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Abstract: (499 words)

This thesis seeks to define the malignant process in leukemia, though
understanding the myriad events that govern hematopoietic development
represents a daunting task. Myelodysplastic syndrome (MDS) and acute
myelogenous leukemia (AML), while common clinical entities, are among the
diseases of blood whose pathogenic origins remain obscure. However, as has
been the case with many common human diseases, insights regarding that which
is frequent have been gained by studying that which is rare. In order to develop
greater understanding of MDS and AML pathogenesis, the autosomal recessive,

cancer-predisposition syndrome Fanconi anemia (FA) has been studied.

FA is a complex, genetic syndrome that presents mainly in childhood with
an incidence of approximately 1 in 200,000. The condition demonstrates genetic
heterogeneity and eight complementation groups have been described, each
group corresponding to a distinct gene. FA is pleiotropic and skeletal,
integumentary, nervous, renal, and cardiac defects may be present in each
patient. Wide variability between affected individuals is not uncommon though
one aspect is nearly invariant: the eventual development of bone marrow failure
(BMF). BMF is the leading cause of death in FA and likely results from
hematopoietic stem (HSC) and progenitor cell (HPC) hypersensitivity to
environmental apoptotic cues such as cytokines, alkylating agents, and radiation.

Those individuals that do not die from events incident to bone marrow failure,

Xii



exhibit an extraordinarily elevated risk for the onset of MDS, AML, and solid
tumors. Due to the relationship between Fanconi anemia protein dysfunction and
leukemia, hematological malignancy in FA was investigated as a “model system”

for understanding the leukemic process.

MDS/AML in FA regularly demonstrates complex, non-random
cytogenetics, an often rapid clinical course, and intractability to therapy. These
observations parallel those frequently noted in non-FA patients with therapy-
related or secondary disease. Based upon the similarities between FA-related
and non-FA, secondary MDS/AML, a model for a common adaptive evolution in
each condition has been proposed and is presented herein. This model draws
from the observation that leukemic clones in both conditions may be resistant to
apoptotic stimuli such as the inhibitory cytokine interferon-gamma (IFNy). By
investigating pathways that regulate elements of hematopoietic tissue
homeostasis (pathways upon which FA proteins impinge) key leukemogenic

events were sought.

In illustrating a study of leukemogenesis in Fanconi anemia and its
relationship to leukemia in certain non-FA contexts, this thesis hopes to make
three points: (1) that genetic events can be defined, resulting from selection, that
are key to the initiation of MDS/AML in FA and that such events contribute to
changes in cellular sensitivity to apoptotic stimuli during disease progression, (2)

that defects of the FA protein pathway not only result in leukemia in hereditary
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FA, but may also exacerbate the presentation and progression of leukemia in
non-hereditary (acquired) FA patients, thereby lending credible evidence to the
theory that FA-related and non-FA related MDS/AML share important features,
and (3) that molecular signatures of cellular insensitivity to normal homeostatic
mechanisms may indicate events required for the progression of malignancy, not

only in Fanconi anemia but in leukemia in general.
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introduction

Fanconi anemia (FA) is an autosomal recessive disorder associated with a high
risk of bone marrow failure and myeloid leukemia. The genes for six of the eight
to eleven FA complementation groups have now been cloned. The cloning of
these genes offers a unique opportunity to examine the molecular biological
function of the FA proteins in pathways that may lead to a better understanding
of myeloid leukemogenesis. The objective of the work presented herein was to
define the processes by which leukemic clonal evolution occurs in patients with
Fanconi anemia and to determine whether Fanconi protein dysfunction occurs in

patients with sporadic acute leukemia.



Chapter One:

Background and Significance: Clonal evolution in Fanconi anemia

1-1: An historical introduction to leukemia and chemotherapy

It is most likely that acute myelogenous
leukemia (AML) has been a cause of human
disease for centuries. In his EIf Traktat, published
in the early 1500’s, the Swiss physician Paracelsus
(1493 - 1541) wrote of various types of

consumption affecting the liver and spleen that

m;gg{a;j produced “... a thirst in the liver and kidneys, a

Philipus Theophrastus Paracelcus  change in the urine...” along with “spleen pricks”.’

