Finally, in answering the 

first question, the water sources can be represented by both water elevation and water flux 

boundaries, the former corresponding to oceanic boundaries and the latter to riverine 

boundaries. The method is then required to invert different types of water sources simulta- 

neously. 

A literature review on the subject did not reveal any previous systematic approach 

to address these questions. An existing approach is the stochastic simulation method (Ginn 

and Cushman,l990, Satish and Zhou, 1992), which is widely used in groundwater model- 

ing. In this method, the boundary conditions (BCs) are represented as expectations, vari- 

ances and covariances of random quantities. Obviously, their statistical representations of 

the boundary conditions cannot quantify the time history of the water source. Another 

approach is the frequency domain inversion methods (Bennett and McIntosh, 1982, Mcin- 

tosh and Bennett, 1984, Nuiiez, 1990), which estimate the water boundary of a tidal envi- 

ronment. All three of these methods calculate the amplitude and phase of the BCs by 

optimizing the boundary condition to match the model output with the measured water 

elevations. However, because they are frequency domain inversion methods, they do not 

address the non-periodic riverine BCs. In summary, neither approaches can solve the prob- 

lem of a general water environment. It is apparent that a true time-domain inversion 

method is needed to estimate water sources completely and accurately. 

This research develops a true time-domain non-linear inversion method for esti- 

mating the water sources of a water environment based on measured water elevations and 



non-linear-time-domain water circulation models. Conceptually, the method extends the 

linear "dense-sampling" technique proposed in Chapter 2. By reducing the inversion sen- 

sitivity, we achieve a stable and meaningful inversion results even in the non-linear case. 

Additionally, the method utilizes the condition number of the inversion equations to repre- 

sent the boundary's identifiability of the water source. On the one hand, the method can 

determine if the available sampling data is capable of estimating water sources. On the 

other hand, it is able to determine the sampling locations in order to measure the water 

sources. In summary, the developed method can systematically guide water elevation mea- 

surement and utilize the sampled information to invert the water boundary conditions. 

Section 4.3 reviews the water circulation model and defines the water elevation BC 

and water flux BC. Section 4.4 describes the formulation of the "dense-sampling" inver- 

sion. Section 4.5 diagnostically analyzes the method in a channel. Finally, section 4.6 

applies the method to invert the oceanic boundary of the Tejo estuary (Portugal). 

4.3 Statement of the problem 

The following time-domain depth-integrated equations of mass and momentum 

conservation, subject to the incompressibility, Boussinesq, and hydrostatic pressure 

approximations, typically form the basis for shallow water hydrodynamic models (4. I), 

(4.2) and (4.3). 

where 6 is the free surface elevation; U,V are depth-averaged horizontal velocities; 

H = 6 + h is the total water depth; h is bathymetric depth relative to the geoid; f is the 

Coriolis parameter; p is atmospheric pressure at the free surface; g is acceleration due to 

gravity; q is Newtonian equilibrium tide potential; a is the effective Earth elasticity fac- 

tor; p, is the reference density of water; rsx, rsy are applied free surface stress; the friction 

term 2, = nZg ( u2 + v2) lI2/h l B  H ; and n is the Manning bottom friction factor. 



The generalized wave-continuity equation (GWCE) is derived by combining a 

time-differentiated form of the continuity equation and a spatial differentiated form of the 

momentum equation, as expressed here: 

a 2  a a a6 aH au -4 + z0=$ + &{ ( U- - UH- - VH- +pH) 
at2 at ax ay 

Equation (4.4), rather than equation (4.1), is solved in conjunction with the 

momentum equations (4.2) and (4.3). 

The boundaries include the rigid land boundary B, and open water boundary B,. 

The B, is defined as 

Flux n = 0 (4.5) 

where n is the outward unit normal at boundary nodes. The B, can be defined as either 

water elevation BC (4.6) or flux BC (4.7). 

