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Abstract

Incorporating Inheritance and Feature Structures
into a Logic Grammar Formalism .

Harry H. Porter, III, Ph.D.
Oregon Graduate Center, 1988

Supervising Professor: David Maier

The use of Definite Clause Grammars (DCGs) to describe Natural Language gram-

mars as logic programs has been particularly fruitful in building NL interfaces for rela-

tional databases. First-order logic, however, suffers from several shortcomings as a

language for knowledge representation alld computational linguistics.

This dissertation describes a new logic, called 1/J-Iogic, remedying these shortcom-

mgs. NL processing is one application of 1/J-Iogicand the Inheritance Grammar formal-

ism, whose semantics are rooted in 1/J-Iogic,is also defined. First-order logic is a special

case of 1/J-Iogicand, consequently, every DCG is an Inheritance Grammar. This logic

differs from traditional logic in that the primary data structure encompasses the

feature-based structures used in unification-based grammatical formalisms such as

PATR. In addition, an ordcrillg on the symbols of the grammar facilitates taxonomic

reasoning, a problematic task in DOGs.

An interpreter for 1/J-logic programs has been implemented (in Small talk) and vari-

ous implementation techniques have been explored. In addition, several Inheritance

Grammars have been implemented aud the perspicuity of the Inheritance Grammar for-

malism is discussed.
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Introduction

The ability to use symbols to communicate and process information is the charac-

teristic that distinguishes human intelligence from animal behavior. The goal of pro-

cessing Natural Language with a computer is motivated by both practical concern - to

learn how it can be done - and theoretical curiosity - to learn how it is done. The

former aim motivates this dissertation, giving it a more computational flavor than most

linguistic inquiry. To summarize, this work introduces a formal language for expressing

Natural Language grammars, called the Inheritance Grammar formalism. We will pro-

vide a formal semantics, describe our implementation, and show example applications to

NL processing problems.

It is important to locate new research in the context of existing work and there

are two general approaches that can be used to introduce a new formalism. First, the

new formalism can be described, followed by a description of other similar formalisms

under the rubric of related work. Alternatively, the existing work can be presented first

and followed by the formalism being introduced. The first approach seems more suited

for situations where there is a loose coupling between the old and the new. The second

is preferred when there is a stronger relationship since the preliminary review serves to

focus attention on the aspects of existing work that should be compared. When the new

formalism is introduced, its similarities and dissimilarities, strengths and weaknesses are

then easily exposed.

We will adopt the second strategy, setting the stage in Part One (Chapters 1-2)

with a review of similar, existing research. This work is divided into two categories:
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logic-based grammatical formalisms and unification-based grammatical formalisms!.

Chapter 1 begins with a concise refresher on logic programming, which can be safely

skipped by the reader familiar with Prolog and its theoretical underpinnings. We then

review the Definite Clause Grammar formalism and discuss its application in computa-

tional linguistics research. Chapter 2 discusses two unification-based formalisms, called

Lexical-Functional Grammar and PATR-II, which at first sight may appear different

from the logic-based formalisms but provide important context for Inheritance Gram-

mar.

In Part Two, we introduce (Chapter 3) and formally describe (Chapter 4) Inheri-

tance Grammar and its underlying logic. In Chapter 3, we view Inheritance Grammar

as a generalization of both Definite Clause Grammar and PATR-II. (In fact, every

Definite Clause Grammar is a legal Inheritance Grammar and there is a simple transla-

tion from PATR-II into Inheritance Grammar.) In Chapter 4, we extend the traditional

first-order logic system to the ,p-Iogicsystem, giving several definitions and results

analogous to those in the classical development of first-order logic. The semantics of

the Inheritance Grammar formalism is based on this new logic. From this point of view,

NL processing is just one application of "'-logic, the one that motivated its existence.

We conclude in Part Three by discussing execution strategies for implementing "'-

logic and Inheritance Grammars. Using the Smalltalk environment, we constructed two

concrete implementations, both based on Prolog's fast, depth-first execution strategy.

First, we implemented an interpreter for "'-logic and then, to achieve greater speed, we

implemented a compiler and run-time execution system. These implementations are

1 The term unification-baBed is used by linguists to circumscribe work based on an operation similar to,
but distinct from, the unifica.tion of first-order logic.
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described in Chapter 5, while three example grammars we executed are listed in the

appendices. The presentation of the formal semantics in Chapter 4 concludes by

describing what an implementation must do to be complete. In Chapter 6 several com-

plete evaluation strategies are discussed. We attempt to evaluate these strategies and

include information gained from several experiments we performed on a strategy called

Earley Deduction.

I owe thanks to many people for providing emotional and intellectual support

throughout this research. The most important is of course my wife, Nancy McCarter, a

wonderful individual whom I love very deeply. Thank you, Nancy. My advisor and

friend, David Maier, deserves credit for all of the good ideas presented herein. By bring-

ing his broad experience and deep thoughtfulness to bear on the minutiae of ,p-Iogic, he

forced my brain to dangerously exceed its rated capacity on a number of occasions.

Thank you, Dave. The other members of my committee-Dick Kieburtz, Dan Hammer-

strom, and Brian Phillips-have shared many exciting ideas with me. Thank you. I am

also grateful to a number of other people who have transmitted information-intense

input to this process. This list certainly includes Hassan Ait-Kaci, Lauri Karttunen,

Martin Kay, Fernando Pereira, and David S. Warren. Finally, through the research

community at the Oregon Graduate Center and in Portland generally, I have come into

contact with a number of really bright and entertaining computer-nerds. Thank you all

for existing; life would be a lot less interesting without you.
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Part 1

Background and Context
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Chapter 1:

Logic-Based Grammar Formalisms

1.1. Introduction

This chapter surveys the logic-based approach to grammatical analysis. After

reviewing the notation of first-order predicate logic and Logic Programming (see, for

example, [Maier and Warren 1988], [Apt and Van Emden 19821 or [Van Emden and

Kowalski 19761 for a review of Logic Programming), this chapter describes the Definite

Clause Grammar (DCG) formalism. In Chapters 3 and 4, we introduce a new grammar

formalism; the goal of this chapter and the next is to provide the background and con-

text necessary to evaluate the new formalism vis-a-vis existing grammatical research.

1.2. First-Order Logic and Logic Programming

We will use the syntax of first-order predicate logic given in Figure 1.1. In the

extended BNF (eBNF) we will use throughout this document, brackets enclose optional

constituents, the vertical bar separates alternate constituents, and ellipses are used

(loosely) to indicate repetition in lists of constituents and separators. Other punctua-

tion symbols - including parentheses - are terminals and are in boldface when possible.

Non-terminals defined by the grammar are capitalized and non-terminals defined else-

where are in lower case.

We write AF E to mean that axioms A logically imply expression E vis-a-vis model

theoretic semantics and we write A"- E to mean that a specific proof procedure proves

E. A proof procedure is called sound (also consistent) if
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TERM .. constant
1 function TERMLIST
1 variable

( TERM, TERM, ... TERM)
predicate [ TERMLIST ]
ATOM

I true
I false
I -. EXPRESSION
1 EXPRESSION BINARYOP EXPRESSION
13variable. EXPRESSION
IVvariable. EXPRESSION
I ( EXPRESSION)
I\IVI=9I~

TERMLIST
ATOM
EXPRESSION

..

..

..

BINARYOP ..

Figure 1.1: Syntax Of Predicate Logic

AI- E implies AI=E

and complete if

AI=E implies AI- E

Clauses are disjunctions of literals where all variables are universally quantified.

Horn clauses have at most one positive literal and zero or more negative literals.

Definite clauses have exactly one positive literal (the head literal) and zero or more

negative literals (the body). While all logic expressions can be transformed into a set

(i.e., a conjunction) of clauses, not all expressions can be transformed into a set of Horn

clauses. The premise of logic programming is that many interesting reasoning problems

can be expressed using Horn clause sets.

A Logic Program consists of zero or more definite clauses (called the database rules

or axioms) and a single clause with no positive literals (the query), which is the theorem

to be proved. The standard convention is to write a definite clause
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as

Po : - Pi' P2' ... , Pk'

and to write a query

as

: - Pi> P2, ... , Pk'

To understand the logical interpretation of a rule and the quantification of the

variables within the rule, let Ybe the variables that occur in the body but not in the

head of the rule and let X be all remaining variables. The following expressions are

seen to be equivalent by standard identities of first-order logic.

vx. W. (Po(X)V -'Pl(X'y) V ... V -'Pk(X,Y))

VX. (Po(X)V W. (-'Pl(X,Y) V ... V -'Pk(X,Y)))

VX. (Po(X)V W. -'(Pl(X,Y)/\ .../\ Pk(X,Y)))

VX. (Po(X)V -,3y. (Pl(X,Y)/\ ... /\ Pk(X,Y)))

VX. (3Y. (Pl(X,Y)/\ ... /\ Pk(X,Y))=9 po(X))

In words, the rule is equivalent to the following (declarative) statement for any X: "IT

Pl(X,Y) and ... and Pk(X,Y) are true (for at least one Y) then Po(X) is true." Expressing

this relationship procedurally: "To show that po(X) is true (for any X), it is sufficient to

find a Y such that Pl(X,Y) and ... and Pk(X,Y) are true."

A query asks "Does there exist an X such that Pl(X) and ... and Pk(X) are true."

Letting X represent the variables in the query, this question is:
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For refutation proofs, the query is first negated and then converted to clause form:

-,(3x. (Pl(X)/\ ... /\ Pk(X)))

VX.-'(Pl(X)/\ ... /\ Pk(X))

VX. (-'Pl(X)V ...V -'Pk(X))

Logic programming consists of using a resolution-based theorem prover to prove a

query. The resolution rule is summarized as follows: If a rule head matches a predicate

in the query body, then we can find a solution for the query if we can find solutions for

all of the predicates in the body of the rule and we can find solutions for all the remain-

ing goals in the query. The computational interpretation parallels this summary: A pro-

gram task consists of a conjunction of procedures to be called. The rules are used to

execute the calls. If a rule head unifies with a call in the task body, then we can exe-

cute the task by executing all the calls in the rule body and executing all the remaining

calls in the task.

The Prolog language imposes an order on the set of clauses and an order on the

literals within the clauses. In choosing a literal from a goal or rule body to match

against the rules, Prolog tries to solve the literals in the order listed. In choosing a rule

to match against a selected literal, Prolog tries the rules in order. In searching for a

refutation proof, all the literals in the body must be solved because they are conjoined

(motivating and-parallelism in multiprocess implementations) while only one rule that

solves a selected literal needs to be found (motivating or-parallelism). When a particu-

lar rule fails to solve a goal literal, Prolog backtracks to try successive rules in the

database; when a literal with a goal or rule body can not be solved, the entire goal or

rule fails.
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Finding a refutation can be viewed as a problem of searching an and-or tree. The

Prolog execution rule is a depth-first search. Since the tree may have a finite solution

among many infinite branches, a depth-first search may follow an infinite path and fail

to find an existing solution. Prolog's execution strategy is not complete: there may exist

solutions to a given logic program that Prolog will never find. Next, we show how

context-free parsing can be done with Logic Programs by turning the search for a proof

tree into a search for parse tree.

