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Abstract 

Analysis of Variability in Speech 
with Applications 

to Speech and Speaker Recognition 

Sachin S. Kajarekar 

Supervising Professor: Hynek Hermansky 

The speech signal has variability due to language, speakers, and communication channels. 

In this work, variability due to language is referred to as variability due to different phones 

in the language. It is also referred to as (inter-phone or) phone variability. Variability due 

to speakers is referred to as speaker variability, and variability due to different communi- 

cation channels is referred as channel variability. The remaining variability in the signal 

is referred to as residual variability. 

The total variability in speech is decomposed using multivariate analysis of variance 

(MANOVA). Here variability in speech refers to variability in the set of features extracted 

from speech signal, and variability refers to covariance of features due to different phones, 

different speakers, and different channels. In this work, MANOVA is performed using 

three databases - HTIMIT, OGI Stories and OGI Numbers. Variability in the commonly 

used features is measured in spectral and temporal domains. The results are shown to 

be consistent across different databases and datasets. The results are also shown to be 

consistent with the previous studies. 

The results of MANOVA are applied in two ways. First, we show that contribu- 

tion of the variabilities in features is related to their performance on speech and speaker 



recognition tasks. Second, we show that results of MANOVA can be used for deriving 

discriminant features for a given task. 

Relationship between results of MANOVA and speech and speaker recognition results is 

illustrated using several examples. First, the speaker variability in different broad phonetic 

categories is computed using MANOVA. It is shown that the results of the analysis are 

related to the performance of speaker recognition system using these categories. Second, 

we compare contribution of phone variability in different types of feature-sets, for example, 

features with delta and double delta features, features after RelAtive SpecTRAl (RASTA) 

filtering, features after concatenation with TempoRAl Patterns (TRAPS) features and so 

on. We show that the change in the contribution of phone variability is related to change 

in the performance of the features on speech recognition task. 

Using MANOVA, we had observed that the variability due to phones spreads for ap- 

proximately 250 ms around the current frame. We include this variability in the design of 

features using Linear discriminant analysis (LDA). Two types of analysis are performed. 

First analysis, called joint analysis, uses all the correlations in a block of spectrogram. 

Second analysis, called combined analysis, assumes that time and frequency domains are 

independent. The discriminant features from both analysis are used in speech recognition 

experiments. The results show that features from joint analysis perform worse than com- 

bined analysis because joint analysis over-fits the training data and does not generalize 

on the test data. In general, we show that performance of the speech recognition system 

improves when information from a longer time-span is included in the features. This is 

constant with the result of MANOVA. Specifically, we show that combination of spectral 

and temporal discriminants yields to the best joint time-frequency discriminants. 

xvi 



Chapter 1 

Introduction 

Speech communication is a primary form of human-to-human communication. In this 

form, the speech signal is used to communicate linguistic messages. However, the signal 

also carries information about the characteristics of speaker and communication channel. 

Due to naturalness of the speech interface, researchers have investigated its use for human- 

computer interaction. This thesis deals with a part of the interface that recognizes the 

speech and the speaker. 

Speech recognition is a process of converting the speech signal to sequence of words. 

The words are chosen from a dictionary. The sequence of words is determined using a 

language model. Speech recognition systems are characterized by many parameters [45] 

such as size of vocabulary, language model, perplexity, speaking style, speaking mode. 

Commonly used speech recognition systems are dictation systems and digit recognition 

systems. Dictation systems have a large vocabulary ( 2 20000 words) and higher perplexity 

( > 100). Digit recognition systems have small vocabulary ( = 11 words) and lower 

perplexity ( 5 5). 

Speaker recognition is a process of recognizing the speaker from his or her voice [ l l ,  211. 

The process can be performed in two modes - close-set or open-set. In close-set mode, the 

test speaker is one of the speakers in the training set. In open-set mode, the test speaker 

may or may not be the one from the training set. There are two application of speaker 

recognition - speaker identification and speaker verification. Speaker identification refers 

to speaker recognition within a set of speakers, which is also referred to as a closed-set task. 

In this case, the utterance is tested against all the speakers in the set, and the speaker 

with the highest likelihood is declared as the hypothesized speaker. The applications of 



speaker identification are in forensic studies where a speech evidence is used to recognize 

the identity of a known criminal. Speaker verification needs the claimed identity of the 

speaker along-with the speech sample. The task is to verify the claimed identity of the 

speaker based on his voice. This is an open-set task because the test speaker may or may 

not belong to the closed-set. The applications of speaker verification are in the security 

area where the speaker characteristics are used as voice-signature. 

The most common cause of performance degradation of the speech and speaker recog- 

nition systems is a mismatch between training and testing conditions. For example, when 

a speech recognition system is trained under noise-free condition, and it is used inside 

a running car. In general, the mismatch can be compensated at  two levels: feature ex- 

traction and model estimation. In this work, we address the mismatch at the feature 

extraction level. We study the nature and the contribution of different types of variability 

in speech, and use the results of the study to improve the performance of the systems 

under mismatch conditions. 

The chapter is organized as follows. Section 1.1 gives a brief overview of automatic 

speech recognition (ASR) and speaker recognition systems. A common processing step 

in these systems is the estimation of a set of parameters from the speech signal. This is 

referred to as features extraction. This is described in detail in Section 1.2. The variability 

in the features can be attributed to different type of variabilities in speech. Section 1.3 

describes four types of variabilities used in this work, and their usefulness for the speech 

and speaker recognition task. The chapter concludes with contributions of the thesis in 

Section 1.4, and overview of the thesis in Section 1.5. 

1.1 Speech and Speaker Recognition Systems 

Speech and speaker recognition systems are based on a pattern recognition framework 

[12, 181. Figure 1.1 shows the block diagram of these systems. They have three main 

processing steps - feature extraction, likelihood computation, and search for the most 

likely output (decoder). Feature extraction step is implemented similarly in both speech 

and speaker recognition systems. The remaining two steps are implemented differently in 
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Figure 1.1: Block diagram of speech and speaker recognition systems

these systems.

In the feature extraction step, a set of parameters are estimated from speech signal.

This thesis is a study of different type of features, and their usefulness in speech and

speaker recognition. Therefore, this step is described in detail in the next section (Section

1.2).

In the likelihood computation step, the likelihood of the features is computed with

respect to the speech and speaker models. This is typically performed independently for

each feature vector using all the phone or speaker models. The models are trained using

the same set of features extracted from a large independent speech corpus.

The type of speech models depends on the task. For a small vocabulary task like digit

recognition, speech is modeled as a sequence of words (digits) [55]. For a larger vocabu-

lary tasks, speech is modeled as a sequence of context-dependent or context-independent

phones [35]. Each word or phone model is based on Markov model (MM) topology [37].

It has states which correspond to a particular part of the word or the phone, and a tran-

sition arcs that correspond to transitions between states. Each state is typically modeled

as mixture of Gaussian distributions or it is modeled using a neural network (NN) [22].

In speaker recognition, a speaker can be modeled as a collection of phone models

or a single model [19]. Each model can be based on different MM topologies, starting

from just one-state to multiple-state, and from left-to-right to fully connected (or ergodic)

Feature Likelihood
Extraction Computation

Decoding



models [31]. Each state distribution can be further modeled as a mixture of Gaussians or 

using a NN. In the speaker recognition research, one-state, multiple Gaussian component 

model is used most often and it is referred as a Gaussian mixture model (GMM) [12]. This 

model has been shown to be effective in text-independent speaker recognition. In practice, 

speaker recognition is performed in text-dependent mode, where the text is a short string 

of words, such as name, address, account number. This approach is dominated by models 

based on HMM. 

Typically, two different models are used in speaker recognition - speaker independent 

model or universal background model (UBM) and speaker dependent (SD) model. UBM 

is trained using large number of speakers, and it does not represent any particular speaker. 

SD model is trained ( or adapted ) using the speech from only one speaker. 

In the final step, the sequence of likelihoods is analyzed to get the most likely sequence 

of phones or the most likely speaker given the input speech. In speech recognition, viterbi 

algorithm is used to obtain this sequence [37]. The search for a sequence is constrained 

using language models. These models contain multiple pronunciations of words, and prob- 

abilities of words and word sequences based on the language. In text-independent speaker 

recognition, likelihood per speaker is averaged over the complete utterance. The likelihood 

using SD model is normalized with respect to likelihood using SI model. If the normalized 

likelihood is greater than a pre-calculated threshold then that speaker is declared as the 

hypothesized speaker of the utterance. In text-dependent speaker recognition, the most 

likely sequence of phones is used to obtain the likelihood of the utterance using SD and SI 

models. The normalized likelihood is used the same way as described before to validate 

the identity of the speaker. 

1.2 Feature Extraction 

1.2.1 Feature Characteristics 

In this subsection, we present four measures for characterizing a set of features - 1) com- 

pactness, 2) correlation, 3) behavior of distribution, 4) relevance for a given task. Com- 

pactness measures to number of features in a set. Correlation measures to the relationship 



between different features. If a feature is completely predicable by another feature then 

the correlation between them is 1. If a feature can not be predicted from another feature 

then the correlation between them is 0. If the features have Gaussian distribution then 

the uncorrelated features are also independent features. This means that each feature 

contributes completely new information to the task. Features need to have a well-behaved 

distribution so that it can be modeled using few training samples and parameters. Rele- 

vance refers to the requirement that features must carry information that is relevant for 

the task. 

