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Thesis Advisor: Dr. John Launchbury

Dynamic, active documents are particularly troublesome to program within con-
ventional languages. Documents are typically represented in XML or HTML,
which use regular-expression like types instead of the familiar sums-of-products
datatypes supported by conventional languages. Furthermore, documents tend to
include embedded programs in a variety of scripting languages, for which conven-
tional languages offer no support at all. It is thus very difficult to verify that these
programs generate even syntactically well-formed documents, let alone documents
which are valid for their document type definition, and contain only well-typed
scripts.

This thesis develops the core type system for a Haskell-like functional program-
ming language that directly supports dynamic, active documents. The first part
presents a system of type-indezed rows, that supports many aspects of XML’s
regular-expression types without abandoning the type features which make func-
tional programming attractive. In particular, type-indexed rows coexist cleanly
with higher-order types and parametric polymorphism. The second part presents
a system of staged computation, that allows server-side and client-side code to be
cleanly separated.

In both cases, the type system can guarantee that only well-formed and valid
documents are generated. Hence, not only are document-generating programs
easier to write using these systems, in addition they are much more likely to be
correct.




Any system that allows no criteria other than
those arbitrarily chosen as the basis of the
system itself can be called a terrorist system.

Georges Perec
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Chapter 1

Introduction

The adoption of a standard document description language, HTML [91], was essential to
the early success of the world-wide-web. HTML provides a small, fixed, and reasonably
simple set of primitive datatypes for describing both the structure and typographic layout
of a document. Motivated by the popularity of on-line services, interest has since grown in
using the web’s mechanism to distribute data of any type, independently of its typographic
representation. To this end, XML [12], an evolution of SGML [45], has been adopted as
a standard language for documents representing first-order data. Unlike HTML, XML
documents may define their own datatypes within the document itself. Hence XML is an
“extensible” markup language.

XML

Though syntactically baroque, XML is built upon a simple model of tree-structured data.
Documents may contain both a regular-tree grammar (termed a document type definition,
or DTD) and a labelled-tree (termed an element), such that the tree is recognised by the
grammar. For example, the following document, in slightly idealised syntax, describes a
grammar of e-mail messages and a single message:

element Msg = (((To|Bcc)* & From), Body)
element To = String

element Bcc = String

element From = String

element Body = P*

element P = String

<Msg>
<From>mbs@cse.ogi.edu</From>
<To>jl@cse.ogi.edu</To>
<Bcc>mbs@cse.ogi.edu</Bcc>
<Body>
<P>The thesis is almost finished.</P>
<P>Al11 that’s needed is an example for the introduction.</P>
</Body>
</Msg>
Each grammar production (termed an element type declaration) has a distinct left-hand

side non-terminal (termed a tag name), and implicitly generates a single tree labelled by the
non-terminal. Production right-hand sides are regular expressions built from the following




eight operators:

String “parsed character data”, or string
A sub-tree

T * list of r’s

r+ non-empty list of r’s

r? optional r

(r15 ..., rn) tuple: all of r, ry, etc, in that order
(rp ... 1r,) “choice,” or union: one of r, ro, etc
(ri &...&r,) “unordered tuple”: all of 1, m, etc, in any order

(The & operator does not appear in XML, but is in SGML [45] and, abstractly, in XML
Schema [24].)

A tree is a sequence of sub-trees and primitive strings delimited by matching tag names.
Deciding whether a tree is recognised by the regular tree grammar is called document
validation. Its easy to check the above example tree is recognised by its grammar. By
comparison, the following tree is not valid:

<Msg>
<Body/>
<From>mbsQcse.ogi.edu</From>
</Msg>

(Here <Body/> is sugar for <Body></Body>). A Body sub-tree cannot appear before a From
sub-tree within the children of a Msg tree.

Note that there are very few constraints on the form of regular expressions. In particu-
lar, choices and unordered tuples are anonymous, may appear deeply nested within other
expressions, and may reuse the same tag name.

From static to dynamic, active documents

Though XML captures the notion of a static document, most documents are in fact dy-
namic. On-line services typically generate documents on-the-fly in response to an ongoing
user dialogue, using a mixture of databases, live information feeds and user-supplied data.
Furthermore, because XML documents have no inherent typographic representation, they
must be further transformed, often by the client, before being rendered.

To further complicate matters, documents, particularly HTML documents, tend to contain
embedded scripts which are to be executed by the client rather than the server. We call
these active documents. Scripts are written in a variety of languages, and are represented
as uninterpreted strings.

How should a server program be implemented to generate dynamic, active documents?

XML and the next 700 programming languages

Of course almost any language can be used to manipulate XML. This manipulation can
be done at a concrete level by generating and concatenating strings containing XML and
scripting language fragments, for which Per! [110] is a popular choice. Less error-prone is




to use a library to manipulate XML in abstract form. For example, JavaServer Pages [82] is
a sophisticated library for Java [34] programs which implement on-line services. However,
these approaches tend to be syntactically awkward, and cannot guarantee that only valid
XML is generated.

Hence many custom domain-specific languages have been developed to generate, filter and
transform XML documents, including:

e CSS [58] and XSL [3, 18] for applying typographic styling and other transformations.

e XML Query [25, 26] for filtering and generating XML using tree-structured query
operators.

e <BigWig> [96] and Compaq’s Web Language [60] for specifying all aspects of an
on-line service within a single typed program.

e A plethora of untyped, ad-hoc scripting languages which extend XML with “active”
tags denoting common control structures. For example: XML Script [22], XEXPR
[74], XFA [116] and XPL [15].

This situation is unfortunate. Other than their common use of XML, these languages
share little common syntax and have no unified semantics. There is much overlap in
functionality, and little or no support for abstraction and extensibility, suggesting that
even more languages will arise as XML finds new applications.

Similarly, a number of domain-specific scriptihg languages have been developed for use
- within active documents, including Java [34] and JavaScript [29]. Again there is no agree-
ment on syntax, type system (if any) or semantics.

Functional programming and the next 700 programming languages

An old [53] and well-tested idea in functional programming is to embed domain-specific
languages (DSLs) as combinator libraries within a single functional programming language.
We refer the reader to the work of Hudak [41] and Swierstra et al. [103] for an overview of
this methodology. Examples from the literature include:

e Reactive animation [23] e Hardware description [63]

e Graphical user interfaces [27) o CGI scripting [64]

e Computer music [42] ¢ Robot control [83]

e Pretty printing [44] e Financial modelling [84]
o Typesetting [52] e Computer vision [92]

e Database querying [55] e Parsing [102]

This approach has many advantages over developing a DSL from scratch:

e DSLs may be readily combined because they are simply libraries in a common lan-
guage.




e Because the underlying functional programming language has a relatively simple
equational theory, it is often quite feasible to verify formally static properties of DSL
programs.

e Furthermore, with a little cunning, the functional programming language’s type sys-
tem may often be exploited to verify statically the well-typing of DSL programs.

e The DSL designer may reuse the already extensive intellectual investment which has
gone into functional programming languages, and is thus less likely to make funda-
mentally poor design decisions. Indeed, the simplicity of the functional programming
language’s semantics favours DSLs with a similarly clear, equational semantics.

The functional programming approach works because of its unique combination of higher-
order types, laziness, parametric polymorphism and monads. Together they allow type-
compatible DSL program fragments to be “glued” together regardless of their internal
structure [43], and may allow side-effects to be controlled by representing DSL computa-
tions as functional programming language values [108].

Note that not all functional languages support all these features. For example, languages in
the ML family [67] are eager with implicit effects, and hence laziness and monads must be
simulated when required. However, we think it is telling that aell of the above combinator
libraries have been implemented in Haskell [85], a language which directly supports all four
features.

XML in Haskell?

Thus, the obvious question is whether the custom languages developed for XML may be
embedded as combinator libraries within a Haskell-like language. The most appealing
approach is to map XML concepts to functional-programming concepts as follows:

document type definition — type definitions
' regular expression —+ type
element — term
document — program
document validation — type checking

Wallace and Runciman {111] have already tackled this question, and have developed two
approaches. Their first approach ignores DTDs, and represents all elements in the universal
datatype:

data Element = Atom String
| Node String (List Element)

Under this scheme, our example would be represented as:




Node "Msg" [
Node "From" [Atom "mbs@cse.ogi.edu"],
Node "To" [Atom "jl@cse.ogi.edu"],
Node "Bcc" [Atom "mbs@cse.ogi.edu"],
Node "Body" [
Node "P" [Atom "The..."],
Node "P" [Atom "All..."]
]
]

Since every element now has type Element, it’s easy to implement generic tree-manipulation
combinators. However, Haskell’s type system cannot ensure that all generated elements
are valid with respect to any particular DTD.

To address this limitation, Wallace et al. also present a second approach which translates
a DTD into a set of Haskell newtype declarations. Under this second scheme, our example
would be represented as:

newtype Msg = Msg (List (Either To Bcc), From, Body)
newtype To = To String

newtype Bcc = Bcc String

newtype From = From String

newtype Body = List P

newtype P = P String

Msg (
[Left (To "jl@cse.ogi.edu"),
Right (Bcc "mbs@cse.ogi.edu")],
From "mbs@cse.ogi.edu",

Body [
P "The...",
P "All..."
]

)
Here Either is the datatype of “anonymous” sums:

data Either a = Left a
| Right a

Notice how XML lists become Haskell Lists, XML tuples become Haskell tuples, choices
become sums, and an arbitrary ordering is imposed on XML unordered tuples to become
Haskell tuples.

This translation approach has the advantage of exploiting Haskell’s type system to ensure
only valid elements are generated. However, it does not respect XML’s notion of type
equality. In particular, the XML choice types (To | Bcc) and (Bcc | To) are equal in
XML, but are translated into the distinct Haskell anonymous sum types Either To Bcc
and Either Bcc To. Similarly, XML unordered tuple types are equal up to permutation,
but are translated into Haskell tuples which, in general, are not equal up to permutation.

As a result, a programmer using the intended interpretation of elements as trees would be
surprised if a Haskell complier rejected their program because of a “spurious” type error




involving these sum or tuple types. More concisely: this model of XML in Haskell is sound
but not complete.

The underlying problem is that XML choice types are unions rather than sums, and any
attempt to convert a union into a sum is forced to introduce an arbitrary label for each
summand. The same problem arises if we attempt to convert an unordered tuple to an
ordered tuple: again we are forced to impose an arbitrary ordering amongst member types.
Thus there appears to be a fundamental mismatch between XML’s regular expression types,
and Haskell’s sums-of-products datatypes.

XDuce

A third approach is thus to abandon sums-of-products types—and Haskell—and instead
take regular expression types as fundamental. The language XDuce (38, 40, 39] has been
developed specifically to test this idea. It is built upon subtype polymorphism using
regular-expression language containment to induce the subtype relation. This form of
subtype polymorphism allows an element to be viewed as belonging to more than one DTD
simultaneously, and hence supports both code reuse and “DTD migration.” Subtyping also
meshes cleanly with a notion of regular-expression patterns.

Since XDuce models elements as trees and DTDs as a form of regular-tree grammar, it is
both sound and complete. Thus a programmer would never be surprised by a “spurious”
XDuce type error.

Our example would appear in XDuce as:

type msg = Msgl(tolbcc)* & from, body]
type to = To[String]

type bcc = Bec[String]

type from = From([String]

type body = px*

type p = P[String]

Msgl
To["jl@cse.ogi.edu"],
Bcc["mbs@cse.ogi.edu"],
From["mbs@cse.ogi.edu"],

Body [
P["The..."],
P["A11..."]

]

]

Notice type names and tag names are distinct within XDuce type declarations. Indeed,
the e-mail DTD may be more concisely represented in XDuce by the single declaration:

type msg = Msg[(To[String] |Bcc[String])* & From[String],
Body [P[String] *1]

Unfortunately, it is not at all clear whether this approach is compatible with higher-order
functions and parametric polymorphism, which we have already seen to be essential to the
combinator library approach to language embedding.




Type-Indexed Sums and Products

Thankfully, a compromise between Haskell’s sums-of-products datatypes and XDuce’s
regular-expression types exists. Hidden within Appendix E of the XML standard [12]
is the statement:

“[I]t is required that content models in element type declarations be determin-
istic.”

Here “deterministic” means that an element type declaration’s regular expression must be
1-unambiguous.

Informally, a regular expression is 1-unambiguous if, given a position within the regular
expression and the tag of the next input element, there is a unique follow position. Formally,
this condition holds if and only if the regular expression is recognisable by a deterministic
Glushkov automaton [13, Lemma 2.5].

For example, the choice type ((P, ) | (Q, P)) is unambiguous, while ((P, Q) | P) is
ambiguous. Similarly, the unordered tuple type ((P, Q) & (Q, P)) is unambiguous, but
((P, Q) & P) is ambiguous.

There are two consequences of this restriction. Firstly, each member of an XML choice
type or unordered tuple type must be distinct. In other words, XML choice types and
unordered tuple types are formed from sets of types. Thus we can think of a choice type
as a variant (sum) in which each member type serves as its own variant label. Dually, an
unordered tuple type is like a record (product) in which each member type serves as its
own record label. We call these type-indezed sums and type-indezed products.

The second consequence is that it is possible to transform any XML element into a term
which represents lists, tuples, type-indexed sums, and type-indexed products explicitly.
This transformation involves first (recursively) converting each sub-element to an appro-
priate sub-term, and then running an angmented Glushkov automaton corresponding to
the element’s type definition on the sub-term sequence. The automaton makes a transition
based on the type of each sub-term, and incrementally constructs the result term using a
stack of intermediate sub-terms.

In this thesis, we develop the idea of type-indered sums and type-indezed products within
a small calculus called A™®. We show that the constructs are compatible with paramet-
ric polymorphism, higher-order functions and type inference. Furthermore, we show that
conventional sum-of-products datatypes and records may be easily encoded within ATR,
Thus it is possible to retain all of the type features required for implementing combina-
tor libraries, while simultaneously supporting XML document type definitions, and XML
element syntax.

Under this approach, the XML types (P | Q) and (Q | P) are translated to the AT™ types
One (P # Q # Empty) and One (Q # P # Empty), which are equal. Note, however, that the
equal XML types (P | (Q | R)) and ((P | Q) | R) are translated to the unequal X'™ types
One (P # (One (Q # R # Empty)) # Empty) and One ((One (P # Q # Empty)) #R # Empty).
This inequality is a consequence of the compromise we must make between full regular-
expression types and sums-of-products datatypes.

Note that l-unambiguity is a stronger restriction on choice and unordered tuple types
than distinctness of their member types. For example, the choice type ((P, Q) | P) is




ambiguous, even though (P, Q) and P are distinct types. Thus, A™™® also allows sum and
product types which are not deterministic XML types. This mismatch may be easily
repaired.

Staging

Though the calculus A™ goes much of the way towards supporting dynamic documents,
it does not address the problem of active documents. Here the problem is to allow XML
elements to contain scripts which are constructed on-the-fly just as any other data. Of
course we could follow current practice and simply embed such scripts as strings, but this
makes their syntactic and type correctness difficult to verify.

A better approach is to allow functions to appear within XML elements just as any other
value. However, this approach would require all such functions to be converted from
an intensional representation (e.g., compiled code) to an extensional representation (e.g.,
source or intermediate language code) whenever a document is moved between machines.

In this thesis, we tackle this problem by developing a system of dynamically typed staged-
computation within a small calculus called X°°. Staging allows a single program to have its
execution distributed over distinct run-time stages [88]. Furthermore, it is possible for dis-
tinct stages to be performed on distinct machines, since code values are easily transmitted
over a network.

Under this approach an active document would be generated by a two stage program. In
the first stage (run on the server), a piece of XML is generated which contains embedded
code. These pieces of code may then be run as required by the client in the second stage.

This approach to active documents ensures that all generated program fragments are syn-
tactically well-formed. Furthermore, it also guarantees such code is well-typed: either by
checking at compile-time (for statically typed code [106]), or at run-time (for dynamically
typed code [99]). This choice of static vs. dynamic is up to the programmer: static code
gives a stronger guarantees of correctness, but can be overly restrictive.

From Calculi to a Language

Of course, AT™ and X5 are small and distinct calculi, whereas what’s really required is a
single language. Furthermore, we can hardly claim that A™ and X°° alone subsume all the
custom XML-centric languages mentioned above.

For example, XML elements may include attributes, and CSS [58] has special support for
attribute inheritance. Much of this behaviour can be modelled using the implicit parameters
of Lewis, Shields et al. [57] coupled with the first-class polymorphism of Jones [49].

Furthermore, query-like operations on documents, such as “collect all elements with tag
P,” are directly supported by XML Query {26, 25], but must be redefined afresh for each
document type definition within X, We think generic programming [37] is a viable
solution to this problem.

This thesis does not address the difficult problem of combining all these distinct calculi,
either theoretically or within an implementation. The problem is a topic for future research
and implementation. Some early steps towards an integrated language have been taken
in the design of XM [65], an experimental Haskell-like functional programming language




with direct support for XML. XM uses A™ and X as its core, and also includes implicit
parameters, first-class polymorphism, and support for definitions given by induction over
(first-order) types.

1.1 Outline of Thesis

The thesis naturally divides into two parts.

Part I presents A™™. Chapter 2 motivates the key ideas from the perspective of a poly-
morphic record calculus, which it most closely resembles. Chapter 3 presents some larger
examples, including our motivating example of encoding XML types. (The machinery nec-
essary to also support XML element syntax is outlined in Appendix A.) This chapter also
demonstrates how A'™® supports a simple form of type-based overloading, which was the
original motivation for its development.

Chapter 4 begins our formal development of ™ by presenting its syntax, kind system,
type system and a notion of constraint entailment. The calculus A™® builds upon a system
of qualified [47, 109], or constrained [79], polymorphism, and much of its machinery is
devoted to the entailment and simplification of these constraints. This chapter also presents
a denotational semantics for AT'™®, and demonstrates type soundness. All the proofs for this
chapter may be found in Appendix B.

Chapter 5 continues the formal development of A™® by presenting a type inference and
constraint simplification system. We demonstrate inference is sound and, with one caveat, -
complete. Some of the proofs for this chapter may be found in Appendix C. The proof of
completeness is somewhat involved, because we cannot assume that constraints are in any
particular normal form, and because we make no assumptions as to how often constraints
are simplified. We have decided to omit this proof from Appendix C.

Chapter 6 concludes Part I by reviewing related work and outlining future work. In partic-
ular, this dissertation does not study the complexity of constraint entailment, satisfaction
or simplification.

Part II presents A°°. Chapter 7 introduces the three constructs to defer, splice and run
code, and motivates their typing rules, which turn out to be quite subtle. Chapter 8
presents larger examples of staging, including partial evaluation, dynamic typing and a
small example of a server and client exchanging HTML-generating code. Some of these
examples mix statically and dynamically typed code, demonstrating the utility of including
both within a single calculus.

Chapter 9 presents a formal development of 3¢, which includes type checking and a de-
notational semantics. We also demonstrate that the semantics is sound. The key problem
for any semantics of staged computation is correctly accounting for the dynamic genera-
tion of variable names required whenever code is spliced under a binding operator. Qur
semantics is very pragmatic, and indeed is suitable for direct implementation. However
the cost of this choice of semantics is a rather complicated soundness proof, which appears
in Appendix D.

Chapter 10 concludes Part II, and the thesis, with an overview of related work and an
outline of future work, which includes the problems of type inference, and correctness of
our semantics with respect to a semantics which collapses all stages.
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1.2 How to read this dissertation

Readers coming to this thesis from the XML community will, unfortunately, have a rather
hard time. Of necessity, our work is at a very primitive level, and so the reader may find
it difficult to see any connection with documents at all! We recommend starting with the
introductory material of Chapters 2 and 7, then tackling the examples in Chapters 3 and 8.

To the reader coming from a functional programming background, we assume familiarity
with Haskell [85] and with the system of qualified types [47] from which its type-class
system is constructed. A passing familiarity with monadic semantics {11, 108] will aid
the understanding of our denotational semantics. Implicit parameters [57] are used as
an example constraint domain in Section 7.4. Otherwise, Parts I and II are mostly self-
contained, and may be read independently.

The proofs in Appendix B, C and D have been included for completeness. For the most
part they proceed by obvious induction on the relevant derivation. This is not to say that
the theorems themselves are always straightforward! As is typical in type-theoretic proofs,
the hard part is getting the induction hypothesis just right.




Part 1

Type-Indexed Rows

Abstract

Record calculi use labels to distinguish between the elements of products and
sums. This part presents a novel variation, fype-indezed rows, in which labels
are discarded and elements are indexed by their type alone. The calculus, A\™™®,
can express tuples, recursive datatypes, monomorphic records, polymorphic ex-
tensible records, and closed-world style type-based overloading. Our motivating
application of X™™®, however, is to encode the “choice” types of XML, and the “un-
ordered tuple” types of SGML. Indeed, X™™ is the kernel of the language XMA, a
lazy functional language with direct support for XML types (“DTDs”) and terms
(“documents”).

The system is built from rows, equality constraints, insertion constraints and
constrained, or qualified, parametric polymorphism. The test for constraint sat-
isfaction is complete, and for constraint entailment is only mildly incomplete. We
present a type checking algorithm and show how A™ may be implemented by a
type-directed translation which replaces type-indexing by conventional natural-
number indexing. We also present a constraint simplification algorithm and type
inference system.
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Chapter 2

Introduction

Record calculi (and less often, variant calculi) appear in many contexts. Some functional
languages incorporate them in conjuction with more conventional tuples and recursive
sums-of-products datatypes [46]. They have been used as foundations for object-oriented
languages [112]: Objects can be modelled by records, and subclassing can be built upon
record subtyping. Database query languages often model relations as sets of records, and,
because database schema are dynamic, require a particularly flexible type system [14].

In this part we present a system very much like an extensible, polymorphic record calculus,
but with an essential twist: We discard labels. Instead of labels, elements of products and
sums are distinguished by their type alone. That is, a type-indezed row (TIR) is a list
of types (possibly with a type variable as tail), from which we form type-indezed products
(TIPs) and type indezed co-products (TICs). The réle of labels is played by newtypes,
which introduce fresh type names.

Of course, in a monomorphic setting such a system is straightforward. In the presence of
polymorphism, however, we must somehow resolve the paradox of rows indexed by types
which are partially or fully unknown (i.e., contain free type variables).

We developed X™® to treat the regular ezpression types of XML [12] and SGML [45] as
types in a functional language we are developing called XM [65]. XML includes “choice”
types of the form (m]...|7;) and SGML includes “unordered tuple” types of the form
(71&...&7,). Neither of these types include any syntactic information, such as labels, to
guide a type checker in deciding which summand of a sum, or which permutation of a
product, a given term belongs to. Instead, a I-unambiguity condition is imposed, which
implies membership of a term in a regular-expression type may be decided by a determin-
istic Glushkov automaton [13]. In A™®, we abstract from this formulation by requiring only
that each type in a sum or product be distinct. Such types may then be encoded within
AR which allows XML elements to be manipulated within a polymorphic functional pro-
gramming language.

Serendipitously, we also found X™ could naturally encode:

¢ conventional tuples and recursive sums-of-products datatypes;

e many existing record calculi, both monomorphic and polymorphic, extensible and
non-extensible;

e types resembling Algol 68’s union types; and,

e the closed-world style of type-based overloading (modulo subtyping) popular in
object-oriented languages [34].

12
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XM has many of the types mentioned above. The XMA complier simply translates each
into A\"™®, resulting in a compact and uniform compiler. Hence A™®’s expressiveness is not
merely of theoretical interest, but can also be exploited in practice.

Many of the ingredients of A™™ are well known:

e We use a kind system to distinguish rows from types.

e As in record calculi, we require insertion constraints to ensure the well-formedness
of rows, only now they state that a type may be inserted into a row.

¢ Unlike in record calculi, we also require equality constraints, as sometimes the unifi-
cation of two rows must be delayed if there is any ambiguity as to the matching of
their element types.

e Constrained polymorphism [47, 79] is used to propagate constraint information
throughout the program, thus ensuring soundness.

e We eagerly test for the unsatisfiability of constraints so as to reject programs as early
as possible.

e As in Gaster and Jones’ record calculus [31], ™ is implemented by a type-directed
translation which replaces type-indexing by natural-number indexing. These indices
propagate via implicit parameters at run-time to parallel the propagation of insertion
constraints at compile-time.

We first review record calculi (Section 2.1}, then motivate the introduction of each of the
components above by small examples (Sections 2.2~2.9). More extensive worked examples
are also presented in Chapter 3. We then develop a type-checking system for ™ which
simultaneously performs a type-directed translation into an untyped run-time language
(Chapter 4). This system requires the notion of constraint entailment (Section 4.4). We
also demonstrate our system is sound (Section 4.5).

In Chapter 5 we consider type inference for A™™ programs. This is built upon a constraint
simplification system (Section 5.2), which we show correct with respect to constraint entail-
ment. We then show soundness and completeness of inference with respect to type-checking
(Section 5.3).

A very much shorter version of this part appeared in POPL’01 [98].

2.1 Review: Label-Indexed Rows

To aid the transition to X™™®, we first quickly review existing calculi of labelled records and
variants. We use a somewhat unorthodox syntax, though none is particularly standard
anyway. We assume an ambient type system and a set of label names.

Rows
We first introduce rows [112], which are lists of labelled types. For example:

(xCoord: Int) # (yCoord: Int) # Empty
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is a row with label names xCoord and yCoord, both labelling type Int. Here we use the #
operator to denote row ertension, and Empty to denote the empty row. (Note that in this
dissertation we shall assume labels are formed from label names by appending a *:’.)

Sometimes row concatenation replaces or augments row extension [35], though we do not
consider this here.

Rows are equal up to a permutation of their labelled types. That is, the elements of a row
are distinguished by their label name rather than by their position.

A record calculus is extensible if a row may end with a type variable instead of just Empty.
For example:
(xCoord: Int) # (yCoord: Int) # a

is an open row, with tail variable a. Binding a to col: Colour # Empty yields the extended
closed row:

(xCoord: Int) # (yCoord: Int) # (col: Colour) # Empty

In this manner, when coupled with parametric polymorphism, extensible rows may simulate
record subtyping [16].

A record calculus is label polymorphic if the same label name may label different types in
different rows. For example, the rows:

(xCoord: Int) # Empty
(xCoord: Real) # (depth: Real) # Empty
(xCoord: a) #b

may all coexist within one program. As we shall see, the type system must work a little
harder to ensure type correctness in the presence of polymorphic labels.

Rows are distinct from types, but may be used to form both record and variant types.

Records
A record type interprets a row as a product of label-indexed types. For example:
A1l ((xCoord: Int) # (yCoord: Int) # Empty)

is a record type with two labels. We write A1l to denote the record type constructor
because records contain all elements of a row.

At the term level, we have the empty record Triv (of type All Empty), and a record
extension operator (1: _ &% _) for each label name 1. (Throughout this dissertation we
assume a distfix syntax for operators in which argument positions are written as _.) For
example:

((xCoord: 1) && (yCoord: 2) && Triv)

is a record with the record type given above.

Calculi typically also include a label selection operator (_.1) for each label name 1. For
our purposes we prefer to use pattern matching. For example:
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let getYCoord = \((yCoord: z) &% _) . z
in getYCoord ((xCoord: 1) && (yCoord: 2) && Triv)

evaluates to 2.

Variants

Dually to records, a variant type interprets a row as a sum of label-indexed types. For
example:
One ((isInt: Int) # (isBool: Bool) # Empty)

is a variant type with two labels. We write One to denote the variant type constructor
because sums contain one element of a row.

At the term level, we have an injector (Inj 1: _) for each label name 1. For example:
(Inj isBool: True)

injects True with the label isBool into the above variant type.

We also need a way to test a variant against a label. Again, we prefer to allow an injector
to be used as a pattern, and shall allow a set of A-abstractions to be grouped together to
mimic case-analysis. For example, consider:

{ \(Inj isInt: x) . 1 - x;
\(Inj isBool: y) . if y then O else 1 }
(Inj isBool: True)

The two A-abstraction patterns will be tried in left-to-right sequence. In this case, the
second pattern will match, and the term reduces to 0.

Notice that the type One Empty contains only the undefined term.

Soundness

Though liberal, record and variant calculi are not anarchic: Somehow they must prevent a
row from ever containing duplicate label names. For extensible record calculi this constraint
requires some form of global analysis. For example, to reject (as surely we must) the
program:

let £ = \x y . ((xCoord: x) && y)
in (f 2 ((xCoord: 1) && Triv))

involves looking both at the definition and call sites for f.

A particularly elegant solution is to introduce qualified (constrained) polymorphism [47]
and insertion constraints (called “lacks” constraints in the system of Harper et al. [35].) We
refer the reader to the work of Gaster and Jones [31] for a cogent exposition of this approach.
Briefly, let-bound terms are assigned a type scheme which includes any constraints on the
possible instantiations of quantified type variables. In the example above, £ would be
assigned the scheme:

forall ab . xCoord insb =>
a->A11b->Al11 ((xCoord: a) #b)




16

which can be read as:

“for all types a and rows b such that the label name xCoord may be inserted
into b, the function from a and A11 b to A11 ((xCoord: a) #b).”

Now each use of f is free to instantiate a and b, but subject to the constraint xCoord insb.
Since our example program attempts to instantiate b to ((xCoord: Int) # Empty), which
already contains the label name xCoord, it is rejected.

2.2 From Label- to Type-Indexed Rows

As a first step towards A"™, consider naively erasing labels from the record and variant
operators above.

We let the kind system keep rows, of kind Row, separate from types, of kind Type. Our
presentation will be greatly simplified if we also allow higher-kinds, so that we may present
our type operators as constants. We use : to denote “has kind” (and later, “has type”).

A type indezed row (TIR) is either the empty row or an extension of another row. Row
extension is now free of label names:

Empty : Row
(_#_) : Type -> Row -> Row

For example: -
(Int # Bool # Empty)

is a closed row containing the element types Int and Bool. Rows are considered equal up
to a permutation of their element types.