6ec = 4, 
Flux n = Flux, 

Contrary to predictive modeling, where we simulate 5 ,  U, and V based on the 

bathymetry and BCs, equation (4.9, (4.6) and (4.7), inverse modeling inverts the BCs 

based on the system hydrodynamics, represented by equation (4.2) through (4.4), and 

measurable variables (6, U and V) at certain sampling locations. By comparing the 

known-unknown domain of the inverse modeling with the forward modeling, we can visu- 

alize the advantage of the inverse modeling. On the one hand, unknowns of inverse mod- 

eling are water sources, which are not easily measurable in reality, while unknowns of the 

forward modeling are water elevations and velocities at station fixed, which are compara- 

tively much easier to measure. On the other hand, knowns of the inverse modeling are 



measurable elevations, and knowns of the forward modeling are immensurable water 

boundaries. Obviously, the known-unknown domain of the inverse modeling reflects their 

relationship in reality, and the forward modeling does not. Therefore, the inverse modeling 

approach is more promising than the forward modeling approach in understanding the 

environment. 

Inverse modeling, however, is more difficult than forward modeling. First of all, 

inverse modeling needs to correctly formulate the relationships among BCs, model simu- 

lations, and measurable variables ( 6 ,  U and V). Secondly, the inverse formulation are gen- 

erally highly sensitive, with small sampling errors prone to create large inversion errors. 

Finally, the detection of the high-sensitive inversion is very difficult to accomplish. There- 

fore, the development of the inverse modeling method is more challenge than that of the 

predictive method. 

4.4 Non-linear "dense-sampling" method 

The method accomplishes the nonlinear inversion by iterating between linear- 

inversion (Chapter 2) and nonlinear simulations based on equations (4.2) - (4.4). Concep- 

tually, surface water hydrodynamics yield the nonlinear transformation between BCs (i) 
and measured water elevation (?), through advection of momentum, finite amplitude, and 

bottom friction. Their relationships can be expressed by the non-linear function F .  

Unfortunately, nonlinear inversion has no general theory that provides a complete 

solution. In this research, we convert the nonlinear problem to a quasi-linear problem 

using the Taylor series expansion equation (4.9). In this equation, ?* denotes the mea- - 0 A * 
sured elevation, and c represents a space closing to C . 

When n=l, the conceptual formula (4.9), after simple mathematical manipulation, can be 

modified to become the "Newton-Raphson" type iteration equation (4. lo), where * F  (i) is 
as 

replaced by the transfer function and R indicates the iteration level. 



The nonlinear inversion involves steps 3 through 6 in Figure 4.1. The first linear 

inversion starts with a null vector space to and generates S' (steps 1, 2, and 3). Based on 

the linearly inverted il, step 4 simulates the water elevations ?' responding to the S' . 
32 A* 2 1  

The next iteration estimates s from c , c , and o. Step 5 compares the $ with ?* . If 
-.R the root mean square difference is smaller than the sampling error, s is the nonlinear 

inversion result. Otherwise, another iteration is conducted. The iteration terminates when 

the difference between ?* and ? is below the sampling error elevation. 

4.5 Numerical experiments 

In this section, we examine the performance of the proposed method in a channel, 

which has two open boundaries and three sampling stations (Figure 4.2). The channel's 

boundaries include one elevation BC and one flux BC, so that we can demonstrate the 

method's ability to estimate elevation-and-flux boundaries simultaneously. Inside the 

channel, the water elevations are modeled by solving the shallow-water equations 

(Luettich et al. 1991) from the finite element grid, land boundary, and the boundary condi- 

tions. The method's performance is represented by the sampling location selection, non- 

linear-inversion, sampling error reduction, and simultaneous elevation-flux boundary 

inversion. In addition to the above performance evaluations, we further demonstrate the 

method's robustness by comparing its performance with the frequency-domain method 

(Nufiez, 1990) in solving frequency-domain problems. Finally, we demonstrate the meth- 

od's capability of inverting a system with irregular bathymetry and irregular land bound- 

aries by applying the method to estimate the oceanic boundary of the Tejo estuary. 