1.3. Context-Free Grammars

Recall that a context-free grammar (CFG) describes a context-free language

(CFL), also called a Chomsky type-2 language. The grammar identifies the set of sen-

tences (input strings) in the language. There are many well studied context-free parsing

algorithms to analyze a potential sentence and determine whether it is syntactically

legal [e.g., Aho and Ullman 1972]. A parser usually produces a parse tree, which

linguists often call a phrase structure tree, a constituent structure tree, or a syntax tree

to distinguish it from other deeper representations of the sentence.

Context-free grammars are represented naturally in Backus-Naur Form (BNF), the

rules of which contain a non-terminal on the left side and a sequence of terminals and

non-terminals on the right. In the parse tree constructed, the internal nodes are labeled

with non-terminals and the leaves are labeled with terminals. Lexical (or morphologi-

cal) analysis categorizes the words of an input into lexical categories (word classes),

which appear as terminals in the grammar.

In spite of persisting debate to the contrary [e.g., Pullum 1984], it is clear that

context-free languages are by themselves inadequate to describe natural languages.

Nevertheless, much of the superficial structure of language can be described quite easily
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with CF rules. Almost every NL system has a syntactic component Counded on a CFG

skeleton and augmented with constraints and code to construct some Corm oCsemantic

representation. Constraints (Cor example, the number agreement constraint between

determiner and head noun or the constraint between noun phrase and verb sequence)

serve to restrict the applicability oCCF rules. Definite Clause Grammars make it easy

to integrate the context-Cree analysis with such constraint checking and structure build-

mg.

1.4. Definite Clause Grammars

Colmerauer and Kowalski observed that there is a simple translation from

context-free BNF rules to definite clauses such that the problem of parsing a given sen-

tence is equivalent to proving a theorem [Colmerauer 1978, Kowalski 1979]. Further-

more, when translated into logic, there is an obvious extension to the context-free skele-

ton that makes such tasks as constraint checking and tree building easy. The basic for-

mal ism used to express NL grammars in logic is called Definite Clause Grammars

[Pereira and Warren 1980].

Consider the following BNF rule:

where the Si are non-terminals. It can be translated into the Collowing logic clause:

During execution, the variables Pi will be instantiated to positions in the input. By con-

vention, positions Call between the word symbols and can be identified by integers as in

the input

oThe 1messenger2 delivered 3 the 4 news 5
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Declaratively, this rule can be read as "There is an S constituent in the input between

positions PI and Pk+I if there is an 81 constituent between position PI and P2 and ...

and an 8k constituent between position Pk and PHI."

If the right side of the BNF rule contains a terminal as, for example, the word w

III

8 ::= ..., 8i-1, w, 8i+1>...

it is translated into the following clause:

This clause can be read as "There is an 8 constituent in the input between PI and Pk+I

if there is ... and an Si-l between Pi-I and Pi and a word w between positions Pi and

Pi+1 and an Si+l between Pi+1 and Pi+2 and ... ." For example, the grammar

S ::= NP VERB NP
NP ::= the NOUN
NOUN ::= messenger
NOUN ::= news
VERB ::= delivered

is represented in definite clauses as

s(Pl, P4) :- np(Pl, P2), verb (P2, P3), np(P3,
np(Pl, P3) :- connects(the, Pl, P2), noun (P2,

noun (Pl, P2) :- connects (messenger, Pl, P2).

noun (Pl, P2) :- connects (news, Pl, P2).

verb (Pl, P2) :- connects (delivered, Pl, P2).

P4) .

P3) .

The input sentence to be parsed is then specified with a series of connect8 facts,

such as:
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connects (the, 0, 1).
connects (messenger, 1, 2).
connects (delivered, 2, 3).

connects (the, 3, 4).
connects (news, 4, 5).

To use a Definite Clause Grammar as a parser,the grammar isexecuted as a logic

program. To determine whether the input is syntactically correct, i.e. whether a legal

constituent S lies between positions 1 and 5, the following goal is evaluated:

: - s (1, 5).

The depth-firstevaluation strategy of Prolog applied to a DCG performs a top-down

parse, attempting to prove the input is syntactically correct. Different execution stra-

tegies (e.g., Earley Deduction), resulting in correspondingly different parse strategies,

will be discussed later. The deductive mechanism of the DCG formalism is a direct

consequence of the execution strategy used for the corresponding logic program. The

incompleteness of Prolog deduction in implementing logicprogram semantics motivates

the discussion of different, complete strategies in Chapter 6.

Above, input positions were represented with integers. An optimization is to

represent positions with lists.of words instead of integers. In particular, a position P in

the input is represented as the listof allwords followingpositionP. The connects

factsthen become

1 A list [Xl, X2, ... , Xk] is syntactic shorthand for the first-order term cons (Xl, cons (X2,
cons (Xk, nil) ... ». The notation [Xl, X2, ... , Xk I Y] is sbort for CIon. (Xl,

cons (X2, ... cons (Xk, Y) ... » and [] is sbort for nil. Most Prolog implementations accept list
notation and we shaH use it throughout.
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connects (the, [the,messenger,delivered,the,news],
[messenger,delivered,the,news]) .

connects (messenger, [messenger, delivered, the, news] ,

[delivered,the,news]).

connects (delivered, [delivered,the,news],

[the,news]) .

connects (the, [the,news], [news]).
connects (news, [news], []).

All such rules can be collapsed into one general purpose rule:

connects(W, [W I List], List).

thus making the program independent of particular input strings. The parsing can then

be initiated with a query such as

. s([the,messenger,delivered,the,news], []) .

When the terminals in the OF grammar represent word classes(noun, adjective,

etc.) a lexicon, which maps specific words into their classes, can be represented as a

sequence of rules such as:

noun (Pl, P2) :- connects (man, Pl, P2).

noun (Pl, P2) :- connects(woman, Pl, P2).

adjective (Pl, P2) :- connects (big, Pl, P2).
adjective (Pl, P2) :- connects (red, Pl, P2).

etc.

This organization for the lexicon is not particularly efficient under Prolog execution

sInce every noun rule must be tried when the grammar expects a noun, making the

speed of parsing proportional to the size of the lexicon. A more efficienttechnique is to

use the indexing mechanisms built in to some Prolog implementations. For example, the

same lexiconwould be coded as:
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noun (Pl. P2) :- connects(W. Pl. P2), isNoun(W).

isNoun(man) .

isNoun(woman) .
etc.

adjective (Pl. P2) :- connects(W, Pl. P2), isAdjective(W).

isAdjective(big) .

isAdjective(red).
etc.

Another improvement isto preprocess out explicitcallsto connects. For exam-

pIe, the following rule

noun (Pl. P2) :- connects(W, P1, P2), isNoun(W).

can be rewritten as

noun ([W I P2J, P2) :- isNoun (W) .

Likewise, the rule

s(P1, P4) :- sl(P1, P2), connects(W, P2, P3). s3(P3, P4).

can be condensed to

s (P1, P4) :- sl (Pl, [W I P3]), s3 (P3, P4).

The connects rule can then be eliminated altogether.

1.4.1.DOG Notation

DCGs are reallynothing more than stylizedlogicprograms with conventions for

the use of position variables to encode the CFG. The position variables are used so reg-

ularly, in fact, that a simple bit of syntactic sugar allows them to be generated

automatically, leaving the essence of the grammar unfettered with a proliferationof

positionvariables.The standardisto writea BNF ruleas:
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When the right side includes a terminal, it is inclosed in brackets:

s --> ... , 51-11 [W], 81+11 ...

A simple syntactic transformation recognizes the --> symbol and translates the rule

into a legal clause by adding the appropriate position variables. A rule such as

RELCLAUSE ::= €

is coded as

relclause --> .

When the grammar writer intends a clause such as:

noun (Pl,P2) :- connects (W,Pl,P2), isNoun(W).

which includes a goal that is not to have position variables, the DCG notation allows

the goal to be explicitly escaped with braces. So, the clause above can be expressed in

DCG notation as:

noun --> [W], { isNoun(W) }.

1.4.2. Beyond Context-Free Rules: Additional Argwnents

The obvious extension to the context-free Definite Clause notation allows non-

terminal symbols to have additional arguments. For example, the rule:

s --> np(Num), vp(Num).

shows how additional arguments might be used to check the number agreement con-

straint between subject and verb phrase. Assume evaluation (parsing) of the np goal

results in binding the Num variable to singular or plural. This value is then

passed to the vp goal, constraining the form of verb phrase to be accepted.
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A familiar benefit of using unification for all data manipulation is that informa-

tion is used if it is available, but not required to be present. In the sentence The sheep

hit the ball, the number information is not provided by the subject so the verb phrase is

not constrained. The verb phrase is free to add in (unify) either singular (...hits the ba/Q

or plural (...hit the ba/Q. In the sentence The sheep wanted the ball, which is ambiguous

since the number is not specified by either subject or verb, Num is never bound.

Contrast Prolog's treatment of arguments with synthesized attributes (in the con-

text of parsing), which are always bound in the subconstituent and passed upward to

the calling rules, and with inherited attributes which are always bound before being

passed down to the called constituent [Aho and Ullman 1972, Aho and Ullman 1977,

Knuth 1968].

1.4.2.1. Other Uses for Arguments

These ancillary arguments can also be used to build structure. In the next exam-

pie, we want to construct and return a term representing the parse tree. The second

arguments of np and vp are assumed to return structures representing the noun phrase

and verb phrase constituents, respectively. The s rule combines them to return the

structure for the entire sentence.

s(sent(NPtree, VPtree» --> np(Num,NPtree),
vp(Num,VPtree) .

The use of arguments to build and return parse trees is very regular and additional

arguments could easily be generated automatically like the position variables are in

DCG notation. In fact, this feature exists in some variants of DCG (e.g., Restriction

Grammars and Definite Clause Translation Grammars, to be discussed below). "Stan-

dard" DCGs do not have this extension, since the grammar writer often finds it con-



18

venient to build a more abstract representation, which may differ from a parse tree by

(1) rearrangement of nodes and simplification, (2) the inclusion of constraints and

features (e.g., number), and (3) the inclusion of computed information such as semantic

translations.

In the compo6itional approach to understanding, syntactic constituents - at least

the major constituents - return computed translations instead of returning parse trees.

