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Abstract 

Static Types for Dynamic Documents 
Mark Brian Shields 

Ph.D., Oregon Graduate Institute of Science and Technology 
February 2001 

Thesis Advisor: Dr. John Launchbury 

Dynamic, active documents are particularly troublesome to program within con- 
ventional languages. Documents are typically represented in XML or HTML, 
which use regular-expression like types instead of the familiar sumsof-products 
datatypes supported by conventional languages. Furthermore, documents tend to 
include embedded programs in a variety of scripting languages, for which conven- 
tional languages offer no support at all. It is thus very difficult to verify that these 
programs generate even syntactically well-formed documents, let alone documents 
which are valid for their document type definition, and contain only well-typed 
scripts. 

This thesis develops the core type system for a Haskell-like functional program- 
ming language that directly supports dynamic, active documents. The first part 
presents a system of type-indexed rows, that supports many aspects of XML's 
regular-expression types without abandoning the type features which make func- 
tional programming at tractive. In particular , t ype-indexed rows coexist cleanly 
with higher-order types and parametric polymorphism. The second part presents 
a system of staged computation, that allows server-side and client-side code to be 
cleanly separated. 

In both cases, the type system can guarantee that only well-formed and valid 
documents are generated. Hence, not only are document-generating programs 
easier to write using these systems, in addition they are much more likely to be 
correct. 



Any system that allows no criteria other than 
those arbitrarily chosen as the basis of the 
system itself can be called a terrorist system. 

Georges Perec 



Chapter 1 

Introduction 

The adoption of a standard document description language, HTML [91], was essential to 
the early success of the world-wide-web. HTML provides a small, fixed, and reasonably 
simple set of primitive datatypes for describing both the structure and typographic layout 
of a document. Motivated by the popularity of on-line services, interest has since grown in 
using the web's mechanism to distribute data of any type, independently of its typographic 
representation. To this end, XML [12], an evolution of SGML [45], has been adopted as 
a standard language for documents representing first-order data. Unlike HTML, XML 
documents may define their own datatypes within the document itself. Hence XML is an 
"extensible" markup language. 

XML 

Though syntactically baroque, XML is built upon a simple model of tree-structured data. 
Documents may contain both a regular-tree grammar (termed a document type definition, 
or DTD) and a labelled-tree (termed an element), such that the tree is recognised by the 
grammar. For example, the following document, in slightly idealised syntax, describes a 
grammar of e-mail messages and a single message: 

element Msg = (((To l Bcc) * % From), Body) 
element To = String 
element Bcc = String 
element From = String 
element Body = P* 
element P = String 

<Msg> 
<From>mbsOcse.ogi.edu</From> 
<To>jlQcse.ogi.edu</To> 
<Bcc>mbsOcse.ogi.edu</Bcc> 
<Body> 

<P>The thesis is almost finished.</P> 
<P>A11 that's needed is an example for the introduction.</P> 

</Body> 
</Msg> 

Each grammar production (termed an element type declaration) has a distinct left-hand 
side non-terminal (termed a tag name), and implicitly generates a single tree labelled by the 
non-terminal. Production right-hand sides are regular expressions built from the following 



eight operators: 

S t r ing  
A 
r * 
r + 
r ?  
(TI, ... 9 ~ n )  
( ~ 1  I ... I ~ n )  
(rl % . . . & G I  

"parsed character data", or string 
sub-tree 
list of r's 
non-empty list of r's 
optional r 
tuple: all of T I ,  r2, etc, in that order 
"ch~ice,~' or union: one of rl , 7-2, etc 
"unordered tuple": all of rl, r2, etc, in any order 

(The % operator does not appear in XML, but is in SGML [45] and, abstractly, in XML 
Schema [24] .) 

A tree is a sequence of sub-trees and primitive strings delimited by matching tag names. 
Deciding whether a tree is recognised by the regular tree grammar is called document 
validataon. Its easy to check the above example tree is recognised by its grammar. By 
comparison, the following tree is not valid: 

<Msg> 
<Body/> 
<From>mbsOcse.ogi.edu~/Erom> 

</Msg> 

(Here <Body/> is sugar for <Body></Body>). A Body sub-tree cannot appear before a From 
sub-tree within the children of a Msg tree. 

Note that there are very few constraints on the form of regular expressions. In particu- 
lar, choices and unordered tuples are anonymous, may appear deeply nested within other 
expressions, and may reuse the same tag name. 

From static to dynamic, active documents 

Though XML captures the notion of a static document, most documents are in fact dy- 
namic. On-line services typically generate documents on-the-fly in response to an ongoing 
user dialogue, using a mixture of databases, live information feeds and user-supplied data. 
Furthermore, because XML documents have no inherent typographic representation, they 
must be further transformed, often by the client, before being rendered. 

To further complicate matters, documents, particularly HTML documents, tend to contain 
embedded scripts which are to be executed by the client rather than the server. We call 
these active documents. Scripts are written in a variety of languages, and are represented 
as uninterpreted strings. 

How should a server program be implemented to generate dynamic, active documents? 

XML and the next 700 programming languages 

Of course almost any language can be used to manipulate XML. This manipulation can 
be done at a concrete level by generating and concatenating strings containing XML and 
scripting language fragments, for which Per1 [I101 is a popular choice. Less error-prone is 



to use a library to manipulate XML in abstract form. For example, JavaServer Pages [82] is 
a sophisticated library for Java [34] programs which implement on-line services. However, 
these approaches tend to be syntactically awkward, and cannot guarantee that only valid 
XML is generated. 

Hence many custom domain-specific languages have been developed to generate, filter and 
transform XML documents, including: 

CSS [58] and XSL [3, 181 for applying typographic styling and other transformations. 

XML Query [25, 261 for filtering and generating XML using tree-structured query 
operators. 

<Bigwig> [96] and Compaq's Web Language [60] for specifying all aspects of an 
on-line service within a single typed program. 

A plethora of untyped, ad-hoc scripting languages which extend XML with Uactive" 
tags denoting common control structures. For example: XML Script [22], XEXPR 
[74], XFA [I161 and XPL [15]. 

This situation is unfortunate. Other than their common use of XML, these languages 
share little common syntax and have no unified semantics. There is much overlap in 
functionality, and little or no support for abstraction and extensibility, suggesting that 
even more languages will arise as XML finds new applications. 

Similarly, a number of domain-specific scripting languages have been developed for use 
within active documents, including Java [34] and JavaScript [29]. Again there is no agree- 
ment on syntax, type system (if any) or semantics. 

Functional programming and the next 700 programming languages 

An old [53] and well-tested idea in functional programming is to embed domain-specific 
languages (DSLs) as cornbanator libraries within a single functional programming language. 
We refer the reader to the work of Hudak [41] and Swierstra et al. [I031 for an overview of 
this methodology. Examples from the literature include: 

Reactive animation [23] Hardware description [63] 

Graphical user interfaces [27] CGI scripting [64] 

Computer music [42] Robot control [83] 

Pretty printing [44] Financial modelling [84] 

Typesetting [52] Computer vision [92] 

Database querying [55] Parsing [I021 

This approach has many advantages over developing a DSL from scratch: 

DSLs may be readily combined because they are simply libraries in a common lan- 
guage. 



Because the underlying functional programming language has a relatively simple 
equational theory, it is often quite feasible to verify formally static properties of DSL 
programs. 

Furthermore, with a little cunning, the functional programming language's type sys- 
tem may often be exploited to verify statically the well-typing of DSL programs. 

The DSL designer may reuse the already extensive intellectual investment which has 
gone into functional programming languages, and is thus less likely to make funda- 
mentally poor design decisions. Indeed, the simplicity of the functional programming 
language's semantics favours DSLs with a similarly clear, equational semantics. 

The functional programming approach works because of its unique combination of higher- 
order types, laziness, parametric polymorphis~n and monads. Together they allow type- 
compatible DSL program fragments to be "glued" together regardless of their internal 
structure [43], and may allow side-effects to be controlled by representing DSL computa- 
tions as functional programming language values [log]. 

Note that not all functional languages support all these features. For example, languages in 
the ML family [67] are eager with implicit effects, and hence laziness and monads must be 
simulated when required. However, we think it is telling that all of the above combinator 
libraries have been implemented in Haskell [85], a language which directly supports all four 
features. 

XML in Haskell? 

Thus, the obvious question is whether the custom languages developed for XML may be 
embedded as combinator libraries within a Haskell-like language. The most appealing 
approach is to map XML concepts to functional-programming concepts as follows: 

document type definition --+ type definitions 
regular expression -+ type 

element + term 
document --+ program 

document validation -+ type checking 

Wallace and Runciman [I l l ]  have already tackled this question, and have developed two 
approaches. Their first approach ignores DTDs, and represents all elements in the universal 
datatype: 

data Element = Atom String 
I Node String (List Element) 

Under this scheme, our example would be represented as: 



Node "Msg" [ 
Node "From" [Atom llmbsQcse. ogi. eduuI , 
Node "To" [Atom jl6cse.  ogi . edu1'1 , 
Node "Bcc" [Atom "mbsOcse.ogi.edu"1, 
Node "Body" [ 

Node "P" [Atom "The. . . "1 , 
Node "P" [Atom " A l l .  . . "1 

I 
I 

Since every element now has type Element, it's easy to implement generic tree-manipulation 
combinators. However, Haskell's type system cannot ensure that all generated elements 
are valid with respect to any particular DTD. 

To address this limitation, Wallace et al. also present a second approach which translates 
a DTD into a set of Haskell newtype declarations. Under this second scheme, our example 
would be represented as: 

newtype Msg = Msg (List  (Either To Bcc), From, Body) 
newtype To = To String 
newtype Bcc = Bcc String 
newtype From = From String 
newtype Body = L i s t  P 
neutype P = P String 

Msg ( 
[Left (To * j lQcse .ogi . edu") , 
Right (Bcc "mbsOcse . ogi . edu")] , 

From "mbsQcse . ogi . edu" , 
Body C 

P IIThe. . . , 
P " A l l .  . . " 

I 
1 

Here Either is the datatype of "anonymous" sums: 

data Either a = Left a 
I Right a 

Notice how XML lists become Haskell Lists, XML tuples become Haskell tuples, choices 
become sums, and an arbitrary ordering is imposed on XML unordered tuples to become 
Haskell tuples. 

This translation approach has the advantage of exploiting Haskell's type system to ensure 
only valid elements are generated. However, it does not respect XML7s notion of type 
equality. In particular, the XML choice types (To I Bcc) and (Bcc I To) are equal in 
XML, but are translated into the distinct Haskell anonymous sum types Either To Bcc 
and Either Bcc To. Similarly, XML unordered tuple types are equal up to permutation, 
but are translated into Haskell tuples which, in general, are not equal up to permutation. 

As a result, a programmer using the intended interpretation of elements as trees would be 
surprised if a Haskell complier rejected their program because of a "spurious" type error 



involving these sum or tuple types. More concisely: this model of XML in Haskell is sound 
but not complete. 

The underlying problem is that XML choice types are unions rather than sums, and any 
attempt to convert a union into a sum is forced to introduce an arbitrary label for each 
summand. The same problem arises if we attempt to convert an unordered tuple to an 
ordered tuple: again we are forced to impose an arbitrary ordering amongst member types. 
Thus there appears to be a fundamental mismatch between XML's regular expression types, 
and Haskell's sums-of-products datatypes. 

XDuce 

A third approach is thus to abandon sums-of-products types-and Haskell-and instead 
take regular expression types as fundamental. The language XDuce [38, 40, 391 has been 
developed specifically to test this idea. I t  is built upon subtype polymorphism using 
regular-expression language containment to induce the subtype relation. This form of 
subtype polymorphism allows an element to be viewed as belonging to more than one DTD 
simultaneously, and hence supports both code reuse and "DTD migration." Subtyping also 
meshes cleanly with a notion of regular-expression patterns. 

Since XDuce models elements as trees and DTDs as a form of regular-tree grammar, it is 
both sound and complete. Thus a programmer would never be surprised by a "spurious" 
XDuce type error. 

Our example would appear in XDuce as: 

type msg = MsgC(tolbcc)* & from, body] 
type to  = ToCString] 
type bcc = BccCStringl 
type from = FromCStringl 
type body = p* 
type p = PCStringl 

Msg C 
To C" jlOcse . ogi . edu"1 , 
BCC CMmbs@cse . ogi . edu"3 , 
From["mbsOcse. ogi . edu1'1 , 
Body C 

PCuThe. . . " I ,  
P ["All. . . "I 

I 
I 

Notice type names and tag names are distinct within XDuce type declarations. Indeed, 
the e-mail DTD may be more concisely represented in XDuce by the single declaration: 

type msg = Msg[(To [String] lBcc [String]) * & FromCStringl , 
Body [P [String] *I I 

Unfortunately, it is not at all clear whether this approach is compatible with higher-order 
functions and parametric polymorphism, which we have already seen to be essential to the 
combinator library approach to language embedding. 



Type-Indexed Sums and Products 

Thankfully, a compromise between Haskell's sums-of-products datatypes and XDuce's 
regular-expression types exists. Hidden within Appendix E of the XML standard [12] 
is the statement: 

"[Ilt is required that content models in element type declarations be determin- 
istic." 

Here "deterministic" means that an element type declaration's regular expression must be 
1 -unambiguous. 

Informally, a regular expression is l-unambiguous if, given a position within the regular 
expression and the tag of the next input element, there is a unique follow position. Formally, 
this condition holds if and only if the regular expression is recognisable by a deterministic 
Glushkov automaton [13, Lemma 2.51. 

For example, the choice type ( (P, Q) I (Q,  P) ) is unambiguous, while ( (P, Q) I P) is 
ambiguous. Similarly, the unordered tuple type ((P, Q) & (Q, P) is unambiguous, but 
((P, Q) & P) is ambiguous. 

There are two consequences of this restriction. Firstly, each member of an XML choice 
type or unordered tuple type must be distinct. In other words, XML choice types and 
unordered tuple types are formed from sets of types. Thus we can think of a choice type 
as a variant (sum) in which each member type serves as its own variant label. Dually, an 
unordered tuple type is like a record (product) in which each member type serves as its 
own record label. We call these type-indexed sums and type-indexed products. 

The second consequence is that it is possible to transform any XML element into a term 
which represents lists, tuples, type-indexed sums, and type-indexed products explicitly. 
This transformation involves first (recursively) converting each sub-element to an appro- 
priate sub-term, and then running an augmented Glushkov automaton corresponding to 
the element's type definition on the sub-term sequence. The automaton makes a transition 
based on the type of each sub-term, and incrementally constructs the result term using a 
stack of intermediate sub-terms. 

In this thesis, we develop the idea of type-indexed sums and type-indexed products within 
a small calculus called XTIR. We show that the constructs are compatible with paramet- 
ric polymorphism, higher-order functions and type inference. Furthermore, we show that 
conventional sum-of-products datatypes and records may be easily encoded within XTIR. 

Thus it is possible to retain all of the type features required for implementing combina- 
tor libraries, while simultaneously supporting XML document type definitions, and XML 
element syntax. 

Under this approach, the XML types (P I Q) and (Q 1 P) are translated to the XTIR types 
One (P # Q # Empty) and One (Q # P # Empty), which are equal. Note, however, that the 
equal XML types (P I (Q I R) and ((P I Q) I R) are translated to the unequal XTIR types 
One (P # (One (Q # R # Empty) # Empty) and One ((One (P # Q # Empty) # R # Empty). 
This inequality is a consequence of the compromise we must make between full regular- 
expression types and sums-of-products datatypes. 

Note that 1-unambiguity is a stronger restriction on choice and unordered tuple types 
than distinctness of their member types. For example, the choice type ((P, Q) I P) is 



ambiguous, even though (P, Q) and P are distinct types. Thus, XTIR also allows sum and 
product types which are not deterministic XML types. This mismatch may be easily 
repaired. 

Staging 

Though the calculus XTIR goes much of the way towards supporting dynamic documents, 
it does not address the problem of active documents. Here the problem is to allow XML 
elements to contain scripts which are constructed on-the-fly just as any other data. Of 
course we could follow current practice and simply embed such scripts as strings, but this 
makes their syntactic and type correctness difficult to verify. 

A better approach is to allow functions to appear within XML elements just as any other 
value. However, this approach would require all such functions to be converted from 
an intensional representation (e.g., compiled code) to an extensional representation (e.g., 
source or intermediate language code) whenever a document is moved between machines. 

In this thesis, we tackle this problem by developing a system of dynamically typed staged- 
computation within a small calculus called XSC. Staging allows a single program to have its 
execution distributed over distinct run-time stages 1881. Furthermore, it is possible for dis- 
tinct stages to be performed on distinct machines, since code values are easily transmitted 
over a network. 

Under this approach an active document would be generated by a two stage program. In 
the first stage (run on the server), a piece of XML is generated which contains embedded 
code. These pieces of code may then be run as required by the client in the second stage. 

This approach to active documents ensures that all generated program fragments are syn- 
tactically well-formed. Furthermore, it also guarantees such code is well-typed: either by 
checking at compile-time (for statically typed code [106]), or at run-time (for dynamically 
typed code [99]). This choice of static us. dynamic is up to the programmer: static code 
gives a stronger guarantees of correctness, but can be overly restrictive. 

From Calculi to a Language 

Of course, XTIR and XSC are small and distinct cakuli, whereas what's really required is a 
single language. Furthermore, we can hardly claim that XTIR and XSC alone subsume all the 
custom XML-centric languages mentioned above. 

For example, XML elements may include attn'butes, and CSS [58] has special support for 
attribute inheritance. Much of this behaviour can be modelled using the implicit parameters 
of Lewis, Shields et aI. [57] coupled with the first-class polymorphism of Jones [49]. 

Furthermore, query-like operations on documents, such as "collect all elements with tag 
P," are directly supported by XML Query [26, 251, but must be redefined afresh for each 
document type definition within XTIR. We think generic programming [37] is a viable 
solution to this problem. 

This thesis does not address the difficult problem of combining all these distinct calculi, 
either theoretically or within an implementation. The problem is a topic for future research 
and implementation. Some early steps towards an integrated language have been taken 
in the design of XMX [65], an experimental Haskell-like functional programming language 



with direct support for XML. XMX uses XTIR and XSC as its core, and also includes implicit 
parameters, first-class polymorphism, and support for definitions given by induction over 
(first-order) types. 

1.1 Outline of Thesis 

The thesis naturally divides into two parts. 

Part I presents XTIR. Chapter 2 motivates the key ideas from the perspective of a poly- 
morphic record calculus, which it most closely resembles. Chapter 3 presents some larger 
examples, including our motivating example of encoding XML types. (The machinery nec- 
essary to also support XML element syntax is outlined in Appendix A.) This chapter also 
demonstrates how XTIR supports a simple form of type-based overloading, which was the 
original motivation for its development. 

Chapter 4 begins our formal development of XTIR by presenting its syntax, kind system, 
type system and a notion of constraint entailment. The calculus XTIR builds upon a system 
of qualified [47, 1091, or constrained [79], polymorphism, and much of its machinery is 
devoted to the entailment and simplification of these constraints. This chapter also presents 
a denotational semantics for XTIR, and demonstrates type soundness. All the proofs for this 
chapter may be found in Appendix B. 

Chapter 5 continues the formal development of XTIR by presenting a type inference and 
constraint simplification system. We demonstrate inference is sound and, with one caveat, 
complete. Some of the proofs for this chapter may be found in Appendix C. The proof of 
completeness is somewhat involved, because we cannot assume that constraints are in any 
particular normal form, and because we make no assumptions as to how often constraints 
are simplified. We have decided to omit this proof from Appendix C .  

Chapter 6 concludes Part I by reviewing related work and outlining future work. In partic- 
ular, this dissertation does not study the complexity of constraint entailment, satisfaction 
or simplification. 

Part I1 presents XSC. Chapter 7 introduces the three constructs to defer, splice and run 
code, and motivates their typing rules, which turn out to be quite subtle. Chapter 8 
presents larger examples of staging, including partial evaluation, dynamic typing and a 
small example of a server and client exchanging HTML-generating code. Some of these 
examples mix statically and dynamically typed code, demonstrating the utility of including 
both within a single calculus. 

Chapter 9 presents a formal development of XSC, which includes type checking and a de- 
notational semantics. We also demonstrate that the semantics is sound. The key problem 
for any semantics of staged computation is correctly accounting for the dynamic genera- 
tion of variable names required whenever code is spliced under a binding operator. Our 
semantics is very pragmatic, and indeed is suitable for direct implementation. However 
the cost of this choice of semantics is a rather complicated soundness proof, which appears 
in Appendix D. 

Chapter 10 concludes Part 11, and the thesis, with an overview of related work and an 
outline of future work, which includes the problems of type inference, and correctness of 
our semantics with respect to a semantics which collapses all stages. 



1.2 How to read this dissertation 

Readers coming to this thesis from the XML community will, unfortunately, have a rather 
hard time. Of necessity, our work is at a very primitive level, and so the reader may find 
it difficult to see any connection with documents at all! We recommend starting with the 
introductory material of Chapters 2 and 7, then tackling the examples in Chapters 3 and 8. 

To the reader coming from a functional programming background, we assume familiarity 
with Haskell [85] and with the system of qualified types [47] from which its type-class 
system is constructed. A passing familiarity with monadic semantics [ll, 1081 will aid 
the understanding of our denotational semantics. Implicit parameters [57] are used as 
an example constraint domain in Section 7.4. Otherwise, Parts I and I1 are mostly self- 
contained, and may be read independently. 

The proofs in Appendix B, C and D have been included for completeness. For the most 
part they proceed by obvious induction on the relevant derivation. This is not to say that 
the theorems themselves are always straightforward! As is typical in type-theoretic proofs, 
the hard part is getting the induction hypothesis just right. 



Part I 

Type-Indexed Rows 

Abstract 
Record calculi use labels to distinguish between the elements of products and 
sums. This part presents a novel variation, type-indexed rows, in which labels 
are discarded and elements are indexed by their type alone. The calculus, XTIR, 

can express tuples, recursive datatypes, monomorphic records, polymorphic ex- 
tensible records, and closed-world style type-based overloading. Our motivating 
application of XTIR, however, is to encode the "choice" types of XML, and the "un- 
ordered tuple" types of SGML. Indeed, XTIR is the kernel of the language XMX, a 
lazy functional language with direct support for XML types ("DTDs") and terms 
( L ' d o ~ ~ m e n t ~ "  ). 

The system is built from rows, equality constraints, insertion constraints and 
constrained, or qualified, parametric polymorphism. The test for constraint sat- 
isfaction is complete, and for constraint entailment is only mildly incomplete. We 
present a type checking algorithm and show how XTIR may be implemented by a 
type-directed translation which replaces type-indexing by conventional natural- 
number indexing. We also present a constraint simplification algorithm and type 
inference system. 



Chapter 2 

Introduction 

Record calculi (and less often, variant calculi) appear in many contexts. Some functional 
languages incorporate them in conjuction with more conventional tuples and recursive 
sums-of-products datatypes [46]. They have been used as foundations for object-oriented 
languages [112]: Objects can be modelled by records, and subclassing can be built upon 
record subtyping. Database query languages often model relations as sets of records, and, 
because database schema are dynamic, require a particularly flexible type system [14]. 

In this part we present a system very much like an extensible, polymorphic record calculus, 
but with an essential twist: We discard labels. Instead of labels, elements of products and 
sums are distinguished by their type alone. That is, a type-indexed row (TIR) is a list 
of types (possibly with a type variable as tail), from which we form type-indexed products 
(TIPS) and type indexed co-products (TICS). The r61e of labels is played by newtypes, 
which introduce fresh type names. 

Of course, in a monomorphic setting such a system is straightforward. In the presence of 
polymorphism, however, we must somehow resolve the paradox of rows indexed by types 
which are partially or fully unknown (i.e., contain free type variables). 

We developed XTIR to treat the regular expression types of XML [12] and SGML [45] as 
types in a functional language we are developing called XMX [65]. XML includes "choice" 
types of the form (rl 1 . . . IT,,) and SGML includes "unordered tuple" types of the form 
(q%. . . & T ~  1. Neither of these types include any syntactic information, such as labels, to 
guide a type checker in deciding which summand of a sum, or which permutation of a 
product, a given term belongs to. Instead, a 1-unambiguity condition is imposed, which 
implies membership of a term in a regular-expression type may be decided by a determin- 
istic Glushkov automaton [13]. In XTxR, we abstract from this formulation by requiring only 
that each type in a sum or product be distinct. Such types may then be encoded within 
XTIR, which allows XML elements to be manipulated within a polymorphic functional pro- 
gramming language. 

Serendipitously, we also found XTxR could naturally encode: 

conventional tuples and recursive sums-of-products datatypes; 

many existing record calculi, both monomorphic and polymorphic, extensible and 
non-extensible; 

types resembling Algol 68's union types; and, 

the closed-world style of type-based overloading (modulo subtyping) popular in 
object-oriented languages [34]. 



XMX has many of the types mentioned above. The XMX complier simply translates each 
into XTIR, resulting in a compact and uniform compiler. Hence XTIR's expressiveness is not 
merely of theoretical interest, but can also be exploited in practice. 

Many of the ingredients of XTIR are well known: 

We use a kind system to distinguish rows from types. 

As in record calculi, we require znsertion constraints to ensure the well-formedness 
of rows, only now they state that a type may be inserted into a row. 

Unlike in record calculi, we also require equality constraants, as sometimes the unifi- 
cation of two rows must be delayed if there is any ambiguity as to the matching of 
their element types. 

Constrained polymorphism [47, 791 is used to propagate constraint information 
throughout the program, thus ensuring soundness. 

We eagerly test for the unsatisfiability of constraints so as to reject programs as early 
as possible. 

As in Gaster and Jones' record calculus [31], XTm is implemented by a type-directed 
translation which replaces type-indexing by natural-number indexing. These indices 
propagate via implicit parameters at run-time to parallel the propagation of insertion 
constraints at compile- time. 

We first review record calculi (Section 2.1), then motivate the introduction of each of the 
components above by small examples (Sections 2.2-2.9). More extensive worked examples 
are also presented in Chapter 3. We then develop a type-checking system for XTIR which 
simultaneously performs a type-directed translation into an untyped run-time language 
(Chapter 4). This system requires the notion of constraint entailment (Section 4.4). We 
also demonstrate our system is sound (Section 4.5). 

In Chapter 5 we consider type inference for XTIR programs. This is built upon a constraint 
simplification system (Section 5.2), which we show correct with respect to constraint entail- 
ment. We then show soundness and completeness of inference with respect to type-checking 
(Section 5.3). 

A very much shorter version of this part appeared in POPL701 [98]. 

2.1 Review: Label-Indexed Rows 

To aid the transition to XTIR, we f i s t  quickly review existing calculi of labelled records and 
variants. We use a somewhat unorthodox syntax, though none is particularly standard 
anyway. We assume an ambient type system and a set of label names. 

Rows 

We first introduce rows [112], which are lists of labelled types. For example: 

(xCoord: Int) # (yCoord: 1nt) #Empty 



is a row with label names xCoord and yCoord, both labelling type In t .  Here we use the # 

operator to denote row extension, and Empty to denote the empty row. (Note that in this 
dissertation we shall assume labels are formed from label names by appending a ' : '.) 
Sometimes row concatenation replaces or augments row extension [35], though we do not 
consider this here. 

Rows are equal up to a permutation of their labelled types. That is, the elements of a row 
are distinguished by their label name rather than by their position. 

A record calculus is extensible if a row may end with a type variable instead of just Empty. 
For example: 

(xCoord: I n t )  # (yCoord: I n t )  # a 

is an open row, with tail variable a. Binding a to col:  Colour # Empty yields the extended 
closed row: 

(xCoord: In t )  # (yCoord: I n t )  # (col: Colour) #Empty 

In this manner, when coupled with parametric polymorphism, extensible rows may simulate 
record subtyping [16]. 

A record calculus is label polymorphic if the same label name may label different types in 
different rows. For example, the rows: 

(xCoord: In t )  # Empty 
(xCoord: Real) # (depth: Real) #Empty 
(xCoord: a) # b 

may all coexist within one program. As we shall see, the type system must work a little 
harder to ensure type correctness in the presence of polymorphic labels. 

Rows are distinct from types, but may be used to form both record and variant types. 

Records 

A record type interprets a row as a product of label-indexed types. For example: 

A l l  ( (xCoord: In t )  # (yCoord: I n t )  # ~mpty)  

is a record type with two labels. We write A l l  to denote the record type constructor 
because records contain all elements of a row. 

At the term level, we have the empty record Triv (of type A l l  Empty), and a record 
extension operator ( 1  : , && ,) for each label name 1. (Throughout this dissertation we 
assume a distfix syntax for operators in which argument positions are written as -.) For 
example: 

((xcoord: 1) %& (yCoord: 2) && Triv) 

is a record with the record type given above. 

Calculi typically also include a label selection operator (-. 1 )  for each label name 1. For 
our purposes we prefer to use pattern matching. For example: 



l e t  getYCoord = \((yCoord: z )  && -1 . z 
i n  getYCoord ( (xCoord: 1) && (yCoord: 2) && Triv) 

evaluates to 2. 

Variants 

Dually to records, a variant type interprets a row as a sum of label-indexed types. For 
example: 

One ( ( i s I n t :  I n t )  # (isBool: Bool) # Empty) 

is a variant type with two labels. We write One to denote the variant type constructor 
because sums contain one element of a row. 

At the term level, we have an injector ( In j  1: -1 for each label name 1. For example: 

( I n j  isBool: True) 

injects True with the label isBool into the above variant type. 

We also need a way to test a variant against a label. Again, we prefer to allow an injector 
to be used as a pattern, and shall allow a set of A-abstractions to be grouped together to 
mimic case-analysis. For example, consider: 

{ \ ( I n j  i s I n t :  x) . 1 - x; 
\ ( In j  isBool: y) . i f  y then 0 e l s e  1 3 
( I n j  isBool: True) 

The two A-abstraction patterns will be tried in left-bright sequence. In this case, the 
second pattern will match, and the term reduces to 0. 

Notice that the type One h p t y  contains only the undefined term. 

Soundness 

Though liberal, record and variant calculi are not anarchic: Somehow they must prevent a 
row from ever containing duplicate label names. For extensible record calculi this constraint 
requires some form of global analysis. For example, to reject (as surely we must) the 
program: 

l e t  f = \x y . ((xCoord: x) && y) 
i n  (f 2 ( (xCoord: 1) && Triv) 

involves looking both at the definition and call sites for f .  

A particularly elegant solution is to introduce qualified (constrained) polymorphism [47] 
and insertion constraints (called "lacks" constraints in the system of Harper et al. [35].) We 
refer the reader to the work of Gaster and Jones [31] for a cogent exposition of this approach. 
Briefly, let-bound terms are assigned a type scheme which includes any constraints on the 
possible instantiations of quantified type variables. In the example above, f would be 
assigned the scheme: 

f o r a l l a b  . xCoordinsb=> 
a -> A l l  b -> A l l  ( (xCoord: a) # b) 



which can be read as: 

"for all types a and rows b such that the label name xCoord may be inserted 
into b, the function from a and A l l  b to A l l  ((xcoord: a) # b) ." 

Now each use of f is free to instantiate a and b, but subject t o  the constraint xCoord insb. 
Since our example program attempts to instantiate b to ((xcoord: I n t )  # Empty), which 
already contains the label name xCoord, it is rejected. 

2.2 From Label- to Type-Indexed Rows 

As a first step towards XTIR, consider naYvely erasing labels from the record and variant 
operators above. 

We let the kind system keep rows, of kind Row, separate from types, of kind Type. Our 
presentation will be greatly simplified if we also allow higher-kinds, so that we may present 
our type operators as constants. We use : to denote "has kind" (and later, "has type"). 

A type indexed row (TIR) is either the empty row or an extension of another row. Row 
extension is now free of label names: 

For example: 
( In t  # Bool # Empty) 

is a closed row containing the element types I n t  and Bool. Rows are considered equal up 
to a permutation of their element types. 

We also have two dual interpretations for a row: as a type-indexed product (TIP) or type- 
indexed coprodvct (TIC) type: 

A TIR is useful if its element types are all distinct. Because we allow open rows, this cannot 
be verified locally, and so will be propagated using constraints. The insertion constraints 
of XTIR resemble those of record calculi, but with a type instead of a label. For example: 

a ins ( I n t  # Bool # Empty) 

constrains a to be any type other than I n t  or Bool. Hence: 

( L i s t  b) ins ( In t  # Bool # Empty) 

is t rue:  for every type b, L i s t  b cannot be equal to I n t  or Bool, and hence may be inserted 
into the row. 

With the types and constraints in place, we now consider terms. A TIP is either the trivial 



product, or an extension of another: 

Triv : A l l  Empty 
(- && -1 : f o r a l l  (a : Type) (b : Row) . 

a  ins  b  => a  -> A l l  b  -> A l l  ( a  # b) 

A TIC is an injection of a term: 

( In j  -) : f o r a l l  (a : Type) (b : Row) . 
a i n s b = > a - > O n e  ( a # b )  

Notice the use of insertion constraints to ensure the type a  to insert does not already 
appear within the row b of the TIP or TIC. 

For example: 

(1 %% True %% Triv) : A l l  ( In t  # Bool # Empty) 
( In j  True) : f o r a l l  (a : Row) . Bool ins a  => One (Bool # a) 

We also allow any of the above three constants to appear within patterns. For example: 

l e t  f l i p  = \(x && y && Triv) . ( (1  - x) && (not y) && Triv) 
i n  f l i p  (True && 1 && Triv) 

evaluates to (0 && False %% Triv). Notice the pattern (x && y %% Triv) contains no ex- 
plicit type information, and certainly no labels! It was the type of x within the body of 
f l i p  which determined it was bound to 1 rather than True. 

Case analysis of TIPS and TICS is also possible. For example, consider: 

l e t  f lop  = { \ ( I n j  x) . 1 - x; 
\ ( I n j  y) . i f  y  then 0 e l s e  1 3 

i n  f lop  ( In j  True) 

Since x  is of type In t ,  and y  of type Bool, the second pattern will match, and the term 
reduces to 0. Since all functions grouped by C. . . I  must have the same type, we find: 

f lop  : f ora l1  (a : Row) . 
In t  ins  a ,  Bool ins a  => 

One ( Int  # Bool # a) -> In t  

2.3 Equality Constraints 

Consider a more challenging variation of the f l i p  example: 

l e t  tuple = \(x && y && Triv) . (x, y) 
i n  tuple (True && 1 %& Triv) 

(Here we assume XTIR to be enriched by conventional tuples, though they are easily encoded: 
See Section 3.1.) Unlike f l i p ,  the body of tuple is fully polymorphic in the types of x  



and y. Hence: 
tuple : forall (a : Type) (b : ~ype) . 

a i n s  (b # Empty) => 
All (a # b # Empty) -> (a, b) 

Now consider how to type-check the application of tuple. Assume its scheme has been 
specialised to fresh type variables c and d. Then we must unify rows All (c # d # Empty) 
and All (Int # Bool # Empty) subject to the constraint c i n s  (d # Empty). Depending on 
which of Int or Bool we bind to c, the overall term has type (Int , Bool) or (Bool, Int). 
Choosing one solution above another would destroy completeness of type inference. Re- 
jecting such terms would prevent many useful examples (in particular, overloading: See 
Section 3.5). 

Our solution is to introduce equality constraints to record which types and rows must be 
equal for a term to be well-typed. For example: 

represents the constraint that tuple and its argument (True && 1 && Triv) agree in type. 
As with insertion constraints, equality constraints propagate until sufficient type informa- 
tion is available to simplify them. 

For convenience, we allow equality constraints on both rows and types. (Type equality 
constraints may always be simplified down to row equality constraints as soon as they are 
introduced, hence they add no expressiveness to the system.) 

Now consider: 

let oneTrue = 
let tuple = \(x && y && Triv) . (x, y) 
in tuple (True && 1 && Triv) 

in (1 - fst oneTrue, not (fst oneTrue)) 
Using equality constraints, we may assign oneTrue a principal type scheme: 

forall(c : Type) (d : Type) . 
(c # d # Empty) eq (Int # Bool # Empty) , 
c i n s  (d#Empty) => 
(c, d) 

Notice that the first element of oneTrue has been used in both an Int context and Bool 
context, and the term reduces to (0, False). To see how this works, consider each use of 
oneTrue. For the left use, oneTrue is specialised to a tuple with an Int first component. 
Hence its constraint is specialised to: 

(Int # e # Empty) eq (Int # Bool # Empty), 
Int i n s  (e # Empty) 

where e is a fresh variable. This constraint may be simplified by binding e to Bool, and is 
thus true. 



Similarly, for the right use the specialised constraint is: 

(Bool # f # Empty) eq ( In t  # Bool # Empty), 
Bool ins (f # Empty) 

Again, the constraint is simplified to t r u e  with f bound to Int .  

Membership and equality constraints interact in interesting ways. Indeed, much of the 
machinery of XTlR is devoted to the entailment and simplification of such mixed constraints. 
For example, the constraint: 

In t  ins (a  # Empty), 
( In t  # Bool # Empty) eq (a  It b # Empty) 

may be simplified to t r u e  by binding a to Bool and b to In t ,  because the membership 
constraint prevents the binding of a to Int .  

2.4 Simplifying Constraints 

We say a substitution is a satisfying substitution for constraint C if it makes C ground 
and true.  For example, the substitution [a t-, In t ]  satisfies the constraint 

a i n s  (Bool # Char # Empty) 

We say a constraint C entails a constraint D if every satisfying substitution for C also 
satisfies D.  Two constraints are logically equivalent if each entails the other. 

Constraint simplification attempts to reduce a constraint to a smaller but logically equiv- 
alent constraint, and a residual substitution. The substitution can be thought of simply as 
a particularly efficient representation for equality constraints between type variables and 
types. We have already seen some examples of constraint simplification. In this section we 
outline the simplification rules which guide this process. 

Firstly, we require rules for simple unification of types. For example 

(a -> I n t )  eq (Bool -> b) 

is simplified to 
a eq Bool, I n t  eq b 

using a rule which "unwraps" the common type constructor (- -> -1. 
We also require rules for the unification of rows. Because rows are only equal up to 
permutation, row unification is a little more subtle than simple unification. The row 
matching rule allows a type from each row to be removed and unified when this choice is 
unambiguous. For example 

( In t  # a # Empty) eq (Bool # b # Empty) 

is simplified to 
( In t  eq b), (a  # Empty) eq (Boo1 # Empty) 



by matching I n t  with b. 

The row extension rule allows a type from one row to extend the tail of another row, again 
provided the choice of type is unambiguous. For example 

( In t  # a) eq (Bool # b) 

is simplified to 
aeq(Boo1 # b ' )  

with residual substitution [b t, I n t  # b']. Here b' is a fresh type variable of kind Row. 

Another set of rules allow insertion constraints to be simplified when types are guaranteed 
to be distinct. For example 

(a, b) ins (Bool # c # Empty) 

is simplified to 
(a, b) ins (c # Empty) 

since (a, b) can never be unified with Bool. 

The simplifier also has rules for constraint projection, however a discussion of these rules 
is best deferred to Chapter 5. 

2.5 Newtypes 

So far XTlR can only distinguish types stmrcturally. In order to distinguish types by name 
we allow the programmer to introduce fresh type names, called newtypes (as in Haskell 

1. 
A newtype declaration takes the form: 

newtype A = \A . T 

where A is the newtype name, A a sequence of kinded type variables, and T a type (of 
kind Type). 

At the type level, newtype names behave as uninterpreted types (or, in general, type 
constructo~s). For example, assuming the declarations: 

newtype A = \ ( a  : Type) . a 
newtype B = I n t  
newtype C = I n t  

then A In t ,  A Bool, B, C and I n t  are all distinct types. 

At the term level, newtype names behave as single-argument data constructors. These 
names may be used both to construct terms: 

((A 1) &% (A True) && (B 2) BtBt (C 3) 8t% 4) : 
A l l  ( (A In t )  # (A Bool) # B # C # I n t  # ~mpty)  



and to pattern match against terms in A-abstractions: 

\A x . x + 1 : A I n t  -> I n t  
\Ax . notx :ABool->Boo1 
\ B x .  x + l : B - > I n t  

In effect, every newtype declaration introduces a polymorphic constant: 

Using newtypes, we can encode conventional monomorphic records by declaring a newtype 
for each label. For example, with declarations: 

newtype xCoord = I n t  
neutype yCoord = I n t  

we have: 
((xCoord1) 8% (yCoord2) &&Triv)  : 

A l l  (xCoord#yCoord#Empty) 

What about polymorphic record calculi? A obvious approach would be to declare each 
label to be the type-identity function: 

neutype xCoord = \ ( a  : Type) . a 
newtype yCoord = \ ( a  : Type) . a 

With these declarations, xCoord and yCoord may "label" terms of any type in any "record:" 

((xCoord 1) && (yCoord 2) 8% Triv)  : 
A l l  ((xCoord I n t )  # (yCoord I n t )  # Empty) 

((xCoord '1 ')  && (yCoord"two") &&Triv)  : 
A l l  ((xCoord Char) # (yCoord St r ing)  # Empty) 

Unfortunately, it also allows the same newtype to appear within the same record, provided 
it labels terms of different types: 

( (xCoord I) && (xCoord ' 1 ' ) && Triv)  : 
A l l  ( (xCoord I n t )  # (xCoord Char) I f  Empty) 

Though at first glance this may seem a useful generalisation of labels, we quickly run 
into problems when unifying rows containing them. For example, if xCoord really was a 
polymorphic label, then the following constraint should be simplified by binding a to In t :  

((xCoord a) # b) eq ((xCoord I n t )  # c )  , 
(xCoord a)  i n s  b, 
(xCoord I n t  ) i n s  c 

However, as things stand, the simplifier would be incorrect if it were to do so. 

To see why, consider the possible substitution which binds b to (xCoord I n t )  # Ehpty, 



and c to (xCoord Bool) # Empty. The constraint becomes: 

( (xCoord a) # (xCoord Int ) # Empty) eq 
((xCoordInt) # (xCoordBoo1) #Empty), 

(xCoord a) ins  ( (xCoord Int) # Empty), 
(xCoord Int)  in s  ( (xCoord Bool) # W t y )  

which implies a must be Bool, not Int.  Hence, our simplifier is stymied by an excess of 
polymorphism. 

Our solution is to introduce opaque newtypes, a variation of newtypes in which the type 
arguments are ignored when considering the simplification of insertion constraints. 

Returning to our example, consider redeclaring the labels as: 

newtype opaque xCoord = \ ( a  : Type) . a 
newtype opaque yCoord = \ ( a  : Type) . a 

Now the simplifier is free to bind a to Int in our constraint: 

( (xCoord a) # b) eq ( (xCoord Int ) # c )  , 
(xCoord a) i n s  b, 
(xCoordInt) i n s c  

This is because the membership constraint (xCoord a) insb  implies that b cannot contain 
any type of the form xCoord T, hence b cannot be extended to include xCoord Int, and 
hence xCoord Int must match xCoord a. 

Furthermore, with xCoord declared as an opaque newtype, the term: 

is ill-typed, because the constraint 

(xCoord Int) in s  ( (xCoord Char) # Empty) 

is unsatisfiable. 

Though at first glance they appear somewhat ad-hoc, opaque newtypes require very little 
special support within the machinery of XTIR. 

Why not make all newtypes opaque? Though this would simplify the presentation and 
machinery of XTIR, it would prevent type-based overloading on the arguments to type con- 
structors. This will be covered in Section 3.5. 

2.6 Implementing Records 

For the moment we put type-indexed rows aside and consider how to implement conven- 
tional label-indexed records. A naive approach is as a map from labels to values, but then 
each access requires a dynamic lookup. A better approach, first suggested by Ohori [go], 
and independently, by Jones [47], is to use the type information we already have to replace 
label names with natural number indices, and records with vectors. When a closed record 
is manipulated, these indices can be easily generated by finding a canonical ordering of 



label names. When an open record is manipulated within a polymorphic function, these 
indices must be passed as implicit arguments because their actual values will depend on 
how the function has been instantiated. 

This situation seems rather complicated until it is noticed that indices propagate at run- 
time in parallel with insertion constraints at compile-time, except in the opposite direction. 

Consider: 

l e t  f = \x . ((yCoord: 20) && x) 
i n  f ((xcoord: 10) && Triv)  

To ensure its body is well-formed, f is assigned the type scheme: 

f o r a l 1  (b : Row) . yCoord ins b => 
A l l  b -> A l l  ( (yCoord: I n t )  # b) 

At the application of f ,  b is specialised to (xCoord: I n t )  # Empty, and thus f's constraint 
is specialised to yCoord ins ((xcoord: I n t )  # Empty). This constraint is then introduced 
into the application's constraint context, where it may be simplified to t rue .  Notice how 
f's constraint propagated (at compile-time) from the site of its definition to the site of its 
use. 

Now associate a run-time index variable, w, with f's constraint yCoord ins b, with the 
understanding that w will be bound at run-time to the insertion index of yCoord within 
whatever row b is specialised to. Or, to use OML7s terminology [47], w will be bound to a 
witness of the satisfaction of the constraint that yCoord may be inserted into row b. 

The function f is now compiled to a function accepting w as an additional implicit param- 
eter: 

let f = Xw . Ax . insert 20 at w into x 

Here we use sans-serif font to denote run-time terms, and insert U at W into T inserts the 
term U at index W into the vector T. 

In the application of f ,  again associate an index variable w' with the specialised constraint 
yCoord ins ( (xCoord: I n t  ) # Empty). This variable is passed to f, along with its argument: 

Here (. . .) denotes a base-1 vector of run-time terms. (We shall use a special syntax for 
indices to prevent their semantic confusion with ordinary integers: One is the base index, 
and Inc W, Dec W the obvious offsets.) 

Now when the simplifier rewrites yCoord ins ( (xCoord : I n t  ) # Empty) to t rue ,  it is also 
obliged to supply a binding for w'. Assuming a lexicographic ordering on label names, 
yCoord should be inserted at index Inc One into the row (xCoord: I n t )  # Empty, hence w' 
is bound to the absolvte index Inc One. 

Thus the overall term is compiled as: 

let f = Xw . Ax. insert 20 at w into x 
in let w' = Inc One 
in f w' (10) 



which reduces to the vector (10, 20). 

Notice how the insertion index for yCoord within b was passed at run-time from the use site 
to the definition site, exactly in reverse of the propagation of the constraint yCoord ins  b 
at compile-time. 

This type-directed translation is an instance of the dictionary translation [log]. We call 
a set of constraints with associated index variables a constraint context, by analogy with 
type contexts. 

An index may sometimes depend on another. For example, the constraint context: 

(w : yCoord i n s  ( (xCoord: I n t )  # b)), (w' : yCoord i n s  b) 

can be simplified to w : yCoord i n s  ((xcoord: I n t )  # b) by binding w' to the relative 
index Dec w. This simplification is possible because yCoord will always be after xCoord in 
any row. 

The same technique works for variants, which are represented as a pair of a natural number 
and value. 

2.7 Implementing TIPS and TICS 

Can 
only 
then 

we implement XTIR also using only natural number indices, vectors and pairs? The trick 
works if we have an ordering on types. Clearly a total order on all types won't do, as 
the relative ordering of non-ground types may change under substitution-disaster! 

An obvious approach is to choose some ordering on monotypes, and only consider simpli- 
fying an insertion constraint v i n s  (rl # . . . # T ,  # Empty) when v and each T, are ground. 
Then finding the index for v is simply a matter of sorting these types. Unfortunately, 
because programs are often polymorphic all the way up to their top level, this approach 
would result in many insertion constraints propagating to the top level, leading to very 
large constraint contexts. 

Thankfully, a less conservative ordering is possible. Assume we have a total order, sF, on 
all built-in type constants (such as In t ,  (All -) and (- -> -)), and all newtype names. 
Let sFa be sF extended to type variables, on which it is always false. So, for example: 

I n t  sFa Boo1 sFa St r ing  sFa (, -> ,) sFa . . . 

but a gFa I n t  and I n t  gFa a. 

Every type T has a pre-order flattening, denoted by preorder(r). For example, 
preorder(A I n t  -> B Bool a) = [(- -> -1, A,  In t ,  B, Bool, a]. We then (roughly) define the 
partial order, <, on all types as follows: 

where is the lexicographic ordering induced by sFa. Notice that 5 enjoys invariance 
under substitution, viz: 

~ s ~ ~ v e . e ~ ~ e ~  
This property allows many insertion constraints to be discharged even when they contain 



type variables. 

For example, consider the constraint: 

w : (Bool -> a) ins  ((Int -> b) # Int # Empty) 

All of these types may be totally ordered: 

In t  < (Int -> b) < (Boo1 -> a) 

Thus we eliminate the constraint and bind w to Inc Inc One. 

However, since the types in: 

w : (Bool -> a) ins  ((b -> c) # Int # Empty) 

cannot be totally ordered, this constraint cannot be further simplified. 

The alert reader will notice we ignored the possible permutation of row elements in the 
description above. To account for this, we must first find the canonical order of every 
row within types before flattening them. We defer the full definition of type order to 
Section 4.3. 

2.8 Ambiguity 

XTxR type schemes sometimes quantify over type variables which appear only in the scheme's 
constraint. For example, in 

fora l l  (a : Type) (b : Row) . (a # b) eq (Int # ~ o o l  #Empty) => a -> a 

the variable b is not free in a -> a. However, since a binding for a uniquely determines a 
binding for b, this scheme is still sensible. 

However, the scheme 

fora l l  (a : Type) (b : Type) . b ins  (Int # Bool # Empty) => a -> a 

is inherently ambiguous. Since the insertion constraint may never be eliminated, it will 
float to the toplevel of the program and cause an error. Furthermore, a binding for b 
cannot be chosen arbitrarily, since different bindings may lead to different indices, and 
hence change the behaviour of the program. 

Somewhat more subtle is the scheme: 

fora l l  (a : Type) (b : Type) . a i n s  (b # Empty) => One (a # b # Empty) 

Even though all quantified type variables appear within its type, this scheme is still am- 
biguous. For example, though both of the instantiations 

[a I+ Int, b I+ Char] 
[a I+ Char, b H ~ n t ]  

yield the same result type One (Int # Char # Empty), the index determined for the insertion 



constraint differs. 

These examples demonstrate that a simple syntactic test for ambiguity of XTIR type schemes 
is probably impossible. In particular, checking that each quantified variable appears within 
a scheme's type is neither a sound nor complete test for ambiguity. As a result, a compiler 
for XTJR should treat ambiguity as a warning rather than an error. 

2.9 Satisfiability 

When a let-bound term is generalised, any residual constraints accumulated while inferring 
its type which mention quantified type variables are shifted into its type scheme. However, 
we would also like to be sure such constraints are satisfiable, for two reasons. Practically, it 
helps improve the locality of type error messages if unsatisfiable constraints are caught at 
the point of definition rather than at some remote point of use. Theoretically, it simplifies 
our proof of type soundness if every type scheme is known to have at least one satisfying 
instance. 

Often, the simplifier will detect unsatisfiability in the course of examining each primitive 
constraint. For example, in: 

newtype opaque xCoord = \ (a : Type) . a 
l e t  f = \x . ((xCoord 2) && (xCoord 1) && x) 
i n  1 

assuming x : A l l  a, then f has the constraint: 

(xCoord Int) ins a, 
(xCoord Int) ins ( (xCoord Int) # a) 

This constraint will be simplified to fa lse ,  which is easily detected when generalising. 

However, sometimes the simplifier will fail to detect unsatisfiability, because it never spec- 
ulatively unifies rows. For example, in: 

l e t  g : A l l  (Int # Bool # Empty) -> Int = . . . 
h : A l l  (Char # String # Empty) -> Int = . . . 
f = \x y z . g (X && y && Triv) + 

h (x && z && Triv) 
i n  1 

assuming x : a, y : b, z : c, then f has the unsatisfiable constraint: 

a ins (b # Empty), a ins (c # Empty), 
(a # b # Empty) eq (Int # Bool # Ehpty), 
(a # c # Empty) eq (Char # String # Empty) 

Since this constraint will not be further simplified to fa lse ,  the system must explicitly 
test for satisfiability when generalising. 

Unfortunately, relying on the simplifier to show unsatisfiability is not quite enough. Con- 
sider the example: 



newtype opaque xCoord = \(a : Type) . a 
let f = \x . let g = \y . ((xCoord y) && x) in 1 
in f ((xCoord 1) && Triv) 

Assume x : All a and y : b. Then g has the satisfiable constraint: 

(xCoord b) ins a 

Thus f is assigned the type: 

forall (a : Row) . All a -> Int 

and the entire program has type Int. 

However, under a nsve operational semantics for XTIR, P-reducing the application of f 
yields the program: 

let g = \y . ((xCoord y) && (xCoord 1) && Triv) in 1 

Now g's constraint becomes 

(xcoordb) ins ((xCoord Int) #Empty) 

which is unsatisfiable. Hence, subject-reduction fails for this semantics. (Our semantics 
will actually be denotational rather than operational, but the problem remains the same.) 

This problem occurs only when a let-bound term is both unused and has a constraint 
mentioning type variables bound at an outer scope. In the above example, g was unused in 
the body of f ,  and g's constraint contained the type variable a bound by f 's  type scheme. 
This observation suggests four approaches to a solution. 

The first approach attempts to constrain outer-scope variables in order to ensure the sat- 
isfiability of inner-scope constraints. One way of doing this is to use a new primitive 
constraint of the form: 

exists A . C 
with intended interpretation "C is satisfiable for some binding of the type variables of 
A." Existential constraints may be simplified "lazily," just as for equality and insertion 
constraints. This approach is advocated by HM(X) [79]. 

Using an existential constraint, f may be assigned the more precise type scheme: 

forall (a : Row) . (exists (b : Type) . (xCoord b) ins a) => 
All a -> Int 

Now the application of f is ill-typed: 

error: constraint 
exists (b : Type) . (xCoord b) ins ( (xCoord Int) # Empty) 

arising from application of ' f '  is unsatisfiable. 

Though elegant, existential constraints have a very subtle entailment theory. Indeed, an 
early version of XTIR included them, but the implementation was complicated and difficult 
to prove correct. 

A variation on this first approach is to carry over generalised constraints into the current 



constraint context unchanged. This method is termed duplication by Odersky et al. [79]. 
Now f would be assigned the type scheme: 

f o r a l l  (a  : Row) (b : Type) . (xcoordb) i n s a = > A l l a - >  I n t  

However, since b does not appear within the right hand side of f's type, such a scheme is 
inherently ambiguous. Furthermore, this approach may result in many redundant insertion 
constraints. For example, the constraint: 

a ins  (b # Empty), 
a ins  (c # Empty), 
a ins  (b # c # Empty) 

cannot be simplified, even though it is satisfiable exactly when the constraint: 

a ins  (b # c # Empty) 

is satisfiable. Both these problems arise because insertion constraints imply the need for 
indices, whereas no such indices are required if our only interest is satisfiability. 

A solution is, again, to introduce a new primitive constraint, but this time of the form: 

T n inp  

T nin p ("T is not in row p") resembles T ins  p, but does not require the simplifier to 
calculate any index witnessing its satisfaction. During duplication, ins  constraints are 
replaced by nin constraints. 

Now f is assigned the type scheme: 

f o r a l l  (a : Row) (b : Type) . (xcoordb) n i n a = >  
A l l  a -> I n t  

This is no longer ambiguous since b may be chosen arbitrarily so as to satisfy the constraint. 
Again, the application of f is ill-typed. 

Though quite workable, we feel this variation is ugly. In particular, the difference between 
"ins" and "nin7' is a likely source of confusion. 

The third approach is very simple: simply reject programs containing redundant let- 
bindings. Of course, an actual implementation would remove such bindings rather than 
reject the program. (Indeed, compilers tend to do this anyway as an optimisation.) This 
approach is adopted in OML [47, 481, and we adopt it for XTIR. 

This approach works because if x is a let-bound variable with constraint C, and x is free 
in t ,  then the satisfiability of t's constraint implies the satisfiability of C. 

Now a constraint may be tested for satisfiability regardless of the scope of its free type 
variables. If the test fails, the constraint is unsatisfiable for any instantiation of outer- 
scope variables, and an error may be reported. If the test succeeds, no further processing 
is required, because the satisfiability test for any let-bound terms in an outer scope shall 
entail the satisfiability of the current constraint. 

In a sense, however, we have put the horse before the cart in all of this. Rather than change 



the system to simplify the model, the fourth approach is to refine the model to correctly 
explain redundant, unsatisfiable let-bindings. Since such bindings cannot be observed, the 
problem is caused by incompleteness of semantic equality with respect to observational 
equality. However, such issues are notoriously subtle, hence our preference for the second 
(simple!) approach. 



Chapter 3 

Examples 

In this section we show that XTIR may encode many conventional types, such as tuples 
and recursive sums-of-products datatypes. We also demonstrate an encoding of XML 
document-type definitions and a simple form of type-based overloading. 

We write 78.. .]1 to denote the encoding function at the type level, and S[. . .] at the term 
level. Later examples assume the encoding provided by earlier examples. 

Our XMX compiler supports all of the types covered in this section by expanding each into 
XTIR. In order that error messages may use whatever syntax was used by the programmer 
rather than its translation, the compiler is careful to annotate translated types and terms 
with additional L'hints" describing how they arose. Though not foolproof, this method 
seems preferable to extending the XTIR type system to deal with all of these types as 
primitives. 

3.1 Tuples 

We can simulate the positional notation of tuples by introducing an opaque newtype for 
each position: 

newtype opaque fst  = \ ( a  : Type) . a 
newtype opaque snd = \(a : Type) . a 

Now f st T is distinct from snd T for any type 7. 

A little sugar provides the familiar notation: 

7[0] = All Empty 
T[(T, v)] = All ( ( f s t  7[r]) # (snd T[v]) #Empty) 

(...etc...) 

S[O] = Triv 
S [ ( t  , u)] = ( ( f  st S[t]) && (snd S[er]) && Triv) 

(...etc...) 

Tuple projection is polymorphic on both the element type and tuple length: 



f s t  : f o r a l l  (a : Type) (b : Row) . 
( f s t  a)  i n s  b => A l l  ( f s t  a # b) -> a 

= \ ( f s t  X && -1 . x 

f s t  (1, "two") : In t  
f s t  ("one", 2 ,  '3') : String 

3.2 Records Revisited 

Section 2.5 has already sketched how newtypes may simulate labels. A little syntactic 
sugar can make this encoding more convenient. Firstly, we allow any type or term to be 
"labelled" : 

TI(1: TI] = 1 T[T] 
S[<l: t)] = 1 Sit] 

(In a practical implementation, one could imagine the first occurrence of such a labelled 
type or term automatically adding the declaration: 

newtype opaque 1 = \ ( a  : Type) . a 

to the compiler's internal tables.) 