First three requirements are important for modeling the distribution of features. Fea- 

tures satisfying these requirements need a smaller training dataset, and fewer parameters 

to model its distribution. These requirements can be measured without any additional in- 

formation such as class labels. Suitability of the features for a given task can be measured 

only when the class labels are available, that is, when the task is to classify features into 

n classes and the training data is labeled by these classes. 

1.2.2 Conventional Feature Extraction 

In this subsection, we describe the processing steps used to convert a speech signal into a 

set of commonly used features used for speech recognition. At each step, we analyze output 

features to measure 4 parameters - 1) dimension, 2) correlation matrix, 3) histogram of 

a feature element, and 4) F-ratio. Lets assume that X is the feature vector. Dimension 

of the feature vector shows the compactness. Correlation matrix shows the correlation 

across different features. Sample histogram of a feature element shows the nature of its 

distribution assuming that each element is independent. In this work, it is characterized 

by coefficient of kurtosis (.yz), and coefficient of skewness (yl) [47], 

71 = 3 
7 2  = 3 

where, p3 and p4 are the third and fourth central moments, and a is the standard deviation. 

Kurtosis measures the tails of the distribution and skewness measures the symmetry of 

the distribution. Values of 7 2  range from - inf to + inf where negative values correspond 

to shorter tails and positive values correspond to longer tails. Values of 71 also range from 



- inf to + inf where negative values indicate that distribution is skewed to the left and 

positive values indicate that distribution is skewed to the right. In general a smaller 3 

and 7 2  correspond to a well-behaved distribution. F-ratio compares across-class covariance 

(A,) with within-class covariance (W,), 

where i denotes classes, j denotes the sample index within each class, Ni denotes the num- 

ber of samples in each class, N  denotes the total samples, xi. is mean of each class, and 

X.. is the mean of the data. F-ratio is defined as trace(W;'A,). This is a measure of sepa- 

rability of the classes. Its significance is measured by degrees of freedom in the numerator 

(Ni - 1) and the denominator ( N  - 1). Higher F-ratio refers to better separability between 

the classes1. In this work, sample estimates of these parameters are obtained using a set 

of 41 phones2 and approximately 500000 feature vectors from OGI Stories database [46]. 

Therefore, the degrees of freedom in the numerator and denominator are 40 and inf, and 

they are same for all feature-sets. 

Speech signal, s(t), is recorded using a microphone, digitized using A/D converter 

at 8000 Hz, and stored on the disk. The digitized speech is divided into overlapping 

segments of approximately 20-35 ms (160-280 samples). The adjacent segments overlap 

approximately 10-15 ms (80-120 samples). This operation is referred to as " windowing" 

of speech signal. Mathematically, 

, where h(n) is a square window of length 160 - 280 samples and p defines the shift across 

adjacent segments, and n defines the length of the window. 

Figure 1.2 shows the result of our analysis using windowed-speech signal, s(p,n) as 

features. The feature set contains 200 samples. The correlation matrix shows significant 

correlations between different feature elements. Distribution of the center element of the 

 h his is described in detail in Chapter 5 
2 ~ h o n e  is smallest unit of speech sound. 



feature vector is similar to Laplace distribution with yz = 91.52 and yl = 0.25. It is a 

symmetrical distribution with very long tails. These features have the F-ratio of 0.018, 

which means that phone classes are highly overlapped in this space. 

The speech waveform in each segment is filtered using a high pass filter to remove 

the DC bias of the microphone and to emphasize the high frequency components. This 

operation is referred as "pre-emphasis of speech". The waveform is multiplied by Hamming 

window to minimize the discontinuities at the edges of the window. It  is converted to the 

frequency domain using short-time Fourier transform. Note that the Fourier transform 

of a real signal is a complex and symmetric signal. The complex signal is converted to a 

real signal by calculating the magnitude, and only half of it is retained. The sequence of 

operations results in approximately 129 parameters per segment where the corresponding 

frequencies are uniformly distributed between 0-4000Hz. The set of these parameters is 

referred as the "speech spectrum". Mathematically, 

S@, w) = C ( s@,  n) * hw,(n))e-jwn 
n 

, where hwin refers to hamming window, S() refers to speech spectrum, and w refers to 

the discrete frequency values from 0 to T. 

Figure 1.3 shows the result of our analysis using speech spectrum, S ( p ,  w), as features. 

The feature set now contains 129 measurements. The correlation matrix still shows sig- 

nificant correlations across different elements. The features have a one-sided distribution, 

similar to exponential distribution with y2 = 4.13 x lo5 and 71 = 50. It has become a 

right-skewed distribution with very long tail. The F-ratio using these features is 0.214. Im- 

proved F-ratio of the features is a result of non-linear process of calculating the magnitude 

spectrum. 

Human perceptual experiments have shown that human hearing has a non-uniform 

frequency resolution. To emulate the human processing, previous researchers have pro- 

posed warped frequency scales like MEL scale [57, 541 and Bark scale [16, 241. The speech 

spectrum is converted to the non-uniform frequency scale as follows. First, triangular 

or trapezoidal filters are designed on the non-uniform frequency scale. Then, they are 

mapped to the uniform frequency scale. The speech spectrum is multiplied by each of the 



filter coefficients and the resulting values are averaged over the span of the filter. This 

results in approximately 15-23 point MEL/Bark warped spectrum. Mathematically, 

, where m refers to the filter-bank index, and FB(w,  m) are mth filter coefficients. 

Figure 1.4 shows the result of our analysis using energies from 15 filters on Bark 

scale, 307, m), as features. Note that the features set is now reduced to 15 elements. 

The correlation matrix of the features is similar to the earlier step. The distribution has 

7 2  = 788 and 71 = 21. It  is a non-symmetrical, right-skewed distribution. F-ratio for 

these features is 0.18, which is similar to the one obtained using 129 spectral values. This 

means that these 15 dimensional feature space has almost the same separation between 

phones as the 129 dimensional speech spectrum. 

In the final processing steps, a non-linear transformation such as log or cube-root is 

applied on the features and the features are projected on discrete cosine bases. With 

MEL frequency warping, the resulting features are referred as Me1 Frequency Cepstral 

Coefficients (MFCCs). Mathematically, 

, where 1 represents the cepstral coefficient, and CEP( )  is matrix of cepstral transforma- 

t ions. 

The results of our analysis of the features after logarithmic transformation, S(p,m), 

and after projection on discrete cosines, C(p, l ) ,  are shown in Figures 1.5 and 1.6. Results 

show that distribution of the features has 72  = 2.33 and 71 = 0.098. It  is approximately 

symmetric and has balanced tails which is close to a Gaussian distribution. The F-ratio 

of these features increases from 0.18 to 4.223. However, there is still significant correlation 

among different elements of the feature set. The projection of features on discrete cosine 

3 ~ o t e  that F-ratio of the power spectral energies also improves from 0.18 to 3.6 after logarithmic 
compression. This shows that Bark frequency warping improves the F-ratio of the features. 

Another commonly used compression is cube-root compression. The F-ratio after this compression is 
1.38 which is higher than uncompressed spectral energies but lower then logarithmic compression. 
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bases results in the best features so far. These features are only 15 dimensional versus 256

dimensional waveform. They have almost diagonal correlation matrix. The histogram of

the features shows a very well behaved distribution (,2 = 2.59 and 1'1 = -0.0849). Since

F-ratio is invariant to linear transformation, they have the same F-ratio as the logarithmic

energies.

1.3 Variability in Features

As mentioned before, the speech signal, s(t), has variations due to the nature of linguistic

message, different speaker characteristics, and different communication channel charac-

teristics. These variations are referred as variability in the speech signal due to different





sources. In this thesis, variability in the speech signal is attributed to three sources - 1) 

language, 2) speaker, and 3) communication channel. Subsequently, total variability in 

the signal is divided into four types - 1) phone (or inter-phone) variability, 2) speaker 

variability, 3) channel variability, and 4) residual variability. These types are explained as 

follows. 

1.3.1 Phone (or inter-phone) Variability 

Speech signal has variability due to language. The language is used to form a commu- 

nication message. If the message assumed to a sequence of phones then the variability 

due to language can be interpreted as variability due to different phones. We refer to 

this variability as (inter-phone or) phone variability. It is a useful variability in speech 

recognit ion. 

1.3.2 Speaker Variability 

Speech signal has variability due to speakers. A speaker can be described in terms of 

different characteristics such as vocal tract length, pitch, speaking rate, speaking style, 

accent. The variability due to speakers is caused by differences in these characteristics. 

We refer to this variability as speaker variability. It is a useful variability for speaker 

recognition task. 

1.3.3 Channel Variability 

Speech has variability due to different communication channels. This is a harmful vari- 

ability for both speech and speaker recognition. 

A communication channel is defined as the path traveled by the speech signal from the 

speaker's mouth to the listener's ears. It includes communication medium, communication 

devices, and coders and decoders. Variation in the medium is an environmental noise which 

is typically modeled as additive distortion. Variation in the communication devices such 

as telephone handsets, is typically modeled as convolutive distortion. Effect of coders 

and decoders is modeled as a non-linear distortion in the signal. In this work, channel 



variability measures the effect of communication devices like handsets in the telephone. 

The remaining effects are measured by the residual variability. 