In extreme versions of the compositional approach, the meaning of an entire subconsti-

tuent (e.g. a noun phrase) is determined in isolation from its context, the enclosing con-

stituent. This approach doesn't scale well; the meaning of a constituent often depends

crucially on its context and can not be built in isolation but must be built using inher-

ited information.

Finally, additional arguments can pass semantic fragments (i.e., partial transla-

tions), which are combined in arbitrary computation. Typically, semantic fragments are

passed both up, down, and sideways, and predicates escaped with braces are used to

perform semantic constraint checking and structure building.

To summarize, the context-free skeleton of DCGs is augmented with (1) ancillary

arguments to perform constraint checking, (2) ancillary arguments to build and manipu-

late arbitrary structures, and (3) embedding of arbitrary computations using the brace-

escape mechanism. By allowing arbitrary computations, the formalism inherits Chom-

sky type-O power from the Turing Machine power of logic programming while still

retaining the context-free skeleton in the BNF-like rules. Pereira and Warren 119801

compare the DCG formalism to Augmented Transition Networks !Woods 1970, Bates

19781 and conclude that DCGs are superior.
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1.5. Logic-Based Approaches to NL Processing

Research in applying the DCG formalism to Natural Language processing can be

divided into two general categories: (1) implementations of NL grammars using DCG

techniques and (2) modifications and improvements to the DCG formalism itself.

Early work in DCG grammars by Veronica Dahl argued for the use of logic for

both the deductive component of a database and for a natural language interface to

that database [Dahl 1979, 1981, 1982; see also Gallaire, et al. 1984]. Logic variables are

untyped, while attributes in the relational data model are (typically) typed [Codd 1970].

Dahl pointed out that typing information is needed in the NL component to sort out

ambiguities (e.g., how to attach relative clauses). She also discussed semantic data

modeling issues in the context of logic-based grammars.

Alain Colmerauer addressed the need to have set-valued expressions and multiple

truth values in any logic into which a NL query might be translated. In his more

rigorous approach [Colmerauer 1982], he provided a formal semantics for a 3-valued

logic system with particular emphasis on translating NL quantifiers (e.g., every, the,

each). He also circumscribed a subset of Natural Language (initially French but also

English) and specified a simple set of rules for translating sentences and questions into

expressions in his logic.

Perhaps the most influential DCG was one written by Michael McCord synthesiz-

ing a number of important DCG techniques [McCord 1980, 1982]. Each input sentence

is understood in isolation and processed against a relational database over the domains

of courses, classes, students, and faculty. The system answers interrogatives and verifies

declaratives as correct or incorrect. The linguistic coverage - at least for isolated

queries - is quite complete; the primary limitation is the semantic data model. The
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grammar's main strengths are its treatment of quantification and its resolution of verb-

complement coordination using a semantic hierarchy. McCord's initial DCG was fol-

lowed by research into the nature of focalizers [McCord 1986] and with the construction

of a single-pass semantic backend called SEM [McCord 1984, 1985].

A number of rules in McCord's grammar contain several extra arguments used

solely for passing information from one place in a sentence to another distant location.

The linguistic phenomenon called left extraposition or fronting is responsible for this

effect. Left extraposition occurs when some linguistic construct Y contains a missing

subconstituent X and another, related phrase X' has been inserted to the left of con-

struct Y. For example, the sentence

The revolution that we believed in was lost.

contains a relative clause, that we believed in, which is analyzed as a sentence with a

missing element, the revolution, which has been moved to the left to become a relative

pronoun, that. This phenomenon also occurs in auxiliary fronting and wh-questions; in

the question

Which critic did the woman with the golden tongue seduce f'

the noun phrase which critic and the verb auxiliary did are both left extraposed.

To handle extraposed constituents, Fernando Pereira introduced Extraposition

Grammars (XGs) as an extension to the DCG formalism [pereira 1981]. To execute an

XG, a simple translation scheme is used to transform the XG into an efficient definite

clause program, which can then be executed by the Prolog interpreter. An Extraposi-

tion Grammar was used in the interface to CHAT-80, a logic database of geographic

data that used a clever query planning algorithm [Warren 1981, Warren and Pereira

1982]. See also the related work by Dahl and Abramson on Gapping Grammars [Dahl
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and Abramson 1984].

In analyzing a natural language sentence, several distinct activities are commonly

distinguished: context-free parsing, parse tree construction, constraint enforcement, and

construction of the semantic representations of syntactic constituents. In DOGs, these

tasks are not described or performed separately; instead all are intermixed in the gram-

mar. In another extension to the DOG formalism, called Definite Olau8e Tran81ation

Grammars (DOTGs), the OF component of the grammar and the parse tree construction

are separated from the other tasks, collectively called semantics [Abramson 1984a,

1984b]. Each DCTG rule then consists of two parts: a syntax part and a semantics

part.

Another modification to the DCG formalism was motivated by the Linguistic

String Project (LSP), which culminated in a grammar combining BNF rules with restric-

tions [Sager 1981]. Their implementation (in Fortran!) builds a parse tree and checks

the restrictions. Hirschman and Puder have adapted this approach to the DCG frame-

work and call the resulting formalism Re8triction Grammars (RGs) [Hirschman and

Puder 1986]. During execution, a parse tree is constructed automatically. A restriction

consists of instructions to move a pointer around this parse tree and to check node

labels and attributes to validate the parse.

In the work presented here, we take first-order logic (rather than DOGs) as our

departure point. We first describe a generalization of first-order logic called 1/J-logic.

Then we extend the DCG notation from first-order logic to 1/J-Iogicto yield the lnheri-

tance Grammar (IG) notation for expressing Natural Language grammars.

Before introducing 1/J-Iogicand Inheritance Grammars however, we will survey a

different line of research into a family of grammar formalisms called Unification-Ba8ed
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Grammars. While the DCG formalism and its variants were introduced primarily by

computer scientists for linguistic processing, unification-based grammars were cham-

pioned by computational linguists for using computers. One goal of Inheritance Gram-

mars is to gracefully incorporate the important features of the unification-based formal-

isms into the framework of logic programming.
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Chapter 2:
Unification-Based Grammar Formalisms

2.1. Introduction

In this chapter we discuss two grammar formalisms based on unification of data

structures, but developed independently of the logic programming paradigm. The first,

Lexical-Functional Grammar (LFG), was developed primarily as a theory about human

language competence and less as a notation for expressing computer-executable gram-

mars. The second, PATR-II, was developed as a general-purpose language in which

several types of grammat.ical theories (e.g., LFG and Functional Unification Grammar)

could be expressed in computer-executable form. As such, it can be viewed as a syn-

thesis of other unification-based formalisms.

2.2. Lexical-Functional Grammar

A Lexical-Functional Grammar [Bresnan and Kaplan 1982] is a context-free gram-

mar in which each rule is augmented with one or more equation schemata that express

the context-sensitive constraints among the constituents. LFG parsing proceeds in three

steps. Given an input sentence to analyze, the first step is to find a context-free parse

(called the c-structure in LFG terminology). The second step is to examine the rules

used in the parse and their associated equation schemata and to instantiate those sche-

mata, thereby producing a set of equations (called the I-description) to be solved. The

final step is to solve the equations.



24

The context-free rules describe a superset of the target language and the equations

serve to constrain the number of potential parses. When a consistent solution for the

equations can be found, the analysis is complete and information about the analysis of

the input is captured in that solution. When the equations do not have a consistent

solution, another context-free parse is sought and new equations are produced.

The variables in these equations range over f-structures (short for functional struc-

tures). An f-:5tructure is a finite function mapping attribute labels (atomic symbols) into

attribute values (again atoms) or other f-structures. Attributes are also called features

or functions. Semantic formulas or sets (of symbols or f-structures) also appear occa-

sionally as attribute values. F-structures are traditionally shown using a matrix-like

notation. In the f-structure shown in Figure 2.1 there are two attribute labels, SUB]

and Vpl. The value of each is itself a nested f-structure.

It is important to distinguish between values that are equal and values that are

identical (equality of value versus equality of reference). All identical values are equal,

but equal values are not necessarily identical. In Figure 2.1, the NUM attribute of the

SUBJ

[

DET

~N

[

NUM
TENSE
VERB

THE

]

PLURAL
GIRLS

PLURAL

]

PRESENT
RUN

VP

Figure 2.1: An F-Structure

1Many of our LFG examples are from Bresnan and Kaplan [19821and Winograd 119831.



25

SUBJ attribute has a value equal to the NUM attribute of the VP attribute. When two

attributes share the same value, they are said to be identical. Identical attributes are

generally indicated graphically by linking them with a line as in Figure 2.2, but there

are also other notations to indicate identity.

In the original description of LFG, it is unclear whether or not cyclic f-structures

are allowed. A cyclic f-structure is one in which the value of one attribute contains the

f-structure itself. A rigorous definition of cyclicity appears in Chapter 4.

Figure 2.3 shows a simple LFG (not necessarily the one that generated the f-

structures in Figure 2.1 or Figure 2.2). It contains 3 grammar rules followed by a lexi-

con of six words. The equation schemata associated with each grammar rule are state-

ments of identity between the different parts of the functional structures to be built and

SUBJ

TENSE
PRED

OBJ

VCOMP

[

~CLE
PRED

PAST

'PERSUADE<GIRL,BABY,GO<BABY> >'

[

ARTICLE DEF
NUM SG
PRED 'BABY'

r
SUBJ

INF

TO

PRED

INDEF

]

SG

, GIRL'

+
+
'GO<BABY>'

Figure 2.2: An F-Structure Containing Shared Attributes



26

are shown directly beneath non-terminals on the right side of the context-free rules.

The analysis of an input proceeds by first finding a context-free analysis of the

sentence. In the second step, an single f-structure will be associated with each node in

the parse tree. Initially, these f-structures are unknown and are represented by vari-

abies. Next, the f-description is constructed by instantiating the equation schemata to

yield a set of equations over these unknown f-structures. Finally, the equations are

solved by performing a unification for each equation in the f-description.

s --+ NP

(t SUBJ)= !
VP

t =!

NP --+ DET N

VP --+ v NP
(t OBJ)= !

NP

(t OBJ2)= !

Figure 2.3: A Simple Lexical-Functional Grammar

a: DET (t DEF-INDEF)= INDEF
(t NUM)= SG

girl: N (t NUM)= SG
(t PRED) = 'GIRL'

handed: V (t TENSE)= PAST
(t PRED) = 'HAND«t SUBJ)(t OBJ)(t OBJ2»'

the: DET (t DEF-INDEF)= DEF
baby: N (t NUM)= SG

(t PRED) = 'BABY'
toy: N (t NUM)= SG

(t PRED) = 'TOY'
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An up-arrow (j) in an equation schemata refers to the structure for the non-

terminal on the left side of the rule. A down-arrow (!) refers to a structure associated

with a non-terminal of the right side of the grammar rule. These arrows indicate

immediate domination. For example, the equation

(i SUBJ)= !