Secondly, some more sugar makes closed products and sums more convenient (where n > 1): 

T [ ( T ~  & . . . & T,)] = A l l  (T[T~] # .. # T[rn] # Empty) 

T [ ( T ~  1 . . . 1 ~ n ) ]  = One (T[T~] # . . . T[Tn] # Empty) 
S[(tl & . . . & tn)] = (S[tl] && . . . && $Itn] && Triv) 

With these, non-extensible records and variants are straightforward: 

type Point = ( (xCoord: In t )  & (yCoord: I n t )  ) 
l e t  movex : Point -> Point 

= \((xCoord: x) && r e s t )  . ((xcoord: x + 1) && r e s t )  
i n  movex ( (xCoord: 1) & (yCoord: 2)) 

type Num = ( ( i s I n t :  In t )  I (isRea1: Real)) 
l e t  asInt  : Num -> I n t  

= { \ ( I n j  i s I n t :  i )  . i ;  
\ ( I n j  isReal: r )  . f loor  r 1 

i n  asInt  ( In j  isReal: 3.1415) 

(Here type introduces a type synonym.) 

Extensible records and variants are similar. 

3.3 Recursive Datatypes 

Recursive datatypes may be simulated by recursive newtypes. Consider the datatype of 
binary trees (in an idealized ML notation): 



data Tree = \(a : Type) . Node (Tree a, a, Tree a) 
I Leaf 

We may take this to be shorthand for the declarations: 

newtype Tree = \(a : Type) . One ((Node a) # (Leaf a) # Empty) 
newtype Node = \(a : Type) . (Tree a, a, Tree a) 
newtype Leaf = \(a : Type) . () 

Each data constuctor wraps a newtype around its argument, and injects the result into the 
overall datatype. A little sugar can simulate the familar data constructor notation of ML: 

S[Node t] = Tree (Inj (Node S[t])) 
S[Leaf] = Tree (Inj (Leaf 0 1) 

For example: 

let flatten : forall (a : Type) . Tree a -> List a 
= ( \Leaf . [I ; 

\Node (1, x, r) . (flatten 1) ++ Cxl ++ (flatten r) 3 
in flatten (Node (Leaf, 1, Node (Leaf, 2, Leaf))) 

Note that if XTiR is given a lazy semantics, as is the case in this dissertation, this encoding 
suffers the "double lifting" problem for multi-argument data constructors. That is, XTiR 
programs may now distinguish an undefined datatype and a data constructor applied to 
an undefined tuple. For example, with the declarations: 

undefined = undefined 
test = \Node - . True 

we have: 

test undefined h 
test (Node undefined) 4 True 

3.4 XML 

Chapter 1 introduced XML, and discussed the problem with na'ively encoding XML 
LL~hoi~e"  and "unordered tuple" regular expressions as ordinary Haskell-style sum and 
product types. In particular, equal XML regular expressions may become unequal Haskell 
types under the na'ive encoding. 

In this section we shall encode choice regular expressions as type-indexed sums, and un- 
ordered tuple regular expressions as type-indexed products. This encoding is total since 
XML7s determinism constraint implies the components of a choice or unordered tuple must 
be distinct types. Furthermore, this encoding respects the commutativity of these XML 
operators. However, it does not respect any of the other regular expression equalities. 
Though the encoding is not perfect, it does allow XML elements to co-exist with all the 
other datatypes familiar to functional programmers: in particular higher-order functions 
and parametric polymorphism. We think this is a good compromise. 

By design, our sugared syntax for tuples introduced in Section 3.1 coincides with XML7s 
syntax for tuples. Similarly, our syntax for (closed) sums and products introduced in 
Section 3.2 also coincides with XML7s syntax for choice and unordered tuple regular ex- 



pressions. For the remaining regular expressions, we first introduce the datatypes of lists 
and optional terms (using the syntax of Section 3.3): 

data List = \ (a  : Type) . Cons (a, List a) I N i l  
data Option = \ (a : Type) . Some a I None 

We then introduce the following sugar: 

T[r *I = L i s t  T[r] 
T[r  ?] = Option T[r] 
T[r  +B = T[(r ,  T *)I 

There are two possible encodings of a document-type definition within XTIR. The first, 
which we shall term DTD-style, maps each XML element definition to a XTIR newtype 
definition. For example, the XML e-mail document-type definition of Chapter 1 may be 
trivially encoded as: 

newtype Msg = (((To l Bcc) * & From), Body) 
newtype To = String 
newtype Bcc = String 
newtype From = String 
newtype Body = P* 
newtype P = String 

Just like XML DTDs, each newtype is given a fixed body type. 

The second encoding, which we term Scheme-style, declares each tag name as a label-like 
newtype: 

newtype Msg = \(a : Type) . a 
newtype To = \ (a  : Type) . a 
. . . 

Then the specific structure of the e-mail DTD may be given by a single type declaration: 

type MsgType = Msg (((To String I Bcc String)* & From String), 
Body ((P String)*)) 

This second encoding is very similar to that used for XDuce, as shown in Chapter 1. It has 
the advantage of allowing the same tag name to be reused with differing body types. For 
example, From and To could be used elsewhere to tag dates instead of strings. This second 
encoding would thus be appropriate for the more general form of document type definitions 
allowed under XML Schema [24]. The disadvantage of this second encoding is that more 
type annotations must be supplied by the programmer when using XML element syntax. 
This shall be explained shortly. 

XML documents are easy to manipulate in XTIR. For example, here is a program to imple- 
ment a spam filter: 



killSpam : Msg* -> Msg* 
= filter (not . isSpam) 

isSpam : Msg -> Boo1 
= \msg . 

getReceiver msg == "rnbsQcse.ogi.edu" && 

( contains suspiciousWords (getwords msg) I I  
mem (getsender msg) suspiciousSenders ) 

getReceiver : Msg -> String 
= \(Msg ( (rcvrs && -1, -1 . 

(\[To to] . to) 
(filter' C \(Inj (To -1) . True; \- . False ) rcvrs) 

suspiciousWords : String* 
= [ "money", "rich", "won", . . . ] 

getwords : Msg -> String* 
= ( words 
o toLowerCase 
o concat 
o map (\(P s) -> s) 
o (\(Msg (-, Body body)) . body) 
1 

getsender : Msg -> String 
= \(~sg ((From from && -1 , -1) . from 

suspiciousSenders : String* 
= [ 1'quickcash9aol. com" , " j lQcse . ogi . edu" , . . . I 

We assume a libary of standard functions whose types are given in Figure 3.1. (Some of 
these types have been specialised so that we may ignore the overloading of the equality oper- 
ator within type schemes.) The filter discards all messages sent to mbs9cse. ogi . edu which 
are either from one of the suspiciousSenders, or contains one of the suspiciousWords. 

Though XTIR newtype declarations resemble XML element type definitions, the same cannot 
be said for XTIR terms and XML elements. The example e-mail message of Chapter 1 (of 
type Msg) appears in native XTIR syntax as: 

Msg ( 
( From "mbs9cse . ogi . edul' 
& [ Inj (To "jlQcse.ogi.edu"), 

Inj (Bcc "mbsQcse . ogi . edu") 1 ) , 
Body C 
P IIThe. . . I' , 
P "All. . . " 

1 
1 



filter : (Msg->Bool) ->Msg* ->Msg* 
filter' : ((To I Bcc) -> Bool) -> (To I Bcc) * -> (To l Bcc) * 

not: Bool-> Bool 
( I  I) : Bool->Bool-> Bool 

contains : String*-> String*->Boo1 
mem: String-> String* -> Bool 

words : String-> String* 
toLowerCase : String-> String 

concat :foralla. a*->a 
map : forall a b . (a -> b) -> a* -> b* 
o : forall a b c . (b -> c) -> (a -> b) -> (a -> c) 

I 

Figure 3.1: Some (type specialised) standard library functions 

Notice the explicit use of Inj to inject the To and Bcc terms into the correct sum, and the 
explicit type-indexed product, tuple, and list syntax. 

We would prefer to be able to write this term in familiar XML syntax: 

<Msg> 
<From>mbs@cse.ogi.edu</From> 
<To>jlOcse.ogi.edu</To> 
<Bcc>mbsQcse.ogi.edu</Bcc> 
<Body> 
<P>The ... </P> 
<P>A11 ... </P> 

</Body> 
</Msg> 

Notice that, as usual for XML, there is no need to explicitly inject the To and Bcc elements. 
Furthermore, the list of paragraphs is implicit, as is the tupling of the sender, reciever and 
Body elements. This additional syntax is unnecessary because, as far as XML is concerned, 
this term is simply a tree. 

Thankfully, it is possible to further exploit the determinism of XML regular expressions 
and convert the XML element above to the coresponding XTIR term. In order to avoid 
cluttering this chapter, the precise technical development is deferred to Appendix A, and 
we present only an outline here. 

We shall assume the e-mail DTD has been encoded in DTD-style. Roughly, the type 
checker first constructs an augmented Glushkov automaton for the body type of Msg, viz: 

( ( (To I Bcc) * & From) , Body) 

This automaton is then run on the sequence of types From, To, Bcc, Body. Since this 
sequence is in the language of the type above when viewed as a regular expression, the 
automaton reaches an accepting state. 

Furthermore, the automaton is augmented so as to maintain an internal stack of XTIR terms. 
As each element is seen, this stack will be updated to contain its XTIR representation. For 



example, after seeing the From type, the automaton will have on it's stack the XTIR term: 

From "mbsOcse.ogi.edu" 

After seeing the Bcc type, the stack will be (from bottom to top): 

From "mbsOcse. ogi . edu", 
Inj (To "jl@cse.ogi.edu"), 
Inj (Bcc "mbsOcse . ogi . edu") 

Notice how the Inj constructors have been automatically inserted. When the Body type 
is seen, the two Inj terms are popped from the stack and replaced with a single list: 

Fr~m"mb~Qc~e.~gi.edu", 
[Inj (To " jlOcse . ogi . edu") , Inj (Bcc "mbsOcse . ogi . edu" )I 

These two terms are then replaced with a single type-indexed product: 

( From "mbsQcse . ogi . edu" & 
[Inj (To " jlOcse . ogi . edu") , Inj (Bcc "mbsQcse . ogi . edu") 1 

This process continues until the stack contains the single XTIR message term given above. 
(For clarity the above explanation used XTIR source terms, whereas the automaton actually 
manipulates XTIR run-time terms.) 

XMX includes this support for XML element syntax. hrthermore, XMX allows XML and 
XTIR syntax to be intermixed. For example, another way of writing the example e-mail 
message is: 

let name = ( \"Marku . "mbsOcse . ogi . edu" ; 
\"John" . "jl@cse.ogi.edu" 3; 

body = [<P>The . . .  </P>, <P>A11 ... </P>] 
in <Msg> 

<From><<name "MarkU>></From> 
<To><<name "JohnM>></To> 
<Bcc><<name "MarkU>></Bcc> 
<Body><<body>></Body> 

</Msg> 

The <<. . .>> brackets escape from XML syntax back into XTIR syntax. 

XML syntax is also supported within XMX patterns. For example: 

getwords : Msg -> String* 
= ( words 
o toLowerCase 
o concat 
o map (\<P><<s>></P> -> s) 
o (\<Msg><<(- & -)>><Body><<body>></Body></Msg> . body) 
1 

Notice the use of the pattern (- & -1 within the body of Msg. This pattern is required 
so that the type checker can unambiguously determine that the address component of the 



Msg should be ignored. 

What happens if our e-mail DTD were encoded in Scheme-style? Implicit in the discussion 
above is the assumption that every newtype has a monotype body. Without this assump- 
tion, the technique of using a Glushkov automaton to convert from XML to XTIR syntax 
breaks down. To see why, consider the XML fragment: 

CBody><P>The ... </P><P>A11 ... </P></Body> 

Clearly we intend this to denote the XTIR term: 

Body [P "The.. .I1, P " A l l . .  . "1 

However, all the type checker knows about Body and P is that: 

newtype Body = \ ( a  : Type) . a 
newtype P = \ ( a  : Type) . a 

Thus, the above XML term could also denote the XTIR term 

Body (P "The. . . 'I, P "Al l .  . . 'I) 

or 
Body (P ["The.. . "1, P CtlA1l.. ."I)  

or indeed any one of a countably infinite set of XTIR terms. 

To avoid this ambiguity as simply as possible, XMX requires the above XML term to be 
written as: 

Notice how the newtypes Body and P were explicitly instantiated with type arguments. 
These arguments tell the type checker exactly which monotype each element should belong 
to. 

Of course this is far from convenient. Hence in practice the programmer should use the 
DTD-style of encoding as much as is feasible, and introduce type abbreviations where 
required: 

newtype Body = \ ( a  : Type) . a 
newtype P = \ ( a  : Type) . a 

type BodyT = Body (P*) 
type PT = P String 

3.5 Overloading 

As our final example, we show how equality constraints may be exploited to allow identifiers 
to be overloaded with multiple definitions. 

There are two approaches to overloading an identifier x. The open-world view, as adopted 
in Haskell's class system [log], assumes the multiple definitions for x are all instances 



of a common type scheme a, but otherwise makes no assumptions about any particular 
definition. Hence, a new definition for x may be added without the need to recompile 
programs using x. This approach is most conveniently implemented by passing definitions 
as implicit parameters at run- t ime  [47]. 

In contrast, the closed-world view, as adopted for method-overloading in Java [34] and 
many other object-oriented languages, assumes all definitions for x are known at each 
point of use, but otherwise only requires each definition to be a t  a distinct  type. (Of course 
Java has a notion of subtyping which has no counterpart in ATIR, hence our examples are 
simpler.) Closed-world overloading is typically implemented by selecting the appropriate 
definition at compile-time. Hence, adding a new definition for x requires recompiling all 
programs using x, but there is no associated run-time cost. 

We now show that ATIR is able to express closed-world-style overloading. In conjunction 
with implicit  parameters [57], an open-world style of overloading is also possible, though 
unfortunately outside the scope of this thesis. 

For a classic example, assume we have two addition functions: 

intPlus : Int -> Int -> Int 
realplus : Real -> Real -> Real 

To overload + on both these definitions, we first build a TIP containing them: 

l e t  al lplus 
: A l l  ((Int -> Int -> Int) # 

(Real -> Real -> Real) # Empty) 
= (intPlus && realplus && Triv) 

We then define + to project one element from allplus: 

l e t  (+I 
: foral l  (a : Type) (b : Row) . 

a i n s  b, 
(a # b) eq 

( (Int -> Int -> Int) # 
(Real -> Real -> Real) # Empty) => a 

= (\(x %& -) . x) allplus 

(This type scheme is actually inferred and need not be supplied by the programmer.) 

Because x is used polymorphically in the A-abstraction \(x &% -1 . x, the type inferencer 
cannot determine which of Int -> Int -> Int and Real -> Real -> Real should unify with 
its type a. Hence this equality constraint, and the membership constraint arising from the 
pattern (x %% -1, must be deferred. 

When typing the term 
\y . (1 + 1,  l . O + y )  

we find it has type 
e -> (c,  f )  



subject to the constraints introduced by each use of +: 

(Int  -> Int -> c) ins d, 
( ( Int  -> Int -> c) # d) eq 

( ( In t  -> Int  -> Int)  # (Real -> Real -> ~ e a l )  # Empty), 
(Real -> e -> f )  ins g, 
((Real -> e -> f )  # g) eq 

( ( Int  -> Int  -> Int)  # (Real -> Real -> Real) # Empty) 

The simplifier reduces this constraint to true, with the bindings: 

Hence, the final inferred type is 

However, for the term: 

Real -> ( In t ,  Real) 

1.0+ 1 

we find: 

error :  the constraint 
(Real -> Int  -> a # b) eq 

((Int  -> Int  -> Int)  # 
(Real -> Real -> Real) # Empty) 

i s  unsat is f  iable 

In conventional closed-world overloading, each use of an overloaded identifier must be at a 
type sufficiently monomorphic to resolve the overloading statically. XTIR lifts this restriction. 
For example, consider defining nList to form a list of between 1 and 3 arguments: 

l e t  allNList 
: f o r a l l  (a : Type) . 

A l l  ( ( a  -> List  a) # 

(a -> a -> L i s t  a) # 
(a -> a -> a -> L i s t  a) # Empty) 

= ((\x . Cxl) 85% 
(\x y . Cx, yl) && 
( \ x y  z .  [x, y, 21) &&Triv)  

l e t  nList 
: fo ra l l  (a : Type) (b : Type) (c : Row) . 

b ins c,  
(b # c) eq 

( ( a  -> L i s t  a) # 
(a -> a -> L i s t  a) # 
(a  -> a -> a -> List  a)  # Empty) => b 

= (\(x && -1 . x) allNList 

We may now specialze nList to onelist ,  which will append at most one more integer to 



l e t  oneList 
: f o r a l l  ( a  : Type) (d : Type) (e : Row) . 

( I n t  -> I n t  -> d) ins ( ( a  -> L i s t  a) # e l ,  
( ( I n t  -> I n t  -> d) # e )  eq 

( ( a  -> a -> L i s t  a)  # ( a  -> a -> a -> L i s t  a)  # Empty) => d 
= nList  1 2 

Notice how oneList is still overloaded, but "less so" than nlist. 

The overloading of oneList is finally fully resolved in the program: 

oneList ++ oneList 3 : L i s t  I n t  

which reduces to [I, 2, 1, 2, 31. 

This last example highlights the limitations of the simplifier. One may expect oneList to 
have the simpler type: 

f o r a l l  (d : Type) (f : Row) . 
d insf, 
(d # f eq ( (L i s t  In t )  # ( In t  -> Lis t  In t )  # Empty) => d 

Unfortunately, the simplifier is not powerful enough to determine that a must be In t ,  
and cannot "project" away the common type I n t  -> I n t  -> - in order to reduce the first 
constraint to the second. Perhaps worse, if the programmer were to supply the above 
scheme as an annotation, the system would be unable to show that the second constraint 
entails the first, because the row variables e and f do not appear within the result type 
d of the two schemes and so cannot be related. Hence, this more sophisticated style of 
type-based overloading may surprise the novice programmer. 

An aggressive XTIR compiler could inline a l l p l u s  and allNList,  and perform P-reduction 
of the projection functions where indices are constant. Hence, XTtR couples some of the 
flexibility of open-world overloading with the efficiency of closed-world overloading. 



Chapter 4 

Type Checking 

This section begins our formal development of XTrR. We'll introduce its syntax and kind 
system, and present the well-typing judgement. Well-typing requires the notions of con- 
straint entailment, which in turn is built from a notion of type order. We conclude by 
demonstrating the soundness of our type system w.r.t. a simple denotational semantics. 

4.1 Syntax 

Figure 4.1 presents the kinds, types and terms of the source language, most of which 
should be familiar from examples. Our presentation is made more uniform if we allow 
higher-kinds, type abstraction and type application, though care will be taken to avoid the 
need for higher-order unification. For simplicity the only base type is Int .  

The empty constraint will be written as t rue,  and a generic unsatisfiable constraint as 
f a l se ,  though neither may appear explicitly within programs. We write C St D to denote 
concatenation of the primitive constraints of C and D. Equality constraints are only 
allowed at kind Type or Row; we'll usually elide their annotation. As is customary, we 
identify the type scheme f o r a l l  - . t r u e  => T with the type T. 

We allow A-abstractions to contain patterns, which may be nested arbitrarily. We assume 
all pattern variables to be distinct, and will also assume no type or term variable binding 
ever shadows another. We identify the unitary discriminator C abs 3 with abs. 

In much of what follows we assume types and terms are represented in applicative form. 
For example, T -> v is represented by the application (- -> -1 T v. Furthermore, we 
assume the binary operator (- # -1 to be generalised to a family of ( n  + 1)-ary row- 
consing operators (#), for n > 0, so that TI # . . . # Tn # 1 may be represented by the single 
application (#) , 71 . . . Tn 1 .  We also identify (#) 1 with I .  Figure 4.2 defines F and G to 
range over all type constructors, and f and g to range over all term constructors. 

We shall write 7 to denote TI . . . Tn, and ?\i to denote TI . . .r,-l r,+l. . . 7,; 7a will typically 
be clear from context. Many other constructs shall be similarly overlined. For example, 
we write A I- 7 as shorthand for: 

The ATIR type language forms a strongly normalising simply-typed A-calculus with con- 
stants. We let A range over kind-contexts (mapping type variables to kinds), and let Ainit 
denote the initial kind context given in Figure 4.3. Figure 4.4 defines the well-kinding 



Kinds K ::= Type I Row I ~1 -> n2 
Type variables a ,b ::= a,b, ... 
Newtype names A, B ::= A, B, . . . 
Types T, v, p ::= I n t  I v -> T 

I Empty 1 7 # P l One P l A l l  P 
I A l a l \ ( a : ~ )  . T ~ T V  

Row tails I ::= Empty I a 
Type var context A ..- ..- a1 : ~ 1 , .  . . , a, : K, n 2 0  
Primitive constraints c, d ::= T i n s  p ) T eq, v )G E { ~ y p e ,  ROW) 

Constraints C, D, E ::= cl,. . . , cn n 2 0  
Type schemes a ::= f o r a l l  A . C => T 

Integers 
Variables 
Abstractions 
Terms 

Patterns 

I 
x,y ,z  ::= x,y,z  ,... 

abs ::= \p . t 
t, u ::= a I A I I n j  I t && u I Triv  

1 t u 1 x 1 Cabsr; ...; abs,) n>O 
I l e t  x = u i n  t 

p , q : : = i I A p I ~ n j p I p & & q l ~ r i v l x  

Newtype decls tdecl ::= newtype { ~ ~ a q u e ) ~ P ~  A = T 

Programs prog ::= tdecll . . . tdecl, t n 2 O  
I 

Figure 4.1: Syntax of XTIR kinds, types and terms 

F , G  ::= I n t  I (,->,I )Empty[ ( -# , I  I (One-) I (Al l - )  I A 
f ,  g ::= ( I n j  -1 I Triv I (, && -1 I A 

1 I 
Figure 4.2: ATIR type and term constructors 

Aconst = I n t  : Type, 
Empty : Row, 

(- # -1 : Type -> Row -> Row, 
(One -1 : Row -> Type, 
(All ,) : Row -> Type, 

( - ->- I  :Type ->Type ->Type 

Ainit = AcOnst St {A, : IE; I (newtype {opaque)'Pt A, = 7,) E tdecls) 
such that Va . Awt t- 7; : IE; 

A K, = 6'1 -> . . . -> KL -> Type 
A V j  , IE; E { ~ y p e ,  ROW) 

A every cycle involving A passes through at least one All/One constructor 

1 I 

Figure 4.3: Initial XTlR type var context Ainit 



[A I- T constraint] 

A I - ~ : n  A I - V : K  ~ E { ~ y p e , ~ o w )  A k ~ : T y p e  AI-p:Row 

A I- T eq, v constraint A I- T i n s  p constraint 

A I- c constraint 

A I- iZ constraint 

I A I- a scheme I 

n E {Type, Row) A +t a I- C constraint A i+ I- T : Type 

A I- f o r a l l  a . C => T scheme 

A I- a scheme 

A I- W context I 
I 

Figure 4.4: Well-kinded XTIR types, constraints, type schemes and type contexts 

judgement A I- T : n, and its extension to constraints, schemes and type contexts. Both 
sides of an equality constraint must have the same kind; insertion constraints must be with 
a Type and a Row. Type schemes must have a body type of kind Type, and each universally 
quantified type variable must have kind Row or Type. 

We let 0 ranges over substitutions, which are idempotent maps from type variables to types 
or rows, and which are the identity on all but a finite set of type variables. We also write 
Id to denote the identity substitution. 

Define the judgement A I- 0 subst to be true iff dom(O) dom(A) and V(a : n) E A . A I- 
O U : ~ .  

Similarly, define I- .9 : A + A' to be true iff dom(0) = dom(A) and V(a : n) E A . A' I- O a : 
n. Notice the strict equality on domains. Clearly, because substitutions are idempotent, 
A and A' must be disjoint. 

We shall write Ols to denote the restriction of 8 to the domain S. Similarly, O\, denotes 0 
restricted to all type variables except a. We shall use the same notation for restricting the 
domains of other maps, such as environments. 

Every recursive newtype must be well-founded; viz every cycle passing through a new- 



named(?) = 
names(=) = ( a )  

anon(=) = 3 

where fresh 

eqs(C) = {T equ / (T equ) E C) 
inss(C) = {w : T i n s v  / (w : T insu)  E C) 
inhs(C) = {(w : c) E C / inheritable(c)) 

1 I 

Figure 4.5: Definitions of functions named, names, anon, inheritable, norm, eqs, inss 
and inhs 

type must also pass through at least one A l l  or One type constructor. This restriction is 
necessary because newtype declarations such as: 

newtype A = B 
newtype B = A 

cannot be given a semantics in the model to be presented in Section 4.5. 

Figure 4.5 collects some ancillary definitions. Some judgements require constraint contexts 
in which every primitive constraint is associated with a unique index variable. The function 
names(C) associates fresh witness names with each primitive constraint in C. The function 
named(C) is the tuple of witness names of C, and shall be used when constructing run-time 
terms; anon(C) is C with all witness names removed. 

We write norm(r) to denote the /3-normal form for a type T of kind Type. Newtype names 
are considered as free variables for the purpose of normalisation. 

We let eqs(C) be the primitive equality constraints of C, and znss(C) be the primitive 
insertion constraints. We let anhs(C) be only the inheritable primitive constraints of C. 
In this dissertation, inheritable(C) is defined to be the constant tt (true) function. If XTIR 

were extended with implicit parameters [57], inheritable(C) would be redefined to be ff 
(false) if C contains implicit-parameter constraints. However, much of the remainder of 
the system, and its proofs of correctness, would remain unchanged. 

We let rm and vm range over all normalised monotypes of kind Type or Row. 

Figure 4.6 presents the syntax of the untyped run-time languagethe  target of our type- 
directed translation. Parts of this syntax have already been introduced in Section 2.6. 

TIP'S are represented as ordered tuples (TI, . . . , T,). TIC'S are a pair Inj W T of an 
index and a run-time term. Each declared newtype A is represented by an injector A, 
and corresponding extractor A-l. Though both these terms would be the identity in 
any operational semantics, they shall be important when we consider a model for XTIR in 
Section 4.5. 



Indexvars w::=w, . . .  
Indices W ::= w 1 One 1 lnc W ) Dec W 1 True 
Bindings B ::= wl = W1,. . . ,wn = Wn n > O  
Variables x, y, z ::= x, y ,  z, . . . 
Terms T, U ::= i I (TI,.  . . , Tn) I Inj W T n > O  

) Ax . T I A(wl,. . . , w,) . T n > O  
I T U I T (Wl ,..., Wn) ( X  I A I A-I n 1 0  
I insert U at W into T I let () = U in T 
( let x y = remove W from U in T 
I case U of { In j  W x -+ TI; 

otherwise + T2) 
I case U of {i + TI ;otherwise + T2) 
I let x = U in T I letw B in T 

I 

Figure 4.6: Syntax of XTIR run-time terms 

rconst = ( Inj  -) : f o r a l l  ( a  : Type), (b : Row) . a i n s  b => a -> One ( a  # b), 
(- %% -) : f o r a l l  (a  : Type), (b : Row) . a i n s  b => a -> A l l  b -> A l l  (a # b), 

T r i v  : A l l  Empty 

A : f o r a l 1  a1 : nl, . . . , a, : K, . norm(r a1 . . . a,) -> A a1 . . . a, 
Finit = rconst +I- { I A : ~1 -> . . . -> fin -> Type E A,,, 

(newtype { ~ ~ a ~ u e ) ~ p '  A = T )  E tdecls 

I I 

Figure 4.7: Initial ATIR type context rinit 

We keep indices separate from run-time terms to simplify our soundness proof. One is 
the first index, and Inc W and Dec W offset index W by one position to the right or left. 
Indices are abstracted and passed in tuples, and may be let-bound by letw B in T. The 
"index" True witnesses the satisfaction of an equality constraint. It plays no part in an 
implementation, but makes the proofs of correctness more uniform. 

The term let () = U in T forces evaluation of U. In the term 
let x y = remove W from U in T, x is bound to the term at index W in U, and y 
to the remaining product. The first case-form checks if U evaluates to a TIC with index 
W. The second simply checks for matching integers. 

4.2 Well-typed Terms 

We let F range over type-contexts (mapping variables to type schemes) and let rinit denote 
the initial type context defined in Figure 4.7. 

Figure 4.8 presents the rules for deciding the well-typing judgement A I C ( I' k t : T L, T, 
with intended interpretation: 

"Term t has type T, and translates to the run-time term T, assuming the free 
term variables typed in I?, the free type variables kinded in A, the satisfiability 



INT 
A \  C I I ' I - 2 : I n t v i  

A1 C I I ' k t : v + T  
A I C I I? t u : v' - U C Fe v eqTpa (v' -> T) v True 

APP 
A1 C I r l - t u : r v T  U 

( x l f  : f o r a l l  V . D => T )  E I? 
D' = named(D) A I- 

C te Dl[=] v B 
VAR 

A (  C ( ~ I - X / ~ : T [ = J  
v letw B in x / f  names(D1) 

A I C I r t1 abs : T v T[e]  
ABS 

A I C I I? I- (abs)  : T v TIundefined] 

A I C I I? absl : T v T[.] 
A 1 C 1 F I- (cabs2,. . . , absn+1) : T' v U 

CFe T e q T y p e r l ~ T r u e  zfresh 
DISC 

A ( C ( I ' F  Cabsl, ..., ~ b s , + ~ )  : T 

v let z = U in T [ z ]  

x E f v ( t )  A k Dl constraint A -ti- A' k D2 constraint 
Dl = inhs(C) saturate(D1 -t+ D2) # 0 a = f o r a l l  A' . anon(Dz) => v 

A + t A ' ( D l + t - D 2 1 r f - u : v ~  U 
A1 C I r , x : a I - t : r v T  

LET 
A1 C I I ' I - l e t x = u i n t : ~  
v let x = Xnames(Dz) . U in T 

I I 

Figure 4.8: Well-typed XTIR terms 

of the constraint context C, and the free index variables of C." 

We intend the VAR rule to apply to variables (ranged over by x ) ,  and constants and 
newtypes (ranged over by f ). 

Note that, as discussed in Section 2.9, the LET rule must check not only that the constraint 
for a let-bound term is well-kinded, but also that it is satisfiable, and that the let-bound 
variable appears free in the let body. The test for satisfiability uses the saturate function, 
which will be defined in Section 4.4. 

The LET rule contains an additional subtlety. Typically, all the constraints of C would be 
available when type checking u. However, in a system with implicit parameter constraints 
[57], any implicit parameters within C must be removed when checking u. This restriction 
is necessary to force any implicit parameters within u to appear within D2, and thus ensure 



A I C I rt-, t : T LS T[.] x fresh 
p2 

A I C I I' I-,+, \i . t : I n t  -> T 

L) Ax . case x o f  { i  + T[. x ]  ; otherwise + x }  

(newtype {opaque)OPt A = v') E tdecls 
(A : nl -> . . . -> n, -> Type) E A,,t 

A t- 2,: C Ce nom(v' v1. . . v,) eqType T' v True 
A I C I r t-,+, \p . t : (T' -> T )  v T [ e ]  x ,  y fresh 

p3 
A I  c l r t - , + , \ ( ~ p )  . t : ~ v ~ . . . v , - > ~  
L-) Ax . let y = A-l x in T [ A y  . (A y ) ]  y 

A I C 1 I? \p . t : (v -> T )  v T[.] 
Al-p:Row C t - e v i n s p ~  W x , y f r esh  

p4 
A I C I I' \(Inj p) . t : One (v # p )  -> r 

+ A x .  case x o f  { Inj  W y + T [ A y  . (Inj W y) ]  y ;  
otherwise -+ x }  

A I C I r \p . \q  . t : (vl -> v2 -> T )  v T[.] 
C Fe (All p) eqType v2 v True A I- p : Row C Fe vl i n s p  v W x ,  y ,  z fresh 

p5 
A 1 c I r I-,+~ \(p && q) . t : ~ i i  (vl # p) -> 7 

v Xx . let y z = remove W from x 
in T [ A y  . Xz . (insert y a t  W into z ) ]  y z 

A I C I rl-, t :  T v T[.] x f r esh  
p6 

A I C I I? \Triv . t : A l l  Empty -> r 
- A x .  let () = x in T [ . x ]  

Figure 4.9: Well-typed ATIR pattern abstractions 



they are dynamically rather than lexically scoped. For ATIR, we abstract from this by using 
the predicate inheritable (defined in Figure 4.5). We intend inheritable(c) to be ff if c 
should be removed from C when checking u. Thus if ATIR were extended with implicit 
parameters, we would define inhertable(?x : T -ti- C) = ff. 

Notice the symmetry of index abstraction in the LET rule and index application in the VAR 

rule. 

The ABS and DISC rules both make use of the mutually recursively defined pattern compiler 
of Figure 4.9. The subscript n is the number of A-abstractions of t to be compiled as 
patterns, and T[.] is the compiled run-time term with a "hole," 0, which should be filled 
by a term (of the same type) to evaluate should the pattern fail. The ABS rule fills the hole 
with undefined, since there is no other alternative to try. The DISC rule chains together 
each discriminant such that failure of abs; will cause ~ b s ~ + ~  to be tried. Notice the use 
of a let binding within the run-time code generated by the DISC rule to prevent code size 
explosion. 

Note than a "vanillan A-abstraction \x . t is typed by treating it as a singleton discrimi- 
nator C\x . t) in the ABs rule. This discriminator in turn invokes the pattern rule p 7  to 
remove the argument x, and then the rule PI for the body t, which then continues in the 
well-typing judgement. 

As a term is deconstructed, the pattern compiler must insert re-construction code so that 
failure will be handled correctly. A real compiler will attempt to @-reduce pattern code 
once the hole has been filled. 

At the heart of all these rules is the entailment judgement, Fe, to be presented in Section 4.4. 
It is used in three ways: 

(i) When two types must be equivalent (e.g., in the APP and DISC rules) the type checker 
asks if the current constraint context entails their equality. 

(ii) Whenever a row is constructed or pattern-matched (e.g., in the p4 and p5 rules), 
the row must be well-formed (the insertion constraint satisfied), and an index must 
be known at run-time. The type checker thus asks if the current constraint context 
entails the membership constraint. If so, the entailment judgement yields the index 
W. 

(iii) Each variable occurrence propagates any constraints from the variable's definition-site 
to the use-site. In the VAR rule, the type checker thus asks if the current constraint 
context entails the variable's constraints, suitably specialised. 

We assume the following definitions for the source-language constants in the run-time 
language: 

(Inj -1 = X(w) . Ax. Inj w x 
(Triv) = () 

(- && -) = X(w) . Ax . Ay . insert x at w into y 
A=Ax.Ax 

Notice these definitions match the types for these constructors given in Figure 4.7. 



lexleqm([, 0) = tt 
 if^<^ G 

lexleqm(F :: r ,  G :: r') = if G < F  F 
lexleqm (r, r'), otherwise 

preorder; (F F) = 
i f F € O  

F :: preorderz (rlm) +t . . . -kt preorderz (r;), otherwise {["I, 
preorderz ((#In 7m Empty) = (#I, :: preorder? (rF1) +t . . . +t preorderg (~?,m,) 

where .rr is a permutation on n s.t. 
Vi, j . i 5 j + leq;(r,mi, 7 2 )  

leq5(rm, vm) = lexleqm (preorderz (rm), preorder; (urn)) 

I I 

Figure 4.10: Total order on XTIR monotypes 

4.3 Type Order 

This section formalises the notions of type order and equality introduced in Section 2.7. 
We shall first construct a total order on monotypes, and then show how this order may be 
extended to a partial order on all types that is stable under substitution. 

Let < F  be an arbitrary total order on all type constructors and newtype names. For 
concreteness, our examples will assume the ordering (where the A, are the newtypes of the 
program) : 

I n t  < F  Boo1 <F Str ing  <* (- -> -I <F Empty < F  
(One -I < F  (All -I < F  A. < F  . . . <F A, < F  

(# lo  < P  (#I1 <F . - - 
Notice that we have included the type constants Boo1 and String, even though these are 
not included in the formal syntax of Figure 4.1. 

Figure 4.10 defines the binary monotype relation, leqz, which is parameterised over a set 
of type constructors 0. This relation is well-defined for any pair of normalised monotypes 
of kind Type or Row. Note that because only similarly kinded types need be compared, we 
could replace leq; with a pair of relations. However, this precision comes at the cost of 
additional notational complexity. 

This relation defines the monotype rm to be less-than or equal to urn, written leq;(rm, urn), 
when their pre-order flattenings are lexicographically ordered under lexleqm. The latter 
uses < F  to order each type constructor. For convenience the definition uses a list-like 
syntax, where is nil and :: cons. Notice that, because each type constructor is both of 
a fixed arity and saturated, there is no need for lexleqm to consider the case of unequal 
length argument lists. 

Since the ordering of types should be stable under permutation of row elements, preorderz 



first sorts a row's elements using leq$ before flattening them. In this way we have: 

leq$(~ool#  I n t  # Empty, I n t  # Str ing  # Empty) = tt 

This recursion is well-defined because the row elements are strictly smaller than the row 
containing them. 

In the sequel, we shall instantiate 0 with either 0 or opaque, the set of all newtype names 
declared as opaque. In this way leq$ may be used to decide both transparent and opaque 
(in)equality. For example, assuming 

we have 
leqGaq,, (A S t r ing  # Bool # Empty, Bool # A I n t  # Empty) 

but 
lleqc(A Str ing  # Bool # Empty, Bool # A I n t  # Empty) 

The relation eqc, for type equality, is defined in the obvious way. 

Fact 4.1 Let n E {Type,Row) and Awt I- T ~ / V ' ~ / V ~  : K. Then 

(i) leqc(rm,vrn) is well-defined. 

(ii) leg; is a partial order, viz leqc ( T ~ ,  T ~ ) ;  leg; ( T ~ ,  vim) and leq$ ( d m ,  urn) imply 
leqc(rrn, urn); leq$(rm, urn) and leq$(vm, T ~ )  iff rm and urn are equal up to permu- 
tation of row elements and ignoring the arguments of type constructors in 0.  

(iii) leqc is a total order, viz leq$ ( T ~ ,  urn) or leqc (urn, T ~ ) .  

We now consider how to lift leqc to all types. The lifted relation is most conveniently 
expressed as a binary function, cmpo, into the four-valued set of It (less-than), gt (greater- 
than), eq (equal) and unk (unknown). 

Before plunging into the definition, it is worthwhile to consider what is required. Clearly, 
cmpo should agree with leg$ on monotypes: 

~ m p ~ ( ~ ~ ,  urn) E {lt, eq) leq$(rm, urn) 

However, to ensure soundness of entailment, cmpo must also be stable under substitution: 

cmpo(r,v) = x A x # unk ==. cmpo(8 T,O U) = x 

An obvious definition is for cmpo to yield unk whenever its arguments are not monotypes, 
but definition this is needlessly conservative. Figure 4.11 presents the actual definition, 
which will yield unk only when the possible instantiation of a type variable is significant 
in deciding the (in)equality of two types. For example, again assuming 

newtype opaque A = \a . a 



lexcmpt([l, 0) = eq 

{ 
It, if a <" b 

lexcmpt(a :: r ,  b :: r') = gt, if b <" a 
eq, otherwise 

lexcmpt(a :: r, G :: r') = lt 
l excmpt (~  :: r ,  a :: r') = gt 

i f F < F  G 
lexcmpt(F :: r, G :: r') = gt, if G <F F 

lexcmpt ( r ,  r'), otherwise r7 
eq, if a = b 

lexcmpP(a :: r ,  b :: r') = 
unk,  otherwise 

lexcmpP(a :: r ,  G :: r') = u n k  
lexcmpP(F :: r, a :: r') = u n k  

i f ~ < ~ G  
lexcmpP(F :: r, G :: r') = if G < F  F 

lexcmpP(r, r') , otherwise 

preorderg (a) = [a] 

preorderb ( F  7) = { [FIT i f F ~ 0  
F :: preorderb (rl)  -I+ . . . +t preorderg (T,), otherwise 

preorderb ((#In ? 1 )  = I :: (#In :: preorderg (7,l) +t . . . +t preorderg (7, ,) 
where T is a permutation on n s.t. 

cmpb (7, v) = Eexcmpt (preorderg ( 7 )  , preorderb (v)) 

cmpo (7, v) = lexcmpP(preorder~ (T ) ,  preorderb (v)) 

F igure  4.11: Partial ordering on normalized XTIR types of kind Type and Row 

we have 

cmp,,,, ( In t ,  a -> b) = I t  

cmpoWque (Boo1 -> a, I n t  -> b) = g t  

The relation cmpo is defined analogously to leg5 using a lexicographic ordering, Eexcmpp, 
on a pre-order flattening, preorderg. The function lexcmpp will yield u n k  whenever it 
encounters a type variable (though the comparison of a type variable against itself may 
safely yield eq). 



The treatment of row comparisons involves some subtlety. Firstly, consider how to order 
the rows a # d and b # c # d. Since these rows share the same tail d, the first will always 
be smaller than the second, suggesting: 

Furthermore, consider how to compare I n t  # Bool # Empty and (a -> b) # (c -> dl # 

Empty. Even though (a -> b) and (c -> d) cannot be ordered with respect to each other, 
each of I n t  and Bool may be ordered with respect to (a -> b) and (c -> d l ,  suggesting: 

cmp,,,,, ( In t  # Bool # Empty, 
(a -> b) # (c -> d) # Empty) = It 

Hence, one row may be less than another even though the elements of one or both rows 
cannot be ordered amongst themselves. However, any rows with differing tails cannot be 
ordered, since one or both tails may be instantiated to a row of arbitrary length. 

To implement this requires two tricks within preorderg. Firstly, a row's tail is placed before 
both its (#), type constructor and its flattened element types. In this way, unequal row 
tails cause lexcmpp to yield unk. Secondly, the elements of a row are sorted not by crnpo, 
but by a total order, cmpb, which places type variables before all other type constructors. 

We assume <a is an arbitrary total order on all type variables, which for concreteness we 
shall take to be lexicographic on the variable's name. The relation cmpb is defined as for 
cmpo, but using lexcmpt to lexicographically order the flattened types instead of lexcmpp. 
Of course, cmpb is not stable under substitution, or even a-conversion! The stability of 
cmpo is thus a little subtle. 

The following lemma summarises the properties of cmpo. 

Lemma 4.2 Given K E {Type,Row) and A I- r /vt /v : K, then: 

(i) cmpo (r ,  v) is well-defined. 

(ii) If I- 8 : A + A;,;, then cmpo (8 r ,  8 v) E {It, eq) iff leqz (8 r , 8  v). 

(iii) If A I- 8 subst and cmpo (7, v) = x for x # unk, then cmpo (8 7,8 v) = x. 

(iv) cmpo (r, v) = eq iff r is equal to v up to permutation of row elements and ignoring 
the arguments of type constructors in 0. 

(v) cmpo(r, V) = eq iff cmpo(v, r) = eq. 

(vi) cmpo (7, v') = eq and cmpo (v', v) = eq implies cmpo (7, v) = eq. 

(vii) cmpo (7, v) = It iff cmpo (v, r )  = gt  . 

(viii) cmpo (7, v') = It and cmpo (v', v) = It implies cmpo (7, v) = It. 

(ix) cmpo (7, 7') = eq and cmpo (r', v') = It and cmpo (v', v) = eq implies cmpo (7, v) = 
It. 

(x) cmpo(r,r') = eq and cmpo(r',v') = unk and cmpo(vf, v) = eq implies 
cmpo (r,  v) = unk. 



(xi) cmpo(r, v) = unk iff cmpo(v, T) = unk. 

(xii) cmpo(r, 'u) = I t  then crnp0(r, v) = I t .  

(xiii) cpnp~(~ ,  v) = eq then cmpo(r, v) = eq. 

Proof Most are by definition of cmp. Property (iii), however, is a little subtle: see 
Lemma B.3. 

4.4 Constraint Entailment 

Roughly speaking, a constraint C entails a constraint D, written C ke D, if every satisfying 
substitution for C satisfies every primitive constraint in D. However, we also ask that the 
satisfaction of each primitive constraint be witnessed. Hence the full judgement form is 
C ke D L) B, where B is a set of bindings of witness names of D to witnesses, which may 
contain witness names from C. Thus B resembles a coercion from C to Dl and our ke 
judgement decides implication in an intuitionistic logic of constraints. 

4.4.1 Unification and Saturation 

Our strategy for deciding entailment is to first saturate the equality constraints of C by 
reducing them to a set of unifying substitutions. We then discard those unifiers which 
violate any insertion constraints in C, and then check each primitive constraint in D is 
satisfied for each remaining unifier. 

Figure 4.12 presents the definition for saturate. Much of the work is performed by mguso, 
which, given a set of equality constraints, collects the set of their most-general unifiers (if 
any). Here, "most-general" refers to the unifier for a fixed permutation of all rows, and 
does not imply the set itself is "most-general7' in any sense. An empty unifier set implies 
a pair of types are non-unifiable. A non-singleton, non-empty set implies at least one pair 
of rows are unifiable under more than one permutation of row elements. 

As in Section 4.3, 0 is a set of type constructors, and will be instantiated to either 0 or (in 
Chapter 5) opaque. For the latter, the resulting "unifiers" need not unify the arguments 
of opaque newtypes. 

Notice that the case for row unification collects the unifiers for each possible matching of 
the first left-hand side element type to each right-hand side element type or the right-hand 
side tail. Unifying a type with a row tail requires the introduction of a fresh type variable 
of kind Row, hence some care shall be required when stating properties involving mguso. 
Furthermore, no attempt is made to eliminate unifiers which lead to obviously ill-formed 
rows. For example 

mgusO(Id k ( In t  # Bool # a) eq (String # I n t  # b)) = 
[a + String # dl b I+ Bool # dl, 
[a e String # I n t  # e, b I+ I n t  # Bool # e] 

Here the second unifier (an instance of the first) duplicates the I n t  element types in both 
rows. This definition is in keeping with the definition of cmpo. In the sequel we shall see 
how such unifiers are rejected when it comes to deciding entailment. 



fvo(a)  = { a )  
fvo(F 7)  = if F E 0 t h e n  0 

else U, fvo (7i)  

f vo( (#)n  7 1 )  = Ul<i<nf7-lo(~i) ' J ~ v o ( ~ )  - - 

mguso(8 t- t r u e )  = ( 8 )  
mguso(8 t- b eq b, C )  = mguso(8 I- C )  
mguso (8 t- b eq 7, C )  = if b E fvo (7) t hen  0 

else naguso([b t, T ]  0 0 I- C [b 6 T ] )  

mguso(8 t- T eq b, C )  = mguso(8 t- b eq 7, C )  
mguso(8 t- F 7 eq F D, C )  = if F E 0 t h e n  ( 8 )  

else mguso (8  I- 7, C )  
mguso(8 I- F 7 eq GV, C )  = 0 when F # G 

S. u S' rnguso(O I- (#I, 7 1 eq (#In V I', C )  = Ul<j<n J 

where Sj = {mguso(f3 t- 7 1  eqvj, (#I m-1 T\i 1 eq (#I n-1 Cb l', C ) )  
and S' = if I' = a a n d  a @ fvO(rl)  t h e n  

mguso([a I+ TI # b] 0 8 I- ((#),-I T\l 1 eq ( # I n  b, C)[a  I+ 71 # b]) 
else 8 

and b : Rou fresh 

i s I n ( ~ ,  (#) D 1 )  = 3i . cmpopague (7, vi) = eq 
satisfied( C )  = B(T ins p) E C . isIn(r, p) 

8 E mguq (Id t- eps( C ) ) ,  
satisfied (8 inss ( C ) )  

I I 

Figure 4.12: Definition of fv, rngus, and saturate 

Furthermore, mguso may also include "junk" unifiers which, though sound, are not most 
general. For example: 

mugs@(Id I- (a # b # Empty) eq (a # b # Empty)) = {Id, a * b) 
Here the second unifier is redundant, but to prevent its inclusion, or to detect and discard 
it, seems to be much more trouble than simply accounting for such unifiers in a few points 
within the correctness proofs. 

Though we shall speak of sets of unifiers, multi-sets are also appropriate. Hence mguso 
need not attempt to collapse duplicate unifiers. 

Of course an actual implementation of mguso needn't use such a brute-force collection of 
all unifiers. By using cmpt to first sort each row, many obviously failing combinations may 
be rejected. 

Much of the rest of the technical development will depend on substitutions being equal 
only up to the equality on types induced by cmpo. To this end, let 8 r o  8' iff Va . 
cmpo(8 a ,  8' a )  = eq. 

Lemma 4.3 (Correctness of Unification) 

(i) If Vi  . 8  ri = T, A 8 V ,  = v ,  then 8' E mguso(8 t- 7) implies 38'' .8' = 8" o 8 and 



MEMPTY 
C I-" T i n s  Empty v One C I - " ~ i n s p ~ ) w  

CmPopaque (7, vi) = lt CmPopaque (7, vi ) = gt 
C k r n ~ i n ~ ( # ) n E Z V  W C k m  T i n ~ ( # ) ~ E Z v  W 

MCONT MDEC 
C km T ins (#),-I E\, I v W C t-" T ins  (#),-I E\, 1 Dec W 

CmPopaque ( 7 7  vi ) = lt CmPopaque ( 7 7  vi) = gt 
C I-" T ins  E\, I L) W C km T ins  E\, 1 L) W 

MEXP MINC 
C k m 7  ins(#) ,EZ v W C km T ins  (8 ) .  E 1 V Inc W 

V8 E saturate(C) . V8 E saturate(C) . 
cmpo (8 T, 8 v) = eq 8inss(C) km 8 7  i n s 8 p v  W 

EQUALS INSERT 
C ke T eq v v True C ke r i n s p v  W 

C k e d v  W 
CONJ 

C k e w : d v w =  W 
L I 

Figure 4.13: XTIR constraint entailment 

Vi . cmpo (8" T,, 8'' vi) = eq. 

(ii) If Vi . cmpo(8 T,, 8 v,) = eq then 38' E mguso(Id I- C F j T )  and 8" s.t. 
elt 8'ldom(8) EO e. 

Proof See Lemma B.6 and Lemma B.7. 

Notice the use of domain restriction in the statement of equivalence of substitutions in (ii) 
above. This restriction is necessary because both 8' and 8" may contain spurious bindings 
for row variables introduced by mguso. It is exceedingly tedious to include these restrictions 
in the (very many) places we must show the equivalence of substitutions. Hence, in the 
sequel we shall assume, unless noted otherwise, that -0 is equivalence up to restriction to 
the relevant variables. Here, "relevant" will be clear from context. (Jones' = relation [47] 
is defined similarly, though its motivation is very different.) 



4.4.2 Entailment Judgement 

Figure 4.13 presents the constraint entailment judgements. 

The rules of the ancillary judgement C Fm T i n s p  v W attempt to find a suitable index, 
W, for type T within row p. Notice these rules are non-deterministic: There may be many 
possible derivations, and hence many possible witnesses. Furthermore, infinite derivations 
are possible. Both these properties are an artifact of our presentation, which is pleasantly 
concise compared to a fully deterministic and finite system. 

Rule MEMPTY is the obvious base case (recall indices are base 1). Rule MREF allows 
an index to be drawn from the environment, provided all types agree opaquely up to 
permutation. Notice that all comparisons in these rules use cmpopaque rather than cmpo, 
since the type arguments of opaque newtypes should not be significant in determining the 
insertion position of a type in a row. 

The remaining rules all attempt to build a relative index by adding or removing a type 
from a row for which the index is known. These rules are only applicable when the type 
being added or removed can be strictly ordered with respect to the type being inserted. 

Sometimes W will be an absolute index. For example: 

t r u e  Fm Bool i n s  ( In t  # St r ing  # Empty) v Inc One 

Otherwise, W will be relative to an index in C. For example: 

w : Bool i n s  (a # Empty) Fm Bool i n s  (a # I n t  # Empty) L) Inc w 

The rules for the C Fe Q v W judgement first saturate C, then check d is satisfied 
under each unifier. Notice that rule INSERT requires the index W witnessing T i n s  p  to be 
(syntactically) the same under each unifier. Doing so prevents a membership constraint 
from being incorrectly discharged. For example, the following judgement is not true: 

(a # b # Empty) eq ( In t  # Str ing  # Empty) Fe a i n s  (Bool # Empty) L) W 

Depending on whether a is bound to I n t  or String, W can be One or Inc One. When 
there are multiple ways to bind an index, we assume the entailment fails if there is no single 
derivation which yields the same index under all unifiers. An actual implementation can 
avoid having to try many possible derivations of the Fm judgement by preferring relative 
to absolute indices. 

Finally, the C Fe D L) B judgement extends the C Fe d v W judgement from primitive 
constraints to full constraints. Notice this definition implies saturate(C) is performed for 
each d E D: Of course an implementation need not do so! 

4.4.3 Soundness of Entailment 

Figure 4.14 presents a simple denotational semantics for XTlR witnesses and primitive con- 
straints over ground types. The semantics uses the set Z of witness values. We write 1 to 
denote the singleton set {*I, and we let 7 range over all mappings from witness names to 
witnesses. (In the sequel these maps shall be extended to include ordinary variables.) 



Z = (iwrong : 1 + iind : NS + itrue : 1) 

[wl, = 77 w 
[One], = iind : 1 

[lnc W], = case [ W l q  of { 
iind : i + iind : i + 1; 
otherwise -+ iwrong : * ) 

[Dec W], = case [ W ] ,  of { 
iind : i + if i > 1 then iind : i - 1 else iwrong : *; 
otherwise + iwrong : * ) 

[True], = itrue : * 

?r is a permutation on n, 
s o r t i n g P e m s ( ~ ~ ~ ,  . . . , Vi , j .  i 5 j + leq&,,(~,mi,~,mj) 

[ T ~  ins (#), F Empty] = if VT n. S . 1 = i then {iind : i) else 0 
where S = sortingPems(rm, v r  , . . . , v:) 

[T- eq urn] = if eqQm(Tm, urn) then {itrue : *) else 0 

I I 

Figure 4.14: Definition of the set Z, the denotation of XTIR witnesses in Z, the denotation 
of XTIR primitive constrants as subsets of Z, and env 

Notice that the denotation of a primitive constraint will be either the empty set (if un- 
satisfied) or a singleton (if satisfied). The only subtlety is the denotation for insertion 
constraints. We allow sortingPems to yield more that one sorting permutation, provided 
they all agree on the index for T. For example 

[Boo1 ins I n t  # I n t  # Empty] = {iind : 3) 

but 
[Boo1 ins I n t  # Boo1 # Empty] = 0 

Using this model we may show our entailment judgement is sound. Notice that, for clarity, 
we have suppressed the trivial True witnesses for equality constraints in the proof-theoretic 
development, even though the following model-theoretic development requires them. They 
may always be reinserted where required. 

We say 7 satisfies C, written 7 + C, if (w : c) E C d 7 w E [c]. If A I- C constraint, we 
define satisfiable(C) to be true if there exists a A I- 8 subst and 7 s.t. 77 + 8 C. 

Let A I- C I D  constraint. Then we say C model-theoretically entails D with coercion B, 
written C IFe D L, B,  iffor every I- 8 :  A + Aait and 7 s.t. 77 + 8 C, we have 
env(B,q) + 8 D. 



We say (r eq v) is equivalent to (7' eq v'), written (7 eq V) - (7' eq v'), if cmpO(r, 7') = 
eq and cmpO(v, v') = eq or cmpO(r, v') = eq and cmpO(v, 7') = eq. Similarly, define 
(7 ins p) EE (7' eq p') to be true if cmpO(r, rl) = eq and cmpO(p, pl) = eq. We extend - 
pointwise to all constraints. 

Lemma 4.4 (Soundness of Entailment) If C ke D v B then C IFe D L) B. 

Proof See Lemma B.13 for the full theorem statement and proof. 

As an immediate consequence of soundness we have: 

Lemma 4.5 

(i) Types are tautologically equal if they are equivalent: true Fe r eq v implies 
c m ~  (7, v) = eq. 

(ii) A type may be tautologically inserted into a row if it has a unique insertion index: 
true w : v ins (rl # . . . # rn # Empty) v B implies S # 0 and there exists an i 
s.t. VT E S . n-' 1 = i, where S = sortingPems(v,r1,. . . , rn) .  

Proof See Lemma B.14. 

We can also show that entailment is well-behaved: 

Lemma 4.6 

(i) ke is reflexive: C Fe C v . 

(ii) ke is transitive: C Fe D' v B and D' Fe D v B' and q + 0 C implies C ke D v 
B" and env ( B  * B'l 7) lnames(D) = B"l 7) [names(D) 

(iii) ke is closed under substitution: C ke D v B implies 0 C ke 0 D v B. 

Proof 

(i) See Lemma B.28. 

(ii) See Lemma B.31 for the full statement and proof. 

(iii) See Lemma B.27 for the full statement and proof. 

Finally, we can show saturate(C) is non-empty if and only if C is satisfiable: 

Lemma 4.7 saturate(C) # 0 iff satisfiable(C). 

Proof See Lemma B.16. 



4.4.4 (1n)Completeness of Entailment 

The rules of entailment in Figure 4.13 are not complete with respect to the model of 
constraints given above. That is to say, C IFe D v B does not imply C Fe D L, B. This 
incompleteness arises because the F m  judgement does not exploit the way in which types 
are ordered. 

For example, notice that for any q and 8 such that 

we have 
[ w ] ~  E [O ( (b, C) ins (Bool, Int)  # Empty)] 

However 

w : b ins (Boo1 # Empty) ,Fm ((b,  c )  ins (Bool, Int) # Empty) 9 w 

Some progress can be made by including the projection rules: 

(w : (T v) ins (T 21; # . . . T vk # FSlpty)) E C 
MPROJL 

C F m  w l : v  ins (#), v'Emptyv w l =  w 

( w  : v ans (#I, 7 Empty) E C 
MPROJR 

C F m  w' : (T v)  ins (T vi # . . . # T vk # Empty) v w1 = w 

Here T is any type functor of kind Type +- Type which does not discard its type argument 
(though it may be duplicated). Since such rules seem potentially very expensive to imple- 
ment, we would like to first gain some experience with an implementation before deciding 
if such an expense is justified. 

A variation of these rules for functors of kind Row -+ Type is also possible, but potentially 
even more expensive, since it must work with rows in canonical order. 

However, even with the rules above the example entailment above still fails, and hence 
ke remains incomplete. The problem is that these rules do not exploit the lexicographic 
ordering of types. Though variations of the rules above to exploit this information seem 
plausible, we feel this problem is one of the model being too rich rather than the entailment 
relation being too poor. A better approach would be to parameterise the definitions of 
Figure 4.14 by the definition of leqm. We would then write C IFe D v B iff q 0 C 
implies env(B, q) + 8 D for all definitions of leqm. which satisfy the properties of Fact 4.1. 

