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INTRODUCTION

ABSTRACT

Analyzing and reporting data generated from cDNA microarray experiments is a chal-
lenging process. There are many potential sources of error that must be controled to obtain
valid and reproducible results from these experiments and estimate relative levels of gene
expression. Advanced normalization and data processing of the raw microarray data are
required for the exchange and quality assurance of gene expression results. Normalization
methods are typically used to correct for systematic sources of variation in cDNA
microarray experiments. Data processing refers to all other methods used in microarray
analysis, e.g. background subtraction. There is currently no proven best method of
normalization or data processing for the analysis of microarray data. We wanted to find
out whether we could generate a consistent and meaningful report of microarray gene
expression results, correcting for systematic sources of variation, and ensure that the
results are valid and reproducible for the genetics researcher. To answer this question, we
compared several methods in our lab in an attempt to determine which is the most valid
and reproducibile for our experiments. While the methods for data processing might vary
depending on the structure and design of the individual experiment, we found that overall
our most reliable method for normalization was to calculate a 20% trimmed mean of all
spots on the microarray, and then divide the local corrected value for each spot on the
array by the trimmed mean. The five phases of the microarray process: RNA and probe
preparation, target spot and print quality, hybridization, image scanning, and software
analysis are shown in Figure 1. We produced several measures of overall slide intensity
for quality control, as well as writing and publishing protocols on the Internet for the
microarray process up to the image scanning and software analysis phase. To automate the
data processing and normalization of microarray data and report the results to the
researcher, an Automated Normalization program was written for Microsoft Excel using
Visual Basic.

BACKGROUND

We shall discuss what is known and what is yet to be discovered in genetics research so
that we may understand the role that cDNA microarrays has in science today. The Human
Genome Project, of which the first draft has been completed [1], is a great step towards
deciphering the blueprint for human life. We are close to having the full DNA sequence
for the human genetic code. The central dogma of genetics research is that DNA is tran-
scribed into RNA, and RNA is translated into proteins. The proteins have a function,
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shape, and chemical composition as determined by their amino acid sequence, which is
dictated by the DNA sequence of the gene. Each cell in the body only reads select
portions of the entire genome at a time. The portions that are transcribed and translated
into proteins determine many aspects of the form and function of a particular tissue type.
The expressed DNA sequences or genes, in conjunction with the environment, ultimately
determines what occurs within the cell.

However, we don’t yet know the purpose and meaning of all segments of the genome.
We are now ready to take the next step in understanding how the genetic code is inter-
preted into a particular function: Functional Genomics. Functional Genomics determines
what genes in the genome are expressed in the various cells and tissues of the body, as
well as the function of the protein products. Thus we hope to associate gene activity with
the various cell and tissue types throughout the body, to determine the normal function of
all genomic sequences, and relate their abnormal function to the cause of genetic diseases.
Ultimately, we hope to be able to read and interpret the genetic code in terms of the func-
tion of the gene products, and with this information create a new level of understanding of
the human organism.

INTRODUCTION TO MICROARRAY ANALYSIS

There is a tool to help accomplish the task of assaying gene activity in tissues: cDNA
microarrays.[2][3] To create microarrays, cloned libraries of cDNA sequences are bonded
to glass slides in a grid of spots micrometers in diameter, where each spot is a different
sequence. Most of these cDNA sequences are uniquely identified in the GenBank database
by accession number (see Appendix A: Data Dictionary). mRNA is extracted from the cell
or tissue of interest and reverse transcribed into cDNA sequences with a fluorescent label.
The slide is heated to denature the spotted cDNA pairs into separate strands. The labeled
c¢DNA, often referred to as the probe, is also denatured and then hybridized on the glass
slide to the array of spotted sequences. Finally, the microarray slide is scanned with lasers
that cause the labeled cDNA to fluoresce, and an image of the slide is obtained using a
CCD confocal microscope and read into a computer. This is the method for making
microarrays currently used by the department of Pediatrics microarray facility at Oregon
Health & Science University. There are other materials and technologies applied at other
facilities, such as radioactive labeling of probes and other proprietary technologies. Our
method is not the only method for creating microarrays, as others may use oligonucleotide
sequences 25 base pairs long instead of cDNA or use radioactive labels instead of fluores-
cent labels. However, our method is the one that will be addressed in my thesis.

The rational for this procedure is the following. The extracted mRNA is the direct
product of the current gene expression activity in the cell line or tissue sample of interest.
A one-to-one copy of the mRNA is made when it is reverse transcribed to cDNA. Thus,
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the number of cDNA copies is proportional to the number of mRNA molecules in that
particular cell. The cDNA copies will selectively bind to particular accession sequences
from the clone library, those that make a complementary match in the target cDNA
sequence. [t is reasonable to assume that this match is the gene, or part of the gene, that
originally coded for the mRNA found in the experimental cell line.[4] The amount of
labeled cDNA hybridized to each spot can be measured by the intensity of the spot when
the array is scanned into an image under fluorescence.

The challenge is how to make sense of all the information we gather with ¢cDNA
microarrays, and how to insure the reproducibility of those results. There is a large
amount of quantitative data generated by cDNA microarray analysis, as each slide used in
an experiment can generate 37,000 or more raw data points (counted from data stored in
our microarray data warehouse). The 23 slide experiment series used to compare data
processing and normalization methods in this paper contained 682,058 data points of raw
data. Each spot printed on a microatray corresponds to a particular GenBank accession or
clone library sequence from the genome.

First, let us consider what information we can obtain from a single spot, just a few
micrometers in diameter on a microarray. When the microarray is scanned by laser fluo-
rescence, a digital image is generated on the computer the scanner is connected to. The
computer represents this image using a two dimensional arrangement of pixels of varying
intensity. Each spot on the microarray, and the background surrounding it, is thus repre-
sented by a number of pixels. We use a 16-bit grayscale TIFF (Tagged Image File Format)
image format to store this information. 16-bit means that we can store the intensity of each
pixel as a number with a range of 2'¢, that is a number from zero to 65535 (2!° - 1). In
grayscale, this number translates to a shade of gray from black (zero) to white (65535). As
a result, not only do we have a visual representation of the microarray on the screen as an
image in shades of black and white, but this image translates into a quantitative method of
extracting information on the fluorescence intensity detected by the scanner.

Since the microarray spot in question is made up of many of these pixels in the image,
we can take an average of all pixels in the spot to get the mean signal intensity of the spot.
We can make a similar calculation for the background region outside of the spot in order
to correct the spot signal for background noise. For our purposes we use the median of
these background pixels to minimize the influence of outlier pixels. These values, along
with about 20 others used to record position and other statistical and quality information
about the spot, are computed for us using proprietary software (AutoGene™ software by
BioDiscovery, Inc. -- http://www.biodiscovery.com/ ). One commonly accepted method
that we are currently using for correcting the spot signal for background noise is to
subtract the median background from the mean signal for the microarray spot. This is
done because after hybridizing the probe with the microarray, washing typically does not
remove all of the fluorescent probe material from the portions of the slide where no cDNA
was printed. The region of the slide where no cDNA was printed is referred to as the back-
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ground. The assumption is that there is as much excess probe on each target spot in the
array as there is on the background around the spot. The background can be uneven across
the slide, as the probe can be washed unevenly from the slide surface. Likewise, the probe
can be unevenly distributed on the slide during hybridization, influencing both the target
spot and background instensity together. Therefore, the background is calculated within a
given distance of each target spot, and the correction is applied to each spot individually.

All this is for just one spot on the microarray, corresponding to one genome accession
from a clone library hybridized with our labeled probe. There are many of these spots in a
microarray. Many of the microarrays generated by our lab have over 13,000 spots on a
single slide. We extract all the information generated by our image analysis software for
each microarray experiment and store it in an Oracle data warehouse
(http://www.oracle.com/), along with their identifying accession numbers and grid place-
ment information. The Oracle data warehouse and interface was implemented by my
colleague, Bryan Olmstead, as the subject of his thesis project. Each microarray slide can
be hybridized with two differently labeled cDNA probes that fluoresce under different
color lasers. This allows us to compare the amount of hybridization of two different
cDNA probes on the same slide, such as a control probe versus an experimental one.

RESEARCH QUESTION

This thesis addresses the following research question: Can we generate a consistent and
meaningful report of microarray gene expression results, correcting for systematic sources
of variation, and ensure that the results are valid and reproducible for the genetics
researcher? Our answer to this question is yes, we could and we have produced a
microarray reporting tool that has been useful to the researcher.

Most genetics researchers do not want to be directly involved with all of the numerical
data generated by microarray analysis, as the amount of information generated is over-
whelming. The researcher is mainly interested in what genes are up-regulated or down-
regulated in expression when compared to the same gene with a different treatment or in
other cells and tissues. Researcher can use microarrays to answer questions about what
genes share the same (or opposite) patterns of expression in different treatments or tissue
types, and are therefore possibly linked in function. Genes of unknown function can be
identified by comparing their expression level with a treatment response or with a related
gene whose function is known.

In my role as a bioinformatics technician, I am concerned with how I can provide a
useful interpretation of microarray data for the genetics researcher. More importantly, can
we control or correct for variations in the data sufficiently to ensure the data is repro-
ducible, or at least identify when and how problems occur? The researcher needs to know
that the results they generate from microarray experiments will be the same if they or
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anyone else were to do the experiment over again. They need to be able to identify and
reduce or eliminate sources of error in their data when and where they occur as early in
the process as possible. We are working to produce automated methods of analyzing raw
data from microarray experiments, and generating a standard format for reporting practical
results to the genetics researcher for future scientific discovery.
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FIGURE 1: MICROARRAY PROCESS
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SOURCES OF VARIATION BY PHASE

A microarray experiment is a complex process, and as such there are many possible
sources of variation in the data produced. A diagram of these potential sources of varia-
tion, both from our work and others [5], is presented in Figure 1 and summarized in
Appendix A: Data Dictionary. This diagram divides the potential sources of variation into
groups relating to the different steps in the process of producing and interpreting microar-
rays. There are five phases in the process of generating microarray results: mRNA and
probe preparation, printing of cDNA target spots on the slide, hybridization of the probe
to the target spots, image scanning of the fluorescent labeled microarray, and software
analysis of the image generated.

RNA AND PROBE PREPARATION

The probe preparation is subject to the following factors of variability: mRNA is very
sensitive to degradation, reverse transcription can produce cDNA of varying length, and
the different fluorescent labels used for two channel analysis (one label for each of two
probes) can and do differ in sensitivity to the lasers used to excite them.

TARGET SPOT AND PRINT QUALITY

The target spot and print quality of the microarray can vary as follows: PCR amplifica-
tion of the clone ¢cDNA is difficult to quantify; the cDNA is dissolved in such small
volumes of solution that it can evaporate while printing if it is not properly humidified;
the pins used in printing can wear out or otherwise cause different quantities of cDNA to
be printed; and irregularities in the size and shape of the printed spots can affect the spot
detection later.

HYBRIDIZATION

Hybridization introduces a number of factors for variation: the efficiency of hybridiza-
tion is influenced by temperature, time, buffering, adenine-thymine vs. cytosine-guanine
content, and overall probe quality; there can be non-uniform distribution or non-uniform
hybridization performance of probe across the slide surface; non-specific hybridization
can occur between the probe and a target spot; and there is the possibility that the target
spot could be saturated by the probe, eventually resulting in the underestimation of the
mean signal for the spot.
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IMAGE SCANNING

Different settings for PMT and laser intensity when scanning the slide into an image
can cause spot intensity to vary. When those settings are too high, signal saturation can
occur.

SOFTWARE ANALYSIS

Finally, the software analysis may fail to properly identify and quantify valid spots on
the microarray with the available spot finding methods. The algorithm, parameters, and
grid layout are all potential sources of error.

SUMMARY

There are five phases in the microarray process: RNA and probe preparation, target
spot printing, hybridization, image scanning, and software analysis. The probe is prepared
by extracting mRNA from the cell, reverse transcription of the mRNA to probe cDNA,
and fluorescent labeling of the probe. The target cDNAs from the clone library are printed
as spots on a glass slide. The probe cDNA (reverse transcribed from the original cell
mRNA) is hybridized with the printed target spot cDNA on the slide. A CCD confocal
microscope attached to a computer scans the slide with lasers that cause the fluorescent
label to glow. Finally, the scanned image of the microarray slide is analyzed with various
software to determine and report gene expression results back to the researcher. Each step
in the process has various potential sources of error which should be accompanied with
quality assurance and quality control measures to ensure the validity and reproducibility
of the resulting microarray data.

