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ABSTRACT

DNA mismatch repair (MMR) acts on DNA mispairs associated with
replication, chemical damage, or recombination. The yeast MMR protein,
Mlhlp, is a member of the highly conserved MutL protein family necessary
for the formation of the repair complex. To identify other proteins involved
in MMR, a two-hybrid system was employed to screen a yeast expression and
genomic library for proteins that interact with S. cerevisize Mlh1p.

Three proteins interacting with Mlhlp in the two-hybrid screen were
characterized: Mlh2p, a MutL homolog, M86p, a protein of unknown
function, and Ntg2p, a DNA glycosylase/AP-lyase involved in base excision
repair (BER). Analysis indicates that neither M86p, nor Mlh2p, is required for
mutation avoidance, normal meiotic progression, or homeologous
recombination. Loss of NTG2 did not result in increased microsatellite
instability at the frameshift allele hom3-10, effect meiosis or homeologous
recombination. However, strains lacking Ntg2p, Ntglp, an NTG2 homolog,
and Apnlp, an AP-endonuclease, showed a 20-fold increase in hom3-10
reversion relative to wild type, implicating Ntglp, Ntg2p, and Apnlp in
preventing frameshifts in mononucleotide runs.

The human genome contains over 50,000 microsatellites, simple repeat
sequences of mono-, di-, or tri-nucleotides. Microsatellites, although
inherently mutable compared to simple sequence DNA, show increased
instability in certain inherited and sporadic forms of cancer. Such
microsatellite instability (MSI) is most notably associated with defects in

MMR genes. As a second project, I characterized the role of multiple DNA



repair pathways in MSI induced by the DNA damaging agents, UV light and
hydrogen peroxide, in the hom3-10 reversion assay. In wild type cells, hom3-
10 reversion was increased in response to UV light and hydrogen peroxide,
88-fold and 100-fold, respectively. UV light induced hom3-10 reversion was
slightly decreased in a rev3A and revlA strain, indicating that translesion
synthesis is responsible for some induced frameshifts. UV mutagenesis was
increased in a 7ad52 mutant, suggesting that UV-induced frameshifts are
repaired by RAD52-dependent recombinational repair. hom3-10 reversion, in
response to hydrogen peroxide, is increased in the BER mutant, ntg1 ntg?2
apnl implicating these proteins in the repair of frameshifts associated with
oxidative damage. In a radl mutant, hom3-10 reversion is decreased,
implying that the presence of Rad1p is mutagenic in response to oxidative
damage. These data suggest a role for TLS and recombinational repair in UV-
induced mutagenesis, and a role for Rad1p and Ntglp, Ntg2p, and Apnlp in

oxidation-induced mutagenesis.



CHAPTER 1: BACKGROUND AND SIGNIFICANCE

Estimates suggest that mutations arising from replication errors of the
human genome occur only every 1010 base pairs (Kunkel, 1992). However,
proofreading-proficient DNA polymerase error rates are about 1070 to 10-7
(Kunkel, 1992). In order to overcome the high error rate of DNA polymerase,
organisms have developed a specialized system, referred to as DNA
mismatch repair (MMR). Absence of MMR can result in an increased
mutation rate in humans and mice leading to cancer.

Mutations in the mammalian MMR genes have been associated with
hereditary nonpolyposis colon cancer (HNPCC) and sporadic colon and
endometrial cancer (reviewed in Lynch, et al., 1997). HNPCC, also known as
Lynch Syndrome, is characterized by tumors of the colon, endometrium,
stomach, urinary tract and ovaries (Lynch, et al., 1997). Patients are typically
heterozygous for a recessive mutation in one of the MMR genes, with somatic
inactivation of the second allele leading to a mutator phenotype and
tumorigenesis. Microsatellite instability (MSI), characterized by frameshifts
of one repeat unit, is found in over 90% of HNPCC colorectal tumors (Lynch,
et al., 1997).

The mutator phenotype suggests an explanation for why tumors can
arise in MMR deficient cells. One hypothesis is that tumor progression occurs
by generating a large number of random mutations and then selection occurs
for clones that have malignant properties (Loeb, et al., 1974). Consistent with
this idea, alterations in simple repeats have been found in genes involved in
growth regulation (i.e. TGF£2, BAX, etc.) in the tumors from HNPCC patients
(Lynch, et al., 1997).