4.5.1 Non-linear, noise-free, elevation-flux boundary inversion 

In this integrity test, the left boundary is prescribed by an M2 elevation boundary 

and the right boundary is driven by a randomly generated flux boundary. In response to the 

two imposed water sources, the "measured elevation time histories" at the selected sta- 

tions are simulated by solving the GWCE. As the nonlinear terms, such as advection, finite 



amplitude, and bottom friction, are active, the "measured water elevation" is non-linearly 

associated with the water source magnitudes. The experiment doesn't introduce any Sam- 

pling errors, except the round-off errors. Therefore, the integrity test is a non-linear, noise- 

free, elevation-flux boundary inversion. 

According to Figure 4.1, the first step of the inversion characterize the channel's 

water circulation by calculating its transfer functions, The transfer function, by definition, 

is the measured water elevation at sampling stations in response to a unit boundary forc- 

ing. Theoretically, this unit forcing is a Dirac delta function. However, the infinite wave 

number of the Dirac delta function makes the numerical solution unstable. Therefore, this 

research approximates the delta function by the Gaussian function (4.11) 

BC ( t )  = e 2oZ 

In the equation, t represents the time; to is the central time of the Gauss distribution, and CY 

is the width of the Gauss distribution. 

The transfer function of both boundaries to the three stations is illustrated in Figure 

4.3. The parameters of the Gauss function are to = 7200 seconds, At= 400 seconds, and CY 

= 7200 seconds. Clearly, the transfer function represents the water circulation characteris- 

tics of the channel. First of all, the figure shows that the response magnitude and the 

response time of the unit forcing is determined by the station location. If the station is 

located closer to the boundary, the response magnitude becomes higher and the response 

time is shorter. This is the case for stations 1 and 3. On the contrary, station 2 is located far 

from both boundaries, and its response magnitude is twenty times smaller than those of 

station 1 and 3. So, in the inversion, station 2 will not provide as much information as sta- 

tions 1 and 3. Secondly, the response shape of station 2 becomes more flat than those of 

stations 1 and 3. Again, this means that station 2 doesn't provide as much information as 

stations 1 and 3 do. It is clear that the transfer functions characterize the hydrodynamics of 

the channel. 

Because the transfer function characterizes the channel's hydrodynamics, its con- 

dition number represents the water source's identifiability (Chapter 3.) Previous research 

has shown that the condition number of the transfer function can determine the water 

source's identifiability. 



In Table 4.1, the small condition numbers and lo8.17) show that when 

ND=2, the BC 1 and 2 can only be identified by stations 1 and 3 individually. On the con- 

trary, the large condition numbers (1d2, INF, loZ9) indicate that station 2 cannot estimate 

either boundary, In addition, the table also indicates that if we increase the ND from 2 to 

20, the above identifiability relationships don't change, as the l d 9 ,  lo7', and INF are still 

large condition numbers. Note that even if using station 2 to estimate any of the two 

boundaries generates unstable results, the results are not unstable when we invert both 

boundaries by station 1, 2, and 3. Therefore, the table suggests that we can invert bound- 

ary 1 and 2 from measured elevations at stations 1,2, and 3. 

Table 4.1 The condition numbers (log scale) of the transfer functions 

In the system measurement step, the water circulation model simulates the water 

elevations at the three sampling stations using the two imposed water boundaries (Figure 

4.4). The figure illustrates that the response time of station 1 equals the response time of 

station 3 as a result of their relative locations to the adjacent boundaries. Also, the flux 

boundary at the second boundary makes the measured elevation at the third station vary 

more irregularly than that of the first station. Furthermore, the response time at station 2 is 

delayed compared with stations 1 and 2. This is because station 2 is located several times 

further from the boundary than both stations 1 and 3, and the wave travels longer before it 

reaches station 2. In the next step, the sampled elevations at three stations are used to 

invert both boundaries. 

