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ABSTRACT
MEASUREMENT AND COMPUTER SIMULATION OF THE
FARFIELD PATTERNS FOR TURNING-MIRROR
SURFACE-EMITTING DIODE LASERS

Vibhavari Apte, M.S

Oregon Graduate Center, 1988

Supervising Professor: Dr. Richard K. DeFreez

Surface-emitting laser diodes are of interest for various applications such as
monolithic two-dimensional arrays and optical interconnects for integrated
optics. Therefore, it is essential to characterize these lasers. The farfield radia-
tion pattern is one of the important characteristics of 2 laser diode. In this
thesis the farfield of a surface-emitting laser diode with a turning mirror is
modeled and measured. The computer simulation uses a rigorous theoretical
expression for the field at the output mirror laser-air interface derived by
Davies and Walpole and then using a modified form of the Kirchoff diffraction
integral to generate the farfield. The computer modeling is done for both flat
45° and parabolic turning mirrors. Experimental data were also obtained for a
surface-emitter with a 45° straight turning mirror. This mirror was fabricated
using the focussed ion beam micromachining technique developed at OGC. In
the case of the parabolic turning mirror, the experimental results published by
Liau and Walpole were used. A comparison of theoretical and experimental

results for the two shapes of mirrors is 2lso presented.
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1. INTRODUCTION

A considerable amount of effort is being directed towards the development
of semiconductor diode laser arrays for applications having power requirements
that exceed the output power level attainable with individual devices. For
example, a monolithic linear array emitting total output power of 38W cw with
total power conversion efficiency of 30% has recently been reported!. But,
there is also a need for two-dimensional arrays to meet the power and area
requirements for such applications as the pumping of large solid-state lasers.
Two-dimensional arrays can be fabricated by stacking and joining separate
linear arrays of edge-emitting diode lasers. Recently a 2-D array formed using
this technique was reported to produce 176W at 264, ie. a power density of
2.1Kw/em®? Several types of surface-emitting GaAds/GadlAs and
GaInAsP/InP diode lasers have also been reported that could be used for this
purpose. These include lasers with the resonant cavity normal to the wafer sur-
faced and others for which emission normal to the surface is achieved by second
order gratings®% or are etched by using ion beam assisted etching & or by turn-
ing mirrors which are chemically etched’” or are focussed ion beam

micromachined® 9.

The work done in this thesis to model and experimentally verify the
farfield pattern of a surface-emitting diode laser using a turning mirror was
prompted in part by a comment by Walpole!® that simple diffraction theory

with a Gaussian beam approximation is not appropriate to model the farfield



pattern of a surface-emitting diode laser with a turning mirror. Hence, the
major part of the work presented here deals with computer simulation of the
farfield by solving for the field at the waveguide-air boundary using the theory
developed by Davies and Walpole!!. This field was then used to calculate the
farfield of a surface-emitting diode laser with a turning mirror. The work was
also supported by experimental data from a surface-emitter with a 45 degree
turning mirror which was focussed lon beam micromachined at OGC. An
attempt was also made to duplicate the results presented by Liau and Walpole’

for a parabolic turning mirror.

This thesis is organized as follows. Chapter 2 presents an overview of sem-
iconductor lasers. It starts with section 2.1 which outlines the lasing criterion
for a laser in general, continues with section 2.2 describing a quantum well
heterostructure laser and ends with section 2.3 which presents the need for mul-

tiple stripe lasers and phase-locked laser arrays.

A detailed description of surface-emitting laser diodes is the subject matter
of chapter 3. Section 3.1 presents the details of different surface-emitting
geometries and section 3.2 concerns monolithic two-dimensional arrays of

surface-emitting diode lasers.

Chapter 4 gives a complete outline of the theoretical formulation of the
problem of calculating the electric field intensity at the waveguide-air interface
and using this field to calculate the farfield patterns for turning-mirror surface-
emitting diode lasers. Section 4.1 gives a general description of the theory of
optical waveguides. Section 4.2 describes the dielectric slab and stripe geometry

waveguide structures. Formulation of the problem of calculating the farfield



pattern is given in section 4.3. It starts by illustrating the results of the simula-
tion of farfield patterns from two different approaches tried at the beginning.
Next, it describes the waveguide model which was finally used to solve the
boundary value problem at the waveguide-air interface. Section 4.4 presents the
theory as given by Davies and Walpole!l. Section 4.5 describes the method of
calculating the farfield pattern from the field at the waveguide termination. The
details of theoretical formulation and computer code are presented in Appen-

dices 1, 2 and 3.

Chapter 5 presents the experimental part of this work. Section 5.1
explains the focussed ion beam micromachining technique used to machine the
45 degree turning mirror. Section 5.2 is a short description of the experimental
setup employed to measure the farfield pattern. The last section, section 5.3,
gives the specifications of the laser diodes used for modeling the farfield pat-

terns.

Chapter 6 presents the results obtained from experiment and computer

simulation and also presents a comparison of the two.

Conclusions are presented in chapter 7.



2. SEMICONDUCTOR LASERS

In a semiconductor one can obtain stimulated emission by minority carrier
injection using a p-n junction. When the forward bias or a p-n junction is
sufficiently large to allow the propagation of electrons throughout the conduc-
tion band beyond the barrier at the p-n junction (or holes throughout the
valence band), the current assumes the injection mode. In the injection mode,
direct band to band phote-recombination becomes possible in a direct-gap sem-
iconductor. The injection current and the corresponding emission increases
rapidly with bias voltage, and can result in lasing action. This chapter
discusses the principle of operation of laser diodes in general, presents a short
discussion of quantum well heterostructure lasers, and briefly describes phase-

locked laser arrays.

2.1 Criterion For Lasing

A photon with energy hv traversing a semiconductor can stimulate a tran-
sition between two levels E, and E, whose energy difference is £, — E; = hv.
There can also be spontaneous transition. A stimulated recombination generates
a photon which has the same frequency, direction of propagation, and phase as
the stimulating photon. A spontaneous recombination generates photons pro-

pagating in random directions and random phases. Sufficient carrier population



inversion assures that stimulated emission exceeds spontaneous emission.

In order to use the stimulated recombination process in a laser, two condi-
tions must be met,
(1) the gain is equal to the losses,
(2) and the radiation is coherent.
Coherence can be achieved by placing the source of radiation in a cavity which
will favor the amplification at a cavity oscillation frequency. This selective
amplification is the result of positive feedback for those electromagnetic waves
which form a standing pattern in the cavity. Now, if one considers 2 point in
the center of this cavity emitting an intensity L, towards one of the walls, then
when the gain equals the sum of all losses, the intensity of radiation at the
center of the cavity remains unchanged after traveling a distance of 2/, where {

is the cavity length. This condition is given by the equaution12

gl — al — iln{ L ]»= 0 (2.1)

2 R R,
where
¢ = gain per unit length
a = distributed losses per unit length
R{,R, = Reflectances of cavity mirrors
I = length of laser cavity

The gain is given by the following expression!?2

2 - 7]
g=c . 2.2
J8‘rrqn2u2Aud (2.2)

J = current density

= radiative recombination efficiency

=
1



n = index of refraction

v = {requency of photons emitted in spontaneous spectral halfwidth Av

d = thickness of the active regjon
¢ = speed of light in vacuum
g = electron charge

The threshold current for the laser can be derived if one writes ¢ = B, whert
B is called the gain factor. B is directly dependent on the temperature. Making

this substitution in equation 2.2 one has,

A 1 1
=a + —1 .
Biw = « o1 anRz

where 7, is the threshold current density. Now, by writing R;R, = R? one ha

(2.3

the following relation for current density.

: o3 1 1
= — 4+ —lh— 2.4
Jth B Bl R (
The losses, the threshold current and efficiency all are temperature dependent
The temperature dependence around room temperature of the threshol

current, is approximately given by!?,

0

where Ty=120K near room temperatures for AlGaAs lasers. The extern:

efficiency below threshold also has exponential temperature dependence due t

the exponential temperature dependence of absorption losses.



2.2 Quantum Well Heterostructure Lasers

When the n-type and p-type regions on either side of the junction consist
of a different semiconductor from that of the active region, the tramsition is
called a heterojunction. One purpose of resorting to heterojunctions is to obtain
high injection efficiency of minority carriers into the lower band-gap semicon-
ductor which forms the active region. The addition of one or more heterojunc-
tions to laser diodes has resulted in major improvements in their performance,
flexibility and emission wavelength range. In particular threshold current densi-

ties have been reduced by an order of magnitude.

When the thickness L, of a semiconductor layer, for example, the active

layer of a double heterostructure (DH) laser, is reduced to the order of carrier
de Broglie wavelength (A = £~Lz), effects not typical of bulk material known
p

as quantum size effects occur. Size quantization results in a series of discrete
energy levels given by the bound state energies of a finite square well. Electrons
or holes in the active layer are then restricted to this finite potential well. Fig-
ure 2.1 shows a schematic diagram of conventional versus quantum well laser.
The band diagram in this figure shows clearly that the active layer thickness in
the quantum well laser is about ten times smaller than in a conventional laser.
The narrow restricted active region causes one dimensional behaviour of elec-
trons and holes normal to the tayer and two-dimensional behaviour in the plane
of the layers, instead of the usual three degrees of freedom. A detailed discus-
sion of quantum well lasers can be found in the paper by Holonyak!?® and a

book edited by R. Dinglel4.
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The conduction band density-of-states function in a2 conventional double
heterostructure laser is parabolic and is expressed asl4
3
2m./5% ) B

47?

1
2

P = (2.6)
where
‘ .
m, = electron effective mass
E = energy measured from conduction band edge F,
E = Planck’s constant/2mw
p. = parabolic density-of-state function in three dimensions

But for a two dimensional quantum well heterostructure laser, then density-of-

state function is a step function given by!*

t

=3 H(E - B (2.7)
hiL,

where H(E) is a unit step function with H(E=E;,) = 1 and H(E<E;,) =0

E;, denotes the quantized energy levels with quantum number n. Devices

which have a single low bandgap active layer are known as single quantum well

lasers, and those with the active layer consisting of many alternating layers of

low and high bandgap materials forming a superlattice type structure are called

15 The two dimensional nature of electron motion

multiple quantum well lasers
in quantum well heterostructures produces several umique and important
features in semiconductor lasers. In the GaAds/AlGaAs material system, the
most important improvements which have been demonstrated arel8

1) reduction of laser threshold current density (j,, = 250—400A/em?),

2) a less pronounced temperature sensitivity of the laser threshold current
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density(7T=250),

3) a higher relaxation oscillation frequency due to higher differential gain
89/3n(E), where g is the gain and n(E) is electron density, and

4) a higher polarization stability due to the large difference of optical gain for
TE and TM modes.

2.3 Need For Multiple Stripe Lasers

The heterolayers in semiconductor lasers confine light and injected carriers
in the direction perpendicular to the plane of the structure due to the refrac-
tive index step between center and cladding layers and due to potential barriers
created on either sides of the active region. Whenever there is carrier
confinement in the plane of the junction, such a laser is called as a stripe laser.
Several types of stripe lasers are obtained depending upon the type of optical
confinement employed. For example, a buried heterostructure stripe laser is
obtained when a filament of narrow bandgap material is entirely embedded in a
wider bandgap material. In a rib stripe laser, optical confinement is obtained

by locally stepping up the thickness of the active layer.

Semiconductor lasers with wide stripe or broad-area contacts are capable of
generating high-power optical pulses by virtue of their large emitting area.
However, in contrast to narrow-stripe fundamental transverse mode [asers,
wide-stripe lasers either operate in one or more higher order lateral modes or in
several relatively independent filaments due to self-focusing of filament. In the

former case, the beam divergence in the plane of p-n junction is substantially
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greater than that theoretically available from a wide emitter, whereas the light
emitted in the latter situation exibits little or no spatial coherence. Hence, the
farfield radiation pattern is generally broad and may fluctuate with time or
drive current. One approach to overcoming this disadvantageous attribute
(thereby obtaining a high-power low-divergence beam) is to operate a multiple-

stripe laser in a phase locked statel?:18.

High-power monolithic laser arrays which emit up to 38 W CW with a
total power conversion efficiency of up to 30% have been reported!. Recent
examples of gain-guided phase-locked arrays include coupled multiple stripe
quantum well laser arrays!® offset stripe laser arrays?0 and chirped arrays?l,
Index guided laser arrays have also been fabricated and CW and pulsed opera-
tions to high powers have been achieved??-24, Gaussian shaped picosecond
pulses as short as 62ps have been observed for an array of 10 phase-coupled
multiple quantum well GaAs lasers?S. Also, high-power high-efficiency 2-D laser

arrays emitting 175 W at 26A have been recently reported?.

