
Development of An Approach 

to Language Identification based on 

Language-dependent Phone Recognit ion 

Yonghong Yan 

B.E., Tsinghua University, P.R.China 1990 

A dissertation submitted to the faculty of the 

Oregon Graduate Institute of Science & Technology 

in partial fulfillment of the 

requirements for the degree 

Doctor of Philosophy 

in 

Computer Science and Engineering 

October 1995 



@ Copyright 1995 by Yonghong Yan 

All Rights Reserved 



The dissertation "Development of An Approach to  Language Identification based on 

Language-dependent Phone Recognition" by Yonghong Yan has been examined and a p  

proved by the following Examination Committee: 

~ t i e n n e b b r n a r d  
Associate Professor 
Thesis Research Adviser 

~ b n a l d  A. Cole 
i 

Professor 

* 

Mark Fanty 
d 

Assistant Professor 

Pieter Vermeulen 
Senior Research Associate 

iii 



Dedication 

To my parents, Ruiying and Shien, my wife, Xu 



Acknowledgements 

I wish to  express my foremost thanks to my advisor, Dr. Etienne Barnard, who worked 

closely with me during past years. His valuable suggestions and ideas greatly influenced 

the direction of this dissertation. In fact, he is the co-author of this work. Also I would 

like t o  express my deepest gratitude to  Prof. Ronald A. Cole for all the advice, support 

and help. Without their valuable insight and discussion, this work could not be finished 

a t  this moment. 

I would like t o  thank Dr. Mark Fanty, Dr. Wayne Ward (CMU) and Dr. Pieter V 

Vermeulen for the reviewing of this work and suggestions in shaping the thesis. Also, I 

am indebted to  other members in CSLU (Center for Spoken Language Understanding) for 

all the helps during the past years. Specially I would like to  thank all the CSLU members 

for the tolerance of CPU time and disk space I used. 

Finally, I would like t o  thank my wife, Xu, for the consistent support. 



Contents 

Dedication iv 

Acknowledgements v 

Abstract xii 

1 Introduction 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 Background 2 

. . . . . . . . . . . . . . . . . . . . . . . . . .  1.1.1 Nature of the Problem 2 

. . . . . . . . . . . . . . . . . . .  1.1.2 The Difficulties: Challenges to  LID 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 Related Work 7 

. . . . . . . . . . . . . . . . . . . . . . . . .  1.2.1 Early Work: 1973-1992 7 
. . . . . . . . . . . . . . . . . . . .  1.2.2 Current Activities: 1992-present 9 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2.3 The Problems 11 

1.3 An Approach t o  Language Identification based on language-dependent phone 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  recognition 12 

. . . . . . . . . . . . . . . . . . . . .  1.3.1 Finding a Good Modeling Unit 12 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3.2 The Baseline System 13 

1.3.3 Contributions: Methods Proposed to  Improve the Baseline System . 14 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4 Outline of the Dissertation 15 

2 Preliminary Study: Comparative Experiments 16 
. . . . . . . . . . . . . . . . . . . . .  2.1 Database and Feature Representation 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 Comparative Experiments 17 

. . . . . .  2.2.1 Gaussian Mixture based Markov Model Approach (GMM) 17 

. . . . . . . . . . . . . . . . .  2.2.2 Broad-category based Approach (BC) 19 
. . . . . . . . . . . . . . . . . . . . . .  2.2.3 Fine-phonetic Approach (FP) 21 

. . . . . . . . .  2.2.4 Bigram-based Phoneme Mapping Approach (PRLM) 23 
. . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Preliminary Baseline Approach 24 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3.1 Motivation 24 
. . . . . . . . . . . . . . . . . . . . .  2.3.2 The Baseline System Structure 25 



2.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

2.4 Results and Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 

3 Database and Task 28 

3.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

3.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.1 Six-language Task 29 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.2 Eleven-language Task 30 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.3 Nine-language Task 32 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.4 Conversational Speech 33 

4 Baseline system and the Experiments 34 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Baseline LID System 34 

. . . . . . . . . . . . . . . . . .  4.1.1 Models Used in the Baseline System 34 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1.2 System Architecture 36 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Baseline System Evaluation 38 

4.2.1 Implementation of the Phone Recognizers . . . . . . . . . . . . . . .  39 

4.2.2 Evaluation of Systems with One Phone Recognizer . . . . . . . . . .  39 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.2.3 Benchmark Evaluation 42 

5 Methods Used to Improve the Baseline System Performance 44 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Enhanced Language Model 44 

5.1.1 Forward and Backward Bigram-based Language Model . . . . . . . .  44 

. . . . . . . . . .  5.1.2 Comparison of our Model with the Trigram Model 45 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Enhanced Duration Model 46 

. . . . . . . . . . . . . . . . . .  5.2.1 Analysis of the Duration Information 46 
. . . . . . . . . . . . . . . . . . . . . . . . .  5.2.2 A New Duration Model 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Neural-net Classifier 48 
. . . . . . . . . . . . . . . . . . . . . .  5.4 Optimization of the Language Model 49 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.4.1 Cost function 50 
. . . . . . . . . . . . . . . . . . . . . . . . .  5.4.2 Optimization Procedure 52 

. . . . . . . . . . . . . . . . . . . . . . . .  5.5 Robust Speech Signal Processing 54 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5.1 RASTA Processing 54 

. . . . . . . . . . . . . . . . . . . . . . .  5.5.2 Cepstral Mean Subtraction 54 

6 Experiments with the Proposed Improvements 56 
. . . . . . . . . . . . . . . . . .  6.1 Experiments with the Proposed LID Models 56 

. . . . . . . . . . . . . . .  6.2 LID Model Evaluation: Role of Phone Recognizer 57 

vii 



6.2.1 Evaluation of the Backward Language Model . . . . . . . . . . . . .  57 

6.2.2 Evaluation of the Combined Language Model . . . . . . . . . . . . .  59 

6.2.3 Experiment with the Complete Front End . . . . . . . . . . . . . . .  60 

6.3 Experiments with the Baseline System Enhanced by Each Method . . . . .  61 

6.3.1 Baseline System Plus Backward Bigram Language Model . . . . . .  61 

6.3.2 Baseline System with the Enhanced Duration Model . . . . . . . . .  62 

6.3.3 Baseline System with a neural network as the Final Classifier . . . .  62 

6.3.4 Baseline System with Optimization . . . . . . . . . . . . . . . . . . .  64 

6.4 Combining the Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

6.4.1 Evaluation on the Six- and Eleven-language Tasks . . . . . . . . . .  68 

6.4.2 Comprehensive Evaluation on the Nine-language Task . . . . . . . .  72 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.5 Channel Normalization 76 

6.5.1 Impact on the Phone Accuracy . . . . . . . . . . . . . . . . . . . . .  77 

. . . . . . . . . . . . . . . . . . . . . . .  6.5.2 Impact on the LID Results 77 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.6 Summary of Results 78 

7 Experiments with Conversational Speech and New Language Adapta- 
tion 80 
7.1 Language Identification using Conversational Speech . . . . . . . . . . . . .  80 

7.1.1 Analysis of the Conversational Speech . . . . . . . . . . . . . . . . .  81 

7.1.2 Improving System Performance . . . . . . . . . . . . . . . . . . . . .  82 

. . . . . . . . . . . . . . . . . . . . . . . .  7.1.3 Experiments and Results 84 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 New Language Adaptation 85 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2.1 Data and Tasks 86 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2.2 The Approaches 86 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2.3 Discussion 88 

8 Conclusion 90 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.1 Summary 90 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.2 Future Work 92 

A Models Used in the Final System 100 

... 
Vll l  



List of Tables 

NIST'94 Evaluation: The performance of systems from MIT Lincoln Lab 

a n d I T T  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

Identification rate of all the approaches . . . . . . . . . . . . . . . . . . . .  27 

Summary of the six-language task training sets and development set: num- 

ber of utterances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

Summary of the six-language task test set: number of utterances . . . . . .  30 

Summary of the Eleven-language task training set and developments: num- 

ber of utterances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

Summary of the Eleven-language task test set: number of utterances . . . .  31 

Summary of the NIST'95 test set: number of utterances . . . . . . . . . . .  33 

. . . . . . . . . . . . .  Summary of LDC sample data: number of utterances 33 

Summary of each Phone Recognizer . . . . . . . . . . . . . . . . . . . . . . .  39 

The phone sets used in the six phone recognizers . . . . . . . . . . . . . . . .  40 

Overall performance of systems based on one phone recognizer: using for- 

ward language model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

Baseline System Evaluation: The Benchmark Results . . . . . . . . . . . . .  43 

Comparison of OGI Model and Trigram Model . . . . . . . . . . . . . . . .  45 

. . . . . . . . . . . . . . . . . . . . . . .  Phone Index in Table 5.1 and 5.2 49 

New model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

Overall performance of system: using the Backward language model . . . .  58 

Overall performance of system: using the Combined language model . . . .  59 

Overall performance of systems based on different models: Using all six 

recognizers and (4.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

Size of the score vector: Input to  the final classifier . . . . . . . . . . . . . .  64 

Results (correct rate) for all the experiments . . . . . . . . . . . . . . . . .  65 

LID Results: Baseline System (BS) Enhanced by Each Method . . . . . . .  65 

Language Identification Correct Rate: the Enhanced system . . . . . . . . .  68 



6.9 Confusion matrix for the 45-second long utterances: Six-language Task . . .  69 

6.10 Confusion matrix for the 10-second long utterances: Six-language Task . . .  69 

6.11 Confusion matrix for the 45-second long utterances: Language name is 

denoted by its first two characters . . . . . . . . . . . . . . . . . . . . . . . .  70 

6.12 Confusion matrix for the 10-second long utterances: Language name is 

denoted by its first two characters . . . . . . . . . . . . . . . . . . . . . . . . .  71 

6.13 Language Identification Correct Rate: Six-language Task . . . . . . . . . . .  73 

6.14 Language Identification Correct Rate: Nine-language Task . . . . . . . . . .  73 

6.15 Confusion matrix for the 45-second long utterances: Six-language Task . . .  74 

6.16 Confusion matrix for the 10-second long utterances: Six-language Task . . .  74 

6.17 Confusion matrix for the 45-second long utterances: Nine-language Task . . 75 

6.1s Confusion matrix for the 10-second long utterances: Nine-language Task . . 75 

6.19 Results on the English-other language-pair task . . . . . . . . . . . . . . . .  76 

6.20 Impact of Channel Normalization on Phone Accuracy . . . . . . . . . . . .  77 

6.21 Impact of Channel Normalization on LID: Nine-Language Task . . . . . . .  78 

6.22 Impact of Channel Normalization on LID: Eleven-Language Task . . . . . .  78 

6.23 Summary of Results (Error rate): 11-language task . The final column lists 

whether the observed differences were statistically significant at  the 5% 

. . . . . . . . . . . . . . . . . . .  level, assuming a multinomial distribution 79 

. . . . . . . . . . . . . . . . . . . . . .  7.1 LID Results on conversational speech 85 

. . . . . . . . . . . .  7.2 Comparison of approaches to new language adaptation 88 

. . . . . . .  7.3 LID Results on new language adaptation: Nine-Language Task 88 



List of Figures 

. . . . . . . . . .  Communication using different languages via machine aid 

Flow chart of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The baseline system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Two Markov Model topologies for GMM approach . . . . . . . . . . . . . .  
System Architecture for GMM approach . . . . . . . . . . . . . . . . . . . .  
System architecture for BC approach . . . . . . . . . . . . . . . . . . . . . .  
Two HMM topologies for BC approach . . . . . . . . . . . . . . . . . . . . .  
System Configuration for F P  Approach . . . . . . . . . . . . . . . . . . . . .  
System Configuration for PRLM Approach . . . . . . . . . . . . . . . . . . .  
Our baseline system for these two language task . . . . . . . . . . . . . . . .  

General Structure of the LID system For an N-language task with M rec- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ognizers 

LID performance by each recognizer based on the forward language model . 

Analysis of Duration on the Same Language: English . . . . . . . . . . . . .  
Analysis of Duration on Different Languages: English/Japanese . . . . . . .  
Neural network as the final classifier . . . . . . . . . . . . . . . . . . . . . .  
Optimization of the LID model based on back-propagation . . . . . . . . .  

LID performance by each recognizer based on backward language model . . 
LID performance by each recognizer based on the combined language model 

. . . . .  LID performance of different models using the complete front end 

. . . . . . . .  Overall LID performance by systems with different front ends 

Analysis of Language Model (English Front End) . . . . . . . . . . . . . . .  
Optimization Results (English Front End) . . . . . . . . . . . . . . . . . . .  

Phone distributions of monologue speech and conversational speech (by 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  English Phone Recognizer) 

Distributions of phone durations for monologue speech and conversational 

speech (English Phone Recognizer) . . . . . . . . . . . . . . . . . . . . . .  



Abstract 

Development of An Approach 
to Language Identification based on 

Language-dependent Phone Recognition 

Yonghong Yan, Ph.D. 
Oregon Graduate Institute of Science & Technology, 1995 

Supervising Professor: Etienne Barnard 

The goal of Language Identification (LID) is t o  quickly and accurately identify the lan- 

guage being spoken. Although the differences among different (spoken) languages are 

generally large by any sensible measure, automatic language identification remains a ma- 

jor challenge (perhaps indicating the immaturity of the field of speech processing). 

Current language identification systems vary greatly in terms of information utilization 

and system complexity. Understanding all of these approaches in a unified framework is 

one of the major challenges in automatic language identification. In this dissertation we 

provide a partial unification by studying the roles of acoustic, phonotactic and prosodic 

information in a particular system for language identification. 

A comparative study was first conducted on a common two-language task (English and 

Japanese) to  get a grasp of these issues. The results from the comparative experiments 

were used as basis for the development of a general purpose language-identification base- 

line system. 

Within this frame work, two novel LID information sources (backward language model 

and a contest-dependent duration model) were introduced. These two models increased 

xii 



language modeling accuracy a t  a moderate cost in terms of training data. Also, a novel 

optimization method was introduced to enhance the discrimination between different lan- 

guages. These methods led to  substantial improvements in system performance. Prelimi- 

nary studies into channel normalization: conversational speech and system adaptation t o  

new languages were also pursued. 

A general purpose L,ID software tool kit was developed based on the algorithm developed 

in this thesis work. The final LID system developed attained correct rates of 91% (45- 

second segments) and 77% (ten-second segments) on a commonly used nine-language task. 

This is one of the best results reported to date on these tasks. 



Chapter 1 

Introduction 

With the growth of global partnership, the demands for communications cross the bound- 

aries of languages are increasing. This gives rise to new challenges for automatic speech 

recognition: before the machine can understand the meaning of the utterance, it must 

identify which language is being used. The task of Automatic Language Identification 

(LID) is to  quickly and accurately identify the language being used. 

The applications of language identification include human and automatic translation ser- 

vices. emergency services, and multi-lingual information retrieval. Figure 1.1 shows, for 

example, how two people who speak different languages 

Speech Synthesizers 

* 

- - -- 

Figure 1.1: Communication using different languages via machine aid 

could communicate with each other via a multi-lingual spoken language system. 

