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Abstract 

Scalable and Efficient Active Service Integration 

by Paul Benninghoff 

We investigate issues in the construction of an Active Service Integration System 

(ASIS). An ASIS is a mediation system that provides event-based monitoring and 

integration over data-intensive, networked services. We describe the design and 

implementation of the Paradox Active Service Integration System, which we have built 

as part of our dissertation work. Paradox addresses many of the fundamental issues of 

ASIS construction. Paradox extends database technology and previous work in data 

integration to handle event-based processing over autonomous, heterogeneous network 

services in an efficient manner. We suggest capabilities and metadata that services may 

provide to aid in the active integration process. 

Efficiency and scalability problems remain in Paradox that must be addressed in a 

practical system. We describe and evaluate methods for addressing several such 

problems that are unified by two central themes: inter-task sharing, and the specification 

and exploitation of increasingly rich service characteristics. Data caching is essential to a 

scalable and efficient ASIS. We describe how the long-lived nature of ASIS requests can 

be leveraged to make effective caching decisions. We present a detailed model and 

framework for effective, cost-based selection of a view cache in an ASIS. ASIS cache 

selection involves multiple complex tasks: the selection of the view cache, the 

optimization sub-problems that involve multiple, simultaneously-executing queries 

(MQO subproblems), and the generation of efficient plans that incorporate and maintain 

the chosen view cache. The resultant optimization problem is doubly-exponential in 

complexity. We describe a multi-pronged approach to handling this problem in a 

tractable manner. 



We present a description and implementation of Multiplex Query Optimization 

(MuxQO), a novel method for efficiently handling problems that can be cast as a group of 

overlapping query optimization problems. We characterize the applicability of MuxQO, 

and we describe a performance evaluation that demonstrates the effectiveness of MuxQO 

in handling ASIS view selection. MuxQO handles cache selection, MQO subproblems, 

and optimal plan generation in an integrated fashion. We describe how a top-down 

optimizer can be modified to support MuxQO. MuxQO is applicable to a range of 

problems, including physical database design, multiple query optimization, evaluation of 

recursive queries, and the physical representation of new data formats and models such as 

XML. 

Finally, we describe and evaluate a novel approach to exploiting rich application 

semantics to improve the efficiency and scalability of an ASIS. In particular, we describe 

a method for exploiting constraints on information change over time. Our approach can 

greatly improve the scalability of an ASIS with respect to the frequency of change events 

at component sources. We argue that application-level semantics are a rich vein to mine 

in improving the scalability and efficiency of active service integration. 



Chapter I 

Introduction 

This dissertation investigates issues in the construction of an Active Service 

Integration System (ASIS). An ASIS is a mediation system that provides uniform access 

and event-based monitoring over compositions of network-accessible, data-intensive 

services. Several trends in society, business and technology are converging to make the 

ASIS an interesting and important type of mediation system. But the challenges in 

building such a system are many and not well understood. 

We describe the design and implementation of a basic ASIS that addresses many 

of the fundamental concerns of construction. We then describe efficiency and scalability 

problems that must be addressed to make such a system practical. We describe and 

evaluate methods for addressing these problems that are unified by two central themes: 

improved scalability and efficiency through inter-task sharing, and the specification and 



exploitation of increasingly rich service characteristics including computational 

capabilities, data statistics and application semantics. 

1.1 A New Kind of Mediator 

The computing world is undergoing a transition to a "second stage" in the widespread 

adoption of Internet technology. The first stage was about a web of interconnected 

"pages" designed for human consumption. In contrast, the second stage is about a web of 

interconnected information sources and computational functionality presented in the form 

of "services" designed for machine consumption. Models of service invocation and 

coordination have differed in competing versions of this vision, with some subscribing to 

a document exchange model (or DEM), while others subscribe to a network object model 

(or NOM). But the essence of the vision is consistent: If you are connected to the 

Internet, you have access to myriad computational services that may be invoked and 

manipulated programmatically. 

We are in the early developmental stages of this transition. As Dave Winer writes 

in his "Davenet" web letter, "We're at the 'Hello World' stage again" (Winer 2002). But 

real web services are beginning to emerge, and the momentum behind the transition is 

enormous. XMethods, the "virtual laboratory" for web services (www.xmethods.com), 

houses thousands of services submitted by independent developers and entrepreneurs (a 

sampling of recent submissions: "PopulatedPlaces", a service that provides LatiLon 

geocodes for 5+ million populated places around the globe; "FreshScore.com Live Score 

Service", that provides live sports scores world wide; "GlobalStockQuote", that provides 

updated London, New York or Nasdaq stock quotes for companies listed on these 

exchanges). Popular web sites such as Google (www.google.com) and Amazon 

(www.amazon.com) are beginning to wrap pieces of their web functionality in service 

APIs. And major software infrastructure vendors such as Microsoft, IBM and Oracle 



have made major commitments to building tools and platforms for developing and 

deploying such services. 

While "disintermediation" has been one of the clarion calls amidst the hype of the 

World Wide Web, a world of networked services creates a great need for new forms of 

mediation. Mediation systems are needed that can perform aggregation, integration and 

composition of web services conveniently, efficiently and scalably. We have seen clues 

to the demand for this kind of mediator functionality in the page-based web, where many 

popular web sites aggregate multiple information sources based on a unifying theme. 

Investment web sites such as the Motley Fool (w~v~~~.fool .comj,  for example, bring 

together stock research, SEC data, financial news, personal finance service journalism, 

investment bulletin boards, and stock price feeds in a single location. But such sites 

represent a primitive form of mediation. Networked services provide building blocks for 

more dynamic and flexible forms of aggregation, integration and composition. 

Another trend rising in the networked world is the demand for "real-time" 

information; for data associated with events as they occur. The business side of this 

demand can be seen in best-selling books such as "The Power of Now" (Ranadive and 

McNealy 1999) and "Sense and Respond" (Bradley and Nolan 1998), which describe 

how businesses can gain competitive advantage by leveraging the power of the Internet to 

provide real-time data on events of interest to them. Ranadive coins the term "event- 

driven business" for businesses that are able to use this technology to its fullest extent 

(Ranadive and McNealy 1999). Demand for real-time information is being seen at the 

personal and consumer level as well. Many Web sites now provide individuals with 

simple forms of customized event notification. For example, Amazon.com will send you 

email when a new book on a specified topic or a new CD by a specified artist arrives in 

stock. ESPN.com will send you the box scores of your home team's latest game as soon 

as it ends. Networked services provide the basis for more sophisticated forms of 

notification and monitoring of events and data. Such capabilities will be an indispensable 

feature of the service infrastructure. 



In this dissertation we describe a new kind of mediation system that we call an 

Active Service Integration System (ASIS), which combines the capabilities described 

above. An ASIS provides monitoring and event-driven aggregation, integration, and 

composition of declarative requests over networked, data-intensive information sources 

and services. An ASIS provides the functionality typically associated with information 

integration together with a continuous monitoring capability akin to that of an Active 

Database Management System (ADBMS) (Widom and Ceri 1996). There are many 

challenges in constructing an ASIS. For example: 

Sewice Description and Discovery: How are services of interest to a client 

discovered and engaged? How are the services and capabilities of a service 

provider described to potential clients? 

Heterogeneity and Autonomy: Network service providers will display 

heterogeneity along many dimensions, from hardware and operating system 

platform, to development language, to the computational capabilities of the 

service itself. Furthermore, services will often span administrative boundaries, 

and will simultaneously serve clients from many different administrative domains. 

How can clients easily adapt to the consequent subtleties and limitations of 

individual services? 

Security: What is the proper model of security in a service mediator? How can 

potentially heterogeneous security models of individual providers be pieced 

together into a coherent whole? 

Efficiency and Scalability: How can requests involving multitudes of networked 

services and large volumes of data be executed efficiently? How can an ASIS 

handle large request loads and large numbers of services without a severely 

degraded performance? 

Many of these issues are similar to those of other mediation systems that have received 

significant attention and research. But the active functionality and network service 



context of an ASIS adds new challenges across all of these dimensions that are not well 

understood. 

1.2 Motivation 

Our research is motivated by the fact that many web services will be data-intensive, and 

so database technology will have much to offer the world of web services integration. 

But while most work on information integration has dealt with query processing over 

distributed, autonomous databases having heterogeneous query capabilities, there has 

been little research exploring the monitoring of complex conditions over distributed, 

autonomous data sources having heterogeneous monitoring capabilities, which is the 

central role of an ASIS. We describe the basic construction of an ASIS, and we describe 

techniques that extend database technology and previous work in information integration 

to perform cost-based, capability-driven request processing that is simpler, less error 

prone, and more efficient than manual approaches to service integration, and that adapts 

to the heterogeneous capabilities, including the heterogeneous monitoring capabilities, of 

Internet services. 

Caching is among the fundamental techniques to scaling computing systems, and 

it is an indispensable technique in building scalable and efficient network-based 

information systems. The majority of computing systems that cache data rely on the 

principle of locality in deciding what to cache, with mixed results. But in the context of 

an ASIS we can do better. ASIS requests are long-lived, and so the set of active requests 

provides strong information on the future information demands of the system. This 

information provides the basis for good decision making on which data to retain and 

maintain in the mediator. We describe a framework for cost-based caching for active 

service integration that is motivated by this observation. But our framework results in a 

highly complex optimization problem. We describe a multi-pronged attack on this 

problem that makes it solvable in practice. We observe that the problem involves a great 



deal of redundant planning work, and so by sharing the planning work via a technique we 

call Multiplex Query Optimization (MuxQO), we can solve the problem far more 

efficiently. 

A final motivating observation we make in this dissertation is that much 

monitoring effort in an ASIS may be expended in evaluating conditions that cannot 

possibly contribute to the overriding condition of interest. In particular, if we can show 

that a monitored object is temporally distant from satisfying a condition of interest, we 

can ignore it for a while. We describe a technique to exploit this observation based on 

rich application semantics. In particular, we exploit constraints on information change to 

reduce system load, improve scalability and shorten response time in an ASIS. 

1.3 Thesis Statement and Contributions 

My thesis is that inter-task sharing together with the specification and exploitation of 

service characteristics and capabilities are key elements in building a scalable and 

efficient Active Service Integration System, and in building other systems where similar 

problems arise. In particular, techniques for sharing of result processing, data movement 

and plan optimization are important. Additional gains can be made in such systems by 

exploiting rich application semantics, in particular, the semantics of information change. 

The primary contributions of this thesis are: 

A description and implementation of a basic ASIS that recognizes and 

addresses fundamental issues of construction. In particular, we describe a 

metadata model and an extension of database query processing techniques to 

handle event-based processing over heterogeneous, distributed, data-intensive 

services. 

A detailed model and framework for cost-based view (or cache) selection in 

an ASIS, and a multi-pronged approach to handling the resultant optimization 

problem in a tractable manner. 



A description and implementation of Multiplex Query Optimization 

(MuxQO), a method for efficiently handling groups of similar query 

optimization problems. We characterize the applicability of MuxQO, and we 

describe a performance evaluation that demonstrates the effectiveness of 

MuxQO in handling cost-based view selection in an ASIS. 

A description and an analytic evaluation of a novel approach to exploiting rich 

application semantics to improve the efficiency and scalability of an ASIS. In 

particular, we describe and evaluate a method for exploiting constraints on 

information change over time in order to reduce the workload and response 

time of monitoring complex, integrated conditions. 

1.4 Thesis Outline 

The first half of this dissertation describes the Paradox Active Service Integration 

System. Paradox is a prototype system that we developed that deals with many of the 

fundamental problems in ASIS construction and in the efficient processing of ASIS 

requests. 

Chapter 2 provides a high-level overview of the Paradox system. We describe the 

design goals and philosophy behind the system. We present the system's architecture, its 

basic functionality and its major components. We illustrate the flow of control and data 

through the system in response to a request. 

A central theme in the design of Paradox is that we can exploit knowledge of the 

characteristics of services and service providers to support requests in an efficient and 

scalable manner. We refer to this knowledge as metadata. In Chapter 3 we describe the 

metadata used by Paradox and how it is managed. We present the mechanisms for the 

provision and retrieval of service metadata. We also describe the metadata vocabulary 

that supports the Paradox system. 



Chapter 4 describes the guts of the Paradox system. In particular, we describe 

how requests are converted into programs against the Paradox execution engine, and the 

operations that are supported by that engine. Skeletally, the process resembles that of 

query processing in database systems. But we add new logical and physical operators to 

support monitoring, integration, and heterogeneous source capabilities. We also provide 

a form of operator merging across requests to improve system scalability. 

We have used the Paradox system to drive scenarios from the DARPA Command 

Post of the Future research project. These scenarios involve the integration of a variety 

of heterogeneous services developed by separate, geographically dispersed research 

groups. Chapter 5 presents one such scenario as an extended example of the application 

of the Paradox mediator. 

In the second half of this dissertation, we describe some of the problems of 

scalability and efficiency that are not thoroughly addressed in the Paradox system. We 

go on to present advanced techniques for coping with these problems. 

Chapter 6 presents a background discussion of query optimization basics that is 

needed to understand the techniques that will be described in the subsequent chapters. In 

particular, we discuss important data structures used in state-of-the-art approaches to 

query optimization. 

Chapter 7 describes how an ASIS can share the work of processing, data 

movement and planning across multiple tasks, and how such sharing can greatly improve 

the performance and scalability of the system. One important opportunity for sharing 

arises where supplemental views can be materialized and maintained (i.e., cached) at the 

mediator and shared among multiple executions of a long-lived request. Another 

opportunity occurs where multiple tasks must be executed in response to a single event, 

and these tasks can share common partial results. We describe a cost-based framework 

for implementing these forms of sharing, and we describe a multi-pronged approach to 

making the resultant optimization problem tractable. 

A third opportunity for sharing presents itself in the context of the framework 

described in Chapter 7. This time the opportunity is for sharing of planning and 



optimization effort, as opposed to evaluation effort. In Chapter 8, we describe Multiplex 

Query Optimization (MuxQO) as a technique for exploiting this form of sharing. We 

describe the implementation of the MuxQO, and how current database query optimizers 

can be extended to incorporate MuxQO capabilities. We discuss the range of 

applicability of MuxQO. Finally, we describe a detailed performance evaluation that 

demonstrates the effectiveness of the technique in the context of the framework of 

Chapter 7. 

Chapter 9 presents another advanced method for improving the scalability and 

performance of an ASIS. This method exploits rich application semantics to decrease the 

load on a system. In particular, we exploit constraints on information change over time 

to avoid expensive and frequent processing of conditions that cannot yet be satisfied. We 

present an analytic study of the effectiveness of our method. 

Finally, Chapter 10 summarizes the contributions of the dissertation and discusses 

important related work in a systematic manner. We close by with lessons for others 

building a similar system. 



Chapter 2 

Paradox Overview 

The work reported in this thesis revolves around the Paradox Active Service 

Integration System, which we have developed at OGI. Paradox provides composition, 

integration, aggregation and monitoring of collections of network-based services and data 

sources. We refer to Paradox as an Active Service Integration System (ASIS) because it 

provides functionality typically associated with information integration oriented toward a 

general form of network-accessible services, along with a continuous monitoring 

capability akin to that of an Active Database Management System (ADBMS, Widom 

1993, Widom 1994, [Widom, 1996 #648]). In this chapter we present a high-level 

overview of the Paradox system, describing both the philosophy and architecture behind 

it. 



2.1 About the name 

Paradox is named after Paradox Lake, a small lake located in the Adirondack Mountains 

of northern New York State. During the springtime. snowmelt overflows the Schroon 

River, the primary artery leading away from Paradox (eventually) to the Atlantic Ocean, 

causing the river to reverse direction and flow back into the lake. This flow reversal is 

the "paradox" that inspired the lake's name. In analogous fashion, processing in the 

Paradox system is often initiated by information flowing from network-accessible sources 

and services (the "ocean") back towards the Paradox mediator (the "lake"), as opposed to 

the normal initiation of client-server flow from mediator to source. This same distinction 

has been described elsewhere in terms of source "push" versus mediator "pull." Paradox 

can rightly be thought of as a hybrid system that employs both push and pull. More 

specifically, in terms of the taxonomy of Zdonik and Franklin (Franklin and Zdonik 

1998), Paradox employs aperiodic push combined with aperiodic and (less frequently) 

periodic pull. To torture the analogy further, the Paradox mediator is a resource-intensive 

server that maintains a large cache ("lake") of information extracted from sources to 

improve response time and scalability of the services it offers. 

2.2 Areas of emphasis in Paradox 

Paradox fits the basic definition of a mediator-based system as described in the 

introduction (Wiederhold 1992). There are at least five issues that distinguish Paradox 

from most other mediator-based systems: 

1. Paradox maintains a strong adherence to a network-of-services model of 

computing. 

2. Paradox supports a declarative model for specifying compositions of services, and 

a data-flow model for executing such compositions. 



3. Paradox explicitly models and adapts to service providers that exhibit a wide 

range of computational capabilities. 

4. Paradox provides a continuous monitoring capability over complex distributed 

conditions and service compositions. 

5. Paradox models and exploits source semantics, particularly semantics involving 

information update and change, to improve efficiency and scalability. 

These issues arise in the context of a distributed collection of autonomous, heterogeneous 

service providers. Service providers are autonomous in that each is expected to be within 

its own administrative domain and to be sensitive to the needs of a variety of clients, not 

just the Paradox mediator. They may be heterogeneous in a number of dimensions, 

including hardware and software platform, and computational capability. 

Paradox does not attempt to solve all of the problems of active service integration. 

For example, Paradox ignores the very difficult and important problem of semantic data 

and service heterogeneity, and the related issue of global schema definition. Paradox 

pays limited attention to matters of wrapper construction, in particular to the issue of 

handling unstructured or semi-structured data sources. Nor does Paradox deal with 

challenging distributed systems issues such as fault tolerance or high availability. 

Our choice of focus, in part, reflects a certain vision of the future of service 

integration: 

Service delivery mechanisms will grow in sophistication: The proliferation and 

growing sophistication of available online services and data sources requires 

service delivery mechanisms that go beyond what on-demand querying alone can 

support. Continuous condition monitoring and event-based processing is essential 

to tying services into complex processes, workflows and notifications, and will 

become an indispensable aspect of service delivery. 

Service integration and composition will be data-intensive: Compositions of 

network services will often involve one or more high-volume data sources. 

(Recall, for example, the 5 million cities in the Populated Places service.) As a 

consequence, efficient compositions can be obtained by employing a dataflow 



architecture in which data is pipelined through a series of services. This model 

also favors the declarative specification of service compositions, which allows 

choices to be made at to how compositions are executed. 

Service providers will provide varying levels of computational support: 

Scalable and efficient integration over large numbers of services, particularly in 

the wide area, can be greatly aided where service providers are willing to assume 

significant computational burden in support of a more sophisticated level of 

service. At the same time, sources with limited capability will not go away. This 

trend means that an increasing range of computational capabilities must be 

accommodated and exploited by integration systems. 

Unstructured data, and wrapping of unstructured data, is of decreasing 

import: Much integration work in the past has focused on efficient construction 

of source wrappers, often for handling unstructured or semi-structured data 

formats like HTML (Raggett, Hors et al. 1998). Our view is that while the future 

of integration systems may not quite be wrapper-free, much of the difficulty of 

wrapper construction will go away as sources use technologies such as XML 

(Bray, Paoli et al. 2000) together with powerful APIs to expose the structure and 

semantics of their services and data. Important information in the future world of 

network services will be explicitly structured. 

Semantic heterogeneity will continue to be a vital concern to integration systems 

of all stripes. If a lingua franca such as XML continues to gain enthusiastic support, 

resolving semantic heterogeneity will largely be a matter of translating between 

standardized document type dejinitions (DTDs) or some richer schema definition 

language such as XML Schema (Fallside 2001). Since the beauty of standardized DTDs 

(or schema), as other standards before them, is sure to be that there are so many of them, 

we see no shortage of work to be done in this area. But this is not our emphasis in this 

work. We will, however, describe how such translation systems could fit into the 

Paradox architecture. 



We will also remain agnostic concerning global schema definition. Recent 

research has produced two primary approaches to global schema definition, local as view 

(LAV) and global as view (GAV). In a GAV system the global schema is specified as a 

view over the (local) information sources being integrated. A query over this schema can 

easily be unfolded into a query over the participating sources. This approach has been 

used by many research integration systems, including TSIMMIS (Chawathe, 1994), 

Garlic (Roth, 1996), and Disco (Tomasic, Raschid et al. 1998), among others. In a LAV 

system, in contrast, a global schema is defined as a group of predicates, and the (local) 

sources are described as a series of views over this schema. With the LAV approach, a 

query must be rewritten in terms of the set of source views before it can be processed. 

The Information Manifold is the primary exemplar of this approach (Levy, Rajaraman et 

al. 1996). The LAV approach offers the important advantage that information sources 

can be added to the system without modifying the global schema definition. Query 

reformuIation, however, which is equivalent to the problem of rewriting queries using 

views in this context, is more difficult; many of the reformulation algorithms do not scale 

well. Recent work, however, has produced more efficient and scalable algorithms for 

accomplishing this task (Pottinger and Halevy 2000). GAV systems also offer more fine- 

grained control over global schema definition (Ullman 1997). The Paradox system, in 

contrast, takes the approach that the global schema is the straight syntactic union of the 

schema of the participating service providers. Table 2-1 summarizes the areas of 

emphasis and de-emphasis in the Paradox system. 

Note that in later sections of this thesis we will describe advanced techniques for 

exploiting the semantics of information to build more efficient and scalable active service 

integration systems. These advanced methods are not currently implemented within 

Paradox, but they are very much aligned with the goals and philosophy of the system. 



Paradox Concern Paradox Apathy 

1. Easy integration and composition of 1. Semantic data and service 
data-intensive networked services. heterogeneity. 
2. Scalability and efficiency. 2. Defining global schema. 
3. Modeling and exploitation of 3. Unstructured and semistructured data, 
heterogeneous computational capabilities. and wrapper construction. 
4. Continuous condition monitoring 4. Fault tolerance. 
5. Modeling and exploitation of 
application semantics. 

Table 2-1: Paradox concern and apathy 

2.3 Paradox Architecture 

The basic architecture of Paradox is depicted in Figure 2-1. 
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Figure 2-1: The Basic Paradox Architecture 



Paradox is written entirely in the Java programming language (Joy, Steele et al. 

2000). All remote communication occurs via Java Remote Method Invocation (RMI), an 

object-oriented Remote Procedure Call (RPC) extension to the Java language (Pitt, 

McNiff et al. 2001). The distributed object paradigm was chosen for its conceptual 

elegance in modeling a variety of network-based services. Java was chosen for its 

relatively clean instantiation of this paradigm. 

The major components of the architecture include: service providers (also called 

agents or sources), which are nettvork-resident providers of the basic services being 

integrated; wrappers, which homogenize the interface to a specific service or set of 

services; directory agents, a distinguished type of service provider, which track available 

services and maintain various metadata pertaining to these services; and the Paradox 

mediator, which provides request processing and includes components that perform plan 

generation and optimization, plan execution, management of the workload of plans, cache 

management, and management of metadata on sources and services. We describe each of 

these components in greater detail. 

2.3.1 Service Providers 

A service provider, also called an agent or a source, provides one or more digital services 

to the Paradox mediator. A digital service can be anything that can be encapsulated in a 

simple programmatic interface and provided over a network. In the domain of book sales 

useful services might include a query capability over a collection of books for sale or 

over a collection of book reviews. In investments useful services may provide stock 

quotes, portfolio tracking, corporate research, earnings projections, or stock and bond 

analysis. A service can be an encapsulated set of data or knowledge, a business process 

or best practice, or a complex function or computation. An example of the latter is a geo- 

coding capability that translates a street address to a global location based on latitude and 



longitude, or a function that computes the distance or driving time between two 

addresses. 

In Paradox, the content of a service is described to the mediator as a series of one 

or more predicates. For example, the content of a service that provides information on 

books for sale as well as a series of book reviews might be described by the two 

predicates: 

Book(ISBN, Title, Author, Subject, Price). 

Review(ISBN, Publication, URL). 

Note that arguments are untyped and distinguished by their ordering within the predicate. 

The predicates that make up a single service represent the interface to that service. 

Multiple predicates within a single service may be called in combination, and such 

combined calls are interpreted declaratively. Note that Paradox does not support 

complex workflows having, for example, ordering constraints through multiple predicate 

calls. 

Service providers encapsulate their service offerings and expose them via the 

Internet to the Paradox mediator, possibly with the help of a "wrapper" program, via the 

Java Remote Method Invocation (RMI) protocol. In general, providers are assumed to be 

autonomous, to operate within their own distinct administrative domain, and to be 

heterogeneous along several dimensions including hardware platform, operating system, 

development language, and computational capability. 

2.3.2 Wrappers 

Wrappers provide a degree of uniformity to the interactions between the mediator 

and a heterogeneous array of service providers. The primary role of a wrapper is to create 

a dataflow access model around a service that does not already conform to the required 

model. Such a model flows input data into the service call and flows results out to the 

receiver of the call's output. The model is similar to the iterator model used by many 



database systems (Graefe 1993). As such, it supports three primary calls, shown in 

Figure 2-2. 

Handle Open(ServiceCa11). 

Next( Handle). 

Close( Handle). 

Figure 2-2: Paradox Wrapper Interface 

Openo performs whatever initializations are required to prepare the service call for input 

and returns a unique handle to a stream used to process the remainder of the service call 

instance. The Servicecall argument specifies the call (or combination of calls) being 

made, predicates to apply to the call, the list of arguments to return in the result, and an 

optional list of properties, such as a sort order for the result. We sometimes refer to this 

initialization process as service instantiation. The stream handle is then used in 

subsequent calls to the service. Next() synchronously returns the next "chunk" of results 

from the handle, and will return null when there are no more results to process; Close0 

closes down the service instance, reclaiming state and releasing resources associated with 

it. 

In general, a single service call instance can accept multiple input or output 

streams coming from, or going to, arbitrary destinations. Paradox does not exploit this 

full generality. Paradox limits each service call to a single input stream and a single 

output stream. In addition, all inputs come from the mediator in Paradox, and all outputs 

flow back to the mediator. Extending our model to more of a peer-to-peer approach, in 

which sources can pass information directly to each other without mediator intervention, 

is left for future work. 

Note, further, that a wrapper must handle buffering of input and output data. It 

must specify the maximum chunk of data (in records) that it can receive from its input at 

a time. By default it will be sent a single record at a time, and all wrappers must be able 



to handle a single-record chunk. But for remote, wide-area network-based service 

providers it is usually more efficient to accept input and provide output in larger chunks. 

Wrappers must also deal with threading issues. Generally it is beneficial for service 

providers to enable concurrent access by multiple clients. 

The dataflow model of services allows an arbitrary number of services to be 

strung together into a pipeline, it minimizes the space and delay associated with 

temporary storage of intermediate results in such pipelines, and it greatly simplifies the 

scheduling and synchronization of groups of services. For groups of services that process 

large volumes of data, significant savings in resources and time can accrue to this 

technique (Graefe 1993). 

Note that, on the surface, a group of services pipelined together in this manner 

creates a demand-driven dataflow. That is, data flows through the pipeline when the top- 

level service calls next(), which triggers a next() call from its child, which triggers a 

next() call from its child, and so on down the pipeline. A pure demand-driven flow can 

be inefficient in a wide-area network setting such as the Internet, however, because it can 

exacerbate the effects of high-latency and burstiness found in such environments. The 

Paradox mediator hides some of this cumulative effect by dedicating a thread to pre- 

fetching and buffering as much upstream data as possible (to a configurable limit), rather 

than waiting for a next0 call from the upstream service bring over the next granule of 

data. This method converts the execution model to one of data-driven dataflow with 

pushback. This method is similar to that employed to encapsulate parallelism in the 

Volcano system (Graefe 1990), and to that of query scrambling (Amsaleg 1998). 

Wrappers and service providers can cooperate to employ similar methods. 

2.3.3 Directory Agents 

The Paradox mediator finds the service providers that it needs to satisfy a request 

by consulting one or more directory agents. A directory agent is a distinguished type of 

service provider that offers a "yellow pages" style listing of service providers. This 



service, like the telephone yellow pages, allows service providers to be located based on 

what it is they provide (as opposed to a "white pages" service that finds objects by name). 

In addition, directory agents provide metadata on service providers and the services they 

provide, and support searching for providers based on conditions over this metadata. 

In particular, a directory agent must support the Trader service (named after the 

CORBA-based service of the same name (Orfali, Harkey et al. 1995)) with the call: 

The ServiceTjpe argument must be bound. It includes the service name, the call name, 

and the call arity. Constraint is an optional boolean condition over the metadata 

associated with the service. For example, a directory agent can be queried for agents that 

provide the BooW5 call within the BookSales service (with no additional constraints) with 

the call: Query((BookSales, Book,S),[], ResultList). The Query call returns a single tuple 

with ResultList instantiated to a list containing a RMI reference and related metadata for 

each service provider (that the directory agent is aware of) that supports the given service 

and call. 

Metadata provided by a directory agent must conform to the Paradox Metadata 

Specification, which includes a rich set of information on service and agent 

characteristics that is useful in processing requests. Characteristics include data-oriented 

statistics on service content, computational capabilities of the service provider itself. We 

describe this specification in detail in the chapter on metadata management. 

In general, a directory agent need only provide the prescribed Trader::Query/S 

call. The agent can use any means it chooses to gather the information it provides. The 

Paradox system includes an implemented directory agent called the Paradox Trader, 

which is based partly on the CORBA Trader service. Service providers wishing to use 

the Paradox Trader must explicitly register their service offerings with it. 



2.3.4 The Paradox Mediator 

The Paradox Mediator is the central component of the Paradox system. The 

mediator performs a series of tasks associated with efficient and scalable processing of 

queries and monitoring of conditions over multitudes of heterogeneous, distributed 

service providers. The mediator is based on a modular design with major components 

that perform plan generation and optimization, management of plans and source 

monitors, cache creation and management, aggregation and management of metadata, 

and plan execution. We describe each component, now, in greater detail. 

2.3.4.1 Metadata Agent 

The Paradox Metadata Agent (PMA) collects and aggregates metadata on services and 

sources from various directory agents, as well as from local sources of metadata. The 

PMA monitors directories actively for information on services related to the mediator 

workload, and maintains a local cache of this information. The PMA acts as a liaison 

between the directory agents available to the Paradox system, local sources of metadata, 

which may include a system administrator or a local system monitoring function, and the 

planning, optimization and monitoring functions that use this data. 

2.3.4.2 Plan Generator and Optimizer 

The plan generator and optimizer takes a request in a Datalog-like form and produces an 

optimal group (or suite) of plans for computing the current result of the request and 

monitoring future changes to the request. In its more advanced form (not currently 

implemented) this component will also calculate an optimal cache configuration. 

Conceptually this process consists of plan generation, where feasible plans are produced, 

plan characterization, where an extensible set of characteristics is computed for each 



plan, and plan selection, where a priority function over the set of characteristics is 

evaluated in choosing the most desirable plan. 

2.3.4.3 Plan Manager 

The plan manager stores and maintains long-lived requests and their associated plan 

suites. This process involves initiating and de-commissioning plan suites, tracking 

changes to service availability and other service characteristics, and triggering plan 

extensions or plan re-optimization where necessary. 

2.3.4.4 Cache Agent: 

The cache agent maintains a local semantic cache of data replicated from remote service 

providers. The cache agent provides an interface to this data that makes it appear to the 

rest of the system as much like any other service provider. 

2.3.4.5 Runtime 

The Paradox Runtime is the plan execution engine. The runtime provides operations 

needed to integrate and monitor remote services. These operations include a variety of 

standard database algorithms for performing joins, selections and projections, as well as 

mechanisms for combining such algorithms with remote services of varying capability in 

a pipelined execution. Also included are algorithms for monitoring remote sources in the 

face of heterogeneous source capabilities, and for combining and merging multiple 

monitoring requests. 



2.4 Tracing A Request 

The Paradox mediator provides a simple Java API for entering requests and receiving 

results. A request is entered as a string, and results are returned as a list of tuples of 

objects. The mediator can be run within a local Java client process, or it can be run in a 

remote Java process and communicate with clients via Java RMI. The system includes a 

simple GUI interface that allows manual entry of requests and viewing of results. 

Paradox accepts requests as conjunctive datalog queries (Ullman 1988), which is 

equivalent to the set of select-project-join (SPJ) queries in the relational world. For 

example, the following request asks for the Title, Price, and Review URL of all books for 

which a review is available and the Price is less than $20: 

BookRevPrice(Title, Price, URL) -+ 
BookSales::Book(Titte, Auth, Price) & Review(Title, URL) & Price < 20. 

In general, Paradox accepts requests of the form: 

Head --+ Conjunct, & . . . & Conjunct, & Pred, & . . . & Pred,, . 

Here the Conjunct, are literals of the form Service::Call(Var, , . . . , Var,) where Service is 

optional and all arguments to Call are variables. The Pred, are predicates over one or two 

of the variables contained in the Conjunct,, and Head is a literal whose arguments are all 

variables that appear in some Conjunct,. 

Operationally, a request is interpreted by Paradox in the following way: Compute 

the current result of executing the request, and continuously monitor the request for 

changes induced by changes to component services encompassed by the request. Note 

that this is a dynamic process. As new books or reviews are added to their respective 

sources, for example, we may expect additional answers. Continuous monitoring halts 

when the client explicitly revokes the request. 



The flow of a request through the Paradox mediator is shown in Figure 2-3 below. 

When a request is received it is passed to the request parser, which confirms that the 

request is syntactically correct, parses it, and passes the resultant parse tree to the plan 

verzJier. The verifier contacts the metadnta agent to verify that the service providers 

necessary to process the request are available and to obtain metadata on these providers 

and their services. The metadata agent will contact directory agents as needed to obtain 

this information. The verifier passes a verified logical plan, adorned with service 

metadata, to the plan optimizer. The optimizer then generates an optimal suite of plans 

for executing and monitoring the request, including plans for creating and maintaining a 

cache to support the request. This plan suite is handed off to the plan manager, which 

passes the cache component of the suite to the cache agent. The plan manager and cache 

agent cooperate to initialize their respective plans with the runtime engine, which merges 

new monitoring conditions with existing source monitors, launches new source monitors 

where appropriate, attaches the specified plans to their assigned monitor conditions, and 

evaluates the current result of the request. On a continuous basis, then, until the request 
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is retracted, two kinds of event-based processing occur: Source monitors track changes 

to service content, and pass such changes to the runtime to evaluate corresponding 

changes (if any) to the overall request; and the plan manager tracks changes to metadata 

on services relevant to the request, with the assistance of the metadata agent, and 

maintains the plan suite for the request as appropriate. 

2.5 Chapter Summary 

In this chapter we provided a high-level introduction and overview of the Paradox 

system. We discussed the design goals and philosophy of the system, its functionality, its 

major components, and the flow of requests through the system. Paradox does not try to 

solve all of the problems of service integration. Notably, we ignore issues of semantic 

heterogeneity. We focus, instead, on efficient and scalable processing and monitoring of 

requests in the face of heterogeneous source capabilities. The chapters that follow will 

delve more deeply into the novel features of the Paradox system. 



Chapter 3 

Metadata in Paradox 

Network accessible services and service providers can be expected to exhibit a variety of 

characteristics. A central theme of the Paradox system is that we can exploit knowledge 

of particular characteristics to provide scalable and efficient service integration, 

aggregation and monitoring. This knowledge is captured in the form of service metadata. 

In our overview of the Paradox system, in Table 2- 1, we listed five areas of emphasis. 

Metadata plays a central role in each of these areas. We list them again below, and 

describe the role of metadata in each: 

1. Easy integration and composition of data-intensive networked services: 

Wrappers, for sources that need them, go part of the way toward providing a 

uniform interface over network-based services. Metadata is used to go the rest 

of the way. Metadata is used to describe service characteristics. The Paradox 

mediator then adapts to these characteristics during request execution. 



2. Scalability and efficiency: Paradox employs metadata to describe the 

computational capabilities of service providers and various aspects of the 

services they provide. All of these factors are weighed in generating efficient 

plans for request execution. They are also used to make decisions on data 

caching, and to employ specialized techniques for efficient distributed condition 

monitoring. 

3. Modeling and exploitation of heterogeneous computational capabilities: As 

mentioned above, metadata is used to document heterogeneous source 

capabilities. Paradox automaticaIly adapts to these capabilities, exploiting 

advanced capabilities for greater efficiency whenever possible. 

4. Continuous condition monitoring: Several of the techniques mentioned above 

are used for efficient condition monitoring. In particular, we exploit metadata on 

information change for efficient caching and condition monitoring. 

5.  Modeling and exploitation of application semantics: Again: metadata that 

pertains to information change, including the semantics of information change, 

can be exploited for efficient request execution. 

Metadata is central to everything that Paradox does. In this chapter we describe the 

mechanisms Paradox uses to obtain and manage metadata, the service and source 

characteristics we are interested in, and the way they are represented as metadata. Later 

chapters will focus on how and where this information is applied. 

3.1 Metadata Management 

A user of the Paradox system submits a request in a simple declarative language that 

specifies the content of the services needed. The mediator takes this request and 

generates effective plans for executing and monitoring the request. To do so, the 

mediator must have information about the services available to it and the capabilities of 

the providers of those services. In Paradox, this information is provided as metadata. 

Source and service metadata play a role in the Paradox system that is analogous to that of 



catalog information in a typical database management system. Figure 3-1 essentially 

replicates our earlier picture of the general Paradox architecture (Figure 2-I), highlighting 

the components involved in the metadata management process in bold. 

Agent Manager 

I' 
Paradox Mediator 

Figure 3-1: Metadata Management Components of Paradox 

Paradox assumes the existence of one or more network-based services that we call 

directory agents. A directory agent gathers metadata about other network-based service 

providers and provides a "yellow pages" style access to it via a distinguished interface. 

Paradox relies on the Paradox Metadata Agent (PMA), resident at the mediator, to 

consolidate information from all of the directory services available to it and present this 

information to internal components of the system. In particular, the plan suite generator 

issues an initial query to the PMA on the availability of particular service content, based 

on a user request. The PMA issues the query to various directory agents and returns 

metadata on services that provide this content. The generator and the plan suite optimizer 

use this information to create plans for the execution and monitoring of the request, 

which are passed to the Plan Manager. In the meantime, the PMA monitors directory 

information for future changes that pertain to this content. Any changes that occur are 



passed to the Plan Manager, which determines if and when any action will be taken in 

response to these changes (e.g., re-planning). The following example provides more 

concrete details for this process. 

Example 3-1 (Basic Metadata Mechanisms): At startup time, the Paradox system is 

"bootstrapped" with a single, known directory agent. The PMA queries this directory 

agent for the addresses of other directory agents (a process that may continue recursively, 

if it is configured to do so). A set of directory agents is arrived at. Now suppose a user 

issues the simple request that we saw in Chapter 2, which asks for the Title, Price, and 

Review URL of all books for which a review is available and the Price is less than $20: 

BookRevPrice(Title, Price, URL) -+ 
BookSales(Title, Auth, Price) & 
Review(Title, URL) & Price < 20. 

The plan suite generator receives this request, which is parsed and verified. Verification 

includes querying the PMA for a service provider that provides the BookSalesM service 

call, and for a service provider that provides the Review12 service call. If such service 

providers are available, the PMA returns a reference to a proxy object for each service 

provider, along with metadata on the service providers and their respective services. The 

Optimizer generates plans to execute and monitor the request based on this metadata and 

passes these plans to the Plan Manager. The PMA continues to monitor the directory 

agents for changes pertaining to the BookSales/3 and Review/2 calls. Suppose the 

previously returned service provider for BookSales/3 goes away. Then the PMA notifies 

the Plan Manager of this event. The Plan Manager may respond, for example, by 

modifying the monitoring plans for this request to utilize an alternative service provider. 

0 



3.1.1 Directory Agents 

Paradox assumes the presence of network resident directory agents to provide metadata 

on services and service providers. A directory agent gathers metadata about other 

network-based service providers. The gathering of metadata may be implemented in a 

variety of ways: Crawlers may go out and proactively discover service information; 

service providers may explicitly register information with directory agents; etc. But 

regardless of the metadata gathering method, Paradox expects this information to be 

made available via'a specific "yellow pages" style interface. A "yellow pages" style 

interface is one in which relevant information can be searched for based on its function or 

content. (As opposed to a "white pages" service where service providers are located by 

name.) The relevant interface consists of a single service call as follows: 

Query(Service, Arity, Result) 

The Query13 operation takes a service name and arity. It returns a 

Ca 11 Descriptor object as a result that represents a service call that matches the 

given service. There may be multiple C a  11 Descriptor objects for a given service 

name and arity. Each Ca 1 1 Descriptor object includes a Java RMI reference to the 

relevant service provider, a call name, a group name, a Call Combination Flag (CCF), 

and a list of associated metadata. (We describe the attributes that may appear in this 

metadata list shortly.) Groups allow a provider to partition service calls in various ways. 

The group name indicates which group the given service is in. The CCF indicates how 

multiple service calls are combined. It is chosen from the set {P, PU, C )  , which is 

interpreted as follows: 

P = "Partial": Means the service call provides a partial result. Identical service 

calls from other providers that are also partial should be combined with a 

normal set union operation. 

PU = "Partial Unique": Means the service call provides a partial result that 

cannot be replicated in any part by another service provider. Identical service 



calls from other providers that are also partial can be combined with a disjoint 

set union operation. 

C = "Complete": Means the service call provides a complete result. The 

service provided by this call and this provider subsumes that of any other 

provider. 

The Q u e r y  ( ) call is generally made with only the service name and arity 

specified. In a Paradox request, content is specified by Horn clause literals that are 

assumed to map directly to service names. More generally, this mapping could involve a 

far more complex and rich process. For instance, we might have a knowledge base 

mapping a call to a number of syntactically different but semantically equivalent calls. 

Or, in the XML world, we might map a call to a group of standardized DTDs that equate 

to the requested call. The current Paradox implementation punts on these issues. The 

service name and arity of each request literal is assumed to be identical to that advertised 

by the directory services used by Paradox. If a user request includes the literal 

B o o k  ( A u  t h , T i t  le , P r i c e  ) , for example, then we look for services that provide the 

service B o o k  with arity 3, which we often write as Book13. 

Note, finally, that the Q u e r y  ( ) call provides a very simple, generic "yellow 

pages" style interface. This interface can easily be laid over a variety of standard 

directory services, such as LDAP (Howes, Smith et al. 1999), Microsoft Active Directory 

(Lowe-Norris 2000), or the Corba Trader service (Orfali, Harkey et al. 1995). 

3.1.2 The Paradox Trader 

While the Paradox mediator can interact with a variety of directory services, the 

current implementation provides one specific directory service that we call the Paradox 

Trader. This service is similar to the standard CORBA Trader service (Orfali, Harkey et 

al. 1995). The Paradox Trader provides the Q u e r y  ( ) call discussed above for retrieving 

metadata based on the service call name and arity. The service is active in that it supports 

the installation of triggers on the query call, and will notify trigger clients whenever 

specified directory information changes. Notification is done via a Java RMI callback 



using a well-known interface. We describe the notification interfaces used by Paradox in 

Chapter 4. 