1.3.4 Residual Variability 

Residual variability measures the variability that is not accounted for the three variabili- 

ties described above. This includes variability due to phonetic context, coarticulation and 

others. Note that its contribution reduces when one of these effects are studied indepen- 

dently. 

1.4 Contributions of the Work 

The fundamental hypotheses of this work are 

1. variability in the feature-set is related to its performance of speech and speaker 

recognition tasks, and 

2. results of analysis of variability can be used to derive new feature-sets that are robust 

with respect to the mismatch in training and testing. 

The hypotheses are examined as follows. First, multivariate analysis of variance (MANOVA) 

is used to study variability in a feature-set. It is shown that results of MANOVA are re- 

lated to performance of the features on speech and speaker recognition tasks. Results of 

MANOVA are used with linear discriminant analysis (LDA) to derive discriminant fea- 

tures for speech recognition task. The discriminant features are shown to improve the 

performance of speech recognition systems. The contributions of this thesis are explained 

as follows. 

Robustness of MANOVA to deviations from normality - As explained in 

Chapter 2, MANOVA assumes that features have a Gaussian distribution. In prac- 

tical situations, the distribution of features deviates from this assumption. We com- 

pare the results of MANOVA with another study [30] that uses non-parametric 

techniques to model the feature distribution. We observe that the results from both 



studies are similar, which shows robustness of MANOVA to deviations from nor- 

mality. Other studies [20, 29, 101 have also observed robustness of this analysis to 

deviations from normality. 

Longer-term effects of the phone - Using MANOVA, we show that variability 

due to phones lasts for about 250 ms around it. This means that pronunciations of 

current phone affects the nature of at least the neighboring phones assuming that 

an average length of a phone is approximately 80 ms. 

Relative phone variability and speech recognition performance - Results of 

MANOVA can be used to compare different feature representations. In this work, we 

compare different types of features such as features with and without delta features; 

features with and without commonly used feature transformations like RASTA fil- 

tering, features with and without mean and variance normalization; features before 

and after concatenating TRAPS [25] features. In all these comparisons, we show 

that performances of the resulting features on speech recognition tasks is related to 

the relative contribution of phone variability. 

Relative speaker variability and speaker recognition performance - We 

compare speaker variability in the features for different broad phonetic categories. 

This is compared to the speaker recognition performance obtained using these cat- 

egories. Results show that relative speaker variability in the features is related to 

the speaker recognition performance. 

Relationship between MANOVA and LDA - MANOVA and LDA are com- 

pared. It is observed that both analysis make same assumption about the data. It 

is shown the results of MANOVA can be grouped into useful and harmful variabili- 

ties. These variabilities can be used as an estimates of across-class and within-class 

covariances. Thus, it is shown that covariances estimated from MANOVA can be 

used as an input to LDA. 

Application of results of MANOVA in speech recognition - Joint time- 

frequency discriminants are designed using a longer temporal span. It based on 



the result that variability due to phones lasts beyond their length. Discriminants 

are obtained using LDA. Phone variability is used as across-class covariance and 

remaining variability is used as within-class covariance. It is shown that the dis- 

criminant features using 1000 ms of temporal span give significant improvements in 

the speech recognition performance over the conventional features that use only 90 

ms of temporal span. 

1.5 Organization of Thesis 

Chapter 2 describes MANOVA and uses it to measure the variability in the features. 

The total variability is analyzed in spectral and temporal domains. In each domain, it 

is divided into four types as described in Section 1.3. The chapter proposes a method 

to quantify the contribution of sources in each domain. We compare the results of this 

analysis with results of two previous analysis. The results show that analysis of variance 

can be also viewed as analysis of information in speech. 

Chapter 3 shows that relative contributions of different variabilities is related to the 

performance of the features on speech and speaker recognition tasks. We calculate relative 

speaker variability in the features for broad phonetic categories. This is compared to the 

speaker recognition performance obtained using those categories. It is shown that the 

phone categories with the highest relative speaker variability perform the best on the 

speaker recognition task. 

Relative phone variabilities in different feature-sets are compared with their perfor- 

mance on speech recognition task. In first experiment, effect of delta and double-delta 

features is compared using relative phone variability and speech recognition performance. 

In second experiment, relative phone variability is measured after different feature trans- 

formations, such as RelAtive SpecTrAl (RASTA) [27] filtering, mean and variance nor- 

malization, and TempoRAl Patterns (TRAPS) [25] processing. We show that these trans- 

formation improve the relative phone variability and also improve the speech recognition 

performance. 

Chapter 4 relates MANOVA with LDA. Both analysis make similar assumptions about 



the data. For a given task, results of MANOVA can be grouped into two types of variabil- 

ities - useful and harmful variability. They can be used as estimates of across-class and 

within-class covariances required by LDA. Thus it is shown that results of MANOVA can 

be used with LDA to design a robust feature-set. 

Chapter 5 applies one of the important results from chapter 2 for designing a new 

set of features for speech recognition. The result shows that effect of current phone lasts 

beyond its boundaries, and well into the neighboring phones. It is used to derive joint 

time-frequency discriminants for speech recognition using a longer temporal span. The 

discriminants are obtained using two methods - joint analysis and combined analysis. It 

is shown that incorporation of longer time span improves speech recognition performance. 

It is also shown that combined analysis assumes that time and frequency domains are 

independent. It requires less training data and generalizes better than joint analysis. 

Chapter 6 summarizes the work and suggests future directions. 



Chapter 2 

Analysis of Variability in Speech 

In this chapter, we decompose the variability in speech into four types: linguistic variabil- 

ity, speaker variability, channel variability, and residual variability. Linguistic variability 

is due to variation across phones in the language, speaker variability is because of the 

variations in different speaker characteristics such as accent and speaking rate, and chan- 

nel variability is attributed to the variations in t he communication channels, i.e., handset 

and the telephone line. Residual variability is not associated with any particular source 

because it shows the effect of all the unaccounted sources such as phonetic context and 

coarticulation. Apart from the source variabilities, we also study the source dependencies, 

which are called interaction variabilities. 

The chapter is organized as follows. Section 2.1 describes analysis of variance in 

general. Section 2.2 describes how MANOVA is used to analyze variability in speech. 

It also describes how the source and interaction covariances are computed from the data. 

Section 2.3 validates our assumptions behind MANOVA. This is followed by the description 

of the databases and features in Section 2.4. Sections 2.5 and 2.6 describe variability in 

spectral and temporal domains. These results are quantified in Section 2.7. Section 2.8 

compares our results to the results from the previous studies. It is shown that the analysis 

of variance in speech is similar to analysis of information in speech. 

2.1 ANOVA 

Analysis of variance (ANOVA) is used to measure the variation in the data with respect to 

one factor, for example, the variation in the oil price, X, across different months of year. 



This is a general statistical analysis technique which is used in many different areas from 

psychology to marketing research for product testing. The main idea is to use following 

model to explain the variation in the data, 

, where p is the mean of the data, i is the class index within one factor (there are n 

classes), pi1 is the class mean, and Eij is the error in the approximation. This can be also 

seen as test of equality of means. Given different means, p1, pa, ..., pn7 with a common 

variance a2, we wish to test equality of these means, 1-11 = p2 = ... = pn = p. This is 

referred to as null-hypothesis H,. Using our example, we can say that pi is the mean price 

of oil in a month i, p is the mean of the oil price over an year, and u2 is the variation in 

the oil price within a month (which is assumed to be same for all the months). We wish to 

know if the model is good for predicting the variations in the oil prices or if the oil prices 

across different months are same or not. In other words, is there any significant variation 

among the average monthly oil prices? How much variation in the data can be explained 

by average oil price per month? 

In order to test the hypothesis, we take a random samples {Xij) Gom the distribution 

of oil prices per month, N ( p i ,  a2), where i denotes month and j denotes the sample 

number from that month. Let ni be the samples from each month and n = xi ni, be total 

number of samples. 

where the dot in the notation shows the index over which the variable is averaged. The 

total variance of the data is decomposed into two terms. 

'bold symbol is used for true estimate and normal symbols are used for sample estimates 



where a; is the estimate of total variance, a$ is the estimate of the variance across 

different months, and a& is the estimate of the variance within each month. Note that 

CEI C;:, (X, - x . ) ~  is a biased estimated of the total covariance. We assume that 

n -+ inf and the bias is not significant. 

If the null-hypothesis is true then, a; is approximately equal to o2 , or is very 
u~ 

close to 1. If the means, pi, are different then the ratio becomes greater then 1. The 

ratio is called as F-ratio, F = $. It has F distribution with m - 1 and n - m degrees 
"E 

of freedom. The tests of significance is performed by comparing the empirical F with 

Fa (m - 1, n - m) . Here a is called as significance value. If F > Fa (m - 1, n - m) , then 

Ho is rejected at  the significance a. 

ANOVA makes following assumptions about the data - 1) normality, 2) homogeneity 

of variances, and 3) additive model. Normality refers to the assumption that the complete 

data and data within each factor is Gaussian distributed. Homogeneity refers to the 

assumption that variances within each factor are same. Third assumption is related to 

the fact that the variances are assumed to be additive. 