In the first rule says that the value of the SUBJ feature of the f-structure associated

with the S constituent is equivalent to the f-structure associated with the NP consti-

tuent. The terminals in the lexicon are handled similarly, with equation schemata con-

taining only up-arrows.

Each side of an equation can either name a part of an f-structure or provide a

constant. value. Structure locations are given using feature names or sequences of

feature names. These sequences are called path names and are given relative to the

functional structure associated with the non-terminals of the grammar rule. In several

of the schemata associated with lexical entries, quoted constant values appear. The

quotes are used to indicate semantic translation forms. This grammar translates the

verb handed using a three-placed predicate HAND. For instance, this grammar

translates the sentence The girl handed the baby a toy. into

HAND<GffiL,TOY,BABY>

Note that the semantic forms appearing in the equation schemata are not atomic but

can contain path names. The second schema associated with handed is an example.

The equations are processed sequentially to incrementally build up the functional

structures. The processing of a rule can affect the (incomplete) functional structure in

several ways. It can equate different feature values (i.e., bind them as with variable

binding in Prolog), add in new values where there were previously none, create new
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functional structures (by providing functional structures as literals in the equation) and,

finally, disallow particular grammar interpretations by trying to equate two conflicting

feature values. All this processing is just specializations of unification. In a valid solu-

tion for an f-description, the f-structure associated with the root non-terminal is con-

sidered the interpretation of the sentence.

To illustrate the use of the LFG shown in Figure 2.3, look at Figure 2.4, which

shows a context-free parse of The girl handed the baby a toy. Functional structures

labeled xl, x2, x3, x4, and x5 are associated with the interior nodes in the parse tree and

Figure 2.5 shows the equations with these names substituted in place of the arrows.

(These instantiated equations constitute the functional description.) Finally, Figure 2.6

shows a (minimal) solution for these equations. The minimal solution is unique, if it

exists. The functional structure xl (associated with the root non-terminal S) is the

result of the LFG parse.

NP (x2)

A
DET N

I I

the girl

v

I

handed

NP (x-lJ

/\
DET N

I

the baby

NP (x5J

1\
DET N

I I
a toy

Figure 2.4: A Context-Free Parse
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Rule or Word

S-+NPVP

VP -+ V NP NP

the
girl

handed

the
baby

a

toy

Instantiated Equations

(xl SUBJ) = x2
xl = x3

(x3 OBJ) = x4
(x3 OBJ2) = x5
(x2 DEF-INDEF) = DEF
(x2 NUM) = SG
(x2 PRED) = 'GIRL'
(x3 TENSE) = PAST
(x3 PRED) =

'HAND«x3 SUBJ) (x3 OBJ) (x3 OBJ2»'
(x4 DEF-INDEF) = DEF
(x4 NUM) = SG
(x4 PRED) = 'BABY'
(x5 DEF-INDEF) = INDEF
(x5 NUM) = SG
(x5 NUM) = SG
(x5 PRED) = 'TOY'

Figure 2.5: The Instantiated Equations

SUBJ x2
OBJ x4

xl=x3= IOBJ2 x5
TENSE PAST

LPRED 'HAND<GIRL,BABY,TOY>'

[

DEF-INDEF DEF

]

x2= NUM SG
PRED ' GIRL'

[

DEF -INDEF DEF

]

x4= NUM SG
PRED 'BABY'

[

DEF-INDEF INDEF

]

x5= NUM SG
PRED 'TOY'

Figure 2.6: The Solutions



30

In addition to providing context-sensitive constraints to weed out the ungrammati-

cal interpretations, the equations are also used to add semantic structures to represent

the meaning of the sentence. The equations of Figure 2.5 are designed to build the

predication

Hand < Girl, Baby, Toy>

to represent the sentence's meaning. However, the resulting functional structure will be

highly annotated with extra-syntactic information from the parse and is thus in a form

convenient for further domain-specific processing when such a simple translation scheme

is inadequate.

The paragraphs above describe what we will call the LFG core. Next, we describe

additional aspects and features of LFG.

So far, the path names in the equations have been linear sequences of feature

names. To handle the long distance dependency associated with left extraposition, we

often need to do some (simple) searching in the parse tree to locate the appropriate con-

stituent to use in an equation.

An example of a left extraposition occurs in the sentence Which man did you want

Sarah to give the book to? We want to use the same grammar rules in parsing this sen-

tence as in parsing Sarah gives the book to the man. Since this transformation (picking a

noun phrase out of a declarative clause, changing its form slightly, and moving it to the

beginning of the clause) can happen with many different forms of clauses, we need a way

to parse long distance dependencies without increasing the complexity of the grammar.

An typical LFG handles left extraposition by including a grammar rule to parse a null

(zero length) noun phrase called the trace. In the example, Which man did you want

Sarah to give the book to?, the trace occurs at the end of the sentence. The equations
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associated with the null noun-phrase rule must link (unify) the extraposed noun phrase

(which man) into the appropriate slot of the structure for the declarative clause contain-

ing the hole2. To perform this linking, we need a rule that says something like "Look at

the structure beneath the verb phrase for a noun phrase structure that has a feature

value of Null (i.e., the trace position). Fill in information from the questioning noun

phrase found at the beginning of the sentence." The null noun phrase can be just about

anywhere. (Consider Which book did you want Sarah to give (trace) to the man?) To per-

form this type of searching, a special variety of up- and down-arrows, called bounded-

domination, is introduced. The bounded-domination up-arrow searches up the parse tree

looking for a matching bounded-domination down-arrow. This long-distance linking

performs the identification of the trace and the marker, completing the handling of

extraposed constituents in LFGs.

In the LFG core, we saw only one kind of equality equation, which corresponds to

the equality of unification. Other kinds of equations are allowed. In a constraint equa-

tion, the equality of attributes is tested. But unlike the equality equation, the attri-

butes must already be bound; such an equation is not allowed to instantiate variables.

A negative equation requires two attributes to be distinct without saying what they are.

An existential equation requires that an attribute exist and be instantiated without pro-

viding its actual value. In the presence of constraint, negative, and existential equa-

tions, the equality equations are all processed first to bind the variables through

unification. Then, in a second pass, the remaining equations are checked.

Several "conditions" place restrictions on what is to be considered an acceptable

f-structure solution for a set of equations and hence what constitutes a legal LFG

2 This linking is exactly what Extraposition Grammars (see Chapter 1) do in the DCG framework.
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interpretation. To understand these conditions, we need to define governable grammati-

cal functions. The predicate forms appearing in the equation schemata in the lexical

entries make reference to certain attributes in the f-structure to be built for an input.

For example, the equation in the lexicon entry for handed

(1 Predicate) = 'HAND< (1 SUBJ)(1 OBJ)(1 OBJ2)>'

references the attributes SUBI, OBI, and OBI2. An attribute (such as SUBJ) is said to

be a governable grammatical function if it appears in the predication of any lexical

entry.

The completeness condition requires an f-structure solution to contain all attri-

butes that are mentioned in any semantic predication forms. That is, the semantic

predicate's slots have to be filled in. For example, if a sentence's f-description included

the above equation for handed, then any f-structure solution had better contain the

features SUBI, OBI, and OBI2. The coherence condition stipulates that the f-structure

contain no governable grammatical functions that are not used in the semantic predica-

tions i.e., no leftovers in the sentence that don't participate in the meaning. Finally,

the grammaticality condition says that an input is grammatical only if it is assigned a

unique f-structure that is both complete and coherent3.

Two other enhancements to the LFG core can be illustrated by the handling of

prepositional phrases. In the core, feature labels were presented as atomic symbols that

were specified literally in the equation schemata and that were not the subject of com-

putation. However, equations such as

(1 (! PREP-CASE)) = !

3 Note that the uniqueness requirement means that every ambiguous sentence is ungrammatical.
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are allowed. This equation would be used in a rule that allows the attachment of

prepositional phrases to a clause. The down-arrow refers to the f-structure associated

with the prepositional phrase, the up-arrow with the clause. This equation says: Make

the prepositional phrase's f-structure the value of one of the clause f-structure's attri-

butes. Which attribute? The attribute label that also occurs as the value of the

PREP-CASE attribute of the prepositional phrase's f-structure. For example, suppose

the prepositional phrase is attached with the preposition to and that its f-structure has

a feature called PREP-CASE with a value of to. This equation then causes the value of

the to feature of the clause's f-structure to be set to the prepositional phrase's f-

structure. Thus, the set of feature labels and the set of atomic feature values are not

really distinct and incomparable. This type of equation is analogous to indirect

addressing, where numbers are treated as both data and addresses of data.

Next, consider how multiple prepositional adjuncts, as in The girl handed the baby

a toy on Tuesday in th~ morning, can be handled. We mentioned that the value of a

feature could be atomic, a nested f-structure, a predication, or a sets of f-structures.

Sets would be used here where there is no way to predict how many adjuncts may be

present. The grammatical rule in question4

VP-V NP

(t OBJ)=!
NP

(t OBJ2)=!
PP*

!E(t ADJUNCTS)

contains a set membership (E) equation.

Lexical-Functional Grammars were so named because they tend to place a strong

emphasis on the lexicon. Since each word entry contains semantic information as well

as extensive syntactic usage information (all expressed as equations), the dictionary

4 Note that the Kleene star is allowed in LFG rules.
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tends to be large, containing many similar entries. Moving syntactic information down

into each word entry that can use it makes it easier to handle exceptions and special

cases, reducing the size of the grammar rules, but results in redundancy in the storage

of grammatical knowledge. Since most words can be used many ways and each requires

a separate entry, there is a profusion of dictionary entries. For example, it is difficult to

handle the passive transformation with LFG rules. Instead, separate entries are

included in the lexicon for the active and passive senses of each verb.

In order to capture such regularities with any elegance, lexical redundancy rules

are used to generate additional word entries given base entries. The following rule, for

example, would be used to automatically generate the entry for the passive sense of a

verb given the active sense.

(t OBJ2) =9 (t OBJ)
(t OBJ) =9 (t TO-OBJ)

Consider the lexical entry for handed shown in Figure 2.3. This lexical transformation

rule automatically adds a second entry to the lexicon:

handed: v (t TENSE) = PAST
(t PRED) = 'HAND«t SUBJ) (t TO-OBJ) (t OBJ»'

2.2.1. Functional Unification Grammars

In work closely related to the development of Lexical Functional Grammars, Mar-

tin Kay developed Functional Unification Grammars (FUG) based on earlier work on

Functional Grammars and Unification Grammars [Kay 1979, 1984a, 1984b, 1985]. In

FUG, the grammar is itself expressed with functional structures. Instead of processing

individual equations, unification is done between the structures representing the gram-

mar. Certain features containing information about the context-free component of the
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grammar are recognized as predefined. Special treatment of these features embeds the

context-free parse into this framework.