The Paradox trader relies on explicit registration on the part of service providers 

to collect directory information. Three calls are provided to support service registration, 

modification and de-registration: 

String Export(CallDescriptor Offer) 

boolean Export(String OSferId, CallDescriptor Offer) 

boolean Withdraw(String OfferId) 

A service provider that wishes to expose a service to the network issues an E x p o r t / l  

call. E x p o r t / l  registers a new service call described by the argument O f f e r ,  which is 

a C a  11 D e s c r i p t o r  record, as described previously. ~ x p o r  t / l  returns a string 

identifier that is unique within the scope of the directory service. If a service provider 

wishes to modify information about a service call that it has already exported, it issues an 

E x p o r t / 2  call. Expor t12 is used to modify an already registered service call, by 

replacing the previous call descriptor with a new one. Finally, if a service provider 

wishes to no longer provide a service call, it issues a W i  t h d r a w l l  call. Wit hdrawl l  

removes a registered offer by its identifier. Both E x p o r  t / 2  and W i t  hdraw/ l  return 

t r u e  if they succeed, or f a  1 s e if there is no service associated with the specified 

identifier. Note that there is no notion of service expiration in this model: Exported 

services are assumed to be available until they are explicitly withdrawn. 

Note that the Paradox Trader is meant to provide the basic functionality to allow 

the system to run. Paradox subscribes to an architectural model that includes the use of 

directory services, but we have not done directory service research here. Building a 

scalable, secure, robust service discovery service for the Internet is a complex research 

topic in its own right, and a key technology for transforming the Internet into a web of 

composable services (Czerwinski, Zhao et al. 1999). 



3.1.3 The Paradox Metadata Agent 

The Paradox Metadata Agent (PMA) provides a consolidated metadata interface for the 

internal mediator components that need it. These components interact only with the 

PMA, not with the various original sources of metadata. The plan suite generator and 

optimizer asks for the initial metadata pertaining to a user request from the PMA, which 

it uses to generate plans for executing and monitoring the request. All metadata updates 

pertaining to the request are forwarded from the PMA to the plan manager, which decides 

whether further action is required. 

The PMA gathers initial metadata from network-resident directory agents. It then 

issues supplemental requests to specialized sources of metadata, the result of which can 

be used to override, modify or extend the original metadata. Paradox assumes that there 

are two sources of supplemental metadata: a system administrator source, and an internal 

monitor source. The system administrator source is designed for metadata entered by 

hand by a system administrator. The monitor source is designed for metadata that comes 

from a monitoring function within the mediator that measures characteristics of services 

and service providers during execution. The final, effective metadata that applies to a 

given <provider, service, arity> triple is given by a customizable function over the 

metadata returned by these three sources. This process should be clear as we look at it 

more closely below. 

The PMA answers to a single service call, Get M e t  a d a  t a/3, which is defined as 

a regular, compound Paradox request. As a regular request, it is executed for its current 

value, which is returned to the optimizer, and then it is monitored for changes to its value, 

which are forwarded to the plan manager. The monitoring process continues until the 

original user-issued request is withdrawn. Get M e t  a d a  t a/3 is defined as follows: 

GetMetadata(Service,Arity, Result) t 
Query(Service, Arity, Metadatal)& 

GetProvider(Metadata1, Provider)& 

MonitorMetaData(Provider, Service, Arity, MetadataZ)& 

AdrninMetadata(Provider,Service,Arity, Metadata3)& 

ResolveMetadata(Meta1, Meta2, Meta3, Result). 



G e  t ~ e  t ada t a13 takes a service name and arity as arguments. It goes out to all of the 

services that provide the Query13 call (all directory agents) to retrieve metadata for each 

available service of interest. A simple internal hnction, G e t  ~ r o v i d e r 1 2 ,  pulls the 

provider-identifier from the initial metadata. The <provider, service, arity> triple is then 

used as a key to access the two supplemental metadata services mentioned above: the 

monitor source (via the   on i t o r ~ e t  a d a  t a/4 call), and the system administrator 

source (via the Admi nMet ada t a14 call). Finally, the internal function 

R e s o l v e M e t  a d a t  al4 is invoked to produce the final result. This function can be 

overridden to customize the way in which the three varieties of metadata are combined. 

The PMA is basically just another service provider. The only difference between 

it and other service providers is that it is local to the mediator and it does not register its 

capabilities with any directories. It is called in a hard-wired fashion from the optimizer. 

For example, if Request 3-1 above were submitted, the optimizer would issue two 

requests to the PMA: 

( 1 )  GetMetadata("BookSales", 3, Result) 

(2) GetMetadatarReview", 2, Result) 

As regular requests, each of these calls is executed for its current value, which is returned 

to the optimizer. Then each call is monitored for changes to its value, which are 

forwarded to the plan manager. The monitoring process continues until the original user- 

issued request (Request 3 - 1) is withdrawn. 

The design of the troika of metadata sources is based on a simple rationale. In 

general, we would like a service provider to tell us directly about its services, via a 

directory agent. But often an autonomous source may not provide all of the metadata that 

we want, or the metadata may not be reliable or up to date. Another possibility is that 

relevant metadata depends on factors beyond the service provider. For instance, latency 

and bandwidth are important in evaluating the cost of a plan involving an agent, but these 

factors depend on both the mediator and the agent (and for that matter, the entire route 

between the two). Under any of these scenarios, we have the option of extending or 

overriding values based on administrator knowledge of the source, or based on 

observations of the agent's past behavior and performance as recorded by a system 



monitor. One possible scenario, for example, would be having the administrator source 

provide default values for bandwidth and latency between an agent and the mediator. 

When a plan executes using this agent, the monitor source records the actual observed 

latency and bandwidth; this value can be used to modify the default values for future 

planning. An example of methods for incorporating monitoring information can be found 

in the Hermes system (Adali, Candan et al. 1996). 

Finally, note that in this architecture metadata information propagates from 

service provider to directory service to the PMA asynchronously and, possibly, after 

considerable delay. Paradox is designed to be tolerant of asynchrony and temporary 

inaccuracy in information gleaned from its directory services. This design manifests 

itself in two ways: First, information provided via directory services is not expected to 

change frequently. If some information does change frequently, an alternative channel 

can be specified for its provision (which might, for example, require direct access to the 

service that it pertains to); second, the Paradox runtime is prepared to handle exceptions 

and failures caused by incorrect service calls. Note that an architecture that supports 

synchronous propagation of directory information does not scale to a large number of 

services or to a large Paradox workload, particularly in a WAN environment. In general, 

WAN scalability requires tolerance for data that diverge from the ACID properties of 

traditional database systems. Paradox relies on and provides network-based information 

that conforms to BASE (Basically-Available, Soft-state, Eventual consistency) semantics 

(Fox, Gribble et al. 1997). Practically speaking, conforming to BASE semantics in this 

context means that the state of agents used by Paradox, and Paradox's own state, may at 

times be inconsistent. As a practical matter any Paradox client must be prepared to 

accept some temporary inconsistency. We will have more to say about possible 

inconsistencies in Paradox processing in Chapter 4. 

3.2 The Paradox Specification for Metadata 

Metadata in Paradox takes the form of a set of key-value pairs. The Paradox 

Specification for Metadata (PSM) is a listing of keys and value domains that are 



recognized and exploited by the system. The specification represents an attempt to 

capture the characteristics of a wide variety of heterogeneous sources, and to provide 

guidance in how useful information can be provided w-ith minimal burden to a service 

provider. Elsewhere we discuss how the Paradox system exploits metadata. Here we 

simply discuss what the metadata is that Paradox exploits. 

The metadata in the PSM can be divided into four basic categories: 

1. Service content and invocation: Describes the basic content, functionality and 

location of the service. Implicitly, this category of metadata also defines how the 

service is invoked, at a basic level. 

2. Computational capabilities and offerings of the source and service: Describes the 

scope of query and monitoring operations that can be invoked over the basic 

service content. 

3. Characteristics and statistics of the data content of a service: Describes 

properties, distributions and semantic information that can be useful in evaluating 

the costs of using a service, and in optimizing the use of a service. 

4. Systemic characteristics: Describes characteristics of the overall Paradox system 

in using a service that affect the costs of its use. 

We will motivate and discuss each category in turn, and piece together the specification 

in the process. 

3.2.1 Service Content Metadata 

Service content information describes the basic content, functionality and location of the 

service, which in turn defines how the service is invoked on a basic level. This 

information is so fundamental that it is not really "metadata," per se. In fact, all of this 

information is encapsulated in a single Ca 11 Descriptor type, which was described 

earlier (in Section 3.1.1). But it is a vital part of the description of a service, so we 

describe it here as well. 

The first key attribute in this category is the object reference, under the key name 

"ObjectRef '. The object reference is a Java RMI proxy object that encapsulates the 

network address and protocol for invoking the service. The object reference is of type 



"RemoteIterator". It supports the basic Open ( ) , Next ( ) and Close ( ) calls of 

Paradox agents as described in Chapter 2. 

The attributes under key names "Service" and "Arity" describe the semantic content 

(by convention) of the service call itself and how it is referenced syntactically within the 

content language of the basic iterator calls. "Service" is a Java String object that is the 

functor of the call. "Arity" is an integer that gives the number of arguments for the 

functor. As noted earlier, Paradox assumes that these two attributes uniquely define the 

content and functionality of the service call. A service call is interpreted as set-oriented 

relation. It returns all the tuples satisfying the invoked call. A call that is a simple 

function or predicate returns a single tuple. Arguments are ordered. The CObjectRef, 

CallName, Arity> triple is assumed to be unique. One obvious extension to this 

description is to add argument types, to provide the complete call signature. We leave 

this extension for future work. 

The group name attribute, a Java String under key name "Group", provides a level of 

indirection between a service provider and its call names. It allows a provider to group a 

series of service calls into a declarative interface. Such groups of service calls can share 

other metadata properties. For example, two calls may be joined together at a service 

provider if each call supports the join capability and they are in the same group. 

Table 3-1: Service Content Metadata 

KEYNAME 

"ObjectRef' 

"Service" 

"Arity" 

"Group" 

"CCF" 

The final attribute in this category is the call combination flag, which we described in 

Section 3.1.1. The triple <ObjectRef, Service, Arity> is unique, but different service 

VALUE TYPE 

RemoteIterator 

String 

Int 

String 

in (P,PU,C) 

SAMPLE VALUE 

IterRefl234 

"Quoteservice" 

5 

"StocklnfoGroup" 

C 



providers can provide the same <Service, Arity> pair. The call combination flag 

describes how calls provided by different agents with the same name and arity should 

properly be combined. It comes under the key name "CCF", an enumeration type (String 

in Java) taken from the set {P, PU, C),  which stand for "Partial", "Partial Unique", or 

"Complete", respectively. 

Table 3-1, above, summarizes the service content attributes by key name and type, 

along with sample values for these attributes. 

3.2.2 Source Capability Metadata 

Heterogeneity is a fact of life in the networked world, and the Paradox system must 

interoperate with a variety of heterogeneous agents. Several dimensions of 

heterogeneity, such as computer language and platform, can be easily papered over with a 

combination of wrappers and standard network protocols. But one important dimension, 

not so easily "wrapped away," involves the computational capabilities provided by an 

agent for invoking, querying and monitoring a service. A service may be provided by a 

standard relational database system, by an object database, by a collection of flat files, by 

a sensor, or by a source on the World Wide Web that provides only a HTML form-based 

interface. But homogenizing the computational capabilities of such sources would 

involve, for example, recreating relational query processing in a wrapper over the flat-file 

source. We think this approach is unreasonable. An autonomous source may also limit 

or control the interface exported to a network for reasons of security or performance. For 

example, a bookseller may not allow arbitrary clients to ask for every book available, 

since such a query would require a massive data transfer, and a small number of such 

queries could swamp the server. Such policy matters are reflected in a source's interface 

as a limited capability. There is typically no reasonable way to homogenize varying 

capabilities of this sort in a wrapper. 

A goal of the Paradox system is to handle a collection of capabilities that encompass 

a wide range of realistic sources with as little wrapper support as possible. This goal 

implies that the mediator will see a variety of capabilities, and it must adjust to them. 



Capabilities affect both the set of feasible plans and the optimal plan for a query. 

Paradox tries to take advantage of advanced capabilities where they exist, and to utilize 

processing capabilities at the mediator, where possible, to enable expressive requests in 

the presence of more primitive capabilities. Broadly speaking, Paradox considers two 

categories of capability: capabilities related to the queries or service calls accepted by a 

source, and capabilities related to monitoring and notification of changes at a source. 

Query Capabilities 

In the query category, capabilities manifest themselves in one of two ways: as limited 

binding patterns in a call; or as an extended query capability over one or more calls. 

Binding patterns are simple constraints over arguments in a call, indicating that an 

argument must be bound or unbound under certain circumstances, and therefore limiting 

the set of queries accepted at a source. Consider the example of a bookseller. Suppose 

the bookseller provides the service call: 

Bookritle, Subject, Author, Price) 

Without considering binding patterns, we may assume that we can ask the bookseller for 

information on all of its books. But to prevent large data transfers, the source may 

require that at least one of the T i t l e ,  S u b j e c t  or A u t h o r  attributes be specified 

(bound). In this case, we list the capability as follows: 

Book( + Title, ?Subject, ?Author, ?Price) 

Book(?Title, + Subject, ?Author, ?Price) 

Book(?Title, ?Subject, + Author, ?Price) 

The "+" indicates that the corresponding attribute must be bound. The "?" indicates that 

the corresponding attribute may be either bound or unbound (i.e., there is no constraint on 

that attribute). Note that the acceptance of a bound attribute can be viewed as a filtering 



capability, equivalent to a (limited) selection operation in relational algebra. We may 

also require that an attribute be unbound, which we mark with a "-"; A flat file source, 

for example, may only be capable of performing a complete "dump" of its contents, with 

no filtering. Such a dump is equivalent to "all attributes unbound". 

Binding patterns limit the kinds of queries that we can ask of a source. In 

addition, they can limit the feasible plans that can be used to execute larger requests 

involving the source as a component. Consider a source of book review information, 

providing the following collection of data: 

Now suppose we want to ask for the Title, Price and ReviewURL for all reviewed books. 

We can specify this request as: 

ReviewedBook(Title, Price, ReviewURL) t 

Book(Title, - , - , Price), 

Review (Title, , Review URL). 

To compute this request, we must execute a dependent join. A dependent join is a join in 

which bindings from the inner relation are required by the outer relation. We must first 

invoke the Rev iew call with no arguments bound. That is, we retrieve all of the 

reviews. For each Review record we must take the T i t l e  binding and invoke the 

Book call at the bookseller with the specified T i t  1 e. Neither retrieving the entire Book 

collection first nor retrieving the Books and Reviews in parallel is feasible since both 

are in violation of the required binding patterns. 

Binding pattern limitations are expressed in metadata as a list of acceptable 

patterns under the key name "Modes". Each pattern is a list of argument binding 

specifications, taken from the set {+,?,-), where the list order corresponds to the 

argument order for the call. The Book service, for example, would have a Modes value 

of [ [ + , ? , ? , ? I ,  [?,+,?,?I, [ ? , ? , + , ? ] I .  



Binding pattern limitations can be viewed as a problem and an opportunity. They 

are a problem in that they limit requests that we can make. They are an opportunity in 

that they may decrease the space of possible plans that we need to explore in 

implementing a request, and so offer the opportunity for early pruning and more efficient 

request optimization. Both these factors manifest themselves in a more complex 

execution planning process. 

In contrast, extended processing capabilities are pure opportunity. Aggregated 

and integrated data-intensive services can be provided in a more scalable manner when 

the sources can absorb some of the computational burden from the mediator. The 

Paradox system will generate plans that exploit such capabilities where appropriate. In 

particular, the system recognizes three forms of extended capability: tuple restructuring 

(or projection), compound calls (or joins), and (degree of) predicate support (e.g., in a 

selection operation). These capabilities are recorded in metadata under the key name 

"Query". The value of "Query" is a set of supported capabilities. 

Tuple restructuring refers to the ability to pull attributes out of the body of a 

service call and order them arbitrarily into a new tuple structure. This simple operation 

can save significant data transfer costs, since it allows unneeded attributes to be filtered 

away at their source. A service that supports this capability will have the attribute 

"project" in its "Query" set. 

Compound call support refers to the capability of a source to support the 

declarative composition of multiple service calls. That is, multiple service calls can be 

pushed to the source as a unit (within a single iterator), and the source can perform the 

equivalent of a relational join over the calls. Two services are joinable at a service 

provider if they are within the same service group and they both provide the join 

capability. Returning to Request 3-5, suppose a single agent provides both the Book and 

R e v i e w  services within a single "Bookshop" group, and that each service supports 

joins. Then the Paradox mediator has the option of passing the entire ReviewedBook/3 

request to the agent. A service that supports compound calls will have the attribute "join" 

in its "Query" set. 

Predicate support refers to the level of expressiveness supported in unary predicates 

and binary predicates (if joins are also supported). Note that a binding pattern of "+" or 



"?" indicates that unary value equality (for a given value) is supported for the given 

attribute. Also, binary value equality is assumed to be supported as part of join support. 

But there are two extensions to this that may be specified in metadata under the key name 

"Query". The first extension is support for comparison predicates, meaning the basic 

comparisons: (>,<,>=,<=,!=I over numbers and strings. The second extension is support 

for arbitrary, user-defined predicates. This means that the service supports the local 

execution of arbitrary, user-defined Java predicates. Note that to support this mechanism 

Paradox exploits the mobile code capabilities of the Java platform. Indeed, Java RMI 

provides this capability almost for free. A service that supports Gust) comparison 

predicates will have the attribute "comp" in its "Query" set. A service that supports user- 

defined predicates is also assumed to support comparison predicates, and it will have the 

attribute "udp" in its "Query" set. 

Monitoring and Notification 

The Paradox system must be able monitor conditions on individual services in 

order to monitor complex distributed conditions over multiple services. But network 

services provide varying degrees of monitoring support. The Paradox approach to this 

problem has three elements: a model of primitive monitoring capabilities that can be 

mapped to a wide variety of services; metadata elements that allow the capabilities of 

individual services to be described in terms of this model; and a plan generator that can 

automatically compose the primitive capabilities available to provide the needed 

aggregate capability. Here we present the first two elements: the monitoring model and 

its specification as part of the PSM. 

The mediator must do three things in monitoring an individual service: Describe 

the monitoring condition or event of interest; detect the occurrence of this event or 

condition; and access or compute the data associated with the event or condition. A 

service may provide varying degrees of support for each of these functions. And so our 

model of monitoring primitives breaks out along these three near-orthogonal dimensions 

(we say "near-orthogonal" because a small number of value combinations are not 

possible): The monitoring language dimension describes how a monitoring condition is 



specified; the exfernal notification dimension describes the degree to which external 

notification is provided; and the information delivery dimension describes how 

information associated with a condition is retrieved. Monitoring metadata consists of a 

triple of values, one for each dimension, under the key name "Monitor". We now expand 

on each of these dimensions. 

Dimension 1: Monitoring language. This characteristic is very similar to the 

Query characteristic described earlier. The values "project", "join", "comp" and "udp" 

are all supported, and have the same meaning as in the context of the Query capability. 

In addition, we add support for what we call "parajoin" monitors. A parajoin monitor can 

be viewed as a special join in which one of the joining calls is a user-defined relation. 

Another way to view it is as a (very large) disjunctive condition. By convention, agents 

that support parajoin monitors also support a protocol that allows the monitor client to 

manipulate the user-defined relation in the monitor (e.g., insert into it, delete from it, 

etc.). The parajoin monitor becomes particularly important in the semantic optimization 

techniques we present in Chapter 9. 

Dimension 2: External Notification. There are two components to the external 

notification capability: whether the agent supports proactive notification, and how the 

form of notification (if any) is interpreted. The external notification value is a pair. 

The first element in the pair indicates whether a notification is actively pushed to a 

monitor client. This element has two possible values, "push" and "nopush". "Push" 

means the agent explicitly sends a notification to the monitor client. In Paradox, this 

notification is done via a uniform RMI interface (callback). "Nopush" indicates that the 

agent does not push notifications. The monitor client must be proactive about detecting a 

condition firing, in this case. 

The second notification parameter indicates whether any form of change notification 

exists, and if so, how it should be interpreted. This parameter can have three possible 

values. Full condition notification, represented by the value "Full," means that no 

additional processing is needed to determine if the condition of interest was satisfied, i.e., 

the condition was (definitely) satisfied. Possible condition notification, represented by 



the value "Possible," indicates that a change occurred that may have satisfied the 

specified condition, but additional processing may be needed to determine if the 

condition u7as satisfied. A source that can tell you only that "some change has occurred," 

e.g., a file with a "last modified" flag, would fit this category. The final value this 

parameter can have is no notification, given by the value "none." 

Note that the pair, ("push", "none"), is the only external notification combination that 

cannot occur. Clearly, if an agent provides no notification support, there is nothing that 

can be pushed to the client. In contrast, ("Nopush", "Full") and ("Nopush", "Possible") 

are perfectly reasonable combinations. In these cases, full or possible notification 

requires an explicit "pull" from the client. The agent (wrapper) interface supports this 

pull via the standard call, ConditionOccurred (MId, T S )  , where MId is a monitor 

identifier, and TS is a timestamp. We describe this process in detail in Chapter 4. 

Dimension 3: Information Delivery. A service may be more or less helpful in 

designating what has changed. The final monitoring dimension describes the level of 

support provided by the agent in delivering the data associated with a condition or event 

occurrence. There are three possible values that can be offered in combination. The 

information delivery attribute consists of a set derived from the three possibilities, or a 

fourth, default, value. 

Active information delivery, represented by the value "active," indicates that the data 

associated with a condition firing are actively pushed to the client together with the 

change notification. Note that this capability must be accompanied by a ("push, "full") 

value for external notification. (The converse is not the case, however.) In conjunction 

with ("push", "full"), this capability allows data delivery to piggyback on notification. 

Event-specific pull, represented by the value "EPull", indicates that an event 

identifier is provided with an event notification that allows data associated with the event 

to be retrieved at a later time. An agent can provide the basis for this support in a variety 

of ways: By materializing timestamp-annotated changes to the full condition (defined as a 

view) or to the relevant base relations (Liu, Pu et al. 1996); by querying the log (Salem, 

Beyer et al. 2000); etc. 



Timestamp-based pull, represented by the value "TPull," indicates that an agent 

supports querying via its monitoring language over changes since a given time. Like 

event-specific pull, data are retrieved by invoking a standard call. Unlike event-specific 

pull, however, the agent is not tracking a specific monitoring condition. The condition 

must be fully specified in the call. Techniques for supporting this capability at an agent 

are similar to the "EPuI17' case, but there is less potential for optimizing the process. 

Finally, no information retrieval support, represented by the value "none," means that 

none of the three forms of support above are provided. The only method that a client can 

use to retrieve condition data, in this case, is to perform explicit "query and diff' 

operations using the agent's "Query" capabilities. 

The source capability component of the PSM describes a large variety of realistic 

network-based services and sources. The plan generation, execution and monitoring 

modules of Paradox adapt automatically to sources that specify their capabilities using 

this model. We describe this process in detail in Chapter 4. Table 3-2 summarizes the 

source capability attributes of the PSM by key name and type: 

I KEYNAME I VALUE TYPE 1 
I "Modes" I Set of Binding Patterns I 
/ "Query" 1 Subset of (project, join, comp, udp) I 

Table 3-2 : Service Capability Metadata 

u ~ ~ ~ i ~ ~ ~ m  

3.2.3 Data Characteristics 

Monitor Language-External Notification- 
Information Retrieval Triple 

Data characteristic metadata describes statistical and semantic properties of the 

data content of a service, or of events associated with a service. These properties can 

have a strong influence on the efficiency of executing and monitoring complex requests. 

The Paradox optimizer uses these properties to evaluate request execution and monitoring 

plans. 



The first two characteristics provide information on the volume of data associated 

with a service. The expected size of a tuple is given under the key name "TupleSize". 

This property measures the average bytes per tuple for the service (tuples need not be of 

fixed size). The cardinality property, under the key name "card", is the size, in tuples, of 

the data associated with the service call. These two properties provide some of the 

information needed to estimate the amount of data transfer that will be involved in a 

given set of service calls. 

The next three characteristics provide information on the attribute (or column) 

values associated with a service. The unique values property, under the key name 

"ColVals", measures the number of unique values in each column of the service call. For 

example, for the Book/3 call described earlier, a "card" value of [10000, 5000, 01 

indicates 10000 unique book titles, 5000 unique authors, and an unbounded (unknown) 

number of prices. The column range property, under the key name "range", measures 

the range of values found in a given column, where the column type is numeric. For 

example, for Book13, a "range" value of [0, 0, [5,200]] indicates that there is no range 

binding on either Title or Author, but the Price of a book is between $5 and $200. Key 

values can be expressed in the PSM via the key name "KeyInfo". The "KeyInfo" value is 

a set of sets of integers. Each set defines the columns that make up a minimal key. For 

the Book/3 service, if Title and Author uniquely define a book, then the service might 

have a "KeyInfo" value of [[1,2]]. These three properties can be used to estimate the 

selectivity of predicates applied to data intensive services, which, again, are part of the 

puzzle in estimating the data transfer involved in a set of service calls. 

The stability property is a property of possible change events associated with a 

service. This property appears under the key name "Stability", and it indicates whether a 

service change can occur. It can take one of two values: "fixed" means no change can 

occur to this service; "dynamic" means that a change can occur. If any event is 

associated with a service call, including data updates or modifications, the call must be 

"dynamic". A functional service, such as one that computes the distance between two 

addresses, would be "fixed", as would a static data source. Stability information is 

important to distributed condition monitoring, as we will see in Chapter 4. 



A inore advanced measure of the properties of information change is the chunge 

type property, under key name "ChangeType". The value of "ChangeType" is a list of 

triples that give a change identifier, the frequency of the change, and the cardinality of 

the change. The change identifier is a string that is unique for the given service. The 

frequency is an < I n t e g e r  , TimeUn i t >  pair that specifies the number of times in the 

given time unit that this change event is expected to occur. Cardinality is the expected 

size, in tuples, of the data associated with the change type. For example, if a bookseller 

adds 10 new book titles (on average) to its inventory once a week, but then has an 

additional shipment once a month of 100 new titles, then its Book service might have a 

"ChangeType" value of ((shipl, (1, week), lo), (ship2, (1, month), 100)). Change type 

information is vital for computing an optimal semantic cache to support condition 

monitoring. We describe its use for this purpose in Chapters 7 and 8. 

Finally, integrity constraints may be provided, under the key name "IC". Integrity 

contraints are expressed as regular Horn clauses, just as a Paradox request is, except that 

often they are headless. The current implementation of Paradox does not make use of 

integrity constraints. In Chapter 9, however, we will discuss how a class of integrity 

constraints may be used to optimize complex condition monitoring. In particular, we 

discuss the use of a special kind of integrity constraint that constrains the way the 

information associated with a service can change over time. 

Note that many of the metadata attributes in this category are similar to the 

statistical measures found in the catalogs of database management systems. They are 

used for a similar purpose as well. In fact, many of the measures employed by Paradox 

are cruder than those provided by a typical dbms. For example, where Paradox uses the 

"Range", "Card" and "KeyInfo" attributes to estimate the selectivity of predicates, many 

dbms's might use a more elaborate statistical structure such as a histogram, which can 

provide a basis more accurate estimates. But these estimates can be crude and error 

prone as well. Selectivity estimation, in particular, is known to be fraught with peril, 

even within the controlled setting of an individual dbms. 

The simplicity of many of the metadata measures in Paradox is by design. More 

elaborate statistical information that supports better estimation, such as histograms, could 

also be provided in the Paradox architecture. But, in general, there is a trade-off between 



the level of detail of such statistical data and the accuracy of the estimates they enable, 

and the burden imposed on an autonomous agent to maintain the data reliably. In a WAN 

environment. where integration is over autonomous service providers, we favor cruder 

but simpler methods. Cruder measures can be combined with adaptive, runtime 

measurements, and measures provided by a system administrator to yield reasonable 

estimation in support of optimization. As one example of evidence to support our view, 

adaptive selectivity estimation based on monitoring has been shown to be a good 

alternative to detailed histograms (Chen and Roussopoulos 1994). Approaches that use 

sampling are also promising (Lipton, Naughton et al. 1990). Another technique that we 

endorse, in combination with those provided by Paradox, is adaptive query processing 

techniques (Kabra and DeWitt 1998) (Ives, Florescu et al. 1999) (Levy and Lomet 2000). 

In these methods, plans are monitored to see that their costs are within a bound of what 

was expected during optimization. If they are not, the execution plan may be changed 

midstream. We believe that near-perfect statistical information is unattainable. It's better 

to adapt to inaccuracies than to pretend they don't exist. 

Table 3-3 summarizes the data characteristic attributes of the PSM by key name 

and type: 

Table 3-3 : Data Characteristic Metadata 



3.2.4 Function and Predicate Characteristics 

Services are not always data-intensive. Some services provide complex functions 

or predicates, and they can be compute-intensive. This category of service includes 

services that support user-defined predicates that are registered with the mediator and that 

can be expensive to execute. The costs of executing such functions or predicates should 

be considered in the overall cost of a complex request. There are two properties in the 

PSM that cover this requirement. 

The first property in this category measures the cost of executing a service call. 

The "CPU" property measures the expected computational time, in seconds, associated 

with a single service call. This property should be provided for expensive functions and 

predicates. 

The other property in this category applies to predicates. "Selectivity" is a real 

number between 0 and 1 that measures the fraction of instances that the predicate is 

expected to return t r u e .  In general, it is difficult to provide this measure for a given 

predicate in a vacuum. So if a service provides this measure directly, it is likely to be 

used as a default that is best adjusted or overridden as the predicate's behavior is 

observed. The monitor metadata source may supplement the default information with 

observed values in which the predicate is run against specific data streams. 

Table 3-4 summarizes the function and predicate attributes of the PSM by key 

name and type: 

/ "CPU" I Real (in seconds) I 
KEYNAME 

I "Selectivity" I Real (between 0 and 1) I 

VALUE TYPE 

Table 3-4 : Function and Predicate Metadata 

3.2.5 System Characteristics 



The final category of metadata describes system conditions that are relevant to 

evaluating the cost of execution plans. Currently, Paradox recognizes two such 

properties, which are specifically relevant to network interactions between the mediator 

and remote agents. These are "Bandwidth" and "Latency." Bandwidth is measured in 

bitslsecond, and is meant to measure the effective bandwidth achieved via our RMI-based 

protocol between the mediator and the service provider. Latency measures the delay 

associated with an initialization of an RMI connection during an Open ( ) call. In 

general, the cost of a remote service call will be the sum of the associated latency, the 

amount of data transferred multiplied by the bandwidth, and the number of discrete 

service calls multiplied by the time per call. Note that latency and bandwidth do not 

apply to an agent in a vacuum, and so we do not expect them to be provided by an 

individual agent via a directory service. Instead, we expect either the monitor or the 

administrator metadata source to provide these properties. 

Table 3-5 summarizes the system property attributes of the PSM by key name and 

type: 

Table 3-5 : System Property Metadata 

3.3 Chapter Summary 

Metadata is integral to everything the Paradox system does. In this chapter we have 

described the architectural mechanisms in Paradox for providing and gathering metadata, 

and the Paradox Specification for Metadata, which is the language used to describe 

service and system characteristics. The chapters that follow will describe how this 



information can be exploited to provide active integration of a variety of distributed 

services in a scalable and efficient manner. 



Chapter 4 

Plan Generation and Execution in Paradox 

Paradox provides coordinated, "active" access to groups of data-intensive distributed 

services. Service providers register the characteristics of their offerings in a group of 

distributed directory services. Paradox accepts requests in the form of conjunctive 

queries with comparison predicate (Ullman 1988) (equivalent to select-project-join 

queries) over the universe of all directory-registered service offerings. A request is 

interpreted as a long-lived query that returns all of the current information satisfying the 

request, and that continuously updates the state of the request in response to changes in 

component services. 

In the previous chapter we described the mechanisms for incorporating metadata into 

the Paradox system and the content of that metadata. In this chapter we continue to flesh 

out the architecture outlined in Chapter 2 by describing how requests are converted to 



groups of programs against the Paradox execution engine, and the operations that are 

supported by that engine. Figure 4-1 replicates our earlier picture of the general Paradox 

architecture (Figure 2-l), highlighting the components that we emphasize in this chapter 

in bold: 
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Figure 4-1: Request Processing Components of Paradox 

A request to the Paradox system is parsed to a syntax tree which is passed to the plan 

generation and optimization component of the system. The job of this component is to 

produce an optimal physicalplan suite. A physical plan suite consists of a program that 

runs on the Paradox execution engine for the initial computation of the request result, and 

additional physical plans for computing changes to the requested condition over time in 

response to change events occurring at any component service. 

The process of plan generation and execution in Paradox has strong similarities to 

that of query processing in relational database systems. Key differences enable support 

for request monitoring, for handling network-based services and data sources, and for 

coping with the heterogeneous capabilities of these sources in an efficient manner. 

Figure 4-2 shows a more detailed break-down of the process. A request is parsed into a 

syntax tree, which is mapped to an initial logical plan expressed as a tree of operators 



from the system's logical algebra. This algebraic expression is then used as a basis for 

generating a logical plan suite for the request. Each plan in the suite then goes through an 

optimization process that includes a series of logical transformations, including the 

specification of a join ordering for the plan, and then a mapping to a physical plan, 

expressed in the physical algebra of the system, that can be run against the Paradox 

execution engine. The capabilities of the component service providers guide plan 

transformations along the way, and only feasible plans are generated. We will describe 

the major steps shown in Figure 4-2 in detail, and we will also describe the workings of 

the Paradox execution engine. 

Conjunctive Parsing and Initial 
Request Plan Generation 

Logical Plan 

Plan Suite 
Generation 

Logical Plan Suite 

Logical 
Transformation 

Transformed Logical Plan Suite I 
Physical Plan 

Generation b Physical Plan Suite 

Figure 4-2: Plan Generation in Paradox 

4.1 A Simple Example 

The presentation in this chapter is operational in nature and driven by a simple 

example. Consider a computer reseller who deals in laptop computers. He makes use of 



several network-accessible services to buy and sell products at a profit. One such service 

provides information on laptop computers. Specifically, this service provides consumer 

ratings between 1 (best) and 5 (worst), and other descriptive information keyed on the 

make and model of the product via the service call, LaptopI4: 

Luptop(Muke, Model, Rating, Description) 

The Laptop service call provides no monitoring capability and it changes relatively 

infrequently. 

A second service provides access to computer classified ads from newspapers and 

magazines throughout the country in the form of a Classrfiedl5 call: 

Classified (CId, Make, Model, Seller, Price) 

This call lists a unique classified ad identifier, the make and model of the product being 

offered for sale, an identifier for the seller of the item, and its price. The ClassiJied 

service call provides an update notification capability that will notify customers of the 

listing of new items based on a unary predicate applied to the update. The update itself 

can be retrieved in a separate operation. 

Finally, an auction service provides information on items available for bid, and 

the status of these bids, via the calls I t e d 5  and CurrentBid12: 

Item(ltemNo, Make, Model, Begins, Ends) 

CurrentBid(ltemN0, Amount) 

The auction service supports declarative joins across all of its service calls. The 

CurrentBid call requires that the ItemNo attribute be bound. A notification service will 

monitor a condition over the service calls and indicate when updates meeting the 

condition occur, and can optionally include the updates themselves together with the 

notification. 



We assume in this example that the make and model attributes of all three 

services are drawn from a common domain. 

Our reseller wants to find laptop buying opportunities in the classified ads on 

items that can be sold at auction for a profit. When a laptop computer that is rated higher 

than a '3' by the consumer rating service is offered by the auction service, the same make 

and model is offered in the classifieds, and the price of the item in the classifieds is lower 

than the current bid for the item at auction, the reseller wants to be notified so that he can 

consider buying the item from the classifieds and then reselling it via the auction site. 

This integrated service can be expressed as the BuyingOpp/4 request (4-1) below: 

BuyingOpp(CId, ItemNo, Make, Model) t 
LapTop(Make,Model, Rating, Desc) & 

Rating >= 3 & 

ClassrJied(CId, Make, Model, Seller, Price) & 

Item(ItemN0, Make, Model, Begin, End) & 

CurrentBid(ItemN0, Bid) & 

Bid > Price. 

Table 4-1 shows some of the basic capability-related metadata by key name for 

the service calls used in this request. We will introduce other metadata objects for these 

service calls as needed. 

Notice, in particular, that all service calls in our example request are dynamic. 

I t e m  / 5 and Current B i d / 2 are supported by the auction service within a single 

service group that supports declarative, composite calls ('joins), but change event 

monitoring over joined conditions is not supported by the service. Both individual calls 

in the auction service, however, support both active pushing of change data, and active 

notification followed by event-based retrieval of change data (epull). The 

Cla s s i f i ed /  5 call in the classified ad service does not support active pushing of 

change data, but it does support event-based retrieval. The LapTop/4 call provides a 

very limited service, with no explicit event notification and only a limited querying 



Table 4-1: Service Call Metadata for BuyingOppIS Request 

"KeyInfon 

capability. Variable binding constraints exist for the C 1 ass i f i ed / 5 and 

C u r  r e n t  B i d  / 2 calls. Finally, notice that keys are defined for each service call, and 

the BuyingOpp/4 request subsumes the key values for the service calls in its body. 

Details on the meaning of this metadata were presented in Chapter 3. 

4.2 Plan Suite Generation 

[[1,211 

The first major step in turning a Paradox request into an optimal physical plan suite is 

to generate a logical plan suite (also called a query suite). A logical plan suite consists of 

a logical plan for the initial computation of the request result, and one or more additional 

logical plans for computing changes to the requested condition over time in response to 

change events occurring at any component service. A request is first parsed and 

transformed to an initial logical plan. Relevant service metadata is retrieved and the 

logical plan is constrained based on service capabilities. The resultant logical plan is then 

transformed into a series of differential requests, one for each dynamic service call. 

As with many relational query optimizers, Paradox employs a logical algebra to 

represent logical execution plans (Graefe 1993). The basic logical algebra used in 
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Paradox contains five operators: LSelect, LProject, LJoin, LJoinD, and LGet 

LSe 1 ec t corresponds to relational selection, LPro j ec t corresponds to relational 

projection, L Join represents a general, n-ary relational join operation, L JoinD is a 

binary dependent join operator, in which the binary join predicates must be converted 

into unary predicates by applying variable bindings from the left side of the join before 

passing the result to the right side, and LGet represents a leaf operation that makes a 

set-oriented call to a remote service. These operators are sufficient for handling the basic 

conjunctive requests that Paradox accepts. In addition, however, Paradox must monitor 

and compute changes to a request. To support this capability at the logical level, we add 

the two related logical operators, LA1 e r t and LA1 e rt NGet. LA1 ert captures the 

notion of detecting a change event in a dynamic service call, alerting the mediator, and 

providing some method for retrieving the associated data. LAlertNGe t is a restriction 

on LAlert that requires event detection and data retrieval to be combined in a single 

operation. As we will see, LA1 ert and LAlertNGe t are always accompanied by a 

LGet that is tied to the data associated with the event reported by the alert. Some 

sources do not support the separation of notification of a change event from the retrieval 

of data associated with the event. Under these circumstances, LAlertNGet must be 

chosen. On the other hand, where such separation is supported, a more efficient 

implementation may be possible. A cost-based choice between alternative 

implementations of monitoring, where a choice is available, is made in mapping logical 

to physical plans. 

The original logical plan tree is generated by separating each individual service call in 

the request and all related selection predicates into leaf LGe t nodes, and inserting a 

single n-ary L Join at the root, as the parent of the LGe t operators. Relevant service 

references and metadata are retrieved for each component request by issuing a request to 

the Metadata Agent. In the current implementation, we assume there is only one service 

provider associated with each service call. If we find more than one, we pick the first one 

returned. If there are no services for a service call in the request, we return failure'. This 

I There are a number of important issues associated with multiple providers of a single service call, in 
handling unions, etc., that any deployed system must cope with (see the work of Florescu, et al., for 
example (Florescu, et al. 1997), but these are not the focus of our work. 



behavior is roughly what one would expect if the CCF value for every service call were 

equal to C (Complete). At this time, the Paradox implementation does not make full use 

of the range of possible CC F values. 

We then traverse the set of LGet nodes and merge nodes that meet the following 

three criteria: 

1) They contain calls against a common service provider. 

2) The service provider supports joins over the service calls. 

3) There is a common variable or join predicate between the calls. 

This merging heuristic assumes that pushing as much as possible into a single remote call 

is desirable, unless such a combination results in a Cartesian product, in which case 

remote calls may be better made separately (in which case either the Cartesian product 

will be computed locally, or it can be avoided altogether). In the process of merging 

LGet nodes, we also identify variables in the call that either appear in another leaf node 

or appear in the head of the request. All other variables may be projected away. A 

similar process (without the merging) is applied to the parent L Join node. 

Figure 4-3: Logical Plan Tree 

I I 

The logical plan tree produced by this process for our example is depicted in 

Figure 4-3. Variables that are not needed above the current node, and thus may be 

projected away, are prefixed with an underscore. 

LGet 
LapTop(Make,Model,-Rating,_Desc), 
(-Rating >= 3) 

LGet 
Classified(Cid.Make,Model,-Seller,Pr) 

LGet 
Item(lternNo,Make,Model:-BegggEnd), 
CurrentBid(ltemN0,Bid) 



After the basic logical plan tree has been derived, we generate logical differential 

plans for computing the change in the overall request induced by individual service 

change events. Differential plans are generated via a series of capability-driven 

transformations of the initial logical plan tree. The basic process is to traverse the set of 

LGe t nodes, and, for each node that contains at least one dynamic call, create a new, 

differential plan associated with that node by transforming the original LGet into one of 

the alert operators (either LAlert or LAlertNGet) followed by a modified LGet. We 

call the algorithm SuiteGen. The complete algorithm is shown in Figure 4-4. 

A couple of notes of explanation are needed for the Sui teGen algorithm. The 

condition in line (2), that the leaf node call is dynamic, is true if any individual call 

within the leaf node is dynamic. Line (5) clones the nodes up the tree from the target leaf 

node. In this case the only cloned nodes are the target LGe t node and its parent L Join 

node. All of the cloned nodes will be modified in the process of transforming the original 

plan tree into a differential plan, but none of the non-target leaf nodes need to be 

modified or cloned. We are able to share the non-target nodes among numerous plans in 

this manner. By doing so, and avoiding cloning the entire tree, we achieve a compact 

representation for the plan suite as a whole. 

Line (6) in Figure 4-4 handles the case where a service supports the joining of 

multiple service calls within a single leaf node, but it does not support an alert or 

differential capability over the same composite call. This capability matches that of 

many modern-day relational database management systems, for example. In this case, 

the calls contained in the leaf node must be separated into sets in which alerts and 

differential computation are supported (line (7)). The resulting sets can then be processed 

one by one in the normal manner, via a recursive call to SuiteGen ( ) (line (8)). 