It is unknown whether Fe remains incomplete even with all of the refinements mentioned 
above. 

Incompleteness of entailment has two consequences. Firstly, may properties, such as closure 
under substitution and transitivity, are trivial to show for IFe. Without completeness, we 
are forced to prove these properties for k e  also, which is substantially more complicated. 
Secondly, when we come to showing XTlR enjoys completeness of type inference in Chapter 5, 
we must base the theorem upon IFe rather than F e .  



E A = {l) u {[a] 1 a E A) 

unitE : A + E A 
= Aa. [a] 

bindE : E A + ( A - + E B ) - + E B  
=Aeaf . c a s e e a o f { I + I ; [ a ] + f  a) 

s trengthE : A x E B + E (A x B)  
= Aa eb . case eb of {I -+ I ; [ b ]  + [(a, b)]) 

I I 

Figure 4.15: Evaluation monad E 

4.4.5 Complexity of Entailment 

We do not have any complexity results for entailment, or even satisfaction. Of course, 
entailment is mostly a theoretical stepping stone towards simplification, for which care has 
been taken to avoid explosive time complexity. An implenaentation of entailment is used 
by the compiler in only two situations: 

(i) The simplifier uses (a variation of) entailment to eliminate constraints containing 
only type variables known not to appear outside the constraint. These constraints 
tend to be small. 

(ii) The compiler must check the constraint in a programmer-supplied type annotation 
entails the inferred constraint. However, programmers tend not to write very large 
constraints when annotating a term, usually because they are only interested in 
an instance of (one of) the term's principal type(s) in which most of the constraints 
become tautological. Furthermore, if experience with Haskell is any guide, they would 
prefer to be able to supply a type annotation without also supplying a constraint. 
(A ". . ." notation, denoting "any constraint," has been proposed for Haskell, and 
would likewise be suitable for ATIR.) In such cases the type checker only needs to 
check that the inferred constraint is satisfiable when instantiated by the annotated 

type. 

In both cases, the left-hand side constraint is small when deciding entailment. Furthermore, 
rows tend not to be highly polymorphic and not deeply nested, in which case saturate yields 
only a modest number of substitutions. 

4.5 Type Soundness 

This section presents a denotational call-by-name semantics for ATIR. The model is inspired 
by that for HM(X) [79], which in turn is a mild generalisation of Milner's original model 
for let-bound polymorphism [66]. Types are denoted by ideals [59] of the domain E V, and 
terms by members of E V. 

V is the pre-domain of values, defined by: 

V = ( (wrong : 1) + (int : 2) + (func : E V -+ E V) 
+ prod. : n,,,,, E V) + (inj : N+ x E V) 
+ (E.>O - ifunc. : ( IT ; , i , . I )  -+ E V) 1 



[ ~ n t ]  = E  {int : i I i E 2) 
[vm -> rm] = E  {func : f I f E E  V + E  V, v E [vm] * f v E [rm]) - 

[ A l l  ((#In rm Empty)] = E  {prod, : ( ~ 1 , .  . . , v,) ( vi  E [r,ml], . . . , v, E [TA]) 
[One ( (# )nPEmpty) ]  = E  {inj: ( i ,v)  11 5 i 5 n,v E [r,mi]) 

where .rr E sor tangPerms(~~~,  . . . , r r )  
[A v y  . . . v r ]  = E  J. (lfp Ad . [(nomn(r v? . . . vr))[A v y  . . . v r  I-) d l ] )  

where (newtype {opaque)OPt A = T) E tdecls 
[dB = d 

[f o r a l l  A . C => TI = n 
where D = named(C) 
and names(D) = (q, . . . , w,) 

and S(e,B) = E f E (nIs,,~) -+ E v, 
env(B),  ... 7 [wnIenv(~))E 86 71 

I I 

Figure 4.16: Denotation of ATIR normalized monotypes and type schemes as ideals of E  V 

Here + is categorical sum, + continuous (not necessarily strict) function space, 2 the set 
of integers, Jd+ the set of non-zero naturals, Z the set of indices defined in Figure 4.14, and 
E  is the evaluation (lifting) monad defined in Figure 4.15. Each summand is tagged by a 
mnemonic for its injector. We use the summand wrong : * to denote all ill-typed programs. 

(This somewhat unorthodox presentation of V as a pre-domain rather than a domain has 
been chosen so as to make the monad E explicit, which in turn simplifies the proof of type 
soundness.) 

Figure 4.16 presents the denotation of XTIR monotypes and (closed) type schemes. The de- 
notation for an A l l  type is a product of types ordered by a sorting permutation. Similarly, 
a One type is a pair of an index and type, where the index must match the type under 
a sorting permutation. (Recall sortingPemns was defined in Figure 4.14.) Notice that we 
say "a" rather than "the" sorting permutation here so that we may assign a meaning to 
all well-kinded types, including TIP'S and TIC'S containing duplicate types. Notice that 
the choice of permutation does not change the denotation of these types, because we shall 
show equal types have equal denotations. Furthermore, since all types are ground, there 
will always be at least one permutation. 

Newtypes are possibly recursive: We assume they are never mutually recursive and all 
the recursion is regular. (A model for all XTIR recursive types is possible but would take 
us too far afield.) We write lfp to denote the usual least-fixed-point solution (up to 
isomorphism) of mixed-variance recursive types using e-p pairs and strict function spaces. 
This solution is always well defined (and thus the result pointed) since the denotation of all 
other types are pointed, and every recursive cycle for a newtype passes through a One or 
A l l  constructor. We write unfoldA and foldA for the usual mediating morphisms. That 
is, if (newtype A = v) E tdecls and (A : ~1 -> . . . -> K ,  -> Type) E Aha, then 



for any Acit t 7: we have 

(For clarity we suppress the parameterisation on A, which is always clear from context.) 
The operation 4 removes the bottom element from a domain. We use it so that the 
denotation of every type has I as its least element. 

The most important aspect of our model is the denotation of type schemes. If a scheme 
contains insertion constraints, its denotation is the ideal of all index abstractions which 
are well-behaved for all possible solutions to the constraints. This is defined by taking 
the intersection over all grounding substitutions 8 for which env(B) k 8 D. Then each 
index abstraction must yield a well-typed result given the (meaning of the) bindings in B. 
(Again, recall env was defined in Figure 4.14.) 

It is easy to see wrong : * never appears within the denotation of a monotype: 

Fact 4.8 If Ainit I- r : Type then [wrong : *] $Z [ T ] .  

Furthermore, the denotation of monotypes respects equality: 

Fact 4.9 eqQm (rm,  urn) implies [rm] = [urn]. 

The situation is not so simple for type schemes. If C is unsatisfiable, 
[forall A' . C => r] = E V, which clearly does contain [wrong : *]. However, provided 
the toplevel constraint of a term is satisfiable, all of the constraints arising within it are 
also satisfiable. This reasoning is built into the soundness proof, to follow shortly. 

Figure 4.18 presents the denotation of ATIR terms. For convenience, we allow q to bind both 
term values (members of E V) and index values (members of 1). We write letE x t u in t 
as shorthand for bindE or (Ax . 2s). 

We now show the translation of every well-typed ATIR term has a denotation within the 
denotation of its type. Since no ATIR type contains [wrong : *], this property implies a 
well-typed program, when translated, will not encounter a run-time type error. 

We say q models I?, written 77 + I?, if dom(q) = dom(I') and for every (x : a) E r, 
77 x E BOD. 

Theorem 4.10 (Type Soundness) If A I C I r I- t : r t, T, and 8 is grounding and 
well-kinded under A, and env(B) k 8 C, and q 8 I? then [T]q++env(B) E 80 r]. 

Proof See Theorem B.39 for the full theorem statement and proof. 



[a], = unitE (int : i) 
[(TI,. . - 7  Tn)], =  unit^ (prod, : ([T1]77 - .  ., UTnBq)) 

[lnj W TIa = case [ W], of { 
. 11nd . : a +  unit^ (inj : (i, [TI,)); 
otherwise + unitE (wrong : *) ) 

[Ax . TI, =  unit^ (func : Xy . [T],,,,,) 
[A(w1,.. . , wn) . T], =  unit^ (ifunc, : X(y1,. . . , y,) . 

B T I ~ , ~ ~ ~ Y I ~ . . - ~ W ~ + + Y ~  
[T U], =  let^ v t [T]7 

in case v of { 
func : f + f [U],; 
otherwise +  unit^ (wrong : *) ) 

[T ( W l ,  - Wn)], =  let^ v + [TI, 
in case v of { 

ifunc, : f + f ([Wi],, - .  - , [ WnIa); 
otherwise + unitE (wrong : *) ) 

[XI, = 77 x 
[ A ] ,  =  fold^ 

[A-'1, = unfoldA 

Figure 4.17: Denotation of XTIR run-time terms as members of E V (part 1 of 2) 



[insert U at  W into TI, = letE v t IT], 
in case (v, [ W],) of { 

(prod, : (v;, . . . , v;), iind : i )  + 
unitE (if 1 5 i 5 n + 1 then v" else wrong : *); 

otherwise + unitE (wrong : *) ) 
where v" = : (vi, . . . , v:-~, [U],, vi, . . . , v;) 

[let () = U in T], =  let^ v t [U], 
in case v of { 

prodo : 0 + [TI,; 
otherwise +  unit^ (wrong : *) ) 

[let x y = remove W from U in T], = 
letE v 4- [U], 
in case (v, [W],) of { 

(prod, : (vi, . . . , v;), iind : i )  + 
if 1 5 i 5 n then [TI ,,,,, I v,,~~ else  unit^ (wrong : *); 

I 9 

otherwise -+ unitE (wrong : *) ) 
where v" = unitE : (vi, . . . , v,!-~, vftl, . .  . , v;)) 

[case U of { Inj W x + TI; otherwise + T2 )I, = 
letE v t [UIq 
in case (v, I[ W],) of { 

(inj : ( j ,  v'), iind : i )  + if i = j then [T1],,,,,t else [T2B,; 
otherwise -+ unitE (wrong : *) ) 

[case U of { i + T I ;  otherwise + T2 )I, = 
letE v t [U], 
in case v of { 

i n t  : j + if i = j then else [T2],; 
otherwise + unitE (wrong : *) ) 

[let x = U in TI, = UTI,,,*[up, 
[letw B in TI, = [TI env(J3,q) 

Figure 4.18: Denotation of XTIR run-time terms as members of E V (part 2 of 2) 



Chapter 5 

Type Inference 

This chapter develops a type inference system for XTlR, which we show sound and (with 
one caveat) complete with respect to the type checking system given in Chapter 4. 

5.1 Inference Rules 

The type anference judgement 8 1 C I I' I- t : T v T is defined by the rules of Figure 5.1. 
This relation may be read as a type inference algorithm with t and I' as inputs, and 8, C 
and T as outputs. Its intended interpretation is: 

"Given term t in type context I?, t has the most general type T and constraint 
C, assuming the free-variables of I' are bound by 8. Furthermore, t may be 
implemented by the run-time term T." 

An ancillary judgement for inferring the types of patterns is defined in Figure 5.2. 

These rules are, for the most part, mechanically derived from those for type checking given 
in Figures 4.8 and 4.9: 

Types arbitrarily introduced by a type-checking rule must be replaced by a fresh type 
variable (of the same kind) in the corresponding type-inference rule. For example, 
the well-kinded types E in rule VAR become the fresh type variables in rule IVAR. 

Similarly, types which appear only in the conclusion of a type-checking rule must be 
replaced by a fresh type variable in the type-inference rule. For example, T in rule 
APP becomes variable b in rule IAPP. 

Each primitive constraint tested for entailment by a type-checking rule must instead 
be accumulated by the corresponding type-inference rule. For example, the constraint 
v eq(vl -> T )  in rule APP becomes the constraint (02 T )  eq(v -> b )  in rule IAPP, which 
is included in the result constraint. 

The substitution 8 must be threaded linearly throughout the derivation, and applied 
to I' in any intermediate derivations. (The proof of completeness will turn out to be 
a little easier if the domain of 8 is restricted to fvo(I'), hence the explicit restrictions 
in rules ISIMP and 1 ~ 7 . )  

There are two exceptions to this transliteration. Firstly, and as usual [19,47], the ILET rule 
must generalise the type and constraint for u when inferring the type of l e t  x = u in t .  



IINT 
Id I t r u e  I I' I- 2 : I n t  v a 

b : Type fresh C = (02 D )  Sf D' +t (82 T )  eqTwB (v -> b)  
IAPP 

820811 C I I ' I - t u : b v T  U 

( x / f  : f o r a l l  a . D => T )  E I' . . -  

b: fresh C = named ( D )  [a t, b] 
IVAR 

Id I C I I? I- x l f  : ~ [ a  I-+ b] v x/ f  names(C) 

8 1 C I I? t-1 abs : T  v T[e]  
IABS 

0 1 C I I- (abs) : T v T[undefined] 

1 D I I' I-1 absl : T cs T[e]  
82 I D' I O1 r I- ( a b ~ ~ , . . . , a b s ~ + ~ )  : T I  v U 

C = (02 D )  +t D' +I- (82 T )  eqType T' 
IDISC 

O 2 0 Q 1  I C I I? I- i a b ~ ~ , . . . , a b s , + ~ 3 :  r ' v  let z = U in T [ z ]  

z ~ f v ( t )  e l l  D ~ ~ ~ F ~ : V C S  u 
gen(D1 101 I' 1 v )  = ( 0 2  1 A 1 0 3 )  

o = f o r a l l  A . anon(D3) => v 
021 D ~ ~ ( ~ ~ ~ ) , x : u I - ~ : T v  T 

saturate((82 Dl)  +t D4) # 0 C = (82 0 2 )  i+ 0 4  
ILET 

1 9 ~ 0 8 ~ I  C I r I - l e t x = u i n t : r  
c, let x = Xnames(D3) . U in T 

Vv0(91 I') U fvQ(7) I C') D* (92 I C I B )  
ISIMP 

(O2 o @I rfve (r) I C I r k t : O 2 r v I e t w B i n  T 

Figure 5.1: Type inference and translation for XTIR terms 



81 C I r k , t : r ~ ) T [ . ]  
1 ~ 2  

8 I C I I' \i . t : Int -> T 

c__) Ax . case x of {i + T[. x] ; otherwise + x) 

(newtype A = v') E tdecls 
( A  : I E ~  -> . . . -> K ,  -> Type) E Ajnjt - 

b : K. fresh 8 ( D I I' \p . t : (7' -> T )  v T[.] 
C = D +t no~m(v'  bl . . . bn) eqTna T' 

I P ~  
6 I c I r I-,+~ \ ( A P )  . t: A bl . . .  b, -> 7 

- A x .  let y = A-I x in T[Ay . ( A  y ) ]  y 

8 I D 1 l7 kn+l \p . t :  ( v  -> T )  L) T[.] 
b : Row fresh w fresh 
C = D $ + w : v i n s b  

1P4 

6 1 C 1 I? \(Inj p )  . t : One ( v  # b )  -> T 

v Ax . case x of {Inj W y + T[Xy . (Inj W y ) ]  y ;  
otherwise + x )  

8 1 D I I? \p . \q . t : (vl -> v2 -> T )  L) Ti.] 
b : Row fresh w fresh 

C = D -I+ All b eqTn, v2 # w : vl ins b 
1 ~ 5  

8 1 C I r \ ( p  && q )  . t : All (v l  # b )  -> T 

c, Ax . let y z = remove W from x 
in T[Ay . Az . (insert y a t  W into z)] y z 

8 )  C I r l - , t : r ~ )  T[.] 
I P ~  

8 1 C I I? k,+l \Triv . t : All Empty -> T 

v Ax . let () = x in T[. x] 

b :Type fresh 8 1 C I r , x :  b k, t : T v T[.] 
IP7 

8\b I C I I? kn+1 \X . t : ((6 b )  -> 7) v AX . T[. X ]  

Figure 5.2: Type inference and translation for X T I R  patterns 



notEqual(C I- T,V) = V8 E mgusoPq,,(Id I- T eqv) . 
 satisfied (8 inss ( C)) 

notIn(C I- T,  (#)n D 1 )  = Vi . notEqual(C T1'Ui) 
l = Empty 

V ~ ( T ' Z ~ Z S ( # ) ~ ~ ~ ' )  E i n s s ( c ) .  
Cmpopaque (T, T') = eq A 1 = 1' 

I I 

Figure 5.3: Definition of notIn 

To this end we define the generalisation function, gen, as: 

gen(C l r 17) =(Dl  1 A 1 0 2 )  

where A = (fv0(C) Ufv0(7)) \ ~ z I Q ( ~ )  
and Dl = { ( w  : c) E C I &(c) fl dom(A) = 0 A inheritable(c)) 
and Dz = {(w : c) E C I fvfl(c) n dom(A) # 0 v -.inheritable(c)) 

Here we intend the resulting generalised type scheme to be f o r a l l  A . D2 => T, and the 
constraint Dl to be "held over" into the current constraint context. Notice that only non- 
inheritable constraints with free variables contained in h ( r )  may be lifted outside the 
scope of the universal quantification over A. If XTIR were to be extended with implicit 
parameters [57], this restriction would ensure any implicit parameters in u are captured 
by u's generalised type scheme. 

The second exception is the inclusion of the simplification rule ISIMP. This rule may be 
used to simplify the current constraint context at arbitrary points of the derivation. Hence 
the type inference rules are not fully syntax directed. In a practical implementation type 
inference should be syntax directed, and so the ISIMP rule should either be applied after each 
derivation step, or just before generalisation. However, unlike in the HM(X) framework 
[79], our development shall not assume simplification occurs at any particular point in the 
derivation-not even before generalisation! Our approach to simplification is instead based 
on Jones' refinement of OML to handle context improvement and simplification [48]. 

5.2 Constraint Simplification 

The constraint simplifier is presented in Figures 5.4 and 5.5. Rules s l - ~ 1 8 ,  of the form 
(Z 1 C ) D ( ~  I C' I B), allow a constraint C to be simplified by a single step into constraint C' 
and a residual substitution 8. One may think of 8 as a particularly efficient representation 
for a set of equality constraints of the form a eq T. The bindings B describe how the 
witnesses of C may be constructed from those of C'. (We shall explain the purpose of a, 
a set of type variables, shortly.) If C is unsatisfiable it may be rewritten to the canonical 
unsatisfiable constraint f a l se ,  thus signalling a type error. 

Rules sl-s4 implement conventional unification over finite Herbrand terms. 

Rules s5-s8 extend unification to rows. Rules s5 and s6 reject rows of obviously incom- 
patible arities. The remaining rules are guided by an ancillary function, notIn, defined in 
Figure 5.3. 



Simple Unification 

(El c , ~ e q , v )  ~ ( I d l  C , v e q K ~ 1  -) 

(5 I C, b eq, 7) D ([b I-+ 71 1 C[b I+ 71 1 -) when b 4 f% (7) 

' -> Type (51 C , F  T;ieqTyp, F E )  D (Id I C , r  eq,,v I a )  when F :  K; -> ... -> K ,  

(a I C, F ? eqTyp, G U) D (Id I f a l s e  I a) when F # G 

Row Unification 

(h I C, (#Irn 7 b eq,,, (#In E Empty) D (Id I f a l s e  I .) when m > n 

(Z 1 C, (#Irn '5 Empty eq,,, (#In U Empty) D (Id I f a l s e  I .) when m # n 

(a 1 C, (#Irn T;i 1 eqRov (#In 1') D (Id I f a l s e  1 a )  

when notIn(C t- r;, (#In 0 1' )  

(z I C, (#Irn T;i 1 eq,,, (#In E 1') 
- 

D (Id I C,T; eqTyp, Vj, (#),-I r \ ;  1 eaoW (#)n-l G\j 1' I .) 
when notIn( C t- r;, (#I ,-I 5b 1') and cmp~,,,, (T;, Vj) = eq/unk 

I 
Figure 5.4: Simplification of XTlR constraints (part 1 of 2) 

We intend notIn(C I- r, p) to be true if C entails that type r cannot appear within row p. 
For example, if T is not unifiable with any member of p, and p is closed, notIn yields true: 

notIn(true I- In t ,  Bool # Char # Empty) = tt 

notIn(true I- (a ,  b), Bool # Char # Empty) = tt 

If T is unifiable with members of p, and p is closed, notIn yields true if each unification 
would contradict a constraint in C: 

notIn(true I- In t ,  Bool # I n t  # Empty) = ff 

notIn(a i n s  I n t  # Empty I- (a ,  b) , ( In t  , Boo11 # I n t  Empty) = tt 

Finally, when p is open, notIn is true only when the conditions above hold and C contains 
a constraint preventing r from appearing in p's tail: 

notIn(true I- In t ,  Bool # Char # a) = ff 

notIn(1nt i n s  a I- In t ,  Bool # Char # a) = tt 

The notIn function is exploited by rules s7 and ~ 8 .  Rule s7 signals failure if a type within 
p cannot appear anywhere within p'. Rule s8 allows a type within p to be matched against 
a type within p', provided there are no other possible matchings involving one of this pair 
of types. 



Membership 

(ZI  C , w : r i n ~ p , w ' : r ' i n s ~ ) ~ ( I d ~  C , w : r i n s p I w ' = w )  S10 
when C V o p q u e  ( 7 7 7 ' )  = eq and cm~opque ( ~ 7  P') = eq 

( X I  C , w  : r  i n s ~ m p t y )  D ( I d  I C I w =One) S l l  

( E l  C , w  : r  i n s  ( # ) n B I )  D ( I d  I C , w l :  T i n s  Bji I w = w') s12 
when w' fresh and c ~ p o p q u e  (7, v;) = It 

( Z  I C ,  w : r i n s  ( # ) ,  B 1 )  D ( I d  I C ,  w' : r i n s  (#In-1 B\, I I w = Inc w') ~ 1 3  
when w' fresh and cmpOpque(r, v,) = gt 

(E  I C ,  w : r i n s  (#In-1 B\, I )  D ( I d  I C ,  w' : r i n s  ( # I n  B I I w = w') s14 
when W' fresh and cmpopque (7, vi)  = It 

(E  ( C ,  w : 7 i n s  (#I,-1 B\i I )  D ( I d  I C ,  w' : T i n s  ( # I ,  B I I w = Dec w') ~ 1 5  
when w' fresh and cmpOpque (7, u;)  = gt 

( E l  C , w : r i n s p ) ~ ( I d I f a l s e I - )  whenis In(r ,p )  s16 

Projection 

(ZI C + t D ) ~ ( e 1  C I B )  s17 
when fvO(D) n fvO(C) = 0, fvO(D) r l  Zi = 0, 8 E saturate(D) 

and W' E saturate(D) . t r u e  be 8' D L) B 
(ii 1 C+t D )  D ( I d  1 f a l s e  1 .) S18 

when fvQ(C) n fvO(D) = 0, h ( D )  n ii = 0 ,  and saturate(D) = 0 

SDONE 
(E I C )  D* (Id I C I .) 

(z I c) D ( 8  1 CN I B )  (ii u UaEEf .o (e  a )  1 C") D* (8' I C' I B ')  
SSTEP 

(hi C)D* (8 ' 08  I C' I B ' i - k B )  

Figure 5.5: Simplification of XTIR constraints (part 2 of 2) 

The reader will notice rule s9 is missing from Figures 5.4 and 5.5. We shall have more to 
say on this in Section 5.4. 

Rules s10-s15 simplify insertion constraints, which may involve binding a witness variable 
of C. They are an immediate consequence of the entailment rules MREF, MEMPTY, MEXP, 
MINC, MCONT and MDEC respectively. Rule s16 signals failure when a type obviously 
cannot be inserted into a row. 

Finally, rules s17 and s18 implement a weak form of constraint projection [79]. Projection 
is a more aggressive form of simplification for constraints which are known to be self 
contained. These rules are the only ones to make use of Zi, a set of type variables, given 
as input to the simplifier. We intend a to contain all those free variables of C which are 



"visible" outside of C; that is, which may be further constrained as type inference proceeds. 
Indeed, the ISIMP rule takes E to be fvO(O1 I?) U fvO(.r). 

These two rules apply only when the current constraint may be partitioned into two con- 
straints, C and D, such that no type variable is shared between them, and D contains no 
"visible" type variables. In this case, the simplifier is free to choose an arbatrary substitu- 
tion, 8, s.t. D is satisfied, provided that any witnesses for D do not depend on 8. In other 
words, the simplifier may do what it wishes with D provided any choices it makes cannot 
be observed. In practice, we cannot enumerate all possible substitutions, so instead try 
only those in satz~mte (D). 

Rule s18 signals failure if D is unsatisfiable. Notice that this rule could be applied for 
arbitrary D, regardless of its free variables, but attempting to do so would be prohibitively 
expensive. Instead, this rule catches the case that satz~rate(D) in rule ~ 1 7  yields the empty 
set. 

For example, if c and d are not visible, then the constraint 

(w : a ins b), (c # d # Empty) eq ( In t  # Boo1 # Empty) 

may be simplified by eliminating the equality constraint. Without rule ~ 1 7 ,  this equality ' 

constraint would propagate all the way to the top level of the program and cause an error. 
By contrast, the constraint 

(w : a i n s  b), (w' : c ins (d # I n t  # Empty)) 

cannot be further simplified, since there is no single binding for w' which is consistent with 
all bindings for c and d. In this case, the program is inherently ambiguous, and an error 
may be reported. 

Roughly speaking, the judgement ('7i; ( C) D* (8 1 C' I B') takes the transitive closure of 
(E i; I) D (8 ( C' 1 B), modulo the need to recalculate 7 i  as type variables become bound by 
unification steps. 

There is a considerable gap between the rules as presented here and a simplification algo- 
hthrn: 

(i) This formulation of the simplifier is non-deterministic. More than one rule may 
be appropriate for a given constraint, and there is no guarantee of confluence since 
different choices may yield different final constraints. 

However, this non-determinism affords the implementor the greatest flexibility in 
adopting heuristics to guide the simplification process, and avoids much extraneous 
detail inessential to the correctness of type inference. 

(ii) There is no metric m on constraints such that (. . . I C) D* (. . . I C' I . . .) implies 
m(C1) < m(C). To see why, notice rules s12 and ~ 1 4  (or s13 and s15) allow a 
member of a row to be removed and then reinserted, thus making no progress in 
simplifying C. 

However, this possible non-termination is easily avoided by merging rules ~ 1 0 - ~ 1 5  
into a single composite rule which considers all members of an insertion constraint 
simultaneously. But again, this composite approach is more difficult to reason with. 



(iii) The simplifier does not necessarily yield constraints in a szmplijied form. As in 
HM(X) [79], we say C is in simplified form if C te T eq v implies t rue  te 7 eq v 
for all T and v. Unfortunately, requiring the simplifier to yield only constraints in 
simplified form would be prohibitively expensive, since it would require a brute-force 
enumeration of all most-general unifiers. 

For example, the constraint 

(a  # b) eq (1nt # Bool # Fhpty), (a # c) eq (1nt # Char # Fhpty) 

has simplified form t r u e  with residual substitution 

[a t, In t ,  b t, Bool # Empty, c t, Char # Empty] 

but this can be determined only by looking at both equality constraints simultane- 
ously. However, for simplicity and practicality, none of the simplifier rules look at 
more than one equality constraint at a time. 

Not being able to assume all constraints are in simplified form shall complicate the 
proof of completeness in the sequel, but not intractably so. 

The following lemma shows that the simplifier preserves the satisfiability of constraints, 
binds witnesses consistently with entailment, and never over-commits to a solution by 
binding a type variable which should remain free. 

Lemma 5.1 If (E I Cl) D* (81 1 C2 I B1) then 

(ii) 81 Cl Fe C2 L) B3; and 

(iii) if % + 63 Cl then there exists a O4 set. 

(iii'l) '3 rmfvB(c2) -0 ('4 o '1) lafvB(&) 

(iii.2) 72 i= 04 o Ol Cl 

(iii.3) env(B3, m) + 84 C2 (where B3 is from (ii) above) 

Proof See Lemma C.5 for the precise theorem statement and its proof. Notice the 
restriction of the domain of 8' in (iii.1) is essential lest rule ~ 1 7  break the theorem. 0 

5.3 Correctness 

It is straightforward to show soundness of type inference with respect to type checking. 

Theorem 5.2 (Soundness of Inference) If 6 1 C ) I? t- t : T and saturate(C) # 8 then 
there exists a A s.t. A I C 1 6 I? F t : T .  

Proof See Theorem C.10 for the full theorem statement and proof. 0 



We now consider completeness of inference with respect to type checking. In the previous 
section we saw the difficulty of implementing a simplifier guaranteed to yield constraints in 
simplified form. Furthermore, in Section 4.4.4, we saw that the proof-theoretic entailment 
relation F e  is incomplete with respect to the model-theoretic relation IFe. Both of these 
aspects shall complicate both the notion of completeness, and its proof. 

The first step is to define an instantiation ordering, 5 ,  on type schemes in context of the 
form (D I a) .  Here D is a global constraint which does not contain any of the quantified 
variables of a. We call the constraint within a a local constraint. The pair (D I a )  is 
typically the result of generalisation; indeed we define 

genscheme(C I r 1 T) = (Dl I f o r a l l  A . anon(D2) => T) 
where (Dl I A I D2) = gen(C I I' 1 T) 

Roughly, we intend (Dl I al) 3 (D2 I a2) when a1 is an instance of 02, subject to the global 
constraints Dl and D2. (Note that our orientation of 5 follows that of OML [48], but is 
the transpose of the ordering in HM(X) [79].) 

Jones' approach [48] is to relate schemes by their ground instances: 

( D ~  I f o r a l l  Al . Cl => 71) d J  (D2 I f o r a l l  A2 . C2 => 72) 
V k el : Al + A,nit . 

t r u e  Fe Dl -I+ (81 Cl) =+ 
3 F 8 2  : A2 + Ainu. 

(true Fe D2 +t (82 C2) 
A cmp0(81 ~ 1 ~ 8 2  72) = eq) 

(Actually, Jones generalises this definition slightly by replacing t r u e  with an arbitrary but 
fixed ground constraint.) 

Though conceptually simple, and pleasingly easy to reason with, this instantiation ordering 
is too coarse for XTIR constraints. For example 

(a eq In t  I f o ra l1  b . b eq a => b) d J  (a eq Boo1 I f o r a l l  b . b eq a => b) 

holds vacuously. Hence a proof of completeness built upon 5J would be too weak. 

The approach in HM(X) [79] is more promising, as it takes account of type variables shared 
between global and local constraints. It is defined as: 

(This definition assumes, without loss of generality, that A' contains the free variable of 
Dl and D2, and that A', Al, and A2 are distinct.) 

Now we find 

(a eq I n t  I f o r a l l  b . b eqa  => b) $ H  (a eqBool I f o r a l l  b . b eqa  => b) 



Unfortunately, even though 

(a eq I n t  I f o ra l1  . . t r u e  => a) sH (a eq I n t  I f o r a l l  c . I n t  eq c => c) 

we find 

( t rue  I f o r a l l  b . (a ,  b) eq ( I n t ,  Char) => a) jH (a eq I n t  I f o r a l l  c . I n t  eq c => C) 

Thus , + H  - is sensitive to whether constraints, in this case (a ,  b) eq ( I n t ,  Char), are 
simplified before generalisation. Since we have already stated we cannot make any such 
assumptions, we conclude jH is too fine a relation for XTIR. 

Thankfully, there is a simple way out of this dilemma. Roughly speaking (the precise 
definition must also take account of constraint witnesses and inheritable constraints), our 
ordering is 

(Dl I f o r a l l  A1 . Cl => 71) 5 (D2 I f o r a l l  A2 . C2 => 72) 
satisfiable(D1 i-t Cl) 

~ 3 k t l : A ~ + A ' * A l .  
ol i-t cl I-" D~ + (6 C2) +I- 71 eqe  72 

Now we find 

( t rue  I f o r a l l  b . (a ,  b) eq ( I n t ,  Char) => a) 5 (a eq I n t  ) f o r a l l  c . I n t  eqc => c) 

By inspection, j is not sensitive to how a constraint is split into a global and local com- 
ponent by gen. Thus, in XTIR, constraint splitting is merely an opt~misation, and is not 
required for completeness. 

With the notion of instantiation ordering fixed, we now turn to formalising the statement 
of completeness. Roughly speaking, we require every valid typing for a term t to be an 
instance of every valid inferred type of t. More formally, and as a first approximation, we 
require that if 

A /  c l l e l r k t : ~ l  

is derivable in the type-checking system, then there exists (at least one) derivation 

in the type-inference system, and there exists a 83, such that 

and 
el =g e3 0 e2 

(Furthermore, these properties must hold for every such type-inference derivation.) How- 
ever this statement is too strong for XTIR. 

To see the problem, consider the type checking derivation: 

. . .  k f :  I n t - > I n t  ... k x : a  a e q l n t k e  I n t - > I n t  e q a - > a  
APP 

a : T y p e ) a e q I n t I f  : I n t - > I n t , x : a k f x : a  



One matching type inference derivation is: 

. . . I- f : In t  -> In t  . . . I- x : a b : Type fresh 
IAPP 

I d I I n t - > I n t e q a - > b I f  : I n t - > I n t , x : a l - f  x : b  

To connect these derivations, we need only show that 

genscheme(a eq In t  I f : In t  -> In t ,  x : a I a) = 
(a eq I n t  I f o ra l1  . . t rue  => a) 

and 
genscheme(1nt -> I n t  eq a -> b I f : In t  -> In t ,  x : a 1 b) = 

( true I f o r a l l  b . In t  -> In t  eq a -> b => b) 

are related under 5. So far all is well. 

However, another possible type inference derivation applies rule ISIMP to the above con- 
clusion to yield: 

... I - f x : b  ({a,b)IInt->Inteqa->b)~*([ac,Int,b~)Int]ItrueI.) 
ISIMP 

[a* Int] I t rue  1 f : In t  -> I n t , x :  a l - f  x :  I n t  

Again, we must show that 

(a eq In t  I f o r a l l  - . t rue  => a) 

and 
genscheme(true I f : I n t  -> Int ,  x : a I 1nt) = 

( true I f o r a l l .  . t rue  => In t )  

are related under 5. But we must also show (taking = Id)  that there exists a O3 such 
that 

Id 83 o [a t, Int] 

which is clearly impossible. 

The problem is that the simplifier may bind free type variables within r. Thankfully, we 
may show this happens only when such type variables are similarly constrained within the 
type-checking derivation. In the example above, even though In t  was substituted for a, 
this substitution was entailed by the constraint a eq Int .  

Thus, the refined (but still only approximatesee below) statement of completeness weak- 
ens the requirement 

e, =, e3 e2 

One final subtlety is that because Fe is incomplete, we must show completeness using its 
model-theoretic counterpart 

The remainder of this section develops these ideas formally. Unlike the other theorems in 
this dissertation, we shall elide the actual proof of completeness. This is partly because of 



time constraints, and partly because we plan to redo the proofs using a variation on the 
definitions they are built upon (see Section 5.4). 

We first define 
Env(C) = {q 1 V(w : c )  E C .  q w E Z) 

and similarly 
Env(I') = {q lV(x: a )  E r .  q x E E V )  

Let A' I- D1/D2 constraint, A' +I- A1 I- Cl constraint, A' i-t- A2 I- C2 constraint, A' ft Al I- 
71 : Type, and A' i-t- A2 t- 7-2 : Type. Furthermore, let dom(Al) n dom(A2) = 0. Then we 
define the expanded instantiation ordering as 

We may extend the relation above to type contexts as follows. We let 4 range over - 
finite maps from variables to triples (B  I E I w'). Let A' I- rl/r2 context and 
A' I- D1/D2 constraint. Then we define the type context ordem'ng as 

I- (Dl I I'l) 5 (D2 I r2) - 4 - 
dom(rl) = dona(?? 2) 

A ((s : f o r a l l  Al . Cl => 71) E I'l A (x : f o r a l l  A2 . C2 => 72) E I'2) =j 

( q ! ~ x = ( ~ l T i i l ? )  
A I- (Dl 1 A1 1 ci 1 71) 5 (02 1 A2 1 Ci I 72) B 
A Ci = named(Cl) s.t. names(Ci) = Tii 
A Ci = named(C2) s.t. names(Ci) = 7) 

Let A' I- a scheme, where a = f o r a l l  A . C => 7. Let A' I- D constraint. Then we say 
(D I a )  is unambiguous if 

VA' I- D' constraint, I- 61 : A + A', I- 02 : A + A', I- 0' : A' -+ Ainit . 
(D' IFe D -I+ (61 C) v Bl 

A D'IFe D +t (62 C) B2 
A D' IFe 61 T eq02 T 

A q 6' Dl) * 
env(Bl,q) = env(B2,q) 



1 =7 1 

[int : i] =Int [int : j] i = j 
[func: f ]  = 7 - > v  [func: g] v =T v ' e  f v ="g V' 

[prod, : (v,, . . . , vn)1 = 811 (O)= [prod,, : (vi, . . . , TJ;,)] n = n' A V i  . V -  I -+" - 4 
[inj : (i, v)] = One ((*)" Empty) [inj : ( j ,  vt)] - a = j v zT1. i vt 

where r E sortingPerms (TI, . . . , 7,) 

[ifunc, : f ]  = forall A . C = >  T [ifuncn, : g] ej 

n = n ' A ( I - 8 : A + A h i t A q + e C + f  (77~1, . . . , q  ~ n ) = ~ ~ g ( 7 7 ~ 1 , . - - , 7 7 ~ n ) )  

1 I 

Figure 5.6: The logical relation = on E V x E V indexed by XTXR monotypes of kind Type 

Let (Dl I A, I fi 1 71) 5 ( t rue  I A2 I Cz 1 72) v B,  and let q E Env(D,), names(C1) = 
- 
w ,  and names(C2) = 2. Then we define 

coerce(B I T I 2) q = Xu .  let^ v' t v 
in case v' of { 

ifunc,~ : f + unitE (ifunc : g); 
where 

= ~ ( Y I , .  . - , ~ n )  - f ([wilr~, . - .  , I[w;IBq> 
7' = env(B, 'Vrnornes(~l) * [WI Y I , .  - Wn * ~n]) 

otherwise + unitE (wrong : *) ) 

Notice that if q E Env(D) then coerce(B) q E E V + E V. 

Let I- (Dl ( r l )  5 ( true I r 2 )  L) 4. Then we extend coerce to 4 as follows: 

Notice that if 7 E Env(D) then coerce(4) q E Env(r2) + Env(I'1). 

Finally, Figure 5.6 defines a logical relation on E V x E V indexed by types T such that 
Ahn I- T : Type. 

Theorem 5.3 (Completeness of Inference) Let Al, A2, rl, r2, Cl, t, TI, TI and 4 
be s.t. 

(a) A1 I- Cl constraint and Al I- rl context 

(b) satisfiable(Cl) 

(d) Az t- rz context 

(e) A1 LJ A2 I-- 01 subst, dom(e1) E fv0(r2), W I ( ~ I )  C dom(A1) 

(f) t- (inhs(C1) 1 r l )  5 (true 1 61 r2) v 4 

Then there exists e2, C2, 72 and T2 s.t. 



(i) $2 1 C2 1 r2 t- t : 72 L) T2 

and for every 02, C2, 72 and T2, s.t. (i) holds, there exists a A3, 83, and B1 s.t. 

(ii) (Al U A,) +t- A3 t- O3 subst, dom(03) C fv0(02 rz), mg(03) E dom(Al) 

(iii) If gen(Cl I I'l 1 TI) = (Dl 1 A4 1 02) and gen(C2 1 02 r2 1 72) = (D3 1 A5 1 0 4 )  then 

(iv) Va E fi@(r2) . inhs(C1) IFe O3 0 02 a eqO1 a 

(v) Furthermore, let 84, q, and B2 be s.t. 

(g) A1 I- O4 S U ~ S ~  

(h) A;,,, t- 040 O3 o O2 r2 context 

(i) hinit I- O4 Cl constraint 

(j) qk040O30O2r2 

(k) env(B2) I= 04 Cl 

Then 
-(e4 71) 

I[Tll(coerce(4) env(Bz) 7)-ltenv(Bz) - [T~Bq-ttenv(~1 , e n v ( ~ z ) )  

Proof By laborious induction on (c), and by showing rule ISIMP preserves properties 
(ii)-(v) of its hypothesis inference judgement. The theorem could be slightly simplified 
by separating completeness (properties (i)-(iv)) and coherence (property (v)). However, 
this separation would duplicate the exceedingly tedious setup of (a)-(f). Hence it seems 
simpler to merge completeness and coherence into a single Gbersatz. 

As a corollary to Theorem 5.3 we may show that if t has an unambiguous principal type, 
then all possible type-checking derivations of t yield run-time terms which are related by 
the logical relation of Figure 5.6. 

Furthermore, by Theorem 5.2 and Theorem 5.3 we may show all the principal types of a 
term are equivalent under the instantiation ordering. 

5.4 Row Extension 

Recall from Section 2.4 that another way of simplifying a row equality constraint p eqp' is 
to allow a type in p' to extend the (open) tail of p. This simplification is valid only when 
the chosen type within p' cannot be matched with any type within p. Formally, we may 
define the rule: 

(E 1 C, (#I, 7 b eq,,, (#In TJ I )  
D ([b I+ vj # b'] I (C,  (#Im 7 b' eq,,, ;iT\j I ) [b  I-+ ~ v j  # b'] I .) ~9 
when b 6 fvO(vj), b' : Row fresh and notIn(C I- vj, (#) , ? I2mpty) 

Notice that the result constraint contains a fresh type variable, b'. 



For example, this rule would rewrite (in two steps) 

( In t  # a) eq (Bool # b) 

to t rue ,  with the residual substitution 

[a I+ Bool # c, b I-+ I n t  # c] 

where c is fresh. 

Unfortunately, though rule s9 seems both desirable (it reduces the size of constraints) and 
reasonable (it preserves the ground instances of constraints), it is not compatible with our 
instantiation ordering. 

For example, consider the term: 

C \ ( I n j  x) . 1 - x; 
\ ( I n j  y) . i f  y then 0 e l s e  1 3 

This term may be assigned the type scheme: 

a1 = f o r a l l  (a  : Row) (b : Row) . 
I n t  ins a, Bool ins b, ( In t  # a) eq (Bool # b) => 

One ( In t  # a) -> In t  

Were the simplifier to be augmented by rule s9, this term could also be assigned the more 
intuitive scheme: 

a2 = f o r a l l  (c  : Row) . 
I n t  ins c, Bool ins c => 

One ( In t  # Bool # c) -> I n t  

However, though we have a2 5 al, we find that a1 $ 02. In particular, there is no T such 
that: 

I n t  ins a, Bool ins b, ( In t  # a) eq (Bool # b) ke 
[c I+ T] ( In t  ins c, Bool ins c) +I- 
(One ( In t  # a) -> I n t )  eq [c t+ ~ ] ( 0 n e  ( I n t  # Bool # c) -> I n t )  

Hence, rule s9 does not preserve the invariant necessary for the proof of completeness in 
Theorem 5.3. For this reason we have removed rule s9 from Figure 5.4. However, the real 
problem is that our invariant is too strong. 

The solution appears to be to generalise the instantiation ordering of Section 5.1 by re- 
placing the existentially quantified substitution, 8, on the left-hand side of IFe, with an 
existentially quantified constraint, C3, on the right-hand side of IFe. Of course, C3 cannot 
be any constraint: We require that C3 does not LLdisturb" (change the satisfying substitu- 
tions of) the constraint Dl +t Cl. 

Returning to the example we find that a1 5 a:! under this generalised instantiation order- 
ing, because: 

I n t  ins a, Bool ins b, ( In t  # a) eq (Bool # b), 
a eq (Bool # c) ke 

I n t  ins c, Bool ins c, 
(One ( I n t  # a) -> In t )  eq (One ( In t  # Bool # c) -> I n t )  



Notice how the introduced constraint, a eq (Boo1 # c) ,  allows the type variables a and c 
to be related without disturbing the constraint: 

I n t  ins a, Bool ins b, ( I n t  # a) eq (Bool # b) 

Rule s9 is just one of a number of desirable simplification rules not included in Figures 5.4 
and 5.5. For example, the entailment rules MPROJL and MPROJR, sketched in Section 4.4.4, 
induce two corresponding simplification rules. It is open whether the revised instantiation 
ordering is also compatible with rules. 

At the time of writing we are re-running the proofs of this Chapter under the revised 
instantiation ordering, and we expect to include these revisions in a journal version of this 
part of the dissertation. The programme to replace a substitution by a constraint may be 
applied profitably in a number of other places within the development of XTIR, including 
the properties of entailment, and the correctness of the simplifier. A similar programme 
has been carried out by Sulzmann [loll in the context of HM(X) [79] (though, curiously, 
the instantiation ordering remains unchanged in his revision). 



Chapter 6 

Conclusions to Part I 

6.1 Related Work 

Record Calculi 

Wand [I121 first introduced rows to encode record subtyping (and, in turn, inheritance) 
using parametric polymorphism, though the system did not enjoy completeness of type in- 
ference. Rkmy [94] introduced label presence and absence flags in types, and demonstrated 
completeness of inference. Variations allowing record concatenation 135, 1131 rather than 
just record extension were also proposed. R4my [93] has demonstrated that concatenation 
may often be encoded using just extension. 

Ohori [80] and, independently, Jones [47] developed polymorphic record and variant calculi, 
and a compilation method which represented records as natural-number indexed vectors. 
Ohori's system dealt only with closed rows; Jones' system allowed extensible rows. Our 
system is a strict generalisation of Gaster and Jones' system of polymorphic extensible 
records [31]. The latter exploits qualified types and the dictionary translation [47] as a 
compilation method. 

Parallel to the parametric polymorphism approach followed in this work are record calculi 
based on subtyping [16]. 

Constrained Polymorphism 

Odersky et al. have developed HM(X) 1791 as a framework for constraint-based type infer- 
ence. It adds to Jones' qualified types the notion of constraint projection, and guarantees 
any constraint domain X enjoying a principal constraint property can be lifted to a type- 
inference system enjoying completeness of type inference. Principle constraints are defined 
relative to a set S of constraints in solved form. 

Since both Ohori's and Gaster and Jones' record calculi are instances of HM(X), we initially 
hoped XTIR would be likewise. Unfortunately, the definition of S for XTIR constraints appears 
to be as complicated as the definition of the simplifier itself, and hence not particularly 
theoretically pleasing. Furthermore, the statement of completeness for HM(X) when S is 
smaller than all satisfiable constraints (as it would have to be for XTIR) further requires 
that S contain only those constraints in simplified form. As mentioned in Section 5.2, our 
simplifier is designed not to always yield constraints in this form as to do so would require a 
brute-force enumeration of all most-general unifiers, with concomitant exponential growth 
in both time and space. 



Sulzmann [loll has since generalised the HM(X) framework to address some of these 
limitations. (The work of this thesis has been done independently of his work on the 
revised system.) However, there are four aspects of Sulzmann7s revised HM(X) which 
prevent its use for XTIR. Firstly, his development still depends critically on existential 
constraints, which, as mentioned in Section 2.9, we find quite technically challenging for 
XTIR constraints. Secondly, though his system does not require constraints to be normalised 
at each step of type inference, his constraint simplification rule still builds upon the notion 
of solved form, which for XTIR is as problematic as in the original HM(X). Thirdly, his 
presentation is in "term-free" form, meaning the inferred type of a term is represented 
implicitly within the current constraint context rather than explicitly as a type. This 
notion is unnecessarily complicated for XTIR. Finally, and in common with the original 
HM(X), no support is provided for constraint witnesses, which we have seen to be essential 
to the semantics and implementation of XTIR. 
Our technical development is instead based upon Jones' more general framework for sim- 
plifying and improving qualified types 1481. In Jones' system, constraints may be simplified 
arbitrarily, and his proofs do not rely on constraints being in any solved form. Unfortu- 
nately, Jones' instantiation ordering is too coarse for XTIR constraints which contain "global" 
type variables (type variables bound at an outer scope). Hence, we have been forced to 
reprove most of the correctness of our system from scratch. 

Set Constraints 

Set constraints are popular in program analysis [5, 41 and in constraint logic programming 
[loo]. The constraint domain of XTXR resembles that of simple set-constraints with primitive 
subset constraints and set union. However, set-constraints have an implicit idempotency 
law: 

a U {b, b) = a U { b )  

whereas in XTIR this property is enforced by an explicit insertion constraint: 

b ins  a 

Using this explicit form leads directly to our implementation method. 

Despite this difference, it may still be possible to exploit some of the implementation 
techniques developed for set constraints if necessary. 

Intersection Types 

Type-indexed products bear a superficial resemblance to intersection types [89, 951. (And 
coproducts to union types [7].) However, they differ fundamentally in their meaning, as XTIR 
products are not subject to any coherency condition with respect to a notion of subtyping. 

For example, the intersection type 

Int -> Int -> Int & R e a l  -> R e a l  -> R e a l  

contains only those binary functions which behave coherently on integer or real arguments 



with respect to the subtyping relation 

Int < Real 

Thus it includes the addition function, but excludes the function which adds integer argu- 
ments, but subtracts real arguments. 

A first approximation to this type is the XTtR scheme 

fora l l  a b . 
a#beqInt#Real#Empty=> 

a -> a -> a 

Though it indeed has the two required instances, this type is too small since it contains 
only those functions which do not depend on whether its arguments are integers or reals. 
That is, the scheme above is simply an instance of 

The closest XTtR comes to the intersection type above is the scheme 

f oral l  a b . 
a ins b, 
a # b eqInt #Real #Empty => 

a -> a -> a 

However, this scheme is now too large. In addition to the desired addition function 

(\(x && -) . x) (intPlus && realplus && Triv) 

(see Section 3.5), it also includes the mixed addition and subtraction function 

(\(x && -) . x) (intPlus && realMinus %& Triv) 

This should come as no surprise: The function above is implemented by a three-argument 
function, the first of which effectively serves to distinguish between the integer and real 
functions. Hence, XTIR type-indexed-products are just that: type-indexed, and hence not 
necessarily coherent. 

XML 

As mentioned in Chapter 1, XDuce [40] is another functional language with similar goals 
to XMX, but built upon subtyping polymorphism instead of parametric polymorphism, 
and using regular expressions as types instead of type-indexed rows. Regular-expression 
language containment is used to induce the subtyping relation, and regular expressions 
are not required to be 1-unambiguous. At the time of writing XDuce does not support 
parametric polymorphism or higher-order functions. 

Other proposals for XMX-like languages build on regular-tree transducers [68] or Haskell 
[I l l ] .  



6.2 Conclusions and Future Work 

Thanks to its notion of type-indexed rows, and its expressive constraint domain of insertion 
and equality constraints, XTIR can naturally encode many programming idioms, including 
record calculi, anonymous sums and products, and closed-world style overloading. It can 
be straightforwardly compiled into an untyped run-time language in which type-indexing is 
reduced to conventional natural-number indexing. These indices are generated and passed 
at run-time as implicit arguments to let-bound expressions, exactly as occurs in some 
existing record calculi [31, 801. 

For the programs we considered, the constraints were compact and reasonably intuitive. 
We are working on an implementation of XTIR within the larger language XMX [65]. At 
the time of writing, our XMX compiler can simplify constraints but not yet infer them. 
We hope to demonstrate the feasibility of XTIR on larger programs once this compiler is 
complete. 

In common with most constraint-based type systems, XTIR constraints could conceivably 
grow to a size beyond the understanding of a programmer, and beyond the capability of 
the type inference system to solve. In Section 4.4 we discussed why we do not expect this 
to be a problem, however our hypothesis remains unverified until we can test it within 
XMX. One possibility for aiding the programmer in understand large constraint sets is to 
use "backwards" ,&reduction to replace constraints by programmer-declared abbreviations 
wherever possible. 

Since entailment is incomplete, it is possible that a programmer-supplied type scheme may 
be an instance of an inferred scheme, but the system is unable to prove it. As discussed 
in Section 4.4.4, this may be partially redressed by adding projection rules to the brn 
judgement to exploit the lexicographic ordering of types. However, we would like to gain 
some experience with the system before deciding if these potentially more expensive rules 
are justified. 

On the theoretical side, we are currently reworking the development of simplifier correctness 
and completeness of type inference to use the revised instantiation ordering sketched in 
Section 5.4. We hope this revised development will not only be flexible enough to support 
the introduction of new constraint simplification rules, but also simplify the statement of 
these theorems and their proofs. It  should come as no surprise to the reader that the 
ugliness in the statement of Theorem 5.3 also extends to its proof! 

We also hope to complete a complexity analysis of constraint satisfiability, entailment and 
type inference as a whole. The last is likely to be above EXP. However, as complexity 
class seems to be a poor indicator of the typical performance of type inference systems, 
our priority rests with completing the implementation. 



Part I1 

Dynamically-Typed Staged 
Computation 

Abstract 
This part explores a weak form of program reflection called staged computation. 
It  is weak in the sense that code may be constructed at run-time, but not decon- 
structed (e.g., by pattern matching). However, in exchange for this weakness the 
system is quite simple, requiring only three additional primitives to defer, splice 
and run code. 

Two distinct forms of code are supported. Statically typed code is guaranteed at 
compile-time to be well typed at run-time, and hence is the most reliable method 
of generating code at run-time. However, since the type of generated code may 
sometimes depend on run-time values in a way that is difficult to express statically, 
the system also allows dynamically typed code to be generated. In contrast to 
statically typed code, dynamically typed code is checked for well-typing as late as 
possible at run-time; that is, just before it is executed. 

We introduce the system using some small examples, and then illustrate its great 
flexibility by some larger worked examples. We present the formal type checking 
system, which translates well-typed source terms to an untyped run-time lan- 
guage. The system is greatly complicated by the desire to support constrained 
polymorphism within generated code: We will spend some time explaining the 
problems which arise and their solutions. Finally, we present a denotational se- 
mantics for the run-time language, and demonstrate a type soundness result. We 
leave type inference for this system to future work. 



Chapter 7 

Introduction 

Programs must often manipulate intensional representations of other programs. This is 
called reflective programming when the manipulating program (the meta-program) and the 
program being manipulated (the object-program) are expressed in the same language. Ex- 
amples of reflection abound in compilers, interpreters, partial evaluators and programming 
environments. 

This part of the dissertation develops a weak form of reflection in which intensional r e p  
resentations, which we shall call code, may be constructed and executed, but never de- 
constructed (e.g., by pattern-matching). The result of this restriction is called staged 
computation, since programs which merely construct other programs can be seen as having 
their evaluation staged over two or more phases of execution. Staged computation is much 
simpler than full reflective programming because it does not require any language-level 
support for manipulating variable names. 

Of course it is possible to effect a staging of program evaluation using ordinary higher- 
order functions. However, separating execution stages by time (generate in one session 
and execute in another) or space (generate on one machine and execute on another) re- 
quires an intensional representation of generated code to be stored or transmitted over a 
network. Recovering such a representation from run-time closures is very difficult. Staged 
computation, on the other hand, makes this operation trivial. 

The principal benefit of staged computation over more ad-hoc approaches using strings or 
datatypes of abstract syntax is the ability to statically verify that all code generated at 
run-time is not only syntactically valid, but also type-correct. However, sometimes code 
must be generated whose type, in addition to its contents, depends on run-time values. 
To support this requires a notion of dynamically typed code to complement statically typed 
code. Dynamically typed code must have its type checking deferred till run-time in addition 
to its evaluation. 

Examples of staged computation abound, though they are often hidden within the noise 
of larger systems: 

Run-time partial evaluation generates code at run-time to exploit invariants un- 
known at compile-time. It has found applications in operating systems [62] and 
advanced compilers [54]. Run-time partial evaluation may be viewed as a form of 
staged-computation in which only closed-code (code which does not contain free vari- 
ables) may be generated. 

Dynamic typing introduces dynamic values which contain both a value and a run- 
time representation of the value's type. Because all dynamic values have the same 



compile-time type, they may be treated uniformly by programs such as interpreters, 
persistent stores, generic programs, and distributed programs which pass code be- 
tween machines. A dynamic value may be viewed as dynamically typed code whose 
body happens to be evaluated. 

Document generation requires a data structure to be created on-demand by one 
machine (the server), and then transmitted to another (the client). If documents 
are simply strings, the server need only concatenate each document fragment and 
transmit the result. However, we have seen in Chapter 1 that documents are often 
structured as XML, and often contain embedded scripts. We call these dynamic, 
active documents. 

Part I of the dissertation showed how XML documents may be represented as typed 
terms. It is a simple matter to transmit such a term from one machine to another 
if it contains no functions. Thus dynamic documents are already well supported 
by the material of Part I. However, it seems natural to express embedded scripts 
simply as functions or monadic commands within the same functional language as 
the document itself. Unfortunately, terms containing scripts encoded in this way 
cannot be easily transmitted. Hence dynamic, active documents are problematic. 

Staged computation solves this problem by allowing the server program to distinguish 
server-side code (executed on the server in response to a request) from client-side 
code (executed on the client after a reply is received). That is, a dynamic, active 
document is simply a residual program, and residual programs are easily transmitted 
from server to client. 

Online services interact with a user via a dialogue of successive dynamic documents. 
A single server may be interacting with many thousands of users simultaneously, 
any of whom may decide to stop responding or backtrack to an earlier point in 
their dialogue. Hence, the crux in implementing these systems is managing each 
user's dialogue state. A particularly simple solution is to embed within each dynamic 
document an intensional representation of its continuation code. When the user 
wishes to continue the dialogue, the client passes this continuation along with any 
form data back to the server. Staged computation provides some support for this 
style of programming. 

We shall develop a small calculus, AS', which adds to higher-order functions and constrained 
polymorphism the ability to construct and execute code at run-time. Both statically and 
dynamically typed code may be intermixed within a single program. Though ASC has all of 
the type-theoretic framework necessary to support type-indexed rows, implicit parameters, 
and indeed any other system of constrained types, for simplicity we put these features aside. 
However, we shall sometimes assume their inclusion in the extended examples of Chapter 8. 

ASC is most closely related to MetaML [97], which also supports both statically and dy- 
namically typed code. The statically typed component of MetaML grew out of the work 
of Nielson and Nielson on two-level functional languages [77], Davies and Pfenning [20, 211 
on multi-level languages, and Taha and Sheard [1104, 1071. The dynamically typed compo- 
nent comes from work of Shields, Sheard and Peyton Jones [99]. However, this is the first 
formal presentation of a system including both kinds of code, and supporting constrained 
polymorphism. Indeed, we shall see that constrained polymorphism is the key to effi- 



ciently implementing dynamically typed code. Furthermore, we shall show type soundness 
model-theoretically, rather than proof-theoretically as in earlier work. 