In addition to the definition of f-structure given above, disjunctions of f-structures

are needed to express alternatives in the grammar (e.g., alternate rules for expanding a

NP). Other aspects of FUG allow the grammar to specify negative information (e.g.,

feature f cannot. have a value) and required information (e.g., feature f must have a

value ).

In most variations of the formalism, every functional structure contains a feature

named Category whose value, which is always an atomic symbol, names the structure.

The name given to a structure is the same as the grammar non-terminal with which it

is associated. A second feature called Patterns (sometimes Constituent-Structure or

Constituent-Set) is a list containing information about what syntactic features are

present in the structure. The order of features is unimportant but these two generally

appear first. The special handling of these two features within the unification algorithm

allows context-free parsing to be incorporated into the unification of the f-structures

representing the grammar rules.

2.3. P ATR-n

PATR-II grew out of work with several other linguistic formalisms, including

Lexical-Functional Grammar (LFG), Functional Unification Grammar (FUG), General-

ized Phrase Structure Grammar (GSPS), Head-driven Phrase Structure Grammar

(HPSG), and Definite Clause Grammar (DCG). PATR-II was developed as a linguistic

tool rather than as a linguistic theory and, as such, the emphasis was on increased

expressiveness instead of restrictive expressiveness [Shieber 1984, 1985a].
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The data structure of PATR-II, the feature structure (or f-structure), is identical

to the f-structure from LFG with only slight notational differences [Karttunen 1984].

PATR-II also allows shared (i.e., identical) values within a structure, which are called

reentrant values and which are indicated using coindexing boxes as shown in Figure 2.7.

Feature structures are most easily understood by viewing them as directed, acyclic"

graphs (DAGs) with a single root. The arcs are annotated with feature labels and the

leaves are annotated with atomic feature values. For example, the f-structure of Figure

2.7 is shown as a DAG in Figure 2.8.

A partial order, called subsumption, is defined among f-structures. When f-

structure A subsumes f-structure B, we say that A is more general than B and that B is

more specific than A. In summary, f-structure A subsumes f-structure B if, for every

feature f occurring in A, f also occurs in B and the value of f in A subsumes the value of

f in B. When coindexing occurs in B it must be at least as restrictive as the coindexing

occurring in A. If A subsumes B we write A ~ B6.

agreement:

NP

[

number:

ill person:

SingUlar

]
third

cat:

subject: [aggreement: rn]

Figure 2.7: A Reentrant F-Structure in PATR-II Notation

I)Some implementations also accomm()date cyclic f-structures.

6 When Inheritance Grammar is presented in Ch3.pters 3 and 4, we will provide a more rigorous
definition of subsumption that generalizes the notion of subsumption used by PATR-II. There, we will use an
order (~) opposite to the order used in P ATR-II. When X subsumes Y, we will write Y ~ X while the
PATR-II notation writes X ~ Y.
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singular

Figure 2.8: The DAG representation of an F-Structure.

The unification of two f-structures, A and B, is defined formally as the most gen-

era I f-structure, C, such that A ~ C and B ~ C. If such a f-structure C exists, it is

unique. If no such f-structure exists, the unification is said to fail. Generalization is

defined similarly, as a dual to unification.

In a PATR-II analysis, a substring of words in the sentence can be associated with

an f-structure. The grammar rules describe how to combine substrings to produce larger

strings and how to combine the associated f-structures to produce the more detailed f-

structure associated with the larger strings. Concatenation is used as the string com-

bining operation and unification is used as the f-structure combining operation.

As an example, consider the following PATR-II grammar rule.
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X-+YZ

<x cat> = S
<Y cat> = NP
<Z cat> = VP
<X head> = <Z head>
<X head subject> = <Y head>

The first line of the rule is a context-free grammar rule. The remaining lines each

specify a single unification. In these unification "equations," positions within particular

f-structures are given using paths. This rule says that a string Y can be concatenated

to a string Z to form a valid constituent X if the f-structures associated with X, Y, and

Z can be unified according to the equations. For example, the last equation says that

the subject attribute of the head attribute of the f-structure associated with X must

unify with the head attribute of the Y structure.

Most unification-based linguistic theories use a cat feature in every f-structure

associated with a syntactic constituent with the name of that constituent as its value,

as is done by these equations. PATR-II includes a little notational sugar to make the

expression of PATR-II rules more palatable. This same rule can be written as:

S -+ NP VP

<S head> = <VP head>
<S head subject> = <NP head>

The lexicon associates f-structures with words. In the textual specification of the

lexicon, the grammar writer provides a set of equations for each word. It is the equa-

tions that specify the f-structure to be associated with the word. All paths in the equa-

tions for word Ware given relative to the root of the f-structure to be associated with

word W. Solving them builds the desired DAG. Consider the word entry for John:
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Word john:
<cat> = NP
<head agreement gender> = masculine
<head agreement person> = third
<head agreement number> = singular

There is a great regularity among the words and their lexical entries. There are a

lot of masculine, third-person, singular proper nouns. To build a dictionary without

having to repeat each of these features for every word, there is a facility for grouping

words and repeating common attributes. For example, suppose we wish to create a

category for singular nouns called SingNP. This category is created with the following

declaration:

Let SingNP be
<cat> = NP

<head agreement number> = singular

We can then instantiate a word using this category and possibly adding additional

features as follows:

Word john: SingNP
<head agreement person> = third
<head agreement gender> = masculine

Hierarchies of word orders can ah,o be accommodated. Another way to define the

word John is to create a kind of a SingNP for third-person, singular noun phrases as fol-

lows:

Let SingNP be
<cat> = NP
<head agreement number> = singular

Let ThirdSingNP be SingNP
<head agreement person> = third

Word john: ThirdSingNP
<head agreement gender> = masculine
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Multiple Inheritance is also accommodated. Supposed we also had a category for

masculine words:

Let Masc be
<head agreement gender> = masculine

Then we could define John in yet a third way:

Word john: Masc ThirdSingNP

Classes, as well as instances of classes, are allowed to have multiple superclasses. There

is also a notation to allow the overwriting of inherited features within subclasses.

Another technique to aid in constructing the dictionary is the use of Lexical

Transformation Rules. These rules transform an existing f-structure (called the in

structure) into a new f-structure (the out structure.) For example, a simple PATR-II

transformation rule to generate the agentless passive form of a verb, given the active

form of the verb, is

<out subj> = <in obj>
<out obj> = nil

We next make several comments about how the PATR-II notation is often used.

First, lists can be represented in a way analogous to how they are represented in first-

order logic. A list is represented with an f-structure (like a cons) whose first value is an

element of the list and whose rest value is a list of the remaining elements. In PATR-II,

an f-structure X representing a list of three elements (A, B, C) can be built with these

equations:

<X first> = A
<X rest first> = B
<X rest rest first> = C
<X rest rest rest> = end
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Second, lists are used extensively for verb subcategorization. Consider the follow-

ing definition for the verb likes as in Mary likes John.

Word likes:
<cat> = V
<head form> = finite
<syncat first cat> = NP
<syncat rest first cat> = NP
<sync at rest first head agreement person> = third
<syncat rest first head agreement number> = singular
<syncat rest rest> = end

This entry contains a feature called syncat whose value is a list. The elements of the

list describe the verbal constraints on the noun phrase complements appearing in the

sentence. The first element describes the object and the second element describes the

constraints on the subject.

The relationship between the order of the list elements and the verb's comple-

ments is determined by the grammar rules, not shown here. Appendix 3 includes a com-

plete PATR-II grammar in which this order is post-verbal complements in left to right

order followed by the pre-verbal subject.

Third, f-structures can be used to represented the translation of an input sentence.

When translating to first-order logic, we need to be able to represent first-order terms

using f-structures. Typically, an f-structure with a pred feature is used to store the

predicate (or functor) symbol and features argl, arg2, etc. are used to store the argu-

ments. For example, to build an f-structure X representing the predication p(a, b, c),

the following equations could be used:

<X pred> = p
<X argl> = a
<X arg2> = b
<X arg3> = c

This idea is easily extended for the representation of formulas containing logical
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connectives (and, or, etc.) and quantifiers.

Lexical-Functional Grammar and PATR-II are obviously quite similar, at least

when comparing the LFG core to PATR-II. Computation ally, PATR-II is strictly more

powerful. Parsing an input is semidecidable; any recursively enumerable language can

be described. The offline parsability constraint7 limits LFG to being decidable, although

recognizing an input is NP-complete.

PATR-II is a declarative formalism while LFG is described in much more pro-

cedural terms, particularly the offline parsability constraint, the completeness and

coherence conditions, bounded-domination, and negative, constraint and existential

equations. Both top-down and bottom-up implementations exist for PATR-II including

a PATR-II development environment called D-PATR, utilizing a chart-parsing approach

[Karttunen 1986]. D-PATR runs on XEROX 1100 computers and provides a

window /menu-based interface to perform and monitor incremental parsing. Hirsh has

constructed a system to compile a PATR-II grammar into a Prolog program which uses

a left-corner parsing strategy [Hirsh 1986]. A formal semantics of PATR-II, based on

Dana Scott's domain theory has been developed [Pereira and Shieber 1984]. Additional

work has addressed PATR-II implementation details such as structure-sharing and

evaluation strategy [Karttunen and Kay 1985, Pereira 1986].

7 This is the constraint, mentioned earlier, that says to parse an input using a LFG, we first find a
context-free parse and then try to find a solution for the f-description.
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Part 2
Inheritance Grammar
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Chapter 3:

Introduction to Inheritance Grammar1

3.1. Introduction

Part One discussed the logic-based and unification-based approaches to NL pro-

cessing. In Part Two, we introduce a new grammar formalism called Inheritance Gram-

mar (IG). We have three goals for this new formalism. First, we want to incorporate

feature-structures into a DCG-like framework. Second, we want to make semantic type

checking more flexible than in the DCG approaches. Finally, we want the new formal-

ism to be a proper superset of the DCG formalism. In this chapter, we informally intro-

duce Inheritance Grammar, providing short examples to communicate its main charac-

teristics and show how our objectives are met. A formal description of IG is given in

the next chapter.

The IG formalism is an extension of Hassan Ait-Kaci's work on ,p-terms to the

domain of grammatical analysis [Ait-Kaci 1984, Ait-Kaci and Nasr 1985]. A ,p-term is

an informational structure similar to both the feature structure of LFGjPATR-II and

the first-order term of logic. The set of ,p-terms is ordered by subsumption and forms a

lattice in which unification of ,p-terms amounts to greatest lower bounds (GLB, n )2, In

Inheritance Grammar, ,p-terms are incorporated into a computational paradigm similar

1Portions of this chapter appeared in IPorter 19871.