Approximately 70% of HNPCC patients have mutations in MMR
genes, with the majority of mutations occurring in MSH2 or MLH1
(Peltomaki and de la Chapelle, 1997). However, 30% of HNPCC patients do
not have an apparent defect in the known MMR genes, leaving the possibility
that other proteins are involved in MMR and the development of HNPCC-
associated tumors. In addition, promoter methylation of MLHI has been
found in a large proportion of sporadic gastrointestinal tumors with MSI
(Veigl, et al., 1998).

Identification of additional proteins involved in MMR will allow us to
determine how cells recognize and repair replication errors, possibly allowing

for identification of candidate genes involved in HNPCC.
Bacterial MMR

Mutant strains of E. coli were isolated that displayed increased
mutation frequencies. The original “mut” strain (mutT) was isolated in 1954
(Treffers, 1954). Other mut strains were identified that showed increased
sensitivity to antibiotics and/or increased reversion of auxotrophic markers
(reviewed in Cox, 1976). Isolation and characterization of mut strains led to
the identification of the MutHLS-dependent, methyl-directed, DNA
mismatch repair system. This pathway is involved in the repair of base-base
mispairs and small insertion/deletion loops (IDLs) of up to four bases that
can occur during replication due to misincorporation, replication slippage or
as a normal part of homologous recombination (reviewed in Horst, et al.,
1999, and Modrich and Lahue, 1996).

Transient hemi-methylation of the parental strand allows the repair

machinery to identify the newly synthesized strand (Wagner and Meselson,



1976). As shown in Figure 1-1, the MutS homodimer binds to the DNA
mismatch. A homodimer of MutL then couples MutS mismatch recognition
to activation of the latent endonuclease MutH in an ATP-dependent manner
(Grilley, et al., 1990). Activated MutH incises the undermethylated strand at
the nearest GATC sequence. This is followed by UvrD helicase unwinding
the DNA and exonucleolytic action by one of four exonucleases, Rec], Exol,
ExoVII, or ExoX, in either a 5" or 3" direction, removing the mismatch and
generating a gap (Viswanathan and Lovett, 1998). DNA polymerase III
holoenzyme and DNA ligase repair the single strand gap (Lahue, et al., 1989).

Until recently, a biochemical activity for MutL had not been
documented. Recent studies have shown that the MutL homodimer has ATP-
binding and hydrolysis activities that are required for MMR (Aaltonen, et al.,
1993; Aronshtam and Marinus, 1996; Ban and Yang, 1998b; Ban and Yang,
1998a; Ban, et al., 1999). In addition, MutL interacts with MutS, MutH, and
UvrD, suggesting that it might have a role in promoting the formation of a
more efficient repair complex (Sancar and Hearst, 1993).

In addition to a role in mutation avoidance associated with DNA
replication, the MMR proteins are also involved in preventing homeologous
recombination, a genetic exchange between similar, but non-identical,
sequences. In E. coli, mutations in mutH, L, S, and U result in an increase in
homeologous conjugational recombination between E. coli and S. typhimurium
(Rayssiguier, et al., 1989).

The bacterial MMR proteins are also required for normal transcription-
coupled repair (TCR) of ultraviolet (UV) damage in vivo. TCR is the selective
removal of DNA damage from the transcribed strand of an active gene.
Cyclobutane pyrimidine dimers (CPDs) resulting from UV light are repaired

more efficiently from the transcribed strand. In MutS or MutL. deficient E.



coli, the TCR of CPDs is abolished (Mellon, et al., 1996). However, all CPDs
are eventually repaired, suggesting that MutS and MutL are necessary for
directing repair to the transcribed strand, but are not absolutely required for
the removal of CPDs (Mellon, et al., 1996).

Genetic and biochemical elucidation of the E. coli system of MMR has
laid the foundation for understanding MMR in higher organisms. However,
in eukaryotes MMR appears to be more complex, involving multiple MutS
and MutL homologs that show both specialization and overlap of function.
Interestingly, MutH homologs have not been identified in any other
organisms besides E. coli. The lack of MutH homologs, coupled with the lack
of DNA methylation in some organisms, including S. cerevisiae, suggests that
other prokaryotes and eukaryotes have different strand discrimination

mechanisms.
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MMR in S. cerevisiae