Beginning with line (1 I), we iterate over each change event type associated with 

the call within the target LGet node and generate the incremental plan that corresponds 

to that event type. Lines (12)-(15) perform the core task in this process, which is a 

capability-driven transformation. If the source for the LGe t target supports separate 

alerting, the target node is split into an LAlert and LGet pair that operates on the 

change event and its associated data. Note that the LA1 ert node represents the 



SuiteGen(LogicalP1anTree T, LeafNodeSet LNodes) { 

(0) Suite = { I ;  
(1) for each L in Lnodes 
(2) if L.Call() is dynamic 
( 3 )  Suite += Dif fTransform (L, T) ; 
(4 return Suite; 

1 

DiffTransform(LGet L, LogicalPlanTree T) { 
ReturnSet = { I ;  

(5) TI= Clone nodes of T on path from L up to T.root(); 
(6) if (mergedNode (L) & &  mergedDeltaNotSupported (L) ) { 

( 7  LeafNodeSets NSets = breakOutSingletonCalls(L); 
( 8 )  for each NSet in NSets 
(9) Returnset += SuiteGen (T' , NSet) ; 

1 
(10) else { / /  singleton node or mergedDeltaSupported 
(11) for each change event type, E, in L { 

(12) if SeparateAlertSupported(L) 
(13) L -> LAlert (Delta(L, E, I)) + LGet (Delta(L, I)); 
(14) else 
(15) L -> LAlertNGet(Delta(L, E, I)) + LGet (Delta(L, I)); 
(16) Adjust Ancestor Nodes; 
(17) Returnset += {T'); 

1 
1 

Figure 4-4: Algorithm for Generating a Plan Suite 

possibility of separating the monitoring of a change event from retrieving the data 

associated with the event, but it does not represent a physical commitment to do so. If 

the source for the LGet target does not support separate alerting, the LGet is 

transformed into an LA1 ertNGet and LGe t pair. The LAle r t NGe t represents a 

physical commitment to perform alerting and the retrieval of associated data in a single 

step. Just as the L Jo  i n D operator represents a restricted form of the L J o  i n operator, 

the LA1 e r t NGe t operator represents a restriction of the LA1 e r t operator to a subset of 

its potential physical implementations. Any conditions (i.e., selections or projections) 

over the service call are passed to the alert operator at this stage. If the alert operator is 

an LA1 e r t ,  however, some conditions may have to be handled elsewhere in the plan. 

We cover this issue in detail when we discuss the creation of physical plans. 



As a notational convention, we prepend a delta, A, to the original call name when 

referring to a change event associated with the call. An LAlert operator monitors the 

change event of a given type, and returns a variable that is either an identifier used to 

retrieve the associated data in a separate process, or a local iterator that holds the 

associated data. We express this functionality syntactically with the delta form of the call 

and arguments for the event type, E, and the variable, I, within the LAlert. Additional 

conditions are specified separately. An LAlert NGet operator, in contrast, necessarily 

passes a local iterator to its corresponding LGe t. Either way, the resulting data flows 

through an LGe t operator. This data takes the form of a multiset of tuples, and each 

tuple has an associated multiplicity count. A positive multiplicity count value indicates 

one or more added tuples, a negative value indicates one or more deleted tuples. One 

benefit of using multiplicity counts is that it allows additions and deletions to be handled 

in a uniform manner. We express this functionality with the delta form of the call and all 

of its normal attributes, plus two additional arguments, one for an identifier or iterator, 

and one for the multiplicity count. The transformation of line (1 2) as applied to the 

C1 a ssi f i ed/ 4 call is illustrated in Figure 4-5. This figure shows the original LGe t , 

with a generic parent node, and its transformed form. Note that there is no additional 

condition to pass to the LAlert in this example. 

"1 Classified(Make, Model, Seller, 

Price) 

1 Parent Node ( 

LAlert I I LGet 
AClassified(E, I, Make, AClassified(1, Make. Model, 

Figure 4-5: Transforming the Target LGet 



Note, further, that if the original call is a compound call, a new Horn clause is 

formed with the compound call as the body. The head of this derived clause becomes the 

target of the transformation we have just described. 

Finally, in lines (1 6)-(17), the ancestor nodes of the LGe t in delta form, or of the 

LA1 e r t N G e  t , are adjusted to reflect passing the multiplicity count argument up the tree, 

and the new logical plan tree is returned. 

As noted earlier, we could perform plan suite generation at the logical plan level 

or at the query level. By performing it at the logical plan level we avoid repeated parsing 

and plan generation. But as a notational convenience we will often refer to an 

incremental plan by its logical query form. For example, Request (4-2) shows the 

differential query for BuyingOpp induced by changes to LapTop. 

ABuyingOpp(CId, ItemNo, Make, Model, MC) t 
ALapTop(Make,Model, Rating, Desc, MC) & 

Rating >= 3 & 

Classzfied(Cld, Make, Model, Seller, Price) & 

Item(ItemNo, Make, Model, Begin, End) & 

CurrentBid(ItemNo, Bid) & 

Bid > Price. 

Note that in a query form, we stick with the convention of specifying the data 

associated with a change event by prepending a A to the corresponding call. We also 

include the multiplicity count argument, MC, since it percolates up to the head of the 

query, and we will occasionally need an event type argument as well, when multiple 

event types are supported. But there is no need, in this notation, to be explicit about the 

separation of event monitoring from the retrieval of the data associated with the event, as 

there is with a complete logical plan. 

As a further shorthand, we will sometimes omit the variable names and predicates 

of a clause, when they are clear from context. For example, we can express Request (4- 

2) as: 



ABuyingOpp t ALapTop & Classified & Item & CurrentBid. 

We will also refer to this request as ABuyingOpplALaptop, read as "delta BuyingOpp 

with respect to delta Laptop." Figure 4-6 shows the complete, equivalent logical plan for 

ABuyingOpplALaptop. Note that the Laptop call does not support the separation of 

alerting from data retrieval, so an LA1 e r t N G e  t is required for this plan. Figure 4-7 

shows the logical plan for ABuyingOpplAClassiJied. Note that the auction service does 

not support a monitoring capability over compound (join) calls, so ABuyingOpplAZtem 

and ABuyingOpplACurrentBid must be handled with two separate plans. These plans are 

shown in Figures 4-8 and 4-9, respectively. The complete query suite, in abbreviated 

form, is shown as Requests (4-3). 

ABuyingOpp(Cid, ItemNo, Make, Model, -Pr, -Bid, MC), 
CBid > -Pr) 

I I 

LAlertNGet 
ALapTop(E, I, Make, Model, 

Rating, -Desc. MC), 
Rating, -Desc) ( Ratine >= 3 )  

Figure 4-6: Logical Plan for ABuyingOpplALapTop 
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LJoin 
ABuy~ngOpp(Cid. ItemNo. Make. Model. -Pr. -Bid. -MC). 
(-Bid > _Pr) 

LJoin 

I I 

LAlert 

bClassitied(E. I. Cid. 
Make. Model. -Seller. Pr. 
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Figure 4-8: Logical Plan for ABuyingOpp/AItem 
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Figure 4-7: Logical Plan for ABuyingOpplAClassified 
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ABuyingOpp t AL.apTop & Classzfied & Item & CurrentBid. 
ABuyingOpp t LupTop & AClasszfied & Item & CurrentBid. 
ABuyingOpp t LapTop & Classijied & AItem & CurrentBid. 
ABuyingOpp t LapTop & ClassiJied & Item & ACurrentBid. 

Generating differential plans for a Paradox request is similar to the process of 

generating plans for the incremental maintenance of materialized views in the setting of a 

non-distributed database management system. Extensive research has been done in this 

area (Gupta and Mumick 1995). In particular, our use of multiplicity counts is similar to 

that presented by Gupta, et al. (Gupta, Mumick et al. 1993). Our plans consider change 

events and related data at only one source at a time. If change events at multiple sources 

occur simultaneously, the mediator serializes them, handling them one at a time in the 

order that the mediator is notified about them. Due to network delays, the order of 

change event notification may not be the true chronological order of the events. 

Furthermore, information changes may be batched into a single change event at a service 

provider (or by a wrapper implementing a monitoring capability). Consequently, change 

events at different sources may be the result of multiple global information states that are 

interleaved in time, and these states may not be recoverable by the mediator. The end 

result is that the Paradox system cannot guarantee that it is tracking the global state of a 

request perfectly over time. It will, however, converge to a consistent and correct request 

state. This sort of imperfection in monitoring requests over multiple services is simply a 

fact of life in distributed systems when the service providers are autonomous. It is 

impractical to expect autonomous agents to participate in a two-phase commit with an 

untrusted source, or in some other heavy-weight protocol necessary to ensure 

transactional semantics, particularly in a WAN environment (Fox, Gribble et al. 1997). 

Fortunately, however, a large class of useful applications can tolerate a degree of 

temporary inconsistency. 

A related issue that must be handled in an ASIS is that of avoiding or 

compensating for update anomalies. An update anomaly occurs when updates and 

incremental request processing are interleaved in such a way that we compute an 

incorrect result. Zhuge, et al. show that update anomalies can be handled by requiring 



that the attributes in a request subsume a primary key for each component service call 

(Zhuge, Garcia-Molina et al. 1995; Zhuge, Garcia-Molina et al. 1998); we adopt this 

approach to handling the issue. Where this restriction is too limiting, an alternative is to 

use timestamps, if they are provided by the relevant services, along with bounds on 

"clock drift" between distributed sources (Liu, Pu et al. 1996). In either approach, 

however, applications must be able to cope with the potential of temporary 

inconsistencies. 

4.3 Computing a Feasible Join Ordering 

Once the suite of logical plans has been generated from a request, each plan is optimized 

via a two-phase process of logical and physical transformation. The logical 

transformation phase selects a join ordering in a capability-driven, heuristic manner. The 

physical transformation phase then performs a cost-based selection of physical algorithms 

followed by heuristic plan manipulation to produce the final plan. Here we describe how 

a join ordering is obtained. 

In the last section we saw that plans in a logical plan suite are always rooted in a 

single n-ary join operator. As part of the join-ordering process, Paradox changes the n- 

ary join at the root into a series of binary L Joi n and (where source capabilities require 

it) L J o i n D  (dependent join) nodes. Note that if an alert node (either an LAlert or an 

LAlertNGet) is part of the plan, it is not considered at all at this stage. It is simply 

added as a third, specially-handled child operator, to the first join of the chosen join 

ordering. Paradox considers only left-deep plan trees and it generates only feasible plans. 

A left-deep tree is one in which the right child of every join node is a leaf. A feasible 

plan is one in which all binding constraints are satisfied. When the right hand side of a 

join requires a binding from the left hand side in order for binding constraints to be met, 

the join must be dependent. Our algorithm also attempts to delay Cartesian products as 

long as possible. It should be noted, however, that in the presence of limited binding 

patterns, the left deep limitation may make Cartesian products necessary where they 

could be avoided in an equivalent bushy tree (Florescu, Levy et al. 1999). 



Our algorithm proceeds in a bottom-up, greedy manner, first building a 2-way 

join, then a ;-way join. etc.. until we have completed the join ordering. At each step, we 

take the feasible join ordering that minimizes the estimated cardinality of the intermediate 

join result. We derive these cardinalities based on data characteristics described in the 

metadata associated with service calls in our plan. At step one, we order the GET nodes 

that can feasibly start the join from smallest to largest estimated size, and this ordering 

becomes our preferred ordering of "I -way joins". At step N, we start with the preferred 

(N-1)-way join, and we estimate the size and test the feasibility of the result of adding 

each remaining service call to this preferred join. We order each resulting N-way join by 

estimated cardinality, take the smallest as our preferred N-way join, and continue the 

process. At each step, we add a L J o i n  node if possible. If acceptable binding patterns 

of the right child of the join demand a dependent join, however, we add a L J o i n D  node 

instead2. If we are unable to find a feasible N-way join in this manner, we backtrack to 

our next-choice (N-1)-way join, and proceed with the search for a feasible N-way join 

again. We are done when a complete, feasible join ordering is found, or when we have 

completed an exhaustive search without finding any feasible ordering. 

Returning to our example, consider the plan for ABuyingOpplAClassified, shown 

in Figure 4-5, and consider additional metadata pertaining to data characteristics shown 

in Table 4-2. Underscores in this table indicate that a value is either not applicable or not 

provided. Blank values indicate that the item is not relevant to this example. 

Table 4-2: Data Characteristic Metadata for BuyingOpp Service Calls 

2 L J o i n D  is really a "quasi-logical" operator. It restricts the set of algorithms that can be chosen to 
implement it to the set of physical dependent joins. Any physical join algorithm, dependent or non- 
dependent, can be chosen to implement a LJoin. 
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In this example. the LGe t node containing the LapTop service call is expected to 

have the lowest cardinality. Based on the selection predicate applied to LapTop, Rating 

> = 3, and the "Range" metadata that specifies the range of values for the third attribute 

of LapTop as between 1 and 5 (inclusive), the Paradox system estimates (under the 

assumption of a uniform value distribution) that the predicate will have selectivity of 

0.60. The estimated cardinality of the LapTop leaf node, therefore, is 300. The estimated 

cardinality of AClassrJied is significantly larger, at 1000. Since binding pattern 

constraints exist for change events over the Classified call, however, AClasslJied is not a 

feasible starting point in any case. In fact, the only other feasible starting point is the 

compound call of (Item/5, CurrentBid/2), which has an expected cardinality of 50,000. 

Therefore, Laptop/4 is chosen as first in the join ordering. 

Moving to the selection of a two-way join, we will choose to join LapTop with 

AClassiJied. The join predicate in this case is a conjunction of two equalities on the 

Make and Model attributes. In computing the selectivity of a conjunctive join predicate, 

Paradox considers only the more restrictive conjunct (i.e., correlations are ignored). In 

this case, the Model attribute is chosen. Based on the ratio of column values for this 

attribute, we estimate join selectivity of 50015000, or 0.1. Based on a cardinality of 

AClassiJied of 1000, we then estimate the cardinality of the join at 

0.1 - 300. (1 000/ 5000) = 30. The Model attribute is also chosen in estimating the 

cardinality of a two-way join between LapTop and the auction service. But in this case 

the larger cardinality of the Item call results in a larger join size estimate. Note, further, 

that the join of LapTop with AClassiJied is feasible, since if bindings of the Make and 

Model attribute are made from LapTop to AClasszjied, then all binding constraints are 

satisfied. This requirement also means that the join must be dependent, so the L J o i n  

node is turned into a LJoinD node. Finally, the :-way join is completed by joining 

against the compound call of the Auction service. The resulting logical plan tree is 

shown if Figure 4-10. 



l B u y ~ n g O p p ( C ~ d .  ItemNo. Make 
Model. -Pr. -Bid, MC), 
(-Bid > -Pr) 

Figure 4-10: Logical Plan for ABuyingOppIAClassified after Join Ordering 
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4.4 Logical to Physical Plan Mapping 

LGet 
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After all logical transformations have been completed and a join ordering has been 

determined, we must map the resulting logical plan to a program (or physical plan) over 

the Paradox execution engine. In this section we first describe the physical operators 

provided by the execution engine, and then we describe the process of mapping a logical 

plan to a physical one. 

4.4.1 The Paradox Execution Engine 

The Paradox execution engine provides a variety of algorithms and operations 

that support the integration of information from multiple network-based services. The 

engine includes a number of basic algorithms that you would expect to find in any 

relational database engine, as well as some operations specifically oriented towards 

LGet 
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network-based data integration. Each physical operation conforms to the iterator model 

(Graefe 1993). and takes either one or two input arguments. Each input argument is 

either an iterator or a service call. The current implementation is main-memory only. A 

main memory executor is sufficient for our research purposes, but any enterprise-strength 

system would require out of core operation. We enumerate the physical operators with 

brief descriptions: 

1) PGet: The PGet operation invokes a call to a remote service, wrapping the 

call in an iterator. PGet allocates a local buffer and pre-fetches data into that 

buffer in an attempt to lessen the effects of network latency and burstiness on 

data flow during plan execution. 

2) S e l  - P r o  j : Se 1 - Pro j combines the standard relational selection and 

projection operations into a single operator. It takes a unary predicate and an 

ordered list of columns as arguments. It applies the predicate to an input tuple 

stream and produces an output stream of tuples that satisfy the predicate and 

that contain only the specified columns in the specified order. Pure relational 

selection and projection are special cases of this operator. 

3) L o c a l  - NLJ: Local - NL J is a local nested-loops join. It takes two input 

tuple streams and a binary join predicate. It materializes its inner (right) 

input. Then, in the general case, for each tuple of the outer (left) input stream, 

the materialized inner set is scanned completely. A special form of this 

operator exploits the sorting order of the inner input, avoiding a complete scan 

for every outer tuple. This optimization is particularly important when the 

inner input is large. All pairs of tuples that satisfy the join predicate are 

combined and put to the output stream. This operator can optionally accept a 

unary selection predicate and a projection list as well, allowing selection and 

projection operations to be merged into the join. 

4) R e m o t e  - NLJ: Remote - NL J is a remote nested-loops join operator. 

Remote - NL J is similar to a local nested-loops join, except that it does not 

materialize its inner input and evaluate the join condition locally. Rather, the 

join condition is partially evaluated to a PGe t and (possibly) a Se 1 - Pro j 



for each outer tuple. Thus this operation requires a remote invocation for each 

tuple in the outer input. If the inner input is a high-latency service call, this 

operation can be very expensive. As with Loca 1 - NL J ,  Remote NL J can 

optionally accept a unary selection predicate and a projection list, allowing 

selection and projection operations to be merged into the join. 

5 )  Merge - Join:  Merge - J o i n  is a standard relation sort-mergejoin operation 

(Ullman 1988). It takes two iterator inputs and a binary equi-join predicate 

(i.e., the predicate must include at least one equality constraint between 

attributes of both input iterators). The inputs to Merge - J o i n  must be sorted 

on the attributes in the equality constraint. As with the other join operations, 

Me r g  e  - J o i n  can also handle unary selection predicates and arbitrary 

projection lists, to allow combination with projection and selection operations. 

6) Sort :  The S o r t  algorithm takes a single iterator argument and one or more 

attributes and produces the result of sorting its input stream on the given 

attributes. S o r t  materializes its input, performs a standard Quicksort on the 

materialized set, and outputs the result as an iterator stream. The requirement 

of materialization means that this operation can be expensive in terms of both 

latency and resource consumption. In Paradox, S o r t  is used purely as a 

"glue" operator or "enforcer" (Graefe 1993) to ensure that input arguments to 

a Merge - J o i n  are sorted as required. 

7) Para - Join: The Para  J o i n  operator essentially pushes a full join 

operation to a remote service provider. The operator takes an iterator as its 

left input, a service call as its right input, and a binary join predicate over its 

two inputs. It pushes the service call specification and the join predicate to 

the remote service provider. It then pushes the entire left input to the service 

provider as an iterator stream. As with our other join algorithms, projection 

and selection can be merged into this operator. This operator can only work 

when supported by the Para  J o i n  capability of the remote service. If the 

service provider does not directly accept an iterator stream, but, rather. it 

materializes the left hand side before performing the join, this requirement is 

masked by a source wrapper. Para  - J o i n  can be used to implement a 



complete join or a semi-join operation in which the join must be completed 

locally at the Paradox mediator. 

8) PAlert: The PAlert operation is responsible for monitoring change 

events, optionally applying conditions to these events, and returning an 

identifier that allows a PGe t to retrieve the data associated with an event 

ocurrence. 

9) PAlertNGet: The PAler t NGe t operation is responsible for monitoring 

change events, optionally applying conditions to these events, and retrieving 

associated data in iterator form. 

Both the PA1 e rt and the PAle rtNGet operators must cope with 

heterogeneous source capabilities in the process of providing their functionality. We 

explain the workings of these operators in detail in Section 4.4. 

Table 4-3 show the alternative physical operators that can be chosen to implement 

operators in the logical algebra of the Paradox system. Note that L Jo in D limits the 

possible join algorithms that can be chosen to a subset of those that can implement a 

LJoin. Note, also, that Sort does not appear in this table, since it is a glue operator, 

with no direct logical analog. Sort operations appear in physical plans only where they 

are needed to enforce a sort order for the Merge - Join operation. 

Table 4-3: Logical Operator to Physical Operators Mapping 
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Logical 

LGet 

LSelect 

LProj ect 

LJoin 

LJoinD 

LAlert 

LAlertNGet 

Physical 

PGet 

Sel - Proj 

Sel - Proj 

Local - NLJ, Remote - NLJ, 

Merge - Join, Para - Join 

Remote NLJ, Para Join - - 

PAlert, PAlertNGet 

PAlertNGet 



4.4.2 Logical to Physical Plan Mapping 

The final stage of physical plan creation in Paradox is the mapping of the logical plan to a 

physical plan that can be run against the execution engine. The primary task in this 

process involves selecting physical join algorithms for each logical join in the plan. 

Decisions are also made on the physical operators used to implement monitoring, on 

merging selections and projections into joins where appropriate, and on inserting "glue" 

operators if necessary. Paradox employs a capability-driven approach together with a 

heuristic cost model to accomplish this task. More sophisticated cost models and more 

exhaustive enumerations of physical plans could be incorporated into our system. Our 

goal in this module of the Paradox system is not to break new ground or to demonstrate 

the best specific cost-based approach to this task, but rather to demonstrate that a cost- 

based approach is feasible and desirable. 

SelectJoinsAndAlert (Logical - Plan Tree T )  { 
(0) for each Join Node, J, in T{ 
(1) LC is Leftchild, RC is Rightchild 
(2) if (isDelta (LC) ) then getAlert (LC) <- PAlertNGet; 
( 3 )  if (J is LJoinD) then 
(4) if (isDelta (RC) ) then 
( 5 )  adjustconditions (getAlert (RC) , RC) ; 
(6) getAlert (RC) <- PAlert or fail; 
( 7 )  J <- ChooseDJoin (J, LC, RC) ; 
(8) else / /  J is LJoin 
(9) if (isDelta (RC) and isLAlertNGet (getAlert (RC) ) then 
(10) J <- ChooseNonDJoin (J, LC, RC) ; 
(11) else if (ICJI+(LCI < IRCI) ) then 
(12) J <- ChooseDJoin (J, LC, RC) ; 
(13) if (isDelta (RC) ) then 
(14) adjustconditions (getAlert (RC) ,RCJ ; 
(15) getAlert (RC) <- PAlert; 
(16) else 
(17) J <- ChooseNonDJoin; 
(18) if (isDelta(RC)) then 
(19) getAlert(RC) <- PAlertNGet; 
1 

Figure 4-11: Physical Join and Alert Selection 



The physical plan creation process first traverses the left-deep logical plan tree 

bottom-up, transforming each logical join node into a physical join algorithm. If the plan 

contains an LA1 e r t node, then the corresponding LGe t node and its parent join node 

require special handling. The transformation algorithm follows a set of cost-based 

heuristics. The algorithm is shown in Figure 4-1 1. 

The algorithm begins by checking the special case where the leftmost child is an 

LGe t containing a delta form (Line (2)). In this case, we make the corresponding alert 

operator into a physical PA1 e r t NGe t operator. Note that a PA1 e r t in this case would 

simply require an additional, unnecessary message exchange. Line (3) checks if the 

current join is dependent. If so, we first test for the special case that the right child is an 

LGet containing a delta form. If it is, we make the corresponding alert operator into a 

PAlert and we move any conditions not supported by the PAlert to the LGet, via the 

call ad j ustconditions ( ) (Lines (5)-(6)). Note that the attempt to make the alert 

operator a PAler t will fail if its logical form was a LA1 ert NGet . A logical 

LA1 e r t NGe t cannot pass an iterator into the right hand side of a dependent join. We 

complete the handling of a L JoinD node by choosing a dependent join algorithm (Line 

(7)). 

If the current join node is an L Join, we check for the special case that the right 

child is a delta LGe t and the corresponding alert is an LA1 e r t NGe t (Line (9)). In this 

case, we must choose a non-dependent join algorithm (Line (1 0)). Otherwise, we make a 

cost-based choice between a dependent join or a non-dependent join based on network 

data transfer (Line (1 1)). If a dependent join is chosen, we choose a dependent join, and 

if the right child is a delta LGet, we make the corresponding alert a PAlert and adjust 

conditions (Lines (14)-(15)). Otherwise, we choose a non-dependent join, and if the right 

child is a delta LGet node, we make the corresponding alert a PAlert NGe t (Lines 

(17)-(19))- 

The algorithm shown in Figure 4-1 1 depends on two ancillary functions: 

ChooseDJoin 0, shown in Figure 4-12, and ChooseNonDJoin ( ) , shown in Figure 

4- 13. Choosing a dependent join via ChooseD Join ( ) is very simple; we simply prefer 

a Para - Join to a Remote - NL J if it is supported by source capabilities. Choosing a 



ChooseDJoin(Join J, Child LC, Child RC) { 
(1) if (RC supports Para Join) then 
(2) return Para - Join(~T LC, RC); 
(3) else 
(4) return Remote - NLJ (J, LC, RC) ; 

1 

Figure 4-12: ChooseDJoin() Function 

ChooseNonDJoin(Join J, Child LC, Child RC) { 
(1) let Merge Cost = 

(2) if ( ~ o t S o r t e d ( ~ ~ )  ) ? (  ILCI*LogILCl) :O + 
(3) if (Notsorted (RC) ) ? ( I RC I *Log I RC I ) : 0 
(4) let Local NLJ Sorted - Cost = 

( 5 )  if ( ~ o t s o r t e d ( ~ ~ )  )?(lRCI*LoglRCI) : O  + 
(6) ILCI*Log(IRCI) 
(7) let Local NLJ Cost = ILCI*IRCI 
(8) if Merge Cost-is least 
( 9 )  return-~er~e-~oin(J, LC, RC); 
(10) else if (Local NLJ Sorted Cost is least) 
(11) return Local-~L~-~orted(~, LC, RC) ; 
(12) else if (Local-~L~-~ost least) 
(13) return ( ~ o c a i  NLS(J, LC, RC); 

1 

Figure 4-13: ChooseNonDJoin() Function 

non-dependent physical join algorithm via Choo s eNon D J o  i n  ( ) is a bit more 

complicated. We consider a Merge - J o i n  and two versions of the L o c a  1 - NL J 

algorithm, one in which the right argument is sorted, and one in which it is not. For the 

sake of comparison, the cost of Merge - J o i n  is assumed to be dominated by sorting 

costs (lines (1)-(3)), while the cost of sorting (if necessary) plus the costs of repeatedly 

scanning the inner table are considered for the L o c a l  - NLJ algorithms (lines (4)-(7)). 

Note that we consider the "interesting property" of sort order, only adding the sort cost if 

the input is not sorted already. Data transmission will be the same regardless of the non- 

dependent join algorithm chosen, so it is disregarded as a cost factor. S o r t  operators are 

inserted as needed, at this stage, though this step is not shown explicitly in Figure 4-1 3. 



Note that by defining separate operations for alerting and computing change data, 

we are able to generate a more flexible range of plans, and we will often be able to 

choose a more cost-effective plan. Yet we are still able to expose relevant costs when 

source capabilities dictate that these two operations are inextricably intertwined. We 

implement this process with relatively simple cost-based rules in Paradox. But the same 

approach could be used effectively in the context of a state-of-the-art cost-based 

optimization engine. 

Once the join and alert algorithms have been chosen, one final pass is made over 

the leaf nodes of the plan tree to finalize the handling of sorting, selection and projection, 

and monitoring. For each leaf PGet node, if sorting is supported by the source and if a 

sort node exists between it and its nearest ancestral join node, the sort is merged into the 

leaf node. Then, if any selection or projection is in the leaf is not supported by the 

source, it is pulled out in the form of a Se 1 - Pro j node. The Se 1 - Pro j node is 

pushed into the join node above it if it does not jump past a materialization in the process. 

This strategy is based on the (conventional) heuristic that reducing the amount of 

materialized data reduces plan cost. That is, a Sel - Pro j node does not leap over a 

S o r t  node, nor is a Se 1 - Pro j merged into the right hand side of a Loca 1 - NL J node. 

Keeping selection and projection below materialization saves on materialization cost and 

memory footprint. Returning to our example, working from the logical plan of Figure 4- 

10, we have two join algorithms to choose. Proceeding bottom-up, the first join must be 

dependent, and the classifieds service does not support the Para  J o i n  operator, so we 

choose a Remote - NL J. Moreover, since the AClassiJied LGe t node is the right child 

of a dependent join, the corresponding alert must become a PAlert . Note, also, that 

since the monitoring capability of the Classified service does not support projection, the 

projection becomes part of the AClasszfied LGet node. The second join does not have to 

be dependent, but the estimated cardinality of the current join plus the estimated 

cardinality of the left child (the previous join, in this case) is less than the cardinality of 

the right child. Therefore, by line (1 I )  of Figure 4-1 1, we choose to make the join 

dependent. In this case, we choose the Para  - J o i n  operator because the auction service 

supports it. Finally, traversing the leaf nodes finds that selections and projections are not 

supported by the Laptop service, so selection condition R a t i n g  >= 3 and the 



projection of the D e  s c attribute must be handled in the Remote - NL J note. Other 

projection operations in the leaves of the plan are supported by the corresponding 

services. The resultant physical plan is shown in Figure 4-1 4. 

PARA JOIN 

ABuyingOpp(Cid, ItemNo. Make, 
Model, -Pr. -Bid, MC), 
CBid > -Pr) 

Figure 4-1 4: Complete Physical Plan for ABuy ingOpplAClassified 
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4.5 Monitoring Change Events 

REMOTE NLJ 
tmp(Cid, Make, Model, Pr, -Rating, 
- Desc, MC), -Rating >= 3 

Following the generation of a suite of physical plans, the complete, "from 

scratch" plan can be executed immediately, but each additional plan in the suite must be 

deployed into the Paradox runtime environment. This process involves instantiating the 

physical monitoring operation (either a PAlert or a PAle r t NGe t) that tracks the 

appropriate service change event and condition that triggers the plan, and attaching the 

plan to this operation. 

The two alerting operators share a great deal of functionality. In fact, they can be 

thought of as variations of a single operator, which we will refer to, generically, as the 

A1 e r t operator. Each A1 e r t operator is instantiated with a service change event at a 
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single service and (optionally) a condition on this event, which represents the possibility 

that the overall Paradox request may have fired. The job of the operator is to 

continuously monitor a specified service change event and condition in the face of 

heterogeneous service capabilities and, whenever such an event occurs, to pass needed 

variables or data to the associated plan that evaluates the overall condition and to initiate 

the evaluation of this plan. If possible, the operator must perform this service in a 

manner that minimizes response time and resource utilization, and that scales to a large 

number of requests. In this section we describe the general mechanism involved, how 

heterogeneous capabilities are handled, and how multiple events and conditions over the 

same service are handled in a scalable manner. 

4.5.1 Basic Mechanism 

In Paradox, both the PA1 er t operator and the PA1 e r t NGe t operator are implemented 

in the Java programming language using the (single) Ph ys A1 e r t class. A single 

PhysAlert instance handles all of the monitoring for a given service provider, which is 

likely to encompass many A1 er t operators. The class provides an A1 e r t ing interface 

that includes two methods: 

Id SetAlert(EventType, Condition, Alertclient); 

Void RemoveAlert (Id) ; 

The Set A1 e r t ( ) call begins a new monitoring process. It takes an optional 

EventType argument (which may be null if only one event type is supported), a 

conjunct of literals and (possibly) comparison predicates, Condition, that specifies the 

service change event and condition to be monitored, and an object that implements the 

Alert C 1 i en t interface, which will receive event notifications and associated 

parameters when the specified event and condition are satisfied. SetAlert ( ) returns 

an alphanumeric identifier, ~ d ,  which must be unique with respect to the mediator. A 



call to RemoveAle r t ( ) ends the instance of the monitoring process that corresponds to 

its Id argument. 

Notification occurs via the A1 e r t C 1 i en t interface. This interface contains a 

single asynchronous callback from the PA1 e r t operator: 

Void Alert(AlertId, EventId, ResultHandle); 

In this call the identifier, Alert Id, refers to the alert that this notification pertains to 

(the same identifier returned by the Set A1 ert ( ) call that created it). The identifier, 

Event Id, if it is non-null, uniquely identifies the change event at the source, and can be 

used by a PGet operator to retrieve the data associated with the event. The final 

parameter, Re s u  1 t Handl e, if it is non-null, is a handle to a non-empty iterator over the 

data associated with the change event. If the data associated with a monitored change 

event is the right child of a dependent join, the corresponding Alert ( ) call will return a 

non-null Event Id ,  and a null-valued Result Handl e. The class implements a 

PAle rt operator. Otherwise, the Event Id will be null, and a non-empty, non-null 

Result Handl e is passed along. The class implements a PAle rtNGe t operator. In 

the former case, the instantiated Event Id becomes a selection condition that allows the 

right hand side of a dependent join to grab the correct data associated with the change 

event that triggered plan execution. In the latter case, the non-empty Re s u 1 t H a nd 1 e is 

inserted directly as a leaf node into the triggered plan execution. 

The final piece to this puzzle is the object that receives the notification. In 

Paradox, the Pl anManager object (an object of the Pl anManager class) implements 

the Alert Cl i ent interface, and it is passed to each PAlert operator in every 

SetAlert ( ) call. The PlanManager object tracks all of the active plans by their 

associated Alert Id 's  by storing them in a hash table. When an Alert ( ) call is made 

on the Pl anManager, the associated plan is retrieved, the Event I D and 

Result Handle parameters are passed to the plan, and a thread is forked to execute the 

plan. Note that while Paradox is configured with a single PlanManager, a load 



balancing scheme that operates over multiple P 1 a nMa na ge r objects could be deployed 

to help system performance and scalability. 

4.5.2 Handling Heterogeneity 

The Ph y s A1 e r t class handles a collection of heterogeneous source capabilities in 

providing the uniform Alerting interface described above. Heterogeneity in 

monitoring at a source can be due to policy considerations (e.g., for security or efficiency 

reasons), to the semantic nature of the service being provided (e.g., access to a database, a 

complex computational function or predicate, a sensor or positioning system), or to the 

capacities of the computer systems involved (e.g., a data store may be a flat file, a legacy 

network or hierarchical database, or a modern relational system with advanced active 

functionality). In Chapter 3 we described how we model heterogeneous monitoring 

capabilities in metadata. Here we describe how the PhysAlert class adapts to the 

attributes of this model in supporting the Alerting interface. We describe important 

calls between the source of the change event being monitored and the Alert operator 

that does the monitoring. Note that the calls supported by the source (or the source 

wrapper) vary depending on source capabilities, as does the monitoring and retrieval 

protocol. To some extent adapting to heterogeneity is a responsibility shared between the 

plan generation process and the PhysAlert class. But the PhysAlert class bears the 

brunt of the burden. 

Recall that our model breaks out along three nearly orthogonal dimensions: 

monitoring language, external notification, and information delivery. The PhysAle r t 

class adapts its processing to each of these dimensions. 

Dimension 1: Monitoring language. The monitoring language dimension describes the 

operations supported by a service in monitoring change events. All sources must provide 

access to the basic service call of any service it provides (possibly with binding pattern 

restrictions), but more advanced services may support declarative composition with other 

service calls, or additional predicates or operations on top of the basic call. 



If a PhysAlert object receives a condition on a service change event that is 

completely supported by the service's monitoring language, it simply registers the 

condition with the service and processes alerts in the normal manner based on the other 

dimensions of the monitoring capability. If7 instead, the PhysAlert object receives a 

condition that contains operations not supported by the monitoring language at the 

source, the unsupported operations are stripped from the original condition, the remaining 

condition is registered at the source, and the unsupported operations are applied locally in 

a post-processing step. 

Recall that our plan optimization process considers source capabilities when it 

creates an A1 e r t operator. This process guarantees that any condition passed to a 

PAlert is completely supported by the monitoring language at the source, and that the 

only operations that may be passed to a PAle r tNGe t operator that may not be 

supported at the source are select or project conditions. When such unsupported 

operations occur, normal alert processing will produce an iterator over change data that 

may be a superset of the data that satisfy the overall condition. The Alert operator 

creates a Sel - Pro j operator that takes this iterator as its input, and that implements the 

unsupported operators. When a notification from the source occurs, the Sel - Pro j is 

invoked as the root of an "alert plan", and when the first data item (if any) is produced by 

this operator, the Se 1 - Pro j is passed as the Result Handle in the corresponding 

A1 e r t ( ) call to the plan manager. Notice that, under this scenario, it is possible for the 

mediator to receive notification of a change event but for the associated plan to never be 

initiated. This situation can occur if all of the associated change event data is filtered out 

downstream, in the local processing stage of the Alert operator. 

Table 4-4 summarizes the service (or service wrapper) calls invoked by the 

A1 e r t operator relevant to this monitoring dimension. 

Dimension 2: External Notification. Recall that there are two components to the 

external notification capability: whether the agent supports proactive notification, and 

how the form of notification (if any) is interpreted. 



Table 4-4: Service Calls for Monitoring Language Dimension 

Service Wrapper Call 

Id SetAlert(T, Cond, PAlert) 

Id Se tA1ert (Tr Condr 

The first element in the pair indicates whether a notification is actively pushed to a 

monitoring client. An increasing number of new and advanced services provide active 

notification. But services that wrap legacy systems, and other less advanced services, are 

unlikely to provide this capability. 

If notification is actively pushed, then, when a Set A1 e r t ( ) call is made, the 

A1 er  t operator merely registers a callback with the service (possible via a source 

wrapper) and waits for a notification. If notification is not actively pushed, then the 

Alert operator must actively poll the source for changes. The polling interval is an 

administrative parameter that may be overridden on a service-by-service basis. Precisely 

what is involved in this polling process depends on the second notification parameter. 

The second parameter indicates whether any form of change notification exists, and if 

so, how it should be interpreted. Possible values are "Full", "Possible", and "None". A 

value of "Full" means that once notification occurs at the A1 e rt operator (either actively 

or passively), we are sure that a change event meeting the specified condition has 

occurred. Advanced services, including services built on top of recent relational database 

offerings, can be expected to support "Full" notification. Furthermore, a value of "Full" 

implies that at least one information delivery capability is provided (i.e., either "Active", 

"EPull", or "TPull"; "Full" is incompatible with an information delivery capability of 

"None"), which allows us to retrieve the change event data either via an identifier, a time 

interval, or an iterator passed to the operator with the notification. 

A value of "Possible" or "None" indicates that additional processing is needed to 

determine if the specified condition has occurred. "Possible" would characterize systems 

that can indicate that some change has occurred without knowing the exact nature of the 

change (e.g., a file with a "last modified" attribute). "None" represents a baseline default 

for low-capability services and legacy systems. The nature of this additional processing 

Comment 

Alerting process returns an event id to the 
PA1 e r t operator. 
Alerting process returns an iterator to the 
PAlertNGet operator. Post processing 
may be needed. 



is dependent on the information delivery capabilities of the source. If the value of the 

parameter is "Possible", such processing occurs only when the Alert has been notified 

of a possible change event, and any information delivery capability except "Active" is 

supported. If the parameter value is "None", the processing occurs at every polling 

interval, and the information delivery capability must be either "TPull" or "None". 

Dimension 3: Information Delivery. The final monitoring dimension describes the 

level of support provided by the source in delivering the data associated with a condition 

or event occurrence. We have mentioned dependencies between this dimension and 

Dimension 2. Indeed, the dimensions we have outlined are not entirely orthogonal. 

There are three possible capabilities in this category, which may be offered in 

combination. 

Active information delivery, represented by the value "Active," indicates that the data 

associated with a condition firing are actively pushed to the client together with change 

notification. This capability would be typical of recent RDBMS's designed to support 

web services, publish-subscribe systems, and other "push" technologies. Notification can 

be "push or "nopush" when this capability is supported, but no separation of messages 

for change event notification and data delivery is required or supported. Active 

information delivery implies "Full" notification. That is, the data in the iterator is 

guaranteed to meet the conditions specified in the A l e r t  operator. If "Active" delivery 

is an option and the A 1  e r t operator is a P A 1  e r t N G e  t, then this option will be chosen 

for data delivery. 

Event-specific pull, represented by the value "EPull", indicates that an event 

identifier is provided with an event notification that allows data associated with the event 

to be retrieved at a later time via the query capability of the service. For instance, in our 

example, if event-specific pull is supported and we are alerted to a change event on the 

Classzfied service with identifier Eld, a PGe t operator with service call, AClasszJied(EId, 

Cid, Make, Model, Seller, Pr, MC), can be used to retrieve the associated data. Note that 

"Full" notification usually accompanies the "EPull" capability, but it is not strictly 

required. "Possible" notification is conceivable in combination with "EPull", which 



would indicate that the service in question partitions change data in a course-grained 

manner by id. Notification can be active ("push") or inactive ("nopush"). If the "EPull" 

capability is offered it will be chosen under two conditions: if the A l e r t  operator is a 

P A 1  e r t  , or if it is a P A 1  e r  t N G e  t but the "Active" capability is not supported. In the 

latter case querying for change data by Eld occurs within the PA1 e r t N G e  t operator. 

Timestamp-based pull, represented by the value "TPull", indicates that a service 

supports querying (and notification) of change data over a time interval. Information 

sources that provide historical information, or access to log files, or that track their 

evolving state as a series of update records, can offer this capability in a natural way. 

Notification can be active or passive, but it must include a service timestamp associated 

with the change event being reported. (A globally synchronized clock would allow us to 

remove this requirement.) An A l e r t  operator uses "TPull" by tracking the timestamp of 

any previously-retrieved change data and querying for future change data from that time 

to the latest notification time. The P A l e r t  implementation can use "TPull" with "Full7' 

notification by maintaining a mapping from unique event identifiers to the time interval 

encompassing the corresponding change event. From the point of view of the A l e r t  

operator, the "TPull" capability is a less preferred alternative to "EPull". "TPull" is only 

chosen when it is the sole alternative. This preference for "EPull" is somewhat arbitrary, 

and is based on the assumption that if an "EPulI" capability exists it is more likely to be 

highly optimized. 

Finally, no information retrieval support, represented by the value "None", means that 

the A 1  e r t  operator must rely on the query capabilities of the source to perform "Query 

plus Diff' processing to retrieve the data associated with the monitored condition. 

"Query plus Diff' processing means that the source is queried for all of the data that 

meets the monitored condition at the current time, and this result is compared with a 

previous result of the same query that has been materialized within the A1 e r t  operator. 

If the result has changed, then the alert fires and an iterator over the changed data is 

passed in an A l e r t  ( ) call to the P l  anManager. Note that no information retrieval 

support is highly unlikely to occur together with "Full" notification, but it is not strictly 

forbidden. "Possible" notification (which is much more likely) or "Full" notification 

implies that "Query plus Diff' processing occurs only when a notification occurs. If no 



notification is supported, "Query plus Diff' processing must be executed at a regular 

interval. 

Note that "Query plus Diff '  processing is typically very expensive. A system such as 

Paradox has poor scaling properties over services that require this kind of processing for 

change detection and computation. For reasonable scalability, such sources should be 

employed sparingly, and even then only where significant notification latency can be 

tolerated. 

Table 4-5 summarizes the active notification callbacks from Service (or wrapper) 

to Alert operator that apply to the external notification and information delivery 

dimensions of a service monitoring capability. Table 4-6 summarizes the equivalent 

passive notification calls from Alert operator to Service (or wrapper). 

Table 4-5: Alert callbacks related to External Notification and Information Delivery Capabilities 

Service Wrapper Callback 

Alert. alert (Aid, Eid) 

PAlertNGet .alert (Aid, It) 

Alert. alertTS (Aid, Ts) 

Alert. alert (Aid) 

Comment 

Active ("push") notification callback from 
service wrapper to (either kind of) A1 er t 
operator. Passes an event identifier. Implies 
"Full" or "Possible" notification. Implies 
"EPull" as an information delivery option. 
Active ("push") notification callback from 
service wrapper to PA1 e r t NGe t operator. 
Passes an iterator over change event data. 
"Full" notification is required, as is "Active" 
information delivery. 
Active ("push) notification callback from 
service wrapper to Alert operator with 
timestamp. Implies "Full7' or "Possible" 
notification, and "TPull" as an information 
delivery option. 
Active ("push") notification callback from 
service wrapper to Alert operator. Implies 
"Full" or "Possible" notification, and "None" 
as an information delivery option. 