2.2 MANOVA 

Multivariate analysis of variance (MANOVA) is used to measure the variation in the 

data, {X), with respect to more than two factors. In this work, we use three factors - 

phone, speaker and channel. They correspond to the sources of variability in speech. The 

underline model of MANOVA is 

Xijkl = .... + Xi... + Xij.. + Zjk.  + Eijkl (2.1) 

where, i = 1, . . - , p represents phones; j = 1, - - - s represents speakers; and k = 1, . . . , c 

represents channels. This equation shows that any feature vector, Xijkl, can be approxi- 

mated using a sum of X...., the mean of the data; xi.., mean of the data for the phone i; 

Xij.., mean of the data for speaker j and phone i; &k., mean of the data for speaker j, 

phone i and channel k; and ~ i j k l ,  an error in this approximation. Using this model, the 

total covariance can be decomposed as follows 

Ctotal = xphone + xspeaker + Cchannel + XI-esidual 





(I)), Cphme. Next, the data for each speaker j within each phone i is collected and the 

mean of the data (q..) is computed. The covariance of the means of different speakers 

(shown as the shaded oval in Figure 2.1 (11)) averaged over all phones is called the speaker 

variability (Cspeaker). Similarly data for each channel k within a phone i and a speaker k 

is used to compute the mean of the channel (x jk . ) ,  The covariance of the channel means 

(shown as the shaded oval in Figure 2.1 (111)) averaged over all phones and all speakers is 

termed as the channel variability (Cchannel). All the variability in the data is not explained 

using these sources. The unaccounted sources, such as context and coarticulation, cause 

variability in the data collected from one speaker speaking one phone through one channel 

(Figure 2.1 (IV)). The covariance within each phone, speaker, and channel is averaged 

over all phones, speakers, and channels, and the resulting covariance is called residual 

variability (CresiduaE). 

If we denote OP(y) = yty, then Cspeaker and Cchannel can be further expanded to 

Nijkop(&k. - xij..) = x N~OP(X..~.  - x ....I 
i j k  k 

i j k  

-x.ik. + xi.,. + x.j.. + x . . k .  - x .... ) (2.3) 

In equation 2.2, the first term is the covariance of the speaker means (xj...) . it is 

referred as the global speaker variability. The second term is the interaction between 

phone and speaker factors, which is called phone-specific speaker variability. Similarly, 

in equation 2.3, the first term is the covariance of the global channel mean (x..,.). It 

is referred as the global channel variability. The second term is the interaction between 

channel and phone factors and it is called phone-specific channel variability. The third 



term is the interaction between channel and speaker factors which is referred as speaker- 

specific channel variability. The last term in equation 2.3 is the interaction among all the 

three factors. It is referred as phone- and speaker-specific channel variability. 

The interaction terms are important for following reason. The most commonly used 

preprocessing technique in speech and speaker recognition is called utterance-based mean 

subtraction ( u ~ S ) ~ [ 3 8 ] .  It is used to remove the global speaker and channel variabilities. 

The effect of UMS can be modeled in MANOVA by setting the first terms from equations 

2.2 and 2.3 to zero. This shows that the remaining speaker and channel variabilities 

are only due to their interactions. In the remaining sections, we will present results of 

MANOVA with and without UMS to show the contribution of interaction variabilities in 

speech. 

2.3 Assumptions of MANOVA 

As mentioned in 2.1, MANOVA makes three assumptions about the features. First two 

assumptions are about the normality of the data and homogeneity of distributions within 

different factors. Although this may not be valid under practical conditions, it has been 

shown that results of MANOVA are robust to deviation from normality [20]. We have also 

shown the robustness of MANOVA by comparing its results with results of a study that 

did not make any assumptions about the distribution of features. 

Third, the variability in features can be decomposed using additive model. Use of this 

model is justified by assuming a source-filter model of speech production, and by assuming 

that channel can be modeled as time-varying filter as follows. Lets assume that r(n)  is 

the excitation, f (n) is the vocal tract filter, and c(n) is the channel filter. So, resulting 

speech signal s(n) can written as, 

where * is convolution operator. Further, we assume that vocal tract filter can be de- 

composed into two different filters, filter corresponding to the phone, p(n), and filter 

2 ~ t  is also known as cepstral mean subtraction (CMS) when the operation is done in "cepstral" domain 



corresponding to the speaker, sp(n). So, we can rewrite the above equation as, 

If we transform the signal using Fourier transform, the convolutive effect becomes multi- 

plicative, 

S(f = E ( f )  x P ( f )  x SP(f 1 x C(f  ). 

Further, if we compress S( f ) using logarithmic non-linearity then the multiplicative effect 

becomes additive, 

In this work, we used logarithmic filter-bank energies as features for MANOVA where the 

effect of different sources is approximately additive. 

The proposed nesting of the sources, phone + speaker + channel, is only one way of 

analyzing variability in speech. The analysis can be performed using a different hierarchy 

where speaker or channel is used as the first source. This will change the results of 

MANOVA. Note that any hierarchy of the sources will not change their global effects ( C p  

and first terms in Equations 2.2 and 2.3) and their interactions (second term in Equation 

2.2, and second, third and fourth terms in 2.3). The difference in the results will be 

due to difference in the combination of source and interaction effects. For example, in 

the proposed nesting of phone + speaker + channel, the interaction between phones and 

speakers in included in speaker variability. If the sources are nested as speaker + phone + 
channel, then the interaction between phones and speakers will be included in the phone 

variability, 

Another issue in deciding the hierarchy is the definition of speaker and channel vari- 

ability. As mentioned before, speaker variability can be defined as the sum of two terms - 

global speaker variability and phone-specific speaker variability. Global speaker variability 

is the covariance of means of the utterances from different speakers. In speech and speaker 

recognition, this variability is commonly removed using transformation like UMS. The re- 

maining speaker variability is due to interaction between phones and speakers. We are 

interested in these interactions, specifically, for their applications in speaker recognition. 



The same explanation applies to channel variability too. Since global channel variability is 

also commonly removed using UMS, we are interested in the remaining channel variability. 

This is due to interactions of channels with phones and speakers. To summarize the dis- 

cussion, we are interested in global phone variability and interaction variability between 

phones and other factors. Therefore the hierarchy, phone -+ speaker + channel, is used 

in this work. 

Finally, it is noted that MANOVA makes some assumption (as described above) about 

the data and, in this application, these assumptions are not completely satisfied. However, 

we will show that statistics estimated using results of MANOVA are related to the per- 

formance of features on speech and speaker recognition task. Further, we will also show 

that results of MANOVA can be used to derive robust features for speech and speaker 

recognition. 

2.4 Database and Features 

Three databases are used in this work: HTIMIT, OGI Stories and TIMIT. HTIMIT [13] 

database is labeled by all the three sources of variability: phone, speaker and channel and 

is used to obtain the primary results. OGI Stories database is labeled by two sources of 

variability: phone and speaker+channel. It is the largest database among the three and 

is used in the subsequent chapters to derive discriminants for speech recognition. TIMIT 

database is labeled by two sources of variability: phone and speaker. It is used to study 

the amount of speaker and phone variability in absence of channel variations. It is also a 

good reference for comparing the results from HTIMIT (it was created by passing a subset 

of TIMIT utterances through different handsets). 

As mentioned before, HTIMIT database is used for analyzing the nature of variability 

in spectral and temporal domains. Appendix A are thirty-five phones used in this analysis. 

There are 137 speakers and 8 handsets - 4 electret and 4 carbon-button - used in the 

following analysis. 

Figure 2.2 shows a time-frequency representation of parameters estimated from a 



speech signal. The y-axis represents frequency, x-axis represents time, and the dark- 

ness of each element shows the energy at a given frequency and time. A spectral vector is 

defined by the number of points on the y-axis, S(w , t,). In this work, this vector contains 

15 points on Bark spectrum[52]. The vector is estimated at every 10 ms using a 25 ms 

speech segment. Each vector is labeled by the phone, speaker, and channel label of the 

corresponding speech segment. A temporal vector is defined by a sequence of points along 

time at a given frequency, S(w,, t).  In this work, this vector consists of 50 points each in 

the past and the future with respect to the current observation and the observation itself. 

As the spectral vectors are computed every 10 ms, the temporal vector represents 1 sec 

of temporal information. The temporal vectors are labeled by the phone, speaker, and 

channel label of the current speech segment. 

Figure 2.3 shows the difference in the computation of variability in spectral and tem- 

poral domain. In spectral analysis (a), 15 dimensional feature is used and it is labeled 

by the phone, speaker and channel label of the corresponding speech segment. All the 

vectors labeled as the same phone are collected and the covariance of the phone means is 

computed the estimate of phone variability in spectral domain. The phone variability in 

spectral domain refers to the variance of each spectral measurement due to difference in 

the phones. 

The temporal analysis (b) is performed independently for each band using 101 dimen- 

sional feature is used. The vector contains current observation, 50 observations in the 

past, and 50 observations in the future. Since the spectral vectors are estimated at 10 

ms, current observation refers to 0 ms, and 50 observations in the past and the future 

correspond to 500 ms of temporal context. Each vector is labeled by the phone, speaker 

and channel of the current observation. All the temporal vectors labeled as the same 

phone are collected and the covariance of the phone means is computed as an estimate of 

phone variability. The phone variability in temporal domain refers to the variance of each 

temporal element due to difference in the phones at the current observation. This shows 

the effect of variation in the phone at the current observation on the temporal observations 

in the past and the future. 
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Figure 2.4: MANOVA in spectral domain using HTIMIT database. Before utterance-based 
mean subtraction (MS) (a) and after UMS (b). Phone information (solid line) (I), speaker 
information (dotted line), channel information (dash-dot line), and error information (dash 
line). Note the reduction in speaker and channel information after UMS. 

is higher in lower bands whereas the speaker variability is higher in higher bands. 