Analogous to the E. coli system, S. cerevisiae employs MutS and MutL
homologs for MMR. Recognition and binding of the mismatch occurs by one
of two different heterodimeric MutS-homolog (MSH) complexes, Msh2p-
Mshép (MutSa) or Msh2p-Msh3p (MutSB) (Figure 1-2). MutSa has a stronger
affinity for base/base mispairs, while MutSp prefers IDLs of 2-4 basepairs
(reviewed in Kolodner and Marsischky, 1999). MutSa has ATP binding and
hydrolysis activities (Iaccarino, et al., 1998) that, based upon mutational
analysis, are required for MMR in vitro (Iaccarino, et al., 1998) and in vive
(Alani, et al., 1997). The ATPase activity of MutSa is proposed to promote
protein interactions and translocation along DNA (Blackwell, et al., 1998 and
Gradia, et al., 1999).

MMR in yeast also requires two MutL complexes, MutLa, a
heterodimer of Mlh1lp (MutL homolog 1) and Pmslp (Post-meiotic
segregation increased 1), or MutLp, a heterodimer of Mlh1p and Mlh3p
(Figure 1-3). MutLa is involved in processing the majority of DNA
mismatches with MutSa and MutS, while MutLp processes some IDLs,
specifically in conjunction with MutSf (Flores-Rozas and Kolodner, 1998 and
Figure 1-3). All of the MutL. homologs contain highly conserved ATP binding
and hydrolysis motifs found in known ATPases, such as Hsp90, and GyrB
(Bergerat, et al., 1997; Ban and Yang, 1998a; Ban and Yang, 1998b; Ban, et al.,
1999). The necessity of ATP binding and/or hydrolysis by the MutL proteins
is unclear, but studies from bacteria suggest that ATP binding is necessary for
conformational changes in MutL that could facilitate interaction with other

MMR proteins (Ban, et al., 1999). In yeast, the formation of the ternary
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complex of Msh2p-Mshép and Mlh1p-Pmslp requires ATP-binding
(Habraken, et al., 1998). Additionally, studies from our laboratory have
found that mutations in the putative ATPase motif of yeast MutLs lead to an
increased mutation rate (P. Tran, unpublished data). Interestingly, a number
of missense mutations in the A'lPase domain of MLHI have been identified in

HNPCC patients (Liu, et al., 1996, Viel, et al., 1998).



Other proteins necessary for MMR in yeast and/or mammals include
proliferating cell nuclear antigen (PCNAp), Exonuclease 1 (Exolp), and DNA

polymerase d (Poldp).

PCNAp, the processivity factor for DNA polymerases d and ¢, is
essential for DNA replication and is involved in nucleotide excision repair
(NER). In addition, PCNAp is involved in MMR at two steps: the initiation of
DNA repair and resynthesis (Umar, et al., 1996 and Gu, et al., 1998). PCNAp
interacts with both Mlhlp and Msh2p (Umar et al, 1996), possibly linking the
MMR apparati to the replication machinery and targeting it to the newly

synthesized strand of DNA.

The double-stranded 5’-3” exonuclease, Exolp, interacts with both
Mlhlp and Msh2p (Tishkoff, et al., 1997 and Simon and Liskay, unpublished
results). Exolp is likely to be one of the exonucleases responsible for excision
in the MMR reaction. The exol mutant has a mutator phenotype that is
significantly lower then the mutation rates seen in msh2, mih1, or pms1
deficient strains (Tishkoff, et al., 1997). Since there are four exonucleases
required for MMR in bacteria (Viswanathan, 1998), it is likely that eukaryotes
require multiple exonuclease for MMR, which would explain why exo1l

mutants do not show a strong mutator phenotype.

Other MutS homologs, whose functions are less clear, include MSH1,
MSH4, and MSH5. In S. cerevisiae, Mshlp is involved in maintaining the
mitochondrial genome (Reenan and Kolodner, 1992a and Chi and Kolodner,

1994). MSH4 and MSHb5 do not appear to play any role in mutation



avoidance, but are necessary for normal levels of crossing over during

meiosis (Ross-Macdonald and Roeder, 1994).

Another MutL homolog in yeast, MLH2, does not appear to have a role

in mutation avoidance and will be discussed further in Chapter 4.