Table 4-6: Passive Alert Calls Related to External Notification and Information Delivery Capabilities 

Service Wrapper Call 

Boo1 eventFired (Aid, Eid) 

Boo1 eventFired (Aid, It) 

Boo1 eventFired (Aid, Ts) 

Boo1 eventFired (Aid) 

4.4.3 Handling Multiple Alerts on a Source 

Comment 

Passive notification call from A1 ert operator 
to Service. If true, event occurred and event 
identifier is passed. If false, event did not 
occur. Implies "Full" or "Possible" 
notification. Implies "EPull" as an information 
delivery option. 
Passive notification call from PA1 er t NGe t 
operator to Service. If true, event occurred and 
iterator is passed. If false, event did not occur. 
Implies "Full" notification, and "Active" 
information delivery. 
Passive notification callback from Alert 
operator to Service with timestamp. If true, 
event occurred and timestamp of event is 
passed. Implies "Full" or "Possible" 
notification, and "TPull" information delivery 
option. 
Passive ("push") notification callback from 
service wrapper to Alert operator. Implies 
"Full" or "Possible" notification, and "None" 
as the information delivery option. 

Along with providing the necessary wrapping to produce a uniform alert interface 

over a wide range of sources, the Ph y s A l e  r t class also optimizes the handling of 

multiple alerts over a service by merging them where possible. Most modern databases 

and other information sources that support event and condition-based alerts or triggers 

make no effort to merge processing or result delivery over multiple triggers. Two alerts 

on such a source with identical conditions will evaluate the condition twice and return the 

result twice. This behavior is especially costly in a distributed environment where 

bandwidth conservation is important. Moreover, the result will be processed redundantly 

through two distinct iterators at the mediator, and it may be materialized redundantly 



there as well. In network-based services such as those integrated by the Paradox system, 

monitored conditions can be similar in nature, displaying a high degree of overlap. Thus 

the opportunity for optimization is significant. Merging is essential where sources do not 

provide an advanced monitoring capability, for example, where "Query plus Diff" 

processing can be merged. 

A generic alert-merging scenario is shown in Figure 4- 1 5 below. Suppose two 

alerts are set that pertain to the same service change event, but have different conditions, 

A and B, respectively. Without merging, two leaf iterators will be produced, one for each 

event-condition pair. With merging, a single leaf iterator will be produced that applies 

the disjunct of the conditions being merged, A or B. This iterator will be shared between 

two filters, which apply each of the original conditions. Data that meets both conditions 

is sent and processed redundantly in the non-merged case, but only once in the merged 

case. Note that additional materialization may occur in the merged case, since the two 

client iterators of the shared iterator may consume input at different rates. 

Figure 4-15: Unmerged Merged Alert Conditions 

Paradox allocates at most one PhysAlert object per service provider. The 

PhysAlert object manages all of the alert processing for its provider, including making 

and implementing all merging decisions. Each time a PhysAlert object receives a 

S e t  A1 er t ( ) call, it evaluates whether the new alert may be merged with one or more 



existing alerts. An alert, A] ,  may be merged with an alert, A2, if A1 and A2 are 

mergeable. 

Definition 4-1 (Mergeable Alerts): Two alerts with conditions defined as conjunctive 

queries with comparison predicates over a set of service calls, are mergeable if 

1.  They contain exactly the same set of service calls and change types. 

2. They contain exactly the same binary predicates between service calls. 

3. They share one or more projection attributes. 

4. The corresponding PGet operation is not the right hand side of a dependent join. 

5. The estimated data size of the intersection of the two conditions is above a 

configurable threshold for the given service provider, 0. 

Because merging is not without risk or cost, Paradox takes a conservative 

approach to determining mergeability. The policy implied by Definition 4-1, in essence, 

is to consider merging conditions that differ only in their unary (selection) predicates 

(and possibly in their projection attributes). Furthermore, we do not attempt to merge an 

alert if its associated leaf operator is the right hand side of a dependent join. Such a 

merger would require that the dependent join be changed to a non-dependent join. Even 

where binding-pattern constraints do not prevent such a change, Paradox deems changing 

an optimized plan to be too risky. Note that a decision of whether or not to change a plan 

to support alert merging could be made in a cost-based manner. But, again, Paradox 

currently relies on a simple heuristic. Finally, the effectiveness of merging depends 

critically on the degree of data overlap between the conditions being merged, and thus 

(estimated) condition overlap is an element of the mergeability criterion. The overlap 

must exceed a configurable threshold, 0. Paradox uses a default threshold of 0 = 500K 

bytes, but this threshold may be overridden (by a system administrator) on a per-service- 

provider basis. 

Note that a new alert may be mergeable with more than one target alert. In this 

case, all of the targets and the new alert are merged together. If an alert that is a 



component of a merged alert is removed, because its corresponding request has been 

deleted. the remaining component alerts must be reevaluated for mergeability. 

The goal in merging a set of alert conditions is to produce a minimal merged alert 

condition that allows easy derivation of the original alerts. Since mergeable alerts may 

differ only in their list of projected attributes and in their selection conditions, we simply 

take the union of the projected attributes and the disjunction of the selection conditions to 

create the merged alert condition. To derive the iterator handle for each original alert, 

then, 'we create a S e l  - P r o  j operator for each original condition that applies its 

respective projection and selection conditions. We then place each of these operators on 

top of the shared P G e  t operator for the merged alert condition. 

We return to a modified version of our example. Assume that there are no 

binding pattern restrictions on the AClasslJied service call, and that a Local-NLJ 

algorithm had been chosen for joining AClassiJied with LapTop. Call our original alert 

A l .  

A l :  (AClassif ied ( T I  Cid,Make,Model, - Seller, Pr,MC) ) 

When A1 is first encountered, there is no P h  y s A l e r t  object associated with the 

classifieds service, so one is created, and the S e t  A l e r t  method is called to initiate A l .  

The P h y s A l e r t  object registers the alert condition with the classifieds service. At this 

stage, any time a AClasslJied change event occurs, the P h y s A l e r t  object initializes an 

iterator that contains the data associated with the event, and passes a handle to that 

iterator in an A l e r t  callback to the plan manager, which initiates execution of the 

physical plan that evaluates the overall request. 

Now suppose we encounter a new alert, A2, having the following condition: 

A2: (AClassified (Id, Cid,Make,Model, Seller, Pr,MC) , Pr >= $4000) 

Assume the leaf plan node corresponding to this alert is the child of a non-dependent join. 

When A2 is encountered we make a S e t A l e r t  call to the existing P h y s A l e r  t 



operator. The operator finds that A2 is mergeable with A1 . A new alert is registered 

with the classifieds service. This new alert is different from the original because an 

additional projection attribute, S e l l e r ,  must be returned in the data. Now when a 

AC 1 a s s i f i ed change event occurs, a shared iterator is initialized and passed as the 

child of two additional new iterators: The first projects the S e 11 e r  attribute away, the 

second applies the selection condition ( Pr >= $4 0 0 0 ) . Each of these iterators is run 

to its first output (if any), and then passed in an A1 e rt ( ) callback to the plan manager. 

4.6 Chapter Summary 

In this chapter we explained the major components of the Paradox system, describing the 

process of plan generation and optimization, and describing the execution engine that is 

targeted by the resulting plans, including a detailed discussion of the implementation of 

monitoring functionality using the Ph y s  A1 e r t class. While the process is broadly 

similar to that of database query processing, there are important differences. We 

introduce new logical operators to handle monitoring, and specialized physical operators 

to handle integration, heterogeneity and monitoring. We maintain a separation of 

monitoring a change event and retrieving the data associated with a change event, which 

provides flexibility in monitoring complex conditions that allows for more efficient 

execution. We also support the merging of monitoring conditions, which provides for 

greater scalability and efficient resource utilization. This merging process is our first 

look at "scaling via sharing" in this thesis, a theme that we will return to in depth in 

future chapters. 



Chapter 5 

An Example from the 
Command Post of the Future 

The Command Post of the Future research project (CPOF), initiated and funded 

through DARPA, has provided a good testing ground for the Paradox system. We have 

worked with researchers at OGI in the Distributed Systems Research Group and at the 

Center for Human Computer Communication (CHCC) to develop application scenarios 

and system components that could be used in conjunction with Paradox's integration 

capabilities to support the requirements of CPOF. We describe one such scenario here to 

show how the pieces of the Paradox system come together in a real application. 

One CPOF scenario involves the evacuation of personnel from a city under rebel 

attack. Military vehicles have been dispatched to the city to provide resistance and to 

help with evacuation. A sensor agent provides information on the changing positions of 

these vehicles. A fleet of HumVees is systematically combing the area in search of U.S. 



Nationals to be evacuated. The existence and locations of evacuees are being actively 

discovered by various means in real time. As each evacuee is discovered, he is 

designated for evacuation and assigned to a HumVee that is in a position to evacuate him 

quickly. A commander, in charge of making such designations, wants to be notified 

whenever one of the HumVees comes within a short distance of any undesignated 

evacuee. Figure 5-1 shows the software components involved. 
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Figure 5-1: CPOF Architecture 

5.1 Agents Involved 

As shown in Figure 5-1, this application scenario requires the integration of several 

disparate, networked service providers, and two integration components. Three agents 

provide relevant services: The Vehicle Sensor Agent, the Geography Agent, and the 



Evacuee Agent. In addition, the Open Agent Architecture, a multi-agent integration 

system developed by CHCC (Cohen 1994; Kumar 2000), is employed as a conduit to the 

evacuee agent. 

5.1.1 The Vehicle Sensor Agent 

The Vehicle Sensor Agent (VSA) provides information on military vehicles, their types, 

and their movements. The VSA provides movement data for hundreds of military 

vehicles within a given geographic boundary via the service call: 

Position(VehicleID, Location) 

Here VehicleID is a unique string-valued identifier, while Location is a string 

representation of a LatLon type, which provides the latitudinal and longitudinal 

coordinates of a vehicle's location. The Position12 call is dynamic, as vehicles being 

tracked can change their positions, and vehicles can move in and out of the sensor agent's 

geographic range. 

In addition to vehicle position data, the VSA provides information on the type of 

each vehicle in the fleet. This type information is provided via the service call: 

Vehicle(VehicleID, Vehicle Type) 

Again, VehicleID is a string-valued, unique identifier for a vehicle. VehicleType 

is the variety of vehicle, such as "Tank" or "HumVee", which is also string-valued. The 

Vehicle/2 call is considered dynamic since vehicles can be added to or removed from the 

fleet. However, a given vehicle's type can never change. Note that Paradox, as 

implemented, does not distinguish between a data-intensive service in which tuples can 

be added or deleted and one in which tuples can be modified. Later in this thesis, 

however, we will discuss a potential benefit to making this distinction. 



5.1.2 The Geography Agent 

A Geography Agent provides functions related to geographic calculations and 

conversions. For this scenario, two relevant service calls are provided: 

AddressAt(Address, Location) 

Distance(Location2, Location2, Distance) 

AddressAtl2 converts a string address, Address, to corresponding LatLon coordinates in 

the variable, Location, or vice-versa. This type conversion is needed since some services 

can only operate with a normal street address, while others can only operate with the 

special Latlion type. The call must be made with either Address or Location bound. The 

Distance/3 service takes two LatLon types, Location1 and LocationZ, and calculates the 

distance, in meters, between them. Distance13 requires that the two location arguments 

be specified. Both of these functions are static. 

5.1.3 The Evacuee Agent 

An Evacuee Agent provides information that tracks the status and location of personnel of 

interest. Two service calls are relevant here: 

Current(Person, Address) 

Undesignated(Person) 

Undesignatedll tracks the status of known evacuees that are not yet designated for 

evacuation. Current12 tracks the address of the last known location for the given person. 

Address here is a street address or building location within the city, which may require 

conversion to LatLon form for further processing. Person is a unique person 

identification number. Both of these calls are dynamic, as newly located personnel can 



be undesignated, and the location of personnel can change. CurrentM requires that the 

Person field be specified. 

5.2 Agent Implementation and Metadata 

We have implemented the three agents described above in order to test the Paradox 

system in this context. 

The Vehicle Sensor Agent was implemented using the Continual Query (CQ) 

system developed at OGI (Liu, Pu et al. 1998; Liu, Pu et al. 1999). As a Paradox service 

provider, the key capability provided by the CQ system is multi-relational triggering over 

an Oracle 8 relational database management system (Koch and Loney 1997). The VSA 

uses CQ to store and update vehicle type and position information in the database in the 

corresponding relations, Vehicle/:! and Position/2. Initial Vehicle/2 data comes from a 

file, and updated vehicle type information can be provided via the Oracle DBMS. 

Position data is more complex. The VSA receives a stream of simulated sensor data on 

vehicle positions and movements from the MODSAF system, a widely-used military 

simulation system (Cohen 2000). In general, the MODSAF stream can simulate the 

tracking of hundreds or thousands of vehicles. For our test scenario, we assume 300 

vehicles are being tracked. MODSAF refreshes the positions of these vehicles roughly 

once every 12 seconds. The VSA filters the incoming MODSAF stream and propagates 

position changes to the Position12 relation. The capability of CQ allows these two 

service calls to be declaratively composed as part of a single group, providing support for 

full querying and monitoring of select-project-join queries with comparison predicates 

over the two relations. A monitor on the position service, for example, reports a batch of 

position changes once every 12 seconds. A given batch of changes contains deletions of 

position data for vehicles that can no longer be tracked because they have moved out of 

range, additions of position data for vehicles that have recently come into range, and 

modifications of position data, modeled as deletions plus additions, for vehicles that have 

changed position within sensor range. These changes can be actively pushed to the 

monitor's client. Changes to Vehicle12 are far less frequent. The characteristics of the 



VSA are reflected in the Paradox metadata provided by this agent, which are listed in 

Table 5- 1 .  

Table 5-1: Metadata for the Vehicle Sensor Agent 

Note that a'number of metadata key values are intentionally not provided by the VSA. 

These include "CPU", "Selectivity", "Bandwidth", "Latency", and "IC". 

We implemented the Geography Agent as a simple Java RMI object that provides 

the AddressAtI2 and DistanceJ3 functions. Our agent does not support declarative 

composition of these calls, so they are provided within separate service groups. The 

Paradox metadata for the Geography Agent is shown in Table 5-2. 

Position12 Value 

"Position" 

2 

"VSN1" 

Partial 

1 [+, -1 > 
{project, join, comp) 

({project, join, comp}, 
(push, full), {active)) 

192 bytes 

3 00 

[300, 3001 

Null 

dynamic 

[("pos-ctl ", 1 per 12 secs, 1 OO)] 

Key 

"Service" 

"Arity" 

"Group" 

"CCF" 

"Modes" 

"Query" 

"Monitor" 

"Tuplesize" 

"Card" 

"ColVals" 

"KeyInfo" 

"Stability" 

''Change Type" 

Vehicle12 Value 

"Vehicle" 

2 

"VSNI" 

Partial 
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{project, join, comp) 

({project, join, comp) , 
(push, full), (active)) 

128 bytes 

3 00 

1300, lo] 

[[ill 

dynamic 

[("veh-ct 1 ", 1 per day, 2)] 



Table 5-2: Metadata for the Geography Agent 

"Key Info" 

"Stability" 

Finally, the Evacuee agent is implemented as an Adaptive Agent Architecture 

agent that holds data in a simple flat file. As with the Geography agent, the Evacuee 

agent provides its two calls in separate service groups. Active monitoring is supported 

for either call. The Paradox metadata for this agent is listed in Table 5-3. 

{[11>[21) 

static 

Table 5-3: Metadata for the Evacuee Agent 

{[1>21> 

static 

"KeyInfo" 

"Stability" 
{[I]> 

dynamic 

{ > 
dynamic 



Access to the capabilities of the Evacuee agent is mediated through the AAA 

Facilitator. The AAA Facilitator receives a Prolog-style predicate and passes it through 

to a distributed agent that can handle it, provided such an agent has registered its 

capability with the Facilitator's built-in directory service. The AAA Facilitator also 

provides blackboard-style memory access that can be used by connected agents to 

exchange information in a pre-arranged manner (Kumar 2000). We implemented a 

Paradox wrapper for AAA that allows Paradox to access the capabilities of any number 

of agents that are connected to a AAA Facilitator. Because the metadata employed by 

AAA is limited only to predicate names and their arity, we utilize the AAA blackboard to 

pass additional metadata from AAA agents to the wrapper. Such metadata is read from 

the blackboard by the wrapper, which then registers the equivalent metadata in PSM 

format with a network-resident directory service. Note that providing Paradox metadata 

in this manner involves a minor modification to a AAA agent, but it is not strictly 

required. But, naturally, the absence of such metadata may result in less efficient request 

execution. Furthermore, calls from the Paradox execution engine to a AAA agent 

involves the additional overhead of being routed through the AAA Facilitator. This 

overhead can be reflected in metadata for such agents, either provided by the wrapper, or 

observed by the monitoring process at the Paradox mediator. 

5.3 Request Processing 

A commander in this scenario wants to issue the following standing order: 

"Notify me whenever a HumVee comes within 2 kilometers of an undesignated person, 

and give me the relevant vehicle ID, person ID, the location of the person and the vehicle, 

and the distance between them." Given the set of network services described above, this 

standing order can take the form of the following Paradox request: 



NotifyMe (VehID, Person, Locl, Loc2, D) : - 
Vehicle (VehID, Type), Position (VehID, Locl) , 
Undesignated(Person), Current(Person, Addr), 
AddressAt (Addr, Loc2) , Distance (Locl, Loc2, D) , 
Type = "HumVee", D < 2000.  

When this request is submitted to the Paradox system, the request compiler 

produces the full execution plan shown in Figure 5-2. Note the existence of a Cartesian 

product in this plan (the LOCAL-NLJ operator). The Cartesian product is necessary due 

to the binding restrictions on the Distance / 3 predicate. 

I SEL PROJ I 
NotifyMe(VehID, Person, Locl, Loc2, D) :- 

tmpS(VehID, Person, Locl, Loc2, D), 

1 RXMOTE NLJ 1 
I -tmpS(VehlD, Person, Locl, Loc2, D) I 

LOCAL NLJ 
Distance(Loc1, Loc2, D) 

I -tmp4(Person, Addr, Loc2, VehlD, Locl) I I I 

Figure 5-2: Execution Plan for Full Request 

REMOTE NLJ 
-trnp2(Person: Addr, Loc2) 

PGet 
-tmp3(VehlD, Loc1):- 

Position(VehID, Locl), 
Vehicle(VehID, Type), 
Type = "Hurnvee" 

MERGE JOIN PGet 
AddressAt(Addr, Loc2) 

-Imp1 (Person, Addr) 

PGet 
Undesignated(Person) [sort I] 

PGet 
Current(Person, Addr) [sort 11 





operator to join AUndes ignat ed/ 3 with Current / 2.  This incremental plan differs 

from the full query plan, which used a MERGE - J O I N  to join Undesigna ted/ 1 and 

Current / 2. Along with the event identifier, AUnde s igna t ed adds the multiplicity 

count argument, - MC, which is carried up the tree to the result. 

SEL PROJ 
NotlfyMe(Veh1D. Person. Locl . Loc2 D. -MC) - 

tmpj(VehlD Person, LOCI . Loc2. D, -MC), 
D < 2000 

REMOTE NLJ I tmpl (Veh1D Person. L O C I  Loc2, D M C )  

LOCAL NLJ 
-tmp4(Person. Addr, Loc2, VehlD. Loc1,MC) 

I REMOTE NLJ 
PGet 1 I tmpl (VehlD,  LOCI):- 

Position(VehID, Locl), 
Vehicle(VehID, Type), 

I REMOTE NLJ I 1 PGet I 
L I 

PAlert PGet PGet 
Undesignated(Pers0n) A ~ u r r e n t ( ~ l e r t l ~ ,  Person, Addr, -MC) 

tmpl (Person, Addr, -MC), 

Figure 5-4: Execution Plan for bJotify~e/A~urrent 

AddressAt(Addr, Loc2) 

A second monitoring plan is shown in Figure 5-4. This plan is executed 

ID = AlertlD I - 

whenever a PAlert operator on Cur rent / 2 fires. Again, this plan differs from the 



full query plan of Figure 5-2 in that the Merge Join of Undesignat ed/ 1 and 

Current /2 becomes a remote nested loops join, but this time ACur rent / 3 becomes 

the inner argument of the join. 

SEL PROJ 
Not~fyMe(VehlD Person. Locl. Loc2. D. -MC) - 

tmpS(VehlD. Person, Locl. Loc2, D. -MC). 
D < 2000 

I REMOTE NLJ I 
tmpj(VehlD, Person, Loc I, Loc2, D, -MC) 

/ \ 

LOCAL NLJ 1 - 
tmp4(Person, Addr, Loc2, VehlD. LOCI ,MC) 

Current(AlertlD, Person, Addr, -MC) c 

PAlert 
APtmp3(VehID, Loc I, -MC) :- 

Figure 5-5: Execution Plan for ANotify~e/A - tmp3 

REMOTE NLJ 

- trnp2(Person, Addr. Loc2. -MC) 

The final monitoring plan in the suite is shown in Figure 5-5. Here we take 

advantage of the CQ agent's ability to monitor full join conditions. We place a 

compound condition monitor on the CQ agent for the derived predicate, tmp 3 / 3. 

There is not separate PGe t operator here, since the CQ agent will push the data 

A ( (Position(VehlD,Locl). 
Vehicle(VehID, Type), 
Type = "Hurnvee"), MC ) 

PGet 
tmpl (Person, Addr, _MC), AddressAt(Addr, Loc2) 

ID = AlertlD 



associated with a change event when the event occurs. Other than the insertion of the 

compound monitor, this plan resembles the original complete plan. 

After generating these plans, the Paradox mediator installs PA1  e r t monitors for 

tracking each relevant change event. A monitor on Undesignated is placed on the 

Evacuee Agent, with the corresponding action to execute the plan of Figure 5-3 at the 

mediator. Similarly, a monitor is placed on Current with a corresponding action to 

execute of the plan of Figure 5-4, and a monitor is placed on the compound goal 

- tmp3 / 3 at the CQ agent, with the execution of the plan of Figure 5-5 as its 

corresponding action. Meanwhile, the complete current result is computed via the 

execution of the plan of Figure 5-2. 

We deployed the application described in this chapter using the Paradox system 

and the agents described. We simulated a number of update patterns, which resulted in 

the scenarios and plans described in this chapter, and the system behaved correctly. The 

architecture and adaptability of Paradox made for a very convenient integration process 

for the agents involved. 

The astute reader will note that much processing can be avoided in the execution 

of this plan suite if intermediate results are cached (and maintained) at the mediator. In 

particular, the Cartesian product offers an opportunity for big savings, since one side of 

the Cartesian product is completely recomputed in each monitoring plan, even though it 

has not changed as a result of the fired monitor. In the following chapters we consider 

caching and other techniques for improving the performance and scaling of active service 

integration. 



Chapter 6 

Query Optimization Basics 

The chapters that follow this one require knowledge of several topics in query 

optimization that we cover here. We start with the basic process of query optimization in 

database management systems. We then touch upon the issue of optimizing queries in 

the presence of materialized views. We then discuss the issue of multiple query 

optimization, which deals with optimizing a group of queries for efficient simultaneous 

execution. 

Of particular interest in this discussion is the key data structure involved in the 

query optimization process. This data structure is called either the dynamic programming 

table or the memo structure, depending on whether the query optimizer operates bottom- 

zp or top-down. We also emphasize the role in traditional query optimizer technology of 

the principle of optimality, which states that an optimal execution plan is made up of 

optimal sub-plans. This principle is deeply embedded in current optimizer technology, 

but it breaks down in the optimization of multiple queries that execute simultaneously. 



6.1 Relational Query-Optimization Basics 

Declarative programming refers to a programming model in which the programmer 

specifies "what, not how". That is, the programmer specifies what he wants the behavior 

of the program to be, not the specifics of how that behavior is implemented. The 

declarative model requires a separation between a specification language and a virtual 

machine that implements the language. Implicit in this model is the notion that a 

specification may map to many different combinations of virtual machine operations. 

The process of interpreting a declarative program includes choosing a "good" mapping. 

The "goodness" of a mapping may depend on dynamic variables in the computing 

environment, and what is good under one set of conditions may not be good under 

another one. Declarative programming has been associated with lower rates of 

programmer error, a high degree of robustness and adaptivity, and amenability to proving 

program properties. 

Relational query processing technology is perhaps the most successful instance of 

the declarative programming paradigm, in terms of market acceptance and ubiquity. A 

declarative query specrfication language, often SQL, is used to describe the 

characteristics of the data that is wanted'. The query execution engine provides the 

virtual machine, in the form of a series of physical operators, which implement the 

language. The operations of the specification language are sometimes referred to as the 

logical algebra of the system, while the operations of the virtual machine are the physical 

algebra (Graefe 1993). A given expression in the logical algebra may map to a large 

number of possible expressions in the physical algebra. The job of the query compiler 

and optimizer is to convert a query specification to an equivalent logical algebraic 

expression, and find an optimal mapping from that expression to an expression in the 

physical algebra. The efficiency of such a mapping depends heavily on dynamic 

properties of the data in the database (e.g., the size and statistical properties of relations), 

1 Strictly speaking, relational calculus is declarative, but relational algebra and SQL are not. But the latter 
are declarative in the sense that a given relation algebra (or SQL) expression can be mapped to many 
implementations. The operations wanted are expressed, but their implementation and composition is not. 



on the existence of specialized data structures that support fast data access (e.g., indexes, 

materialized views), and on the characteristics of the computing environment (e.g., 

system load, resource contention). 

6.2 Steps in Optimization 

Broadly speaking, as shown in Figure 6-1, the query compiler and optimizer 

performs three major steps: 

1. Query Parsing and Validation: A valid SQL string is turned into an initial 

logical algebraic expression. 

2. Logical Plan Transformation: The logical algebraic expression is manipulated 

to produce an alternative logical expression. 

3. Execution Plan Production and Costing: The logical expression serves as the 

basis for enumerating and evaluating a series of physical execution plans, 

from which a single, "best" plan is chosen. 

Parsing 

Figure 6-1: Query Parsing and Optimization 

Step I also involves such issues as type checking and view expansion, and the creation of 

an initial relational algebra tree. In the Paradox system, as we have seen, validation 

includes the process of checking that distributed services exist that can handle the atomic 

components of the query. Step 2 involves performing meaning-preserving algebraic 

transformations based on the properties of the logical algebra. Some transformations 

may represent heuristic improvements to the logical plan, such as removing sub-queries 

from conditions or pushing selections and joins down the expression tree. Other 



transformations involve traversing the search space, for example, regrouping 

commutative and associative operators such as joins, unions or intersections. There are 

many sources of further detail on the basic steps of query compilation and optimization 

(Ullman 1988; Korth and Silbershatz 199 1 ; Garcia-Molina, Ullman et al. 2000). 

6.3 Cost-based Enumeration 

Steps 2 and 3 dominate the complexity of query compilation and optimization. These 

steps encompass a complex search problem, in which the search space is the set of all 

possible physical plans for implementing the initial logical plan, and the goal is to find 

the "best" such plan. State-of-the-art query optimizers employ a cost-based method for 

evaluating the efficiency of a plan. A cost function takes a physical plan as input and 

provides an estimate of the relative expense of executing the pIan based on dynamic 

characteristics of the database and the computing environment. In general, a cost 

function must traverse an entire plan tree to find its cost. The plan of least cost is the 

"best" plan. This process is sometimes referred to as cost-based enumeration. 

A baseline, naive approach to cost-based enumeration is to enumerate each plan 

one by one, compute its cost, and save the best plan so far until all plans have been 

considered. But such an approach is prohibitively expensive because the space of 

possible plans is massive for even a moderately complex query, and repeated costing is 

expensive. Modern optimizers employ two primary techniques to control this 

complexity: 

1. Use heuristic methods to avoid enumerating the entire space of physical plans. 

2. Make use of the principle of optimality to avoid optimizing any sub- 

expression more than once. 

The first technique may take many forms. For example, a greedy heuristic 

method for finding a n-way join ordering might start by pairing off the two relations that 

have the smallest estimated result size, and then choose the next pairing from that first 

pair and the remaining single relations, and so on until the ordering is complete. The 

original System-R optimizer (and many optimizers today) considers only left-deep join 



orderings (especially for large joins). Another common join-ordering heuristic is to 

ignore Cartesian products. Other methods include heuristic-based "branch and bound" 

enumeration, random sampling of plans in the search space, and hill climbing techniques 

(Garcia-Molina, Ullman et al. 2000). These methods can be employed in combination as 

well. In general, all methods that apply heuristics to limit the search space suffer from 

the same weakness: They are not guaranteed to produce the optimal result (based on the 

cost function). The price of producing the occasional poor plan should be weighed 

against the increased efficiency in the optimization process when using these methods. 

The second technique depends on the "principle of optimality", which states that 

the optimal plan for a query cannot contain a sub-optimal sub-plan. This principle 

implies that optimal plans for larger queries can be built incrementally from the optimal 

plans of smaller queries. It allows us to optimize a logical sub-plan only once, store its 

optimal physical plan and associated cost, and plug this physical sub-plan and cost into 

any larger plans that we consider. 

Example 6-1. Suppose we have two physical join operators, a nested-loops join 

operator, NL J, and a hash-join operator, H J, and we exhaustively optimize the query 

As part of this process we enumerate physical plans for this query that involve joining 

C(X, Z) with (A(X, W) & B(X, Y)) . First we consider using NL J at the top level. If we 

have not yet optimized (A(X, W) & B(X, Y)) , then we must do so as part of optimizing 

the full nested-loops plan. Next we consider using H J at the top level. This time, due to 

the principle of optimality, when we come to the sub-expression (A(X, W) & B(X, Y)) , 

we can simply plug in the optimal sub-plan that we have already computed, along with its 

associated cost. We need not consider all the plans that combine a top-level hash-join 

with sub-optimal plans for the join of A and B. 

Like heuristic pruning techniques, applying the principle of optimality greatly 

shrinks the plan space that we need to search and increases the efficiency of the 



optimization process. But unlike heuristic techniques, these methods are safe in that they 

do not diminish the quality of the resulting plan. We think of the principle of optimality 

as a law, not as a heuristic. 

Unfortunately, however, the principle of optimaljty is not a valid law as stated. A 

sub-optimal sub-plan may be part of a larger optimal plan if it produces a result that can 

be manipulated more efficiently by downstream operators than that of an optimal sub- 

plan. The prototypical example of this phenomenon is related to sort order. 

Example 6-2. Consider Query (6-1) of Example 6-1 once again. Suppose that instead of 

the hash-join operator we have a sort-merge join operator, SM J. Suppose, further, that 

the cost of joining A and B using NL J is 30 units, while the cost of joining A and B using 

SMJ is 40 units. Note that although the result set of ( A  & B) is logically the same 

whether NL J or SM J is used, there is aphysical difference between them that can affect 

downstream processing. The SM J result is (necessarily) sorted on X, while the NL J 

result is not. Suppose that the most efficient way to join (A & B) with C is by using 

S M  J, at a cost of 20. If NL J is used to compute (A & B)  , then we must perform a SORT 

operation on the result of this computation before we can perform the sort-merge join 

with C . In contrast, if SMJ is used to compute (A & B) , then we do not need to perform 

the sort. Suppose the SORT operation has cost 15. Then the optimal plan includes the 

sub-optimal sub-plan of using SM J to compute ( A  & B) . This scenario is depicted in 

Figure 6-2. 

Selinger discovered a simple solution to this problem, which was to save not only 

the optimal physical plan for each logical sub-plan, but also the best physical plan that 

produced a result having an interesting order, for all interesting orders relevant to the 

query (Selinger, Astrahan et al. 1979). With this modification, we can safely employ the 

second technique above without affecting the optimality of the resulting plan. Selinger's 



S M J  (20)  

S M J  (40)  C  

S M J  (20)  

/' 
S O R T  (15)  C  

N L J  (30)  

P lan  A (To ta l  C o s t  = 6 0 )  Plan B (To ta l  C o s t  = 6 5 )  

Figure 6-2: An optimal plan with a sub-optimal sub-plan 

notion of interesting orders was later generalized to that ofphysical properties 

(Graefe and Dewitt 1987). The technique is widely applied in commercial optimizers. 

The application of this technique manifests itself in an important data structure that 

represents the state of the optimization process at any point in time. This structure stores 

the logical sub-plans being optimized, and the optimal physical plans and their associated 

costs for all sub-plans whose optimization is complete. The structure can grow very large 

for complex queries. It is referred to as either the dynamic programming table or the 

memo structure, depending on whether the search-space is explored in bottom-up or top- 

down fashion. 

6.3 Top-Down and Bottom-Up Optimization 

There are two broad approaches to exploring the space of possible plans in query 

optimization. In bottom-up'plan exploration, the process begins with the sub-expressions 

at the leaves of the logical plan tree, and works its way up to the root. In top-down plan 

exploration, the process begins at the root of the tree, and works down to the leaves. 

Note that much of the combinatoric complexity of the physical plan space in a 

relational query derives from the j o i n  operator. Since the j o i n  operator is both 

commutative and associative, a combination of j o i n s  results in an exponential 

explosion of possible plans. The u n i o n  and i n t e r s e c t i o n  operations can have a 



similar effect. but they are less common, particularly in large combinations (although 

unions can be quite common in a data integration setting). For the remainder of this 

section, we will focus on the optimization of multi-way join queries. 

In the bottom-up optimization of a complex join, we start with each single relation 

that participates in the join. For each, we find the lowest-cost plans for accessing that 

relation that cover all groups of interesting physical properties. These plans are saved in 

a table, together with their costs, and the estimated size of the plan output. Next, we 

consider joins of pairs of relations. We consider both possible orderings of the pair, and 

all possible physical join algorithms. We do a table look-up to find the cost and size of 

the single relation sub-plans. Next, we consider all ?-way joins. For each, if we are 

searching exhaustively, we consider all (three) possible binary groupings, and both 

orderings of each grouping together with each physical join algorithm. This process 

continues until we have built a complete plan. At each stage, all sub-expressions of the 

expression we are considering will already exist in the (in-memory) table, together with 

its best-plan (for each set of interesting physical properties), cost, and result-size 

estimate. Figure 6-3 shows how the table might look at the completion of the 

optimization of a 3-way join of A, B and C. For simplicity we assume there are no 

interesting physical properties here. This bottom-up process is an example of dynamic 

programming (Aho, Hopcroft et al. 1983). By using dynamic programming, rather than 

raw exhaustive search, we reduce the complexity of query optimization from O(N!) to 

0 ( 3 ~ )  (Ono and Lohman 1990). 

Expression I Size I Property 1 Cost I BestPlan 
I I I I 

I I I I 

A 

I I I I 

100 

B 

SCAN(A) 500 

200 

C 

HJ(B7A) 

None 

SCAN(B) 1000 

400 

500 AB 

BC 
I I I I 

Figure 6-3: Dynamic Programming Table for Bottom-up Optimization 

None 

SCAN(C) 2000 

600 

ABC 

None 

1200 

NLJ(C,B) 5000 

AC 

None 

None 

5 70 NLJ(C,A) 3000 
f 

None 

650 2300 HJ(BC,A) None 



Top-down optimization of complex joins proceeds in a different fashion. We start 

at the root and consider a single logical binary grouping at a time. For each binary 

grouping we consider a single physical join operator and move down the tree, searching 

as needed for the best plan for each subgroup and set of physical properties relevant to 

the parent operator. When the best plan for a given grouping and physical operator is 

found, we move to the next physical operator. When all physical operators have been 

considered, we move to the next possible binary grouping by applying a logical 

transformation to the previous binary grouping. We continue until all groupings are 

exhausted. This process fills out a data structure that is conceptually similar to the one 

created in bottom-up optimization, but the structure is filled out in a different order. 

Figure 6-4 shows what the structure might look like when we are in the midst of 

considering the first (nested-loops) of two physical algorithms for the third possible 

logical grouping of the 3-way join of A, B and C. Note that we are currently considering 

the fifth complete plan for the query, but we have not considered any plans for the sub- 

expressions AC. This process is an instance of memoization (Michies 1968; Russel and 

Norvig 1995), the top-down dual of dynamic programming. We refer to the data 

structure as the memo structure. Top-down memoization also reduces the complexity of 

exhaustive join-order enumeration from Om!) to 0 ( 3 ~ )  (Shapiro, Maier et al. 2001). 

I Logical Group I Optimization State for Group I 

I AR I Logical Expr: AB Physical Expr: NLJ(A,B), HJ(A,B) 

ABC 

Logical Expr: (AB)C Physical Expr: NLJ((AB),C), HJ((AB),C) 
Logical Expr : C(AB) Physical Expr: NLJ(C,(AB)), HJ(C,(AB)) 
Logical Expr: A(BC) Physical Expr: NLJ(A,(BC)) 
Best Plan (So Far): HJ((AB),C) Cost: 750 Size: 2300 

- - 

A 

B 

Figure 6-4: Memo Structure for Top-down Optimization 

Logical Expr : BA Physical Expr: NLJ(B,A), HJ(B,A) 
Logical Expr: A Physical Expr: Scan(A) 
Best Plan: Scan(A) Cost: 100 Size: 500 Property: None 
Logical Expr: B Physical Expr: Scan(B), IndexScan(B) 
Best Plan: Scan(B) Cost: 200 Size: 1000 Propertv None 

C Logical Expr: C Physical Expr: Scan(C) 
Best Plan: Scan(C) Cost: 400 Size: 2000 Property None 



The first generation of commercial query optimizers, based on the pioneering 

work of the system R group at IBM, employed the method of bottom-up plan exploration 

with dynamic programming (Selinger, Astrahan et al. 1979). Work motivated by the 

desire to make optimizers more easily extensible produced the top-down method (Graefe 

and Dewitt 1987). Lohrnann introduced a rule-based approach within the context of 

bottom-up optimization that improved extensibility in that context and was employed in 

the Starburst system (Lohman 1988). Note the Lohmann's rules are in essence the 

bottom-up analogue to top-down transforms. The issue of whether one method is 

inherently more extensible remains a controversial one. 

The debate is also open as to whether top-down or bottom-up optimization 

provides superior performance. Proponents of the top-down method note that the 

memoization generates complete plans more quickly. Once a complete plan is obtained, 

it provides an upper bound on total query cost that can be used to prune away parts of the 

top-down search space without complete expansion. This process is known as group 

pruning (Shapiro, Maier et al. 2001). Group pruning can be especially effective when 

combined with heuristics in such a manner that inexpensive groupings and cheaper 

physical algorithms can be considered quickly, and so good upper bounds can be 

produced quickly. 

But regardless of whether a top-down or bottom-up strategy is employed, the 

effective optimization of complex queries is costly. If guaranteed optimality is a goal, the 

expense increases exponentially in the number of joins in the query (0(3~)), and the 

expense is dominated by the expansion and maintenance of a large data structure of 

partial results: the dynamic programming table in the bottom-up case, the memo- 

structure in the top-down case. 

In the coming chapters we build on the ideas presented here in describing 

optimization tasks that arise in improving the scalability and efficiency of an ASIS. We 

show that the principle of optimality does not hold for some of the problems that arise in 

this setting. We discuss how sharing of the optimization effort embodied in the memo 

structure can be shared to make the problems that arise more tractable. And we describe 

an implementation based on a state of the art top-down query optimizer that demonstrates 

the effectiveness of sharing in this context. 



Chapter 7 

Sharing in an 

Active Service Integration System 

Everything you really need to know about scaling distributed information systems you 

learned in kindergarten. The first commandment of Robert Fulghum's best selling book 

by (nearly) the same name is this: "share everything" (Fulghum 1993); and sharing is a 

key principle in managing growth in a distributed information system. As workload 

grows and as the number of distributed system components grows, it becomes essential 

that common planning, processing and data movement tasks be performed once, and 

shared over a range of higher-level tasks. In Chapter 3 we encountered one form of 

sharing in an ASIS, where multiple monitoring requests that map to a single source could 

share a single source monitor. In this chapter we discuss the issue of sharing in active 

service integration in greater detail. 

In active service integration, an important opportunity for large-scale sharing 

arises where supplemental views can be materialized and maintained at the mediator, and 

shared among multiple executions of a long-lived request. Another sharing opportunity 



occurs where multiple tasks must be executed in response to a single event, and these 

tasks can share common partial results. We describe how these forms of sharing can be 

exploited in detail. Exploiting these two forms of sharing presents a massive 

optimization problem. We describe a multi-pronged approach to making this problem 

more tractable, and show how a third opportunity for sharing of planning and 

optimization presents itself in this context. We lead into a new technique for exploiting 

this opportunity that we call Multiplex Query Optimization, which is discussed in detail in 

Chapter 8. 

7.1 Associative Caching and Materialized Views 

Caching is perhaps the fundamental tool for handling scale in distributed systems. As 

Van Jacobson writes, <'With 25 years of Internet experience, we've learned exactly one 

way to deal with exponential growth: caching" (Rabinovich 1998). What is true on a 

macro scale, for the Internet as a whole, is also true at the micro scale, for a single- 

mediator-based system. By moving data from distributed sources to the mediator, a 

system can achieve better response time, more efficient resource utilization, scale-up in 

terms of number of sources and number of clients supported, and greater robustness in 

the face of source failures. 

Caching, of course, is fundamental and ubiquitous in computing systems. Anywhere 

that a data storage hierarchy exists in computing, a cache is sure to follow: Operating 

systems maintain a file system cache in main memory; databases cache data from disk in 

a memory-resident buffer pool; DNS caches domain name to IP address mappings; 

distributed systems routinely replicate remote data and store it closer to where it is 

needed, etc. In many information systems, including local and client-server databases, 

page and tuple caching is prevalent. But page caching cannot be applied to a system that 

integrates autonomous sources, since the mediator has no knowledge of the physical 

layout of source data. Nor is tuple caching attractive in this setting, since it is too fine- 

grained to be efficient over a wide area. In predicate caching (Keller and Basu 1996), 



and closely related notions including semantic caching (Dar, Franklin et al. 1996) and 

view caching (Roussopoulos, Chen et al. 1999,  caches are stored and manipulated based 

on their logical content, represented as a query or view. Such associative caching 

schemes provide the necessary abstraction between cache data and source data layout for 

dealing with autonomous sources. Variants of associative caching have been studied by a 

number of researchers in the context of data integration (Roussopoulos, Chen et al. 1995; 

Adali, Candan et al. 1996; Scheuennan, Shim et al. 1996; Godfrey and Gryz 1997; Luo, 

Naughton et al. 2000). Our approach to caching for active service integration can be 

viewed as a variant of associative caching as well. 

The vast majority of caching schemes, including those referenced above, rely on 

locality of reference to be effective. That is, they rely on the familiar heuristic that data 

that have been requested in the past will be requested again in the (near) future with high 

probability. Locality of reference is an effective heuristic in many settings, but it is also 

often used as a general default, in the absence of good knowledge of system or 

application behavior, with mixed results. An ASIS, however, has access to important 

information that describes its future behavior, which allows us to design a more specific 

and effective caching strategy. A monitoring request sent to an ASIS, such as Paradox, 

induces a suite of long-lived queries that represents (part of) the future workload of the 

system with high certainty. Consequently, a caching strategy can be designed around a 

(partially) knowable future, and thus can be more accurate than one based on heuristic 

"guesses" about the nature of future requests. Further, a query suite involves a (possibly 

large) number of very similar queries that can often share intermediate results. Caching 

such shared intermediate results can yield dramatic savings. 

Of course, it is not quite accurate to say that the future is knowable in this context. A 

particular query in a query suite is only executed in response to specific events at a 

relevant service. The future workload depends on when and how the information content 

of relevant services changes. In particular, the frequency of change, the amount of data 

involved in the change, and the statistical properties of the data (value distribution, etc.) 

are important in determining the future workload of the system, and in determining the 



best cache for supporting this workload. Fortunately, for real applications, we often 

know quite a bit about these properties of information change. For example: 

An online bookstore adds new titles and restocks old titles once weekly. The 

number of new titles is known, on average, and does not fluctuate greatly. 

Depletion of inventory, on the other hand, is continuous. 

A web magazine that publishes book reviews comes out once a month and 

contains about 5 new reviews in each issue. 