Figure 2.2 28 shows the schematic diagram of a representative gain-guided
phase-locked laser array. The device consists of conventional double-
heterostructure layers with conducting stripe contacts on the p-side. The
metallization is Au/Cr and the proton implant serves to destroy the conduc-
tivity of unmasked areas. The optical coupling of adjacent stripes in such a
laser array is provided by the penetration of the optical field of one laser stripe
into the active region of the other. Locked oscillation, ie. simultaneous coherent
operation of adjacent lasers at the same optical {requency occurs as a result of

the stimulated emission induced by either field in the other cavity and the
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mutual interaction of fields in the region between the cavities?”. Coupled mode
analysis of phase-locked injection laser arrays has been developed by J. K.
Butler et al?8 and Kapon et al2%. Using coupled mode analysis one can solve for
allowed modes and splitting of oscillation frequencies of the individual emitters
that result from interaction between the emitters. This thorough analysis gives
farfield lobe widths which match the experimentally observed farfield lobe
widths better than those obtained by using simple diffraction theory which pro-
vides no method for describing the allowed oscillating modes of arrays of cou-

pled emitters.

Traditionally, diode lasers have been edge emitters with cleaved facets for
oscillation mirrors. Although these are capable of giving very high output
powers, surface-emitting devices for optoelectronic integrated circuits have been
of much interest lately. Phase-locked laser arrays can be made to emit light
from the top surface rather than the sides. These are called the surface emitting

diode lasers and will be discussed in the next chapter.
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3. SURFACE EMITTING LASER DIODES

Surface-emitting (SE) semiconductor diode lasers emit radiation perpendic-
ular to the surface of the wafer on which they are fabricated. This characteristic
is very attractive since first, such devices are necessary building blocks for
monolithic two-dimensional arrays of diode lasers and second, they are also of
interest as transmitters in optical interconnections between electronic integrated
circuits. Conventional diode lasers emit into the plane of the wafer, which must
be cleaved so that the emitting edge is exposed. Surface emitters can be fabri-
cated and operated without cleaving or dicing the wafer. This may prove useful
in the manufacture and on-wafer testing of diode lasers. Some surface emitters
provide laser output over areas which are large compared to their optical
wavelength, resulting in beam divergence that is considerably less than that of
conventional diode lasers. Narrow beams are highly desirable in most applica-
tions and particularly in optical fiber systems, where Jaser to fiber coupling can

be significantly enhanced.

3.1 Surface Emitting Geometries

There are two basic configurations of optical cavity used for surface
emitters. In one configuration, the optical cavity is formed by mirrors, for

example at the top and bottom surfaces of the wafer and may have distributed



feedback (DFB) or distributed Bragg reflector (DBR) sections3®. These are
called the vertical cavity lasers. In the other configuration, the horizontal cav-

ity, the axis of optical cavity lies in the plane of the active layer.

3.1.1 Vertical Cavity

A model of an SE laser with a vertical cavity is shown in Figure 3.131,
The mirror on the n-side was formed by first etching off the Au/Sn metal and
then the GaAs substrate and Gads buffer layer. The etching was stopped by
the etch stop layer of n-GaggAlggAs. The mirror on the p-side was formed by
sputtering the $1O, to open circular windows of 20 wm diameter. Hence a vert-
ical cavity is formed between these two mirrors and surface emission is obtained
as shown in the figure. The electrodes are annular rings so that they do not
interfere with the mirrors. The cavity length has to be compromised by taking
into account threshoid current density and mode spacing. Since the cavity
length is small, gain is low and hence losses have to be kept low {Refer to Equa-
tion 2.1). Hence mirrors are fabricated with reflectivity greater than 95 percent.
A slightly different configuration called the ring electrode laser is obtained when

2

p-electrode is formed in a ring shape instead of a circular shape32. The ring

electrode is introduced in order to increase reflectivity.

It is possible to obtain very low thresholds in these lasers. CW operation
at 77K and a low threshold current of 6mA has been obtained from a surface-

emitting circular buried heterostructure laser33.
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3.1.2 Horizontal Cavity

A horizontal cavity is standard for laser diodes. In this configuration high
gain can be achieved since gain lengths of 100 to 400um are typical. Surface
emission is obtained by deflecting a part of light in the direction perpendicular
to the axis of the cavity. This deflection can be achieved using beam deflectors

at the end of the device or by using a grating of appropriate design.

Beam Deflectors: Here the laser cavity has the same geometry as an edge
emitter except for a monolithically integrated beam deflector. Several versions

of this type of device have been reported in both GaInAsP and AlGaAs double

heterostructure systems.

Chemical etching with subsequent mass transport has been used to fabri-
cate GalnAsP/InP surface-emitting lasers’”. These devices were operated at a
threshold current as low as 12mA, differential quantum efficiency as high as
47% and farfield pattern with a main lobe as narrow as 12°. Figure 3.2 shows
schematic of this structure. First, a mesa was formed as seen on the right. Then
selective chemical etching procedure was used to produce a stair-structure on
one side and nearly vertical wall on the other. Next, the wafer was loaded in a
furnace for mass transport in order to form a parabolic mirror as seen in the

figure. The farfield pattern from this surface-emitting laser has been computer

simulated and is shown in Chapter 5.

Jon milling has been used to fabricate dry etched mirrors on GaAlAs/GaAs
laser and has demonstrated low threshold and high efficiency. Qutput power of

up to 15mW was observeds4.
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By using ion beam assisted etching, light emission normal to the surface of
a GaAs/AlGaAs wafer has also been obtained by fabricating edge-emitting
double-heterostructure diode Jaser with a monolithic 45° deflector adjacent to

one of the laser facets8.

Focussed ion beam micromachining techniques have been used to fabricate
a 45° turning mirror to form a surface emitting, ten element, phase-locked array
giving 330mW optical power under pulsed operation®9. Another technique
called reactive ion beam etching was recently used to obtain surface-emitting

multiquantum well lasers with optical bistability3?.

Grating: A schematic cross section of the output coupling section of
grating-coupled, surface-emitting device is shown in Figure 3.3. 36 Electrodes
(not shown) are formed on the top and bottom surface. In addition to the
active layer, another layer named as the ‘second layer’ is shown in which, the
grating is ruled with the periodicity of the optical wavelength in the laser. In
general, the grating couples light into both the vertical directions (up' and
down) by first order diffraction. It will also couple light to the left and right of
the figure by second order diffraction. This coupling is used for feedback, either
as a distributed feedback (DFB) laser3”:38 as shown in Figure 3.3, or as a distri-
buted bragg reflector (DBR) laser where feedback is obtained by bragg refiector
sections on the right and left ends39. For efficient operation the design should
provide a means for eliminating one of the vertical outputs. A coherent
surface-emitting diode laser array consisting of distributed Bragg reflector sec-
tions with farfield pattern as narrow as 0.012° emitting 250 mW has been

reported?.
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Figure 3.3 Cross-section of the output eoupling section of

surface - emitting device with grating. [36]
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3.2 Monolithic two-dimensional arrays

Semiconductor lasers have very large overall efficiencies {optical output
power/electric pumping power). Devices fabricated with single quantum well
active regions have exibited total power conversion efficiencies greater than
50%40:41. Hence, arrays of lasers offer the possibility of high efficiency and
large total power. Linear one-dimensional diode laser arrays are being developed
for efficient, high power sources of pump radiation for solid state lasers. A
coherent combination of the outputs of the elements of the array can be used
directly as a high power high efficiency bright laser. Surface-emitters make pos-
gible the extension of these applications to two-dimensional arrays. A 16 laser
two-dimensional array which has a low threshold of about 11-14 mA per ele-
ment and high c¢w power of 270 mW at room temperature has been

reported? 43,

The fabrication of gratings, mirrors, beam deflectors, and other such opti-
cal components with micrometer and submicrometer dimensions and smoothness
and flatness less than a wavelength is difficult. The registering of patterns and
the machining of structures require high technology. Advanced lithography,
reactive lon etching, ion beam assisted etching, and focussed ion beam
micromachining are some technologies used to make surface-emitters. Wet
chemical etching followed by the mass-transport process for smoothing surfaces
has been used to fabricate GalnAsP system lasers successfully. But unfor-
tunately this process cannot be adapted easily for shorter wavelength lasers

because of the reactivity of Al compounds. 38 Hence, research is being done to
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find a technology to make good deflector mirrors for GaAs/GaAlAs systems.
The surface-emitting laser with a 45 deflector mirror in a2 Gads/GaAlAs system
which was used for the experimental work for this thesis, was fabricated using

focussed ion beam micromachining at the Oregon Graduate Center.

Before using a device in any application, it is necessary to know its charac-
teristics. One of the most important characteristics of a laser diode is its farfield
pattern. The next chapter describes the theory and computer simulation tech-
nique used to model the farfield pattern of a surface-emitting Jaser diode with a

turning or deflector mirror.



-93-

4. COMPUTER SIMULATION OF FARFIELD PATTERN

Within the past few years Gads/GaAlAs injection lasers have developed to
a point where they may be considered for many applications. For this reason,
but also because a full understanding of these devices is not yet available, both
manufacturers and users of lasers must have the capability of systematically
and accurately characterizing the laser output radiation. Among the important
meagurements are: output power versus pumping current, near-field and far-
field radiation patterns, and the laser oscillation spectrum. The combination of
near-field and far-field radiation patterns together with the models of internal
device behavior enables one to calculate modal phase dependence at the facet

and thereby improve the design of external optical systems44.

The computer simulation of the far-field pattern of a surface-emitting
diode laser with a turaning mirror, is the major topic of this research. This
chapter starts with theory of optical waveguides and then describes in detail the
formulation and solution of the problem of evaluating the farfield pattern for

such a surface-emitter.

4.1 Optical Waveguides

A common laser structure is shown in Figure 4.1. The figure shows the

layers of a conventiona! stripe laser. The stripe width is denoted by s and
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Figure 4.1 Structure of a conventional single emitter diode laser.
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usually supports only one mode. The thickness of the active region is d. The
arrows on the front facet indicates the current direction and the laser beam
spot shows the spread of the laser beam in the parallel and perpendicular direc-
tion to the junction plane. In general a Fabry-Perot resonator is formed by
cleaving two parallel facets which produces a resonant condition for optical las-
ing along the cavity axis. A highly reflecting film is commonly placed on one
facet to improve the useful output at the opposite one. In the vertical direc-
tion, a diode laser requires an active region in which an electron-hole pair
recombination generates the optical flux and a mode confinement region which
overlaps the active region. Generally the mode confinement region extends
beyond the active volume. The optical confinement is controlled by steps or
gradients in refractive index. The extent of the recombination region is limited
either by the minority carrier diffusion length or a potential barrier to the
minority carriers. In heterostructure lasers the potential barrier at the interface

is several kT high, and leads to good electrical confinement.

In the horizontal direction, waves propagating at large angles to the optic
axis must be suppressed by introduction of high losses or index steps. For
broad area contacts, sawing the side-walls or introducing lossy regions between
broad stripe and side-walls achieves this. In some stripe contact diode lasers, a
filament of narrow bandgap material is entirely embedded in wider bandgap
material. This filament produces both a strongly guiding dielectric waveguide
and also a region in which injected carriers are confined by potential barriers on
all four sides. These are called buried heterostructure lasers. There are several

other types of stripe lasers namely, p-n confinement stripe laser, rib stripe laser,
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double stripe laser etc?d.

4.1.1 Waveguide Modes

The cavity modes of a injection laser can be approximated by two indepen-
dent sets of TE (transverse electric) and TM (transverse magnetic) modes. The
modes of each set can be further classified into,

a.) longitudinal modes (axial modes) which determine the principal structure in
the frequency spectrum and are related to cavity length L, its index of refrac-
tion and its dispersion as seen by the propagating wave,

b.} lateral modes (in the plane of the junction) which give the lateral profile of
the laser beam and are dependent on preparation of sidewalls and the diode
width and index-step if any,

¢.) transverse modes (perpendicular to junction plane) which depend on the

dielectric variation perpendicular to the junction.