We also have two dual interpretations for a row: as a type-indezed product (TIP) or type-
indezed coproduct (TIC) type:

(Al11 ) : Row -> Type
(One _) : Row -> Type

A TIR is useful if its element types are all distinct. Because we allow open rows, this cannot
be verified locally, and so will be propagated using constraints. The insertion constraints
of AT'® resemble those of record calculi, but with a type instead of a label. For example:

a ins (Int # Bool # Empty)
constrains a to be any type other than Int or Bool. Hence:
(List b) ins (Int # Bool # Empty)

is true: for every type b, List b cannot be equal to Int or Bool, and hence may be inserted
into the row.

With the types and constraints in place, we now consider terms. A TIP is either the trivial
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product, or an extension of another:

Triv: All Empty
(_ &% _) : forall (a : Type) (b : Row) .
ainsb=>a->A11b->Al11 (a#b)

A TIC is an injection of a term:

(Inj _) : forall (a : Type) (b : Row) .
ainsb=>a->0ne (2#b)

Notice the use of insertion constraints to ensure the type a to insert does not already
appear within the row b of the TIP or TIC.

For example:

(1 && True && Triv) : A1l (Int # Bool # Empty)
(Inj True) : forall (a : Row) . Bool insa => One (Bool # a)

We also allow any of the above three constants to appear within patterns. For example:
let flip = \(x && y && Triv) . ((1 - x) &% (not y) && Triv)
in flip (True && 1 && Triv)

evaluates to (0 && False && Triv). Notice the pattern (x && y &% Triv) contains no ex-
plicit type information, and certainly no labels! It was the fype of x within the body of
f1lip which determined it was bound to 1 rather than True.

Case analysis of TIPs and TICs is also possible. For example, consider:

let flop = { \(Inj x) . 1 - x;
\(Inj y) . if y then O else 1 }
in flop (Inj True)

Since x is of type Int, and y of type Bool, the second pattern will match, and the term
reduces to 0. Since all functions grouped by {. ..} must have the same type, we find:

flop: forall (a : Row) .
Int insa, Bool insa=>
One (Int # Bool # a) -> Int

2.3 Equality Constraints

Consider a more challenging variation of the f1ip example:

let tuple = \(x &% y && Triv) . (x, y)
in tuple (True && 1 && Triv)

(Here we assume X™® to be enriched by conventional tuples, though they are easily encoded:
See Section 3.1.) Unlike f1ip, the body of tuple is fully polymorphic in the types of x
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and y. Hence:
tuple: forall (a : Type) (b : Type) .
a ins (b # Empty) =>
A1l (a# b # Empty) -> (a, b)

Now consider how to type-check the application of tuple. Assume its scheme has been
specialised to fresh type variables ¢ and d. Then we must unify rows A11 (c # d # Empty)
and A1l (Int # Bool # Empty) subject to the constraint ¢ ins (d # Empty). Depending on
which of Int or Bool we bind to c, the overall term has type (Int, Bool) or (Bool, Int).
Choosing one solution above another would destroy completeness of type inference. Re-
jecting such terms would prevent many useful examples (in particular, overloading: See
Section 3.5).

Our solution is to introduce equality constraints to record which types and rows must be
equal for a term to be well-typed. For example:

(c #d # Empty) eq (Int # Bool # Empty)

represents the constraint that tuple and its argument (True &% 1 && Triv) agree in type.
As with insertion constraints, equality constraints propagate until sufficient type informa-
tion is available to simplify them.

For convenience, we allow equality constraints on both rows and types. (Type equality
constraints may always be simplified down to row equality constraints as soon as they are
introduced, hence they add no expressiveness to the system.)

Now consider:
let oneTrue =
let tuple = \(x && y && Triv) . (x, y)
in tuple (True &% 1 && Triv)
in (1 - fst oneTrue, not (fst oneTrue))

Using equality constraints, we may assign oneTrue a principal type scheme:

forall (c : Type) (d : Type) .
(c #d # Empty) eq (Int # Bool # Empty),
¢ ins (d # Empty) =>
(c, d)

Notice that the first element of oneTrue has been used in both an Int context and Bool
context, and the term reduces to (0, False). To see how this works, consider each use of
oneTrue. For the left use, oneTrue is specialised to a tuple with an Int first component.
Hence its constraint is specialised to:

(Int # e # Empty) eq (Int # Bool # Empty),
Int ins (e # Empty)

where e is a fresh variable. This constraint may be simplified by binding e to Bool, and is
thus true.
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Similarly, for the right use the specialised constraint is:

(Bool # f # Empty) eq (Int # Bool # Empty),
Bool ins (f # Empty)

Again, the constraint is simplified to true with £ bound to Int.

Membership and equality constraints interact in interesting ways. Indeed, much of the
machinery of A™® is devoted to the entailment and simplification of such mixed constraints.
For example, the constraint:

Int ins (a # Empty),
(Int # Bool # Empty) eq (a # b # Empty)

may be simplified to true by binding a to Bool and b to Int, because the membership
constraint prevents the binding of a to Int.

2.4 Simplifying Constraints

We say a substitution is a satisfying substitution for constraint C if it makes C' ground
and true. For example, the substitution [a + Int] satisfies the constraint

a ins (Bool # Char # Empty)

We say a constraint C entails a constraint D if every satisfying substitution for C also
satisfies D. Two constraints are logically equivalent if each entails the other.

Constraint simplification attempts to reduce a constraint to a smaller but logically equiv-
alent constraint, and a residual substitution. The substitution can be thought of simply as
a particularly efficient representation for equality constraints between type variables and
types. We have already seen some examples of constraint simplification. In this section we
outline the simplification rules which guide this process.

Firstly, we require rules for simple unification of types. For example
(a -> Int) eq (Bool -> b)
is simplified to
a eqBool, Int egb

using a rule which “unwraps” the common type constructor (_ -> _).

We also require rules for the unification of rows. Because rows are only equal up to
permutation, row unification is a little more subtle than simple unification. The row
matching rule allows a type from each row to be removed and unified when this choice is
unambiguous. For example

(Int # a # Empty) eq (Bool # b # Empty)

is simplified to
(Int egb), (a # Empty) eq (Bool # Empty)
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by matching Int with b.

The row eztension rule allows a type from one row to extend the tail of another row, again
provided the choice of type is unambiguous. For example

(Int # a) eq (Bool #b)
is simplified to
aeq(Bool#b’)

with residual substitution b+ Int # b’]. Here b’ is a fresh type variable of kind Row.

Another set of rules allow insertion constraints to be simplified when types are guaranteed
to be distinct. For example

(a, b) ins (Bool # ¢ # Empty)
is simplified to
(a, b) ins (c # Empty)

since (a, b) can never be unified with Bool.

The simplifier also has rules for constraint projection, however a discussion of these rules
is best deferred to Chapter 5.

2.5 Newtypes

So far ™ can only distinguish types structurally. In order to distinguish types by name
we allow the programmer to introduce fresh type names, called newtypes (as in Haskell
[85]).

A newtype declaration takes the form:
newtype A=\A . 71

where A is the newtype name, A a sequence of kinded type variables, and 7 a type (of
kind Type).

At the type level, newtype names behave as uninterpreted types (or, in general, fype
constructors). For example, assuming the declarations:

newtype A = \(a : Type) . a
newtype B = Int
newtype C = Int

then A Int, A Bool, B, C and Int are all distinct types.
At the term level, newtype names behave as single-argument data constructors. These
names may be used both to construct terms:

((A1) && (A True) && (B 2) && (C 3) && 4) :
A1l ((A Int) # (ABool) #B #C # Int # Empty)



21

and to pattern match against terms in A-abstractions:

\Mix.x+1:AInt->1Int
\A x . not x: A Bool -> Bool
\Bx.x+1:B->1Int

In effect, every newtype declaration introduces a polymorphic constant:

[A:forall A .7->AA|

Using newtypes, we can encode conventional monomorphic records by declaring a newtype
for each label. For example, with declarations:

newtype xCoord = Int
newtype yCoord = Int

we have:
((xCoord 1) && (yCoord 2) && Triv) :

A1l (xCoord # yCoord # Empty)
What about polymorphic record calculi? A obvious approach would be to declare each
label to be the type-identity function:

newtype xCoord = \(a : Type) . a
newtype yCoord = \(a : Type) . a

With these declarations, xCoord and yCoord may “label” terms of any type in any “record:”

((xCoord 1) && (yCoord 2) && Triv) :
Al11 ((xCoord Int) # (yCoord Int) # Empty)

((xCoord ?1’) && (yCoord "two") && Triv) :
A1l ((xCoord Char) # (yCoord String) # Empty)

Unfortunately, it also allows the same newtype to appear within the same record, provided
it labels terms of different types:

((xCoord 1) && (xCoord ’1’) && Triv) :
A1l ((xCoord Int) # (xCoord Char) # Empty)

Though at first glance this may seem a useful generalisation of labels, we quickly run
into problems when unifying rows containing them. For example, if xCoord really was a
polymorphic label, then the following constraint should be simplified by binding a to Int:

((xCoord a) #b) eq ((xCoord Int) # c),
(xCoord a) insb,
(xCoord Int) insc

However, as things stand, the simplifier would be incorrect if it were to do so.

To see why, consider the possible substitution which binds b to (xCoord Int) # Empty,
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and ¢ to (xCoord Bool) # Empty. The constraint becomes:

((xCoord a) # (xCoord Int) # Empty) egq
((xCoord Int) # (xCoord Bool) # Empty),

(xCoord a) ins ((xCoord Int) # Empty),

(xCoord Int) ins ((xCoord Bool) # Empty)

which implies a must be Bool, not Int. Hence, our simplifier is stymied by an excess of
polymorphism.

Our solution is to introduce opaque newtypes, a variation of newtypes in which the type
arguments are ignored when considering the simplification of insertion constraints.

Returning to our example, consider redeclaring the labels as:
newtype opaque xCoord = \(a : Type) . a
newtype opaque yCoord = \(a : Type) . a

Now the simplifier is free to bind a to Int in our constraint:

((xCoord a) #b) eq ((xCoord Int) #c),
(xCoord a) insb,
(xCoord Int) insc

This is because the membership constraint (xCoord a) ¢nsb implies that b cannot contain
any type of the form xCoord 7, hence b cannot be extended to include xCoord Int, and
hence xCoord Int must match xCoord a.

Furthermore, with xCoord declared as an opaque newtype, the term:
((xCoord 1) &% (xCoord ’1 ’} && Triv)
is ill-typed, because the constraint
(xCoord Int) ins ((xCoord Char) # Empty)

is unsatisfiable.

Though at first glance they appear somewhat ad-hoc, opaque newtypes require very little
special support within the machinery of AT,

Why not make all newtypes opaque? Though this would simplify the presentation and
machinery of X™'®, it would prevent type-based overloading on the arguments to type con-
structors. This will be covered in Section 3.5.

2.6 Implementing Records

For the moment we put type-indexed rows aside and consider how to implement conven-
tional label-indexed records. A naive approach is as a map from labels to values, but then
each access requires a dynamic lookup. A better approach, first suggested by Ohori [80],
and independently, by Jones [47], is to use the type information we already have to replace
label names with natural number indices, and records with vectors. When a closed record
is manipulated, these indices can be easily generated by finding a canonical ordering of
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label names. When an open record is manipulated within a polymorphic function, these
indices must be passed as implicit arguments because their actual values will depend on
how the function has been instantiated.

This situation seems rather complicated until it is noticed that indices propagate at run-
time in parallel with insertion constraints at compile-time, except in the opposite direction.

Consider:

let £ = \x . ((yCoord: 20) &% x)
in £ ((xCoord: 10) && Triv)

To ensure its body is well-formed, £ is assigned the type scheme:

forall (b : Row) . yCoord insb =>
A1l b -> A1l ((yCoord: Int) #b)

At the application of £, b is specialised to (xCoord: Int) # Empty, and thus f’s constraint
is specialised to yCoord ins ((xCoord: Int) # Empty). This constraint is then introduced
into the application’s constraint context, where it may be simplified to true. Notice how
f’s constraint propagated (at compile-time) from the site of its definition to the site of its
use.

Now associate a run-time inder variable, w, with £’s constraint yCoord ins b, with the
understanding that w will be bound at run-time to the insertion indez of yCoord within
whatever row b is specialised to. Or, to use OML’s terminology [47], w will be bound to a
witness of the satisfaction of the constraint that yCoord may be inserted into row b.

The function £ is now compiled to a function accepting w as an additional implicit param-

eter:
let f = Aw . Xx . insert 20 at w into x

in ...

Here we use sans-serif font to denote run-time terms, and insert U at W into T inserts the
term U at index W into the vector T'.

In the application of £, again associate an index variable w’ with the specialised constraint
yCoord ins((xCoord: Int) # Empty). This variable is passed to f, along with its argument:

fw' (10)

Here (...) denotes a base-1 vector of run-time terms. (We shall use a special syntax for
indices to prevent their semantic confusion with ordinary integers: One is the base index,
and Inc W, Dec W the obvious offsets.)

Now when the simplifier rewrites yCoord ins ((xCoord: Int) # Empty) to true, it is also
obliged to supply a binding for w'. Assuming a lexicographic ordering on label names,
yCoord should be inserted at index Inc One into the row (xCoord: Int) # Empty, hence w’
is bound to the absolute indez Inc One.

Thus the overall term is compiled as:
let f = Aw . Ax. insert 20 at w into x

in let w' = Inc One
in fw' (10)
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which reduces to the vector (10, 20).

Notice how the insertion index for yCoord within b was passed at run-time from the use site
to the definition site, exactly in reverse of the propagation of the constraint yCoord ins b
at compile-time.

This type-directed translation is an instance of the dictionary translation [109]. We call
a set of constraints with associated index variables a constraint contezt, by analogy with
type contexts.

An index may sometimes depend on another. For example, the constraint context:
(w : yCoord ins ((xCoord: Int) # b)), (W' : yCoord insb)

can be simplified to w : yCoord ins ((xCoord: Int) # b) by binding w' to the relative
index Dec w. This simplification is possible because yCoord will always be after xCoord in
any row.

The same technique works for variants, which are represented as a pair of a natural number
and value.

2.7 Implementing TIPs and TICs

Can we implement A™® also using only natural number indices, vectors and pairs? The trick
only works if we have an ordering on types. Clearly a total order on all types won’t do, as
then the relative ordering of non-ground types may change under substitution—disaster!

An obvious approach is to choose some ordering on monotypes, and only consider simpli-
fying an insertion constraint v ins (7 # ... # 7, # Empty) when v and each 7; are ground.
Then finding the index for v is simply a matter of sorting these types. Unfortunately,
because programs are often polymorphic all the way up to their top level, this approach
would result in many insertion constraints propagating to the top level, leading to very
large constraint contexts.

Thankfully, a less conservative ordering is possible. Assume we have a total order, <, on
all built-in type constants (such as Int, (A1l _) and (_ -> _)), and all newtype names.
Let <F2 be <F extended to type variables, on which it is always false. So, for example:

Int <F2 Bool <F2 String <F2 (_->_) <F2 ...

but a £F2 Int and Int £F2 a.

Every type T has a pre-order flattening, denoted by preorder(r). For example,
preorder(A Int -> B Bool a) = [(_ -> _), A, Int,B,Bool, a]. We then (roughly) define the
partial order, <, on all types as follows:

7 < v <=> preorder(7) <'* preorder(v)

where <! is the lexicographic ordering induced by <F2. Notice that < enjoys invariance
under substitution, viz:
T<v=>V0.07<0v

This property allows many insertion constraints to be discharged even when they contain
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type variables.

For example, consider the constraint:
w: (Bool ~> a) ins ((Int -> b) # Int # Empty)
All of these types may be totally ordered:
Int < (Int ~>b) < (Bool -> a)

Thus we eliminate the constraint and bind w to Inc Inc One.

However, since the types in:
w: (Bool -> a) ins ((b -> c) # Int # Empty)

cannot be totally ordered, this constraint cannot be further simplified.

The alert reader will notice we ignored the possible permutation of row elements in the
description above. To account for this, we must first find the canonical order of every
row within types before flattening them. We defer the full definition of type order to
Section 4.3.

2.8 Ambiguity

X type schemes sometimes quantify over type variables which appear only in the scheme’s
constraint. For example, in

forall (a : Type) (b : Row) . (a#b) eq (Int # Bool # Empty) =>a->a

the variable b is not free in a -> a. However, since a binding for a uniquely determines a
binding for b, this scheme is still sensible.

However, the scheme
forall (a : Type) (b : Type) . b ins (Int # Bool # Empty) =>a ->a

is inherently ambiguous. Since the insertion constraint may never be eliminated, it will
float to the top-level of the program and cause an error. Furthermore, a binding for b
cannot be chosen arbitrarily, since different bindings may lead to different indices, and
hence change the behaviour of the program.

Somewhat more subtle is the scheme:
forall (a : Type) (b : Type) . a ins (b # Empty) => One (a # b # Empty)

Even though all quantified type variables appear within its type, this scheme is still am-
biguous. For example, though both of the instantiations

[a ~ Int,b > Char]
[a — Char,b — Int]

yield the same result type One (Int # Char # Empty), the index determined for the insertion
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constraint differs.

These examples demonstrate that a simple syntactic test for ambiguity of \™™ type schemes
is probably impossible. In particular, checking that each quantified variable appears within
a scheme’s type is neither a sound nor complete test for ambiguity. As a result, a compiler
for X™® should treat ambiguity as a warning rather than an error.

2.9 Satisfiability

When a let-bound term is generalised, any residual constraints accumulated while inferring
its type which mention quantified type variables are shifted into its type scheme. However,
we would also like to be sure such constraints are satisfiable, for two reasons. Practically, it
helps improve the locality of type error messages if unsatisfiable constraints are caught at
the point of definition rather than at some remote point of use. Theoretically, it simplifies
our proof of type soundness if every type scheme is known to have at least one satisfying
instance.

Often, the simplifier will detect unsatisfiability in the course of examining each primitive
constraint. For example, in:

newtype opaque xCoord = \(a : Type) . a
let f = \x . ((xCoord 2) &% (xCoord 1) && x)
in 1

assuming x : All a, then f has the constraint:

(xCoord Int) insa,
(xCoord Int) ins ((xCoord Int) # a)

This constraint will be simplified to false, which is easily detected when generalising.

However, sometimes the simplifier will fail to detect unsatisfiability, because it never spec-
ulatively unifies rows. For example, in:

let g : All (Int # Bool # Empty) -> Int = ...
h : All (Char # String # Empty) -> Int = .
f=\xyz.g (x&y& Triv) +
h (x && z && Triv)
in 1
assuming x : a,y : b, z : ¢, then £ has the unsatisfiable constraint:

a ins (b # Empty), a ins (c # Empty),
(a # b # Empty) eq (Int # Bool # Empty),
(a # c # Empty) eq (Char # String # Empty)

Since this constraint will not be further simplified to false, the system must explicitly
test for satisfiability when generalising.

Unfortunately, relying on the simplifier to show unsatisfiability is not quite enough. Con-
sider the example:
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newtype opaque xCoord = \(a : Type) . a
let £ = \x . let g = \y . ((xCoord y) && x) in 1
in £ ((xCoord 1) && Triv)

Assume x : A1l a and y : b. Then g has the satisfiable constraint:
(xCoord b) insa
Thus £ is assigned the type:
forall (a : Row) . All a -> Int

and the entire program has type Int.

However, under a naive operational semantics for A™®, S-reducing the application of f
yields the program:

let g = \y . ((xCoord y) && (xCoord 1) && Triv) in 1

Now g's constraint becomes
(xCoord b) ins ((xCoord Int) # Empty)

which is unsatisfiable. Hence, subject-reduction fails for this semantics. (Our semantics
will actually be denotational rather than operational, but the problem remains the same.)

This problem occurs only when a let-bound term is both unused and has a constraint
mentioning type variables bound at an outer scope. In the above example, g was unused in
the body of f, and g’s constraint contained the type variable a bound by £’s type scheme.
This observation suggests four approaches to a solution.

The first approach attempts to constrain outer-scope variables in order to ensure the sat-
isfiability of inner-scope constraints. One way of doing this is to use a new primitive
constraint of the form:

exists A . C

with intended interpretation “C is satisfiable for some binding of the type variables of
A.” Existential constraints may be simplified “lazily,” just as for equality and insertion
constraints. This approach is advocated by HM(X) [79].

Using an existential constraint, £ may be assigned the more precise type scheme:

forall (a : Row) . (exists (b : Type) . (xCoord b) insa) =>
All a -> Int

Now the application of £ is ill-typed:

error: constraint
exists (b : Type) . (xCoord b) ¢ns ((xCoord Int) # Empty)
arising from application of ’f’ is unsatisfiable.

Though elegant, existential constraints have a very subtle entailment theory. Indeed, an
early version of XT™ included them, but the implementation was complicated and difficult
to prove correct.

A variation on this first approach is to carry over generalised constraints into the current
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constraint context unchanged. This method is termed duplication by Odersky et al. [79].
Now £ would be assigned the type scheme:

forall (a : Row) (b : Type) . (xCoord b) inmsa =>All a -> Int

However, since b does not appear within the right hand side of f’s type, such a scheme is
inherently ambiguous. Furthermore, this approach may result in many redundant insertion
constraints. For example, the constraint:

a ins (b # Empty),
a ins (c # Empty),
a ins (b # c # Empty)

cannot be simplified, even though it is satisfiable exactly when the constraint:
a ins (b # c # Empty)

is satisfiable. Both these problems arise because insertion constraints imply the need for
indices, whereas no such indices are required if our only interest is satisfiability.

A solution is, again, to introduce a new primitive constraint, but this time of the form:
Tninp

T nin p (“7 is not in row p”) resembles 7 ins p, but does not require the simplifier to
calculate any index witnessing its satisfaction. During duplication, ins constraints are
replaced by nin constraints.

Now f£ is assigned the type scheme:

forall (a : Row) (b : Type) . (xCoorddb) nina =>
All a -> Int

This is no longer ambiguous since b may be chosen arbitrarily so as to satisfy the constraint.
Again, the application of f is ill-typed.

Though quite workable, we feel this variation is ugly. In particular, the difference between
“4ns” and “nin” is a likely source of confusion.

The third approach is very simple: simply reject programs containing redundant let-
bindings. Of course, an actual implementation would remove such bindings rather than
reject the program. (Indeed, compilers tend to do this anyway as an optimisation.) This
approach is adopted in OML [47, 48], and we adopt it for X\"™®.

This approach works because if x is a let-bound variable with constraint C, and x is free
in ¢, then the satisfiability of #’s constraint implies the satisfiability of C.

Now a constraint may be tested for satisfiability regardless of the scope of its free type
variables. If the test fails, the constraint is unsatisfiable for any instantiation of outer-
scope variables, and an error may be reported. If the test succeeds, no further processing
is required, because the satisfiability test for any let-bound terms in an outer scope shall
entail the satisfiability of the current constraint.

In a sense, however, we have put the horse before the cart in all of this. Rather than change
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the system to simplify the model, the fourth approach is to refine the model to correctly
explain redundant, unsatisfiable let-bindings. Since such bindings cannot be observed, the
problem is caused by incompleteness of semantic equality with respect to observational
equality. However, such issues are notoriously subtle, hence our preference for the second
(simple!) approach.



Chapter 3

Examples

In this section we show that A™® may encode many conventional types, such as tuples
and recursive sums-of-products datatypes. We also demonstrate an encoding of XML
document-type definitions and a simple form of type-based overloading.

We write 7...] to denote the encoding function at the type level, and S...] at the term
level. Later examples assume the encoding provided by earlier examples.

Our XM compiler supports all of the types covered in this section by expanding each into
MR In order that error messages may use whatever syntax was used by the programmer
rather than its translation, the compiler is careful to annotate translated types and terms
with additional “hints” describing how they arose. Though not foolproof, this method
seems preferable to extending the A™® type system to deal with all of these types as
primitives.

3.1 Tuples

We can simulate the positional notation of tuples by introducing an opaque newtype for
each position:

newtype opaque fst = \(a : Type) . a
newtype opaque snd = \(a : Type) . a

Now £st 7 is distinct from snd 7 for any type 7.

A little sugar provides the familiar notation:

TTO] = A1l Empty
Tl(r, v)] = A11 ((£st T[7]) # (snd Tv]) # Empty)

(-..etc...)
S[O] = Triv
S[(t, v)] = ((£st S[t]) && (snd S[u]) && Triv)
(...etc...)

Tuple projection is polymorphic on both the element type and tuple length:

30
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fst : forall (a : Type) (b : Row) .
(fst a) ins b => All (fst a # b) -> a
= \(fst x && ) . x

fst (1, "two") : Int
fst ("one", 2, ’3?) : String

3.2 Records Revisited

Section 2.5 has already sketched how newtypes may simulate labels. A little syntactic
sugar can make this encoding more convenient. Firstly, we allow any type or term to be

“labelled”:
Ti: N} =1T["]
S[a: ] =1 S[¢]

(In a practical implementation, one could imagine the first occurrence of such a labelled
type or term automatically adding the declaration:

newtype opaque 1 = \(a : Type) . a
to the compiler’s internal tables.)

Secondly, some more sugar makes closed products and sums more convenient (where n > 1):

T & ... &1)] =A11 (T[] #... # T[r,] # Empty)
Tl | ... | 7o)] =0ne (T[n] #... # T{rs] # Empty)
S[tt &... &1,)] = (S[t1] && ... && S[t,] && Triv)

With these, non-extensible records and variants are straightforward:

type Point = ((xCoord: Int) & (yCoord: Int))
let movex : Point -> Point

= \((xCoord: x) &% rest) . ((xCoord: x + 1) &% rest)
in movex ((xCoord: 1) & (yCoord: 2))

type Num = ((isInt: Int) | (isReal: Real))
let asInt : Num -> Int
= { \(Inj isInt: i) . i;
\(Inj isReal: r) . floor r }
in asInt (Inj isReal: 3.1415)
(Here type introduces a type synonym.)

Extensible records and variants are similar.

3.3 Recursive Datatypes

Recursive datatypes may be simulated by recursive newtypes. Consider the datatype of
binary trees (in an idealized ML notation):
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data Tree = \(a : Type) . Node (Tree a, a, Tree a)
| Leaf

We may take this to be shorthand for the declarations:

newtype Tree = \(a : Type) . One ((Node a) # (Leaf a) # Empty)
newtype Node = \(a : Type) . (Tree a, a, Tree a)
newtype Leaf = \(a : Type) . ()

Each data constuctor wraps a newtype around its argument, and injects the result into the
overall datatype. A little sugar can simulate the familar data constructor notation of ML:

S[Node t] = Tree (Inj (Node S[t]))
S[Leaf] = Tree (Inj (Leaf ()))

For example:

let flatten : forall (a : Type) . Tree a -> List a
= { \Leaf . [1;
\Node (1, x, r) . (flatten 1) ++ [x] ++ (flatten r) }
in flatten (Node (Leaf, 1, Node (Leaf, 2, Leaf)))

Note that if AT'® is given a lazy semantics, as is the case in this dissertation, this encoding
suffers the “double lifting” problem for multi-argument data constructors. That is, AT®
programs may now distinguish an undefined datatype and a data constructor applied to
an undefined tuple. For example, with the declarations:

undefined = undefined
test = \Node _ . True

we have:

test undefined 1}
test (Node undefined) |l True

3.4 XML

Chapter 1 introduced XML, and discussed the problem with naively encoding XML
“choice” and “unordered tuple” regular expressions as ordinary Haskell-style sum and
product types. In particular, equal XML regular expressions may become unequal Haskell
types under the naive encoding.

In this section we shall encode choice regular expressions as type-indexed sums, and un-
ordered tuple regular expressions as type-indexed products. This encoding is total since
XML’s determinism constraint implies the components of a choice or unordered tuple must
be distinct types. Furthermore, this encoding respects the commutativity of these XML
operators. However, it does not respect any of the other regular expression equalities.
Though the encoding is not perfect, it does allow XML elements to co-exist with all the
other datatypes familiar to functional programmers: in particular higher-order functions
and parametric polymorphism. We think this is a good compromise.

By design, our sugared syntax for tuples introduced in Section 3.1 coincides with XML’s
syntax for tuples. Similarly, our syntax for (closed) sums and products introduced in
Section 3.2 also coincides with XML’s syntax for choice and unordered tuple regular ex-
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pressions. For the remaining regular expressions, we first introduce the datatypes of lists
and optional terms (using the syntax of Section 3.3):

data List = \(a : Type) . Cons (a, List a) | Nil
data Option = \(a : Type) . Some a | None

We then introduce the following sugar:

Tlr *] =List T[r]
Tlr 7} = Option T[]
Tir +} = T (r,r )]

There are two possible encodings of a document-type definition within A™®. The first,
which we shall term DTD-style, maps each XML element definition to a A" newtype
definition. For example, the XML e-mail document-type definition of Chapter 1 may be
trivially encoded as:

newtype Msg = (((Tol|Bcc)* & From), Body)
newtype To = String

newtype Bcc = String

newtype From = String

newtype Body = P*

newtype P = String

L]

Just like XML DTDs, each newtype is given a fixed body type.

The second encoding, which we term Scheme-style, declares each tag name as a label-like
newtype:

newtype Msg = \(a : Type) . a
newtype To = \(a : Type) . a

Then the specific structure of the e-mail DTD may be given by a single type declaration:

type MsgType = Msg (((To String | Bcc String)* & From String),
Body ((P String)=))

This second encoding is very similar to that used for XDuce, as shown in Chapter 1. It has
the advantage of allowing the same tag name to be reused with differing body types. For
example, From and To could be used elsewhere to tag dates instead of strings. This second
encoding would thus be appropriate for the more general form of document type definitions
allowed under XML Schema [24]. The disadvantage of this second encoding is that more
type annotations must be supplied by the programmer when using XML element syntax.
This shall be explained shortly.