Phenotypes of MMR Deficiency in Saccharomyces cerevisiae
I. Mutation Rates in MMR mutants

Various metabolic markers and plasmids can be used to evaluate
mutation rates and spectrum in yeast. Reversion of a mutation in a metabolic
marker, such as hom3-10 or lys2BgllI, resulting in a functional protein, allows
determination of the rate at which frameshift mutations occur. Other assays
can report a wide spectrum of mutations through the loss of a gene product,
such as Canlp, a protein required for arginine transportation into yeast cells.
Yeast harboring defective Canlp are resistant to the toxic arginine analog,
canavanine, and mutations can be determined by sequencing Can" yeast
DNA. Other ways to identify mutations in yeast include introducing a
plasmid that can report a multitude of mutational events. Yeast strains
deficient in MMR exhibit increased mutations rates in most of these assays.
However, microsatellites, repeats of mono-, di-, or tri-, nucleotides are
particularly unstable, presumably due to slippage by DNA polymerase
during replication. If the associated-exonuclease activity of the polymerase
does not repair the resulting frameshift, then it is usually repaired by MMR.
In MMR deficient strains microsatellite instability is greatly increased, up to
10,000-fold in a mononucleotide run of fourteen adenines inserted into the

LYS2 gene (Tran, et al., 1997). In addition, increases in transitions (purine to

- 10 -



purine or pyrimidine to pyrimidine) and transversions (purine to pyrimidine
or pyrimidine to purine) are observed in MMR deficient strains (Kunz, et al.,
1998).

Not only do MMR proteins play a role in avoiding mutations due to
replication errors, but they also appear to have a role in protecting against
spontaneous oxidative damage. One study found that Amsh2 strains grown
in an anaerobic environment have a decrease in mutation rate up to 60-fold
(Earley and Crouse, 1998). Another study found that a yeast strain deficient
in both the MMR protein Mshé6p and Ogglp, a glycosylase involved in
repairing oxidative damage, exhibits a synergistic increase in signature
mutations of spontaneous oxidative damage (Kolodner, 1999). In addition,
MutSo: binds the oxidatively damaged base-pairs A:G® and C:G® in vitro
(Kolodner, 1999).

I1. Increased PMS

Increased post-meiotic segregation (PMS) is also observed in yeast
strains deficient in MMR. MMR repair was first hypothesized to account for
observations regarding fungal genetic recombination (Holliday, 1964). Some
fungi contain an ascus of eight spores, each a product of meiosis. For a
heterozygous marker A, the expected Mendelian segregation is 4A:4a.
However, when non-reciprocal transfer of genetic material occurs, a 6A:2a or
2A:6a segregant pattern is observed. In addition, a rare pattern of segregants
of 5:3 or 3:5 is observed, and is referred to as PMS. These non-Mendelian
segregants are classified as aberrant segregations (Figure 1-4). In yeast, with
the absence of MMR, spores contain heteroduplex DNA which result in

sectored colonies.
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III. Spore Inviability

Decreased spore viability is seen in strains in which exchange between
homologs in meiosis is decreased or abolished, resulting in improper
segregation of homologs (Guthrie, 1991). In MMR deficient strains, including
pms1, mlh1, and msh2 there is decreased spore viability that is thought to
result from the accumulation of recessive lethal mutations in diploids
(Kramer, et al., 1989b; Reenan and Kolodner, 1992b). However, mlh1 deficient
strains have even lower spore viability then other MMR mutants due to
decreased crossing-over (Hunter and Borts, 1997) implicating a unique role

for Mlhlp in crossing-over.

IV. Recombination and MMR

Another phenotype associated with defects in MMR is increased
mitotic homeologous recombination (Datta, et al., 1997 and Chapter 3, this
work). Similar to bacteria, MMR in S. cerevisige is involved in preventing
recombination between slightly divergent sequences during mitotic
recombination.

In addition, MLH1 deficiency in yeast results in reduced crossing-over,
high PMS, and increased non-Mendelian segregation, suggesting that Mlh1p
plays a role during meiotic recombination in both crossing-over and gene
conversion (Hunter and Borts, 1997). Supporting studies in Mlh1 -/- mice
show that crossing over between homologs during meiosis is reduced 10- to

15-fold (Baker, et al., 1996 and Woods, et al., 1999).
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V. Transcription coupled repair

In addition to roles in mutation avoidance and recombination, yeast
and mammalian MMR proteins are involved in TCR (Leadon and
Avrutskaya, 1998). Furthermore, MMR proteins are necessary for TCR of
DNA damage resulting from oxidative and UV damage in bacteria and
mammalian cells. Yeast lacking both Mlhlp and Pmslp are deficient in the
repair of thymine glycols, a product of oxidative damage (Leadon and
Avrutskaya, 1998), but, surprisingly, are proficient for TCR of UV damage
(Sweder, et al., 1996).