INTRODUCTION TO DATA PROCESSING AND
NORMALIZATION STRATEGIES

A combination of established procedures and proper normalization and data prepara-
tion methods during software analysis can help to minimize error inherent in the
microarray process. The DNA microarray is a recent development and a powerful tool for
genetics research. Microarrays are used for gene expression analysis, determining which
genes are being actively transcribed into mRNA within the cell, as well as quantifying
how much transcription is taking place. A microarray experiment is a complex process,
and as such there are many possible sources of variation in the data produced [5] as
discussed in the previous section. Here we shall discuss the various methods of data
preparation and normalization used in the software analysis phase of the microarray
process.
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YANG, Y.H. ET AL. NORMALIZATION FOR CDNA MICROARRAY
DATA, SPIE BIOS|6]

This article produced from the combined efforts of the Department of Statistics and
Department of Molecular and Cell Biology from the University of California at Berkley,
the Department of Biochemistry from Stanford University, and the Division of Genetics
and Bioinformatics from the Walter and Eliza Hall Institute in Australia [6] describes
several common approaches to the normalization of microarray data. Three common
approaches to normalization methods used in different types of microarray experiments
are discussed: within-slide, paired-slides for dye-swap experiments, and multiple slide
normalization. The paper also evaluates three different sets of genes commonly selected
for normalization purposes: all genes on the array, constantly expressed or "house-
keeping" genes, and spiked control spots or titration series on the slide (not necessarily
genes, could be control sequences or blanks). This group evaluated the normalization
methods using what they call an M vs. 4 plot. The M axis on this plot is the log intensity

ratio M =log,(R/G) where R and G are the red and green dye channels of a two dye

experiment respectively. The 4 axis of the M vs. A4 plot is the mean log-intensity
A=log, VRG . This group claims that this method of comparison gives a more real-

istic sense of concordance than simply plotting the log-intensity of one dye vs. the other.

Yang et al. found that each method they investigated had advantages and disadvan-
tages, and their utility in the analysis of microarray data was dependant on experimental
design. They focused on methods that normalized data based on position, or print-tip-
group. However this was most useful in correcting for differences in two-channel experi-
ments, where two probes with different color fluorescent labels (usually red and green) are
hybridized on the same microarray slide at the same time. They also noted two assump-
tions that their methods are based on: only a few genes in the experiment should show a
significant change in expression between samples, and the expression levels of up and
down regulated genes should have symmetry. Our slidewise normalization method shares
the first of these assumptions, however we have not yet investigated the impact of the
second on our methods.

SCHUCHHARDT, J. ET AL. NORMALIZATION STRATEGIES FOR
CDNA MICROARRAYS, NUCLEIC ACIDS RESEARCH |5]

The Institute for Theoretical Biology and Max Planck Institute of Molecular Genetics
of Berlin, Germany[5] evaluated multiple strategies to control and correct for "systematic
and stochastic fluctuations" in microarray data. This group identified and listed sources of
noise in spotting and hybridization, many of which are included in the sources of variation
listing described in the introduction of this paper. The observation was made that dupli-
cate spots printed on the same slide showed significantly better correlation (C=0.90) than
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duplicates printed on separate slides (C=0.76). The investigators concluded that variations
for same slide comparisons was due to random fluctuations in target volume. Variations
for comparisons across slides was attributed to differences in hybridization efficiency,
unequal distribution of probe, and image processing factors.

The microarray for this study was printed using a 384 pin gridding head. This method
produced 384 meta-grids with 36 spots in each grid (6x6). The radioactively labeled probe
was obtained from reverse transcribed mouse tissues, and then a dilution control series
was printed using Arabidopsis thaliana clones. Each meta-grid included four blank (empty
background) spots and two spots from various mouse clones.

Four different normalization methods were tested. These methods are listed in order of
increasingly accurate classification of signal intensities compared to differentially diluted
control clones:

1. No normalization

2. Slide-wise normalization: divide each target spot by the average intensity of all control
spots on the slide.

3. Pin-wise normalization: divide each target spot by the two constant control spots in the
same meta-grid.

4. Average pin-wise normalization: slide-wise normalization of target and control signals
then dividing the average target by the average control.

The performance of these methods were compared using the percent match of replicate
known dilution levels for printed spots in training and test groups. Schuchhardt et al.
found that average pin-wise normalization performed better than all others, pin-wise was
second, followed by slide-wise, and no normalization was last.

NEWTON, M.A. ET AL. ON DIFFERENTIAL VARIABILITY OF
EXPRESSION RATIOS: IMPROVING STATISTICAL INFERENCE
ABOUT GENE EXPRESSION CHANGES FROM MICROARRAY DATA,
JOURNAL OF COMPUTATIONAL BIOLOGY {[7]

The University of Wisconsin uses an Escherichia coli cDNA microarray to demonstrate
a method of data processing for the comparison of relative expression using empirical
Bayesian analysis. This article addresses the fact that calculating relative expression using
standard fold change ratios may have a different interpretation for low signal levels than
they do for high signal levels. Other groups have found evidence of greater relative vari-
ability in data at lower expression levels when compared to higher levels of expression
[8]. This is because ratio data does not address the effects of range, where low values that
are essentially so close to zero as to be considered blank will show more than the standard
3-fold change in expression when a ratio is calculated. For example, both 0.009 / 0.003 =
3.00 and 900 / 300 = 3.00 result in a 3-fold change in expression. However, the difference
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of 0.009 — 0.003 = 0.006 is essentially zero, while the difference of 900 — 300 = 600 is
more than zero. As a result, the authors of this article suggest that raw intensity ratios may
be prone to error. In our lab, we have observed this effect consistently when graphing and
comparing duplicates, where every graph shows more scatter at low values (see Figures 2
and 3). Ratio comparisons between treatment and control data sets, particularly when
performed using two-channel analysis, do not address this issue.

The authors of this article suggest a solution to this problem, detailing a statistical
method of processing cDNA microarray data prior to normalization using empirical Bayes
estimates. Rather than relating expression data in terms of fold changes and simple ratios,
empirical Bayesian analysis basically generates a set of hypothesis tests, one for each
gene. The null hypothesis is that there was no change in expression (the measured inten-
sity of control and treatment spots is equal), and the alternative hypothesis is that there
was a measurable change in expression (the intensities are unequal). Thus, any
comparison that falls outside of a suitable confidence interval has a significant change in
expression for that gene.

RICHMOND, C.S. ET AL. GENOME-WIDE EXPRESSION PROFILING
IN ESCHERICHIA COLI K-12, NUCLEIC ACIDS RESEARCH (9]

This article was an earlier work from the University of Wisconsin using Escherichia
coli cDNA microarrays. The paper compares the results from radioactively labeled nylon
membrane arrays to fluorescently labeled glass microarrays. In this case, the normalized
- data was calculated as a percentage of total target signal after background subtraction.
Each method had similar expression results, but the fluorescence microarray data was
more reproducible (had less variability among duplicates).

DELENSTARR, G. ET AL. ESTIMATION OF CONFIDENCE LIMITS
OF OLIGONUCLEOTIDE ARRAY-BASED MEASUREMENTS OF
DIFFERENTIAL EXPRESSION, PROCEEDINGS OF SPIE [10]

Agilent Technologies provides a comparison of data processing and normalization
methods on human oligonucleotide microarrays. They developed two methods of back-
ground correction:

1. Local nearest neighbor: Target signal minus average background of 3x3 grid
surrounding target spot.

2. Negative control features: Target signal minus average signal of replicate negative
control features using probes determined to have minimal hybridization to target spots.

When the duplicate graphs of these two methods were compared, the investigators found

that the negative control features showed less variability than the local nearest neighbor

method.
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Because Agilent Technologies works with 25 base oligonucleotide microarrays, cross-
hybridization becomes a significant source of error. They address this issue with the
development of deletion control probes. Microarrays using 25 base oligonucleotides have
base 12 removed from the probe sequence, forming a 24 base deletion control. This is
subtracted from the "perfect complement” probe, which is sensitive and specific to the
target sequence, resulting in what they describe as a "net perfect match signal". The probe
and target sequences used in cDNA microarrays are thousands of bases long, such that
cross-hybridization is not a significant source of error and can be ignored.

To compare relative expression, Agilent Technologies calculates the ratio of net perfect
match green and red signals, forcing the average log ratio to zero. Error propagation
methods are used to determine the log ratio error and converted into a p-value. The log
value significance can be evaluated based on a chosen threshold p-value.

SUMMARY

The majority of laboratories using microarrays have had to develop and test their own
methods for data processing and normalization of microarray data with varying degrees of
success, yet no one has found a definitive answer to the question of what methods work
best. Schuchhardt et al. found that replicates printed on the same slide matched each other
more consistently than they did when printed on different slides, suggesting a significant
amount of variability inherent in the process of printing multiple microarray slides, which
makes comparisons between slides a challenge. They also found that of the four normali-
zation methods they tested, average pin-wise normalization performed the best on repli-
cate spots in a dilution series. Newton et al. suggests that empirical Bayes estimates are
more accurate predictors of the gene expression from microarray data than simple fold-
change ratios. Richmond et al. used percentage of total signal as their measure of gene
expression and found that fluorescence microarray data was more reproducible than radio-
actively labeled nylon microarrays. Delenstarr et al. report good results with their negative
control features for background correction. They worked around cross-hybridization
issues inherent in oligonucleotide microarrays, and compared relative expression using log
ratios forced to zero. Delenstarr et al. also worked with statistical probability measures
rather than simple fold-change ratios.
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METHODS

QUALITY ASSURANCE

To provide quality assurance for cDNA microarray processing in our lab, a series of
protocols have been generated to describe the laboratory process. The protocols are
published in both Microsoft Word 97 and Adobe PDF (Portable Document Format)
formats and are available on our GeneViews Web page at http://medir.ohsu.edu/~gene-
view/pages/protocols.html . Updates to these protocols are made on the Web for current

reference.

DATA PROCESSING AND NORMALIZATION

In order for cDNA microarray data to be useful to the researcher, some data processing
and normalization has to be applied to the raw data extracted from image analysis to
meaningfully represent gene expression information. Normalization refers to a correction
or weighing factor applied to reduce systematic variability from a given data set. Data
processing refers to all other forms of filtering or transformation of data.

The raw microarray data consists of a median signal, mean background, selected flag,
and postion or meta-grid location for each accession on the array. The local corrected
value is computed for each accession as the mean signal minus the median background.
The local corrected value is then normalized.

Several normalization methods were evaluated and compared in the course of writing
an automated analysis and reporting tool for researchers performing cDNA microarray
experiments in our lab. The normalization method should correct raw data for systematic
variations in the microarray process, as mentioned in the Background section of this
paper, in order to improve the validity and reproducibility of the results. The normaliza-
tion methods evaluated were as follows:

1. Standards or "housekeeping" genes

For gene 7 in a given microarray, let x be the original local corrected value,
Y be a set of "housekeeping" genes where Y X
and n be the normalized signal intensity.

Then for each gene (spot) in the microarray,
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2. 20% trimmed mean slidewise
For gene i in a given microarray, let x be the original local corrected value,

and » be the normalized signal intensity.
Then for each gene (spot) in the microarray,

xi
X trim
3. Gridwise (Mean)
For gene i in a given microarray, let x be the original local corrected value,
Z be the set of genes printed in the same meta-grid as x where ZcX ,

and » be the normalized signal intensity.
Then for each gene (spot) in the microarray,

=hn

,where X, isthe 20% trimmed mean.

i

X

14

=n, ,where Z,, Iisthe20% trimmed mean.

H

NI =
N

trim
4. Log ratio slidewise
For gene i in a given microarray, let x be the original local corrected value,
and » be the normalized signal intensity.
Then for each gene (spot) in the microarray,

logx,—log X =n,

Normalization using standards, or what are commonly called "housekeeping” genes, is
based on the assumption that there is a set of accessions printed on the microarray that
should show no change in expression between experimental treatments. These accessions
are usually regulatory genes for the cell line. Each local corrected spot is divided by the
mean, median, mode, or trimmed mean of all standards on the slide or array. One addi-
tional method is to filter based on "good" standards, those standards that pass a duplicate
test, before averaging those standards for normalization. For the purpose of this thesis, I
compared both a trimmed mean of standards and an average of "good" standards for the
same experiment to a trimmed mean slidewise normalization.

The second normalization we investigated was the 20% trimmed mean slidewise
method. This method assumes that most of the accessions on the microarray slide will not
show a significant change in expression between treatments. The top 10% and bottom
10% of all local corrected values on the array are removed before computing the mean to
reduce the influence of outliers. Each local corrected value is then divided by the 20%
trimmed mean of all accessions on the slide. We tried a couple of other trimmed means
(10 and 30 percent) before choosing 20%. In this way, enough outlier spots were excluded
so as not to bias the mean and still keep enough genes in the calculation for the mean to be
descriptive of the given microarray. This method was chosen as the default method of
normalization in our lab, and has been compared to each of the other methods in this

paper.
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Our third method of normalization was the gridwise method using the mean of acces-
sions grouped by meta-grid. The local corrected value for each accession was divided by
the average of local corrected values in each meta-grid. This method assumes that the
average level of expression in each meta-grid should not be significantly different from
another.