A legacy insurance claims information system is updated in batch mode once 

nightly. 

A military information system that traces vehicle movements in a battlefield 

updates vehicle positions every 5 seconds, with 50% of the traced vehicles, on 

average, changing position at each interval. 

A source of stock market quotes updates its quotes once every 5 minutes, with 

80% of the quotes being modified, on average, at each interval. Stock symbols 

are rarely deleted or added. 

A portfolio-tracking application that uses the stock market source tolerates up to 

one hour of staleness in its stock quote data, and thus brings updated quote data in 

once an hour. 

An auto-parts supply chain operates such that small requests are met by groups of 

regional dealers based on parts on hand on a daily basis, while large-scale 

inventory changes occur based on need projections and are filled by a central 

parts-manufacturing facility on a monthly basis. 

We would like to exploit knowledge of this kind in our caching strategies where 

possible. Note that we may not have information of this sort for all sources or services. 

But even where we do not, we can employ techniques to glean this kind of knowledge 

(for example, by monitoring the frequency and size of updates from a service over time). 

Few information sources change in a truly random fashion. 

Armed with service change information, and the monitoring queries that run when 

changes occur, an ASIS has the leverage to apply an aggressive form of caching in which 



a cache is defined semantically and its coherence is maintained continuously. This form 

of caching is equivalent to the creation and maintenance of supplemental materialized 

views in support of a workload of requests. We will refer to this technique as 

supplemental view maintenance (SVM) to distinguish it from other caching schemes. 

Example 7-1: Suppose that we use our mediator-based system as the platform for 

"MyCitySearch.com", a service that provides customized integration of myriad 

information services related to entertainment and other events happening in various cities. 

A concertgoer wants to be notified anytime a musical "R&Bn act that is big enough to 

have been reviewed by a source of concert reviews is coming to a local club. In addition 

to the artist, club and review information, the customer wants a URL to information on 

purchasing CDs by the artist. This request might be expressed by the following query 

involving three network-based information services: 

ComingSoon(Artist, Club, Date, Review URL, Puchase URL) t 
ClubListing(Artist, "Mycity ", Club, Date) & 
ConcertReview(Artist, Review URL) & 
MusicForSale(A rtist, "R&B ", Purchase URL). 

Suppose that MusicForSale/3 information changes infrequently and by small amounts, 

with about 10 new artists added once every two weeks, with two, on average, being 

"R&B" artists. Suppose, further, that concert review information is higher volume, with 

batch updates averaging 500 reviews in size occurring once per week. Club listings, on 

the other hand, change daily, with 200 listings being deleted daily (since they are now in 

the past) and 200 new listings being added daily (to replace the deleted ones), on average. 

Using incremental techniques, as we do in Paradox, whenever ClubListing is 

updated, we compute changes to Query (7-1) with respect to this update, 

AComingSoon l AClubListing , by executing the incremental query: 



AComingSoon(Artist, Club, Date, ReviewURL, PuchaseURL, -MC) t 
AClubListing(Artist, "MyCity", Club, Date, - MC) & 
ConcertReview(Artist, ReviewURL) & 
MusicForSale(Artist, " R&B ", Purchase URL). 

Even if AClubListing is small, Query (7-2) may be expensive, involving remote service 

calls to sources of concert review information and to sources of music-for-sale 

information. The efficiency of computing AComingSoon / AClubListing , however, can 

be greatly improved if we compute and store the following supplemental view at the 

mediator: 

ReviewAndSaleInfoByArtist(Artist, Review URL, PuchaseURL) t 
ConcertReview(Artist, ReviewURL) & (7-3) 
MusicForSale(Artist, ''R6;BJ', PurchaseURL). 

With an up-to-date copy of ReviewAndSaleInfoByArtist stored at the mediator, we can 

compute AComingSoon l AClubListing by executing the following query: 

ACom ingSoon(Artist, Club, Date, Review URL, Puchase URL, -MC) t 
AClubListing(Artist, "Mycity", Club, Date, MC) & (7-4) 
ReviewAndSaleInfoByArtist(Artist, ~ e v i e w ~ ~ ~ ,  PurchaseURL). 

Where Query (7-2) requires multiple remote calls to possibly large collections of data, 

Query (7-4) requires single call to a smaIler, locally stored view, which is likely to be 

much less costly. 

Naturally these savings do not come for nothing. Storage space must be allocated 

for the supplemental view, and the view must be created and maintained. In our example, 

however, savings occur daily, each time ClubListing is updated and Query (7-4) must be 

executed. In contrast, we incur the cost of maintaining ReviewAndSaleInfoByArtist when 

either ConcertReview or MusicForSale is updated, which happens only three times every 

two weeks. If we assume, for the sake of illustration, that the savings per execution of 

Query (7-4) is equivalent to the cost of each incremental maintenance query for 



Revie~iAndSalelnfoByArtist, then, disregarding storage space costs and the one-time cost 

of creating the supplemental view, we save 11/14 = 78% of the total cost of monitoring 

Query (7- 1 ) over time. O 

7.2 Computing the Value of Materialized Views 

In general, given a workload of queries, W, and a set of views, V, we can compute the 

value of materializing and maintaining V by computing the difference between the cost of 

executing W without V and the costs of executing W with V and of maintaining V. More 

specifically, we give the following definition: 

Definition 7-1 (Expected Value of Materialized Views): Given 

1) A database with schema and related metadata, S. 

2) A workload, W = {(qo, fo), . . ., (q,, f,))over S where the q, are queries, and A 

gives the frequency of execution of q, over time. 

3) A set of materialized views, V, with an associated view maintenance workload X 

= {(mo, go), . . . , (m,, g,)} over S where the mi are maintenance queries for V, and 

where gi gives the frequency of execution of mi over time. Note that X is a 

function of V and S (since S is assumed to include update frequency information). 

4) A query optimizer Opt with an associated cost function, C. 

The expected value of materializing and maintaining V with respect to W, S and Opt is 

given by: 

where C(q, M y )  is the estimated cost of the optimal plan for query q in the presence of 

materialized views MV, as given by Opt using S. Cl 



For notational brevity, we will often leave off explicit references to any or all of 

W, S, or Opt when their values are clear from context. For example, we may refer to 

VoMp, W) or VoM(V). 

Notice that the first term on the right-hand side of Equation (7-5) is the cost of the 

workload with no views materialized. The second term is the cost with materialized 

views, which is broken down into the workload cost and the view-maintenance cost. 

Our definition of value assumes that the workload of queries repeats at some 

interval, as do the maintenance queries for V. Thus the measure computed for VoM is 

cost savings over time. The definition assumes that the database and related metadata, S, 

and the optimizer, Opt, do not change. Note, further, that the term "maintenance query" 

presumes that the views being maintained already exist. We ignore the initial cost of 

computing V, since it is a one-time cost. 

Often we may want to consider the space costs of maintaining a set of 

materialized views. In this case, a useful measure will be the value per storage unit for 

the set of views. We refer to this measure as the expected cache efficiency of the view 

set: 

Definition 7-2 (Expected Cache Efficiency): Given Definition 7- 1 above, we say that 

the expected cache efJiciency of V with respect to W, S, and Opt is given by: 

VoM(V, W, S ,  Opt)/Size(V) 

where Size(V) is the estimated storage size of V as given by Opt. O 

The units for cache efficiency are cost savings per storage unit (often bytes or 

blocks) over time. This measure is useful when we have limited space for view 

materialization. In particular, this comes into play when we want to keep all materialized 

views in main memory. 



7.3 The Generic View Selection Process 

Given Equation (7-5) for computing the value of a set of materialized views, a method for 

computing the optimal view set to materialize immediately suggests itself: Begin by 

estimating the workload the system will process, generate all possible useful view sets for 

this workload, compute the value or cache efficiency for each view set, and choose the 

best view set based on these values. A simple refinement of these steps involves 

computing possible view sets by first generating individual candidate views, and then 

combining these to create candidate view sets. A conceptual sketch of this process is 

shown in Figure 7- 1 below. 

f \ f 
Generate ' / 

Generate ' f 
Compute ' 

Workload Candidate *+ Candidate ,.--) Value of 
Estimation View Sets Views View Sets 

Figure 7-1: View Selection Process 

We make several remarks about this process, which we will elaborate on in the 

following sections: 

The quality of view selection depends on the degree to which the estimated 

workload accurately reflects the real workload of the system. 

View selection is a massive and expensive optimization problem. In particular, 

value computation involves performing a combinatorial process, query 

optimization, over each query in the workload, and it must be performed over a 

potentially combinatorial number of possible view sets. 



For a large workload, the space of potentially useful view sets is large. Since the 

value computation is repeated for each candidate view set, one important way to 

increase the efficiency of view selection is to use heuristic methods to limit the 

space of view sets considered. Care must be taken, however, since the use of 

heuristics may produce a sub-optimal result. 

The process of value computation involves repeatedly running the same set of 

queries over a varying physical data layout. This process may involve a large 

amount of redundant work. Greater efficiency can be achieved if this redundant 

work is avoided. 

The processes shown in Figure 7-1 above are strongly interrelated and should be 

tightly coupled. The view selection process requires an end-to-end, systemic 

solution. 

To this point we have discussed view selection in a generic sense. Note that this 

process extends to the notion of index selection as well. In fact, an index can be seen as a 

limited, projection-only view over a base table or materialized view. Thus, to a large 

extent, our discussion and methods can be applied to automatic computation of physical 

database design given a workload and a layout of base data or services. But our specific 

interest is in the materialization of views in an ASIS. We now discuss the view selection 

process in detail in this context. 

7.4 Selecting Materialized Views in an ASIS 

In this section we outline elements of our approach to selecting supplemental 

materialized views in an ASIS. In so doing, we describe in detail how the process 

outlined above maps to the active service integration environment, and we elaborate on 

the points raised previously about the process. 



The architecture of our approach is shown in Figure 7-2 below. The figure shows 

a similar group of steps to those listed in the generic sketch of view selection from Figure 

7-1, but there are some additional steps and several noteworthy details: 

Request 

Workload Candidate 
Induced by 

Multiplex 
Query 

Optimizer 

Views 

Materialized 

Queries and 

Final Views 
and Plans 

Figure 7-2: View Selection in an ASIS 

1. In an ASIS, we want to adapt the selected view set on a continuous basis, as 

requests are submitted. But to reconsider the current set of views in light of the 

entire workload each time a new request is made is prohibitively expensive. 

Instead, we consider the workload induced by each individual request in isolation, 

and compute a set of views to (incrementally) add to the current view set. 

2. The view selection process should be tightly integrated with the query-processing 

component of the ASIS. We achieve this integration by interacting closely with 



the query optimizer during candidate view generation, view set selection and view 

merging. 

3. Instead of enumerating candidate view sets before computing their values, we 

build a good view set with the help of a feedback loop from the query optimizer 

on the value of partial view sets. This method allows us to apply greedy 

heuristics to complete view set selection more efficiently. 

4. The continuous nature of the process means that views and execution plans that 

exploit those views are both needed. These are best generated in concert. 

5.  A specialized query optimization component is used in the process that reuses 

common optimization work over a large group of smaller optimization problems. 

We call this process Multiplex Query Optimization (or MuxQO). Note that 

MuxQO differs from Multiple Query Optimization in that the queries being 

optimized are not expected to run at the same time. 

6. Once we have computed the views and plans needed to support the current 

request, the new views are merged with existing views and the query plans are 

adjusted to accommodate any resulting view modification. Note that we include 

this step for completeness. We will give a rough outline of how this step may be 

accomplished, but it is not our primary focus. 

In the remainder of this section we describe this process in detail, and expound on the 

issues we have raised. 

7.4.1 Estimating the ASIS Workload 

The generic view selection process, as illustrated in Figure 7-1, takes the future workload 

of the system as a given. Thus the process must begin with an estimate of the workload, 

and the effectiveness of the process depends on the accuracy of this estimate. For 

traditional database systems, data warehouses, OLAP systems or data mining systems, 

administrators typically employ an iterative approach that combines the anticipated future 



needs with the assessment of past system usage to arrive at an estimate. This method is 

more an art than a science, and it is error prone. 

In an ASIS it is equally difficult to apply such methods to approximate a11 of the 

requests that a system will see. But as each request is submitted, it provides strong 

information on the future workload of the system. A request induces a suite of long-lived 

queries, each of which is executed in response to a specific class of event. Recall that in 

Paradox we model events as changes at the <agent, service, ca 11 > level. 

Furthermore, service changes only occur within dynamic  service calls, and such 

changes are assumed to be independent of each other. 

Assume that for each dynamic service call we define a set of change types, { t ~ ,  . . . , 

t,). Change types capture that a single service call may support a variety of change 

events. For example, in an auto-supply-chain application, small inventory changes may 

occur daily at a dealer's local auto-parts center based on exchanges with regional dealers, 

while large-scale inventory changes occur monthly, when parts are shipped from a central 

manufacturer based on projected need. In general, a data-intensive service may 

encounter different sorts of transactions that are applied to the underlying data, perhaps at 

differing intervals, and involving different volumes of data; each might be modeled as a 

different change type. For each t, , assume we have the following metadata: 

1. J;  , the expectedfrequency of t, . 

2. C, , the expected cardinality of the data associated with t, . 

3.  d, , the expected value distribution of the data associated with t ,  . 

Figure 7-3: Change Type Metadata 

Note that, as with other metadata in the Paradox system, this information may be 

provided directly by the agent providing the service, by a directory service, from data 

gathered locally at the mediator via system monitoring, or from data entered by an ASIS 

administrator. We assume we can identify any given change by its type when it occurs. 

Commonly, we expect to see only a small number of change types (often only one) for a 



given < a g e n t  , s e r v i c e  , c a  11 > triple. Further, distinct types that have 

cardinalities and distributions that are very similar can safely be treated as a single type, 

with their frequencies merged. Also note that, in the absence of distribution information 

for a change type, we will assume that data associated with the change follows the 

distribution of data associated with the overall service call. We assume that distribution 

information is as described in the Paradox metadata specz~cation of Chapter 3. 

Given the background above, the following definition is central to the estimation 

of workload in an ASIS. 

Definition 7-3 (Expected Workload Induced by a Request): Suppose we are given a 

requestRinvolvingdynamic ( a g e n t ,  s e r v i c e ,  c a l l )  triples {(al ,s l ,c ,) ,  ....( a,, 

s,, c,)) and, possibly, some group of non-dynamic < a g e n t  , s e r v i c e  , c a  11 > 

triples, together with metadata, M, modeled as a set of key-value pairs, pertaining to all 

such calls. If for each (a,, s,, c,) there is associated change metadata in the form of change 

type-frequency-cardinality-distribution 4-tuples, 

{(t,,l 7 A,] 7 C,,, , dl,, 1 7  . . . 7  (t,,mc,) 7 7 C,,,,(,): d,,,(,))) 7 as defined in Figure 7-3, then the 

expected workload induced by R is given by 

where workload is defined as a set of triples, (Q,f, M), where Q is a query, f is the 

frequency with which Q is executed, and M is associated metadata, modeled as a set of 

key-value pairs, and the U operator is a special merge-union operation that combines 

queries that are executed based on the same change event (details follow). U 

Example 7-2 Recall that Example 7- 1 involved the request, ComingSoon / 6 , defined by 

Query (7- 1). Each component service call of ComingSoon I 6  is offered by a single 

service provider, and each such offering is dynamic. The dynamic calls are: 



ClubListing / 4 ,  ConcertReview / 3 ,  and MusicForSale / 4. Each call has exactly one 

change type, which we will call default. Assume that no specific distribution information 

is provided for these change types, so this data defaults to existing metadata on its 

corresponding call. Therefore, with the frequency and cardinality information as given in 

Example 7-1, and the frequency factor normalized to a two-week time period, we have 

the following association of change metadata with dynamic calls: 

(ClubListing/4, {(default, 14,400, null))) 

(ConcertReview/3, {(default, 2,500, null))) 

(MusicForSale/4, {(default, 1,10, null))) 

Further, the suite of queries that defines AComingSoon with respect to the component 
service calls are as follows: 

AComingSoon(Artist, Club, Date, Rev, CDPurch, - MC)/AClubListing t 
AClubListing(Artist, "MyCity", Club, Date, - MC) & 

ConcertReview(Artist, Rev) & 
(7-5) 

MusicForSale(Artist, "R&B ", CDPurch). 

AComingSoon(Artist, Club, Date, Rev, CDPurch, - MC)/~ConcertReview t 
ClubListing(Artist, "MyCity", Club, Date) & 

AConcertReview(Artist, Rev, - MC) & 

MusicForSale(Artist, "R&B", CDPurch). 

AComingSoon(Artist, Club, Date, Rev, CDPurch, - MC)/AMusicForSale t 
ClubListing(Artist, "MyCity", Club, Date) & 

ConcertReview(Artist, Rev) & 
(7-7) 

AMusicForSale(Artist, "R&BV, CDPurch, - MC). 

By Equation (7-6), the workload induced by ComingSoon / 6  is given by the set: 



Note that the workload computed by Equation (7-6) is interpreted as a 

continuously repeating workload. In fact, we assume that it repeats indefinitely. With a 

request syntax that includes a termination condition as in, for example, the Continual 

Queries project (Liu, Pu et al. 1998), we might do better than this. But we do not address 

this issue here. Also note that we do not consider the one-time cost of the initial 

computation of ComingSoon 16 . In general, we assume that one-time costs are 

dominated by long-lived, repeating costs. Furthermore, each change event is assumed to 

be independent, and so each query group, Q ,  in the (Q, F, M )  triples in the workload, is 

singleton. Deriving the complete workload of an ASIS based on the induced workload 

for each individual request is simply a matter of taking the union of the individual 

workloads. 

While we can compute the full workload of an ASIS based on the current set of 

active requests, we reiterate that we do not, in general, want to consider the workload as a 

whole when performing view selection. Even recent work on automated physical 

database design, in which indexes and views are selected in a traditional, centralized 

database context in batch (or off-line) mode, considers each query of an estimated 

workload in isolation (Chaudhuri and Narasayya 1997; Agrawal, Chaudhuri et al. 2000). 

Our goal is more demanding in that we seek to update the set of materialized views in a 

fluid fashion, as requests come to the system. To attempt to reconsider the entire 

workIoad each time a new request is made, under these circumstances, would be 

untenable. We live with something short of global optimality as a result, but we believe 

the tradeoff is reasonable. 

7.4.2 Generating Candidate Views 

Much previous work on choosing materialized views in a database system uses syntactic 

relevance as the criterion for candidate view selection, including recent work on view 

selection in a data-warehousing context (Harinarayan, Rajaraman et al. 1996; Gupta 



1997; Gupta, Harinarayan et al. 1997; ShukIa, Deshpande et al. 1998; Gupta and Mumick 

1999). That is, a syntactic analysis is performed on the queries in the workload to 

produce a set of candidates. For a select-join query, for instance, each subjoin having 

every possible subset of the selection conditions might be considered. 

Example 7-2 Consider the simple :-way select-project-join query defined as follows: 

Ans(X, Y, Z) t A(" A Value", X )  & B(X, Y) & C(Y, Z). 

Then the set of all views that are syntactically relevant to And3 might include the 
following: 

Vl(W, X )  t A(W, X). 

V2(X) t A(" A Value", X). 

V3(X, Y) t B(X, Y). 

V4(Y, Z) t C(Y, 2) .  

V5(X, Y) t A(" AValue", X), B(X, Y). 

V6(X, Y, Z) t A(" AValue", X), C(Y, Z). 

V7(W, X ,  Y) t A(W, X), B(X, Y). 

V8(W, X ,  Y, Z)  t A(W, X), C(Y, Z). 

V9(X,Y,Z) t B(X,Y),C(Y,Z). 

VlO(W, X ,  Y, Z) t A(W, X), B(X, Y), C(Y, 2) .  

V11(X, Y, Z) t A(" AValue", X), B(X, Y), C(Y, Z). 

We endorse syntactic relevance as a baseline for generating candidate views in an 

ASIS, but the notion of syntactic relevance needs some clarification. We adopt a 

pragmatic, optimizer-dependent definition. Informally, the set of views syntactically 

relevant to a query, Q, is the set of logical intermediate results (or groups) in the plan 

space considered in an exhaustive optimization of Q. This informal, "operational" 

definition has intuitive appeal. A view, V, is only useful in executing a query, Q, if it can 

be used to execute Q more efficiently in the query evaluator under consideration. 

Clearly, a pre-materialized intermediate result of any execution plan for Q can be used to 



reduce the cost of that execution plan. To the extent that query optimization involves 

searching a space of potentially optimal plans, the process will produce a good set of 

candidate materialized views as a by-product. 

Our definition also suggests a way to implement candidate view generation: Let 

the optimizer do it. We propose two variations on this theme. In one variation the 

optimizer outputs the list of logical groups as a by-product of the normal optimization 

process. In the second variation the optimizer executes in "logical-only" mode, 

synthesizing all of the logical groups involved in a complete optimization, but without 

considering physical plans or costs at all. Note that a cleanly designed optimizer should 

be easily modified to include either of these functions. The first method has the 

advantage of overlapping plan generation and candidate view generation. In general, 

however, we believe that the second method is superior. Techniques that are appropriate 

and important for pruning the plan search space in a complete optimization may be 

inappropriate for pruning the space of candidate views. For example, the group pruning 

process of top-down optimization (described in Chapter 5) can significantly decrease 

optimization time by pruning away expensive groups, but expensive groups might well 

correspond to effective materialized views. Further, the expense of enumerating logical 

groups will generally be small compared to the enumeration and costing of complete 

physical plans. 

An important benefit in using the optimizer to perform candidate view generation 

is that it integrates candidate view selection with the query-processing component of the 

system. This integration assures that selected views are computable by, and that they fit 

naturally with the operators of the query execution engine. The Paradox optimizer 

accepts a "logical only" flag that invokes candidate view generation as described above. 

The views produced conform to the capabilities, limitations, and peculiarities of the 

Paradox execution engine. For example: 

Since source data are distributed, candidate views include "single call" or straight 

"base-table" views, which are not considered in most view selection work that 

assumes a local database environment. In Example 7-5, V l ,  V3 and V4 are 

examples of such views. 



Candidate views are computable with respect to source capabilities and binding 

patterns. In Example 7-5, for instance, if the only acceptable mode for A/2 is 

A ( + , ? ) ,  then views Vl, V7, V8 and VI 0 could not be considered. 

Candidate views fit naturally with the operators supported by the logical algebra 

of the query optimizer. For example, if source capabilities support it, semijoin 

views will be considered. In Example 7-5, for instance, a view such as 

V12(X, Y) t B ( X ,  Y),C(Y, 2) would be a candidate. 

Each candidate view can be produced together with its logical properties, such as 

cardinality, which is useful if memory is limited or if cache efficiency is a view 

selection criterion. Interesting physical properties can also be enumerated. 

These are all important characteristics of candidate views in an ASIS. Generating 

candidates with these characteristics outside of the optimizer amounts to reproducing 

significant optimizer logic, with attendant software maintenance difficulties. 

Note that in generating candidate views in an ASIS, we need not consider the 

entire query suite induced by a request, but only the request itself. This is because each 

view that is syntactically relevant to some query in the suite is either relevant to the 

original request, or it involves data associated with a service change event -- data that are 

not available for view materialization. For example, one query in the suite induced by 

Query (7- 1 1) is Query (7-1 3): 

Mns(X,Y,Z,  - MC) t A("AValuel', X )  & AB(X,  Y,- MC) & C(Y,Z). (7- 1 0) 

But only views that involve AB(X, Y, - MC) are syntactically relevant to this query and 

not in View Set (7-12). Clearly, we cannot pre-compute views that depend on future 

service change data. Therefore, we feed the single, original request into the candidate 

view generator to produce all candidate views for the entire query suite. 

Another simple optimization applies where some of the component services in a 

request are not dynamic. No long-lived query in a query suite involves a call to every 

dynamic service. Thus any view produced in candidate generation that contains all such 

calls can be eliminated. For example, if B/2 were the only dynamic service call in Query 



(7-1 1 ) .  then the only long-lived query in the query suite would be Query (7-1 3). The set 

of syntactically relevant views is as follows: 

VI(W, X )  t A(W, X). 
V2(X) t A(" A Value", X). 
V4(Y, 2 )  t C(Y,  2).  
V 6(X, Y, 2) t A(" A Value", X), C(Y, 2). 
V8(W, X ,  Y, 2 )  t A(W, X),C(Y,Z).. 

This set is equivalent to removing every view from View Set (7-12) that contains a call to 
Bl2. 

But even given these optimizations, an exhaustive enumeration of syntactically 

relevant views can produce a large set of candidates. An n-way natural-join request in 

which all service calls are dynamic, for example, results in O(2") candidate views. Often 

we will want to employ additional heuristics to reduce the size of the set, particularly for 

large joins. Many of the same heuristics routinely applied to query optimization, such as 

ignoring Cartesian products or applying selection conditions as early as possible, are 

appropriate. The Paradox optimizer accepts a series of flags that signal the use of various 

heuristic pruning techniques. If used in conjunction with the "logical groups" flag, the 

appropriate heuristics are applied to the process of generating candidate views. This 

approach provides us with knobs to adjust in the view selection process where 

appropriate. 

7.4.3 Building A View Set 

Given a set of candidate views, one possible approach to finding a set of views to 

materialize is to enumerate every possible subset of the candidate set, compute the value 

of each, and choose the set with the greatest value (possibly within storage bounds or 

other criteria). The cost of this process is dominated by the cost of value computation, 

which occurs once for each view set considered and involves running query optimization 

over a workload of queries. If this exhaustive approach is applied to an n-way natural 

join request where all n sub-calls are dynamic and the set of candidate views is itself 

exhaustively generated, then n x 22n runs of the query optimizer would be required. Such 



a doubly exponential algorithm may be acceptable for very small values of n, but clearly 

it does not scale well. 

We propose building a view set in a partially exhaustive, partially greedy manner 

based on feedback from the query optimizer. The algorithm is shown in Figure 7-4. 

~iewSetBuild(1nt n, Boolean terminate) { 

(1) leastcost = WorkloadCost(W,{)); 
( 2 )  bestset = {I; 
( 3 )  For each subset Sub of Candidateviews 

of size <= n { / /  exhaustive to n views 
( 4 )  cost = WorkloadCost(W,Sub); 
( 5 )  if (cost < leastcost) { 
(6) bestset = Sub; leastcost = cost; 

1 
( 7 )  if (terminate) return bestset; 

1 
(8) Loop Forever { / /  greedy until done 
( 9 )  baseLine = bestset; 
(10) For each view V in Candidateviews - baseLine { 
(11) Sub = baseLine + V; 
(12) cost = WorkloadCost(W,Sub); 
(13) if (cost < leastcost) { 
(14) bestset = Sub; leastcost = cost; 

1 
(15) if (terminate) return bestset; 

1 
I 

1 

Figure 7-4: Algorithm for Building a View Set 

The algorithm as written assumes that the workload, w, and the set of candidate 

views are available. It also assumes that the Boolean flag, t e r m i n a t e ,  becomes t r u e  

when some termination condition is met (e.g., the number of views in the view set has 

reached a limit, the size of the view set exceeds available memory, etc.). The function 

Workloadcost ( w ,  MVS ) , called on lines ( 1 ) , ( 4 ) and ( 1 2  ) , does most of the work, 

computing the cost of executing the workload, W, in the presence of materialized views, 

MVs. This function involves running the optimizer over each query in the workload. 

With an empty view set, as called on line (I),  the function matches the first term in the 



computation of VoM (Equation (7-3)). Subsequent calls to WorkloadCost ( ) match the 

second term of VoM computation. The view set that produces the lowest 

Wor kloadcost ( ) value is the one with the highest VoM. Note that changing the 

selection criterion to cache efficiency, for example, is simple, provided the estimated 

sizes of the candidate views are available. 

A number of modifications and optimizations can be applied to 

ViewSetBuild ( ) . One class of modifications is based on heuristics that limit how 

candidate views should be combined into sets. For example, based on the heuristic that 

network data transfer is dominant in processing a plan suite, we can limit a view set such 

that it cannot contain any view that can be computed solely from other views in the set. 

For instance, if Query (7-1 1) is the base request, no set that includes the subset 

( A ,  B, ( A  & B)} could be considered. 

An important class of optimization involves exploiting upper bounds on the cost 

of a workload to prune optimization effort. The value of the current best view set, 

converted as necessary to execution cost, provides an upper bound on the cost of 

subsequently considered view sets. In computing the value of a new view set, 

optimization over a workload can terminate if the upper bound is exceeded. For the 

optimization of each query, the bound can be adjusted based on the frequency of 

execution for the current query, and thus traversing the workload of queries in order of 

execution frequency should help to maximize pruning. The bound can be checked after 

each individual run of the optimizer, or, better yet, it can be integrated into each 

individual optimizer run. An optimizer with an aggressive pruning strategy has a natural 

synergy, and a magnified effect, with this process. A top-down optimizer that supports 

group-pruning can be especially effective (Shapiro, Maier et al. 2001). 

Consider how this optimization would work. First, we add an upper-bound 

argument to the function Wor kloadCos t ( ) . The new call is 

Wor kloadCo s t ( W , MVs , UB ) , which returns the estimated cost of executing workload 

W with materialized views MVs, provided this cost is within the upper bound UB. If UB is 

exceeded, the function returns I N  FIN I TY. In line (1) of Figure 7-4, we call 

WorkloadCost (W, ( 1 ,  INFINITY).  Inlines(4)and(12)thecall becomes 



Workloadcost (W, Sub, Leastcost). Suppose W = 

{ ( q, , f ) , . . . , ( q, , f, ) } , which we keep sorted by decreasing frequency. Then we 

implement Wor kloadCos t ( ) as follows: 

WorkloadCost(Workload W, ViewSet MVs, Int UpperBound) { 

(1)  I ( q , , ~ ,  f,,~), . . . , (m,,,, f,,,) ) = MaintWorkload(MVs) ; 
(2) Int totcost = 0; 
( 3 )  for (i=l; i<(n+m) ; i++) { 

( 4 )  Int cost = Opt (qi ,MVs, (UpperBound-totcost) /fi) ; 

( 5 )  totcost += (cost x f i ) ;  

(6) if (totcost 2 UpperBound) 
(7) return INFINITY; 

1 
(8) return totcost; 

Figure 7-5: Algorithm for Computing Workload Cost 

Here the maintenance workload, computed on line ( 1 ) , is mapped to all of the same 

service change events that are part of the base workload, w (some of the mi may be 

empty). The important call here is Opt / 3, line ( 4 ) . Opt ( Q ,  MVs, UB) calls the query 

optimizer on query set 0, in the presence of materialized views MVs, with cost upper 

bound UB. If the optimizer cannot find a plan for Q within cost UB it returns INFINITY. 

An optimizers that supports pruning can seamlessly integrate the upper bound argument 

to increase its pruning level. 

7.4.4 View Merging 

Once a view set has been built, the final step is to merge the set with existing materialized 

views that have been chosen to support other requests. The motivation for this step is 

straightforward: If two selected materialized views are nearly the same, we do not want 

to redundantly store and maintain them. This step is where we make allowance for the 

global sub-optimality of choosing views based on each request in isolation. Of course, 



this "allowance" only gets us part of the way toward global optimality, but it does so 

tractably. 

First we have to describe what we mean by "nearly the same". A newly selected 

view can be merged with an existing one if it references all of the same service calls with 

identical binary predicates (join conditions) between them. 

Definition 7-4 (Mergeable Views): Two views, defined as conjunctive queries with 

comparison predicates over a set of service calls, are mergeable if 

1. They contain exactly the same set of service calls. 

2. They contain exactly the same binary predicates between service calls. 

Example 7-3 Consider the following three views: 

Vl(X, Y) t A(" A Value", X )  & B(X, Y). 

V2(Y) t A(X, Y) & B(Y, Z). 

V3(X, Y) t A(" AValue", Y) & B ( X ,  Y). 

Then VI is mergeable with V 2 ,  but neither Vl nor V2 is mergeable with V3. 

Note that the mergeable relation is reflexive, commutative, and transitive. 

The goal in merging two views is to produce a merged view that requires minimal 

space, and from which either original view can be derived at minimal cost. SPJ views 

that are mergeable may differ in their list of projected attributes or in their selection 

conditions. Thus if we take the union of the projected attributes and the disjunction of 

the selection conditions we create a new view that meets the criteria. Note that this is 

essentially the same process that we applied to merging multiple monitoring conditions in 

Chapter 3. The algorithm is shown in Figure 7-6. 

We assume the input views are mergeable here, and thus the service calls 

and the join condition are the same for both views. The notion of "canonical form" needs 

some explanation. The idea is to produce a uniform variable naming scheme by pulling 

selection and join conditions out of the service calls, ordering the calls and ordering the 

variables within the calls from left to right based on the service call ordering. Note, 



further, that the two original views can easily be obtained from the merged view. Indeed, 

given the notation of Figure 7-6: 

V1 = ( { ~ e r ~ e ) ,  (true), SCI, PAS]) 
V2 = ( (~e r~e) , ( t rue ) ,SC2 ,   PAS^) 

That is, a simple project-select filter over the merged view can reconstitute either input 

view. 

Merge (View V1, View V2) { 
Put V1 and V2 in Canonical Form; 
Let V1 = (Calls, JC, SC1, PAsl); 
/ /  Calls, Join Condition, Select Condition, Project Attrs 
Let SAsl = Selection Attributes of SC1 
Let V2 = (Calls, JC, SC2, PAs2); 
Let SAs2 = Selection Attributes of SC2 
return Merge = (Calls, JC, (SC1 OR SCZ), (SAsl U SAs2 u 

PAsl u PAs2) ) ;  

1 

Figure 7-6: Algorithm for merging two mergeable views 

Example 7-4 Suppose we are given the mergeable views, Vl  and V2, from Example 7-3 

These views have the following canonical forms: 

Vl(X2, X4) t A(X1, X2) & B(X3, X4) & (X2 = X3) & (XI="  AValue"). 

V2(X2) t A(Xl,X2) & B(X3,  X4) & (X2 = X3). 

Now we have 



Calls = (A, B) 

J C  = (X2 = X3) 

SCl = (XI =" A Value") 

SC2 = true 

PAsl = {X 2, X 4) 

PAs2 = (X2) 

SAsl = {XI) 

SAs2 = { )  

So we return 

Merge = ({A, B),(X2 = X3),((X1 ="AValue") v (true)),{Xl, X2, ~ 4 ) )  

Or, equivalently 

Merge(X1, X2, X4) t A(X1, X2) & B(X3, X4) & (X2 = X3). 

Furthermore, to compute V l  or V2 from Merge, we have 

Vl(X2, X4) t Merge(X1, X2, X4) & (XI =" AValue"). 

V2(X2) t Merge(X1, X2, X4). 

Note that Merge() produces the minimal view that contains the two mergeable 

input views. We can do so easily because we have limited ourselves to SPJ queries and 

we have chosen a simple, syntactic basis for view mergeability. Note, also, that the 

Merge() operation is commutative, associative and transitive. 

Our approach for merging a set of newly selected views with existing views is as 

follows: For each new view, V , we search the current set of materialized views for a 

view, V' , that can be merged with V . Since the mergeable relation is transitive, we can 

find at most one such view. If we find one, then we replace it with Merge(V, V') . If we 

do not find one, we simply add V to the set of materialized views. 

But one additional task remains. If we add the view Merge(V, V') and use it as a 

basis for obtaining V and V' , then we must modify all queries that use or update V or 

V' to use Merge(V, V') instead. Let ArMiMV = {V) , . . . , V,, ] be the set of new mergeable 

materialized views, and let O M W  = (5': . . . , V,' ] be the corresponding set of old 



mergeable materialized views. Assume that we have simple view definitions for all V ,  

and V,' in terms of Merge(V, V') . Then the algorithm of Figure 7-7 makes the proper 

query and plan alterations. 

Our approach to view merging and plan modification is not without drawbacks. 

The process may involve significant re-optimization costs, and it may compromise the 

quality of the view selection process. But we believe the benefits of the process outpace 

its pitfalls. A view can be obtained from a merged view via a local (at the mediator) 

select-project operation, which is generally cheap. Thus, the effect of our approach on 

the quality of view selection will be minimal. Moreover, re-optimization can be 

postponed if necessary until system load is light, or until a query must execute, which can 

help negate its effect. 

AdjustForMerges (NMMV, OMMV) { 
for each existing query Q I 

Vs = set of views referenced in Q; 
if ((Vs n OMMV) = I } )  

view expand and reoptimize Q; 
1 
for each new query Q { 

Vs = set of views referenced in Q; 
if ((V n NMMV) = I } )  

view expand and reoptimize Q; 
I 
for (i = 1 to n) 

replace maintenance queries for Vri with 
new maintenance queries for Merge (Vir Vr i )  

1 

Figure 7-7: Merge Adjustment Algorithm 

A number of alternative approaches exist, but most are not attractive. The alternative 

of performing global optimization for every new request is prohibitively expensive. The 

alternative of not merging at all is unattractive, since it can result in inefficient space 

utilization and redundant maintenance work. 



Another approach is to begin view selection by rewriting the new request using the 

current set of materialized views (Halevy, Mendelzon et al. 1995). This approach suffers 

from the fact that a multitude of rewrites may be possible. View selection would proceed 

as usual for each possible rewrite separately, which is very expensive. 

There is at least one alternative, however, that is viable and deserving of 

consideration. We can perform view merging on the set of candidate views before 

building our view set. Then, when computing the costs of the requested workload for a 

view set that includes one or more merged views, we can subtract the cost of the 

maintenance queries that will be removed if the view set is chosen. We refer to this 

approach as candidate pre-merging. Candidate pre-merging avoids re-optimization for 

the queries associated with the new request that access mergeable views. It also provides 

a more accurate assessment of the true (global) value of views that are added based on a 

new request. One drawback of the approach, however, is the cost of searching for and 

performing merges for every candidate view. Another potential drawback is that the 

revocation of requests can cause trouble. For example, suppose view V1 is optimal for 

request R1 in isolation, view V2 is optimal for R2 in isolation, but Merge(V1 ,V3) is 

chosen for the combined workload of R l  and R2. Now suppose request R1 is revoked. 

We can either "unrnerge" Merge(V1 ,V3) to be left with V3, or else we must redo view 

selection for R2 in order to obtain V2. In the former case, we believe that candidate pre- 

merging will result in a worse materialized view configuration over time when requests 

are frequently revoked. In the latter case, the costs of request revocation can be very 

significant, potentially causing a cascade of view re-selection operations. 

We are aware that our analysis of merging alternatives is based largely on intuition, 

and may not be terribly convincing; intuition should be used to ask questions, not to 

answer them (Patterson 1997). We do believe a detailed analysis of merging alternatives, 

including rigorous performance tests, is called for. We leave such an analysis for future 

work. 



7.5 Multiple Query Optimization in An ASIS 

Another major opportunity for sharing in an ASIS is in sharing intermediate results 

amongst simultaneously executing queries. Generating plans that exploit this form of 

sharing is known as Multiple-Query Optimization (MQO). MQO applies to an ASIS in 

two major areas: within the view selection process for individual requests, and over the 

entire ASIS workload across individual requests. 

7.5.1 MQO Within View Selection 

In our previous discussion of the value of materialized views, we assumed that the 

costs of all queries in a workload are independent. This assumption is embodied in 

Equation (7-9, which computes the cost of each query separately. For some 

applications, however, we may know in advance that certain groups of queries always (or 

often) execute simultaneously. If such query groups share common data, then we may be 

able to employ multiple query optimization techniques to execute them more efficiently 

in tandem. 

In fact, multiple query optimization opportunities are inherent to the process of 

view selection in an ASIS. A view, V, becomes a candidate for materialization in support 

of a request, R, because it can be used as an intermediate result in computing a query in 

the query suite induced by R. But this property implies that V must share one or more 

service calls with R. For each shared service call that is dynamic, a change event for that 

call will result in the simultaneous execution of a maintenance query on V and a 

monitoring query on R. 

Table 8-1 illustrates this point by showing a generic optimization table for view 

set selection for an ASIS request. Assume the request is a conjunct of service calls, 

SI ... S,,. The empty set, for the basic plan suite, followed by VSl ... VSn represent the view 

sets being considered. The initial, from scratch, computation of the request includes a 

simultaneous requirement to compute the initial value of the candidate view set, which is 



a multiple query optimization problem. For a given candidate view set, VSi, and a given 

change event, AS,, the incremental request computation Q,VSi must be executed, but any 

maintenance query on the view set induced by dS,, VSi,, if any, must be executed as well. 

Again, if VSi, is non-empty, we have another multiple query optimization problem. Sub- 

problems of cost-based view seIection that are potential multiple query optimization 

problems are shown in Table 7-1 in parentheses. 

Table 7-1: Optimization Table for View Selection for an ASIS Request 

As further illustration, returning to Example (7-I), if we are maintaining the 

materialized view, ReviewAndSaleInfoByArtist, as defined in Query (7-3), then changes 

to ConcertReview information trigger the execution of two queries simultaneously: one to 

update the condition, ComingSoon , and one to maintain the materialized view, 

ReviewAndSaleInfoByArtist. Using incremental techniques the queries are as follows: 
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AComingSoon(Artist,Club, Date, Review URL,PurchaseURL, - MC) t 
ClubL isting(Artist, "Mycity", Club, Date, - MC) & 
AConcertReview(Artist, Review URL) & 
MusicForSale(Artist, "R&BU, PurchaseURL). 

AReviewAndSaleInfoByArtist(Artist, ReviewURL,PurchaseURL) t 
AConcertReview(Artist, ReviewURL) & (7- 1 3) 

MusicForSale(Artist, IrR&B", PurchaseURL). 

Clearly the result of Query (7-1 6) can be used as an intermediate result in the execution 

of Query (7-1 5). One way to execute these two queries in tandem, then, is to first 

compute Query (7-16), and then join the result with ClubListing to obtain AComingSoon. 

By taking advantage of simultaneous execution to reuse the work of Query (7- 16), this 

multi-plan may be (though it is not necessarily) more efficient than executing the two 

queries separately. 

It is a simple matter to adjust Definition 7-1 to account for knowledge of 

simultaneous query execution. 

Definition 7-5 (Expected Value of Materialized Views with Simultaneous Query 

Execution): Given 

1) A database with schema and related metadata, S. 

2) A workload, W = ((q,, f,),. . . ,(q,, f,)) over S where the q, are query sets that 

execute simultaneously and J; gives the frequency of execution of q, over time. 

3) A set of materialized views, V, with an associated view maintenance workload 

X = {(m,, go),. . ., (m,, , g,)} over S where the rn, are maintenance query sets for 

V, and where J; gives the frequency of execution of q, over time. X i s  a 

function of V and S . 

4) Let R = {ro , . . . , r, } be the set of query sets induced by merging elements of Wand 

X that execute simultaneously with associated frequencies H = (h, , . . . , h, } ; 



5) A multiple query optimizer Opt with an associated cost function. C. 

The expected value of materializing and maintaining V with respect to W, S and Opt is 

given by: 

where C(q, MV) is the estimated cost of the optimal multi-plan for query q in the 

presence of materialized views MV, as given by Opt over S. 

Deriving the complete workload of an ASIS based on the induced workload for a 

single request is straightforward. Essentially, the complete workload is the union of the 

workloads associated with each active request. In combining these workloads, however, 

we must take care that queries associated with the same change event are combined into 

query sets. We associate a pair, ((agent, service, call), changerype) with each 

(Q, F ,  M) triple that describes a workload. When combining workloads, we first 

combine elements associated with the same ((agent, service, call), c h a n g e ~ ~ ~ e )  pair by 

taking the union of the query groups associated with each such element. We then 

perform a union operation as usual. 