Compared with other areas in speech processing, Automatic Language Identification is a 

relatively new pursuit. Although it is similar t o  Automatic Speech Recognition, Automatic 
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Speaker Identification and Accent Detection in some aspects, the differences between all 

of these tasks are substantial. The performance of a language-identification system is 

currently limited by several unsolved problems, such as: 

1. What are the best features for language identification. 

2. How t o  reliably extract these features for reliable LID. 

3. How t o  model these features with limited data. 

4. How to  increase discrimination between different languages. 

5. How to  integrate multiple information sources into a unified framework. 

In this dissertation, we describe the development of an approach t o  language identification 

based on language-dependent phone recognition, which shows our attempt t o  address these 

issues. 

1.1 Background 

In this section, we first discuss the inherent differences among different (spoken) languages. 

Based upon an understanding of these differences, we discuss the possible information 

sources that  can be utilized in language identification and the difficulties in using these 

information sources. 

1.1.1 Nature of the Problem 

Theoretically, the differences between different spoken languages are manifold and large. 

Although these differences can be found a t  various levels (e.g. phoneme inventory, acoustic 

realization of phonemes, lexicon, phonotactic regularities, and prosodics etc.), reliable 

language identification is still a challenge since reliable algorithms do not exist a t  any of 

these levels. 

Composition of a spoken language: the Foundation for LID 

The sounds of a spoken language can be described in terms of a set of abstract linguistic 

units called phonemes. A phoneme is the smallest contrastive unit in the phonology of a 



language. Each phone (the realization of a phoneme) has its unique articulatory configu- 

ration of the vocal tract. Different combinations of phonemes constitute different words. 

So different words consist of different sequences of phoneme strings that  correspond t o  the 

vocal tract movements needed to  produce the words. Furthermore, different combinations 

of words produce an infinite number of sentences that  carry all the information that  one 

wants t o  convey. 

So a spoken language is composed of an infinite number of combinations of the set of 

phonemes this is attached to  various other sources of acoustic information, such as dura- 

tion, pitch variation and stress. 

Articulatory Phonetics: Theoretical Basis for LID 

Articulatory phonetics analyzes the phonemes in terms of the linguistic features of these 

sounds, and relates these to  positions and movements of the articulators. Phonemes can 

be classified by: (1) manner of articulation, (2) presence or absence of voicing, and (3) 

place of articulation. 

Manner of articulation describes different phones according to  the ways the vocal 

tract restricts airflow. This divides the phonemes of English into the following broad 

categories: stop, fricative, liquid, glide, vowel and nasal. 

a A phoneme is classified as voiced or unvoiced depending upon whether the vocal 

folds vibrate or not during its realization. 

Place of articulation refers t o  the location of the narrowest constriction in the 

vocal tract during pronunciation. 

Different combinations of manner, voicing and place result in different phones. 

The Differences Among Different Languages: the Possible Information Sources 

The phoneme sets of different languages are different. 

Languages do not use all possible combinations of manner of articulation, voicing 



and place of articulation. Since each language uses only a subset of the phones, 

different languages tend t o  have different phoneme inventories. 

For example, English has both voiced and unvoiced stops while Mandarin Chinese 

only has unvoiced stops. French has 15 vowels while Spanish has only five vowels. 

German has front rounded vo~vels and Russian has back un-rounded vowels while 

these kinds of phonemes are not permitted in English. 

a Even when phonemes are common to  two languages, they may differ slightly in 

realization. 

For example the German phoneme /h/ is sightly different from the English /h/: the 

latter is fricated less than the former. 

The lexical structures and grammars are different for different languages. 

This provides high level information for discrimination. 

a Stress, duration and pitch are used differently in different languages. 

For example, Mandarin Chinese is called a tone language: different pitch patterns 

on the same phoneme string denote different words. 

From the above sampling of articulatory phonetics, we can draw the following conclusions 

as a theoretical basis for LID: 

a The sets of phonemes of different languages are different. 

The possible phoneme strings (legal combinations of phones, guided by the orthog- 

raphy and grammar of the language) are different for different languages. 

a Each language has its own way to control duration, pitch and stress (prosodic infor- 

mation). 

a Acquisition of high level knowledge about the languages can lead to  near perfect 

performance (e.g. a native speaker can identify his or her mother language without 

any difficulty), since all these information sources combine to  make understanding 

possible. 



1.1.2 The Difficulties: Challenges to LID 

In the previous subsection we discussed the differences between different languages. In 

this subsection we will discuss why language identification remains a challenge in spite of 

these great differences. 

As described above, a spoken sentence can be viewed as the concatenation of phoneme 

strings according to certain rules (orthography and grammar etc.). The speech signal can 

be viewed as the output of the speech production process (the realization of these phonemes 

by the articulators) and is thus related to both its linguistic input (e.g., sentences) and 

extra-linguistic sources (e.g. speaker identity). One can therefore attempt t o  identify lan- 

guage directly at the acoustic level, or by studying differences a t  higher levels. The first 

approach has achieved only limited success in various attempts ([Mut93, Zis93, NUS92]), 

and we therefore assume that higher levels need to  be studied. 

To study languages above the acoustic level, we first need to  recover the linguistic input 

from the acoustic signal. According to common usage in speech processing, we therefore 

need a phone recognizer (which can recognize broad categories or fine phones, or some- 

thing intermediate). 

This highlights the central difficulty of LID, since we are exclusively interested in (1) 

speaker independent (2) continuous (3) telephone speech. These three conditions compli- 

cate speech recognition severely. Since the vocal tracts of different people are different, 

speaker variations in the realization of phones will be substantial. Continuous speech in- 

troduces co-articulation which decreases the distinguishability of different phonemes, and 

makes the detection of phoneme boundaries difficult. The telephone channel has only 

limited bandwidth (around 3.4 kHz); thus. the high frequency information in the speech 

signal is lost, resulting in an increase in the error rate for phone recognition (especially 

for consonants). 

After we obtain a phone string, we wish to  use it t o  distinguish between languages. For 

this purpose, spoken utterances can be decomposed from sentences to  words, then t o  

phonemes. But for LID, even if we successfully recover the phoneme strings, we encounter 

a third problem: vocabulary size. 



Humans have no problem in identifying a language they understand well. Similarly, there 

is no doubt that a human-like language identification system could achieve nearly flaw- 

less performance, if it could have a very large vocabulary which is accurated recognized 

and acquire knowledge of the syntactic and semantic rules for each language in the task. 

With current speech techniques and computer resources, development of such a system is 

impractical. The reasons are: 

Speech recognition system performance is still far from human levels of performance 

([YWBS-I]). 

Current speech recognition systems work best given strong constraints on the vo- 

cabulary size. But for unrestricted LID, no such assumption can be made, since the 

input will be free speech. This situation makes it impossible t o  construct a network 

t o  recognize all the possible words (which current techniques demand); it is therefore 

not possible to  utilize the highest levels of information (grammar, semantics etc.). 

Collecting and selecting sufficient knowledge of multiple languages is not a trivial 

task. 

In order to  get a robust representation of this information, large amounts of training 

data  will be required. 

Given con~monly available computers, it is still a challenge t o  run a single language 

large vocabulary, continuous speech recognizer in real time. Building a LID system 

based on such a technique will be even more expensive, since multiple recognizers 

will be i~ir-olved. The tradeoff between accuracy and computational simplicity has 

to  be considered. 

Thus in order to capture the language information, a modeling unit which compromises 

between the need for high-level information and the limitations of speech recognition 

algorithm is needed. This is addressed in more detail below. 
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1.2 Related Work

Compared \vith automatic speech recognition, automatic language identification has pro-

gressed slowly during past two decades. Until recently, only a small number of pa-

pers were published[Mut93]. Early approaches that exploited the acoustic feature vec-

tors included a filter band based approach[LD74], an LPC-based polynomial classifica-

tion approach[CI82], and formant vector quantization based approaches [Foi86, GMW89],

House and J\euburg[HN77] published the earliest language identification approach based

on the different phonotactic constraints of different spoken languages. Later finite-state

models were studied to capture the transition probabilities between broad phonetic

categories[LE8O]. With the improvement of speech processing techniques, more sophisti-

cated approaches have been studied recently. These include systems using vector quanti-

zation [Sug91], Hidden Markov Models (HMM) [UN90, SAG91, RMM91, NUS92, Zis93],

neural-networks [MC92], embedded keywords [RR94], syllabic spectral features[Li94], the

distinction between polyphonemes and monophonemes [ADB94], and subword recogni-

tion exploiting acousticjphonotactic constraints [MBA+93, TCP94, HZ93, HZ94, RSN94,

LG94, KH94. ZS94, BABC94]. Systematic reviews of language identification activities can

be found in[Mut93, MBC94].

These efforts have improved the performance of LID systems dramatically. It was shown

that accurate classification could not be achieved by simply using frame-based acoustic

feature vectors; discriminates such as phonotactic constraints are needed. Most state-of-

the-art LID systems directly or indirectly employ phonotactic information, modeled in

terms of transitions among subword units. Generally, the performance of these systems

is correlated with their complexity. A system that exploits several information sources

outperforms one relying on only a single information source.

1.2.1 Early Work: 1973-1992

A detailed review of LID research during this period can be found in [Mut93]. Here, we

only list a fe\\' papers which are more relevant to this dissertation.
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. House and Neuberg

By using the phonetic transcriptions of text from eight languages (English, Chi-

nese, Greek, Japanese, Korean, Russia, Swahili and Urdu), House and Neuberg

demonstrated that excellent language identification could be achieved by exploiting

phonotactic information. In their paper[HN77], they showed that the phonotactic

information was sufficient for language discrimination by modeling the phone se-

quence information as a Markov process.

Although their experiments were carried out at a symbolic level (as opposed to on the

acoustic signal), their work had great influence on recent works (e.g. [HZ94, YB95b]).

Their conclusions form a basis for the current study.

. Foil

Foil[Foi86] used formant frequencies (described in terms of values and locations) to

represent the characteristic sound patterns of a language. Language identification

was performed by exploiting the frequency of occurrence of these patterns. A k-

means clustering algorithm and vector-quantization were used.

On a three-language task, the LID correct rate was 64% with 11% rejections (on

data collected from a radio receiver with a 9db SNR).

. Nakagawa, Ueda and Seino

In their work[NUS92], four approaches (vector quantization, discrete HMM, contin-

uous density HMM and mixture Gaussian distribution model) were studied. All the

approaches were designed to perform LID by using acoustic features. The compar-

ative experiments were conducted on the same data from four languages: English,

Japanese, Mandarin Chinese and Indonesian. They found that continuous HMMs

and mixture Gaussian models (correct rate 81.1%) were superior to VQ (correct rate

77.4%) and discrete HMMs (correct rate 47.6%).

By enhancing the best system with duration modeling and dynamic features, the

best result was 86.3%. However it was found thereafter that improved performance

could be obtained by incorporating supra-acoustic information[MBA +93, ZS94], and

these purely acoustic methods have therefore become unpopular.
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1.2.2 Current Activities: 1992-present

Since the release of a publically available LID database ([MC092] etc.), research on LID

has been rejuvenated, and many more papers were published during this period. Impres-

sive results (e.g. [Zis9S, Li9S, YB9Sc]) have been achieved on fairly large tasks (relative

to the available computation power).

Two systems (one developed at MIT Lincoln Lab and the other developed at ITT) achieved

remarkable performance on a public evaluation (by the National Institute of Standard and

Technology (NIST)) in 1994[MBC94]. The results they achieved are summarized in Ta-

ble 1.1.

Table 1.1: NIST'94 Evaluation: The performance of systems from MIT Lincoln Lab and
ITT

Task
] Six-Language I Eleven-Language I

MIT Lincoln Lab's approach[ZS94, Zis9S] is called a PRLM-P system: multiple phone

recognizers (PRs) feeding n-gram language models (LMs) running in parallel (hence the

-P). The system is composed of two parts (for an N language task): (1) multiple (M)

language-dependent phone recognizers (front end), and (2) M sets of N language models

(see Section 1.3 for a similar system). In [ZS94], !vI = 6, and in [Zis95] !vI = 16 (gender-

dependent recognizers are used for the eleven-language task). For each testing utterance,

the final LID likelihood scores for each language in the task were calculated as the sum of

the corresponding individual log likelihoods from each of the phone recognizers.

ITT used a speaker based system[Li94, Li95]: a nearest neighbor scoring technique is

employed with score normalization processes similar to the likelihood ratio scoring at

MIT 4S-second 90% 80%

Lincoln Lab 10-second 82% 70%

ITT 4S-second 86% 78%

10-second 75% 64%



both speaker and language levels. The input vectors are syllabic based feature vectors, 

containing the dynamic spectral (and prosodic) changes a t  syllabic nuclei. The system 

collects a number of feature templates for different speakers with known gender. The 

front end uses combined "onset" and "coda" spectral features as well as the syllabic 

"prosodic" features. During testing, the N nearest reference speakers (reference templates) 

are calculated, and the final LID result is obtained according t o  the majority votes. 

The major differences between these two systems are: 

One (MIT Lincoln Lab) employs language statistics, while the other (ITT) contains 

non-parametric LID models (speaker templates). 

ITT7s approach exploits acoustic information directly while MIT Lincoln Lab's ap- 

proach uses information based on phone recognition. 

MIT Lincoln Lab's system is based on speaker-independent phone recognizers, and 

thus ignores the speaker-specific information. One of the assumptions of the ITT 

system, on the other hand, is that  the difference between different speakers might 

be larger than the difference between different languages. 

Kote that: 

Although these two approaches use different feature sets and methods, they perform 

with similar accuracy. 

This suggests that  with current techniques, the differences between different lan- 

guages can be detected a t  different levels. It may be possible to  further improve 

performance by combining several information sources. 

From the development and recent improvement of these two systems ([ZS94, Zis951 

and [Li94, Li951) and other recent reports (e.g. [KH95, HZ94, TCP94, PC95]), there 

is a common trend that more and more detailed modeling is employed in order to  

improve the existing systems. As a result, more training da ta  are needed. Also, the 

computational complexity of these systems is very high. How t o  solve these new 

problems poses additional challenges t o  LID research. 



1.2.3 The Problems 

Although encouraging LID results have been reported in recent work mentioned above, 

further improvement requires the resolution of several issues, such as 

1. How to  balance the contradictory requirements between detailed modeling and 

database availability. 

Muthusamy et al.[MBA+93] reported significant improvement by using phonemes 

rather than broad categories as basis for LID, and others (e.g. [ZS94, HZ941) have 

similarly found that  more detailed modeling is beneficial. However, increasing the 

amount of details in the models inevitably requires more training da ta  for the models 

to  achieve the same robustness. 

2. How to  model prosodic information. 

Perceptually, variability in prosodic information is one of the major distinctions 

between different languages. How to differentiate the speaker-specific and language- 

specific information and how to  model it effectively are still unsolved problems in 

speech research. 