4.1.2 Waveguide Equations

The electromagnetic fields in a waveguide have the following functional

dependenced®

e = E(z,y)ezp(fwt — vz) (4.1)
h = H(z,y)ezp(iwt — vyz) (4.2)
where vy = o/2 + 1B is the complex propagation constant. For purely pro-
pagating waves o = 0, and for purely attenuating waves B = 0. The value of

the propagation constant y can be determined only after the geometry of the
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waveguide structure is specified.
The above two equations when substituted in Maxwell’s curl equations give rise

to a set of equations

dE,/3y + YE, = —iwpH, (4.3a)
~vYE,—3E,/3z =—1wiH, (4.3b)
8E,/dz — 8E,/8y = —topH, (4.3c)
and
0H,/3y + yH, = 10ek, (4.42)
—vH,-93H,/8z = iweE, (4.4b)
dH 0z — 0H,/0y = tweH, (4.4¢)

These can be solved to give E,, E,, H,, aud H, in terms of £, and H,. The

four equations are as follows46
3E 3H, |
E, = —(v* + k)7 [y— + jop— (4.5a)
dz oy |
E, = (v + k¥H)™* oL, + 4 o, | (4.5b)
v =0 ) Ty T M e ‘
oF oH
H, = (y*+ k)7 [ime Ly (4.5¢)
dy dz
0E oH
H, = —(yr + D)7 ioe—= + v : (4.5d)
dz dy
Al} the components of the field obey the wave equation8
VL(E/H) + (k* + ¥P(E/H) = 0 (4.62)

where
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vi=Vl + 4 (4.6b)

4.2 Waveguide Structures

Two forms of optical waveguide must be considered in the treatment of
gain-guided heterostructure lasers. The first is the dielectric slab waveguide that
is formed by three layers of djelectric material with the central layer having the
largest index of refraction. The electromagnetic field is confined predominantly
by total internal reflection in this region and the field escaping the high refrac-
tive index region dies down exponentially in the surrounding region. The
second optical waveguide which is perpendicular to the first is in the plane of
the layers and is the guide formed by surrounding a region of optical gain with
a region of optical loss. This produces the ‘gain-guiding’ condition which is an
important means of confining light in the junction plane of stripe lasers. The
optical behavior in such a guide can be analised by an extension of the treat-
ment used for a dielectric waveguide, in which complex rather than real values

of refractive index are used49.

4.2.1 Dielectric Slab Waveguide

Figure 4.2 48 shows 2 three layer slab waveguide. The three layer slab
waveguide is formed by three layers of dielectric with the center layer having
the largest index of refraction. The types of modes associated with slab
waveguides are

i) trapped or bound modes whose field energy is located in the neighbourhood of
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Figure 4.2 Schematic cross section of a three-fayer optical waveguide. (a) The
wave propagation along z direction, and {b) the refractive index as a function of

x coordinate.[48]
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the waveguide or center slab,

ii) radiation modes whose field intensity does not vanish at large distances from
the slab.

The waveguide modes can be determined by using Maxwell’'s equations dis-
cussed in section 4.1.2. For fundamental mode propagation through an ordinary
DH injection laser the TE mode has lower mirror losses and propagation losses
for a thin active layer?’. Since only the TE mode is important for the thickness
of the waveguides considered in this work, TM modes will not be discussed

further.

The TE mode has only three components: E,, H,, H,. Since E,=0, and all
transverse field components are independent of y for the dielectric slab
waveguide shown in Figure 4.2, E,=H,=0. The component E, satisfies equa-

tion 4.6. This leads to#8

d’E
- L+ (k2 + yYE, = 0 (4.7)
T

The remaining components follow from equations 4.4c, 4.5b and 4.5¢ and are

given by
H, = ~LE, (4.8)
WH
. 0E
H, = ——* (4.9)
Wy 0

The solution for Ey can be divided into three different cases:

1) the mode is completely trapped,

2) the mode decays exponentially in one direction and radiates in the other,
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3) the mode radiates to infinity on both sides.
The first case is the guided mode and the second and third are called the radia-

tion modes. Figure 4.3 %6 illustrates the three cases.

4.2.2 Stripe Geometry Waveguide

Waveguiding in stripe geometry lasers in the plane perpendicular to the
laser junction is due to the abrupt and relatively strong waveguide created by
the heterostructure. Waveguiding in the lateral direction, ie. along the junc-
tion and transverse to the direction of propagation, is affected by various
mechanisms. Lateral variations in gain8, represented as changes in the ima-
ginary part of the refractive index, gives rise to gain-guiding. The decrease in
real refractive index proportional to gain?, or the increase in real refractive
index with temperature30, je, in general the variation in real part of refractive
index gives rise to index-guiding. If the imaginary and/or real spatial depen-
dence of the refractive index is parabolic, the lateral mode functions are
Gaussian-Hermite. Experimental evidence that waveguiding in narrow stripe
lasers results primarily from lateral variations in gain was given by T.L. Paoli%!.
Another theoretical analysis of waveguiding in very narrow stripe lasers can be

found in the paper by Streifer et al52.

For determining the field at the waveguide-air interface, a simple dielectric
waveguide structure is used in this work. The details of the solution of this

problem are discussed in the next few sections.
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4.3 Formulation of the problem

A schematic of the laser diode and its external turning mirror used to
simulate the farfield pattern is shown in Figure 4.4. The width of the active
region is 2d, h is the depth of center of the active region from the surface éf the
laser and t is the distance of the turning mirror from center of the active
region. The figure shows a 45° turning mirror, which was the nominal shape of
the mirror used for the experimental part of this work. But the computer simu-
lation can be used for determining the farfield pattern for other shapes of the
turning mirror as well. The mirror reflects the light perpendicular to the sur-
face and the farfield pattern is observed at the plane P. To determine the
intensity distribution at P, the intensity distribution at the laser facet and at

the turning mirror must be determined first.

The first attempt to solve the problem was made by using scalar diffraction

theory. This states that 53
Uy(Py) = — ffol(} 1)exp _)" ’ cos(n,r)ds (4.11)
\ r

where U,(P,) is the complex amplitude of the field at the observation point,
Uy(P,) is the complex field at the turning mirror, n is the outward normal unit
vector to the aperture plane and the integral is over the mirror surface. U;(P,)
was assumed to be a Gaussian. The results for the farfield pattern obtained
using this approach, for a Gaussian with spot-sizes 2um and 5um at the laser
output mirror are shown in Figures 4.5a and 4.5b. Comparing this with the

experimental result obtained earlier® for a surface-emitter with a 45° turning
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Figure 4.4 Schematic of a surface-emitting laser with a 45° turning
mirror used for modeling farfield pattern.
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Figure 4.52 Theoretical farfield pattern for a surface-emitter
with & 45° turning mirror due to a Gaussian of spot-size 2 pm
at the laser output mirror. The pattern was obtained using
scalar difiraction theory given by equation 4.11.
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Figure 4.5b Theoretical farfield pattern for a surface-emitter
with & 45° turning mirror due to a Gaussian of spot-size 5 pm
at the laser output mirror. The pattern was obtained using
scelar diffraction theory given by equation 4.11.
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mirror, shown in Figure 4.6a, it is obvious that there is no match. From Figure
4.6b, which represents the farfield from an edge emitter laser of the same

material as the surface-emitter, the correct spot size was calculated using the

formula wy, = Lﬁ’ where w, is the spot size, X is the free-space wavelength and
T

8 is the half width at 1/e? intensity. The spot size was calculated to be
0.79um. Since this approach failed to give satisfactory results, the integral

theorem of Helmholtz and Kirchoff was used. This states that54,

r r 3dn

ikr tkr
U(P) = if{{U% ‘- = SU}ds (4.12)

where U was assumed to be a Gaussian and the integration was carried out
over the surface S of the turning mirror. Figures 4.7a and 4.7b give the results
obtained for two different spot sjzes at the interface. It is seen that as one
approaches the calculated spot size of ) 0.79m, the pattern diverges away from

the experimentally observed output of Figure 4.6a.

Hence, it is obvious that the the beam in the gap between the waveguide
termination and turning mirror is not a Gaussian and that solution to this
problem requires a more complete treatment of the boundary conditions at the
waveguide-air interface than is usually necessary. An exact formulation of the
problem can be obtained by including the mode coupling at the mirror into the
continuum of unguided radiation modes to the right of the interface. A
rigorous theory using variational treatment of the diffraction at the facet of the
laser diode has been developed by T. E. Rozzi and G. H. int’ Veld3% 56,

Another thorough treatment of the problem of finding the field at the output
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facet of the laser can be found in the paper by Davies and Walpole!!, and was
used in this thesis to obtain the field at the laser-air interface. Although the
Davies and Walpole used Pb, _ ,Sn,Te system, the theory presented is valid

for any other diode laser system.

4.3.1 Waveguide Model For Computer Simulation

In order to obtain an exact formulation of the output coupling, it is desir-
able to simplify the theoretical model consistent with the accuracy. The
schematic of the model is shown in Figure 4.8 It is an idealized three-layered
structure terminated by free space in the plane z = 0, which is normal to the
direction of propagation through the guide. €,, €, and € are the dielectric con-
stants of core, cladding and free-space respectively. The distance of any point
on the right of the plane z = 0 is given by r and the cladding layer is assumed
to be much thicker than the active layer. The two-dimensional guide is made
symmetric and free of irregularities so that no coupling can exist between modes
of different parity or different polarization. Only the case where the lowest
order TE mode is incident on the waveguide termination is considered. The
theory is valid for guiding regions sufficiently thin so as to allow only the lowest
order TE mode propagation. By restricting the thickness in this manner, we
need consider mode conversion only to the continuum of unguided radiation
modes rather than to other higher order modes. The dielectric constant € is

treated as totally real, ie. the waveguide is treated as passive and lossless.
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4.4 Theoretical Formulation

The theory discussed in this section can be found in the paper by Davies

and Walpole!!l, Maxwell’s equations for a symmetric waveguide and for a wave

propagating with a time dependence e'! are

UXE(r) = —fop, H(r) (4.13a)
UxH(r) = iwe(z)E(r) (4.13b)

Combining the two equations yields

VZE(r) + p,e(z)o’E(r) = 0 (4.14)
For the fundamental TE mode propagating through the guide,

E(r) = §E(z,y) (4.15)
Substituting this equation in 4.13a and 4.13b gives
H(r) = — {—*J.BE(’”Z) + z‘aE(I’Z)} (4.16)
Ho,w 0z 4z

The boundary condition at the free-space interface at z = 0 are

E(z,07) = E(z,0%) (4.17)

dE(z,07) _ dE(z,0%) (4.18)
8z az '

Now, the field inside the waveguide can be written as

E(z,z) = Eo(z)e_'lB"l + REo(z)e‘.B"Z + fd‘yg(‘y)EY(I)eiB’z (4.19)

0
In the above equation, the first two terms represent the incident and the
reflected fields for the bound mode, R is the complex reflection coefficient, g(7y)
is the reflection coefficient for radiation modes and <y is an arbitrary wave vec-

tor in the range 0=<y<o. The third term in the equation represents reflected
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waves belonging to the continuum of even TE radiation modes. The fields
E,(z) and E(z) can be determined by using the theory of a dielectric slab
waveguide described in section 4.2.1. The expressions for Ey(z,z), £ (z), B,
B, and g¢(7y) are given in Appendix A, Al.1. Next, the free space field for 2 is
written as

E(z,z) = fa(o)e_‘e(o)’e_‘czdc (4.20)

-

where,E(z,z) is expanded as a fourier integral with coefficients a{c). Expres-
sion for B(o) is given in Appendix A, Al.l. Now, boundary conditions can be
used to solve for R, g(vy), and a(c). The boundary conditions 4.17 and 4.18

give the following two equations

E,(z)(1 + B) + [dya()Ey(z) = [ alo)e™ " do (4.21)

(=1

E,(2)B,(1~R) — [dya(v)ByEy(z) = [ a(0)e™'""B(0)do  (4.22)

-

Eliminating a(g) between the two equations, one has

E,(2)B,(1-R) = [dya(v)yEy(z) = [ doB(o)e™"* (1 + R)E,(0)
0 —@

+ [dvg(v)Ey(o)

Before solving for the field at the free-space interface, R and g¢(y) must be

(4.23)

determined from equation 4.22. The expressions for E (o) and E (o) which are
the fourier transforms of Ey(z) and E(z) respectively and the details of the
solution to determine R and g(7y) are given in Appendix A, A1.2. Just the final

results are presented here. The field at the interface is given by
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E(z,0) = (1 + R)E,(z) + _?dt E(t)EtB(I) (4.24)
0 ¢
where R and g¢(t) are given by
L= Py [ R F07()
0 b
k= 1+ F, (4.25)
and
3(t) = —2—L0) il (4.26)

2 L
L+ F, (g, + V(k,d) - ¢!

Expressions for all the symbols used in the equation above are given in Appen-

dix A, Al.2. Finally, the expression for F(t) and F, are given by

_ o n sl etz g = dy V(K d)P -y

" (Bed) 7, F cots, ’T{(!ﬁ + zltan’z,)?