The remainder of this chapter introduces the three operators to defer, splice and run 
code, and demonstrates their statically and dynamically typed variants. We then illustrate 
the generality of staging by extended examples of partial evaluation, dynamic typing and 
distributed computing (Chapter 8). The later develops a small document server, and 
exploits both dynamically and statically typed code within a single program. We then 
present the formal system and demonstrate type soundness (Chapter 9). 

7.1 Staged Computation 

Staged computation introduces three operators to construct, evaluate and combine pieces 
of programs. These can be used to explicitly distribute the evaluation of a program over 
many run-time stages: 

The defer operator, (( t 33, defers evaluation of an expression t by one stage. Writing 
4 to denote evaluation: 

1 + 1 4 . 2  evaluated at stage 0 
(I 1 + 1 3) 4. C{ 1 + 1 33 deferred till stage 1 

We call t the body of C( t 33, and dually, we call (C t 33 the code of t .  (Note that 
(( t 33 is written as < t > in many other staged languages-unfortunately this more 
concise notation clashes with the syntax for XML used in Part I.) 

The run operator, run t ,  evaluates t to some code (C u 33, and then evaluates u. 
Continuing the example: 

(( 1 + 1 1) .I) ({ 1 + 1 33 deferred till stage 1 
run  I( 1 + 1 3) 4. 2 evaluation brought forward to stage 0 

The splice operator, - t ,  also evaluates t to some code {C u 33, but then splices u 
into the body of the surrounding code. The term - t  is thus legal only within lexically 
enclosing (C 33 brackets. For example: 

l e t c o d e = { { 1 + 1 3 3 i n ~ ~ - c o d e + 2 ) ~ ~ ~ (  ( 1 + 1 ) + 2 3 3  
-code replaced with 1 + 1 at stage 0 

(Note that - binds tighter than all other operators.) 

A splice expression may appear deep within the body of a deferred expression, even 
under a A-abstraction: 

Also, t may be any expression yielding some code: 

l e t f  = \ c o d e .  ( ( I + - c o d e ) ) i n ( ( - ( f  ( (2 ) ) )  + 3 3 ) & ( (  ( 1 + 2 )  + 3 3 )  
f {{ 2 11 evaluated at stage 0 



Splice can be used to construct and manipulate code with free variables, though these 
variables must always be bound within a lexically enclosing scope. This feature is 
most convenient when constructing code representing a function: 

l e t  f = \code . (C -code + -code 33 i n  <( \x . - (f (( x 33) 33 
.u-CC\x. x + x 3 3  
x is free i n  argument to f, but bound an overall result 

We say a subterm u of t is at stage n if u is lexically nested within n more (( 33 brackets 
than - operators within t .  For example: 

t + u  u is at stage 0 
CC t + u 3) u is at stage 1 
CC t + -u  3) u is at stage 0 

It is even possible for a sub-term to have a negative stage: 

(( t + --u 33 u is at stage -1 

We say a term is splice free if each of its sub-terms is at a non-negative stage. 

Very roughly, these operators have two rewrite rules. The first allows a splice to cancel a 
defer, provided t is splice free and the reduct is at stage 1: 

The second allows run to cancel a defer, again provided t is splice free, and the reduct is 
at stage 0: 

n u r ( ( t 3 3 - - + t  

How should these operators be typed? One approach is to perform all type checking at 
stage 0, and eliminate any programs which may generate ill-typed code at run-time. We 
call this statically typed staging, and is the method used by existing staged languages such 
as MetaML [97]. 

7.2 Monomorphically Typed Staged Computation 

For the moment, ignore polymorphism (and in particular, constrained polymorphism), and 
consider how to ensure that only well-typed code may be constructed. 

The first source of errors are binding-time errors. For example 

€< \x - -x 33 

attempts to use x at stage 0 when it is not bound until stage 1. This error is easily detected 



by maintaining a separate type context for each stage during type checking: 

Here we intend n to be the stage of the sub-term under consideration. We write ?i to 
denote an infinite length vector of type contexts, indexed by stage number, only a finite 
number of which are non-empty. (Of course in practice it is easier to associate a stage 
number with each variable. This vector notation will prove to be convenient in the sequel.) 
We write to denote the the nth context of ?i, and F +tn I" for the extension of the n7th 
context of T by I". 
A refinement of the VARMONO~ rule is to allow variables bound at an earlier stage to be 
used at a later stage: 

-n-m 
m > O  ( x : T ) E ~  laftable (7) 

- VARMONO r t - n x : ~  
Here laftable(~) is true when values of type T can, at rmn-time, be converted from their 
representation in the run-time system to their representation as code. Defining liftable 
to be the constant true function may be excessively onerous on an implementation. For 
example, lifting a function could require it's body to be decompiled back into code. Defining 
liftable (T -> v) as false prevents this situation. 

Using the revised rule, the term 

\x . C( x + 1 33 
is well-typed assuming liftable(1nt) is true. 

Of course a closure is no easier to lift than a function, regardless of it's type. Hence lifting 
would typically force evaluation. Consider: 

let x = primes ! !  1024 
in CC x + 1 3) 

This term evaluates to the code CC 8161 + 1 13 rather than C( (primes ! ! 1024) + 1 3). 
The second source of error arises when code is spliced into an incompatible context. For 
example 

let code = C( True 33 in CC -code + 1 3) 
attempts to splice a Boo1 into an I n t  context, leading to the ill-typed code (( True + 1 3). 
This too is easily detected by associating a type (C T )I of code of body type T with each 



defer expression: 

- 
r k n  ~ : C C T I I  
- RUN MONO^ 

Fn r u n t  : T 

Notice how these rules keep track of the current stage, and prevent a splice from appearing 
at stage 0. 

One more source of error remains, which is somewhat more subtle than the others. For 
example 

is type-correct by the rules above (assume x has type CC T )I for some type T), but evaluates 
to 

which is binding-time incorrect. 

In the literature this problem is known as the open code problem, because CC x 33 is "open" 
on the variable x. A number of refinements to the type rules above have been considered, 
such as keeping track of the nesting depth of runs [105], or introducing a separate code 
constructor and code type for closed code [106]. Both these approaches introduce consider- 
able additional complexity to the system (and indeed, to the best of our knowledge neither 
have been implemented). 

A third and somewhat surprising solution to the open code problem is to give run a type 
in the I 0  monad [87]. Hence the RUN MONO^ rule becomes: 

- r kn t  : cc 1) 
- RUNMONO 
I' I-" run t  : I 0  T 

Such computations may also be sequenced and completed: 
- - r t - n ~ : ~ ~ ~  F - + t n x : v t - n t : ~ ~ ~  r b n  t : ~  

- LETMMONO - UNITMMONO 
Fn l e t  x t u  i n  t  : I0  T r Fn un i t  t  : I0  T 

Under these rules the example above is ill-typed, since run CC x 3) has type I 0  I( T 3 )  and 
so cannot be spliced. To see that all such examples will be rejected, we reason informally 
as follows. The argument to run will only be evaluated if run is at stage 0 and is being 
performed. Since only the external environment may perform I 0  computations, run must 
therefore be connected by a chain of monadic let-bindings to the top level of the program. 
Because rule SPLICEMONO prevents the splicing of monadic expressions, it is impossible 
for this chain of let-bindings to cross under a splice. Hence, run cannot be in the context 
of any bound variables, and its argument must be closed. 

Note that the typing rule for run does not guarantee that each occurrence of run in a 
well-typed program is applied only to closed code. For example, in 



run is applied to code which is patently open. However, the type system prevents 
run CC x 33 from being performed. 

Also notice run's I0 type has nothing to do with any side-effects of run, or of the code it 
executes, but is rather just a "type trick" to prevent open code. In Section 7.5, however, 
run will be enhanced so that it does have a side-effect, and hence its I0 type is better 
justified. 

Encouraged by the ease of typing monomorphic code, we now consider reintroducing para- 
metric polymorphism. 

7.3 Polymorphically Typed St aged Computation 

Consider let-binding code which is polymorphic: 

let i d  = CC \X . x 31 
i n  ({ ( - i d  1, - i d  True) 31 

How should this term be typed? 

The most straightforward approach, which we term let-generalisation style, is to generalise 
and specialise types exactly as in the polymorphic A-calculus. Under this approach, i d  
would be assigned the type scheme f o r a l 1  a . (C a -> a 11, and the instances of i d  would 
be specialised to Int  and Bool respectively. To aid our understanding of the situation, 
consider rewriting the example using type-passing in the style of System F [32]: 

let id = Aa . {{ Ax : a . x )) 
in {{ (-(id Int) 1, -(id Bool) True) )) 

This translation clearly shows that all type abstraction and application is performed at 
stage 0, even though the code itself is at stage 1. Notice that the type parameter has been 
lifted implicitly from stage 0 to stage 1. 

Another possibility, which we call defer-generalisation style, is to generalise defer expres- 
sions separately from let-bindings, and specialise at each splice point. (Note that let-bound 
terms are still generalised as per usual under this scheme.) Under this approach, i d  would 
be assigned the rank-2 polymorphic type CC f o r a l l  a . a -> a 33. If we again rewrite the 
term to use explicit type passing, the difference between this approach and the previous is 
obvious: 

let id = {{ h a  . Ax : a . x )) 
in {{ (-id Int 1, -id Bool True) )) 

Notice all type abstraction and application is now at stage 1. In effect, this approach defers 
type abstraction and application in parallel with evaluation. 

Of course, the first approach is to be preferred to the second, since type inference for rank-2 
types is very awkward, and for higher ranks is undecidable [114]. Furthermore, for pure 
parametric polymorphism, type generalisation and specialisation may always be shifted to 
the stage of the let-binding. Indeed, the example above in defer-generalised form may have 



all type abstraction and application moved to stage 0: 

let id = Aa' . {{ (Aa . Xx : a . x) a' )) 
in {{ (-(id Int) 1, -(id Bool) True) )) 

This translation is valid because types may be freely lifted across stages. 

For the reasons above, MetaML [97] uses let-generalisation style. Unfortunately, the situ- 
ation is not so simple when constraaned parametric polymorphism is introduced. 

7.4 Constrained Polymorphism and Staging 

In a system of constrained polymorphism, it is possible for let-generalised and defer- 
generalised terms to have a different semantics. To see why, consider an example using 
implicit parameters [57] : 

( l e t  plus1 = (( 1 + ?z 3) 
i n  CC -plus1 with ?z = 1 33 ) with ?z = 0 

Notice the implicit parameter ?z is bound both at stage 0 (to 0) and stage 1 (to 1). Thus 
the constraint ?z : Int will appear both at stage 0 and stage 1. How shall these two 
occurrences be handled? 

In let-generalisation style, let-bound variables capture all the constraints of the let-bound 
term, regardless of their stage. Thus plusl would be assigned the constrained type scheme 
?z : Int => (C Int 31, and the term would be implemented (using the translation of [57]) 
as: 

(Xz . let plusl = Xz' . {{ 1 + z' )) 
in {{ (XZ" . -(plus1 z)) 1 )) ) 0 

Note the implicit lift of the parameter z' from stage 0 to stage I. Hence the instance of 
plusl would be specialised with the binding of ?z = 0 at stage 0, and the program would 
reduce to (in source form): 

CC (1 + 0) with ?z = 1 33 
Alternatively, using defer-generalisation style, plusl would be assigned the rank-2 type 
(1 ?z : Int => Int 33. The implementation would then be: 

(Xz . let plusl = {{Xz' . 1 + z' )) 
in {{(Xz'' . -plus1 z") 1 )) ) 0 

Now the code (C 1 + ?z 13 would be specialised with the binding of ?z = 1 at stage 1, and 
the program would reduce to: 

(( 1 + ?z with ?z = 1 ) )  

Since the choice of method effects the semantics, one must be prescribed. Unfortunately, 
neither is pleasing. Let-generalisation style would only work for implicit parameters of 
EzftabEe type, since implicit parameters which cross stages must be lifted. In most imple- 
mentations, this would rule out defer expressions with implicit parameters of functional 
type-a severe restriction. Furthermore, the capturing of a stage 1 implicit variable by a 
stage 0 binding is unlikely to correspond with the programmer's intended interpretation. 



Defer-generalisation style, on the other hand, is incompatible with tractable type inference. 

One way out of this impasse is to both give up defer-generalisation, and also ignore any 
constraints from higher stages when let-generalising. The programmer may then use first- 
class polymorphism [49] to explicitly generalise polymorphic deferred expressions where 
desired. 

Under this approach, the example could be written as: 

newtype WithZ = ?z : Int  => Int 
unWithZ = \(WithZ x) . x 

( l e t  plus1 = (C WithZ (1 + ?z) 33 
i n  CC (unWithZ -plusl) with ?z = 1 13 with ?z = 0 

Here (1 + ?z) is generalised when typing the application WithZ (1 + ?z), and plus1 is as- 
signed the monomorphic type C( WithZ )). Dually, the implicit parameter ?z is reexposed 
by (unWithZ -plusl), whence it is bound to 1. 

Unfortunately, this approach is not quite sufficient to avoid problems. Consider a variation 
of the example, this time with two bindings of ?z at stage 1: 

CC - (  l e t  plus1 = CC 1 + ?z 33 
i n  (( -plus1 with ?z = 1 33 ) with ?z = 2 33 

Since the programmer has not explicitly generalised the code bound by plusl, the con- 
straint ?z : Int  (at stage 1) escapes, and is bound to 2 by the outer with. Hence, this 
example reduces to: 

CC (1 + ?z with ?z = 2) with ?z = 1 3) 
Again, this result does not corespond to the programmer's intended interpretation of: 

(C 1 + ?z with ?z = 1 33 
F'urthermore, and more seriously, terms such as these would greatly complicate the seman- 
tics. 

To avoid these problems, ASC requires that every staticaIly typed polymorphic deferred ex- 
pression must be explicitly fully generalised. Indeed, the type system will require that in 
CC t 33, t must be well-typed assuming only true, the trivial constraint, at t7s stage. 

Thus the example above must be written as: 

newtype WithZ = ?z : In t  => Int  
unWithZ = \(WithZ x) . x 

(C -( l e t  plusl  = (C WithZ (1 + ?z) )I 
i n  CC (unWithZ -plusl) with ?z = 1 )) with ?z = 2 3) 

To formalise this approach, the well-typing judgement must now include a vector of type 
variable contexts, h, tracking which type variables are free at which stages. Similarly, 
it must also include a vector of constraint contexts, E ,  tracking the current constraint 
context for each stage. 

It is important to distinguish and T, which may contain variables bound at any stage (and 
hence resemble temporal logic contexts [20]) from T, which contains constraint contexts 
only for the current and previous stages (and hence resembles a modal logic context [21]). 



In other words, though and r are persistent across stages, is a stack which must be 
popped when moving to an earlier stage. 

The type rules for defer and splice are now: 

To recap: XSC may generate well-typed code which uses constrained polymorphism, pro- 
vided that no constraint crosses outside of any defer expression. Furthermore, this obvious 
lack of expressibility may be circumvented using first-class polymorphism. 

Alas, this approach may quickly become excessively burdensome on the programmer. 

7.5 Dynamically Typed Staged Computation 

The previous section showed how programming with constrained polymorphic code can 
become tedious because the programmer must explicitly wrap and unwrap polymorphic 
code fragments. Furthermore, in many programming situations the type of generated code 
depends on a run-time value and is difficult to express statically. 

Both these problems can be avoided if type inference is staged in parallel wi th  evaluation. 
In this way, type inference may be deferred until sufficient type context is known a t  run- 
t ime.  This approach neatly extends the staging operators we have already introduced, and 
also subsumes many proposals for dynamic  typing [I, 56, 21. 

A new type, (?I, is introduced for dynamically typed code. Values of this type are code 
fragments for which type inference has been deferred. Indeed, such code fragments may 
even be ill-typed. 

The three statically typed operators of Section 7.1 also have dynamically typed versions. 
For simplicity, XSC overloads the splice and run operators to work on both code types, and 
only introduces a new form for deferring evaluation: 

(? t ?3 is like (( t 11, but defers both the type inference and evaluation of t by one 
stage: 

1 + 1 : In t  inferred a t  compile-t ime 
l + l u 2  evaiuated at  stage 0 

C ? 1 + 1 ? ) : ( ? 1  inference deferred 
(? 1 + 1 ?3 4) (? 1 + 1 ? I  evaluation deferred 

As before, run t first evaluates t to a piece of code. If the result is a dynamically 
typed code fragment of the form (? u ?I,  it then infers the type of u. Evaluation 
continues with u if this type is compatible with run's context. For example (writing 



410 for evaluation in a monadic context): 

l e t i < - r u n ( ? l + l ? ) i n u n i t  (i+2) 
+ l + l : I n t  inference brought forward to stage 0 

In t  = In t  types are compatible 
UIo l e t  i = 1 + 1 i n  uni t  ( i  + 2) evaluation brought forward to stage 0 

U-10 4 evaluation continues 

Two things can go wrong here: The type of u may be incompatible with that of 
run's context, or u may be ill-typed to begin with. If either of these occur then run 
discards u and raises an exception. For example: 

l e t b < -  ( t r y run (?  l +  1 ?) 
catch uni t  False) 

i n  uni t  (not b) 
+ 1 + l : I n t  inference brought forward to  stage 0 
+ In t  # Boo1 types not compatible, exception raised 
410 l e t  b  <- uni t  False i n  uni t  (not b) exception caught 
$10 True evaluation continues 

Here the operator ( t r y ,  catch -), of type I0 a  -> I0 a  -> I0  a, performs its first 
argument, passing control to its second argument only upon an exception. 

Also as before, -t evaluates t to a piece of code. If it is dynamically typed code of 
the form C? u ?), u is spliced into the body of the surrounding code, which clearly 
must also be dynamically typed. Unlike for statically typed splices, the type of a 
code fragment with dynamically typed splices may now depend on the code being 
spliced. For example, in: 

l e t  code = (? \x . (x, x) ?) i n  (? -code 1 ?) & (? (\x . (x, x)) 1 ?) 

the resulting body has type ( Int  , Int) .  However, in 

l e t  code=(? \x . True ? ) i n ( ?  -code 1 ?)a(? (\x . True) 1 ?) 

the resulting body now has type Bool. 

It is quite possible for an expression to be incompatible with the context it is spliced 
into, yielding ill-typed code. For example: 

l e t c o d e = € ? \ x  . x +  1 ?) in(?-codeTrue?)$(?  (\x . x +  1) True?) 

Ill-typed code is detected by run: 

t r y r u n ( ?  (\x . x + l )  True ?) 
catch uni t  False 

(\x . x + 1) True : ? type inference brought forward, ill-typed 
JjIo False exception caught 

One choice remains to be made. Should a term (? t ?) be assigned type (?I regardless of 



t, or should it be rejected if t is ill-typed regardless of code spliced into it? For example: 

l e t  code = (? 1 ?) i n  C? -code + not 1 ?) 

would be accepted under the former, and rejected under the latter. Since this choice has 
little effect on the semantics and expressibility of the language, ASC adopts the later as a 
small aid to program correctness. 

7.6 Constrained Polymorphism and Dynamic Typing 

Since dynamically typed code is always assigned the monotype (?I, it may be type checked 
using the defer-generalisation method sketched in Section 7.3 without any complications. 
Very roughly, the type rules are: 

Notice At and D may be arbitrarily chosen so that t has some type T .  All three properties 
are then forgotten, and C? t ?) is assigned type (?I. Similarly, in the second rule T may 
be chosen arbitrarily so that the context of -t is well-typed. 

Consider the example from Section 7.3, rewritten to use (? ?I brackets: 

( l e t  plus1 = (? 1 + ?z ?I 
i n  C? -plus1 with ?z = 1 ?I 1 with ?z = 0 

Now the type of 1 + ?z is generalised to give ?z : I n t  => In t ,  and this type is discarded. 
Hence there is no confusion as to which binding of ?z applies, and the term reduces to: 

( ?  1 + ?z with ?z = 1 ?) 

Dynamically typed polymorphic code is thus much easier to program with, but in return 
cannot be statically verified as type-correct. 

Unfortunately, the rules DEFERUSIMP and SPLICEUSIMP fail to differentiate between terms 
whose type is definitely known, versus those for which the type has been "guessed" by a 
splice of C?) code. Hence, the actual type system requires two judgement forms at stages 
1 and higher. 

7.7 The r t type  and l i f t a b l e  Constraints 

Recall from Section 7.5 that run must perform a run-time type check of any code of compile- 
time type (?) to ensure its actual type is compatible with run's context. Furthermore, 
because run may be used in a polymorphic context, this type may not be known locally. 

For example, in: 



l e t  f = \code . run code 
i n  l e t  b <- f (? True ?); 

i <- f (? True ?3 
i n  un i t  (not b, i + 1) 

the first application of f 7  and hence the run within f ,  is at type Bool (and thus succeeds), 
while the second is at type I n t  (and thus fails). Somehow a run-time representation of the 
type of f 's context must be conveyed to the occurrence of run. 

One approach is to use a System F style of type-passing semantics [99]. However, since 
types are passed into every polymorphic term regardless of whether it actually invokes 
run, this approach is needlessly expensive. F'urthermore, it diverges from most existing 
implementations of functional programming languages which are type-free at run-time. 

Instead, XSC uses the constraint r t type  r to indicate that a representation of type r is 
required at run-time. This constraint is another example of a "type trickn (analogous to 
the trick in typing run discussed in Section 7.2). Since r t type  r is satisfied for any ground 
type r7 it does not really impose a 'Lconstraint" on r at all. Instead, it allows the type 
system to track which type specialisations require an actual run-time type to be passed as 
an additional parameter. 

Giving run  (in effect) the constrained polymorphic type 

run : f o r a l l  a . r t type  a => (?) -> I0 a 
signals that it takes as an additional argument a witness of r t type  a; that is, a represen- 
tation of whatever monotype a is instantiated to. This passing of witnesses parallels the 
propagation of r t type  constraints. A type-directed dictionary translation rewrites source 
terms to run-time terms in which this witness passing is explicit. 

Returning to the example, f is assigned the same type scheme as run, and the whole term 
is translated to: 

let f = X w . X code . run code at w 
in let b t f Bool (True) 

i t f l n t  (True) 
in unit (not b, i + 1) 

Notice the witness abstraction in the binding of f, and the witness applications at each 
occurrence of f. 

One more constraint is necessary. Recall from Section 7.2 the side condition liftable(r) 
in rule VARMONO. Again, in the presence of polymorphism, this condition cannot be 
checked locally if r is not ground. Instead the side condition is implemented as a constraint 
l i f t a b l e  r. Just as for r t type  T ,  this constraint is witnessed by a run-time representation 
of 7, which may be used at run-time to determine how a value should be lifted. (In XSC7 
only I n t  is liftable, so this machinery is somewhat of an overkill.) 



Chapter 8 

Examples 

The system sketched in Chapter 7 is very versatile. This chapter presents examples of 
dynamic typing, partial evaluation, and distributed computing. The examples are some- 
what voluminous, and will assume features beyond those of Asc-in particular the pattern 
matching syntax of XTIR, and the native XML syntax introduced in Section 3.4. However 
by doing so we demonstrate how staging interacts gracefully with other language features. 

These examples have not been formally type checked or tested on a running interpreter. 
However, key fragments have been tested by transliterating into Haskell. 

8.1 Dynamic Typing 

Consider replicating C7s printf procedure in a functional setting. Programmers might like 
to write: 

printf "%i = %b" (1, True) 

where %i and %b are placeholders for the elements of the argument tuple. Unfortunately, 
giving printf a type such as 

printf : String -> T -> I0 0 
is problematic, as the type T depends on the value of printf's first argument. This could 
be expressed using a dependent type [9]: 

printf : n s  : String . (formatType s) -> I0 0 
where formatType converts the format string to a type. However the complexity of 
dependently-typed programs can quickly become overwhelming. 

One solution is to allow printf to accept arguments of any type: 

printf : String -> List Dyn -> I0 0 
As printf parses its format string, it checks each argument is of the appropriate dynamic  
type before outputting its representation. 

Examples such as the above are common in: 

Persistent programming, where values of any type may be stored and retrieved from 
stable storage. 

Distributed programming, where data and code are exchanged between remote pro- 
grams. 



a Interpretive programming, where object language terms of arbitrary type must be 
represented by meta language constructs of known type. 

a Generic programs, such as p r in t f ,  which work non-parametrically over values of 
arbitrary type. 

Existing approaches to dynamic typing [I, 56, 21 introduce a universal datatype of type 
Dyn, and two operations: 

a dynamic t : T, which constructs a dynamic value containing both term t and a rep- 
resentation of its type 7; 

a typecase d of ( x l  : 7 1  -> tl ; . . . , x ,  : 7, -> t ,  1, which attempts to match the 
type stored within dynamic value d against one of Ti, binding the term in d to the 
appropriate xi, or failing gracefully if no match is found. 

The semantics of these two operators is straightforward when all types involved are 
monomorphic. However, when typecase patterns may contain free type variables, or 
worse, when dynamic values may contain polymorphic terms, the situation becomes much 
more subtle. 

These approaches suffer two main drawbacks: 

a Types live in two quite different worlds. Static types are generally inferred, and 
may be implicitly polymorphic with little added complexity for the programmer. 
Dynamic types must be mentioned explicitly within the branches of a typecase, and 
dynamic polymorphism is either forbidden [I], restricted [56],  or requires the complex 
machinery of functors and higher order unification [2]. 

a Combining dynamic values together to construct a new dynamic value is tedious and 
verbose to write, since each constituent value requires a separate typecase, and the 
result must be wrapped by dynamic. 

In AS', dynamically typed terms are simply terms for which both evaluation and type- 
inference has been deferred. This approach avoids the problems above: 

a The same type system as used at compile-time is used at run-time to decide the well- 
typing of dynamic values. There is no need for explicit type annotations, and dynamic 
values enjoy type inference just as static values do. As a result, dynamically typed 
polymorphism is implicit and as convenient to use as statically typed polymorphism. 

a The splice operator makes combining dynamically typed values convenient and con- 
cise. Even though the type Dyn resembles {?), the term dynamic t resembles (? t ?), 
and typecase may be simulated by a chain of run commands, dynamic-typing sys- 
tems have no counterpart to the splice operator. 

The implementation of p r in t f  in ASC is much the same as in dynamic typing systems: 
p r in t f  has type St r ing  -> L i s t  {?I -> I0 0, and the programmer must wrap each ar- 
gument in (? ?) brackets: 



printf  : String -> List  (?) -> I0 0 
= l e t r ec  format : String -> List  (?I -> (?I 

= ( \ [ I  [I . C? "" 7 -3 ;  
\('%' :: 'i' :: cs) (d :: ds) . 

(? i t o s t r  -d ++ -(format cs ds) ?); 
\( '%' :: 'b' :: cs) (d :: ds) . 

(? btos t r  -d ++ -(format cs ds) ?3; 
\ (c  :: CS) ds . 

C? c :: -(format cs ds) ?); 
\- - . (? 0 ? I  (* non-string t o  force e r ror  *) ) 

i n  \cs ds . l e t  s <- t r y  run (format cs ds) 
catch unit  "error : bad format I' 

i n  putStr s 

The helper function, format, traverses the format string, splicing together code to construct 
the result string. The pr int f  function attempts to run this code and print the result. An 
error string is printed if the format string and arguments mismatch in number or type. For 
example: 

printf  "%i = %b" I(? 1 ?), C? True ?)I 
4 run((? i t o s t r  1 ++ I' = I' ++ btos t r  True ++ "" ?) 

UIO i t o s t r  1 ++ " = I' ++ btos t r  True ++ I t "  

d,l I' 1 = True" 

which is written to output. 

Unlike in dynamic typing systems, another implementation is possible which exploits ASC's 
ability to manipulate code containing free variables. This implementation constructs, at 
run-time, a printing function matching the given format string: 

makeprintf : f o r a l l  a . r t type a => String -> I0 a 
= l e t r ec  makeFun : String -> (?I -> (?I 

= C \ C l  d - d; 
\('%' :: '1' : :  cs) d . 

(? \x . -(makeFun cs (? l e t  0 <- -d 
i n  putStr ( i t o s t r  x) ?3) ?); 

\ (>%' : : 'b' : : cs) d . 
c? \x . -(makeFun cs (? l e t  0 <- -d 

i n  putStr (b tos t r  x) ?3) ?3; 
\ (c  :: cs) d . makeFun cs (? l e t  0 <- -d 

i n  putchar c ?3 3 
i n  \cs . run (makeFun cs (? unit  0 ?)) 

Here, the constraint r t type a signals that a run-time representation of type a is required, 
but does not actually restrict how a may be instantiated. 

The helper function, makeFun, traverses the format string, building a A-abstraction for 
each argument. Argument d to makeFun accumulates the code to convert and print the 
arguments seen so far. Notice that x is free in the code passed to the recursive call to 
makeFun. Without this ability it would be impossible to construct the function at run- 
time. 

Although makePrintf may be instantiated to any type, it will raise an exception unless the 



type is compatible with the format string. In this respect, makeprintf is not parametric 
polymorphic, but rather ad-hoc polymorphic. Such terms can always be distinguished by 
their use of the constraint rttype T. 

The function makeprintf has two advantages over printf: It avoids the need to wrap 
arguments with (? ?I brackets, and it allows a printing function to be generated once and 
reused many times without the overhead of staging. 

For example, in: 

l e t  f <- makePrintf "%i = %b"; 
0 <- f 1 True 

i n  f 0 False 

type inference discovers f must have type Int -> Boo1 -> I0 0 .  Hence the application 
makeprintf "%i = %bl' returns the function: 

\ x i  . \x2 . l e t  0 <- ( l e t  0 <- ( l e t  0 <- unit 0 
i n  putStr ( i t o s t r  X I ) )  

i n  putStr I' = "1 
i n  putStr (btostr x2) 

8.2 Partial Evaluation 

Partial evaluation seeks to specialise code to exploit run-time invariants [50]. For conven- 
tional programs, partial evaluation requires a form of binding-time analysis [78]. In ASC, 
(and MetaML [97]), partial evaluation is under programmer control through the use of 
explicit staging anotations. Furthermore, ASC programs are free to use dynamically typed 
code whenever it is inconvenient or impossible to express the types of generated programs 
statically. 

Consider implerneting a regular expression compiler which, given a 1-unambiguous regular 
expression (as introduced in Section 3.4), produces the corresponding Glushkov automaton 
[17]. Staging can be exploited to encode the automaton directly as a ASC program, rather 
than as an interpreter for the automaton's transition function. 

The language of regular expressions is represented abstractly: 

data RegExp = \a . 
Atom a 

I Sum (List (RegExp a)) 
I Prod (List  (RegExp a ) )  
I Star RegExp 

The states of a Glushkov automaton correspond with the positions of atoms in the regular 
expression it is built from. Hence the first task is to assign a unique position to each atom 
of the regular expression, and construct a map from positions back to atoms. We shall use 
natural numbers to represent positions, and assign naturals to atoms from right to left so 
that the last atom has position 0. The map is then easily represented as a list indexed by 
position. For example, the regular expression a*b is represented as: 

Prod [Star (Atom 'a ' ) ,  Atom 'b'l 



This term is annotated with positions to become: 

Prod [Star (Atom (1, ' a ' ) ) ,  Atom (0, ' by ) ]  

The corresponding map is thus: 
C ' b y ,  'a '  I 

The following function performs this annotation (to avoid complications with overloading 
the == function, all types in the following program fragements have been specialised to 
regular expressions over characters, even though most are polymorphic on the atom type): 

annotate : RegExp Char -> (List  Char, RegExp ( In t ,  Char)) 
= l e t r e c  annList = \cs r e s  . fo ld r  ( \ re  (cs ' ,  res ' )  . 

l e t  (cs", r e ' )  = ann cs'  r e  
i n  (cs", r e J  :: r e s ' ) )  

(CS, CI r e s ;  
a n n = \ c s  . ( \ (Atomc)  . (c : cs ,  Atom ( l eng thc s ,  c ) ) ;  

\(Sum res )  . l e t  ( cs ' ,  r e s ' )  = annList cs r e s  
i n  (cs'  Sum r e s ' ) ;  

\(Prod res )  . l e t  (cs ' ,  r e s ' )  = annList cs r e s  
i n  (cs ' ,  Prod r e s ' ) ;  

\ (Star  r e )  . l e t  (cs ' re ' )  = ann cs r e  
i n  (cs ' ,  S t a r  re ' )  3 

i n  \ re  . l e t  ( c s y ,  r e y )  = a n .  r e  [I i n  (reverse cs ' ,  r e ' )  

This and the following functions make use of some standard library functions: 

length : f o r a l l  a  . L i s t  a  -> In t  
reverse : f o r a l l  a  . L i s t  a  -> List  a  
fo ld r  : f o r a l l  a  b . (a -> b -> b) -> b -> Cal -> b 

map : f o r a l l  a  b  . (a -> b) -> Cal -> Cbl 
( !  !) : f o r a l l  a  . L i s t  a -> In t  -> a  
and, o r  : CBooll -> Bool 

Some operations on sets of positions, position pairs, and (character, position) pairs are also 
needed. (In practice these operations would all be instances of more generic operations on 
sets and relations). Signatures for these operations are given in Figure 8.1. We use 'P" to 
denote "position", and "C" for "character." 

The function hasEmpty is True if its argument regular expression recognises the empty 
string: 

hasFmpty : RegExp ( In t ,  Char) -> Bool 
= C \(Atom ,) . False; 

\(Sum res )  . or  (map hasEmpty res )  ; 
\(Prod res )  . and (map hasEmpty res )  ; 
\ (Star  r e )  . True 1 

The function f  i rs tPos  is the set of positions of its argument reachable without transition: 



newtype Set = \a . ... 

emptyP : Set In t  
emptyPP : Set ( In t ,  In t )  
singleto* : I n t  -> Set In t  
unionP : Set In t  -> Set In t  -> Set I n t  
unionPP : Set ( I n t ,  In t )  -> Set ( In t ,  In t )  -> Set ( In t ,  In t )  
unionAllP : Set (Set In t )  -> Set I n t  
unionAllPP : Set (Set ( In t ,  In t ) )  -> Set ( In t ,  In t )  
memberP : Set In t  -> In t  -> Bool 
crossProdP : Set In t  -> Set In t  -> Set ( I n t ,  In t )  
isFunctR : Set ( In t ,  In t )  -> Bool 
applyRelPP : Set ( I n t ,  In t )  -> I n t  -> Set In t  
mapsetPCP : ( In t  -> (Char, In t )  -> Set In t  -> Set (Char, In t )  
foldSetCP : f o r a l l  a  . ((Char, In t )  -> a  -> a) -> 

a  -> Set (Char, In t )  -> a 

Figure 8.1: Signatures for operations on sets and relations 

f i r s tPos  : RegExp ( In t ,  Char) -> Set In t  
= C \(Atom (p, -1) . singleto* p;  

\(Sum res )  . unionAllP (map f i r s tPos  r e s ) ;  
\(Prod [I . emptyP; 
\(Prod ( re  :: r e s ) )  . 

unio* ( f i rs tPos  re )  
( i f  hasEmpty r e  then f i r s tPos  (Prod res)  e l se  emptyP) 

\(Star  re )  . f i r s tPos  r e  1 
Similarly, lastPos is the set of positions of its argument which are valid stopping states. 
These are simply the first-positions of the reversed regular-expression: 

lastPos : RegExp ( In t ,  Char) -> Set In t  
= \ re  . f i r s tPos  (rev re )  

rev : f o r a l l  a  . RegExp a  -> RegExp a  
= { \(Atom a) . Atom a ;  

\(Sum res )  . Sum (map rev r e s ) ;  
\(Prod res )  . Prod (reverse (map rev res ) )  ; 
\ (Star  r e )  . Star  (rev re )  3 

The function followPos yields the set of all pairs of position and successor position. A 
successor position must be reached by exactly one transition: 



followPos : RegExp ( In t ,  Char) -> Set ( I n t ,  In t )  
= ( \(Atom -1 . emptyPP; 

\(Sum res )  . unionAllPP (map followPos r e s ) ;  
\(Prod [I)  . emptyPP; 
\(Prod ( re  :: res ) )  . 

unionPP (f ollouPos re )  
(unionPP (followPos (Prod res ) )  

(crossProdP (lastPos re )  
(f i rs tPos  (Prod res)  ) ) ) ; 

\ (Star  re )  . unionPP (followPos re )  
(crossProdP (lastPos re )  

( f i rs tPos  re ) )  3 
All the definitons above are now tied together by makeFollowMaps, which builds a list of 
transition relations, one for each position. For simplicity, the starting state is encoded 
as the "position" one before the leftmost position. Each transition relation maps legal 
input characters to their following position. The function makeFollowMaps also returns 
the number of positions, and the set of valid final positions for the regular expression: 

makeFollowMaps : RegExp Char -> ( In t ,  Set I n t ,  L i s t  (Set (Char, In t ) ) )  
= \ re  . l e t  (cs ,  r e ' )  = annoate r e ;  

nPos = length cs;  
l a s t  = unionP (lastPos re ' )  

( i f  hasEmpty r e '  then 
s i n g l e t o e  nPos 

e l se  
emptyP) ; 

follow = unionPP (followPos r e ' )  
(crossProdP (singleto* nPos) ( f i rs tPos  r e ' ) ) ;  

maps = map (\p -> mapsetPCP (\p' -> (cs ! !  p ' ,  p ' ) )  
(applyRelPP follow p))  

CO . . nposl 
i n  (nPos, l a s t ,  maps) 

This leaves the problem of generating the recogniser itself, which should be code for a 
function of type String -> Bool. Without staging, the only posibility would be to simulate 
the Glushkov automaton on the given input, requiring two probes per input character: 
one to map the current position to its transition relation, and another to map the current 
character to its successor position (or test for final position if the input has been exhausted). 

With staging, more efficient solutions are possible. An obvious improvement is to encode 
the automaton as a single recursive function, and unfold the two probes as a series of i f  
expressions. However, this represents the automaton state explicitly as an integer. The 
following implementation goes one step better by embedding the automaton's state directly 
in the implicit state of ASC, thus eliminating all interpretive overhead. This embedding is 
achieved by generating a set of mutually recursive functions, one for each position (and 
the starting state), each of which tests the current input and makes a recursive tail-call as  
required. 

The only subtlety is how to generate an arbitrary number of mutually recursive functions. 
Remember, ASC does not allow variable names to be generated under programmer control, 



and does not allow terms to be built from term-fragments (such as a single letrec-binding), 
only other terms. 

The first step is to generate a transition function for each position, which is abstracted 
over all transition functions (including itself): 

makeFunN : In t  -> Boo1 -> Set (Char, In t )  -> (?) 
= \nPos isLast followMap . 

l e t  makeTests : L i s t  (?) -> (?) 
= \ f s  . 

l e t  testcode = \c ,  cs  . foldSetCP 
( \ (c ' ,  p ' )  r e s t  . 

(? i f  -c = c '  then - ( f s  ! !  p')  -cs e l s e  - res t  ?I) 
(? False ?) 
f ollowMap 

i n  C? C \[I . i s l a s t ;  
\ ( c  :: CS) . -(testcode (? c ?) (? cs ?)) ) ?) 

i n  l e t r e c  makeAbs : In t  -> L i s t  (?) -> (?) 
= \pos f s  . 

i f  pos < 0 then 
makeTests f s  

e l s e  
(? \f . - (makeAbs (pos - 1) (C? f ?) : : f s ) )  ?) 

i n  makeAbs nPos [I 
The function makeAbs builds a series of function abstractions, one for each position (and 
the starting state). Notice how though each abstraction argument is statically named 
"f", the run-time system will actually generate fresh argument names for each generated 
abstraction. These names are accumulated and passed to makeTests. This function uses 
testcode to create a nested i f  expression testing the current character against each legal 
character, and calling the appropriate next-position function. It also tests for valid final 
positions. Since the type of each transition function depends on the total number of 
positions, all of this code must be dynamically typed. 

The function makeFuns generates a nested tuple of transition functions, one for each posi- 
tion (and the starting state). This tuple resembles a list, with (- , -) for ( : : ) and 0 for 
[I : 

makeFuns : In t  -> Set In t  -> L i s t  (Set (Char, In t ) )  -> (?) 
= \nPos l a s t  follovMaps . 

l e t r e c  genFuns = \p . 
i f  p < 0 then 

C? 0 '3 
e l se  

(? ( -(makeFunN nPos (memberP l a s t  p) (followMaps ! !  p ) ) ) ,  
- (genFuns (p - 1) ?) 

i n  genFuns nPos 

All that remains is to tie the recursive knot. To do so, we define a family of functions, f ixn. 
Given a nested tuple of n n-ary functions, f i xn  returns a nested tuple of n fixed-points. 
When n = 1, the situation is simple: 



f i x l  : f o r a l l  a . (a  -> a ,  0 )  -> (a ,  0 )  
= \ ( f ,  ()) . l e t r e c  x = f x i n  (x, 0 )  

For n = 2, first define two helper functions: 

appl : f o r a l l  a b . (a  -> b, 0 )  -> a -> (by  0 )  
= \ ( f ,  0 )  x . (f x ,  0 )  

uncurryl : f o r a l l  a b . (a -> b) -> (a, 0 )  -> b 
= \ f  (x, 0 )  . f X 

Then: 

f i x 2  : f o r a l l  a . ( ( a  -> a -> a ) ,  ( ( a  -> a -> a ) ,  0)) -> (a,  (a ,  0 ) )  
= \ ( f ,  g) . l e t r e c  x = uncurryl (f x) y; 

y = f i x l  (appi g x) 
i n  (x, y) 

which is equivalent to 

f ix2 '  = \ ( f ,  (g, 0 ) )  . l e t r e c  x = f x y 
Y = g x Y  

i n  (x, (y, 0 ) )  
by BekiC's Lemma. 

For n = 3, again define two helpers: 

app2 : f o r a l l  a b . (a -> b, (a -> b,  0 ) )  -> a -> (b, (by  0 ) )  
= \ ( f ,  g) x . (f x ,  appl g x) 

uncurry2 : f o r a l l  a b c . (a  -> b -> c) -> (a ,  (b, 0 ) )  -> c 
= \f (x, y) . uncurryl (f x) y 

And again: 

f ix3  : f o ra l1  a . ( ( a  -> a -> a -> a ) ,  
( ( a  -> a -> a -> a ) ,  
( ( a  -> a -> a -> a) ,  
0 ) ) )  -> (a ,  (a ,  (a, 0 ) ) )  

= \ ( f ,  g) . l e t r e c  x = uncurry2 (f x) y; 
y = f ix2  (app2 g x) 

i n  (x, y) 

The list f i x e s  is defined to consist of all such fixed-point combinators (and their helpers), 
beginning with n = 1. Again, the type of each component depends on n, and hence must 
be dynamically typed: 



fixes : List (C?), (?I, C?3) 
= letrec next = \(fix, app, uncurry) . 

let curr = 

( C? \(f, g) . letrec x = -uncurry (f x) y; 
y = -fix (-app g x) 

in (x, y) ?3, 
C? \(f, g) x . (f x, -app g x) ?3, 
C? \f (x, y) . -uncurry (f x) y ?3 

in curr :: next curr 
in let first = ( C? \(f, 0 )  . letrec x = f x in (x, 0 )  ?3, 

C? \(f, 0) x . (f x, 0 )  ?I, 
C? \f (x, 0 )  . f X ?3 

in first :: next first 

The required fixed-point combinator is simply drawn from this list: 

makeFixN : Int -> I?) 
makeFixN = \n . f st (fixes ! ! (n - 1)) 

Finally, everything is tied together by makeRecogniser. This function will return None 
if its argument regular expression is not l-nonabiguous; that is, at least one transition 
relation is not functional. Otherwise, it returns Some of the recogniser code: 

makeRecogniser : RegExp Char -> Option C?) 
= \re . let (last, followMaps, nPos) = makeFollowMaps re 

in if and (map isFunctR followMaps) then 
Some CC f st (-(makeFixN (nPos + 1)) 

- (makeFuns nPos last f ollowMaps) ) 33 
else 
None 

Notice that even though makeRecogniser only builds code of type String -> Boo1 (and 
hence a run of this code could safely elide the type check), this invariant can unfortunately 
neither be proven by type inference nor indicated by any form of user annotation. Once 
the programmer steps outside of statically typed code, there is no way to get back in. 

The following program constructs a recogniser for the regular expression a* b ,  then repeat- 
edly tests it against input strings: 

let re = Prod [Star (Atom ' a ' ) ,  Atom 'b'l 
in let r <- run (makeRecogniser re) 
in C \None . putStrLn "error: r. e . is l-ambiguous" ; 

\(Some f) . letrec loop = 
let s <- getline; 

() <- putStrLn (if f s then 
"accepted" 

else 
"rejected") 

in loop 
3 r 

For this program, f would be the term: 



f s t  (3x4 (f2, (fl, (fo, 0)))) 
where fix4 is as defined by the induction above, and: 

f2 = \f2 f l  fO . 
( \[I . False; 

\ (c  : :  CS) . i f  c == 'a) then f1  cs 
else i f  c == 'b' then f O  cs 
e lse  False ) 

fl = \textCsame body as f2) 
f, = \ f 2  f1  fO . 

.C \ C1 . True; 
\ (C : : CS) . False 3 

8.3 Distributed Computing 

A distributed system involves the co-operation of more than one machine. A contemporary 
example is the client-server model for separating an information provider (e.g., database 
server or web server) from an information user (e.g., online search program or web browser). 
Client-server systems are typically implemented as two seperate programs which exchange 
data in a common format (e.g., SQL or HTML). 

This section considers how to implement a distributed system with programs as its common 
exchange format. Staging allows such programs to be generated conveniently, and with 
static guarantees of well-formedness and (if desired) well-typedness. 

These ideas are illustated by implementing a "T-server." Given a request of a natural 
number n, the server generates a program of type H t m l  describing the first n digits of n. 
Of course, the obvious approach is for the server to calculate T to the required precision 
itself. However, to demonstrate the flexibility of staging, this calculation will be included 
within the result program, and hence deferred to the client. 

The following will assume some 1/0 operations to read and write dynamically typed code: 

readcode : Handle -> I0 (?) 
writecode : Handle -> (?) -> I0 0 

For simplicity, the example also assumes a two-way "pipe," possibly involving a network, 
has been previously established between the server and client, and the appropriate handles 
have been supplied to both. Notice this glosses over the problem of ensuring the global 
envrionment of the sending and receiving programs are compatible. For example, if code 
contains an application of a newtype A, the sender and receiver must agree on A's definition, 
and similarly for common library functions. 

Because writecode has an I0 type, it's argument is guaranteed to be closed by the same 
reasoning as used for run in Section 7.2. Hence, the code will be ready to be packaged up in 
form suitable for writing. Furthermore, since readcode has the result type of I0 C?), the 
reading system is forced to type-check any code containing imported code before running 
it. This prevents accidentally or malicioulsy ill-typed code from entering the system. 

Statically typed code may also be coerced to dynamically typed code: 

forget : forall a . CC a 33 -> C?3 



The calculation of .rr exploits an identity established by Bailey, Borwein and Plouffe [6]: 

This formula may 
preceeding digits. 
demand by just a 

be used to calculate arbitrary base-16 digits of n independently of all 
However, it also allows each successive base-16 digit to be calculated on 
few integer operations. 

The implementation requires arbitrarily sized Integer's and Rational's. The following 
assumes the standard binary operators have been overloaded on both types using the 
techniques of Section 3.5. Furthermore, some additional operators are needed: 

(%I : Integer -> Integer -> Rational 
numerator : Rational -> Integer 
denominator : Rational -> Integer 
div : Integer -> Integer -> Integer 
gcd : Integer -> Integer -> Integer 

Each term of the sum is given by term: 

term : (( Integer -> Rational 3 )  
= C C \ i . l e t f = i * 8  

i n  (4 % (f + 1))  - (2 % (f + 4)) - 
(1 % (f + 5))  - (1 % (f + 6)) 13 

Recall from Section 7.2 that functions are not necessarily liftable. Hence this definition, 
and those following, must be deferred by one stage so that it may be included in the code 
of the result document. 

The base-16 digits are computed as a lazy list. The calculation is careful to expand enough 
(and only enough) terms ahead of the current digit to guarantee it cannot be changed by 
a carry-propagation from deeper within the expansion: 

next-digit : CC Rational -> Integer 1 )  
= CC \r . numerator r 'div' denominator r )) 

hex-digits-of-pi : {C L i s t  Integer 33 
= CC l e t r e c  next 

= \i scale  remainder . 
l e t  d i g i t  = -next-digit remainder; 

e r ro r  = 1 % scale 
d i g i t '  = -next-digit (remainder + error)  

i n  i f  scale > 1 && d i g i t  == d i g i t '  then 
d i g i t  : :  next i (scale 'div' 16) 

((remainder - (d ig i t  % 1))  * (16 % 1) )  
e l s e  

next ( i  + 1) (scale * 16) 
(remainder + (-term i * (1 % sca le ) ) )  

i n  next 0 1 0 1 )  
The stream of fractional base-16 digits must then be converted to base-10. Again, the cal- 
culation looks-ahead just enough base-16 digits to ensure the current base-10 digit cannot 



change: 

dec-digits-of : (C L i s t  Integer -> L i s t  Integer 3) 
= (C \hs . 

l e t r e c  next = \(h : hs) dec-scale hex-scale remainder . 
l e t  d ig i t  = -next,digit 

(remainder * (dec-scale % 1 ) ) ;  
er ror  = 16 % hex-scale 
d ig i t '  = -next-digit ((remainder + error)  * 

(dec-scale % 1))  
i n  i f  d ig i t  == d ig i t '  then 

d i g i t  : : next' (h : hs) (dec-scale * 10) 
hex-scale 
(remainder - (d ig i t  % dec-scale)) 

e l s e  
next3 hs dec-scale (hex-scale * 16) 

(remainder + (h % hex-scale)); 

next' = \hs dec-scale hex-scale remainder . 
l e t  f ac to r  = gcd dec-scale hex-scale 
i n  next hs (dec-scale 'divc factor)  

(hex-scale 'd ivC factor)  
(remainder * (factor % 1)) 

i n  next hs 10 16 0 33 
Calculating n as a string in base-10 is straightforward: 

p i  : (( String 33 
= CC l e t  hex-pi = -hex-digits-of-pi 

i n  charOfDigit (head hex-pi) :: '.' . . 
map charOfDigit (-dec-digits-of ( t a i l  hex-pi)) 3) 

Here charOfDigit : Integer -> Char maps a digit to the character code representing it. 

The server can now be presented: 



server : Handle -> I0 0 
= \h . let errorDoc = <Html><Body> 

Server Error: ill-typed request 
</Body></Html> 

in try 
let req <- readcode h; 

n <- run req 
in let title = itostr n ++ " digits of pi"; 

heading = (( <Head><Title><<title>></Title></Head> 1); 
body = \digits . 

(( <Body><Hl><<title>></Hl><<-digits>></Body> 11; 
html = (( let pi = -pi 

in <Html> 
<<-heading>> 
<<-(body (( take (n + 1) pi I))>> 

</Html> 13 
in writecode h (forget html) 

catch 
writecode h (forget errorDoc) 

Given the appropriate handle, server attempts to read a piece of code, and then runs it 
to check it is an integer. 111-typed requests are sent an error message as a reply. Otherwise, 
the code to calculate T is spliced into a let-binding in the result program, which is sent 
as reply. 

Notice that all generated code is statically typed throughout this example program, and this 
type information is forgotten only at the point that code must be written by writecode. 
Hence. the programmer can be sure only well-typed programs will be constructed at run- 
time. Also note that the argument to body in server: 

(( take (n + 1) pi 11 
contains three different ways of using variables within defer expressions: 

take is a standard library function, and hence assumed to be available at all stages 
and in all run-time environments. 

n is a stage 0 variable, but since Int's are liftable, may be used at stage 1 without 
explicit lifting. 

pi is a stage 1 let-bound variable, which is bound to the code produced by the stage 
0 variable of the same name. 

To complete the example, consider a client program to request the first 30 digits of T, and 
displays the result: 



renderHtml : Html -> I0 0 
- - . . . 

client : Handle -> I0 0 
= \h . let errorDoc = <Html><Body> 

Client Error: ill-typed reply 
</Body></Html> 

in let () <- writecode h (forget (C 30 )I) ; 
code <- readcode h 

in try 
let html <- run code 
in renderHtml html 

catch 
renderHtml errorDoc 

Notice how the client fails gracefully with an error message should the server return an 
ill-typed document. 

If all goes to plan, the client will render the HTML page: 

<Html> 
<Head> 
<Title>30 digits of pi</Title> 

</Head> 
<Body> 
<H1>30 digits of pi</Hl> 
3.14159265358979323846264338327 

</Body> 
</Html> 



Chapter 9 

Formal Development 

The aim of this chapter is to formalise ASC to the point where we may prove that any 
program of type T either diverges or evaluates to a value of type T .  We shall develop a 
type-checking system, a denotational semantics, and show soundness. We will not, however, 
show type inference or correctness of the semantics with respect to an unstaged language, 
both of which are quite subtle problems worthy of future research. 

9.1 Syntax 

Figure 9.1 presents the syntax of AS', most of which should be familiar from examples. 
The only novelty is the e x i s t s  primitive constraint. The discussion of satisfiability of ATIR 

constraints in Section 2.9 is also applicable to AS'. Partly for historical reasons, and partly 
for variety, we have chosen within ASC to ensure the satisfiability of type-scheme constraints 
by using existential constraints instead of preventing redundant let-bindings as was done 
for ATIR. Existential constraints play no part at run-time. 

We often write t r u e  for the trivial (empty) constraint ., and will assume constraints are 
equal up to permutation of their primitive constraints. We use K, to range over all kinds, 
which in ASC includes only Type. 

Run-time terms, shown in Figure 9.2, make witness binding (letw B in T), witness ab- 
straction (A(wl,. . . , w,) . T) and witness application ( T  ( Wl, . . . , W,)) explicit. They 
also associate a witness with run ( run T a t  W), and l i f t  (lift T using W). In practice, 
the witnesses themselves are simply representations of monotypes. 

Both typed and untyped code is represented in the run-time language using the (tl) con- 
struct, in which tl is (almost) a source language term rather than a run-time term. We 
must use a source term because dynamically typed code cannot be translated to run-time 
code until run-time, and hence must remain in source language form. However, tl is not 
quite a source language term, as any splice at stage 1 within it must drop back into run- 
time syntax. This stage dependency is captured by defining the family t, of terms for 
each stage n > 0. To avoid unnecessary clutter, we shall drop these subscripts wherever 
possible. 

In the following we shall assume all terms are hygienic [a]; that is, no bound variable ever 
shadows another. This restriction applies even across stages, so than \x . ((\x . 1)) is 
not hygienic. Of course in a practical application this condition is too restrictive, and type 
inference and type checking must deal with shadowed variables. The safest approach would 
be to shadow independently of stage, so that the second x shadows the first in the above 



Kinds n ::= Type 
Type variables a ,b ::= a l b l c l  ... 
Types T,V ::= Int 17 - > v  1 (€ T 33 I C?3 1107 1 a 
Prim constraints c ::= rttype T 1 l i f t a b l e  T 1 e x i s t s  A . C 
Constraints C ::= c1,. . . , C, where n 2 0 
Type var contexts A ::= a1 : nl, ..., a, : K, where n 2 0 
Type schemes a ::= f o r a l l  A . C => T 

Variables x ,y ,z  ::= X I  y  I z I ... 
Integers a 
Constants k ::= i I throw I ( try , catch -1 I putint I getint  
Source terms t ,u  ::= x l k ) \ x . t l t u  

I l e t  x = u i n  t  1 l e t rec  x  = u i n  t  
I € ( t ) ) I ( ? t ? ) I - t l l i f t t  
I unit t  I l e t  x <- u in  t  I run t  

I Type contexts I' ::= xl 01, .. . , xn : an where n > 0 I 
I I 

Figure 9.1: Syntax of ASC source types and terms 

term. An implementation would thus have to replace a type context vector with a single 
map taking a variable name to a pair of a type scheme and a stage number. 

In Section 9.5 we shall see that the hygienic invariant can only be maintained by renaming 
bound variables within code at run-time. 

9.2 Well- kinded Types 

We write +t to denote the concatenation of two type variable contexts. This operation 
is undefined if any variable occurs in both contexts. We write Ainit for the type variable 
context defining the kinds of any type constants. In AS', hinit may simply be the empty 
context. We write to denote the w-vector A. ; Al ; . . .. All but a finite number of A's are 

-< n 
A,,. We write xn to denote A,, and A- for Ao;. . .;An;Ainit;Akit;. . .. We write x+knA' 
forthevectorAo; ...;( A , S ~ A ' ) ; A , + ~ ;  - ... a n d h i - k z f o r  ( A o u A ~ ) ; ( A l + t A l , ) ;  .... 
By a slight abuse of notation, we write Ainit to denote Ainit ; Ainit ; . . .. 

Figure 9.3 presents rules for deciding the judgement I-" T : n, with intended interpreta- 
tion: 

"Type T has kind n at stage n assuming (for every i 2 0) the free stage i type 
variables are kinded according to x'." 

Since every type, and every type variable, has kind Type, the real purpose of this judgement 
is to enforce a form of binding-time correctness on type variables. Assume for the sake of 
the following examples that A-bound variables may be type annotated. Then in the term 



Witness vars w ::= w 
Witnesses W ::= w 1 True 1 lnt 1 Wl + W2 I {{ W )) I {?) 1 10 W 
Witnessbindings B ::= w l = W l ,  . . . , w n = W n  where n 2 0 
Constants K ::= i 1 throw I (try -catch -) I putint 1 getint 
Stage-n terms tn,un ::= x I k 1 \X . tn 1 tn U, 

I let x = u, in tn I letrec x = u, in tn 
I CC tn+l 33 I C? tn+l '3 I lift tn 
I - T  i f n = l  
1 - tn -~  i f n > 1  
I unit tn I let x <- un in tn I run tn 

Runtime Terms T ,  U ::= x 1 K 1 Ax. T I T U 
I letw B in T  I A(wl,. . . , wn) . T  I T (Wl,.  . . , Wn) 
I let x = U in T  I letrec x = U in T  
I (tl) I lift T using W 
( unit T I let x t U in T 1 run T  at W 

Figure 9.2: Syntax of ASC run-time terms 

the type (( a 3) assigned to y is well-kinded since a is introduced at stage 1. However, in 
the term 

the type a assigned to y is binding-time incorrect. This term will be rejected by the VAR 

rule. 

Notice that type variables may be implicitly lifted across stages. For example, in 

the type variable a is introduced at stage 1 and used at stage 2. 

Figure 9.3 also extends the well-kinding judgement to type schemes, and constraints. Care 
must be taken to prevent constraints from containing any type variables from a stage 

-< n 
later than the constraint itself: hence the projection A- in rules RTTYPE and LIFTABLE. 