As shown in Figure 4.5, the third step inverts both the elevation boundary and the 

flux boundary from the transfer function and the measured water elevations. The figure 

clearly illustrates that the "dense-sampling" inversion method accurately inverts the 

imposed boundaries. Notice that the mismatch between the inverted boundary and the 

imposed boundary is quite obvious, both at the beginning and the end of the inverted 

Station 1 

Station 2 

Station 3 

ND=20 
BC1 BC2 

2.42 

29.92 

70.89 

ND=2 
BC1 BC2 

71.22 

INF 

2.40 

8.33 

52.50 

INF 

INF 

INF 

8.17 



boundary. This is because the inverted boundary is estimated by the weighted summation 

of the unit-Gaussian forcings. Accordingly, a unbiased inverted data has the same number 

of the unit-Gaussian on both left and right sides. However, this is not true at both the 

beginning and the end of the inverted boundaries. Consequently, the inverted boundary 

conditions don't match well at the beginning and the end of the inversion. 

Moreover, the experiment displays the converging speed of the non-linear inver- 

sion (Figure 4.6). In this test, we measure the agreement between the inverted boundary 

and the imposed boundary by the root mean square error. 

where qk and f i k  refer to observed and computed elevations, respectively, at the kth of N 

equally-spaced sampling times. 

The figure shows that the linearly inverted BC has approximately 0.015 m error, 

which decreases to less than 0.01 m after two iterations, remaining approximately constant 

thereafter. 

The experiment shows that the proposed method can simultaneously invert both 

types of boundary conditions (Figures 4.5 and 4.6). This accomplishment is determined by 

the way the transfer function is generated. For example, if we assign the unit-forcing at the 

boundary as the elevation Gaussian, the corresponding inversion result is the elevation 

boundary. Instead, if we impose the flux unit-forcing, the estimated boundary is the flux 

boundary. 

Finally, it is worth pointing out that the proposed method does not invert the initial 

condition. This is due to the fact that the transfer function excludes the system response to 

the initial condition. Specifically, the "blind-window" of the transfer function between the 

unit-forcing-release-time and the system-response-time (Figure 4.3) eliminates the initial 

condition's signal. Therefore, the method can not invert the initial condition. 



To sum up, the method integrity test suggests that the proposed method can 

achieve the non-linear inversion of simultaneous elevation and flux boundary condition, 

when no sampling error is present. 

4.5.2 Random and systematic error reduction 

The inversion's success depends upon its ability to reduce sampling error (Xiang 

and Elsworth 1992). If the inversion method can not suppress the sampling error amplifi- 

cation, inversion becomes unstable. Along the way, we can measure the inversion's suc- 

cess by investigating its ability to reduce the effect of sampling errors. 

This research developed the "dense-sampling" technique to reduce the sampling 

error amplification. The range of the dense-sampling parameter (ND) is determined by 

three factors: the BC's variation period (TBC), the sampling error magnitude, and the 

inverted boundary resolution. The first factor requires that there must be enough sampling 

data to represent the BC variations. In this experiment, the period of the elevation bound- 

ary is 12.4 hours. According to sampling theory as shown in equation (4.13), there must be 

at least two sampling data in each period. Consequently, the boundary variation period 

determines that NDvaries from 1 (At=O. 11 hour) to 25 (At=2.7 hour). 

In addition, the second factor declares that ND must be large enough to suppress 

the sampling error and round-off error amplification. This is demonstrated in the method 

integrity test, where inversion must use the "dense-sampling" scheme (ND=2) to suppress 

the round-off error. Furthermore, the third factor indicates that ND should be as small as 

possible so as to obtain the smallest inversion resolution. Typically, the selection of ND 

requires the balance among the three factors. 

Both random and systematic error reductions are tested in the channel. The random 

errors are the artificially introduced 5%, lo%, and 20% relative random errors in the Sam- 

pling data (Figure 4.4). The systematic error is introduced in the water elevation by simu- 

lating the St. John's Landfill environment using a wrong friction coefficient (true 

value=0.0225, value for systematic error simulation = 0.0322). The sampling error reduc- 

tion is represented by the RMS error (Figure 4.7). 