The final normalization method we evaluated was a slidewise log ratio. A log base 10
was applied to each local corrected value. The mean of the log values was computed for
the entire slide, and this was subtracted from the log of the local corrected value for each
accession to obtain the log ratio. The log ratio could then be converted back to arithmetic
scale (by computing the 10% power of the log ratio) for use in determining fold change, as
discussed later in this paper. This method is similar to computing a geometric mean for
each slide.

After normalization, we can either continue with our standard data processing methods,
or export the normalized data to an external statistics or microarray analysis program,
such as ArrayStat™ by Imaging Research, Inc. ArrayStat™ can be used to determine gene
expression using statistical significance by performing an independent z-test for each
array, corrected using a step-down Bonferroni. If the normalized value for an accession
falls outside of the computed confidence interval, it is flagged as showing a statistically
significant change in expression.

If we continue with our data processing, all the normalized values are floored to a
minimum value to reduce the variability inherent with low levels of expression. Any
normalized values which are less than the floor value can be considered as having no
significant level of expression, which we then set to be equal to the floor value for further
analysis. We typically set a default floor value for normalized data to 0.10. When using
the 20% trimmed mean method of normalization, this is equivalent to 10% of the trimmed
mean for all spots on the slide.

A duplicates comparison is performed if replicate slides were printed as a part of the
microarray experiment (highly recommended). Duplicates are tested to determine if they
fall within a given minimum fold change, usually set to 3.00 fold. Fold change is used as
an estimate of differential expression between samples. If the duplicates for an accession
are outside of the given fold change (greater than 3.00 fold different), the pair are flagged
as bad for filtering and quality control. Then a constant fold change, usually set to 2.00
fold, is applied. In order to pass the constant fold change data filter (not be flagged as bad
and excluded from the results), the accession must show a change in expression that is
equal to or more than the constant fold change value between all experimental condi-
tions (arrays or slides) in the series. This filter is based on the assumption that the
researcher is only interested in those genes that show a significant change in expression
during the course of the microarray experiment. In our lab, the constant fold change has
been specifically requested as an option for filtering and analysis.
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After any duplicates have been processed and averaged together, ratios are calculated
for each treatment to control or treatment to treatment comparison the researcher needs
from the experiment. These ratios are interchangeable with fold change as defined in the
attached Data Dictionary (Appendix A) for describing the relative level of expression for
each accession. A list of accessions is generated, typically filtered with a minimum of 3.00
fold change in expression for each accession, with gene annotations such as the gene name
for the accession defined in the UniGene database.

QUALITY CONTROL

I have created four simple measures of quality that can be reported to the researcher to
help determine the usefulness of their reported expression data:

1. 20% Slidewise trimmed mean (used for normalization)
2. % Saturation (above ceiling)

3. % below Floor (reported no expression)

4. Duplicate tests (after normalization)

The 20% slidewise trimmed mean is a measure of the average intensity of all target
spots on the slide. Percent saturation is an indicator of how much data loss occurs due to
measurement limitations at the high end of the range (2'° or 65536). This is calculated as
total number of accessions whose local corrected values are above a given ceiling (i.e.
55k) divided by the total number of accessions on the slide, multiplied by 100. The
percent below floor is the reverse of the percent saturation, indicating how much of the
data does not show any measurable level of expression. This is calculated as the number
of accessions below a floor value divided by the total number of accessions on the slide,
multiplied by 100. A related quality control measure could be used in the near future to
evaluate the overall intensity of blanks, control spots where no cDNA was printed on the
array.

A low overall intensity rating and high percent below floor can indicate failed hybridi-
zation on the microarray, or an underdeveloped image obtained from the laser scanner. A
high overall intensity rating and high percent saturation can indicate excessive hybridiza-
tion on the microarray or an overdeveloped image obtained from the laser scanner. If all
three measures are high, this can indicate the range of spot intensity on the microarray
exceeded the limitations of the measurement device (laser scanner).

The final quality measure, duplicate tests, can be displayed as a scatterplot of one vs
other, the total number of bad duplicates on a slide, and the percentage of bad duplicates
on each slide. These measures give an indication of the reproducibility of the normalized
data. If there is a high number or percentage of bad duplicates, or the majority of data
points on the duplicate graph do not fall between a slope of 3 and 1/3 on arithmetic scale
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(or come close to a slope of one on a log scale), then there is likely a problem with one or
both of the duplicate slides.

REPORTING AND EXPERIMENTAL DESIGN

We wrote an Automated Normalization program to automate established cDNA
microarray data processing and normalization procedures and generate results useful to
researchers without the direct assistance of a bioinformatics technician or statistician
during the initial analysis. Since the researchers in this lab used Excel primarily to analyze
their experiment results, I wrote the program using Visual Basic as the built-in program-
ming language for Microsoft Excel. The program started as simply a collection of code
and fix macros to automate some of the repetitive steps I performed in doing the analysis
myself. But as the macros and scripts became more advanced, I decided to combine them
into a single program that typical researchers could understand and operate on their own
to produce the same results. Here is a list of the features offered by the Automated
Normalization program in its current version:

« Online documentation updated regularly with help buttons at every step of the process
linked directly to the GeneViews Web page.

«  http://medir.ohsu.edu/~geneview/pages/protocols/AutoNorm_Protocol.html

« Import raw microarray data generated by AutoGene™ by BioDiscovery from core
facility BArry Data Warehouse export or AutoGene™ text file export.

+ Calculate signals locally corrected for background.

« Perform users choice of accepted normalization schemes on locally corrected data.
Currently 20% trimmean slidewise normalization scheme is supported, others to be
added as developed and tested. Meta-grid normalization is available, but unsupported.

« Compare duplicate microarray slides, flagging target spots whose duplicate does not
match (shows a change in expression for same sample and treatment). Average dupli-
cates, allowing researcher to filter out flagged duplicates if desired.

» Compare all arrays / slides in microarray experiment, flagging spots with a constant
fold change (does not show a significant change in expression across entire experi-

ment).

« When available, add quality indicators / ﬂags to reported microarray data.

« Calculate ratios (difference for log transform, or other methods of comparison)
between experimental conditions to determine change of expression.

« Add GenBank or ResGen gene names to accession numbers used in microarray.

« Export results to GeneMaths (previously GenExplore) by Applied Maths for cluster
analysis.
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SUMMARY

We came up with four normalization methods to compare in our lab: mean of stan-
dards, 20% slidewise trimmed mean, mean gridwise, and slidewise log ratio. To automate
the process of normalization and data processing as outlined in the methods section, an
Automated Normalization program was written in Visual Basic to be run on Microsoft
Excel spreadsheets. This program reports gene expression results in fold change ratios,
and reports the quality of microarray slides with duplicate graphs and overall slide inten-
sity measures. The 20% slidewise trimmed mean and mean gridwise normalization
methods and all data processing steps were implemented in the Automated Normalization
program. The log ratio method was tested by comparing results from the external applica-
tion ArrayStat from Imaging Research, Inc. to the 20% trimmed mean results using our
program.
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RESULTS

QUALITY ASSURANCE

The laboratory protocols for the major steps of cDNA microarray preparation are
published and maintained at http://medir.ohsu.edu/~geneview/pages/protocol.html.
Appendix B contains a hardcopy of the most current versions of those protocols as of this
printing.

COMPARISON OF NORMALIZATION METHODS

We compared four normalization methods in our lab: standards or "housekeeping”
genes, 20% slidewise trimmed mean, mean gridwise, and slidewise log ratio. For the mean
gridwise and "housekeeping" gene methods, we performed a simple comparison of dupli-
cate graphs with the 20% slidewise trimmed mean method to assess the reproducibility of
each. For those comparisons, our conclusions on validity were based on observation
instead of more extensive comparison due to time constraints. For the 20% slidewise
trimmed mean and slidewise log ratio method comparisons, we compared the results of
using our Automated Normalization program for the trimmed mean vs. the ArrayStat
program from Imaging Research, Inc. for the log ratio method. In order to compare log
scale data with statistical tests for significance to arithmetic data with fold-ratio compari-
sons, we plotted graphs of the local corrected data with genes showing differential expres-
sion in one, both, and neither of the two methods. Then we looked at a subset of genes
where the two methods disagreed to see if we could determine the reason for their differ-
ences by observation.

STANDARDS OR "HOUSEKEEPING" GENES

Variations of this method were compared with slidewise trimmed mean normalization
methods. The two major variations we tested were the trimmed mean of all standards by
slide and the trimmed mean of "good" standards only. The "good" standards were a subset
of all standards that had a measurable and constant level of expression between slides. The
problem was, the list of "good" standards, genes whose expression was not supposed to
change between experiments, actually came out with significantly different values in each
experiment. The list of "good" standards always changed, so we concluded that we did not
have any true standards or "housekeeping" genes to measure, that is that the so called
"good" standards changed expression between experiments and conditions. This violated
the method's assumption that regulatory genes did not significantly change expression
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between arrays or experimental conditions, so we rejected this as a useful normalization
scheme in our lab. In addition, when we compared duplicates normalized with "good"
standards to those normalized with the 20% slidewise trimmed mean, we found the
trimmed mean method performed better, as shown in Figure 2.

FIGURE 2: "GOOD" STANDARDS DUPLICATES
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Figure 2: Above are duplicate comparison graphs of the "good" standards or "housekeeping" genes (upper-

right), the 20% trimmed mean method (upper-left), and the local corrected values with no normalization. The
line connecting the yellow triangles is the upper bound for 3-fold change, while the line connecting the purple
squares shows the lower bound for 3-fold change in expression. All dark blue data points plotted between the
3-fold lines are considered to be good duplicates for publication purposes. A good normalization method will
shift the data points to the center of the graph. For this slide, there was poor hybridization of the probe to the
target, yet the 20% slidewise trimmed mean method centered the data in the linear region (successfully
hybridizing expressors at upper end of graph) better than the "good" standards or "housekeeping"” method as

shown above.
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20% TRIMMED MEAN (SLIDEWISE)

The 20% slidewise trimmed mean method has been the most successful and simplest
normalization method that we have tested overall. In addition, this normalization can be
taken with no additional data processing from within Excel and exported into the
ArrayStat™ statistical microarray analysis application from Imaging Research, Inc. The
normalized data can then have the change in gene expression measured for statistical
significance using step-down Bonferroni and independent z-tests for each accession on the
array. This is more accurate than simple fold change ratios as it includes factors such as
the range and variance of independent data points in the analysis. However, fold change
ratios do give a reasonably good estimate of expression levels with relatively simple
computation.

The assumption that the 20% trimmed mean method relies on, that most target spots
printed on the array do not show a significant change in expression between arrays, has
not been disproved so far in the experiment sets we have seen in the lab. Duplicates
printed on separate slides show generally good results when graphed together with this
method. See Figure 3.
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FIGURE 3: 20% SLIDEWISE TRIMMED MEAN DUPLICATES
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matter how high the scanner settings were (gain and PMT).

GRIDWISE

The gridwise normalization method was rejected after analysis in our lab. This method
was similar to the pin-wise normalization method used in the Schuchhardt er a7 [5] paper.
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Schuchhardt's group used a 384-pin printing head to print 384 meta-grids (one meta-grid
per pin) with 36 spots in each, for a total of 13,824 target spots per slide. Each meta-grid
of their experiment used a repeating pattern of blank, constant control, dilution control
series, and two mouse clone spots. This arrangement should result in meta-grid groupings
that show similar levels of expression, thus this method of normalization makes sense for
the type of experiment used in the Schuchhardt ef al. paper.