Without this restriction, it is possible for a type variable to leak from a later stage to an 
earlier stage via the constraint simplification system. For example, in 

(( \x : a . -( fst ((( x 33, run (C x 33)) 33 
the run (at stage 0) would introduce the constraint rttype C( a 33 (also at stage 0). 
Though we shall not present constraint simplification rules for ASC, any reasonable imple- 
mentation would simplify this constraint to rttype a, which would be ill-kinded at stage 
0. Hence the term above should be rejected. 

We extend well-kinding of type schemes to type contexts pointwise. 

We let 8 range over substitutions, which are idempotent maps from type variables to types - 
such that only a finite number of variables are mapped away from themselves. In the 
following, let A 1- 8 gsubst (read "6' is a ground substitution for A") if dom(8) C dom(A) 
and V ( a  : K) E A . O,,it Fo 8 a : K. 



- - 
A I-" T : Type A I-" v : Type 

- INT - FUN 
A I-" Int : Type A P T - > v : T y p e  

- 
A tn+' T : Type 

- CODET - CODEU 
A Fn {{ T 33 : Type A Fn (?I :Type 

- 
A t n r : T y p e  ( u : ~ y p e ) € z ~  m s n  

I 0  - VAR 
A k n I 0 ~ : T y p e  A bn u : Type 

- I A t-" a scheme I 
- 
A +tn A' I-. C constraint +kn A' Fn T : Type 

- SCHEME 
A tn foral l  A' . C => T scheme 

- 1 A Fn C constraint I 
-<n A- I-" T :  Type -< n 

A- I -"~ :Type  
RTTYPE - LIFTABLE 

A I-" rttype T constraint A I-" l i f tab le  T constraint 

- 
A *" A' I-, C constraint V i  . (z Fn c, constraint) 

- EXISTS - CONSTRAINTS 
A I-" ex i s t s  A' . C constraint A I-" C I ,  . . . , C ,  constraint 

Figure 9.3: Well-kinded ASC types, type schemes and constraints 

9.3 Constraint Entailment 

The well-typing rules require a notion of constraint entailment. For example, l i f t  t  will be 
well typed if t  has type T and the current constraint context entails l i f tab le  T. Roughly, 
C entails D when every satisfying substitution for C also satisfies D. However, as explained 
in Section 7.7, entailment must also construct a witness for each primitive constraint in D. 

In the following, we will associate witness variables with primitive constraints. Constraints 
containing such names are termed constraint contexts by analogy with ordinary contexts: 
w : c means "w is bound to a witness of c at run-time" just as x : a means "x is bound to a 
value of type a at run-time." To avoid unnecessary syntactic clutter, we shall use C and D 
to range over both constraints (as defined in Figure 9.1) and constraint contexts. We write 
named(C) for the constraint context formed by associating fresh witness names with each 
primitive constraint in constraint C .  We write names(C) for the tuple of witness names in 
constraint context C.  We write unon(C) for the constraint formed from constraint context 
C by erasing all witness names. 

Figure 9.4 presents rules for deciding the judgement C Fe d v W, with intended interpre- 
tation: "C entails primitive constraint d,  with witness W." Notice that W may mention 



d = r t type T V d = l i f t a b l e  T 

LIFTINT 
C ke  l i f t a b l e  I n t  L) In t  

RTTY PEINT/RTTY PECODEU 
C Fe r t type ~ n t / ( ? )  v Int/{?) 

C ke r t type T v W 
RTTYPECODET 

C ke  r t type (C T 3 )  v {{ W )) 

C F e  r t type v  c, W C Fe r t type T v W' 
RTTYPEFUN 

C ke r t type (v -> T )  v ( W  + W') 

C te r t type T v W 
RTTYPEIO 

C ke r t type (I0 T )  v 10 W 

EXISTSTRIV 
C F e  ex is t s  A . t rue  v True 

C ke r t type anyground(A,r) v - C F e  ex i s t s  A . D v True 
EXISTSRTTYPE 

C ke  ex i s t s  A . (r t type T ,  D)  v True 

a E dom(A) C Fe ex i s t s  A . D v True 
EXISTSLIFTA 

C Fe ex i s t s  A . ( l i f t a b l e  a ,  D) c, True 

fv(d) n dom(A) = 0 C F e  d v - C ke ex i s t s  A . D v True 
EXISTSLIFT 

C F e  ex is t s  A . (d, D) v True 

Vi. (C ke w; : d, v W;) 
CONJ 

C k e w : d v z u =  W 

Figure 9.4: Entailment of ASC constraints 



[w] ,  = 7 W [True], = ttrue : * 
[lnt], = tint : * [ W -+ W'], = tfun : ([W],,  [ W'],) 

I[{{ W ))], = tcodet : [ W ] ,  [{?)], = tcodeu : * 
[I0 W ] ,  = tio : [ W ] ,  

Figure 9.5: Denotation of ASC witnesses into 7, and the definition of env 

[rttype ~ n t ]  = {tint : *) 
[rttype ( v  -> r ) ]  = {tfun : ( t ,  t ') I t  E [rttype v ] ,  t' E [[rttype r ] )  
[rttype (C r I ) ]  = {tcodet : t I t E [rttype r ] )  

[rttype (?I]  = {tcodeu : *) 
[rttype (I0 r ) ]  = {tio : t  I t E [rttype r ] )  

[ l i f t ab le  1nt1 = {tint : *) 
I[liftable -] = 0 

[exists Q . K j  = {ttrue : * I k0 n7 K , i [ c , [ a ] j  # 0) I 
Figure 9.6: Denotation of ASC ground primitive constraints as  subsets of 7 

the witness variables of C .  This judgement is extended pointwise to general constraint 
contexts by the CONJ rule. 

In rule EXISTSRTTYPE we write anyground(A, r )  to denote the type rl-1, where A = 
a1 : ~ 1 , .  . . , a, : K ,  and v,  is a dummy type such that ai,,t I-' v ,  : K i .  (Since our only 
kind is Type, each v ,  may simply be Int) .  The function anyground is a degenerate form 
of skolemisation. 

9.3.1 Soundness of Entailment 

Witnesses may be given a trivial denotation in the set 7 defined by: 

7 = (ttrue : 1 + tint : 1 + tfun : 7 x 7 + tcodet : 7 + tcodeu : 1 + tio : 7) 

Notice there is an injector for each monotype form, in addition to an injector representing 
the trivial witness True. 

The semantics is given by Figure 9.5. We let q range over valuation environments mapping 
witness names to witnesses in 7 (and in the sequel, variable names to values in E V). 
Figure 9.5 also defines the ancillary function env to convert a witness binding B to an 
environment. 

Given t E 7 ,  let typeof ( t )  be the unique ground type T such that [rttype r ]  = t. This 
function is undefined if t is or contains ttrue : *. 
We now wish to check that witnesses built by the entailment relation do indeed "witness" 



i : I n t  
throw: f o r a l l a  : Type . IOa 

( t r y - ca t ch - )  : f o r a l l a  : Type . I0 a - >  I0  a - >  I0 a 
putint  : In t  -> I0 In t  
ge t in t  : I0 In t  

I I 

Figure 9.7: Types for XSC constants in 

their corresponding constraints. Figure 9.6 defines the meaning of a ground constraint as 
either the empty set (the constraint is unsatisfiable) or a singleton set containing the sole 
witness. 

We say q + w : c if q w E [c]. This definition is extended pointwise to q C .  

Lemma 9.1 (Soundness of Entailment) Let A ; F0 C  constraint and A ; I-O 

d constraint and A I- 8 gsubst and q 0 C .  Then 

(i) C  F e  d v W implies [WBll E [8 d ]  

(ii) C  Fe w : d v w = W implies V i  . [W;], E 88 d;] 

Proof See Lemma D.1. 

Lemma 9.2 (Transitivity) Let 8 be a well-kinded grounding substitution. If t rue  F e  
8 C  v B and C  F e  D L, B' then t rue  F e  8 D cs B" and env(B") = 

Iname.q(D). 

Proof See Lemma D.2. 

Lemma 9.3 (Closure of Entailment) If A ; n' I-" C I D  constraint and A I- 8 gsubst 
and C  F e  D  then 8 C Fe 8 D 

Proof See Lemma D.3. • 

Lemma 9.4 Let c be a primitive constraint such that Ainit ;a' I -O  c  constraint and t rue  F e  
c v  W. 

(i) If c = w : r t type 7 then typeof ([ W].) = T 

(ii) If c = w : l i f t a b l e  7 then typeOf([W].) = T and 7 E { ~ n t ) .  

(iii) If c  = ex is t s  A . C and A = a1 : n 1 ,  . . . , an : nn then there exists E s.t. V i  . 
& F0 v; : IE;  and t rue  F e  C [ m ] .  

Proof Immediate from Lemma D.1. 



9.4 Well-typed Terms 

We write to denote the w-vector ro ; ; . . ., which enjoys the same conventions as for - 
A. rina contains type schemes for the constants, as defined in Figure 9.7. 

We write to denote the n-vector Co ; Cl ; . . . ; C,, where each C, is a constraint context. 
Here n is typically the "current" stage number and hence implied by context. 

It is important to notice that is vector-like, whereas 3 is stack-like. This difference is 
because free variables persist across stages, whereas constraints must not. 

Figure 9.8 presents rules for deciding the judgement I C I I-' t : 7 v T with intended 
interpretation: 

"Term t is a stage 0 term of type r, and is translated to the run-time term 
T, assuming (for every i 2 0) variables in F' are bound at stage i to values of 
their assigned type, and assuming the satisfiability of the constraint C, both 
of which assume the type variables in X' are substituted at stage i with types 
of their assigned kind. Furthermore, T assumes the witness names in C to be 
bound at stage 0 to witnesses." 

Two more judgements are required to extend the notion of well-typing to all stages. The 
rules for these judgements are shown in Figures 9.9 and 9.10. 

The judgement I ?? I F I-2' t : 7 v t;+' is true when t is code at stage n + 1 of type 
7. This term is rewritten to the same term, except with any stage 0 sub-terms within it 
rewritten according to the stage-0 judgement given above. 

- - -  
The judgement A I C I I' t-2' t : T c, t;+' is similar, except that the type r assigned to 
t is "advisory." That is, it is possible for t to evaluate, at stage n + 1, to code of any type, 
or even be ill-typed. However, it is also possible that t may be well-typed with type 7. 
The purpose of this judgement is to attempt to reject at compile-time dynamically typed 
code which can never yield well-typed code at run-time. As mentioned in Section 7.5, this 
checking is unnecessary, and is included only as an additional aid to program correctness. 

Since these two judgements differ in only 6 places we present most of the rules as a rule 
schema, using b to range over {tt, ff). 

Rules ABSO, APPO and LETREC are those of a conventional polymorphic A-calculus, except 
with contexts extended to all stages. Similarly, rules UNITMO and LETMO type the two 
monadic constructs. 

Rules LETO and VARO respectively introduce and eliminate constrained type schemes. The 
hypotheses for rule LETO are somewhat daunting! We explain the situation as follows. The 
let-bound term u may inherit the constraints in Dl from its context C. These constraints 
must be entailed by C, and must not mention any type variables which u's type will 
universally quantify. However, u may also require an arbitrary additional constraint D2, 
and both D2 and u's type v may require an arbitrary additional type variable context A'. 
However, for semantic reasons which will become clear in the sequel, we must ensure that 
D2 is satisfiable. Hence we also ask that C entails the constraint e x i s t s  A' . D2. 
One more subtlety with rule LETO remains. Some constraints should never be inherited 
from C. For example, implicit parameters [57] cannot be inherited, otherwise they would 
become lexically rather than dynamically bound. We let inhert(D1) be true if all the 



-0 - ( z l k :  fora l l - .  D  = > r )  7) I' A n o m  
D' = named(D) C  be Dl[-] v B 

- VARO 
A  I C  I TI-' xlk : r [ m ]  v letw B in xlk names(Dr) 

- - 
- A  I-' v  : Type A ]  - C I F I - O ~ : ( ~ - > T ) V T  
A I  C ~ ~ + ~ ~ X : V F ~ ~ : T V  T A I  C I ~ F ~ U : ~ V  u 

- ABSO - APPO 
A /  c I T ' k O \ x .  t : ( ~ - > T ) V A X .  T A I c I F I - O ~ U : ~ V T  u 

- 
A I-' Dl constraint 3 +to A' I-' D2 constraint inherzt(D1) 

C  I-" Dl v B C  e x i s t s  A' . D2 v True - 
A + ~ ' A ' I D ~ + ~ D ~ I ~ ~ ' u : v v  U  - 

A  I C I ?; it0 x  : ( f o r a l l  A' . anon(D2) => v) F0 t  : T v T  
- LETO 
A1 ~ ~ ~ F ~ 1 e t x = u i n t : r v l e t x = ( l e t w ~ i n ~ n a m e s ( ~ ~ ) .  U ) i n T  

- 
AI-'v:Type - 51 C I ~ + t O x : v I - O u : v v  U  

A1 C ~ ~ + ~ - ~ x : v l - ~ t : ~ v T  
- LETRECO 
A1 ~ ~ ~ I - ' 1 e t r e c x = u i n t : r ~ l e t r e c x =  Uin T  

- A I  C I F F O U : I O V V  u ~ I c I F + ~ O X : V ~ - O ~ : I O T V T  
- LETMO 
A1 C I ~ I - O l e t x < - u i n t : ~ ~ r v l e t x t  Uin T  

- -0 0 A1 c ( ? ; F 0 t : r V  T  A  I- r :Type C k e l i f t a b l e r v  W 
- LIFTO 
A  I C  I r!-O l i f t  t :  ((7 33 C )  lift T using W 

- 
A1 c l r I - 0 t : r r r 3 3 v ~  P I - ' r : T y p e  C F e r t t y p e r v  W 

- RUNTO 
A1 ~ ~ F I - ' r u n t : ~ o r v r u n  T a t  W 

- 
A ]  C  I r k 0  t  :{?I- T  2 k ' ~ : T y p e  C F e r t t y p e r v  W 

- RUNUO 
A1 ~ ( f ; I - ' r u n t : 1 0 r v r u n  T a t  W 

Figure 9.8: Well-typed ASC stage 0 terms 



- 
A I-.+' v : Type - 

A I E ; ~ I F + ~ + ~ x : v I - ; + ~ ~ : T V ~ ~  
ABS 1 

h I C ; C ' I F k ; + l \ x .  t : ( v - > T ) V \ Z .  t' 

- - 
A kn+l Dl constraint A ft-n+l A' In+' D2 constraint inherit(D1) 

- C' Fe Dl C' ke ex i s t s  A' . D2 

- A + ~ - ~ + ' A ' ~ ~ ; D ~ - H D ~  IFI-;+~ u : v + u l  
A I ; C' I F +tn+' x : (f o r a l l  A' . anon(D2) => v) I-;" t : T + t' 

- -  LET^ A I  ~ ; ~ ' ~ F ~ ~ + ~ 1 e t x = u i n t : r + 1 e t x = u ' i n t '  

Figure 9.9: Well-typed XSC stage n + 1 terms (part 1 of 2) 



- 
A A' Fn+2 D constraint i+n+2 At I ; C' ; D I i? t : r v t' 

- DEFERU~ 
A I c ; C ' I r F ~ + ' C ? t ? > : ( ? 3 v { ? t 1 ? >  

- - 
A I C ; c' I F k;+l t : {?I v t' A T : Type 

- SPLICEU~ 
~ l G ; ~ ' ; ~ l f F ~ ~ - t : r v - t '  

- -<n+l 
A I c ;  C ' I ~ F ; ' ~  t : r v  t' A- Fn+'r:Type C 'Fe  l i f t a b l e r  

-  LIFT^ 
~Ic;~'IfiF;+~lift t : { t r 3 ) v l i f t t t  

- -<n+l 
A IT; e I rl-;" t :  cc r 33 v t' A- r :  Type C 'Fe  r t t y p e  r -  RUNT^ 

A I E ; ~ ' I F t - ; + ~ r u n t : ~ o ~ v r m t '  

I I 
Figure 9.10: Well-typed ASC stage n + 1 terms (part 2 of 2) 

constraints in Dl may be satisfied by the context of the let-binding rather than the context 
of each occurrence of the let-bound variable. We assume inherit ( D l )  implies inherit(8 Dl)  
for any 8. It is because of inherit that we require only that C entail Dl, rather than 
the stronger C = Dl. Otherwise, for example, any implicit parameters in C would cause 
inherit(C) to fail, regardless of whether u mentioned these parameters. Of course, in ASC 
inherit(D) may be true for every D. 

The rules DEFERTO and DEFERUO are responsible for all of the additional complexity of 
AS'. In DEFERTO, an expression CC t >> at stage 0 is well-typed if t is (definitely) well- 
typed at stage 1 with no residual constraint context. Similarly, in DEFERUO, an expression 
C? t ?I at stage 0 is well-typed if t can be assigned some type under an arbitrary constraint 
context. Notice there is no requirement that D even be satisfiable. 

Rule LIFTO allows a term to be lifted by one stage if it is of a suitable type. Note that a 
term may be lifted to an arbitrary stage by nesting splice and lift expressions. The check 



that T be well-kinded using only free type variables from stage 0 prevents the type variable 
leakage problem mentioned above. 

Rules RUNTO and RUNUO are identical, save for the type of code being run. Notice the 
inclusion of the constraint rttype T .  As with rule LIFTO, these rules must also check for 
possible type variable leakage. 

The typing rules for terms at stages above zero are for the most part a direct lift of those 
at stage zero. We shall consider only the exceptions. 

Rule  FORGET^ allows a definitely well-typed term to be coerced to a possibly well-typed 
term, and is included only to avoid duplicating rules V A R ~ ,  DEFERT~ and SPLICETI. (This 
rule saves quite some effort later.) 

The reader may wonder why the conclusion in rule DEFERU~ uses the I-:+' judgement 
rather than since once code t is wrapped as (? t ?) its type is no longer visible. 
Unfortunately, such a variation would complicate the proof of soundness, since it is possible 
for t to evaluate to an untypable piece of code at run-time. 

Rule SPLICET~ is the dual to DEFERTO. Notice that the current constraint context is 
dropped when moving down a stage. This rule must also be replicated over all higher 
stages, hence SPLICET2. 

Rules SPLICEU~ and SPLICEU~ are similar, but allow the type of spliced code to be chosen 
arbitrarily. In this way, terms such as 

l e t  f = \code : C?3 . (( -code + 1 3) 
may be type checked by assuming code will yield an expression of type Int at run-time. 

9.5 Denotational Semantics 

We now turn our attention to the precise semantics of XSC programs. There are three 
aspects which make it somewhat complicated. 

Firstly, because generated code may contain free variables, care must be taken to avoid 
name capture. For example in: 

l e t  f = \code . CC \x . -code + x 3) 
i n  (( \x . -(f CC x 33) 33 

applying f to CC x 33 should yield 

and not  

Furthermore, there is no way to bound the amount of renaming at compile-time. Consider: 

l e t rec  f : Int -> L i s t  C( Int 33 -> <( Int -> Int 33 
= \n vs  . i f  n = 0 then 

(( \x . - ( fo ldr  (\v c . i( -v + -c  33) (( x 33 vs) 33 
e l s e  

({ \x . - ( f  (n - 1) ((C x 33 :: vs ) )  1 33 



Then f 2 C1 should evaluate to 

and, in general, f n [I requires n + 1 fresh names. 

Thus, any implementation of ASc must carry around a fresh name supply while rebuilding 
code, and any honest semantics should model this behaviour. 

Secondly, in an implementation, eagerly renaming bound variables as they are encountered 
while generating code would be of quadratic complexity. Instead, renaming should be per- 
formed incrementally as code is generated by carrying around a renaming environment. 
Notice that since variables are lexically rather than dynamically scoped, incremental re- 
naming requires the construction of "renaming closures," analogous to the value closures 
already required for partial applications. In order to show the correctness of this optimi- 
sation, the semantics should do likewise. 

The final source of complexity stems from our desire to apply laziness to all 
aspects of execution of ASC programs. For example, since programmers are 
accustomed to let x = undefined in 1 evaluating to 1, they most likely expect 
let x = (C -undefined 33 in 1 and let x <- unit undefined in unit 1 to do likewise. 
The former implies code rebuilding must be done lazily, and the second implies monadic 
commands require a two-level semantics. Modelling lazy rebuilding, whilst also capturing 
the renaming behaviour above, involves some subtlety. 

Moggi [73] has developed a functor-category semantics for two-level languages, which in 
turn follows the pioneering work of Oles [81] on the semantics of block-structured variables 
in Algol. This style of semantics is also suitable for ASC, since we way regard all stages 
greater than zero to be a single "dynamic stage." However, it suffers two drawbacks. 
Firstly, because ASC types and type contexts are indexed by a kind context, a functor- 
category presentation would require an indexed base category, and hence the calculations 
could become fairly involved. Secondly, and more importantly, we would like to be able to 
extend ASC with the constructs of ATIR developed in Part I. Since the types of values passed 
at run-time often depend on indices generated at run-time, ATIR is most conveniently given 
an untyped semantics. Thus we would like ASC's semantics to be similarly untyped. 

Our semantics of terms will be pleasingly close to that of a practical implementation, and 
will make explicit the name generation and renaming mentioned above. Many aspects of 
the functor-category semantics reappear within the semantics of types. For example, the 
semantics will be indexed by a kind and type context vector, and great care will be taken to 
exclude terms which do not behave uniformly upon renaming. However, we should stress 
that this connection is, at present, purely informal. 

9.5.1 Monads 

The denotational semantics will be given in a monadic meta-language [72] over five com- 
putational monads [70]. Though each monad is very simple, and thus a direct semantics 
would also be quite feasible, this approach has three advantages: 

It helps clarify the overall structure of the semantics, and makes, for example, the 
difference between values, computations, and closures explicit; 



E A  = { I )  u {[a] 1 a E A )  
unitE : A + E A 

= Aa . [a] 

bindE : E A + ( A + E B ) + E B  
=Aeaf . c a s e e a o f { I + I ; [ a ] + f  a)  

strengthE : A x E B + E (A x B) 
= Aa eb . case eb of {I + I ; [b] + [(a, b)]) 

fixE : ( E A + E A ) + E A  
=Af . p e a .  f ea 

Figure 9.11: Evaluation monad E 

It factors the semantics so that extensions such as imprecise exceptions [86] or mu- 
table references may be added without the need to restructure the semantics as a 
whole; and 

It may be possible to replace the definitions of these monads with ones which &nerate 
code to perform a command, rather than perform the command directly, thus yielding 
a simple compiler [36]. 

In the following, we shall work both in P D o m  (pre-domains and continuous functions) 
and D o m  (domains and continuous functions). 

Figure 9.11 presents the monad E of possibly-diverging computations. In this and all 
subsequent monad definitions we use A and B to, informally, range over all (pre)domains. 
We assume the usual order-theoretic structure on the result. We write px . F[x] to denote 
UjE,(Ax . F[x])' I D ) ,  where (Ax . F[x]) : D + D for some domain D with least-element 
ID. In the definition of fixE, clearly IE=I. 

Figure 9.12 defines a family of reader monads, which is instantiated in Figures 9.13, 9.14, 
and 9.15 for reader monads over a renaming environment (R), a fresh-name supply (M), 
and both of the above (N). We assume S, the set of all variable names, is countably 
infinite. The empty renaming is denoted by 0, and Names is all infinite lists of distinct 
variable names. We write  name^,^ to denote only those lists which do not contain any 

variable in Ui dom(ri). 

We write letM x t u in t as shorthand for bindM u (Ax . t), and assume strengthM is 
used to distribute variables over multiple let-bindings as required (see Moggi [72] for the 
precise construction.) 

Figure 9.16 defines the monad I 0  of integer Input/Output with a single exception using a 
resumptions-style semantics [go]. The local domain equation for ZO is solved in Dom, but 
I 0  itself is a functor in both D o m  and PDom.  Notice we have elided all applications of the 
in and out functions mediating the isomorphism between ZO and its one-step unfolding. 

The operator bindIO performs a fold over its first argument looking for the final (unit : a) 
to pass to its second argument. Notice the body of the p binding of I is a function from 
I 0  A +  I 0  B, and thus 



D E A = E + E A  

unitDE : A + D E A  
= X u .  Xe. unitE a 

bindDE : D E A + ( A + D E B ) + D E B  
=Xraf . X e . l e t E a t r a e i n f  a e  

strengthDE : A x D E B + D E ( A x  B) 
= Xa rb . Xe . strengthE (a, rb e) 

closure; : D E A + D E (E A) 
= X r a  . Xe . unitE (m e) 

closure fun^ : (A + D E B) + D E (A + E B) 
= Xfrb . Xe . unitE (Xa . f rb  a e)  

closurefix; : (E A + D E A) + D E (E A) 
= Xfra . Xe . fixE (Xea . fra ea e) 

liftgE : E A + D E A  
= Xea. Xe.  ea 

prodDE : D E A + D E B + D E ( A x B )  
= Xra rb . Xe . letE a t ra e 

in letE b t rb e 
in unitE (a, b) 

Figure 9.12: Reader monad D E 

S = all variable names 
RenEnv = S +fin S 

R A = D RenEnv A 

strengthR = strengthD RenEnv 

E closure: = closureD RenEnv 

E closurefun: = closurefunD RenEnv 
E closurefix: = closurefixD RenEnv 

lift2 = lift: 

getR : S + R (name : S + undef : 1) 
= Xnm . Xenv . unitE (if nrra E dom(env) then (name : env nm) 

else (undef : *)) 
runR : R A + E A  

= Xra . ra 0 

Figure 9.13: Renaming monad R 



I Names = List S I 
M A = D Names A 

unitM = unitD Names 

bindM = bindD Names 

strengthM = strengthD Names 

lift2 = lift: 

I 
Figure 9.14: Name supply monad M 

N A = D (Names x RenEnv) A 

 unit^ =  unit^ (Names x RenEnv) 

 bind^ =  bind^ (Names x RenEnv) 

strengthN =  strength^ (Names x RenEnv) 

 prod^ =  prod^ (Namesx RenEnv) 

renameN : S + N A -+ N ( S  x A) 
= Anna na . X((nmr : nms), env) . letE a t na (nms, (env[nm e nm'])) 

in unitE (nm', a )  

closure$ : N A + R (M A)  
= Xna . Xenv . unitE (Xnms . na (nms, env)) 

lift: : R A + N A 
= Xra . X(nms, env) . ra env 

lifts : M A + N A 
= Xma . X(nnas, env) . ma nms 

Figure 9.15: Name supply and renaming monad N 

The operator trycatchlo is similar to bindIo, except that if the first argument yields an 
(exception : *), the second argument is spliced into the resumption. In effect, this runs 
the first command till completion, unless an exception is raised, in which case execution 
switches to the second command. 

We say ea evaluates to a (in the E monad), written ea UE a, if ea = [a]. Similarly, we say 
ioa evaluates to a (in the I 0  monad), written ioa $10 a ,  if 

ioa $E (unit : a) 
V 32, ioa' . ioa UE (putint : (z, ioa')) A ioa' qIo a 
V ioa UE (getint : f )  A 32 E 2 . (f z) UIo a 

Notice that 

and 



I 0  A = Z O  
where ZO = E (unit : A + exception : 1 + putint : 2 x ZO + getint : 2 + TO) 

unitIo : A + I 0  A 
= Xa . unitE (unit : a )  

bindIo : I 0  A + ( A  + I 0  B )  -+ I 0  B 
= Xioal f . (pi . Xioa2 . letE v t ioa2 

in case v of { 
unit : a + f a;  
exception : * -+ unitE (exception : *); 
putint : ( z ,  ioa3) -+  unit^ (putint : (z, I ioa3)); 
getint : g -+ unitE (getint : Xz . I (g z)) 

1 )  goal 
strengthIo : A x I 0  B + I 0  (A  x B) 

= Xu iobl . (p1.  Xiobz . letE v t i o b  
in case v of { 

unit : b -+ unitE ( a ,  b ) ;  
exception : * -+ unitE (exception : *); 
putint : ( z ,  20b3) + unitE (putint : (2, E aob3)); 
getint : g + unitE (getint : Xz . 1 (g z)) 

1 )  20bl 
putintIo : 2 + I 0  1 

= Xz . unitE (putint : (z,unitE (unit : *))) 
getintIo : I 0  2 

= unitE (getint : Xz . unitE (unit : z)) 

throwIo : I 0  A 
= unitE (exception : *) 

trycatchIo : I 0  A -+ I 0  A -+ I 0  A 
= Xioal ioa2 . (pi . Xioa3 . letE v t ioa3 

in case v of { 
unit : a + unitIo (unit : a ) ;  
exception : * -+ ioa2; 
putint : ( 2 ,  ioa4) +  unit^ (putint : ( z , l  ioa4)); 

1) ioal 
liftko : E A + I 0  A 

= Xea . letE a t ea in unitE (unit : a )  

Figure 9.16: 1 / 0  monad I 0  



M I 0  A = Names + I 0  A 

unitMIo : A + M I 0  A 
= Xa . Xnms . unitIo a 

bindMIo : MI0 A + (A + M I 0  B )  + MI0 B 
= Xmioa f . Xnms . bindIo (mioa nms) (Xa . f a nms) 

strengthMIo : A x MI0 B + M I 0  (A x B) 
= Xa miob . Xnms . strengthIo (a, miob nms) 

putintMIo : 2 + M I 0  1 
= Xz . Xnms . putintIo z 

getintMIo : MI0 2 
= Xnms . getintIo 

thrOwMIo : MI0 A 
= Xnms . throw10 

trycatchMIo : MI0 A + M I 0  A + M I 0  A 
= Xmaoal mioaz . Xnms . trycatchIo (mioal nms) (mioa2 nms) 

liftY1O : E A + M I 0  A 
= Xea . Xnms . l i f t 2  ea 

lift%Io : M A + M I 0  A 
= Xma . Xnms . liftLO (ma nms) 

Figure 9.17: Name supply and 110 monad M I 0  

Finally, Figure 9.17 defines the monad M I 0  of Inp~t/Output  with a fresh name supply. 

All of these monads obey the laws: 

u n i t M t = u n i t M  u =$ t = u  
letM x t unitM u in  t = t[x I+ U] 

l e t M x t u i n u n i t M x  = u 
letM y t ( l e t M x t u i n w ) i n t  = l e t M x t u i n y t w i n t  wherex@fv(t)  

lift:, (lift$ t) = lift; t 
lift$ (unitM t) = unitN t 

letN x t lift; u in lift; t = l i f t5  (letM x t u in  t) 

Here M and N range over all monad functors, and t, u and w denote meta-terms (and 
not terms of XSC!). We shall exploit these equalities in the sequel, generally without special 
mention. 

The strengthM operator also obeys: 

s trengthM (t,  unit u) = unitM (t,  u) 
let v t strengthM (t,  u) in  s trengthM v = strengthM (t ,  letM v t u in  v) 

let (-, x) t strengthM (*, t)  in unitM x = t 
s t rengthM (t,  s t rengthM (u, w)) = let ((x, y), z) t strengthM ((t, u), w) 

in unitM (x, (y, z)) 



2 = all integers 

V =  (dwrong:1+dvar:S+dconst:k+dabs:SxV+dapp:VxV 
+ dlet : S x V x D + dletrec : S x V x D 
+ ddeft : V + ddefu : V + dsplice : V + dlift : V 
+ d u n i t m : V + d l e t m : S x V x V + d r u n : D )  

V =  (wrong: l + i n t : Z + f u n c : E V + E V  
+ (Cn>O tfuncn : (n lgSn  77 + E V) 
+ code- M V + cmd : M I 0  ( E  V) ) 

I 

Figure 9.18: The semantic sets 2 and V, and the predomain V 

Since all uses of strength, are implicit, all uses of these equalities are similarly left 
implicit. 

9.5.2 Semantic Sets and Predomains 

Figure 9.18 defines the set D and the pre-domain V. Source terms of AsC generated at 
run-time will be given a denotation in V. Notice it contains an injector for each source- 
term construct, and the additional injector dwrong to signal a catastrophic run-time type 
error during code construction. By "catastrophic," we mean not the failure of type-checking 
within run, which is signalled by an exception in the M I 0  monad, but rather a fundamental 
type error such as application of an integer. 

Given d E D, we write temn0f (d) to denote the term t represented by d; it is undefined if 
d is or contains dwrong : *. 
Values, the result of evaluation, will be given a denotation in V. We have presented its 
semantic equation in a form convenient for the model of types and terms to follow, however 
since V is not pointed a little care must be taken to see it has a solution. Consider the 
domain E V. By pushing E into the summands, and switching from categorical coproduct, 
+, to coalescing sum @, we have E V = V1, where 

V' = ( wrong : E 1 @ int : E 2 @ func : E (V' + V') 
@ (en,, tfuncn : E (inlSil ,  n + vf ) )  
@ codef E ( M  V) @ cmd : E ( M I 0  V') ) 

This equation may be solved in Dom. Then V 2 J. V1, where J. removes the least element 
from a domain. Again, we shall ignore the functions mediating this isomorphism. 

Values include the usual integers, functions and (wrong : *), signalling a catastrophic run- 
time type error. Notice that functions are call-by-name. The injectand (tfunc, : f )  is a 
witness function taking a tuple of n witnesses to a computation of a value. In practice, 
these witnesses will be run-time representations of monotypes. 

The injectand (code : 77ad) represents a piece of code, which is modelled as a function 
accepting a fresh name supply and yielding a computation of a run-time representation of 
a XSC source term. When code is copied from its point of definition to its final destination, 
any binders within it will be renamed away from any variables in its new lexical scope by 
applying the appropriate fresh name supply. 



The injectand (cmd : mio) represents an 110 computation. It accepts a fresh name supply, 
and yields a computation in the I 0  monad. Notice that the I/O computation yields a 
computation of a value, rather than a value directly. Otherwise (the denotation of) unit t 
would be strict in t. 

9.5.3 Denotation of Types 

Figure 9.19 presents the denotation of stage 0 types and type schemes as ideals [59] of E V. 

To motivate the definitions, consider how to assign a meaning to the type (( Int 1). 
Clearly it should contain all functions which, given a fresh name supply, return a compu- 
tation yielding a run-time generated piece of syntax. Hence, as a first approximation: 

[CC Int 311 = E {code : md I md E M V, nms E Names md nms E E V) 

Of course, we also wish to ensure (in this case) only integers are generated at run-time, 
suggesting the smaller denotation: 

[CC Int 331 = E {code : md I md E M V, nms E Names ==+ md nms E E VWt) 

where - 
Vwt = {d E V I (a,,, I true I Pinit I-' termof (d) : Int)) 

However, now the denotation is too small, as it forbids the run-time generation of open- 
code; that is, code containing free variables. Thus we must index the denotation by an 
appropriate kind and type context for use within the well-typing judgement: 

[CC Int = E {code : md I md E M V, rzms E Names * md nms E E Vwt} 

where 
Vwt = {d E 23 I (E I true I r I-' termof (d) : Int)} 

Now, however, we must be more precise about exactly which lists of "fresh" variable names 
within Names are suitable. To prevent name-capture (which is the whole point of including 
the machinery for renaming in the first place!), nms cannot contain any names within r: 

[CC Int >>1@,7) = E {code : md I md E M V, nms E Names,F * md nms E E Vwt} 

where DWt is as above. 

Alas, this denotation is still too large, for it includes members of M V which simply 
ignore nms and rename bound variables arbitrarily, or not at all. For example, imagine 
an md E M D which produces a d E DWt in which a bound variable has been renamed 
arbitrarily so as to clash with the type context (with new type variables in z ) .  In that 
case, however, the derivation 

- 
A -tt z I true I I? +t re k0 termof (d) : Int 

would fail, since shadowed variables are forbidden. This observation suggests misbehaving 
computations may be rejected if we require their results to be well-typed for arbitrary 



[ ~ n t ] ( ~ , ~  = E {int : 4 i E 2) 
--  

17 -> vlen = n { s ( ~ , ~ )  I ( G 7  C )  extends (A, r )  } 

where S(z,c) = E func : f 

- - 
Ir?Ymn = n { s ( , ,  I ( G ,  K )  extends (A7 r) } 

f E E V - + E V ,  

ev E ~ r l ( ~ + z , F + i T )  
* f ev E [vP(ii+a,r+r,) 1 

{ where S(=,K) = E code : md 

- - 
Irr 7 I I ~ ( ~ , ~ )  = n { s ( ~ , ~ )  I (G, C) extends (4 r )  } 

md E M D ,  
nms E Names\F+r, 
--. md nms E E Dwd 

{ where S(z,E) = E code : md 

-- - - 
110 7j(x,F) = n {s(z,E) I ( a e 7  r e )  extends (A, r) } 

1 I 

Figure 9.19: Denotation of ASC types as ideals of E V 

termof (d) well-defined, 

va . vars(a, ternof (d)) G don@') 

md E M D ,  
rims E  names\^++; 
3 md nms E E DWt(a,,r,) 

where S - - - E cmd : io 
(&,re) - 

Ainit I-O v:, 
[ f o r a l l  a: . C => T ] ( ~ , ~ )  = Fe D [ m ]  L) B 

where D = named(C) 
and names(D) = ( w l ,  . . . , wn) 

t = ternof (d) well-defined, 
~ + t n , ~ t r u e ~ F + t K I - O t : r  

io E M I 0  ( E  V), 
nms E N a r n e ~ \ ~ + ~  A (io nms) $10 ea 

ea E [7l(X,F) 

and S ( , B )  = E tfuncn : f 
f~ cn1,,,,7)+~v7 
f ([wllenv(B). . - - 7 [wnl env(~))  

E C r [ m l l ( a , ~ )  



(well-kinded) r, and extending and h. 
Since ideals are closured under intersection, this condition is easily enforced using the -- -- 
definition as it appears in Figure 9.19. We write (A,, I',) extends (A, I?) to denote that 
dom(h) n d o m ( x )  = 8 and dom (F) n dom (c) = 0. Furthermore, we require that Aait ; 
(z~fn,) to I?,, ;r, context, though for readability we - shall often leave such well-kinding 
assumptions implicit. We also implicitly assume Fmit ; I' is well-kinded in Ainit ; h. 
The denotations for the remaining types must similarly take into account this uniform 
renaming behaviour. For C?) we obviously cannot require generated terms to be well- 
typed, but instead only require their free-variables to be contained within T. To this end, 
if z E 2 we write vars(z, t) for all free variables at stage z in term t. Notice that z may 
be negative: for example vars(-1, CC - -x 1)) = {x). 

A function must behave uniformly regardless of the lexical scope it is applied within, even 
though that scope will generally be deeper than the scope of its definition. Hence the 
denotation of function spaces is similarly an intersection over all kind and type context 
extensions. 110 computations must also be uniform over all extensions. 

Finally, the denotation of a type scheme includes only those witness functions which behave 
correctly for any (ground) types satisfying the scheme's constraint. This use of intersection 
of ideals is familiar from the semantics of polymorphism given by MacQueen et  al. [59]. 
Notice that if C is unsatisfiable, the denotation of f o r a l l  a . C =C T will be all of E V. 
This fact will be important when we come to.show type soundness in the sequel. 

Notice that is well-defined if Ainit ; & t-O T scheme and Ahit ; h k0 Finit ; context. 
That is, a must be closed at stage 0, but may contain type variables from h at higher 
stages. 

9.5.4 Denotation of Run-Time Terms 

The denotation of run-time terms naturally divides into two halves. For higher-stage terms 
the semantics describes how run-time terms are rebuilt by splicing and renaming. This 
semantics is defined in Figure 9.20. We let q range over run-time environments mapping 
both witness variables, w, to witnesses in T, and variable names, x, to computations of 
values in E V. Then, given a stage-(a + 1) term tn+1, we have [t,+l]l;+l E N V. 
Notice that each occurrence of a variable is renamed as it is encountered by looking up its 
name in the renaming environment. Dually, each binding occurrence of a variable results 
in the renaming environment being extended. The fresh name supply is not threaded 
throughout the computation, but rather inherited according to ASC's scope rules. In the 
splice expression - T, T must be evaluated to yield a code value, which is then rebuilt to 
yield the result. 

For stage 0 terms, the semantics is the familiar untyped semantics of the call-by-name 
A-calculus, augmented with witness passing, 110, and the propagation of the renaming 
environment. Given a run-time term T, we have [ T I :  E R V. As usual for denotational 
semantics, we ignore the sharing of computation which would take place in a call-by-need 
operational semantics for ASC . 
Notice that, unlike for higher-staged terms, there is no need to propagate a fresh name 
supply within the semantics of stage 0 terms. Since only run rebuilds code, and run is 



[XI,"+' = letN res t lift: (getR "x" )  
in unitN (case res of { 

name : nrn + dvar : nm 
otherwise + dwrong : * 

1) 
[k]l,"+' = unitN (dconst : k )  

[\x . t],"+' = letN (nm, d )  t renameN "x" [t];+l 
in unitN (dabs : (nm, d ) )  

[ t  u];+'   let^ d t It],"+' 
in letN dl t (u],"+l 
in unitN ( d a p p  : ( d ,  d l ) )  

[ l e t  x = u i n  t],"+l = letN d t [u];+' 
in letN (nm, d l )  t renameN "x" [tlJ;+' 
in unitN (dlet : (nm,  d ,  d ' ) )  . . 

[ le trec  x = u i n  tB,"+' = letN (nm,  ( d ,  d l ) )  t renameN "x" 
(prod, [uH;+' it];+') 

in unitN (dletrec : (nm, d ,  d l ) )  
[CC t >>IJ;+l =  let^ d t 

in unitN (ddeft : d )  
[c? t ?>n,.+l =  let^ d t [t]1,"+2 

in unitN (ddefu : d )  
[ - T I ;  = letN v t lift: [ T I :  

in case v of { 
code : md + lift: md; 
otherwise + unitN (dwrong : *) 

1 
[-t],"+2 =  let^ d t [t];+l 

in unitN (dsplice : d )  
[lift t b y  nJ,"+' = letN d t 

in unitN ( d l i f t  : ( d ,  n ) )  
[unit t],"+l = letN d t [tj,"+' 

in  unit^ (dunitrn : d )  
l l e t  x <- u i n  t];+' = letN d t [u];+' 

in letN (nm,  d l )  t renameN "x" [t],"+' 
in unitN (dletrn : (nm, d ,  d l ) )  

[run dl,"+' =  let^ d t [t],"+' 
in unitN (drun : d )  

Figure 9.20: Denotation of ASC stage n + 1 terms 



[z]: = lift2 (q x) 
[Ax . TI: =  let^ f t closure fun^ (Xev . [T]:,,,,,) 

in unitR (func : f )  
[T  u]; = letR v t [T$ 

in letR ev t closureg [u]: 
in lift: (case v of { 

func : f + f ev; 
otherwise + unitE (wrong : *) 

1) 
[letw B in TI; = [TIOnv(B,q) 

[X(wl, . . . , wn) . TI: =  let^ f + closurefunER (X(YI - - , ~ n )  - [TI:,q rtyl ,..., a,,ryl ) 
in unitR (tfunc, : f )  

[T (Wl,. . . , Wn)]: =  let^ v t [TI: 
in lift: (case v of { 

tfunc, : f + f ([WiBq,. . . , [ Wnlq); 
otherwise + unitE (wrong : *) 

1) 
[let z = U in T]: = letR ev t closure: [U]: 

in [Tl:,x,ev 
[letrec x = U in T]: = letR ev t closure fix^ (Xev . [U]:,x,.e,) 

in BTB:,xeev 
[(t)]: = letR rnd c closure: It]; 

in unitR (code : md) 
[lift U using W]! = letR v t [U]: 

in case (v, [ W],) of { 
(int : i,tint : *) + unitR (code : unitM (dconst : a) ) ;  

I otherwise + unitR (wrong : *) I 

I I 

Figure 9.21: Denotation of ASC stage 0 pure terms 

performed only within the I 0  monad, the semantics may push the fresh name supply into 
this monad. (We could go even further and eliminate the fresh name supply altogether by 
simply re-using a global fresh name supply within the denotation of run. However, to do 
so would complicate the proof of type soundness.) 

Figures 9.21 presents the denotation of non-monadic terms. Notice the use of closure, 
closurefun and closurefix (over various monads) to ensure the renaming environment is 
propagated to match the static lexical scope of the program. A semantics in which these 
closures also capture the environment q is also possible. (We chose not to do so because 
the present version forms the basis of a translation from ASC into a "vanilla" higher-order 
functional programming language lacking any staging constructs. In this case the target 
language provides partial-application closures implicitly.) 

The denotation for deferred expressions makes it clear that ( t )  is a value, and thus t is not 
rebuilt when ( t )  is evaluated. 



[unit TI: = letR ev t closure: [TI: 
in unitR (cmd : unitMIo ev) 

[let z t U in T]: = letR ev t closure: [U]: 
in letR f t closure fun^ (Xev' . [TI: ,z,,,,) 
in unitR (cmd : letMIo v t liftrIO ev 

I in case v of { 
I cmd : ioev + 1 

letMIo ev' t ioev 
in letMIo v' t liftE1O (f ev') 
in case v' of { 

cmd : ioev' + ioev'; 
otherwise + unitMIo (unitE (wrong : *)) 

1; 
otherwise + unitMIo (unitE (wrong : *)) 

1 > 
[run T a t  W ] :  = LetR ev c closureg [TI: 

in unitR (cmd : letMIo v t lift?I0 ev 
in case v of { 

code : md + 
letMIo d t liftK1O rnd 
in if tennOf (d) well-defined - 

and (G I true I I'init I-' 
ternof (dl : ~YP~O~([WBV) 
c, TI) then 

unitM1o   run^ [ T ~ P )  
else 

throwMIo; 
otherwise 

u n i t ~ ~ o   unit^ (wrong : *)) 
1) 

I I 

Figure 9.22: Denotation of XSC stage 0 monadic terms 

Figure 9.22 presents the denotation of the monadic constructs. The semantics of let x t 
U in T is complicated by the two-level nature of I/O computations. That is to say, we must 
be careful to distinguish evaluating an I/O command ("Is it defined?") from performing 
an I/O command ("What does it do?"). Most interesting is the semantics for run T a t  W. 
It creates an I/O command which, when performed, will rebuild T to a representation, d, 
of a run-time term, then check if termof (d) is a well-typed term in the empty kind and 
type contexts. If so, the type judgement will return a new run-time term TI, which is then 
evaluated in the empty environment. Otherwise, an exception is thrown by throwMIo. 

Finally, Figure 9.23 presents the denotation of the constants, which are straightforward (if 
somewhat tedious). 

It is possible to refine the semantics of statically typed code in a number of ways. Firstly, 
because no constraints cross statically typed code boundaries, it is possible to translate 



[i]' = unitR (int : i )  
[throwj8 = unitR (cmd : t h r o w ~ ~ o )  

[(try -catch .)I! = Xriol rioz . 
E letR e q  t closureR raol 

E in letR e q  t closureR rio2 
in unitR (cmd : letMIo vl t liftfIO e v ~  

in case vl of { 
crnd : ioevl + 

trycatchMIo iOeVl 
(letMIo q t liftfIO e q  
in case 'u;! of { 

crnd : i o e q  + ioe3;  
otherwise + 

unitMIo (unitE (wrong : *)) 
1); 

otherwise + unitMIo (unitE (wrong : *)) 
1) 

[putint]: = Xri .  let^ eu t closureg ri 
in unitR (cmd : l e t ~ ~ o  v t liftfIo ev 

in case v of { 
int : i letMIo - t putintMIo i 

in unitMIo   unit^ (int : 0)); 
otherwise + unitMIo   unit^ (wrong : *)) 

1) 
ngetintB; = unitR (cmd : l e t ~ ~ o  i t getintMIo 

in unitMIo (unitE (int : I ) ) )  

I I 

Figure 9.23: Denotation of XSC stage 0 constants 

these source terms to run-time terms during type checking. This compile-time translation 
is in contrast to the present approach which performs this translation only when such 
(rebuilt) code is to be run. Secondly, as a result of the first refinement, there is no need to 
type check statically typed code at run time at all. 

To implement these refinements would unfortunately require duplicating much of the ma- 
chinery currently shared between dynamically- and statically typed code. Because dynam- 
ically typed code does require the construction and type-checking of members of 27, it is 
easiest to make statically typed code do likewise. 

9.5.5 Type Soundness 

Run-time terms which encounter a catastrophic run-time type error are denoted by [wrong : 
*]. We first show the denotation of every well-kinded type does not include such a value. 

Lemma 9.5 If Ainit ; a' I-' T : Type and Ainit ; a' I-' ; context, then [wrong : *] $2 



I~ l ( z ,m  - 
A 

Proof By induction on derivation of Ainit ; A' to T : Type. 

Given a constraint C s.t. A ; & t o  C constraint, we say C is satisfiable in A if true te 
exists A . C. We say a type scheme f o r a l l  A . C => T s.t. A ; & to C constraint 
is satisfiable iff C is satisfiable in A. Finally, we say a type context I? is satisfiable if 
V(x : a) E I?, a is satisfiable. 

-- 
We say 7 models I? with respect to (Ar,I?'), written 7 +(F,r.) r, if I? is satisfiable and 
dom(I?) dom(7) and V(x : T) E J? . 7 x E E [T] (= ,~ ) .  

Let p range over injective finite renaming environments mapping variable names to (fresh) 
names. Note that p need not be idempotent. 

We now show that the denotation of the translation of a well-typed term is a member 
of the denotation of its type. The theorem statement is quite complex, since it must tie 
together: 

the static kind context (A ; E) and static type contexts (I' ; r'); 

the current renaming p, which has domain F; 
the current dynamic type context c, which assigns a type to all the variables in the 
range of p; and 

-- -- 
for higher staged terms, an arbitrary extension (A,, r e )  to (A', I?,), and the current 
fresh name supply nms, which cannot contain any names from t+ c. 

Theorem 9.6 (Soundness) 

(i) If A ; =(  C I I' ; j? to t : T v T, and A I- 8 gsubst, and true Fe 8 C v 3, and 

p P c C, and 7 C(F,~K) r then BT%++env(s) P 18 T~(Z,BK) 

(ii) If A ; 1 C ; I I? ; r' I-:" t : T v tr, and A t- B gsubst, and true te 
0 C r 3 ,  and p F c, and 7 +(F,eT;) 8 I?, and nms E  name^,^,^ and 
-- A - r n+l (A,, I?,) extends (A', 0 I?,) then [t ]n,+enu(B) (nms, p) E E Vwd, where 

V w d = { d E V 1  V i  termof . vars(i (d) - well-defined, n, termof (d)) E d o m ( ~ ' )  

(iii) If, in addition to the hypotheses of (ii), we also have b = tt then 
r n+l It Bq-++enu(~) (nms,p) E E Vwt, where, if n > 0 then 

termof (d) well-defined, 
A ~ - I + ~ I B F I  (Br,)+kr,t-h t e r m ~ f ( d )  : B T  

otherwise 

termof (d) well-defined, 
Ar - t t a , I t9C '1  ( 8 c ) + t - c t - O  t e rmOf(d) :O~ 

Proof See Theorem D.8. 



Finally, the translation of a well-typed term never encounters a catastrophic type error. 

- 
Corollary 9.7 If a,,it I t rue  I Finit t-O t : T v T then [TIP 0 # [wrong : *]. 

Proof Immediate from Theorem 9.6 and and Lemma 9.5. 



Chapter 10 

Conclusions to Part I1 

10.1 Related Work 

Two-stage functional languages were first developed to express the results of binding time 
analysis in preparation for partial evaluation [51, 75, 761. Nielson and Nielson generalised 
the concept to arbitrary stages [77]. The syntax of XSC has its origin in Lisp [61]: our 
(? . . . ?), - and run operators roughly correspond with Lisp's ' ( . . . ), ' and eval opera- 
tors. Of course Lisp must perform run-time type checking for every expression, dynamically 
generated or otherwise. 

Davies and Pfenning demonstrated two Curry-Howard correspondences for staged lan- 
guages. Staging restricted to closed-code corresponds with the modal calculus S4 [21], 
while staging with open-code but without a run operator corresponds with a linear-time 
temporal logic [20]. A nai've combination of these two calculi in which the distinction 
between closed and open code is forgotten is unsound: vir run may encounter unbound 
variables [107]. Motivated by the categorical framework of Benaissa et al. [lo], Taha et 
al. [I061 have developed a sound calculus which supports both closed and open code, but 
at the cost of a somewhat clumsy syntax in which the free variables of open code must be 
explicitly "reconnected" whenever code is spliced. 

The statically typed code fragment of XSC is based upon MetaML [104, 107, 971. However, 
unlike MetaML, XSC is careful to restrict the use of run so as to avoid the open-code problem 
mentioned above. 

The dynamically typed code fragment of XSC is an extensive reworking of the calculus, 
Xdyn, presented in Shields, Sheard and Peyton Jones [99]. The differences are significant: 

Xdyn supports only unconstrained parametric polymorphism, whereas XSC supports 
arbitrary constrained polymorphism. 

Xdyn is call-by-value, XSC is call-by-name or call-by-need. 

Xdyn assumes a full type-passing-based implementation, whereas ASC passes run-time 
representations of types only where they are required by run. 

Xdyn's type system does not prevent the application of run to open code. Instead, 
such code is regarded as ill-typed at run-time. By contrast, XSC places run in the 
I0 monad, which restricts its use, but also ensures at compile-time that only closed 
code may be run. 

Xdyn uses Wright and Felleisen's [I151 style of context-based small-step operational 



semantics. This semantics requires an (infinite) family of mutually-recursively defined 
rewrite contexts. Type soundness is shown by subject reduction. In contrast, ASC uses 
a denotational semantics and type soundness is shown model-theoretically. 

Adyn's operational semantics handled the problem of variable renaming implicitly: P- 
reduction is assumed to avoid name capture by "inventing" a fresh name as required. 
In ASC1 this aspect is modelled explicitly, and hence we believe, more honestly. 

Both Xdyn and XSC use a type-directed translation into a run-time language. However, 
because Xdyn does not support type constraints, its translation does not need to 
introduce any witness passing. Thus it is possible to translate all Xdyn code fragments 
into the run-time language at compile-time, and execution need only splice these 
fragments together to generate a final run-time term. The operational semantics for 
Adyn exploits this compile-time translation by simplifying the run-time type checking 
problem to a series of residual unification problems performed at each splice point. 
In contrast, dynamically typed code in XSc cannot be translated to the run-time 
language at compile-time, since the translation depends on which constraints arise 
at run-time. As a result, XSC requires full type checking of terms at run-time, and no 
simplification is possible. 

The denotational semantics of Sections 9.5.3 and 9.5.4 is somewhat of a chimera. Its 
motivation is the functor-category semantics for two-level languages of Moggi [73], but re- 
presented in a point-full form with a concrete base category of well-kinded type contexts 
and well-typed environments. The beauty of this semantics is that, at the term level, it 
has the simplicity of Gomard and Jones' [33] original denotational semantics for two-level 
languages (though with the fresh names supply made explicit rather than left implicit as 
in their work). 

It is unclear whether the statically typed code fragment of XSC could be given a categorical 
semantics within the framework of Benaissa et al. [lo]. 

More recently, Gabbay and Pitts [30] have developed a non-standard set-theoretic foun- 
dation, and Fiore, Plotkin and Turi [28] a category-theoretic framework, for inductive 
datatypes involving name binders. In both theories, a-conversion is "built-in." Represent- 
ing the semantics of ASC in one of these settings would effectively factor out all explicit 
manipulation of variable names, resulting in a tremendous simplification. 

10.2 Conclusions and Future Work 

We presented ASCl a calculus supporting the run-time generation of both statically and 
dynamically typed code. It is flexible enough to allow code fragments to contain free 
variables, while also ensuring such variables are always bound within result code. For 
dynamically typed code, type checking is deferred until just before the code is to be run. 
Run-time generated code which is ill-typed raises an exception, and hence may be handled 
gracefully. On the other hand, we have shown that statically typed code is always well- 
typed, and hence requires no run-time check. We demonstrated the utility of mixing both 
statically and dynamically typed code within a single program. 

The calculus also supports constrained polymorphism, and hence many other type features 
such as the type-indexed-rows of Part I, implicit parameters [57], and type classes [47, 1091. 



This suggests ASC is a suitable foundation on which to implement full-scale multi-staged 
languages. 

To the author's knowledge, AS' is the first system to combine all of these features. 

We have not yet developed a type inference system for XSC. Because both statically and 
dynamically typed code share the same three constructs, inference may be problematic. In 
this case we may need to syntactically distinguish these constructs. 

On the theoretical side, though we have shown (model-theoretic) type soundness for AS', 
we have not shown staging-correctness. The usual approach [71, 771 is to first define an 
erasure function taking a multi-stage term to a single-stage term by erasing all .CC 33 and 
- operators. Then a logical relation [69] is constructed between multi-stage terms and 
their stage-erasure. By the logical relations lemma, correctness follows if all constants are 
related. It is not at all obvious such an approach will work for XSC, particularly given its 
rich type structure and the remarks of Moggi [71]. 



Appendix A 

Recognising XML Elements 

This appendix shows how to extend the syntax and typing rules of XTIR (as presented in 
Chapters 4 and 5) to handle terms in native XML syntax (as outlined in Section 3.4). Our 
exposition is extremely brief, and no proofs of correctness are provided. Though awkward 
to express formally, the material of this appendix is for the most part a straightforward 
application of automata theory. 

(The reader interested in what my long suffering supervisors, John Launchbury and Simon 
Peyton Jones, have had to put up with over the years is invited to attempt to decipher 
this material without the aid of the explanatory text.) 

Recall from Section 3.4 that T * is shorthand for L i s t  T, where L i s t  is the datatype: 

data List  = \a . Cons ( a ,  L i s t  a) I N i l  

Similarly, T ? is shorthand for Option T, where Option is the datatype: 

data Option = \a . Some a I None 

Also recall ( r l  1 . . . 1 abbreviates One (TI # . . . # Tn # Empty), and dually, 
( r l  & . . . & 7,) abbreviates A l l  (71 # . . . # Tn # Empty). 

Figure A . l  presents the required extensions to XTIR types, terms and patterns. An element, 
e, is a tag delimited sequence of element items, ez. We allow an element item to "escape" 
from XML syntax back to native XTIR syntax by using the special <<. . .>> form. A tag is a 
saturated newtype of the form A TI . . . T, . Each T, must be a monotype, and the application 
must have kind Type. This restriction is necessary in order to be able to construct an 
automaton for the body of A (see Section 3.4). We extend the language of XTIR terms with 
strings, elements, and the data constructors of the above datatype declarations. 

XML elements may also appear within patterns. For the most part XML patterns are 
handled analogously to XML elements within terms, hence we shall elide the rules dealing 
with them. 