(ysinycosz, — z,sinz,cosy)’

' 4.27
(v? — z,%? 427
and
1
—_ 1 .’Bo 1 2
F(t) =
R l:ﬂ(ﬁa d) z, + cotz, t’cos’z + zzsinzz]

{2 V (k,d)? — t*(tcoszcost + zsinzsint)

(tsintcosz, — z,sinz cost) z2(1 + tan’z,))

2 2 2, 2
. t° + z jtan"z,

1
y? —

A /Uc 4)? - yz(ysmycos:c — zsinzcosy)

£2 ~ ¢

+ -4—tv(z2 - tQ)fdyPr
0

i1

]
y? — 12
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. . D) 2
ysinycoszr, — z,sinz, cosy) z,(l + tan’z
. ( 0 0 o ) 4] ( 0) (428)

y° — z, y? + zftaana

where the principal value js defined as given by equation A19, Appendix A, sec-
tion Al.2. Simplifications for evaluating the principal value integral in equation
4.28 are given in Appendix B, B2.1 The interface electric field obtained from
equation 4.24 pumerically is shown in Figure 4.9. It can be seen that the the
total field at the mirror has a large component in phase with the incident TF,
mode and an out of phase component. In other words, the field due to radiation
mode introduces an ‘x’ dependent phase. If one considers a Gaussian beam at
the interface, then this phase dependence is not included and therefore accurate
results cannot be obtained. Hence it is inappropriate to use a Gaussian beam.
Two other approaches similar to this one are given by Ikegami 47 and Butler
and Zoroofchi®?. However, Ikegami does not consider the radiation modes in
the calculation of reflectivity and in the Butler paper there is only an approxi-

mate treatment of the boundary conditions.

4.5 Farfield Pattern

The field on the waveguide-air interface was calculated using equation 4.24.
Now, the waveguide-air interface can be considered as an aperture on which
field values are known and therefore diffraction theory can be used to determine
the field at the turning mirror. The starting point for aperture diffraction prob-
lems is the Kirchoff diffraction theory according to which the field at a point

due to diffraction at an aperture is given by,



ELECTRIC FIELD AMPLITUDE

Eq(z,0)

A eE(z,0)

DISTANCE ALONG INTERFACE (MICRONS)

Figure 4.9 Field amplitude at the waveguide-air interface calculated
using equation 4.24. Ey(z,0) is the guided wave and ReE(z,0) and
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ImEgz,O) represent the real and imaginary parts of the total field at the

interface respectively. These include the field due to radiation modes.
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thr tkr
Uz'ye) = [[|2Y4— - pLt_y; (4.29)
h>

on r  en 1

where, 3 is the surface of the aperture and ¢e®™/r is the three-dimensional
Green’s function for Helmholtz equétion in three dimensional spherical coordi-
nates. The schematic of the laser diode is shown in Figure 4.10. In the figure,
AOC is the laser-air interface, CO’B is the 45° turning mirror, n is the normal
to the interface and r is the distance of a point on the turning mirror to the
interface AOC. The laser radiation first propagates in the Z direction and then
in the X’ direction after reflecting off the turning mirror. AGB is the opening
or the aperture. The laser diode which was used to measure the farfield pattern
was a ten stripe, phase locked device. But for the sake of simplicity of modeling
the farfield pattern, 2 single emitter laser with an active region with width in
the y direction much greater than the thickness was assumed. Also, the field
was assumed to be distributed uniformly over the width. This assumption is
valid since we are modeling the farfield pattern in a direction perpendicular and

not parallel to the plane of the junction.

Therefore, with these assumptions, the surface integral in equation 4.29
reduces to a line integral over x. Hence one has to use a two-dimensional
Green’s function instead of three-dimensional Green’s function. The two-
dimensional Green’s function for Helmholtz equation in cylindrical coordinates

is given by Hankel function which is written as,
HOY (k) = T (kr) + YD (kr) (4.30)

where J{) (kr) and Y (kr) are Bessel functions of the first and the second

kind respectively. The Hankel function represents a traveling cylindrical wave.
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Since the the amplitude but not the derivative of the field is krnown at the
interface, the Green’s function is chosen such that it is zero on the aperture
T,T,, where z, and z, represent the points on the interface AOC between
which the field is nonzero. The expression for the Green’s function used for
modeling is given explicitly by equation B3, Appendix B, section B2.2. There-
fore the field at any point on the turning mirror can be calculated by using the

following formula.

- (U1 + aY)) (J1a — bY,
Ulz',z) = ;—k U ‘ dz + :f . )dz (4.31)
r

The details of the derivation of the equation 4.31 are given in Appendix B,
B2.2. Next, equation 4.31 was used again to determine the field at aperture
AGB as shown in Figure 4.10. This was done in order to avoid the shadow
effect of the facet opposite to the turning mirror on the farfield pattern. The
shadow effect comes about since all the points on the turning mirror do not con-
tribute to the farfield on the left of AOC. This is because AOC blocks a part of
the radiation. But if the field at the aperture AGB were calculated first, the
above problem will not arise. It is important to consider this since one needs to
know the angular spread from —40° to + 40° from the vertical. The farfield
at plane P was then calculated from the field at the aperture. But there is also
a direct contribution from the laser facet to the farfield pattern. This represents
the fraction of light radiated from oscillator mirror which does not reflect from
the turning mirror. Therefore, the total field at the plane P is the sum of the
farfields due to field at the facet and field at the aperture AGB. The computer

programs for these simulations are given in Appendix C.
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The next chapter illustrates the results obtained from the computer simula-
tion and experiment. Cases of a straight 45° turning mirror and a parabolic
turning mirror are considered. The straight mirror was micromachined at OGC
and the farfield pattern was measured with the setup described in Chapter 5.
For the parabolic mirror, the results presented by Walpole and Liau 7 were used

for a comparison.
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5. EXPERIMENT

This chapter begins by describing the focused ion beam micromachining
technique which was used to mill turning mirrors on a ten stripe phase-locked
diode laser array. The experimental setup and procedure used to measure the
farfield pattern is also explained in detail. The last section of the chapter gives
the specifications of the surface-emitter used for the measurement and modeling

the farfield pattern.

5.1 Focused Ion Beam Micromachining

A fine focused ion beam generated from a liguid metal ion source has a
great potential for applications such as direct implantation, ion beam lithogra-
phy and microanalysis, because of its high current density, capability for very
fine focusing, and the wide variety of ion species available. Focussed-Ion-Beam
Micromachining (FIBM) is another interesting area which has many applica-
tions. Selective machining on submicrdmeter scales of many materials of tech-
nological importance, semiconductor optoelectronic materials in particular, is

possible with this micromachining technique8: 9 98-62,

An important factor behind designing high yield, low threshold, high
modulation capability devices is making end mirrors which define the optical

cavity. The method of cleaving the substrate material to form the laser facets
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is not an efficient and reliable method of generating laser mirrors internal to an
integrated system. Other techniques for making cavity mirrors include, wet
chemical etching®3:64, broad ion beam milling®%:86, reactive ion etching®?,88

microcleaving8?, and chemical etching with subsequent mass transport’%. The

advantages of micromachining over these methods are,

1. machining without masks can be performed which allows one to create
complex topographies on semiconductor material without multiple photol-

ithographic processes,
2. there are more choices of materials than other methods,

3. sample observations can also be performed using the fine focused ion beam

as a scanning ion microscope’!,

5.1.1 Micromachining System

The focused ion beam system can be thought of as composed of three main
parts: the ion source, the optical column, and the sample displacement table as
shown in Figure 5.18. A liquid metal ion source (LMIS) is used in the focussed
ion beam system used to fabricate the turning mirrors at OGC. In these
sources 2 reservoir of liquid meta! is maintained near one end of a sharp
tungsten needle. The metal wels the needle and flows down to the tip which
has a radius of about 10 pwm. The tip of the needle faces an extraction aper-
ture, some distance below it. In the presence of a high electric field the liquid at
the end of the needle is pulled into a conical shape (Taylor cone) under the

combination of electrostatic stress and surface tension. At the apex of the cone
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the electric field exceeds that needed to cause field evaporation of the liquid
metal ions. The most commonly used liquid metal is Ga since it is liquid near
room temperature, has a low vapour pressure and yields a long lifetime source
of predominantly Ga™* ions with almost no emission of other mass and charge
species. The optical column’? focuses ions from the source onto the sample and
is very much analogous to an optical lense which may focus a source of light in
one plane onto another plane. Ion lenses are for the most part electrostatic and
consist of two (or more) precisely machined axially symmetric electrodes at
some high potentials. This electrostatic lens column as shown in Figure 5.1
delivers a current density of approximately 1A/em? into a focussed spot
250 nm in diameter. A focused ion beamn which is to be used for beam writing
over an extended area needs a beam blanker, ie. a2 means of turning the beam
off. This is generally done by having a pair of electrodes on opposite sides of
the beam and applying 2 voltage between them so that the beam is deflected
sideways and is not capable of passing through an aperture located downstream.
Under computer control the spot can be scanned over 2 1 or 2 mm? area with
500 nm precision. This allows complete control of the ion dose to any pixel
within the scanned area. A pixel actually means a picture element. Since the
scanned area is viewed with a TV monitor, the scanning area is divided into the
number of pixels or picture elements of the monitor. At normal incidence the

etch rate in GaAs8 is approximately 0.25pum3s L.

5.1.2 Micromachining Procedure
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To perform micromachining the FIB is used in the SIM mode, and the
specimen stage is moved to properly position the target. The ion dose, which
determines the sputter depth, is controlled by the dwell time of the beam at
each point in the rastered area, and the number of times the area is rastered.
Smooth surfaces are obtained by overlapping Gaussian beam spots by at least a
half-width (beam radius) while rastering’!. Arbitrary shapes can be produced
using two different methods. For example, a V-shaped groove can be formed by
rastering over a series of successively narrower rectangles on a common center
or by using a deflecting voltage which varies quadratically with time in the x
and y directions® 81, A sinusoidal surface can also be formed by programming
the beam position to follow an inverse cosine time behaviour® 81, Redeposition
of sputtered atoms on to the newly machined surface is a problem common to
all ion milling techniques. For machining the end mirrors of a laser cavity, the
problem can be minimized by initiating the beam scan at the cleaved facet and
progressively moving the beam further into material to obtain a smooth laser
facet®9. The problem of redeposition is more pronounced for a slow scan than

for a fast repetitive scan’s.

5.2 Experimental Setup For Measuring Farfield Patterns

Figure 5.2 shows the relevant parameters associated with the pattern
characteristics. The y axis is directed along the junction plane whereas the x
axis is perpendicular to the junction plane. The figure illustrates the radiation
field of the fundamental mode. The half-power beam width in the junction

plane is 8, and the pattern beam width perpendicular to the junction plane is
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Figure 5.2 Schematic of the radiation pattern of a laser diode.[48]

- 58 -



- 59 -

0,. This section describes the experimental setup used for measuring 8, and 6,
for a turning mirror surface emitting laser diode. The setup used for the real
time measurement of the farfield pattern of a diode laser is shown in Figure
5.3a and 5.3b. The laser mount can hold the laser in a vertical position so that
the farfield pattern of an edge emitter is obtained, or in the horizontal position
so that the farfield of a surface-emitter is obtained. The farfield is then imaged
by a high sensitivity, high resolution CCD camera, Sony mode! number
57/57CE. This camera uses a 8.8mm X 6.6mm CCD solid state image sensor.
No lenses were used to image the farfield. Instead light was directly collected
by placing the camera very close to the laser diode. The camera could image
about 70 degrees parallel to the junction and 80 degrees perpendicular to the
junction. The image was then recorded with a commercial video cassette
recorder (VCR). As seen in the Figure 5.3b, the VCR is connected to a
ROBOT Model 630 television frame grabber for interfacing between television
camera and a computer. A 256 X 256 X 6 bit deep frame store memory con-
tained in the model 650 permits a picture to be frame grabbed from the VCR
and supplied to the computer. Frame grabbed memory contents can be viewed

on a television monitor.

Next, the "windows" program on the APPLE computer was used to choose
a window on the farfield pattern viewed on the television screen. The program
averages the optical intensity over the width of the window for each pixel in the
vertical direction and stores the pixel number vs average intensity in a file.
This file is then transferred to the microvax and the program ‘fwhm.f’ used for

finding the full width at half maximum (FWHM) of 6,. The oscilloscope con-
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nected to the frame grabber was used to display the farfield parallel to the
junction plane. The oscilloscope screen was calibrated to read angular spread
directly. Hence, FWHM of different Jobes in the farfield pattern and the separa-
tion between the lobes could be accurately measured, both in parallel and per-
pendicular directions to the junction plane. The results of these measurements
are given in the next chapter along with the results obtained by computer simu-

lation.

5.3 Specifications Of The Laser Diodes

a.) 45° Turning Mirror

The Y-180Z ten stripe phase-locked GaAlds/GaAs laser diode, with a 45°
turning mirror was micromachined with the micromachining facility available
at OGC. The values of various parameters used for the computer simulation

are as follows:

Thickness of active region = 0.06pm,
Refractive index of active region or core = 3.61,
Refractive index of cladding = 3.38,

Wavelength of light in vacuum = 0.8um.