VI. Increased sensitivity to anticancer drugs

In yeast, toxicity of the DNA cross-linking agents, cisplatin,
carboplatin and doxorubicin (Durant, et al., 1999), is partially dependent on
the presence of MMR proteins, suggesting that MMR recognizes DNA
adducts. The increased resistance of MMR deficient cells is relevant to cancer
since DNA cross-linking agents are commonly used for cancer treatment and
tumors lacking functional MMR might not respond to treatment with these

agents.

Mammalian MMR

MMR in mammals shares common features with the yeast system, but
the ability to analyze patients and animal models allows one to study the

direct relationship between MMR deficiency and cancer. As mentioned



earlier, MMR defects have been associated with HNPCC, including mutations
in hMLH1, hPMS2 (yPMS1), hPMS1 (yMLH3), hMSH2, and hMSH6. Tumor
DNA samples from HNPCC patients with germline MMR gene mutations
(MLH1 and MSH2), exhibit global MSI and increased base substitutions
(Parsons, et al., 1993). In mouse cell lines homozygous for MMR gene
mutations, MSI is reduced by introduction of a chromosome or plasmid
bearing a wild type copy of the MMR gene (Aquilina, et al., 1997; Umar, et al.,
1997; Umar, et al., 1998; Buermeyer, et al., 1999a), indicating that MMR
deficiency directly results in MSI. MMR-defective human tumor and mouse
cell lines also exhibit tolerance to a number of DNA-damaging agents,
including alkylating agents, 6-thioguanine, cisplatin, gamma irradiation, and
topoisomerase inhibitors (reviewed in Buermeyer et al., 1999b), indicating a
role for MMR in promoting cell death in the presence of extensive DNA
damage. Mammalian MMR defective cell lines also show defective TCR of
UV damage, similarly to E. coli MMR mutants (Leadon, 1997).

Mice homozygous for MMR gene mutations in Mlh1 and Msh?2
develop HNPCC-like tumors and other tumors (reviewed in Buermeyer,
1999, in press). However, Pms2 " mice have a different spectrum of tumors
than Mlh1 or Msh?2 defective mice, and Pms1”" mice remain tumor free
(Prolla, et al., 1998). These different tumor spectra suggest that, in mice, loss
of Mlh1 or Msh?2 results in complete inactivation of MMR, while loss of Pms2
does not completely inactivate MMR, perhaps because Pms1 can partially
fulfill the function of Pms2.

It is interesting that while MMR proteins are expressed in most tissues,
only certain tissues are prone to tumors in patients harboring MMR defects.
This could indicate that systems redundant with MMR act to repair defects in

certain tissues. Another possibility is that DNA polymerases are less error-
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prone in some tissues than others, resulting in an overall decreased mutation
rate. Similarly, MMR activity might be enhanced in tissues that remain

tumor-free.

Thesis Prospectus

As outlined above, loss of MMR proteins can result in tumorigenesis.
Identification of other proteins that have a role in MMR may implicate
candidate genes involved in HNPCC or other spontaneous cancers. One way
to identify proteins that are involved in MMR is to search for proteins that
interact with the known MMR proteins. Since the MutLs are involved in
recruiting known proteins to the MMR repair complex, they are likely
candidates for interacting with additional, yet unidentified, proteins.

In my research, I primarily used the yeast MutL homolog, Mlh1p, in
two-hybrid screens to identify candidates involved in MMR. “Interacting”
proteins were characterized by determining the region of Mlhlp they interact
with and by analyzing strains deficient in candidate proteins for phenotypes
consistent with MMR deficiency.

Since the two-hybrid assay can result in false positives I chose to
characterize interactors that were obvious candidates in MMR, such as
exonucleases, endonucleases, or helicases and proteins that had a unique
interaction with Mlhlp. Proteins of interest obtained in the screens included
the MutL homologs Pmslp, Mlh2p, Mlh3p, Pol30p, the yeast PCNA homolog,
the Exolp exonuclease, the DNA glycosylase/AP lyase Ntg2p, and M86p, a
protein that requires the C-terminal of Mlh1p for interaction (Table 1-1). I
focused my efforts on characterizing the interactions with Mlh2p, Ntg2p, and
M86p. Mlh3p (Flores-Rozas and Kolodner, 1998), Exolp (Tishkoff, et al.,
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1997), and Pol30p (Umar, et al., 1996 and Gu, et al., 1998) involvement in

MMR has previously been described.