In the figure, the first iteration is the linear inversion. Linear inversion has a large 

RMS error, reflecting the non-linearity of the problem. As the iterations proceed, errors 

converge to smaller values. For example, the RMS of the elevation boundary converges 

from 0.02 to about 0.008 m, while the RMS of the flux boundary converges from 0.02 to 

about 0.009 m/s. Another interesting point is that the inverted RMS errors are not signifi- 

cantly related to the scale of the random error. For instance, the RMS errors do not diverge 

significantly, even though the random errors range from 5% to 20%. This is due to the fact 

that the average of the random sampling error is zero, and the magnitude of the inverted 

errors corresponds to the averaged random errors. Consequently, inversion RMS errors are 

not significantly interrelated with the random-error magnitude. Similarly, the method is 

also very efficient at suppressing systematic errors. This can be seen from the inversion 

with a 10% random sampling error and a 43% systematic error. Indeed, the inverted RMS 

errors are very similar to those of the random errors. After six iterations, the nonlinear 

inversion converges to the imposed boundaries. In summary, the diagnostic analysis dem- 

onstrates the capacity of the developed method to deal with both non-nonlinear inversions 

and sampling error reductions. 

4.5.3 Comparison between the proposed time-domain method and the 
frequency-domain (ITM) method 

This section demonstrates the robustness of the developed time-domain inversion 

method by comparing its performance with the frequency-domain inversion method 

(Nuiiez, 1990) in solving frequency-domain problems. Naturally, the time-domain prob- 

lem stems from the riverine boundary, where the boundary of water-flux is controlled by 

both natural and human-controlled processes. The frequency-domain problem comes from 

the oceanic boundary, where the water elevation is highly periodic. The objective of this 

experiment is to show that the developed time-domain method can efficiently solve the 

frequency-domain inversion problem. 

We compare the time-domain inversion method with the frequency-domain inver- 

sion method in the channel (Figure 4.2), where the left boundary is activated with a M2 
boundary, and its corresponding water elevation is measured at station 1. In the experi- 

ment, we first employ the frequency-domain method to estimate the amplitude and phase 

of the boundary elevation from the amplitude and the phase of the measured water eleva- 

tion. Later, we apply the developed time-domain inversion method to estimate the bound- 



ary elevation history from the measured water elevation history. Finally, we evaluate the 

performance of the two methods by comparing the inverted boundary (Figure 4.8, Figure 

4.9 and Figure 4.12) and the inverted elevation at station 1 (Figure 4.10 and Figure 4.11). 

The experimental results suggest that the developed time-domain method solves 

the frequency-domain problem as effectively as the frequency-domain method. First of all, 

Figure 4.8 and 4.9 indicate that both methods can accomplish the non-linear inversion. 

Specifically, the inverted boundary elevations by both the frequency-domain method and 

time-domain methods converge to the imposed values after 4 iterations. Additionally, Fig- 

ures 4.10 and 4.11 illustrate that the inverted elevations from both methods also converge 

to the measured water elevations after four iterations. Both figures reveal that the inver- 

sion converges to the synthetic reality. Notice that the time-domain inversion generates an 

irregular shape at iterations 1,2, and 3. This is due to the fact that the first iteration is a lin- 

ear inversion, and the non-linearity between the boundary condition and measured water 

elevation results in larger inversion error. After four nonlinear iterations, the nonlinear 

errors are minimized and the inversion converges to the imposed boundary. 