The thickness of active region and the refractive indices were calculated from
the data given in a paper by D. R. Scrifres et all9 and that in Figure 1 in a
paper by H. C. Casey et al’4.
b.) Parabolic Turning Mirror

The parabolic turning mirror was fabricated by smoothing a chemically etched
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multistep structure using mass transport in a GalnAsP/InP system’. The
refractive indices for core and cladding and the free space wavelength were
determined from the GalnAsP composition. 75 The information about the com-

position of GalnAsP was given to the author by Dr. J. N. Walpole, MIT Lin-

¢oln Laboratories.

Thickness of active region or core = 0.2um,
Refractive index of core = 3.49,
Refractive index of cladding = 3.19,

Free space wavelength = 1.34pum.

The equation for the shape of the mirror was determined by measuring coordi-
nates of points from the optical micrograph of the surface of the parabolic mir-
ror’, and fitting a fourth order polynomial to these points. The fitted curve
and the optical micrograph from the paper mentioned above is shown in Figure
5.4a and 5.4b respectively. The next chapter illustrates the farfield patterns

obtained from experiment and computer simulation.
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6. RESULTS

In this chapter experimental and theoretical results will be presented. As a
check for the the program ‘intrfcfld.f’, which calculates the field at the
waveguide-air interface, the results from this program were compared with
those illustrated in the paper by Davies and Walpole for 2 PbSnTe laser diode.
The plot for the electric field at the interface is shown in Figure 6.1a and that
illustrated in Davies and Walpole’s paper in Figure 6.1b. It can be gseen that
the the results from the paper match very well with the computer simulated
electric field amplitude. The modal reflection coefficient at the interface, R,
was also calculated. The calculated value( = 0.69), agrees with that calculated
from data given in Figure 3 in the paper. In this thesis, the farfield pattern for
two surface emitters, one with a straight 45° turning mirror and the other with

a parabolic turning mirror were modeled as explained in Chapter 4, section 4.5.

The computer code worked as follows: First, the field amplitude at the
laser output facet was calculated using the program ‘intrfcfid.f> and parameters
relevant to the particular laser diode. Then the complex field amplitude
obtajned from ‘intrfcfld.f” was used in the program ‘2dmirr.f® which calculated
the field at the turning mirror. Since the shape of the turning mirror was incor-
porated in the program, it was necessary to fit an equation to the mirror.

Equation 4.31 was used in the program to calculate the field at the turning mir-
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parameters used are: n; = 6.71, n, = 591, 2d = 1.26 um, and
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ror. Next, equation 4.31 and the complex field amplitude from ‘2dmirr.f> were
used in the program ‘2daper.f’ to calculate the field at the aperture AGB shown
in Figure 4.10. To calculate the field at the aperture due to the parabolic mir-
ror, the parabolic mirror was divided into small sections such that each small
section could be assumed to be a straight aperture and the same Green’s func-
tion as discussed in Chapter 4 could be used. Hence, the program can calculate
the field at the aperture due to any curved surface if the surface is divided into
sections small enough that they could be considered as straight lines. Then, the
program ‘2df1d.f* calculated the farfield at the plane P in Figure 4.10 using,

1.) the field at aperture AGB and

2.) the field at the laser output facet AOC.

Finally, the total farfield was calculated using the program ‘add.f’ which added

the two contributions mentioned above coherently.

Experimental data for a 45° turning mirror, was measured from a surface-
emitter which was micromachined at OGC and the results published by Liau
and Walpole’ were used as a comparison for the case of the surface-emitter with
a parabolic turning mirror. The specifications for the two lasers are given in

Chapter 5, section 5.3.

6.1 Results For A Surface-Emitter With A Parabolic Turning Mir-

ror

The computer simulated farfield pattern of the surface emitter with a para-

bolic turning mirror is shown in Figure 6.2 and those experimentally obtained
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Figure 6.2 Computer simulated farfield pattern from a
surface emitter with parabolic turning mirror.
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by Liau and Walpole, are shown in Figures 6.32 and 6.3b. These two patterns
were obtained from two wafers and are different since the shape of the turning
mirror differed slightly from wafer to wafer mostly due to the variations in the
thickness of the cap region. The full width at half maximum (FWHM) obtained
theoretically is within 10% of the experimentally observed FWHM of 12°. All
three farfield patterns have two lobes in the positive angle direction. The first
one can be identified as the diffraction lobe. The height of the diffraction lobe
relative to that of central maximum was found to be dependent on the
reflectivity of the turning mirror surface. The reflectivity was assumed to be
100% in the computer program since the surface of the turning mirror was
coated with gold. Reducing the reflectivity reduced the height of the diffiraction
lobe relative to the central lobe. In the paper by Liau and Walpole’, the lobe
on the far right was attributed to the light bypassing the turning mirror. As
seen in Figure 6.4, the lobe on the right of zero degrees is very small since the
contribution of the light bypassing the turning mirror has mot been included.
This proves that the explanation for the existence of this lobe given in the

paper is correct.

6.2 Results For A Surface-Emitter With A 45° Turning Mirror

Figure 6.5 illustrates the modeled pattern and Figures 6.6a and 6.6b the
measured farfield patterns from a surface emitter with a nominally 43° straight
turning mirror. Since no cross-section of the turning mirror was obtained, the
exact angle could not be determined. The measured patterns are from two

different lasers but the laser material is the same. All three patterns show
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Figure 6.3a Measured farfield pattern from a surface emitter with
a parabolic turning mirror (wafer 685). [courtesy Dr. Walpole]
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modulations on the left of zero degrees, which is the position of the normal to
the diode epi-layers. But the modulations are much larger in the case of the
measured patterns. The SEM pictures of these two turning mirrors showed
rough surfaces for the turning mirrors and also some redeposited material due
to micromachining. This would changelthe shape of the turning from ideal 45°
straight mirror and the farfield pattern from the ideal farfield pattern seen in
Figure 6.5. The FWHM in the Figures 6.62 and 6.6b is 29°s and in the modeled
farfield pattern it is 24°s. This could be because the aperture width, ie. the
width of AGB in Figure 4.10 is smaller for the micromachined mirror compared
to the width considered for computer modeling. Also the field at the turning
mirror is actually the interference pattern of the ten emitters instead of one
emitter. A cross-section of the turning mirror would clearly show the actual
shape of the turning mirror and modeling could be done more accurately. The

next chapter presents conclusions.
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7. CONCLUSIONS

In this thesis, the farfield pattern of a surface emitting diode laser with a
turning mirror was modeled and compared with the experimental results. The
experimental set-up designed for this work can correctly measure the farfield
pattern of a surface-emitting diode laser. Two shapes of turning mirrors were
considered for computer simulation. A straight 45° turning mirror and a para-
bolic turning mirror. Instead of assuming a Gaussian beam shape at the
waveguide-air interface, a rigorous theoretical analysis of the boundary condi-
tions by Davies and Walpole was used to determine field amplitude at the inter-
face. From the results illustrated in the previous chapter, it is clear that using
this rigorous treatment one can predict the ideal farfield pattern as in the case
of 45° turning mirror, or model the farfield pattern from the turning mirror
cross-section as in the case of parabolic turning mirror. The computer simu-
lated result for the farfield pattern of a surface-emitter with a 45° mirror shown
in Figure 6.5 has FWHM of 24° whereas the FWHM of a surface-emitter with a
parabolic turning mirror shown in Figure 6.2 is only 11°. Therefore, the com-
puter simulation results indicate clearly that a parabolic turning mirror gives a
smaller beam divergence. Also, the computer code written for this thesis is
quite versatile and can model the farfield patterns of severa! different shapes of

turning mirrors by changing the shape of the mirror and other relevant parame-

ters as explained at the beginning of Chapter 6. The theoretically obtained



- 80 -

farfields did not exactly match the measured farfields mainly due to the lack of

availability of a good cross-section of the turning mirror.

Further improvements and additions can also be made to the present work.
The nearfield, that is the field at aperture AGB in Figure 4.10 can be easily
determined by calculating the field at aperture AGB due to the field at the
laser output facet using the program ‘2dffld.f* and adding it to the field at the
aperture due to the turning mirror. This result can then be compared to the
measured nearfield pattern. There are also multiple reflections, ie. light reflects
off the turning mirror to the laser output facet where it reflects again to contri-
bute to the farfield pattern. Although this contribution will not be large it
might give better results. The work done here is just a beginning of the final
goal of modeling the farfield of a two-dimensional surface-emitting diode laser
array. Hence the existing code could be extended to include interference theory
to model the farfield pattern of a two-dimensional array of surface-emitting

diode lasers.
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APPENDIX A

This appendix gives the details of the theoretical solution of the problem of

determining field at the waveguide-air interface.

Al.1l Equations For Bound and Radiation Mode Fields

As derived by Marcuse, % the expressions for Ey(z), the incident bound

mode field and E(z), the radiation mode field are given as follows:

2,0 1/2
EO = 1
Bo(d + v, )
cos(koz) lzl<d "
cos(Kod)edToe_‘zIYO fzt>d (A1)

Here, uyw is a constant, d is the half thickness of the active layer and kg is the
lowest order eigenvalue solution of

(kod)*[1 + tan’(xod)| = (kod)*(nf{ — n;) (A2)

where

A/ 2
ko = Vpgeq® = Tﬂ (A3)

is the free-space wave vector. The coefficient B, and <y, are then determined

from

(Bod)2 = (kod)znf - (Kod)2 (A4)
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('Yod)z = Kodtan(l'(od) (AS)
For even parity TE radiation modes we have

Ey(:z) Acos(xz) forlz) <d

= A

coskdcosyd + X sink dsinyd} cosyz
Y

+ A {cosx dsinvyd

- isinxdcosyd]siny Iz} forlzl>d (A6.1)
~
with
) V2
w
A= Ho - (A6.2)
TI’]B.YI(COS2Kd + K—2sin2xd

y

Here vy is an arbitrary (continuum) wave vector in the range 0=<+y=<<, and «

and B, are determined from

(kd)? = (vad): + (kgd)’(n} = nf) (A7)
(8,d) = V(kod)’n} ~ (va)’ (A8)

In (AS8) By is imaginary in the case of evanescent modes ie. when y>kgn,.

Finally, (o) is given by

Bo))d = V(kyd) — (cd) (A9)

For ky <o, B(o) is imaginary and represents evanescent waves.

Al.2 Equations For Coefficients R and g(vy)

The coefficients R and g¢(vy) are determined from equation (4.22) by multi-

plying (4.22) by Eo(z) or E,(z), where v’ is such that,
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w
™™

Intergating on x and using orthonormality relations for the two fields. The

I B&)By(2)ds = 2ug—8(y — ¥). (A10)

result is

1= Fy— [dyg(v)F(v)
0

= All
R 1+ F, (A11)

where g(vy) satisfies the Fredholm integral equation given by

1By *
g(v) = ; d(y) + Sy K(v,v)e(v') (A12)
Y 0
The quantities &(y) and K(y,y'} are given by
_ —9oF
d(y) = T+ R, (A13)
and
K(vy') = %&%j;l - F(y,v') (A14)
where the F’s are given by
Fo= u’:m J doB(9)Eg(0)’ (A15.1)
P(1) = T | doB(o)Eo(a)E, (o) (Al5.2)
Flvy') = u:w J daB(@)Eq(¥)Ey(0) (A15.3)

where Eqg(o) and E (o) are the fourier transforms of Eo{z) and E(z) respec-

tively. These are given by

_ 1 2000 || ¥4 + o
Eg(0) = — | |22
T [ Bold + vg ) Yo t O
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(osinodeoskyd — Kpsinkgdcosod)

: AlSB
ot = (A16)
and
0 172
1 How
E.Y(O') = : K2
| Byl(cos2xd + —Zsinzx)d
T K .
-{?8(0 — ¥y)(coskdcosyd + —sinkdcosyd)
Y
gsinagdcoskd — kstnkdcosod
o’ — K
PY—% . (Al?)
of ~ ¥

These two expressions are not singular at ¢ = ky and 0 = « since, the limit as
o tends to k or k, is finite and is given by

[l [1 N stn{k/Kg)cos(k/Kq ” (A18)

2 K/KO

The principal value is defined as follows

L
limfdxe kg tkd
~*d

(A19)

To solve for reflectivity, one needs to determine g(vy) first. To solve the integral

equation All for y(v), the following transformations are made:
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z9g = ked z =xd t = ~d
Bf = B'yd y = od (A?O)

By is given by equation A8. Also, z is not the same as z coordinate of field at
‘the interface. It just represents the product of xk and d. Then from (A2) and
(A7)

(1 + tan’zy] = (27 — V) = (kod)X(nZ — nf). (A21)
Further, transforming to barred quantities to isolate the square root singularity

due to f3;, the following equations are obtained

Fo=F, (A22.1)
4avr
F(t) = " IWF(t)’ (A22.2)
dl/2 ItBt 1 172 B
g(t) = Ta(t). (A22.3)
dVE,(z)
E(z) = —W (A22.4)

With these transformations one can obtain equations (4.24), (4.25), (4.26), (4.27)
and (4.28). Further details for evaluating the expression for g(t) are given in

the paper by Davies and Walpole.
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APPENDIX B

B1l.1 Simplifications for Evaluating Equation (4.28)

This appendix gives the details of the computer program called ’intrfcfld.f’,
which evaluates the field at waveguide-air interface The first step was to deter-
mine R, the reflectivity at the waveguide-air interface. The principal value
integral in equation 4.28 was simplified, as suggested by Dr. R. W. Davies dur-

ing a discussion on the telephone, as follows

Pr

1 1 _ 1
2ty — ¢ y + 1t

=ipr[ L ]~ipr[ L } (B1)
2t y — ¢ 2t y + ¢

Since y does not take negative values, the second term has no singularity and

<
[
| |+
L
1)
e
0

can be evaluated easily. The integral with the first term was evaluated by writ-

ing it as shown below.