(1493-1541) Courtesy of the
National Library of Medicine = . . )
These disease manifestations were attributed to

deficiencies of dew and rain and the recommended
treatment was to orally consume a fluid elixir of
powdered pearls.’ Recognition of AML as a
discrete, clinical entity came three hundred years

later in 1827 by the French surgeon Alfred Velpeau

though the first detailed, microscopic examinations

of cases were described by Craigie and Bennett of Alfred A. L. Velpeau
(1795-1867) Courtesy of the
National Library of Medicine



Edinburgh in 1845.2° The term leukemia (rather, Leukdmie or Weissesblut —
literally: “white blood”) was coined by the renowned father of pathology, Rudolf
Virchow in his seminal work of 1847.2 Therein,
Virchow described a condition (also relying on the
observations of earlier colleagues) of edema, bleeding,
exhaustion, fever, and splenomegaly. At autopsy, he
noted microscopically that the patient's peripheral

blood reflected what he referred to as an inverted ratio

of “mucous cells” (leukocytes) to red blood cells. Two

Rudoiph L. K. Virchow
(1821-1902) Courtesy of the
National Library of Medicine

years later, Virchow described the existence of two
varieties of leukemia, one labeled as "lymphatic” and the other “splenic” based
upon similarities of the defective cells in each form to those normally present in
the lymph nodes and spleens of healthy individuals.”> The recognition of chronic
and acute forms of leukemia was made by Friedreich in 1857 and in 1870,
Neumann reported that the splenic form was related to abnormalities of the bone

marrow and introduced the term myelogenous leukemia.?

Various regimens for treating leukemia were attempted early on but it was
not until World War | that the myelosuppressive effects of nitrogen mustards
were noted (and rather nefariously at that). In World War I, after a mustard gas-
filled cargo ship exploded in Bari Harbor, Italy the specific applicability of nitrogen
mustards and similarly acting compounds (alkylating agents) to treating leukemia

was discovered by noting their ability to induce hypocellularity of the



hematopoietic (blood forming) bone marrow space.? It was in this manner,
beginning with the crude descriptions of Velpeau regarding blood, “..the
consistency and color (of) the yeast of red wine...” that the recognition of

leukemia as a distinct (and treatable) disease entity occurred.

Now, over 170 years later, the term acute myelogenous leukemia (AML) is
still in use. While microscopes have improved phenomenally, affording one the
ability to discern subtle, sub-cellular hallmarks of the leukemic blast (such as
stained secretory granules or chromosomal translocations and deletions), it is
also the age of the molecular biologist; allowing investigation into key pathogenic
mechanisms in this group of diseases at their most fundamental level. However,
despite nearly two centuries of progress, the diagnosis of AML is still largely
made microscopically at the cellular level. While treatable, the major
pharmacological compounds still in use for AML (anthracycline antibiotics and
cytosine arabinoside) can contribute profound drug-related side effects and
toxicity.  Furthermore, certain anti-neoplastic agents, particularly alkylating
agents and topoisomerase inhibitors, are themselves leukemogenic, leading, in
some cases, to what are known as therapy-related or secondary leukemias (see
section 1-6). Clearly, therapies making use of recombinant hematopoietic growth
factors offer promise to many leukemic patients and bone marrow transplantation
(BMT) offers additional hope for long-term remission and even cure to others.

However, none of these therapies is toxic only to leukemic cells. Less toxic,



molecularly “targeted therapies” will evolve only when the stepwise progression

of normal to neoplastic stem cells is fully characterized in molecular terms.

A good deal has been learned about the leukemic blast, it's cytogenetic
defects, surface marker phenotype, and clonal growth potential. It is also widely
accepted that leukemic blasts are part of a single clone of malignant cells derived
from a mutant hematopoietic stem cell. What genetic changes account for the

conversion of a normal to a leukemia stem cell?