3. Note the similarity between the structure of residual variability and the speaker 

variability. The similarity is due to the fact that different speakers within each phone 

also differ in the phonetic context in addition to speaker characteristics. This results 

in interaction between speaker and residual variability. This effect can be minimized 

by having more speech from different speakers so that the means of different speakers 

speaking a phone are less sensitive to the variations due to phonetic contexts. 

2.6 Nature of Variability in Temporal Domain 

In temporal domain, the variability in 15 frequency bands is analyzed independently. 

However the results from only the fifth band are presented here3 (figures 2.5a and 2.5b). 

Results from other bands are shown in Appendix C. It is assumed that features in temporal 

domain are independent. Results in temporal domain show the variability in features in 

3The other bands show a similar structure as the fifth band and the conclusions from analysis of the 
fifth band are applicable to the other bands. 
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Figure 2.5: MANOVA in temporal domain using HTIMIT database. Before utterance- 
based mean subtraction (MS) (a) and after UMS (b). Phone variability (solid line), 
speaker variability (dotted line), channel variability (dash-dot line), and error variability 
(dash line). Note the reduction in the speaker and channel variability after UMS. 

the past and the future due to the variation in phones, speakers, and channels at the 

current time instance. Following observations are made from these results: 

1. The phone variability is highest at the center (t = 0) and it drops to a small value 

250 ms away from the center. This shows that the variability introduced by phones 

at the current frame lasts for approximately 250 ms in the past and in the future. 

This conclusion forms the basis for designing long filters (-1 sec) in the temporal 

domain. 

2. The speaker and channel variability before and after UMS is approximately con- 

stant across time. After UMS the speaker variability is more dominant than the 

corresponding channel variability. 

3. The residual variability is minimum at t = 0. Note that it is computed using only the 

features within a phone. After accounting for speaker and channel variations, this 

point represents the position-within-phone variability4. Beyond the center residual 

4All the frames labeled by a phone are used for estimating the statistics for t = 0 



variability increases rapidly and asymptotes to a constant value due to the high 

variability in the phonetic context. 

4. Note the similarity in the structure of the speaker and residual variability around 

the current frame (t = 0). This is due to the fact the different speakers within a 

phone also differ in their phonetic contexts. This effect is also seen in the spectral 

domain. 

2.7 Contribution of Sources of Variability 

After describing the variabilities in HTIMIT, we quantify the contribution of the sources in 

spectral and temporal domains. Contribution of each source in spectral domain is defined 

as 

contribution of source = trace (Cso,,,,) /trace (Ctotal) . (2.4) 

This measure assumes that each source and the total variabilities have a joint Gaussian 

distribution in the feature space5. It is independent of scaling and rotation or linear 

transformation. This measure is also commutative. Therefore, contribution of all sources, 

their interactions and the residual variabilities sums to 1. Note that trace of the covariance 

is also sum of its eigen values. Therefore the measure shows the relative energy in each 

source distribution compared with the total energy in the features. 

Note that features used in spectral and temporal domain have different dimensionality. 

Features in spectral domain have 15 dimensions, and those in temporal domain have 101 

dimensions. To compare contribution of sources from both domains, we select 15 dimen- 

sions from temporal domain using principal component analysis. We compute eigenvectors 

of CtOtal, and select 15 eigenvectors that have the largest eigenvalues (E). The source and 

total covariance is projected on these dimensions. The resulting covariances are used in 

equation 2.4 to measure contribution of sources in temporal domain. This is shown as 

t~ace(E~C,,,,,E)/trace(E~C~,~,~ E). 

Table 2.1 (a) and (b) show the contribution of the sources in HTIMIT measured in 

51n general, it is accurate up to second-order statistics for any kind of distribution 



spectral and temporal domains. In each domain, the results are presented before and 

after UMS. The variance of the estimated source variance is computed using 7 different 

data-sets from HTIMIT and is indicated in the bracket besides the contribution. Results 

show that the results are independent of the variations in the data-sets. 

Comparison of results across spectral and temporal domains shows that there is less 

phone variability in temporal domain than spectral domain. This means that phone 

recognition performance using a time-trajectory from one band will be worse than using 

the vector of spectral energies. This can be verified using continuous numbers recognition 

experiments. We choose 8 features from both spectral domain and from temporal domains. 

In spectral domain, fifteen spectral energies are projected on 8 leading spectral linear 

discriminants. In temporal domain, 101-point temporal trajectories of spectral energies 

from fifth critical band are projected on 8 leading temporal linear discriminants. The 

rest of the setup is identical for both the feature-sets6. The recognition results show that 

spectral feature give 15% word-error-rate and temporal features give 79% word-error-rate. 

Note that the phone variability in temporal domain is small but it is significant because 

recognition accuracy using temporal features is better than chance (9%). 

Higher residual variability in temporal domain is due to the fact that it also includes 

the variation in the neighboring phones. It is shown in Appendix B that the contribution of 

residual variability decreases by modeling the variability due to phonetic context explicitly. 

The results indicate that using context-dependent phones as units, the residual variability 

reduces from 82.6% to 56.4%. This also shows that approximately 26% of the variability 

is due to the neighboring phones. The residual variability can be further reduced by 

modeling the longer phonetic context in the design of MANOVA. 

Table 2.2 and 2.3 compares the contribution of the sources across different databases: 

HTIMIT, TIMIT and OGI Stories. TIMIT and OGI Stories database are analyzed using 

different sources than HTIMIT. Variability in TIMIT is analyzed using phone and speaker; 

and variability in OGI Stories is analyzed using phone and speaker+channel. 

The comparison between results from TIMIT and HTIMIT in spectral domain before 

61t is described in detail in Chapter 5. 



UMS (Table 2.2 (a)) shows that adding channel variability reduces the contribution of 

the phone and the residual variability. Speaker variability is almost same across these 

databases. Similar results from OGI Stories show that the phone variability is reduced 

further by adding the telephone line variations along with the handset variations. After 

UMS (Table 2.2 (b)), the source contributions between OGI Stories and HTIMIT become 

comparable. The differences in the speaker and channel interaction variability and the 

residual variability can be because HTIMIT consists of read speech and it has artificial 

channel variations. 

Similar observations can be made in temporal domain before UMS (Table 2.3 (a)). 

After UMS (Table 2.3 (b)), t'he source interactions in HTIMIT and OGI Stories is almost 

similar. The difference in the phone and residual variabilities is due to lack of sufficient 

context in estimating the phone variability. This makes the phone variability sensitive to 

the unaccounted sources which increases its contribution and decreases the contribution 

of the residual variability. 

Note that the proposed measure is not the only way to quantify the contribution of 

different sources. Appendix E describes other measures that can be also used to describe 

source contributions. Some of these measures are also used in subsequent chapters to show 

correlation of results of MANOVA with speech recognition performance. 

2.8 Results in Perspective 

This section compares the results from this study to the results from two previous studies 

[15, 301. First study [15] uses hierarchical ANOVA to decompose the variability in TIMIT 

database. The total variability is decomposed using nine factors. We map these factors to 

the three factors from our study and show that results from the two studies are similar. 

This study measures variability as variance or using second-order statistics. Second study 

[30] showed that features do not have a Gaussian distribution. Therefore, variabilities 

should be computed using higher-order statistics. The study used mutual information 

(MI) to characterize the variability in speech and the information is computed using non- 

parametric density estimation techniques. We convert results of MANOVA to mutual 



Table 2.1: Contribution of sources in spectral domain (a) and temporal domain (b) in 
HTIMIT database. Numbers in the bracket indicate the variation in the results over 7 
different data-sets. 

(a) Spectral domain 
I % contribution 

I source I Before UMS I After UMS 1 
phone 

- speaker 

(b) Temporal domain 

' channel 
residual 

44.8 (f 0.35) 
12.8 ( f  0.16) 

Table 2.2: % contribution of sources in spectral domain without (a) and with UMS (b) 

58.1 (f 0.45) 
6.9 (f 0.19) 

18.5 (f0.58) 
24.7 (f0.60) 

source 

2.9 ( f  0.27) ' 

31.9 (f0.50) 

% contribution 
Before UMS I After UMS 

I 1 residual 1 31.9 1 
I I 

36.3 1 31.4 1 

(a) Without UMS 

source 

phone 
speaker 
channel 
residual 

% contribution 
HTIMIT 

44.8 
12.8 
18.5 
24.7 

(b) With UMS 

source 
 hone 

OGI Stories 
35.3 
41.1 

23.5 

TIMIT 

57.8 
13.1 
x 

28.9 

% contribution 
HTIMIT 

58.1 
OGI Stories 

56.3 
TIMIT 

62.7 



Appendix B 

Effect of Phonetic Context on Results of 

MANOVA 

MANOVA is performed in spectral and temporal domains using context-dependent mono- 

phones as classes. The phonetic context is specified in terms of 4 broad phonetic categories 

- vowels+diphthongs, glides+nasals, fricatives, silence+stops. Figures B.l and B.2 shows 

the nature of variability in the same features used in chapter 2 with and without explicit 

context modeling. Table B.l shows contribution of variabilities for the two cases. 

The results show that context variability is a significant part of residual variabiIity. 