Moreover, Figure 4.12 compares the inversion's converging speed of both meth- 

ods. From the figure, we can see that the inversion errors for both methods (relative RMS) 

decrease from 0.8% to 0.1% after four nonlinear iterations. This RMS reduction indicates 

that both methods converge with the same speed. It is worth pointing out that the time- 

domain method has larger normalized RMS errors than those of the frequency-domain 

method. Our explanation is that the frequency-domain method utilizes amplitude, phase, 

and frequency to represent the water-elevation, while the time-domain method uses cen- 

tral Gaussian location, Gaussian width, and Gaussian magnitude to describe the water ele- 

vation. Because the time-domain method has larger errors in representing the tidal signal 

than the frequency-domain method, the time-domain method has larger inversion errors 

than those of the frequency-domain method, at the same inversion level. In conclusion, the 

experiment suggests that the developed time-domain inversion method performs similarly 

to the frequency-domain method in solving the frequency-domain problem. 

4.6 Oceanic boundary inversion of the Tejo estuary 

After ensuring the method's basic integrity, we use it to estimate water sources of 

the Tejo Estuary in Portugal. Because the Tejo estuary has irregular land boundaries and 



bathymetry (Figure 4-13), this application further explores the method's integrity in a new 

situation. This estuary area ranges from the XF Xira river to the open ocean boundary. 

Because its hydrodynamics is dominantly controlled by the oceanic boundary, this inver- 

sion only focuses on the estimation of the oceanic BC. 

We use five stations (Cascais, Pedroucos, Lisboa, Cacilhas, and Trafaria) to invert 

the oceanic BC. By applying the developed method, we successfully invert the oceanic 

boundary, as shown in Figure 4.14. The comparisons between the measured water eleva- 

tions and the simulated water elevations are shown in Figure 4.15. Again this application 

verifies that the developed method can effectively estimate the boundary condition, even if 

the bathymetry and the land boundary are extremely irregular. First of all, the successful 

inversion again demonstrates that the frequency-domain problem can be solved by the 

developed time-domain method. Secondly, the irregular land boundary and bathymetry do 

not degrade the method performance. In fact, the application proves that the land bound- 

ary and bathymetry do not effect the method's integrity. 

Thirdly, the RMS spatial distribution shows that small inversion errors happen at 

stations close to the ocean boundary (Cascais and Trafaria). In contrast, large inversion 

errors occur at stations located farther away from the oceanic boundary (Pedroucos, Lis- 

boa, and Cacilhas). Our explanation is that the Cascai and Trafaria stations have a better 

bathymetry and land boundary than the Pedroucos, Lisboa, and Cacilhas stations. There- 

fore, the former stations have smaller RMS errors than the latter stations. Finally, the suc- 

cessful inversion validates, to a certain extent, the accuracy of the grid and the circulation 

model. Given the fact that the inversion RMS error at each station is the same as that of the 

frequency-domain inversion (Figure 4-15)? we can see that the time-domain and fre- 

quency-domain models have the same capability of representing a tidal dominant system. 

Notice that because the above inversion does not account for the riverine boundary, its 

successful inversion further justifies the assumption that the exclusion of the Tejo riverine 

boundary does not yield a noticeable error in its hydrodynamic simulation. 

4.7 Summary and Conclusions 

In this chapter, we described, analyzed and applied the water source non-linear 

inversion method. The analysis and the application concludes that the method is capable 

of accomplishing nonlinear inversion, suppressing the sampling error, simultaneously esti- 



mating both the elevation and flux boundaries, and solving the frequency-domain prob- 

lem. In summary, this research developed a scientifically-sound and practical 

methodology for estimating the water sources of a general water environment. 
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Figure 4.1 General steps for the non-linear estimation of water sources. 
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Figure 4.2 The finite element grid of the channel case. Notice that the problem 
includes one elevation boundary, one flux boundary, and three sampling stations. 
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Figure 4.3 The transfer functions of the channel, with two open boundaries and 
three sampling stations. 
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Figure 4.4 Measured water elevations at three stations (original and with 10% 
relative error). 
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Figure 4.5 Nonlinear noise-free inversion of both water elevation and flow boundary 
conditions from sampled elevation at three stations (channel case) 
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Figure 4.6 The root mean square errors of noise-free nonlinear inversion, where 
there are one water elevation boundary, one flux boundary, and three sampling 