1-2: Leukemia has a molecular genetic basis

One of the hopes of modern biology is that by understanding the
mechanisms by which leukemia arises and progresses, one might be able to
develop rational, molecularly-targeted therapies to address the cancer process
specifically while sparing surrounding tissues from the collateral damage
associated with current chemotherapy. While obtaining such information has led
to remarkable therapeutic efficacy in certain varieties of leukemia,>® a definitive,
molecular description (and thus a “magic bullet” treatment) has remained elusive
in AML. If one thing has been learned, it is that a single event is not responsible
for the onset and propagation of the disease. Rather, AML (like all cancers) is
genetic (though rarely hereditary) in that it likely results from somatically acquired
genetic anomalies that occur over time, each contributing in additive (or

synergistic) manners to the disease process through alterations of normal cellular



proliferation, differentiation, and/or lifespan. Investigations into such genetic
alterations and how they impair normal hematopoietic ontogeny have been built

upon observations made in the field of clinical hematology.

1-3: Modern classification of leukemias

AML is a clonal disorder of the hematopoietic stem cell (HSC) in that
malignant cells derive from a common progenitor.” Clinically, AML is classified
according to the lineage of cells involved (myeloid), their degree of maturation
(primitive), and their relative numbers in the marrow space (set at 20% by the
World Health Organization (WHO)® and 30% by the FErench-American-British
(FAB) Cooperative Group).® A system of classification has been proposed by the
FAB that divides AML cases into subtypes and has been widely used for over 25
years.® Additional categorical distinctions are made according to factors such as
cellular morphology, surface antigen presentation, and the presence of

karyotypic abnormalities.

The morphology of healthy myeloid cells changes during their
developmental progression from a common, hematopoietic stem cell (HSC).
Normally, all peripheral blood myeloid cells are terminally differentiated and have
individually recognizable precursors (in bone marrow) that define distinct stages
of lineage maturation. As shown in figure 1-1, hematopoietic ontogeny

progresses from the pluripotent hematopoietic stem cell (capable of producing all



blood lineages, both myeloid and lymphoid), to the multipotential hematopoietic
progenitor cell (capable of producing all myeloid lineages), and culminates in
seven, differentiated myeloid cell types at the distal end: erythrocytes (red cells),
megakaryocytes (platelet-producing), neutrophils (granulocytes), monocytes
(macrophage-producing), basophils, eosinophils, and mast cells. Roughly
speaking, in the peripheral blood, white cells (leukocytes) represent but 0.1% of
the cellular volume, the remainder being enucleate red blood cells. AML can
occur in all myeloid cell types or be restricted to a sub-set of these depending at
which point in ontogeny the leukemic blast has become independent of its normal

%12 The clinical symptoms frequently noted in AML

developmental profile.
patients reflect insufficient cellular populations in differentiated lineages. Patients
may present with fatigue (due to low red blood counts), excessive bleeding and
bruisability (related to deficiencies of platelet-producing megakaryocytes), or
infections (resulting from a paucity of functional neutrophils). While clinical
symptoms reflect what might initially be thought of as cellular deficiencies, the
paradox of leukemia is that patients have elevated white blood cell counts; the

cells are simply incapable of fulfilling defined activities due to their lack of

differentiation.

The poorly differentiated leukemic blast maintains a primitive morphology
with a high nuclear to cytoplasmic ratio. While leukemic blasts may be difficult to
discern from one another microscopically without stains (or even with simple

preparations such as Wright's/Giemsa), it is often possible to group them into



specific myeloid lineages according to differential enzymatic activities detected
by cytochemical stains or via surface antigen presentation.”®> Many leukemic
blasts continue to present primitive hematopoietic surface antigens'? such as
CD34 (hematopoietic stem cell and vascular endothelial cell antigen),’ CD117
(also known as c-KIT, the receptor for stem cell factor (SCF))', or KDR (kinase
domain receptor; the vascular endothelial growth factor (VEGF) receptor 1)."°
Others experience limited differentiation and may be classified according to
cytochemical reactivity in conjunction with later-stage myeloid antigens such as
CD38 (which varies inversely with CD34 presentation during myeloid
development) or lineage-specific antigens including CD41 (platelet glycoprotein
llb) and CD61 (platelet glycoprotein llla) (both restricted to megakaryocytic cells)
or glycophorin A (erythroid cells), to name but a few of the many markers
currently available.” As an additional diagnostic tool, analysis of chromosomal
content and morphology represents a means of not only categorizing leukemic
subtypes, but also of lending prognostic information to cases within a given
subtype. All of these markers - lineage-specific proteins and cytogenetic
morphology - have been utilized during the course of the investigations described

below.