XML documents are easy to manipulate in A™®. For example, here is a program to imple-
ment a spam filter:
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killSpam : Msg* -> Msg*
= filter (not . isSpam)

isSpam : Msg -> Bool
= \msg .
getReceiver msg == "mbsQcse.ogi.edu” &&
( contains suspiciousWords (getWords msg) ||
mem (getSender msg) suspiciousSenders )

getReceiver : Msg -> String
= \(Msg ((rcvrs && _), _))
(\[To to] . to)
(filter’ { \(Inj (To .)) . True; \_ . False } rcvrs)

suspiciousWords : String=*
= [ "money", "rich", "won", ... ]

getWords : Msg -> String*
= ( words
o toLowerCase
o concat
o map (\(P s) -> s)
o (\(Msg (_, Body body)) . body)
)

getSender : Msg -> String
= \(Msg ((From from && _) , _)) . from

suspiciousSenders : String*
= [ "quickcash@aol.com", "jl@cse.ogi.edu", ... ]

We assume a libary of standard functions whose types are given in Figure 3.1. (Some of
these types have been specialised so that we may ignore the overloading of the equality oper-
ator within type schemes.) The filter discards all messages sent to mbs@cse .ogi .edu which
are either from one of the suspiciousSenders, or contains one of the suspiciousWords.

Though A™ newtype declarations resemble XML element type definitions, the same cannot
be said for A™ terms and XML elements. The example e-mail message of Chapter 1 (of
type Msg) appears in native AT™ syntax as:

Msg (
( From "mbsQ@cse.ogi.edu"
& [ Inj (To "jl@cse.ogi.edu"),
Inj (Bcc "mbs@cse.ogi.edu") ] ),

Body [
P "The...",
P "All..."
]
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filter : (Msg -> Bool) -> Msg* -> Msg*
filter’ : ((To|Bcc) -> Bool) -> (TolBcc)* -> (To|Bcc) *
not : Bool -> Bool
(11) : Bool -> Bool -> Bool
contains : String* -> String+* -> Bool
mem : String ~> String* -> Bool
words : String -> String*
toLowerCase : String -=> String

concat : foralla . a*->a

map : forallab . (a->b) -> a* > bx
o:forallabc. (b->¢c)->(a->b) -> (a->c)

Figure 3.1: Some (type specialised) standard library functions

Notice the explicit use of Inj to inject the To and Bcc terms into the correct sum, and the
explicit type-indexed product, tuple, and list syntax.

We would prefer to be able to write this term in familiar XML syntax:

<Msg>
<From>mbs@cse.ogi.edu</From>
<To>jl@cse.ogi.edu</To>
<Bcc>mbs@cse.ogi.edu</Bece>
<Body>
<P>The...</P>
<P>All...</P>
</Body>
</Msg>
Notice that, as usual for XML, there is no need to explicitly inject the To and Bcc elements.
Furthermore, the list of paragraphs is implicit, as is the tupling of the sender, reciever and
Body elements. This additional syntax is unnecessary because, as far as XML is concerned,
this term is simply a tree.
Thankfully, it is possible to further exploit the determinism of XML regular expressions
and convert the XML element above to the coresponding A™ term. In order to avoid
cluttering this chapter, the precise technical development is deferred to Appendix A, and
we present only an outline here.

We shall assume the e-mail DTD has been encoded in DTD-style. Roughly, the type
checker first constructs an augmented Glushkov automaton for the body type of Msg, viz:

(((To | Bec)* & From) , Body)

This automaton is then run on the sequence of types From, To, Bcc, Body. Since this
sequence is in the language of the type above when viewed as a regular expression, the
automaton reaches an accepting state.

Furthermore, the automaton is augmented so as to maintain an internal stack of AT™® terms.
As each element is seen, this stack will be updated to contain its AT™® representation. For
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example, after seeing the From type, the automaton will have on it’s stack the X™™® term:
From "mbsQcse.ogi.edu"
After seeing the Bcc type, the stack will be (from bottom to top):

From "mbsQcse.ogi.edu",
Inj (To "jl@cse.ogi.edu"),
Inj (Bcc "mbs@cse.ogi.edu")

Notice how the Inj constructors have been automatically inserted. When the Body type
is seen, the two Inj terms are popped from the stack and replaced with a single list:

From "mbsQ@cse.ogi.edu",
[Inj (To "jl@cse.ogi.edu"), Inj (Bcc "mbs@cse.ogi.edu")]

These two terms are then replaced with a single type-indexed product:

( From "mbs@cse.ogi.edu" &
[Inj (To "jl@cse.ogi.edu"), Inj (Bcc "mbsQ@cse.ogi.edu")])

This process continues until the stack contains the single A™ message term given above.
(For clarity the above explanation used A™™® source terms, whereas the automaton actually
manipulates ™™ run-time terms.)

XM includes this support for XML element syntax. Furthermore, XM\ allows XML and
MR syntax to be intermixed. For example, another way of writing the example e-mail
message is:

let name = { \"Mark" . "mbs@cse.ogi.edu";
\"John" . "jl@cse.ogi.edu" };
[<P>The...</P>, <P>All...</P>]

body
in <Msg>
<From><<name "Mark">></From>
<To><<name "John">></To>
<Bcc><<name “Mark'>></Bcc>
<Body><<body>></Body>
</Msg>

The <<...>> brackets escape from XML syntax back into AT syntax.
XML syntax is also supported within XM patterns. For example:

getWords : Msg -> String»
= ( words
o toLowerCase
o concat
o map (\<P><<s>></P> —> s)
o (\<Msg><<(_ & _)>><Body><<body>></Body></Msg> . body)
)

Notice the use of the pattern (_ & _) within the body of Msg. This pattern is required
so that the type checker can unambiguously determine that the address component of the



37

Msg should be ignored.

What happens if our e-mail DTD were encoded in Scheme-style? Implicit in the discussion
above is the assumption that every newtype has a monotype body. Without this assump-
tion, the technique of using a Glushkov automaton to convert from XML to AT™® syntax
breaks down. To see why, consider the XML fragment:

<Body><P>The. ..</P><P>All...</P></Body>

Clearly we intend this to denote the A\T'® term:
Body [P "The...", P "All... "]

However, all the type checker knows about Body and P is that:

newtype Body = \(a : Type) . a
newtype P = \(a : Type) . a

Thus, the above XML term could also denote the AT™® term
Body (P "The...", P "All...")

. Body (P ["The..."], P ["A11..."])
or indeed any one of a countably infinite set of A™™ terms.
To avoid this ambiguity as simply as possible, XM requires the above XML term to be
written as:
<Body (P*)><P String>The...</P><P String>All...</P></Body>

Notice how the newtypes Body and P were explicitly instantiated with #ype arguments.
These arguments tell the type checker exactly which monotype each element should belong
to.

Of course this is far from convenient. Hence in practice the programmer should use the
DTD-style of encoding as much as is feasible, and introduce type abbreviations where
required:

newtype Body = \(a : Type) . a
newtype P = \(a : Type) . a

type BodyT = Body (P*)
type PT = P String

<BodyT><PT>The. ..</PT><PT>All...</PT></BodyT>

3.5 Overloading

As our final example, we show how equality constraints may be exploited to allow identifiers
to be overloaded with multiple definitions.

There are two approaches to overloading an identifier x. The open-world view, as adopted
in Haskell’s class system [109], assumes the multiple definitions for x are all instances
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of a common type scheme o, but otherwise makes no assumptions about any particular
definition. Hence, a new definition for x may be added without the need to recompile
programs using x. This approach is most conveniently implemented by passing definitions
as implicit parameters at run-time [47].

In contrast, the closed-world view, as adopted for method-overloading in Java [34] and
many other object-oriented languages, assumes all definitions for x are known at each
point of use, but otherwise only requires each definition to be at a distinct type. (Of course
Java has a notion of subtyping which has no counterpart in A™®, hence our examples are
simpler.) Closed-world overloading is typically implemented by selecting the appropriate
definition at compile-time. Hence, adding a new definition for x requires recompiling all
programs using x, but there is no associated run-time cost.

We now show that A™® is able to express closed-world-style overloading. In conjunction
with implicit parameters [57], an open-world style of overloading is also possible, though
unfortunately outside the scope of this thesis.

For a classic example, assume we have two addition functions:

intPlus : Int -> Int -> Int
realPlus : Real -> Real -> Real

To overload + on both these definitions, we first build a TIP containing them:

let allPlus
: A1l ((Int -> Int -> Int) #
(Real -> Real -> Real) # Empty)
= (intPlus && realPlus && Triv)

We then define + to project one element from allPlus:

let (+)
: forall (a : Type) (b : Row) .
a ins b,
(a # b) egq

((Int -> Int -> Int) #
(Real -> Real -> Real) # Empty) => a
= (\(x & _) . x) allPlus

(This type scheme is actually inferred and need not be supplied by the programmer.)

Because x is used polymorphically in the A-abstraction \(x &% _) . x, the type inferencer
cannot determine which of Int -> Int -> Int and Real -> Real -> Real should unify with
its type a. Hence this equality constraint, and the membership constraint arising from the
pattern (x &% _), must be deferred.

When typing the term
\y.(1+1,1.0+y)

we find it has type
e->(c, )
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subject to the constraints introduced by each use of +:

(Int -> Int -> ¢) insd,
((Int ~> Int ->c) #d) eq
((Int -> Int -> Int) # (Real -> Real -> Real) # Empty),
(Real -> e -> £) insg,
((Real ->e ->f) #g) eq
((Int -> Int -> Int) # (Real -> Real -> Real) # Empty)

The simplifier reduces this constraint to true, with the bindings:

c — Int,d — Real -> Real -> Real # Empty,
e > Real,f +» Real, g+ Int -> Int -> Int # Empty

Hence, the final inferred type is

Real -> (Int, Real)

However, for the term:
1.0+1

we find:
error: the constraint
(Real -> Int -> a#Db) egq
((Int ~> Int -> Int) #
(Real -> Real -> Real) # Empty)
is unsatisfiable

In conventional closed-world overloading, each use of an overloaded identifier must be at a
type sufficiently monomorphic to resolve the overloading statically. A™® lifts this restriction.
For example, consider defining nList to form a list of between 1 and 3 arguments:

let allNList
: forall (a : Type) .
A1l ((a -> List a) #
(a -> a -> List a) #
(a -> a -> a -> List a) # Empty)
= ((\x . [x]) &&
N\xy . [x, y1) &&
\xyz. [x, y, 2z]) & Triv)

let nList
: forall (a : Type) (b : Type) (c : Row)
b ins c,
(b # c) eq

((a -> List a) #

(a -> a -> List a) #

(a -> a -> a -> List a) # Empty) => b
= (\(x & _) . x) allNList

We may now specialze nList to oneList, which will append at most one more integer to
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[1, 23:
let onelist
: forall (a : Type) (d : Type) (e : Row)
(Int -> Int -> d) ins ((a -> List a) # e),
((Int -> Int -> d) # e) egq
((a -> a -> List a) # (a -> a -> a -> List a) # Empty) => d
= nList 1 2

Notice how oneList is still overloaded, but “less so” than nList.

The overloading of oneList is finally fully resolved in the program:

oneList ++ onelist 3 : List Int
which reduces to [1, 2, 1, 2, 3].

This last example highlights the limitations of the simplifier. One may expect oneList to
have the simpler type:

forall (d : Type) (f : Row) .
dinst,
(d#1f) eq ((List Int) # (Int -> List Int) # Empty) =>d

Unfortunately, the simplifier is not powerful enough to determine that a must be Int,
and cannot “project” away the common type Int -> Int -> _ in order to reduce the first
constraint to the second. Perhaps worse, if the programmer were to supply the above
scheme as an annotation, the system would be unable to show that the second constraint
entails the first, because the row variables e and £ do not appear within the result type
d of the two schemes and so cannot be related. Hence, this more sophisticated style of
type-based overloading may surprise the novice programmer.

An aggressive A™® compiler could inline a11P1lus and allNList, and perform SB-reduction
of the projection functions where indices are constant. Hence, X™™ couples some of the
flexibility of open-world overloading with the efficiency of closed-world overloading.




Chapter 4

Type Checking

This section begins our formal development of X™®. We’ll introduce its syntax and kind
system, and present the well-typing judgement. Well-typing requires the notions of con-
straint entailment, which in turn is built from a notion of type order. We conclude by
demonstrating the soundness of our type system w.r.t. a simple denotational semantics.

4.1 Syntax

Figure 4.1 presents the kinds, types and terms of the source language, most of which
should be familiar from examples. Our presentation is made more uniform if we allow
higher-kinds, type abstraction and type application, though care will be taken to avoid the
need for higher-order unification. For simplicity the only base type is Int.

The empty constraint will be written as true, and a generic unsatisfiable constraint as
false, though neither may appear explicitly within programs. We write C -+ D to denote
concatenation of the primitive constraints of C and D. Equality constraints are only
allowed at kind Type or Row; we’ll usually elide their annotation. As is customary, we
identify the type scheme forall - . true => 7 with the type 7.

We allow A-abstractions to contain patterns, which may be nested arbitrarily. We assume
all pattern variables to be distinct, and will also assume no type or term variable binding
ever shadows another. We identify the unitary discriminator { abs } with abs.

In much of what follows we assume types and terms are represented in applicative form.
For example, 7 -> v is represented by the application (_ -> _) 7 v. Furthermore, we
assume the binary operator (_ # _) to be generalised to a family of (n + 1)-ary row-
consing operators (#), for n > 0, so that 7y # ... # 7, # [ may be represented by the single
application (#), 71...7; [. We also identify (#)¢ I with I. Figure 4.2 defines F and G to
range over all type constructors, and f and g to range over all term constructors.

We shall write 7 to denote 7 ... 7, and 7\; to denote 11 ...7;_1 Tit1...Tp; n will typically
be clear from context. Many other constructs shall be similarly overlined. For example,
we write A F 77 K as shorthand for:

AFrm:iri A AAFT, Ky

The A™® type language forms a strongly normalising simply-typed A-calculus with con-
stants. We let A range over kind-conterts (mapping type variables to kinds), and let A;p;
denote the initial kind context given in Figure 4.3. Figure 4.4 defines the well-kinding
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Kinds k = Type | Row | kK1 => Ko
Type variables a,b = ab,...

Newtype names A,B = AB,...

Types ru,pu=Int|v->7

| Empty | T#p|One p|Allp
| Aja|\(a:8) .7|TV

Row tails [ ::= Empty | a
Type var context A= a;:K),...,08; : Kn n>0
Primitive constraints c,d i=Tinsp| T eq. v # € {Type,Row}
Constraints C,D,E :=cy,...,Cn n>0
Type schemes ou=forallA . C=>T1
Integers i
Variables T,Y,2 = X,¥,Z,...
Abstractions abs = \p . t
Terms t,bun=1|A|Inj|t&& u| Triv
| tu|z|{absy;...;absy} n>0
|letz=uint
Patterns p,qu=1i|Ap|Injp|p&&q|Triv|z
Newtype decls tdecl ::= newtype {opaque}’? A =17
Programs ’ prog = tdecl, ... tdecl, t n>0

Figure 4.1: Syntax of A™™® kinds, types and terms

FP,G:u=1Int|(_.->_)|Empty| (_#_)|(One_ )| (A11_) | A
fogu=(Inj_ ) |Triv|(_&& )| A

Figure 4.2: \™™ type and term constructors

Aconst = Int : Type,
Empty : Row,
(_#_) : Type -> Row -> Row,
(One _) : Row > Type,
(A1l _) : Row -> Type,
(_=>_) : Type -> Type -> Type

Ainit = Aconst H {A; : 5; | (newtype {opaque}’? A; = 1;) € tdecls}
such that Vi . A b 75 1 Ky
AKi=K}=> ... => K, => Type
AVj . k; € {Type,Row}
A every cycle involving A passes through at least one A11/0One constructor

Figure 4.3: Initial \'™® type var context Ajnit
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(a/F : k) €A
At a/F &
Aa:k'FT:k Ab1:6">K AFv:k
AF\(a: &) .7: k>« AFTv:K

| A k- 7 constraint |

AFT:5 Alwv:k k€ {Type,Rovw} AFT:Type AF p:Row

A b T eg, v constraint A b T ins p constraint

A ¢ constraint

A F T constraint

A o scheme]|

k € {Type,Row} A H@TRKF C constraint A+ a:kF 7:Type

AF forall@ & . C => 7 scheme

IA FT contextl

A F o scheme

A - T70 context

Figure 4.4: Well-kinded X™® types, constraints, type schemes and type contexts

judgement A F 7 : k, and its extension to constraints, schemes and type contexts. Both
sides of an equality constraint must have the same kind; insertion constraints must be with
a Type and a Row. Type schemes must have a body type of kind Type, and each universally
quantified type variable must have kind Row or Type.

We let 6 ranges over substitutions, which are idempotent maps from type variables to types
or rows, and which are the identity on all but a finite set of type variables. We also write
Id to denote the identity substitution.

Define the judgement A F 8 subst to be true iff dom(0) C dom(A) and V(a: k) € A.AF
a:k.

Similarly, define - 8 : A — A’ to be true iff dom(8) = dom(A) andV(a: k) € A. A8 a:
k. Notice the strict equality on domains. Clearly, because substitutions are idempotent,
A and A’ must be disjoint.

We shall write 6} to denote the restriction of 8 to the domain §. Similarly, 6\, denotes 8
restricted to all type variables except a. We shall use the same notation for restricting the
domains of other maps, such as environments.

Every recursive newtype must be well-founded; viz every cycle passing through a new-
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named(¢) =w:c where @ fresh
names(w: ¢) = (W)
anon(WTE)=7¢

inheritable(C) = tt

norm(F) = F
norm(a) = a
norm(\(a : 8K) . 7)=\(a : K) . T
_ [norm(r'la = v]), ifnorm(r)=\(a:k) .7
norm(r v) = {F V] ... v}, norm(v), if norm(7) = F v} ... v}

/

eqs(C) = {r equ | (T eqv) € C}
inss(C) = {w: 7 insv | (w:7 insv) € C}
inhs(C) = {(w : ¢) € C | inheritable(c)}

Figure 4.5: Definitions of functions named, names, anon, inheritable, norm, egs, inss
and inhs

type must also pass through at least one A1l or One type constructor. This restriction is
necessary because newtype declarations such as:

B
A

cannot be given a semantics in the model to be presented in Section 4.5.

newtype A
newtype B

Figure 4.5 collects some ancillary definitions. Some judgements require constraint contexts
in which every primitive constraint is associated with a unique index variable. The function
names(C) associates fresh witness names with each primitive constraint in C. The function
named(C) is the tuple of witness names of C, and shall be used when constructing run-time
terms; anon(C) is C with all witness names removed.

We write norm(7) to denote the 8-normal form for a type 7 of kind Type. Newtype names
are considered as free variables for the purpose of normalisation.

We let egs(C) be the primitive equality constraints of C, and inss(C) be the primitive
insertion constraints. We let inhs(C) be only the inheritable primitive constraints of C.
In this dissertation, inheritable(C) is defined to be the constant tt (true) function. If AT™®
were extended with implicit parameters [57], inheritable(C) would be redefined to be ff
(false) if C contains implicit-parameter constraints. However, much of the remainder of
the system, and its proofs of correctness, would remain unchanged.

We let 7™ and v™ range over all normalised monotypes of kind Type or Row.

Figure 4.6 presents the syntax of the untyped run-time language—the target of our type-
directed translation. Parts of this syntax have already been introduced in Section 2.6.

TIP’s are represented as ordered tuples (Ti,...,T,). TIC’s are a pair Inf W T of an
index and a run-time term. Each declared newtype A is represented by an injector A,
and corresponding extractor A™!. Though both these terms would be the identity in
any operational semantics, they shall be important when we consider a model for AT in
Section 4.5.
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Index vars W= W,...

Indices W = w | One|lnc W |Dec W | True

Bindings Bi=wy=W,,...,un=W, n>0

Variables z,y,2z == x,y,z,...

Terms T,U = i|{T,...,Tp) | Iy W T n>0
| Az . T | Mwr,y...,wp) . T n>0
| TU| T (W,...,Wy) |z | A| A7? n>0

|insert U at Winto T |let ) =UinT
| let z y = remove W from U in T
| case U of {Inj W =z — T1;

otherwise — T}
| case U of {i = T ; otherwise = T»}
|letz=UinT|letwBin T

Figure 4.6: Syntax of A™® run-time terms

Teonst = (Inj _) : forall (a : Type), (b : Row) . ainsb=>a->0ne (a#b),
(_&&% _) : forall (a : Type), (b : Row) . aZnsb=>a->All1b-> A1l (a#b),
Triv: All Empty

A:forall a; :K1,...,8p Ky - norm(T a1...ap) > Aay... 0,
Tinit = Ueonst ++ Ak => ... >Kq ->Type € Ainit,
(newtype {opaque}’?® A =7) € tdecls

Figure 4.7: Initial ™™ type context Ijn;

We keep indices separate from run-time terms to simplify our soundness proof. One is
the first index, and Inc W and Dec W offset index W by one position to the right or left.
Indices are abstracted and passed in tuples, and may be let-bound by letw B in T. The
“index” True witnesses the satisfaction of an equality constraint. It plays no part in an
implementation, but makes the proofs of correctness more uniform.

The term let()=UinT forces evaluation of U. In the term
let z y = remove W from Uin T, z is bound to the term at index W in U, and y
to the remaining product. The first case-form checks if U evaluates to a TIC with index
W. The second simply checks for matching integers.

4.2 Well-typed Terms

We let I" range over type-contezrts (mapping variables to type schemes) and let I';n;; denote
the initial type context defined in Figure 4.7.

Figure 4.8 presents the rules for deciding the well-typing judgement A| C |TFt: 17— T,
with intended interpretation:

“Term ¢ has type 7, and translates to the run-time term T, assuming the free
term variables typed in T, the free type variables kinded in A, the satisfiability
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A|C|TkHt:7> T

INT
A|C|ThFi:Int— 1

A|C|TFt:ves T
AlC|Tru:v' = U CF°vegy,, (v ->71) <> True

A|C|TFtu:T—>TU

APP

(z/f :foralla:rk . D=>71)€T
D' = named(D) AFTTER
CreD'[a—u|— B

VAR
Al C|Tkz/f :r[a—T]
> letw B in z/f names(D’)
A|C|Tlyabs: 1 Tle]
ABS

A| C|Tt {abs}: 7 < T[undefined]

A|C|Tty absy: 7 Tle]

A|C|TF+ {absy,...,absp 11} : 7" > U
C F° 7 egry,, 7 — True z fresh
A|C|TFA{abs,...,absp1}: 7

—letz = Uin T{z]

DISC

z € fu(t) Al Dy constraint A+ A’ F D; constraint
Dy = inhs(C) saturate(Dy H D) #0 o = forall A’ . anon(D;) => v
AHAN|Dy+H D Tru:v=U
AlC|T,z:0Ft: T T

A|C|TFletz=uint:T
< let z = Anames(Dy) . Uin T

LET

Figure 4.8: Well-typed X™™ terms

of the constraint context C, and the free index variables of C.”

We intend the VAR rule to apply to variables (ranged over by z), and constants and
newtypes (ranged over by f).

Note that, as discussed in Section 2.9, the LET rule must check not only that the constraint
for a let-bound term is well-kinded, but also that it is satisfiable, and that the let-bound
variable appears free in the let body. The test for satisfiability uses the saturate function,
which will be defined in Section 4.4.

The LET rule contains an additional subtlety. Typically, all the constraints of C would be
available when type checking u. However, in a system with implicit parameter constraints
[567], any implicit parameters within C must be removed when checking u. This restriction
is necessary to force any implicit parameters within « to appear within Ds, and thus ensure
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A|C|Thpt:T o T[e]

A|C|THt:T T
P
A|C|Thot:T T

A|C|Thkyt:7— T[] z fresh

A|C|Thkppi\i.t:Int ->7
— Az . case z of {i = T[e z]; otherwise — o z}

P2

(newtype {opaque}°?* A =) € tdecls

(A: Ky => ... => Ky => Type) € Ajpit
AFTTE CF® norm(v' vi...vn) egryp, 7 < True
A|C|Thkapa\p.t:(t'->7) T[e] =z,y fresh b3

A|C|Traa\Ap) . t:Av...vp=>7T
Az .lety=A"lzin TAy.e (A y)|y

A|JC|Tlkapa\p . t:(v->7)> Tl
Al p:Row CrHéuvinsp— W z,yfresh
A|C|TFapi\N(Injp) . t:0ne (#p) ->7
Az .casezof {Inj Wy — T[hy.e(Inj W y)]y;
otherwise — o z}

A|C|Thpi2\p.\g.t: (v >v2->7) > T|e]

C ¢ (A1l p) egryp, v2 = True Abp:Row CHevpinsp— W z,y,z fresh s
P

AlC|THa\(p&&gq) . t:A11 (Ui #p) > T
> Az . let y z = remove W from z
in T[Ay . Az . e (insert y at Winto z)] y 2

A|C|Trpt:7— Tle] zfresh

A} C|TlFpa \Triv . t: A1l Empty > 7
Az .let () =z in T[e z]

AFv:Type A|C|T,z:vb,t:7 < Tle] ,
P
AJC|Thrapi\z . t:(v=>7) > Az . T[e ]

Figure 4.9: Well-typed A\™™ pattern abstractions
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they are dynamically rather than lexically scoped. For ™ we abstract from this by using
the predicate inheritable (defined in Figure 4.5). We intend inheritable(c) to be ff if ¢
should be removed from C when checking u. Thus if \™ were extended with implicit
parameters, we would define inhertable(?z : 7+ C) = fT.

Notice the symmetry of index abstraction in the LET rule and index application in the VAR
rule.

The ABS and DISC rules both make use of the mutually recursively defined pattern compiler
of Figure 4.9. The subscript n is the number of A-abstractions of ¢ to be compiled as
patterns, and T[e] is the compiled run-time term with a “hole,” e, which should be filled
by a term (of the same type) to evaluate should the pattern fail. The ABS rule fills the hole
with undefined, since there is no other alternative to try. The DISC rule chains together
each discriminant such that failure of abs; will cause abs;;; to be tried. Notice the use
of a let binding within the run-time code generated by the DISC rule to prevent code size
explosion.

Note than a “vanilla” A-abstraction \z . t is typed by treating it as a singleton discrimi-
nator {\z . ¢} in the ABS rule. This discriminator in turn invokes the pattern rule P7 to
remove the argument z, and then the rule P1 for the body ¢, which then continues in the
well-typing judgement.

As a term is deconstructed, the pattern compiler must insert re-construction code so that
failure will be handled correctly. A real compiler will attempt to S-reduce pattern code
once the hole has been filled.

At the heart of all these rules is the entailment judgement, ¢, to be presented in Section 4.4.
It is used in three ways:

(1) When two types must be equivalent (e.g., in the APP and DISC rules) the type checker
asks if the current constraint context entails their equality.

(ii) Whenever a row is constructed or pattern-matched (e.g., in the P4 and P5 rules),
the row must be well-formed (the insertion constraint satisfied), and an index must
be known at run-time. The type checker thus asks if the current constraint context
entails the membership constraint. If so, the entailment judgement yields the index
w.

(iii) Each variable occurrence propagates any constraints from the variable’s definition-site
to the use-site. In the VAR rule, the type checker thus asks if the current constraint
context entails the variable’s constraints, suitably specialised.

We assume the following definitions for the source-language constants in the run-time
language:
(Inj _) = A(w) . Xx. Injwx

(Triv) =)
(_&& ) = A(w). Ax. Ay . insertxat wintoy
A=Xx.Ax

Notice these definitions match the types for these constructors given in Figure 4.7.
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lezleg™([],[]) = tt
tt, if F<F G
lexleg™(F :r, G : 7'y = ¢ ff, if G <F F
lezleg™(r, r'), otherwise

mim == _ ) [Fl if Fe O
preorderg (F ™) = {F :: preorder (T*) + ... H preorder[ (1), otherwise
preorderd ((#) , 77 Empty) = (#),, :: preorder T (71) + ... + preorder (t1.)

where 7 is a permutation on n s.t.
Vi, j.i < j=> legh (71 Tx5)

legB (7™, v™) = lexleq™ (preorder[ (™), preorderF (v™))

eqg (7™, v™) = legZ (7™, v™) A legl (v™, ™)

Figure 4.10: Total order on A™ monotypes
4.3 Type Order

This section formalises the notions of type order and equality introduced in Section 2.7.
We shall first construct a total order on monotypes, and then show how this order may be
extended to a partial order on all types that is stable under substitution.

Let <¥ be an arbitrary total order on all type constructors and newtype names. For
concreteness, our examples will assume the ordering (where the A; are the newtypes of the
program):

Int <F Bool <¥ String < (_-> _) <¥ Empty <F

(One _) <F (A11 ) <F 45 <F ... <F 4, <F

#) <F €I <F .

Notice that we have included the type constants Bool and String, even though these are
not included in the formal syntax of Figure 4.1.

Figure 4.10 defines the binary monotype relation, legy, which is parameterised over a set
of type constructors O. This relation is well-defined for any pair of normalised monotypes
of kind Type or Row. Note that because only similarly kinded types need be compared, we
could replace leqy with a pair of relations. However, this precision comes at the cost of
additional notational complexity.

This relation defines the monotype 7™ to be less-than or equal to v™, written legl (7™, v™),
when their pre-order flattenings are lexicographically ordered under lezleg™. The latter
uses <F to order each type constructor. For convenience the definition uses a list-like
syntax, where [] is nil and :: cons. Notice that, because each type constructor is both of
a fixed arity and saturated, there is no need for lexleg™ to consider the case of unequal
length argument lists.

Since the ordering of types should be stable under permutation of row elements, preorder
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first sorts a row’s elements using leqy; before flattening them. In this way we have:
leq{y (Bool # Int # Empty, Int # String # Empty) = tt

This recursion is well-defined because the row elements are strictly smaller than the row
containing them.