Therefore the contribution of residual variability reduces when context-dependent phones 

are used as classes for MANOVA. The new phone variability is higher than the phone 

variability computed using phones. The results also show increased interaction between 

speakers and the context-dependent phones and speakers. 

In spectral domain, using phones as classes, the phone variability was dominant be- 

tween 3-6 Barks and residual variability was dominant between 10-15 Barks. The results 

with context-dependent phones show that the new phone variability is dominant over all 

frequency components. In temporal domain, using phones as classes, effect of the phone 

variability was shown to spread for approximately 250 ms around the current frame. Us- 

ing context-dependent phones as classes, the effect spreads for longer than 500 ms around 

the current frames. This is due to the increase in the length of the phone unit, with 

context-dependent phones we are modeling three phones as one unit. 
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Figure B.l: Results of MANOVA using context-independent phones and context- 
dependent phones as classes in spectral domain 
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Figure B.2: Results of MANOVA using context-independent and context-dependent 
phones as classes in temporal domain 

Table B.l: Contribution of variabilities using context-independent (CI) phones and 



Appendix C 

Temporal Variability in Different Bands 

In chapter 2, we presented results in temporal domain from energies from fifth filter on 

Bark scale. In this appendix, we present results for energies from all the filters on Bark 

scale (figures C.l and C.2). Note that, for each band, all the feature elements are analyzed 

independently. The results show that the nature of variability across different bands is 

similar. That is in all bands, the phone variability is highest at the current frame, residual 

variability is lowest at the current frame, and speaker and channel variabilities are almost 

constant. The results also show that phone variability in all bands, except first two bands, 

spreads for approximately 250 ms around the current phone. Note that the variance at the 

current frame (0 ms) in each band is the same as the variance of that frequency component 

in spectral domain. 

Time (ms) 

Figure C.l: Temporal variability in bands 1-3: phone variability (thick solid line), speaker 
variability (thin solid line), channel variability (thick dot-dash line), residual variability 
(thick dotted line). Number in each plot is the critical band index. 
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Figure C.2: Temporal variability in bands 4-15:phone variability (thick solid line), speaker 
variability (thin solid line), channel variability (thick dot-dash line), residual variability 
(thick dotted line). Number in each plot is the critical band index. 



Appendix D 

Temporal Filter for Speaker Verification 

In this appendix, we design a temporal filter for speaker verification using results of % 

MANOVA. For speaker recognition, we assume that phone+speaker variability is the 

useful variability and channel-tresidual variability is the harmful variability. The useful 

variability is phone+speaker variability instead of speaker variability because the features 

used for deriving the filter are preprocessed using UMS. Resulting speaker variability is 

the variability due to interaction between speakers and phones. If speaker variability is a 

useful variability then that also implies that phone variability is a useful variability too. 

The features are same as the ones used in Chapter 2. Phone, speaker+channel, and 

residual variabilities are estimated using stories database as described in Chapter 2. Chan- 

nel variability is estimated using HTIMIT database using the procedure illustrated in [43]. 

All the statistics are estimated from fifth critical band. LDA is used to  derive the filter. 

The across-class covariance (Ac) is an estimate of phone+speaker variability and within- 

class covariance (We) is an estimate of channel+residual variability. The filter is the 

leading eigen vector obtained using W;lAC. The discriminant features are obtained by 

filtering the time trajectories of spectral energies horn all critical bands using this filter. 

Figure D.l shows the impulse and frequency response of the resulting filter. The 

resulting filter is an approximately symmetric band-pass filter which attenuates frequency 

components below 1 Hz and above 15 Hz. This is filter is similar to the data-driven 

RASTA filter (see Chapter 4 and [56]) used in speech recognition. It is also similar to the 

symmetric RASTA [27]. 

The filter is evaluated on 2001 NIST cellular speaker verification task. The system 

is implemented in UBM-GMM framework. It has 256 component GMM that is modeled 
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Figure D.l: Impulse and frequency response of the filter used in speaker recognition system 

using 39 component features. The features are 13 MFCCs filtered using the proposed 

filter and are appended with 13 delta and 13 double delta features. Each feature stream 

is processed using UMS. High energy frames are detected using adaptive energy-based 

speech-sil segmenter, and are used in these experiments. 

Performance of this filter is compared to the baseline system that uses only UMS and 

to the system that uses a previously proposed data-driven filter [43]. Difference between 

the two filters is that the former filter is estimated using phone+speaker variability as 

useful variability and channel+residual variability as harmful variability, and the later 

filter was estimated using phone variability as useful variability and channel variability as 

harmful variability. 

Figure D.2 shows the results obtained using the three configurations. System with 

UMS has 10.2% EER. System with the filter proposed in [43] has 10.4% EER. System 

with the proposed filter has 9.2% EER. Results show that the new filter improves the 

performance of the system over the system that uses only UMS. The improvement in the 

performance compared to the previously proposed filter shows the importance of using 

speaker and residual variability in the design of the filter 
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Figure D.2: Performance of old and new filter on speaker verification 



Appendix E 

Different Measures for Source 

Contributions 

In Chapter 3, the relative phone variability is estimated using F-ratio assuming phones 

as classes. In this appendix, we compare different measures that can be used to estimate 

relative phone variability. These measures are computed using results of MANOVA for 

four different feature sets. The measures are correlated with the speech recognition per- 

formance obtained using these feature-sets. The feature-sets are (1) logarithmic filterbank 

energies (or same number of DCT coefficients from them), (2) 12 DCT coefficients + 12 
I 

A coefficients, (3) 8 DCT + 8 A + 8 AA coefficients, and (4) 8 DCT + 8 A + 8 AA 

coefficients with cepstral mean subtraction (CMS). Note that all the feature-sets contain 

24 features. 

The relative phone variability in the feature-sets is computed using HTIMIT database 

as follows. First, total variability is decomposed as, 

,where CtOw is the total covariance or a measure of total variability, xphone is the intra- 

phone covariance or a measure of phone variability, Cspeaker is the intra-speaker covariance 

or a measure of speaker variability, and Cchannel is the intra-channel covariance or a 

measure of channel variability. CresidUal is the covariance due to unaccounted sources or 

a measure of residual variability. Then, the relative phone variability is measured using 5 

different measures - 

%PHNl(phone) = t r a ~ e ( I = , ~ , ~ ) / t r a c e ( C ~ ~ ~ ~ ~ ) .  This is what I have been using in 



the thesis. This is invariant to orthonormal linear transformation. For example, 

%PHNl is same before and after discrete cosine transformation (DCT). But it is not 

same after whitening. After whitening it becomes %PHN2. This measure may not 

increase by adding more features in the feature-set. 

FRl(phone) = trace((Ctotal - ~phone)-~~~hone) .  Ctotal - Cphone is the within-phone 

covariance and Cphone is the across-phone variance. This measure is also referred 

as F-ratio. This is invariant to any linear transformation. This measure increases 

when the number of features in the set are increased. But, it does not satisfy the 

condition 

%PHN2(phone) = t r a c e ( ~ ~ ~ , ~ ~ ~ ~ ~ ) / 2 4 .  This a combination of %PHNl and %FR1. 

The similarity between %PHN1 and %PHN2 is that all the source variabilities and 

the residual variability adds to 100 %. They are identical when CtotaE = 124x24, iden- 

tity matrix. Difference between them is that %PHN1 does not consider orientation 

of the covariances in the feature space whereas %PHN2 does. Similarity between 

FR1 and %PHN2 is that they are correlated, that is, if one changes then the other 

changes in the same way. The difference is that FR1 over all source variabilities and 

residual variabilities does not add up to 100 %, but %PHN2 does. Finally, %PHN2 

may not increase by adding more features in the feature-set. 

FR2(phone) = t r a c e ( ~ y A ~ ~ ~ ~ ~ , h , , ) .  This is similar to FR1 except that phone 

variability is measured with respect to the residual variability. This is called as 

Hotelling's Trace criterion and it is used in MANOVA literature to measure an effect 

of source. This is also invariant to linear transformation. This measure increases 

when the number of features in the set are increased. However, this measure does 

not satisfy this condition 

So, we modify FR2 to %FR3 = FR2(source)/FR2(total). Now it satisfies the above 

criterion. 



M l ( p h m e )  = log(#$$), where i denotes different phones and Ci is the covariance 

within each phone. This is an information-theoretic method for measuring the effect 

of a source. MI is measured in nats. This is invariant to linear transformations. It 

increases when the number of features in the set are increased. 

The recognition experiments are performed using OGI Numbers database. We use 23 

context-independent phones, where each phone is modeled as 5-state, 3-component HMM. 

The language model is built assuming that any digit can follow any other digit. 

I Feature Set )I %PHNl I FR1 I %PHN2 I MI 1 FR2 I %FR3 )I %WER 

Table E.l: Different measurements using MANOVA and corresponding recognition per- 
formance 

Table E. 1 shows the results using different measures of contribution of phone variability 

and the performance of feature-sets on recognition task. Here are some conclusions from 

these results 

Change in %PHNl correlates with %WER before and after CMS. However, it does 

not increase by adding A and AA coefficients. The reason is explained below in the 

discussion of %PHN2. 

a Change in FR1 correlates with %WER. It is also guaranteed to improve when the 

number features are increased. The drawback of this measure is that the relative 

contribution all the sources does not add up to 1. In addition, it is difficult to 

interpret the measure, for example, it does not answer the question how much FR1 

is needed for the error-free phone recognition. 