2 Note that we identify unification with GLB rather than with LUB. In first-order logic and in PATR-
II, unification is identified with LUB. This decision is fairly arbitrary since the development done here could
be replaced by a dual development with unification as LUB. As we will soon see, unification of 1P-terms is
based on an underlying IS-A taxonomy of symbols. Traditionally such IS-A taxonomies are oriented with BU-
perclasses above subclasses, motivating the sense we have chosen.
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to the Definite Olause Grammar (DOG) formalism. Unlike feature structures and first-

order terms, the atomic symbols of ,p-terms are ordered in an IS-A taxonomy, a distinc-

tion that is useful in performing semantic type-class reasoning during grammatical

analysis. We begin by discussing this ordering.

3.2. The IS-A Relation Among Feature Values

Like other grammar formalisms using feature-based functional structures, we will

assume a fixed set of atomic symbols. These symbols are the values used to represent

lexical, syntactic and semantic categories and other feature values. This set is called

the signature. In DOGs, it corresponds to the set of constants, functors, and predicate

names. In many formalisms (e.g., DOG and PATR-ll), equality is the only operation for

symbols. In IG symbols are related in an IS-A hierarchy. These relationships are indi-

cated in the grammar using statements such as:

boy < masculineObject.
girl < feminineObject.
man < masculineObject.
woman < feminineObject.
{boy, girl} < child.
{man, woman} < adult.
{child, adult} < human.

Symbols appearing in the grammar but not appearing in the IS-A statements are

assumed to be unrelated. The symbol < can be read as "is a" and the notation

{at> ... , an} < b is an abbreviation for al < b, ... , an < b. The grammar writer need

not distinguish between instances and classes, or between syntactic and semantic

categories when the hierarchy is specified. Such distinctions are only in the mind of the

grammar writer and are reflected in the style with which the symbols are used in the

grammar. Note that this example ordering exhibits multiple inheritance: feminineOb-

jects are not necessarily humans and humans are not necessarily
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feminineObjects, yet a girl isboth a human and a feminineObject.

Computation of LUB (U) and GLB (n) in arbitrary partialorders isproblematic.

In IG, the grammar writer specifies an arbitrary partial ordering that the rule execution

system automatically embeds in a lattice(an ordering in which LUB and GLB are

always defined) by the addition of newly created symbols. The extension of the signa-

ture can be done without disturbing the order of the set.

What is the intuitionbehind the ordering statements and the lattice? Symbols

may be thought of as standing for conceptual sets or semantic types and the IS-A rela-

tionship can be thought of as set inclusion. Finding the GLB - i.e., unification of sym-

bols - then amounts to set intersection. For the partial order specified above, two new

symbols are automatically added, representing semantic categories implied by the IS-A

statements: i.e.,human females and human males. The firstnew category (human

females) can be thought oC as the intersectionof human and feminineObject or as

the union oC girl and woman3, and similarlyfor human males. The ordering

corresponding to the IS-A statements is shown in Figure 3.1 and the signature resulting

Crom the embedding is shown in Figure 3.2. Our implementation automatically gen-

erates names - such as {woman, girl} - for the new symbols. Ifdesired,the user can

easily change these names to more informative strings.

3.3. Viewing 1/1-termsas Enhanced Feature Structures

As we saw in the previous chapter, much work in computational linguisticsis

focussed around the application of unification to an informational structure that maps

attribute names to values. A value is either atomic or (recursively)another such

3 Or anything in between. One isthe most liberalinterpretation,the other the most conserva.tive.

The signature could be extended by adding both classes, a.nd any number in between.
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feminineObject human masculineObject

woman man girl boy

Figure 3.1: An IS-A Ordering with Multiple Inheritance

T

adult

masculineObject

woman

1.

Figure 3.2: The Corresponding Signature Lattice

mapping. These mappings are called by various names: feature structures, functional

structures, f-structures, and feature matrices. Recall the f-structures of PATR-ll, which

were described as rooted, directed, acyclic graphs (DAGs) whose arcs are annotated
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with feature labels and whose leaves are annotated with atomic feature values.

IGs use 1/J-terms, an informational structure that is best understood as a rooted,

possibly cyclic, directed graph. Unlike in f-structures, every node (both leaf and inte-

rior) is annotated with a symbol from the signature. Each arc of the graph is labeled

with a feature /abe./ (the analog of an attribute). The set of feature labels is unordered

and is distinct from the signature. For the formal definition of 1/J-terms, given in set

theoretic terms, see the definition of the set W in the next chapter. We will give several

examples in this chapter to give the flavor of 1/J-terms.

In addition to the DAG notation, feature structures are also represented using a

bracketed matrix notation. We represent 1/J-terms, on the other hand, using a textual

notation similar to that of first-order terms. The syntax of the textual representation is

given by the following extended BNF grammar. The characters ( ) =5> , and: are ter-

minals. (Actually, this grammar is a slightly simplified version of the one presented in

Chapter 4, which should be regarded as the complete description.)

TERM ..- SYMBOL [ATTRffiUTELIST ]
ATTRffiUTELIST

( ATTRffiUTE , ... , ATTRffiUTE )
FEATURE =5>TERM

FEATURE =5>VARIABLE [ : TERM ]

ATTRffiUTELIST ::=
ATTRffiUTE ..

Our first example contains the symbols np, singular, and third. The label

of the root node, np, is called the head symbol. This 1/J-term contains two features,

number and person.

np(number =5> singular,
person =5> third)

The next example, illustrating nested structures, includes a subterm at agree-

ment=5>
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(cat ~ np,
agreement ~ (number~ singular,

person ~ third»

In this ,p-term the head symbol is missing, as is the head symbol of the subterm. When

a symbol is missing, the most general symbol of the signature (T) is assumed.

The location of a subterm within a ,p-term is given using a path (or addre88) rela-

tive to that ,p-term. For example, the subterm at address

agreement~number~

is the featureless ,p-term whose head is singular.

A1sAit-Kaci has observed, a variable serves two purposes in traditional first-order

terms [Ait-Kaci 1984]. First, as a wild card, it serves as a placeholder that will match

any term. Second, as a constraint, one variable can constrain several positions in the

term to be filled by the same structure. In ,p..terms, the wild card function is filled by

the maximal symbol of the signature (T ), which will match any ,p..term during

unification. Variables are used exclusively for the constraint function to indicate ,p..

term coreference. By convention, variables always begin with an uppercase letter while

symbols and labels begin with lowercase letters and digits.

In the following ,p..term, which can be thought of as a representation of the sen-

tence The man want8 to dance with Mary, X is a variable used to identify the subject of

want8 with the subject of dance.

sentence (subject ~
predicate ~
verbComp ~

X:man,
wants,
clause (subject

predicate
prepObject

~ X,
~ dance,
~ mary»
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If a variable X appears in a term constraining a subterm t, then all subterms con-

strained by other occurrences of X must be consistent with (i.e., unify with) t. If a vari-

able appears without a subterm following it, the term consisting of simply the top sym-

bol (T ) is assumed. By convention, we prefer to write the subterm constrained by X

following the first occurrence of X and not include subterms at all other occurrences of

X These secondary subterms then default to T , which will trivially unify with the pri-

mary subterm at X. The constraint implied by variable coreference is not just equality

of structure but equality of reference. Further unifications that add information to one

sub-structure will necessarily add it to the other. Thus, in this example, X constrains

the terms appearing at the paths subject=i> and verbComp=i>subject=i> to be the

same term.

In the ,p-term representation of the sentence The man with the toupee sneezed

shown below, the np filling the subject role, X, has two attributes. One is a qual-

ifier filled by a relativeClause whose subject is X itself.

sentence (
subject =i> X: np (

head =i> man,
qualifier =i> relativeClause(

subject =i> X,
predicate =i> wear,
object =i> toupee»,

predicate =i> sneezed)

As the graphical representation of this term in Figure 3.3 clearly shows, this 1jJ-term is

cyclic.

3.4. Unification of ,p-terms

Before describing how ,p-terms are used in a grammar, we need to discuss

unification, the operation with which we manipulate ,p-terms. The unification of two
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Figure 3.3: Graphical Representation of a Cyclic ,p-Term

,p-terms is similar to the unification of two feature structures in PATR-II or two first-

order terms in logic. Unification of two terms t1 and t2 proceeds as follows. First, the

head symbols of t1 and t2 are unified. That is, the GLB of the two symbols in the signa-

ture lattice becomes the head symbol of the result. Second, the subterms of t1 and t2

are unified. When t1 and t2 both contain the feature f, the corresponding subterms are

unified and added as feature f of the result. If one term, say tl> contains feature f and

the other term does not, then the result will contain feature f with the value from t1.

This result is the same that would obtain if t2 contained feature f with value T .

Finally, the subterm coreference constraints implied by the variables in t1 and t2 are

respected. That is, the result is the least constrained ,p-term such that if two paths in
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t1 (or tz) are tagged by the same variable (i.e., they corefer) then they will corefer in the

result.

Af:,an example of unification (adapted from a similar PATR-II example [Shieber

1985a, page 19]), when the ,p-term

(agreement ~ X: (number ~ singular),
subject ~ (agreement ~ X»

is unified with

(subject ~ (agreement ~ (person ~ third»)

the result is

(agreement ~ X: (number ~ singular,
person ~ third),

subject ~ (agreement~ X»

Af:, another example, assume we have an ordering including statements such as:

{smith, jones} < partTimeStudent.
{brown, anderson} < fullTimeStudent.

<partTimeStudent, fullTimeStudent} < student.
student < person.

{cselOl, csel02, cse121} < course.

In the ,p-term

s(subject ~ X:student,
verb ~ takes,
object ~ Y:course)

X and Y function as typed variables when unified with another ,p-term, such as:

s(subject ~ smith,
verb ~ takes,
object ~ csel02)

The result of unifying these two ,p-terms is exactly the same as the second term:
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s(subject ~ smith,
verb ~ takes,

object ~ csel02)

3.5. Relationship to F-structures and First-Order Terms

The f-structures of PATR-II and LFG can be viewed as a special case of ,p-terms,

in which three conditions hold. First, the head symbol of all subterms (except those at

the "lowest" level with no features) is T. Second, the signature is a flat lattice, Le., all

symbols (besides T and .1) are unordered. Third, in the case where cyclic f-structures

are disallowed, the variable tagging of ,p-terms is constrained to be acyclic.

For example, the f-structure shown in Figure 3.4 is represented as the following 11'-

term.