Figure A.l also presents some additional structure required by recognisers. We shall be 
constructing Glushkov automata [17] which have as states the positaons of a regular ex- 
pression (type). Hence we take as the set of states for type T all ways of delimiting the 
sub-terms of T by [-I. In other words, a position, p, is a factorisation of T into a context, 
P, and a sub-term, v, of T such that T = P[v]. 

The Glushkov automata we shall construct will be augmented to rewrite a sequence of 
XML sub-elements into a XTIR term in native syntax. To this end, the automata include a 
stack, st, of intermediate run-time terms, and the transition function specifies a sequence 
of stack actions, acts, to be performed on the stack when making a transition. 



T, v ::= String 1 . . . 

Strings str 
Elements e ::= < A  71.. . rm> eil . . . ei, < / A >  m , n > O  
Element patterns ep ::= < A  71 . . . T,> eipl . . . eip,, </A> m,n 2 0  
Element items ei ..- ..- str I e I << t >> 
Element pattern items eip ::= str I ep I << p >> 
Terms t, u ::= "str" 1 e 1 Cons 1 Nil 1 Some 1 None 1 . . . 
Patterns p, q ::= "str" I ep I Cons p q 1 Nil 1 Some p 1 None 1 . . . 

Recogniser position contexts P[*] ::= 1 P[*] * 1 P[*] ? 

I (71, ..., p[*], ..., 77~) n 2 O  
) (71 1 ... 1 P[.] 1 ... 17,) n > 2  
1 ( r l &  ... &P[*]& ... &T,) n > 2  

Recogniser positions p ::= P[T] 
Recogniser actions act ::=null I tuple(n) I C I  I (none I some 

( inj(%) 1 < 1 unseen(i) 1 seenci) I prod(n) 
Action sequence acts ::= . I act, acts 
Special stack term special ::= C 1 < 1 unseen(i) I seen(i) 
Term recogniser stack st ::= . ( st, speczal I st, T 

Figure A.l: Extensions to XTIR types, terms and patterns for handling XML elements, 
and syntax for recogniser components 

Thus, each automaton includes a simple stack machine with the following operators: 

null pushes the empty string ' I " .  

tuple(n) pops n terms and pushes their aggregation as a tuple. 

C pushes itself as a "start of list" marker. 

I pops the stack back to and including the last C marker, and pushes the aggregation 
of all popped terms as a list. 

none pushes None. 

some pops a term T and pushes Some T. 

inj (i) pops a term T and pushes lnj (lncl-I One) T. We write lncj to denote j 
applications of I nc. 

< pushes itself as a "start of unordered sequence" marker. 

unseen(i) pushes itself to signal the topmost term as a "default" to use if the i'th 
(in canonical order) member of an unordered sequence is missing. 

seen (i) pushes itself to signal the topmost term has occurred as the i'th (in canonical 
order) member of an unordered sequence. 



I S(st I acts) = st' I 

S(st I .) = st 
S(st  I n u l l  +t acts) = S(st  +t "" I acts) 

S(st  +t Ul, . . . , Un I tuple(n1 +t acts) = S(st +t (Ul, ..., Un) I acts) 
S(st  I [ +t acts) = S(st  +t C I acts) 

S(st Sf [, Ul,. . . , Un I 1 +I- acts) = S(st  +t (Cons Ul (... (Cons Un Nil)...)) I acts) 
S(st  I none +t acts) = S(st  +t None I acts) 

S(st  St U I some i+ acts) = S(st -I+ (Some U) I acts) 
S(st  -I+ U I i n j  ( i )  +t acts) = S(st +t (Inj (lnci-l One) U) I acts) 

S(st  I < +t acts) = S(st +t < I acts) 
S(st  I unseen(i) +t- acts) = S(st +t unseen(i1 I acts) 

S(st  I seen(i) Sf acts) = S(st +t seen(i) I acts) 
S(st  +t- <, Ul, unseen(il), . . . , Un, unseen(in), 

Tl,seen(jl), . . . , T,, seen(j,) I ~ r o d ( n ' )  St acts) = 
S(st  +t (Ti, ..., Th,) I acts) 

where 
VO < k,kt 5 m .  ik = ikt =$ k = k' 
VO < k,kl 5 m .  jk = j k r  ==. k = k' 

if k = j k t  

V O < k 5 n f .  T i =  Up, if Bk" . k = j k r r  A k = i k t  

{ e e ,  otherwise 

I 
Figure A.2: Executing a sequence of recogniser actions upon a stack of XTIR run-time 
terms 

a prod(n) pops the stack back to and including the last < marker, and pushes a tuple. 
The term in position i of the tuple is either the popped term which was marked by 
seen(i) , or if no such term exists, the popped term which was marked by unseen(i1. 

These actions are formalised in Figure A.2. 

Figures A.3, A.4 and A.5 present the definition of the function 6.  Given a position P[T], 
where T is a monotype, G constructs a transition function for an augmented Glushkov 
automaton recognising the language of T when viewed as a regular expression. The alphabet 
of this language is XTIR monotypes. G is undefined if T is not 1-unambiguous as a regular 
expression. 

In XMX, the constraint readable T is true if T is a newtype application whose normalised 
body is in the domain of G. The constraint writable T is true if, furthermore, this body 
type is first-order. The witness for both of these constraints is the automaton constructed 
by G. 
A version of 6 for constructing un-augmented Glushkov automata was presented as an 
example in Section 8.2. A simpler version of this construction may also be found in 
Briiggemann-Klein et al. [13]. 

To ease the notation we shall adopt an informal record-like syntax. Given a position P[T], 



I P [ P [ r ] ]  = {pos ; empty ; f irs t  ; last ; fo l low)  I 
~ [ ~ [ ~ t r i n g l l  = { G[P[V -> T I ]  = { WVlB = { 

pos = { P [ S t r i n g ] ) ;  pos = { P [ v  -> 71); pas = { P [ A ] ) ;  
empty = null; empty = -; empty = .; 
first = { P [ S t r i n g ] ( . ) ) ;  first = { P [ v  -> TI ( . ) ) ;  first = { P [ A ] ( - ) ) ;  
last = { P [ S t r i n g ] ( - ) ) ;  last = { P [ v  -> T I ( - ) ) ;  last = { P [ A ] ( . ) ) ;  
follow = Xp . 0 follow = Xp . 0 follow = Xp . 0 

1 1 1 

G [ P [ ( T I  - .  ~ n ) ] ]  = { 
pos = { thispos) U UoCi<,, - p s i ;  
empty = empty act^^,,+^; 
first = {thispos(-))  U UO<i5initne {p(emptyactso,; St acts)  I p(acts)  E first,!); 
last = {thispos(-))  U Ujn,lne<,<n{p(acts St empty act^;,,+^) I p(acts)  E last:); 

fozlO':h " Ui<j<rnin(neztnei,n) 
{pi(acts St emptyact~; , j  Sf acts') I pt(acts')  E first;), 

follow = X P  - U ~ < i < n  i f  p(acts)  E last{ 
follow: p,  i f  p E posi I., o t h e r w i s e  

1 
where 

V O  < i 5 n . Pi[@] = P [ ( T I ,  . . ., 7 , -1 ,  m r  T;+I,  . . ., T n ) ]  

V O < i 5 n . {pos: ; empty: ;first,! ; last:   follow^) = G [ p f [ ~ ; ] ]  
V 0 < i 5 n . nextne; = max i < j 5 n + 1 . V i  < k < j . empty; # - 
V 0 < i 5 n + 1 . prevne; = min 0 < j < i . V j  < k < i . empty; # . 
t/ 0 < < j 5 n + 1 . emptyactsijj 

+ti<k<jemptyL U t u p l e  ( n ) ,  i f  V i  < k < j . empty; # A j = n + 1 
= * i < k < j e m ~ t ~ L ,  

{.> 
i f  V i  < k < j . empty; # - 
otherwise 

thispos = P [ ( T ~ ,  . . . , T n ) ]  

initne = m i n ( n m t n e o ,  n)  
finalne = m a x ( p r e ~ n e , + ~ ,  1 )  

F i g u r e  A.3: Building a recogniser from a X T I R  type (part 1 of 3) 



?[P[(TI I . . . I ~ n ) ] ]  = { 
pos = { thispos} U Uo<i<n posi; 

{ 
e m p t y ; + t i n j ( ~ - ' j ) ,  i f V O < k j n . e m p t y ; # . j k = j  

empty = ., i f V O < k 5 n . e m p t y ; = .  
undef ined,  o therwise;  

first = { thispos(-)) U Uo,,,, first:; 
last = {thispos(.)} U Uo,,ln{p(acts +t i n j  (a-' i ) )  I p(acts) E lastj}; 

follow: p,  if p E posf 
follow = XP - Uo<j5, , otherwise  

where 
V 0 < i j n . Pi[*] = P [ ( T ~  I . . . I 7;-1 I I Ti+' I . . - I ~ n ) ]  
V 0 < i 5 n . {pos: ; empty: ;first: ; last:  follow^) = G[P:[T,]] 
thi~pos = P [ ( T ~  I . - .  1 ~ n ) ]  
{a) = sort~ngPe97Tl~(71,. . . ,Tn) 

i[P[(Ti % . . . & ~ n ) ] ]  = { 
pos = {thispos) U Uo<i<n POS:; 

emptyacts G p r o d ( n ) ,  if  V 0 < i 5 n . empty[ # . 
empty = otherwise;  

first = {thispos(.)) u Uo,iln{p(emptyacts i+ acts) I p(acts) E first:}; 
last = {thispos(.)} U Uo<i5n{p(acts -ti- seen(*-' i )  +t prod(n) )  I p(acts) E last:); 

Uo<j,n{p'(acts +t seen(n-' i) -I+ acts') I p1(acts') E firstj}, 
if p(acts) E last: 

follow = . U o < ~ n  follow: p, if p E pas: 
otherwise 

t 
where 

v 0 < 2 5 K4 . P:[*] = P[(T1 & . . . & 7;-1 & & T;+l & . . . 8c Tn)] 
v o < a 5 n . {pos: ; empty: ; first: ; last: ; followj) = ~[P:[T;]] 
thispos = P [ ( T ~  & . . . & Tn)] 
{a} = s o r t i n g P e m s ( ~ ~ ,  . . . , Tn) 

empty! +t unseen(*-' i )  , if empty: # . 
emptyacts = < +t +t-o<i<n o therwise  

F i g u r e  A.4: Building a recogniser from a XTIR type (part 2 of 3) 



GUP[, *ID = { 
pos = {thispos) U post; 
empty = C, I ; 
first = {thispos(.)) U { p (  C - t i -  acts) I p(acts) E first'); 
last = {thispos(-)} U {p(acts  ft- I ) I p(acts) E last'); 

follow = Xp . follow' p U {pt(acts -I-/- acts') 1 p1(acts') E first'), if p(acts) E last 
follow' p otherwise 

1 
where 

PI[.] = P[. *] 
{post ; - ; first' ; last' ;follow1) = 9[P1[r]1  
thispos = P[T *] 

G [ P [ r  ?]I = { 
pos = {thispos) U pos'; 
empty = none; 
first = { thispos (-)) u first'; 
last = {thispos(-)) U (p(acts  -ti- some) I p(acts) E last'}; 
follow =followt 

1 
where 

P1[.] = P[. ?] 
{post ; . ; first1 ; last' ; follow') = GIP1[r]] 
thispos = P[T ?] 

All definitions have the additional side conditions: 
P[T]( - )  E filrst A P1[v](- )  E first A cmpO(r ,v)  = eq P = P' 
V p  E pos . P [ r ] ( - )  E follow p A P'[v](-)  E follow p A cmpO(r, v )  = eq P = PI 

Figure A.5: Building a recogniser from a X T I R  type (part 3 of 3)  

6 constructs a record of the form: 

i 
POS = { P I , . . . , P ~ ) ;  
empty = acts; 
first = { ~ ~ ( a c t s l ) ,  - . -  ,pn(actsn)); 
last = {pl (actsl) ,  . . . , pn(actsn)); 
follow = f 

1 
where 

pos is the set of sub-positions of T ,  including r itself. 

empty is a sequence of actions which will construct (on the top of the stack) a run- 
time term of type r to represent that r is "missing." For example, a missing Just r is 



R {post ; empty' ; first' ; last' ; follow') = { 
last = last' U if empty + . t hen  start(empty) else 0; 
follow = Ap . if p = start then  first' else follow' p 

I 

Figure A.6: Converting a recogniser to use start 

constructed by the action none, which constructs the run-time term None. Similarly, 
a missing T * is constructed by the actions [,I, which construct Nil. If T must be 
present, then empty will be empty. 

first is a set of (p, acts) pairs representing all possible first positions of T, and for 
each position, the actions to perform before moving to the position. We shall write 
these pairs in the form p(acts), to signal that acts is determined from p. 

last is the dual to first. It contains all possible last positions of T, and for each 
position, the actions to perform after leaving the position. 

follow is a function, f ,  from positions to sets of (p, acts) pairs, representing the 
automaton's transition function. Iff p' = {pl(actsl), . . . ,p,(acts,)) then for each i ,  
actions acts; should be performed if a transition is made from p' to pi. 

The definition of Q is straightforward, but unfortunately very ugly. Since we wish to be 
able to construct empty terms, such as a tuple, in a single step, we are prevented from 
using the more elegant recursive decomposition of composite types. 

Figure A.6 presents the function 72. Given a record constructed by Q, R builds first and 
follow members which use the dummy position start to signify the initial position. This 
function allows us to discard pos, last and empty in what follows. 

Finally, we come to the problem of type inference for XML elements. Figure A.7 presents 
the new type inference rule IELEMENT, in addition to two ancillary judgements. 

Given an XML element, rule IELEMENT proceeds by inferring the type of, and converting 
to a run-time term, each element item. This initial conversion is handled by the ancillary, 
and trivial, I-,, judgement. The problem is then to combine a sequence of typed run-time 
terms Ul : vl, . . . , Un : vn into a single run-time term T representing the XML element 
in native syntax. This combination is done by first expanding the saturated tag name 
A TI . . . T,,, to the normalised type nomn(rl 71.. . T,), where T' is the body of the newtype 
A. Since each T, is ground, so is norm(rl 71.. . T,), hence this type may be used to 
construct an augmented Glushkov automaton. The automaton is then simulated on the 
sequence vl . . . v,. If it reaches an accepting state, the desired T will be left on its stack. 

The ancillary judgement 

performs this simulation. It  takes as input the sequence Ul : 71,. . . , U, : Tn, the current 
position p, the current stack st, the current constraint C, and a coercion, B, accumulated 
so far for C. 

Rule EILAST checks if the empty sequence is acceptable. If so, any final actions are per- 
formed to yield a singleton stack containing T. 



(newtype A = 7') E tdecls 
A : nl -> . . . -> Km -> Type  E Ainit 

v i  . Ajnit I- T ,  : K ,  

O1 1 Cl I r k , ,  eil : vl L) Ul 
g2 1 C2 I J? b e j  ei2 : ~2 9 U2 

en I Cn I 0 . . . 0 el kei ei, : vn L) Un 
{last ;follow) = R G[*[norm(~' TI . . . rm)]j 

9 1 = 9 n ~ . . . ~ 8 1  C 1 = C l  +...+kcn 
8'' 1 (C' ( -) D ( D  I B )  I . I start I-r{last;follow) UI : 9' ~ 1 , .  .., Un : 9' vn C, T 

IELEMENT 
(9" o 91),fi(r) I D I I' I- <A 71.. . %> eal . . . ezn </A> : A 7 1 . .  .% L) letw B in T 

91 C I I ' I - s t r : ~ v T  91 C I I ' I - ~ : T V  T 
EISTR EIELEM 

91 C I r k , , s t r : ~ ~ )  T 91 C I I ' k e i e : ~ ~ T  

91 C I I ' I - t : r L ) T  
EITERM 

91 C I I ' I - , , < < ~ > > : T L - ) T  

p(acts) E last S(s t  I acts) = T 
EILAST 

Id I ( C  I B )  D ( C  I B )  l st l P I -~{ las t ; f o l row)  ' L) T 

P[v](acts) E follow p cmp@(v, T )  E {eq, unk) 
VP'[vl](acts) E first . cmpe(vl, 7) E {eq,  unk) ==+ P'[vl] = P[v] 

9 ( ( C  +t- v eqT I B )  D ( D  I B') I S ( s t  I acts) +t U I P[v] ~r{last ; fol lowl  rest L, T 
EIFOL 

9 1 (C  I B )  D ( D  I B') I st I P ~ r ( 1 a s t ; f o l l o w )  U : 7, - T 

92 I (Cl I B' * B )  D ( D  I Btl) I st I P ~ r { l a s t ; f o l l o w )  91 rest - T 
EISIMP 

02 91 1 ( C  I B )  D (D I B1') I st I P I -~{ las t ; fo l low)  rest v T 

I I 

Figure A.7: Extensions to XTIR type inference rules to recognise and convert XML elements 
to XTiR run-time terms 



Rule EIFOL attempts to make a transition based on the current type T. The rule succeeds 
if there is exactly one possible follow position with a type unifiable with T. If there are no 
such follow positions, the sequence is ill-typed. If there is more than one follow position, the 
programmer must supply some type annotations, or reorder the sub-terms of the program, 
so that the transition may be uniquely determined. (A possible refinement of this rule 
is to allow speculative choices and backtracking.) If all is well, the appropriate equality 
constraint is added to the current constraint context, the transition actions are performed, 
the next run-time term is pushed onto the stack, and the rule proceeds recursively. 

Rule EISIMP is the analogue of rule ISIMP, and allows constraints to be simplified whilst 
in the middle of recognising an XML element. This simplification step is vital to allow 
transitions made for earlier element items to guide the transitions for later element items. 



Appendix B 

Proofs for Chapter 4 

B.l Type Order 

Lemma B.l Given A I- r/r ' /v/v1 : T y p e ,  and A I- 8 subst, then: 

( i )  I f  cmpo(r,rl) = eq and cmph(7, v) = It and cmph(8 v ,  8 7 )  E {It, eq) then 
cmpo (v ,  T I )  = unk and cmpo (8 v ,  8 T ' )  E {unk,  It). 

(ii) I f  cmpo ( 7 , ~ ' )  = x E { I t ,  g t )  and cmpb (T ,  v )  = I t  and cmph (8 v ,  8 T )  E { I t ,  gt) then 
cmpo (v ,  7') = x (and thus cmpo (8 v ,  8 7') = 2) .  

(iii) I f  cmpo ( T ,  7') = eq and cmpb (7, v )  = I t  and cmpb (T', v l )  = I t  and cmpb (8 v ,  8 T )  E 
{ I t ,  eq)  and cmph(8 v', 8 7') E { I t ,  eq) then (cmpo(v, v') = unk and 
cmpo(8 v ,  8 v') E { I t ,  eq, gt)) ,  or cmpo(v, v') = cmpo(8 v ,  8 v'). 

(iv) If cmpo(r, T I )  = x E { I t ,  g t )  and cmp;(r, v )  = I t  and crnph(~', v') = I t  and 
crnpb(8 v ,  8 T )  E {It,eq) and cmpb(8 v', 8 7') E { I t ,  eq)  then cmpo(v,vl) = x 
(and thus cmpo(8 v ,  8 v') = x). 

Proof 

(i) We have 

preorderg (7) = r +t [a] +t r' 

preoder; ( v )  = r +I- [y ]  +t r" 

prwrderc (7') = r +I- [a] -t i- T' 

case y = b for a <a b. Thus cmpo(v,r') = unk. I f  8 a = dl  8 b = c for c la d, 
then cmpo(8 v ,  8 T I )  = unk as required. If 8 a = G, 8 b = F for F sF G, then 
cmpo (8 v ,  8 7') = I t  as required. 

case y = F. Thus cmpo(v,~ ')  = unk. Then 6 a = G for F sF G, and 
cmpo(8 v ,  8 tau') = I t  as required. 



(ii) Let x = It. We have 

preorderg ( T )  = r +t [F'] +t r' +I- [a] +t rtl 

preorderg ( v )  = r +t [F '  +t- r' +t [y] +t r"' 

preorderc (7') = r +t [G'] -I+ r"" 

where F' < F  GI. Then y = b for a <" b, or y = F.  Then, regardless of 8,  
cmpo(v, 7') = cmpo(8 v ,8  T I )  = It as required. 

The case for x = gt is similar. 

(iii) We have 

preorder$ ( T )  = r S f  [a] +t r1 

preorderg ( v )  = r +t [y] +t- r" 

preorderg (7') = r +t [a] +I- r1 

preorderc (v') = r +t [z] +t- r" 

case y = b, z = c for a <" band a <a c. Thenif0  a = f ,  0 b = el 8 c = d for 
d 5" f and e la f ,  then cmpo(v,vl)  = cmpo(8 v , 8  v')  = unk as required. If 
8 a = H ,  8 b = G,  0 c = F for F sF H and G sF H then cmpo(v,v')  =unk 
and cmpo(8 v,  8 v') E { I t ,  eq ,  g t ) ,  depending on relation between F and G,  as 
required. 

case y = F ,  z = G: Then 8 a = H for F sF H and G sF H. Thus cmpo(v,vl)  = 
cmpo(8 v, 8 v') E { I t ,  eq ,  g t ) ,  depending on relation between F and G,  as 
required. 

(iv) Let x = I t .  Then we have 

preorderg ( T )  = r +t [F1] -I+ r1 +t [a] +I- r y  

preorderc (v) = r Sf [F'] +t r' -I+ [y] +t r p  

preorderg (7') = r +t [GI] +I- rl1 +t [c] +I- r r  

preorderg (v') = r +t- [GI] -I+ r" -I+ [z]  -t+ rF 

where F' < F  GI, and g = b for a <" b or y = F ,  and z = d for c <a d ,  or z = G. In 
all four cases, regardless of 8,  cmpo(v,  v') = cmpo(8 v ,  8 v') = It as required. 

The case for x = gt is similar. 

L e m m a  B.2 Let A k T ,  v ,  7' : Type s.t. cmpb(7, 7') E { I t ,  e q )  and cmp;(r1, v )  E {I t ,  eq ) .  
Then 

(i) If cmpo ( T ,  v )  = e q  then cmpo ( T ,  T')  = eq.  

(ii) If c m p o ( ~ ,  v )  = I t  then cmpo(r, 7') = I t .  



Proof Straigtforward reasoning with preorder; (T) , preorder; (v) and preorder; (7'). 

Lemma B.3 Let K E {Type, Row) and A I- r/vl/v : K and A t- 8 subst. If cmpo(r, v) = x 
for x # unk then cmpo (8 T ,  8 v) = x. 

Proof The result is immediate from the definition of lexcmpp when T and v are types. 
Consider the case for rows, and assume: 

cmpo((#), ';i I, (#In B 1') = x # unk . 

By inspection of preorder; and lexcmpp, 1 = 1'. If m # n then 5 and E do not affect the 
result and we are done. Now assume m = n. Then 

where w and n' are the sorting permutations under cmpb. We need to show: 

where 

and where n" and n"' are the obvious sorting permutations under cmpd. 

There are two possibilites: 

(i) It is possible that 8 may "flipn the relative ordering of two types in 7 , U ,  or both. To 
be more precise, given i # j, it is possible for n-I i < n-' j, but T" -~  i > xt'-' j 
(and similarly for n' and n'"). 

However, Lemma B.l shows that in all such cases the result of lexcmpp against the 
reordered types remains unchanged. 

(ii) It is also possible that a type in 7" may be inserted into 7 and B so a s  to be placed 
before a type in 7 and after a type in 8 which were previously matched against by 
lexcmpp (or vice-versa) . 
However, Lemma B.2 shows such insertions cannot change the result of lexcmpp. 

0 

The following lemma is required in Section 4.4. 

Lemma B.4 Let, for all (finite) i, A I- ri/vi : K j  and ni E {Type,~ow) and cmpo(r;, v,) = 
unk. Then there exists a I- 8 : A -+ s.t. for all i, cmpo(8 T,,O vi) E {It, gt). 



Proof Let 8 be the substitution h, where for each (a, : K;) E A, A, is a fresh 
newtype declared as 

newtype A, = In t  

and ri is the type 
if K, = Type 

A, # Empty, if K; = Row 

Then the result follows from inspection of cmpo. 

Note that cmpo(.r, v) = unk does not imply there exists a 8 s.t. cmpo(r, v) = eq. For 
example, notice cmpo(a, a -> a) = unk, but cmpo(8 a, 8 a -> 8 a) = eq implies 8 a is an 
infinite type, which is not allowed. This will be important in Chapter 5. 

B .2 Unification 

Lemma B.5 If A I- 6 subst and A I- C constraint and eqs( C) = C and 8' E mguso (8 I- C) 
then there exists a A' s.t. A +t A' I- 8' subst. 

Proof By inspection. The rule for unification of rows may introduce a fresh variable, 
which should appear within A' with kind Row. 

Lemma B.6 (Soundness of Unification) If Vi  . 8 T, = 7, A 8 v, = v, then 8' E 
mguso(8 I- 7) implies 38" . 8' = 8" o 8 and V i  . cmpo (8" T,, 6" v,) = eq. 

Proof Let size(r) denote the size of a type T, which is defined as: 

We extend size to equality primitive constraints by 

size (T eq v) = size (T) + size (v) 

and to sets of primitive equality constraints as the sum of each member constraint size. 

Then the theorem follows by an easy induction on s i z e ( m )  using Lemma 4.2 (iv). 

Lemma B.7 (Completeness of Unification) If V i  . cmpo (8 T,, 8 v;) = eq then 38' E 
mguso (Id I- 7) and 8" s.t. 8" 0 8' ldom(e) - o 8. 

Proof W.1.o.g. we assume only a single primitive equality constraint T eq v. (Multiple 
constraints may always be collapsed to one by constructing a suitable pair of function 
types. > 
Then we proceed by pairwise induction on the structure of (7, v): 

case (a, a): Immediate. 
case (a, v), a @ fvo (v): Then mguso (Id I- a eq v) = {[a I+ v]). Let 8" = 8\,. Then since 

8 a = T  s.t. crnp0(.r,8v) = e q ,  we have 8"o[a I+V] -0 8. 



case (7, a), a @ fvO(v): As above. 
case (a, v ) ,  a E fvo (v): Then cmpo (8  a,  8 v )  = eq implies 8 is not idempotent. 
case ( F  T ,  F U): W.1.o.g. assume F has arity 2. 

By definition cmpo(8 ( F  7 1  r2), 8 ( F  vl v2))  = eq implies 

By I.H. on (a)  there exists a 8; E mguso(Id t- 7 1  eqvl)  and a 87 s.t. (8; 0 8;)rdom(e) -0 

8. 
Then by (b) 

cmpo (8; 8; 72,6: 8; v2) = eq ( 4  

By I.H. on (c) there exists a 8; E mguso(Id I- 8; 7 2  eq 8; 212) and a 8; s.t. 
I t  

,dom(ey) =o ' 1  ' 

Let 8" = 8;. Then 

By definition 

mguso ( I d  t- F 7 1  7 2  eq F v1 212) 

= {e; e; I 8; E mguso(Id I- 71 e q v l ) ,  
e; E m g ~ ~ ~  ( ~ d  t- e; 72 eq 8; v2) 1 

Then the result follows since all such 8; and 8; are collected. 
case ( F  7, G U),  F # G :  Then by definition cmp(8 ( F  T) ,  8 ( G  U ) )  E {It, g t ) .  
case ( ( # I m  T 1 ,  ( # ) ,  U 1'): Notice if m = 0 or n = 0 then an earlier case will apply. 

W.1.o.g. assume 

where 



- 
Then since cmpo(8 ( (#Im ?: l ) ,  8 ((#In v I ! ) )  = eq, by Lemma 4.2 (iv) 

Consider j = 7r 1: 

case 1 5 j 5 n: Thus we have 

By I.H. on (a) there exists a 8; E mguso(Id k 71, vj) and a 8; s.t. 8: o  8: tdom(e) = O  

8. 
Then by (b) 

- - 
~ m p ~ ( ( # ) , + ~ r - ~  T"'\~ I N ,  (#)n+nf-l v " ' ~  I") = eq (c> 

where 7/N and are defined as for 7 and v', but using 8; o 8; instead of 8. 
Then by I.H. on (c), there exist a 8; E mguso(Id t- 8: 8; Ti1 I) eq 

8; 8; By 1')) and a 8; s.t. 8; o 8;tdom(ey) -0 8:. 
Let 8" = 8;. Then 

By definition of Sj 

Then the result follows since all such 8; and 8; are collected, and mguso(Id I- 
(#) ?: eq (#) n-l F It) includes Sj. 

case n + 1 < j 5 n + n': Thus we have 

- 
and It = a  for some a s.t. 8 a = (#),I vl' 1". 
Furthermore, if a E fvo ( ~ 1 )  then by (d) a E fvo (up,), and thus 8 would not be 
idempotent. - 
Let 8; = 8\, o  [ b  I+ (#),1-1 vt'b-n I"]. Then since b fresh, by (d) and Lemma 4.2 
(iv) 

(8: O [ a  ++ 7-1 # b])jb GO 8 (f) 



Thus 

which is to say 

cmpo(8; o [a ++ TI # b] ((#),-I 5\1 1),0; 0 [a  ++ TI # b]  ( ( # I n  V b ) )  = eq (g) 

Then by I.H. on (g), there exists a 8; E mguso(Id I- 1 eq 
(# In  B b)[a r, T # b ] )  and $ s.t. (8; 0 8;) idom(8~l  -0 8:. 
Then by (f) 

The result follows from the definition of St and that mguso(Id I- (#),-1 7 eq 
(#) v 1') includes St. 

a 

For the most part we shall supress the projection required in the above lemma. 

Corollary B.8 (Most General Unifiers) For all 0' E mguso(Id 1 8 T eq8 v )  there ex- 
ists 8" E mguso (Id ( -) and 8'" s. t . 0' o 8 - 0 8"' o 0". 

Proof If 8' E mguso(Id 1 8 r eq 8 v )  then by Lemma B.6 Vi  . cmpo(Ot 8 T,, 8' 8 v,) = eq. 
Then the result follows from Lemma B.7. 0 

B .3 Entailment 

Lemma B.9 Let A I- C constraint s.t. C = eqs(C), A I- T ins p constraint and I- 8 : A + 
Ain,. Then if (a) 7 + 8 C and (b) C I-, T ins p v W then WIT E [8 T ins 8 p]. 

Proof By induction on derivation of (b): 

case MEMPTY: Let (b) be 
C Fm T ins Empty C, One 

Since sortingPerms(6' T )  = {ad)  we have 

[One]q = iind : 1 E (iind : id-' 1) = 18 T ins ~mpty] 

as required. 
case MREF: Let (b) be 

C I-, r1 i n s p v  w 



Then by MREF 

W.1.o.g. let p = 7 2  # . . . # rn # 1 and p1 = 7; # . . . # 7; # I' where n,m > 0. 
By (c) and Lemma 4.2, n = m, 1 = 1' and there exists a permutation n : n - 1 -+ n - 1 

s.t. V i  . Cmpowque ( T , + ~ ,  rtT = eq. Again w.l.o.g., we may assume 

I 8 1 = 7,+1# . . . # 7,+,1 # Empty = rn+~ # . . . # T;+,, # Empty = 8 1' 

for n1 _> 0. By idempotency of 8, Vi . 8  Tn+i = rn+,. 
Then define n' : n + n' + n + n' as 

Then 
V i  . cmpopa,,,(8 r;, 8 T ~ I  ,) = eq A n' 1 = 1 (d) 

By (a), [wIq E 88 7' ins  8 pl],  which implies there exists a j s.t. 

S # 0 A n"' E S rlll-' 1 = j 

[w] ,  = iind : j 

where S = sortingPerms (0 T;,  . . . , 8  T;+,,). 

Now let n" E sortingPernas(8 T I , .  . . ,0 T,+,I). Then there exists a n'" E S s.t. 

Then by (d) and (e) 

Since this holds for every n", by (f) [ w ] ~  E [8 7 1  i n s  8 p] as required. 
case MCONT: Let (b) be 

C l - m ~ l  i n s p -  W 

where w.1.o.g. assume p = 7 2  # . . . ~ ; - 1  # ri+l # . . . # rn # I for i > 1. 
Then by MCONT 

where p1 = 7 2  # ... # 7, # 1. 
W.l.o.g., we may assume 0 1 = Tn+l # . . . # Tn+,, # Empty for n' 2 0. By idempotency 
of 0, Vi l  . 8 T,,+,I = Tn+i'. 

By I.H. on (d) [ WBq E [[0 TI  i n s  8 7 2  # . . . # 0 rn+,r # 11, which implies there exists a 



s # f l r \ ? ' r € ~ & ~ - ~ l = j  

[ W],, = iind : j 

where S = sortingPewns(8 7 1 , .  . . ,8 rn+,t)- 

Let w' E sortingPerms(8 r1,8 7 2 , .  . . ,8  7,-1,8 r;+l,. . . ,8  rn+,l)- Then there exists a 
71. E S s.t. 

71.' i' = if i' < k then 
if w i' < i then 7r i' else (.rr a ' )  - 1 

else 
if w (i' + 1) < i then w (i' + 1) else (w (i' + 1))  - 1 

where k = w-I i .  
By (c) and stability of cmpopque cmpopaque(8 r 1 , O  7,) = It, and thus j < k. 
Let j' = 1. Then since T I  j = w j = 1, we have j = j'. 
Since this holds for every T I ,  we have I[ W],, E 88 7 1  ins 8 p] as required. 

case MDEC: As for case MCONT,  but this time since ~ m ~ ~ ~ ~ ~ ~ ~ ( 7 ~ , 7 ; )  = gt, j > k ,  and 
t h u s j > l .  T h e n r l ( j - l ) = n j = l , s o j l = j - l , w h i c h i s t o s a y j = j l + l .  Thus 

[Dec W],, = case [ W],, of { 
iind : i' + if i' > 1 then iind : a' - 1 else iwrong : *; 
otherwise + iwrong : * 

1 
= iind : j' 

E [8 TI  ins 8 p] 

as required. 
case M E X P :  Let (b) be 

C Frn r1 i n s p v  W 

where w.1.o.g. assume p = 7 2  # . . . # Tn # 1. 
Then by M E X P  

where p1=r2# ... #7;-1 #r,+l # . . . # r n  # I  for i > 1. 
W.l.o.g., we may assume 8 1 = rn+l # . . . # rn+,t # Empty for n' 2 0. By idempotency 
of 8, Qi . 8 rn+i = rn+i. 

By I.H. on (d) [W] , ,  E [8 r1 ins 8 p'], which implies there exists a j s.t. 

s # f l r \ ~ € ~ - - ' . w - ~ l = j  

[ W],, = iind : w-' 1 

where S = sortingPerms(8 r1,8 7 2 , .  . . ,8 r;-1,8 r,+l,. . . ,8 rn+,l). 



Let n' E sortingPerms(8 7 1 , .  . . ,6  T,+,,). Then there exists a n E S s.t. 

n i f  = if i' < k then 
if n' i' < i then n' if  else (n' i t )  - 1 

else 
if n' ( i f  + 1)  < i then n' ( i f  + 1)  else (n' (2' + 1 ) )  - 1 

where k = 7rl-l i. 
Let j' = 1. By (c) and stability of cmpopque, cmpopaque(8 ~ 1 , 8  7,) = It, thus 
j' < k. 
Then n j' = T' j' = 1, so j = j'. 
Since this holds for every n', we have [ WBq E [8 TI ins  8 p] as required. 

case M I N C :  As for case M E X P ,  but this time since c ~ ~ ~ , ~ , ~ ( T ~ , T ~ )  = gt, j' > k .  
Then n (j' - 1) = n' j' = 1, thus j = j' - 1. 
Thus 

[lnc W I q  = case [ W ] ,  of { 
iind : i' -+ iind : i f  + 1; 
otherwise + iwrong : * 

1 
= iint : j' 
E [8 ins  8 p] 

as required. 

Lemma B.10 (i) If Ainit I- c / d  constraint and c r d then [c] = [dl .  

(ii) If A,, t- C / D  constraint and 7 C and C 5 D then 7 + D. 

Proof 

(i) case c = T e q v .  Then d = T' eqv' where cmpO(T, 7') = eq and cmpO(v, v') = eq, or 
vise versa. 
If c m p O ( ~ , v )  = eq then by Lemma 4.2 c m p O ( ~ ' , v ' )  = eq. Thus ([dl = {itrue : 
*) = [c]. 
Otherwise if cmpO(r, v )  E {It, g t )  then by Lemma 4.2 c m p O ( ~ ' ,  v') E {It, gt). 
Thus [dl = 0 = [c]. 

case c = T ins  (#), C Empty. Then d = T' ins  (#In 2 Empty where cmp0(7, T )  = eq - 
and cmpO((#) ,  Zi Empty, (#I, v' Empty) = eq. 
If V n  E sortingPerms(~,  vl, . . . , v,) we have n-l 1 = j for some j .  Then by the 
same reasoning as for case M R E F  in Lemma B.9 sortingPems(.r, v l ,  . . . , v,) = 
sortingPerms(~' ,  v'l, . . . , vk). Thus [d]  = {iind : j )  = [dl .  
Otherwise, there exists an i s.t. cmpO(r, v,) = eq. Thus there exists an i' s.t. 
cmpO(.r, wit) = eq. Thus [d]  = 0 = [c].  

(ii) Let ( w  : c )  E C ,  and let ( w  : d )  E D be the coresponding primitive constraint s.t. 
c E d. Since q J= C ,  q w E [c]  = [ d J ,  SO q D. 



Lemma B.ll Let A t- C/ C' constraint and C = inss(C) and A I- 8 subst. Then 

(i) satisfied (8 C) =+ satisfied(C) 

(ii) satisfied ( C) A C - C' * satisfied ( C') 

Proof 

(i) Assume satisfied(8 C) and isatisfied(C). Then there exists (7 ins (#In U I )  E 
C and an i s.t. cmpo,qu,(~,vi) = eq. But then by stability of cmpop,,, 
cmpopqu, (8 T, 8 v,) = eq, and hence isatisfied(9 C). 

(ii) Similar. 

Lemma B.12 Let A I- C constraint and A t- d constraint and (a) C Fe d c, W and 
t- 0 : A + Ainu and (b) 71 /= 0 C. Then [WjV E 68 d l .  

Proof By case analysis on d: 

case EQUALS: Let d = T eq v. Then by EQUALS: 

and W = True. 
Then by definition of saturate: 

V8' E mguq(1d I- eqs(C)) . 
satisfied (8' inss ( C)) + 

cmpg(8' T, 0' v) = eq 

Then by Lemma B.8: 
V8" E mguq (Id I- 8 eqs( C)) . 

38' E mgusO (Id I- eqs(C)) . 
3er1' . 8'1 e E0 ellf 8' 

A satisfied (8' inss( C)) * 
cmpQ (6' T, 8' v) = eq 

BY (b) 
(T' eq v') E C =+ cmpQ(8 T I ,  8 vl) = eq 

and 
(7' ins E C + lisIn(8 T', 8 p') 

Then by (d) and Lemma B.7 

Id E mgusO (Id I- 8 eqs( C)) 

and by ( 4  
satisfied (8 inss ( C)) 



Thus, by (c), taking 8" = Id 

38' E rngus~(1d I- eqs( C)) . 
3elN . e E0 efll el 

A satisfied (0' inss( C)) * 
cmpO(el T, 0' V) = eq 

which by Lemma B.ll (i) and stability of c m p ~  implies 

38' E mguq (Id I- eqs(C)) . 
3eN1 . e f 0  elN e1 

A satisfied (6"' 8' inss ( C)) =.=. 
cmpO(elN e1 7, elN el V) = eq 

Then by (f) and Lemma B.ll  (ii) satisfied (8'" 0' inss ( C)), thus cmpO (8 T ,  8 v) = eq 
and thus 

True E 88 T eq 0 V] 

as required. 
case INSERT: Let d = T i n s  p. Then by INSERT: 

~ 8 '  E saturate(C) . 0' inss(C) Frn 8' T i n s  8' p v W 

Then, by same argument as for case EQUALS: 

30' E mgusO(Id I- eqs( C)) . 
3e111 . e re ell1 el 

A satisfied (0''' 8' i n s (  C)) ==. 
0' inss ( C) Frn 0' T i n s  8' p t-) W 

By Lemma B.9, if 7' 8"' 8' inss(C) then 

[ wlo, E [em el T i n s  ON' 0' p] 

Thus by (b) and Lemma B.10 (i) 

[ WIo E [6 T i n s  8 p] 

as required. 

Lemma B.13 Let A I- C constraint and A I- D constraint and C Fe  D L, B. Then 
C IFe D v B. 

Proof Let I- 8 : A + Ainit and 7 be s.t. q b 0 C. Then by rule CONJ C F e  w : d - W 
foreach(w:d)~D,wherebyLemmaB.12[W]~~[~d~.Thusenv(B,q)~8D. 

Lemma B.14 Let A I- C constraint and A I- d constraint and C .ke d t-) W and I- 0 : 
A + Acit and q /= 6' C. Then 

(i) If d = T eqv then [ W ] ,  = itrue : * and eqF(8 T,O v). 



(ii) If d = r ins  p then [Wlq = iind : i, and if 8 p = (#In U Empty then S # 0 and 
Vn E S . .rr-l 1 = i ,  where S = sortingPerms(8 T, vl, . . . ,vn) .  

Proof By Lemma B.12 [ W ] ,  E ([8 d l .  

(i) Then [True], E [B  T eq8 v] and so, since 8 is grounding, by Lemma 4.2 eqQm(8 r ,  8 v) 
as required. 

(ii) Then [ W ] ,  E [8 T ins 8 p] where 0 p = (#), T7 Empty. Let S = 
sortingPerrns(8 r ,v l , .  . . ,v,). Then S # 0 and V.rr E S . .rr-I 1 = i. Thus 
([ WIq E {iind : i) as required. 

Lemma B.15 Let A I- C constraint. 

(i) Let I- 8' : A + A;,,, and q be s.t. q + 8' C. Then there exists a 8 E saturate(C) 
and a 0" s.t. 8' -0 8" o 8. 

(ii) Let 8 E saturate(C). Then there exists a I- 0' : A -+ Ainit, 8" and 7 s.t. 7 J= 8' C 
and 8' -0 8'' o 8. 

Proof 

(i) Let I- 0' : A' -+ A,, and q be s.t. 

Then by definition of i-== we have 

V(T eqv) E eqs(C). 
cmpo (0' 7, @ V) = eq 

and thus by Lemma B.7 
38 E mgusO(Id I- eqs( C)) . 

3 e n . e 1 ~ 0 e u 0 e  

Also by definition of + we have 

V(r ins  p) E inss(C) . 
3. 

e lp=  ( # ) , ; i i ~ m p t ~  
A S = sortingPems(8' T ,  vl, . . . , v,) # 0 

1 A.rr1,xz E S *ql 1 =?T; 1 

In the following, let r ,  p and ;ii be drawn from one of the insertion constraints in C. 

Assume that ~ m p ~ ~ ~ ~ ~ ~ ( 8 '  7, v,) = eq for some i. But then sortangPernas would 
contain at least two permutations, .rrl and nz, differing in their ordering of 8' T and 
vi. Thus .rr;l 1 # rz1 1, which contradicts the assumption. Thus 



- 
Now assume isIn(8 T, 8 p), where 8 is as given in (a). Then if 8 p = (#), v' 1 we 
have 

36 . cmpOpaque (8 T, v:) = eq 

which by transitivity and stability of cmpopaque implies 

where 8" is as given in (a). But then since m < n 

which contradicts (b). Thus we conclude ~ i s I n ( 8  7,8 p). 

Thus by (b), above argument, and definition of isIn 

38 E mgusg(1d I- eqs( C)) . 
V(T i n s  p) E inss(C) . -.isIn(B 7,8 p) 

~ 3 8 " . 8 ' ~ ~ 8 " 0 8  

which is equivalent to 
38 E mgusg (Id I- eqs( C)) . 

satisfied (8 inss ( C)) 
~ 3 8 " . 8 ' ~ ~ 8 " 0 8  

from which the result follows by definition of saturate. 

(ii) Let 8 E saturate( C). 

By definition of saturate, we have 

8 E mgusg (Id I- eqs( C)) . 
V(T i n s  p) E inss(C) . ~ i s I n ( 8  T, 8 p) (c) 

which is to say, for each (T i n s  p) E inss(C), if 8 p = (#Im E  I then 

We seek a 8" and 7 s.t. (8" o 8) : A -+ A;,,, and T,I + 8" o 8 C. 

By Lemma B.6 and the stability of cmp0, we have 

V(T eqv) E eqs(C) . cmp0(8" 8 T, 8" 8 v) = eq 

regardless of O", hence the equality constraints in C do not restrict our choice of 8". 

Similarly, by the stability of cmpOpque, ~ m p ~ ~ ~ ~ ~ ~  (8 T, v,) E {It, gt)  implies 
cmPopaque(8'1 8 7,8" v,) E {It, gt} for any 8", hence these pairs of types within 
insertion constraints in (d) also do not restrict our choice of 8". 

Hence 8" is constrained only by those insertion constraints s.t. 

(7 i n s  p) E inss(C) 
A 8 p =  ( # ) m E I  
A 3i . cmpopque (8 7, v,) = unk 



Collect all such pairs of types as 7 and 7. Thus Va . cmpOpaque (8 T:, v;) = unk. 

Then by Lemma B.4, there exists a 8" (constructed within the proof) s.t. 

Vi . cmpOpaq,, (8" 8 T:, 8" vi) E {lt, gt)  (4 

Now consider again each insertion constraint (w : 7 i n s  p) E inss(C), where 8' p = 
(#) , 5 I. From (d) and (e) we have 

Vi . ~ m ~ ~ ~ ~ ~ ~ ~ ( 8 / '  8 7,6" v,) E {It, gt} 

Furthermore, if 1 = a, then by the construction of 8" we have 8" a = A # Empty for - 
a fresh newtype A. That is, 8" 8 p = (#),+I (6" v Sf A) Empty. Since A t- a : Row, 
A t- T : Type, and A t 8 subst, 8 7 # a, and so since 8"08 is a grounding substitution 

Define S as either (if 1 = Empty) 

S = sortingPerms(OV 8 r, 8" vl, . . . ,ON v,) 

or (if I = a) 
S = sorting~erms(ON 8 r ,  8'' v1,. . . ,ON urn, A )  

Then we have S # 0  and n l , Q  E S 1 ='IT;' 1. Thus 

[O" 8 7 i ns  8" 8 p] = {iind : j )  

where j = n-I 1 for every n E S. We thus take q w = lncj One. 

Taking 6' = 6" o 8, we have 7 8 C as required. 

Lemma B.16 satisfiable(C) iff saturate(C) # 0. 

Proof Immediate by Lemma B.15. 

Lemma B.17 If C te D and satisfiable(C) then satisfiable(D). 

Proof Let C ke D v B. Since satisfiable(C) there exists a 8 and 7 s.t. q + 8 C. Then 
by Lemma B.13 env(B, q) 8 D. Thus satisfiable(D). 

Lemma B.18 If A I- C constraint and 8 E saturute(C) then there exists a A' s.t. Ai+A1 I- 
e subst. 

Proof By definition of saturate and Lemma B.5. 

Lemma B.19 If A I- C/D constraint and A I- 8 subst then 

(i) saturute(C) = 0 implies saturate(6 C ft- D) = 0 

(ii) saturate(8 C +t D) # 0 implies saturate(C) # 0 

Proof From definition of saturate, Lemma B.7 and stability of cmpopa,,,. 



Lemma B.20 Let A I- C constraint and 1 8 : A -+ Ainit and C = inhs(C) and r )  + 8 C. 
Then t r u e  ke 8 C v B and env(B) = r)rnames(q. 

Proof Notice the restriction of C to only include inheritable constraints. This restriction 
is necessary because t r u e  can never entail 8 C if C contains implicit parameter constraints. 

Let r)  8 C. By coNJ, it is sufficient to show for each (w : c) E C that t r u e  be 8 c 4 W 
for [ W ] .  = q w. However, by Lemma B.12 we already know [ W ] .  E [8 c]  3 q w, and thus 
11 W ] .  = r)  W. Hence we need only show existance of a derivation. 

We proceed by case analysis on each (w : c) E C. 

case c = 7 eq v. Then by definition cmpo(8 r, 8 v) = eq. Thus by CONJ and EQUALITY 

t r u e  Fe 8 r eq8 v. 
case c = r ins  p. W.1.o.g. assume 8 p = (#), i7 Empty. Then by definition 

1 sortingPerms(8 r, vl, . . . , v,) = S where S # 0 and 7r1, 7r2 E S s 7rr1 1 = 7rs 1. 
Thus Vi . cmpoPque(8 r ,  vi) E {It, gt). Thus by inspection of rules for km, 
t r u e  8 r ins  6 p. Then by CONJ and MEMBER t r u e  8 T ins  8 p. 

0 

Lemma B.21 Let A I- C/D constraint. If C I-e D 4 B1 and C Fe D v B2 then for 
every I- 8 : A -+ Ainit and r)  set. 7 + 8 C, env(B1, q) = env(B2,q). 

Proof By Lemma B.13 env(B1, q) /= C and enu(B2,q) + C. By the definitions of 
Figure 4.14, the denotation of each member of C is a singleton. Hence env(B1,r)) = 

(B2,r)) 

Lemma B.22 If C km r ins  p v W and cmpopaque ( r , r l )  = eq and cmpoPqu, (p, p') = eq 
and C = C' then C' Frn T' insp' 4 W. 

Proof Straightforward induction. D 

Lemma B.23 If C Fe d 4 W  and d - d' and C r C' then C' Fe d' v W. 

Proof From Lemma B.22 and Lemma 4.2 (xiii) if d is an insertion constraint. Otherwise, 
result is immediate from transitivity of cmpo. 

Lemma B.24 If C Fe D 4 B and D z D' then C be D' 4 B. 

Proof From Lemma B.23. 0 

Lemma B.25 Let A I- C constraint and A I- r : Type and A I- p : ROW and A I- 8 subst. 
Then (a) C k m r  i n s p v  W implies8 C k m  O r  i n s 8 p q  W. 

Proof By induction on derivation of (a): 

case MEMPTY: Immediate. 
case MREF: Let (a) be 

C t - m r i n s p ~ w  

Then by MREF 



and thus by stability of cmpopque 

Hence, by MREF 

B C t - m e ~ i n s B p ~ ~  

as required. 
case MCONT: Let (a) be 

C F m  T i n s  (#),-I i?\i 1 L-) W 

Then by MCONT 

CmPopaque ( 7 7  vi ) = l t  
CI-" i i n s  ( # ) , E l  v W 

Thus by stability of cmpopaqUe and I.H. on (c) 

cmpWaque (e T ,  e v,) = l t e  C k m  7 i n s  (#In (8 E)  (0  1 )  r-$ W 

hence by MCONT 

8 C Frn 8 r i n s  (#),-I (8 D\,) (8 1 )  v W 

as required. 
case MDEC, MEXP, MINC: Similar to case MCONT. 

Lemma B.26 Let A I- C constraint and A t- d constraint and A I- 8 subst. Then C I-m 
d s, W implies 8 C F m  Bd v W .  

Proof By case analysis on d :  

case d = r eq v .  Then by EQUALS 

VO' E saturate ( C )  . cmpO (0' r, 8' V )  = eq 

Then by definition of saturate: 

VB' E naguq(1d t- q s ( C ) )  . 
satisfied (0' inss ( C ) )  + 

(0' T ,  0' V )  = eq 

Then by Lemma B.8 
Ve" E mguq(1d I- f3 eqs ( C ) )  . 

38' E mgusO(Id I- eqs( C ) )  . 
3ett1 . etl e s0 ellt e1 

A satisfied (8' inss( C ) )  * 
cmpO(et T,O' V )  = eq 



Then by stability of cmpg and Lemma B. l l  (i) 

VO" E mgusg(1d I- 8 eqs( C)) . 
38' E mgusg (Id I- eqs ( C)) . 

3eN1 , eu 8 ettf e1 
A satisfied (8"' 8' inss ( C)) * 

cmpg(8"' 8' T ,  enr 8' V) = eq 

Then by Lemma B. 1 1 (ii) 

Wr' E mgusO (Id I- 8 eqs( C)) . 
satisfied (ON 8 inss ( C)) * 

cmpg(Orr 8 7, err 8 V) = eq 

and hence 
V8" E satunate(8 C) . cmpQ(8" 8 T ,  8'' 8 V)  = eq 

which by EQUALS implies 
8 C ke 8 7  e q 8 v  L, True 

as required. 
case d = T ins  p: Then by INSERT 

V8' E saturate ( C) . 8' i n s (  C) krn 8' 7 ins  0' p L) W 

By the same reasoning as for case EQUALS 

V8" E mgusg) (Id I- 8 eqs( C)) . 
38' E mguq (Id I- eqs( C)) . 

3e1" . OM e r g  en' et 
A satisfied(8' inss( C)) * 

8' anss(C) Frn 8' T inse t  p L) W 

Then by Lemma B.25 and Lemma B.l l  (i) 

V8" E mgusg(Id I- 8 eqs( C)) . 
36' E mguq (Id I- eqs( C)) . 

3eUt . ,gtf 8 = 8"' or 
A satisfied(8'" 8' inss( C)) 

BrN 8' inss(C) Frn 8"' 8' T ins  8r'' 8' p L) W 

Thus by Lemma B. l l  (ii) and Lemma B.22 

VB'' E mguq(1d I- 8 eqs ( C)) . 
A satisfied (8" 8 inss ( C)) + 

8/' 8 inss(C) Frn Orr8 7 ins8" 8 p v W 

which by INSERT implies 
e C I - e 8 ~ i n ~ 8 p ~  W 

as required. 



Lemma B.27 Let A I- C constraint and A I- D constraint. and A I- Bsubst. Then 
C krn D v B implies 8 C Frn 8D L, B .  

Proof Straightforward application of Lemma B.26. 

Lemma B.28 C I-e  C v . 
Proof Straightforward from definition of rule MREF and definition of saturate. 

Lemma B.29 If (a) C Ern T i n s p  L, W and satasfied(C) then -.isIn(r,p). 

Proof By definition of satisfied and straightforward induction on (a). 

Lemma B.30 If A I- C/D constraint and A I- d constraint and (a) C Fe D v B and (b) 
D F e  d L, W then C ke d L, W'. 

Furthermore, if I- 8 : A -+ Ainit and 7 8 C then [W]env(B,.q) = [W']t7. 

Proof The first part procceds by case analysis on d: 

case d = T eq v: By (a) and definition of saturate 

V8" E mgusO(Id t- eqs(C)) . 
satisfied(8" inss(C)) 

V(T' eqv') E eqs(D) . cmpe(B1' T', 8" v') = eq 
A V(r l  i n s  p') E inss(D) . 8" inss( C) Frn 8" T' i n s  8" p' L) - 

Then by Lemma B.7 and Lemma B.29 

V8" E mgusO (Id t- eqs ( C)) . 
satisfied (8" inss ( C)) * (d) 

Id E mgusO(Id I- 8" eqs(D)) A satisfied(8" inss(D)) 

Since by Lemma B.26 on (b) 
0" D I-" 8" d 

we have 

then by (d) we may take 8' = Id so that 

satisfied (8" inss(D)) 
A cmpO (8" T, 8" v) = eq 

Thus 
V8" E mgusg (Id I- eqs( C)) . 

satisfied (8" inss ( C)) 
cmpO(k T, 8" v) = eq 

so by EQUALS 
C ke T eq v True 



as required. 
case d = T i n s  p: By (a) and definition of saturate: 

V8" E mgusO ( Id  t- eqs( C ) )  . 
satisfied(@' inss( C ) )  

V(T' eq v') E eqs(D) . cmpO(BN T' ,  8" v') = eq (d) 

A V(w : T' i n s  p') E inss(D) . 8" inss(C) brn 8" T' i n s  8" p' v W: 

where B = w = W l .  
By the same arguments as above we have 

V8" E mgusO(Id I- eqs ( C ) )  . 
satisfied(8" inss ( C ) )  * 

Id E mgusO(Id l- 8" eqs(D)) A satisfied(8" inss(D))  

Since by Lemma B.26 on (b) 

we have 
V8' E mguq(1d I- 8" eqs(D)) . 

satisfied(8' 8" inss(D))  ==. 
8' 8" inss(D) krn 8' 8" T i n s  8' 8'' p v W 

then by (d) we may take 8' = Id  so that 

V8" E mgusO ( I d  I- eqs( C ) )  . 
satisfied(8" inss( C ) )  (4 

8" inss(D) krn 8" T i n s  0'' p v W 

By inspection, each rule for deciding Frn  has zero or one invocation of Frn in its 
hypotheses. Hence, a derivation of 

8" inss ( D )  Frn 8'' T i n s  8" p L-) W 

is a chain with leaf an instance of rule MEMPTY or MREF. We consider each case: 

case MEMPTY: Replace the leaf 

MEMPTY 
8" inss(D) Frn T' i n s  Empty  L-) One 

with 

MEMPTY 
8" inss(C) Frn T' i n s  Empty v One 

Then 8" inss( C )  Frn 8" T i n s  8" p v W ,  and so 

V8" E mgusO ( I d  k eqs( C ) )  . 
satisfied (8" inss( C ) )  + 

8"inss( C )  Frn 8" T i n s  8" p v W 



which by INSERT implies 
C I - e ~ i n s p ~  W 

as required. 
case MREF: The leaf is of the form 

(W : 8" T I  ins 8" pl) E ON inss ( D )  
cmpowoue (8" r l ,  T")  = eq - . .  . 
cm~opaque (8" P I ,  PI') = eq 

MREF 
9" inss(D) I-m rl' ins p" L, w 

and so by Lemma B.22 

ON inss( C )  F m  TI' ins pl' L, W t  

Hence 
8" inss ( C )  I-m 8" r ins 8" p v W [W t+ W l ]  

and thus 
V8" E mguq ( Id  I- eqs ( C ) )  . 

satisfied(k i ~ s s (  C ) )  * 
BMinss(C) km 8" r ins 8" p + W [w I+ W l ]  

which by INSERT implies 

For the second part, notice that by Lemma B. 12 [ W'],, E [8 dl ,  env(B,  q )  + D, and thus 
[ W l e n v ( ~ , q )  E 88 dl. Then [WIIq  = BWBenv(~,q)- C1 

Lemma B.31 If A I- C / D 1 / D  constraint and C F e  D' v B and D' I-e  D v B' then 
C I-e D v BI1. 

- Furthermore, if t- 8 : A + Ainit and q + 8 C then env ( B  Sf B1, q )  ,names(D) - 
env ( B1l, 7) Incmes(D) 

Proof By Lemma B.30 and definition of env. 0 

Lemma B.32 If A I- C / D / d  constraint and C F m  d L, W then C - t t  D F m  d L, W 

Proof Straightforward induction. 0 

Lemma B.33 If A I- C / D / d  constraint and (a) C I-e d v W then C +t D I-e d v W .  