Most of our experiments, however, do not share this type of format. We use a 16-pin
printing head and typically print 48 meta-grids (four meta-grids per pin) with 288 spots
each, for a total of 13,824 target spots per slide. Also, we do not have a repeating spot
arrangement in each grid, rather our control and treatment spots tend to be grouped into
the same meta-grids. The gridwise method attempts to shifts grids with different intensi-
ties together, instead of shifting different slide intensities together. We are not looking for
changes in expression between grids, some of which may be mostly blank and others
mostly expressed, rather we want to compare the change in expression between samples
on different slides. Therefore, we chose to reject the grid-wise method of normalization as
it does not appear to be useful for our typical experimental design. We still compared the
duplicates of the 20% slidewise trimmed mean method to the mean gridwise method in
Figure 4.
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FIGURE 4: GRIDWISE VS. SLIDEWISE
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Figure 4: The duplicate graph of two replicate slides on a logarithmic scale using the 20% slidewise trimmed
mean normalization (upper left) shows a more scattered distribution of data points when compared to the
same two slides using mean gridwise normalization (upper right). When the same slide is graphed on an arith-
metic scale with the slidewise method on one axis, and the gridwise method on the other (bottom left), we see
that the data points group themselves to form multiple lines of different slopes. This is likely because the grid-
wise method attempts to shifts grids with different intensities together, instead of shifting different slide inten-
sities together. Since we want to make slides with varying hybridization efficiencies and laser scanning inten-
sities more comparable, not the "blanks" printed in one grid with the "expressors" in another grid, the slide-
wise method is more valid than gridwise.

LOG RATIO

The log ratio required considerably more computation than the 20% trimmed mean
method, but with little return. The results for log ratio normalization were somewhat
comparable to the trimmed mean method, but the most notable difference was how the log
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ratio tended to reverse the direction of fold change (up-regulation versus down-regulation
of the genes) for small local corrected values. This is because the log base 10 of a value
center on one instead of zero on the arithmetic scale. We found that for the log ratio to be
useful for low intensity spots, it must either be adjusted to zero or a floor value must be set
prior to performing the log transform. But since the 20% trimmed mean compared well to
this method in all other respects, it was decided to drop further investigation into the log
ratio normalization in Microsoft Excel. However, the results of exporting 20% slidewise
trimmed mean data for statistical significance analysis on ArrayStat software from
Imaging Research, Inc. showed some promising results. The ArrayStat software uses z-
tests and additional steps for removing outliers to determine relative change in gene
expression that may be more accurate than fold change ratios as discussed in the Newton
et al. paper and the Introduction to Normalization Strategies section of this paper.
However, this method is also more computationally intensive than standard fold change
ratios. See Figures 5 and 6 for the slidewise log ratio vs. 20% slidewise trimmed mean

comparison.
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FIGURE 5: ARRAYSTAT VS FOLD CHANGE (EXCEL)
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Figure 5: The data points in the graphs above were plotted using local corrected values, not normalized
values to compare the results of two different normalization methods. A log ratio normalization was
performed using the ArrayStat program, and a 20% trimmed mean normalization was performed using my
Automated Normalization program in Microsoft Excel. In Array Stat, we performed a log ratio normalization
on the data before running a z-test to determine change in expression between pooled data for Stage 1 treated
slides and the control slides. In Excel, we used the 20% trimmed mean normalization, averaged (pooled) the
replicates, then determined the fold change ratio as average Stage 1 / average control, using 3-fold as the
minimum significant change in expression. We chose to investigate to what extent the list of genes that
Array Stat determined were differentially expressed matched with the list of genes that our program in Excel
found to be differentially expressed. Top left shows the local corrected value of genes showing a significant
change in expression after conversion to log ratios using ArrayStat, while the top right shows the same results
after slidewise trimmed mean was performed in Excel. Bottom left shows only local corrected spots that
showed significant change in expression in ArrayStat, but not in Excel. Bottom right shows local corrected
spots with significant change in expression in Excel, but not in ArrayStat. Thus, the bottom graphs show
which genes each method disagreed on the decision for significant change in expression. The comparison
continues in Figure 6.
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FIGURE 6: ARRAYSTAT VS. FOLD CHANGE
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Figure 6: This is the continuation of the comparisons made in Figure 5. Left shows local corrected spots with
a significant change in expression in both ArrayStat and Excel as described in Figure S. Both methods were in
agreement that these genes were indeed differentially expressed in the Stage I group when compared to the
control. Right shows local corrected spots that both ArrayStat and Excel showed no significant change in
expression. Those genes did not show differential expression in either data analysis method.

SUMMARY

We investigated four normalization methods: standards or "housekeeping" genes, 20%
slidewise trimmed mean, mean gridwise, and log ratio. The standards and gridwise
methods were only compared to the 20% slidewise trimmed mean method using duplicate
graphs. However a complete side-by-side comparison of expression results was performed
for the log ratio and trimmed mean methods. The 20% slidewise trimmed mean method is
a simple and effective method of normalization for most of the microarray experiments we
work with. The log ratio appears that with some correction, it could be comparable to the
20% slidewise trimmed mean method, but is more computationally intensive. However, it
may be more accurate to use outside statistical applications, such as ArrayStat, to deter-
mine differential expression statistical significance tests instead of standard fold change
ratios that may be error prone for low values of expression.

QUALITY CONTROL

There are four quality measures implemented in the Automated Normalization
program.

1. Slide Intensity
a) 20% Slidewise Trimmed Mean
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b) Slidewise Mean

¢) Slidewise Median

d) Slidewise Mode
2. % Above Saturation (55k)
3. % Below Floor (500)
4. % Bad Duplicates by slide

Additionally, the program can generate a series of duplicate graphs for visual comparison
and verification of replicate data, such as those shown in Figure 2.

The first three quality measures are calculated using local corrected values before
normalization, while the fourth measure and graphs are obtained from the worksheet
generated during the duplicate comparison step of the program. The slide intensity
measure provides a general measure of the distribution of spot intensities on the slide,
using the mean, median, mode, and the 20% trimmed mean used in our lab for normaliza-
tion. Since the range for spot intensity using 16-bit TIFF (Tagged Image File Format)
images is from 0 to 65535 (2! possible integer values), the local corrected value of 55,000
was selected to be the ceiling for the purpose of testing this part of the program. The
ceiling value is defined as the point above which the spot is considered to be saturated,
and a saturated spot will always underestimate the true value of expression, thus resulting
in measurement error. As 55,000 is roughly the 85" percentile of the measurement range
(0 to 65,535), and the 20% trimmed mean method removes values above the 90™ percen-
tile before averaging values across the slide, 55,000 appeared to be a reasonable ceiling
value for evaluation purposes. The percentage of all spots on the slide that are above the
given ceiling is reported in the second quality measure. Likewise, we chose the local
corrected floor value of 500, where any spot falling below this floor value is considered to
be the equivalent of a blank or nonhybridized, nonexpressing spot on the array. This value
is about 0.8 percent of the measurement range (0 to 65,535), thus close enough to zero for
the corresponding spot to be considered blank. The percentage of all spots on the slide that
are below this floor value are given in the third quality measure. As both the ceiling and
floor values are still under evaluation, we do not yet have a full assessment of the optimal
ceiling and floor values for microarray experiments. Together, these three measures can
give an estimate of how well developed each slide was during the imaging process or how
well the hybridization performed across the slide. ’

The fourth measure is the percentage of duplicates in the entire slide that were flagged
as "bad" within the fold-change entered by the user. This measure, combined with dupli-
cate graphs, can be used as a measure of reliability across the experiment. The assumption
is that duplicate accessions printed on different microarray slides under the same treatment
should be of the same intensity or level of expression as its match, meaning the results are
reproducible.
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REPORTING AND EXPERIMENTAL DESIGN

The Automated Normalization program has been released into a working laboratory
environment and tested by several research lab technicians performing microarray experi-
ments to their general satisfaction. A link to my e-mail address has been provided on the
title page of the online help for bug reports and suggested program changes. The program
currently assumes that it is running on the laboratory intranet with access to shared
network volumes available. It also assumes that raw microarray data is being imported
from the BArry Microarray Data Warehouse (running on Oracle) created by coworker
Brian Olmstead. For every step of the automated process, the program assumes that the
currently open Excel worksheet is in the proper format for the step to be performed
successfully. It is currently the user's responsibility to read the dialog boxes that describe
the proper spreadsheet formats and format the sheets properly prior to running each step.
Most steps can be successfully run in sequence without manually moving or editing the
worksheet layout, but at this point the duplicate and ratio steps usually require some
manual formatting of the spreadsheet before they are run.

Certain choices for experimental design will have an effect on how microarray data
should be prepared and analyzed. Common choices for experiment designs include control
/ treatment experiments, time course experiments, two channel analysis (Cy5 vs Cy3
labeled probes), and duplicates versus pooled samples. Control / treatment pairs can be
handled normally as long as their normalized values are paired together prior to running
the ratio step of the analysis. Time course experiments may require that multiple copies of
single or replicate measures of the control timepoint (i.e. - timepoint zero) be made and
each paired with the desired experimental time point for the ratio step. Two channel
analysis can be treated the same as if each channel was printed on separate arrays,
assuming that the chosen normalization method works properly. For two channel analysis,
it is recommended that some dye reversal slides (duplicates with the respective dye labels
switched) be printed as controls and used in the duplicate comparison step. When there
are more than two replicates printed, an average of the replicates can be calculated without
filtering for bad duplicates, as this would be pooling the results into one more accurate
measure of the gene expression for each treatment. Different yet related samples with the
same experimental treatment can be similarly pooled together into an average for each
accession.

SUMMARY

Microarray protocols have been written and published on our web page at
http://medir.ohsu.edu/~geneview/ for quality assurance. We then assessed four methods of
normalization: mean of standards, 20% trimmed mean slidewise, mean gridwise, and log
ratio slidewise. We selected the 20% trimmed mean as the most valid and reproducible
method tested, although the log ratio method looked like it might be comparable with
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more fine tuning of data processing methods prior to normalization. Fold change ratios
give a good estimate of relative gene expression in microarray experiments, but further
investigation into statistical methods, possibly using outside applications such as
ArrayStat, may provide more accurate results. Comparison of replicates printed on
multiple slides are currently our best measure for the reproducibility of microarrays data.
The validity of microarray data can be estimated using three measures of slide intensity:
the 20% trimmed mean of all spots used during normalization, percentage of spots meas-
ured at or above saturation, and the percentage measured below a floor value.
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CONCLUSIONS AND FUTURE DIRECTIONS

We found that the 20% slidewise trimmed mean method of normalization was the most
reliable of those we tested. Although the slide intensity ratings used for quality control
have not been fully tested yet, they appear to be helpful for researchers to help assess the
quality of their microarray slides. We have received mostly positive feedback from
researchers on the utility of the Automated Normalization program for microarray experi-
ment analysis within our lab.

For our future directions, we would like to port the Automated Normalization program
from Microsoft Excel and Visual Basic to Perl or Java running SQL statements directly on
our Oracle data warehouse. The advantages to this are speed, efficiency, compatability,
and more control over individual data elements. For quality control, we are testing an
early implementation of grid alignment indicators in SQL. This is important because we
recently found that improper grid alignment during image analysis is one of the largest
sources of error in our microarray experiments. The method being tested compares repli-
cates between slides for matches within a given range, giving a percentage of mismatches
for each sub-grid. If a particular sub-grid has a high mismatch (low match) percentage, the
sub-grid may not be aligned properly, which the researcher can confirm by looking back
at the original image and alignment for that grid with Results Reviewer (companion
program to AutoGene from BioDiscovery).
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APPENDIX A - DATA DICTIONARY

STAGES OF ANALYSIS:

NAME: DNA / Probe Preparation

DATA ELEMENTS: Cy3, Cy5, label, primer, probe

SOURCE: Microarray experiment design, PCR, mRNA extraction

DESTINATION: Hybridization stage

NAME: . Microarray (Target Spot) Printing

DATA ELEMENTS: accession number, slide, target spot

SOURCE: ¢DNA, clone library, microarray printer, meta-grid

DESTINATION: Hybridization stage

NAME: Hybridization

DATA ELEMENTS: c¢DNA, clone library, Cy3, Cy5, label, meta-grid, primer, probe

SOURCE: DNA / Probe Preparation stage, Microarray (Target Spot) Printing stage

DESTINATION: Image Scanning stage

NAME: Image Scanning

DATA ELEMENTS: background, gain, PMT, (target) spot intensity

SOURCE: CCD confocal microscope, Hybridization stage

DESTINATION: BArry Microarray Data Warehouse, Software Analysis stage

NAME: Software Analysis

DATA ELEMENTS: accession number, Array ID, background, (log) difference, duplicates,
Experiment_ID, (duplicate / Const FC) flags, gene names or ESTs, local
corrected, meta-grid, norm(alized) value, position, (fold change) ratios,
(target) spot intensity, selected, (20%) trimmed mean

SOQURCE: AutoGene™ 3.0, Automated Normalization, BArry Microarray Data
Warehouse, Image Scanning stage

DESTINATION: cluster analysis (GenExplore™), researcher, scientific discovery

Charged Coupled Device

SOFTWARE ANALYSIS:

NAME: accession number

ALIASES: accession

DESCRIPTION: Identifies cDNA (target spots) printed on microarray slides
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DATA TYPE: character string
LENGTH: 30 characters or less
VALUE: An accession number is one of the following:
a) GenBank accession number: a valid value from NCBI's GenBank
database or the ResGen database (obtained from Research Genetics).
There are two possible cases:
« The accession number is clustered by UniGene (NCBI) from the
web site http://www.ncbi.nlm.nih.gov/UniGene/ or from the BArry
Data Warehouse table Gene_Accession_Numbers. Most common
case. Includes unknown genes or ESTs.
» The accession number is not clustered by UniGene and obtained
from ResGen database as well as GenBank.
b) The string "Standard" followed by a GenBank accession number.
Intended for use as "housekeeping" genes (genes with little change in
expression between treatments) for some normalization schemes.
c) The string "NA", meaning no cDNA was printed on the target spot.
d) Other identifying characters specific to the microarray facility.