SUBJ

[

~
NOUN

[

=E
VERB

THE

]

PLURAL
GffiLS

PLURAL

]

PRESENT
RUN

VP

Figure 3.4: An F-Structure

(subj (det the,
num plural,
noun girls),

vp (num plural)
tense present,
verb run»
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The first-order term from logic can also be viewed as a special case of the ,p-term,

again under three conditions. The symbols in the ,p-term correspond to the constants

and functors of first-order terms. The first condition, that the signature again be a flat

lattice, reflects the fact that the symbols in first-order terms are incomparable. The

second condition reflects the fact that the arguments of a term are specified positionally

and are not labeled. To represent ordered arguments, we restrict the feature labels of

the 1/1-term to be the features 1, 2, 3, ... (In particular, the feature labels of the ,p-

term must come from the set of the positive integers and if a feature n (> 1) is present

at an address, then feature n-l must also be present.) Finally, we must constrain the ,p-

term to reflect the fact that, in first-order terms, variables can only tag completely

unbound subterms.

For example, the first-order term

f(a, X, g(b, X, c), Y)

would be represented as the ,p-term

f(l =§> a,
2 =§> X,
3 =§> g(l =§> b,

2 =§> X,

3 =§> c),
4 =§> Y)

Unification of ,p-terms is very similar to unification of f-structures and of first-

order terms. If A, B, and 0 are f-structures where 0 is the unification of A and Band

where A' and B' are the corresponding representations of A and B as ,p-terms then 0' is

the unification of A' and B', when 0' is the ,p-term representation of O. The same state-

ment does not quite hold when A, B, and 0 are first-order terms. We will discuss the

representation of first-order terms as ,p-terms further in the next chapter.
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3.6. Inheritance Grammars

An IG consists of IS-A statements and grammar rules. A grammar rule is a

definite clause that uses 1ft-terms in place of the literals used in first-order logic program-

mmg. For example:

sent (mood 9 decl) : - np (number 9 X), vp (number 9 X) .

Most of the notation of Prolog and DOGs is used. In particular, the : - symbol

separates a rule head from the 1/J-terms comprising the rule body. Analogously to Pro-

log, list notation (using [, I, and ]) can be used as a shorthand for 1ft-terms represent-

ing lists and containing head and tail features. When the --> symbol is used

instead of : -, the rule is treated as a context-free grammar rule and the interpreter

automatically appends two additional arguments (start and end) to facilitate pars-

ing. The final syntactic sugar allows feature labels to be elided; numeric feature labels

(i.e., 1, 2, 3, ...) are automatically inserted before unlabeled attributes.

Our first simple Inheritance Grammar consists of the rules:

sent --> noun (number 9 Num) ,verb (number 9 Num).
noun (number 9 plural) --> [cats].
verb (number 9 plural) --> [meow].

The sentence to be parsed is supplied as a goal clause, as in:

:--sent([cats,meow], []).

The parser first translates these clauses into the following equivalent IG clauses,

expanding away the notational sugar, before execution begins.
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sent (start =? PI, end =? P3) :-

noun (number =? Num, start =? Pl, end =? P2) ,
verb (number =? Num, start =? P2, end =? P3) .

noun (number =? plural,

start =? list (head =? cats, tail =? L) ,
end =? L) .

verb (number =? plural,

start =? list (head =? meow, tail =? L) ,
end =? L) .

. sent (start =? list (head =? cats,

tail =? list (head =? meow,

tail =? nil» ,

end =? nil) .

A13 this example indicates,every DCG is an Inheritance Grammar. However, since the

arguments may be arbitrary 1/J-terms,IG can also accommodate feature manipulation

and taxonomic reasoning.

3.7. Search Strategy

The model-theoretic semantics of logic programming are given by defining logical

implication in terms of validity relative to all possible interpretations. An actual imple-

mentation is complete if it is guaranteed to find a proof if the query is logically implied

by the database clauses. The standard implementation, Prolog, is not complete. It uses

a depth-first search strategy that can be implemented efficientlyand gives the clauses a

comforting procedural reading but that may fail to accurately capture logical implica-

tion by failing to find proofs. In this sense, Prolog is an inadequate implementation of

logic programming.

Likewise, the formal semantics of Inheritance Grammar is specifiedin terms of

models and logical implication. A particular implementation mayor may not be com-

plete with respect to this definition. A13 in logic, the depth-first strategy can be made
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very efficient for IG but may fail to find solutions for some grammars.

The question of completeness is perhaps more important in the context of NL

grammars than in other types of programs because left-recursion is more often a prob-

lem. As an example of left-recursive grammar rules, consider the following grammar

fragment:

np --> modifiers, noun.

modifiers --> modifiers, adj.
modifiers --> det.

Obviously, this simple grammar can be rewritten to remove left-recursion and avoid

infinite regress. However, an important goal in grammar formalisms is to make the for-

mal ism completely declarative, so that a grammar can be expressed in the clearest and

"most declarative" way.

To illustrate, let us modify the rules so they construct a list of the modifiers:

np --> modifiers(L), noun.

modifiers ([AIL]) --> modifiers(L), adj(A).
modifiers ([D]) --> det(D).

These rules construct the list in a particular order. When the rules were rewritten in

the obvious way to avoid left recursion, the list order is reversed:

np --> modifiers(L), noun.

modifiers([DIL]) --> det(D) , adjlist(L).
adjlist(AIL]) --> adj (A), adjlist(L).
adj list ([J) --> [].

Again,we could obviously rewrite these rules to achieve the desired order, but only at

the cost of increased grammar size. While this example is trivial, as the grammar grows

to increase linguistic coverage, the amount of hacking that becomes necessary to accom-

modate the implementation also grows.
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Complexity is a major problem in comprehensive grammars. Nontermination due

to left-recursion is an artifact of a particular implementation, not a problem with the

formalism itself. This observation holds for both DCGs and IGs equally.

3.8. Type-Class Reasoning in Parsing

Several logic-based grammars have used semantic categorization of verb argu-

ments to disambiguate word senses and fill case slots (e.g., [McCord 1980, 1982]). One

important motivation for using 1/J-terms for grammatical analysis is to facilitate such

semantic type-class reasoning during the parsing stage.

The approach taken in the McCord grammar is to use unification to do taxonomic

reasoning. Two types unify if and only if one is a subtype of the other; the result is the

most specific type. For example, if the term smith:_, representing an untyped indivi-

dual, is unified with the type expression X: (person: student), representing student

(a subtype of person), the result is smith:person:student. Because of the way

first-order unification is used to implement type unification, the type hierarchies must be

tree-shaped.

We perceive two shortcomings to this approach. (1) The semantic hierarchy is

somewhat inflexible because it is distributed throughout the lexicon, rather than being

maintained separately. (2) Multiple Inheritance is not accommodated (although see

McCord [1985]). In IG, the 1/J-term student can act as a typed variable and unifies

with the tjI-term smith (yielding smith) assuming the presence of IS-A statements

such as:

student < person.
{smith, jones, brown} < student.

The taxonomy is specified separately - even with the potential of dynamic modification
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- and multiple inheritance is accommodated naturally.

3.9. Other Grammatical Applications of Taxonomic Reasoning

The taxonomic reasoning mechanism of IG has applications in lexical and syntac-

tic categorization as well as in semantic type-class reasoning. As an illustration, con-

sider the problem of writing a grammar that accepts a prepositional phrase or a rela-

tive clause after a noun phrase but only accepts a prepositional phrase after the verb

phrase. So The flower under the tree wilted, The flower that was under the tree wilted,

and John ate under the tree should be accepted but not :I:John ate that was under the

tree.

A simple IG solution includes a taxonomy in which prepositionalPhrase and

relativeClause are both npModifiers but only a prepositionalPhrase is a

vpModifier. In the following highly abbreviated IG, when a vpModifer is called for

after a vp, either the prepositionalPhrase rule or the relativeClause rule

may be used, while only a prepositionalPhrase will do when an npModifier is

called for.

{prepositionalPhrase, relativeClause} < npModifier.
prepositionalPhrase < vpModifier.

sent (. . .) --> np (. . .) ,vp (. . .) ,vpModifier (. . .) .

np ( . . .) - - > np (. . .) ,npModi fier (. . .) .

np ( . . .) - - > ...

vp(...) --> ...

prepositionalPhrase(...) -->
relativeClause(...) --> ...

Since predicate names - e.g.,npModifier - participate in the signature ordering, this

example shows that t/J-terms are used at the predicate level, not just at the term level

as was done in the LOGIN language [Ait-Kaci and Nasr 1986].
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3.10. Implementation

We have implemented an IG development environment in Small talk on the Tek-

tronix 4317 workstation to empirically investigate the usefulness of the formalism and

have experimented with several grammars using this environment.

The IS-A statements are handled by an ordering package that performs the lattice

completion dynamically by adding additional elements only when GLBs are requested.

This package displays the signature graphically and allows interactive updating of the

ordering.

Many of the techniques used in standard depth-first Prolog execution have been

carried over to our IG execution environment, which we will describe in Chapter 5. To

speed grammar execution, our system precompiles the grammar rules. To speed gram-

mar development, incremental compilation allows individual rules to be compiled when

modified.

As mentioned above, top-down, depth-first evaluation (which our implementation

uses) is not complete. In Chapter 6, we will explore several complete evaluation stra-

tegies - including Earley Deduction, Extension Tables, and Staged Depth-First Search

Strategy - that have been developed for first-order logic, showing how they can be

adapted to Inheritance Grammars. Before discussing implementation, however, the next

chapter presents a formal definition of IG, based on t/J-logic.
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Chapter 4:

Definitionof Inheritance Grammar

4.1. Introduction

In the previous chapter, we introduced Inheritance Grammar and provided some

intuition for its formalization. In this chapter, we elaborate with several definitions and

results. We begin with a description of ,p-terms, which are data structures similar to

those in the work of Ait-Kaci [1984]. We provide a proof that the set of t/I-terms forms

a lattice [Birkhoff 1979] and then we describe t/I-Iogic and ,p-resolution. Finally, we give

a model-theoretic semantics for t/I-Iogic and Inheritance Grammars, defining soundness

and completeness for proof procedures.

4.2. t/I-Terms

The atomic symbols that we will use as feature values comprise the signature of

the grammar.

Definition. A signature (denoted E) is a finite lattice with T (top) and ..1 (bot-

tom) elements. Symbols will be written as identifiers beginning with a lowercase letter

or digiti. We will use the symbols ::;, /\, and V for the lattice order, meet operation,

and join operation, respectively. 0

In Prolog, the head symbols of the terms nounPhrase (X, Y) and

properNounPhrase (X, Y) are incomparable. Since it may be true that all proper

1Hereafter, the word "identifier" means a string of alphanumeric characters of arbitrary length ~ 1.
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noun phrases are noun phrases, we want these terms to be comparable. The grammar

writer does so by specifying a signature in which properNounPhrase < noun-

Phrase. Since the signature is assumed to be predefined and fixed, we will take 1: as a

given for the rest of this chapter. Later in this chapter we introduce ordering state-

ments, which the grammar writer uses to specify a partial order. The implementation

extends this order to a signature lattice.