3. How to  best combine several information sources into one system. 

The LID scores calculated from different information sources (LID models) for a 

given input utterance reflect different aspects of the utterance. A faulty assumption 

in combining these information sources may fail to  capture the underlying relations. 

4. How to  maximize the useful information obtained from the imperfect outputs of 

current subword recognizers. 

For potential telephone-oriented LID systems - which we study exclusively - this 

presents a severe problem. The phone recognition error rate is much higher for 

telephone speech than for high quality speech. How t o  improve speech recognition 

performance with the limited telephone bandwidth and how to  handle channel noise 

are still challenging problems for speech recognition researchers. 

5. How to  decrease the computational complexity. 

For many potential LID applications, computational simplicity is important. How to  



balance the recognition accuracy and CPU cycle requirement is an important issue. 

1.3 An Approach to Language Identification based on language- 

dependent phone recognition. 

In this dissertation, we describe the development of an LID system based on phone recog- 

nition which addresses the above problems. Figure 1.2 illustrates the flow chart of the 

system. 

Feature Front End 

(LPC analysis, channel 
Vector 

Phone string from recognizer 1 (PSI) 
phone string from recognizer M (PSM) 

I 

Figure 1.2: Flow chart of the system 

- Score Vector from PSI 
Score Generator 

(LID likelihood Classifier 
Score Vector from PSM 

calculation ) > 

The baseline system is designed to meet the following criteria: 

LID 
> 

Result 

a A general architecture which should be able to  support automatic training and 

testing for different tasks must be employed. 

a Multiple information sources must easily be included. 

a Computational complexity must be reasonable. 

1.3.1 Finding a Good Modeling Unit 

To satisfy these criteria, we have selected the phone as our modeling unit. It has the 

following advantages: 

1. Natural representation of the acoustic signal. 

The phone is the realization of the linguistically fundamental unit, the phoneme. 



It is therefore the bridge between the acoustic signal and high level information. 

From the boundaries of the phone segments and the sequences of phones, acoustic 

information, prosodic information and phonotactic information can be extracted. 

2. Minimum representation. 

Unlike other units (such as syllables or words), the context-independent phone in- 

ventory is one of the smallest sets which can be used to  describe a spoken language. 

Consequently the statistically based model size (number of parameters) will be small 

and the model itself will be trained easily. For example, for a model with N model 

units, the number of bigrams is O(N2). A bigram model based on words will be 

much larger than the model based on phones. 

3. Trainability. 

Phone recognition systems are relatively easy t o  train. Given the effort in the past 

few decades, the technology for phone recognition is relatively mature (although 

accuracy remains an issue). 

Also, the training of monophone models does not require a very big database, and 

the computational complexity is relatively low both for training and testing. 

4. Extensibility. 

High level information (language modeling etc.) can be retrieved from the phone 

string. Both prosodic information and the phonotactic constraints of different lan- 

guages can be modeled in terms of phone sequences. 

1.3.2 The Baseline System 

The baseline system is designed based on the above considerations. The system, which is 

shown in figure 1.3, 

is composed of three parts: (1) HMM based phone recognizers as front end, (2) LID 

score generators and (3) a final classifier. 

Using the phone set of one language to model the phonotactic constraints for all the 

languages in the task has been proven to  be feasible for language identification by other 
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Figure 1.3: The baseline system 

researchers (e.g. [MBAS93, ZS94, HZ931 etc). In this dissertation, this idea is extended. 
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1.3.3 Contributions: Methods Proposed to Improve the Baseline Sys- 

tem 

- LID 

The major contributions of this dissertation are: 

1. Increasing phonotactic modeling accuracy without drastically increasing the amount 

of required training data. 

A language model based on right-context bigrams is proposed as an additional set 

of features to the conventional forward bigram language model (which uses left con- 

texts). The introduction of this model improves modeling accuracy (to capture both 

forward and backward information) without increasing the number of parameters in 

the model excessively. 

2. A better representation of duration information. 

A straightforward extension of the duration model (a generalized context-dependent 

model interpolated with a context-independent model) is proposed. 

3. A better way t o  integrate multiple information sources. 

Experiments were conducted to  evaluate using a neural-network for information 



integration in comparison with a more standard linear classifier. 

4. A neiv way to  optimize the LID models. 

In order to compensate for limited phone accuracy, a method of optimizing the LID 

models based on error back-propagation is proposed. 

5. Post-processing for conversational speech and new language adaptation. 

At the acoustic level, cepstral mean subtraction was implemented to  enhance the system 

robustness. 

The LID systems were evaluated on six-language, nine-language and eleven-language tasks. 

The best results achieved were: for 45-second long utterances and 10-second long utter- 

ances, 92% and 83% (LID correct rate) for the standard six-language task, 91% and 77% 

on the standard nine-language task, and 90% and 77% for the standard eleven-language 

task. The results compare favorably with previously reported results on the same tasks. 

1.4 Outline of the Dissertation 

In Chapter 2,  we first present comparative experiments using some previously reported 

approaches, and use this as foundation for the preliminary baseline system. Thereafter, the 

database used in this study is described (Chapter 3), and Chapter 4 describes the baseline 

system. Chapter 5 details the four methods proposed t o  enhance the system performance, 

and Chapter 6 presents the evaluation of our system. Our preliminary studies into the 

processing of conversational speech and adaptation to  handle new languages are reported 

in Chapter 7 .  Concluding remarks and a description of future work are given in Chapter 8. 



Chapter 2 

Preliminary Study: Comparative 

Experiments 

At the time the author began working on this thesis, a few sites [ZS94. HZ94, Li94, NUS92, 

MBA+93] had reported respectable results. These approaches belong t o  two categories, 

using either acoustic feature-based likelihoods or language-dependent language modeling 

scores. These systems had been developed and evaluated using different corpora, which 

made comparisons between them difficult. 

As an initial attempt to  understand the behaviour of different approaches in these two cat- 

egories using the same da ta  set, we implemented the following approaches: (a) Gaussian 

mixture-based Markov Model (GMM) approach, (b) HMM-based Broad-Category (BC) 

classification, (c) HMM-based Fine-Phonetic (FP) classification and (d) Bigram-based 

Phoneme Recognition Language Modeling (PRLM) approach. These four representative 

approaches encompass a large part of the historical and current approaches which are 

related to  this work. 

Since the cost (in terms of CPU time and disk space) of implementing an automatic lan- 

guage identification system is relatively high, we limit our task to  the distinction between 

English and Japanese utterances from a particular corpus (see below). 

Based on analysis of our results using these approaches, our preliminary baseline approach 

which integrates acoustic level scores and language-modeling scores is evaluated. The base- 

line system developed using the same task data  achieves our best result. This shows the 

importance of combining features from different sources. 



2.1 Database and Feature Representation 

The da ta  used were taken from the OGI-TS corpus[MC092]. It is a telephone speech 

database which was designed for language identification research. More details on this 

database will be introduced in Chapter 3. We used the 45-second long "story-before-the- 

tone" (story-bt) parts in English and Japanese which had been phonetically labeled. For 

each language, the training set contained 80 utterances, the development-test set con- 

tained 20 utterances, and the test set contained 50 utterances. The ten-second utterances 

were obtained by chopping the whole utterances. Since some story-bt utterances were 

shorter than 45 seconds, we had 382 utterances total in our 10-second test set. 

Speech data  were parameterized every 25.6 ms with 12.8 ms overlap between contiguous 

frames. Two independent streams of feature vectors with 13 dimensions each were cal- 

culated: 12th-order Mel-Scale LPC Cepstra appended with normalized Energy and the 

Delta Cepstra appended with Delta Energy. 

During identification, the log probability a t  the acoustic level for language 1 is calculated 

as: 
T 

p ( { s ,  dt}lMcr, Mdl) = C ( ~ ~ l o g ~ ( ~ t l h f c l )  + CzlogP(dt1-Mil)) 
t=1 

(2.1) 

where ct and dt are the cepstra+ energy vector and the delta vector respectively, Mcl and 

Mdl are the statistical models for the corresponding vector streams for language 1 in the 

task, and C1 and C;! are the stream weight coefficients. In our implementation, we set 

C1 = 1 and Cz = 0.6. 

2.2 Comparative Experiments 

In this section, the algorithms compared are detailed. 

2.2.1 Gaussian Mixture based Markov Model Approach (GMM) 

In GMM approaches[NUS92, Zis931, the sequence of frame-based feature observations ex- 

tracted from the speech signal is modeled by a Markov process. The Markov process is 

formalized mathematically as a set of state transitions within a given state space. The 



transition probabilities depend on the current state and the observation, and are indepen- 

dent of previous observations and transitions. Thus, if the observation vector a t  the time 

frame is represented by Xi and Pi is the probability of the vector being in the various 

states a t  time i, we can write: 

The Markov process has been used extensively in speech processing, especially in noise 

reduction, speaker identification, accent detection and language identification. 

The advantage of this approach is its simplicity, both in training and testing. Importantly, 

it does not need labeled data. It allows us t o  find the distinction between different lan- 

guages based on the acoustic observations alone. 

Each language is modeled by a Markov Model, with Gaussian Mixtures associated with 

each stream on each state. During testing, a maximum-likelihood algorithm is applied for 

each language model given the test data  in order t o  find the maximum likelihood path. 

The language is identified based on a comparison of the maximum likelihood values ob- 

tained from the models of each language. 

TIYO experiments were carried out, using the Markov topologies given in Figure 2.1. 

(a) One state (b) Five state 

Figure 2.1: Two Markov Model topologies for GMM approach 

The general architecture of the system is given in Figure 2.2. 

Single state per language 

In this esperiment, the state space of each language contains only one state. A 

36-element Gaussian mixture is associated with each stream. 
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Figure 2.2: System Architecture for GMM approach 
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Five states per language 

In this experiment, the state space of each language contains five states. The tran- 

sition probabilities between all states are initially equal, and the Gaussian mixture 

of each stream for each state consists of 36 tied global Gaussian density functions. 

GMM for Japanese 

During training, the training data  are randomly chopped to  a length of between 0.1 to  3 

seconds length. A forward-backward algorithm was run on these data until the models 

converged to  the preset threshold. 

The Viterbi algorithm is used to  decode the test data. The final decision is made based 

upon the maximum likelihood criterion given in ( 2.3): 

2.2.2 Broad-category based Approach (BC) 

A broad-category based approach t o  automatic language identification has been studied 

bj- Muthusamy[Mut93]. In our approach, the phonemes of each language are divided into 

sis broad categories, i.e., vowel, consonant, nasal, liquid, noise and non-linguistic. 

The non-linguistic model is proposed in this work since phenomena such as the filled 

pause are very common in natural (as opposed t o  read) speech. Within the language, 

these phonemes are acoustically different from their phonemic counterparts in normal 

continuous utterances. Furthermore, different classes of filled pauses are typically used in 

different spoken languages. We thus decided t o  model filled pauses explicitly t o  increase 

the robustness of the language model (since they are the "phonetic outliers" within the 



phonemic classes). An informal test showed this model increased system performance 

slightly. In natural speech, silence segments are also sometimes too long to  be absorbed by 

the phoneme models, and noise levels are not consistent due t o  the variable communication 

channels. We therefore also group noise and extended silence segments together as a single 

noise model. 

We did not divide the consonant class into the traditional stop subclass and fricative 

subclass since we consider the loss of consonant information due to  the bandwidth of 

telephone channels to  be relatively large. Hence distinctions between these subclasses 

tend t o  be unreliable and less informative. 

One broad-category phone (class) recognizer is trained for each language. The transition 

probabilities between pairs of classes are estimated from the training data  and smoothed 

using the development data. The smoothing function we used is given in ( 2.4): 

where S;, Sj denote different classes, Pt and Pd denote the log transition probabilities 

from class S; to class Sj which are calculated from training data  and development data  

respectively. a is the smoothing factor; in our approach it is set t o  0.8, which represents 

result 

the ratio of the sizes of the two data sets. 

Likelihood 
BC Recognizer From the best 

for English 

Figure 2.3: System architecture for BC approach 

Speech 

) 

Wave 

The HhIM model for each broad-category phone (class) for each language has a four- 

element Gaussian mixture associated with each stream on each state. A Gaussian density 

function is represented by a mean vector and full covariance matrix. Language identifica- 

tion is performed using a beam searching Viterbi algorithm decoding the test utterances 

once by the broad-category recognizer of each language. The two log likelihood scores 

LPC 
Analysis 

BC Recognizer 
Likelihood 

for Japanese From the best 
Path 



obtained from the maximum likelihood path decoded by the Viterbi search for each lan- 

guage are used in the maximum likelihood criterion stated in ( 2.3) to  make the final 

classification. 

The system architecture is given is Figure 2.3. 

The pruning thresholds used in the Viterbi beam search were adjusted independently for 

each language based on the classification performance on the development set. This type 

of adjustment is performed throughout the following approaches, and not mentioned ex- 

plici tly. 

The accuracies of the broad-category class recognizers for English and Japanese on the 

development-test set were 59.3% and 60% respectively. 

(a) Three-state HMM (b) Five-state HMM 

Figure 2.4: Two HMM topologies for BC approach 

Two HMM topologies for each broad-category phone (class), which are shown in Fig- 

ure 2.4 , are trained and tested. 

2.2.3 Fine-phonetic Approach (FP) 

As with the BC approach, we process an utterance of unknown language in parallel by 

different sets of models (language-dependent phone recognizer) for each of the languages 

in the task, and choose the language associated with the recognizer providing the highest 

likelihood score. Here, however, phone models rather than broad-category models are used 

([MBA+93, LG93, ZS94, RR941). 

In our implementation, the system configuration (shown in Figure 2.5) is similar to  

the configuration of the broad-category based approach. The differences between these 

two approaches are: 
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Phone recognizer
for Japanese

Wave

LPC

Analysis

Phone recognizer

for English

Speech

Likelihood
From the best
Path

Figure 2.5: System Configuration for FP Approach.

1. For each language, a fine phone recognizer is used instead of a broad-category class

recognizer. Each phone recognizer of a language contains the models for its mono-

phones (some mono-phones are merged because they are rare in the training data),

and the most frequent right-con text-dependent biphones (those which occur more

than 70 times in the training data). This definition results in 175 models (46 mono-

phones and 129 right-con text-dependent biphones) for English and 119 models (26

mono-phones and 93 right-context-dependent biphones) for Japanese.

2. In each state of any phone model, a three-element Gaussian Mixture is associated

with each stream; the Gaussian density function is represented by a mean vector

and diagonal covariance matrix.

3. The bigram grammars used with the Viterbi search algorithm are estimated from

the training data and smoothed with the development data.

4. After the Viterbi search finds the most likely path, the probabilities and frame

numbers associated with each segment except the noise are accumulated; the final

likelihood scores for each language are obtained by normalizing the accumulated

probability with the accumulated frame number.

The phone accuracies for the English and Japanese phone recognizers were 48% and 58%

respecti vely.
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2.2.4 Bigram-based Phoneme Mapping Approach (PRLM)

Here we use a language-dependent phone inventory to model the phonotactic constraints

of all the languages in the task (see Figure 2.6). Thus, several language-dependent phone

recognizers run in parallel([ZS94]) to enhance system performance.