Pr[l ]: it (B2)
y =1 (y — )"+ (3)

where & is a small quantity. The values of the definite integrals for R, g(?),
F(t) and E{z,0) were calculated for f,, t,, t; etc. and the final result was
evaluated using the trapezoidal rule. The program was executed for smaller and

smaller values of 3 so as to get better approximation of the principal value. The
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other parameter which was changed was the number of intervals for numerical
integration. An optimum value for 8 and N was found after a number of itera-
tions. It was not necessary to evaluate the integrals up to infinite upper limit
since the value of the integrand became negligibly small after a certain value of
t. As a check for the program code written in the way explained above the
parameters used by Davies and Walpole 11 in their paper were used to calculate
the field at the waveguide-air interface using this program. The results agreed

very well with those presented in the paper.

B2.2 Calculating The Farfield Pattern

The Green’s function is chosen such that it is zero on the aperture AOC

and is given by,

! —
G(2.0) = F{Holkr) = H,(kD)) (B3)
where r and r are the distances from the aperture to the point at which field is

being calculated and its mirror image respectively. Referring to Figure 4.10,

ro= \/(:c — z’)*+(2)®. The Hankel function Hoy(kr) can also be written as,

Hkr) = J,(kr)+1Y, (kr) (B4)

where J, and Y, are Bessel functions of the first and second kind respectively.

Differentiating it one hag,

oH am(kr)
or
Therefore, the derivative of Green’s function is given by

= — kJy(kr) — kY, (kr). (B3)

G _ [—Jl(kr)k - z'Yl(kr)k]g—r +
n

- ) - or
= [Jl(kr)k + xYl(kr)kJEz—

+
4
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= 41(—‘]1(’61’) - in(kr)k] cos(n,r)
+ f[.fl(k?)k + z'YI(kF)k]cos(5,F) (B6)

But, at the aperture, ry = r and cos(n,r) = — cos(n,r) Therefore,

4G(z,0) = _2_‘% (Jl(kr) + {Yl(kr)]kcos(r_z,r) (B7)

an
Making these substitutions in equation 4.30 one has,

7
U(z',z) = éf U(z,0)k [Jl(kr) + x'Yl(kr)]cos(ﬁ,r)dr (B8)
Zy
Now, substituting cos(n,r) = z/r and U(z,0) = ¢ + 15 in the equation above

one gets the following equation,

2 (Jyb + eY)) (Jia — bY,
U(z',2) = -zzﬁ s : ,j 1 Y g, (B9)

Zy

which is equation 4.31. Here, z represents the perpendlcular distance between
the point (z,z) at which field is being calculated and the diffraction aperture.
The real and imaginary parts of the field were determined by integrating the
above equation using math library routine called ‘dOlgaf’. The computer pro-

gram code is given in Appendix C.
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APPENDIX C

program intrfcfld.f

This progras calculates the electric fleld amplitude and
power teflection coefficient of 8 TEc mode 8t the
wvaveguide-air interface of a surface-emitter.

The equations used in this program are frox

the paper ‘Qutput coupling ...‘,1PXE journal of Quantum
electronics,vol.QE~12.n0.5,May 1976,by WalpoleiDavies.

The same program was used to calculate the field at the
waveguide-air interface for the case of surface-emitter with
parsbolic turning mirror by just changing the parameters.

double precigion k0d,x0,betald,]1,£2,£3,¢4,eps2,0par2,qt2(500)
double precision cotx0,pi,d,betab,beta,t, rtrp,£51,£52,n22
double precisi{on denl,epsrel, f7,%x0n2,x,mod,rel,ixl,yl,y2,gtll
double precision w(800),x01s2f,abserr,h,lirpi,1in2,re,in
double precl{sion reft,imft,ref0,inf0,gtl1(900),relnt,itrp,wod
double precision fmint,n(900),b(900),resur,imsun, rtrp, iimg
double precision rl,r2,r3,absr,ff,s),epsrell,epsabsl

double precision epsabp,nl2,1ixd,{iw3,i(md, rep,req,ptl, pt2,iimp
double precision xp,xi,e0x,al,betagama, kappa,etl,et2,y3,Ar
double precision rtrpl,{itrpl, fidsum,ifideunm, refld(500),etx
double precision iwf14(900),enr,eni,mode, hl,yd,gamad

double preci{sion err],emil,dnl,emp,b0,darbda,eulv,dif, modrefl
double precision incdnt,refltd,radtn,iprefltd,imradtn,modrad
integer ifail,inf,{w(102),kount,point,num,alpha

external intr,intrl

common/cl/ t,x0,%x0d,x,kount,point, dif, alpha

complex refl,bet,£f6,£ftl,den

All eqn. nos. refer to those used in the thesis.

mfield stores samplitude of electric f£ield at the laser-air

interface.
open(l,file~"mfield”)

file reintegral stores real part of the integral in egn.
4.25
open(9,filea"reintegral®)

reflty stores the calculated reflectivity
open{3,file="reflty")

file imintegral stores imaginary part of the
integral in egn. 4.25
open(4d,file="{mintegral®)

infield stores imaginary part of the electric field at the
alirror v (x/d)
open(B8,file="infield")

rfield stores real part of the electric field at the
airror vs (x/d)
open(7,file="rfield")

2ile radfld stores the amplitude of rad{ation field given
by the integral in egn. 4.24¢
open(12,f{le="radfld")

file incfld stores the amplitude of the incident
guided wave given by the first term on the RES of egn. ¢.24
open{l},file="incfld")

file reflfld stores the amplitude of the teflected
guided wave gliven by the second term on the RHS of egn. 4.24
open(l3,filea“reflflad")



file reradfld stores the amplitude of real part of
radiation field given by the integral in egn. (.24
open(1d,file="reradfld")

file imradfld stores the amplitude of imaginary part of
radiation £ield given by the integral in eqn. 4.24
open(i5,file="imradfld")

open(17,file="rnormfld")

open{18,file="i{mnormfld")

pi=x0laaf(pi)
refractive index pquare of core
ni2=13.032140

refractive index sguare of cladding
n22=-11,42444d0

half thickness of the active layer in microns
d=0.03d0

lasing wavelength of diode laser in microns
lambda=0.8

X0 is free space wave vector
k0d=0.235640

mulw {s » constant
RuUlw=pleAdgqrt(480.040/1ambda)

x0,a5 defined by egn. A20 in appendix 1
x0=0.28664d0

betn0d as defined by egn.Ad in appendix 1}
betaDd=D.B00B40 ,

Xx0On2=%0d+dsqrt(n22)

step siz2ze for numerical integration over t using trapizoidal
rule for integral in egn.4.24

th=3.040,/900.0d0

gamal as {n egqn.AS in appendix 1

gamala2,815d0

cotx0=l/dtan(x0)

evaluating 70 as given by eqgn.4.27
linl=0.0

1{m2=k0d

epEabs=0.0d40

epirel=1,04-03

eps2=0,0d0

epsr2=1,0d-03

intel

ifail=0

kount=1

this routine evaluates the real part of integral in eqn. ¢.27
call A0ibdf(intrl,liel,lim2,epsabs,apsrel, rel, absr)
kounta2

this routine evaluates the imaginary of integral in egn.
£.27

call d0lasf{intrl,lim2,inf,eps2, epsr2,inl
abserr,w,800,4w,102,4£a1l)

£7 calculates the term outside the integral in egn.&.27
flax0* (x0swq, )¢((1.edtan(x0)e22jex2 )y, 0/(betald*(
xD+cotx0)*pi)
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real part of 0,
reflmrel*f?
imaginary part of ro.
iefQ=imlef?
b0 calculated from Ad in appendix 1
bOadegrt({k0de*2)*nl12-x0++2)/d
amp=denominator of amplitude in egn.Al appendix 1
amp=dsqrt(l/{b0«(d+(1/gamald))))
dif represents “"delta” in eqn.A2 {n appendix 2
di£=0.0014d0 )
hl is the step size for polnts at the interface
at which electric field is calculated
hie0,00540
=l
num=]l
xp is distance along the facet or interface
do 5 xp=-2,2,hil
x{=abs(xp)
e0x a5 given by egn.Al in appendix 1
{f(xi.1t.d) then
e0xenufwramp*cos(x0,/d*xp)
elce
e0xmnulwramp*dcos (x0)*dexp(d*gamal)
tdexp(-xi*gamal)
endi{f
evaluating rt as given by eqn.4.28
do 10 t=0.0d0,3.0480,h
if(t.eq.0.0d40) then
a({)=0
b(i)=0
etx=0
goto 45
else
evaluating x using A20 {n appendix 1
x=dsqrt{0.0893+(te42))
ala(dcos(x}*e2)+((x/t)*22)o(dEin(x)"42
betagama from egn.A8 i{n appendix 1
if{kOn2.gt.t) then
‘betagama=(dsqrt(
(k0d2*2)en22-t**2)/4)
elge
betagamam(dsgrt
(t**2-(k0d*=2)*n22)/4)
endif
AA =egqn.A6.2 in appendix 1
AA=(muOw)*(1l/(pi*betagama*tal))e+0.5
kappa=x/d
etx=eqn.A6.1 in appendix 1
if£(xi.1t.d) then
etx=AA*dcos(x*xp/d)
else
etl=(dcos(x)*dcos(t)+(xedsin(x
sdsin{t)/t))*dcos(t*xp/d)
et2=(dcos(x}*dsin(t)-(xedsin(a
edcos(t)/t)}*dsin{texi/d)
etx=(etl+et2)*AA
endif
evaluating betab=beta**0.5 as given by eqn. 4.B page 257
of the paper mentioned above
1£(t.1t.k0n2) then
betab=dsqrt(dsqrt
((kDd=s2)%n22-te42})
else
betabwdeqrt(deqrt
(ten2-(k0de+2)*n22))
endif
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if{num.eq.1l) then
£l evaluates expression in square brackets of eqn.4.28
fla(l/{betabdspi})
*(x0/(x0+cotx0))*(1/((tae2)
*(dcos(x)*e2)¢(x202)
*(dsin(x)}*e2)})

£2,£3,£4 evaluate expressione before the integral {n the curly
brackets of eqn. 4.28.
. £2=2+(tedcos{x)edcos
(t)+x*dsin(x)*dsin(t}))
f3m(tedsin(t)*dcos(x0)
-x0*dsin{x0)*dcos(t))/
(tee2-x0ne2)
fdw(x0722)*(1+dtan(x0)«s2)
/(T2 2+(x0*22) 2
dtan(xD)#x2)}
ffaflef3efd
evaluating integral in eqn. 4§.28.The Iintegral is evaluated in
two parts a5 explained in appendix 2.
ifail=0
liml=0.0d0
lim2=k0d
1imd=152k0d
epsabs=0.0d0
epsrelel.0d-03
epsabsl=0.0d0
epsrell=1.0d-03
points=0
kountal
1if(t.le.1im2) then
alphae={
real part of 1lst integral,
call A401ba&f(4intr,lim},
1ix2,epsabs,epsrel ,rep,absr)
kount=2
imaginary part of 1st {ntegral
inf=1
alpha=1
call A01bdf(intr,lim2,)imé
,epsabe,epsrel,iim3,absr)
call d0lamfi{intr,limd
inf,epsabsl,epsrell,iimd
,abserr,w,800,4w, 102,4£a11)
else
. alphas=l
real part of 1st integral.
call A01bdf(intr,)liml,)lim2,
apsabs,epsrel,rep,absr)
kount=2
imaginary part of 1st integral
inf=1
alpha=0
call d01bdf(intr,1im2,1imd,
epsabs,epsrel ,iim3, absr)
alpha=l
call d0lamf(intr,limd,inf,
epsabsl,epsrell, iimd,
abserr,w,800,4w,102,1£28i1)
endif
ptisiiml+iinmd
point=1
koont~1
real part of 2nd integral.
call d01bdf(intr,liml,linm2,
epsabs,epsrel,rag, absr)
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imaginary part of 2nd integral

evaluating eqn. 4.26 for gt.
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kount=2

infm}

call d0lbdf{intr,1lim2,Yi{im4,
epsabs,epsrel ,di{mp,absr)
call dO0lamf(intr,l{md,inf,
epsabsl,epsrell, iinmg,
abserr,w,B800,{w,102,ifai{l)
pt2=iimp+iimg

re=rep-reg

imeptl-pt2

if{(t.le.k0d) then

81l evaluates sguare bracket in the denominator of §.26

sl=dsqgrt((k0d)**2-te=2)
den=cmplx(s1,0.0)