In the sequel, we shall instantiate O with either § or opagque, the set of all newtype names
declared as opaque. In this way leg]} may be used to decide both transparent and opaque
(in)equality. For example, assuming

newtype opaque A=\a . a

we have
leqppaque (A String # Bool # Empty,Bool # A Int # Empty)

but
—legy" (A String # Bool # Empty, Bool # A Int # Empty)

The relation egf}, for type equality, is defined in the obvious way.
Fact 4.1 Let s € {Type,Row} and Ajp; F 7™ /0™ /u™ : k. Then

(i) legl (™, v™) is well-defined.

(ii) leg® is a partial order, viz legZ (™, 7™); legZ(T™,v'™) and legf (v'™,v™) imply
legZ(t™,v™); legl (7™, v™) and legd (v™,7™) iff 7™ and v™ are equal up to permu-
tation of row elements and ignoring the arguments of type constructors in O.

(iii) legQ is a total order, viz leg (™, v™) or legF (v™, T™).

We now consider how to lift legf} to all types. The lifted relation is most conveniently
expressed as a binary function, cmpo, into the four-valued set of 1t (less-than), gt (greater-
than), eq (equal) and unk (unknown).

Before plunging into the definition, it is worthwhile to consider what is required. Clearly,
cmpo should agree with leg] on monotypes:

cmpo (7™, v™) € {It,eq} < legy (7™, v™)
However, to ensure soundness of entailment, ¢cmpo must also be stable under substitution:

cmpo(T,v) =z Az # unk = empo(0 7,60 v) =z

An obvious definition is for empo to yield unk whenever its arguments are not monotypes,
but definition this is needlessly conservative. Figure 4.11 presents the actual definition,
which will yield unk only when the possible instantiation of a type variable is significant
in deciding the (in)equality of two types. For example, again assuming

newtype opaque A=\a . a
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lexemp* ([, 1) = eq
It, if a <® b
lezempt(a::r,bur) =gt ifb<®a
eq, otherwise
lezempt(a 7, G r') =1t
lexemp'(F :r,a:r') =gt
It, if F<f @
lexempt(F =7, G = r') = { gt, if G <F F
lezcmpt(r,r'), otherwise

lexemp? ([], )
legempP(a v, b ) = § °F ifa=1b
)
)

unk, otherwise

:r—M

lexemp?(a :: v, G :: 7') = unk
lexemp?(F :: 7,0 7') = unk

It, if F<F G
lexemp?(F =7, G :: 7') = < gt, ifG<FF

lexemp?(r, r'), otherwise

preorder?], (a) = [a]

p g = JIFL if Fe O
preorderg (F 7) = {F :: preorder? (1) + ... ++ preorder? (1,), otherwise
preorder] ((#)n T 1) = 1:: (#)p =2 preorder] (7r1) + ... + preorder) (17 )

where 7 is a permutation on n s.t.
Vi,j . i <j=> cmph(txi,Tx;) = lt/eq

empl(1,v) = lezempt (preorder?, (), preorder?, (v))

empo(7,v) = lezemp? (preorder?, (1), preorder?, (v))

Figure 4.11: Partial ordering on normalized X™ types of kind Type and Row

we have

CMPopague (Int,a > b) =
CMPopaque(A 2, A Int) = eq
CMPopague (BoOl => a,Int -> b) =
CMPopague(a > b,a ->b) = eq
CMPopaque(2 => b, Int -> b) = unk
The relation ecmpo is defined analogously to leq} using a lexicographic ordering, lexcmp?,
on a pre-order flattening, preorderg. The function lezemp? will yield unk whenever it

encounters a type variable (though the comparison of a type variable against itself may
safely yield eq).
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The treatment of row comparisons involves some subtlety. Firstly, consider how to order
the rows a #d and b # ¢ # d. Since these rows share the same tail d, the first will always
be smaller than the second, suggesting:

CMpopaque(2a #d,b# c#d) =1t

Furthermore, consider how to compare Int # Bool # Empty and (a->b) # (c->d) #
Empty. Even though (a ->b) and (c -> d) cannot be ordered with respect to each other,
each of Int and Bool may be ordered with respect to (a ->b) and (¢ -> d), suggesting:

CMPopaque (Int # Bool # Empty,
(a->b) # (c ->4d) #Empty) =1t

Hence, one row may be less than another even though the elements of one or both rows
cannot be ordered amongst themselves. However, any rows with differing tails cannot be
ordered, since one or both tails may be instantiated to a row of arbitrary length.

To implement this requires two tricks within preorder?,. Firstly, a row’s tail is placed before
both its (#), type constructor and its flattened element types. In this way, unequal row
tails cause lezcmp? to yield unk. Secondly, the elements of a row are sorted not by cmpo,
but by a total order, cmpto, which places type variables before all other type constructors.

We assume <? is an arbitrary total order on all type variables, which for concreteness we
shall take to be lexicographic on the variable’s name. The relation cmpf, is defined as for
cmpo, but using lexemp® to lexicographically order the flattened types instead of lexcmp?.
Of course, emp}, is not stable under substitution, or even a-conversion! The stability of
cmpo is thus a little subtle.

The following lemma summarises the properties of cmpg.
Lemma 4.2 Given s € {Type,Row} and A I 7/v'/v : &, then:
(i) ecmpo(7,v) is well-defined.
(ii) IfF 0 : A = Ajni then cmpo (6 7,6 v) € {It,eq} iff legl (0 7,0 v).
(iii) If A - @ subst and cmpo(7,v) = z for z # unk, then cmpo (0 7,0 v) = =.

(iv) empo(T,v) = eq iff 7 is equal to v up to permutation of row elements and ignoring
the arguments of type constructors in O.

(v) empo(r,v) = eq iff empo(v,T) = eq.

(vi) empo(r,v') = eq and cmpo(v',v) = eq implies empo(7,v) = eq.
(vii) empo(7,v) = It iff empo(v,7) = gt.
(viii) empo(7,v') = It and empo(v',v) = It implies empo(7,v) = It.

(ix) empo(7,7') = eq and empo(7',v') = It and ecmpo(v',v) = eq implies cmpo(T,v) =
1t.

(x) empo(7,7") = eq and cmpo(7’,v') = unk and cmpo(v',v) = eq implies
cmpo(7,v) = unk.
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(xi) empo(r,v) = unk iff empo (v, 7) = unk.
(xii) empo(7,v) = It then ecmpy(7,v) = 1t.
(xiil) empy(r,v) = eq then ecmpo(7,v) = eq.

Proof Most are by definition of ¢mp. Property (iii), however, is a little subtle: see
Lemma B.3. O

4.4 Constraint Entailment

Roughly speaking, a constraint C entails a constraint D, written C ¢ D, if every satisfying
substitution for C satisfies every primitive constraint in D. However, we also ask that the
satisfaction of each primitive constraint be witnessed. Hence the full judgement form is
C ¢ D — B, where B is a set of bindings of witness names of D to witnesses, which may
contain witness names from C. Thus B resembles a coercion from C to D, and our F°¢
judgement decides implication in an intuitionistic logic of constraints.

4.4.1 TUnification and Saturation

Our strategy for deciding entailment is to first saturate the equality constraints of C by
reducing them to a set of unifying substitutions. We then discard those unifiers which
violate any insertion constraints in C, and then check each primitive constraint in D is
satisfied for each remaining unifier.

Figure 4.12 presents the definition for saturate. Much of the work is performed by mguso,
which, given a set of equality constraints, collects the set of their most-general unifiers (if
any). Here, “most-general” refers to the unifier for a fixed permutation of all rows, and
does not imply the set itself is “most-general” in any sense. An empty unifier set implies
a pair of types are non-unifiable. A non-singleton, non-empty set implies at least one pair
.of rows are unifiable under more than one permutation of row elements.

As in Section 4.3, O is a set of type constructors, and will be instantiated to either @ or (in
Chapter 5) opaque. For the latter, the resulting “unifiers” need not unify the arguments
of opaque newtypes.

Notice that the case for row unification collects the unifiers for each possible matching of
the first left-hand side element type to each right-hand side element type or the right-hand
side tail. Unifying a type with a row tail requires the introduction of a fresh type variable
of kind Row, hence some care shall be required when stating properties involving mguso.
Furthermore, no attempt is made to eliminate unifiers which lead to obviously ill-formed
rows. For example

mgusp(Id - (Int # Bool # a) eq (String # Int #b)) =
[a — String # d,b > Bool # d,
[a — String # Int # e,b — Int # Bool # e]

Here the second unifier (an instance of the first) duplicates the Int element types in both
rows. This definition is in keeping with the definition of empo. In the sequel we shall see
how such unifiers are rejected when it comes to deciding entailment.
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fvo(a) = {a}
foo(FT)=if F € O then 0
else |J; fvo(mi)
Joo(#)n T 1) = Ucicn fro(m:) U foo(l)

mguso(0 + true) = {6}
mguso(@+ b egb, C) = mgusp(6 + C)
mgusp(@+ b eqr,C) =if b € fup(r) then
else mguso([b— 7)o 0 F C [b— 7))
mguso(f 7 eqb, C) = mguspo(@F b egr, C)
mguso(@+ F T eqF U,C) =if F € O then {0}
else mgusp (0 + 7ego, C)
mguso(0+ FTeqGv,C)=0 when F # G
mguso(@t W) m Tleq#)n TV, C)=Ui¢jcn 55U S
where S; = {mguso (0 + 1 equj, (#) ;n_1 "F(l—l eq (#)n_17\; I,C)}
and §' =if ' = a and a ¢ fup(71) then
mguso([a > T # b0 (M) m-1 T\1 L eq (), T b, C)la > 7 # b))
else 0
and b : Row fresh

isIn(r, ), T1) = 3i . cmPopague (T, Vi) = €q
satisfied(C) = A(T insp) € C . isIn(t,p)

0 € mgusy(Id - eqs(C)),}

saturate(C) = {0 satisfied (0 inss(C))

Figure 4.12: Definition of fv, mgus, and saturate

Furthermore, mguso may also include “junk” unifiers which, though sound, are not most
general. For example:

mugsp(Id - (a # b # Empty) eq (a # b # Empty)) = {Id,a > b}

Here the second unifier is redundant, but to prevent its inclusion, or to detect and discard
it, seems to be much more trouble than simply accounting for such unifiers in a few points
within the correctness proofs.

Though we shall speak of sets of unifiers, multi-sets are also appropriate. Hence mguso
need not attempt to collapse duplicate unifiers.

Of course an actual implementation of mgusp needn’t use such a brute-force collection of
all unifiers. By using cmp*® to first sort each row, many obviously failing combinations may
be rejected.

Much of the rest of the technical development will depend on substitutions being equal
only up to the equality on types induced by cmpp. To this end, let 8 =¢ &' iff Va .
cmpo(0 a,0' a) = eq.

Lemma 4.3 (Correctness of Unification)

(i) IfVi.0 7; = 75 A O v; = v, then &' € mgusp(6 + Tegqv) implies 39" . ¢’ = 8" 0  and
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CH" rinsp— Wl

(w:7"insp) e C
CMPopaque (T, ') = €q
MEMPTY  —Popa que(p,F) = eq MREF
C +™ 7 insEmpty — One CHF*1tinsp—ow

CMPopaque (Ta 'Ui) =1t CMPopaque (Ta 'Ui) =gt
CF*rins(#),0l—> W CtF'rins(#),vl—> W
MCONT MDEC
CH'1ins () D\l o W CH"7ins (#)p_1 \i I = Dec W

CMPopaque (i) =1t CMPopague (T,vi) = gt
CrF"rins (W p 1 \il = W MEXP CHF" 1 ins(#)p_1O\; Il > W

CFlrins(#),vl—> W CHF*7ins (@), Tl—Inc W

MINC

[Cred— W

V6 € saturate(C) . VO € saturate(C) .

gr,0v)=e @i CYF™O0Ttinsfp— W
cmpy(0 1,0 v) q EQUALS inss(C) TinsOp INSERT
C+¢7equ— True CHérinsp— W

CHD<B

CHed— W
CHew:d—ouw=W

CONJ

Figure 4.13: \"™® constraint entailment

Vi.cmpo(0” 74,60" v;) = eq.

(ii) If Vi . empo(0 7,0 vi) = eq then 3¢ € mguso(Id + Tego) and 6" s.t.
6" 0 & 14om() =0 6

Proof See Lemma B.6 and Lemma B.7. O

Notice the use of domain restriction in the statement of equivalence of substitutions in (ii)
above. This restriction is necessary because both #' and " may contain spurious bindings
for row variables introduced by mgusp. It is exceedingly tedious to include these restrictions
in the (very many) places we must show the equivalence of substitutions. Hence, in the
sequel we shall assume, unless noted otherwise, that = is equivalence up to restriction to
the relevant variables. Here, “relevant” will be clear from context. (Jones’ = relation [47)
is defined similarly, though its motivation is very different.)
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4.4.2 Entailment Judgement

Figure 4.13 presents the constraint entailment judgements.

The rules of the ancillary judgement C ™ 7 insp — W attempt to find a suitable index,
W, for type 7 within row p. Notice these rules are non-deterministic: There may be many
possible derivations, and hence many possible witnesses. Furthermore, infinite derivations
are possible. Both these properties are an artifact of our presentation, which is pleasantly
concise compared to a fully deterministic and finite system.

Rule MEMPTY is the obvious base case (recall indices are base 1). Rule MREF allows
an index to be drawn from the environment, provided all types agree opaquely up to
permutation. Notice that all comparisons in these rules use cmpopaque rather than cmpy,
since the type arguments of opaque newtypes should not be significant in determining the
insertion position of a type in a row.

The remaining rules all attempt to build a relative index by adding or removing a type
from a row for which the index is known. These rules are only applicable when the type
being added or removed can be strictly ordered with respect to the type being inserted.

Sometimes W will be an absolute index. For example:
true F™ Bool ins (Int # String # Empty) < Inc One
Otherwise, W will be relative to an index in C. For example:

w : Bool ins (a # Empty) F™ Bool ins (a # Int # Empty) — Incw

The rules for the C F¢ d — W judgement first saturate C, then check d is satisfied
under each unifier. Notice that rule INSERT requires the index W witnessing 7 ins p to be
(syntactically) the same under each unifier. Doing so prevents a membership constraint
from being incorrectly discharged. For example, the following judgement is not true:

a#b#Empty) eq(Int # String # Empty) ¢ a ins (Bool # Empty) — W
y g

Depending on whether a is bound to Int or String, W can be One or Inc One. When
there are multiple ways to bind an index, we assume the entailment fails if there is no single
derivation which yields the same index under all unifiers. An actual implementation can
avoid having to try many possible derivations of the F™ judgement by preferring relative
to absolute indices.

Finally, the C ¢ D < B judgement extends the C ¢ d — W judgement from primitive
constraints to full constraints. Notice this definition implies saturate(C) is performed for
each d € D: Of course an implementation need not do so!

4.4.3 Soundness of Entailment

Figure 4.14 presents a simple denotational semantics for A™® witnesses and primitive con-

straints over ground types. The semantics uses the set 7 of witness values. We write 1 to
denote the singleton set {*}, and we let n range over all mappings from witness names to
witnesses. (In the sequel these maps shall be extended to include ordinary variables.)
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T = (iwrong : 1 +iind : Nt +itrue : 1)

ﬂw]n =nuw
[One}, =iind: 1
[Inc W}, = case [W], of {
iind: ¢ —iind: ¢ +1;
otherwise — iwrong : * }
[Dec W], = case [W], of {
iind: 4 —if 1 > 1 theniind: i — 1 else iwrong : %;
otherwise — iwrong : * }
[True], = itrue : x

sortingPerms(ti",...,17') = {7r

7 is a permutation on n, }
Vi,j.i<j = lqu)aque(T;.ni,T%)

[r™ ins (#), v™ Empty] = if Vr € § . 7~ 1 = i then {iind : i} else §
where S = sortingPerms(7™, v, ..., v7)
[r™ equ™] = if egf*(7™,v™) then {itrue : x} else §

env(B) = env(B,-)

env(-,n) =17
env((w = W, B),n) = env(B, (n,w — [W]y))

Figure 4.14: Definition of the set Z, the denotation of A witnesses in Z, the denotation
of AT™® primitive constrants as subsets of Z, and env

Notice that the denotation of a primitive constraint will be either the empty set (if un-
satisfied) or a singleton (if satisfied). The only subtlety is the denotation for insertion
constraints. We allow sortingPerms to yield more that one sorting permutation, provided
they all agree on the index for 7. For example

[Bool ins Int # Int # Empty] = {iind : 3}

but
[Bool ins Int # Bool # Empty] = 0

Using this model we may show our entailment judgement is sound. Notice that, for clarity,
we have suppressed the trivial True witnesses for equality constraints in the proof-theoretic
development, even though the following model-theoretic development requires them. They
may always be reinserted where required.

We say 7 satisfies C, writtenn |= C, if (w:¢) € C = nw € [c]. If A} C constraint, we
define satisfiable(C) to be true if there exists a A - @ subst and nst. =6 C.

Let A + C/D constraint. Then we say C model-theoretically entails D with coercion B,
written C IF¢ D — B, if forevery F 6 : A — Ay and 77 s.t. n = 8 C, we have
env(B,n) =0 D.
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We say (7 eqv) is equivalent to (7' eqv’), written (7 eqv) = (7' eqv'’), if empy(7,7') =
eq and cmpy(v,v') = eq or empy(T,v') = eq and cmpy(v,7') = eq. Similarly, define
(1 ins p) = (7’ egp’) to be true if empy(7,7') = eq and cmpy(p,p’) = eq. We extend =
pointwise to all constraints.

Lemma 4.4 (Soundness of Entailment) If C ¢ D — B then C IF¢ D — B.

Proof See Lemma B.13 for the full theorem statement and proof. a

As an immediate consequence of soundness we have:
Lemma 4.5

(i) Types are tautologically equal if they are equivalent: true +® 7 eq v implies
empg(7,v) = eq.

(i1) A type may be tautologically inserted into a row if it has a unique insertion index:
true ¢ w: v ins (1) # ... # 7, # Empty) — B implies § # 0 and there exists an ¢
s.t. Vre S .71 1 =i, where § = sortingPerms(v,71,...,Tn).

Proof See Lemma B.14. O

We can also show that entailment is well-behaved:
Lemma 4.6

(i) ¢ is reflexive: C F¢ C — -

(ii) k¢ is transitive: C +¢ D' — B and D'+* D < B’ and 5 |= 6 C implies C ¢ D —
B" and env(B +H B',n)rmmes(D) = env(B”, M) tnames(D)-

(iii) ¢ is closed under substitution: C ¢ D — B implies§ C +° 8 D — B.
Proof
(i) See Lemma B.28.
(i1) See Lemma B.31 for the full statement and proof.

(iii) See Lemma B.27 for the full statement and proof.

Finally, we can show saturate(C) is non-empty if and only if C is satisfiable:

Lemma 4.7 saturate(C) # 0 iff satisfiable(C).
Proof See Lemma B.16. O
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4.4.4 (In)Completeness of Entailment

The rules of entailment in Figure 4.13 are not complete with respect to the model of
constraints given above. That is to say, C IF® D — B does not imply C ¢ D < B. This
incompleteness arises because the F™ judgement does not exploit the way in which types
are ordered.

For example, notice that for any n and 8 such that
n = w:0b ins (Bool # Empty)

we have
[wl, € [0 ((b, c) ins (Bool, Int) # Empty)]

However

w: b ins (Bool # Empty) ™ ((b, ¢) ins (Bool, Int) # Empty) — w

Some progress can be made by including the projection rules:

(w:(rv)ins(Tv)#...# 70, #Empty)) € C
CH™ w' :vins (#), v Empty > w' = w

MPROJL

(w : v ins (#), V' Empty) € C

CF™ w':(rv)ins(T oy #...# 7 v}, #Empt T TROIR
: 1 #... n pty) = w' = w

Here 7 is any type functor of kind Type — Type which does not discard its type argument
(though it may be duplicated). Since such rules seem potentially very expensive to imple-
ment, we would like to first gain some experience with an implementation before deciding
if such an expense is justified.

A variation of these rules for functors of kind Row — Type is also possible, but potentially
even more expensive, since it must work with rows in canonical order.

However, even with the rules above the example entailment above still fails, and hence
¢ remains incomplete. The problem is that these rules do not exploit the lexicographic
ordering of types. Though variations of the rules above to exploit this information seem
plausible, we feel this problem is one of the model being too rich rather than the entailment
relation being too poor. A better approach would be to parameterise the definitions of
Figure 4.14 by the definition of leg™. We would then write C ¢ D — B iff n =0 C
implies env(B,n) k= 0 D for all definitions of leg™. which satisfy the properties of Fact 4.1.

It is unknown whether ¢ remains incomplete even with all of the refinements mentioned
above.

Incompleteness of entailment has two consequences. Firstly, may properties, such as closure
under substitution and transitivity, are trivial to show for I-¢. Without completeness, we
are forced to prove these properties for ¢ also, which is substantially more complicated.
Secondly, when we come to showing A™ enjoys completeness of type inference in Chapter 5,
we must base the theorem upon IF¢ rather than F¢.
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EA={1}U{[a] | a€ A}
unitg : A-E A
= Xa . [a]
bindg : EA—-(A—>EB)—->EB
= Xea f .case ea of {L > L;[a] > f a}
strengthg : AXEB - E (A x B)
= Aa eb . case eb of {L — L;[b] = [(a,bd)]}

Figure 4.15: Evaluation monad E

4.4.5 Complexity of Entailment

We do not have any complexity results for entailment, or even satisfaction. Of course,
entailment is mostly a theoretical stepping stone towards simplification, for which care has
been taken to avoid explosive time complexity. An implementation of entailment is used
by the compiler in only two situations:

(i) The simplifier uses (a variation of) entailment to eliminate constraints containing
only type variables known not to appear outside the constraint. These constraints
tend to be small.

(ii) The compiler must check the constraint in a programmer-supplied type annotation
entails the inferred constraint. However, programmers tend not to write very large
constraints when annotating a term, usually because they are only interested in
an instance of (one of) the term’s principal type(s) in which most of the constraints
become tautological. Furthermore, if experience with Haskell is any guide, they would
prefer to be able to supply a type annotation without also supplying a constraint.
(A “...” notation, denoting “any constraint,” has been proposed for Haskell, and
would likewise be suitable for A™.} In such cases the type checker only needs to
check that the inferred constraint is satisfiable when instantiated by the annotated

type.

In both cases, the left-hand side constraint is small when deciding entailment. Furthermore,
rows tend not to be highly polymorphic and not deeply nested, in which case saturate yields
only a modest number of substitutions.

4.5 Type Soundness

This section presents a denotational call-by-name semantics for X™®. The model is inspired
by that for HM(X) [79], which in turn is a mild generalisation of Milner’s original model
for let-bound polymorphism [66]. Types are denoted by ideals {59] of the domain E V, and
terms by members of E V.

V is the pre-domain of values, defined by:
V=((wrong:1)+ (int: Z) + (func: EV - E V)
+ (X nsoprody : [licica BV) + (inj : N* X E V)
+ (Xasoifunca : ([Iicicn I) 2> EV))
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[Int] =E {int:i|iec 2}
[v™ > 7] =E{func:f|f€eEV > EV,ve[p™] = fve[r™]}
[A11 ((#), 7™ Empty)] = E {prod,, : (v1,...,vs) | 1 € [T7"], ..., vn € [77]}
[One ((#), 7™ Empty)] = E {inj: (i,v) |1 < i < n,v € [7%]}
where 7 € sortingPerms(t[",..., ")
[AvP...vP]=E | (ifp Ad . [(norm(r vP* ... 0P ))[A v ... v — d]])
where (newtype {opaque}??* A = 1) € tdecls
[d] =d

[forall A . C=>7] =) {S((),B)

where D = named(C)
and names(D) = (wy,...,wy)

f € (licicn D) 2 EV, }
d Spp =E {if =n
and (g, B) {' uncy : f ’ f [['wlyem)(B)v [wn]env(B)) € Ho T]I

F&:A— Aim’t;
env(B) =6 D

Figure 4.16: Denotation of AT™ normalized monotypes and type schemes as ideals of E V

Here + is categorical sum, — continuous (not necessarily strict) function space, Z the set
of integers, N’ the set of non-zero naturals, Z the set of indices defined in Figure 4.14, and
E is the evaluation (lifting) monad defined in Figure 4.15. Each summand is tagged by a
mnemonic for its injector. We use the summand wrong : = to denote all ill-typed programs.

(This somewhat unorthodox presentation of V as a pre-domain rather than a domain has
been chosen so as to make the monad E explicit, which in turn simplifies the proof of type
soundness. )

Figure 4.16 presents the denotation of ™ monotypes and (closed) type schemes. The de-
notation for an A1l type is a product of types ordered by a sorting permutation. Similarly,
a One type is a pair of an index and type, where the index must match the type under
a sorting permutation. (Recall sortingPerms was defined in Figure 4.14.) Notice that we
say “a” rather than “the” sorting permutation here so that we may assign a meaning to
all well-kinded types, including TIP’s and TIC’s containing duplicate types. Notice that
the choice of permutation does not change the denotation of these types, because we shall
show equal types have equal denotations. Furthermore, since all types are ground, there
will always be at least one permutation.

Newtypes are possibly recursive: We assume they are never mutually recursive and all
the recursion is regular. (A model for all \™™® recursive types is possible but would take
us too far afield.) We write Ifp to denote the usual least-fixed-point solution (up to
isomorphism) of mixed-variance recursive types using e-p pairs and strict function spaces.
This solution is always well defined (and thus the result pointed) since the denotation of all
other types are pointed, and every recursive cycle for a newtype passes through a One or
A1l constructor. We write unfold4 and fold s for the usual mediating morphisms. That
is, if (newtype {opaque}’t A = v) € tdecls and (A: K1 => ... => kp -> Type) € Aynit, then
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for any Ajnit 77 K we have

folds : [norm(v ... )] 2> [A 1 ... 7]
unfoldy : [A 71... 7] = [norm(v 7 ... 1)]

(For clarity we suppress the parameterisation on A, which is always clear from context.)
The operation } removes the bottom element from a domain. We use it so that the
denotation of every type has L as its least element.

The most important aspect of our model is the denotation of type schemes. If a scheme
contains insertion constraints, its denotation is the ideal of all index abstractions which
are well-behaved for all possible solutions to the constraints. This is defined by taking
the intersection over all grounding substitutions @ for which env(B) = @ D. Then each
index abstraction must yield a well-typed result given the (meaning of the) bindings in B.
(Again, recall env was defined in Figure 4.14.)

It is easy to see wrong : * never appears within the denotation of a monotype:
Fact 4.8 If A | 7 : Type then [wrong : ] € [7].

Furthermore, the denotation of monotypes respects equality:

Fact 4.9 egy"(7™,v™) implies [r™] = [v™].

The situation is not so simple for type schemes. If C is unsatisfiable,
[forall A’ . C => 7] = E V, which clearly does contain [wrong : x]. However, provided
the top-level constraint of a term is satisfiable, all of the constraints arising within it are
also satisfiable. This reasoning is built into the soundness proof, to follow shortly.

Figure 4.18 presents the denotation of A™® terms. For convenience, we allow 7 to bind both
term values (members of E V) and index values (members of 7). We write letg z < u in ¢
as shorthand for bindg u (A\z . u).

We now show the translation of every well-typed A™ term has a denotation within the
denotation of its type. Since no A™® type contains [wrong : |, this property implies a
well-typed program, when translated, will not encounter a run-time type error.

We say n models T, written n = T, if dom(n) = dom(T") and for every (z : o) € T,
nz € [o].

Theorem 4.10 (Type Soundness) If A | C |TF t: 7 < T, and @ is grounding and
well-kinded under A, and env(B) |= 6 C, and 5 |= 0 T then [T}, cno(m) € [0 7]

Proof See Theorem B.39 for the full theorem statement and proof. O
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[:]n = unitg (int: )
[(T1,..., Ta)]y = unitg (prod, : ([Tily,- .-, [Taln))
[inj W T}, = case [W], of {
iind : i — unitg (inj : (i, [T]o));
otherwise — unitg (wrong : ) }
[Az . T}, = unitg (func: Ay . [T]yzy)
ﬂA(’lU], veey ’U)n) . T]"I = unitE (ifuncn : A(yla ey yﬂ) .
KT]T),WlHyl,...,wnHyn)
[T U], = letg v + [Tl
in case v of {
func: f = f [Uly;
otherwise — unitg (wrong : %) }
[T (W1,..., Wa)l, = letg v + [T],
in case v of {
ifuncy : f = f ([Wil. .- .. [Waly);
otherwise — unitg (wrong : ) }
l[zlh=n=
[4], = fold
|[A“1],, = unfold 4

Figure 4.17: Denotation of X'™® run-time terms as members of E V (part 1 of 2)
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[insert U at W into T], =letg v « [T],
in case (v, [W1],) of {
(prod,, : (vq,...,v)),iind : 3) =
unitg (if 1 <1 < n + 1 then v” else wrong : *);
otherwise — unitg (wrong : %) }
where v" = prod,, ; : (v],...,v]_1,[Uly, v],...,v5)
flet ) = Uin T}, =letg v « [U],
in case v of {
prody : (} = [Tly;
otherwise — unitg (wrong : %) }
[let z y = remove W from U in T], =
letg v + [[U]ﬂ
in case (v, [W],) of {
(prod,, : {v{,...,vy),iind : §) =
if 1 <4 < nthen [T]; ;rsy 4o €lse unitg (wrong : *);
otherwise — unitg (wrong : *) }
where v" = unitg (prod,_; : (v{,...,v_1, v 1,...,v;))
[case U of { Inj W z — T; otherwise = Ty }], =
letg v « [UH,,
in case (v, [W],) of {
(inj : (j, v'),iind : i) = if i = j then [T1]; 2. else [T2],;
otherwise — unitg (wrong : *) }
[case U of { : — Ti; otherwise — T3 }], =
letg v « [U}]n
in case v of {
int: j — if i = j then [T1], else [T2],;
otherwise — unitg (wrong : *) }
|[Iet z=Uin Tﬂﬂ = [[Tﬁﬂ,x'—’[U]n
[Ietw Bin T]'} = HT]'env(B,n)

Figure 4.18: Denotation of A run-time terms as members of E V (part 2 of 2)




Chapter 5

Type Inference

This chapter develops a type inference system for X™® which we show sound and (with
one caveat) complete with respect to the type checking system given in Chapter 4.