NAME: Array ID
ALIASES: array, channel, image, slide
DESCRIPTION: Unique identifier for each array which has been gridded, saved, and

imported from AutoGene™ to the BArry Microarray Data Warehouse.
Grouped by Experiment_ID.

DATA TYPE: character string
LENGTH: 256 characters or less
VALUE: Not fully standardized, but follows this general format, from left to right:

a) First character:
+ H=Human genome
« M =Mouse genome
b) One or two digit number:
« Series number — links meta-grid format with accession numbers on
array
¢) Dash "-" character delimiter
d) Two digit number:
+ Slide number in series
€) Underscore "_" or dash "-" delimiter
f) PMT (integer), followed by a delimiter
g) Gain (integer), followed by a delimiter
h) (optional descriptive string, followed by a delimiter)
i) String "Cy5" or "Cy3" to indicate fluorescent label used
j) (optional delimiter, followed by descriptive string)
For example: "H8-02_80_60_Cy5_2nd wash"
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NAME:
ALIASES:

DESCRIPTION:

DATA TYPE:

RANGE:

VALUE:

EXCEPTION:

NAME:
ALIASES:

DESCRIPTION:

DATA TYPE:
RANGE:
VALUE:

NAME:
ALIASES:
SEE ALSO:

DESCRIPTION:

DATA TYPES:

VALIDITY CHECK:

VALUE:

background

local background, noise

Fluorescence detected on the microarray slide outside of target spots where
no hybridization should occur. Reduced by proper washing of slide after
hybridization. Increases or decreases with PMT and gain settings during
Image Scanning stage.

Integer (double [64-bit floating point] after computing mean, median, or
mode)

0 to 65536 (29)

BAry stores mean, median, and mode calculations for all background
pixels local to each target spot on the array. Median background is typically
used for analysis.

AutoGene™ sometimes returns an error string of "NaN" (meaning "Not a
Number") when calculating local background. The BAmry Microarray Data
Warehouse replaces "NaN" with an empty or null value before importing
AutoGene™ data.

difference
log difference
Subtraction of log transformed data values for normalization. This is the log

transform equivalent of arithmetic ratios, since:

log A—log B=log (i;-)

Double (64-bit floating point)

4.82 to -3.00 (log [65536] to log [0.001])

As of 5/30/01, we are testing log difference for normalization as follows:
log (Jocal corrected target spot) —log (local corrected all array spots)

duplicates

replicates

flag, floor

Many microarray experiments will have two or more arrays (slides) printed
with identical accession numbers and treatments for repeat measurement of
expression. These identical arrays (slides) are referred to as duplicates.
boolean quality indicator flag; mean normalized duplicates

Defined by user during analysis. Default for fold change (ratio)
comparisons is 3.00, meaning duplicates with more than 3-fold difference
in expression are flagged as bad spots.

Duplicate comparisons are based on the following pseudo-code after setting
[Max (duplicate 1, duplicate 2)}

[Min (duplicate 1, duplicate 2))

Default Duplicate Fold Change = 3.00

afloor: Ratio=

Matthew J. Rodland
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NAME:
ALIASES:

SEE ALSO:
DESCRIPTION:

DATA TYPE:
VALUE:

NAME:
DESCRIPTION:

DATA TYPE:

VALIDITY CHECK:

VALUE:

NAME:
DESCRIPTION:
DATA TYPE:
VALUE:

NAME:
SUBSET OF:
DESCRIPTION:
VALUE:

If Ratio~ Duplicate Fold Change

Then Duplicate Flag — Bad

FElse Duplicate Flag = Good
The duplicate flag will be set as follows: 7rue means the duplicates are
good, False means the duplicates are bad. If the duplicate flag is True
(good), then the normalized values of the two duplicates are averaged.
When more than two (2) duplicates (replicates) are available, can simply
calculate mean of all duplicates (replicates) without flagging.

Const_FC
constant fold change
flag
A quality indicator flag to test whether a particular accession changes
expression beyond a given fold change across the entire experiment set.
This can be used to filter expression results by accessions whose expression
never changes in the entire experiment.
boolean quality indicator flag
Default value of Const FC =2.00
Flag is True if:
maximum normalized value of accession across all arrays
minimum normalized value of accession across all arrays >Const FC

otherwise Fualse.

Experiment 1D

Identifier for independent microarray experiments. Associates the arrays
(slides) printed with a given experiment.

character string ‘

Should be a valid Windows 9x/NT file or folder name

Not standardized at this time. Recommend name of experiment or name of
person performing the experiment, a space character, then the date the data
analysis was performed in MA-DD-YY format.

flag

A boolean or character indicator for filtering and/or quality control.
boolean or character

boolean: True or False; generally True = good, False = bad
character: varies

ESTs

accession numbers

EST — Expressed Sequence Tags

Can be filtered out of experiment results as unknown sequences, or linked
to known genes during cluster analysis.

Matthew J. Rodland
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NAME:
DESCRIPTION:

DATA TYPE:
VALUE:

NAME:

SEE ALSO:
DESCRIPTION:
DATA TYPE:
RANGE:
VALUE:

NAME:
SEE ALSO:
DESCRIPTION:

DATA TYPE:
LENGTH:
VALUE:

NAME:
ALIAS:
DESCRIPTION:

DATA TYPE:

RANGE:

VALUE:

NAME:
DESCRIPTION:

floor

A set minimum value for a given data element. If the given data element is
less than the floor value, the data element is set equal to the floor value,
thus restricting the low end of its range to a minimum value.

double (64-bit floating point)

User defined. For duplicate comparisons, the default floor value is 0.1

fold change

ratios, Const_FC, duplicates

Narrows the definition of ratios to describe relative gene expression.
Double (64-bit floating point)

0 to 65536 (2')

Default fold change to determine differential expression is 3.00

Default fold change to determine Const FC is 2.00

Narrows the definition of ratios to read as follows:

If ratio > 1, then the expression of X is fold change times (fold) greater than
Y.

If ratio < 1, then the expression of X is times (fold) less

1
fold change
than Y.

gene name
accession number

Descriptive name of accessions obtained from current GenBank or ResGen
databases, linked to accession number.

character string

100 characters or less

Names of known genes matching given accession number in UniGene or
ResGen databases.

intensity

signal

The amount of fluorescence detected from laser scanning using one or more
pixels of the resulting image on the computer.

integer (double [64-bit floating point] after computing mean, median, or
mode)

65536 (2 or 16-bit grayscale)

The mean, median, or mode of all pixels in a desired region (i.e. - target

spot or local background).

local corrected
The target spot corrected by removal of the local background.

Matthew J. Rodland
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DATA TYPE:
RANGE:
VALUE:

NAME:

SEE ALSO:
DESCRIPTION:
DATA TYPE:
RANGE:
VALUE:

NAME:
SEE ALSO:
DESCRIPTION:

DATA TYPE:

RANGE:
VALUE:

NAME:
SEE ALSO:
DESCRIPTION:

DATA TYPE:
RANGE:

VALUE:
NAME:
SEE ALSO:

DESCRIPTION:

DATA TYPE:
RANGE:

VALUE:

NAME:

double (64-bit floating point)
0 to 65536 (2'%)
Calculated using the following formula:
target spot intensity — local background intensity

log ratio
difference
A normalization method using log transformation of local corrected data.
double (64-bit floating point)
4.82 to -3.00 (log [65536] to log [0.001])
As of 5/30/01, we are testing difference of logs for log ratio normalization
as follows:
log (local corrected target spot)— log (local corrected all array spots)

meta-grid

meta-row, meta-col, sub-grid, position

Coordinate location of two-dimensional sub-grids printed on the original
array (slide). Used to track the position of accessions on the microarray.
integer

1001 to 998001 (999 x 999 grid) in position notation

In position notation, the first one to three digits without leading zeros are
the meta-row number from top to bottom. The next three digits are the
meta-col number from left to right. Refer to position for more information.

meta-col

meta-grid, meta-row, sub-grid, position

Column number of one sub-grid within a two-dimensional arrangement of
sub-grids.

position notation or integer

Position notation: 001 to 999 (three digits with leading zeros)

Integer: 1to 999

Column number of sub-grids from left to right, as printed on original array.

meta-row

meta-grid, meta-col, sub-grid, position

Row number of one sub-grid within a two-dimensional arrangement of sub-
grids.

position notation or integer

Position notation: 1 to 999 (one to three digits without leading zeros)
Integer:  1to 999

Row number of sub-grids from top to bottom, as printed on original array.

norm(alized) value
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SEE ALSO:
DESCRIPTION:

DATA TYPE:
RANGE:
VALUE:

NAME:
SEE ALSO:
DESCRIPTION:

DATA TYPE:
RANGE:
VALUE:

NAME:
SEE ALSO:
DESCRIPTION:

DATA TYPE:
RANGE:
VALUE:

NAME:
ALIASES:
DESCRIPTION:

NAME:
DESCRIPTION:

DATA TYPE:
RANGE:

(20%) trimmed mean, log ratio

The relative intensity of each target spot, corrected for systematic variation
of arrays (slides) across entire experiment set.

double (64-bit floating point)

0to 65536 (2')

Dependent on the chosen normalization method for data analysis.

position
meta-grid, meta-row, meta-col, sub-grid, sub-row, sub-col
A notation to describe the absolute location of each target spot (accession)
on a given array (slide). Used to sort by grid location and locate the original
spot on the array.
position notation (dertvative of integer type)
1001001001 to 999999999999
Concatenation of 10 to 12 digits as follows:
First one to three digits without leading zeros = meta-row
Next three digits with leading zeros = meta-col
Next three digits with leading zeros = sub-row
Last three digits with leading zeros = sub-col

ratio

fold change

Method of determining relative expression by dividing the norm value of
one experimental condition by another.

double (64-bit floating point)

0.001 to 65536 (2'°)

spot

target, target spot

Circular area of cDNA printed on a microarray slide from a clone library.
This is the region of the microarray slide where hybridization of a matching
flourescent labeled probe to the spotted cDNA will occur. After image
analysis, this area is represented as a circular group of pixels, detected and
intensity computed using AutoGene™ software from BioDiscovery.

selected
A flag that indicates whether a spot was marked as bad by the technician

using AutoGene™ from BioDiscovery during the image analysis process or
given an error value such as "NaN" (Not a Number) when imported to the
BArry Microarray Data Warehouse.

integer

binary

Matthew J. Rodland
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VALUE:

NAME:

SEE ALSO:
DESCRIPTION:
DATA TYPE:
RANGE:

VALUE:

NAME;:
SEE ALSO:
DESCRIPTION:

DATA TYPE:
RANGE:
VALUE:

NAME:

SEE ALSO:
DESCRIPTION:
DATA TYPE:
RANGE:

VALUE:

NAME:

DESCRIPTION:

DATA TYPE:

RANGE:
VALUE:

0 = bad (deselected), 1 = good (selected)

sub-col

sub-grid, sub-row, meta-grid, position

Column number of one spot in a two-dimensional sub-grid.

position notation or integer

Position notation: 001 to 999 (three digits with leading zeros)

Integer: 1 to 999

Column number within a sub-grid from left to right, as printed on original

array.

sub-grid

sub-row, sub-col, meta-grid, position

Coordinate location of spot printed in a two-dimensional arrangement on
the original array (slide) within a given meta-grid. Used to track the
position of accessions on the microarray.

position notation

001001 to 999999 (999 x 999 grid) in position notation

In position notation, the first three digits with leading zeros are the sub-row
number from top to bottom. The next three digits with leading zeros are the
sub-col number from left to right. Refer to position for more information,

sub-row

meta-grid, meta-col, sub-grid, position

Row number of one spot in a two-dimensional sub-grid.

position notation or integer

Position notation: 001 to 999 (one to three digits with leading zeros)
Integer: 1 to 999

Row number within a sub-grid from top to bottom, as printed on original

array,

(20%) trimmed mean

A normalization method which removes outliers before computing the
mean of all spots (accessions) on the array (slide)

double (64-bit floating point)

0 to 65536 (2'°)

Remove top 10% and bottom 10% of all local corrected values on the slide,
then compute the mean of the remainder. Divide the local corrected value
for each accession on the slide by the trimmed mean.