LanguageModel

ForEnglish
English

PhoneRecognizer
LanguageModel

For Japanese
Argmax(Le,Lj)

Speech

Japanese

PhoneRecognizer

LanguageModel

ForEnglish

LIDresult
Wave

LanguageModel

For Japanese

Figure 2.6: System Configuration for PRLM Approach.

In our implementation, the similarities between this approach and the previous ap-

proach are:

1. Each language has its own phone recognizer.

2. The topology of each phone model is the same.

3. The same Viterbi algorithm is used to find the most likely path.

The differences bet,,"een these two approaches are:

1. Unlike in the FP approach, only mono-phone models are used in this approach.

2. A language model based on bigrams and unigrams[Je190] is used to capture the

phonotactic constraints:

T

P = 2:)aP(OiIOi-d + (3P(Od)
i=l

(2.5)
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where Oi is the ith phone in the decoded best path, P(OiIOi-d is the bigram term

and P(Od is the unigram term. a and f3 are the weight coefficients; in our approach,

they are empirically set to 1.0 and 0.6 for the whole utterances and 1.0 and 0.2 for the

ten-second segments respectively, and log probabilities are used. The bigram terms

are estimated from the training data and smoothed using the development data, and

the unigram terms are calculated from the relative frequencies of the phones in the

(decoded) training data.

3. Associated with each phone recognizer, one language model is generated for each

language through phone mapping. The models are obtained from the training data

decoded by the associated recognizer. During testing, each recognizer generates a

score for each language. The scores are accum ulated for each language from the

scores generated by each recognizer.

4. Unlike the previous approaches, the quantitative measurement obtained at the level

of acoustic features is discarded. Only the score5 obtained from the language models

contribute to the final decisions.

2.3 Preliminary Baseline Approach

Our preliminary baseline approach is introduced in this section. It incorporates several

sources of information within one system framework. In particular, acoustic and language

modeling features are combined.

2.3.1 Motivation

As we discussed in the previous section, language modeling is a powerful technique in

LID, but system performance depends solely on the performance of the phone recognizer,

i.e., depends on the accuracy of the decoded phone strings. The segment-based acoustic

features (e.g. cepstrum) focus on the realization of each individual phone. From the error

analyses of the comparative experiments (which we will discuss in section 2.4), we know

that these two information sources are not entirely correlated.
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Figure 2.7: Our baseline system for these two language task.

2.3.2 The Baseline System Structure

The baseline system for this task is shown in Figure 2.7. The system consists of three

parts: phone recognizers for English and Japanese, two sets of language models for these

two languages for each corresponding recognizer, and a final classifier.

The arrows labeled 1,...3 represent the acoustic and phonotactic scores for being En-

glish and Japanese based on the output of the English front end. Similarly, 4 to 6 represent

the same scores based on the output of the Japanese front end.

2.3.3 Implementation

1. Front end

The front end has two functions: phone recognition and segmentation. For an N-

language LID system we implement N phone recognizers to capture both acoustic

and phonotactic information for each language. Considering implementation effi-

ciency and the compromise between these two functions, we select an HMM as our

front end. The HMM is a good technique for continuous speech recognition though

it is not an accurate boundary detector (segmentor).

The HMlI-based phone recognizers for this experiment were those used in the

PRLM-P experiment.

2. Score generator

The implementation of the score generator for each front end is straightforward.



During training, we estimate the language models (n-gram) as given in ( 2.5) and 

the acoustic model of each phone for each language from the training data.  During 

testing, test scores are calculated from the output of the front end. 

For this two-language task, we have two score generators. Each score generator will 

generate 2+1 scores (two language modeling scores, one acoustic score). There will 

thus be six inputs t o  the classifier. 

The language model contains only monophones; before we estimate the language 

modeling score, the decoded context-dependent phonemes are converted back t o  

monophones. 

3. Classifier 

A linear classifier[Fuk90] was used. The input t o  the classifier for an N-language LID 

system will be two vectors (N2 language modeling scores and N acoustic likelihood 

scores), and the physical meanings of these two vectors are different. A classifier 

should have the ability to  learn the relations among these scores. 

2.4 Results and Analyses 

All the results of the approaches described in this chapter are given in Table 2.1. 

We see that  system performance is highly correlated with system complexity. A detailed 

examination of the misclassified utterances revealed that  for the first three approaches 

(which rely upon various forms of the acoustic likelihoods), the sets of misclassified utter- 

ances overlapped substantially, which confirmed the need for detailed modeling. 

The GMM results using one-state and five-state models are similar. The number of 

Gaussian mixtures is clearly not large enough to  capture the information of all phonetic 

realizations; therefore the temporal information in the signal can not be exploited, result- 

ing in a failure t o  capture the sequential information by the multi-state approach. 

From the results of the two broad-category experiments, we found that  with limited train- 

ing data,  a three-state phone model is sufficient. Therefore the three-state model is used 

in PRLM and our baseline approaches. 



Table 2.1: Identification rate of all the approaches 

By comparing the misclassified sets of the fine phonetic approach and the phoneme- 

Approach 

GbIM (1 state per language) 
GMM (5 state per language) 

BC (3  state per class) 
BC (5 state per class) 

FP 
PRLM 

Baseline 

mapping language-modeling approach, we found that  about 50% of the errors did not 

overlap. Intuitively, the acoustic scores are more sensitive to  the accents of the speakers 

whole utterance 

76% 
77% 
88% 
89% 
90% 
93% 
95% 

and the histogram of the relative occurrences of the phonemes in the training data,  while 

ten second utterance 

72.0% 
72.5% 
84.0% 
84.0% 
86.1% 
87.0% 
91.6% 

the language modeling scores are more sensitive to  the content of the speech, i .e . ,  the 

phone sequences. These two information sources are thus somewhat orthogonal; combin- 

ing them explicitly introduces additional information. Our baseline approach causes the 

error rate of the language modeling approach t o  decrease by 30%, which confirms our 

observation. 



Chapter 3 

Database and Task 

3.1 Database 

The major database used in this study is the OGI-TS database ([MC092]), which is a 

multi-language telephone speech database designed for language identification research. 

The da ta  were collected using a Gradient Technology Desklab recording equipment via a 

SCSI Port. Speakers could reach the speech equipment via a toll free telephone number. 

In the original database, the speech signal was sampled a t  8 kHz with 14 bits resolution 

and the data were collected via analog telephone lines. The latest data  in the database 

were collected via digital lines and were 8 bits mulaw encoded. A fixed recording gain 

was used. The recording process was controlled by questions/prompts. Currently there 

are speech data  from 11 languages (English, Farsi, French, German, Hindi, Japanese, Ko- 

rean? Mandarin, Spanish, Tamil and Vietnamese) in the database. Six of them (English, 

German, Japanese, Mandarin and Spanish) have been transcribed phonetically. 

This database is publically available and is used as a standard database by the National 

Institute of Standard and Technology (NIST) for language identification progress evalua- 

tion. 

The other database used for conversational speech processing is the data  sample distribu- 

tion from the Call Friend Project (collected by the Linguistic Data Consortium (LDC)). 

These data  were recoded on switchboards. The two channels (local and remote) were 

recorded simultaneously and stored in two different files. It was released in May 1995, 

with a total of 6 hours of speech data. It contains data  from 9 languages, which are real 

telephone conversations. 



3.2 Task 

Since the training of our phone recognizers needs phonetically transcribed data,  the max- 

imum number of recognizers available within this database is six (&I = 6). We evaluate 

the development of our approach with two tasks, namely on only those languages which 

are transcribed (N = 6))  and on all languages ( N  = 11). In addition t o  these two tasks, 

the final system is also evaluated on a nine-language task ( N  = 9), for which additional 

test data became available recently. 

In order to  make the results comparable to  those of other sites, we use the NIST (94 and 

95) evaluation test data  as our final test set. 

3.2.1 Six-language Task 

Our first set of experiments is with the six languages which have been transcribed pho- 

netically. 

Two parts of the utterances in the database were used: "story-before-the-tone" (story-bt) 

and "story-after-the-tone " (story-at). Totally there are 777 utterances for training, which 

are divided into the following three sets. 

Training set 1. There are 300 utterances in this subset; all are phonetically labeled. 

Training set 2. There are 400 utterances in this subset; most of them are not labeled. 

a Development set. There are 77 utterances in this subset; most of them are phoneti- 

cally labeled. 

In each set, the numbers of utterances from each language are approximately balanced. 

The test set is the same test set used by the National Institute of Standard and Technology 

in their March 1994 evaluation for these six languages. I t  contains 112 whole utterances 

(nominally of 45 seconds duration each) and 370 ten-second utterances, which are also 

part of the OGI-TS database. None of the above four sets overlaps. 

The distributions (numbers of utterances from each language) of these sets are summarized 

in Table 3.1 and 3.2. 



Table 3.1: Summary of the six-language task training sets and development set: number 
of utterances 

Table 3.2: Summary of the six-language task test set: number of utterances 

Language 

Training set 1 is used to  train the language-dependent phone recognizers for these six 

languages. Training set 2 is used t o  train the LID models. The development set is used t o  

evaluate the performance of the recognizers and all these sets are used to  train the final 

classifier. 

German English 

3.2.2 Eleven-language Task 

Language 

43-second 

10-second 

For the eleven-language task, four parts of the utterances in the database were used: 

"story-before-the-tone" (story-bt), "story-after-the-tone" (story-at), "rooms" (room) and 

"numbers" (num). There are totally 1785 utterances in the training da ta  (data used in 

the six-language t a s k  are also included), which are further divided into the following three 

sets. 

Hindi 

20 

65 

Training set. It has  716 utterances. 

Hindi 

English 

19 

69 

Development set 1. It has 651 utterances. 

Mandarin Japanese 

German 

2 0 

65 

Spanish 

Spanish 

17 

58 

Japanese 

19 

6 1 

Mandarin 

17 

52 



Development set 2. It has 371 utterances. 

Again, the numbers of utterances from each language are approximately balanced. 

The test set for the eleven-language task is the test set used by NIST in the March 

1994 evaluation. It contains 195 whole utterances and 625 ten-second utterances. The 

distribution of the da ta  in this test set is summarized in Table 3.3 and 3.4. In the table, 

the name of each language is represented by its first two characters. 

Table 3.3: Summary of the Eleven-language task training set and developments: number 
of utterances 

Table 3.4: Summary of the Eleven-language task test set: number of utterances 

None of the above four sets overlapped. 

The training set is used to train the LID models for the system, the training set and the 

development set 1 are used t o  perform the optimization while development set 2 is used 

for cross-validation. All these three sets are used to  train the final classifier. 

MA 

17 

52 

Language 

45-second 

10-second 

F R  

18 

62 

SP  

17 

58 

EN 

19 

69 

GE 

20 

65 

FA 

19 

58 

TA 

14 

43 

HI 

20 

65 

VI 

15 

47 

JA 

19 

61 

KO 

17 

45 



3.2.3 Nine-language Task 

The performance of a system should be measured in different conditions in order to  get a 

comprehensive evaluation. The NIST'95 test set is used t o  evaluate our final system. The 

test set contains data from 11 languages. In the set, data  from two languages are treated 

as background utterances. The nine languages in the task are: English, French, German, 

Hindi, Japanese, Mandarin, Spanish, Tamil and Vietnamese. The two background lan- 

guages are: Czech and Portuguese. 

We use the following tasks t o  evaluate our system: 

1. sis-language closed-set test. 

The six languages are: English, German, Hindi, Japanese, Mandarin and Spanish. 

"Closed-set" means the test set only contains the utterances from the languages in 

the task. 

2. sis-language open-set test. 

"Open set" means the test set contains some utterances from background languages 

which are not in the task. In this case, rejection should be made. In this task, the 

background languages are: Czech, French, Portuguese, Tamil and Vietnamese. 

3. nine-language closed-set test. 

4. nine-language open-set test. The background languages used in this task are Czech 

and Portuguese. 

5. EX-L pair test. 

This is a pairwise classification experiment. The goal of this experiment is to  measure 

the separability of language pairs by the system. As a convention ([Mut93, ZS94]), 

we selected English as our anchor language. The pairwise experiment measures the 

separability between English and the other ten languages in the test set. 

The training data of this task are from the training da ta  for these nine languages in the 

eleven-language task. The test set used is the NIST'95 evaluation data. There are 220 

whole utterances and 801 ten-second utterances in the test set. We use this set as the 



final complete test set t o  evaluate the system on these commonly used tasks. The data 

set is summarized in Table 3.5. 

Table 3.5: Summary of the NIST'95 test set: number of utterances 

Note that: the training and testing data  for the six- and eleven-language tasks were 

collected from analog telephone lines and were encoded in NIST-1A short-pack format. 

The test data  for this nine-language task were collected from digital telephone lines (T-1) 

and were 8 bit,s mulaw encoded. 

Language 

45-second 

10-second 

3.2.4 Conversational Speech 

We have to  date only received a prerelease of 72 calls from the LDC call-friend database, 

and this was used in a preliminary study on language identification with conversational 

speech. The sample release data were collected in the USA and Canada. Each utterance 

was truncated into a five-minute long segment. The prerelease contains da ta  from English, 

Farsi, German. Hindi, Japanese, Mandarin, Spanish, Tamil and Vietnamese. The sample 

distribution is summarized in Table 3.6. 

EN 

20 

78 

Table 3.6: Summary of LDC sample data: number of utterances 

FR 

20 

77 

Language 

utterance 

J A  

20 

74 

GE 

20 

73 

EN 

10 

HI 

20 

71 

MA 

20 

73 

FA 

8 

SP 

20 

70 

G E  

2 

TA 

20 

71 

VI 

20 

66 

HI 

10 

Other 

40 

148 
2 

MA 

10 

J A  

10 

S P  

10 

TA 

10 

VI 

2 



Chapter 4 

Baseline system and the Experiments 

The baseline system is proposed based on the results of our comparative study discussed 

in Chapter 2. The implemented baseline system provides the benchmark for the studies 

presented in this dissertation. 

4.1 Baseline LID System 

In this section, we provide an overview of our baseline LID system. This system is de- 

signed to  exploit language-dependent phonotactic information and duration information 

based on language-dependent phone recognition. This system provides both a benchmark 

measurement and a platform for the further development of this approach. 

4.1.1 Models Used in the Baseline System 

The statistical models in the score generator are the foundation for system performance. 

Two sets of models, designed t o  exploit sequential and duration information in different 

languages, are used in the baseline system. 

Although acoustic models have been proven to be useful in our preliminary study, the 

training of acoustic phone models (HMM) needs phonetically labeled data. For a large task 

(such as an eleven-language task), these transcribed da ta  may not be available. Therefore 

acoustic models are not used in our system. 



Language Model 

House and Neuberg ([HNS?]) proposed that sequential constraints on phonemes could be 

exploited as an efficient approach to  language identification. Their work showed that  the 

phone sequential constraints of different languages could be powerful features t o  distinguish 

different languages even when the speech events were described by broad-category classes. 