In addition to studying the proteins that interact with Mlhlp, I

examined the induction of MSI by DNA damaging agents in multiple DNA

repair mutants to define the repair pathways that influence induced MSIL.

GENE

PMS1
NTG2
POL30
M86
MLH?2
FUN20
M15
MLH3
M29
M76
CHS1
UBPD
EXO1
SMT4
CHC1

FUNCTION

MMR

DNA glycosylase involved in BER

PCNA homolog, involved in MMR and replication
Unknown

MutL homolog

Essential gene of unknown function
Unknown

MMR

ATPase subunit homology /unknown
Putative ATP-dependent RNA helicase
Chitin Synthase

Ubiquitin Carboxyl-terminal hydrolase 13
MMR

Suppressor of MIF2

Clathrin heavy chain

Table 1-1. Proteins identified in two-hybrid screens using yeast Mlhlp

bait.



CHAPTER 2: MATERIALS AND METHODS

Strains, Media, and Reagents

I. Bacteria
E. coli strain DH10B (Gibco) was used for all plasmid
manipulations. E. coli strain MC1066 provided by Mike Forte was used to
select for library plasmids, pGAD and pGAD-CAN, in the two-hybrid

studies. E. coli strain MC1066 was grown on M9 plates (0.4% glucose, 0.02%
tryptophan, 0.01% uracil, ImM MgSO4, 0.1mM CaClp, 100mg/ml ampicillin,

6% Na2PO4, 3% KH2PO4, 1% NH4Cl, 0.5% NaClz, 0.003% CaClp), which
allows for selection of bacteria carrying a plasmid that confers ampicillin
resistance and leucine auxotrophy. DH10B cells were grown on LB or LB
media containing 100mg/ml ampicillin.
IL S. cerevisiae

The S. cerevisiae strains used in this study are listed in Appendix
A. Strain GCY35 was a gift from Gray Crouse. Michael Hampsey generously
provided the YMH strains. Hannah Klein provided the two mating types of
W303, 579-10A and 580-10D. The hom3-10 allele was introduced into W303
using the two-step replacement plasmid pK8 provided by Richard Kolodner,
and was verified by the inability of the strain to grow on complete synthetic
media (CSM) lacking threonine. The yeast strains L40 and AMR70 (Vojtek,
1993), used for two-hybrid analysis, were provided by Mike Forte. SJR
strains were generously provided by Sue Jinks-Robertson. Southern blot
analysis and/or PCR confirmed the Antg2, Antgl, Amlh2, and Arev3 strains.

The Amsh2 and Amlh1 strains were verified by mutator phenotype. The Aradl
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strains were determined by sensitivity to ultraviolet light. The Aapn1 strains
were verified by sensitivity to MMS.

Yeast were grown nonselectively on YPD (1% Bacto-yeast extract, 2%
Bactopeptone, 2% glycerol, 2% agar). Auxotrophic yeast were selected on
CSM media lacking an amino acid or base (0.7% yeast nitrogen base, 0.5%
ammonium sulfate, 2% glucose, 2% agar, and 0.09% dropout mix (Bio101)
lacking the amino acid used for selection). Canavanine plates used for
mutational analysis contained CSM lacking arginine and supplemented with
30mg/L canavanine (Sigma). Revertants of the YMH strains were selected on
YPDG medium (Hampsey, 1991), containing 1% yeast extract, 2% peptone,
3% glycerol, 0.1% glucose and 2% agar. To select for loss of URA3, cells were
grown on CSM containing 5-fluoroorotic acid (5-FOA, US Biologicals) as
described (Boeke, et al., 1987). Mitochondrially impaired strains were
identified by inability to grow on YP Glycerol media (2% yeast extract, 2%
peptone, 3% glycerol). Diploids were sporulated on media containing 0.2%
CSM, 0.1% yeast extract, 2% potassium acetate. For two-hybrid analysis, cells
were selected on appropriate drop out plates supplemented with succinic
acid (0.12% yeast nitrogen base, 0.5% ammonium sulfate, 1% succinic acid,
0.6% sodium hydroxide) (Hollenberg, 1994). Yeast assayed for homeologous
recombination were grown in YPD supplemented with 2% glycerol and 4%
galactose (YPDGG) and plated on CSM with 2% glycerol and 4% galactose,

but deficient in histidine (SGG-his). All yeast cultures were grown at 30°C.