5.1 Inference Rules

The type inference judgement 8 | C | '+t : 7 — T is defined by the rules of Figure 5.1.
This relation may be read as a type inference algorithm with ¢ and I" as inputs, and 6, C
and T as outputs. Its intended interpretation is:

“Given term t in type context I', { has the most general type 7 and constraint
C, assuming the free-variables of I' are bound by 8. Furthermore, ¢ may be
implemented by the run-time term 7.”

An ancillary judgement for inferring the types of patterns is defined in Figure 5.2.

These rules are, for the most part, mechanically derived from those for type checking given
in Figures 4.8 and 4.9:

e Types arbitrarily introduced by a type-checking rule must be replaced by a fresh type
variable (of the same kind) in the corresponding type-inference rule. For example,
the well-kinded types ¥ in rule VAR become the fresh type variables b in rule IVAR.

e Similarly, types which appear only in the conclusion of a type-checking rule must be
replaced by a fresh type variable in the type-inference rule. For example, 7 in rule
APP becomes variable b in rule 1APP.

e Each primitive constraint tested for entailment by a type-checking rule must instead
be accumulated by the corresponding type-inference rule. For example, the constraint
vegq(v' => 7) in rule APP becomes the constraint (62 7) eg(v -> b) in rule IAPP, which
is included in the result constraint.

e The substitution & must be threaded linearly throughout the derivation, and applied
to I' in any intermediate derivations. (The proof of completeness will turn out to be
a little easier if the domain of @ is restricted to fuy(I"), hence the explicit restrictions
in rules ISIMP and IP7.)

There are two exceptions to this transliteration. Firstly, and as usual [19, 47}, the ILET rule
must generalise the type and constraint for u when inferring the type of let z = v in t.

65
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0|C|THt:7> T

IINT
Id | true |T'Fi:Int — i

91|Dlrl"t:T‘—)T 02|D’|01I‘I—u:v=—>U
b: Type fresh C = (02 D) + D'+ (02 7) egrype (v -> b)

0200, | C|THtu:b> T U

IAPP

(z/f : foralla~k . D=>7) €l

b:kfresh C = named(D)[a — b] VAR

Id| C|Ttz/f:r{a— bl — z/f names(C)

0| C|TtFyabs:7— Tl
L
8| C|T I {abs} : T — T[undefined]

ABS

01|D]I‘I—1 abs; : T — T[O]
0| D' | 6, T+ {absy,...,absp41}: 7 = U
C= (62 D)+ D'+ (02 7) egrype '

6200, | C|T+{absy,...,absp11}: 7 < let 2 = Uin T[z]

IDISC

z€fu(t) 6| Dy |THu:v U
gen(D1 |6, T |v)=(Dy | A | D3)
o = forall A . anon(D3) =>v
O | Dy | (1 T)yz:0Ft:T> T
saturate((02 Dy) + Dyg) # 0 C=(6: D) H Dy

02060, |C|T'FHletz=uint: 7
— let z = Anames(D3) . Uin T

ILET

0| C'|THt:7 T
(fp(61 T') U frg(7) | C')o* (62 | C'| B)
(92°01)[fv¢(r‘) | C|THt:027—letwBinT

ISIMP

Figure 5.1: Type inference and translation for A™® terms
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0| C|Thnt:T < Tlo]

|CiT+Ht:7 T
0|C|Thot:7— T

pl

0| C|Thkat:T— Tl

OIClP}“n+1\2 Lt:Int->7
— Az . case z of {i — T'[e z]; otherwise — o z}

P2

(newtype {opaque}’t A =v') € tdecls

(A: k1 => ... => Ky => Type) € Ajni
Firfresh 6D |Thnpi\p.t:(r =>7) < To]

C =D+ norm(v' by ... b,) egrype 7'

0| C|Thapa\Ap) . t:Ab...0p->7T
s Az.lety=A"1zinThy.e(4dy)]y

IP3

6| D|Thrpp1\p . t:(v->7) T[e]
b : Row fresh w fresh
C=D+Hw:vinsd

0|C|Thrpt1\(Injp) . t:0ne (V#D) ->7
— Az .casezof {Inj Wy — Thy.e(Inj W y)] y;
otherwise — o z}

P4

0| D|Thpia\p.\g.t:(v1 ->vy->7) = Tle}
b : Row fresh w fresh
C =D+ A1l b egyy,, va+H w:vy insb

9' C’|I‘l—n+1\(p&&q) . t:A11 (’U]#b) ->T
> Az . let y z = remove W from z
in T[Ay . Az . e (insert y at Winto z)] y 2

IP5

0| C|Tkat:7T— T[]

0| C|TFpyr \Triv . t: A1l Empty -> 7
Az .let () =z in T[e z]

1P6

b:Typefresh 6| C|T,z:bkF,t:7 < Tle]
O | CITFpr1\z . £:((00)->7) > Az . T]e 1]

r7

Figure 5.2: Type inference and translation for \'™® patterns
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notEqual(C - 7,v) = V0 € mgusopaque (Id F 7 equ) .
—satisfied(6 inss(C))

notln(C &+ 7, (#), T 1) = Vi . notEqual(C F 7,v;)
! = Empty
A VAT ins () V' 1) € inss(C) .
CMPopaque (T, 7') =eq Al =1

Figure 5.3: Definition of notln

To this end we define the generalisation function, gen, as:

gen(C | T |7) = (D1 | A| Dy)
where A = (fup(C) U fup(7)) \ fup(T')
and D; = {(w: ¢) € C | fop(c) N dom(A) = @ A inheritable(c)}
and Dy = {(w: ¢) € C | fup(c) N dom(A) # 0 V —inheritable(c)}

Here we intend the resulting generalised type scheme to be forall A . Dy => 7, and the
constraint D, to be “held over” into the current constraint context. Notice that only non-
inheritable constraints with free variables contained in fuyy(I') may be lifted outside the
scope of the universal quantification over A. If X™™® were to be extended with implicit
parameters [57], this restriction would ensure any implicit parameters in u are captured
by u’s generalised type scheme.

The second exception is the inclusion of the simplification rule 1siMP. This rule may be
used to simplify the current constraint context at arbitrary points of the derivation. Hence
the type inference rules are not fully syntax directed. In a practical implementation type
inference should be syntax directed, and so the 1SIMP rule should either be applied after each
derivation step, or just before generalisation. However, unlike in the HM(X) framework
[79], our development shall not assume simplification occurs at any particular point in the
derivation—not even before generalisation! Our approach to simplification is instead based
on Jones’ refinement of OML to handle context improvement and simplification [48].

5.2 Constraint Simplification

The constraint simplifier is presented in Figures 5.4 and 5.5. Rules s1-518, of the form
(a| C)>(8| C'| B), allow a constraint C to be simplified by a single step into constraint C’
and a residual substitution 6. One may think of 8 as a particularly efficient representation
for a set of equality constraints of the form a eq 7. The bindings B describe how the
witnesses of C may be constructed from those of C’. (We shall explain the purpose of @,
a set of type variables, shortly.) If C is unsatisfiable it may be rewritten to the canonical
unsatisfiable constraint false, thus signalling a type error.

Rules s1-s4 implement conventional unification over finite Herbrand terms.

Rules $5-s8 extend unification to rows. Rules S5 and $6 reject rows of obviously incom-
patible arities. The remaining rules are guided by an ancillary function, notln, defined in
Figure 5.3.
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(@] C)p (9| C"| B)

Simple Unification

(@|C,reg.v)yp(Id| C,veq,7]|") sl
(@|C,beg. ) {b>7]|Clb—>T]]|") when b & fog(r) s2
(@| C,F T eqpyy FU)>(Id| C,7eq,v|) when F:xj->...->k) ->Type 3
(@| C,F T egpy,, GU)> (Id | false| ) when F £ G s4

Row Unification

(@|C,#), T b egp,, (#), UEmpty) > (Id | false | -) whenm >n  Sb
(@| C,(#), T Empty egg,, (#)n T Empty) > (Id | false| ) whenm#n s6
@|C, M mTleg, Mpvl)p(Id| false| ) s7

when notin(C + 75, #), T l')
@|C, B pTlegg, #)p,Tl)
>(Id | C,7i egrype Ujs (M) m—1 T\i | €Goy )n_10\; I'|-) S8
when notIn(C F 7;, (#) n U\ ') and empopaque (Ti, vj) = eq/unk

Figure 5.4: Simplification of A™® constraints (part 1 of 2)

We intend notIn(C F 7, p) to be true if C entails that type 7 cannot appear within row p.
For example, if 7 is not unifiable with any member of p, and p is closed, notln yields true:
notIn(true I Int,Bool # Char # Empty) = tt
notIn(true I (a, b),Bool # Char # Empty) = tt

If 7 is unifiable with members of p, and p is closed, notIn yields true if each unification
would contradict a constraint in C:

notIn(true - Int,Bool # Int # Empty) = ff
notln(a ins Int # Empty I (a, b), (Int, Bool) # Int # Empty) = tt

Finally, when p is open, notln is true only when the conditions above hold and C contains
a constraint preventing 7 from appearing in p’s tail:

notin(true I Int,Bool # Char # a) = ff

notIn(Int insat Int,Bool # Char # a) = tt
The notIn function is exploited by rules s7 and s8. Rule s7 signals failure if a type within
p cannot appear anywhere within p’. Rule s8 allows a type within p to be matched against

a type within p, provided there are no other possible matchings involving one of this pair
of types.
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Membership
(@| C,w:7insp,w :7insp)p{Id| C,w:7insp|w = w) s10
when cmpopague(7,7') = €q and empopaque (0, 0') = eq
(@| C,w: 7 insEmpty) > (Id | C | w = One) s11
(@ Chw:Tins BTl (Id| C,w' : T ins M) p_1 D\ 1| w = w') s12

when w’ fresh and empopaque (7, ;) = 1t

@|Cw:Tins (o> (Id| C,w' :7ins #)p1D\; I | w=Incw) 513
when w' fresh and empopague (7,v3) = gt

(@ Chw:Tins (W1 D Ho(Id| C,w' :Tins W) Tl | w = ') s14
when w' fresh and empopaque (7, V) = 1t
@|Cow:Tins(W)p 1O o (Id| C,w' :7ins(#), T | w = Dec w') s15
when w’ fresh and empopaque (7, vi) = gt
(@| C,w:7insp)v (Id | false| ) when isIn(r,p) 16
Projection
(@a|CHD)>{@]|C|B) s17

when fup(D) N fop(C) = 0, fug(D) Na = 0, 6 € saturate(D)
and V@' € saturate(D) . true ¢ 6’ D — B

(@| C+ D)v (Id | false| ) s18
when fuy(C) N fug(D) = 0, fue(D) NG = B, and saturate(D) =0

(@ C)»* (0| C'| BY)

SDONE

@| C)p*(Id| C|)

@[ C)p(0]| C"| B) (@UUueafm(0a)| C")>* (6| C'| B')
@| C)v* (0 08| C'| B' ++ B)

SSTEP

Figure 5.5: Simplification of A™® constraints (part 2 of 2)

The reader will notice rule s9 is missing from Figures 5.4 and 5.5. We shall have more to
say on this in Section 5.4.

Rules §10-515 simplify insertion constraints, which may involve binding a witness variable
of C. They are an immediate consequence of the entailment rules MREF, MEMPTY, MEXP,
MINC, MCONT and MDEC respectively. Rule s16 signals failure when a type obviously
cannot be inserted into a row.

Finally, rules s17 and s18 implement a weak form of constraint projection [79]. Projection
is a more aggressive form of simplification for constraints which are known to be self
contained. These rules are the only ones to make use of @, a set of type variables, given
as input to the simplifier. We intend @ to contain all those free variables of C' which are
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“yisible” outside of C'; that is, which may be further constrained as type inference proceeds.
Indeed, the ISIMP rule takes @ to be fug(8; I') U fug(7).

These two rules apply only when the current constraint may be partitioned into two con-
straints, C and D, such that no type variable is shared between them, and D contains no
“visible” type variables. In this case, the simplifier is free to choose an arbitrary substitu-
tion, 6, s.t. D is satisfied, provided that any witnesses for D do not depend on 8. In other
words, the simplifier may do what it wishes with D provided any choices it makes cannot
be observed. In practice, we cannot enumerate all possible substitutions, so instead try
only those in saturate(D).

Rule s18 signals failure if D is unsatisfiable. Notice that this rule could be applied for
arbitrary D, regardless of its free variables, but attempting to do so would be prohibitively
expensive. Instead, this rule catches the case that saturate(D) in rule s17 yields the empty
set.

For example, if ¢ and d are not visible, then the constraint
(w:ainsb), (c #d#Empty) eq (Int # Bool # Empty)

may be simplified by eliminating the equality constraint. Without rule s17, this equality
constraint would propagate all the way to the top level of the program and cause an error.
By contrast, the constraint

(w:ainsb), (w’ : c ins (d # Int # Empty))

cannot be further simplified, since there is no single binding for w’ which is consistent with
all bindings for ¢ and d. In this case, the program is inherently ambiguous, and an error
may be reported.
Roughly speaking, the judgement (@ | C)v* (8 | C' | B') takes the transitive closure of
(@] C)v (8| C'| B), modulo the need to recalculate @ as type variables become bound by
unification steps.

There is a considerable gap between the rules as presented here and a simplification algo-
rithm:

(i) This formulation of the simplifier is non-deterministic. More than one rule may
be appropriate for a given constraint, and there is no guarantee of confluence since
different choices may yield different final constraints.

However, this non-determinism affords the implementor the greatest flexibility in
adopting heuristics to guide the simplification process, and avoids much extraneous
detail inessential to the correctness of type inference.

(ii) There is no metric m on constraints such that (... | C)p>* (... | C' | ...) implies
m(C’') < m(C). To see why, notice rules s12 and s14 (or s13 and s15) allow a
member of a row to be removed and then reinserted, thus making no progress in
simplifying C.

However, this possible non-termination is easily avoided by merging rules s10-s15
into a single composite rule which considers all members of an insertion constraint
simultaneously. But again, this composite approach is more difficult to reason with.
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(ii1) The simplifier does not necessarily yield constraints in a simplified form. As in
HM(X) [79], we say C is in simplified form if C ¢ 7 eqv implies true -¢ 7 equ
for all 7 and v. Unfortunately, requiring the simplifier to yield only constraints in
simplified form would be prohibitively expensive, since it would require a brute-force
enumeration of all most-general unifiers.

For example, the constraint
(a #b) eq (Int # Bool # Empty), (a # c) eg (Int # Char # Empty)
has simplified form true with residual substitution
[a + Int,b+— Bool # Empty, ¢ — Char # Empty]

but this can be determined only by looking at both equality constraints simultane-
ously. However, for simplicity and practicality, none of the simplifier rules look at
more than one equality constraint at a time.

Not being able to assume all constraints are in simplified form shall complicate the
proof of completeness in the sequel, but not intractably so.

The following lemma shows that the simplifier preserves the satisfiability of constraints,
binds witnesses consistently with entailment, and never over-commits to a solution by
binding a type variable which should remain free.

Lemma 5.1 If (@ | C1)v* (6, | C2 | B;) then

(1) Cg ¢ 01 01 —> Bz where if m |= 92 02 then en'l)(Bz,’l’h) = env(Bhnl)[names(Cl);
(ii) 91 Cy ¢ C2 — B3; and
(ii1) if n2 |= 03 C then there exists a 6, s.t.

(iii.l) 03[&#09(02) ":"g (94 oBl)ranva(Cz)
(1ii.2) n2 = 04061 G
(iii.3) env(Bs,n2) |= 04 Ca (where B3 is from (ii) above)

Proof See Lemma C.5 for the precise theorem statement and its proof. Notice the
restriction of the domain of ¢ in (iii.1) is essential lest rule S17 break the theorem. O

5.3 Correctness

It is straightforward to show soundness of type inference with respect to type checking.

Theorem 5.2 (Soundness of Inference) If 0| C |T' + ¢ : 7 and saturate(C) # @ then
there exists a Ast. A|C|0T+¢t:T.

Proof See Theorem C.10 for the full theorem statement and proof. |
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We now consider completeness of inference with respect to type checking. In the previous
section we saw the difficulty of implementing a simplifier guaranteed to yield constraints in
simplified form. Furthermore, in Section 4.4.4, we saw that the proof-theoretic entailment
relation ¢ is incomplete with respect to the model-theoretic relation I-¢. Both of these
aspects shall complicate both the notion of completeness, and its proof.

The first step is to define an instantiation ordering, <, on type schemes in context of the
form (D | o). Here D is a global constraint which does not contain any of the quantified
variables of . We call the constraint within o a local constraint. The pair (D | o) is
typically the result of generalisation; indeed we define

genscheme(C |T' | 7) = (Dy | forall A . anon(Ds) => 1)
where (Dy | A| D2) = gen(C |T'| 7)

Roughly, we intend (D; | 1) <X (D2 | 02) when o is an instance of o7, subject to the global
constraints Dy and D;. (Note that our orientation of < follows that of OML [48], but is
the transpose of the ordering in HM(X) [79].)

Jones’ approach [48] is to relate schemes by their ground instances:

(D1 I forall Al . C]_ => 7'1) '_SJ (D2 | forall Ay . Cy => T2) A=—14
V}—el : A] 2 Ainit .
true ¢ Dy H (01 Cl) =
5”‘92:A2—)A,‘m't .
(true F° Dy + (62 C2)
A empy(61 71,02 T2) = eq)

(Actually, Jones generalises this definition slightly by replacing true with an arbitrary but
fixed ground constraint.)

Though conceptually simple, and pleasingly easy to reason with, this instantiation ordering
is too coarse for AT™® constraints. For example

aeqInt | forallb .bega=>b) <’/ (aeqBool | forallb . bega=>b
q q q q

holds vacuously. Hence a proof of completeness built upon <7 would be too weak.

The approach in HM(X) [79] is more promising, as it takes account of type variables shared
between global and local constraints. It is defined as:

(Dl I forall A; . C; => T1) ‘_<H (D2 |fora11 Dy . Oy => 7‘2) ==
(D1 F€ Dy
A satisfiable(Dy + Ch)
AJEOy: Ay =5 A H A
Dy H Cy FE (02 C3) H 11 eq (62 12))

(This definition assumes, without loss of generality, that A’ contains the free variable of
D; and D, and that A’, Ay, and A; are distinct.)

Now we find

(aeqInt | forallb . bega=>b) A7 (a eqBool | forallb . bega=>b)
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Unfortunately, even though
(a eqInt | forall - . true => a) < (a eqInt | forall c . Int egc => c)
we find
(true | forallb . (a, b) eq (Int, Char) => a) A¥ (a eqInt | forallc . Int egc =>c)

Thus, <# is sensitive to whether constraints, in this case (a, b) eq (Int, Char), are
simplified before generalisation. Since we have already stated we cannot make any such
assumptions, we conclude <¥ is too fine a relation for A''},

Thankfully, there is a simple way out of this dilemma. Roughly speaking (the precise
definition must also take account of constraint witnesses and inheritable constraints), our
ordering is

(Dy | forall Ay . Cy => 1) <X (D2 I forall A; . G => 71p) <
satisfiable(D; H C)
ATFO: Ay 5 A H A, .
Dy H CiFe Dy +H (0 Co) H 1 eql

Now we find

(true | forallb . (a, b) eq (Int, Char) =>a) <X (a egInt | forallc . Int egc =>c)

By inspection, < is not sensitive to how a constraint is split into a global and local com-
ponent by gen. Thus, in A", constraint splitting is merely an optimisation, and is not
required for completeness.

With the notion of instantiation ordering fixed, we now turn to formalising the statement
of completeness. Roughly speaking, we require every valid typing for a term ¢ to be an
instance of every valid inferred type of {. More formally, and as a first approximation, we
require that if

AI Cl|911‘t—t:71

is derivable in the type-checking system, then there exists (at least one) derivation
02| C2|THE:m
in the type-inference system, and there exists a 63, such that
genscheme(Cy | 0, T | 1) X 03 genscheme(Ca | 62 T | 72)

and

91 =p 03 o) 92
(Furthermore, these properties must hold for every such type-inference derivation.) How-
ever this statement is too strong for XT'%.

To see the problem, consider the type checking derivation:

...Ff:Int->Int ...Fx:a aeqInthr®Int->Intega->a
APP

a:Type|aegqInt|f:Int->Int,x:akfx:a
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One matching type inference derivation is:

...Ff:Int->Int ...Fx:a b:Type fresh

IAPP
Id | Int -> Int ega->b|f:Int ->Int,x:ak fx:b

To connect these derivations, we need only show that

genscheme(a eqInt | £:Int -> Int,x:a|a)=
(a eqInt | forall - . true =>a)

genscheme(Int -> Int eqa->b|£f: Int -> Int,x:a|b) =
(true | forall b . Int -> Int ega => b =>b)
are related under <. So far all is well.

However, another possible type inference derivation applies rule 1ISIMP to the above con-
clusion to yield:

...Ffx:b {({a,b}|Int -> Int eqga ->b)>* ([a+> Int,b— Int]|true]-)
ISIMP

[+ Int]|true|f:Int -> Int,x:ak fx: Int

Again, we must show that
(a eqInt | forall - . true => a)

and
genscheme(true | £ : Int -> Int,x: a| Int) =

(true | forall - . true => Int)

are related under <. But we must also show (taking §; = Id) that there exists a 63 such
that
Id =p 03 o [a > Int]

which is clearly impossible.

The problem is that the simplifier may bind free type variables within I'. Thankfully, we
may show this happens only when such type variables are similarly constrained within the
type-checking derivation. In the example above, even though Int was substituted for a,
this substitution was entailed by the constraint a eq Int.

Thus, the refined (but still only approximate—see below) statement of completeness weak-
ens the requirement
91 =p 93 o 92
to
Va € fug(T") . C1 +° (61 a) eq (0306, @)

One final subtlety is that because - is incomplete, we must show completeness using its
model-theoretic counterpart I-€.

The remainder of this section develops these ideas formally. Unlike the other theorems in
this dissertation, we shall elide the actual proof of completeness. This is partly because of
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time constraints, and partly because we plan to redo the proofs using a variation on the
definitions they are built upon (see Section 5.4).

We first define
Enw(C)={n|V(w:c)e C.nwel}

and similarly
Env()={n|Y(z:0)€eT .nz € EV}

Let A’ F Dy /Dy constraint, A’ + A; + C; constraint, A’ + Ay F C; constraint, A’ + A; F
71 : Type, and A’ + Ay + 75 : Type. Furthermore, let dom(A;) Ndom(As) = 0. Then we
define the expanded instantiation ordering as

*"(DllAllCllTl)j(DglA2102|Tz)‘—)B¢=$
(inhs(Dy) = Dy
A inhs(Ds) = Dy
A satisfiable(Dy + Cy)
ATEO: Ay =5 A+ A
Dy +H G+ Dy H 0 Co + 11 eqf 72 — B)

We may extend the relation above to type contexts as follows. We let ¢ range over
finite maps from variables to triples (B | W | w’). Let A’ + TI'1/T'2 context and
A"+ Dy /Ds constraint. Then we define the type context ordering as

F(D1|T1) 2 (D2 | T2) — ¢ =
dom(T'1) = dom(T2)
A((z:forall Ay . Cy=>7) €1 A(z:forall Ay . Cp => 1) € I'y) =
(pz=(B|w|w)
/\l“(DllAllcl’lTl)j(DQIAzlCész);)B
A C| = named(C)) s.t. names(C]) =
= v')

A Cq = named(Cs) s.t. names(C,)
Let A' F o scheme, where 0 = forall A . C => 7. Let A’ D constraint. Then we say
(D | o) is unambiguous if

w
w'

VA’ D' constraint,F- 8, : A - A", F @ : A AR A = Ajpar
(D' IFe D ++ (6, C) <> By
AD'IFe D + (62 C) = By
AD'IF¢ 8 T eqbs T
AnE6 D)=
env(Bi1,7n) = env(Bz,n)
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1="1
[int:d] =1 [int:jle==i=3j
func: f]=""Y[func:gl<=v="1v = fo=Vgv

[prod, : (v1,...,u,)] =M (®a TEPLY) (504 (o] .. vl ) ] <= n=n AVi.v ="
[inj : (4, v)] =0ne ((#), 7 Expty) [inj: (j, )<= i=jAv=T"id
where 7 € sortingPerms(my,...,Tn)

[ifuncy, : f] =toTall & - C=>7 lifunc,, : g] <=
n=n'AF0:A3Dpi AnEOC=>f(nuwy,...,nw) =" g (nw,...,n wp))

Figure 5.6: The logical relation = on E V X E V indexed by A™ monotypes of kind Type

Let - (D1 | A1 | Ch | m) 2 (true | Az | Gy | 72) < B, and let n € Env(Dy), names(Cy) =
w, and names(C;) = w'. Then we define

coerce(B | W | w') n=Xdv. letg v/ < v
in case v’ of {
ifunc, : f — unitg (ifunc : g);
where
9= A(yl’ SRR yn) -f (E’W{],’l, tee [w;s’]!fl')
n' = env(B, Minames(D;) T [wr = 9, wn Yn])
otherwise — unitg (wrong : %) }

Notice that if 7 € Env(D) then coerce(B) n € EV — E V.
Let F (Dy | T1) =X (true | ['3) <= ¢. Then we extend coerce to ¢ as follows:
coerce(p) n = A . z — (coerce(d z) 1) (7' z)

Notice that if 7 € Env(D) then coerce(¢) n € Env(I's) — Env(T).

Finally, Figure 5.6 defines a logical relation on E V x E V indexed by types 7 such that
Ajpig b7 Type.

Theorem 5.3 (Completeness of Inference) Let Ay, Ay, I'y, Ty, €y, t, 11, Ty and ¢
be s.t.

(a) A; b C; constraint and A; + T’y context

(b) satisfiable(Ch)

A |G EFtim—T

(d) Az b T'p context

(e) Ay U Ay 8y subst, dom(61) C fup(T'2), rng(61) C dom(A;)
(f) F (inks(Cy) | T1) = (true | 6; I2) — ¢

Then there exists 82, Co, 75 and T s.t.
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(i) 62 | Cy| Tty Ty
and for every 0y, Cy, 72 and T3, s.t. (i) holds, there exists a Ag, 03, and B s.t.

(i) (A1U Ag) H Az k- 05 subst, dom(603) C fup(02 ['2), rng(63) C dom(A,)
(iii) If gen(Cy | L1 | 71) = (D1 | A4 | D2) and gen(Cy | 02 T'2 | 73) = (D3 | As | Dy) then

F(D1|As| Da|m) 2(03 D3| As | 03 Dy | 63 12) = By

(iv) Ya € fup(T2) . inhs(Cy) H€ 03002 a eqb) a
(v) Furthermore, let 84, 7, and B; be s.t.

(g) A1 F 04 subst

(b) Ainit b 04 003 005 T'a context
(i) Ajnit F 04 Cy constraint

() nE 0100300, T2

(k) env(B2) =04 O

Then
[[Tlll(coeme(dz) env(Bz) n)-t+env(B2) =(0471) [TZL,—H—enu(Bl ,env(Bz2))

Proof By laborious induction on (c), and by showing rule ISIMP preserves properties
(i1)—(v) of its hypothesis inference judgement. The theorem could be slightly simplified
by separating completeness (properties (i)—(iv)) and coherence (property (v)). However,
this separation would duplicate the exceedingly tedious setup of (a)-(f). Hence it seems
simpler to merge completeness and coherence into a single tibersatz. 0

As a corollary to Theorem 5.3 we may show that if ¢ has an unambiguous principal type,
then all possible type-checking derivations of ¢ yield run-time terms which are related by
the logical relation of Figure 5.6.

Furthermore, by Theorem 5.2 and Theorem 5.3 we may show all the principal types of a
term are equivalent under the instantiation ordering.

5.4 Row Extension

Recall from Section 2.4 that another way of simplifying a row equality constraint p eqp’ is
to allow a type in p’ to extend the (open) tail of p. This simplification is valid only when
the chosen type within p’' cannot be matched with any type within p. Formally, we may
define the rule:

@|C,(Mm Theg, #)nTI)
Db v #b]| (C, (8 T b eqp, )y Ty Db v; # 8] ) s9
when b & fuy(v;), b’ : Row fresh and notIn(C + vj, (#),n 7 Empty)

Notice that the result constraint contains a fresh type variable, b’.
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For example, this rule would rewrite (in two steps)
(Int # a) eq (Bool #b)
to true, with the residual substitution
[a > Bool # ¢c,b+> Int #c]

where ¢ is fresh.

Unfortunately, though rule s9 seems both desirable (it reduces the size of constraints) and
reasonable (it preserves the ground instances of constraints), it is not compatible with our
instantiation ordering.

For example, consider the term:

{\(Inj x) . 1 - x;
\(Inj y) . if y then O else 1 }

This term may be assigned the type scheme:

o1 = forall (a : Row) (b : Row) .
Int insa,Bool insb, (Int # a) eq (Bool #b) =>
One (Int #a) -> Int

Were the simplifier to be augmented by rule $9, this term could also be assigned the more

intuitive scheme:
o = forall (¢ : Row) .

Int insc,Bool insc =>
One (Int # Bool # c) -> Int

However, though we have g2 <X 07, we find that o; £ o2. In particular, there is no 7 such

that:
Int insa,Bool insb, (Int # a) eq (Bool #b) ¢

[c — 7] (Int 4msc,Bool insc) H
(One (Int # a) -> Int) eq[c > 7](One (Int # Bool # ¢) -> Int)

Hence, rule s9 does not preserve the invariant necessary for the proof of completeness in
Theorem 5.3. For this reason we have removed rule $9 from Figure 5.4. However, the real
problem is that our invariant is too strong.