stations. 
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Figure 4.7 The root mean square error of the estimated water elevation and flux 
boundary conditions of each iteration. Note that non-linear inversions demonstrate 
both the sampling error reduction and simultaneous elevation and flux boundary 

inversion. 
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Figure 4.8 Comparison between the inverted boundary elevation and the imposed 
boundary elevation by the frequency-domain method. 
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Figure 4.9 Comparison between the inverted elevation boundary and the imposed 
boundary elevation by the time-domain inversion. 
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Figure 4.10 Comparison between inverted water elevations and the measured water 
elevations for the frequency domain inversion. 
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Figure 4.11 Comparison between the inverted water elevation and the sampled 
water elevation for the time domain inversion 



2 
Iteration 

Figure 4.12 Comparison of the converging speed between the frequency-domain 
inversion and the time-domain inversion 
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Figure 4.13 Diagram of the Tejo's finite element grid and the tidal station locations. 
Note that the Tejo application utilizes the 5 stations (Cascais, Pedroucos, Lisboa, 

Cacilhas, and lkafaria) to invert the oceanic boundary condition. 
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Figure 4.14 Estimated Tejo oceanic boundary condition based on the measured 
water elevations at Cascais, Pedroucos, Lisboa, Cacilhas, and Trafaria stations using 

the developed "dense-sampling" inversion method. 
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Figure 4.15 Comparisons of the measured water elevations of Tejo estuary with the 
simulated elevations based on the inverted boundary conditions. 
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Figure 4.16 Comparisons of the measured water elevation with the inverted water 
elevation by the root-mean-square errors. 
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CHAPTER 5 

Summary and conclusions 
This thesis proposes the "dense-sampling" inverse modeling method to address 

critical issues in analyzing time-variant, linear and nonlinear, environmental system. The 

applications of this method to analyze the surface water environment establishes practical 

methodologies for estimating pollutant source time-series, designing a sampling network 

for monitoring pollutant sources, and calculating water sources. The diagnostic analysis of 

these methodologies allows us to summarize their scientific contributions, their theoretical 

and practical limitations, and to suggest future research. 

5.1 Scientific Contributions 

The research develops the "dense-sampling" concept to formulate the relationship 

between the measurable variables (such as contaminant concentration and water elevation) 

and the environmental sources (like pollutant source and water source). This innovated 

formula successfully reduces the high inversion sensitive so that the formula can achieve a 

highly-resolved temporal-inversion. The research also defines the source identifiability 

index as the condition number, a numerical variable generated during the inversion. As a 

result, the research finds a new technique to both evaluate and design a sampling network 

for monitoring an environmental system. These scientific contributions are exemplified by 

the following four practical applications. 

The first application of the "dense-sampling" inverse modeling theory calculates 

the pollutant source time-series from the transport model and the measured tracer concen- 

tration. This has significant scientific value, because we have not found any published 

research claiming to have solve the problem. The second application applies the source 

identifiability index, the condition number, to designs a sampling network for monitoring 

pollutant sources. The application shows that the discovered source identifiability index is 

the theoretical basis for systematically designing a sampling network for monitoring envi- 

ronmental system. Similar to the first application, we have not found any mathematics- 

based sampling network design method. Therefore, the application has scientific values. 

The third application estimates the water sources of a confined surface water environment. 



The research developed a successful nonlinear time-domain inversion method, that can 

estimate different types of water sources. Again, we have not found any published 

research that can solved the problem. Obviously, the application is scientifically signifi- 

cant. The fourth application (Myers et al. 1993) quantifies the tsunami bottom deformation 

from the run-up data and the tsunami wave data. This application illustrates that the 

"dense-sampling" inverse modeling theory is scientifically sound such that it can be 

applied to solve different environmental problems. 

The above scientific contribution of this Ph.D research indicates that the "dense- 

sampling" formula can address fundamental issues in understanding a linearlnonlinear 

environmental system by predicting the unknown's identifiability and estimating the iden- 

tifiable unknowns. 