This idea has been used extensively in recent research ([MBA+93, HZ93, ZS94, KH94]), 

and reflects the phonotactic differences between different languages ([Lad93]). Previous 

work (e.g.[MBAf 93, ZS94, HZ931) showed that  fine-phonetic categories could lead t o  bet- 

ter performance than broad categories. Also, our comparative experiment results support 

this conclusion. Therefore, fine-phonetic categories are used in this work. 

The language model used in our baseline system is the commonly used bigram-based 

language model: 
T 

PLF = C l o g ( a ~ ( o i I 0 i - I )  + P P ( 0 ; ) )  (4.1) 
i= 1 

where 0; is the it11 phone in the decoded best path, P ( 0 ; )  is the unigram term and 

P(O;IOi-l) is the bigram term; a and P are the weight coefficients. T is the total number 

of phones in the decoded utterance. This language model is based on the interpolated 

n-gram language model proposed in [Je190]. 

Duration Model 

A duration model has been used in ([HZ93, HZ941) to  capture a certain class of prosodic 

information in different languages. In our studies, two representations of the duration 

distribution for each phone were evaluated initially, namely 

a Gaussian densities and 

a Histograms 

Initial experiments showed the performance of these two representations t o  be similar. 

The histogram representation was selected for further work because of its computational 

simplicity. The duration models are estimated based on decoded phone strings in the 

training set. 



4.1.2 System Architecture 

Our baseline LID system is composed of three parts: (1) a language-dependent phone- 

recognizer based front end, (2) LID score generators, and (3) a language classifier. The 

general architecture for an N-language task is given in Figure 4.1, where M is the number 

of recognizers used (N 2 M). 

Perceptual experiments on a 10-language task ([MJC94]) found that  the number of lan- 

guages known was a significant factor in the performance of human subjects. Similarly, 

several language-dependent recognizers (with bigram models for target languages) enhance 

the performance of our automatic system. 

Similar system architectures were used in [MBAS93, ZS94, KH94, MBMB951. 

1. Front End 

The front end is composed of several general-purpose language-dependent phone 

recognizers. It takes the speech wave as input, performs short-time LPC analysis 

and feeds the parameterized speech vectors into the recognizers. The output of the 

recognizer is the time-aligned phone string with an acoustic probability attached t o  

each phone in the string. 

For a.n N-language task, Ad (N 2 M) language-dependent phone recognizers run in 

parallel, and independently decode the input speech vectors into phone strings. This 

system configuration was first proposed in [ZS94]. 

In our implementation, sis language-dependent phone recognizers were used (M = 

6) since phonetic transcription in these six languages (English, German, Hindi, 

Japanese, Mandarin Chinese and Spanish) were available. 

We found the performance of the LID system t o  increase for all the languages in 

the task with an increasing number of recognizers in the system, which is consis- 

tent with the conclusion of the perceptual experiment. The major drawback of this 

type of implementation is that computational complexity is also increased with an 

increasing number of recognizers. 

2. LID Score Generator 

As shown in Figure 4.1, the phone recognizer of each language has its own score 



score Generator Tor 

Recognizer for 
Language 1 

I LID Modelsfor I 

Speech LPC 
d 

-------- 
\ 

Recognizer for 
Language M 

recognizer M 

Figure 4.1: General Structure of the LID system For an ?I-language task with M recog- 
nizers 



generator in our system. Each score generator contains a set of LID models for each 

language in the task. The score generator takes the outputs (the decoded phone 

strings) from each language-dependent phone recognizer, calculates various LID fea- 

ture scores, and provides them to the final classifier. 

The phone recognizers were trained on the phonetically labeled data. Decoded by 

these recognizers, data from the training set were used t o  estimate the language 

models and the duration models. By using each recognizer t o  decode the speech 

data  from all the languages in the training sets, the LID models for all the languages 

in the task can be estimated from the decoded phone strings in terms of the phone 

inventory of this specific recognizer. 

During testing, after a recognizer decodes the input test utterance, the score gen- 

erator for this recognizer calculates the likelihoods of it being each language in the 

task separately. One advantage of this kind of implementation is that  by averaging 

the likelihoods calculated by all the recognizers for one language, the bias created 

by different recognizers is reduced. 

Before sending the scores (likelihoods) to  the final language classifier, the language 

modeling scores and duration scores are normalized by the number of phones in the 

best path decoded by their corresponding phone recognizers. 

3. Final classifier 

When multiple information sources are used, an important issue is how these sources 

should be combined to  make a classification. In our baseline system, a linear classifier 

was trained to  combine these information sources. An optimal linear classifier can 

be viewed as combining the language scores with optimal weights. 

4.2 Baseline System Evaluation 

Our baseline system was evaluated on the six- and eleven-language tasks using the database 

described before. These results provide a benchmark for the evaluation of our further 

research. 



4.2.1 Implementation of the Phone Recognizers 

Six continuous HMM-based phone recognizers were implemented using the phonetically 

labeled data. Each phone is modeled as a three-state left-to-right HMM model. Three 

Gaussian mixtures are used to  model the feature probability density function for each state 

in the model. Speech da ta  are parameterized every 20 ms with 10 ms overlap between 

contiguous frames. For each frame a 26-dimensional feature vector is calculated: 12th- 

order LPC cepstra, 12th-order delta cepstra, normalized energy and delta energy. The 

delta feature is calculated as ( 4.2): 

For i from 1 to  12 (the analysis order), 

where the dCep denote the delta features, Cep denotes the cepstra, and a ( = 0.2) is used 

t o  scale these features. 

Table 4.1: Summary of each Phone Recognizer. 

The recognizers were trained using training set 1 described above and phone recognition 

accuracies were evaluated on the labeled data in the development set. Table 4.1 gives the 

number of phones used in each language and the corresponding phone recognition accuracy. 

The phone models for each recognizer are summarized in Table 4.2. 

Recognizer 

Size 

Accuracy 

4.2.2 Evaluation of Systems with One Phone Recognizer 

English German 

One benefit of using multiple language-dependent phone recognizers is t o  provide a better 

phone coverage. In order to  understand the relative importance of each phone recognizer, 

we evaluated the system performance by using only one phone recognizer a t  a time. The 

40 

46.8% 

Hindi 

37 

46.6% 

Mandarin Japanese Spanish 

3 9 

48.1% 

2 7 

56.3% 

38 

36.3% 

28 

54.6% 



Table 4.2: The  phone sets used in the  six phone recognizers. 

English I-- 

Mandarin r 

PHONE SET 
aa  ae ah aor aw ay b ch cl d dh  d x  eh er ey 
f g h h i h i y j h  k 1 m n o w o y p r s s h s i l  
t t h  uh uw v w y z 

a a  ae ah aw ay b cl cx d ea  eh eyw f g h ia  
ih iy k k s  1 m n o a  oy p rr s sh sil t ts uh 
u u v y z  

a a  ae ah ao ay b ch cl d dd d t  d th  eh ey f g h 
ih iy jh k kh 1 m n ng ow p r rd s sh sil t uh 
u w w y z  

a a b c h c l d d z e y f g h i y j h  k m n o w p q r  
s sh sil t t s  uw w y 

ae ao aw ax  ay c ch cl el1 ey f h i s  iy iyw k 
kh 1 m n ng oe ow p ph r s sh shr  sil t t h  t s  
tsh tsr uw w y 

a a  b ch cl d ey f g h iy k 1 ly m n ng ny ow p 
q rr s sil t uw w y z 



evaluation was conducted on the eleven-language task. 

To simplify the evaluation, after the scores for being each language in the task is calculated, 

the final identification result is obtained by using ( 4.3), where S; denotes the score for 

being language i in the task. 

1 = arg max(S;) 

The identification rates (correct rates) for each language in the task by each language- 

dependent phone recognizers are summarized in Figure 4.2. 

Performance of Each Recognizer Being Used on 1 1-language Task 

- 
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English .O-- 
German +-- 

Hindi 0. 
Forward Model Used Japanese ..X.... 

Mandarin &.- 

Spanish *-. 
- 

- 
- - 

- - 
- - 

I I I I I I I I I I I 

Figure 4.2: LID performance by each recognizer based on the forward language model 

I t  shows that  the correct rates for different languages by systems with different phone 

recognizers are different. For example, the system implemented with the English phone 

recognizer is relatively good a t  identifying English while i t  is not good a t  identifying 

Vietnamese; the system implemented with the Spanish recognizer is relatively good at 



identifying Vietnamese while it is not good a t  identifying English. 

The overall identification rates using each phone recognizer, and also the performance 

when all recognizers are combined, are given in Table 4.3. 

Table 4.3: Overall performance of systems based on one phone recognizer: using forward 
language model 

Recognizer 

Mean 

"S.D." in the table refers to  the standard deviation of the identification rates among 

different languages. Note the substantial improvement obtained when all recognizers are 

combined. 

S.D. 11 10.8% 1 14.7% 1 11.2% 1 13.3% 1 16.5% 

4.2.3 Benchmark Evaluation 

English 

73.8% 

The language models and the duration models used in the baseline system were trained 

from the decoded training data  (phone strings) produced by the six phone recognizers. 

The final classifier was trained on both the training data  and the development data. 

The following experiments were performed: 

12.7% 

1. Esperiment with the forward bigram based language model (F) 

9.5% 

2. I3periment with the duration model (D) 

German 

76.4% 

3. Esperiment with the complete baseline system (BS) 

Japanese 

68.2% 

Hindi 

72.3% 

The best results achieved are given in Table 4.4. 

The relative importance (in terms of system performance) of each model set in the 

score generator is measured in the first two experiments. The third experiment gives the 

benchmark performance of our baseline system when both LID models are used. 

Mandarin 

64.1% 

Spanish 

70.3% 

ALL-SIX 

81.6% 



Table 4.4: Baseline System Evaluation: The Benchmark Results 

Compared with the results listed in Table 1.1, which were published in 1994, the perfor- 

mance of our baseline system is still mediocre. In the next chapter we will discuss our 

efforts to improve the system performance. 

F 

84.8% 

74.1% 

76.4% 

65.1% 

D 

55.4% 

45.1% 

42.1% 

32.0% 

Task BS 

86.6% 

76.2% 

78.5% 

67.0% 

Six 

Language 

Eleven 

Language 

45-second 

10-second 

45-second 

10-second 



Chapter 5 

Met hods Used to Improve the Baseline 

System Performance 

In this chapter, we present the four methods we have developed t o  improve the performance 

of our baseline LID system. These methods are designed t o  cope with the five important 

issues for LID approaches based on phone recognition discussed in Chapter 1. Also, we 

report on the use of channel normalization to  improve robustness. 

5.1 Enhanced Language Model 

Language modeling is the key part of approaches which exploit phonotactic constraints. 

In this dissertation, a novel language model is proposed. 

5.1.1 Forward and Backward Bigram-based Language Model 

The language model used in our baseline system to  exploit left-context information is 

based on the interpolated N-gram model[Jel90] as shown in ( 4.1); thus only the forward 

information is captured. Although a trigram-based language model can capture both the 

right- and left-context information, a larger database is needed in order to get a well- 

estimated model. Millions of words were used to  train a trigram-based language model 

for a single language in a recent effort[KH94]. For a language with N phonemes, on the 

order of N2 parameters need to  be estimated for a bigram model, while for a trigram 

model the number is order N ~ .  AS a compromise, we propose using two bigram models 

P(OrlOi-l) (forward) and P(OilO;+l) (backward) in the language model. The backward 



bigram language model used in this thesis work is given in ( 5.1). 

One possible way to combine these two bigram models into a language model is as: 

Adding the backward bigram term enables the language model to  capture both the right- 

left-context information without adding too many parameters to  be estimated. The 

contradictory requirements of detailed modeling and da ta  efficiency are thus traded off in 

a way that  improves our modeling of the phonotactic constraints. 

5.1.2 Comparison of our Model with the Trigram Model 

The commonly used trigram-based interpolated language model is given in ( 5.3). 

Here we give an esample to  show how the training data  requirement is decreased if ( 5.2) 

rather than ( 5.3) is employed. 

Table 5.1: Comparison of OGI Model and Trigram Model 

MODEL 

Trigram 

For simplicity, only terms with the highest order in ( 5.2) and ( 5.3) are considered. 

For a language with 40 phones, suppose we have: 

OGI Model 

50 45-second long training utterances. 

No. OF PARAMETERS 

40 x 40 x 40 = 64000 

each utterance has 450 phones. 

TRAINING TOKENS/PAR..ZMETER 

0.35 

40 x 40 x 2 = 3200 7.03 



So there are 50 s 450 training tokens total. 

The comparison between our model and a trigram-based language model is illustrated in 

Table 5.1. We see that  , given a limited amount of data,  ( 5.2) allows for a relatively 

robust estimation of the model parameters for the proposed language model. 

5.2 Enhanced Duration Model 

It has been argued that  duration information is useful in language identification (e.g. 

[HZ93, HTG951). On the other hand, speech rate is a speaker-dependent influence which 

renders duration information less language specific. Based on an analysis of the data,  a 

generalized contest-dependent duration model is proposed here, t o  extract as much 

language-dependent information as possible from phoneme durations. It is a natural 

estension for the traditional contest-independent model. 

5.2.1 Analysis of the Duration Information 

In order to  understand the potential differences between different languages from 

duration information, we calculated the mean and variance of each phone (as decoded by 

the English phone recognizer) from different da ta  sets. The means are summarized in 

Figure .5.1 and Figure 5.2. The phone index in the figures is given in Table 5.2. 

We see that ,  for phone duration, the inter-language differences in phone duration are 

smaller than the intra-language differences. Although the variance in the duration of 

each phone is substantial, duration is still an interesting feature that  can be exploited for 

language identification. Hence, we think a more complicated duration model (compared 

with the one used in our baseline approach) is desired. 

5.2.2 A New Duration Model 

Since the variation in the durations of a phoneme in different contexts can be quite 

large, context-dependent duration modeling is desired. In order to  decrease the number 

of parameters in the model, a duration model based on the generalized left context is 

proposed. For each phone, six duration models are estimated depending on whether its 



Means of Phone duration 

- training set 
. . . . . . . . . . . . . dev set 

Phone(encoded by integer number) 
From two different English data sets, decoded by English frontend. 

Figure 5.1: Analysis of Duration on the Same Language: English 

preceding phone is a vowel, fricative, stop, nasal, affricate or glide. The duration models 

we used are given as: 

where P(0;10;,  Oiql E S )  is the context-dependent model, and S is one of the six broad 

categories. P(Oi1Oi) is the original context-independent monophone duration model, 

which is used here as a smoothing factor with weight a. In our experiment, a is set to  



Means of Phone duration 

Phone(encoded by integer number) 
From different languages' data sets. decoded by English frontend. 

Figure 5.2: Analysis of Duration on Different Languages: EnglishIJapanese 

5.3 Neural-net Classifier 

Recent research ([HZ94 YBSSb]) has shown that simply combining all the information 

sources with different (linear) weights may not result in t,he best system performance. 