1-4: Dominantly-acting genetic events in leukemogenesis

Certain varieties of leukemia are (in part) identified by the presence of

specific chromosomal rearrangements. The vast majority of cases of chronic



myelogenous leukemia (CML) contain the Philadelphia chromosome,’ a
translocation between chromosomes 9 and 22''8 that creates a novel, fusion
gene by combining portions of the Abelson tyrosine kinase gene (ABL) from
chromosome 9" and the breakpoint cluster region (BCR) on chromosome 22.%°

Characteristic chromosomal translocations are also found in some cases of AML.

Recurrent events include t(8;21) involving the amino-terminal portion of
the DNA binding protein core-binding factor-alpha (CBFa; also known as AML1)
and the carboxy-terminal portion of the eight twenty-one (ETO) transcription
factor.®?"# AML1/ETO is present in some cases of de-novo pediatric and adult
AML but is seen in over 80% of cases of FAB type-M2 AML.2'" Acute
promyelocytic leukemia (APL) cases frequently derive from t(15;17) that merges
the promyelocytic leukemia gene (PML) on chromosome 15 and the retinoic acid
receptor-alpha gene (RARa) on chromosome 17 (PML/RARa).5?'% Each of
these chromosomal fusions is a signature event for certain leukemic subtypes
and are representative of specific varieties of transforming activity, i.e.
dominantly-acting, gain-of-function (or oncogenic) events. This is because
fusion genes create an activity (or alter the specificity of an existing process) not
normally present within a cell.? However, not all transforming events in

leukemogenesis are thought to be dominant.

1-5: Recessively-acting genetic events in leukemogenesis




Recessive (loss-of-function) abnormalities are also instrumental in the
development of leukemia. Instead of being defined by the creation of novel
fusion genes or overexpression of existing genes, these events derive from loss-
of-function anomalies for regulators of cellular homeostasis. Such abnormalities
are frequently indicated by structural (that is terminal or interstitial) or numerical
(i.e. whole chromosome) losses of genetic material that result in a non-standard
chromosomal content (aneuploidy) and are believed to indicate genomic regions
encoding tumor suppressor genes (TSG).>*?®* Chromosomal deletions in
leukemia are most often restricted to the malignant cells?® in keeping with the
clonal nature of AML. Recurring, non-random chromosomal anomalies have
been characterized in many cases of primary AML (i.e. leukemia presenting as a
first malignancy with no prior disease or exposure history) though they are much
more prevalent in secondary AML (see section 1-6).2" Frequent aberrations
include monosomy 5 and 7, and deletions of 5q, 7q, and 209.2%" That these
same chromosomal anomalies are often seen in multiple, unrelated cases of
AML (occasionally as the sole anomalies) has led to their recognition as likely
causes and not effects of leukemogenesis. The presence of certain
numerical/structural chromosomal anomalies often has prognostic significance
and clones bearing 5g-, monosomy 7, and/or 99- are among those with
particularly poor outcomes.?’ The causes of cytogenetic instability in this form of
AML is a subject of intense interest and work described herein proposes that
somatic losses of genes mapping to each of the aforementioned commonly

deleted chromosomes directly contributes to leukemic transformation.
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Transformation by recessive genes is thought to come about by “loss of
heterozygosity” (LOH) for key, negative-regulatory factors. The seminal
observation for such a phenomenon was made by Alfred Knudson in 1971 when
he statistically analyzed the disease retinoblastoma (Rb), an analysis that yielded
persuasive data indicating that two events (i.e. two mutations, one in each allele
of a singie gene) were required for the transformation of retinal neurons.®?
Subsequent studies have demonstrated a variety of genetic mechanisms for how
such losses could come about including: loss of both chromosomes, loss of one
chromosome with point mutations or gene deletions on the other, loss of one
chromosome with reduplication of the remaining (mutation bearing) chromosome,
mitotic recombination, and/or gene conversion.* To this list of po<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>