Example 7-3 Let WI, the workload induced by request, R1, and W2, the workload 

induced by request, R2, be defined as follows: 

w l =  {((~~l7~l~~l~7~l)7(~l,~~l~~l1))7(((a27~,.c2)7~2)7(Q,,.~27~,2))} 

= {((('I '1 '1 1 7  '1 ), ( ~ 2 1  7 F21 7 ~ 2 1  ))' ((('3 '3 '3 1, '3)7 ( ~ 2 2  7 '22 > M22 ))] 
Query Q,, of W1 and query Q,, of W2 are both triggered by the same change event. 

Therefore, if the set of current active requests in an ASIS is {RI, R2), then the 

corresponding workload is W l  u W 2 , where: 



ueries Q,, and Q2, have been merged into a single query set. Also note that F,, = F,, 

and M I ,  = M,, , since they are change metadata parameters associated with the same 

(< agent, service, call >, ~han~e7''~e) event. 0 

Suppose W = { ( ql  , f ) , . . . , ( q, , f ,  ) } , which we keep sorted by decreasing 

frequency. Then we implement Wor kloadCos t ( ) as shown in Figure 7-8: 

WorkloadCost(Workload W, ViewSet MVs, Int UpperBound) { 

(1) { (m,, f I )  , . . . , (m,, f,) } = MaintWorkload (MVs) ; 
(2) Int totcost = 0; 
(3) for (i=l; i<n; i++) { 

(4) Int cost = Opt ( (q, V mi) ,MVs, (UpperBound-totcost) /fi) ; 

( 5 )  totcost += (cost x fi); 
(6) if (totcost > UpperBound) 
(7) return INFINITY; 

1 
(8) return totcost; 

1 

Figure 7-8: Algorithm for Computing Workload Cost 

Here the maintenance workload, computed on line ( 1 ) , is mapped to all of the same 

service change events that are part of the base workload W . (Some of the mi may be 

empty). The important call here is O p t  / 3, line ( 4 ) . O p t  ( Q , MVs , UB ) calls the query 

optimizer on query set Q ,  in the presence of materialized views MVs, with cost upper 

bound UB. If the optimizer cannot find a plan for Q within cost UB it returns INFINITY. 

An optimizers that supports pruning can seamlessly integrate the upper bound argument 

to increase its pruning level. 



7.5.2 Additional MQO Opportunities in an ASIS 

As monitoring requests accumulate over a world of network-based services, disparate 

requests will tend to overlap. That is, they will share common service calls. In general, 

we expect requests to grow at a faster pace than the number of accessible services. 

Indeed, it is only natural that a service will not exist unless it meets the needs of many 

clients. A significant degree of request overlap is to be expected. 

Whenever two requests involve a common dynamic service call, a service change 

event on that common call will result in the execution of multiple simultaneous 

monitoring queries. Moreover, such monitoring queries share common data. At the 

least, they share the data associated with the service change event. Therefore, they 

present an opportunity for partial result sharing, and for the application of MQO 

techniques. 

Note that the technique of merging monitoring operations in the the Paradox 

system, as described in Chapter 4, provides the beginnings of this sort of multiple query 

optimization. But such merging extends only as far as the data associated with the 

change event. Where multiple requests share more than one service call, opportunities 

for greater optimization are possible. Note, however, that since we handle cost-based 

view selection on a request-by-request basis, this form of MQO problem cannot readily 

be integrated into the view selection process. The fact that we lose out on such MQO 

problems, however, does not justify attempting global view selection. Instead, a 

reasonable compromise is to track inter-request MQO problems, prioritize them by 

service call overlap, and perform re-optimizations in MQO style when system cycles are 

available to do so. 



7.6 Chapter Summary 

We have covered a lot of ground in this chapter. We have shown how data and 

processing effort can be shared across multiple ASIS requests via a view cache. We have 

described a framework for cost-based view-cache selection in an ASIS that exploits the 

knowledge of the ASIS workload that comes from the long-lived nature of ASIS requests. 

But cost-based view selection induces a massive optimization problem. We described a 

multi-pronged approach to attacking this problem and making it tractable. Finally, we 

described how many simultaneously-executing queries arise in an ASIS, in particular 

when caching and the associated coherency demands are considered. These 

simultaneously-executing queries provide another opportunity for sharing, as they will 

often share intermediate results. We can exploit this opportunity by using multiple query 

optimization techniques to optimize and execute them in groups. 

But another opportunity for sharing has been left untapped in the techniques we 

have described in this chapter. As we will see in Chapter 8, a great opportunity for 

sharing of optimization effort is present in the ASIS view selection problem. We can 

exploit this opportunity through a novel technique we call Multiplex Query Optimization 

(MuxQO). Moreover, MuxQO can be applied to a wide range of problems, and can be 

useful for performing multiple query optimization as well. 



Chapter 8 

Multiplex Query Optimization 

In the previous chapter we described various ways in which sharing could be exploited to 

improve the performance and scalability of an active service integration system. We 

discussed an associative caching scheme in which views over service calls are 

materialized and maintained in support of request processing, and methods for sharing 

partial results among simultaneously executing queries. Exploiting these forms of 

sharing presents a massive optimization problem, which, in turn, presents another 

important opportunity for sharing. This new opportunity involves the sharing of planning 

effort. In this chapter we discuss a technique for exploiting this opportunity that we call 

Multiplex Query Optimization (MuxQO). 

The basic idea behind MuxQO is to share optimization work over a number of 

similar query optimization tasks. In particular, we share the work as embodied in the 

memo structure or dynamic programming table that is central to the optimization process 



(as described in Chapter 6). Note that the problem addressed and the techniques 

employed in Multiplex Query Optimization are fundamentally different from those of 

Multiple Query Optimization (MQO) (Sellis 1988). MQO involves finding an optimal 

plan for multiple queries that execute simultaneously, with the goal of improving the 

performance of execution. MuxQO, in contrast, involves sharing optimization work 

among queries that do not, in general, execute simultaneously, with the goal of improving 

the performance of optimization. In MuxQO, we push the optimization of a group of 

queries through a single optimization space; in effect, we multiplex queries through the 

space. In fact, as we will show, MuxQO can be used to speed the optimization phase of 

MQO. 

In its simplest form, a multiplex query optimizer takes a query, optimizes it, and 

retains the important data structures that store optimization results for the query and its 

sub-problems. As additional queries are fed to the system, these data structures are 

reused as much as possible for the new queries, reducing optimization effort. More 

complex MuxQO systems may perform explicit memory management on their data 

structures, which can grow very large, or may carefully control the ordering of queries 

fed to the system to maximize reusable work and minimize memory demand. 

MuxQO is effective where a large optimization problem can be transformed to a 

set of query optimizations that share common sub-problems. Examples include problems 

that fall into the following three classes: 

1) Problems in which the optimization of a group of highly similar queries arises 

naturally. One example of this scenario is the optimization of monitoring queries 

in an ASIS. A query suite must be optimized to a plan suite, and the queries 

involved often have a high degree of similarity. 

2) Problems in which a single set of queries is repeatedly optimized in the presence 

of varying physical database designs, access paths, derived data sets, or data 

characteristics. The problem of optimizing a single query over two slightly varied 

access path configurations, for instance, can be transformed into the optimization 

of two separate but similar queries. This scenario occurs in automated physical 

database design; in materialized view selection, including view selection in an 



ASIS; in the incremental reoptimization of queries based on changes in database 

statistics, access methods, or other derived data; and in the dynamic 

reoptimization of queries based on materialized intermediate results. 

3) Problems in which a set of queries is optimized for simultaneous execution, and 

differing shared partial results are considered. 

Note that each of these scenarios occurs prominently in an ASIS. In fact, the ASIS 

materialized view selection problem involves the simultaneous occurrence of all three 

scenarios: A group of highly similar queries is repeatedly optimized over varying sets of 

materialized views, the presence of which induces sub-optimization problems involving 

multiple simultaneously executed queries. We will describe this problem in detail, and in 

so doing illustrate how Multiplex Query Optimization applies to each of the scenarios 

listed above. We describe an analytic model of the savings that MuxQO provides in this 

context based on optimality groups and logical multi-expressions, and we present 

experimental results that confirm and augment our analysis. 

8.1 Optimization Sharing in an ASIS 

In Chapter 7 we described the cost-based selection of a set of views to materialize and 

maintain in an ASIS. Given a workload of requests, an exhaustive approach to this 

problem involves finding the cost-based value of all possible sets of syntactically relevant 

views, and choosing the most valuable set (subject, perhaps, to various constraints). The 

cost of this process is dominated by the cost of value computation, which occurs once for 

each view set considered, and involves running query optimization over every query in 

the workload. If this exhaustive approach is applied to a workload of k natural join 

queries having n dynamic sub-calls each, then k x ( n  + I) x 22n runs of the query optimizer 

are required. Clearly such a doubly exponential algorithm does not scale well. 

Defeating this level of complexity demands an integrated, multi-pronged attack, 

many aspects of which were discussed in Chapter 7. The first prong is to consider each 



request in isolation; that simplification eliminates the k factor. A second prong involves 

applying well-known query optimization heuristics to reduce the time of each optimizer 

run, such as those touched upon in Chapter 6. A third prong is to reduce the number of 

candidate views by a combination of heuristics and the imposition of limitations in the 

query processing capabilities of the system. A fourth prong is to further reduce the view 

sets considered, building a complete view set based on a combination of heuristics and 

optimizer feedback. We presented an algorithm for building a view set in this manner in 

Chapter 7. A fifth and final major prong, which we discuss now, is to use multiplex 

query optimization, in conjunction with the processes of view set building and view 

merging, to share common optimization work over optimizer invocations. 

8.1.1 Optimization Sharing in a Query Suite 

As we have noted previously, a request in an ASIS induces a suite of monitoring queries 

that should be optimized together for repeated execution over time. The queries in a suite 

have a high degree of similarity, since each monitoring query shares all but one service 

call with the initial request. It follows that optimizing these queries involves a large 

degree of overlapping work, since the queries will share many optimality groups amongst 

them. 

Example 8-1 (MuxQO in a Query Suite): Consider, again, Example 7-1, where the 

initial request is: 

ComingSoon(Artist, Club, Date, Review URL, CDPurchase URL) t 
ClubListing(Artist, "Mycity", Club, Date) & 
ConcertReview(Artist, Review URL) & 
MusicForSale(Artist, "R&B " ,  Purchase URL). 

where ClubListing, ConcertReview and MusicForSale are all dynamic. The query suite 

induced by this request includes the initial request plus the three monitoring queries: 



ACorningSoon(Artist, Club, Date, Review URL, CDPurchase URL, - MC) t 
AClubListing(Artist, "MyCity",Club, Date, - MC) & 
ConcertReview(Artist, Review URL) & 

(8-2) 

MusicForSale(Artist, "R&B", PurchaseURL). 

ACorningSoon(Artist, Club, Date, Review URL, CDPurchase URL, - MC) t 
ClubListing(Artist, "Mycity", Clzrb, Date) & 

(8-3) 
AConcertReview(Artist, Review URL, - MC) & 
MusicForSale(Artist, '%&B", PurchaseURL). 

AComingSoon(Artist, Club, Date, Review URL, CDPurchase URL, - MC) t 
ClubListing(Artist, "MyCity ", Club, Date) & 
ConcertReview(Artist, Review URL) & 

(8-4) 

AMusicForSale(Artist, "R&B", Purchase URL, - MC). 

Recall that in an ASIS such as Paradox, the current value of the request is first 

computed via the full request, then all future changes to that value are computed via the 

monitoring queries. Thus we must optimize all of (8-1)-(8-4). Assuming we optimize 

the queries in order, and that we optimize each query exhaustively, the optimization of 

(8-2) involves optimizing many of the same groups that were already optimized in (8-1). 

The optimality groups of query (8-2) are as follows: 

AClubListing 
ConcertReview X 
MusicForSale X 
(AClubListing & ConcertReview) 
(AClubListing & MusicForSale) 
(ConcertReview & MusicForSale) X 
(AClubListing & ConcertReview & MusicForSale) 

All of the groups in (8-5) marked with an X are also optimality groups of Query (8-1). 

Note, further, that the set of interesting and relevant properties associated with these 

common groups is the same for both queries. In optimizing Query (8-2), then, three of 

the seven sub-problems involved were already completed during the optimization of (8- 



1). By using MuxQO we can avoid redoing this work. An analogous situation exists 

between the optimality groups of (8-3) and (8-I), and those of (8-4) and (8-1). 

How much savings does this process give us? Recall, from Chapter 6, that the 

number of logical expressions (and thus multi-expressions) is a good first-cut measure of 

the cost of optimization. In this example, four logical expressions are associated with the 

three groups of query (8-2) that are shared with query (8-l), while the remaining four 

groups account for 11 logical expressions. The savings should be roughly 411 5, or 27%, 

in this case. Similarly, the work of 4 of the 15 logical expressions in each of (8-3) and 

(8-4) can be avoided. Thus, if all 4 queries are processed together. 48 logical expressions 

must be fleshed out, while 60 logical expressions would be required if the queries are 

processed separately.. This analysis gives us an estimated savings of 25%. 

Note, further, that each optimality group shared between any pair of (8-2), (8-3) 

and (8-4) is also a group for query (8-1). That is, if we let G(Q) be the set of optimality 

groups associated with query Q, then: 

(G(8 - 2) n G(8 -3)) u ( G ( 8  - 2) n G(8 - 4))'u (G(8 - 3) n G(8 - 4)) c G(8 -1) 

This containment has implications for memory management in using MuxQO to optimize 

this query suite. If we optimize query (8-1) and save all optimality group results, then it 

is not necessary to save any additional optimality group results generated by queries (8- 

2), (8-3) or (8-4). MuxQO can be a very memory intensive process, so memory 

management can become important. We will discuss the general issue of reclaiming 

memory from MuxQO data structures later in this chapter. 

In general, suppose we are given an n-way conjunctive request, Q, in which all 

service calls are dynamic: 

Q t X ,  &X, &...&X,,. 

Assume, for simplicity, that no calls are repeating. That is, (i + j )  -+ (X, ;t X, ) . We 

label the monitoring queries induced by Q such that Q, = AQ/AX, , as follows: 



Then, since query Q, (i = I.. . n)  shares (n - 1) dynamic calls with query Q, it will also 

share all optimality groups that involve only calls in that shared set. This means that 

(2'"-" - 1) of the (2" - 1) optimality groups for Q, will be shared with Q, or about 50%. 

Similarly, Q, will share all logical multi-expressions with Q that stem strictly from the 

shared set of calls. In this case, based on our discussion in Chapter 6, 3'"-" - 2" + n of 

the 3" - 2("+1) + n + 1 logical multi-expressions associated with Q, will be shared with Q, 

which approaches 33% as n increases. 

Note, finally, that any optimality group (or multi-expression) in Q, (i = 1.. . n)  

that is not shared with Q must involve AX,. But since AX, appears only in Q, , such 

groups are not shared by any Q., ( j  + ) Therefore all optimality groups shared by any 

pair of queries in the query suite are contained in the set of groups associated with Q. 

That is: 

This containment implies that in applying MuxQO to a query suite, if we optimize query 

Q first and save all optimality group results associated with Q, then it is not necessary to 

save any additional optimality group results generated by queries Q, . . . Q, over multiple 

optimizations. As we noted in our discussion of Example 8-1, this observation has useful 

implications for memory management in MuxQO. 

8.1.2 Optimization Sharing in View Selection 

As we described in Chapter 7: the view selection problem involves repeated optimization 

of a group of queries over varying view sets proposed for materialization. Our method 



for view selection in an ASIS involves computing a good set of views for each request in 

isolation, and then merging this set with the current set of existing materialized views. In 

this process, the group of queries that is repeatedly optimized is exactly the query suite 

induced by the request. For each proposed set of materialized views, then, we find 

similar potential for optimization sharing as was described in the previous section. But 

additional sharing across view sets and in the queries for evaluation and maintenance of 

views can also take place, yielding larger savings than in a single optimization of a query 

suite. 

Recall from Chapter 7 that view selection in an ASIS involves filling in a table of 

plans and costs for the query (or group of queries) associated with each 

( ~ ~ n a m i c ~ a l l ,  viewset) pair. We label the columns of the table with each successive 

proposed view set (including the empty set). Each column corresponds to the complete 

query suite evaluated in the presence of the proposed materialized view set, plus queries 

for creating and maintaining the view set. 

Example 8-2 (MuxQO in View Selection): Returning to Example 8-1, assume, for ease 

of exposition, that we consider a set of three possible candidate views: 

V1: ClubListing 

V2 : ConcertReview 

V3 : (ClubListing & ConcertReview) 

Suppose, further, that we greedily choose a view set of size no greater than 2, and that our 

first-choice view turns out to be Vl. Note that in our earlier notation we defined Q, to be 

the monitoring query, A Q / M ,  . Here we augment this notation. We define Q,,, to be 

the monitoring query, A Q / M ,  , in the presence of the view set VS. For all X, in the 

view, V, we let y , , ,  be the view maintenance query, AV/M,  , in the presence of view 

set VS. Note that in the view set notation we need only list views that are relevant to the 

query in question. All candidate views must be relevant to the queries in the query suite, 

but not all candidate views are relevant to each other. For example, Vl is not relevant to 



V2 since the former cannot be used to compute the latter. Both VI and V2, in contrast, 

are relevant to V3. Table 8-1 below gives the optimization table for this example. 

The presence of multiple queries in a table entry indicates that these queries are 

executed together. We will assume in this section that such query groups are handled in 

the following manner: 

I .  Queries in the group are placed in a partial order such that sub-queries are 

executed before the queries that subsume them. 

2. Each query that subsumes other queries in the group is rewritten to use the result 

of each query that it immediately subsumes. In general, this process may result in 

multiple rewrites. 

Once the rewrites have occurred, the queries in a group can be optimized separately. 

Where there are multiple rewrites for a single query, the optimal plan over all rewrites is 

chosen. For example, the cell (AClubListing, {Vl)) in Table 8-1 contains the query set 

{ Q I  , V .  If we write V1 as [ClubListing], then the two queries are defined as 

follows: 

Table 8-1: Optimization Table for Example 8-2 



V1, = A[ClubListingJ t AClubListing. 
Q , ~ l , - , ~  = AQ +- A[ClubListing] & ConcertReview & MusicForSale. 

We assume that V1, will execute immediately before Ql-l,,,:, and that we can optimize the 

two queries separately. 

Note that this approach is reasonable, and often will be optimal in terms of 

resource consumption. But in some cases it may be better to employ multiple query 

optimization techniques for these query groups. We will extend our discussion to include 

MQO techniques in a later in this chapter. 

Fleshing out the optimization table proceeds top-to-bottom, left-to-right. The first 

column of optimizations is the basic query suite, which exhibits the same properties of 

optimization sharing that were shown earlier. Each of the monitoring queries, Ql ,Q2  

and Q3 shares 3 of its 7 optimality groups with Q, encompassing 4 of its 15 logical multi- 

expressions. Over the entire suite, 9 of 21 optimality groups and 12 of 60 multi- 

expressions can be shared across optimizations. 

Now consider the second column, which involves the following 6 queries: 

(1) V1 = [ClubListing] t ClubListing. 
(2 )  Q, ,, = Q +- [ClubListing J & ConcertReview & MusicForSale. 

(3) V1, = A[ClubListing] t AClubListing. 
(4) Q,,,,,! = A Q  +- A[ClubListing] & ConcertReview & MusicForSale. (8-7) 

(5) Q,,,,,: = AQ +- [ClubListing] & AConcertReview & MusicForSale. 

(6) Q,,, ,,) = AQ +- [ClubL isting] & ConcertReview & MusicForSale. 

are precisely the original query suite rewritten to include the proposed view set 

( [ ~ l u b ~ i s t i n ~ ] ) .  As such, they exhibit the same optimization sharing properties as the 

query suite itself, which we discussed previously. Note that we need only optimize each 

of these queries in its rewritten form, since we have already optimized it in its "raw" 

form, the form in which it does not use the view. If the query is more expensive to 



execute using the view than not using the view, then we use the plan generated in the 

earlier optimization. 

In general, a complete optimization of a query using a view set must consider 

rewrites that employ each subset of the view set. Since our algorithm considers view sets 

in cardinal order, however, we will have already considered at least some of these 

rewrites. For example, if the current set size is Nand we have exhaustively considered 

view sets to size N- 1 ,  then we will have already considered all rewrites involving proper 

subsets of the current view set. It remains only to consider a rewrite that involves the 

complete currently proposed view set. Of course, if we have considered view sets to size 

N-1 in a partially greedy manner, we may have more rewrites to consider. We may also 

want to prune certain rewrites heuristically. Regardless of the strategy chosen, this 

"rewrite sharing" is an important form of optimization sharing. But it is a product of the 

view sets considered and their order of consideration, not something that requires 

multiplex query optimization. 

But in addition to this sharing amongst the queries in the rewritten suite in the 

second column, there is group and multi-expression sharing with the original query suite 

as well. Query Q,,,: differs in only one conjunct from the original request, Q, and thus 

shares three of seven groups and four of fifteen multi-expressions with Q. Query Q,,~v, l ,  

in addition to sharing all but one conjunct with Q(,,! (query (2)), differs by only one 

(other) conjunct from query Q, of the original query suite. The optimality groups of 

Q,.,,,) are listed in (8-7) below: 

[ClubListing] X 
AConcertReview * 
MusicForSale X * 
([ClubListing] & AConcertReview) 
([ClubListing] & MusicForSale) X 

( AConcertReview & MusicForSale) * 
([ClubListing] & AConcertReview & MusicForSale) 



In (8-8), the groups shared with Q:,.,: are marked with an X, and the groups shared with 

Q2 are marked with a *. In total, five of the seven groups are shared with previously 

optimized queries, and seven of fifteen logical multi-expressions are shared. An 

analogous pattern of optimization sharing holds for query Q;,,,,, . 

In addition, the queries that apply to the creation and maintenance of the proposed 

view set overlap completely with previously optimized queries. Query V (Query (1) in 

(8-7)) is completely subsumed by Q, the query corresponding to the original request. 

Query V1 I (Query (3) in (8-7)) is subsumed by Ql. In total, disregarding the issue of 

rewrite sharing, 18 of the 30 optimality groups, accounting for 24 of the 63 logical multi- 

expressions, associated with this column of queries are shared with previous optimization 

work. 

Note that the third column will exhibit an identical pattern of optimization sharing 

as the second column just described. Column 4 will follow a similar pattern, but will 

exhibit some differences, since the view being considered is a join of two dynamic 

service calls. Here we optimize the following list of queries: 

( I )  V3 = [ClubListing & ConcertReview] t ClubListing & ConcertReview. 
(2) Q,,;, = Q i- [ClubListing & ConcertReview] & MusicForSale. 

(3) V 3 ,  = A[ClubListing & ConcertReview] t AClubListing & ConcertRevie~v. 
(4) Q,,,,,) = A Q  +- A[ClubListing & ConcertReview] & MusicForSale. (8-9) 
(5) V3, = A[ClubListing & ConcertReview] t ClubListing & AConcertReview. 
(6 )  Q,,l,.31 = A Q  i- A[ClubListing & ConcertReview] & MusicForSale. 

(7) Q,,,,,, = AQ t [ClubListing & ConcertReview] & AMusicForSale. 

The queries Q,,;: , Q, ,,;!, Q, , v 3 ) ,  and Q,.,,;, ((21, (41, (6 )  and (7) in (8-9), 

respectively) are the original query suite rewritten to include the complete proposed view 

set ( [ ~ l u b ~ i s t i n ~  & ~ o n c e r t ~ e v i e ~ v ] ]  . This query group exhibits similar optimization 

sharing properties as the query suite itself, except, since the view set includes a join view, 

the effective number of joined tables is decreased. The modified query suite consists of 

2-way joins rather than 3-way joins, and so each monitoring query, Q, ,,,;:, shares one of 



three groups and one of four logical multi-expressions with el,.?; . Additional 

optimization sharing exists with the original query suite, which, again, resembles the 

pattern seen with Columns 2 and 3, except that it applies to queries of decreased join 

arity. Query Q1,.;; shares the single group and multi-expression, MusicForSale , with 

query Q. Query Qxl l , ; :  shares the single group and multi-expression, AMusicForSale, 

with query Q3. Finally, as with Columns 2 and 3, the queries that apply to the creation 

and maintenance of the proposed view set involves optimality groups that overlap 

completely with previously optimized queries. 

In this example, for Column 4, 14 of the 21 optimality groups and 17 of the 28 

logical multi-expressions associated with this set of 7 queries have been handled by 

previous optimizations. In general, as larger joins are considered for materialization, 

optimization sharing remains significant and can increase as a percentage of total work, 

but the overall optimization work associated with the column of queries decreases, since 

the join size of the rewritten query suite is smaller. 

Column 5 presents the first case, in our example, of optimization sharing where 

the proposed view set involves multiple views. Here we must optimize the following set 

of queries: 

(1) V1 = [ClubListing] t ClubListing. 
(2) V 2  = [ConcertReview] t ConcertReview. 
(3) Ql,,,,,,, = Q +-- [ClubListing] & [ConcertReview] & MusicForSale. 

(4)  Vl, = A[ClubListing] t AClubListing. 
(8- 10) 

(5) Q,,,vI,v,, = AQ +- A[ClubListing] & [ConcertReview] & MusicForSale. 
(6) V 2, = A[ConcertReview] t AConcertReview. 

(7) Q2,(vl,I,2; = AQ t [Club Listing] & A[ConcertReview] & MusicForSale. 
(8) Q- 3,,v~,~.r2; 1 = AQ +- [ClubListing] & [ConcertReview] & AMusicForSale. 

Queries Q(vl,v,) 7 Q,.,v,..,,; : Q,.,v,,v,, , and Q;,,v,,v,; ((3), (51, (7) and (8) in (8-10), 

respectively) correspond to the original query suite rewritten to include the complete 

proposed view set, ~~lub~istin~],[~oncert~eview]). These queries exhibit the familiar 

optimization-sharing pattern of the original query suite. But there is additional sharing, 



this time from the queries for the proposed view sets $ ~ l u b ~ i s t i n ~ ] )  and 

( [ ~ o n c e r t ~ e v i e ~ ~ ] )  . Query Q ,,,, differs by one conjunct from Q l , . , l  and by  one 

(different) conjunct from Q;,,,) , thus five of seven groups and seven of fifteen logical 

multi-expressions are shared with these two previous optimizations. Query Q,,~,,,,,,,, 

shares the same amount of optimization work with queries Q(c'l.,,21 and Q,.,,,,), as does 

Qz,(vI.l-2) : with queries Qlv, 1,2) and Q . Still greater sharing applies to Q3 I,.,,, ,;, which 

involves the optimality groups listed in (8-1 1). 

In (8-1 I), groups shared with Q,v,,v2) are marked with X, groups shared with 

Q3 are marked with *, and groups shared with Q3,{,,?) are marked with $. Here six of 

seven groups are shared with previously optimized queries, and nine of fifteen logical 

multi-expressions are shared. 

[ClubListing] X$ 
[ConcertReview] X * 
AA4usicForSale * $ 
([ClubListing] & [ConcertReview]) X 

([ClubListing] & AMusicForSale) $ 
([ConcertReview] & AA4usicForSale) * 
([ClubListing J & [ConcertReview] & AMusicForSale) 

Finally, the queries that apply to the creation and maintenance of the proposed 

view set are identical to queries seen previously. In total, disregarding sharing of 

rewrites, 21 of 28 optimality groups and 30 of 60 logical multi-expressions associated 

with this column of queries are shared with previous optimization work. 

The sixth and final column in this example involves a proposed view set with 

multiple views where one view in the set is a subview of another view in the set. But any 

reasonable rewrite of the query suite in the presence of this view set will only involve one 

of the two views in the set. Consequently, these queries will be repeats of queries we 



have seen before. To illustrate, the following set of queries represent rewrites using the 

complete view set: 

(1)  V l  = [ClubListing] t ClubListing. 
(2 )  V 3  = [ClubListing & ConcertReview] t [ClubListing] & ConcertReview. 
(3)  Ql,;.,,,..;) = Q i- [ClubListing & ConcertReview] & [ClubListing] & 

Music Forsale. 
(4 )  V1, = A[ClubListing] t AClubListing. 
( 5 )  V 3 ,  = A[ClubListing & ConcertReview] t A[ClubListing] & ConcertReview. 

(6 )  Q, = AQ t A[ClubListing & ConcertReview] & A[ClubListing] & (8- 12) 

MusicForSale. 
(7) V32  = A[ClubListing & ConcertReview] t [ClubListing] & AConcertReview. 

(8) Qz:{vl ,vq  = AQ +- A[ClubListing & ConcertReview] & [ClubListing] & 
MusicForSale. 

(9) Q- J , J V I , V ~ J  = AQ t [ClubListing & ConcertReview] & [ClubListing] & 
AMusicForSale. 

But clearly in queries Q,vl.Lr;) and Q;.,vl,Lr31 ( ( 3 )  and (9)  above) the sequence 

([ClubListing & ConcertReview] & [ClubListing] ) can be reduced to 

( [ClubListing & ConcertReview] ), which reduces Q,,,,,v31 to Q { V 3 )  and Qj,(vl,l,31 to Q3,1v3) . 

Similarly, in query Ql.:vl,v;: ( (6 )  above) the sequence ( A[ClubListing & ConcertReview] 

& A[ClubListing] ) can be reduced to ( A[ClubListing & ConcertReview]), which reduces 

Ql,ivl,v;l fo Q,,{v;: .  Finally, in query Q2.(vl.v;: ((8) above) the sequence ( A[ClubListing & 

ConcertReview] & [ClubListing]) can be reduced to ( A[ClubListing & ConcertReview]), 

which reduces Q,.{vl.v3~ to Q,,:v3) . 

Indeed, the only queries listed in (8-1 2)  that have not been optimized previously 

(or cannot be reduced to a form that has been optimized previously) are queries V3, and 

V3*. But these two queries correspond to optimality groups that have been seen before, 

within queries Q ~ ; ~ , , , ~  and Q2,,l,,l , respectively. The end result is that the optimal plans for 

all of the queries listed in (8-12) can be found with simple lookups, and no additional 

optimization work, with the help of multiplex query optimization. Considering only the 



new queries, we see sharing of all 6 of the optimality groups and all 8 logical multi- 

expressions for this proposed view set. 

Table 8-2 summarizes the sharing of optimality groups and logical multi- 

expressions for each view set considered in this example. Rewrite sharing is not 

Table 8-2: Optimization Sharing in Example 8-1 

considered. The optimality group savings of 861143, or about 60%, translates to 

multiexpression savings of 1 15/280, or about 4 1 %. These numbers represent an estimate 

of the savings that can be gained in this example from using multiplex query 

optimization. We demonstrate the savings experimentally later in this chapter. 

8.2 Optimization Sharing in Multiple Query Optimization 

(Vl,V3) 

6 
- 

6 

- 8 
8 

Optimality 
Groups 

Logical Multi- 
Expressions 

While we have made a point of emphasizing that Multiplex Query Optimization is a 

completely separate notion from Multiple Query Optimization, MuxQO can be used to 

speed the process of MQO in much the same way that it can be used for ASIS view 

selection. Moreover, many of the subproblems encountered while performing MuxQO 

for ASIS view selection can benefit greatly from MQO techniques, and these techniques 

can be folded seamlessly into the MuxQO process. 

If standard query optimization techniques are used to optimize a group of 

individual queries, the resultant plans may be suboptimal if the queries are executed 

simultaneously. Simultaneous execution can cause a locally suboptimal plan for one 

query to be globally optimal for the query group if it produces an intermediate result that 

Totals 

8 6 - 
143 
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{V3) 

14 - 
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- 17 
28 

(>  

9 - 
28 

12 - 
60 

{Vl,V2) 

2 1 - 
2 8 

- 3 0 
60 

{Vl )  

- 18 
3 0 

- 24 
62 

(V2) 

- 18 
30 

- 24 
62 



can be shared with one or more other queries in the group. The principle of local 

optimality, which is central to standard query optimization (as we discussed in Chapter 

6), breaks down in this event. Standard optimization techniques do not consider this 

possibility. 

Example 8-3 (MQO): As a common illustration of MQO, consider two 3-way joins: 

Suppose the optimal plan for Ql involves joining A with B, and then joining the result 

with C, while the optimal plan for Q2 involves joining B with C, and then joining the 

result with D. If Ql is executed together with Q2, however, the least cost for executing 

both queries may be achieved if the join of B and C is computed once and reused to 

compute both Ql  and Q2, in the former case by joining the result with A, and in the latter 

case by joining the result with D. By computing a common subexpression once we 

achieve a globally optimal plan, even though the plan used to compute Ql  is locally 

suboptimal in this case. 

Multiple query optimization techniques expand standard query optimization 

methods to account for the possibility of shared intermediate results. This process can be 

divided into two steps: 

1.  Identify candidate sets of intermediate results for inter-query sharing. 

2. Compute the cost of materializing these intermediate results, and then of 

computing the set of simultaneously-executing queries in the presence of these 

materialized intermediate results. 

These steps should sound familiar from our discussions of ASIS view selection. Step 1 is 

similar to the selection of sets of candidate views, and step 2 is similar to computing the 



cost of incremental request computation in the presence of candidate view 

materialization. Indeed, view selection and Multiple Query Optimization are very similar 

problems. In view selection, views that are subexpressions of one or more requests in a 

set are considered for long-term materialization and maintenance. Whereas, in MQO, 

subexpressions of more than one request in a simultaneously executing set are considered 

for transient materialization. 

The phrases emphasized above suggest two simple modifications to our ASIS 

view selection algorithms in adapting them to Multiple Query Optimization. First, 

instead of generating candidate views from a single request, we generate them from every 

request in the set, and we only retain those that apply to at least two requests. Note that, 

in general, this process should consider not only straight subexpressions of a given query 

in the set, but also expanded subexpressions that subsume those of more than one query, 

in a manner similar to the view merging process we described in Chapter 7. Second, 

since the candidate views are transient and the query set is computed only once, the cost 

of materializing the views themselves becomes more significant and must be considered, 

but we need not consider maintenance costs. In this stage MQO becomes a process of 

optimizing a single group of queries repeatedly in the presence of a changing set of 

derived relations; a process that can benefit greatly from MuxQO. Because MQO is a 

doubly-exponential process, it has often been considered impractical. But MuxQO can 

heIp to make the process tractable. In fact, MQO can benefit from many of the other 

techniques we have discussed in the past two chapters as well. 

In active service integration, batches of simultaneously executing queries arise 

naturally, and frequently, in two situations: for an individual request where a change 

event requires the computation of changes to the request and the maintenance of views 

materialized in support of the request; and over multiple requests that depend on the same 

service change event. Furthermore, the benefits of MQO are particularly pronounced in 

this setting. First, because the same batch of queries will be executed together 

repeatedly, and so the costs of generating the multiple-query plan can be amortized over 

multiple executions, and secondly, because an ASIS is typically a network-constrained 

environment, so the benefit of sharing intermediate results is likely to be large. Inter- 



request MQO can be added as a secondary optimization to the techniques we have 

described, perhaps being applied in the background as computational resources become 

available. But for individual requests, MQO can be fully and seamlessly integrated with 

the view selection process. 

Example 8-4 (MQO in View Selection): Returning to Example 8-2, recall that we 

considered a set of three possible candidate views: 

V1: ClubListing 

V 2  : ConcertReview 

V3 : (ClubListing & ConcertReview) 

Which induced the optimization table shown as Table 8-1. In the original example, we 

assumed that supplemental view materialization or maintenance was always performed 

before the request computation itself. But that approach may be suboptimal in terms of 

overall resource utilization, and it may delay response time for the request update. If we 

remove this assumption, and instead turn each combination of view maintenance or 

materialization plus request computation into a Multiple Query Optimization problem, 

then our optimization table is as shown in Table 8-3. 

Table 8-3: Optimization Table with MQO Subproblems 
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In this optimization table, query sets with more than one element are treated using MQO 

techniques. 

Let us consider a single MQO problem in this optimization table, the case where 

the view set is (V3f and the triggering change event is AClubListing (fourth column, 

second row in the table). Our task is to optimize two simultaneously executing queries, 

Q1 and V 3  1, defined as: 

Q, = AQ +- AClubListing & ConcertReview & MusicForSale. 

V3 ,  = ACClubListing & ConcertReview] t AClubListing & ConcertReview. 

The first step is to produce a set of candidate transient materialized views. Such views 

must be potential subexpressions of at least two queries in the query set. It is easy to see 

that any subexpression of V3 1 is also a subexpression of Q1, so we need only consider 

subexpressions of the view maintenance query for transient materialization. We use the 

same algorithm to generate these candidate views as we do for permanent view selection. 

Applied to V31 this procedure yields: 

TV, = [AClubListing] t AClubListing. 

TV2 = [ConcertReview] t ConcertReview. 

This set of candidates induces four possible transient view sets. For each set, we 

compute the optimal plan for materializing the set, and then for computing V3, and Ql in 

the presence of the materialized views. Again, this process is analogous to the permanent 

view selection process. It yields the table of "normal" query optimization tasks shown in 

Table 8-4. 

Note that, under the assumption that both permanent and transient materialized 

views are kept in main memory (whenever possible), many of these optimization tasks 

are identical to ones that have been encountered before in the permanent view selection 

process. In particular, the set of tasks { ~ 3 , ,  Q ,,,,:,,, TV,, Q ,,,,.,,;, fits this category. Still 



Table 8-4: MQO Optimization Table 

other tasks are likely to appear in full as subplans in the MuxQO memo structure (if 

group pruning has not prevented them from showing up to this point). The tasks 

JTV,, V3 ,,, -,,, Q, ,,. v2: ) fit this category. Finally, the remaining tasks, 

C I. 

{~3, .1q ,  7 ~ 3 i . ~ i v , , r v , ~ ~  QI,:,v~.IV,: } may share common subexpressions with previous 

optimizations in the view selection context or with each other. This Multiple Query 

Optimization subproblem folds seamlessly into the MuxQO process, and is reduced in 

large part to a series of simple table lookups. Other MQO subproblems can be handled in 

a similar manner, with similar benefit. 

In the context of ASIS view selection, groups of maintenance queries and request 

updates that are executed together in response to a change event can be treated very 

effectively as MQO problems. Using MuxQO, MQO becomes much more efficient and 

practical, and the benefit of performing MQO is significant since the resultant plans are 

executed multiple times, and the network-contrained nature of active service integration 

systems means that such plans often produce solid cost savings. Note that we have 

presented an MQO approach that optimizes for total resource consumption. An 

alternative is to optimize for request response time, since request computation is the 

primary concern of an ASIS, and cache or view maintenance is not seen directly by the 

user. One way to attempt to optimize for response time is to optimize the request update 

query in isolation, then all remaining maintenance queries are optimized using MQO 

techniques where the set of candidate transient views includes all subexpressions that 

arise from the request update plan. View maintenance can be significantly delayed when 

(TV21 {TV 1 ) (TVl,  TV2) 



this approach it taken, however, which in turn may cause an inadvertent increase in 

response time where request update plans must wait on dependent view maintenance. 

This danger is particularly acute when system load is high. 

8.3 Performance Experiments 

In this section we describe performance experiments conducted to support and 

supplement the analysis presented in this chapter. We have discussed two forms of 

optimization sharing in the context of view selection in an ASIS: sharing of rewrites and 

previously optimized queries in their complete form, and sharing of subtasks of the 

optimization process as embodied by multiplex query optimization. Our experiments 

focus solely on the impact of MuxQO. Our goal is to measure and compare the 

performance of ASIS view selection in the presence and absence of MuxQO for a 

significant range of input requests, to explain the observed measurements, and to draw 

conclusions about where MuxQO can be effective, and how effective it can be. 

This section is laid out as follows: We briefly describe the Columbia Query 

Optimizer, which served as the test bed for our experiments, and the modifications 

necessary to turn Columbia into a simple Multiplex Query Optimizer; we describe our 

experimental design; we present a summary of the measurements we observed using this 

design; and we analyze the results and attempt to draw conclusions. 

8.3.1 The Columbia Query Optimizer 

We chose to conduct our experiments using a singIe optimization framework called 

Columbia. Columbia is a platform for query optimization research developed by 

researchers at Portland State University and the Oregon Graduate Institute. Columbia is 

the successor to, and is based in large part on, the Cascades system developed by Goetz 

Graefe and colleagues at Portland State University (Graefe 1995). Cascades forms the 



basis of the optimization component of commercial database offerings from Microsoft 

and Tandem Computers (now part of Compaq). The Cascades system, in turn, traces its 

roots to the Volcano system developed at OGI and the University of Colorado (Graefe 

and McKenna 1993) and the Exodus system developed at the University of Wisconsin 

(Graefe and Dewitt 1 987). 

Columbia is a top-down system. As such, it employs the search process 

associated with top-down optimization that we outlined in Chapter 6. We believe that the 

effects of MuxQO are largely independent of whether an optimizer employs top-down or 

bottom-up search, but we have not verified this hypothesis empirically. 

It was a relatively simple matter to turn Columbia into a multiplex query 

optimizer. In normal operation, Columbia first asserts a root node, which is logically 

equivalent to the full query. The system then begins the process of generating logical and 

physical multi-expressions, expanding the memo structure on demand. Once 

optimization is completed, the memo structure is destroyed and its memory recovered. 

In multiplex operation, the memo structure is left intact after each optimization. A new 

root node is created for the next incoming query, assuming the query is not logically 

equivalent to an existing node in the memo structure that has been accumulated so far. 

As the new root is expanded, only those sub-expressions that have not previously been 

considered result in the creation of new memo nodes. Our implementation can change 

from multiplex mode to normal operation at the flip of a mode bit. A batch of queries 

can be optimized in normal mode, in multiplex mode, or in any combination. 

8.3.2 Experimental Design 

We focus on conjunctive requests with no selection predicates, that is, on multi-way equi- 

join requests. As we have discussed earlier, the join operator is responsible for much of 

the complexity of optimization in service integration. In general, studying the 

performance of join optimization is very challenging because of the large dimensionality 

of the space of possible queries. Despite an extensive literature on the subject, no single, 

standard benchmark has emerged, but rather a disparate collection of approaches, each 



with its own strengths and weaknesses. We find guidance and inspiration in negotiating 

this territory in the careful analysis provided by Vance (Vance 1998). 

One important dimension of variability is the number of joins in a query. For a 

given fixed join size, n, the cardinalities of each of the n input relations can vary 

independently. The presence and characteristics of predicates provides further 

complexity. We limit the set of predicates in our queries to equi-join predicates, but even 

so, the number and pattern of such predicates can vary enormously. Moreover, for any 

given pattern, the selectivity of each predicate can vary independently, or arbitrary 

subsets of the predicates may be correlated. The presence or absence of indexes is yet 

another dimension in the query space. 

The ASIS view selection problem, as we have described it, brings additional 

dimensions of complexity over "plain" join query optimization. Given a request over n 

services, the monitoring and processing capabilities of the agents that provide the 

services become a factor. The number and cardinality of change types for each service 

call provides another degree of variability. The strategy employed to generate candidate 

views and combine these into view sets can also vary widely. 

Finally, several basic elements of the optimization process can be varied as well. 

For instance, the choice of cost function can affect the rest of the query optimization 

process. The optimization search space can be explored bottom-up or top-down. As we 

have noted, we will look only at a top-down optimizer here. Several parameters of the 

Columbia optimizer itself can be manipulated. For example, the transformation rule set 

can be varied, which affects the search space of optimization, and pruning techniques can 

be enabled or disabled. 