Change in %PHN2 also correlates with %WER. This measure is shows less phone 

variability than %PHNl. Comparison of %PHNl and %PHN2 shows that changes in 

the orientation of the phone covariance, which are ignored by %PHNl, play impor- 

tant role in their performance on speech recognition task. This is explained in figure 
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Figure E.l: Difference between %PHNl and %PHN2. For Case (I) and Case (11), %PHNl 
will be same because the marginal distributions are same. %PHN2 for these cases will be 
different because, in the joint space, classes have less overlap in Case (11) than Case (I). 

E.1. Figure shows two cases where the marginal distribution of the classes is same 

but the joint distribution is different. Note that in both cases, %PHNl will be same 

because trace(Cphme) and trace(CtOtal) are same. %PHN2 will, however, be higher 

in Case(I1) then Case(1) because, in the joint space, the classes have less overlap in 

Case (11) than Case (I). Note that because of the normalization, this measure is not 

guaranteed to improve by increasing the number of features. 

Change in FR2 correlates with %WER in all cases except after CMS. Feature-set 

with CMS has a lower FR2 than the one without CMS. The reason is that CMS 

reduces Cspeaker and CchanneI. FR2 does not account for changes in sources other 

than phone. This shows that the performance of feature-set also depends on the 

contribution of other source covariances apart from intra-phone covariance. %FR3 

considers changes in all the sources and it correlates with %WERs for different 

features. However, it is not guaranteed to improve when the number of features are 

increased. 

Change in %MI also correlates with %WER. This is the best measure among all 

the others. It satisfies all the requirements. This measures is guaranteed to improve 

when the feature size improves. It satisfies the condition that MI over all sources 

adds up to the joint entropy of the phones, speakers, and channels. It also give 



the highest bound for the phone information that can be computed from the phone 

priors. For HTIMIT, this bound is 4.53 nats. 



Appendix F 

Line Spectral Pair and MFC Coefficients 

Recently, it was shown that line spectral pair (LSP) coefficients are suitable for the speaker 

segmentation task [6]. In this appendix, we investigate into the nature of variability in 

LSPs, and compare the results with similar results from Me1 frequency cepstral coefficients 

(MFCCs). 

Both features are computed from 32 ms speech segment and adjacent segments are 

shifted by 10 ms. LSPs are obtained by estimating 24 linear prediction coefficients and 

solving the roots of the polynomial [17]. MFCC coefficients are derived by projecting 

logarithmic energies from 24 filters on Me1 scale onto 24 discrete cosine bases (Cl-C24). 

Note that in both cases, the frame energy - CO for MFCC and logE for LSPs - is not used. 

Note also that delta and doubledelta features are not used in the following experiments. 

The choice of the features was based on their performance on the speaker segmentation 

task [6]. 

Table F.1 shows results of MANOVA for both features. We conclude that LSPs have 

higher phone and channel variability than MFCCs features whereas MFCCs have higher 

speaker variability. Therefore, we conclude that LSPs will perform better than MFCCs on 

speech recognition task and MFCCs will perform better than LSPs on speaker verification 

task. We verify these conclusions using speech and speaker recognition experiments. 

Speech recognition experiments are performed on OGI Numbers database. It is con- 

tinuous digit recognition with the vocabulary of 11 words (0-9 and "ohn). Each word is 

modeled as a sequence of context-independent monophones and each monophone is mod- 

eled as 5 state, 3 component HMM. Recognition results show that MFCCs give 26.3% 

WER and LSPs give 19.1% WER. This is in agreement with the results of MANOVA that 



Table F.l: Comparison of source contributions using MANOVA using LSP and MFCC 
features. 

source I LSPs / MFCCs I 

channel 
Residual 36.4 59.7 

LSPs have the higher phone variability than MFCCs. 

Speaker verification experiments are performed on 2001 NIST cellular speaker evalua- 

tion database. Verification was performed in GMM-UBM framework using 32 component 

GMM. The results show that MFCCs give 19.4 % EER and LSPs have 21.6 % EER. The 

higher EER for LSP coefficients is in agreement with the higher speaker variability in 

MFCCs. 

The higher channel variability in LSPs is helpful in the speaker segmentation task as 

follows. Speaker segmentation is a task of identifying segments of individual speakers in a 

conversation. Typically speakers in a conversation also use different handsets. Therefore, 

speaker segmentation can be improved using features which are sensitive to handset vari- 

ations. This is shown using LSPs and MFCCs on NIST 2001 two-speaker segmentation 

task. Refer to [6] for a detailed description of this task. It is observed that speaker seg- 

mentation error using LSPs is 6.0 % and the error using MFCCs is 10.0%. These results 

also codirm the results of MANOVA. 

In this work, MFCCs were shown to comply with the assumptions of MANOVA, that 

is, additivity of the sources and normality of the distribution. LSPs, however, have not 

been examined for these conditions. LSPs loosely represent the locations of poles in the 

frequency plane. If the sources are modeled as a filter, then their effect in frequency 

plane can also be modeled as addition of poles in frequency domain. Therefore, the 

assumption behind the additivity holds for LSPs. However, LSP coefficients are highly 

correlated and the distribution of LSP coefficients is highly non-Gaussian. In this work, 

the uncorrelated features are obtained by projecting LSPs on the whitening transform [33]. 

However, the distribution of the resulting features is still highly non-Gaussian. Therefore, 



more investigation needs to be done with these results to improve the estimates of different 

types of variabilities. However, the correspondence of the results of MANOVA with speech 

and speaker recognition results is very encouraging. 



Appendix G 

Analysis of Variability using Mutual 

Informat ion 

In Appendix E, we described different measures that can be used to quantify the variability 

due to sources. We showed that only one measure that is based on information-theoretic 

approach satisfies all the requirements for a good measure. Therefore, in this appendix, we 

propose an information-theoretic analysis of variability in speech. Similar to MANOVA, 

we assume that speech carries information from three main sources- language, speaker, 

and channel. We measure information fi-om a source as mutual information (MI) [58] 

between the corresponding cIass labels and features. For example, linguistic information 

is measured as MI between phone labels and features. The effect of sources is measured 

in nats (or bits). In this work, we show it is easier to interpret the results of this analysis 

than the analysis of variability. 

In general, MI between two random variables X and Y can be measured using three 

different methods [2]. First, assuming that X and Y have a joint Gaussian distribution. 

However, we cannot use this method because one of the variables - a set of class labels - 
is discrete. Second, modeling distribution of X or Y using parametric form, for example, 

mixture of Gaussians [2]. Third, using non-parametric techniques to estimate distributions 

of X and Y [30]. The proposed analysis is based on the second method, where distribution 

of features is modeled as a Gaussian distribution. Although it is a strong assumption, we 

show that results of this analysis are similar to the results obtained using the third method 

P O I  

The paper is organized as follows. Section G.l describes the experimental setup. 



Section G.2 describes MANOVA and presents results of MANOVA. Section G.3 proposes 

information theoretic approach for analysis of information in speech and presents the 

results. Section G.4 compares these results with results from the previous study. Section 

G.5 describes the summary and conclusions firom this work. 

G.1 Experimental Setup 

In the previous work [52, 531, we have analyzed variability in the features using three 

databases - HTIMIT, OGI Stories and TIMIT. In this work, we present results of MANOVA 

using OGI Stories database; mainly for the comparison with Yang's results [30, 231. En- 

glish part of OGI Stories database consists of 207 speakers, speaking for approximately 1 

minute each. Each utterance is transcribed at phone level. Therefore, phone is considered 

as a source of variability or source of information. The utterances are not labeled sepa- 

rately by speakers and channels, so we cannot measure speaker and channel as separate 

sources. Instead, we assume that different speakers have used different channels and con- 

sider speaker+channel as a single source of variability or a single source of information. 

Features are described in Chapter 2. 

G.2 MANOVA 

Multivariate analysis of variance (MANOVA) [47] is used to measure the variation in the 

data, {X E Rn), with respect to two or more factors. In this work, we use two factors - 
phone and speaker+channel. The underline model of MANOVA is 

where, i = 1, - .  . , p ,  represents phones, j = 1, .. . sc, represents speakers and channels. 

This equation shows that any feature vector, Xijk, can be approximated using a sum of 

x.., the mean of the data; x., mean of the phone i; &., mean of the speaker and channel 

j ,  and phone i; and ~ i j k ,  an error in this approximation. Using this model, the total 

covariance can be decomposed as follows 



where 

and, N is the data size and Nijk refers to the number of samples associated with the 

particular combination of factors (indicated by the subscript). The computation of the 

covariance terms is described in Chapter 2 

Results of MANOVA are interpreted at two levels - feature element and feature vector. 

Results for each feature element are shown in Figure G.1. Table G.l shows the results 

using the complete feature vector. The contribution of different sources is calculated as 

trace(CsouTce)/trace(CtOtaI). Note that this measure cannot be used to compare variabil- 

ities across feature-sets with different number of features. Therefore, we cannot directly 

compare contribution of variabilities in time and frequency domains. For comparison, con- 

tribution of sources in temporal domain is calculated as trace(EtC,,,,,E)/trace(Et ztotal E), 

where ElOlxl5 is a matrix of 15 leading eigenvectors of CtotaE. 

In spectral domain, the highest phone variability is between 4-6 Barks. The highest 

speaker and channel variability is between 1-2 Barks where phone variability is the lowest. 