Plasmids
All DNA manipulations were carried out using standard protocols
(Ausubel, et al., 1992). Plasmid pBTM-yMLH1 and deletion derivatives have

been described previously (Pang, et al., 1997).
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The MO37 (a.k.a. NTG2) targeting vector, Mo37-hlh, was constructed
by PCR amplification of surrounding sequence 5' and 3' to the NTG2 open
reading frame (ORF) and the two arms were cloned into plasmid RDK3353
containing hisG direct repeats separated by URA3 (Alani, et al., 1987) (Figure
2-1). The 5' arm, amplified using the primers Mo37 lt-forward, 5'-
AGACGCCCGCGGCCTGATGACGATATAAAG-3' (Sacll site underlined)
and, Mo37 lt-reverse, 5-AGACGCTICTAGACCTACTTTCCTCTCTCAT-3'
(Xbal site underlined), was inserted into the Sacll/Xbal site of RDK3353 . The
3" arm, amplified using primers, Mo37 rt-forward, 5'-
AGACGCGGATCCGCATTGGTTGGACACGGT-3' (BamHI site underlined)
and Mo37 rt-reverse, 5-AGACGCGAATTCACTCCAACCCTAAAAGGGC-3'
(EcoRI site underlined), was inserted into the BamHI/EcoRI site of RDK3353.
The complete MO37 targeting vector, MO37-hUh, was digested with
EcoRI/Sacl prior to transformation. The YABS (NTGI) targeting vector,
YAB5-hUh, was also cloned into RDK3353 using a similar strategy to the
cloning of MO37-hUh (Figure 2-4). The 5' arm, amplified using Yab5-1t
forward, 5-AGACGCCCGCGGTAGAGACAGATCTCACGACAGC-3' (Sacll

site underlined) and Yabb lt-reverse, 5'-

AGACGCTCTAGAGCATATTTTTTTITTTTTTTGGG-3' (Xbal site underlined),
was cloned into the Sacll/Xbal site of RDK3353. The 3' arm, amplified using
primers Yab5-rt forward, 5'-
AGACGCGAATTCAAGAAACTATGGTCAAACTGG-3' (EcoRI site
underlined) and Yab5-rt reverse, 5'-
AGACGCGTCGACAAGATCTTACCTGCTGTGCAG-3' (Sall site
underlined), was cloned into the EcoRI/Sall site of RDK3353. The complete
targeting vector, YAB5-hlUh, was digested with Kpnl/Sacl prior to

transformation.
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The RAD1 targeting vector used to construct the rad1A strains was
kindly provided by Lee Hartwell. The mlh2::LEU?2 targeting plasmid was
constructed by Tom Prolla (Prolla, 1994). Plasmids mlh1AURA3 ,mlh1ALEL2 ,
and mlh2::LEU2 constructed by Tom Prolla were used to create the mlhl and
mlh2 deletion strains (Prolla, et al., 1994). The apnlA strains were constructed
using the hisG-URA3-hisG plasmid pSCP108, provided by Bruce Demple.

The msh2hlUh vector, a gift from Gray Crouse, was used to create the
msh2A strains.

M86-hUh, constructed by Jeff Simon, was used to create Am86 strains.
M86-LEU2-TV was constructed by removing URA3 from M86-hlUh with Nhel,
filling in the ends, and inserting the 2.2kb Hpal fragment containing the LEU2
selectable marker from YEp13. Prior to transformation, the M86-LEU2-TV
was digested with Xbal/Xhol.

Arev3 and Arevl strains were constructed using the Rev3 and Revl
hisG-URAB3-hisG targeting vectors, pYPG10land pSE3, respectively, provided
by David Hinkle.