Our pilot experiments also showed that the assumption of the independence of these 

information sources was not appropriate. We propose to  view the combination of scores 

as a classification problem rather than a combination of independent probabilities. The 

standard techniques thus amount to  linear classification. A well-trained linear classifier 

can be viewed as combining the scores with different optimal weights t o  give the best 

guess, but is known t o  be inferior to  neural-network classification in many circumstances. 

Previously, the typical ways to  combine multiple scores were either by some prior 



Table 5.2: Phone Index in Table 5.1 and 5.2 

knowledge about the relative merit of different scores or by hill-climbing optimization. 

These techniques result is specific linear classifiers, and thus also suffer from limited 

modeling power. 

In our experiment, neural-net based pattern recognizers are studied as an alternative 

final classifier. 

A feed-forward neural network with one hidden layer and full connections between 

successive layers is used t o  learn the relations among these scores in our system. The 

output of the neuraI network is the final LID result of the input utterance. The neural 

network was trained with conjugate gradient optimization ([BC89]). Figure 5.3 

illustrates how the neural network is configured in the system. 

Index 

Phone 

Index 

Phone 

Index 

Phone 

Index 

Phone 

5.4 Optimization of the Language Model 

For free-vocabulary continuous telephone speech, our speaker-independent phone 

recognizers are around 45% to  55% accurate. This reduces the accuracy of our system, 

since approximately 50% of phones in the decoded path contain erroneous information 

about the phonotactic constraints of the language. We proposed a new way t o  

dynamically optimize the LID models t o  increase the distinction between different 
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L1 U . . .  Ln ( n = number of languages in task) 

Output Layer 

Hidden Layer 

Input Layer 
.......................... .......................... 
Features from front end 1 . . . Features from front end M 

( M = number of front ends (phone recognizers) in the task) 

Figure 5.3: Neural network as the final classifier 

languages. 

5.4.1 Cost function 

In this section, we present our attempt to optimize the language model, so as to  improve 

robustness ~vit11 respect to the front end errors. 

Our approach uses a cost function based on the maximum-likelihood LID scores 

calculated by the score generator. For any score generator in the system, the cost 

function for a particular input utterance is defined as: 

where 

Si is the LID score for language i in an N-language task, ST is the score for the expected 



target language (ST E S;), where: 

I PLF, for the forward language model 

Si = PLB, for the backward language model I 
( PD, for the duration model 

When T = M, i.e., the correct language has the highest score, E = 0, and when T # M 

E provides a quantitative measurement of the error in the language model. By 

back-propagating the error, optimization of the language models for this score generator 

is achieved. 

Here we give an example to  illustrate how the optimization is realized; this example is for 

the optimization of the forward language model; namely, optimization of the bigram and 

the unigram terms. Other LID models used in the system can be optimized similarly. 

By using ( 4.1) and ( 5.5), for the forward language model, 

We thus update P(OiIO;-l) by 

update P(0;) by 



where is the learning rate. i.e., 

After one iteration. the re-normalization of the bigram probabilities results in new 

bigram and unigram terms for the language models. The training data  for estimating the 

language model are divided into two sets, set 1 and set 2. The ratio of the sizes of these 

two sets is roughly 2:l. Set 1 is used to derive the original bigram by the traditional 

linear operation. Both sets are used for the optimization. Cross-validation on the 

development set is performed a t  each iteration by the score generator. The performance 

(LID correct rate) is used as stopping criterion. 

The advantage of this back-propagation based optimization is that  it dynamically 

enhances the discrimination among the languages. The resulting bigrams (or unigrams) 

are no longer a simple function of the training data. This compensates for the problem 

caused by limited training data  t o  some extent. 

With this process, the modeling of phone sequences which are not sufficiently 

represented in the training data  can be enhanced. The cross-validation procedure and 

the gradient-based descent guarantee that the optimization procedures will modify 

probabilities to  improve the discrimination between the languages. 

5.4.2 Optimization Procedure 

The actual optimization steps are illustrated in Figure 5.4. 

An important issue in using this optimization method is how t o  prevent the models from 

being too dependent on the data  set; that is, how to  prevent over-fitting is crucial to the 

success of the procedure. In our implementation, three methods t o  prevent over-fitting 

were used: (1) The diversities of different data  sets were utilized. (Three independent 

sets were used. One was the original training set for language modeIs, the second set was 

used together with the original training set for optimization. The third set was used for 

cross-validation and training was stopped based on this) (2)Instead of updating the 

bigram after each data presentation, batch mode was used (For each term, the A P  
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needed were accumulated. The actual updating took place after all the utterances were 

processed once). (3) A small learning rate was used. 

5.5 Robust Speech Signal Processing 

For approaches to  language identification based on phone recognition, how to  increase 

the phone recognition robustness in different environments is critical t o  system 

robustness. For the approach presented in this dissertation, the LID models are trained 

exclusively through the output of the phone recognizers, handling the communication 

channel effect is especially important. 

Since robust signal processing is not a major concern (or task) of this dissertation, we 

only implemented existing algorithms. In particular, two techniques were evaluated: 

RASTA[HR/IH93] and cepstral mean subtraction[Ata74, DMSO]. 

5.5.1 RASTA Processing 

RASTA (Rel-Ative SpecTrA) is a filtering technique based on the assumption that  the 

temporal properties of the communication environment are quite different from the 

temporal properties of speech. The changing rate of nonlinguistic components in speech 

therefore often lies outside the typical dynamic rate of the vocal tract. The RASTA 

technique takes advantage of this fact and by band-pass filtering the signal, the effects 

caused by linear microphone characteristics (convolutional component in the signal in 

time domain) and additive noise can be removed partially. 

In our esperiment, J-Rasta[HMH93] was implemented. 

5.5.2 Cepstral Mean Subtraction 

This method is based on the assumption that  the frequency characteristics of a 

communication channel are often fixed or slowly changing. By subtracting the long term 

average from the the logarithmic spectrum of the signal, the resulting signal 

representation is less sensitive to the environment. This is also called blind deconvolution 

of signals. One advantage of this technique is the simplicity of implementing it. 



In our experiment, the cepstral mean of a whole test utterance is subtracted from each 

cepstral vector of the utterance. 



Chapter 6 

Experiments with the Proposed 

Improvements 

In this chapter, we present our experiments with the improvements proposed in this 

dissertation. The front end (phone recognizers) developed for the baseline system was 

used throughout. First we present the evaluation of the two LID models within the 

structure of the baseline system. Then we present the comparison between the baseline 

system and the baseline system enhanced by each individual method of improvement. 

Finally we present the results when all these methods are used. Experimental results on 

channel normalization are also reported. 

6.1 Experiments with the Proposed LID Models 

In order to  measure the gain achieved by using the proposed models, three experiments 

were carried out. 

1. Esperiment with the backward bigram language model (B) 

2. Esperiment with the enhanced duration model (ED) 

3. Esperiment with the backward language model and the enhanced duration model 

(BED) 

These experiments are similar to  those presented in the baseline evaluation (Chapter 4). 

They provide a quantitative measurement of the system performance when these models 

are used in isolation. 



Table 6.1: New model evaluation 

The da ta  sets used for training, developing and testing are the same as those used in the 

baseline system evaluation. All six phone recognizers are used in these experiments. 

Results are given in Table 6.1. 

Task 

We see that  the enhanced duration models alone are still inadequate. However, as an 

B 

83.0% 

74.1% 

74.4% 

64.3% 

Six 

Language 

Eleven 

Language 

additional set of features! they improve the correct rates in both tasks. 

45-second 

10-second 

45-second 

10-second 

6.2 LID Model Evaluation: Role of Phone Recognizer 

ED 

57.1% 

47.0% 

44.1% 

35.0% 

Similar to  the evaluation conducted in section 4.2.2, we also tested the backward 

B E D  

85.1% 

76.2% 

76.2% 

66.6% 

language model and the combined LID model in systems with each phone recognizer 

individually. These experiments detail why several information sources and several 

phone recognizers are important to  the performance of a LID system. 

All the esperiments were conducted on the eleven-language task. 

6.2.1 Evaluation of the Backward Language Model 

In this set of experiments, the system configuration is the same as the baseline system, 

except that  only the backward bigram language models are used in the score generators. 

Each phone recognizer was used in turn in the system. The results of each score 

generator using the backward language models for each phone recognizer are given in 

Figure 6.1. 
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Figure 6.1: LID performance by each recognizer based on backward language model 

Table 6.2: Overall performance of system: using the Backward language model 

Recognizer 

Mean 

S.D. 

English 

68.2% 

11.5% 

German 

71.3% 

17.3% 1 12.0% 1 15.2% 

Hindi 

69.2% 

13.0% 

Japanese 

60.5% 

14.9% 

Mandarin 

65.6% 

9.4% 

Spanish 

66.7% 

ALL-SIX 

78.97% 



The LID results for each language with different phone recognizers are different; no 

single system based on one specific phone recognizer could consistently outperform 

systems based on the other phone recognizers on all the languages in the task. Figure 4.2 

and Figure 6.1 confirm the necessity of using multiple phone recognizers in one LID 

system. More details can also be found in Table 6.2. 

6.2.2 Evaluation of the Combined Language Model 

Although linear combination is not always a good way to  integrate multiple scores from 

different LID models, for simplicity (to avoid the training of a classifier), we used this 

simple method t o  combine all the three models. The combined LID model is: 

where, Pl is the language model term, and Pd is our duration model. In this experiment, 

a is set to  1, ,l3 is set t o  0.5 and y is set to  0.1. 

The combined models were evaluated within the same system architecture as used for 

evaluation of the forward and backward language models. The results for the combined 

LID models are given in Figure 6.2. More details can be found in Table 6.3. 

Table 6.3: Overall performance of system: using the Combined language model 

Compared with the results given in Table 4.3 and Table 6.2, we see that: 

a The forward language model is slightly more important than the backward 

language model. This conclusion is consistent with our results from model 

evaluation with the complete baseline system (in which all the phone recognizers 

are used). 
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70.3% 
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English 

76.4% 

10.6% 
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73.9% 

11.1% 

Japanese 

68.7% 

13.1% 

Mandarin 

6.5.1% 

13.2% 
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Figure 6.2: LID performance by each recognizer based on the combined language model 

a The combined model can outperform any single model. Again, this is consistent 

with the conclusion of the whole system evaluation. 

6.2.3 Experiment with the Complete Front End 

Comparative experiments based on the complete front end (all six phone recognizers are 

used) were also conducted. The results are shown in Figure 6.3. 

The overall performance of the systems using different models in the score generator is 

summarized in Table 6.4. Note: these results are obtained by using ( 4.3). Even using a 

simple final classifier, the system with several information sources outperforms the 

system with only one information source. 

For comparison, the performance of systems with each of the six phone recognizers as 
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Figure 6.3: LID performance of different models using the complete front end 

the front end using different language models is summarized in Figure 6.4. 

6.3 Experiments with the Baseline System Enhanced by 

Each Method 

In order t o  compare the impact of each proposed method on the baseline system, we 

conducted experiments with the baseline system enhanced by each method individually. 

6.3.1 Baseline System Plus Backward Bigram Language Model 

In these experiments, in addition t o  the two models used in the baseline system, the 

backward bigram LID models are also used as the third set of models t o  enhance the 
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Table 6.4: Overall performance of systems based on different models: Using all six recog-
nizers and ( 4.3)

modeling accuracy. The data used to train the backward bigram language models were

the same as those used to train the language models in the baseline system.

Compared with the baseline system, adding the backward language models doubles the

memory requirement for the language models, while the increase in computational time

(CPU cycles) during testing is almost negligible.

The resulting enhanced system was evaluated on the six- and eleven-language tasks.

Results are summarized in Table 6.7 (labeled as BS_LAN).

6.3.2 Baseline System with the Enhanced Duration Model

In these experiments, the duration models in the baseline system were replaced by the

enhanced duration models. The new duration models were trained with the data used to

train the baseline duration model.

The enhanced version of the baseline system was evaluated on the six- and

eleven-language tasks; results are summarized in Table 6.7 (labeled as BS _DU R). The

improvement achieved by the new duration model is minor. The duration information

clearly depends not only on a small context (such as contiguous phones); how to robustly

model duration information is still an interesting issue in language identification research.

6.3.3 Baseline System with a neural network as the Final Classifier

In these experiments, the linear classifiers are replaced by feed-forward networks[YB95d].

The data used to train the linear classifiers are used to train the neural networks.

Various neural network architectures (different numbers of hidden nodes) were tested on

Language Model Forward Backward Combined

Mean 81.6% 79.0% 83.1%

S.D. 9.5% 9.4% 9.5%
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Figure 6.4: Overall LID performance by systems with different front ends

the development set. The best architecture (with 20 to 30 hidden nodes for different

tasks) was used to do the final training and testing.

In order to compare the performance of the neural network and linear classifier as the

final classifier in the system, the following two sets of experiments were conducted:

. Only one set of features (forward language model) was used in the score generator.

. All three sets (forward and backward language models, duration models) of

features were used in score generator.

All the experiments were conducted on both the six-language and eleven-language tasks.

The dimensions of the LID score vector being sent to the final classifier in these

experiments are given in Table 6.5.
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Table 6.5: Size of the score vector: Input to the final classifier

I Experiment II Dimension(M x N x L) I

Results for these experiments are given in Table 6.6, where SIX- and lL denote six-

and eleven-language tasks respectively, _L and ~ denote linear and neural-net classifiers

respectively, and _S and ~ distinguish between the single and multiple sets of features.

For comparison, the results of -L-M are also listed in Table 6.7 (labeled as BS_N N).

6.3.4 Baseline System with Optimization

In these experiments, the language models are optimized by the formula given in

Chapter 5. Both the training data and the development data were used in the

optimization. Development set 1 was used in the optimization procedure with the

training set, and development set 2 was used for cross-validation. The optimization

procedure stopped after three iterations, with the learning rate( Tf) set to O.OOL

The effect of optimization on the bigram terms in the forward language model is shown

in Figure 6.5; the effect on the final results is shown in Figure 6.6. In Figure 6.5, only

the changes of the probabilities of a few bigram terms are shown. These are in the

models of the score generator associated with the English phone recognizer. Clearly,

bigram values are only altered by a small amount. Nevertheless, the optimization

procedure improves the performance of the score generator consistently, and different

score generators improve their performance on different languages in the task. As shown

in Figure 6.6, for the English Score generator, the performance on data from English,

Hindi, Japanese and Spanish are improved by the optimization.