£52 and £52 calculate the curly brackets in egn. 4.28

real part of egn. 4.28

imaginary part of eqn.4.28

gtl is real part of egn.4.26

fSlm(date(x*%2~te*2)ere/pi)
+ffepl
fS2mdrtm(xro2-trda2)nim/pi
else
Bl=-dsqrt(tee2-(k0d)*»2)
den=cmplx(0.0,81)
£51=dwrn{xnw2-twnr2)ere /pl
£52a(4dotw(xew2-tan2)eim/pi)
+ffxgl
endif

reft=dsqrt(fl)«£51

imftmdsgrt(fl}ef52
beta=betab**2
1f(t.lt.x0n2) then
betwcaplx(bets,0.0)
elee
betwcmplx(0.0,-beta)
endif
ftl=cmplx(reft, imft)
£6=-2*ftl/(bet+den)

denle({1.0+ref0)uv2)
+((inf0)==2)
gtll=(real(f6)e(1l+refl)
+aimag{f6)*imf0)
gtl(i)egtll/dent

gt2 is the imaginary part of 4.26

real part of integral 4.25

imaginary part of integral 4.25

else

endif

gt2(i)={aimag(£f6)*{leref0)-
infO«real (£6))/denl

reint=(reftegtl{i)~imfregt2(i
))*((d==0.5)/betab)

imint=(imftegtl(d)erefregt2(i))
¢({d«*0.5)/betab)

a(i)mreint

b(l}l=imint

write(9,100) ¢t,a(i)
write(4,100) ¢,b(i)
format{ix,e10.4,2x,e10.4)

goto 50

refld(i{) stores the values of real part of integrand in eqn.¢.24
refld{ij=(etx)*gtl({i)nbetab/(d**0.5)
infld(1l) stores the valuves of imaginary part eof integrand
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in egn.d.24
imfld({}=m(etx)*gt2(i)*betadb/(d*«0.5)
goto 55
endif
write{9,100}) ¢t,=(1i)
write(4,100) t,b(i)
refld(i)=0.,040
Iimfld(1i)=0.040
{=i{+1
continvue
resum=0.0d0
imsum=0.0d0
fldsum=0.040
1fldsum=0.0d0
evaluating integral 4.25 and 4.24 using trapizoidal rule
rewind(9)
rawind(4)
read(3,100) (t,a(i),i=1,900)
read(4,100) (t,b{i},i=1,3900)
yi=(a(1)+a(900))*h/2.0
yY2=(b(1)+b(900))*h/2.0
y3=(refld(1l)+refld(900))*h/2.0
yd={im£ld(1)+imf1d(900})%h/2.0
do 20 1=2,898
if(num.eg.l)then
rtrp=a{i)*h
itrpeb(i)*h
fesumeregum+rtyrp
imsum=impum+itrp
else
goto 75
endif
rtrpl=refld(i)«h
{trpl=imfld(i}*h
fldsum=fldsum+rtrpl
{fldsum=ifldsum+itrpl
continue
i1f{num.eq.l) then
rl=l-refO0~({resum+yl)
r2=-imf0-(imsumey2)
r3=lerefd
reflectivity is calculated as given by egn.4.25
reflwemplx(rl,r2)/caplx(r3,imfd)
printe,refl,'refl’
mod=(real(refl))**2+(aimag(refl))«*2
write(3,*) mod,dif, "’
else
goto 90
endif
emr and em! are real and imaginary parts of eqn.d.24
incdnt=e0x
refltdareal(refl)telx
radtn=fldsum+y3
imrefltdeainag(ref)l)selx
imradtn=ifldsum+yd
enr=incdnt+refltd+radtn
emi=imrefltd+imradtn
modrad=dsqrt(radtne*2+imradtn*e?)
modrefledsgrt(refltd«*2+imrefltdne2)
dnl=(l+real(refl})s*2+(aimag(refl))n*2
emrie(emre{lsreal(refl))+emizaivnag(refl)) /dnl
emile((l+real(refl))*emi-emrtaipag(refl)) /dnl
sode=dsqrt(emivé2eemren2)
write(1,100) xp,mode
write(7,100) xp,emr
write(8,100) zp,enmi
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write(11,100) xp,incdnt
write(12,100) xp,modrad
write{13,100) xp,modrefl
write(14,100) xp,radtn
write(15,100) xp,{mradtn
write(17,100) xp,emrl
write(18,100) xp,emil
num=0
ial

continue

end

double precision function intr(y)
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c

this function calculates the integrand in egn.4.28

double precision intr,y,11,1i2,¢t,x0,x,k04,t1

double precision 121,dif

integer kount,polint,alpha

common/cl/ t,x0,k04,x,kount,point,dif,alpha

if(kount.eq.1) then
tl=dsqrt((k0des2)—(y%*2))

else
tle-dsgrt({y**2)-(k0d=22))

endif

if(y.ne.x0) then
iletl*{y*dsin({y)*rdcos(x0)-x0*
dsin(x0)*dcoe(y))/(y**2-x0%*2)

else

{11=t1*0.S»(1+(dsin(x0)*dcos(x0),/x0))
endif
121=(x0nn2)

*(l+dtan(x0)**2)/(y222+{(x0"%2

yr{dtan(x0)%%2))}

if{y.ne.x) then
12a(y*dsini{y)*dcos{x)-x*dsin(x)*dcos(y))*i21
/(yliz_xttz)

else
12=0.5#{1+(8sin(x)*dcos!{x)/x))ei2l

endif

if(point.eg.1l) then
intr=il*i2/(y+t)/(2%¢)

else
if(alpha.eqg.0)then
intr=(y-t)«i1edi2/((y-t)va2e(Aif)oa2)/(2%L)
else
intr=i1042/(y-t)/(2*t)
endif
endif
return
and

double precision function intrl(y)
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This function calculates the integrand in egn.4.26

double precision intrl,3111,422,x0,x,k0d,y,¢t,tl
double precision dif

integer kount,point,alpha
common/cl/t,x0,k0d,x,kount,point,dif,alpha

if(xount.eg.l) then
tledsgrt{(k0der2)-(y**2))
else



tl=—dsqre({y*+*2)-(k0d**>2))

endif

1llati/((y**2+(x0**2)2(dtan(x0)~22))

--2)

if(y.ne.x0) then
122« ({y*dsin(y)rdcos(x0)-x0*dsin(x0)*dcos(y)}
*42)/((y**2-x0e*2)#22)

else
122=(0.5%(1+({dsin({x0}*dcos(x0)/x0)))ew2
endif
intrleil11+322
rteturn

end
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program 2dmirr.f

This program calculates the field at the 4S5 degree
straight turning micror using equation A9, appendix 2,
A2.2 and the field at the facet calculated from the
program ‘intrfcfld.f’.

double precision x,z,xp,r,k,lambda,x01aaf,f1,£2,p!,p.q
double precision a,b,ji,yl,t,h, hl, const,ansl,ans2,nl,n2
double precision £11(800),£f1i11(800),£i12(800),result

2dfldmirr" Etores the field amplitude at the turning mirror
open(3,flle="24f1dmirr")

2drfldmirr’ stores the real part of the field at the turning
mirror.

open(4,file="2dfldrmirr™)

'2dimfldmirr’ stores the imaginary part of the field at the
turning mirror

open{(7,£filea™2dfldimmire")

pl=x0laaf(pl)
free space wavelength
lambda=0.8d0
k=2, 0vpil/lambda
step size for points on the turning mirror
hl=6.5,/250.0
step size for points at the facet
h=0.00540
do 10 xp=-4,0,2.5,h!
open{l,file="rfieldl"®)
open(2,file="imfieldl")
equation of 45 degree Etraight mirror.
g=xp+4.5
i=1
'x' are coordinates of points on the facet at which
field values are known.
do 20 x=-2.0,2.0,h
redegrt({x—xp)* (x~xplezez)
t=k*r
bessel function of first kind
jl=dbesji(t)
bessel function of the second kind
yle=dbesyl(t)
read(1,100) p,=
read(2,100) q,b
fl1 is the integrand in the first term
on the RHS of eguation A9, Appendix 2, A2.2.
fle-(qflebsaryl)/r
f2 (s the integrand in the second term
on the RES of equationc A9, Appendix 2, A2.2,
f2=(jlea-b2yl)/r
£il(4)=x
£ill(i)=£1
fil2(i)=£f2
imield
continue
close(l)
close(2)
N=800
{fail=D
Math library routine to calculate the field at the
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c turning mirror from values of fl, £2 and x.
c calculates res) part of field.

call d0lgaf(£fi),fili, N,ansl,err,ifall)
c calculates imaginary part of field.

call d0lgaf(£fil,£i12,N,ans2,err, ifall)

c 2’ {s the perpendicular distance between point on the
c mirror at which the field is being calculated,
c and the facet.

const=2z%%k/(2.0)
resultesdsgrt{ansl®ansli+ans2®ans2)*const
nl=ansl«const
n2eans2tconst
write(3,100) xp,result
write(4,100) xp,nl
write{7,100) xp,n2
100 format(ix,elD.4,2x,e10.4)
10 continue
end
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program 2daper.f

This program calculates the field at the aperture using
equation A9, appendix 2, A2.2 and field at the turning
mirror,

double precision zp,z,xp,r,x,lambda,x01aaf,f1,£2,p!,p,q,ai,dist
double precision a,b,jl,yl,t,h,hl,const,ansl,ans2,nl,n2,bi,err
double precis{ion £i1(250),€i11(250),£412(250),result,dist,)1,pnd

field amplitude at the aperture,
open{3,file="2dfldaper™)

real part of the field at the aperture.
open(4,fi{le="2dfldraper™)

imaginary part of the field at the aperture.
open(7,file="2dfldimaper™)

pi=x0lanaf(pi)
free—space wavelength.
lanbda=0.84d0
k=2.02pi/lambda
step slze for points on the turning mirror.
h=6.5/250.0
step slze for points on the aperture.
hl=7.0,/250.0
do 10 zp=-4.5,2.5,hi
real part of the field st the turning mirror.
open(l,file="2dfldrmirc")
imaginary part of the field at the turning mirror.
open(2,£file="2dfldimmircr"}
i=1
do 20 z=»-4.0,2.5,h
g=dsqget{(((ep-2%z+2.5)*%22)+((2.5-2p)**2))/2)
r=dsqrt{(zp~2)e(zp-2z)+(2.5-2)*(2,5-2))
tek*r
bessel function of the first kind.
Jl=dbesjl(t)
bessel function of the first kingd.
yl=dbesyl(t)
read(1,100) p,al
read(2,100) q,bid
0.65 L{s the reflectivity. Negative sign implies
phase change of 180 degrees on reflection
a=-0.65~ai
b=-0.65*bi
£1 and £2 as explained in the program 2dmirr.f.
fle-(flebaraeyl) /r
f2u(jlra-b*yl)}) /T
£il1(i)=2
£111(1)=£1
£112({1)=£2
t=i+d
continue
close(1)}
close({2)
N=249
ifaile0
Mmath library routine to calculate real and imaginary
parts of the field at the aperture from f£f1,f2 and 2.
call dA01gaf(£fil,£fi11,N,ansl,err, ifail)
cal) d0lgaf(£fil,£il2,N,ans2,err,ifail)
distance along z axis from O' to the end of the
turning mirror in figure 4.11.
digt=2.540
perpendicular distance between a point ‘gp’ on the
aperture, at which field is being calculated



100
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continue
end

and the turning mirror.
pnd=(dist-zp)/dsqrt(2.0d0)
constepnd*k/{2.0)
result=dsqrt(ansi*ansl+ans2*ans2)*const
nl=ansl¢const

n2=ansl*const

write(3,100) zp,result

write(4,100) zp,nl

write(7,100) zp,n2
format(lx,el0.4,2x,e10.4)
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c Program 2dffld.f{

c This program calculates the farfield pattern using

c equation A9 in appendix 2, A2.2 and the field at the

c aperture AGB., The same program can calculate the field

c due to the facat by changing names of relevant files.
double precision zp,2pp,r,k,lambda,x0laaf,fl,€2,pi,p,q, err
double precision a,b,3jl,yl,t, h,const,anst,ans2,nl,n2,pnd,angle
double precision £i1(250),£i11(250),£i12(250),resule,1
integer N