The solution appears to be to generalise the instantiation ordering of Section 5.1 by re-
placing the existentially quantified substitution, 8, on the left-hand side of I-¢, with an
existentially quantified constraint, C3, on the right-hand side of I-¢. Of course, C3 cannot
be any constraint: We require that C3 does not “disturb” (change the satisfying substitu-
tions of) the constraint D) -+ Cj.

Returning to the example we find that o1 = o2 under this generalised instantiation order-
ing, because:

Int insa,Bool insb, (Int # a) eq (Bool #b),
aeq(Bool#c) ¢

Int insc,Bool insc,

(One (Int # a) -> Int) eq (One (Int # Bool # ¢) -> Int)
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Notice how the introduced constraint, a eq (Bool # c¢), allows the type variables a and ¢
to be related without disturbing the constraint:

Int ins a,Bool insb, (Int # a) eq (Bool #b)

Rule s9 is just one of a number of desirable simplification rules not included in Figures 5.4
and 5.5. For example, the entailment rules MPROJL and MPROJR, sketched in Section 4.4.4,
induce two corresponding simplification rules. It is open whether the revised instantiation
ordering is also compatible with rules.

At the time of writing we are re-running the proofs of this Chapter under the revised
instantiation ordering, and we expect to include these revisions in a journal version of this
part of the dissertation. The programme to replace a substitution by a constraint may be
applied profitably in a number of other places within the development of A™®, including
the properties of entailment, and the correctness of the simplifier. A similar programme
has been carried out by Sulzmann [101] in the context of HM(X) [79] (though, curiously,
the instantiation ordering remains unchanged in his revision).




Chapter 6

Conclusions to Part 1

6.1 Related Work

Record Calculi

Wand [112] first introduced rows to encode record subtyping (and, in turn, inheritance)
using parametric polymorphism, though the system did not enjoy completeness of type in-
ference. Rémy [94] introduced label presence and absence flags in types, and demonstrated
completeness of inference. Variations allowing record concatenation [35, 113] rather than
just record eztension were also proposed. Rémy [93] has demonstrated that concatenation
may often be encoded using just extension.

Ohori [80] and, independently, Jones [47] developed polymorphic record and variant calculi,
and a compilation method which represented records as natural-number indexed vectors.
Ohori’s system dealt only with closed rows; Jones’ system allowed extensible rows. Our
system is a strict generalisation of Gaster and Jones’ system of polymorphic extensible
records [31]. The latter exploits qualified types and the dictionary translation [47] as a
compilation method.

Parallel to the parametric polymorphism approach followed in this work are record calculi
based on subtyping [16].

Constrained Polymorphism

Odersky et al. have developed HM(X) [79] as a framework for constraint-based type infer-
ence. It adds to Jones’ qualified types the notion of consitraint projection, and guarantees
any constraint domain X enjoying a principal constraint property can be lifted to a type-
inference system enjoying completeness of type inference. Principle constraints are defined
relative to a set S of constraints in solved form.

Since both Ohori’s and Gaster and Jones’ record calculi are instances of HM(X ), we initially
hoped X™ would be likewise. Unfortunately, the definition of S for A™™® constraints appears
to be as complicated as the definition of the simplifier itself, and hence not particularly
theoretically pleasing. Furthermore, the statement of completeness for HM(X) when S is
smaller than all satisfiable constraints (as it would have to be for A™™) further requires
that S contain only those constraints in simplified form. As mentioned in Section 5.2, our
simplifier is designed not to always yield constraints in this form as to do so would require a
brute-force enumeration of all most-general unifiers, with concomitant exponential growth
in both time and space.
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Sulzmann [101] has since generalised the HM(X) framework to address some of these
limitations. (The work of this thesis has been done independently of his work on the
revised system.) However, there are four aspects of Sulzmann’s revised HM(X) which
prevent its use for A™™. Firstly, his development still depends critically on existential
constraints, which, as mentioned in Section 2.9, we find quite technically challenging for
MR constraints. Secondly, though his system does not require constraints to be normalised
at each step of type inference, his constraint simplification rule still builds upon the notion
of solved form, which for A™® is as problematic as in the original HM(X). Thirdly, his
presentation is in “term-free” form, meaning the inferred type of a term is represented
implicitly within the current constraint context rather than explicitly as a type. This
notion is unnecessarily complicated for X™®. Finally, and in common with the original
HM(X), no support is provided for constraint witnesses, which we have seen to be essential
to the semantics and implementation of A™™®.

Our technical development is instead based upon Jones’ more general framework for sim-
plifying and improving qualified types [48]. In Jones’ system, constraints may be simplified
arbitrarily, and his proofs do not rely on constraints being in any solved form. Unfortu-
nately, Jones’ instantiation ordering is too coarse for A™™® constraints which contain “global”
type variables (type variables bound at an outer scope). Hence, we have been forced to
re-prove most of the correctness of our system from scratch.

Set Constraints

Set constraints are popular in program analysis [5, 4] and in constraint logic programming
[100]. The constraint domain of X™™ resembles that of simple set-constraints with primitive
subset constraints and set union. However, set-constraints have an implicit idempotency
law:

aU{b,b} =au{b}
whereas in XT™® this property is enforced by an ezplicit insertion constraint:

binsa

Using this explicit form leads directly to our implementation method.

Despite this difference, it may still be possible to exploit some of the implementation
techniques developed for set constraints if necessary.

Intersection Types

Type-indexed products bear a superficial resemblance to intersection types [89, 95]. (And
coproducts to union types [7].) However, they differ fundamentally in their meaning, as X%
products are not subject to any coherency condition with respect to a notion of subtyping.

For example, the intersection type
Int -> Int -> Int & Real -> Real -> Real

contains only those binary functions which behave coherently on integer or real arguments
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with respect to the subtyping relation
Int < Real

Thus it includes the addition function, but excludes the function which adds integer argu-
ments, but subtracts real arguments.

A first approximation to this type is the A™® scheme

forallab .
a#beqlnt # Real # Empty =>
a->a->a

Though it indeed has the two required instances, this type is too small since it contains
only those functions which do not depend on whether its arguments are integers or reals.
That is, the scheme above is simply an instance of

foralla.a->a->a

The closest XT™ comes to the intersection type above is the scheme

forallab .
a insb,
a#beglInt #Real # Empty =>
a->a->a

However, this scheme is now too large. In addition to the desired addition function

(\(x &% _) . x) (intPlus &% realPlus && Triv)

(see Section 3.5), it also includes the mixed addition and subtraction function

(\(x && _) . x) (intPlus && realMinus && Triv)

This should come as no surprise: The function above is implemented by a three-argument
function, the first of which effectively serves to distinguish between the integer and real
functions. Hence, \™® type-indexed-products are just that: type-indexed, and hence not
necessarily coherent.

XML

As mentioned in Chapter 1, XDuce [40] is another functional language with similar goals
to XMJ), but built upon subtyping polymorphism instead of parametric polymorphism,
and using regular expressions as types instead of type-indexed rows. Regular-expression
language containment is used to induce the subtyping relation, and regular expressions
are not required to be l-unambiguous. At the time of writing XDuce does not support
parametric polymorphism or higher-order functions.

Other proposals for XMA-like languages build on regular-tree transducers [68] or Haskell
[111].
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6.2 Conclusions and Future Work

Thanks to its notion of type-indezed rows, and its expressive constraint domain of insertion
and equality constraints, AT™® can naturally encode many programming idioms, including
record calculi, anonymous sums and products, and closed-world style overloading. It can
be straightforwardly compiled into an untyped run-time language in which type-indexing is
reduced to conventional natural-number indexing. These indices are generated and passed
at run-time as implicit arguments to let-bound expressions, exactly as occurs in some
existing record calculi [31, 80].

For the programs we considered, the constraints were compact and reasonably intuitive.
We are working on an implementation of A™® within the larger language XMX [65]. At
the time of writing, our XMA compiler can simplify constraints but not yet infer them.
We hope to demonstrate the feasibility of AT™ on larger programs once this compiler is
complete.

In common with most constraint-based type systems, A™™® constraints could conceivably

grow to a size beyond the understanding of a programmer, and beyond the capability of
the type inference system to solve. In Section 4.4 we discussed why we do not expect this
to be a problem, however our hypothesis remains unverified until we can test it within
XMA. One possibility for aiding the programmer in understand large constraint sets is to
use “backwards” S-reduction to replace constraints by programmer-declared abbreviations
wherever possible.

Since entailment is incomplete, it is possible that a programmer-supplied type scheme may
be an instance of an inferred scheme, but the system is unable to prove it. As discussed
in Section 4.4.4, this may be partially redressed by adding projection rules to the F™
judgement to exploit the lexicographic ordering of types. However, we would like to gain
some experience with the system before deciding if these potentially more expensive rules
are justified.

On the theoretical side, we are currently reworking the development of simplifier correctness
and completeness of type inference to use the revised instantiation ordering sketched in
Section 5.4. We hope this revised development will not only be flexible enough to support
the introduction of new constraint simplification rules, but also simplify the statement of
these theorems and their proofs. It should come as no surprise to the reader that the
ugliness in the statement of Theorem 5.3 also extends to its proof!

We also hope to complete a complexity analysis of constraint satisfiability, entailment and
type inference as a whole. The last is likely to be above EXP. However, as complexity
class seems to be a poor indicator of the typical performance of type inference systems,
our priority rests with completing the implementation.




Part 11

Dynamically-Typed Staged
Computation

Abstract

This part explores a weak form of program reflection called staged computation.
It is weak in the sense that code may be constructed at run-time, but not decon-
structed (e.g., by pattern matching). However, in exchange for this weakness the
system is quite simple, requiring only three additional primitives to defer, splice
and run code.

Two distinct forms of code are supported. Statically typed code is guaranteed at
compile-time to be well typed at run-time, and hence is the most reliable method
of generating code at run-time. However, since the type of generated code may
sometimes depend on run-time values in a way that is difficult to express statically,
the system also allows dynamically typed code to be generated. In contrast to
statically typed code, dynamically typed code is checked for well-typing as late as
possible at run-time; that is, just before it is executed.

We introduce the system using some small examples, and then illustrate its great
flexibility by some larger worked examples. We present the formal type checking
system, which translates well-typed source terms to an untyped run-time lan-
guage. The system is greatly complicated by the desire to support constrained
polymorphism within generated code: We will spend some time explaining the
problems which arise and their solutions. Finally, we present a denotational se-
mantics for the run-time language, and demonstrate a type soundness result. We
leave type inference for this system to future work.
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Chapter 7

Introduction

Programs must often manipulate intensional representations of other programs. This is
called reflective programming when the manipulating program (the meta-program) and the
program being manipulated (the object-program) are expressed in the same language. Ex-
amples of reflection abound in compilers, interpreters, partial evaluators and programming
environments.

This part of the dissertation develops a weak form of reflection in which intensional rep-
resentations, which we shall call code, may be constructed and executed, but never de-
constructed (e.g., by pattern-matching). The result of this restriction is called staged
computation, since programs which merely construct other programs can be seen as having
their evaluation staged over two or more phases of execution. Staged computation is much
simpler than full reflective programming because it does not require any language-level
support for manipulating variable names.

Of course it is possible to effect a staging of program evaluation using ordinary higher-
order functions. However, separating execution stages by time (generate in one session
and execute in another) or space (generate on one machine and execute on another) re-
quires an intensional representation of generated code to be stored or transmitted over a
network. Recovering such a representation from run-time closures is very difficult. Staged
computation, on the other hand, makes this operation trivial.

The principal benefit of staged computation over more ad-hoc approaches using strings or
datatypes of abstract syntax is the ability to statically verify that all code generated at
run-time is not only syntactically valid, but also type-correct. However, sometimes code
must be generated whose type, in addition to its contents, depends on run-time values.
To support this requires a notion of dynamically typed code to complement statically typed
code. Dynamically typed code must have its type checking deferred till run-time in addition
to its evaluation.

Examples of staged computation abound, though they are often hidden within the noise
of larger systems:

¢ Run-time partial evaluation generates code at run-time to exploit invariants un-
known at compile-time. It has found applications in operating systems [62] and
advanced compilers [54]. Run-time partial evaluation may be viewed as a form of
staged-computation in which only closed-code (code which does not contain free vari-
ables) may be generated.

e Dynamic typing introduces dynamic values which contain both a value and a run-
time representation of the value’s type. Because all dynamic values have the same
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compile-time type, they may be treated uniformly by programs such as interpreters,
persistent stores, generic programs, and distributed programs which pass code be-
tween machines. A dynamic value may be viewed as dynamically typed code whose
body happens to be evaluated.

e Document generation requires a data structure to be created on-demand by one
machine (the server), and then transmitted to another (the client). If documents
are simply strings, the server need only concatenate each document fragment and
transmit the result. However, we have seen in Chapter 1 that documents are often
structured as XML, and often contain embedded scripts. We call these dynamic,
active documents.

Part I of the dissertation showed how XML documents may be represented as typed
terms. It is a simple matter to transmit such a term from one machine to another
if it contains no functions. Thus dynamic documents are already well supported
by the material of Part I. However, it seems natural to express embedded scripts
simply as functions or monadic commands within the same functional language as
the document itself. Unfortunately, terms containing scripts encoded in this way
cannot be easily transmitted. Hence dynamic, active documents are problematic.

Staged computation solves this problem by allowing the server program to distinguish
server-side code (executed on the server in response to a request) from client-side
code (executed on the client after a reply is received). That is, a dynamic, active
document is simply a residual program, and residual programs are easily transmitted
from server to client.

¢ Online services interact with a user via a dialogue of successive dynamic documents.
A single server may be interacting with many thousands of users simultaneously,
any of whom may decide to stop responding or backtrack to an earlier point in
their dialogue. Hence, the crux in implementing these systems is managing each
user’s dialogue state. A particularly simple solution is to embed within each dynamic
document an intensional representation of its continuation code. When the user
wishes to continue the dialogue, the client passes this continuation along with any
form data back to the server. Staged computation provides some support for this
style of programming.

We shall develop a small calculus, X, which adds to higher-order functions and constrained
polymorphism the ability to construct and execute code at run-time. Both statically and
dynamically typed code may be intermixed within a single program. Though X*° has all of
the type-theoretic framework necessary to support type-indexed rows, implicit parameters,
and indeed any other system of constrained types, for simplicity we put these features aside.
However, we shall sometimes assume their inclusion in the extended examples of Chapter 8.

)¢ is most closely related to MetaML [97], which also supports both statically and dy-
namically typed code. The statically typed component of MetaML grew out of the work
of Nielson and Nielson on two-level functional languages [77], Davies and Pfenning [20, 21]
on multi-level languages, and Taha and Sheard [104, 107]. The dynamically typed compo-
nent comes from work of Shields, Sheard and Peyton Jones [99]. However, this is the first
formal presentation of a system including both kinds of code, and supporting constrained
polymorphism. Indeed, we shall see that constrained polymorphism is the key to effi-
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ciently implementing dynamically typed code. Furthermore, we shall show type soundness
model-theoretically, rather than proof-theoretically as in earlier work.

The remainder of this chapter introduces the three operators to defer, splice and run
code, and demonstrates their statically and dynamically typed variants. We then illustrate
the generality of staging by extended examples of partial evaluation, dynamic typing and
distributed computing (Chapter 8). The later develops a small document server, and
exploits both dynamically and statically typed code within a single program. We then
present the formal system and demonstrate type soundness (Chapter 9).

7.1 Staged Computation

Staged computation introduces three operators to construct, evaluate and combine pieces
of programs. These can be used to explicitly distribute the evaluation of a program over
many run-time stages:

e The defer operator, {{ t }}, defers evaluation of an expression ¢ by one stage. Writing
| to denote evaluation:

1+14§2 evaluated at stage 0
{1+1}r§{{1+13}} deferred till stage 1

We call t the body of {{ t }}, and dually, we call {{ ¢t }} the code of ¢. (Note that
{{ t }} is written as < ¢ > in many other staged languages—unfortunately this more
concise notation clashes with the syntax for XML used in Part 1.)

e The run operator, run ¢, evaluates ¢ to some code {{ u }}, and then evaluates u.
Continuing the example:

{{1+13}y{{1+1}} deferred till stage 1
run{{1+1}}§2 evaluation brought forward to stage 0

e The splice operator, ~¢, also evaluates ¢ to some code {{ u }}, but then splices u
into the body of the surrounding code. The term ~t is thus legal only within lexically
enclosing {{ }} brackets. For example:

let code={{1+1}}in{{~code+2}} {{ (1 +1)+2}}
~code replaced with 1 + 1 af stage 0

(Note that ~ binds tighter than all other operators.)

A splice expression may appear deep within the body of a deferred expression, even
under a A-abstraction:

let code={{1+1}}in{{\y. ~code+y}}y{{\y.1+1+y}}

Also, t may be any expression yielding some code:

let £ =\code . {{1+-~code}}in{{~-(E{{2I)+33}Jy{{(1+2)+3}}
f {{ 2 }} evaluated at stage 0
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Splice can be used to construct and manipulate code with free variables, though these
variables must always be bound within a lexically enclosing scope. This feature is
most convenient when constructing code representing a function:

let f =\code . {{ ~code + ~code }}in {{\x . ~(£ {{x}}) }}
J{{\x.x+x}}

z is free in argument to f, but bound in overall result

We say a subterm u of t is at stage n if u is lexically nested within n more {{ }} brackets
than ~ operators within {. For example:

t+u u is at stage 0
{{t+ul}} wuisatstage 1
{{t+~ul}} uisatstage 0

It is even possible for a sub-term to have a negative stage:
{{t+-~ul}} uisat stage -1

We say a term is splice free if each of its sub-terms is at a non-negative stage.

Very roughly, these operators have two rewrite rules. The first allows a splice to cancel a
defer, provided ¢ is splice free and the reduct is at stage 1:

~{{t}r—t

The second allows run to cancel a defer, again provided ¢ is splice free, and the reduct is
at stage 0:
run {{t}} —t

How should these operators be typed? One approach is to perform all type checking at
stage 0, and eliminate any programs which may generate ill-typed code at run-time. We
call this statically typed staging, and is the method used by existing staged languages such
as MetaML [97].

7.2 Monomorphically Typed Staged Computation

For the moment, ignore polymorphism (and in particular, constrained polymorphism), and
consider how to ensure that only well-typed code may be constructed.

The first source of errors are binding-time errors. For example

{{\x. ~x}}

attempts to use x at stage 0 when it is not bound until stage 1. This error is easily detected
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by maintaining a separate type context for each stage during type checking:

(z:1)eT"

———  VARMono1

THrz: 7T
FPrH"%g:vobF"t: 1 THF*t:v->7 THF'u:v
— ABSMONO — APPMONO
CE*\z . t:v->71 THFrtu: 7

Here we intend n to be the stage of the sub-term under consideration. We write T to
denote an infinite length vector of type contexts, indexed by stage number, only a finite
number of which are non-empty. (Of course in practice it is easier to associate a stage
number with each variable. This vector notation will prove to be convenient in the sequel.)
We write T to denote the the nt® context of T', and T ++" I for the extension of the n’th
context of T by I'.

A refinement of the VARMONOLI rule is to allow variables bound at an earlier stage to be
used at a later stage:

m>0 (z:7)el" " liftable(r)

— VARMONO
TFrz:7

Here liftable(r) is true when values of type T can, at run-time, be converted from their
representation in the run-time system to their representation as code. Defining liftable
to be the constant true function may be excessively onerous on an implementation. For
example, lifting a function could require it’s body to be decompiled back into code. Defining
liftable(r -> v) as false prevents this situation.

Using the revised rule, the term

\x . {{x+11}}
is well-typed assuming liftable(Int) is true.

Of course a closure is no easier to lift than a function, regardless of it’s type. Hence lifting
would typically force evaluation. Consider:

let x = primes !! 1024
in {({ x+ 13}

This term evaluates to the code {{ 8161 + 1 }} rather than {{ (primes !! 1024) +1 }}.
The second source of error arises when code is spliced into an incompatible context. For
example

let code = {{ True }} in {{ ~code + 1 }}

attempts to splice a Bool into an Int context, leading to the ill-typed code {{ True + 1 }}.
This too is easily detected by associating a type {{ 7 }} of code of body type T with each
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defer expression:

Trrtlyg.r TH t: {{7}}
— DEFERMONO = SPLICEMONO
CF*{{t}}:{{7}} '+ ~t:T
Tt {{T3}}
RUNMoONO1

THFlrunt:T
Notice how these rules keep track of the current stage, and prevent a splice from appearing
at stage 0.

One more source of error remains, which is somewhat more subtle than the others. For
example

{\x. ~-(@@uw {{ x1}) }}

is type-correct by the rules above (assume x has type {{ 7 }} for some type 7), but evaluates
to

{{\x. -x}}
which is binding-time incorrect.

In the literature this problem is known as the open code problem, because {{ x }} is “open”
on the variable x. A number of refinements to the type rules above have been considered,
such as keeping track of the nesting depth of runs {105], or introducing a separate code
constructor and code type for closed code [106]. Both these approaches introduce consider-
able additional complexity to the system (and indeed, to the best of our knowledge neither
have been implemented).

A third and somewhat surprising solution to the open code problem is to give run a type
in the I0 monad [87]. Hence the RUNMONO1 rule becomes:
TH"t:{{7}}

= RUNMONO
TH*runt:I0T

Such computations may also be sequenced and completed:

THF'4:I0v TH"z:vk"rt:I07T TH t: 7
— LETMMONO — UNITMMONO
PFlletz ¢+ uint: 10T T'HF?unit t:I0 T

Under these rules the example above is ill-typed, since run {{ x }} has type I0 {{ 7 }} and
so cannot be spliced. To see that all such examples will be rejected, we reason informally
as follows. The argument to run will only be evaluated if run is at stage 0 and is being
performed. Since only the external environment may perform I0 computations, run must
therefore be connected by a chain of monadic let-bindings to the top level of the program.
Because rule SPLICEMONO prevents the splicing of monadic expressions, it is impossible
for this chain of let-bindings to cross under a splice. Hence, run cannot be in the context
of any bound variables, and its argument must be closed.

Note that the typing rule for run does not guarantee that each occurrence of run in a
well-typed program is applied only to closed code. For example, in
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{{\x. ~(fst ({{x}}, run {{ x }})) }}

run is applied to code which is patently open. However, the type system prevents
run {{ x }} from being performed.

Also notice run’s 10 type has nothing to do with any side-effects of run, or of the code it
executes, but is rather just a “type trick” to prevent open code. In Section 7.5, however,
run will be enhanced so that it does have a side-effect, and hence its I0 type is better
justified.

Encouraged by the ease of typing monomorphic code, we now consider reintroducing para-
metric polymorphism.

7.3 Polymorphically Typed Staged Computation

Consider let-binding code which is polymorphic:

let id = {{ \x . x }}
in {{ (~id 1, ~id True) }}

How should this term be typed?

The most straightforward approach, which we term let-generalisation style, is to generalise
and specialise types exactly as in the polymorphic A-calculus. Under this approach, id
would be assigned the type scheme forall a . {{ a -> a }}, and the instances of id would
be specialised to Int and Bool respectively. To aid our understanding of the situation,
consider rewriting the example using type-passing in the style of System F [32]:

letid=Aa.{{ Ax:a.x}}
in {{ (-(id Int) 1, ~(id Bool) True) }}

This translation clearly shows that all type abstraction and application is performed at
stage 0, even though the code itself is at stage 1. Notice that the type parameter has been
lifted implicitly from stage 0 to stage 1.

Another possibility, which we call defer-generalisation style, is to generalise defer expres-
sions separately from let-bindings, and specialise at each splice point. (Note that let-bound
terms are still generalised as per usual under this scheme.) Under this approach, id would
be assigned the rank-2 polymorphic type {{ foralla . a -> a }}. If we again rewrite the
term to use explicit type passing, the difference between this approach and the previous is

obvious:
letid={{Aa.Xx:a.x}}

in {{ (-id Int 1, ~id Bool True) }}

Notice all type abstraction and application is now at stage 1. In effect, this approach defers
type abstraction and application in parallel with evaluation.

Of course, the first approach is to be preferred to the second, since type inference for rank-2
types is very awkward, and for higher ranks is undecidable [114]. Furthermore, for pure
parametric polymorphism, type generalisation and specialisation may always be shifted to
the stage of the let-binding. Indeed, the example above in defer-generalised form may have
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all type abstraction and application moved to stage 0:

letid = Aa’" . {{ (Aa.Xx:a.x)a'}}
in {{ (-(id Int) 1, ~(id Bool) True) }}

This translation is valid because types may be freely lifted across stages.

For the reasons above, MetaML [97] uses let-generalisation style. Unfortunately, the situ-
ation is not so simple when constrained parametric polymorphism is introduced.

7.4 Constrained Polymorphism and Staging

In a system of constrained polymorphism, it is possible for let-generalised and defer-
generalised terms to have a different semantics. To see why, consider an example using
implicit parameters [57):

( let plusi = {{ 1 + 7z }}
in {{ ~plusl with ?z =1 }} ) with 7z = 0

Notice the implicit parameter ?z is bound both at stage 0 (to 0) and stage 1 (to 1). Thus
the constraint ?z : Int will appear both at stage 0 and stage 1. How shall these two
occurrences be handled?

In let-generalisation style, let-bound variables capture all the constraints of the let-bound
term, regardless of their stage. Thus plus1 would be assigned the constrained type scheme
?z : Int => {{ Int }}, and the term would be implemented (using the translation of [57])

as:
(Mz.letplusl = A2 . {{1+2'}}

in {{ (A" . ~(plus1 2))1}})0

Note the implicit lift of the parameter z’ from stage 0 to stage 1. Hence the instance of
plus1 would be specialised with the binding of 7z = 0 at stage 0, and the program would
reduce to (in source form):

{{ (1 +0) with?z =1 }}

Alternatively, using defer-generalisation style, plus1 would be assigned the rank-2 type
{{ ?z : Int => Int }}. The implementation would then be:

(Az.letplusl = {{A2' .1 + 7 }}
in {{{(Az" . ~plus1 Z)1}})0

Now the code {{ 1 + 7z }} would be specialised with the binding of 7z = 1 at stage 1, and
the program would reduce to:

{{1+ ?z with 7z = 1 }}

Since the choice of method effects the semantics, one must be prescribed. Unfortunately,
neither is pleasing. Let-generalisation style would only work for implicit parameters of
liftable type, since implicit parameters which cross stages must be lifted. In most imple-
mentations, this would rule out defer expressions with implicit parameters of functional
type—a severe restriction. Furthermore, the capturing of a stage 1 implicit variable by a
stage 0 binding is unlikely to correspond with the programmer’s intended interpretation.
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Defer-generalisation style, on the other hand, is incompatible with tractable type inference.

One way out of this impasse is to both give up defer-generalisation, and also ignore any
constraints from higher stages when let-generalising. The programmer may then use first-
class polymorphism [49] to ezplicitly generalise polymorphic deferred expressions where
desired.

Under this approach, the example could be written as:

newtype WithZ = 7z : Int => Int
unWithZ = \(WithZ x) . x

( let plusl = {{ WithZ (1 + 7z) }}
in {{ (unWithZ ~plusl) with ?z = 1 }} ) with ?z = 0

Here (1 + 7z) is generalised when typing the application WithZ (1 + ?2), and plusl is as-
signed the monomorphic type {{ WithZ }}. Dually, the implicit parameter 7z is reexposed
by (unWithZ ~plusl), whence it is bound to 1.

Unfortunately, this approach is not quite sufficient to avoid problems. Consider a variation
of the example, this time with two bindings of ?z at stage 1:

{{ ~(let plust = {{ 1 + ?z }}
in {{ ~plusl with ?z = 1 }} ) with 7z = 2 }}

Since the programmer has not explicitly generalised the code bound by plusi, the con-
straint ?z : Int (at stage 1) escapes, and is bound to 2 by the outer with. Hence, this
example reduces to:

{{ (1 + ?z with 7z = 2) with 7?7z = 1 }}

Again, this result does not corespond to the programmer’s intended interpretation of:

{{1+ 7?7z with ?z =1 }}

Furthermore, and more seriously, terms such as these would greatly complicate the seman-
tics.

To avoid these problems, X¢ requires that every statically typed polymorphic deferred ex-
pression must be explicitly fully generalised. Indeed, the type system will require that in
{{ t }}, t must be well-typed assuming only true, the trivial constraint, at ¢’s stage.

Thus the example above must be written as:

newtype WithZ = 7z : Int => Int
unWithZ = \(WithZ x) . x

{{ ~( let plusl = {{ WithZ (1 + 7z) }}
in {{ (unWithZ ~plusi) with ?z =1 }} ) with 7z = 2 }}

To formalise this approach, the well-typing judgement must now include a vector of type
variable contexts, A, tracking which type variables are free at which stages. Similarly,
it must also include a vector of constraint contexts, C, tracking the current constraint
context for each stage.

It is important to distinguish A and T, which may contain variables bound at any stage (and
hence resemble temporal logic contexts [20]) from C, which contains constraint contexts
only for the current and previous stages (and hence resembles a modal logic context [21]).
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In other words, though A and T are persistent across stages, C is a stack which must be
popped when moving to an earlier stage.

The type rules for defer and splice are now:

A|C;true |[TH*"1 ¢t 7

—— L DEFERTSIMP
A|C|TF{{t}}:{{7}}

SPLICETSIMP

A|C|TH t: ({71}
A|C;

|C;D|TH** -t 7

To recap: X may generate well-typed code which uses constrained polymorphism, pro-
vided that no constraint crosses outside of any defer expression. Furthermore, this obvious
lack of expressibility may be circumvented using first-class polymorphism.

Alas, this approach may quickly become excessively burdensome on the programmer.

7.5 Dynamically Typed Staged Computation

The previous section showed how programming with constrained polymorphic code can
become tedious because the programmer must explicitly wrap and unwrap polymorphic
code fragments. Furthermore, in many programming situations the type of generated code
depends on a run-time value and is difficult to express statically.