SIX-.8 6 x 6 x 1 = 36

SIX 6 x 6 x 3 = 108

11-.8 6 x 11 x 1 = 66

11_M 6 x 11 x 3 = 198



Table 6.6: Results (correct rate) for all the experiments

Table 6.7: LID Results: Baseline System (BS) Enhanced by Each Method

,.
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Approach 45-sec. utterance 10-see. utterance

SIX_LS 87.5% 76.2%

SIX_N...s 88.4% 77.3%

SIX_L.M 90.2% 79.2%

SIX_N.M 92.0% 81.6%

1LL...s 80.5% 69.1%

1LN...s 82.6% 70.0%

1LL.M 83.6% 70.1%

1LN.M 86.7% 73.8%

Six-language Task Eleven-language Task

Enhancement 45-second 10-second 45-second 10-second

BS 86.1% 76.2% 78.5% 67.0%

BS-LAN 88.4% 78.9% 82.6% 70.1%

BS-DUR 87.5% 76.2% 79.0% 68.0%

BS-NN 90.2% 79.2% 83.6% 70.1%

BS_OPT 89.3% 79.7% 83.1% 71.4%
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Figure 6.6: Optimization Results (English Front End) 



The results of the system after optimization are summarized in Table 6.7 (labeled as 

BS-OPT). 

6.4 Combining the Enhancements 

In this section, we present the experiments with the improved system, with all 

enhancements applied t o  the baseline system. The front end (the six language-dependent 

recognizers) are the same as the front end in our baseline system. The score generator 

has three sets of LID models: the forward language model, the backward language model 

and the enhanced duration model. Both language models are optimized iteratively, and 

the final classifier is the neural network studied. The final system was evaluated on the 

six-: eleven- and nine-language tasks. 

6.4.1 Evaluation on the Six- and Eleven-language Tasks 

The final enhanced baseline system is evaluated on the six- and eleven-language tasks for 

comparison purpose. The results are summarized in Table 6.8. For comparison, the 

results of baseline system are also listed. 

Table 6.8: Language Identification Correct Rate: the Enhanced system 

The confusion matrices for the best system on the six-language task are given in 

Table 6.9 and Table 6.10. The confusion matrices for the best system on the 

eleven-language task are given in Table 6.11 and Table 6.12. The rows of the matrices 

correspond to the languages actually being spoken and the columns indicate the 

Baseline 

System 

Final 

System 

Task 

45-second 

10-second 

45-second 

10-second 

Six-language Task 

86.6% 

76.2% 

92.0% 

81.6% 

Eleven-language Task 

78.5% 

67.0% 

86.7% 

73.8% 



languages identified. 

Table 6.9: Confusion matrix for the 45-second long utterances: Six-language Task 

Hindi 

Japanese 

Language 

English 

German 

I Mandarin 1 1  0 0 0 1 16 
O I 

English German Hindi Japanese Mandarin Spanish 

17 0 1 0 0 1 

0 18 0 0 0 2 

I Spanish 1 1  0 0 1 1 0 16 1 

Table 6.10: Confusion matrix for the 10-second long utterances: Six-language Task 

Language 

English 

German 

Hindi 

Japanese 

Mandarin 

Spanish 

English German Hindi Japanese Mandarin Spanish 



Table 6.11: Confusion matris for the 45-second long utterances: Language name is denoted 
by its first two characters. 

Language 

EN 

We see that  the confusions are not only between linguistically similar languages; some 

languages (such as  Hindi and Spanish) are consistently chosen more often. One possible 

reason may be caused by the language-dependent phone recognizer, which uses 

forced-choice best-path searching. The approximation of the underlying linguistic input 

of an utterance in one language by the phone inventory of another language decreases 

the linguistic distinction between different languages. Also, imperfect performance of the 

recognizer, no explicit model of acoustic information and not strictly balanced sizes of 

training da ta  for languages could be other major reasons. 



Table 6.12: Confusion matrix for the 10-second long utterances: Language name is denoted 
by its first two characters. 

Language 

E N  

F-4 

FR 

GE 

HI 

J -4 

KO 

h1-4 

SP 

T-4 

1-1 

EN FA FR GE HI J A  KO MA SP TA VI 

5 9 0 1 0 0 2 3  0 0 4 0  

1 4 5 3 1 3 0 0  2 1 1 1  

1 3 3 6 4 5 0 3  4 6 0 0  

2 2 0 5 2 3 0 0  0 2 2 2  

3  3  1 2 4 5 2  3  3  1 1  1 

0  0  2  0  7 4 3 1  1 5 1 1  

1 4 1 0 2 2 3 1 1  1 1 1  

0 0 3 1 2 3 5 3 7 1 0 0  

1 0 1 1 8 4 0 0 4 1 1 1  

0 0 0 0 2 0 0  0  1 4 0 0  

2 0 2 1 4 0 3 0 3 0 3 2  



6.4.2 Comprehensive Evaluation on the Nine-language Task 

As a final test of system performance, new data (which are not involved in the system 

development period) are needed. We reserved the nine-language task data  for this 

purpose. All the results reported in this section are obtained by running the final system 

on the da ta  for the first time. 

As mentioned in Chapter 3, the data for the nine-language task were collected via digital 

telephone lines (T-1 lines), which are different from the training and testing da ta  used 

before. A simple zero energy detection algorithm is implemented t o  delete contiguous 

zeroes in the speech wave files to  avoid the mathematical exceptions during LPC 

analysis. 

The system was evaluated on the tasks specified by NIST in their 1995 March 

evaluation, which includes: 

six-language closed-set test. 

six-language open-set test. 

nine-language closed-set test. 

nine-language open-set test. 

EN-L pair test. 

Details of these tasks can be found in Chapter 3.2.3. 

The closed-set test systems are identical to  all the systems presented before; for open-set 

test systems, one more output node (background-language node), representing the 

languages which were not in the task (background language), is added to  the final 

classifier (neural network) of the system. The corresponding LID models for the 

background languages were created by averaging all the models of the languages in the 

task. 

In the open-set test, it is not assumed that  the set of training da ta  bears any specific 

relation t o  the background languages. In the NIST'95 data, the background languages 

for the six-language task are: Czech, French, Portuguese, Tamil and Vietnamese; two of 



them (Czech and Portuguese) were not used in training. The background languages for 

the 9-language task are Czech and Portuguese; the system was never trained on the data 

from these two languages. 

All the training data  used were the data used to train the system for the eleven-language 

task presented in previous section. For the closed-set system, only the data from the 

languages in the task are used. For the open-set test system, all the data are used to  

train the neural-net based final classifier, with all the data from the languages not in the 

task labeled as background for the training of the background-language node. 

The results for the six- and nine-language tasks are summarized in Table 6.13 and 6.14. 

Table 6.13: Language Identification Correct Rate: Six-language Task 

Table 6.14: Language Identification Correct Rate: Nine-language Task 

Task 

The confusion matrices for the open-set tasks are given in Table 6.15, 6.16, 6.17 

and 6.18. 

Closed Set 

Task 

Whole 

Open Set 

Closed Set 

87.8% 

Open Set 

72.7% 



Table 6.15: Confusion matrix for the 45-second long utterances: Six-language Task 

Language 

English 

Japanese /I 0 0 0 18 0 0 2 

English German Hindi Japanese Mandarin Spanish Other 

15 2 0 0 0 0 3 

German 

Hindi 

Mandarin 11 0 0 0 0 16 0 3 

1 16 0 0 0 0 3 

0 0 15 0 0 1 4 

Spanish I/ 0 0 1 1 0 15 6 

Other /I 1 2 5 0 0 3 8 9 

Table 6.16: Confusion matrix for the 10-second long utterances: Six-language Task 

Language 

English 

German 

Hindi 

Japanese 

Mandarin 

Spanish 

Other 

English German Hindi Japanese Mandarin Spanish Other 

5 9 6 0 0 2 0 11 

3 53 1 0 0 0 16 

1 3 29 0 0 5 33 

1 0 1 43 1 1 27 

1 6 2 1 40 1 22 

2 0 2 1 1 26 38 

21 16 19 16 7 12 27 1 



Table 6.17: Confusion matrix for the 45-second long utterances: Nine-language Task 

Language 

Table 6.18: Confusion matrix for the 10-second long utterances: Nine-language Task 

I Language 



The performance decrease on the open sets (compared with the corresponding close set 

tests) is mainly caused by false detection of the background languages (in the matrices, 

they are labeled as OT). For the six-language open-set task, since the data of the 

background languages used to  train the neural network include data  from five languages, 

the performance is relatively better than that  of the nine-language open-set test. Within 

our current statistical modeling paradigm, rejection of a background language with no 

training data  a t  all is an extremely challenging task. The other important reason for 

better performance on the six-language task is that  data  from three of the five 

background languages (French, Tamil and Vietnamese) were available. We thus conclude 

that  this task is manageable if training data  are available. 

As is traditional in language-identification system evaluation, we also evaluated our 

system on English-other language-pair identification. The results are given in Table 6.19. 

Table 6.19: Results on the English-other language-pair task 

6.5 Channel Normalization 

As mentioned in Chapter 5, although robust signal processing is not a major concern of 

this dissertation, it is very important for system performance. We experimentally 

implemented the J-RASTA and the cepstral mean subtraction techniques. Initial results 

showed that  the improvement on phone recognition accuracy achieved by cepstral mean 

subtraction was larger than that  achieved by RASTA, so cepstral mean subtraction is 

used in our system[YB95a]. 

Language 

45-second 

10-second 

FR 

100% 

99% 

HI 

97% 

97% 

GE 

93% 

91% 

J A  

100% 

99% 

M.4 

100% 

93% 

TA 

100% 

98% 

SP 

97% 

96% 

VI 

95% 

92% 

Average 

98% 

96% 



6.5.1 Impact on the Phone Accuracy 

After the LPC-Cepstral coefficients are calculated, the mean of the cepstral coefficient 

vectors of the entire testing utterance is subtracted from each cepstral vector. We 

retrained our phone recognizers using the same HMM topology, rebuilt our LID system 

with the same sets of models, and estimated model parameters with the same training 

routines using the same training set and test set used before. The phone recognition 

results are given in Table 6.20. For comparison, previous phone accuracies are also listed. 

Table 6.20: Impact of Channel Normalization on Phone Accuracy 

Accuracy 

Before 

After applying channel normalization, the performance of all six phone recognizers 

improves, though t o  varying degrees. For telephone speech, collected via different 

handsets and phone lines, this simple technique effectively increases the system 

robustness. 

After 

6.5.2 Impact on the LID Results 

Eng 

46.8% 

After retraining the phone recognizers with cepstral mean subtraction, we retrained our 

best system. The new system was evaluated on the nine-language and the 

eleven-language closed-set tests. Results are summarized in Table 6.21 and 6.22. 

Adding channel normalization effectively increases our system performance. The major 

drawback of our implementation is the long time delay: in order t o  calculate the mean 

vector, one needs to  wait until the whole utterance has been processed. Although 

obvious approximations for real-time implementation exist, evaluating their effect on 

LID is an important task for future consideration. 

50.4% 

Gem 

46.6% 

47.2% 

Hin 

48.1% 

51.1% 

Jap  

56.3% 

57.4% 

Man 

36.3% 

Spa 

54.6% 

43.4% 56.7% 
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Table 6.21: Impact of Channel Normalization on LID: Nine-Language Task

I Error Rate ~ WHOLE I la-SECOND I

Table 6.22: Impact of Channel Normalization on LID: Eleven-Language Task

I Error Rate ij WHOLE I la-SECOND I

6.6 Summary of Results

All the relative improvements by each proposed methods are summarized in Table 6.23;

the results are achieved on the eleven-language task. In the table, the error reduction is

the average percentage of the error reductions achieved on the 45-second and 10-second

long utterances. The statistical significance test used is the multinomial Chi-Square Test

( [DW83]) with a 5% significance level.

Although the improvement achieved by each individual methods is not significant (given

the limited amount test data), the final system is su bstantially better than the baseline

approach.

Before 12.2% 26.0%

After 9.9% 22.5%

Before 12.3% 26.3%

After 9.2% 22.9%
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Table 6.23: Summary of Results (Error rate): ll-language task. The final column lists
whether the observed differences were statistically significant at the 5% level, assuming a
multinomial distribution

45-SECOND 10-SECOND ERROR REDUCTION SIGNIFICANCE

Baseline 11.5% 33.0% NjA NjA

+ Backward (B) 17.4% 29.9% 15% No

+ Duration (D) 21.0% 32.0% 3% No

+ Neuralnet (N) 16.4% 28.3% 18% No

+ Optimization (0) 16.9% 28.6% 18% No

+ BDNO 12.3% 26.4% 35% Yes

+ BDNO + Channel 9.9% 22.5% 43% Yes



Chapter 7

Experimentswith Conversational Speech

and New Language Adaptation

For many potential applications of language identification, the system should be able to

handle interactive speech and should have the ability to easily be familiarized with the

characteristics of new languages which are not in the task (new language adaptation).

Here we present our efforts in dealing with these new pursuits: processing conversational

speech and adaptation to new languages. Due to the limited data which are publically

available, only preliminary results are reported.

As observed in the previous experiments, in general the relative system performance is

consistent on the long segment (whole utterance) and short segment (lO-second

utterance) tasks: The system which is better on the long-segment task also tends to be

better on the short-segment task. In order to minimize the cost of the comparative

experiments, only results on the long-utterance tasks are evaluated and reported in this

chapter.

7.1 Language Identification using Conversational Speech

Identification of conversational speech is one of the latest interests for LID research.

Compared with the processing of monologue data, conversational speech data present

new challenges. For speech recognition, researchers have reported dramatic performance

decreases when the systems are switched to process conversational speech. System

performance on the ARPA Wall Journal corpus[PB92] and the Switchboard

corpus[GHM92] tasks is a typical example. Impressive results have been achieved on

80
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monologue speech data on a fairly large task (for the ARPA Wall Street Journal task,

the state-of-the-art system has an 8% word error rate on a task with 65k

words[WLO+95]). The system developed for the Switchboard task with the same

algorithms by the same research group still has a word error rate of around

50%[YWB94]. This reflects the challenge of conversational speech.

7.1.1 Analysis of the Conversational Speech
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Figure 7.1: Phone distributions of monologue speech and conversational speech (by English
Phone Recognizer)

Conversational speech is quite different from elicited monologues (whether read or

spontaneous). Conversations contain frequent filled pauses (such as "uhuh"), repetitions,

hesitations, excitations, false starts, and particularly poor articulation. As a result,
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conversational speech has a much higher variability in phone quality and duration. This

causes problems when the recognizers trained on monologue speech data are used to

recognize the underlying phones of a conversational utterance. By listening to some of

the data from the LDC Call Friend sample release, we found that there are:

. more filled pause segments,

. more emotional and bigger prosodic variations,

. long silence segments.

Using the English recognizer developed for the system presented in previous chapters as

an automatic labeler, the differences between the monologue and conversational speech

data used in this study are illustrated in Figure 7.1 and 7.2. The phone index in these

tables is given in Table 5.2.

Note the substantial differences that are observed. Using the same training data for the

eleven-language task and the algorithm used to develop the system for monologue

speech, we implemented a nine-language task system and evaluated it on the LDC Call

Friend data. Compared with the results we achieved on the monologue data, the error

rate is tripled (see Table 7.1).