5.2 Theoretical and practical limitations 

"Dense-sampling" inverse modeling has both theoretical and practical limitations. 

First of all, the method's inability to invert the spatial variation is still a major limitation. 

Indeed, we must know the spatial variations of the identified pollutant sources and water 

sources in order to estimate their temporal variation. The difficulties of solving the spatial 

inversion are both theoretical and practical. Theoretically, the spatial inversion generally is 

not unique, which means the inversion has more than one solution. This non-unique prob- 

lem does not have a mature theoretical solution. Practically, the extension of the method 

for spatio-temporal inversion requires unrealistically intensive sampling. In the usual 

sense, the application of the "dense-sampling" concept to carry out spatial-temporal inver- 

sion requires the "dense-sampling" parameter to be several hundreds, which is estimated 

based on the "dense-sampling" parameter of temporal inversion. Clearly, it is unrealistic to 

estimate one spatial unknown from several hundreds measurements. Therefore, the solu- 

tion of the spatial inversion will be a major step towards real-world inversion. 

The developed theory also has several practical limitations. The pollutant source 

characterization method requires a time-series sampler for monitoring the pollutant tracer. 

However, it is difficult to find a sampler, that can work consistently in a real environment 

for a long period of time. Even though there are several substitutions, like temperature, 

conductivity, DO, turbidity, and BODICOD etc., the problem is that it is difficult to find 

the relationship between these measurable variables and the inverted contaminant. Obvi- 



ously, the developed theory is limited by the sampling technology. The other practical lim- 

itation is computational. Specifically, the simulation time for analyzing an environmental 

system generally exceeds their natural time. For instance, by simplifying the hydrodynam- 

ics of the synthetic St. John's Landfill environment, the time of hydraulic characterization 

decreases from about 80 days to around 10 days, which is still longer than its natural time. 

Clearly, the theory needs a fast computer. Moreover, the storage capacity is a potential 

problem. On the one hand, the file size of the transfer function increases exponentially 

with the number of sampling data. On the other hand, the number of transfer function files 

is the product of the station number and the source number. Consequently, the disk-usage 

of a field application can easily reach the storage limit. However, with the fast develop- 

ment of storage technology, this limitation is not critical. 

5.3 Directions for future research 

Follow-up research is needed on the issue of spatial variation of the source. Our 

preliminary research shows that the non-uniqueness becomes more dominant in the spatial 

inversion than in the temporal inversion. The difficulties of spatial inversion are how to 

represent source spatial variation and how to estimate large number of unknowns. Evi- 

dently, spatial inversion must solve both the error amplification and the non-uniqueness. 

The simultaneous parameter-and-source estimation also needs to be further inves- 

tigation. As discussed in Chapter 1, model parameter estimation and model source inver- 

sion share the same theoretical limitations. Therefore, the solution of the source 

characterization implies the solution of the parameter estimation, and simultaneously 

parameter-source inversion. The difficulties are how to represent the model parameters as 

the "model input" and how to formulate the non-linear relationship between the parame- 

ter-magnitude and measured variables. 

A third follow-up research subject is the development of the automatic sampling 

network design method. Right now, we still can not automatically design a sampling net- 

work design for a environmental sampling based on the model and the source spatial dis- 

tribution. However, the theory is the guide for the automatic sampling network design. 

One fundamental theme is to find the universal identifiable criterion for source identifi- 

ability. Searching for this general criterion can be accomplished by the theoretical analysis 

of the "dense-sampling" inverse modeling theory. Its difficulty is that the research requires 



a broad knowledge of modeling theories, numerical techniques, and optimization meth- 

ods. 

Finally, the theory demands more accurate and computational efficient numerical 

models. Even though the developed theory can not automatically optimize model parame- 

ters and model sourceisink terms, it can identify an incorrect model by generating an 

unstable inversion. In addition to accuracy, computational efficiency will play a major role 

in the field application. Therefore, the development of advanced environmental models 

and the "dense-sampling" inverse modeling theory are mutually beneficial. 
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