Both these problems can be avoided if type inference is staged in parallel with evaluation.
In this way, type inference may be deferred until sufficient type context is known at run-
time. This approach neatly extends the staging operators we have already introduced, and
also subsumes many proposals for dynamic typing [1, 56, 2].

A new type, {?}, is introduced for dynamically typed code. Values of this type are code
fragments for which type inference has been deferred. Indeed, such code fragments may
even be ill-typed.

The three statically typed operators of Section 7.1 also have dynamically typed versions.
For simplicity, A overloads the splice and run operators to work on both code types, and
only introduces a new form for deferring evaluation:

o {7 t 7} is like {{ ¢ }}, but defers both the type inference and evaluation of ¢ by one

stage:
1+1:Int inferred at compile-time
1+142 evaluated at stage 0
{71+17}: {7} inference deferred

{71+17?2}Yy{?21+17} evaluation deferred

e As before, run ¢ first evaluates t to a piece of code. If the result is a dynamically
typed code fragment of the form {? u 7}, it then infers the type of u. Evaluation
continues with u if this type is compatible with run’s context. For example (writing
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{10 for evaluation in a monadic context):

leti<~run{?1+1 7?7} inunit (i +2)

=>1+1:Int inference brought forward to stage 0
= Int = Int types are compatible
lioleti=1+1inunit (i +2) evaluation brought forward to stage 0
Jio 4 evaluation continues

Two things can go wrong here: The type of u may be incompatible with that of
run’s context, or © may be ill-typed to begin with. If either of these occur then run
discards u and raises an exception. For example:

let b<- (tryrun {71 +1 7}
catch unit False)
inunit (not b)

= 1+1:1Int inference brought forward to stage 0
= Int # Bool types not compatible, exception raised
10 1let b <~ unit False in unit (not b) ezception caught

Y10 True evaluation continues

Here the operator (try _ catch _), of type 10 a -> 10 a -> 10 a, performs its first
argument, passing control to its second argument only upon an exception.

e Also as before, ~¢ evaluates t to a piece of code. If it is dynamically typed code of
the form {? u ?}, u is spliced into the body of the surrounding code, which clearly
must also be dynamically typed. Unlike for statically typed splices, the type of a
code fragment with dynamically typed splices may now depend on the code being
spliced. For example, in:

let code={?\x . (x,x) ?}in{? ~code 1 7} § {? (\x . (x, x)) 1 7}
the resulting body has type (Int, Int). However, in
let code = {? \x . True 7} in {? ~code 1 7} | {? (\x . True) 1 7}

the resulting body now has type Bool.

It is quite possible for an expression to be incompatible with the context it is spliced
into, yielding ill-typed code. For example:

let code={?\x . x+17?}in {? ~code True 7} | {? (\x . x + 1) True 7}

Ill-typed code is detected by run:

try run {? (\x . x + 1) True 7}

catchunit False
= (\x . x+1) True:? type inference brought forward, ill-typed
{10 False exception caught

One choice remains to be made. Should a term {7 ¢ ?} be assigned type {7} regardless of
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t, or should it be rejected if ¢ is ill-typed regardless of code spliced into it? For example:

let code = {? 1 7} in {? ~code + not 1 ?}

would be accepted under the former, and rejected under the latter. Since this choice has
little effect on the semantics and expressibility of the language, X°¢ adopts the later as a
small aid to program correctness.

7.6 Constrained Polymorphism and Dynamic Typing

Since dynamically typed code is always assigned the monotype {7}, it may be type checked
using the defer-generalisation method sketched in Section 7.3 without any complications.
Very roughly, the type rules are:

AH"A|C;D|THF* ¢t 1
A|C|TH {7¢7}:{7}

DEFERUSIMP

A|T|TH t:{7}

e — 0 SPLICEUSIMP
A|C;D|TH" -t 7

Notice A’ and D may be arbitrarily chosen so that ¢ has some type 7. All three properties
are then forgotten, and {? ¢ 7} is assigned type {?}. Similarly, in the second rule 7 may
be chosen arbitrarily so that the context of ~t is well-typed.

Consider the example from Section 7.3, rewritten to use {? 7} brackets:
( let plusi = {7 1 + 7z 7}
in {? ~plusl with ?z =1 ?} ) with 7z =0
Now the type of 1 + 7z is generalised to give 7z : Int => Int, and this type is discarded.
Hence there is no confusion as to which binding of 7z applies, and the term reduces to:
{71+ ?z with 7z =1 ?}

Dynamically typed polymorphic code is thus much easier to program with, but in return
cannot be statically verified as type-correct.

Unfortunately, the rules DEFERUSIMP and SPLICEUSIMP fail to differentiate between terms
whose type is definitely known, versus those for which the type has been “guessed” by a
splice of {7} code. Hence, the actual type system requires two judgement forms at stages
1 and higher.

7.7 The rttype and liftable Constraints

Recall from Section 7.5 that run must perform a run-time type check of any code of compile-
time type {7} to ensure its actual type is compatible with run’s context. Furthermore,
because run may be used in a polymorphic context, this type may not be known locally.

For example, in:
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let £ = \code . run code

in let b <= £ {? True 7};
i <- f {? True 7}

in unit (not b, i + 1)

the first application of £, and hence the run within £, is at type Bool (and thus succeeds),
while the second is at type Int (and thus fails). Somehow a run-time representation of the
type of £’s context must be conveyed to the occurrence of run.

One approach is to use a System F style of type-passing semantics [99]. However, since
types are passed into every polymorphic term regardless of whether it actually invokes
run, this approach is needlessly expensive. Furthermore, it diverges from most existing
implementations of functional programming languages which are type-free at run-time.

Instead, X°¢ uses the constraint rttype 7 to indicate that a representation of type 7 is
required at run-time. This constraint is another example of a “type trick” (analogous to
the trick in typing run discussed in Section 7.2). Since rttype 7 is satisfied for any ground
type 7, it does not really impose a “constraint” on 7 at all. Instead, it allows the type
system to track which type specialisations require an actual run-time type to be passed as
an additional parameter.

Giving run (in effect) the constrained polymorphic type

run : forall a . rttype a => {?} -> I0 a

signals that it takes as an additional argument a witness of rttype a; that is, a represen-
tation of whatever monotype a is instantiated to. This passing of witnesses parallels the
propagation of rttype constraints. A type-directed dictionary translation rewrites source
terms to run-time terms in which this witness passing is explicit.

Returning to the example, f is assigned the same type scheme as run, and the whole term

is translated to:
letf=Aw.Acode.runcodeatw

in let b + f Bool (True)
i < fInt (True)
in unit (not b, i + 1)

Notice the witness abstraction in the binding of f, and the witness applications at each
occurrence of f.

One more constraint is necessary. Recall from Section 7.2 the side condition liftable(r)
in rule VARMONO. Again, in the presence of polymorphism, this condition cannot be
checked locally if 7 is not ground. Instead the side condition is implemented as a constraint
liftable 7. Just as for rttype 7, this constraint is witnessed by a run-time representation
of 7, which may be used at run-time to determine how a value should be lifted. (In X°°,
only Int is liftable, so this machinery is somewhat of an overkill.)



Chapter 8

Examples

The system sketched in Chapter 7 is very versatile. This chapter presents examples of
dynamic typing, partial evaluation, and distributed computing. The examples are some-
what voluminous, and will assume features beyond those of X*°—in particular the pattern
matching syntax of AT, and the native XML syntax introduced in Section 3.4. However
by doing so we demonstrate how staging interacts gracefully with other language features.

These examples have not been formally type checked or tested on a running interpreter.
However, key fragments have been tested by transliterating into Haskell.

8.1 Dynamic Typing

Consider replicating C’s printf procedure in a functional setting. Programmers might like
to write:

printf "/i = %b" (1, True) ‘
where %i and %b are placeholders for the elements of the argument tuple. Unfortunately,
giving printf a type such as

printf : String -> 7 -> I0 ()
is problematic, as the type 7 depends on the value of printf’s first argument. This could
be expressed using a dependent type [9]:

printf : IIs : String . (formatType s) -> I0 O

where formatType converts the format string to a type. However the complexity of
dependently-typed programs can quickly become overwhelming.

One solution is to allow printf to accept arguments of any type:

printf : String -> List Dyn -> I0 ()

As printf parses its format string, it checks each argument is of the appropriate dynamic
type before outputting its representation.

Examples such as the above are common in:

o Persistent programming, where values of any type may be stored and retrieved from
stable storage.

o Distributed programming, where data and code are exchanged between remote pro-
grams.

99
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o Interpretive programming, where object language terms of arbitrary type must be
represented by meta language constructs of known type.

e Generic programs, such as printf, which work non-parametrically over values of
arbitrary type.

Existing approaches to dynamic typing [1, 56, 2] introduce a universal datatype of type
Dyn, and two operations:

e dynamic ¢ : 7, which constructs a dynamic value containing both term ¢ and a rep-
resentation of its type 7;

e typecasedof {x3 : T4 => %1 ; ...; X : Tp => t, }, which attempts to match the
type stored within dynamic value d against one of 7;, binding the term in d to the
appropriate x;, or failing gracefully if no match is found.

The semantics of these two operators is straightforward when all types involved are
monomorphic. However, when typecase patterns may contain free type variables, or
worse, when dynamic values may contain polymorphic terms, the situation becomes much
more subtle.

These approaches suffer two main drawbacks:

e Types live in two quite different worlds. Static types are generally inferred, and
may be implicitly polymorphic with little added complexity for the programmer.
Dynamic types must be mentioned explicitly within the branches of a typecase, and
dynamic polymorphism is either forbidden [1], restricted [56], or requires the complex
machinery of functors and higher order unification [2].

e Combining dynamic values together to construct a new dynamic value is tedious and
verbose to write, since each constituent value requires a separate typecase, and the
result must be wrapped by dynamic.

In X°, dynamically typed terms are simply terms for which both evaluation and type-
inference has been deferred. This approach avoids the problems above:

e The same type system as used at compile-time is used at run-time to decide the well-
typing of dynamic values. There is no need for explicit type annotations, and dynamic
values enjoy type inference just as static values do. As a result, dynamically typed
polymorphism is implicit and as convenient to use as statically typed polymorphism.

e The splice operator makes combining dynamically typed values convenient and con-
cise. Even though the type Dyn resembles {7}, the term dynamic ¢ resembles {7 ¢ 7},
and typecase may be simulated by a chain of run commands, dynamic-typing sys-
tems have no counterpart to the splice operator.

The implementation of printf in X¢ is much the same as in dynamic typing systems:
printf has type String -> List {?} -> I0 (), and the programmer must wrap each ar-
gument in {? 7} brackets:
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printf : String -> List {?} -> I0 O
= letrec format : String -> List {7} -> {7}
= {\[J 0O0. {7 " 7}
\NQC%? 2 2i? :: cs) (d :: ds)
{? itostr ~d ++ ~(format cs ds) 7};
\NC%? :: °b? :: ¢cs) (d :: ds)
{? btostr ~d ++ ~(format cs ds) 7};

\(c :: cs) ds .
{? ¢ :: ~(format cs ds) 7?};
\_ - . {? 0 ?} (* non-string to force error *) }

in \cs ds . let s <~ try run (format cs ds)
catch unit "error: bad format"
in putStr s

The helper function, format, traverses the format string, splicing together code to construct
the result string. The printf function attempts to run this code and print the result. An
error string is printed if the format string and arguments mismatch in number or type. For
example:

printf "%i =%b" [{? 1 7}, {? True 7}]

J run({7 itostr 1 ++ " =" ++ btostr True ++ "" 7}
UIO itostr 1 ++ " =" 4+ btostr True ++ "V
U "1 ="True"

which is written to output.

Unlike in dynamic typing systems, another implementation is possible which exploits X5¢’s
ability to manipulate code containing free variables. This implementation constructs, at
run-time, a printing function matching the given format string:

makePrintf : forall a . rttype a => String -> I0 a
= letrec makeFun : String -> {7} -> {7}
={\[Jada.d;
\NC%? :: i’ 1 c8) d .
{? \x . ~(makeFun cs {? let () <- ~d
in putStr (itostr x) ?7}) 7};
\NC% :: ’b? :: ¢cs8) d .
{? \x . ~(makeFun cs {7 let () <- ~d
in putStr (btostr x) 7}) 7};
\(c :: ¢8) d . makeFun cs {? let () <~ ~d
in putChar c 7} }
in \¢s . run (makeFun cs {? unit () 7})

Here, the constraint rttype a signals that a run-time representation of type a is required,
but does not actually restrict how a may be instantiated.

The helper function, makeFun, traverses the format string, building a A-abstraction for
each argument. Argument d to makeFun accumulates the code to convert and print the
arguments seen so far. Notice that x is free in the code passed to the recursive call to
makeFun. Without this ability it would be impossible to construct the function at run-
time.

Although makePrintf may be instantiated to any type, it will raise an exception unless the
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type is compatible with the format string. In this respect, makePrintf is not parametric
polymorphic, but rather ad-hoc polymorphic. Such terms can always be distinguished by
their use of the constraint rttype 7.

The function makePrintf has two advantages over printf: It avoids the need to wrap
arguments with {? 7} brackets, and it allows a printing function to be generated once and
reused many times without the overhead of staging.

For example, in:

let £ <- makePrintf "%i = %b";
() <- £ 1 True
in £ 0 False

type inference discovers f must have type Int -> Bool -> I0 (). Hence the application
makePrintf "%i = %b" returns the function:

\xl . \x2 . let () <~ (let () <- (let () <~ unit ()
in putStr (itostr x1))
in putStr * = ")
in putStr (btostr x2)

8.2 Partial Evaluation

Partial evaluation seeks to specialise code to exploit run-time invariants [50]. For conven-
tional programs, partial evaluation requires a form of binding-time analysis [78]. In X5¢,
(and MetaML [97]), partial evaluation is under programmer control through the use of
explicit staging anotations. Furthermore, X*° programs are free to use dynamically typed
code whenever it is inconvenient or impossible to express the types of generated programs
statically.

Consider implemeting a regular expression compiler which, given a 1-unambiguous regular
expression (as introduced in Section 3.4), produces the corresponding Glushkov automaton
[17]. Staging can be exploited to encode the automaton directly as a A*¢ program, rather
than as an interpreter for the automaton’s transition function.

The language of regular expressions is represented abstractly:

data RegExp = \a .
Atom a
| Sum (List (RegExp a))
| Prod (List (RegExp a))
| Star RegExp

The states of a Glushkov automaton correspond with the positions of atoms in the regular
expression it is built from. Hence the first task is to assign a unique position to each atom
of the regular expression, and construct a map from positions back to atoms. We shall use
natural numbers to represent positions, and assign naturals to atoms from right to left so
that the last atom has position 0. The map is then easily represented as a list indexed by
position. For example, the regular expression axb is represented as:

Prod [Star (Atom ’a’), Atom ’b’]
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This term is annotated with positions to become:
Prod [Star (Atom (1, ’a’)), Atom (0, ’b’)]

The corresponding map is thus:
[ ? , 1g? ]

The following function performs this annotation (to avoid complications with overloading
the == function, all types in the following program fragements have been specialised to
regular expressions over characters, even though most are polymorphic on the atom type):

annotate : RegExp Char -> (List Char, RegExp (Int, Char))
= letrec annlList = \cs res . foldr (\re (cs’, res’)
let (cs’’, re’) = ann cs’ re

in (cs’?, re’ :: res’))
(cs, [1) res;
ann = \¢s . { \(Atom c) . (c : cs, Atom (length cs, c));
\(Sum res) . let (¢s’, res’) = annList cs res

in (cs’ Sum res’);
\(Prod res) . let (cs’, res’) = annlList cs res
in (cs’, Prod res’);
\(Star re) . let (cs’ re’) = ann cs re
in (cs’, Star re’) }
in \re . let (cs?’, re’) = ann re [] in (reverse cs’, re?)

This and the following functions make use of some standard library functions:

length : forall a . List a -> Int
reverse : forall a . List a -> List a

foldr : forallab. (a->b->b) =>b~->[a]l => Db
map : forall a b . (a -> b) -> [a] -> [b]
an : forall a . List a -> Int -> a

and, or : [Bool] -> Bool

Some operations on sets of positions, position pairs, and (character, position) pairs are also
needed. (In practice these operations would all be instances of more generic operations on
sets and relations). Signatures for these operations are given in Figure 8.1. We use ‘P” to
denote “position”, and “C” for “character.”

The function hasEmpty is True if its argument regular expression recognises the empty
string:
hasEmpty : RegExp (Int, Char) -> Bool
= { \(Atom _) . False;
\(Sum res) . or (map hasEmpty res);
\(Prod res) . and (map hasEmpty res);
\(Star re) . True }

The function firstPos is the set of positions of its argument reachable without transition:
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newtype Set

emptyP
emptyPP

singletonP :
: Set Int -> Set Int -> Set Int

: Set (Int, Int) -> Set (Int, Int) -> Set (Int, Int)
: Set (Set Int) -> Set Int

unionAllPP :
: Set Int -> Int -> Bool

unionP
unionPP
unionAllP

memberP

crossProdP :
: Set (Int, Int) -> Bool
applyRelPP :

isFunctR

mapSetPCP
foldSetCP

= \a .

: Set Int
: Set (Int, Int)

Int -> Set Int

Set (Set (Int, Int)) -> Set (Int, Int)
Set Int -> Set Int -> Set (Int, Int)

Set (Int, Int) -> Int -> Set Int
(Int -> (Char, Int)) -> Set Int -> Set (Char, Int)

: forall a . ((Char, Int) -> a => a) ->

a -> Set (Char, Int) -> a

Figure 8.1: Signatures for operations on sets and relations

firstPos : RegExp (Int, Char) -> Set Int
= { \(Atom (p, _)) . singletonP p;
\(Sum res) . unionAllP (map firstPos res);
\(Prod [1) . emptyP;
\(Prod (re :: res))
unionP (firstPos re)

(if hasEmpty re then firstPos (Prod res) else emptyP)

\(Star re) . firstPos re }

Similarly, 1lastPos is the set of positions of its argument which are valid stopping states.
These are simply the first-positions of the reversed regular-expression:

lastPos : RegExp (Int, Char) -> Set Int
= \re . firstPos (rev re)

rev : forall a . RegExp a -> RegExp a
= { \(Atom a) . Atom a;
\(Sum res) . Sum (map rev res);
\(Prod res) . Prod (reverse (map rev res));
\(Star re) . Star (rev re) }

The function followPos yields the set of all pairs of position and successor position. A
successor position must be reached by exactly one transition:
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followPos : RegExp (Int, Char) -> Set (Int, Int)
= { \(Atom _) . emptyPP;
\(Sum res) . unionAllPP (map followPos res);
\(Prod []) . emptyPP;
\(Prod (re :: res))
unionPP (followPos re)
(unionPP (followPos (Prod res))
(crossProdP (lastPos re)
(firstPos (Prod res))));
\(Star re) . unionPP (followPos re)
(crossProdP (lastPos re)
(firstPos re)) }

All the definitons above are now tied together by makeFollowMaps, which builds a list of
transition relations, one for each position. For simplicity, the starting state is encoded
as the “position” one before the leftmost position. Each transition relation maps legal
input characters to their following position. The function makeFollowMaps also returns
the number of positions, and the set of valid final positions for the regular expression:

makeFollowMaps : RegExp Char -> (Int, Set Int, List (Set (Char, Int)))
= \re . let (cs, re’) = annoate re;
nPos = length cs;
last = unionP (lastPos re’)
(if hasEmpty re’ then
singletonP nPos
else
emptyP) ;
follow = unionPP (followPos re’)
(crossProdP (singletonP nPos) (firstPos re’));
maps = map (\p -> mapSetPCP (\p’ -> (cs !! p’, p’))
(applyRelPP follow p))

[0. .nPos]
in (nPos, last, maps)

This leaves the problem of generating the recogniser itself, which should be code for a
function of type String -> Bool. Without staging, the only posibility would be to simulate
the Glushkov automaton on the given input, requiring two probes per input character:
one to map the current position to its transition relation, and another to map the current
character to its successor position (or test for final position if the input has been exhausted).

With staging, more efficient solutions are possible. An obvious improvement is to encode
the automaton as a single recursive function, and unfold the two probes as a series of if
expressions. However, this represents the automaton state explicitly as an integer. The
following implementation goes one step better by embedding the automaton’s state directly
in the implicit state of X°¢, thus eliminating all interpretive overhead. This embedding is
achieved by generating a set of mutually recursive functions, one for each position (and
the starting state), each of which tests the current input and makes a recursive tail-call as
required.

The only subtlety is how to generate an arbitrary number of mutually recursive functions.
Remember, X°¢ does not allow variable names to be generated under programmer control,
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and does not allow terms to be built from term-fragments (such as a single letrec-binding),
only other terms.

The first step is to generate a transition function for each position, which is abstracted
over all transition functions (including itself):

makeFunN : Int -> Bool -> Set (Char, Int) -> {7}
= \nPos isLast followMap .
let makeTests : List {7} -> {7}
= \fs .
let testCode = \c, cs . foldSetCP
(\(c’, p’) rest .
{? if ~¢ = ¢’ then ~(fs !! p’) -~-cs else ~rest 7})
{? False 7} .
followMap
in {? { \[J . isLast;
\(c :: ¢cs) . ~(testCode {7 ¢ 7} {? ¢cs 7}) } 7}
in letrec makeAbs : Int -> List {?} -> {7}
= \pos fs .
if pos < O then
makeTests fs
else
{? \f . ~(makeAbs (pos - 1) ({? £ ?} :: £fs)) 7}
in makeAbs nPos []

The function makeAbs builds a series of function abstractions, one for each position (and
the starting state). Notice how though each abstraction argument is statically named
“f” the run-time system will actually generate fresh argument names for each generated
abstraction. These names are accumulated and passed to makeTests. This function uses
testCode to create a nested if expression testing the current character against each legal
character, and calling the appropriate next-position function. It also tests for valid final
positions. Since the type of each transition function depends on the total number of
positions, all of this code must be dynamically typed.

The function makeFuns generates a nested tuple of transition functions, one for each posi-
tion (and the starting state). This tuple resembles a list, with (_ , _) for (::) and ) for
(:

makeFuns : Int -> Set Int -> List (Set (Char, Int)) -> {7}
= \nPos last followMaps .
letrec genFuns = \p .
if p < O then
{7 O 7}
else
{? ( ~(makeFunN nPos (memberP last p) (followMaps !! p))),
~(genFuns (p - 1) ) 7}
in genFuns nPos
All that remains is to tie the recursive knot. To do so, we define a family of functions, fixn.

Given a nested tuple of n n-ary functions, fixn returns a nested tuple of n fixed-points.
When n = 1, the situation is simple:
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fixl : forall a . (a -> a, ()) > (a, (O
= \(f, (O) . letrec x = f x in (x, ()

For n = 2, first define two helper functions:

appl : forall ab . (a ->b, ()) ->a -> (b, ())
=\, O)x. (fx, O)

uncurryl : forallab . (a ->b) > (a, ()) ->b
=\f (X: ()) .fx
Then:
fix2 : forall a . ((a ->a ->a), ((a->a->a), O)) > (a, (a, )))
= \(f, g) . letrec x = uncurryl (f x) y;
y = fix1 (appl g x)
in (x, y)
which is equivalent to

fix2? = \(f, (g, ())) . letrecx =f x y
y=g=xy
in (x, (y, O))
by Bekié’s Lemma.
For n = 3, again define two helpers:

app2 : forallab . (a->b, (a->b, O)) ->a-> (b, (b, 0O))
=\(f, g x . (f x, appl g x)

uncurry2 : forallabc . (a ->b ->¢c) -> (a, (b, ) -> ¢
= \f (x, y) . uncurryl (f x) y

And again:

fix3 : forall a . ((a -> a -> a -> a),
((a ->a->a->a),
((a~->a->a->a),
0N > (a, (a, (a, O
= \(f, g) . letrec x = uncurry2 (f x) y;
y = fix2 (app2 g x)
in (x, y)
The list fixes is defined to consist of all such fixed-point combinators (and their helpers),
beginning with n = 1. Again, the type of each component depends on n, and hence must
be dynamically typed:
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fixes : List ({?}, {7}, {?})
= letrec next = \(fix, app, uncurry)
let curr =
( {? \(f, g) . letrec x = ~uncurry (f x) y;
y = ~fix (~app g x)
in (x, y) ?},
{? \(f, g) x . (f x, ~app g x) 7},
{7 \f (x, y) . ~uncurry (f x) y 7} )
in curr :: next curr
in let first = ( {? \(f, ) . letrec x = f x in (x, () 7},
{2\, O)x. (£ x, O) 73,
{7 \f (x, O) . £x7?})

in first :: next first

"

The required fixed-point combinator is simply drawn from this list:

makeFixN : Int -> {?}
makeFixN = \n . fst (fixes !'! (n - 1))

Finally, everything is tied together by makeRecogniser. This function will return None
if its argument regular expression is not 1-nonabiguous; that is, at least one transition
relation is not functional. Otherwise, it returns Some of the recogniser code:

makeRecogniser : RegExp Char -> Option {7}
= \re . let (last, followMaps, nPos) = makeFollowMaps re
in if and (map isFunctR followMaps) then
Some {{ fst (~(makeFixN (nPos + 1))
~(makeFuns nPos last followMaps)) }}
else
None

Notice that even though makeRecogniser only builds code of type String -> Bool (and
hence a run of this code could safely elide the type check), this invariant can unfortunately
neither be proven by type inference nor indicated by any form of user annotation. Once
the programmer steps outside of statically typed code, there is no way to get back in.

The following program constructs a recogniser for the regular expression axb, then repeat-
edly tests it against input strings:

let re = Prod [Star (Atom ’a’), Atom ’b’]
in let r <- run (makeRecogniser re)
in { \None . putStrLn “"error: r.e. is 1-ambiguous";
\(Some f) . letrec loop =
let s <~ getline;
() <- putStrLn (if £ s then
"accepted”
else
"rejected")
in loop

}r
For this program, £ would be the term:
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fst (fizd (2, (1, (o, O

where fiz4 is as defined by the induction above, and:

fr = \f2 f1 £0 .
{ \[] . False;
\(c :: ¢cs) . if ¢ == ’a’ then f1 cs
else if ¢ == ’b’ then f0 cs
else False }
fi = \text{same body as f»}
fo = \f2 f1 f0 .
{ \[J . True;
\(c :: cs) . False }

8.3 Distributed Computing

A distributed system involves the co-operation of more than one machine. A contemporary
example is the client-server model for separating an information provider (e.g., database
server or web server) from an information user (e.g., online search program or web browser).
Client-server systems are typically implemented as two seperate programs which exchange
data in a common format (e.g., SQL or HTML).

This section considers how to implement a distributed system with programs as its common
exchange format. Staging allows such programs to be generated conveniently, and with
static guarantees of well-formedness and (if desired) well-typedness.

These ideas are illustated by implementing a “m-server.” Given a request of a natural
number n, the server generates a program of type Html describing the first n digits of «.
Of course, the obvious approach is for the server to calculate = to the required precision
itself. However, to demonstrate the flexibility of staging, this calculation will be included
within the result program, and hence deferred to the client.

The following will assume some I/O operations to read and write dynamically typed code:

readCode : Handle -> I0 {7}
writeCode : Handle -> {?} -> I0 ()

For simplicity, the example also assumes a two-way “pipe,” possibly involving a network,
has been previously established between the server and client, and the appropriate handles
have been supplied to both. Notice this glosses over the problem of ensuring the global
envrionment of the sending and receiving programs are compatible. For example, if code
contains an application of a newtype A, the sender and receiver must agree on A’s definition,
and similarly for common library functions.

Because writeCode has an I0 type, it’s argument is guaranteed to be closed by the same
reasoning as used for run in Section 7.2. Hence, the code will be ready to be packaged up in
form suitable for writing. Furthermore, since readCode has the result type of I0 {7}, the
reading system is forced to type-check any code containing imported code before running
it. This prevents accidentally or malicioulsy ill-typed code from entering the system.

Statically typed code may also be coerced to dynamically typed code:

forget : forall a . {{ a }} -> {7}
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The calculation of 7 exploits an identity established by Bailey, Borwein and Plouffe [6]:

= 1 ( 4 2 1 1 )
S o (N SN S
pard 16* \8+1 8i+4 8i+5 8i+6
This formula may be used to calculate arbitrary base-16 digits of 7 independently of all
preceeding digits. However, it also allows each successive base-16 digit to be calculated on
demand by just a few integer operations.

The implementation requires arbitrarily sized Integer’s and Rational’s. The following
assumes the standard binary operators have been overloaded on both types using the
techniques of Section 3.5. Furthermore, some additional operators are needed:

(%) : Integer -> Integer -> Rational
numerator : Rational -> Integer
denominator : Rational -> Integer
div : Integer -> Integer -> Integer
gcd : Integer -> Integer -> Integer

Each term of the sum is given by term:

term : {{ Integer -> Rational }}
={{\i.let £f=1i=%38
in (4% (£ +1)) - 2% (£+4) -
QA% E+5) - Q% (£+6)) 1}

Recall from Section 7.2 that functions are not necessarily liftable. Hence this definition,
and those following, must be deferred by one stage so that it may be included in the code
of the result document.