7.1.2 Improving System Performance

As mentioned above, one major difference between the training data (monologue) and

the testing data (conversational speech) is the presence of long silence segments in the

latter. This presents a problem to the front end. In our implementation, channel

normalization is implemented by cepstral mean subtraction, which does not consider if

the frame being processed is speech or not. In our training data, the silence segments are

generally only a small part of the data files. After subtraction, not only the channels,

but also the speakers in the training data are thus normalized. With the long silence

segments in conversational speech, the mean of a conversational utterance contains more

information about the channel, so the speakers are not well normalized. This causes a

mismatch between the training and testing environments.
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Figure 7.2: Distributions of phone durations for monologue speech and conversational 
speech (English Phone Recognizer) 

In order to  overcome this, we experimentally proposed a simple energy-based algorithm 

t o  delete the long silence segments. Within a segment of T frames, for frame i, the 

energy E; is calculated, and compared with the threshold ( T E )  given in ( 7.1). 

where, 
1 

Em;, = min E; 
r = l  

The energy for each frame (with N samples) is calculated as: 



where xj is a sample in the frame. 

Frame i is classified as: 

Speech, if T E  < E; 
Frame  i is : 

Silence,  if T E  > E; 

In our implementation, (Y is set t o  1000.0 and /3 is set to  6.0. 

By examining the outputs (decoded phone strings), we find there are some obvious error 

patterns in recognition results produced by the phone recognizers. A post-processing 

algorithm is proposed to correct some of these obvious mistakes. It performs the 

following corrections on the outputs of the phone recognizers. The rules were generated 

based on the analysis of the differences in the unigrams and bigrams between the 

monologue and conversational speech. 

single consonants surrounded by silences are not allowed. 

segments containing more than 4 contiguous consonants are not allowed. 

single (or repeated) nasal/(z,ah,s) pairs are not allowed. 

contiguous silence segments are merged. 

The processed phone strings are sent to  the score generators. 

7.1.3 Experiments and Results 

Three experiments are carried out in order to measure the improvement achieved by the 

pre-process (silence detection) and post-process (forced correction). 

1. system implemented with only pre-processing. 

2. system implemented with only post-processing. 

3. system implemented with both pre-processing and post-processing. 

All these systems were trained with the same da ta  sets used before (from the OGI-TS 

database), and evaluated on the Call Friend data. Results are given in Table 7.1. For 



comparison, the result of the monologue system is also listed in the table. The error 

reductions achieved (compared with the monologue system) are also listed. 

Table 7.1: LID Results on conversational speech 

Approach 

Monologue system 

Pre-process system 

Both pre- and post-processing cut the system error rate by approximately a quarter. 

Although the combined system achieves an error reduction of more than 40%, the 

performance of this system is still inferior to  the performance we achieved on the same 

task with monologue speech as input. This may suggest that  the task for conversational 

speech is inherently more difficult; however, training the system on conversational speech 

data may be sufficient to  recover the results obtained with monologues. ( This requires 

the availability of conversational speech databases.) 

Post-process system 

Combined system 

7.2 New Language Adaptation 

Result 

59.7% 

69.4% 

The training of our current system needs large amounts of data from each language in 

the task, and it is possible to  build a system only when sufficient da ta  from all the 

languages are available. For many LID applications, an iterative method of training da ta  

collection and system development would be preferable: with a limited amount of data,  

building a system first and during the real world application, collecting more da ta  t o  

refine the system. 

The fact that  we used a fixed set of phonetic front ends is helpful in this regard, since 

this stage does not need t o  be retrained for new languages. 

In order t o  achieve this, the requirement for training da ta  by the LID algorithm should 

Error Reduction 

N/A 

24.1% 

70.8% 

76.4% 

27.5% 

41.4% 



be relaxed while still maintaining decent system performance. In this section, we present 

our efforts in dealing with the problem of adaptation to new languages. The da ta  used 

for this study are the monologue data, and the six-language system is used as starting 

point. Various methods are compared when the six-language system is adapted t o  a 

seven-language task. The proposed best method is further generalized to the 

nine-language task. The results show how we can efficiently adapt to  new languages. 

7.2.1 Data and Tasks 

The data from the six languages are the same as those used in the six-language task 

discussed in the previous chapters. The seventh language used in this study is 

Vietnamese, because system performance on Vietnamese is representative in the results 

reported in previous chapters. 

All the data  from Vietnamese used in these experiments are from the training set and 

development set 2 of the eleven-language task described in Chapter 3. Compared with 

the systems described in the previous chapter, all the systems presented here use only 

approximately 60% of training data  (in terms of hours) for Vietnamese (since the data  in 

development set 1 are not used). 

Besides Vietnamese, the other two languages used to perform the generalization task are 

Farsi and Tamil since they are used in the NIST794 and NIST795 evaluations. Again, only 

the data  from the training set and development set 2 are used for these two languages. 

7.2.2 The Approaches 

Four approaches are studied. Three of them are based on the optimization method 

proposed in this thesis. In order to  add a new language t o  the task, we need t o  estimate 

the LID models for this language in the score generators and retrain the neural networks 

(final classifier). 

1. Baseline approach. 

The model estimation in this approach is the same as the implementation of our 

baseline system described in Chapter 4, except that  less Vietnamese da ta  are used. 

In our implementation, the models are estimated on the training set in the 



conventional way. The scores for Vietnamese to  train the neural network are 

duplicated (slightly modified based on the corresponding variances) in order t o  

balance the training patterns for each output node in the final neural-network 

classifier. 

2. Optimization-based model estimation. 

In this approach, the models for the new language are initialized by averaging the 

existing models for all the other languages in the task. Then these initialized 

models are opt,imized using the training data for the new language with the 

optimization method described in Chapter 5. Again the training patterns for the 

neural network are balanced by duplication. 

3. Interpolation. 

In this approach, the models for the new language are obtained by averaging the 

models obtained in the above two approaches. 

4. Combined approach. 

This approach combines the above three approaches. All the training da ta  for the 

new language are divided into three sets: training set, development set 1 and 

development set 2 (the ratio among these three sets are 6:3:1). The training set is 

used to  estimate the model using the interpolated methods (Approach 3).  The 

resulting models are then optimized using the development set 1 based on the 

cross-validation performance on development set 2. All the da ta  are used in the 

training of the final classifier. The training patterns are also balanced by 

duplication. 

All these four approaches are evaluated using the seven-language task (with English, 

German, Hindi, Japanese, Mandarin and Spanish a s  the existing languages in the task 

and Vietnamese as the new language). The systems are evaluated on data  for these 

seven languages using the NIST'94 and NIST'95 test sets (whole utterance part). The 

results (correct rabe) are reported in Table 7.2. 



Table 7.2: Comparison of approaches to new language adaptation 

We see that  the combined approach outperforms the other approaches. In order t o  test 

the generalization ability of the proposed best method, the combined approach is 

Approach 

NIST'94 

NIST'95 

extended to  a system for the nine-language task (with Farsi, Tamil and Vietnamese as 

the new languages). The resulting system is evaluated on the NIST'94 and NIST'95 test 

data. The results are given in Table 7.3. For comparison, the results achieved by the 

final system described in Chapter 6 on these two test sets are also listed (labeled as 

Conventional) in the table. 

Baseline 

89.0% 

88.6% 

Table 7.3: LID Results on new language adaptation: Nine-Language Task 

Optimization 

89.8% 

89.3% 

7.2.3 Discussion 

Data 

Conventional 

Com bined 

From the results of our comparative esperiments, we see that  each of the three proposed 

methods can outperform the baseline approach; approximately 35% error reduction is 

achieved by the combined methods. 

The optimization procedure outperforms the baseline system by not over-fitting the 

model parameters. In the baseline system, the training patterns for the final classifier are 

derived from the data  used to  calculate the model parameters. There is thus a big 

Interpolation 

91.3% 

91.4% 

Combination 

92.9% 

92.9% 

NIST94 

92.5% 

91.9% 

NIST95 

90.0% 

90.0% 



difference between the testing and training patterns for the neural network (the training 

patterns are less noisy since they were used to calculate the parameters). The major 

drawback of the optimization procedure is that the initialization may not be appropriate. 

The interpolated method is designed t o  overcome the shortcomings of the first two 

approaches. Smoothing is a very important technique in model estimation. The most 

difficult aspect of this approach is how to  select the best smoothing factor. In our 

experiment, we simply averaged the two models. 

The combined method is proposed to further refine the interpolated approaches. The 

resulting models from the interpolated method are further optimized by the optimization 

procedure. The division of the training da ta  ensures that  there are new da ta  for the 

training of each component of the LID system; this minimizes the possible mismatch 

between training patterns and testing patterns in each part. The generalization of this 

method t o  the nine-language task gives encouraging results. With 40% less training 

data,  the system still achieves comparable results on the two NIST evaluation data  sets. 

This demonstrates the feasibility of the proposed method for new-language adaptation a t  

the expense of more training cycles. 



Chapter 8 

Conclusion 

Encouraging language identification results have been achieved with the approach based 

on language-dependent phone recognition presented in this dissertation. The improved 

baseline system compared favorably with previously reported results on the same six-, 

nine- and eleven-language tasks. 

8.1 Summary 

Our evaluation of the different LID models on the same baseline system with the same 

da ta  sets provides a general understanding of the relative importance of the LID models 

when they are used alone. The results show that  when used alone, the forward bigram 

language model plays the most important role in our system. 

To address the contradictory requirements of detailed modeling and the availability of 

data,  we proposed the backward bigram language model as an addition to the 

conventional forward bigram language model. Without drastically increasing the amount 

of training data required, i t  improves the level of detail in the language model. With the 

introduction of this model, we achieved approximately 20% error reduction on the whole 

utterance part on both tasks, and 10% error reduction on the ten-second long 

utterances, compared with the baseline system. 

The introduction of the new duration model did not yield a great improvement. 

Although it helps the system slightly, effective modeling of the prosodic information is 

still an interesting issue for future research. The comparison of the neural-net classifier 

and the linear classifier showed that  non-linear combination of these information sources 



is useful for language classification. Using the neural-net results in more than 20% error 

reduction on the whole utterance part and 15% error reduction on the ten-second part of 

both tasks compared with the linear classifier. 

The proposed optimization method demonstrates the promise and feasibility of 

improving LID accuracy by increasing the discrimination of the language models using 

an automatic optimization procedure. With this back-propagation based optimization 

procedure, the detrimental effect of bias created by the poor linguistic coverage in the 

training data  and the poor performance of the phone recognizers is alleviated. We 

achieved approximately 20% error reduction on the whole utterance tasks and 15% error 

reduction on the ten-second utterance tasks. 

When all the proposed methods are applied t o  the baseline system, on the six-language 

task, we achieved approximately 35% error reduction on the whole-utterance tasks and 

more than 20% error reduction on the ten-second utterance tasks. On the 

eleven-language task, more than 40% error reduction on the whole-utterance tasks and 

more than 25% error reduction on the ten-second utterance tasks were achieved, which 

shows that  our methods for improving the system performance is generalizable to  a 

larger task. 

We achieved more improvement on the whole utterance tasks than on the ten-second 

utterance tasks. One major reason is that all our LID models are statistical models 

which are based on the decoded phone strings (the acoustic information is not exploited 

directly). On average the whole utterance segments are four times as long as the 

ten-second segments, so the possible linguistic bias (phone occurrence and sequential 

phone coverage) for long utterances is much smaller than for the short utterances. 

Further improvement on ten-second utterances may thus require using the differences 

between languages a t  the acoustic level: when phone constraints are not well reflected in 

short utterances, acoustic information may become a dominant feature. 

The preliminary studies on the processing of conversational speech and adaptation to  

new languages show that  system performance can be improved by the proposed 

methods: more than 35% error reduction was achieved on both tasks. 



8.2 Fut~zre Work 

How to  enhance the acoustic modeling is the key point to the identification of very short 

input utterances (and may also be highly beneficial for longer utterances). This is still 

an unsolved problem and was not addressed in this thesis work. With very short input 

utterances. systems highly reliant on phonotactic constraints can not get a reliable 

estimation of the underlying phone (or other subword units) sequential information. 

When high-level information is not available, acoustic information will be a predominant 

discriminant. The commonly used methods for acoustic modeling for LID research today 

are obtained directly from speech recognition techniques designed mainly for single 

languages: these techniques may not be appropriate for LID purposes, since an LID 

system will be exposed t o  multi-language signals. New acoustic optimization methods 

designed for LID purposes may further improve system performance by increasing the 

accuracy of acoustic modeling. 

The robust modeling of prosodic information will be another interesting issue. How t o  

differentiate the speaker-specific and language-specific information is critical t o  the 

success of an LID system. Current techniques focus on the variations within segments; 

normalization of prosodic information based on speech rate may be an efficient way to  

minimize speaker variabilities. -Also, prosodic information is strongly correlated for 

contiguous segments; development of an intra-segment model of prosodic information 

can further improve the system performance. In this thesis work, only duration 

information is exploited; how to  incorporate pitch and stress information into current 

LID model sets will also be part of further work. 

From the confusion matrices of the system, we found that some languages were poorly 

identified: esplicitly adding knowledge on these languages may further improve the 

system performance. For example, adding typical language-dependent phone strings 

(with variable length) into model sets (or directly employing keyword-spotting 

techniques) will increase the discrimination between languages. Directly modeling the 

language-dependent phones a t  acoustic level may be another way to  enhance the 

discrimination. 



For real-world applications, handling channel variation and providing a confidence 

measurement (for rejection) in the system are also very important issues. 

As shown in the closed-set test, system performance decreased drastically because of the 

utterances from background languages. This suggests that  i t  is impossible to  build a 

robust system by just using maximum likelihood criterion. Other measurements such as 

mutual-information entropy, MAP or other criteria may be used for confidence 

estimation; these measurements can be employed in different system components and 

will be combined to provide a joint decision. 

For two new pursuits-processing of conversational speech and adaptation t o  new 

languages-only preliminary studies were conducted for this thesis. For processing of 

conversational speech, although the proposed methods effectively decreased the system 

error rate, the overall performance is still far from what can be got on monologue speech. 

As discussed in Chapter 7, there are many differences between monologue and 

conversational speech. The improvement we achieved is mainly due t o  the handling of 

long silence segments and correcting of some obvious errors by the phone recognizers. 

There are other phenomena such as filled pauses, false starts  and repetitions which have 

not been treated properly. By eliminating these differences, similar performance could be 

expected on these two kinds of inputs even if the models are still trained on monologue 

data. Explicit modeling of filled pauses may be another interesting way to  improve 

system performance since they occur very often in conversations and are generally 

language-dependent. For adaptation to  new languages, our preliminary experiments 

focus only on the adaptation of language models. Adaptation of other models can also 

be beneficial. It is also reasonable to  expect that  systems based on acoustic and prosodic 

information sources will excel in this department, since such systems do not require 

phonetically labeled data  for training. 
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Appendix A 

Models Used in the Final System 

Three sets of models are used; details can be found in Chapter 4 and 5. 

Forward-language Model 

Backward-language Model 

PLB = 11g1 (QPLB ( ~ i l ~ i + l )  f PP(Oi)) 

Duration Model 

PLI = nCl(( l  - ct.)P~(D[Oi]1Oi, 0 ; - 1  E S )  + aP(DIOi]lO;)) 
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