In temporal domain, phone variability spreads for approximately 250 ms around the cur- 

rent phone. Speaker and channel variability is almost constant except around the current 

frame. This deviation is explained by the difference in the phonetic context among the 

phone instances across different speakers. Thus, features for speakers within a phone differ 

not only because of different speaker characteristics but also different phonetic contexts. 

This deviation is also seen in the speaker and channel information in the proposed anal- 

ysis. In the overall results for each domain, spectral domain has higher variability due to 

different phones than temporal domain. It also has higher speaker and channel variability 

than temporal domain. 

The disadvantage of this analysis is that it is difficult to interpret the results. For 

example, how much phone variability is needed for perfect phone recognition? and is 4% 



of phone variability in temporal domain significant? In order to answer these questions, 

Table G.l: Contribution of sources in spectral and temporal domains 

we propose an information theoretic analysis. 

source 

phone 

Frequency 
(Critical Band Index) 

Time (ms) 

% contribution 

Figure G.l: Results of analysis of variability 

Spectral Domain 

35.3 

G .3 Informat ion-t heoret ic Analysis 

Temporal Domain 

4.0 

Results of MANOVA can not be directly converted to MI because the determinant of source 

and residual covariances do not add to the determinant of total covariance. Therefore, 

we, propose a different formulation for the information theoretic analysis as follows. Let 

{X E Rn) be a set of feature vectors, with probability distribution p(X). Let h(X) be 

the entropy of X. Let Y = {Yl , .  ... Y,) be a set of different factors and each be a 

set of classes within each factor. For example, we can assume that & = {y:) represents 

phone factor and each yf represent a phone class. Lets assume that X has two parts; one 



completely characterized by Y and another part, 2, characterized by N(X) - N(0, I,,,), 

where I is the identity matrix. Let I (X;  Y) be the MI between X and Y. Assuming that 

we consider all the possible factors for our analysis, 

where ~ ( j  is the kullback-liebler distance [58] between distributions P and N. Using the 

chain-rule, the left hand side can be expanded as follows, 
rn 

I(X;Yl,. . . , Yn) = I (X;  Yl) + I(X; Y2IYl) + C I(X; Y,/Y,-1, - . . , f i ,  Yl). (G.2) 
i=3 

If we assume that there are only two factors Yl and Yz used for the analysis, then this 

equation is similar to the decomposition performed using MANOVA (Equation G.l). The 

term on the left hand side is entropy of X which is the total information in X that can be 

explained using Y. This is similar to the left-hand side term in MANOVA that describes 

the total variability. On the right hand side, first term is similar to the phone variability, 

second term is similar to the speaker variability, and the last term which calculates the 

effect of unaccounted factors (Y3,. . . , Ym) is similar to the residual variability. 

First and second terms on the right hand side of Equation G.2 are computed as follows. 

h () terms are estimated using parametric approximation to the total and conditional 

distribution It is assumed that the total distribution of features is a Gaussian distribution 

with covariance C. Therefore, h (X) = ;log ( 2 ~ e ) ~  1x1. Similarly, we assume that the 

distribution of features of different phones (i) is a Gaussian distribution with covariances 

Xi .  Therefore, 
1 

h(X/K) = - C P (Y:) log ( 2 4 "  IZil 
2 .  (G.5) 
?I; CK 

Finally, we assume that the distribution of features of different phones spoken by different 

speakers is also a Gaussian distribution with covariances Cij. Therefore, 



Table G.2: Mutual information between features and phone and speaker and channel 

Substituting equations G.5 and G.6 in equations G.3 and G.4, we get 

labels in spectral and temporal domains 

1 
I ( X ;  Yl) = - log 

1x1 
l-ly;cK p i 1 p ( y : )  

source 

  hone 

I n YZ, . CY. , I C ~ ~ P ( Y : )  
I ( X ;  Y,/Y,) = - log 

2 n?,; cy, ,d, cy2 
~ x ~ l p ( y : > Y l i )  

I - Phone 1 

MI (nats) 

w 
5 10 15 
Frequency 

(Critical Band Index) 

Spectral Domain 

1.6 

Time (ms) 

Temporal Domain 

1.2 

Figure G.2: Results of information-theoretic analysis 

Figure G.2 shows the results of information-theoretic analysis in spectral and temporal 

domain. These results are computed independently for each feature element. In spectral 

domain, phone information is highest between 3-6 Barks. Speaker and channel information 

is lowest in that range and highest between 1-2 Barks. Since OGI Stories database was 

collected over different telephones, speaker+channel information below 2 Barks ( = 200 Hz 

) is due to different telephone channels. In temporal domain, the highest phone information 



is at the center (0 ms). It spreads for approximately 200 ms around the center. Speaker 

and channel information is almost constant across time except near the center. 

Note that the nature of speaker and channel variability also deviates from the constant 

around the current frame. But, at the current frame, phone variability is higher than 

speaker and channel variability. The results of analysis of information show that, at the 

current frame, phone information is lower than speaker and channel information. This 

difference is explained by comparing our MI results with results from Yang et. al. [23] in 

the next section. 

Table G.2 shows the results for the complete feature vector. Note that there are 

some practical issues in computing determinants in Equation G.3 and G.4. They are 

related to data insufficiency, specifically, in temporal domain where the feature vector 

is 101 points and there are approximately 60 vectors per speaker per phone. We ob- 

serve that without proper conditioning of covariances, the analysis overestimates MI 

( I ( X ;  Yl,Y2) > H(Yl,Y2)). This is addressed using the condition number to limit the 

number of eigenvalues used in the calculation of determinants. Our hypothesis is that in 

presence of insufficient data, only few leading eigen vectors are properly estimated. We 

have use condition number of 1000 to estimate determinant of C and Xi, and condition 

number of 100 to estimate the determinant of Cij. The results show that phone infor- 

mation in spectral domain is 1.6 nats. Speaker and channel information is 0.5 nats. In 

temporal domain, phone information is about 1.2 nats. Speaker and channel information 

is 5.9 nats. Comparison of results from spectral and temporal domains shows that spec- 

tral domain has higher phone information than temporal domain. Temporal domain has 

higher speaker and channel information than spectral domain. 

Using these results, we can answer the questions raised in Section G.2. First question 

was how much phone variability is needed for perfect phone recognition? The answer to 

the question is H(Yl), because the maximum value of I ( X ;  Yl) is H(Yl). We compute 

H(Yl) using phone priors. For this database, we get H(Yl) = 3.42 nats, that means we 

need 3.42 nats of information for perfect phone recognition. Question about significance of 

phone information in temporal domain is addressed by comparing it with information-less 

MI level. The information-less MI is computed as MI between the current phone label 



and features at 500 ms in the past or in the future. From our results, we get information- 

less MI equal to 0.0013 nats considering feature at 500 ms in the past, and 0.0010 nats 

considering features at 500 ms in the future1. The phone information in temporal domain 

is 1.2 bits that is greater than both the levels. Therefore it is significant. 

G.4 Results in Perspective 

In the proposed analysis, we estimated MI assuming Gaussian distribution for the features. 

This assumption is validated by comparing our results with the results from a study by 

Yang, et. a1.,[23], where MI was computed without assuming any parametric model for the 

distribution of features. Note that only entropies can be directly compared for difference 

in the estimation technique [58]. However, MI using Gaussian assumption can be equal to, 

less or more than the actual MI. In the comparison of our results with Yang's results, we 

consider only the nature of information observed in both studies. The difference in actual 

MI levels across the two studies is related to the difference in the estimation techniques. 

In spectral domain, Yang's study showed higher phone information between 3-8 Barks. 

The highest phone information was observed at 4 Barks. Higher speaker and channel 

information was observed around 1-2 Barks. In temporal domain, their study showed 

that phone information spreads for approximately 200 ms around the current time frame. 

Comparison of results from this analysis and our analysis shows that nature of phone 

information is similar in both studies. Nature of speaker and channel information in 

spectral domain is also similar. We could not compare the speaker and channel information 

in temporal domain because Yang's study did not present these results. 

In Section G.3, we observed difference in the nature of speaker and channel variability, 

and speaker and channel information at f i  =5 Barks. Comparing MI levels from our 

study to those from Yang's study, we observe that Yang's results show that speaker and 

channel information at 5 Barks is less that the corresponding phone information. This 

is consistent with results of analysis of variability, but not with the proposed analysis 

of information. As mentioned before, this difference is due to difference in the density 

lInformation-less MI calculated using Yang et. al. is 0.019 bits 



estimation techniques used for computing MI. In the future work, we plan to model the 

densities using more sophisticated techniques, and improve the estimation of speaker and 

channel information. 

G.5 Conclusions 

We proposed analysis of information in speech using three sources of information - lan- 

guage (phone), speaker and channel. Information in speech was measured as MI between 

the class labels and the set of features extracted from speech signal. For example, linguistic 

information was measured using phone labels and the features. We modeled distribution 

of features using Gaussian distribution. Thus we related the analysis to previous pro- 

posed analysis of variability in speech. We observed similar results for phone variability 

and phone information. The speaker and channel variability and speaker and channel 

information around the current frame was different. This was shown to be related to the 

over-estimation of speaker and channel information using unimodal Gaussian model. Note 

that the analysis of information was proposed because its results have more meaningful 

interpretations than results of analysis of variability. For addressing the over-estimation, 

we plan to use more complex models ,such as mixture of Gaussians, for computing MI in 

the future work. 
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