Matthew J. Rodland
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APPENDIX B - MICROARRAY PREPARATION
PROTOCOLS

DNA Preparation of Clones for Printing: Amine Modification of DNA
&Polymerase Chain Reaction (PCR) Protocol

Use Amine C-12 Primers:

GF 200 Forward: C-12 Amine 5> CTGCAAGGCGATTAAGTTGGGTAAC Y
GF 200 Reverse: C-12 Amine 5°
GTGAGCGGATAACAATTTCACACAGGAAACAGC Y

This protocol calls for a 100 A (100 ) total reaction volume.

Our typical “master mix” formula would be: Rxn. voiumefor  Final volume
4-96 well per indiv. well
plates

[500nM] final concentration forward primer 5A 2060ul 5ul

[5600nM] final concentration reverse primer 5\ 2060pl Sul

(Diluted from 10uM stock)
10x Magnesium free buffer 10A 4120pl 10ul

MgCl, (add to select desired specificity) 5\ 2060 5ul
(Diluted from 25mM stock)

[200uM] final concentration dNTP’s 1A 412pl 1ul
Amersham Pharmacia Biotech ™
(Product # 21-2094)
(Diluted from 20mM stock)

Taq polymerase (added last) 0.51 206ul 0.5ul
(Reaction Buffer, MgCl, & Taqg polymerase
from Promega Catalog #M1865)

DEPC H:0 (added to bring to target volume) XA 29,458l 71.5ul
Total Volume: 98\  40,376ul 9gul
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PCR checklist:
Multiply each of the above by the total number of reactions required.
*Remember fo add Taq polymerase last.
Aliquot each 98ul reaction to 100 PCR reaction tube.
Add 2pl of overnight culture/glycerol stock (“stabs”) or “housekeeping gene” to
equal 71004l total.
Keep track of loading order; label if necessary.
Load into DNA engine and run with the following cycle protocol:
Step 1: 96°C for 30 seconds
Step 2: 94°C for 45 seconds
Step 3: 55°C for 45 seconds
Step 4: 72°C for 2 minutes & 30 seconds
Step 5: Goto 2, 35 times
Step 6: 72°C for 5 minutes
Step 7: 4°C forever
Step 8: End
*Use Heated Lid Option

PCR Clean Up (Array It ™ protocol):

1. Spin down plates from PCR reactions to insure entire volume is in apex of
tube.

2. Position Super Filter 100 on 96-well vacuum manifold.

3. Add 500ui of Array It Binding Buffer to each well of the Super Filter 100
using a 12-channel pipetting device set for 500ul and should be performed as
quickly as possible (preferably 1’ per plate) to minimize loss of Binding Buffer
due to gravity flow. Be careful to not splash contents between wells.

4. Quickly add 100ul per well of PCR sample for a 96 well plate to the
corresponding well of the Super Filter 100; very crucial for later database
analysis. Transfer should take place as quickly as possible (<1’) to prevent
buffer loss due to gravity.

5. Immediately mix the Binding Buffer and the PCR sample thoroughly by
pipetting up and down 10 times with the 12 well pipetting device. Mixing
should once again be completed ASAP (<5’) to limit loss of Buffer due to
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gravity. *Special care should be taken to insure that wells are not
splashed when adding and mixing PCR product*

6. Apply a gentle vacuum to the Super Filter 100 to allow binding of the PCR
product to the Super Filter 100 membrane. Primers, nucleotides, single-
stranded products, salts, and other impurities pass through the Super Filter
100 into the waste reservoir at the bottom of the vacuum filtration apparatus.

7. Shut off the vacuum and add 500pl of Wash Buffer to each well of the Super
Filter 100 with a 12-channel pipetting device. Apply gentle vacuum until
Wash Buffer has passed through the membrane; repeat this process again
with another 500l Wash Buffer. These two washes are used to remove
Binding Buffer and PCR sample that has adhered to the wall of the wells
during mixing.

8. Repeat wash once again with 100l of Wash Buffer; Apply vacuum until
membrane is dry (~3-4"); this will insure trace contaminants and Wash Buffer
are removed and the membrane bound PCR product is fixed to the
membrane.

9. Remove the Super Filter 100 from the vacuum manifold and place it on an
“unmarked’ 96-well plate.

10. Centrifuge the two plates for 5’ at ambient temp @ 500g (600rpm) to remove
small amounts of Wash Buffer. Discard the unmarked microplate containing
the residual Wash Buffer.

11. Transfer the Super Filter 100 containing the bound PCR product onto a
“marked” 96-well microplate.

12. Rehydrate the Array It Super Filter by adding 100ul per well of DEPC H,O
with automatic pipetting device (time not critical here); for maximal recovery
of DNA be sure to add DEPC H,0 directly to the surface of the Super Filter
membrane.
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Preparation of Printed Slides for Hybridization & Scanning

Silylated slides will be used for printing microarray (TeleChem. Intl.
Superaldehyde CSS-100, CEL Associates, Inc.).

Processing of silylated slides after printing:

Schiff Base Attachment:

1. Slides are washed once in a 0.2% SDS immersion for 1’
2. Rinse twice in ddH,;0 for 1’ each time

3. Treatin sodium borohydride solution, make fresh each time (1.0g NaBH, in
300mL of PBS and 100mL of 100% EtOH) for 5'.

4. Rinse slides once in ddH.0 for 2" at 95°C.

5. Rinse once in 0.2% SDS for 1.

6. Rinse twice in ddH;0O, air dry, and store in the dark at RT.

Fluorescent Labeling Probes:

INDIRECT, BIOTINYLATED CDNA SYNTHESIS

Total Reaction volume is 20 (20p)

*5ug of total RNA or 1ug of poly A+ from desired source. Prepared using CsCls,
Qiagen, or Trizol methods.

Basic schematic of both Indirect and Direct labeling (below) is the same, as such:

RNA/Oligo/ H-0:
RNA [5ug total or 1ug poly A+] 5A
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Oligo dT primer (24) [1ug/ui] 21

N-1 1A
H:O (to volume) XA
Total: 7.9\

Reaction Buffer:

5x Buffer (GIBCO-BRL,; see below): 43
0.1M DTT [10mM final] 23
10mM dNTP’s (AGT) [300um final] 0.6\
2 mM dCTP “cold” (unlabeled) [150pum final] 1.5\
dCTP-Biotin-11 [150um final] 3A
Superscript™ Il (Reverse Transcriptase) (200 units) 1A
Added absolutely last to each tube; starts reaction.
Total: 12.1A
Plus above =(7.9\) = 20.0M

1. Place the RNA/Oligo/ H,O mixture in 65°C water bath for 10’ and then
immediately on ice for 2'.

2. Combine RNA/Cligo/ H,O tube with Reaction Buffer

3. Allow Reverse Transcription to proceed for 60-120' @ 37°C
4. Then @ 45°C for 15’ and spin down.

5. Add 180pul of DEPC H.O, making total volume 200pl.

6. Add 20ul of 3M NaAc, and 400ul of EtOH, and precipitate the product @
-20°C for 30

7. Spin down for another 30’ to pellet product; discard the supernatent.
8. Vacuum dry (lyophilize) the peliet.

*Verify purity both via 1%agarose gel and Optical Density (OD) obtained from
spectrophotometer (260/280 Ratio should be 1.6 or greater
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First strand buffer: 4ul  (1x Buffer)
250mM Tris-HCI
375m M KC!
15mM MgCl;
10mM dNTP’s (C,G,T): 0.6ul 300uM dNTPs
10ul of dCTP (each as 100mM stock + 70ul dH,O)
10ul of dGTP
10 of dTTP

N-1 is an internal RNA control for labeling efficiency.

Superscript |l Catalog #18064-014 Also Contains 5x First Strand Buffer

DIRECT LABELING, CDNA SYNTHESIS (LABEL DIRECTLY
INCORPORATED INTO CDNA)

Total Reaction volume is 20A (20l
2ug of total RNA from desired source.

Basic schematic is such:

RNA (1-2ug poly A+ or 5ug total) XA 1-5ul

Oligo dT primer (24) (50pmol) 22 2ul

N-1 (for “spiking” reaction) 1A 1ul

H:O (to volume) XA xpul
Total A

Place the above mixture in 65°C water bath for 10" and then immediately on ice
for2'.

While the above is incubating; Add the following to a clean 1.5mL tube:
5x Buffer (GIBCO-BRL,; see below): 4\ 4nl
0.1M DTT [10mM final] 2\ 2ul
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10mM dNTP’s (AGT) [300um final] 0.6 0.6l

2 mM dCTP cold [150um final] 1.5M 1.5ul
dCTP-Cyanine 3 or 5 [150um final] 3A 3.0ul
Superscript |1 i 1.0
Total: 12.1
Total Volume 20ul

1. Add each of the above reactants in the order in which they appear; allow
Reverse Transcription to proceed for 60-120° @ 37°C

2. Then @ 45°C for 15’ and spin down (optional)
3. Add 180ul of DEPC H.O, making total volume 200pl.

4. Add 20ul of 3M NaAc, and 400ul of EtOH, and precipitate the product @
-20°C for 30’

5. Spin down for another 30’ to pellet product; discard the supernatent.
6. Vacuum dry (lyophilize) the pellet

1-2ug of poly A+ RNA, verify purity both via 1%agarose gel and Optical Density
(OD) obtained from spectrophotometer (260/280 ratio should be 1.6 or greater)

N-1 is an internal RNA control for labeling efficiency

Superscript Il Catalog #18064-014 Also Contains 5x First Strand Buffer

Hybridization:

1. Re-suspend purified, labeled probe cDNA in DEPC H:O to either:
10ul DEPC H.0 if Slide/Cover slip will be utilized for hybridization, or
30ul DEPC H,0 if Perfusion Chamber is used (CoverWell™ Grace Bio-

Labs,
Catalog # PC1L-0.5)
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2. Boil probe for 5’ in hot water bath to ensure denaturation.
2
3. Heat Ribohybe (see recipe’s below); to 50°C

4, Add entire volume of suspended probe to either 70ul Ribohybe (for
slide/cover); or 300ul Ribohybe if slide chamber will be used for
hybridization.

5. Apply solution to slide/cover or slide/chamber and place in humidifying
hybridization chamber; place in incubator @ 50°C overnight (8 to 24 hours).

Recipe’s for above:

50x Denhardt's (stored @ -20°C)
10g Ficoll 400
10g Polyvinylpyrrolidone (PVP)
10g Bovine Serum Albumin Fraction V (BSA) (stored @ -4°C)
Bring to 1L volume/aliquot into 100mL, store @ -20°C

Ribohybe solution; for 1L:
500mL Formamide (extremely volatile)
250mlL 20x SSC
100mL 50x Denhardt's (stored @ -20°C)
50mL 0.5M Phosphate buffer, pH 7.0
50mL SS DNA 10mg/mL (stored @ -20°C)
25mL yeast tRNA (stored @ -20°C)
50g SDS (use mask/goggles)
Warm gently while stirring, add SDS last don't heat over 50°C (volatile), pH 7.4
Aliquot into 300-400mL in 500mL bottles. Store @ -20°C.
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PREPARATION OF SLIDES FOR SCANNING

Protocol modified from the Renaissance® TSA ™ Direct (Cyanine 3)
(Tyramide Signal Amplification) Kit by New England Nuclear Catalog #
NEL704A

Reagents also available separately.

13. Quick wash slides to remove probe with 2x SSC (dilute from 20x) for 1’ two
times and once

on rocker for 5.

2. Heat 0.2x SSC, to 50°C and quick wash slides twice and then once more on
rocker for 5.

3. *(See Below) Block slides for 30’ in 500ul TNB buffer @ RT; being careful
not to let any

section of the slide dry out-check periodically.

4. Add 500l Streptavidin-HRP (kit) diluted 1:100 in TNB buffer
(5 Strept-HRP conjugate + 495ul TNB) to slide @RT for 30’

5. Wash 3x in TNT buffer for 5’ each wash
6. Add Cyanine 3-Tyramide conjugate to slides (6pl stock + 300pl
amplification/diluent buffer)
for 10"
7. Wash 3x for 5" with TNT buffer @ RT
8. Rinse with 0.2x SSC for 2.
9. Centrifuge @ 800rpm for 2-5’ to thoroughly dry slide.

Slide is now ready to scan; take to Microarray lab.