The base-16 digits are computed as a lazy list. The calculation is careful to expand enough
(and only enough) terms ahead of the current digit to guarantee it cannot be changed by
a carry-propagation from deeper within the expansion:

next_digit : {{ Rational -> Integer }}
= {{ \r . numerator r ‘div‘ denominator r }}

hex_digits_of_pi : {{ List Integer }}
= {{ letrec next
= \i scale remainder .
let digit = ~next_digit remainder;
error = 1 Y, scale
digit’ = ~next_digit (remainder + error)
in if scale > 1 && digit == digit’ then
digit :: next i (scale ‘div‘ 16)
((remainder - (digit % 1)) * (16 % 1))
else
next (i + 1) (scale * 16)
(remainder + (~term i * (1 % scale)))
in next 0 1 0 }}

The stream of fractional base-16 digits must then be converted to base-10. Again, the cal-
culation looks-ahead just enough base-16 digits to ensure the current base-10 digit cannot
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change:

dec_digits_of : {{ List Integer -> List Integer }}
= {{ \hs .
letrec next = \(h : hs) dec_scale hex_scale remainder .
let digit = ~nmext_digit
(remainder * (dec_scale % 1));
error = 16 % hex_scale
digit’ = ~next_digit ((remainder + error) *
(dec_scale % 1))
in if digit == digit’ then
digit :: next’ (h : hs) (dec_scale * 10)
hex_scale

(remainder - (digit % dec_scale))
else

next’ hs dec_scale (hex_scale * 16)
(remainder + (h % hex_scale));

next’ = \hs dec_scale hex_scale remainder .
let factor = gcd dec_scale hex_scale
in next hs (dec_scale ‘div‘ factor)
(hex_scale ‘div‘ factor)
(remainder * (factor % 1))
in next hs 10 16 0 }}
Calculating 7 as a string in base-10 is straightforward:

i : {{ String }}
= {{ let hex_pi = ~hex_digits_of_pi
in char0fDigit (head hex_pi) :: ’.’ :
map char0fDigit (~dec_digits_of (ta11 hex_pi)) }}
Here char0fDigit : Integer -> Char maps a digit to the character code representing it.

The server can now be presented:




112

server : Handle -> I0 ()
= \h . let errorDoc = <Html><Body>
Server Error: ill-typed request
</Body></Html>
in try
let req <- readCode h;
n <~ run req
in let title = itostr n ++ " digits of pi";
heading = {{ <Head><Title><<title>></Title></Head> }};
body = \digits .
{{ <Body><H1><<title>></H1><<~digits>></Body> }};
html = {{ let pi = ~pi
in <Html>
<<~heading>>
<<~(body {{ take (n + 1) pi }})>>
</Html> }}
in writeCode h (forget html)
catch
writeCode h (forget errorDoc)

Given the appropriate handle, server attempts to read a piece of code, and then runs it

to check it is an integer. Ill-typed requests are sent an error message as a reply. Otherwise,
the code to calculate = is spliced into a let-binding in the result program, which is sent

as reply.

Notice that all generated code is statically typed throughout this example program, and this
type information is forgotten only at the point that code must be written by writeCode.
Hence, the programmer can be sure only well-typed programs will be constructed at run-
time. Also note that the argument to body in server:

{{ take (n + 1) pi }}
contains three different ways of using variables within defer expressions:

e take is a standard library function, and hence assumed to be available at all stages
and in all run-time environments.

e n is a stage 0 variable, but since Int’s are liftable, may be used at stage 1 without
explicit lifting.

e pi is a stage 1 let-bound variable, which is bound to the code produced by the stage
0 variable of the same name.

To complete the example, consider a client program to request the first 30 digits of 7, and
displays the result:
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renderHtml : Html -> I0 ()

client : Handle -> I0 O
= \h . let errorDoc = <Html><Body>
Client Error: ill-typed reply
</Body></Html>
in let () <~ writeCode h (forget {{ 30 }});
code <- readCode h

in try
let html <- run code
in renderHtml html

catch
renderHtml errorDoc

Notice how the client fails gracefully with an error message should the server return an
ill-typed document.

If all goes to plan, the client will render the HTML page:

<Html>
<Head>
<Title>30 digits of pi</Title>
</Head>
<Body>
<H1>30 digits of pi</H1>
3.14159265358979323846264338327
</Body>
</Html>




Chapter 9

Formal Development

The aim of this chapter is to formalise X’° to the point where we may prove that any
program of type 7 either diverges or evaluates to a value of type 7. We shall develop a
type-checking system, a denotational semantics, and show soundness. We will not, however,
show type inference or correctness of the semantics with respect to an unstaged language,
both of which are quite subtle problems worthy of future research.

9.1 Syntax

Figure 9.1 presents the syntax of A¢, most of which should be familiar from examples.
The only novelty is the exists primitive constraint. The discussion of satisfiability of AT™®
constraints in Section 2.9 is also applicable to X°. Partly for historical reasons, and partly
for variety, we have chosen within ¢ to ensure the satisfiability of type-scheme constraints
by using existential constraints instead of preventing redundant let-bindings as was done
for X", Existential constraints play no part at run-time.

We often write true for the trivial (empty) constraint -, and will assume constraints are
equal up to permutation of their primitive constraints. We use x to range over all kinds,
which in X¢ includes only Type.

Run-time terms, shown in Figure 9.2, make witness binding (letw B in T), witness ab-
straction (A(wi,...,wy) . T) and witness application (T (Wh,..., W,)) explicit. They
also associate a witness with run (run T at W), and 1ift (lift T using W). In practice,
the witnesses themselves are simply representations of monotypes.

Both typed and untyped code is represented in the run-time language using the (#;) con-
struct, in which ¢; is (almost) a source language term rather than a run-time term. We
must use a source term because dynamically typed code cannot be translated to run-time
code until run-time, and hence must remain in source language form. However, #; is not
quite a source language term, as any splice at stage 1 within it must drop back into run-
time syntax. This stage dependency is captured by defining the family ¢, of terms for
each stage n > 0. To avoid unnecessary clutter, we shall drop these subscripts wherever
possible.

In the following we shall assume all terms are hygienic [8]; that is, no bound variable ever
shadows another. This restriction applies even across stages, so than \x . {{\x . 1}} is
not hygienic. Of course in a practical application this condition is too restrictive, and type
inference and type checking must deal with shadowed variables. The safest approach would
be to shadow independently of stage, so that the second x shadows the first in the above
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Kinds Kk = Type
Type variables a,b == alb|c]...
Types v = Int|7->v|{{7}}|{?}|I07]|a
Prim constraints ¢ == rttype 7 |liftable t |existsA . C
Constraints C == ¢,...,¢Cn where n > 0
Type var contexts A = a1 :K1,...,0, : Kp where n > 0
Type schemes o u= forallA . C=>r71
Variables z,y,2 == x|ylz]...
Integers ]
Constants k = 1i|throw| (try _ catch _) | putint | getint
Source terms tbu == z|k|\z.t|tu

| letz=uint|letrecz=uint

| {({t3y|{2¢t7}]|~t]1lifet

| unit ¢|letz<-uint|runt
Type contexts I 2= :my:01,...,Zn :0p where n > 0

Figure 9.1: Syntax of A°¢ source types and terms

term. An implementation would thus have to replace a type context vector with a single
map taking a variable name to a pair of a type scheme and a stage number.

In Section 9.5 we shall see that the hygienic invariant can only be maintained by renaming
bound variables within code at run-time.

9.2 Well-kinded Types

We write -+ to denote the concatenation of two type variable contexts. This operation
is undefined if any variable occurs in both contexts. We write A;,;; for the type variable
context defining the kinds of any type constants. In X¢, A, may simply be the empty
context. We write A to denote the w-vector Ag;Aq;.... All but a finite number of A’s are
Ainis. We write A" to denote A,, and AS" for Agi. . A Ainit; Ainit;- - .. We write AH"A/
for the vector Ag;...; (Ap H A ;A 1;... and A+ A for (Ag + A)); (A HAY);....
By a slight abuse of notation, we write Ainit to denote Anit ; Ainit ;- - -

Figure 9.3 presents rules for deciding the judgement A F" 7 : k, with intended interpreta-
tion:

“Type 7 has kind s at stage n assuming (for every i > 0) the free stage i type
variables are kinded according to A'.”

Since every type, and every type variable, has kind Type, the real purpose of this judgement
is to enforce a form of binding-time correctness on type variables. Assume for the sake of
the following examples that A-bound variables may be type annotated. Then in the term

{\x:a.~CO\y:{H{al}.y{{x3}) 1}
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Witness vars won= W

Witnesses W o= w|Truellnt| Wi - Wo | { W} {?}|IOW
Witness bindings B = w=W,...,u, = W, where n >0
Constants K = 1i]throw | (try - catch )| putint | getint

Stage-n terms th,Un z|k|\z . ty]tn uy

let z = u, in ¢, | letrec z = u, in i,

{{ tnt1 3} [ {? tpyr 7} | 1ift 2y

~T ifn=1
~tn—1 ifn>1
unit ¢, | let £ <- u, int, |Tunt,
z|K|AXz.T|TU

letw Bin T | Mwy,...,w,) . T | T (Wy,..., W)
letz=UinT|letrecz=UinT

(t1) | lift T using W

unit T jletz < UinT|run T at W

Runtime Terms T,U =

Figure 9.2: Syntax of A°C run-time terms

the type {{ a }} assigned to y is well-kinded since a is introduced at stage 1. However, in
the term

H{\x:a.~Cfst ({{x}, \y:a.y))}

the type a assigned to y is binding-time incorrect. This term will be rejected by the VAR
rule.

Notice that type variables may be implicitly lifted across stages. For example, in

{\x:a.{{\y:a.yl}3}}
the type variable a is introduced at stage 1 and used at stage 2.

Figure 9.3 also extends the well-kinding judgement to type schemes, and constraints. Care
must be taken to prevent constraints from containing any type variables from a stage
later than the constraint itself: hence the projection A< in rules RTTYPE and LIFTABLE.
Without this restriction, it is possible for a type variable to leak from a later stage to an
earlier stage via the constraint simplification system. For example, in

{\x:a.~Cfst ({{ x}}, run {{ x }})) }}

the run (at stage 0) would introduce the constraint rttype {{ a }} (also at stage 0).
Though we shall not present constraint simplification rules for X°°, any reasonable imple-
mentation would simplify this constraint to rttype a, which would be ill-kinded at stage
0. Hence the term above should be rejected.

We extend well-kinding of type schemes to type contexts pointwise.

We let 6 range over substitutions, which are idempotent maps from type variables to types
such that only a finite number of variables are mapped away from themselves. In the
following, let A I 6 gsubst (read “@ is a ground substitution for A”) if dom(8) C dom(A)
andV(a:k) €EA. Ay F0 0 a: k.
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AF'7:Type AF"uv:Type

= INT — FUN
A F" Int : Type AF" 71 ->v: Type
A1 Type
= CODET = CODEU
AF*{{73}}: Type A" {7} : Type
AF" 7 : Type (a:Type) € A" m<n
— 10 — VAR
AF"I0T: Type AF" a: Type
IK " o scheme I
A +H" A'F® C constraint A +H" A’ " 7 : Type
— - SCHEME
A" forall A’ . C => 7 scheme
A F"® (C constraint
AR 7 Type AS"pr Type
== — RTTYPE  — — LIFTABLE
A F" rttype 7 constraint AF" liftable 7 constraint
A +" A'F" C constraint Vi. (A F" ¢; constraint)
= EXISTS = — CONSTRAINTS
A F" exists A’ . C constraint " ¢1,..., Cpm constraint

Figure 9.3: Well-kinded X°¢ types, type schemes and constraints
9.3 Constraint Entailment

The well-typing rules require a notion of constraint entailment. For example, 1ift ¢ will be
well typed if ¢ has type 7 and the current constraint context entails 1iftable 7. Roughly,
C entails D when every satisfying substitution for C also satisfies D. However, as explained
in Section 7.7, entailment must also construct a witness for each primitive constraint in D.

In the following, we will associate witness variables with primitive constraints. Constraints
containing such names are termed constraint conterts by analogy with ordinary contexts:
w : ¢ means “w is bound to a witness of ¢ at run-time” just as z : ¢ means “z is bound to a
value of type o at run-time.” To avoid unnecessary syntactic clutter, we shall use C and D
to range over both constraints (as defined in Figure 9.1) and constraint contexts. We write
named(C) for the constraint context formed by associating fresh witness names with each
primitive constraint in constraint C. We write names(C) for the tuple of witness names in
constraint context C. We write anon(C) for the constraint formed from constraint context
C by erasing all witness names.

Figure 9.4 presents rules for deciding the judgement C ¢ d — W, with intended interpre-
tation: “C entails primitive constraint d, with witness W.” Notice that W may mention
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[Cred o W]

d =rttype 7 Vd =1liftabler
C,w:dF¢d—>w

REF

LIFTINT
C ¢ 1liftable Int < Int

RTTYPEINT / RTTYPECODEU
C ¢ rttype Int/{?} < Int/{?}

Creérttyper— W
Ctrerttype{{ 731} {{ W}}

RTTYPECODET

Crerttypev— W CFerttyper — W’

RTTYPEFUN
C ¢ rttype (v ->7) = (W = W)

Creérttyper— W
CHFeérttype (1I07) > 10 W

RTTYPEIO

. EXISTSTRIV
C ¢ exists A . true — True

C ¢ rttype anyground(A,7) — - C F®exists A . D — True
EXISTSRTTYPE

C ¢ exists A . (rttype 7, D) — True

a € dom(A) CF¢exists A . D — True
C € exists A . (liftable a, D) — True

EXISTSLIFTA

fo(dyNndom(A)=0 Cr®d—_. CF®exists A.D < True
C ¢ exists A . (d, D) «— True

|
C+t¢D—=B

Vz’.(Ci—ew,-:d,-‘—)W;)
Ctw:d—w=W

EXISTSLIFT

CONJ

Figure 9.4: Entailment of A°° constraints
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[wly =nw [True], = ttrue : x
[Int], = tint : % (W — W', =tfun: ([W],,[W'],)
[{{ W }}], = tcodet : [W], [{?}], = tcodeu : x

[10 W}, = tio : [W],

env(B) = env(B,")
env(-, ) =1
env((w = W, B),n) = env(B, (n,w — [W],))

Figure 9.5: Denotation of X’ witnesses into 7', and the definition of env

[rttype Int] = {tint : %}
[rttype (v ->7)] = {tfun: (¢, ¢') | t € [rttype v],t’ € [rttype 7]}
[rttype {{ 7 }}] = {tcodet : t | t € [rttype 7]}
[rttype {7}] = {tcodeu : x}
[rttype (I0 7)) = {tio: t |t € [rttype 7]}

[1tiftable Int] = {tint: %}
[L1iftable ] =0

[exists @& . €] = {ttrue: * | Ay FO 7R, [[;[c:i[a—0]] # 0}

Figure 9.6: Denotation of }*° ground primitive constraints as subsets of 7

the witness variables of €. This judgement is extended pointwise to general constraint
contexts by the CONJ rule.

In rule EXISTSRTTYPE we write anyground(A, 7) to denote the type 7[a = v], where A =
a1 : Ki1,...,0n : Kp and v; is a dummy type such that A F® v; : k;. (Since our only
kind is Type, each v; may simply be Int). The function anyground is a degenerate form
of skolemisation.

9.3.1 Soundness of Entailment
Witnesses may be given a trivial denotation in the set 7 defined by:
T = (ttrue: 14 tint: 1+ tfun: 7 x 7 + tcodet : T + tcodeu : 1 + tio: 7)

Notice there is an injector for each monotype form, in addition to an injector representing
the trivial witness True.

The semantics is given by Figure 9.5. We let 7 range over valuation environments mapping
witness names to witnesses in 7 (and in the sequel, variable names to values in E V).
Figure 9.5 also defines the ancillary function env to convert a witness binding B to an
environment.

Given t € T, let typeOf(¢) be the unique ground type 7 such that [rttype 7] = ¢. This
function is undefined if ¢ is or contains ttrue : x.

We now wish to check that witnesses built by the entailment relation do indeed “witness”
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t: Int
throw : foralla : Type . I0 a
(try _catch _) : foralla: Type . IDa->I0a->1I0a
putint : Int -> I0 Int
getint : I0 Int

Figure 9.7: Types for ¢ constants in 'y,

their corresponding constraints. Figure 9.6 defines the meaning of a ground constraint as
either the empty set (the constraint is unsatisfiable) or a singleton set containing the sole
witness.

We say n |= w: ¢ if p w € [¢]. This definition is extended pointwise to n |= C.

Lemma 9.1 (Soundness of Entailment) Let A ; Aj,;; F° C constraint and A ; Ay H°
d constraint and A F 6 gsubst and 57 =6 C. Then

(1) C+ed— W implies [W], € [0 d
n

(ii) CFHew:d— w= W implies Vi . [W;],, € [0 di]
Proof See Lemma D.1. d

Lemma 9.2 (Transitivity) Let 8 be a well-kinded grounding substitution. If true +¢
# C — B and C F* D < B’ then true +¢ 6§ D — B” and env(B") =

env(B’, env(B)) names(D)-
Proof See Lemma D.2. O
Lemma 9.3 (Closure of Entailment) If A ; A’ -* C/D constraint and A 6 gsubst
and C+H¢ Dthen@ CHeOD
Proof See Lemma D.3. O
Lemma 9.4 Let ¢ be a primitive constraint such that Ajni; A’ F® ¢ constraint and true ¢
c— W.

(1) If ¢ = w : rttype 7 then typeOf ([W].) = 7.

(ii) If ¢ = w : 1iftable 7 then typeOf ([W].) = 7 and 7 € {Int}.

(1)) If ¢ = exists A . C and A = a; : K1,...,8, : K, then there exists T s.t. Vi .

Dinit ( v; : k; and true ¢ C[m]

Proof Immediate from Lemma D.1. O
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9.4 Well-typed Terms

We write T to denote the w-vector g ; Ty ; ..., which enjoys the same conventions as for
A. T'jnit contains type schemes for the constants, as defined in Figure 9.7.

We write C to denote the n-vector Cy; Ci;...; Cn, where each C; is a constraint context.
Here n is typically the “current” stage number and hence implied by context.

It is important to notice that I' is vector-like, whereas C is stack-like. This difference is
because free variables persist across stages, whereas constraints must not.

Figure 9.8 presents rules for deciding the judgement A | C |TF° ¢ : 7 < T with intended
interpretation:

“Term ¢t is a stage 0 term of type 7, and is translated to the run-time term
T, assuming (for every i > 0) variables in T are bound at stage i to values of
their assigned type, and assuming the satisfiability of the constraint C, both
of which assume the type variables in A’ are substituted at stage ¢ with types
of their assigned kind. Furthermore, T assumes the witness names in C to be
bound at stage 0 to witnesses.”

Two more judgements are required to extend the notion of well-typing to all stages. The
rules for these judgements are shown in Figures 9.9 and 9.10.

The judgement A | C |T +3 ¢ 7 < ¢, is true when ¢ is code at stage n + 1 of type
7. This term is rewritten to the same term, except with any stage 0 sub-terms within it
rewritten according to the stage-0 judgement given above.

The judgement A | C |T i—f';."'l t:7 < t],, is similar, except that the type 7 assigned to
t is “advisory.” That is, it is possible for ¢ to evaluate, at stage n + 1, to code of any type,
or even be ill-typed. However, it is also possible that ¢ may be well-typed with type 7.
The purpose of this judgement is to attempt to reject at compile-time dynamically typed
code which can never yield well-typed code at run-time. As mentioned in Section 7.5, this
checking is unnecessary, and is included only as an additional aid to program correctness.

Since these two judgements differ in only 6 places we present most of the rules as a rule
schema, using b to range over {tt,fF}.

Rules ABsQ, APPO and LETREC are those of a conventional polymorphic A-calculus, except
with contexts extended to all stages. Similarly, rules UNITMO and LETMO type the two
monadic constructs.

Rules LETO and VARO respectively introduce and eliminate constrained type schemes. The
hypotheses for rule LET0 are somewhat daunting! We explain the situation as follows. The
let-bound term u may inherit the constraints in D, from its context C. These constraints
must be entailed by C, and must not mention any type variables which «’s type will
universally quantify. However, u may also require an arbitrary additional constraint Do,
and both Ds and u’s type v may require an arbitrary additional type variable context A’.
However, for semantic reasons which will become clear in the sequel, we must ensure that
D, is satisfiable. Hence we also ask that C entails the constraint exists A’ . D,.

One more subtlety with rule LET0 remains. Some constraints should never be inherited
from C. For example, implicit parameters [57] cannot be inherited, otherwise they would
become lexically rather than dynamically bound. We let inhert(D;) be true if all the
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A|C|ITHF t:7 T

(z/k:forall@ k.D=>7) e’ AF TR
D' = named(D) Ct+¢ D'[a—=7v]— B

A| C|TH z/k: 7[G—= 0] < letw B in z/k names(D’)

VARO

A0 v : Type A|C|ITH t:(w>7) T
A|lC|ITHz:vHF0t:7 T A|C|ITFyu:v T
= =5 ABSO — = APPO
A|CITH'\z . t:(v->7)>X.T AlCITH tu:r—>TU

A FO Dy constraint A H% A’ F0 D, constraint inherit(Dy)
CrHe Dy B CF®exists A'. Dy < True
AHIA' | Dy H D |TF uiv o U
A|C|T+H%z: (forall A’ . anon(Dy) =>v)F0t:17— T

= = - LETO
A|C|TH letz=uint:7 <> letz = (letw B in Anames(D;) . U)in T
AFlvy:Type A|C|THlz:vFu:v U
A|C|ITH z:vFt:7 T
= = LETRECO
A|C|TH letrecz=uint:7 < letrecz=Uin T
A|lC|THF t:7 T
= =5 - UNITMO
A|C|TH mitt:I07 > unit T
A|CITHuw:10v—>U A|C|TH'z:vHF0¢t: 107 T
— = LETMO
A|C|TH letz<-uint:I07 —letz« Uin T
A|Citrue|THL t:7 ¢t
= =0 7 DEFERTO
A|C|ITHF Lt} : {73} =)
A+ A'F! D constraint A+ A" | C;D|TH t:r ¢
— = DEFERU(
A|CITHF {7t7y: {7} = ()
A|CITHF t:ro T ZOI-OT:Type C ¢ liftabler — W 0
— p— LIFT
A| C|TH® 1ift t:{{ 1}} < lift T using W
A|CITH t: {{7}} T —A"OF-OT:Type C’_erttypeT(_)WRUNTO
A|C|TH runt: 107 < run T at W
A|CITHt:{7y > T A°Fr:Type CFerttyper = W
el {7y T Jpe k) il RUNUO

A|C|THrunt: 107 run T at W

Figure 9.8: Well-typed X3¢ stage 0 terms
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A|CT|TH ety

C;C|ITF tir st
= FORGET1

;O THE i

(z/k : forallaTk . D=>7) € " ApntlgTr
D' = named(D) C'Fe€ D'[a—=7]

— = | VAR1
A|C;C"|THY z/k:r[a—=T] > z/k
ARty Type
A|C;C'|TH™ g okt tir ot
ABsl

A|C;C'|THM\z . t:(v->1)o\z . ¢

ZI?;C"IFI—Z+1t:(U->T)Ht'
A|CT;C'|THM yrva

— p— APP1
C;C|TH M tu:rt' o

A
Al

A ™1 Dy constraint A+t A’ 7+ D, constraint  inherit(D;)
C'He Dy C'Feexists A' . D,
A A C;DyH D [ITH M uiv s o
A|T;C|TH M z: (forall A' . anon(Dz) => v) it  t 7 ¢!

~NI 7 1| P pntl ! ! LET1
A|C;C'|THy™ letz=uint: T letz=u int
Arrtly:Type A|C;C'|TH" gz vl uiv o
A|C;C"|TH" Mz vkt tir ot
LETREC1

A|C;C"|TH*! letrecz=uint: 7> letrecz =4 in ¢

ZIU;C"l—I—‘I-g+1t:T‘—)t'

= = 1 IUNITM].
A|C;C' |TH} unit ¢: 10 7 < unit ¢

A|C;C"|THM u:l0v—dv A|C;C|TH "z vkt 107 ¢
b b

A|C;C'|TH"* letz<-uint: 107 > letz <- o int’

LETM1

Figure 9.9: Well-typed )¢ stage n + 1 terms (part 1 of 2)
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A|C;C ;true |[THE 2t 7 o ¢

— — DEFERT1
A|C;C|THA Lt} {13 {t'}}

A +7+2 A 712 D constraint A H"T2ZA | C; 0D [ THIP i r s !
A|C;C | THM {7t 7} {3 {2¢ 7}

DEFERU1

A|lCITH t: {1} oT
A|C;D|TH,~t:7—-~-T

SPLICET1

A|CITH t: {7y T AF 7:Type

— — SPLICEU1
A|C;D|Try~t:7—-T

SPLICET2

A|C;C|THM t: {{r ot
A|C;C;D|TH ~tir -t

Zl?;C'lfl—Z“t:{?}‘—)t’ A2 7 Type

— — 5 - SPLICEU2
A|C;C'";D|THFH ~t:7 5 ~t

A|C;C|TH* tir AT Ll Type C'H°1iftabler

— — LIFT1
A|C;C'|THM 1ife ¢t {{ 7 }} — Llife ¢/

A|T;C|TH {3 ¢! A"+l o Type C'kexttyper
A|C;C|TH runt: 107 < run ¢/
A|C;C |THEM {2} ¢ AP Latl o Type  C'FC ritype 7
| [T P Y2 T punul

A|C;C'|TH runt: 107 > run ¢/

Figure 9.10: Well-typed )¢ stage n + 1 terms (part 2 of 2)

constraints in D; may be satisfied by the context of the let-binding rather than the context
of each occurrence of the let-bound variable. We assume inherit(D,) implies inherit(8 D;)
for any 6. It is because of inherit that we require only that C entail D, rather than
the stronger C = D;. Otherwise, for example, any implicit parameters in C would cause
inherit(C) to fail, regardless of whether u mentioned these parameters. Of course, in X°°
inherit(D) may be true for every D.

The rules DEFERTO and DEFERUO are responsible for all of the additional complexity of
X°. In DEFERTO, an expression {{ ¢t }} at stage 0 is well-typed if ¢ is (definitely) well-
typed at stage 1 with no residual constraint context. Similarly, in DEFERUQ, an expression
{7 t 7} at stage 0 is well-typed if ¢ can be assigned some type under an arbitrary constraint
context. Notice there is no requirement that D even be satisfiable.

Rule LIFTO allows a term to be lifted by one stage if it is of a suitable type. Note that a
term may be lifted to an arbitrary stage by nesting splice and lift expressions. The check
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that 7 be well-kinded using only free type variables from stage 0 prevents the type variable
leakage problem mentioned above.

Rules RUNTO and RUNUO are identical, save for the type of code being run. Notice the
inclusion of the constraint rttype 7. As with rule LIFT0, these rules must also check for
possible type variable leakage.

The typing rules for terms at stages above zero are for the most part a direct lift of those
at stage zero. We shall consider only the exceptions.

Rule FORGET] allows a definitely well-typed term to be coerced to a possibly well-typed
term, and is included only to avoid duplicating rules VAR1, DEFERT1 and SPLICET]1. (This
rule saves quite some effort later.)

The reader may wonder why the conclusion in rule DEFERU1 uses the l—g“ judgement
rather than P—{'t’"l, since once code ¢ is wrapped as {? ¢ 7} its type is no longer visible.
Unfortunately, such a variation would complicate the proof of soundness, since it is possible
for ¢t to evaluate to an untypable piece of code at run-time.

Rule spPLICET] is the dual to DEFERT0. Notice that the current constraint context is
dropped when moving down a stage. This rule must also be replicated over all higher
stages, hence SPLICET2.

Rules sPLICEU] and SPLICEUZ2 are similar, but allow the type of spliced code to be chosen
arbitrarily. In this way, terms such as
let £ = \code : {7} . {{ ~code + 1 }}

may be type checked by assuming code will yield an expression of type Int at run-time.

9.5 Denotational Semantics

We now turn our attention to the precise semantics of X¢ programs. There are three
aspects which make it somewhat complicated.

Firstly, because generated code may contain free variables, care must be taken to avoid
name capture. For example in:

let £ = \code . {{ \x . ~code + x }}
in {{ \x . ~(£ {{ x 3} }}

applying f to {{ x }} should yield
{\y. \x.y+x1}}

and not

{{\x. \x . x+x}}

Furthermore, there is no way to bound the amount of renaming at compile-time. Consider:

letrec £ : Int -> List {{ Int }} -> {{ Int -> Int }}
= \nvs . if n = 0 then
{{\x . ~(foldr \vec . {{~v+~c}) {{x1}}vs)}}
else

L. - @-1) {({x3}::vs)) 11}}
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Then £ 2 [] should evaluate to
{{\Na. (\b. (\c.b+(@a+c) 1)1}

and, in general, £ n [] requires n + 1 fresh names.

Thus, any implementation of *® must carry around a fresh name supply while rebuilding
code, and any honest semantics should model this behaviour.

Secondly, in an implementation, eagerly renaming bound variables as they are encountered
while generating code would be of quadratic complexity. Instead, renaming should be per-
formed incrementeally as code is generated by carrying around a renaming environment.
Notice that since variables are lexically rather than dynamically scoped, incremental re-
naming requires the construction of “renaming closures,” analogous to the value closures
already required for partial applications. In order to show the correctness of this optimi-
sation, the semantics should do likewise.

The final source of complexity stems from our desire to apply laziness to all
aspects of execution of M° programs. For example, since programmers are
accustomed to let x =undefined in1 evaluating to 1, they most likely expect
let x = {{ ~undefined }} in 1 and let x <~ unit undefined inunit 1 to do likewise.
The former implies code rebuilding must be done lazily, and the second implies monadic
commands require a two-level semantics. Modelling lazy rebuilding, whilst also capturing
the renaming behaviour above, involves some subtlety.

Moggi (73] has developed a functor-category semantics for two-level languages, which in
turn follows the pioneering work of Oles [81] on the semantics of block-structured variables
in Algol. This style of semantics is also suitable for X3¢, since we way regard all stages
greater than zero to be a single “dynamic stage.” However, it suffers two drawbacks.
Firstly, because X°° types and type contexts are indexed by a kind context, a functor-
category presentation would require an indexed base category, and hence the calculations
could become fairly involved. Secondly, and more importantly, we would like to be able to
extend X¢ with the constructs of AT'® developed in Part I. S