C field intensity at the plane P.
open(3,£file="2dffldap”)

c real part of farfield.
open(4,£file="2dr€f1dap™)

c imaginary part of farfield.

open(7,£file="2dimffldap")

pi=x0lzaf(pi)

c free-space wavelength.
lambda=0.8d0
k=2.0+pi/laxbda

[ step size for points at the aperture AGB.
h=7.0,250.0

c distance of plane P from the aperture AGH.
1=6.0d403

c coordinates of points on plane P.
2pp=-1

do 10 3j=1,100
2pp=2pp+1,/50.0

c angle measured with respect to x' axis in figure 4.11,.

c represents angle perpendicular to junction plane.
angle=datan(zpp/1)«180/pi

c real part of field at aperture,
open(l,f{lee"2df)ldraper”)

c {maginary part of field at aperture.
open(2,file="2dfldimaper")
i=1

do 20 zp=-4.5,2.5,h
r=dsqrt((zpp-zp)t(zpp-zp)+(1)* (1))

tmktr

e besse)l function of first kind.
jl=dbesji(t)

c bessel function of second kind.

yl=dbesyl(t)
read(1,100) p,2
read(2,100) q,b
c f1 and £2 have the same meaning as in '2daper.f’
fl=—(3Jl¥bsaceyli}t/r
f2=(4l¢a-beyl)/r
£il(i)=2p
£ill1(1)=£1
£412(4)mf2
{ai+l
20 continue
close(1)
close(2)
Na24$
ifallap
c Math library routine to calculate the real and
imaginary parts of the farfield pattern from
£1,£2 and 2p.
call d0igaf(fil,£ill,N,ansl,err,ifail)
call ad0lgaf(£il,£il2,N,ans2,err, ifail)
const=lvk/(2.0)

nn



contlinue
end

intensity of the farfield pattern.
result=(anslvansl+ans2®*ans2}*constrconst
real part of farfield.

nl=ansl*const

imaginary part of farfield.
n2=2n62fCconst

write(3,100) angle,result

write(4,100) angle,nl

write{(7,100) angle,n2
format{lx,el0.4,2x,210.4)
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program add.f

This program calculates the total farfield by adding
the ¢contributions due to field at the facet and at the
aperture coherently.

double precision 2,b,9.p,c,d,m,n,x1,x2,x3,x0tanf,pi

real part of the farfield due to field at aperture AGB.
open(l,file="2drffldap™)
imaginary part of the farfield due to field at aperture AGB.
open(2,file="2dimffldap")
real part of the farfield due to field at the facet.
open(3,£file="2drffldfct")
imaginary part of the farfield due to field at the facet.
open(4,£file="24imffldfct")
total farfield intensity vs angle
open(7,file="f13addds5")
pi=x0laaf(pi)
do 10 t=1,100
if(i.ge.51) t
read{1,100) a
read(2,100) p
read{(3,100) c
read(4,100) m
x1=b+d
X2=Q+n
else
read(1,100) a,b
read(2,100) p,q
xl=b
X2lag
endif
x3a(xlexl+x2ex2)
write(7,100) a,x3
format(lx,e10.4,2x,210.4)
continue
end
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Program 2dmirrinp.f
program calculates the field at the parabolic turaing
mirror using equation A9, Appendix 2, A2.2.

double precision x,z,xp,r,k,lambda,x0laaf, £f1,£2,pi,p,q
double precision a,b.jl,yl.t,h,hl.const.ansl,ans2.n1,n2
double precision £11(800),£f111(800),£112(800),result
double precision c0,cll,c2,c3,c4d,zp

file stores field amplitude at the parabolic mirror.
open{3,file«"2dmirrinpcur™) ’

file stores real part of field amplitude
at the parabolic mirror.
open(d,filea™2drmirrinpcur”)

file stores imaginary part of field amplitude
at the parabolic mirror.
open{7,file="2dimmirrinpcur”)

pi=x0laaf(pi}

free gpace wavelength.

lambda=1.3440

ka2.0*pi/lambda

step slze for points on the turning mirror

hi=11.5/250.0

step si2e for points on the facet.

he«0.005d0

coefficients of the polynomial representing the

turning mirror.

c0=-3.17140

c11=0.112307d0

c2=-0,041898480

c3=0.02181240

c4=-0.0012623d0

z cocrdinate cof points on the turning mirror,

do 10 z=0.35,11.08,h1

file gtores real part of field at the facet
open(l,file="rfieldinp”)

file gtores imaginary part of fleld at the facet
open(2,file="imfieldinp™)

equation of the turning mirror.
xp=c0+cllezsc2n(zee2)ecIt(zar3)scdn(22*d)
ial
do 20 x=-2.0,2.0,h

r as defined in figure 4,10
r=dsqrt((x-xp)*(x-xp)+z*2)

tek*r

beseel function of the first kind
jl=dbesjl{t)

bessel function of the second kind
yledbesyl(t)

read{1,100) p,a
read(2,100) q.b
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£1 is the integrand in the first term on the

RBS of egn. A6, Appendix 2, A2.2.
flu-(jlebsasyl)/r

£2 is the {ntegrand {n the second term on the

RES of egn. A6, Appendix 2, A2.2.
f2a(jiva=-beyl)/r
fil{l)ax
£i11(1)=£f1
£112(1)=€2
{=i+]
continue
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close(1l)
close(2)
N=800
{ifai{laQ
T Math library routine to calculate the real part
c of the field at the mirror from values of £f1 and x
call d0igaf(£il, £il11,N,ansl,err,ifail)
c Math library routine to calculate the imaglnary part
c of the field at the mirror from values of f1 and x

call dolgaf(£fil,fil2 N,ans2,err,ifail)
constezek /(2.0)
resultmdsqrt(ansl*ansi+ans2¢ans2)*const

c real part of field at mirror
nl=ansgl*const

¢ imaginary part of field at mirror
n2=ans2*const

write(3,100) z,result
write(4,100) z,nl
write(7,100) z,n2
100 format(1lx,el0.4,2x,el0.4)
10 continue
end
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program calculates the fileld at the aperture
using the Green’s function.

double precision 2,zp.xp,r,k,lambda,x0laaf,fl,£2,pi,p,q,pnd
double preacision a,b,j1,yl,t h,hl,const,ansl,ans2,nl,n2  err
double precision £il(230),£i11(230),£412(230),result

double precisgion c0,ctl,c2,c3,cd,rez(8),imz{(8),coeff(8),22
double precision =x0Zaaf,ht,1l,al,bi,theta,arg,tol,2n,xpn,zl
integer i1fail,N .M

file stores field amplitude at the aperture AGP in fig. 4.10
cpen{3,file="2dapinpcurli™)

file stores real part of field amplitude at aperture AGB
open(d,file="2drapinpcurl”)

file stores {maginary part of field amplitude at aperture AGB
ocpen(7,file="2dimapinpcurli®)

pi=x0laaf(pi)

free space wavelength

lambda=1.13440

k=2.0%pi/lambda

step size for points at the aperture AGB

hl=11.08,/250.0

step size for points at the turning mirror

h=11.5/250.0

coefficients of equation of turning mirror.

c0=-3,17140

cll=0.1130740

c2=-0,041898d0

€3=0.021812d0

cd=-0.001262330

ht=3.67480

tol=x02aaf(tol)

do 10 21=0.0,11.08,h1
z2=21-7.0
Coefficlents of Bth degree polynomial, the roots
of which are calculated by math routine c02aef.
coeff(l)=-4.0%(cd~"2)
coeff(2)=-7.0*c34cd
coeff{3)m-3.0%(c3%*2)~-6.0%"c2%c4
coeff(4d)=-5.07cd*rcll-5.0*c2%c3
coeff(5)=4.0*cd*(ht-c0)-4.0%c3*cl1-2.0%(c2ne2)
coeff(6)m-3.0%c2%cll+3.0%ht*c3-3.0%c32c0
coeff(7)=-1.0-2.0%c2+c0+2.0*htec2-(clinw2)
coeff(8)mzl+htrcli-cO+cll
Mag
ifafl=0
call cO2sef{coeff M, rez,{mz,tol,1€ail)
‘gn’ represents the point where the perpendicular
from & point at the aperture meete the turning mirror.
if(imz(7).eq.0) then
znarez(7)
else
gn=rez(5)}
endif
xpnecO+cllrznac2e(2znet2)+c3I*(zn*23)écd*(znerd)
arg=clle2.02c2ezn+3.0¢c3*(zn**2)+4{.0%cd*(en**3)
theta=3datan(arg)*180/pi
perpendicular diatance between the point on the
aperture at which fi{eld is being calcualted and mirror.
pnd=dsgrt{(ht-xpn)¢(ht-xpn}+(zn-zl)e(en-gi)}
open(l,file="2drmirrinpcur"®)
open(2,file="2dimmiccinpcur®)
i=1
do 20 gp=-6.466,4.068,h



20

10¢
10

continue
end
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tmzp+7.0
xp=cO+cli*z+c2*(z**2)+c3n(zo*3)ecde(zesy)
li=s(ht-xp)
redeqrt(ll*ll+(zl-2)*{z1-2))
tmker
jl=dbesjl(t)
yladbesyl(t)
read(1,100) p,ai
read(2,100) g,bi
negative s5ign represents phase change of 180
degrees on reflection.
am-~2ai
b=-bi
£1,£2 same as explained in '2dmirrinp.f’
fil=-(jl*b+a*yl)/r
£2=(3j1*a-beyl)/r
£il(i)=2
fill(i)efl
£i12(i)=£2
fmisl
continue
close{1)
close(2)
Ne229
1fail=0
math library routine to calculate the real part of
field at aperture from values of fl1 and z.
call d01gaf(fil,fill ,N,ansil,err,1fail)
math library routine to calculate the imaginary part of
field at aperture from values of f1 and z.
call d01qgaf(fil,fil2,N,ans2,err, ifail)
constepndek/(2.0)
resultedsqrt(ansi*ansi+ans2*ans2)4const
real part of fireld at aperture
nlsansl®const
imaginary part of fireld at aperture
n2=ans2*const
write(3,100) z2,result
write(4,100) z2,nl
write(7,100) 2z2,n2
format(lx,el0.4,2x,e10.4)
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100

program 2dffldinp.f

This program calculates the farfield pattern due to the
field at the aperture of the parabolic turning mirror.

The same program can be used to calculate the farfield

due to the field at the facet by changing the relevant

file names.

double precision zpp,zp,r,k,lambda,x0laaf,f)l,.£2,pi,p,q.err
double precision e,b,jl,yl,t,hl,const,ansl,ans2,nl,n2,1
double precision £41(250),£513(250),£i12(250),result
double precision angle,h,zpl '

stores the amplitude of the farfield
open(3,file="2df£f1dinpcurloo”)

stores the real part of the farfield
open(d,file="2drffldinpcurl00”)
stores imaginary part of the farfield
open(7,file="28imffldinpcurloo")

plex0laaf(pi)
lambda=1.34d0
k=2.0+pi/lambda
step size of points at the aperture
hl=11.08/250.0
distance of plane 2t which farfield is measured.
1-6.0403
h=0.0054d0
zpp=-1
do 10 j=1,200
epp=zpp+1/100.0
angle perpendicular to the plane of the junction.
anglesdatan(zpp/1l}*180/pi
real part of the field at the aperture
open(l,file="2drapinpcurl")
imaginary part of the field at the aperture
open(2,file="2dimapinpcurl®)
iel
do 20 zp=-7.0,4.036,h1
r=dsgrt({zpp-zp)*(zpp-zp)+(1)* (1))
taker
jl=dbesil(t)
yl=dbesyl(t)
read(1,100} p,a
read(2,100) g.,b
fle-{jleob+a*ryl)/(r*0.63)
f2=(31*a-b*yl)/(reD.63)
£il(i)=2p
f111(i{)af}
£il2(i)mf2
{ai+1
continue
close(l)
close(2)
N=249
ifail=0
call dOlgaf(£il,fill,N,ansl,err,ifail)
call dOlgaf(fil,fil2,N,ans2,err,ifail)
const=l*k/(2,0)
result=(ansl*ansi+ans2*ans2)econst*const
ni=angl*const
n2=ans2®rconst
write(3,100) angle,result
write(4,100) angle,nl
write(7,100) angle,n2
format(ix,el0.4,2x,e10.4)
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continue
end
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