Proof Notice that if t9 E mgusg(Id I- eqs(C)) and 8' E mgzdsg(Id I- eqs(C) +t eqs(D)) 
then by Lemma B.6 and Lemma B.7 there exists a 8" s.t. 8' q j  8" o 8. 

Furthermore, by stability of cmpOpaque, if +In (8' r ,  8' p) then .-.isIn(8 r, 8 p).  

We proceed by case analysis on d: 



case d = (7 e q v ) ,  W = True: Then from (a) 

V8 E mguq ( Id  I- eqs( C ) )  . 
(V(r1 i n s  P') E inss( C )  . l i s In (8  T',  8 p')) 

cmp0(8 T , O  v )  = eq 

Then by above results 

V8' E mguq ( Id  I- eqs( C )  tf eqs(D)) . 
38 E mgusO(Id I- eqs( C ) )  . 38" . 

8' q, 8" 0 8 
A (V(T' i n s  p') E inss(C)  . lisIn(0' T', 6" p')) 

cmpO (8  T ,  8 v )  = eq 

Thus by the transitivity and stability of cmpQ 

V8' E mgusO(Id t eqs( C )  -I+ eqs(D)) . 
(V(T' i n s  p') E e'nss ( C )  . lisIn(8' T', 8' p') 

A V(T' i n s  p') E inss(D) . ~ i s I n ( 8 '  T' ,  8' p')) + 
cmpO (8' T,O' v )  = eq 

which is equivalent to 
C +t D F e  d L, True 

as required. 
case d = (T i n s  p). Then from (a) 

V8 E mgusO ( Id  I- eqs ( C ) )  . 
(V(T' i n s  p') E inss( C )  . ~ i s I n ( 8  T',  8 pi ) )  ===+ 

8 inss(C) Frn 8 T i n s e p  L-) W 

Then by above results 

Ve' E mgus@ ( Id  t eqs( C )  +t eqs ( D ) )  . 
38 E mgusO(Id t eqs ( C ) )  . 38" . 

8' ~0 8" o 8 
r\ (V(T' i n s  p') E inss(C)  . lisIn(8' T', 8' 4)) =$ 

8 i n ~ s ( C ) t - ~ 8 ~ i n s 8 p v  W 

Thus by Lemma B.25, Lemma B.22 and Lemma B.32 

Q8' E mgusO(Id I- eqs(C) +t eqs(D)) . 
(V(T' i n s  p') E inss( C )  . +In (8' T', 8' p') 

A V(T' i n s  p') E inss(D) . ~ i s I n ( 8 '  T', 8' p')) =j 

6' inss(C)  Sf 8' inss(D) Frn 8' 7 i n s  8' p v W 

which is equivalent to 
C - t + D F e d ~  W 

as required. 



Lemma B.34 If A l- C/D/D1 constraint and C ke Dl L, B then C -kt D Fe D' L, B. 

Proof Straightforward application of Lemma B .33. 0 

B.4 Type Soundness 

Lemma B.35 If A F C constraint and A I- I' context and A I C I I' I- t : T then A I- T : 

Type. 

Proof Easy induction. Notice the use of well-kinding judgements within VAR, LET, ~ 3 ,  
~ 4 ,  ~5 and ~ 7 .  0 

Lemma B.36 Let (a) A I C 1 I? I- t : T and (x : f o r a l l  A' . C' => TI) E r .  

(i) For every (run-time) specialisation of x within t there exists a I- 8 : A' + A and W 
s.t. D = named(C1), names(D) = W and C Fe 8 D. 

(ii) If x E fv(t) then there exists a I- 8 : A' + A and E s.t. D = named(C1), names(D) = 
W and C Fe 8 D. 

Proof For (i), by induction on derivation of (a): 

case VAR: Let (a) be 
A I  c l r ~ - ~ : ~ ~ [ m ]  

If y # x then the result holds vacuously. Otherwise, we have y = x, and by vAR 

where D = named(C1). The result is immediate. 
case APP: Let (a) be 

A I  c l r ~ - ~ U : T  
where by APP 

case (in t) By I.H. on (b) the result holds for each specialisation of x in t. 
case (in u) Similary, by I.H. on (c) it holds for each specialisation of x in u. 

case LET: Let (a) be 
A ( C I r k l e t  y = u i n t : r  



Then by LET 

Y E f 4 t )  
Di = inhs( C) 

saturate(Di St D;) # 0 
a - ~ a ~ I o ~ + + D ; I r k ~ : ~ ~  

A1 C I r , y : a t t : ~  

A I- Di constraint 

A u A" I- D; constraint 

where a = f o r a l l  AN . anon(D4) => 7". (We shall ignore shadowing, thus x # y.) 

case (in u )  W.1.0.g. assume dom(A')ndom(Art) = 0 and that named(anon(D4)) = D;. 
By I.H. on (e), for each specialisation of x in u, there exists t 8 : A' + A St A" 
s.t. 

D; u D; I-" e D (i) 

where D = named(C1). 
By I.H. (this time using y, which is known to occur at least once within t by (b)) 
on (f) for each specialisation of y in t there exists at least one k 8' : A" + A s.t. 

Notice by (g) 8' Di = D;. Then by (c) 

and thus by (j) and CONJ 
C I-" 6' (Di -t+ Di) 

Then by (i), Lemma B.27 and Lemma B.31 

which is equivalent to 
C I-" (8' 0) ydom(A() 

Furthermore, we have I- (8' o 9) ,do,?(A:) : At -+ A. 
Thus the result holds for each specialistion of x via y in t. 

case (in t )  By I.H. on (h) the result holds for each specialisation of x in t. 
Notice that (d) plays no part in this result. Indeed, the test for satisfiability in rule 
LET is purely to aid the locality of error diagnostics. 

Other cases proceed similarly. 

For (ii), notice that if x E fv(t) then it must be specialised at least once. 

LemmaB.37 (i) I f A I  C ( F I - t : r v  T t h e n A + t A t I  C I r I - t : r v  T 

(ii) If A*Ar 1 C I r k ,  t :  T V  T[m] then A I C I r t ,  t :  T v TI.]. 

Proof Straightforward induction. 0 



Proof Straightforward induction. 

Theorem B.39 (Type Soundness) 

(i) If 

(a) A1 C I I ' I - t : r L ) T  

(b) I- e : A -+ ahit 
(c) env(B) + 0 C 

(dl 71 I= r 

(ii) If 

(a) A  I C  I TI-, t  : T  L) T[o] 

(b) I- e : A  -+ Ahit 

(c) env(B) + 0 C  

Proof By induction on derivation of (a). (We shall mix the two proofs and rely on the 
rulename to distinguish between statements (i) and (ii).) 

case INT: Let (a) be 
A I c I r I - i : I n t ~ - $ i  

Then by definition 

[i],,Stenv(B) = unitE (int : i)  

E E {int : i 1 i  E 2') 

= re 11n1 

as required. 
case APP: Let (a) be 

A I C I I ' I - ~ U : T L ) T U  

Then by APP we have 

A1 C I I ? l - t : v v  T 
A I  c l r t - u : ~ ' ~  u 

C  Fe v eqv' -> T L) True 



By (c )  and Lemma B.14 eqc (6' v, 6' v' -> 8 7) and thus 

By definition 

[T  U]r)+env(~) =  let^ V + KTPr)+env(~) 
in case v of { 

: f --) f [U],+env(B); 
otherwise + unitE (wrong : *) ) 

By I.H. (i) on (f) 
u ~ q - t t e n v ( ~ )  E ge v'B 

By I.H. (i) on (e )  

BTBq+env(~) E 80 vI 
E [9 v' -> 8 T] 

= E {func : f I f E E v + E V, V' E [6' v'] + f V' E Be 71) 

thus v is tagged by func, and 

as required. 
case VAR (normal case): Let (a) be 

Then by VAR 

where a = f o r a l l  a . D => 7, D' = named(D), and names(D1) = (wl,. . . , wn). 
By (c ) ,  (g) and Lemma B. 13 

env(B +t B') + 8 ( D 1 [ a ] )  (h) 



By de f in i t i on  

[letw B in x narnes(D')]qit,nv(B) 

= [ X  ( ~ 1 ,  . - , w n  11 env(B1,qitenv(B)) 

= [ X  ( ~ 1 7  - - - 7 ~ n ) ] q + e n v ( ~ # B ' )  

=  let^ v t [ ~ ] q + e n v ( ~ # B ' )  
in case v of { 

i funcn : f -+ f ( [ z ~ l ] q # e n v ( B # B ' ) ~  . 7 I ~ n l q + t e n v ( ~ # ~ ' ) ) ;  
otherwise + unitE (wrong : *) ) 

= letE v t [ X I q  

in case v of { 
i funcn : f * f ( [ W ]  env(B+B1) 7 . . - 7  [ w n ]  env(B+Bt) ) ; 
otherwise + unitE (wrong : *) ) 

= (*I 
W.1.o.g. a s s u m e  dona(8) n7i = 8. Then by ( d )  a n d  ( e )  

[xBq E [ 8  f o r a l l  a . D => T ]  

= [ f o r a l l  a . 8 D => 8 T ]  

I- 8" : O: A*,,#, 
= n { ~ ( e t l , B l l )  I e n v  ( B r l )  0" (0 D l )  

T a k i n g  8" = [a] a n d  B1' = B -tt B', by (h)  v i s  t agged  by i f unc ,  a n d  

where 

w h e r e  
f ( [ ~ l ] e n v ( B + B ~ ) 7  . . . 7 I [ ~ n ] e n v ( ~ - l t B ' ) )  E Be (T[ml) l  

: f 

a s  required .  
case VAR ( f  = ( I n j  -1): L e t  ( a )  be 

f E nll,5nz -+ E V7 
f ( [ w ~ ] ~ ~ ~ ( B ~ ~ ) ~  . - 7 [ w n ~ e n v ( B t t ) )  

E 18" ( 8  T ) ]  

A I C I I? I- ( I n j  -) : ( a  -> One ( a  # b ) ) [ a  I+ 7, b I+ p] L) letw w = W in ( I n j  -1 w 

Then by VAR 

A I- T : Type  ( 4  
A I- p :  Rpw (f 

C Fe w : ( a  i n s  b ) [ a  I+ 7, b I+ p] L) w = W ( g )  



By definition 

[letw w = W in ( I n j  -1 w ] ~ + + ~ ~ ~ ( ~ )  
- 
- [ ( In j  -1 (w)Denv(w= ~ , ~ + + e n v ( B ) )  

= !(Inj -1 (w)]q+env(w= w,env(~)) 

= g(X(wr> - Ax . lnj W' X) (~)]~++env(w=d,env(~))  

= [AX - Inj W xBq++env(w= w,env(B)) 

= unitE (func : Xy . case [ W]env(B) of { 
iind : i + unitE (inj : (i, y)) 
otherwise + unitE (wrong : *) ) ) 

By (c), (g) and Lemma B.14, if 8 p = (#), ?7 Empty then 

S t # @  A V T  E St .  .rr-I 1 = j  A [W]env(B) = iind: j 

where St = sortingPenns(8 T, vl,  . . . , vn). 
Let n E St. Then 

(*) = unitE (func : Xy . unitE (inj : ( j ,  y))) 

where 

as required. 
case VAR (f = (Triv)): Let (a) be 

{ s = E j : (i, v )  

A I C I I' !- (Triv) : All Empty L, letw in (Triv) 

15  i 5 ( n  + I), 
if i = j  then v' E [8 T] 

else v' E [v(, 

Then by definition 

= [ o r  ->One ( 8 7  i tep) ]  

= [O (7 -> One (T,  PI)] 
= [e ((a ->One ( a  # b)[a * ~ , b  I-+ PI))] 

[letw - in ( T r i ~ ) ] ~ + + ~ ~ ~ ( ~ )  

= B(Tri~)jlq+env(~) 

= BOBq+env(~) 

= unitE (prod,, : ()) 

E E {prodo : 0) 
= [8 All Empty] 

as  required. 



case VAR (f = (- && -1):  Let (a)  be 

A I C I I? I- (- && -1 : (a  -> A l l  b -> A l l  ( a  # b))[a  I+ T ,  b I+ p] 
v letw w = W in (- && -1 w 

Then by VAR 

A F T : Type 

A t- p :  Row 

C F e  w : ( a  ins  b)[a I+ T ,  b I+ v w = W 

By definition 

= [(X(wl) . Ax . Xy . insert x a t  W' into y) ( ~ ) ] q * ~ ~ ~ ( ~ = w , e n v ( ~ ) )  

= [Ax . Xy  . insert x a t  w into gBq++env(w=W,env(~)) 

= unitE (func : Ax1 . 
unitE (func : Xyl . 

letE v e y1 

in case ( v ,  [w]l env(B))  of { 
(prodnr : (v i ,  . . . , v;,), iind : i )  + 

unitE (if 1 5 a 5 (nl  + 1)  then V" else wrong : *); 
otherwise + unitE (wrong : *) 1)) 
N I I I I I where v = : ( v l ,  . . . , vi-l, x , v,, . . . , vnr) 

= (*) 

By  (c) ,  (g)  and Lemma B.14, if 8 p  = ( # I n  7 Empty then 

St # 0 A VT f S1 . x-' 1 = j A WBenvcB) = iind : j 

where St = sortingPerms (8 T,  vl , . . . , vn). 
Let n E S' and 

if i < j 
(T ( i  + 1))  - 1, otherwise 

Then n1 E sortingPerms(vl, . . . , vn). 



Thus 

(*) = unitE (func : Ax1 . 
unitE (func : Xyl . 

letE v t y1 
in case v of { 

prod, : ( v i ,  . . . , v:) +  unit^ v"; 
otherwise + unitE (wrong : *) 1)) 

I1 I I I I I where v = : ( v l ,  . . . , v j - l ,  x  , v j ,  . . . , v,) 

and T = E {prod, : ( v i ,  . . . , vk )  I v i  E [v+ 11,. . . vk E [v,l ,I} 

= 10 r -> AU ( 0  p )  -> A l l  ( 0  T # 0 PI ]  
= [0 (r  -> A l l  p -> A l l  ( 7  # PI)]  
= ( ( a  -> AU b -> A ~ I  ( a  # b ) ) [ a  I+ 7,b ++ PI)] 

as required. 
case vAR (f = A): Let (newtype A = r )  E tdecls and let (a) be 

A I C ( I? k A : ( raom( r  a1 . . . a,) -> A a1 . . . a,)[-] v letw - in A 

Then by vAR 
At-- 

By well-kinding of T ,  0 T = T .  Then 

8 ( n o m ( r  a1 . . . a,)[=]) = 0 nomn(7 vl . . . v,) 

= n o m ( r  (8 v l )  . . . (0 v,)) 

By definition 

[Ietw . i n  A ] q + e n v ( ~ )  

= BABqi+env(~) 

= [Ax - A ~ ] q i + e n v ( ~ )  

= unitE (func : Xy . foldA y) 

= [ n o m ( r  (0  ~ 1 ) .  . . (0  v,)) + A (0  ~ 1 ) .  . . (8 v n ) ]  

= [0 ( n o r m ( r  v l  . . . v,) -> A vl . . . v n ) ]  

= [0 ( ( n o r m ( r  a1 . . . a,) -> A a1 . . . a,)[=])] 



as required. 
case ABS: Let (a) be 

Then by ABS 

A I C ( r t- Cabs) : r v T[undefined] 

A I C I r k l  abs : r  v T[.] 

Notice 

Then by I.H. (ii) on (e) 

as required. 
case DISC: Let (a) be 

A I C I I? I- (absl, ... , a b ~ , + ~ )  : 7 v let z = U in T[z]  

Then by DISC 

A I C I r F 1  absl : 7 v T[.] 

A I C I I? I- Cabs2,. . . , a b ~ ~ + ~ l  : r1 3 U 
C F e  r eq 7' <+ True 

By (c) , (g) and Lemma B. 14 e q r  (I9 r, 19 7') , hence 

[I9 r] = [I9 T I ]  

By definition 

(Notice the translation let-binds U so as to avoid duplicating it within the body of T. 
Since our semantics is call-by-name, we may safely undo this.) 
By I.H. (i) on (f) 

Then, by I.H. (ii) on (e) 



as required. 
case LET: Let (a) be 

A I C I I? I- l e t  x = u i n  t : 7 v let x = Xnames(D2) . U in T 

Then by LET 

x E fv(t) 
A I- Dl constraint 

A i+ A' I- D2 constraint 

Dl = inhs(C) 

saturate(D1 -t+ D2) # 0 
A U A ' I  D ~ ~ + D ~ ~ ~ ~ - u : v c )  u 

A I  ~ I ~ , x : u ~ - ~ : T L )  T 

where a = f o r a l l  (z . anon(D2) => v, names(D2) = (wl,. . . , wn), and A' = m. 
By definition 

[let x = X names(D2) . U in T]v+env(B) 

= KTBq+env(~)+z~v 

= (*I 
where 

Since by (b) dom(0) n dom(At) = 0, by (f) 

A' I- 0 D2 constraint 

By (e)  and Lemma B.36 (ii) there exists F 8' : A' -+ A s.t. C Fe 8' D2 v B'. Then 
by Lemma B.13 env ( B  -ti- B') + 8 o 8' D2. By (b) this is equivalent to 

where F (0 0 8') ldorn(A,) : A' + Ain". 
Now let 8'' and B" be s.t. 

By above argument at least one such 8" and B" exists. 
Then, since 8" o 8 Dl = 8 Dl, by (c) and (h) we have 



and so by I.H. (i) on (k) 

Since this holds for any choice of 8" and B" s.t. (m) holds 

E n { ~ ( o ~ . B f f )  I I- t9'I : At + A,,,,t, 
env (B") 8" (8 D2) 

= [ fo ra l l  a . (0 unon(D2)) => (8 v)] 

= [8 (f o r a l l  o . unon(D2) => v)] 

Now, let q' = q, x I+ v. Then qt (8 r ) ,  x : (8 a). Thus by I.H. (i) on (1) 

where 

as required. 
Notice (h) and (j) play no part in soundness. The former is always true in XTIR as 
presented, and the latter serves only to detect unsatisfiability as early as possible. 

case PI: Let (a) be 
A1 C I I ' I - o t : ~ ~ T  

ifuncn : f 

Then by p l  

hI C I ~ I - ~ : T L ) T  

f E n ~ ~ , ~ , ~  -+ E v? 
f ([W]~,U(B~~),  + - 7  [wn]env(Bf1)) 
E [en (e v)] 

which by I.H. (i) implies [T]quenv(B) E I[8 T ] .  Since T has no "hole", the result is 
immediate. 

case ~ 2 :  Let (a) be 

A I C I I' I-,+1 \i . t : I n t  -> 7 v Ax . case x of { i + T[e X I ;  
otherwise + l x ) 

Then by p2 A ( C I I' I-, t : T v T[.], and since x @ dom(I'), by Lemma B.38 

Let v be s.t. 

v E [ ~ n t ]  

= E {int: i I i E 2) 

and let q' = 7, x I+ v. Then by (d) q' + (8 I'), x : Int .  



[u],++env(B) E UInt -> 0 71 

= E {func : f I f E E V += E V, v' E [ ~ n t ]  * f v' E [B T ] }  

Thus 

lU 21)q'+env(~) 

=  let^ v' +- [U]q'++env(B) 
in case v' of { 

func : f f [ ~ ] ~ ' + e n v ( B ) ;  
otherwise + unitE (wrong : *) ) 

=  let^ func : f [U]19++enu(~) 
inf v 

E IP 71 

Then by I.H. (ii) (using 7') on (f) 

By definition 

[ A x  . case x of { i + T [ U  X I ;  otherwise + U x )]q+env(B) 

= unitE (func : Ax' . letE v' t [x]q+Cenv(B),zex~ 
in case v' of { 

i n t  : j += if i = j then [ T [ U  ~ ] ] ~ + + ~ ~ ~ ( ~ ) , ~ ~ ~ l  
B U  x]q+env(~),x++x'; 

otherwise + unitE (wrong : *) ) ) 

= (*> 

Then, since the choice of v was arbitrary s. t. (g) holds, by (h) and (i) 

(*) E E {func : f I f E E V --+ E V, v" E [ ~ n t ]  ==. f vl' E [B T I }  
= [ I n t  -> 0 T] 

= [B ( I n t  -> T)] 

as required. 
case ~ 3 :  Let (a) be 

A I  c I r t - n + l \ ~ p .  t : ~ v ~ . . . v , - > T  
9 A x .  let y = A-' x in T[Xy . ( A  y)] y 

Then by p3 

At-v:K. 

C ke  nom(vl vl . . . v,) eq7' L) True 

A 1 C I r \p . t : T I - >  T L) T[.] 



Notice by well-kinding of v' 

e norm(vt vl . . . v,) = norm((8 v') (8 VI) . . . (0 vn)) 

= norm(vl (0 vl) . . . (8 v,)) 

By (c), (g) and Lemma B.14 eqT(8 norm (v' vl . . . v,), 0 7')) and thus 

f E E V + E V ,  
V' E [(A (8 vl) .  . . (8 ~ n ) ) ]  + f V' E 88 71 

Then by definition 

[AY - U (A ~)]q t tenv(~)  
= unitE (func : Xyl  .  let^ v t [U],+env(B),y+,y: 

in  case v of { 
func : f -+ f  fold^ I[~]~+env(~),yHy~); 
otherwise + unitE (wrong : *) ) ) 

= unitE (func : Xy' .  let^ func : f t [U~qSI-env(B) 
in  f (foldA y') ) 

E E {func : g ) g E E V + E V, V" E [nomn(vl (8 vl) . . . (8 vn))] * g V" E 88 71) 
= [norm(vl (8 vl) . . . (8 v,)) -> 8 711 
= [e TI -> e 
= fe (TI -> 711 

Thus by I.H. (ii) on (h) 



By definition 

[AX . let y = A-I x in T [ A ~  . u (A y)] Y ] ~ ~ ~ ~ ~ ( ~ )  

=  unit^ (func : AX' let  v t I[T[AY . U (A ~)]]q+env(~),z~z~,~~unfold~ z1 

i n  case v of { 
func : f -+ f unfoldA xi; 
otherwise + unitE (wrong : *) ) ) 

= unitE (func : Ax' . le t  func : f t [T[Ay . U (A y)]]71Stenv(B) 
i n  f (unfoldA XI) ) 

E E {func : g I g E E v -+ E v ,  V' E [A (e vl) .  . . (8 v,)] ==. f V' E ge T]) 

= [A (e v ~ ) .  . . (e v,) -> (e T)] 

= ge ((A vl . . . v,) -> T I ]  

as required. 
case ~ 4 :  Let (a) be 

A I C I I' Fn+1 \Inj p . t : One (v # p) -> T 
v Ax. case x of {Inj W y + T[Ay . (Inj W y)] y; 

otherwise -+ x) 

Then by p4 

A I c I r I-,+~ \p . t : v -> 7 C )  T[.] 
C ke v i n s p v  W 

A i- p : Row 

By (c), (g) and Lemma B.14, if 8 p = (#In 7 Empty then 

S' # 0 A Vx E S' . r-l 1 = j A [ W]env(B) = i int  : j 

where S' = sortingPerms(8 v, vi,  . . . , v;). 
Let x E S'. By (e) 

[UIlqi+env(~) E (One (v # P) -> T)] 

E [One (8 v # 8 p) -> 8 r] 

=E{func:  f I f E E V + E V , V ' E S +  f v ' E [ ~ T ] )  

where 

inj:(i ,vl)  
l < i < n ,  
i f i = j t h e n v ' ~ [ O v ]  
else v' E [vb  i,-l] 



Then by (h) and (i) 

= unitE (func : Xy' . letE v +- [U]v+-env(B) 
in case v of { 

func : f 4 f ( case [ W], of { 
iind : i 4 unitE (inj : (i, y')); 
otherwise + unitE (wrong : *) ) ) 

otherwise + unitE (wrong : *) ) ) 

= unitE (func: Xyt  . letE func: f t [U]l)Stenv(B) 
in f (unitE (inj : ( j ,  y'))) ) 

E E {func : g I g E E V -+ E V, V' E [8 V] + g V' E [O 7-11 

=[Ov->Or]  

= [e (v -> T)] 

Then by I.H. (ii) on (f) 

Let vt' be s.t. 
V" E [One (8 v # 0 p)] 

and let q' = 7, x I+ v". Then by (d) 7' (8 I?), x : 8 (One (v # p)). 
By definition 

~]q 'S tenv(B)  

=  let^ v + [UBqli+env(~) 
in case v of { 

func : f f [~]q'+env(~); 
otherwise + unitE (wrong : *) ) 

=  let^ func : f + [UBrl+-env(~) 
inf v 

E Be 71 
Since x is fresh, by (f) and Lemma B.38 

Thus by (1) and I.H. (ii) (using ql) 



By (h) and by definition 

[Ax . case x of { Inj W y + T [ X y  . U (Inj W y ) ]  y ;  
otherwise + U x ) ] , , + ~ ~ ~ ( ~ )  

= unitE (func : Ax' . letE v t [ ~ ] , + ~ ~ ~ ( ~ ) , ~ ~ ~ t  
in case ( v ,  [ W],) of { 

(inj : (j', v ' ) ,  iind : i )  -+ 
if i = j1 then 

 let^ v" t ~ T [ X Y  - U (Inj W ~)I]q+env(~),z,zl,y,v~ 
in case v" of { 

f ~ n c  : f + f [~ lq+env(~ ) , z *z ' ,~ *v~ ;  
otherwise 4 unitE (wrong : *) ) 

else I[U x l , + e n v ( ~ ) , z ~ z l , y ~ v l ;  
otherwise -+ unitE (wrong : *) ) 

= unitE (func : Ax' . letE v t x' 
in case v of { 

inj : ( j l ,  v ' )  + 
if j = j' then 

 let^ func : f + [T[AY U (Inj W Y ) IBv+env (~ )  

in f v' 

else [ U  ~B~+env(~),z++zt ;  
otherwise + unitE (wrong : *) ) 

Then since the choice of v" was arbitrary s.t. (k) holds, by (j) and (1) 

(*) E E {func : f I f E E V + E V ,  v" E [One ( 8  v # 8 p ) ]  ==. f v" E 88 T ] )  

= [one ( 8  v # 8 p )  -> (8 T)] ]  

= [8 (One ( v  # p )  -> T ) ]  

as required. 
case ~ 5 :  Let (a) be 

A I c I r I-,,, \p b ~ t  q . t : ~ i i  ( v l  # p)  -> T 

v Ax . let y z = remove W from x 
in T [ A y  . X z .  l (insert y a t  W in toz ) ]  y z 

Then by p5 

A I C I I? t-n+2 \P . \q . t : ~1 -> ~2 -> T v T [ e ]  

C b e  A l l  p eqv2 9 True 

C b e  v l  i ns  p L) W 

A I- p :  Row 

By (c ) ,  (g) and Lemma B.14, e q c  ( A l l  (8  p) ,  8 v 2 ) ,  and thus 



- 
Similarly, by (c) , (h) and Lemma B. 14, if 8 p = (#In vt Empty then 

St # 0 A VT E St . n-' 1 = j A [ W]env(B) = iind : j 

where St = sortingPemas(8 vl, vi ,  . . . , v',). 
Let n E St,  and let 

I (T i )  - 1, i f i < j  
T i =  

(T ( i  + 1)) - 1, otherwise 

Then T' E sortingPerms (vi , . . . , v',). 

BY ( 4  

[U]17+env(~) E I[e (All ( ~ 1  # P) -' 7)B 

= [ A l l  (8 vl it 8 p) -> (8 T ) ]  

= E {func : f I f E E v -+ E V ,  v1 E [ ~ l l  (8 VI # 8 p) j  - f v1 E 88 71) 
(k) 

By definition 

[ ~ y  . ~z . u (insert y a t  W into 

= unitE (Xyt . unitE (Xz' . 
letE v %U]q+env(~),y*yf,zez' 
in case v of { 

func : f --) f (  let^ 4- [ ~ ] ~ + e n u ( ~ ) , ~ e ~ ~ , z c + z '  

in case (vl, EWIq+env(~),ywy~,zez') of { 
(prod, : (v:, . . , v:), iind : i )  += 

unitE (if 1 5 i _< n + 1 then v"' else wrong : *); 
otherwise -+ unitE (wrong : *) ) ); 

otherwise + unitE (wrong : *) ) ) ) 

where 

Then by (j) and (k) 

(*) = unitE (Xyl . unitE (Xz' . 
letE : f [U]v+env(~) 
in f ( letE v1 t z1 

in case v1 of { 
prod, : (vr, . . . , v:) -+ 

I II unitE (prod,+l : (v:, . . . , VY-~, y , vj , . . . ,v:)); 
otherwise += unitE (wrong : *) ) ) ) ) 



Notice if V i  . vr E vl, , and y' E [O vl] then 

(*) E E {func : g I g E E V -+ E V, v E [O vl] + g v E S) 

where 

S = E { f u n c :  h I ~ E E V + E V , V E  T + h v ~  [Or]) 

T = E {prod, : (y, . . . , ern) I y E [v> . . . , v,, E [vll , I)  

and thus by (i) 

Then by I.H. (ii) 

[T[Xy . Xz . U (insert y at W into z ) ] ~ ~ ~ ~ ~ ( ~ )  E [O (vl -> 212 -> T ) ]  (1) 

By definition 

[Ax . let y z = remove W from x 
in T[Xy . Xz . (insert y a t  W into z)] g z ] ~ + ~ ~ ~ ( ~ )  

=  unit^ (AX' -  let^ v [ ~ ] ~ + e n v ( B ) , z ~ x ~  

in case (v, [W]q+-env(~),x~x') of { 
: (vi, . . . , v:-~, v", v:, . . . , v;), iind : i) + 

if 1 _< i 5 ( n  + 1) then 
[T[Xy . Xz . U (insert y at W into z)] y zBqt 

else unitE (wrong : *); 
otherwise + unitE (wrong : *) ) ) 

where 

I = 7 +t env(B), x I+ x', y t) v", z t) unitE (prod, : (vi,. . . , viel, v:, . . . , v;)) 



Then by dj) 

(**) = unitE (Ax1 . letE v t XI 

in case v of { 
: (vi, . . . , v!-~, v", vj, . . . , v;) -+ 

[[T[Xy . Xz . U (insert y a t  W into z)] y z],tt 
otherwise -+ unitE (wrong : *) ) ) 

E E {func : f I f E E It --+ E V, v E pi1 (8 vl # 8 p ) ]  3 f v E 71)) 

= [0 (All (vl # p )  -> T)] 

as required, where 

I I qrl = 17 +I- env(B), y t+ v", z t+ unitE (prod, : (vi, . . . , vj-l, vj, . . . , vh)) 

case ~ 6 :  Let (a) be 

A I C I I' I-,+1 \Triv . t : A l l  Empty -> T L, Ax . let () = x in T[e x] 

Then by p6 A I C I I' I-, t : T v T[e], and so since x is fresh, by Lemma B.38 

[U]7pt+-env(~) E [ A l l  Empty -' TI 
= E {func : f I f E E V -+ E V, v1 E [ ~ l l  ~mpty] ==. f V' E [8 T]) (g) 

Let v be s.t. 

v E [ A l l  Empty] 

= E {prodo : ()) 

and let q l =  q,x t, v. 
Then by (g) and by definition 

[U x l q ' ~ e n u ( ~ )  

= letE v [U]b-ttenu(~) 
in case v of { 

func : f -+ f [xBql+enu(~) 
otherwise + unitE (wrong : *) ) 

= letE func : f t [U]q+env(B) 
inf v 

By (d) q1 + (8 I'), x : (8 A l l  Empty), so by I.H. (ii) (using 7') on (f) 



By definition 

= unitE (Ax' . letE v' t l[xjv+-env(B),xez~ 
in case v' of { 

prodo 0 -) [T[U ~ ] ~ ~ + e n v ( L ? ) , x + + z ' ;  
otherwise + unitE (wrong : *) ) ) 

= unitE (Ax' . letE v' t x' 
in case v' of { 

prodo : O -) ET[U ~III~+-env(~) ,x++x~;  
otherwise -+ unitE (wrong : *) ) ) 

Then since the choice of v  was aribitrary s.t. (h) holds, by (i) 

( * ) ~ E { f u n c : g ~ g E E V + E V , v ~ [ A l l E m p t y ] * g v ~ [ ~ ~ ~ )  

= [~ll Empty -> 8 T ]  

= [O ( A l l  Empty -> T ) ]  

as required. 
case ~ 7 :  Let (a) be 

A I c I r t-n+l \X . t  : -> cs AX . T F  X I  

Then by p7 

A I C I I ' , X : V I - ~ ~ : T V  T[m] 

A 1- v : Type 

[U]qitenv(B) E ie (v -> 
=[Ov->Or]  

= E {func : f I f E E V + E V, v' E 16' v ]  + f v' E [O T ] )  (h) 

Let v  be s.t. 

and let 7' = 7 ,  x I+ v .  



Then by (h) and by definition 

=  let^ v 'r [U]a'+enu(~) 
in case v of { 

func : f f [[x]++enu(~); 
otherwise -+ unitE (wrong : *) ) 

=  let^ func : f + BUBq+env(~) 
inf v 

By (d) and (g) q' + (8 I?), x : (8 v).  Then by I.H. (ii) (using 7') on (f) 

By definition 

[Ax. T[U XI] 
= unitE (func : Ax' . [T[U ~ ] ] q + ~ ~ ~ ( ~ ) , ~ + # ~ f )  

= (*I 
Since the choice of v was arbitrary s.t. (i) holds 

(*) E E {func : g I g E E V -+ E L', v E I[8 v] g v E 18 T]) 
= 18 v -> 8 T ]  

= ge (v -> T ) ]  

as required. 



Appendix C 

Proofs for Chapter 5 

C.l  Simplifier Correctness 

Lemma C.l Let A I- C / D  constraint and A t- 7 : Type and A I- p : Row and A I- 8' subst 
and notln ( C I- r, p).  

Then 8 E saturate((8'C) +t D )  implies ~ i s I n ( 8  8' r , 8  8' p). 

Proof By definition of saturate 

8 E mgusQ(Id I- eqs((O1 C )  +t D ) )  
A V(r t  i n sp l )  E inss((8' C )  -kt D )  . l i s In(8  T', 8 p') (a) 

- 
W.1.o.g. assume p = (#), i7 1, and 8 8' 1 = (#I, v" I' and thus 8 0' p = (#),+, v1 I t ,  
where 

Now assume isIn(8 8' T ,  8 13' p), that is, there exists an i s.t. 

We shall show each possible value for a leads to a contradiction. 

case 1 5 i < m:  Thus cmpopque (8 8' r ,  8 8' v i )  = eq. 
Since by definition of notIn, notEqual(C t- T,v,), then by definition of notEqual, 
satisfied and isIn we have 

V8" E mgusOPque ( Id  k r eq V i )  . 
3(r1 i n s  p') E i n s (  C )  . isIn (8" T', 8'' p') 

Then by Lemma B.8 and stability of cmpOPque: 

VB1I1 E mgusOPque ( Id  I- 8 8' T eq 8 8' v i )  . 
38" E mgusoPque ( Id  I- T eq vi) . 

3el111 . en' 8 8' etltl 81' . 
3(r1  i n s  pl) E inss ( C )  . isIn (8"" 8'' T I ,  8"" 8" p') 



and thus by transitivity of cmp,,,,, 

V8"' E mgus,,,,, (Id I- 8 8' T eq 8 8' vi) . 
3(r1 ins p') E inss( C) . isIn(8"' 8 8' T', 8'" 8 8' p') 

But by (b) and Lemma B.7 

38"' E mg~s,~,~,, (Id I- 8 8' r eq 8 8' v,) . 8'" = Id 

Thus 
3(r1 ins p') E inss ( C) . isIn(8 8' TI, 8 8' p') 

which contradicts (a). 
case m < i 5 (m + n): Thus Cmpopoque (8 8' 7, V Y - ~ )  = eq (and of course 1 # Empty.) 

Then by definition of notIn 
- 

3(r1 ins ( # ) , r  rtl I r r )  E inss(C) . cmpopque(~, 7') = eq A 1 = I" 

which by stability of cmp,,,,, implies 
- 

3(7' ins ( 8 )  ,, T" I") E anss(C) . cmpop,, (8 8' T, 8 8' 7') = eq A 1 = 1" 

which by (a) implies 
- I ' I  3(r1 ins ( # ) , r  T" 1") E inss(C) . 88' I" = (#In VN I' A r , v , - ~ )  = eq 

that is 
3(7' ins p') E inss( C) . isIn(8 8' T', 8 8' p') 

which contradicts (a). 

Lemma C.2 Let A I- C constraint and inhs(C) = C and A t- r : Type and A I- p : Row 
and notIn(C I- r ,p)  and I- 8 : A + Ainit and q 8 C. 

Then 1 isIn (8 7,8 p) . 
Proof By Lemma B.15 (i) Id E saturate(8 C). Then the result is immediate by 
Lemma C.1. 

Lemma C.3 Let A t- C constraint and E E dom(A) and (B I C) D (8 I C' I B). Then 

(i) 8 C' = C' 

(ii) A I- Ct constraint 

(iii) There exists a A' s.t. A +t A' I- 8 subst 

(iv) A I- OrE subst 

(v) C' = false or there exists Dl, D2 and D3 s.t. C = Dl +t D2 and C' = (8 Dl) +t D3 

Proof 



(i) In rule ~ 2 ,  [b I+ r] is applied to C, so the rusult follows by idempotency. In rule s17, 
dom(8) fl fu@(C) = 0. All other rules yield Id. 

(ii) In rule ~ 1 7 ,  8 may introduce fresh variables into 8 D, but this constraint does not 
appear within the result. All other rules do not introduce fresh variables. The 
preservation of well-kinding is by inspection. 

(iii) For rule ~ 1 7 ,  A' is as given by Lemma B.18. For all other rules, A' = a .  

(iv) In rule s2, T is well-kinded by well-kinding of C, b eq r.  In rule s17, dom(8) n 5 = 0. 

(v) C' = f a l s e  in rules s4-s7, s16 and s18. For the remaining rules, result follows by 
inspection. 

Lemma C.4 Let A I- C constraint and 5 dom(A) and (E I C) o (8 1 C' I B). Then 

(i) C' FeO C v B  

(ii) 8 C Fe C' v B' 

(iii) If there exists a I- 8' : A + Ainjt and q' s.t. q' )= 8' C, then there exists a 
t- 8" : A + Acu s.t. 

(iii. 1) 8' l a~ fue (  G I )  -0 (8" 8) l ~ ~ h ( c ~ )  
(iii.2) 7' 8" 0 8 C 

(iii.3) env(B',ql) + 8" C' (where B' is from (ii) above) 

Proof We may substantially simplify each of these conclusions in specific cases. 

(i) If C' = f a l s e  then the result holds vacuously. Otherwise, by Lemma C.3, C = 
Dl -I+ D2 and C' = (8 Dl) -I+ D3. Then it is suficient to show 

since by Lemmas B.28 and B.34 (8 Dl) +t- D3 Fe 8 Dl v -. 

(ii) If C' = f a l se ,  then we need show 8 C Fe fa l se ,  which is to say 

Otherwise, by Lemma C.3, C = Dl -I+ D2 and C' = (8 Dl) -I+ D3. Then it is sufficient 
to show 

8 (Dl -I+ D2) I-e D3 ( 4  

since by Lemmas B.28 and B.34 8 (Dl -I+ D2) Fe 8 Dl v .. 

(iii) If C' = f a l s e  then by (ii) saturate(8 C) = 8. Thus by Lemma B.15 (i) there is no 
8' and q' s.t. q' + 8' C. 

Otherwise, it is sufficient to show (iii.1) and either one of (iii.2) and (iii.3). To see 
how (iii.3) follows from (iii.2), notice that given q' 8' C, by (i) and Lemma B.26 
8" o 8 C Fe 8" C' L) B'. Thus by (iii.2) and Lemma B. 13 env (B', q') )= 8" C'. 



Conversely, to see how (iii.2) follows from (iii.3), notice that given q' 8' C, by 
(ii) and Lemma B.27 8" C' ke 8" o 8 C v B. Thus by (iii.3) and Lemma B.13 
env(B, env(Bt, 7')) 8" o 8 C. But by (i), (ii), Lemma B.31 and Lemma B.28 
env(B, env(B',q'))lnames(C) = q, SO that q 8" o 8 C. 

Notice that by the above argument, if 8 = Id,  then we may take 8" = 8'. Thus (iii.1) 
and (iii.2) are vacuous, and (iii.3) follows from (iii.2). 

We procced by case analysis of the rewrite rule: 

case sl: We have 
(ZI C,T e q v ) ~ ( I d I  C , v e q r I  .) 

(iv) Since (T eq v) = (v eq T), by Lemmas B.24 and B.34 

as required. 
(vi) As for (iv). 

case s2: We have 
(Z I C ,b  e q r ) ~  ([b rtr] 1 C [ ~ H T ]  I .) 

where 
b e fv0(7) 

(iv) Immediate. 

(vi) Immediate. 
(iii) Let + e1 C,e1 b e q e ' ~  

Then cmpg(8' b,8' T) = eq. Let 8" = 8ib. 

(iii.1) Then by (a) 

(iii.2) Then by Lemma B.10 

(iii.3) Follows from (iii.2) 

case s3: We have 
(El C C , F ~ e q F Z ) r > ( I d I  C , m l - )  

(iv) If 8 E saturate(C,TiTijT) then Vi  . cmp(8 r i ,8  v,) = eq, and thus 
cmp(F 8, F 8) = eq. Thus by EQUALS and CONJ 

as required. 



(vi) As for (iv). 

case s4: We have 
(El C , F 7 e q G @ ) t > ( I d I f a l s e I - )  

where F # G. 

(v) Since cmpO(F 7,  G V) E {I t ,  gt)], by Lemma B.6 mgusO(Id I- F ? eq G @) = 0. 
Thus satumte(F 7 eq G D) = 0. Then by Lemma B.19 (i) saturate(C, F 7 eq 
G @) = 0 as required. 

case s5: We have 

where 
m > n  

(v) By (a) and Lemma B.6 

mgusO(Id I- (#Im ? b eq (#I,, @ Empty) = 0 

and thus saturate(C, (#Irn 7 b eq (#In V Fmpty) = 0. 

case s6: We have 

( E  1 I, (#Irn 7 Empty eq,,, (#In 5 Empty) (Id I f a l s e  I -1 

where 
m # n  

(v) By (a) and Lemma B.6 

and thus saturate(C, (#Im 7 bEmpty(#In @ Fmpty) = 0. 

case s7: We have 
- 

( E  1 C,  (#Im T 1 e%ow (#In @ 1' )  D (Id 1 f a l s e  I a )  

where 
notIn(C 1- Tj, (#In 5 1') 

(v) Assume there exists a 0 s.t. 

Then by (a) and Lemma C.l i isIn(0 rj,8 ((#). @ I ! ) ) .  But then by Lemma 4.2 

(i.1 
cmpO(O ( (#Im ? 1),0 ( (#In  @ 1')) # eq 

which contradicts (b). Thus saturate(C, (#Irn 7 I eq,,, (#In @ 1') = 0. 



case s 8 :  We have 

(E I C, (#Irn ? 1 eq ( # I n  B I') 
D (Id I C,T; eqType V j 7  (# )m- l  y\; 1 eq  (# )n- l  B\j I' I .) 

where 

(iv) Let 
- 6 E saturate(C, T; eqTwe 9, T\; 1 eq  B\j 1') 

Then by Lemma B.6 

and thus by Lemma 4.2 (iv) 

Then by EQUALS and CONJ 

as required. 

(vi) Let 
8 E saturate(C, ( # I m  7 I eq (#In B 1') 

Then by Lemma B.6 

and thus by Lemma 4.2 (iv) 

Then by EQUALS and CONJ 

Notice that (b) plays no part in this result, and serves only to distinguish this rule 
from rule ~ 7 .  

case s 1 0 :  We have 



where 

(iv) By (a), (b) and stability of cmpopaque, if 8 E saturate(C, w : r insp) then 

Then by MREF, INSERT and CONJ 

as required. 
(vi) Vacuously, 

C, w : r ins  p, w' : r1 ins  p' Fe t r u e  c, . 

case s 1 1 : We have 
( E ]  C, w : T i n s h p t y )  D (Id 1 C 1 w = One) 

(iv) By MEMPTY, INSERT and CONJ 

(vi) Vacuously, 

case s13: We have 

C, w : T ins  Empty F e  true 

(E 1 C, w : T i n s  (#In D I )  D (Id I C, w' : r ins  (#In-1 D\, I I w = Inc w') 

where 
CmPopoque (7, vi 1 = gt (a) 

and w' fresh. 

(iv) Let 0 E seturate(C, w' : r ins(#I  ,-I Eii I). Then by (a) and stability of cmpopaque 

By MREF 

C, w' : 8 r ins  8 ((#In-1 ;i7\, I) Fm 0 T ins  8 ((#),-I ZT\, I) v w' 

and so by (b) and MINC 

C, W' : 8 r ins  8 G\, I )  Fm 0 T ins 0 ((#In 77 1 )  Inc w' 

Thus by INSERT and CONJ 

C, w' : r ins  (#In-l E\, I w : T i n s  (#I,, ;i7 I c-$ w = Inc w' 

as required. 



(vi) Let 0 E saturate(C, w : T ins  (#), ?? 1). Then by (a) and stability of cmpoPque 

By MREF 

and so by (c) and MDEC 

C,w : O T  ins0  ? ? I )  Fm 0 7  i n s8  ((#)n-l Zi\, I )  v Dec w 

Thus by INSERT and CONJ 

C, w : T ins (#In ?J 1 ke  w' : T ins Zi\, 1 L, w' = Dec w 

as required. 

case s12, s14, s15: As for case ~ 1 3 .  
case s16: We have 

(EI C , w : T i n ~ p ) ~ ( I d I f a l ~ e I - )  

where 
isIn (T, p) 

(v) Immediate from (a) and stability of cmpoPque. 

case s17: We have 
(El C + t D ) b ( e I  C I  B) 

where 

f-lf%(C> = 0 
f v g ( D ) t I ~ = @  

0 E saturate(D) 

V8"' E satumte(D) . true ke 0"' D LS B 

(iv) By (d) and Lemma B.34 
8 C t - e 8 D v B  

as required. 

(vi) Trivially, we have 
O C ~ O D t - ~ t r u e c - + .  

as required. 

(iii) Let 

and let ON = ellwfyp( C). 



By (a) and (b) we may split A into Ac and AD s.t. 

A = A c + t - A ~  

a E dom(A c )  

Ac I- C constraint 

AD t- D constraint 

Then by Lemma B.18 there exists a A', s.t. 

AD +t A', 8 subst 

W.1.o.g. we map assume dom(A',) n dom(Ac) = 8. 
(iii.1) By (e) dom(8) f l  (a u fv@(C)) = 0. Thus 

(iii.2) Since 

by Lemma B.15 (i) there exists a 8'" E saturate ( D )  and a 9"" s.t. 8' EB 8"" o 8"'. 
But by (d) 

true F e  8"'D L-) B 

and by Lemma B.27 
true ke 8"" o 8''' D B 

and so by Lemma B.24 
true F e  8' D L-) B 

which by Lemma B.13 implies 

and thus by (f) 
env( B, = drnamesD 

Notice 8" o 8 C = 8' C, thus + 8" o 8 C 

Furthermore, by (a) and (b) 8" o 0 D = 8 D ,  thus since env(B) 8 D ,  by ( g )  

Taken together, we thus have 

(iii.3) Follows from (iii.2) 



case s18: We have 
(3 I C +t D) D (Id I false I .) 

where 

(v) By (c) and Lemma B.19 (i) 

as required. 

Note that (a) and (b) are unnecessary for this result, and are included only for prag- 
matic reasons. 

Lemma C.5 Let A I- Cl constraint and 7i Si dom(A) and (3 I Cl) D* (81 1 C2 I B1). Then 

(i) C2 I-" 81 CI v B2 where if 02 : A -+ Ainit and ql + 192 C2 then 
env(B2t '5'1) lnames(Cl) = en'J(B17 91) bames(Cl) 

(ii) 6'1 Cl be C2 L) B3 

(iii) If there exists a I- 03 : A + Ainit and 772 s.t. q2 03 Cl, then there exists a 
I- e4 : A -+ ninit s.t. 

(iii.l) O3 .LJh(cz) -0 ('4 o '1) wfi0(~2) 
(iii.2) 772 + e4 0 el Cl 

(iii.3) env(B3, Q) + O4 C2 (where B3 is from (ii) above) 

Proof By induction on derivation: 

case SDONE: We have 
(E  1 c )  D* (Id 1 c 1 -) 

Then (i) and (ii) hold by Lemma B.28, and (iii) holds vacuously. 
case SSTEP: We have 

(Z I c1) D* (e; 0 e; 1 c2 I B; u B;) 

where by SSTEP 

(i) By I.H. (i) on (b) C2 I-" 6': C3 v B l  where if I- 82 : A -+ Ainit and ql + 02 C2 
then env(Bl7 771) lnames(C3) =  en^(^:', 81) rnames(c3). 

By Lemma C.4 (i) on (a) C3 Fe 0; Cl L) Bi. Then by Lemma B.27 and 
Lemma B.31 C2 I-" 0; 0 6: Cl v B; where if k 82 : A -+ Ainit and ql e2 C2 



then 

as required. 

(ii) By Lemma C.4 (ii) on (a) 0: Cl F e  C3 L) B; for some BA. By I.H. (ii) on 
(b) 0; C3 Fe C2 L) B{ for some B{. Then by Lemma B.27 and Lemma B.31 
0; o 0: Cl F e  C2 L) B3 for some B3, as required. 

(iii) Let I- 03 : A + Ahit and q2 be s.t. q2 03 Cl. 
Then by Lemma C.4 (iii) on (a) there exists I- 0; : A + Awt s. t. 

where BA is from (ii) above. 
Then by I.H. (iii) on (b) (using 0; on C3, which is appropriate by (e)) there exists 
I- 0; : A -+ s.t. 

1 - = ,911 r la -0 ( 4 o e:l) t~ 

env (BA, q2) 0: 0 0; C3 
env(Bl, env(B$,m)) + 0; C2 

where B{ is from (ii) above and 5 = E U U,,, fvg, (0; a) u fvO(Cz). 
(iii.1) By Lemma C.3 on (a) fv0(C2) E fv0(C3). Then by (c) and (f) 

(iii.2) By (i) C2 Fe 0: o 0; Cl L) Bi, SO by Lemma B.27 0: C2 F e  0; o 0; o 0; Cl L) 

BJ. Then by (h) and Lemma B.13 env(Bi, env(Bt, env(BA, rn))) O:oB;o0; Cl. 
But by (i), (ii) and Lemma B.31 env(B4, env(B;, env(B$, m))) tnames(cl) = ~ 2 -  

~ h u s  q +e;oe;oo; c,. 
(iii.3) Immediate from (h). 



C.2 Soundness of Type Inference 

Lemma C.6 If 8 I C  I I- t :  T or 8 I C t :  r then dom(8) fvg(I'), 8 C = C ,  and 
~ T = T .  

Proof Easy induction. The case for SIMP requires Lemma C.3. Notice the use of 
restriction or ellimination in rules ISIMP and 1 ~ 7 .  

Lemma C.7 If A I- I' context and 8 1 C  I I? I- t  : T or 8 1 C  I r I- ,  t  : r then there exist a 
A' s.t. A -I+ At I- 8 subst, A ii- A' I- C  constraint, and A -I+ A' I- T : Type. 

Proof By induction on derivation, using Lemma C.3 (ii) in rule ISIMP, and relying on 
the freshness of introduced type variables. Notice each fresh type variable is introduced at 
a specific kind in rules IAPP, IVAR, I P ~ ,  IP4, IP5 and I P ~ .  0 

Lemma C.8 If 

(b) A I- D constraint 

(c) D be C C )  B 

(d) saturate(D) # 63 

thenAI Dirt-t:rv T ' o r A I  D I ~ I - , ~ : T v T ' [ @ ] .  

Furthermore, if I- 8 : A + Ainit and env(Bt) 8 D and and q + 8 r then 

IITlqi+env(~,enu(~t)) = I[TtB7+env(~~) Or BT[U]Bq+env(~,env(~~)) = BTt[U]Rq+env(~') for well- 
typed U. 

Proof By induction on derivation of (a): 

case APP: Let (a) be 
A1 C I r I - t u : r C ) T  U 

Then by APP 

A1 C l I ' I - t : v ~ - ) T  

A I  c1r1-u:v'+ u 
C te v eqType v' + r L) True 

By (c) and Lemma B.31 

D k e  v  eqType v'+ r v True 

By I.H. on (e) 
A I D I I ' I - t : v ~ - ) T '  

[T]qi+env(~,env(~t)) = [ T t k ) i t e n v ( ~ t ) -  
Also, by I.H. on (f) 

a l o l r t ~ : ~ ~ ~  ut 



and [ U ] q + e n v ( ~ , e n v ( ~ ' ) )  = [U'1)q+env(Bt)- 
Then by APP 

A l D l I ' t - ~ U : T V  T ' U '  

and 

[T UIq+env(B,env(B')) 

=  let^ v 4- [ T ] q + e n v ( ~ , e n v ( ~ ~ ) )  
in case v of { 

func  : f --) f [ U]q+env(B,env(Bt )) ; 
otherwise + unitE (wrong : *) ) 

=  let^ v + [T1Bq+env(~t)  
in case v of { 

f ~ n c  : f --) f [ U ' ] q + e n v ( ~ ~ ) ;  
otherwise + unitE (wrong : *) ) 

= BT' U'Bq+env(~') 

as required. 
case VAR: Let (a) be 

A I C I I' I- x / f  : T[-] 211 letw B" in x / f  n a m e s ( D 1 )  

Then by VAR 

c te Dl[-] V ]  B" 

where ( x / f  : f oral l  a . D => T )  E I' and D' =. n a m e d ( D ) .  
By  (c )  and Lemma B.31 

D Fe  D1[-imT] v BIN 

where e n v  ( B  St B", e n v  ( B ' ) )  = e n v ( B I N ,   en^(^')) rnames(DJ).  
Thus by VAR 

A I D I 7 [ 0 ]  v letw Bt" in x / f  n a m e s ( D 1 )  

and 

[ Ie tw  B" in  ~ / f  names ( D ' ) ] q + e n v ( ~ , e n v ( ~ t ) )  

= l x / f  names (Dt )Bq+env(8" ,env (~ ,env (~ ' ) ) )  

= l x l f  names ( D ' > ~ q + e n v ( ~ + ~ t t , e n v ( ~ t ) )  

= L x / f  names(D')]]q+env(~"t,en~(~t)) 

= [letw B"' in x /  f  n a m e ~ ( D ' ) ] ~ + ~ ~ ~ ( ~ , )  

as required. 

Remaining cases are similar. 

Lemma C.9 If 

(a)  A I- C constraint  



(b) A I- I' context 

(c) A I C I ~ I - ~ : T L ) T O ~ A ( C I ~ I - , ~ : T L ) T [ ~ ]  

(d) A +I- A' I- 8 subst 

(e) saturate(@ C) # 8 

t h e n A + t A ' 1 8 C I 8 l ? l - t : 8 ~ ~ )  T 0 r A + t A 1 1 8 C 1 8 I ' ! - , , t : 8 ~ ~  T[.]. 

Proof By induction on derivation of (c): 

case VAR: Let (c) be 

A I C I l? I- x/f : ~[a] v letw B in x/f names(D1) 

Then by VAR 

where D' = named(D). 
W.1.o.g. assume dom(8) n ii = 0. Then 8 (Dl[-]) = (6 D1)[a t, 8 v] and 
8 (f o ra l1  a . D => T) = f o r a l l  a . (8 D) => (8 7). 

By (g) and Lemma B.27 

Notice (8 ~ ) [ a  I+ 8 v] = 8 ( ~ [ m ] ) .  
Thus by VAR 

A +t A' I 8 c I 8 r I- x/f : 8 ( ~ [ m ] )  L) letw B in x/f names(D1) 

as required. 
case LET: Let (c) be 

A1 C I I ' I - l e t s - u i n t : ~  
v let x = X names(Dz) . U in T 



Then by LET 

x E fv(t) 
A I- Dl constraint 

A +t A" I- D2 constraint 

Dl = inhs( C) 

saturate(D1 +t D2) # 0 
A+tA"I  D l + t D 2 1 1 ' t - u : v ~  U 

A1 C I r , x : u t - t : ~ ~ ) T  

where a = f o ra l1  AN . anon(D2) => v. 
W.1.o.g. assume dom(8) n dom(AN) = 8. Then 8 ( f o r a l l  AN . anon(D2) => v) = 
f o ra l1  AN . anon(8 D2) => (8 v). 
By (d), (g) and (h) we have 

A +t A' I- 8 Dl constraint 

A +t A' i+ A" I- 8 D2 constraint 

By definition of inheritable we have 8 Dl = inhs(8 C). 
By (f), (m) and Lemma B.36 (ii) there exists I- 8' : A" + A s.t. C Fe 8' D2. By 
Lemma B.27 

8 C I-" 8 (9' D2) 

which, since dom(8) n dom (A") = 8, is equivalent to 

8 C I-" 8" (8 D2) (PI 

where 8" = (8 0 8')ldom(atl). 
Thus by Lemma B.17 saturate(BN (8 0 2 ) )  # 8, so by Lemma B.19 (ii) 

By (n) and (d) 8" o 8 Dl = 8 Dl, so by (i), (p) and rule CONJ 

Hence by (e), Lemma B.17 and Lemma B.19 (ii) 

Now, by I.H. on (1) 

and by I.H. on (m) 



Finally, by LET 
A + t - A 1 1 8 C 1 8 r t - l e t x = u i n t : O ~  
c, let x = X names(D2) . U in T 

as required. 

Remaining cases proceed by Lemma B.27 

Theorem C.10 (Soundness of Inference) Let A t- I? context. If (a) 8 I C I I? I- t : r 
or 8 I C I F I-, t : T and (b) saturate(C) # 0 then A +I- A' I C 1 8 F t- t : T or 
A +t- A' I C I 8 I? t-, t : T, (where A' is as given in Lemma C.7). 