Recipe’s for above:

TNB buffer:

&
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0.1M Tris-HCI, pH 7.5
0.15M NacCl
0.5% Blocking Reagent (supplied in Kit)

TNT buffer:
0.1M Tris-HCI, pH 7.5
0.15M NaCl
0.05% Tween 20
Sterilize with 0.22um vacuum filter

20x SSC:
For 4L,
701.4g NaCl
353.0g Citric Acid

For Direct Labeling; do steps 1&2 only, followed by drying and scanning as

usual.

Matthew J. Rodland
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REVERSE TRANSCRIPTION PROTOCOL

Isolate RNA using Qiagen-RNAEasy kit, Cesium Chloride, or
Trisol.
Reverse Transcription
Steps:
1. Total RNA = 1 or 2 Ug

Oligo AT Primer = 25 pmoles

RT Cocktail-To be added last (See Below) = 8 L

H20 = bring up to 20 puL

RT Cocktail per reaction (Gibco Superscript II Kit is
recommended)

5X 1st Strand Buffer = 4 UL

0.1 mM DTT

2 UL

10 mM ANTP

1 puL
Superscript II Enzyme = 1 UL

2. Add H20, then RNA, and Oligo dT primer, and let
stand at room

temperature while preparing the RT cocktail.

3. Add RT Cocktail to the tubes containing the H20, RNA
and Oligo 4T

primer.

4. Cap the tubes securely, and place in a PCR Block /
Thermal Cycler

for the following program:

a. 37° ¢ for 60 minutes
b. 45° C for 15 minutes

¢. 95° C for 5 minutes
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d. (Optional) 4° C until removal

from PCR Block

PREPARATION OF RT PRODUCT FOR QUANTITATIVE PCR

1. Prepare 10 UM, 100 pL stocks of the 7700 forward and
reverse primers,

and the corresponding probes. The Tagman primers and probe
can be designed

using the computer program, ABI Primer Express.

2. Spin the RT Tubes at 1500 to 2000 rpm at 4 degrees
Celsius for 5

minutes to collect the RT product. Spec the ¢cDNA at 260 nm
to

determine its concentration and dilute 5 PL of the cDNA in
H20 to a

final concentration of 20 ng/pL.

3. The cDNA samples and the respective primers and probes
are now ready

to undergo quantitative PCR and should be stored separately

to prevent contamination of the primers and probes.

QUANTITATIVE PCR PROTOCOL

Reagents per reaction:
cDNA = 100 ng , 5 UL

0.75 UL

Gene of Interest Forward Primer (10uM)

Gene of Interest Reverse Primer (10uM) 0.75 ML

Gene of Interest Probe (LOuUM) = 0.25 uL

1
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Housekeeping Forward Primer (10uM) 0.25 uL

0.25 uL

i

Housekeeping Reverse Primer (10UM)
Housekeeping Probe (10uM) = 0.25 uL
Applied Biosystems PCR Master Mix = 12.5 uL
Master Mix Components

10X TagMan Buffer A

25 mM MgCl2 Solution

dATP, dCTP, d4dGTP, dUTP

AmpliTag Gold

AmpErase UNG

H20 = 5.0 pL

Quantitative PCR :

Run ARI 7700 Segquence Detector
1. 50° C for 2 minutes

2. 95° C for 10 minutes
3. Data Collection Stage
a. 95° C for 15 seconds
b. 60° ¢ for 1 minute
c. 40 cycles of steps 3a and 3b

4., 4° C until removal from Sequence Detector
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QUANTITATIVE PCR DATA COLLECTION AND ANALYSIS

The ABI PRISM 7700 Sequence Detection System integrates a
PCR-based assay and hardware/software instrumentation for
high-through-put quantitation of nucleic acid sequences.
Qunatitative detection of specific nucleic acid sequences is
possible using the fluorogenic 50 nuclease assay. With this
chemistry, a fluorogenic probe complementary to the target
sequence is added to the PCR reaction mixture. The probe
consists of an oligonucleotide with a reporter and quencher
dye attached. During PCR, if the target of

interest is present, the probe anneals specifically between
the forward and reverse primer sites. The nucleolytic
activity of the polymerase cleaves the probe, which results
in an increase in the fluorescence intensity of the reporter
dye. To induce fluorescence during PCR, laser light is
distributed to the sample wells via a multiplexed array of
optical fibers. The resulting fluorescent emission returns
via the fibers and is directed to a spectrograph with a
charge-coupled device (CCD) camera.

For each sample, the CCD camera collects the emission data
between 520 nm and 660 nm once every few seconds. The
software analyzes the data by first calculating the
contribution of each component dye to the experimental
gpectrum. The reporter signal is then normalized to the
fluorescence of an internal reference dye. Peak normalized
reporter values are averaged for each cycle and plotted
versus cycle number to produce an amplification plot.

The parameter, CT (threshold cycle), is defined as the
fractional cycle number at which the reporter fluorescence
generated by cleavage of the probe passes a fixed threshold
above baseline. A plot of the log of initial target copy
number for a set of standards versus CT is a straight line.
Quantitation of the amount of target in unknown samples is
accomplished by measuring CT and using the standard curve to
determine starting copy number. The entire process of
calculating CT s, preparing a standard curve, and
determining starting copy number for unknowns is performed
by the software of the 7700 system.
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Relative gene expression can also be determined based on the
threshold cycles of the gene of interest and of the internal
reference gene. Use of a reference or housekeeping gene
accounts for differences in starting cDNA. Subtraction of
the CT of the housekeeping gene from the CT of the gene of
interest yields:

CT Gene of interest - CT Housekeeping = ACT
The Change in CT, ACT, can then be normalized
ACT sample -ACT calibrator = AACT
Utilizing the normalized value, AACT, comparative fold

values can be calculated:
Relative Quantification = 2-AACT
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Quantification of dsPCR product protocol for Bio-Rad
Fluoromark Readers

Read mode: multi-plate
Wavelengths: excitation: 485nm, emission: 538nm

Data display Option:
RFU

To set up standard curve

make a 2 ng/ml lambda DNA stock in TE buffer

[final] ng/ml TE(ul) lambda DNA stock
1 999 1 ul

10 990 10 w

50 950 50 pl

100 900 100 pl

200 800 200 pl

Dilution of PicoGreen dye:
100 pl of PicoGreen stock solution makes 20 ml working solution.

Add 100 pl of PicoGreen stock solution into 19.9 ml TE buffer. Wrap tube
with foil to prevent exposure to light.

PCR products dilution:
1. Add 198 pl of TE to 96-well plate, then add 2 ul of PCR product to the
96-well plate, mix well by pipetting up and down. (this is 100x

dilution)

2. Add 90 pl of TE buffer to black 96-well plate. take 10 pl of diluted PCR
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product into black éssay plate, mix well by pipetting up and down.
(This is 10x dilution)

3. Add 100 pl of diluted PicoGreen solution into each 96-well plate, mix
well. (This is 2x dilution, so final dilution is 2000x)

4. Incubate at room temperature for 2-5 min then read on fluorometer.

(For reading multiple plates check the reference of Microplate Manager 111
software manual page 11-14)

Use Bio-Rad Fluoromark Readers

1. double click PROT dsDNA mult on Mac computer to open the program

2. Choose Read Multiple Plates from the Plate menu
the reader setup dialog box will appear

3. Choose Reader Setup conditions and click OK
before each plate is read, a dialog box will appear, asking you to

enter a descriptive title for the plate.

4. Give a title for the first plate and click OK.
(The same dialog will appear before each plate)

5. When there are no more plates to read, click STOP

6. Enter a description for the set of plates in the Plate Description window.
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Under Transformations:
only flag box 1: @-#, #=0 (# is the blank well)

Shake: OFF

Leave Transformed Response box blank
Leave Transformed Unit box blank

7. After reading, go to Plate ID select each plate, then go to Analysis
menu open Template and Data to display results.

Mattﬁew ). Rodlénd Preparation of Slides for chqniné, - Page 64




APPENDIX C - AUTOMATED NORMALIZATION
PROTOCOL

Automated Normalization Protocol

Srinavasa Nagalla Lab Microarray Core Facility
Written By: Matthew J. Rodland
rodlandm@ohsu.edu

Please report any bugs in the Automated Normalization program to Matthew
Rodland at rodlandm(@ohsu.edu

9/25/2001
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Automated Normalization Protocol - Table of Contents

Section 0: Preparation ,
Section 1: Import Raw Text Data from BArry Oracle Data Warehouse to Excel
Section 2: Local correction for background (mean signal — median background)
Section 3: Normalize Excel Data
20% Trimmean all genes by channel / slide (preferred method)
Meta Grid Normalization
Section 4: Analyze Duplicates
Section 5: Calculate Ratios (by slide)
Section 6: Add Gene Name to Accession Number
Section 7: Sort Results by Accession Number
Section 8: Filter Ratios by Fold Change
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SECTION 0: PREPARATION

1. Extract raw expression data from BArry Microarray Data Warehouse, noting the
location of the saved file. (e.g. - P:\users\yourname\raw_data_example.txt)

2. Run Microsoft Excel (97 or 2000)
3. Select Tools » Macro » Macros... from the Menubar
a. Select Rodland Macro... from the Macros in drop down menu.
b. Select Automated Normalization from Macro name list
¢. Click the Run button
Shortcut: Press <CTRL> + <SHIFT> + A on the keyboard

4. The Microarray Data Analysis window appears. Each checkbox selects which
steps of the Automated Normalization are going to be run. These steps will be run
in the order listed on this window, from top to bottom. Each step is described in
their own section in this protocol.
mala alsi

I” Local correction for background {mean signal - median background)

I" Mermalize Excel Data
{*' 20% Trimmean all genes by chanrel | slide (praferred methad)
" Meta Grid normalization

™. Analyze Duplicates

[~ Caleulate Ratios (by slide)

[ Add Gene Name to Accession Number

I Sort results by Accession Number

I” Filter ratios by Fold Change

QK Caricel
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SECTION 1: IMPORT RAW TEXT DATA FROM BARRY
ORACLE DATA WAREHOUSE TO EXCEL

Run the Automated Normalization program as described in Section 0 with the checkbox
next to Import Raw Text Data... selected.

1. Open dialog box appears:

Laok i rf,J Example _vj wE & s, » Todls »
: [ Name J Size { Tvpe f Modified
]‘_Eéj raw_data_example.txt 1764 KB Text Document 10f13/00 12:37 PM |

= 7

G

%
;
l
§

: File name: [ — - El

e e A

| L
Files of type: ]Pﬁt Flles (*bxt) ZI Cancel l

2. Browse to the folder where the raw data saved from the BArry Microarray Data
Warehouse is located.

3. Select the text file saved from the BArry Microarray Data Warehouse at noted
previously (e.g. - browse to P:\users\yourname\raw_data_example.txt), then click
the Open button.
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4. Save Data As dialog box appears:

T e = R T L DR e ] ]

Savein' IQ Exe;mple ? =08 X + Tools -

|

{

| gt " File pame:
WetEaiders A T
« ety i | 2ave astype’ IMrcrosoFt Excel Workbook (*.xls) ;l Cancel 1

5. Browse to the location you wish to save the normalized data to (e.g -
P:\users\yourname\Example)

6. Type the desired name of the normalized data file in the File name: field (or
accept the default norm data MM-DD-YY where MM-DD-YY is today's date).

7. Make sure the Save as type: field reads Microsoft Excel Workbook (*.xls). This
file type should be set by default.

8. Click on the Save button.
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SECTION 2: LOCAL CORRECTION FOR BACKGROUND
(MEAN SIGNAL - MEDIAN BACKGROUND)

This step in the Automated Normalization assumes that you have the raw text data from
the BArry Microarray Data Warehouse imported to Excel by running the Import Raw
Text Data... step as described in Section 1. If you have created and saved the spreadsheet
previously, then open that spreadsheet now. The raw text import worksheet created in
Section 1 should be open in Excel before running this step.

Run the Automated Normalization program as described in Section 0 with the checkbox
next to Local correction for background... selected.

1. Add Local corrected Worksheet dialog box appears:

.&d ocal cnrected Wworksheet |

Enter name of Local conected worksheet:

{ Cancel

=

2. Accept the default name, or type the name of the worksheet for calculating and
storing the microarray data locally corrected for background. Remember that an
Excel worksheet is one page of an Excel workbook, accessible by clicking on the
tab with the given name of the worksheet at the bottom of the screen. An Excel
workbook is the complete Excel file as stored on disk, containing one or more
worksheels.

3. Click OK to continue, or Cancel to exit the Automated Normalization,

4. If a worksheet by the same name already exists, you will see the following dialog
box, otherwise the Local correction for background step is done:

| Beplace Worksheet X

| :
Do you want to replace the existing work sheet named "local''?