Our approach to handling this daunting degree of dimensionality comes in three 

parts. First, we identify dimensions that are independent of the phenomena we care to 

measure, and we confirm this independence empirically. Second, we choose not to 

investigate certain dimensions that would involve a huge amount of additional work, in 

the interest of expedience. For example, we apply our techniques in the context of a top- 

down optimizer, but not in the context of a bottom-up optimizer. Third, we parameterize 

the space of tests with important dimensions and take measurements over a range of 



values for each parameter that is sufficient to uncover important trends. In general, we 

admit to the limitations of our results. Our tests are not exhaustive or definitive, but 

rather a starting point that illuminates important trends in the value and limitations of 

Multiplex Query Optimization, and that serves as a context for further exploration. 

8.3.2.1 Independent Dimensions 

We are focused on measuring the affect of Multiplex Query Optimization. We 

need not consider dimensions of ASIS view selection that are independent of this 

technique. Based on our previous analysis in this chapter, the affect of MuxQO is 

influenced primarily by the set of groups and associated multi-expressions that are 

expanded by the Columbia optimizer, and the degree to which there is redundancy within 

this set. Characteristics of the data that affect the cost of query plans should have little or 

no affect on these factors. The cardinality of services referenced by a request, for 

example, affects the cost of a plan and its subplans, but it does not affect the set of groups 

or multiexpressions that must be considered. The same can be said for the selectivity of 

predicates in a request, and the presence or absence of indexes. There is one caveat to 

this line of reasoning, however. Parameters that affect the cost of plans can impact the 

degree of pruning that takes place during optimization. A greater degree of pruning may 

translate to fewer groups and multiexpressions being created and explored, particularly in 

the case of top-down optimization (Shapiro, Maier et al. 2001). But we expect such 

pruning to have little affect on the degree of sharing in MuxQO. To the degree that 

groups and multiexpressions are pruned away, they are likely to contain shared and 

unshared sub-problems in equal proportion to that of the entire set of groups and 

multiexpressions associated with a request. Thus, the percentage of savings attributable 

to MuxQO should not change as such parameters are varied. By similar reasoning, 

varying the cost function within Columbia, or enabling or disabling various forms of 

pruning, should have no significant affect on our results. 

We have confirmed that our reasoning is borne out in practice via a series of 

simple tests. We independently varied the range and distribution of cardinalities of 



service calls, service changes, and the selectivity of join predicates for a range of query 

topologies, join sizes and view selection strategies (i.e., for a number of tests with 

otherwise identical characteristics to those that we report on below), and we observed 

near-identical results for percentage of MuxQO savings. Likewise, we did the same 

while varying the cost function used by Columbia, and independently enabling and 

disabling each of three varieties of pruning ("group pruning", "epsilon pruning" and 

"cucard pruning") supported by Columbia, with similar results. We do not report these 

numbers here. 

8.3.2.2 Other Fixed Dimensions 

There are a number of other dimensions that we leave fixed in our experiments below, 

but we are not so sanguine, in some cases, that the affects of MuxQO are independent of 

them. We consider only the problem of ASIS request optimization and supplemental 

view selection. As has been described in detail in this thesis, MuxQO is particularly 

well-suited to this problem. We have suggested that a number of other problems can 

benefit from MuxQO as well, we have not demonstrated that hypothesis empirically. 

As we have noted, all of our tests use the Columbia optimizer, which employs a 

top-down search of the plan space. Given a common plan space, we expect that the effect 

of MuxQO is independent of the order in which the space is searched, and therefore our 

techniques would apply with equal efficacy to top-down or bottom-up optimization. It is 

more questionable whether MuxQO would be an appropriate technique in an optimizer 

that employs randomization techniques, hill-climbing, simulated annealing or the like. 

We use a fixed set of transformation rules in the Columbia optimizer. These 

include only those logical transformation rules required to exhaustively search the space 

of bushy join trees, and implementation rules that assume two possible physical join 

algorithms: merge join, and dependent nested-loops join. The logical rules, in particular, 

affect the size of the search space dramatically. Varying the rule set to search only left- 

deep query plans, for example, would significantly decrease optimization time for a given 

request. 



We assume that each service call named in a request is provided by exactly one 

agent. We assume that each such call is dynamic, and that it has a single change type 

associated with it that occurs with a frequency of 1 .  We assume that each service call can 

accept any binding pattern, and that all possible agent capabilities are available, so that 

such capabilities are not an issue in the optimization. We are essentially removing the 

issue of agent heterogeneity from our tests. None of these factors seem likely to 

influence the effects of MuxQO significantly. 

Finally, we fix the algorithm for creating the set of candidate views in our 

experiments. We consider the set of candidates that contains all straight service calls and 

all 2-way joins between service calls where a join predicate exists. This algorithm may 

not be particularly desirable in terms of the optimal view set it produces. But in terms of 

optimization time, this set remains reasonably simple, yet it captures important properties 

of any more exhaustive set of candidates. Note that we would expect, and in fact we 

observe, that optimization subproblems in the view selection problem that involve queries 

of lower arity than the initial request contribute relatively little to overall optimization 

time. For example, rewriting a n-way join to use a view that is a join of 2 of the n tables 

yields a (n-1)-way join. Such (n-1)-way (and smaller) join queries tend to be dominated 

by larger queries in the overall set of optimizations in view set selection. If we 

considered more exhaustive sets of candidate views, for example, 3-way and 4-way joins, 

then the additional queries that we must optimize in view selection would not contribute 

greatly to overall optimization time. We claim, then, that the candidate generation 

algorithm we use produces MuxQO behavior that is representative of that produced in 

more exhaustive candidate sets. 

8.3.2.3 Dimensions Chosen 

Our tests examine three primary dimensions in the ASIS view selection problem space: 

the arity of the join request, the pattern of join predicates, and the strategy used to build a 

view set from a given set of candidates. 



Previously we have shown that an exhaustive approach to ASIS view selection is 

doubly-exponential in request arity, so it follows that request arity is an important 

variable to look at. We start with 3-way join requests, and work our way up as high as 

10-way joins, depending on other variables. This range of join sizes falls well within the 

range of realistic queries, and allows us to see clear trends as requests grow larger. 

In exploring patterns of join predicates, we borrow from previous work in join 

optimization (e.g., (Vance 1998) and (Steinbrunn 1996)) and look at a variety ofjoin 

topologies. Note that join topologies derive from the notion ofjoin graphs, which 

provide a way of representing the pattern of predicates among relations in a query. A 

join graph for a query is created by representing each relation in the query as a node in 

the graph, and then, for each join predicate in the query between relations R 1 and R 2 ,  

place an undirected edge in the graph from node R 1 to node R 2 .  In our experiment we 

look at three join graph topologies: the Star, the Chain, and the Clique. In a Star query, a 

join predicate is present from a single "hub" relation to each of the other relations in the 

query, so that the resultant join graph takes a star shape. In a Chain query, the join graph 

is connected, all but two nodes have precisely two edges, and the two remaining end 

nodes have one edge each (the graph looks like a chain). In a Clique query, a predicate is 

present between each pair of relations, creating a maximally connected graph. Figure 8-1 

shows the query graphs for a Star, a Chain and a CIique query, each having arity 5. 

Note that join graphs are interesting from the point of view of optimization testing 

because optimization complexity often varies with join graph topology. A graph with a 

large diameter, such as a Chain, tends to be easier to optimize than a graph with a small 

diameter, such as a Star. A graph with a low density (i.e., a small number of predicates), 

such as a Chain or a Star, is generally easier to optimize than a high-density graph, such 

as a Clique (Vance 1998). By choosing Chains, Stars and Cliques, we succinctly capture 



5-way Star 5-way Chain 5-way Clique 

Figure 8-1 : Query Topologies 

a range over these dimensions (note that high density and high diameter are difficult to 

find in combination). Note, further, that given our fixed algorithm for generating 

candidate views, which includes all 2-way joins in which a join predicate exists, join 

graph topology will influence the size of the candidate set. Higher density corresponds to 

a larger number of candidate views. 

High Diameter Chain 

Low Diameter Clique 

Low Density High Density 

Table 8-5: Query Graph Density and Diameter 

For each combination of join size and topology, we measure the value of MuxQO 

in optimizing the basic query suite, with no consideration of supplemental materialized 

views. Next, we measure the value of MuxQO where view sets are considered. We test a 

variety of strategies for building a set of views from a set of candidate views. All 

strategies use a heuristic for rejecting possible view set combinations that we call the no- 

overlap heuristic. The no-overlap heuristic says that a view, V, can be added to a set, S, if 



V brings data to the mediator that may contribute to the current request result, but that is 

not already in S. For example, if the request is a three-way join ABC with candidate view 

set { A, B, C ,  AB,  BC ) , and the current view set is the singleton set { AB } , then we may 

add either the view BC or the view C, but we may not add the views A or B. This 

heuristic is reasonable, in particular, if we assume that network communications 

dominates the cost of data integration. 

Given the no-overlap heuristic, we consider three view-set building strategies in 

our measurements: 

1 .  Greedy Singleton: The Greedy Singleton method computes the value of each 

view set of size one. Based on these values, it heuristically combines singleton 

sets, adding the most valuable remaining singleton item that does not violate the 

no-overlap heuristic to the current set, until no such addition is possible. 

2. Greedy Incremental: The Greedy Incremental method repeatedly generates the 

best view set of size n+l by computing the value of adding each remaining view 

to the current best view set of size n, provided the new view set does not violate 

the no-overlap heuristic. 

3. Exhaustive: The Exhaustive method computes the value of every combination of 

candidate views that does not violate the no-overlap heuristic. 

Clearly, these three strategies are ordered by increasing thoroughness, and also by 

increasing complexity. We envision a strategy similar to our exhaustive approach being 

used for requests of small arity. But the exhaustive approach becomes infeasible as 

request size gets large. For larger requests, an ASIS would likely want to switch to 

something resembling one of our greedy strategies. 

8.3.3 Experimental Environment and Results 

Here we present lower-level details of our experiments, as well as our experimental 

results. 



8.3.3.1 Computing Environment 

Our performance experiments were run on a 233 MHz Pentium I1 processor with 128 

Megabytes RAM running the Windows NT Workstation 4.0 operating system. Unlike 

the execution model that we described in Chapter 7, we used the Paradox optimization 

engine to generate batches of test queries based on an initial request, which we then 

translated to the form required by the Columbia optimizer. Our tests are based on using 

Columbia to optimize the test queries in "normal batch mode," and then running the same 

queries under "MuxQO mode," except as noted below. Query generation time is not 

considered in our measurements. In fact, it is very small compared with optimization 

time. Each experiment was run 5 times, and the average result for each measure is 

reported below. (In fact, there was no significant variance between runs for any of the 

experiments reported.) 

8.3.3.2 Handling Memory Limitations 

Note that MuxQO requires a tradeoff between the memory footprint of optimization and 

optimization time. If main memory is exceeded during MuxQO, the performance 

benefits of the technique will quickly deteriorate. Our tests assume the presence of 

sufficient main memory to handle MuxQO. For large requests, however, our test 

environment did not have sufficient memory. Yet we were determined to gather useful 

large-query numbers. To do so, we tweaked our test to greatly shrink its memory 

footprint and provide a simulation of the benefits of MuxQO for large queries, given 

sufficient main memory. Our modified test works as follows: For each query in the test 

suite, we execute a partial MuxQO batch that contains only those queries that have run 

previously and that can share partial results with the target query, followed by the target 

query itself. We record only the numbers for the target query. When using this approach 

for an arity 10 request, for example, instead of executing literally thousands of queries in 

a single MuxQO batch, we never need to execute a batch larger than 10 queries. 



Note that while a naive implementation of MuxQO can be very memory- 

intensive, there is hope for reducing memory usage for cases in which main memory is 

limited. At the end of this chapter we briefly discuss an idea for reducing the memory 

footprint of MuxQO that we call MuxQO Garbage Collection. We have not implemented 

this technique, however. 

8.3.3.3 Optimizer Settings and Data Characteristics 

For all of our experiments, the Columbia optimizer was run in "Release" mode 

(optimized Microsoft Visual C++ code) with group pruning enabled. The corresponding 

catalog gives every basic service call (relation) a uniform cardinality of 2000, one change 

type for each service call (in the form of an auxiliary "delta relation") with frequency 1 

and cardinality (also) 2000, and every join predicate a uniform selectivity of 0.003 16. 

(Cardinality and selectivity were essentially chosen at random.) We use a simple cost 

model that considers both CPU and 1/0 costs, and a simple rule set that explores all 

bushy join trees, and assumes two possible physical join operators: merge join and 

nested-loops join. As noted in Section 8.2.2.1, experiments show that these variables are 

independent of the effects of MuxQO. 

8.3.3.4 Results 

We begin by presenting results for running basic query suites. That is, no view selection 

is considered. Since the query sets are relatively small in this case, we start at a relatively 

high join arity of 6, and then move to joins of arity 8 and arity 10. We consider Chain 

queries, Star queries and Clique queries for each of these arities. We present the number 

of queries in the suite, the total number of tasks (Tasks) processed, the number of 

optimality groups considered (Groups), the number of multiexpressions created 

(Mexprs), and the total elapsed time in the optimization of the entire suite. Note that we 

explained the term multiexpression in Chapter 6.  Tasks are discrete chunks of 



optimization work as seen internally by the Columbia optimizer. Tasks are a finer-

grained measure of the work done by the optimizer than multi expressions.

Raw numbers are presented in Table 8-5 as well as the percentage savings

attributable to MuxQO. A graph summarizing the percentage savings for MuxQO in

each category is shown in Figure 8-2.

Table 8-6: Basic Query Suites

MuxQO Savings: Basic Query Suites
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Figure 8-2: MuxQO Savings for Basic Query Suites
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Request Num
Groups Tasks (OOO's) MExprs (OOO's) Time (sees)

Raw Mux Save Raw Mux Save Raw Mux Save Raw Mux Save

Chain-6 7 441 255 42% 51.2 35.2 31% 16.8 12.1 28% 1.41 1.07 24%

Star-6 7 441 255 42% 50.9 34.3 32% 16.5 11.6 29% 1.39 1.04 25%

Clique-6 7 441 255 42% 50.0 34.7 31% 16.7 12.1 28% 1.35 1.08 20%

Chain-8 9 2295 1279 44% 852 565 34% 214 149 30% 18.5 13.0 30%

Star-8 9 2295 1279 44% 862 552 36% 210 143 32% 21.1 14.0 34%

Clique-8 9 2295 1279 44% 823 551 33% 212 148 30% 18.4 12.9 30%

Chain-IO II 11,253 6]43 45% 13,821 8,921 35% 2,450 1,678 31% 296 224 24%

Star-IO 11 11,253 6]43 45% ]4,611 8,953 39% 2,411 1,60] 34% 505 329 35%

Cliq-l0 11 11,253 6143 45% 13,180 8,596 35% 2,414 1,66] 31% 286 218 24%



Next we present results for running view selection using the greedy singular

heuristic for view set enumeration. We anticipate that this heuristic method will be

effective for queries of relatively high arity. We start these results at arity 6, and move,

Table 8-6: Greedy-Singular View Selection

MuxQO Savings: Greedy Singular View Selection
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Figure 8-3: MuxQO Savings for Greedy Singular View Selection

once again, to joins of arity 8 and arity 10. We consider Chain queries, Star queries and

Clique queries for each of these arities. Raw numbers are presented in Table 8-6, as well

183

Query
Groups Tasks (OOO's) MExprs (OOO's) Time (sees)

Num

Raw Mux Save Raw Mux Save Raw Mux Save Raw Mux Save

Chain-6 105 4074 1439 65% 420 208 50% 140 76 46% 13.76 934 32%

Star-6 105 4074 1439 65% 417 206 50% 137 74 46% 13.67 9.09 34%

Cliqlle-6 239 6024 2101 65% 530 268 49% 184 101 45% 20.1 145 28%

Chain-8 173 27,846 9151 67% 9,142 4]81 54% 2362 1196 49% 203 106 48%

Star-8 173 27,846 9151 67% 9,235 4192 55% 2311 1161 50% 229 117 49%

Cliqlle-8 404 49,371 15,934 68% 13,064 6153 53% 3612 1844 49% 306 161 47%

Chn-l0 257 169,874 53,247 69% 182966 78724 57% 33593 16335 51% 3,933 2,254 43%

Star-IO 257 169,874 53,247 69% ]92635 81554 58% 32997 15835 52% 4,153 1,993 52%

Cliq-lO 725 354,158 108,651 69% 291195 130272 55% 59112 28904 51% 6,340 3,706 42%



as the percentage savings attributable to MuxQO. A graph summarizing the percentage

savings for MuxQO in each category using greedy-singular set enumeration is shown in

Figure 8-3.

Next we show view selection results for greedy-incremental set enumeration.

Greedy-incremental set enumeration is significantly more complex then greedy-singular

enumeration. We expect optimization times to be large for large join arities using this

method. We show results ranging from arity 4 to arity 6 and arity 8. We consider

Chains, Stars and Cliques for each of these arities. Raw numbers are presented in Table

8-6, as well as the percentage savings attributable to MuxQO. A graph summarizing the

percentage savings for MuxQO in each category using greedy-incremental enumeration is

shown in Figure 8-4.

Table 8-7: Greedy-Incremental View Selection

The final results we present are for exhaustive view selection. Recall that even

when considering views exhaustively, we still maintain the heuristic of non-overlap, and

we consider only single tables and two-way join views where a join predicate exists (i.e.,

no Cartesian products). But despite these restrictions, greedy exhaustion can become
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Query
Groups Tasks (ODD's) MExprs (ODD's) Time (sees)

Num
Raw Mux Save Raw Mux Save Raw Mux Save Raw Mux Save

Chain-4 78 789 261 67% 26.2 12.5 52% 10.2 5.5 46% 3.67 3.42 6.8%

Star-4 83 944 291 69% 33.1 148 55% ]2.8 6.6 49% 395 3.60 8.9%

Clique-4 124 1,195 378 68% 375 ]74 54% ]5.4 8.0 48% 568 5.28 70%

Chain-6 252 9,415 2,465 74% 874.9 356.1 59% 2959 135.7 54% 283 17.4 38%

Star-6 2]0 10,689 2,639 75% I,] 81.6 4348 63% 385.2 163.2 58% 34.5 ]8.0 48%

Clique-6 46] 14,942 3,955 74% ],211.8 5]88 57% 425.6 20]0 53% 41.9 26.7 36%

Chain-8 533 93,150 20,391 78% 29,344 9,935 66% 7,655 3,005 61% 637 249 61%

Star-8 425 92,]06 19,903 78% 33,389 10,431 69% 8,196 3,063 63% 809 287 65%

Clique-8 1,304 J55,643 37,512 76% 36,490 14,662 60% 10,32] 4.523 56% 818 364 55%

Chain-IO 4,905 330,042 29,757 9]% 48,]83 9,073 81% 12,653 JA91 77% 1]09 263 76%

Star-I 0 6,369 464,898 51,576 89% 65,189 13,929 79% 20,148 5,256 74% 1595 401 75%
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Figure 8-4: MuxQO Savings for Greedy-Incremental View Selection

Table 8-8: Exhaustive View Selection
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Query
Groups Tasks (000'5) MExprs (000'5) Time (sees)

Num

Raw Mux Save Raw Mux Sav Raw Mux Save Raw Mux Save

Chain-4 183 1,824 444 76% 57.8 22.4 61% 22.7 10.6 54% 8.12 7.73 4.8%

Star-4 188 1,879 476 75% 59.2 23.2 61% 232 10.9 53% 8.35 7.77 69%

Cliqlle-4 419 3,400 886 74% 90.7 38.7 57% 37.7 18.5 51% 17.2 ]6.5 39%

Chain-5 551 10,684 1,853 83% 562.6 172.8 69% 2073 no 63% 23.3 15.2 35%

Star-5 599 11,788 2,244 81% 606.3 194.4 68% 223.2 858 62% 23.7 149 37%

Cliqlle-5 3,011 44,872 8,726 81% 1,839 693 62% 706.4 302.9 57% 59.3 351 41%

Chain-6 1,652 60,263 7,508 88% 5,270 1,270 76% 1,802 529 7]% 129.3 43.2 67%

Star-6 1,946 73,913 10,699 86% 6,233 1,631 74% 2,123 669 69% 1578 541 66%

Cliqlle-6 24,948 690,960 102,473 85% 46,121 15,260 67% 16,379 5,963 64% 1,114 430 6]%

Chain-7 4.905 330,042 29,757 91% 48,183 9,073 81% 14,954 3,491 77% 1,109 263 76%

Star-7 6,369 464,898 51,576 89% 65,189 13,929 79% 20,148 5,256 74% 1,595 401 75%



very 6me consuming as joins get large, particularly where the query graph is dense, as in

the case of clique queries. We show results beginning at arity 4, and increasing in single

steps to arity 5, arity 6, and arity 7. We consider Chains and Stars for all of these arities,

but we consider Cliques only for arities 4-6. Arity 7 Cliques became prohibitively

expensive, both in terms of time consumption, and the number of queries and amount of

data generated in the test. Raw numbers are presented in Tables 8-8, as well as the

percentage savings attributable to MuxQO. A graph summarizing the percentage savings

for MuxQO in each category using greedy set enumeration is shown in Figure 8-5.

MuxQO Savings: Exhaustive ViewSelection
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Figure 8-5: MuxQO Savings for Exhaustive View Selection

8.3.4 Discussion

Ta a large degree the performance numbers above speak for themselves; we

conclude this chapter by highlighting some of what they say. First, the benefits of

MuxQO for low-arity requests are relatively modest. In particular, start-up costs and
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other overheads associated with MuxQO absorb much of its positive impact when the 

problem being tackled is small. For 4-way joins of varied topology, even where 

exhaustive view selection is employed, task savings in the 57%-62% range translate to 

time savings merely in the 4%-7% range. Based on these numbers, it is questionable 

whether MuxQO is worth the trouble for requests that join information from just a few 

sources. However, the resource costs of applying MuxQO are also small in such cases. 

On the other hand, as joins become large, especially where a thorough search of 

the space of plans and candidate view sets is desired, the savings attributable to MuxQO 

is dramatic, and the technique appears to be indispensable. For exhaustive view 

selection, for example, the percentage time savings due to MuxQO increases by leaps and 

bounds as join arity increases. While savings are modest for arity 4, they increase to 

35%-37% for arity 5, 61%-67% for arity 6, and 75%-77% for arity 7. MuxQO has a 

dampening effect on the doubly-exponential complexity of view selection. One way to 

view this benefit is as a time savings that can free a server to work on other tasks. For a 

1 0-way star query using greedy-incremental view selection, for instance, the 42% savings 

due to MuxQO translates to roughly 45 minutes of compute time in our environment. 

Alternatively, MuxQO might be viewed as enabling a more thorough search, and more 

efficient execution, for the same amount of effort. For instance, our numbers show that 

using MuxQO to process arity 8 requests of varying topology allows us to do a Greedy- 

Incremental view selection at a relatively small premium (-1 5%) over the costs of 

performing a Greedy-Singular view selection without using MuxQO. 

Another point to note in our numbers is the interaction of join topology and view 

selection heuristics. Increasing predicate density, in particular, can combine with other 

view selection heuristics to produce large fluctuations in the number of candidate view 

sets for consideration. For example, when applying the greedy-singular heuristic, 

optimizing a 6-way chain query (no MuxQO) involves 421 K tasks, while optimizing a 6- 

way clique (no MuxQO) involves 530K tasks; an increase of 26%. The greedy- 

incremental heuristic, in contrast, results in 874K tasks for a 6-way chain query, and 

1,212K tasks for a 6-way clique; an increase of 39%. More dramatically, exhaustive 

view set selection results in 5,270K tasks in the 6-way chain case, and 46,121K tasks for 



a 6-way clique; an increase of 775%. These fluctuations imply that the view selection 

heuristic chosen should depend not only on the arity of the request, but on the topology 

and density of the request as well. It is worth mentioning, also, that while the benefits of 

MuxQO are not independent of query topology or view selection heuristic, they are not 

very sensitive to these factors either. MuxQO is effective over a range of query 

topologies and view selection heuristics. 

The bottom line here is that our experiments underscore the theme we have 

emphasized over the past several chapters: that MuxQO is one important method in a 

multi-pronged approach to handling ASIS view selection; that sharing of optimization 

effort can work. Importantly, MuxQO has significant affect, it combines easily and, to a 

large degree, in an orthogonal manner with other methods we have presented, and current 

optimizers can be easily adapted to employ the technique. But a combination of methods 

is needed to dampen the doubly-exponential complexity of ASIS view selection. Each 

technique moves a larger space of problems from the realm of the intractable, to the 

realm of the practical. 



Chapter 9 

Exploiting the Semantics of Information Change 
in Active Service Integration 

In previous chapters we have seen how various forms of sharing can help make 

active service integration more tractable. But even where such techniques are employed, 

active service integration can be an expensive process, and scalability remains a major 

challenge. Query processing systems have seen steadily increasing query complexity and 

volume over the years due to the increasing sophistication of users and the prevalence of 

program-generated queries; the same trends can be expected in ASIS workloads. 

Increased request complexity and load combined with high change-event frequency can 

overwhelm even a well-architected ASIS. For many desirable applications, incremental 

processing techniques and the sharing methods we have described do not take us far 

enough. We claim that it is crucial to develop general methods of exploiting application 

semantics to meet the scalability challenges inherent in active service. This chapter 

represents an attempt to do so. 



A large class of AS1 applications concern themselves with dynamic attributes of a 

relatively stable collection of objects: prices of stocks, bonds, currencies and other 

financial instruments; locations of moving objects; usage rates of high maintenance 

capital equipment; supply volumes for products or spare parts, etc. Furthermore, 

attributes of interest in such applications often do not or can not change arbitrarily; they 

obey a set of constraints. For instance, a vehicle cannot move faster than its maximum 

speed, an equipment item cannot be in use for more than 8 hours in an 8-hour shift, the 

production capacities of a manufacturing plant constrain the rate of depletion of supplies 

and material, etc. Applications in this class can consume heavy resources in 

computations that are not strictly necessary in that they do not produce results. But we 

can greatly decrease such unnecessary work by exploiting application semantics. In 

particular, we can exploit constraints on information change over time to avoid expensive 

and repetitive checking for conditions that cannot yet be satisfied. In this chapter we 

present a framework for exploiting the semantics of information change. We explore 

design points and describe issues in generalizing this framework, and we present an 

analytic model of the savings that accrue to our methods. Our model shows that our 

methods can significantly decrease the workload and increase the scalability of systems 

that require distributed condition monitoring. In addition, they can appreciably improve 

the response time between a condition occurrence and its recognition in such systems. 

9.1 Partitioning Objects By "MinTTI" 

Our approach applies to conditions over distributed services that involve tracking 

attributes of a set of objects that change in a time-constrained manner. We are given a 

monitoring request expressed as a distributed query over a collection of services, and one 

or more integrity constraints that apply to attributes in the request. We assume a baseline 

monitoring interval. Mo, for the request. We generate a companion query that, for each 

object, computes a lower-bound on the time before an attribute change can result in the 



status of the object changing with respect to the request (i.e., in a currently non-satisfying 

object satisfying the condition of interest, or in a currently satisfying object no longer 

satisfying the condition). Call the original request Q, then we refer to the companion 

query as the Minimum Time Till Interesting with respect to Q, or MinTTIo. We partition 

the set of monitored objects into buckets based on their MinTTIo - values, and track 

changes to each bucket at the largest possible time interval that is less than the shortest 

MinTTlo - value for the bucket. A snapshot of this process is depicted in Figure 9-1. The 

black dots in this figure represent objects that the system is monitoring. These objects are 

plotted along the X-axis based on their MinTTI values. Mi represents the monitoring 

interval for the group of objects that have MinTTI values between M, and M,+r, which are 

said to be in the ith bucket. 

Mo MI M2 M3 

Time 

Figure 9-1: Partitioning Objects Based on MinTTI 

The intuition behind our approach is very simple. Objects that are far from 

satisfying a condition of interest need not be monitored as vigilantly as those that could 

satisfy the condition at any moment. We need not expend resources computing a 

complex condition based on near-term changes an object with a large MinTTI value. We 



save effort associated with such changes. On the other hand, we must expend effort to 

maintain the object partitions. 

9.2 A Motivational Example 

Consider an example distributed condition arising (once again) from DARPA's 

Command Post of the Future research project. We have an information agent that 

provides sensor data on the movements of enemy units over a far-reaching battle area. 

Another information source provides the location of landing zones where helicopters can 

land to transport personnel and material in and out of the area. Other agents provide 

information on types of enemy units and the ranges of weapons associated with the units 

by type. Finally, a geocoder agent is able to compute distances between entities based on 

the coordinates provided by the location sensors. The battleground scenario is depicted 

in Figure 9-2. 

Figure 9-2: A Battle Area with Landing Zone and Enemy Tanks and Helicopters. 



A commander in the field wants to be notified whenever an enemy unit poses a 

direct threat to a landing zone, where a direct threat is defined as a unit that is within its 

weapon's range of the zone. This condition can be expressed as the following query: 

Threaten(UnitlD, LZ) t 
LandingZone(Lz, Loco) & EnemyUnit(Unit1D) & Unit Type (UnitID, Type) 

& WeaponRange(Type, R) & Position(UnitID, Locl) & Distance(Loc0, Locl, D) 

& ( D  r R). 

In this request, LandingZone/2 tracks the location of landing zones of interest. 

EnemyUnit/l tracks enemy vehicles. UnitType/2 maps a unit to its type. 

WeaponRange/2 provides the maximum range of the weapons that a unit is equipped with 

by its type. Position/2 is a sensing service that tracks the location of units in the field. 

Finally, Distance/3 translates the distance between two locations. In Figure 9-2, enemy 

units that threaten the landing zone are shown in gray. 

The central object set in this example is the set of enemy units, and the key 

changeable attribute for each object is its location. Change events, primarily in the form 

of additions and deletions, can occur at a number of the services involved in this 

condition (e.g., Landingzone, EnemyUnit), but the most frequent updates will be 

modifications to the location attribute in Position. Notice, however, that a unit's position 

cannot change arbitrarily; it is constrained by its maximum speed over the current terrain. 

In particular, suppose we are given the following constraint: 

t upd(Position(UnitlD, (Loco, Loc, )), T )  & UnitType(UnitID, Type) 

& MaxVelocity(Type, y) & Distance(Loco, Loc,, D) & (D > V x T). 

This constraint is headless, meaning it derives false. It is interpreted as follows: If 

Position(UnitID,Loco) is true at time 0, and Position(UnitID,Locl) is true at time T, then 

the distance between Loco and Lot, cannot be greater than the product of the maximum 

velocity of UnitID, V, and the time transpired, T. 



Note that this constraint includes a special second-order predicate, upd/2. The 

upd (or update) predicate takes a time attribute, T, as its second argument. Its first 

argument is a special form of a first-order service predicate that includes a set of key 

attributes or (equivalently) an object identifier (UnitID, in this case), and one or more 

attribute pairs. Each pair represents distinct values for the corresponding (dynamic) 

attribute, such that the first variable represents the attribute value at time 0, and the 

second variable represents the attribute value at Time T. The upd predicate allows us to 

describe constraints on object attributes over time. Note, fkrther, that the constraint 

incorporates information from multiple services, many of which are involved in the 

condition of interest, but some of which are not. In particular, a supplemental service is 

required that provides information on the maximum velocity of enemy units by unit type. 

In general, constraints of interest can involve the full range of service capabilities 

available to an ASIS. 

A MinTTI predicate includes an object identifier (or attributes encompassing a 

key) plus the time variable T. By merging the constraint above with the definition of 

Threaten/2, in a process somewhat similar to that of Semantic Query Optimization (SQO) 

(Chakravarthy, Grant et al. 1990), and performing a simple transformation to obtain the 

border condition for T, we can derive the following definition for MinTTJrhreaten: 

Min TTI ,, ,,,el, (Un itID> T )  t 

LandingZone(Lz, Loco) & EnemyUnit(Unit1D) & UnitType(UnitID, Type) 

& WeaponRange(Type, R) & Position(UnitID, Locl) & Distance(Loc0, Locl, D) 

& MaxVelocity(Type, V )  & (T = I(D - R)~/V). 

This definition of MinirTI computes the time it will take for any enemy unit that is 

not within range of a landing zone to be within range if it travels at maximum velocity 

toward the landing zone. For an enemy unit that currently threatens a landing zone, the 

query computes the time it will take for the unit to be beyond a threatening range if it 

travels at maximum velocity away from the landing zone. Note that, in the latter case, we 

need to take an absolute value to prevent the T value from being negative. Should 



multiple T values be associated with a single UnitID, we take the minimum such value 

for each UnitID, since we are computing a lower bound for each object. In some cases, 

we may want to handle satisfying objects differently than non-satisfying objects (for 

instance, if we expect the set of satisfying objects to be small, and if satisfying the 

condition is not likely to last long). But here we show the general case in which we 

handle both groups uniformly. 

Note that the definition of MinTTIThreate, has a high degree of commonality with 

the Threated2 predicate itself. Such commonality implies that whenever Threated2 

must be computed, MinTTIThreate, can be computed as well at little additional cost. This 

pattern of commonality between a condition and its MinTTI query is a result of the SQO- 

style merging of the condition with a relevant constraint, which leaves the body of the 

condition intact. MinTTI typically involves some additional filtering over the initial 

condition, which is easy to compute. As we will see, this observation implies that we can 

use multiple query optimization techniques to compute MinTTI with minimal overhead. 

Once MinTTIThreat,, has been derived, it is used to partition the set of units by 

their corresponding T values. Each partition (or bucket) is associated with a monitoring 

interval that is less than the least MinTTI value of any UnitID contained in it. One 

partition is monitored most frequently, at the monitoring rate required by the request 

(often as frequently as possible). This partition is referred to as the urgent bucket. Figure 

9-3 shows our previous snapshot of the battle area with enemy units highlighted that fall 

within the urgent bucket. Items in the urgent bucket may appear farther away than other 

items that are not in the urgent bucket, even though they are temporally closer. In our 

example, two helicopters must be monitored urgently, even though tanks that are closer 

to the landing zone do not need to be monitored as frequently. This situation can only 

occur if the helicopters have a higher maximum velocity than the tanks. Note that one of 

the threatening helicopters must also be monitored in the urgent bucket. 

Only changes to objects in the urgent bucket result in the incremental evaluation 

of the condition of interest, AThreaten. Changes to all buckets, however, require the 



incremental recomputation of MinTTI . We describe this process in detail and model the 

associated costs later in this chapter. 

Figure 9-3: Striped Units are in the Urgent Bucket. 

9.3 Partitioning Pragmatics 

In general, we take an ASIS request that centers on changes to one or more 

attributes of a collection of objects, a temporal integrity constraint on the rate of change 

of these attributes that contains the upd predicate, and we attempt to manually derive an 

associated MinTTl predicate by inspection. But while any single MinTTI derivation may 

be straightforward and manageable, repeating the process for large numbers of requests is 

burdensome and error-prone. It is reasonable to ask whether the MinTTI can be derived 

automatically. In fact, we have performed some preliminary investigations of automatic 



generation of MinTTI . We believe that an approach involving a combination of 

Semantic Query Optimization (Chakravarthy, Grant et al. 1990); (Levy and Sagiv 1995), 

whereby applicable constraints are merged with the original request, and a special 

program tranformation from updl2 to MinlTI holds promise. But this line of inquiry is 

not part of this thesis. In the absence of automatic generation, however, it is perfectly 

reasonable in real systems to write MinTTI directly by hand for problematic requests and 

special applications. The system can then use the definition to optimize the monitoring 

process. 

As we have noted, given the definition of MinTTI, we compute a relation of OID- 

Time pairs that covers every object currently being monitored at a particular source. This 

relation provides the basis for dividing monitored objects into buckets based on each 

object's minimal time value. Another important issue is how many buckets we have, and 

how the bucket boundaries are defined. One extreme is to have a separate bucket for 

each object. The other extreme is to place all of the objects in a single (urgent) bucket. 

The latter is equivalent to the normal approach. We will describe an approach based on 

two buckets. But we believe other approaches should be investigated, including a 

clustering approach, in which a natural partition emerges from the data. An implicit 

design decision here is whether the buckets should have static boundaries, or if 

boundaries should be determined dynamically, based on the computed time values. 

Note that while monitor buckets can be impIemented at the mediator to good 

effect, even greater savings can be realized when services provide direct support for such 

buckets. In the former case, all updates will be sent to the mediator at the highest 

monitoring frequency. The mediator may then filter out all such updates but those 

pertaining to the appropriate buckets, and thus avoid computing the overall condition for 

some portion of these updates. In the latter case, in contrast: the bucket-based filtering of 

updates can occur upstream, at the service provider from which they originated; the 

mediator never needs to see them. Many of the triggering capabilities we have described 

earlier in this thesis, including the capabilities associated with full-fledged database 



management systems, are insufficient for this purpose. We prescribe a "bucket-trigger" 

capability that operates as follows: 

1. A bucket trigger can be created with a user-specified number of buckets, with a 

user-specified monitoring interval associated with each bucket, and with a user- 

specified table of object identifiers associated with each bucket. 

2. The set of changes for the currently active interval is maintained for each bucket. 

3 .  As object attributes change, the changed value is recorded in the appropriate 

change bucket. If a value is already present for the given OID, it is overwritten. 

4. For each bucket, the associated set of changes for the current interval is emptied 

when the interval expires. The data is passed to the client of the trigger (the 

mediator, in our ASIS architecture). 

5. Bucket triggers can be modified atomically, in a set-oriented fashion. For 

example, operations such as Add(OidSet, Bucket), Delete(OidSet, Bucket), 

Move(OidSet, Bucketl, Bucket2) are supported. 

Implementing this capability given the building blocks of a modern data management 

system is not particularly difficult. In a relational database service, for example, an 

update trigger could be set on the original service call (Position(UnitID, Loc) in the 

Threaten example). The set of current changes for all buckets could be implemented as a 

relational table with an added BucketID field. Each triggered set of updates can be joined 

against an efficient OID-to-BucketlD hash index and inserted into the change table. A 

daemon process could empty each change bucket at the appropriate interval (via a 

selection query on the change table, by BucketID), and pass the contents to the client of 

the trigger. Bucket creation and modification can occur by atomically modifying the 

hash index, and creating the change table if necessary (for a Create()). 

The intuition behind our approach is straightforward. As long as an object is far from 

satisfying a condition of interest, we can delay and possibly ignore changes to it and the 

processing that goes with these changes. In our example, if we are concerned with 



enemy units that threaten a given landing zone, we need not repeatedly compute the 

Threaten predicate in response to the movement of tanks, say, that are hundreds of miles 

away. By ignoring such changes, traffic from the service to the mediator is reduced, and 

we can avoid the expensive process of evaluating a complex, distributed condition for 

every change. The price of our scheme, however, is the need to do bucket maintenance. 

We now look more closely at the costs and benefits of our approach. 

9.4. Performance Modeling 

Finding a convincing battery of tests to demonstrate the performance of our 

methods is difficult. No widely accepted benchmark exists that captures a set of 

conditions to monitor or important data and system parameters relevant to distributed 

condition monitoring. We opt, instead, to present an analytical model that demonstrates 

the characteristics and sensitivities of our approach. Our model shows that our approach 

can yield significant cost savings and improved response time, even when implemented 

in the simplest manner. 

Because complex condition monitoring is generally an ongoing, long-lived 

process, we focus on the steady-state costs involved. In particular, we ignore the one- 

time cost associated with the initial computation of the MinlTIo - relation, and the division 

of objects into buckets. Note that this computation is accompanied by the initial 

computation of Q, which must be computed regardless of the method chosen. But there 

will usually be a large degree of commonality between MinTTIo - and Q, so by exploiting 

multiple query optimization techniques we can compute MinTTIo at little additional cost. 

By similar reasoning, we ignore the cost of view maintenance (for Q and MinTTIo) - 

associated with objects that are added to or deleted from the set we are monitoring. We 

assume that this set is fixed, and consider only modifications to the objects in the set. 



In addition, we do not consider the monitoring costs at the (remote) source. We 

justify this choice in two ways. First, while our methods involve a richer monitoring 

capability than traditional approaches, we show in a later section that this capability can 

be implemented efficiently, at little cost overhead beyond that of a traditional trigger. 

Second, the mediator and network costs are likely to dwarf the costs of monitoring at a 

single source. 

9.4.1 Modeling Steady-State Costs 

Given a query Q that describes a complex distributed condition involving 

dynamic attributes of a set of N objects, S, with monitoring interval M, the "naive" 

approach to monitoring Q with respect to S is shown in Figure 9-4 below: 

1)  At the source of S, at each monitoring interval, check if there is a 

change to S. 

2) If there is a change, call it AS, send dS to the mediator. 

3) At the mediator, compute AQ with respect to AS. 

-- 

Figure 9-4: "Naive" approach to monitoring Q with respect to S 

As indicated, we ignore costs associated with Step 1 .  We will consider the cost of 

sending AS to the mediator as part of the cost of computing AQ (steps 2 and 3), and that 

cost is given by the cost function of the query optimizer. The optimizer is not likely to 

consider complex statistical properties of AS. Rather, it will assume AS follows the 

statistical properties of S (if it considers them at all) and only consider the cardinality of 



AS (denoted as /AS/). Hence the cost of computing AQ is a function of JASJ: and the 

expected cost of the "naive" approach is given by: 

Here p ( J ~ ~ I  = X) is the probability of IASI = X , and C(AQ, X) is the cost, given by the 

cost function, of the query AQ with respect to A S ,  w i t h l ~ s / =  X . 

For our "bucketing" approach, assume we have J buckets. The expected cost is 

the sum of the expected costs of each bucket: 

Bo is distinguished as the urgent bucket. This bucket is monitored at the shortest 

monitoring interval, Mo. The processing related to this bucket is similar to that of the 

naive approach, except we have the additional process of bucket maintenance to worry 

about. That is, a change to an object in Bo may result in a change to the MinTTIo value 

associated with that object, which in turn may result in a bucket change for that object. 

The steps associated with Bo are shown in Figure 9-5 below: 

1. At the source of S, at each monitoring interval, check if there is a 

change to the members of S in Bo. 

2. If there is such a change, call it dBo, send dBo to the mediator. 

3. At the mediator, compute AQ and perform bucket maintenance with 

respect to dBo. 

Figure 9-5: "Bucketing" approach. Monitoring Q with respect to dB,, 



Let us assume, at this stage, that we use a simple bucketing strategy where the 

dividing points between buckets, once established, are fixed. Then the cost of bucket 

maintenance is dominated by the cost of computing a new MinTTIo for each object in 

dBa.' By a similar argument to that of the naive case above, the expected cost of the 

urgent bucket is given by: 

Here C(AQ + AMinTTI,,, - X) is the cost, given by the cost function, of executing 

the two queries AQ and AMinTTI, - with respect to ABo , withlAB, 1 = X . Note that Mo, 

the monitoring interval for the urgent bucket, is the user-defined monitoring interval, 

which is the same M that applies to the naive case (Equation (9-1)). No is the number of 

objects in Bo, which is less than N. 

We now consider Bi, i > 0, the non-urgent buckets. Recall that MinTTIo - for any 

object in a non-urgent bucket is greater than the monitoring interval for that bucket, M,. 

Thus, by definition, a tuple in AB, cannot result in a change to Q. Therefore, for all non- 

urgent buckets, processing follows the same steps as the urgent bucket, except that the 

computation of AQ is not needed; only bucket maintenance is required. The expected 

cost for each non-urgent bucket is given by: 

N, 

E ( C ,  ) = p(lAB, 1 = x) x C(MinTTI,, - x) 1 M ,  for i = 1  ...( J-1) 
s=o  

9.4.2 Cardinalities of Deltas 

- - 

' This is conservative in that bucket maintenance may be done more efficiently in  some cases. It is 
generous in that we disregard the cost of notifying the remote source of bucket changes. 