M86-pJAS was constructed by linearizing pJAS with EcoRI and
ligating to an EcoRI fragment containing the complete M86 open reading

frame (ORF).
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Two-Hybrid Screen and Analysis

I. Library Screen

The two-hybrid screen used in these studies is a modified version of
the system devised by Stan Fields (Fields and Song, 1989 and Figure 2-3).
Interaction between the LexAp DNA binding and Gal4p activation domains
drives GALI and HIS3 promoters fused to multiple lexA binding sites,
resulting in expression of lacZ and His3p, respectively. Therefore, protein
interaction can be detected in cells by growth on media lacking histidine and
-galactosidase activity. Yeast MLH1 was fused to the DNA binding domain
of LEXA on a tryptophan containing plasmid (YMLH1-pBTM). S. cerevisiae
strain L40, containing yMlh1-pBTM, was transformed using a modified
lithium acetate transformation (Vojtek, 1993) with an efficiency of 10" t0 10°
transformants per microgram using either an S. cerevisiae cDNA library fused
to GAL4 activation domain on a plasmid with the leucine marker, provided
by S. Elledge, or a randomly sheared genomic library cloned into pGAD.CAN
provided by S. Fields. Potential interactors were detected by growth on
media lacking tryptophan and leucine, selecting for both the library and bait
plasmids; leucine, lysine and uracil, selecting for the appropriate strains; and
histidine, which identifies interacting proteins. The f-galactosidase assay

described below was used as a second test for interaction.
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Figure 2-3. Two-hybrid scheme

I1. p-galactosidase assay: Color filter method and B-galactosidase activity
Ura-Leu-Lys (-THULL For the color filter method, transformant

colonies, surviving on -Trp-His-) or mated diploids, were lifted onto #1

Whatman filter circles, frozen in liquid nitrogen, and incubated at 30°C in 0.7

ml Z -buffer (60mM NagHPO4, 40mM NaH2PO4, 10mM KCI, 1mM MgSO4,

pH 7.0) with 0.75mg X-gal (Miller, 1972). To quantify p-galactosidase activity,
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cells from minus THULL plates were suspended in 0.5 ml Z-buffer with
0.64mg o-nitrophenyl-B-D-galactosidase substrate per ml, permeablilized

with chloroform, and incubated at 30°C. Reactions were stopped with

Na2CO3. B-galactosidase activity was calculated using the equation
Units/h=[(OD420/0Dg(0)*60]/min (Miller, 1972).
ITI. Mating Analysis

The "library” plasmid recovery was facilitated by first isolating DNA
from LA40 strains using a yeast DNA miniprep and subsequently recovered by
transformation and' selection of amp$, leu” MC1066 bacteria. Plasmid DNA
was isolated from amp?, leut MC1066 by alkaline lysis and transformed into
the S. cerevisiae strain AMR70 using the Frozen-EZ Yeast Transformation Kit
(Zymo Research). Transformants were mated to L40 strains on YPD, and
replica plated to -URA-TRP-LEU plus succinic acid plates to test for mating
efficiency and -THULL plates to test for interaction.
IV. DNA Sequencing

Inserts of library members showing positive interaction were
sequenced using an Automated Sequencer (Vollum Institute) with the
primers GAL4F-2942 5'-CGTTTGGAATCACTACAGGG-3' and GAL4R-2673
5'CGGGGTTITTCAGTATCTACG-3'. DNA sequences were compared to the

Genbank and Saccharomyces Genome (SGD) databases.
Genotyping Strains

To construct the Antg2 yeast strains, Mo37-hUh was digested with
EcoRI/Sacl, and transformants were selected on CSM lacking uracil.
Genomic DNA was isolated from transformants using a yeast genomic prep

(Ausubel, et al., 1992) and analyzed for NTG2 disruption by PCR or Southern
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analysis (Southern, 1975) (Figure 2-1 and 2-2). DNA was digested with
HindIII/Xbal, loaded onto a 1% TAE agarose gel, and transferred to
Hybond+ nylon membrane. A probe, generated by amplifying genomic
DNA 5' to the targeting arm using the primers Mo37 probe-for 5'-
AAGCTGCGAGACAACACC-3' and Mo37 probe-rev 5'-
GTAGATACGGACGACGGAAC-3', was purified using a Qiaquick column
(Qiagen), labeled using the Random Prime Labeling Kit (Clonetech), and
exposed to the membrane resulting in an untargeted band at 8.9 kb and a
targeted band at 5.8 kb (Figure 2-2). For PCR genotyping, DNA isolated from
URA" transformants was amplified using the primers Mo37 untargeted 5'-
sGGAAATTCTCTCGTTACCTGG-3', hisG 5'-
ACCATGAGCTTCAATACCCTG-3', and M037 anchor 5'-
ATGTATTGGGCGCTTTGC-3' (95°C 1', 56°C 17, 72°C 2', 40 cycles) resulting in
a 1 kb untargeted band or a 650 bp targeted band (Figure 2-2). To