Proof By induction on derivation of (a): 

case IAPP: Let (a) be 
O2oO1I C I I ? t - t u : b  

Then by IAPP 

where 
C = (82 D) -kt D' +t- (82 T) eqType (v -> b) 

and b : Type fresh. 
By (f) and Lemma C.7 there exists a Al s.t. A+tAl t- 81 subst, A+Al t- D constraint, 
and A St Al I- T : Type. Furthermore, by Lemma C.6 dom(O1) 5 fv@(r). 
Then by (g) and Lemma C.7 there exists a A2 s.t. A St Al +t- A2 I- 82 subst, A +t 
A, St A2 I- Dl constraint, and A -I+ Al St A2 I- v : Type. 
By (b) and Lemma B.19 (ii) saturate(D) # 8, so by I.H. on (f) 

Similarly, by (b) and Lemma B.19 (ii) saturate(Df) # 0, so by I.H. on (g) 

Let 
A' = A1 +t- A2 +t- b : Type 

By (k) and Lemma B.37 

and since by (b) and Lemma B.19 (ii) saturate(02 D) # 0, by Lemma C.9 

A + A ' I  e2 D 1ezoe l r  t - t  : e 2 T  

and since C ke 82 D v ., by Lemma C.8 



Similarly, by (0) and Lemma B.37 

and since C I-e Dl c, -, by Lemma C.8 

Then, since C Fe (82 7 )  eqTyp, (v -> b) L-) True, by APP 

as required. 
case IVAR: Let (a )  be 

Id I C 1 I- x / f  : ~ [ a  I+ b] 

Then by IVAR 

( x / f  : f o r a l l  ZTE . D => T )  7 )  I' 
- 
b : rc fresh 

C = named(D[a I+ b]) 

Let A' = b:rc and Dl = named(C). Then C Fe D1[a I+ b]. Thus by VAR 

as required. 
case ILET: Let (a) be 

O2oO1/ C I r I - l e t x = u i n t : r  

Then by ILET 

where a = f o r a l l  A" . anon(D3) => v and C = (82 D2) f t  D4. 
By (g)  and Lemma C.7 there exists a Al s.t. A i+ Al I- el subst, A i+ Al I- 
Dl constraint, and A i+ Al t- v : Type. Furthermore, by Lemma C.6 dom(O1) C fvO(I'). 
By definition of gen, Dl = D2i+ D3, At' 5 Al, f ~ ~ ( D ~ ) n d o m ( A ' ~ )  = 0, anheritable(D2), 
and 

d o m ( ~ l l )  n fvQ(el r) = 0 (k) 

Then by (k), (j) and Lemma C.7 there exits a A2 s.t. A i+ (Al \ dom(AM))  * A2 I- 
02 subst, A+ (Al \ dom(AU) )  * A2 I- D4 constraint, and A f t  (Al \ dom(AM))  +A2 t- 
T : Type. Furthermore, by Lemma C.6 



Since all type variables in A2 are created fresh, we may also assume dom(Az) n 
dom(A1') = 0. Thus 

dom(02) n dom(A1') = 8 (4 
Let A' = (A1 \ dom(A1')) Sf A2. Then 

A +t A' I- (02 D2) +t inhs(D4) constraint (4 
A +t A' +t A" t- 19, D3 constraint (0) 

By definition of gen, ihns(D2) = D2. Thus 

and by Lemma B.34 

By (i) and Lemma B.19 saturate(D1) # 0, so by I.H. on (g) 

Then by Lemma B.37 

and by Lemma C.9 

A U A ~ + ~ A ~  I e2 ( D ~ U  D ~ )  1 e20e1 r I- U :  e2 u 

and (q), (i) and Lemma C.8 

Notice by (m) O2 f o r a l l  A" . anon(D3) => v = f o r a l l  A" . anon(B2 D3) => (02 v). 
By (b) and Lemma B.19 saturate(D4) # 0. Then by I.H. on (j) 

Since by CONJ C ke D4 L) ., by Lemma C.8 

We may now apply LET using (reading from topleft to bottom-right of the rule's 
hypotheses) (f)7 ( 4 ,  ( 0 1 7  (PI, (i), (4 and (4 to give 

as required. 
case ISIMP: Let (a) be 



Then by ISIMP 

By (f) and Lemma C.7 there exists a Al s.t. A -ti- Al I- el subst, A f t  Al l- 
C' constraint, and and A f t  Al I- T : Type.  Furthermore, by Lemma C.6 dom(el) 5 
fvQ (r ) . Thus f v ~  (el r ) U fu0 (7) C dam (A -kt A1 ). 
Then by (g) and Lemma C.3 there exists a A2 s.t. A f t  Al -ti- A2 I- C constraint, and 
A + A l  + A 2  I- e2 subst. 
firtherrnore, by Lemma C.4 (i) 

Then by (b), (h) and Lemma B.17 saturate(02 C') # 0, so by Lemma B.19 (ii) 
saturate(C1) # 0. Then by I.H. on (f) 

Let A' = Al u A2. By (i) and Lemma B.37 

and since saturate(e2 C') # 0, by Lemma C.9 

and by (h) by Lemma C.8 

The result follows since 82 o el I' = (82 0 el) ,fia(r) r .  
case 1~7: Let (a) be 

t9ib I C I \x . t : (6 b) -> T 

Then by 1 ~ 7  

81 C I l ? , z : b I - , t : ~  

b : Type fresh 

By (f) and Lemma C.7 there exists a A' s.t. A +  b : Type-ti- A'I- esubst, A f t  b : 
Type + A' I- C constraint, and and A -I+ b : Type + A' I- T : Type.  
By (g) and idempotency of substitutions, A + A' l- 8 b : Type.  
Then by I.H. on (f) 

A f t A l I  c ~ e r , ~ : e b t - , t : ~  

and thus by ~7 
A u a' I c I e r I-,,, \X . t : (e b) -> 

The result follows since b fresh and thus 8 r = 8\b I? 
Remaining cases are similar. 



Appendix D 

Proofs for Chapter 9 

D.l  Entailment 

Lemma D.l Let A ; a,,it I-' C constraint and A ; I-' d constraint and A t- 8 gsubst 
and 7 8 8. Then 

(i) C d L, W implies [W],, E ([e d ]  

(ii) C Fe w : d v w = W implies Vi . [ Wilrl E [O d,] 

Proof (i) By induction on derivation of C Fe d v W. 

case EXISTSRTTYPE: First notice that for any ground type v, [rttype v] is non-empty. 
W.1.o.g assume dom(8) n dorn(At) = 0. By I.H. [True] E [exists  A' . 8 21. Thus 
there exists 8' s.t. A' I- 8' gsubst and [B' 8 di] is non-empty for every di. Notice 
A +t- A' I- 8' o 8 gsubst, and thus 8' 8 T is ground. - Then 18' 8 ( r t type  T)] is also 
non-empty. Hence [True] E [exists  A' . ( r t type  T ,  d)] as required. 

Remaining cases straightforward. 

(ii) Straightforward. 

Lemma D.2 Let 8 be a well-kinded grounding substitution. If t r u e  Fe 8 C v B and 
C Fe D v B' then t r u e  Fe 8 D v B'' and env(BU) = env(B1, e n ~ ( B ) ) , ~ ~ ~ ~ ~ ( ~ ) .  

Proof Let C = m 7  B = w =  W, D = w 1 : d ,  B ' = w l =  W1andB"=w'=  Wt'. By 
Lemma D.l 

Then env(B) w : 8 c. Again by Lemma D.l 

Then since each [8 d,] must be a singleton, we have for all i 

as required. 



Lemma D.3 If A ; I-" C / D  constraint and A I- 8 gsubst and C  be D  then 8 C Fe 8 D  

Proof By induction on derivation of C Fe D. 

case EXISTSRTTYPE: We have 

C Fe ex i s t s  AN . (rttype T ,  D) 

and by I.H. 

8 C Fe 8 rttype anyground(AM, T) 
8 C  Fe 8 ex i s t s  A" . D  

W.1.o.g. assume dom(AM) n dom(A) = 0. Then 

8 C Fe rttype anyground(Atl, 8 T) 
8 C Fe ex i s t s  A" . 8 D 

and by EXISTSRTTYPE 

8 C Fe ex i s t s  A" . (rttype 8 T ,  8 D) 

which implies 
8 C Fe 8 ex i s t s  AN . (rttype T ,  D )  

as required. 
case EXISTSLIFTA: We have 

C Fe ex i s t s  AN . ( l i f tab le  a ,  D )  

By I.H. we have 
8 C Fe 8 ex i s t s  A" . D  

W.1.o.g. assume dom(A1') n dom(A) = 0. Then since a E dom(Atr), 8 a = a. 
Furthermore 

8 C be ex i s t s  A" . 8 D  

Then by EXISTSLIFTA 

8 C be ex i s t s  At' . ( l i f tab le  8 a ,  8 D )  

and thus 
8 C Fe 8 ex i s t s  A" . ( l i f tab le  a ,  Dl  

as required. 

Remaining cases straightforward. 

D.2 Type Soundness 

Note that to ease the notation a little, in the following proofs we shall ellide the subscripts 
on the sets S, Vwt and Vwd used within the definiton of types. 



Lemma D.4 (i) 1f h I I fi to t : r then Vi . vars(i, t)  fi' 

(ii) If h I E I fi I-; t : r then Vi . vars ( i  - n, t )  & fi' 

Proof By straightforward induction on derivation. 

Lemma D.5 If Vi . a I-' E' constraint and Vi . a I-' fi' context then 

- - -  
(i) A ( C I r I-' t : T implies x I-' r : Type. 

(ii) h I I I-!+' t : r implies h I-"+' r : Type. 

Proof By straightforward induction on well-typing derivation. Rules ABSO, LETRECO, 
LIFTO, RUNTO, RUNUO, SPLICEU~ and their higher-staged counterparts are careful to check 
the well-kinding of introduced types. 

-- --  
Lemma D.6 If v E [ u ] ( ~ , ~  and (A', I?') extends (A , r )  and o is satisfiable, then v E 

[a1 (x+tz,r+~") 

Proof 

case a = r for a simple type r: Then 
- 
Ainit ; x to r : Type 

We proceed by induction on derivation of (a): 

case INT: Immediate. 
case FUN: Let (a) be - 

~ ~ , ; ' Z Z I - ' r - > v : ~ y p e  

Then by FUN - 
Ajnjt ; 'ZZ I-' v : Type 

Let a, and r, be s.t. 

(&, r,) extends ( x  i+ a', fi +I- F )  

Then 

(a, * E, r, i+ F )  extends ( 3 ,  F) 

Since by definition 

v E 17 -> vl(a,r1 

= n { S  1 (g, c) extends ( h ,  fi) } 

where 

func : f 
f € E V - + E V ,  

ev E [~](a++z,r+tr:) 
* f ev E B~D(a+tr;i;,r~r:, 



Then v = I or v = (func : f )  s.t. if 

then 

f ev E Bvl (E++z++~~,~=++T"++E) 

Since the choice of a, and r, was arbitrary s.t. (c) holds, we have 

as required. 
case CODET: 

Let a, and be s.t. 

(a,, c )  extends (a -I+ E, -I+ F) 

Then 
( E  +I- a,, ii- c) extends (a, r) 

We have 
v E n {S I (F, F) extends (Z,  F) } 

where 
md E M V, nrns E  name^\^+^ 
d md nrns E E Vwt 

and 
termof (d) well-defined, 

Z ) , ~ = { ~ E D ~  - A + t P I  t rue  I F + I - m 0  termOf(d) : T 

Then v = I or v = (code : md) where if nrns E N ~ m e s \ ~ + + ~ + ~  then md nrns E 
E DL, where 

termof (d) well-defined, 
A + ~ - E + I - ~ , I  t rue  Ifi+I-F-I+ct-O termOf(d) : T 

Then since the choice of a, and r, was arbitrary s.t. (b) holds, we have 

v E [CC 7- >>](Ti,+a',F,+?") 

as required. 
case CODEU: Similar to case CODET. 

case 10: Let (a) be 
A,, ;&I-' I0 7 : Type 

Then by 10 
Ainit ; Z I-' T : Type 

-- 
Let A,, re and nrns be s.t. 

-- -- 
(A,, re) extends (Z +I- At, I? -I+ F) A nrns E Nameqp+F+E 



Then 
(E +t- x, T" +t c) extends ( 5 ,  F) 

Thus if 

v E U I O  ~ B ( F , E )  
= n { S I (g, E) extends ( 5 ,  F) } 

where 

then v = I or v = (cmd : io) and 

cmd : io 

(io nms) 4-10 ea * ea E [~](;i-,~) 

io E M I 0  (E V ) ,  
nms' E  name^,^++^ A (io nms') ko ea 
* ea E 87I(;i-,r;) 

Then by I.H. on (b) 

(io nms) 4-10 ea * ea E [ T ] ( ~ + ~ , ~ , . + ~ )  

-- 
Since the choice of A,, I?, and nms was arbitrary s.t. (c) holds, we have 

as required. 
case VAR: Not possible. 

case a = f o r a l l  a . C => T: Then 

A,, ; ;h I-' f o r a l l  a . C => T scheme 

where C is satisfiable in m. 
Let ?7 be types s.t. 

a i n i t I - O n  
true t-e D [ m ]  v B 

for D = named(C) and nanaes(D) = ( w ~ , .  . . , w,). 
By SCHEME 

(A,,, +t a )  ; ;h t-O T : Type 

and thus 
Ainit ; I-' T[-] : Type 

Then 

Ainit t-O E L ,  
= n { s l  - true I-, D[u I+ v'] L-) Bt 1 



Then v = I or v = (tfunc, : f )  s.t. 

where 

By I.H. on (c) 

tfunc, : f 

Since the choice of Tj was arbitrary s.t. (b) holds, we have 

f E n l , , , n ~ + ~ ~ ,  
f ([wllenV(~l), . - 0  7 Bwnlenv(~1)) 

E ++ vrll(a,r) 

as required. 

-- - - 
Lemma D.7 If q + ( X , ~ )  rrr and (A1, I?') extends (A, I?) then q ~ ( ~ , + ~ , f u P )  I'll. 

Proof By pointwise application of Lemma D.6. C7 

Theorem D.8 

(i) If 

( a ) ~ ; a l I  ~ l r ; F I - * t : r ~ ~  
(b) A k 8 gsubst 

(c) true Fe 8 C v B 
(d) p F E 
(el 9 k(z,ei;~) 6 r 

then ITli+env(B) P f8 T~(F,OC) 

(ii) If 

(a) A;EI c ;F~r ;F t ;+ l  t : 7 v t 1  
(b) A I- 8 gsu bst 

(c) true Fe 8 C 9 B 
(d) p F c r, 
( 4  7  BE) 0 r 

-- - - 
(f) nms E and (Ael  r e )  extends (At7@ r,) 

r n+l 
then it 17+env(B) (nms, p) E E Dvd where 

termof (d) well-defined, 
i . vam(i - n, tcimOf(d)) i d a m ( c i )  } 



(iii) Furthermore, if the conditions (a)-(f) of (ii) hold and 

(g) b = tt 

I n+l 
then it ~,+.,V~B~ (nms, p)  E E Vwt, where, if n > 0 then 

ternof (d) well-defined, 
at+ta,~ e F 1  ( e C ) i + K k &  ternOf(d) 

otherwise 

termof (d) well-defined, 
A t + t a , I e r I  (er ,)+tr , l -o termOf(d) : O r  

Proof 

By induction on derivation: 

case FORGET~: 
(ii) Let (a) be 

a ; p )  c ; F ; c l ' / r ; f i T ~ ; + l t : ~ ~ t t  

Then by  FORGET^ 

Then result follows directly from I.H. (ii) on (h). 
case VARO: 

(i) Let (a) be 

Then by VARO 

where Dl = named(D). Let names(Dt) = (wl, . . . , w,). 



By definition 

Blew B' in  x  names(^')]:+^,,,,(^) p 

= 1" n a m e s ( ~ l ) ~ ~ + + e n v ( B ' , e n u ( B ) )  P 

= ( l e t R  v t (lift: ((7 St e n v ( B 1 ,  e n v ( B ) ) )  x ) )  
in lift: ( c a s e  v of { 

t f u n c m  : f + f ( f , ~ l ] ~ _ ~ e n v ( ~ ' , e n v ( ~ ) ) ,  - .  ., [wrn]q+env(~' ,env(B)));  
otherwise -+ unitE ( w r o n g  : *) 

1) P 
= letE v t 7) x 

in case v of { 
t f u n ~ r n  : f f ( [ w l B e n v ( ~ ' , e n u ( ~ ) ) ,  . . 7 B w m B e n v ( ~ ' , e n v ( ~ ) ) ) ;  
otherwise + unitE ( w r o n g  : *) 

1 
= (*I 

W.1.o.g. assume d o m ( 8 )  = 0. Then from (e) and (f) 

t rue  Fe ( 8  D') [a] v ' ~  B'I 

where 

t rue  Fe ex i s t s  a . (9 Dl) 

{ S = E t func,  : f 

Then by Lemma 9.4, there exists 7 s.t. I-' v' and t rue  Fe ( 8  D t ) [ a  t, v']. 
Hence the intersection in (i) is not all of E V. 
Hence v must be tagged by tfunc,, and 

f E n15;ln 7 -+ E V ,  
f ([wl]enu(B")? - - . , BwmBenu(~t1)) 

E E(8 ~ ) [ a  I+ v f I l ( = , e ~ )  

(*) = letE (tfunc,  : f )  t 7) x 
in f ([~l]enu(B~,env(B)) ,  - . - , Bwm~enu(B1,env(B))) 

By (e) and definition of satisfiability 

From ( c )  and (h) and Lemma D.2 

t rue  Fe 8 (Dl[-]) BIN A tli . [ W ; ] ~ ~ ~ ( ~ I I I )  = [ w ~ ] ~ ~ ~ ( ~ I , ~ ~ ~ ( B ) )  (j ) 

Notice 8 (Dr[=]) = ( 8 D f ) [ a  t, 8 v]. 
From (b) and (g) 

a c # ; a l t - O e v : ~  



Then by (i), (j) and (k) 

and thus 
(*) E [(B s ) [a  H (8 v ) ] ] ( ~ , ~ ~ )  = i8 ( ~ [ ~ I ) I ( F , ~ E )  

tfunc,: f' 

as required. 
case V A R ~ :  

(ii) Let (a) be 

f1([~1]env(~',env(~))~..-,[~rnBenv(~',env(~))) 

E I(8 T)[a I+ (0 v ) l l ( ~ , e z )  I 

Then by V A R ~  

where D' = named(D). 
Notice (I' ; i?)"+l = Fn. Then by (d) and (h), p z E Fn and s E dom(p). W.1.o.g. 
assume p x = y. 
By definition 

n+l 
BxBg+env(B) (nms7 P)  

= ( letN res t lift: (getR "x") 
in unitN (case res of { 

name : nm + dvar : nm 
otherwise += dwrong : * 

1 ) )  (nms7 P) 
= letE res t unitE (p "x") 

in unitE (case res of { 
name : nm -+ (dvar : nm) 
otherwise + (dwrong : *) 

1 )  
= unitE (dvar : "y") 

= (*I 

Then termof (dvar : "y") = y is well-defined, and vars(0, y) = {y) c dom(cn) .  
Hence (dvar : "y") E Vwd,  so that (*) E E Vwd as required. 
(iii) W.1.o.g. assume a n  dom(8) = 8. 
From (f) and (h) 



From (b) and (i) 

and thus 

From (j), and Lemma D.3 
e C" ke (8 D1)[a ++ 8 V] 

Then if n > 0, by V A R ~  

Or, if n =O, thenC '=  - and by VARO 

Notice termof (dvar : " y" ) = y and (8 7) [a e 8 v] = 8 (T [a]). Thus (*) E E DWt 
as required. 

case ABSO: 
(i) Let (a) be 

n ; a l I c I r ; T k O \ x .  t : ( ~ - > T ) V X X .  T 

Then by ABSO 

Notice (I' ; r') +to x : v = (r +t x : v) ; r'. 
From (b) and (f) 

~ , , ; a ' t - O  8 v : ~ y p e  

Let a, and be s.t. 
(a,, r,) extends (a', 8 c) 

Then by (b) 

Let ev E E V be s.t. 

ev E I8 vl (F-,+Z,(~ E)+E) 

and let q1 = q, x ++ ev. 
Then by Lemma D.7 

Using (j) and (I), by I.H. (i) on (g) 



By definition 

B'x - ~I:+enu(B) P 
E 

= ( letR f closurefun~ (Xev . [ T];uenu(B),z++eu) 
in unitR (func : f ) )  p 

=  nit^ (func : Xev * [ ~ C + e n v ( B ) , z + + e u  P) 
0 = unitE (func : Xev . IIT]lq,+enu(B) p) 

= (*> 

Since the choice of ev was arbitrary s.t. (k) holds, we have 

Furthermore, since the choice of and r, was arbitrary s.t. (i) holds, we have 

func : f 

(*) E n {S I (g, F) extends (E, 0 G) } 

f E E V - + E V ,  
ev E [o vl(;i;i++a,,(e r,)++z 
* f ev E U8 71 ( ~ + a , , ( e  E)+;, 

where 
f E E V + E V ,  
ev E I[e ~ l ( ~ - , + = , ( e  T;)+E) 

==+ f ev E uo ~J(z+~;,(er , )+~' i ; )  

Thus 
(*I E lo v -> 8 7 P ( ~ , e j 7 ~  

and the result follows from 8 v -> 0 T = 8 (v -> 7). 
case ABS1: 

(ii) Let (a) be 

Then by A B S ~ :  

Notice ( r ; F )  +tn+l x : v = r ;  ( F + t n x  : v). 
W.1.o.g. assume nms = "y" : nms', where by (f) y g! d o m ( c  +t K). Let r: = - 
I?, ftn y : v and p' = p[x I+ y]. (Note that this renaming of x to y may override a 
previous renaming of x of p). 
Since nms contains only distinct variable names, 

and -- 
(A,, r e )  extends (n', 0 r:) 



From (e) and Lemma D.7 
!=(E,OF) 0 

Hence by I.H. (ii) on (h) 

where 
termof (dl) well-defined, 

Vi . vars(i - n, termof (dl)) d o m ( c i )  

By definition 

I n+l 
' in,+ena(B) ("ms7~) 

r n+l = ( letN (nm, d) t  rename^ "x" [t ]n,+enu(B) 

in unitN (dabs : (nm, d))) (nms, p) 
I n+l = letE it lq,+env(B) (nms, p[x t, y]) in unitE (dabs : ("y" , d)) 
I n+l =  let^ d t [t ]q+enu(B) (nms, p') in unitE (dabs : ("y", d)) 

= (*I 
From (j) d E DLd. Then termof (dabs : ("y", d)) = \y . termof (d) is well-defined, 
and vars(O,\y . t e d f  (d)) = vars(0, termof (d)) \ {y) E dom(cn) .  Hence (dabs : 
("y", d)) E DWd, so that (*) E E Dwd as required. 
(iii) Furthermore, if b = tt then by I.H. (iii) on (h) 

where if n > 0 then 

termof (dl) well-defined, 
A 1 t + a , ~  O ( p ;  cll) I (ec)-tt-Ct-& termOf(dl) : 8 7  

otherwise 

termof (dl) well-defined, 
a l i + n , I e ( P ;  Cl1) I ( O ~ ) + t ~ ) k O  termOf(dl) : O r  

Thus d E 'DL,. 
From (b) and (i) - 

A1knOv:Type  

Then, if n > 0 by A s s 1  



Then since 8 v -> 8 T = 8 (v -> T )  we have (dabs : ("y", d)) E Vwt and thus (*) E 
E Vwt as required. 

case APPO: 
(i) Let (a) be 

A ; E I c I ~ ; F ~ - O ~ U : T L ) T  u 
Then by APPO 

By definition 

IT uB:+enu(B) P 

=  let^ v + I 'I ;+env(~)  

in letR ev c closureE u ] : + + ~ ~ ~ ~ ~ )  
in lift: (case v of { 

func : f -+ f ev; 
otherwise -> unitE (wrong : *) 

1) P 

=  let^ v + BTl;+envcB)  P 
0 in letE ev t  unit^ [[U]ltl+envcB) p 

in case v of { 
func : f + f ev; 
otherwise + unitE (wrong : *) 

1 
= letE IT$+env(B) P 

in case v of { 
fun' f + (f l'l;+enu(B) P I ;  
otherwise + unitE (wrong : *) 

1 
= (*I 

By I.H. (i) on (g) 
W l : + e n U ( B )  P I9 V I ( F , O F )  



By I.H. (i) on (f) 

[~]:+mv(B) P E [' (V -> T ) I ( F , ~ ~ )  

= I[(g V) -> (9 7 ) I l ( ~ , e ~ )  
- - 

= n { s  I (&, z) extends (A1, 6 r r )  } 

where 

Taking = and = &, we have 

{ s = E func : f 

Thus (*) E [9 T ] ( ~ , ~ ~ )  as required. 
case Appl: 

(ii) Let (a) be 
A ; E I  C ; F ; C ~ ~ I ~ ; F F ; + ~ ~ U , ~ ' U ~  

f E E V + E V ,  

ev E 89 VII(Z+Z,(B c)+c) 

* f ev E 89 71 ( z + ~ , ( e  I';)+c) 

By definition 

Thus v is tagged by func and 

I n+l it' ]q+env(B) (rims) P) 
I n+l 

= (  let^ d + [t I q + + e n v ( ~ )  
I n+1 

in  let^ d' + Iu B q + e n v ( ~ )  
in unitN (dapp : (d, dl))) (nms,p) 

r n+l 
=  let^ d + It ]q+enu(B) (rims, P) 

I n+l in lete dl + 8u lq+env(B) (rims, P) 
in unitE (dapp : (d, dl)) 

= (*I 
By I.H. (ii) on (h) and (i) 



where DLd = Did = Dwd. 
Thus termOf(dapp : (d l  dl))  = termOf(d) termof ( d l )  is well-defined, and Vi . vars(i- 
n ,  termof ( d )  termOf(dt)) = vars(i - n ,  termof ( d ) )  U vars(i - n ,  termof ( d l ) )  C 
d o m ( c ' ) .  Thus ( d a p p  : ( d ,  d l ) )  E Dwd,  so that (*) E E Vwd as required. 
(iii) Furthermore, i f  b = tt then by I.H. (iii) on ( h )  and ( i )  

I n+l 
It 19-++enu(B) (nms1 P )  E E DLt 

I n+l I' ]n i t enu(~ )  (rims, p)  E E D:t 

where i f  n > 0 then 

termof (d l1 )  well-defined, 
AI ++a, I e (77; cll) I (e c> +tE i-,., termOf(d") : e (V -> T )  I 

otherwise 

ternof  ( d " )  well-defined, 
v L t = { d u ~ D I  - at u n, I e cll I (e  r,> i+ r, t-o termOf(d") : e (V -> T )  I 

and d E DLt. 
Similarly, i f  n > 0 then 

termof (dl") well-defined, 
A1 u a, I e (F ; cI1) I (e C)  u r, t-; termOf(dl") : e v 

otherwise 

termof (d"') well-defined, 
AI -I+ a, I e cn 1 (e  K> u r, k" termof (dl1') : e v 1 

and d1 E DLt. 
Notice 8 ( v  -> 7) = (0 v )  -> (0 T ) .  Then i f  n > 0, by A P P ~  

A1 i+ I 0 (F ; C") 1 (6 c) i+ t-& termof ( d )  termof (dl) : 0 T 

- at 1 0 C" I (0 c) +t t -O termof ( d )  termof ( d l )  : 8 T 

Hence (*) E E Dwt as required. 
case DEFERTO: 

( i )  Let (a) be 
A ; E I  c I r ; F t - O t t t > > : t c ~ ) ) ~ ~ ( t l )  

Then by DEFERTO 
A ; Z (  C ; t r u e  Ir;Ft-kt ~ : T c )  t1  

-- 
Let A,, re be s.t. 

(a,, K) extends (a', 0 c) 
and nms s.t. 

nms E  name^,^+^ 



Then by I.H. (iii) on (f) 

where 

termof (d) well-defined, 
A/ +t- n, I true I (8 c )  +t r, I-' termof (d) : 8 T 

By definition 

~( t ' )~~-f tenv(B)  p 
M I 1  =   let^ md t closureN [t ]q,+env(B) in unitR (code : md)) p 

= letE md t unitE (Xnms . [ti]:,+,,cB, (nms, p)) in unitE (code : md) 
1 1  =  unit^ (code : Xnms . [t ]rl,+env(B) (nms, p)) 

= (*> 

Hence, since nms is arbitary s.t. (h) holds, we have 

(*) E E {code : md I md E M D, nms E  name^\^,+^ 
* md nms E E DLt 

Furthermore, since a, and are arbitrary s.t. (g) holds, we have 

(*) E n {S I (z, q )  extends 8 c )  } 

where 
md E M D, nms E Names\Euc 

+ m d  n m s E E D w t  

and 

termof (d) well-defined, 
D W t = { d € ~ I  - A 1 + t ~ I t r u e 1 ( 8 ~ ) + t ~ F 0 t e r m 0 f ( d ) : 8 ~  

Thus 
(*) E Ice 8 7 )Y(p,8c) = I0 11 7 ~ Y ( ~ , O C )  

as required. 
case DEFERTI : 

(ii) Let (a) be 

Then by DEFERT~ 



By definition 

611 t1 ll];ztnv(B) (nms7 P) 
n+2 i n  uni tN (ddeft : d)) (nms, p) = (letN it jq+-env(B) 

I n+2 
=  let^ d -e- It ~ , + e n , c ~ )  (nms, p) i n  uni tE (ddeft : d) 

= (*) 

Then by I.H. (ii) on (h) 

where 

termof ( d) well-defined, 
V i  . vars(i - (n + I), termO/(d)) do rn ( r i )  } 

Since termOf(ddeft : d) = CC termof (d) 11 is well-defined and Vi . vars(i - 
n, CC termof (d) 1)) = vars(i - ( n  + I), termof (d)), we have (ddeft : d) E Dwd and so 
(*) E Dud a s  required. 
(iii) Furthermore, by I.H. (iii) on (h) 

where 

termof (dl) well-defined, 
D L , = { d l E ~ I  - At +t a, I 8 (c' ; C1l ; true) 1 (8  c )  +t termof (dl) : 8 r 

Hence d E DLt. 
Then, if n > 0, by DEFERT~ 

Or, if n = 0, then c' = - and by DEFERTO 

Since CC termof (d) 11 = termof (ddeft : d) and CC 8 r 11 = 8 CC r 11, we have 
(ddeft : d) E DWt, and so (*) E E Dwt as required. 

case DEFERUO: 
(i) Let (a) be 

A ; = ]  c ~ r ; F ~ O ( ? t ? l : { ? l - , ( t ~ )  

Then by DEFERUO 

( A ; E ) + ' A " I  G ' ; ~ ~ r ; ~ t - ~ t : r v t '  

(A ; p) +tl A" I-' D constraint 



By definition 

i(t')l~,+enu(B) P 
1 1  = unitE (code : Xnms . [t ]q,+env(B) (nms,p)) 

= (*I 

Notice (A ; a') +I-' A" = A ; (a' +to A"). 
Let a, and be s.t. 

(a,, c) extends (a', 8 c) 
and nms be s-t. 

nms E  name^\^-^ 
W.1.o.g. assume dom(A1') f l  dom(a' i+ a,) = 0. Then 

(a,, K) extends (a' +I-' AN, 8 c) 
and by (e) and Lemma D.7 

71 I=(F,+oA~~,oFJ 8 r 
Then by I.H. (ii) on (f) 

where 
termof (d) well-defined, 
Vi . uat.s(i, termof (d)) d o m ( z )  

Since the choice of nms was arbitrary s.t. (i) holds, we have 

md E M D, nms E  name^\^+^ 
(*) E E {code : md I + md nms E 

Furthermore, since the choice of a, and was arbitrary s.t. (h) holds, we have 

(*) E 0 { S  I (g, c) extends (z, 0 c) } 

where 
md E M D, nms E  name^\^,+^ 

=+ md nrns E E Dwd 

and 
termof (d) well-defined, 
Vi . uars(i, term Of (d)) G d o m ( c t  ) 

Hence 

as required. 



case DEFERU~:  

(ii) Let (a) be 

Then by DEFERU~ 

( A ; ~ ' ) + ~ " + ~ A ~ ~ I  C ; ~ ; c " ; ~ I r ; P ; i ~ + ~ t : ~ v t ~  (h) 

(A ; ,i) + I - ~ + ~  Art t-n+2 D contraint (i) 

By definition 

I{? t' ?H;&',v(B) (rims, P) 
n+2 i n  uni tN (ddefu : d)) (nms, p) = ( 1 " ~  d + It I v + + e n o ~ )  

I n+2 
=  let^ d + i t  Iwenv(,) (nms, p) i n  unitE (ddefu : d) 

= (*I 
Notice (A ; a') An = A ; (z +n+l ). 
W.1.o.g. assume dom(AN) n d o m ( E  Sf a,) = 0. Then by (f) 

(a,, c) extends (a' ftn+' Art, 0 c )  

and by (e) and Lemma D.7 

7 l = ( ( ~ q + ~ + l ~ r r , ~ r r )  or 
Then by I.H. (ii) on (h) 

where 

temaOf (d) well-defined, 

Vi  . vars(i - ( n  + I), termof (d)) dom(Kt)  

Since termof (ddefu : d) = (? termof (d) ?I is well-defined and Vi . vars(i - 
n,  (? termof (d) ?3) = vars(i - (n + I), termof (d)), we have (ddefu : d) E Vwd and 
so (*) E E Dwd as required. 
(iii) Furthermore, if b = tt then by I.H. (iii) on (h) 

where 

dt E D  
termof (dl) well-defined, 
(a'+ta,)+i-n+l~rt ~ e ( c l ; c " ; ~ ) ~  (oc)i+&t-,",+l 

termof (dr) : 6 T 



Hence d E DL,. 
By (b) and (i) - 

At -I+"+' AN I-"+' 0 D contraint 

Then, if n > 0, by DEFERU~ 

- 
A! -I+ a, I 0 (F ; C") I (0 c )  -t+ (? temnOf (d) ? I  : (? I  

Or, if n = 0, then C' = - and by DEFERTO 
- 
At +tK I 0 C" I (0 c )  Sf k0 (? termof (d) ?I : C?) 

Since (? termof (d) ?) = termof (ddefu : d) and (?I = 0 (?I,  (*) E E DWt as required. 
case RUNTO: 

(i) Let (a) be 
A ; E I  c ~ r ; T ' T ~ ~ - t : ~ ~ r ~ - ) r u n  T a t  W 

A ; E I  c I r ; T 7 t - O t : ( ~ ~ ) ) ~  T 

(A ; a,)' k0 T : Type 

C ke  liftable T v W 

-- 
Let A,, re and nms be s.t. 

- -- 
(Ae, r e )  extends (&, 0 E) h nms E N a m e ~ , ~ + ~  

By definition 

E 0 = ( letR ev t closureR [T]v++env(B) 
in  uni tR (crnd : letMIo v t liftPI0 ev 

in  case v of { 
code : md + 

letMIo d t l if t5Io nad 
i n  if termof (d) well-defined - .  . - 

a n d  (G I true I r;,;t k0 
termof (d) : typeof ([W]q+env(~)) 
v TI) t h e n  

unitMIo (runR [ TIPo) 
else 

throwM10; 
otherwise -+ 

unitMIo (unitE (wrong : *)) 
1 ) )  P 



= unitE (cmd : Xnms . let10 u t liftkO ([T]:+~,,~(~, p) 
i n  case v of { 

code : md + 
letIo d t liftiO (md nms) 
i n  if termof (d) well-defined 

= unitE (cmd : Xnms 

and (G I true I GI-' 
termof (d) : tYPeOf([WBr)+env(~)) 
c-) TI) t h e n  

unit10 ([TIBP 8 )  
else 

t hrowIo ; 
otherwise + 

unitIo (unitE (wrong : *)) 
1) 

(**>I 

By I.H. (i) on (f) 

P E 16 tt T l l l ( ~ , o c )  
= [t t 0 >>]ca,er,) 
= n {s I (.i;,E) extends (i&9c)} 

where 

and 

md' E M D, nms' E  name^,^++^ 
+ md' nms' E E Dwt 

termof (d') well-defined, 
A' +t I true I (6 c) +C- rk b0 termOf(dt) : 6 T 

By (b) and (g) I-' 6 T : Type. Hence from (c), (h) and Lemma D.2 

true Fe liftable 8 T L, W' A W']. = [ W]enu(Bl = [ W]rl+env(B) 

and by Lemma 9.4 
tYPeOf(BWBqi+env(~)) = 8 7 

Thus v must be tagged by code, and md nms E E DLt where 

termof (d') well-defined, 
A' +I- n, I true I (6 F) ft I-' termof (dl) : 6 T 



Thus d E 'DL,, so ternof (d) is well-defined, and 

(**) = letIo (code : md) t lift? ([T$++~,~(~) p )  
in letIo d t liftko (md nms) 
in if (a,,,, I true I r,,it k0 termof (d) : 8 T L, TI) then 

unit10 ([T1]P 8) 
else 

t hrowIo 

By I.H. (i) on the embedded judgement 

nrnlt 1 true I rinit k0 tennOf(d) : 9 T L, T' 

(with identity substitution, empty value environment, empty renaming environment, 
and empty renamed context) we have 

Thus (**) J,lIo ea implies 

ea E 18 TP(G,G) 
which by Lemma D.7 implies 

ea E 10 71 ( ~ , e  r.;: 

Since the choice of nms, a, and were arbitrary s.t. (i) holds, we have 

unitE (cmd : Xnms . (**)) E [I0 (8 ~ ) l ( ~ , @ r . ; )  

which in turn implies 

as required. 
We may strengthen this result, though we only sketch the proof. Only the overall pro- 
gram environment may perform a command of type I0 7.  Thus, the I 0  command (**) 
will be performed only if run t is performed by the program environment. However, by 
the typing rules SPLICET~ and SPLICEU~,  it is impossible for I0 code to be performed 
underneath a splice. Thus, run t is well-typed with an empty a' and F. Furthermore, 
assuming the initial environment qo )o(=,=) I'inir, then may also be empty. 

--  - - 
In this case, we see that a' = Ainit, I?' = I?, = Finit, and p = 0. Hence the inner 
typing judement succeeds, and command (**) does not raise an exception. 

case RUNT~: 
(ii) Let (a) be 



Then by  RUNT^ 

A ; D I  c ; F ; c u ~ r ; F t ; + l t : ~ ~ r ) ) ~ t l  
7 <n+1 tn+l  : T~~ ( A ;  A )- 

C" t-e rttype r 

By definition 

I n+l lrun lq-# rnv(B) ( nms7 p) 

= (letN d +- [t];:tnvcB, in unitN (drun : d)) (nms,p) 

= letE d t [t],":tnv(,) (nms, p) in  unit^ (drun : d) 

= (*> 

By I.H. (ii) on (h) 
I n+l 

It Iq++.env(Bl (rims, P) E EDwd 

and hence d E Dwd. Since termof (drun : d) = run termof (d) and vars(i - 
n,run termof (d)) = vars(i - n, termof (d)), (drun : d) E DWd and ( t )  E E Dwd 
as required. 
(iii) Furthermore, if b = tt then by I.H. on (h) 

where if n > 0 then 

ternof (dl) well-defined, 
D ~ ~ = { ~ I E D I  - 

AI i+ iC- I e (77 ; cll) I (e c) +t r, I-& temnOf(dl) : cc e 1) 

otherwise 

I termof (dl) well-defined, Dwt = {dl E D I - ~ l + t - % ( e  cl1 I (er,)i+KI-O temOf(dl) :  ( ~ 8 7 ) )  

Thus d E DLt. 
By (b) and (i) 

-<n 
A1- I-" 8 r : Type 

and thus 
(al+a,>sn I--" e r  : Type 

By (j) and Lemma D.3 
8 C" te rttype (8 7) 

Then if n > 0, by  RUNT^ 
- 
A1 t+ I 0 (c'; C") I (0 r,) +t I-,", run termOf(d) : 10 (8 7) 

Or, if n = 0, by RUNTO 



Since termof (drun : d) = run termOf(d) and I 0  (8 T) = 8 ( I0  T), then (drun : d) E 
Vwt and (*) E E VWt as required. 

case RUNUO: 
(i) As for case RUNTO, but using Vwd instead of VWt .  Hence there is no guarantee 
that the inner typing judement will succeed, and thus in this case run may throw an 
exception. 

case R U N U ~ :  

(ii)/(iii) As for case RUNTI. 
case SPLICET~ : 

(ii) Let (a) be 
A ; E I  c ; c 1 I r ; F ~ : , - t : ~ ~ -  T 

Then by SPLICET~ 

a ; E f  C I ~ ; F ~ - O ~ : ( ( T I ) L - ) T  

By definition 

= (  let^ v + lift: ITI;,e,,"(B) 
in case v of .I 

code : md + lift$ md; 
otherwise += unitN (dwrong : *) 

1) (rims, P) 

=  let^ IT]:+-enu(B) P 
in case v of { 

code : md += md nms; 
otherwise + unitE (dwrong : *) 

1 
= (*> 

By I.H. (i) on (h) 

0 
BTlq++env(B) P E [e (1 7 ))](=,BE) 

= PC e 7 )>](F,eF) 

= n { S  1 (g, F) extends ( Z ,  8 c) } 

where 
md E M V ,  nms E  name^,^,+^ 
=j md nms E E DLt 

and 

termof (d) well-defined, 
A' +t I true 1 (8 c) -H t-O termof (d) : 8 T 

Thus v is tagged by code and 

(*) =  let^ (code : md) t [ T ] ; , ~ ~ ~ ( ~ )  p in rnd nms 



Now, take ak = n,, and rk = G. Then md nms E E DL, for 

termof (d) well-defined, 
A' I true I (0 c) I-O termof (d) : 8 T 

Then by Lemma D.4 (*) E E Vwd as required. 
(iii) This time, take n', = and = c. Then (*) E E Dwt as required. 

case SPLICET~: 

(ii) Let (a) be 

Then by SPLICET~ 

By definition 

1 n+2 1- lq-+eno(B) (rims, P) 
I n+1 =  let^ d e [t lq,e,v(B) in unitN (dsplice : d)) (nms, p) 

I n+l =  let^ d t [t ]qXenv(B)  (nms,p) in unitE (dsplice : d) 

= (*I 
By I.H. (ii) on (h) 

I n+l it Iq+env(B) (nms7 P) 

where 
term Of j d') well-defined, 
Vi . r - n, termof (dl)) i d u m ( c i )  } 

Thus d E DLd. Since termOf(dsp1ice : d) = - termof (d) is well-defined and Vi . 
vars(2 - n, - termof (d)) = vars(2 - (n + I), - termof (d)), we have (dsplice : d) E Vwd. 
Hence (*) E E Vwd as required. 
(iii) Furthermore, if b = tt then by I.H. (iii) on (h) 

where if n > 0 then 

term Of (d') well-defined, 
~ ~ a , = { d l t ~ l  - A I + ~ = I  e (77;  cll) 1 (er,)i+C~-,n, termOf(dt) : e((  T 3 )  

otherwise 

termof (dl) well-defined, 
D L ~ = { ~ I E D I  - ~ l + t - a , ~ e  clt\ ( e r , ) + t r e t O  t e r m 0 f ( d 1 ) : 8 ( ( ~  11 

Notice 8 I€ T 11 = (C 8 T 31. 



Then, if n > 0, by SPLICET:! 

Or, if n = 0, then C' = - and by SPLICET~ 

Since termof (dsplice : d) = - termof (d), then (dsplice : d) E V w t .  Hence (*) E E Dwt 
as required. 

case SPLICEU~:  

(ii) Let (a) be 
A ; E I  c ; c r 1 r ; F t - ~ - ~ : T L s -  T 

Then by SPLICEU~ 

By definition 

1 1- T] lg+env(~)  (rims, p) 

=  let^ +- [Tj:uenv(~) p 
in case v of ( 

code : md + md nms; 
otherwise + unitE (dwrong : *) 

1 
= (*I 

By I.H. (i) on (h) 

I'l;+env(B, P E LO {?Y (=,OK) 

= I[C?31 ( ~ , e  

= n { S  I (q, E) extends (E, 0 c) } 

where 
md E M V, nms E Names,EuE 

=$ md nms E E DLd 

and 
termof (d) well-defined, 

Vi . vars(i, termof (d)) d o m ( r i )  

Thus v is tagged by code and 

(*) =  let^ (code : md) t [ ~ ] i + ~ ~ ~ ( ~ )  p in md nms 

where md nms E E DLd. 
Taking = a, and rk = re, we see V w d  = DLd. Thus (*) E E V w d  as required. 



case SPLICEU~:  

(ii) Let (a) be 

Then by SPLICETU 

By definition 

I n+2 1- t i,,env(B) (rims, P )  
I n+l = letE Bt lIl)+env(B) (nms, p) in unitE (dsplice : d) 

= (*I 
By I.H. (ii) on (h) 

1 n+l 
[t lmtenv(s) P) %d 

where 
term 0 f (dl) well-defined, 

Vi . vars(i - n, termof (dl)) G d o m ( ~ ' )  

Thus d E ;DLd. Since termof (dsplice : d) = - termOf(d) is well-defined and Vi . 
vars(i - n, - termof (d)) = vars(i - (n + I), - termof (d)), we have (dsplice : d) E Vwd.  
Hence (*) E E Vwd as required. 

case LETO: 

(i) Let (a) be 

A ; E I  c I r ; T t - O l e t  x = u  i n t  : T L )  l e t s =  ( l e t w ~ ' i n X n a m e s ( ~ ~ ) .  U)in T 

Then by LETO 

( A ; E ) + ~ - O A " I  D ~ + ~ D ~ ~ I ' ; ~ ~ - ~ U : ~ J V  U (f) 
A ; a, I-' Dl constraint (g) 

(A ; a,) +to A" F0 D2 constraint (h) 
inherit (Dl) (i) 

C ke  Dl v B' di) 
C Fe e x i s t s  A" . D2 L) True (k) 

A ; E I  ~ I ( r ; F ) - i + ~ x : a t - ~ t : ~ ~ ~  (I) 

where names(D2) = (wl,.. . , w,), a = f o r a l l  A" . anon(Dz) => v. and A" = a1 : 
~ i l ,  ..., a, : IE,. 



By definition 

[let z = (letw B' in Xnames(D) . U) in T $ + ~ ~ ~ ( ~ )  p 
E = ( letR ev t closureR [Anames(D) . Uj:,,enu(Bf,en,,(B,, 

in  ITlO,+en.(B),.,teu) P 

= ( letR ev t closure: ( 
letR f e clOsurefun%(X(~l, . . 7 ym) ' ~ " ~ ~ + ~ ~ ~ ( B f , e n ~ ( ~ ) ) , w l ~ y l , . . . , w n ~ y m  1 
in  unitR (tfunc, : f ) )  

in uTJ;+env(B),zcev) P 

Notice (A ; a') +to A" = (A -I+ A") ; a'. Since dom(Atf) fl dom(A) = 0, we have 
dom(AM) n dom(6) = 0. 
Then by (b) and (h) 

A" ; ni I-' 6 D2 constraint (4 
By (b), (k) and Lemma D.2 

true I- 6 ex i s t s  A" . D2 v True true I- ex i s t s  AN . (6 D2) v True 

Then by (m) and Lemma 9.4 there exists types 2 s.t. ni,,t I - O  v' and 

true I- (0 Dz)[a t, v'] v B2 (4 
From (j) and Lemma D.2 

true I- 8 Dl ~t Bl A env(Bl) = env(Bt7 env(d)) (0) 

Let 8' = [al I+ vi, . . . , a, t, vb] o 8. Then A +t A" I- 6' gsubst and 0' = 6 F. 
Then from (n), (0) and definition of entailment 

true ke 6' (Dl +t D2) v B1 +t B2 

Then by I.H. (i) on (f) 

Since this holds for any choice of 7 s.t. (n) holds, we have 

Ainit to 7 5 ,  
e V E n ( ~ 1  - true t (8 D2) [a H vtl] c, B" 



Hence 
eu E [ fo ra l l  A" . (0 D2) => (6 v)I(D,~E) = a l ( ~ , e ~ )  

where 

Notice (I' ; P) +O x : o = (I' -t+ x : a) ; P. Let q' = q, x I+ eu. Then q' b(F,eT;) 
0 (r + x  : a). 
So by I.H. (i) on (1) 

[ ~ D $ + e n u ( ~ )  P = (*) E ~ I ( i i i , e ~ )  

tfuncm : f 

as required. 
case  LET^: 

(ii) Let (a) be 

f E cn,,,,, 7) + E V ,  
f ([wl]env(~tt),- - . , [~m]env(~")) 

E 8(e v)[a * u " l l ~ ~ , e ~ )  

Then by  LET^ 

( ~ ; a l ) - t + ~ + l a ~ ~ ~  C ; T ? ; D ~ + D ~  1 I ' ; P b ~ + ' u : v r u '  (h) 

A ; nl kn+' Dl constraint 6) 
(A ; E) +tn+' A" bn+l D2 constraint di ) 

inherit (Dl) (k) 

C" ke Dl (1) 

CN be exists A" . Dz ( 4  

A ; E I  C ; F ; C ~ ~ I ( I ' ; P ) + ~ ~ + ~ X : I T / _ ; + ~ ~ : T V ~ ~  ( 4  

where a = ( f o r a l l  A" . anon(D2) => v). 
Notice (A ; E )  +tn+' A'' = A ; ( Z  +tn A"), and (I' ; P )  +tn+l x : a = I' ; ( F  +tn x : o). 
W.1.o.g. assume dom(AU) n dom(n' Sf z) = 8. Then 

(a,, K) extends (a' +" AN, 0 c) 
From (e) and Lemma D.7 

7 b(nrstn~tt,e i;;) er 
Hence by I.H. (ii) on (h) 

where 
termof (d") well-defined, 

V i  . vnrs(i - n, termof (d")) dom(c i )  

W.1.o.g. assume nms = "y" : nms', where by (f)  y fZ dom(I', -kt r e ) .  Let = 
- r, +tn y : a and p' = p[x H y]. (This may override an existing binding for x in p.) 



Since nms contains only distinct variable names 

and 
(a,, c) extends (E, 8 c )  

By (e) and Lemma D.7 

7 I = ( F , o  C) 8 

Then by I.H. (ii) on (n) 

where 
termof (d"') well-defined, 
i . u s (  - n, termof (drtr)) C dom(c ' )  } 

By definition 

r n+l 
[let x = u' in t ln++env(B) (rims, P) 

- I n+1 - (  let^ d + 1~ Iq-++env(B) 
I n+l in letN (nm, dl) t-  rename^ "x" It ]n,+env(B) 

in unitN (dlet : (nm, dl dl))) (nms,p) 
r n+l 

= letE d t [u iq,+env 3)  (nmsi P) 
t n+ I in  let^ + (t ]n+env(B) (rims', p') 

in unitE (dlet : ("y", d, dl)) 

= (*) 

Then by (0) d E DLd and by (p) d' E VEd. Hence 

termof (dlet : ("y", d, dl)) = l e t  y = termOf(d) in termof (dl) 

is well-defined, and 

vars(0, l e t  y = termof (d) in termof (dl)) 

= vars(0, termof (d)) U (vars(0, termof (dl)) \ {y)) 

E d o m ( c n )  

Thus (*) E E VWd as required. 
(iii) Furthermore, if b = tt then by I.H. (iii) on (h) 



where if n > 0 then 

otherwise 

 ED 
term Of (d") well-defined, 
( ~ + t ~ ) - ~ " ~ " I 8 ( p ; D l + t ~ 2 ) 1 ( 8 ~ ) + t ~ k ~ ~  

termof (dl1) : 8 v 

Also, by I.H. (iii) on (n) 

d " € D  

where if n > 0 

termof (d") well-defined, 
(E+C&);)~A"IB(D~;)D~)((O~)+~~F~ 

termof (d") : 8 v 

otherwise 

d N % v  
termof (d"') well-defined, 
Z + t & I e ( F ; ~ ~ ~ ) ~ ( e ( c + ~ ~ : ~ ) ) + t ~ k ~  

termOf(dl") : 8 T 

So now d E 'DLt and d' E #DLt. 
BY (b), (i) and dj) 

 ED 

- 
At Fn 8 Dl constraint 

- 
A1 +tn A" I-" 8 D2 constraint 

term Of (dl1') well-defined, 
T i i - t t ~ I ~ ~ " I ( ~ ( ~ t + ~ ~ : a ) ) + t ~ k ~  

termOf(dl") : 8 T 

By definition of inherit and (k) 
inherit (8 Dl) 

By (b), Lemma D.3 and since dom(8) f l  dom(A1') = 8 

8 C" ke 8 Dl 

8 C" ke e x i s t s  A" . 8 D2 

Also 
8 a = forall  A" . (8 anon(Dz)) => 8 v 

Then if n > 0, by  LET^ 
- 

+t & I ( F  ; c") I (8 c) +I- r, I-2' let y = termof (d) i n  termof (dl) : 8 T 

Or, if n = 0 then C' = - and by LETO 
- 
A1 -I+ h, I 8 C" 1 (8 c) +t re F0 let y = termof (d) i n  term0f(d1) : 8 T 



Thus (*) E E DWt as required. 
case LIFTO: 

(i) Let (a) be 

A ;  al I C I I'; ?;i t-O l i f t  t : {{ T 1 )  v lift T using W 

Then by LIFTO 

A ;EI  c l r ; F t - O t : ~ ~ )  T 

(A ; I-' T : Type 

C be l i f t a b l e  T v W 

By definition 

[lift T using ~ g + e n v ( B )  P 

= ( letR IITctCenv(B) 

in case (v7 [WBs+env(~)) of { 
(int : i ,  tint : *) + unitR (code : unitM (dconst : 2)); 
otherwise + unitR (wrong : *) 

1) P 

=  let^ v + ITB:+,,(B) P 
in case (v7 [W]q+-env(B)) { 

(int : i, tint : *) -+ unitE (code : Xnms . unitE (dconst : i ) ) ;  
otherwise + unitE (wrong : *) 

1 
= (*I 

By I.H. (i) on (f) 
iTDqt~enu(B) P E 80 T B ( ~ , ~ F J  

By (b), (c), (g) and Lemma D.2 

Then by Lemma 9.4 

We proceed by (trivial!) case analysis on 0 T: 

case Int: By (i) 

Then v is tagged by in t ,  [ W ] ~ ~ ~ ( ~ ~ , , ~ ~ ( B ) )  is tint : * and 

(*) =  let^ ( in t  i, [T]:+enu(B) P 
in unitE (code : Xnms . unitE (dconst : i)) 



where i E 2. -- 
Let A,, re and nms be s.t. 

-- 
(A,, I?,) extends (a', f3 c) A nms E N a m e ~ , ~ + ~  

Then 
unitE (dconst : i )  E E Vwt 

where 

termof (d) well-defined, 
V , ~ = { ~ E D I  - A'*% I true 1 ( O r )  * ~ k O  termOf(d) : Int 

Thus 
md E M V, nms E  name^,^+^ 

(*) E E {code : md I 
3 md nms E E D,t 
-- 

Since this holds for any choice of A,, re and nms s.t. (j) holds, we have 

as required. 
(If l iftable were extended to other types, the cases would proceed analogously.) 

case LETMO: 
(i) Let (a) be 

A ; E I  C } r ; F ~ O l e t x < - u i n t : ~ ~ ~ ~ . ) l e t x t  Uin T 

Then by LETMO 

By definition 

E = ( letR ev t closureR [u]:+,~~(~, 
in letR f t closurefun% (Xev' . T];,+,,(~ ,., ) 
in unitR (cmd : letMIo v t liftFIO ev 

in case v of { 
cmd : ioev += 

letMIo ev' t ioev 
in letMIo v' t liftF1O (f ev') 
in case v' of { 

cmd : ioev' += ioev'; 
otherwise += unitMIo   unit^ (wrong : *)) 

1; 
otherwise += unitMIo   unit^ (wrong : *)) 

1)) P 



=  let^ ev +  unit^ (Qu]:+env(Bi P) 
i n   let^ f t  unit^ (Xev' . ITl,+env(B~,,ce,~ P) 
i n  unitE (crnd : Xnms . let10 v t liftbo ev 

in case v o f  { 
crnd : ioev -+ 

letIo ev' t ioev nms 
i n  letIo v' t liftkO (f ev') 
in case v' o f  { 

crnd : ioev' + ioev' nrns; 
o the rwise  + unitIo (uni tE (wrong : *)) 

1; 
o therwise  + unitIo (uni tE (wrong : *)) 

1) 
= unitE (crnd : Xnms . let10 v t lifik0 ( ( u ] : , + ~ ~ , , ~ ~ )  P) 

in case  v o f  { 
crnd : ioev -+ 

letIo ev' t ioev nms 
in let10 v' + liftbO ((T]:uenv(B),E~ev~ P) 
in case  v' of  { 

crnd : ioev' + ioev' nrns; 
o the rwise  + unitIo   unit^ (wrong : *)) 

1;  
otherwise  + unitIo (un i tE  (wrong : *)) 

11 
= unitE (cmd : Xnms . (**)) 
= (*I 
-- 

Let A,, re and nms be s.t. 

(x, z) extends (r, 0 c) A nms E N a m e s \ z , + ~  

By I.H. (i) on (f) 

[ul;+env(B) /' le Io V~(F,OK) 

E BIO (0 v)B(;zr,e-ir;) 

= n { S  I (x, e) extends (X, B z) } 
where 

{ S = E crnd : io 
io E M I 0  ( E  V), 
nms E N a m e ~ , r . ; + ~  A (io nms) UIo ea 

* ea E Be vIl(p,e 1;;) 

Hence v is tagged by crnd and 



Notice (I? ; F) +to x : v = (I' +t x : v) ; p. Let q' = q, z I-, ev'. Then 

Then by I.H. (i) on (g) 

! ~ l i l + e n v ( B )  P = I'IIi+envcs),ztteut P 

E P 10 71 (Z,O r,) 

E EIO (6 ~ ) l ( ~ , e c )  
= n { S t  I (g, c) extends @, 0 c) } 

Hence v' is tagged by cmd. Thus 

where 

(**) = letIo (cmd : ioev) t l i ~ p  ([U]:+enu(B) p) 
in letIo ev' t- ioev nms 
in let10 (cmd : ioev') t liftio  IT$+^^^(,),^,,^^, p) 
in ioev' nms 

cmd : io 

and 
(**) 410 ea * ea E TII (F ,~  C) 

io E M I 0  (E V ) ,  
nms E  name^,^+^ A (io nms) $10 ea 

+ ea E Be ~ I ( A ~ , O  r;;, 

-- 
Since the choice of A,, re and nms is arbitrary s.t. (h) holds, we have 

as required. 
case UNITO: 

(i) Straightforward. 
case LETRECO: 

(i) Similar to ABSO. 

case L E T R E C ~ ,  UNITMI, LETMI,  LIFT^: 
(ii) and (iii): These cases all proceed as for case A B S ~ ,   RUNT^ and  LET^. 

case VARO with constant k: 
(i) Straightforward. 

case V A R ~  with constant k: 
(ii) and (iii): Constants are rebuilt as themselves and have the same type in every 
stage. 
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