Yes i ’ vtamcel]

5. Choose from the following:

a. Click Yes if you wish to overwrite the existing worksheet with the same
name (shown in quotes) and replace it with the new data.

b. Click No if you wish to go back to step 1 and rename the new worksheet.

c. Click Cancel to stop the Automated Normalization and return to Excel.

Matthew J. Rodland Appendix C — Automated Normalization Protocol - Page 70




SECTION 3: NORMALIZE EXCEL DATA

This step in the Automated Normalization assumes that you have the local corrected data
worksheet in Excel created by running the Local correction for background... step as
described in Section 2. If you have created and saved the spreadsheet previously, then
open that spreadsheet now. The local corrected worksheet created in Section 2 should be

open before running this step.

On the Microarray Data Analysis dialog box, you have a choice of normalization
methods. Each method will be described separately in the following subsections.

20% TRIMMEAN ALL GENES BY CHANNEL / SLIDE

Run the Automated Normalization program as described in Section 0 with the checkbox

next to 20% Trimmean all genes... selected.
1. The 20% Trimmean Check Data Format dialog box appears:

! 202 TRIMMEAN Check Data Farmat ]

20% TRIMMEAN NORMALIZATION - Data Format:
Accession Number | Array1 Local corrected | (repeat all bist Accession Number For Array2,

etc.) | (Meta-grid data optional)

* WARNING ™ -- If the data on the current worksheet doss not match this format, select
"Cancel" and reformat the worksheet properly, otherwise vour data may be corrupted

andjor this script will fail.

2. Make sure that the open worksheet is in the format described in the dialog box,

where the vertical bars delimit each column of the worksheet, from left to right.
Follow the dialog boxes instructions. The following illustration shows an example
of the proper format for data prior to running the 20% Trimmed Mean Normali-
zation step:

NEN N ey i ESl & i biocizs )
H1-01 Array H1-02 Array el

Accession |1 Locat 2 Local Meta-row  (Meta-col  (Sub-tow  (Sub-col (Pasition

1 [Number  corrected  corrected  |rete .} optianal) optional)  oplionaf)  optional)  ophional)
|AA123456 150042 3360502 .. : 2 4 1 15 2004001015

U4 p [¥\sheets ( sheetz [ Shest3 / _— P
. If the current worksheet is not in the proper format, click on Cancel to exit the
Automated Normalization and manually edit the worksheet before running the
Automated Normalization program again. Otherwise, click on OK to continue.

L

4. The Add 20% Trimmed Mean Normalization Worksheet dialog box appears:

Matthew J. Rodland
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Add 20% Tnmmed Mean Normalization Woerksheet E3 ‘

Enter name of 20% Trimmed Mean Nomalization

workshest:
Cancel l

EOGER

5. Type the name of the worksheet for calculating and storing the normalized data,
or accept the default name. Remember that an Excel worksheet is one page of an
Excel workbook, accessible by clicking on the tab with the given name of the
worksheet at the bottom of the screen. An Excel workbook is the complete Excel
file as stored on disk, containing one or more worksheets.

6. Click on OK to continue, or Cancel to exit the Automated Normalization.

7. If a worksheet by the same name already exists, you will see the following dialog
box, otherwise the Normalize Excel Data step is done:

| Replace Worksheet

Do you want to replace the existing worksheet named “local’'?
Yes L‘ancell

8. Choose from the following:
a. Click Yes if you wish to delete the existing worksheet with the same name
(shown in quotes) and replace it with the new data.

b. Click No if you wish to go back to step 4 and rename the new worksheet.

c. Click Cancel to stop the Automated Normalization and return to Excel.

META GRID NORMALIZATION

This method is currently undocumented and not recommended to be used for microarray
data normalization. If you wish to use this method and have questions, contact Matthew
Rodland at rodlandm(@ohsu.edu or Mark Turner at turnerm(@ohsu.edu
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SECTION 4: ANALYZE DUPLICATES

This step in the Automated Normalization assumes that you have the normalized data
worksheet in Excel created by running the Normalize Excel Data step as described in
Section 3. If you have created and saved the spreadsheet previously, then open that
spreadsheet now. The normalized data worksheet created in Section 3 should be open
before running this step. Run this step only if you have duplicate arrays in your experi-
ment and chose not to compare them manually.

Run the Automated Normalization program as described in Section 0 with the checkbox
next to Analyze Duplicates selected.

. The Duplicates Check Data Format dlalog box appears

DUPLICATES Check Data Format <]l
DUPLICATES - Data Format:

Accession Number | Arrayl Dupll Norm | Arrayl Dupl2 Norm | (repeat all but Accession
Kumber for Array2, etc.) | {(Meta grid and position data optional)

NO GENE NAMES should be on this worksheet

* WARNING * — If the data on the current worksheet does not match this format, select
"Cancel" and reformat the worksheet properly, otherwise your data may be corrupted
andfor this script will fail,

2. Make sure that the open worksheet is in the format described in the dialog box,
where the vertical bars delimit each column of the worksheet, from left to right,
Follow the dialog boxes instructions. The following illustration shows an example
of the proper format for data prior to running the Ana]yze Duplicates step:

2§ Booki [C[oIx]
feshats 2 e ey D | e
H1-01 'H1-02 H1-03 H1-04 —
Accession JArray 1 Array 2 ‘Array 3 éArray 4

Cancel

1 _|Number _1Duplicate 1 Duplicate 1 Duplicate 2 Dupllcate 2
| 2 |AAT23456 500 6.00 200 a.00
L - B Ll
i K1 i M\ r|m2l] norm .{ local ,{raw data f [EE -b]r;

3. If the current worksheet is not in the proper format, click on Cancel to exit the
Automated Normalization and manually edit the worksheet before running the
Automated Normalization program again. Otherwise, click on OK to
continue.The Duplicates dialog box appears:
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Duplicates [ %] |

Floar value for individual spots: l 0.1 [ Ck =
Fold Change between good duplicates: I 3_'0

Cancel

Constant Fold Change between experiments: ’ 2.0

4. The default settings for duplicate comparison are shown in the dialog box. You
may change these to suit your particular experiment as follows:

a. Floor value for individual spots: Any accessions with normalized values
below the floor value are set to the floor value before comparing dupli-
cates. This assumes any accessions whose normalized value is below this
number does not have a detectable level of expression in this experiment.
The default value of 0.1 for the 20% Trimmed Mean Normalization
would set the minimum detectable level of expression to 10% of the
average gene on the array.

b. Fold Change between good duplicates: This value sets what multiple is
used to determine a "true" difference in expression between duplicates.
The default value of 3.0 means that an accession whose normalized value
is at least 3.0 times greater or less than its duplicate is considered to be
differentially expressed, thus the duplicates do not match. Any duplicates
that fail this comparison have their duplicate flag labeled as False on the
worksheet, meaning that this accession has a bad duplicate.

c. Constant Fold Change between experiments: This value sets what
multiple is used to determine which accessions have no measurable
change in expression across the entire experiment (all arrays). The default
value of 2.0 means that an accession whose maximum normalized value
across all arrays is not at least 2.0 times greater than its minimum normal-
ized value across all arrays has no measureable change in expression
across the entire experiment. Any accessions that have no measureable
change have their Constant FC (fold change) flag set to False on the
worksheet, meaning that the accession will be excluded from analysis by
default.

5. Click on OK to continue, or click Cancel to exit the Automated Normalization.

6. For each pair of duplicates, the Name Duplicates dialog box appears:
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Nome Duplicates K4
Enter the name [experiment condition] for duplicates
H8-01_B0 B0 Cy5 2ndwash and

H8-01290_75_Cy3_2ndwash Carcel |

ISampIell

7. Type a descriptive name for the two arrays named in the dialog text so you can
identify the results. It is highly recommended that you name these with a descrip-
tive label of the experimental condition used for this array pair.

8. If the two arrays listed in the dialog test are not duplicates:

a. Click Cancel to exit the Automated Normalization.

b. Manually edit the normalized data worksheet so that duplicate pairs are
always located in adjacent columns, starting one column to the right of the
Accession Number.

c. If an array has no duplicate, either place a copy of the same array in the
next column to the right, or move the column to a separate worksheet then
move it back after running the Analyze Duplicates step of the Automated
Normalization.

d. Run the Analyze Duplicates step of the Automated Normalization again
and go back to step 1 above.

9. Click on OK to continue, or Cancel to exit the Automated Normalization and end
here.

10.1f there are more duplicates to name, you will see the Name Duplicates dialog
box again, repeat steps 7 to 10 above.

11.After a few minutes of processing, the AutoFilter Duplicates dialog box appears:

AutoFilter Duplicates B

Choose method of duplicate selection:

> Automated duplicate selection: filters out average normalized
values for bad duplicates, leaving bad duplicates empty.

¢~ Manual duplicate selection: exits this automation script so that
duplicates can be filtered manually

0K Cancel

12.You have two choices here:
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a. In most cases, you will want to click OK with the Automated duplicate
selection option selected. This will filter the duplicates automatically,
replacing any accessions on each array whose Dupl (duplicate) flag or
Const FC (constant fold change) flag is False (meaning bad) with a null
(blank) value. Go on to step 14.

b. Alternately, you can select the Manual duplicate selection option and
click OK. This option will exit the Automated Normalization so that you
can manually filter the averaged duplicates using the Dup!/ and Const FC
flags. If you choose this option, you have completed the Analyze Dupli-
cates step of the Automated Normalization and can stop here.

13.A new worksheet named dup! data is created automatically, listing the filtered
accessions and average normalized values for each array.
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SECTION 5: CALCULATE RATIOS (BY SLIDE)

This step in the Automated Normalization assumes that you either have the normalized
data worksheet in Excel created by running the Normalize Excel Data step as described
in Section 3, or analyzed duplicates as described in Section 4. If you have created and
saved the spreadsheet previously, then open that spreadsheet now. The normalized data
worksheet created in Section 3 or filtered duplicate data worksheet created in Section 4
should be open before running this step.

The data on the open worksheet should be arranged (manually) so that each pair of arrays
(experimental condition) you wish to compare are next to each other. Below is an example
of the proper worksheet format before running this step:

2 Book _[o[x]

A i

Accession - - ?

1 Number Control 1 Treatment 1 Control 2 Treatment 2 B |
2 M1?_§4§§ o 2| 4 ! 12 9]
[4_ 4 b [bi’\Sheet1 / Sheet2 {'Sheet3 / | ¢] I ij

The output worksheet after running the Calculate Ratios (by slide) step of the Automated
Normalization using the example above is as follows:
Eﬁ Boo {
T e e
Treatment Treatment:

Accession 1to 2 1o
1 ‘Number 'Caontrol 1 Contrnl2

2 |AA123456 200 400 -

4 » N\ratlos;:sheulﬂ "bﬂ_;a

In this example, the ratios are calculated for AA123456 as:
Treatment 1/ Control 1 =4/2=2.00
Treatment 2/ Control 2 =12/3 = 4.00

Run the Automated Normalization program as described in Section 0 with the checkbox
next to Calculate Ratios (by slide) selected.

1. The Calculate Ratios dialog box appears:
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{RATIO Check DataFomat ~ E|

CALCULATE RATIOS - Data Format;

Accession Number | {(Gene Name optional) | Cortroll Norm (average i duplicate) | Treatmentl Norm
(average if duplicate) | {repeat all but Accession Number For Control2 & Treatment2, etc.) | (Meta-
grid data optional)

* WARNING * -- If the data on the current workshest does not match this format, select
“Cancef" and reformat the worksheet properly, otherwise your data may be corrupted
andfor this script will Fail.

2. Make sure that the open worksheet is in the format described in the dialog box
(pictured above), where the vertical bars delimit each column of the worksheet,
from left to right. Follow the dialog boxes instructions.

3. If the current worksheet is not in the proper format, click on Cancel to exit the
Automated Normalization and manually edit the worksheet before running the
Automated Normalization program again. Otherwise, click on OK to continue.

4. The Add Ratio for Gene Expression Worksheet dialog box appears:

Add Ratio for Gene Expreszsion Worksheet % |

Enter name of Ratio for Gene Expression worksheet:

Cancel I

5. Type the name of the worksheet for calculating and storing the normalized data,
or accept the default name. Remember that an Excel worksheet is one page of an
Excel workbook, accessible by clicking on the tab with the given name of the
worksheet at the bottom of the screen. An Excel workbook is the complete Excel
file as stored on disk, containing one or more worksheels.

6. Click on OK to continue, or Cancel to exit the Automated Normalization.

7. If a worksheet by the same name already exists, you will see the following dialog
box, otherwise the Normalize Excel Data step is done:

Replace Worksheel TP Ty 1 E3

Do you want to replace the existing worksheet named "local*?

Yes ”[jﬁ_g ]l Cam:el]
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