The equations we have derived thus far depend on the distribution of the 

cardinalities of the deltas, lAS1 and ~AB, I . TO model these distributions, assume that 

changes to objects in S are independent, and that the probability of an object changing in 

a given time interval is independent of and identical to the probability of it changing in 

any other time interval of equal length.2 This assumption implies that the number of 

changed objects for a given set of objects within a given monitoring interval, and thus the 

cardinalities of the deltas, follows a binomial distribution. Suppose, further, that the 

probability that a given object will change in the smallest monitoring interval, M, is 0. 

The distributions for IASl and I A B , ~  are given by: 

where b (x ;  n;8) = 0" (1 - 8)"-" is the xrh binomial coefficient. (3 
For the non-urgent bucket, B,, i > 0, let M, be the monitoring interval for B,, and 0, 

be the probability that a given object will change that interval, then M, > M, and thus 8, > 

8. Assume, without loss of generality, that MI  = k, + A4 for some integer k, . Then the 

probability of x changes to a single object within M, is b (x ;  k, , 8 ) ,  and 0,, the probability 

of some change to a single object within M,, is 1 - b(0; k, ,8)  = 1 - (1 - . Thus the 

distribution of IAB, I is given by: 

p ( l A B , ~ = x ) = b ( x ; ~ ~ ; 1 - ( l - 8 ) k ~ )  for i = 1  ...( J-1) 

Notice that if we monitored the objects in B, at interval M, as we would in the 

naive case, we would expect to process 0 k,N, updates to these objects every Mi time 

period. With bucketing we expect to process (1 - (1 - O)ki )N,  updates in the same period. 

This assumption is imperfect, but not damaging. Trying to model complex inter-update correlations is 
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That is, the expected volume of Meaningless Updates Discarded (MUD) for B, is given 

by: 

E(MUD,)= B k , ~ , - ( l - ( l - ~ ) * ~ ) ~ ,  

MUD, and the avoidance of related processing costs, is the source of the savings 

produced by the bucketing approach. When these savings exceed the overheads 

introduced by bucket maintenance, our approach is beneficial. 

9.4.3 Simple 2-Bucket Case 

In the remainder of this section we will consider the simplest possible 

impIementation of our methods: two buckets (M= 2), Bo and BI, with a fixed boundary 

between them, MI. Assume, without loss of generality, that M = Mo = 1. Then MI = kl. 

For simplicity of analysis, we will also assume simple linear forms for the query cost 

functions as follows3: 

Note that Equation (9-4) represents a worst case cost for computing AQ and AMinTTI, - 

together. But we may be able to do much better. As we noted in Section 9.2, Q and 

MinTTI will have a high degree of commonality, and thus AQ and AMinTTI will have a 

high degree of commonality. In fact, AMinTTI is likely to include AQ intact, with some 

relatively inexpensive filtering on top of the computation of AQ. Therefore, handling AQ 

difficult at best, and we posit that our methods tend to work better where such correlations exist. 
3 We choose not to use the AX+Y form since it does not capture the important notion, in our setting, that 
X=O implies C=O. 
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and MinTTI  as a (relatively simple) multiple-query optimization problem may get 

us AMinTTI, for little added cost, in which case, based on Equation (9-2): 

C(AQ + AMinTTI,,x) = Ax 

In any event, the cost of the naive monitoring implementation is given by: 

We will now look at two distributions for MinTTl, - , consider how a choice ofM, can be 

made to minimize the costs of the 2-bucket approach, and compare these costs to the 

naive approach. 

9.4.3.1 Uniform Distribution 

Assume a stable uniform distribution of MinTTIo values for the set of objects, S, 

over the range [0 ... R]. Given M I ,  No = (MI /R)N and N, = (1 - M I  / R ) N  . The cost of 

the 2-bucket approach in this case is given by: 



As a final simplification, we will assume that the probability that an object in BI will 

change within M I  is 1. That is, we will round 8, = 1 - ( 1  - 8)"-""R'N to 1 in the Equation 

(9-5). Note that while 8, approaches 1 as 8 goes to 1 and as MI gets large, this 

simplification is an overestimate of the costs associated with B,. But it allows us to 

simplify the Equation (9-5): 

and E(C ,_,,,,,,,s) is minimized by choosing: 

Table 9-1 below shows analytical results for a range of values of R and 0. Here 

we assume that there are 10,000 objects to be monitored (N=10,000). We show cost 

comparisons for the pessimistic assumption that: 

C(AQ + AMinTTI,, X) = ( A  + B)X = 2AX 

and the optimistic assumption that: 

C(AQ + AMinTTI, - , X) = AX (9-9) 

In this setting, the objects are monitored over the values. R, ranging from 100 to 10,000. 

The probability that a given object will change in a specific monitoring interval, 8, varies 

between 0.01 and 0.25. We compute MI, C,,,,,, and Cblrckets using equations (1 3), (1 l), 

and (12), respectively. In each table, the Gain is the difference between the cost of the 

bucketing approach and that of the naive approach. 



In the pessimistic model, when R = 100 and 6 = .O1 and .05, our bucketing 

approach is worse than the naive approach since the cost of bucket maintenance 

outweighs the (relatively small) savings due to MUD. In all other cases, however, under 

our assumptions, our method provides a more efficient monitoring capability. 

Table 9-1: Gains under Optimistic and Pessimistic Assumptions 

Figures 9-6 and 9-7 graph the pessimistic and optimistic cost savings, respectively, for a 

range of R values with 6 fixed at .01, . lo, and .5. In both figures, as 8 increases, the cost 

savings of the bucketing approach increases as well. As object changes become more 

frequent, more MUD is generated by our methods, which translates to more savings. Note 

that in general we may, at best, only be able to estimate (or guess) at 6. But simple 

calculations based on the above show that even if we are wrong in our guesses, and our 

choice of MI is imperfect, we can still do better than the naive approach. 
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9.5 Chapter Summary 

We have presented a framework for exploiting constraints on information change 

in the setting of active service integration. We have presented strong evidence that, for a 

large class of applications, our techniques can greatly reduce the update rate seen by a 

ASIS, and thus improve the scalability and response time of such systems. These savings 

can be realized even where the simplest of bucketing schemes is adopted. 

There are several clear areas for near-term expansion of these ideas. The 

requirement that MinTTI must be manually specified for each applicable ASIS request is 

burdensome and error prone. We are currently investigating techniques for automatically 

generating MinTTI. We believe that a combination of program transformation and 

semantic query optimization can feasibly be employed to this end. Another important 

issue is how bucket boundaries are defined and how they evolve over time. Near-term 

work involves investigating a range of approaches for doing this, including clustering 

techniques. 

Interesting future avenues to pursue include trying to broaden the range of 

constraints we can work with. Often absolute constraints do not exist, but probabilistic 

ones do. A stock currently priced at $20, for example, is highly unlikely to drop to $2 in 

a matter of hours (recent events notwithstanding). How can constraints that apply 

(merely) with high probability be integrated into our scheme? What are the tradeoffs 

between efficiency and scalability in applying these techniques, and accuracy or 

consistency (a familiar theme in Internet-based systems)? Often applications can tolerate 

some inconsistency for greater scalability and efficiency. On the other hand, the truly 

unusual or spectacular change events may be just the sort of events we are most 

interested in. If the price of greater efficiency is that we miss being notified of such 

unusual events, which is what a probabilistic approach could imply, we could not accept 

that tradeoff. Another avenue of exploration involves studying the intent of objects we 

are monitoring, and incorporating knowledge of an object's intent into our constraint 



reasoning. Employing intent reasoning may involve similar tradeoffs to that of 

employing probabilistic reasoning. 

Our specific techniques may be applied to a variety of independent variables, 

provided the variables in question can be related to time. In our example, we related 

distance to time based on an object's maximum velocity, but many other variables can be 

related to time in a natural way, e.g., flow in a refinery, number of items processed in a 

machine, number of trades or transactions in an auction, etc. But beyond variables whose 

rate of change can be naturally derived, we believe that the general notion of using 

application semantics to produce MUD has wider applicability. Constraints based on 

some necessary path of change or an impossible transition, required intermediate steps, or 

some discrete number of update events might be used to deduce that changes to certain 

objects can be discarded or temporarily ignored. 

In the Internet age, scalability and robustness are a constant challenge in 

computing. We believe semantics provide a key source of traction in meeting this 

challenge. The ideas in this chapter represent a first step toward tapping this source in 

the context of active service integration. Significant work in view maintenance has 

sought to determine when updates are syntactically independent of views (Levy and 

Sagiv 1993). The work we present here is the first attempt, to our knowledge, to isolate 

updates that are semanticaIly independent of views. Many of the ideas in this chapter 

have also been presented at the AAAI Spring Symposium (Benninghoff and Noh 2001) 

and at the International Conference on Enterprise Information Systems (Benninghoff and 

Noh 2003). 



Chapter 10 

Contributions, Related Work, and Conclusions 

The accelerating deployment of networked information sources and services creates 

a great opportunity for mediation systems of all stripes. As networked services 

proliferate, monitoring and event-based integration will become an increasingly 

important mediator capability. Yet the majority of work on mediation systems has 

focused narrowly on queries and transactions. As a result, the issues involved in 

providing monitoring and event-based integration are not well understood. The work 

presented in this dissertation is a step towards improving the understanding of these 

issues. In this concluding chapter, we reiterate our thesis, summarize the major 

contributions of this dissertation, discuss related work and future directions suggested by 

our work here, and highlight some important lessons learned from this effort that can help 



to guide systems builders interested in implementing active service integration 

technology. 

10.1 Contributions 

We have described a powerful type of mediation system that we call an Active Service 

Integration System (or ASIS), whose central function is monitoring and event-based 

integration over autonomous, networked services and information sources. We have built 

a basic ASIS, deployed it in at least one running application, and used it to motivate 

advanced issues in scalability and performance. We have derived solutions for several of 

these issues. 

We have sought to demonstrate our thesis that inter-task sharing together with the 

specification and exploitation of service characteristics and capabilities are key concerns 

in building a monitoring and event-based integration capability that is scalable and 

efficient. Techniques for sharing of result processing, data movement and planning are 

all important pieces of a solution that demands a multi-pronged approach. The 

exploitation of rich application semantics is another important avenue to improved 

scalability and performance. The semantics of information change, in particular, can be 

leveraged to improve the scalability and performance of a number of useful applications. 

Besides providing evidence to support our thesis, this dissertation has made 

several concrete contributions: 

The Basic ASIS: We have presented a description and implementation of a basic 

ASIS that addresses the fundamental issues of construction, and many issues 

involved in the practical and efficient execution of ASIS requests. 

We have demonstrated the value of that exploiting the heterogeneous 

computational capabilities and data characteristics of services to efficient 

processing of ASIS requests. Our system captures such capabilities in a metadata 



model that goes beyond those found elsewhere in the networked services world to 

describe computational capabilities, data characteristics, and change events of 

available services. Our request processing module extends query processing 

technology to exploit the capabilities and characteristics exposed in our metadata 

model. We create new logical and physical operators that support integration and 

monitoring, and that provide the basis for capability-driven optimization and 

execution of ASIS requests. 

Cost-Based Cache Selection: We described how the long-lived nature of ASIS 

requests can be leveraged to make effective caching decisions. We present a 

detailed model and framework for cost-based cache (or view) selection in an 

ASIS, supported by metadata on service change events and their associated data. 

An exhaustive approach to the resultant optimization problem, however, is 

doubly-exponential in complexity. We describe a multi-pronged attack to 

handling this problem in a tractable manner that features a combination of 

heuristics and inter-task sharing. 

Multiplex Query Optimization: We presented a description and implementation 

of Multiplex Query Optimization (MuxQO), a method for efficiently handling 

problems that can be cast as a group of overlapping query optimization problems. 

We characterized the applicability of MuxQO, and we described a performance 

evaluation that demonstrates the effectiveness of MuxQO in handling cost-based 

view selection in an ASIS. We describe how a top-down optimizer can be 

modified to support MuxQO. MuxQO can provide dramatic savings in ASIS 

view selection, particularly when the join arity of ASIS requests is large. MuxQO 

is applicable to a range of problems, including physical database design, multiple 

query optimization, and the physical representation of new data formats and 

models such as XML (Bohannon, Freire et al. 2002). 



Exploiting the Semantics of Information Change: We provided a description 

and an analytic evaluation of a novel approach to exploiting rich application 

semantics to improve the efficiency and scalability of an ASIS. In particular, we 

describe and evaluate a method for exploiting constraints on information change 

over time. We argue that application-level semantics are a rich vein to mine in 

improving the scalability and efficiency of active service integration. 

10.2 Related Work 

While there is a dearth of work in active service integration, per se, techniques developed 

in other areas are applicable to and have heavily influenced our work here. We have 

selectively referenced such work throughout this dissertation. Here we discuss related 

work in a more global and systematic fashion. We divide this section by major areas of 

related work, including classic database systems, distributed and federated databases, 

information and data integration, materialized views and physical database design, and 

semantic optimization. 

10.2.1 Classic Database Systems 

We would be remiss if we did not acknowledge the influence of certain classic works in 

relational database management systems on the work in this dissertation. Codd 

developed the relational model for data management (Codd 1970), which helped to 

spawn an industry and a sub-discipline of computer science. Our declarative request 

language shares the first-order logic base of the relational model, and is equivalent to the 

basic select-project-join queries of the relational model. System R (Astrahan, Blasgen et 

al. 1976) and Ingres (Stonebraker, Wong et al. 1976) were the among the earliest 

relational systems, dating back to the early 70's, and they have profoundly influenced all 

work on database implementation that has come since. The basics of cost-based request 



processing in Paradox closely follows the query processing techniques originally 

developed in System R (Selinger, Astrahan et al. 1979), as do those of most major 

commercial database systems today. Our implementation of MuxQO, however, involved 

modifications to the Columbia optimizer (Graefe 1995): a descendent of Volcano (Graefe 

1 994) and Exodus (Graefe and DeWitt 1 987; Carey, DeWitt et al. 1 988), which utilizes a 

top-down approach to optimization, as opposed to the bottom-up approach of System R. 

Top-down optimizers are not as common as bottom-up ones, but commercial optimizers 

available in recent product offerings from Tandem and Microsoft have taken the top- 

down approach. The top-down approach, due to its use of a data structure that hashes the 

current-best-subplan by the logical multi-expression that it implements, was easy to 

extend to support MuxQO. Extending a bottom-up optimizer to support MuxQO would 

be more difficult. Proponents of the top-down approach have argued that top-down 

optimizers are more easily extensible than bottom-up ones. Our experience with MuxQO 

bolsters these claims. 

10.2.2 Distributed and Federated Database Systems 

The extensive body of work in query processing in distributed databases has also 

influenced the work in this dissertation (Epstein, Stonebraker et al. 1978; Bernstein, 

Goodman et al. 198 1 ; Mackert and Lohman 1986). Much distributed database work has 

focused on extending techniques from the classic centralized DBMS's to multiple 

cooperating DBMS's distributed over a LAN. The most obvious examples of such 

systems are R* (Haas, Selinger et al. 1982; Lindsay, Haas et al. 1984) and Distributed 

Ingres (Stonebraker and Neuhold 1977), which came from the same organizations that 

developed System R and Ingres, respectively. The notion of row blocking, in which 

tuples are sent in chunks, rather than one by one, from one distributed operator to another 

over a network is ubiquitous in such systems. In Paradox we adopt a variant of row 

blocking in our wrapper model, which breaks with strict demand-driven dataflow in 



request execution to create a supply-driven pool of data on the receiving side of a 

network connection. This technique is particularly important in the WAN environment 

where it not only reduces the number of message sends, but also helps to mitigate the 

effects of bursty network traffic (Amsaleg, Urhan et al. 1998) and the cumulative effect 

of latency through multiple levels of a demand-driven pipeline. 

Work in distributed databases has resulted in many proposals for efficient join 

processing, where the data to be joined resides in different locations. The semijoin is one 

notable proposal (Bernstein and Chiu 1981). The idea of the semijoin is to minimize the 

data transfer costs of joining a Table A at Site 1 to a Table B at Site 2 by sending only the 

columns of A that appear in the join predicate to Site 2, joining B with those columns, 

and then shipping the result back to Site 1 where the join is completed. Performance 

studies in a LAN environment indicate that the additional CPU costs of completing the 

join is often greater than the savings in communication costs (Lu and Carey 1985; 

Mackert and Lohrnan 1986). But semijoins become more attractive in a WAN setting, 

and where tuples are very large. Our parajoin operator is a variant of a semijoin designed 

with networked services in mind, in which any number of columns can be shipped to the 

joining site (the columns sent can be determined in a cost-based manner), but the join 

always occurs at the site of the service providing the operator. More efficient variants of 

the semijoin have been proposed, notabIy the Bloom join, in which a hash-based 

signature of the join columns, rather than the columns themselves, is shipped to the semi- 

join site (Babb 1979; Valduriez and Gardarin 1984). But a Bloom join is impractical for 

the networked services environment, since it requires a shared hash function between the 

mediator and any service that supports it. 

Closely allied with work in distributed databases is that in federated database 

systems (Fankhauser, Gardarin et al. 1998; Elmagarmid, Rusinkiewicz et al. 1999; 

Roantree, Hasselbring et al. 2000), which shares the goal of uniform access to multiple, 

network-accessible database systems. One key distinguishing characteristic of a 

federated database system is that the participating databases are azrtonomous. Autonomy 

in this context is a relative term. It implies that a database is under its own administrative 



regime, that its primary mission may be other than participation in the federation, and that 

the system itself was not designed with distributed processing in mind. The federation 

normally cannot expect to use a participating database for more than query or 

transactional access to the island of data it manages. Distributed database techniques 

such as data partitioning between nodes, semijoin programs, and heavyweight 

transactional commit protocols (e.g., three-phase commit (Skeen 1983)) are thought to 

violate autonomy, and are therefore verboten. Note that services in an ASIS are 

autonomous only in the first sense listed above, and this distinction is crucial. The 

primary mission of a networked service is to be integrated and composed with other 

services, and it should be designed with these uses in mind. A central tenet of our work 

is that building efficient, scalable integration systems in the Internet environment requires 

that services actively assist in the processing tasks of their clients, even where the 

assistance is fundamental to integration or composition, and not to the service as such. In 

the network services world we are compelled to push the traditional bounds of autonomy. 

The parajoin operator is one example of pushing these bounds. Our taxonomy of 

distributed change notification and update dissemination capabilities is another example. 

A recent and innovative approach for bringing federated databases to the WAN 

environment can be found in the Mariposa project (Litwin, Pfeffer et al. 1996). Mariposa 

developed a novel economic model for sharing and optimizing query-processing effort 

across the federation, which was heavily influenced by economic-based models 

developed in the A1 and multi-agent systems community (Smith 1980; Wellman 1993; 

Wellman 1995; Clearwater 1996). Philosophically, Mariposa agreed with our thinking 

that scaling in the WAN environment demands that participants in a federation be 

designed with federation in mind, and that they offer significant computational assistance 

to the federation as a whole. Mariposa parted with us at a more fundamental level, 

however, in the belief that centralized query processing was impractical in the WAN 

environment and could not scale to myriad information sources. An attempt was made to 

commercialize Mariposa via the company Cohera, Inc. But Cohera was not successful, 

closing its doors late in 2001. Simpler, better-understood, R*-like extensions to 



centralized DBMS's remain the commercial state of the art in distributed and federated 

DBMS's. 

10.2.3 Heterogeneous Databases and Data Integration 

Work in heterogeneous databases, which overlaps federated database work somewhat, 

dates back to the Computer Corporation of America's MultiBase project (Smith, 

Bernstein et al. 1981), but also includes systems such as IBM's Datajoiner, METU 

(Dogac, Halici et al. 1996), and IRO-DB (Gardarin, Sha et al. 1996). The distinguishing 

characteristic of a heterogeneous database system is that the participating databases can 

have differing query capabilities, schema or underlying data models. Source autonomy is 

generally assumed in such systems as well. A closely allied area is data (or information) 

integration. In a data integration system autonomous component sources are often not 

database systems at all; they can be flat files, web sites, directory services, spread sheets, 

or some other variety of information source. Notable data integration systems include 

DISCO (Tomasic, Raschid et al. 1998), Garlic (Carey, Haas et al. 1995; Roth, Arya et al. 

1996; Josifovski, Schwarz et al. 2002), Hermes (Adali, Candan et al. 1996), Pegasus 

(Ahmed, Smedt et al. 1991), and the Information Manifold (Levy, Rajaraman et al. 

1996). All of these systems share essentially the same three-tier architecture with the 

Paradox system. A client passes requests to a middle tier, which parses and decomposes 

the request into fragments that can be handled at individual sources and combines or 

integrates the resulting data. Wrappers or adapters provide a uniform interface between 

the middle tier and the sources. A catalog or some form of metadata repository provides 

information needed to guide the process. 

The early focus in heterogeneous database systems and data integration systems 

was largely about coping with semantic heterogeneity between models, schema and 

domains. These difficult issues are relevant in the context of active service integration as 

well, but they are not the focus of this dissertation. The growing importance of the 



Internet, the advent of the World Wide Web, and the promise of ubiquitous connectivity 

have resulted in intensified interest in data integration, and in an increasing focus on 

issues of performance and scalability (Florescu and Levy 1998). 

A common goal in attempts to achieve better data integration performance and 

scalability has been to make the best use of advanced source capabilities while avoiding 

plans that sources of limited capability cannot process. Several researchers, for example, 

have considered limited source capabilities in which sources are modeled as predicates 

and capabilities are modeled as limited binding patterns (Levy, Rajaraman et al. 1996; Li, 

Yerneni et al. 1998; Florescu, Levy et al. 1999; Li and Chang 2000). Web sites that 

retrieved data based on simple HTML forms were a major impetus for this work. We 

consider binding patterns as well, though it is not a primary emphasis in our work. Our 

motivation for considering them is more to handle computational functions, which are 

important in the network services world, than to deal with web sites with simple forms 

interfaces. 

One difficult issue in query optimization in heterogeneous databases and data 

integration systems is in estimating the cost of the parts of a plan that are executed by 

external sources. Three main approaches to this problem have been proposed. One 

approach is to require a customized cost model for each information source. This 

approach has the advantage of being as accurate as possible, but it places a large burden 

on wrapper development. A second approach is to have a generic cost model integrated 

into the mediator that relies on heuristics about the algorithms and computational 

complexity of the processing done at each source in a given plan. This is the approach 

taken by Paradox, which adjusts its estimates based on source capabilities. An 

enhancement to this approach allows a generic cost model to be tuned or calibrated at 

each source based on specific parameters. Several generic cost models have been 

proposed (Du, Krishnamurthy et al. 1995; Gardarin, Sha et al. 1996; Zhu and Larson 

1998). Some researchers have taken a hybrid approach that uses a generic model by 

default, but allows customized cost models to override the generic model in critical 

instances (Naacke, Gardarin et al. 1998). This hybrid approach was eventually adopted 



by Garlic (Haas, Kossmann et al. 1997; Roth and Schwarz 1997). A third approach is to 

observe query plans in action and learn the costs of sources based on their execution 

history, which was the approach taken by HERMES (Adali, Candan et al. 1996). 

Paradox allows for a learning approach to statistics that inform its cost model, which can 

be used where other sources of statistical information are not available. A system 

administrator is also able to tweak the Paradox cost model, which allows for a form of 

calibration. 

While we have only highlighted a small portion of the voluminous literature from 

the database community on heterogeneous databases and data integration, the general 

trend in plan generation and optimization in this area has been to encapsulate the 

heterogeneity of information sources and otherwise apply techniques from distributed and 

federated databases to the degree possible (Kossman 2000). The work in this dissertation 

is in the same spirit. We are unique in extending these ideas to encompass monitoring 

and event-based processing, and our networked services orientation brings with it some 

subtle but important differences in terms of the capabilities of external information 

sources. 

Blackboard systems and facilitators from the A1 world seek to coordinate and 

often integrate the capabilities of multiple network-accessible agents. The notion of 

"agent" in such systems is fairly broad, and subsumes our concept of a networked 

service. The Flipside system (Schwartz 1993), and the Open Agent Architecture and its 

successor the Adaptive Agent Architecture (Cohen 1994; Kumar 2000) combine the 

capabilities of a blackboard and a facilitator, and are exemplars of such systems. While 

these systems provide integrated access to the capabilities of multiple agents, possibly 

including triggering or event-notification capabilities, they do not provide monitoring of 

complex conditions over multiple agents, and so they cannot be considered active service 

integration systems. Further, in many of these systems, emphasis is placed on agent 

communication and coordination, not on plan optimization or caching. Other systems 

from the A1 community that integrate data include Ariadne (Ambite, Ashish et al. 1998), 

Occam (Kwok and Weld 1996), Razor (Weld 1997), Infosleuth (Woelk, Bohrer et al. 



1995) and Sim (Knoblock 1993). These systems focus more on planning issues, applying 

A1 representation and planning techniques, rather than cost-based optimization, to the 

problem of finding feasible plans given source restrictions. 

While most work on distributed databases and information integration has 

concentrated on queries and transactions, a couple of recent projects have dealt with 

continuous or continual queries, which is very similar to the spirit of an ASIS. The 

Continual Query project (CQ) has developed an update monitoring system for use in the 

WWW environment (Liu, Pu et al. 1998; Liu, Pu et al. 1999). CQ has concentrated on 

handling the specifics of the Web environment, including creating wrappers with update 

notification capability over HTML and XML-based web pages. CQ has also developed a 

simple but expressive update specification interface. But CQ does not handle updates 

over multiple sources, nor have they dealt with scaling issues such as caching. Another 

notable effort is the Niagara project at the University of Wisconsin and OGI (Naughton, 

DeWitt et al. 2001). One of the focuses of the Niagara project is to try to build a 

continuous query system that can scale to the Internet. They refer to the continuous 

query component of this project as NiagaraCQ (Chen, DeWitt et al. 2000). The focus of 

NiagaraCQ is on processing myriad monitoring queries that have a large degree of 

similarity. The basic approach is to incrementally merge query plans that overlap 

significantly. This approach is similar in spirit to our merging of request fragments on a 

single service. NiagaraCQ also focuses on handling XML data. 

10.2.4 Materialized Views and Physical Database Design 

Materialized views became a hot topic in the early 90's as their value to a wide variety of 

advanced database applications became evident along with the sorry state of commercial 

facilities to support them. The importance of data warehousing and advanced 

applications such as OLAP, in particular, has provided impetus for a great deal of work 

on materialized views (Hammer, Garcia-Molina et al. 1995; Widom 1995; Harinarayan, 



Anand A. Rajaraman et al. 1996; Kimball, Reeves et al. 1998). A large body of work has 

dealt with algorithms for incrementally updating materialized views (Blakeley, Larson et 

al. 1986; Qian and Wiederhold 1991 ; Gupta, Mumick et al. 1993; Gupta and Mumick 

1995; Mumick, Quass et al. 1997). As a first approximation, an ASIS request is 

conceptually quite close to a view that must be incrementally updated. The Paradox 

system considers incremental plans for ASIS requests. Our incremental algorithms are 

based on work on centralized, deductive databases (Gupta, Mumick et al. 1993), but we 

adapt this work to the network services environment in a manner that tolerates some 

temporary (but necessary) inconsistencies, and that avoids inherent problems in the 

distributed environment such as update anomalies. Many of the pitfalls of incremental 

maintenance in a distributed environment, including update anomalies, were described in 

work from the WHIPS data-warehousing project (Zhuge, Garcia-Molina et a]. 1995; 

Zhuge, Garcia-Molina et al. 1998). The efficiency of incrementally updating a 

materialized view depends on the "heuristic of inertia", which is the assumption that 

updates will be small compared to the size of base relations (Gupta and Mumick 1995). 

This is not a safe assumption in the networked services environment. Paradox considers 

both incremental algorithms and complete recomputation in the plan space for computing 

request results. 

The problem of cache or view selection for an ASIS is similar in nature to the 

problem of physical database design, and in particular to the problem of materialized 

view and index selection. A substantial body of work exists in this area, dating back to 

the early 70's. The natural breakdown of view selection that we present into a choice of 

candidate views followed by combining candidates into configurations is echoed in much 

of this work. For candidate selection the two main approaches taken are syntactic 

analysis of the workload (Hammer and Chan 1976; Finkelstein, Schkolnick et al. 1988), 

and a knowledge or rule-based approach that makes heuristic judgments about complex 

view and index interactions (Hobbs and England 1 99 1 ; Rozen and Shasha 199 1 ; 

Choenni, Blanken et al. 1993). The Paradox approach is to optionally lay rule-based, 

heuristic restrictions over the set of possible intermediate results generated by the 



optimizer. We suggest using a component of the optimizer itself (if the optimizer has 

been designed properly for this task) in the candidate generation process. The Microsoft 

AutoAdmin project generates candidate indexes and views by finding the best index and 

view configuration for each query independently. They refer to this technique as the 

query-speczJic-best-configuration candidate selection algorithm. Note that where a query 

can be expressed in the view language, the best configuration will consist of materializing 

the entire query. In an ASIS, the cache or view set must be adjusted incrementally, as 

each request is encountered. As a result, we generate candidates and configurations by 

analyzing each plan suite independently. Materializing an entire query in the suite is not 

possible in the ASIS setting, of course, since each query is based on data changes that are 

not yet available. We then attempt to merge the optimal configuration for the latest suite 

with the existing view set to get a better global configuration. 

Selecting configurations requires assessing the value of a configuration, and a 

search method to work through the space of possible configurations. Some researches 

have developed approximate, "stand-alone" cost models for this purpose (Harinarayan, 

Rajaraman et al. 1996; Gupta, Harinarayan et al. 1997). Others have used the actual cost- 

based query optimizer of the target database to do "what-if' analysis of the costs of the 

workload if a given configuration is chosen (Finkelstein, Schkolnick et a]. 1988; 

Chaudhuri and Narasayya 1997). We endorse the latter method. A key aspect of the 

Paradox approach is that candidate and configuration generation and selection is unified 

with the optimizer, and therefore with the process of plan generation and optimization. 

In searching the space of possible configurations, given a set of candidates, the 

obvious greedy and exhaustive algorithms predominate in the literature. In the context of 

selecting materialized views in a data cube setting, researchers at Stanford have shown 

that a greedy algorithm is within 63% of optimal in all cases, and that in many realistic 

scenarios the difference between the greedy and optimal solutions is essentially nothing 

(Harinarayan, Rajaraman et al. 1996). The Microsoft AutoAdmin project applies a 

combination of exhaustive and greedy configuration enumeration. Their algorithm, 

Greedy@, k). searches exhaustively for configurations of size m, and from there 



progresses to a configuration of size k in a greedy fashion (Agrawal, Chaudhuri et al. 

2000). All of these approaches assume that each unique optimization problem will be 

handled separately by the query optimizer. 

Ross et al. discuss the problem of choosing additional views to materialize and 

maintain in order to make the maintenance of a given set of materialized views more 

efficient (Ross, Srivastava et al. 1996). This problem is very similar, in essence, to cache 

or view selection in an ASIS. They present a cost-based formulation that is similar to 

that of the physical database design work presented above, and is similar in many 

respects to our formulation for ASIS view selection. They suggest using metadata 

estimating the frequency of base-table changes, which is a similar notion to our modeling 

of the frequency of change event types. But their approach to computing the optimal set 

of views is inefficient. It does not recognize the large overlap of the optimization 

problems induced by their approach. Also, while they mention the possibility of utilizing 

multiple query optimization in their solution, they do not describe a method for doing so. 

Recently, others have also noticed the intimate connection between multiple 

query optimization and view selection. Mistry et al. present methods for efficiently 

finding a plan for the maintenance of a set of materialized views that exploits multiple 

query optimization and the materialization of additional views (Mistry, Roy et al. 2001). 

In their approach, as with ours, incremental maintenance plans, complete recomputation 

plans, multiple query optimization and ancillary view materialization are all considered in 

an integrated fashion within the same search space. But there are several distinctions 

between our work and theirs. First, their approach is tailored to the centralized DBMS 

environment, whereas ours is oriented towards the distributed, network services 

environment. Second, they consider a complete workload as a single unit, whereas, in the 

ASIS environment, we must adapt incrementally as requests are added to and deleted 

from the system. Third, their approach involves a new optimizer framework that requires 

fleshing out a query DAG, which represents every possible plan for every possible 

configuration of permanently or transiently materialized views. Our approach, in 

contrast, is much easier to integrate into an existing optimizer, and will be more efficient 



because it can fully exploit search optimizations within the optimizer such as group 

pruning (Shapiro, Maier et al. 2001). Fourth, their search space considers a set of views 

to materialize either permanently or transiently, and then considers, in isolation, whether 

each view in the set should be permanently or transiently materialized. This approach 

misses important interactions between choices of permanence and transience within a 

given view set that are not missed in our approach. Finally, their approach only handles 

the specific problem of maintaining a set of views. We have presented a general 

technique, MuxQO, which can be applied to a wide array of optimization problems. 

10.2.5 Rich Application Semantics 

It is difficult to find work that is closely related to the material we presented in Chapter 9 

on using rich application semantics to optimize ASIS request processing. But we will 

briefly mention three areas. 

Moving objects databases is a new area of study that has garnered considerable 

recent interest in the database research community (Chon, Agrawal et al. 2002; Jenson 

and Saltenis 2002; Papadias, Tao et al. 2002; Venkata, Kanth et al. 2002). Like 

geographic information systems (Tomlin 1990), moving object databases extend database 

technology to provide a specialized framework for a data-intensive application domain. 

In this case, a moving object database represents and processes information specific to 

tracking the location and juxtaposition of objects in motion. Work in moving object 

databases includes new algorithms and new query language constructs specifically 

designed for spatio-temporal reasoning. The techniques we present in Chapter 9 are 

simpler and more general, in that they apply to ASIS applications beyond the realm of 

moving objects, and they can be implemented on top of current database technology 

without a major effort. But moving objects databases provide a much more complete 

data management solution for the specific domain of moving objects. 



Semantic query optimization (SQO) is an area of research at the juncture of 

database query processing and logic programming (King 1981 ; Chakravarthy, Grant et al. 

1988; Chakravarthy, Grant et al. 1990; Levy and Sagiv 1995; Grant, Gryz et al. 1997). In 

SQO, given a query and semantic knowledge about the database represented as a set of 

integrity constraints involving base relations or extensional predicates within the body of 

the query, the query is transformed into a semantically equivalent query that is 

(hopefully) more efficient to process. Semantic query optimization has been shown to be 

very effective for a wide variety of applications. Nonetheless, SQO techniques have not 

been integrated into any commercial systems to our knowledge. 

The semantic optimization work we present in Chapter 9 uses semantic query 

optimization as a starting point. To apply our technique, we need an ASIS request, Q, 

that involves tracking attributes of an object captured by a service call, R, in the body of 

Q, and an integrity constraint, C, on the rate of change of attributes in R. An SQO-style 

transformation of AQ/& based on C gets us much of the way to the generation of 

MinTTIo. We have done preliminary research on using a combination of semantic query 

optimization and program transformations to automatically generate MinTTI. We believe 

this approach will be effective for an important class of requests and constraints, and that 

it is a promising area for future work. Auto-generation of MinTTI would fill an important 

gap in applying application semantics to the optimization of ASIS requests. 

Finally, returning to work on materialized views, significant work in view 

maintenance has dealt with determining when an update can be categorized as 

independent of a view, without requiring that view maintenance queries be evaluated 

(Blakeley 1989; Elkan 1990; Sagiv 1993). Researchers have applied various forms of 

syntactic analysis to this problem, including analysis of query reachability and of uniform 

equivalence. Our goal is similar, in that we too want to determine when an update cannot 

possibly affect the result of a view. But we employ semantic knowledge to make that 

determination. So while we would characterize all of the previous work in this area as 

determining when an update is syntactically independent of a view, this is the first work, 



to our knowledge, that attempts to determine when an update is semantically independent 

of a view. 

10.3 Lessons Learned 

We close this dissertation with a narrative highlighting lessons we have learned in 

studying and implementing active service integration technology. Future implementers 

of active service integration systems would do well to heed these lessons. 

Lesson 1: Hardware alone does not an efficient or scalable ASIS make. 

Intel and other hardware vendors will love active service integration. An active 

service integration system is resource-intensive in terms of both CPU and memory. But 

while you can expect an ASIS to run on a large box, creating a system that is scalable and 

efficient is all about the software. An ASIS requires a complex software infrastructure. 

Building that infrastructure is a significant undertaking, along the lines of building other 

complex server software such as a database management system. Careful system design 

for scalability and efficiency is essential. 

Lesson 2: Ignore costs at your peril. 

Our experience building an ASIS demonstrates that the approach of adapting and 

extending cost-based query processing technology to service integration is both feasible 

and beneficial. The declarative request syntax enabled by this approach is convenient for 

the client. More importantly, however, adaptive plan choice based on costs is essential to 

efficiency, throughput, and scalability. Many networked services are data intensive, and 

for many requests large differences in the processing demands and responsiveness of 



alternative feasible plans can be observed. Moreover, a given plan can be cheap or 

expensive depending on service characteristics that may change over time. To a large 

degree, the performance characteristics of an ASIS depends on the plan choices the 

system makes. Bad choices can have severely deleterious effects beyond the request 

being planned for, since an ASIS shares resources over large numbers of requests. 

Avoiding extremely bad plans is particularly important, which is one of the strengths of 

cost-based optimization. 

Lesson 3: Expect inertia, but don't count on it. 

Incremental processing of ASIS requests can often be very efficient. In general, 

the efficiency of incremental processing relies on the "law of inertia", which states that 

the change of information in a body of data will be small compared to the body of data as 

a whole. But the law of inertia is merely a heuristic. While this heuristic may hold 

overwhelmingly in the world of large corporate databases, it can not be depended on as 

consistently in the network services environment, which will expose a greater variety of 

data, having a wider range of update characteristics. An ASIS should consider a plan 

search space that includes both incremental evaluation of a request and complete, from- 

scratch re-computation. 

Lesson 4: Services are autonomous, but they shouldn't be oblivious. 

Efficient ASIS request processing is aided tremendously by services that are 

complicit in the integration process. When services provide accurate and extensive 

metadata on their characteristics, and when they provide advanced "integration-friendly" 

operations, they enable an ASIS mediator to create and choose plans that are as efficient 

and scalable as possible. Some useful services can be all but unusable in the integration 

context without advanced operations. Services that hold very large volumes of data, for 

example, can often be integrated far more efficiently if they support some variation on a 



semi-join operator, such as the parajoin operator we have described here. Services that 

support multiple methods of event notification, including the separation of event 

notification from event-related data retrieval, enable an ASIS mediator to consider a 

wider plan space that may include more efficient and scalable plans. 

In the traditional view of federated systems, autonomy is paramount, and 

participating systems are not designed with federation in mind. In that setting, much of 

the integration support we have suggested here would be considered unreasonable. But 

the network services world is different. Much of the power of network services is 

derived from the view of services as components that can be freely integrated and 

combined. Network services exist to be integrated with other services, so they should 

provide explicit support for integration. One contribution of this dissertation is to 

describe some forms of integration support that are useful. 

Lesson 5: Take what services give you. 

If services offer capabilities that enable integration, it is incumbent upon 

integrators to exploit those capabilities. ASIS plan generation and optimization must be 

capability driven, it must incorporate and adapt to the processing capabilities and 

limitations of services. Useful network services can be counted on to display a wide 

range of heterogeneous capabilities. Some will have very limited capabilities, while 

others will offer advanced operational support for integration. A mediation system that 

cannot adapt to limited capabilities will be unable to employ many useful services. A 

system that cannot take advantage of advanced processing support will miss opportunities 

for more efficient and scalable plan execution. In the context of an ASIS, it is important 

to model and exploit notification and monitoring capabilities as well as more traditional 

request processing capabilities. In particular, the separation of the notification of an 

event and the retrieval of data associated with it enables more flexible and efficient plan 

generation. 



In the Paradox system, we looked at the capabilities of a wide variety of 

information sources and services, and we attempted to reduce and abstract these 

capabilities to a generic model with wide applicability. We also explored capabilities 

that could be useful to efficient ASIS request processing, and we added a number of these 

with an eye towards what can be reasonably expected from an autonomous service. Our 

architecture relies on wrappers, when needed, to accomplish the final bit of adaptation to 

any specific source, with the caveat that wrappers should be lightweight and easy to 

implement. But the capability model alone should be sufficient for capturing all major 

cost elements in processing an ASIS request. 

Our approach allowed us to adapt easily to services with unusual characteristics in 

the battleground domain, and to capture the cost characteristics of the environment. We 

emphasize that our specific metadata model is not the last word, far from it. System 

builders will want to explore the services of interest to them and, in a fashion similar to 

the one outlined above, adapt or extend our model to suit their primary domains of 

interest. 

Lesson 6: If you know the future, use that knowledge. 

As with other distributed information systems, caching is vitally important to the 

scalability and efficiency of an ASIS. Unlike most other information systems, however, 

an ASIS has excellent information available to it for making caching decisions, 

particularly if metadata on the frequency and data characteristics of change events can be 

obtained. We have outlined a feasible approach to cost-based cache selection that 

exploits the long-lived nature of ASIS requests, and we have described techniques for 

making it more efficient. Automated, cost-based approaches to physical database design 

have proved very useful based on less reliable heuristics on future workloads (i.e., that 

future workloads will mimic past work loads). The evidence strongly suggests that a 

cost-based approach to ASIS cache selection is not only feasible, but that it is highly 

effective. 



Lesson 7: Share and share alike. 

In this dissertation, we have repeatedly come back to the theme of inter-task 

sharing for implementing a scalable and efficient active service integration technology. 

We have demonstrated many opportunities for inter-task sharing that arise in the ASIS 

environment, and we have described methods for exploiting these opportunities that make 

use of heuristic techniques and incremental processing for efficiency. We have presented 

effective methods for sharing monitoring costs by merging monitoring requests, for 

sharing data materialized and maintained in a cache among multiple distinct requests and 

among multiple evaluations of the same request, for sharing transiently materialized data 

between simultaneously executing requests (MQO), and for sharing planning and 

optimization effort (MuxQO) in the context of cost-based cache selection and MQO. 

Each of these techniques represents a piece of the puzzle in building a scalable and 

efficient ASIS. 

Lesson 8: Keep a human in the loop. 

Several aspects of the design of the Paradox system leave room for manual 

intervention on the part of a system administrator. The metadata collection procedure, 

for example, allows a service to explicitly provide metadata on its capabilities and data 

characteristics. But where important metadata elements are missing or unreliable, they 

can be overridden by a system administrator. A plan suite is generated when a request is 

issued, but generated plans may become sub-optimal over time. An administrator 

controls when replanning is invoked. Experience with database query optimization 

indicates optimization may not always generate the best plans, and hand-optimization of 

plans may occasionally be needed. This task falls to a system administrator. Our initial 

scheme for exploiting the semantics of information change calls for an administrator to 



specify the definition of MinTTI by hand based on service integrity constraints. A system 

administration is integral to an ASIS; an ASIS should be designed with this role in mind. 

Lesson 9: Physics is your friend. 

Scalability and efficiency will be a never-ending challenge in service integration. 

Even where all of the techniques described in this dissertation are applied, the complexity 

and volatility of communications networks, increasing numbers of services and volumes 

of data, and the increasing demands and sophistication of users will continue to stress the 

limits of our algorithms and computing infrastructure. One of the final and most useful 

places to turn to extend the applicability of integration technologies is to rich application 

semantics. In this dissertation, we present a framework for exploiting constraints on 

information change to improve the efficiency and scalability of an ASIS. Information 

change is rarely random. For the class of applications where information change can be 

constrained, whether by the laws of physics or by other semantic properties, our approach 

has the potential to provide dramatic performance benefits. 
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