The identifiers that will be used as feature labels comprise a set distinct (but not

necessarily disjoint) from the signature. The next definition names this set.

Definition. The set of features (denoted F) is an unordered set of identifiers. 0

In first-order terms, subterms are identified positionally. In 1ft-terms, the sub-terms

are identified using features. (We will use example 1ft-terms to motivate our definitions

although we will not formally define 1ft-terms until later.) For example, the 1ft-term

nounPhrase(determiner ~
number ~
head ~

the,
singular,
rock)

contains the features determiner, number, and head. In similar formalisms,

features are called attributes, field names, labels, or slots.

Finally, we need some variables names. Variables will be used like Prolog vari-

abIes to express equality constraints among sub-terms.

Definition. The set of variables (denoted V) is an unordered set of identifiers,

each beginning with an uppercase letter. 0

Example 1. The term
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sentence (

subject ~ X: np(
head ~ man,
qualifier ~ relativeClause(

subject ~ X,

predicate ~ wear,
object ~ toupee»,

predicate ~ sneezed)

contains two occurrences of the variable X. 0

The constraint that symbols begin with a lowercase letter and that variables

begin with an uppercase letter will allow us to syntactically identify and distinguish

between the symbols, features, and variables occurring in a given IG fragment.

Informally, a finite sequence of features in a ,p-term is called a path (or an

address). Conventionally, the infix operator dot (.) is used to denote sequences. How-

ever, to make it clear that a sequence of identifiers is meant to be a path, we will also

write a path as a sequence of features separated by the ~ symbol and add a final ~

after the last feature. Thus, the path a .b .c can be written more clearly as

a~b~c~. We will overload the operator. to indicate concatenation of two paths,

i.e., the appending of two feature lists.

Formally, we define an addre33 domain A to be used to specify the addresses

within a ,p-term. We will make the connection between address domains and ,p-terms as

we define ,p-terms.

Definition. An addres8 domain is a (possibly infinite) set of paths that is prefix-

closed and finitely branching. More specifically, an address domain A is a set of feature

sequences (A ~ F*) such that:

(i) If I, m E F* and if l.m E A then I E A (prefix-closed), and

(ii) If I E A then { f I f E F and l.f E A} is finite (finitely branching). 0
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The empty sequence i is called the root address and is a member of every address

domain. Addresses in A that are not prefixes of other addresses in A are called leaves.

Example 2. The address domain for the ,p-term

sentence(subj~john,
vp ~predicate(verb~run»

IS {i, subj, vp, vp.verb} or, equivalently, {i, subj~, vp~, vp~verb~}.

The leaves are subj and vp.verb or, equivalently, subj~ and vp~verb~. 0

An address domain may be infinite.

Example 3. The address domain

Al = { s Is is a feature sequence of the form
a~(b~a~)* + (a~b~)*}

is infinite. 0

Definition. Given an address domain A and an address a E A, the address 8ub-

domain of A at a, denoted A\a is { x Ix E F* and a.x E A} 0

Example 4. If Az is the address domain {i, 1 , m, m. n , m. 0 , m. 0 . p ,

m.n. q} then Az\m. 0 = Az' = {i, p, q} is the address subdomain of Az at m. o. The

address domain Az can be visualized as the tree in Figure 4.1 and Az' can be visualized

as the subtree in Figure 4.2. 0

We next define regular address domains. To do this, we need the following

definition.

Definition. Let subaddresses(A) denote the set of all address sub domains in A,

i.e., subaddresses(A) = { A\a I a E A} 0

A can be thought of as describing a tree and subaddresses(A) can be thought of as

the set of all sub trees occurring in A.
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Figure 4.1: The address domain A2

Figure 4.2: The address domain A2'

Definition. An address domain A is regular (also called rational) if

subaddresses(A) is finite2. 0

Example 5. ~ (from Example 4) is regular since ~ is finite. Al (also above) is

an infinite address domain. Figure 4.3 shows an infinite tree representation of AI' Al is

regular since it has only a finite number of distinct subtrees:

subaddresses(A) = { AI> AI' }

2 Colmerauer's concept of rational treel in the context of infinite Prolog terms is similar IColmerauer
19861.
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where

AI' = { s Is is a feature sequence of the form
b9(a9b9)* + (b9a9)*}

o

Example 6. Let F = {O,1, 2, ..., 9} and A3 = { n In is a finite prefix of the digits

in the decimal expansion of 7r = 3.14159...}. A3 is not a regular address domain. 0

Definition. A directed graph, or digraph, is a set of nodes and a set of edges con-

necting ordered pairs of nodes. In a rooted graph, one node is distinguished as the root

node and all nodes are reachable from the root. The root is usually indicated with a

a

etc...

Figure 4.3: Infinite Representation of Al
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small arrow pointing to it. A finite graph has a finite number of nodes and edges. 0

Theorem 1. There is a one-to-one correspondence between regular address

domains and finite, rooted digraphs with labeled edges. 0

Proof. The proof is constructive: we provide a mapping from address domains to

graphs and a mapping from graphs to address domains.

(i) For every address sub domain of the address domain A associate a node in a

directed, rooted graph, G. The node associated with A\f is the root. For

every path l.m E A, where I E F* and m E F, associate an edge directed from

node A\l to node A\l.m. G is clearly finite. An inductive argument on path

length shows that all nodes are reachable from from A\f.

(ii) Given a finite, rooted digraph G, let F be the set of features appearing in G.

Associate a set of paths with each node in G as follows. Include f in the set of

path associated with the root. If path a E F* is one of the paths associated

with node n and there is an edge from n to node m labeled b, then include the

path a.b in the set of paths associated with m. Let A = { a E F* Ia is associ-

ated with at least one node}. Clearly A is prefix closed. A is finitely branch-

ing since each node in G has a finite number of edges. The number of sub-

domains of A is finite since we can associate each subdomain with a different

node in G and there are finitely many nodes.

Since both mappings are injective, the correspondence is one-to-one. 0

Since we are only interested in regular address domains, we imply regularity when-

ever we say address domain in what follows.

We are now ready to give our first cut at a definition of a t/J-term. We will refine

it later.
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Definition. Given a signature E, and set of features F, and a set of variables V,

a ,p-term is a triple <A, ,p,T> where

(i) A is a regular address domain over F

(ii) ,p is a function that maps feature sequences (paths) into symbols, F* -+ E, such

that ,p(a) = T for all a ~ A and such that { a I,p(a)¥= T } is finite. That is,

the symbol function (,p) maps addresses into symbols and non-addresses into T.

(iii) T is a partial function mapping addresses into variables, A -+ V, defined on

only finitely many addresses. 0

Example 7. Let t1 be the triple <Ai> ,pi> Tl>' where Ai is listed in the first

column of the following table and where the functions ,pi and Tl are given in the second

and third columns. (All unlisted values of ,pi are of course T.) Then t1 is a ,p-term.

o

We next describe two more-intuitive ways to represent a 1/J-term. First, a 1/J-term

can be represented as a tree as follows. First construct the (possibly infinite) tree

corresponding to the address domain A, labeling each arc with a feature from F such

that each path from the root follows a sequence of features a E A. Then label each

node with the variable given to that address by T (if any) and with the symbol given by

,po Throughout the rest of this chapter, we will abbreviate ,p-term to term. When we

mean first-order term, we will say so explicitly.

Ai ,pi Tl

( sentence X

subj john Y
verb wanted Z

verbCompl predicate V

verbCompl.subj person Y

verbCompl.verb dance W
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Example 8. The term t1 (from Example 7) is represented by the tree of Figure

4.4. Note that, at this point, we have no notion of coalescing of variables. 0

Definition. A term is finite if its address domain is finite, and infinite otherwise.

o

Finite terms are represented with finite trees and infinite terms with infinite trees.

Second, as demonstrated in preceding examples, regular ,p-terms (finite or infinite)

can be represented textually using the syntax given by the following extended BNF

grammar. The symbols ( ) =? , and : are terminals.

Figure 4.4: A Representation of t1
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TERM ..- [VARIABLE:] SYMBOL [ATTRmUTELIST]
[ VARIABLE: ] ATTRIDUTELIST
VARIABLE
( ATTRIDUTE , ... , ATTRIDUTE )
FEATURE =9 TERM

ATTRIDUTELIST
ATTRIDUTE

..-

..

To summarize this grammar, a term is a symbol from the signature (called the

head symbol), optionally followed by a parenthesized list of attributes. An attribute

consists of a feature, followed by a term. A term may optionally be tagged with a vari-

able as, for example, X: nounPh. Since - as we will see when alphabetic variants are

discussed below - we are not too concerned with the actual variable names, we usually

omit the variables that appear only once, regenerating them, when necessary, from pre-

viously unused variables such as X, Y, Z, ... . When the head symbol is omitted, it is

assumed to be T. We will say more about variables when we discuss well-formedness

below.

Example 9. The term t1 (from Example 7) can be represented as:

X: sentence (
subj
verb

verbCompl

Y:john,
Z:wanted,
V:predicate(

subj
verb

=9 Y:person,

=9 W:dance»

o

Example 10. By omitting variables that occur only once, we can write t1 as:

sentence (
subj
verb

verbCompl

=9 Y:john,
=9 wanted,
=9 predicate(

subj =9
verb =9

Y:person,

dance»

Note that because redundant subterms can be elided and since T may be specified

explicitly or implicitly, some terms have several textual representations. 0
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As in the previous example, a term often contains subterms. Each subterm is

located at a specific address within the term. The next definition makes the notion of

sub term more concrete.

Definition. Let t = <A, ,p, r>. The subterm of t at address a (denoted t\a),

where a E A, is the term <A\a, ,p\a, r\a> where:

A\a is the sub domain of A at a,

,p\a is a function A\a __ E such that ,p\a(b) = ,p(a.b) for all addresses b E A\a,

and

r\a is the variable tagging function A\a -- V such that r\a(b) = r(a.b) for all

addresses b E A\a.

o

Example 11. The subterm of t1 at verbCompl~ is:

V:predicate(subj ~ Y:person,
verb ~ W:dance)

o

EXaIIlple 12. The subterm of t1 at verbCompl~verb~ is dance. 0

Note that t\l = t. That is, the subterm at the root of term t is term t itself.

Definition. Two addresses in a term bearing the same variable are said to

corefer. 0

Example 13. In t1 above, the addresses subj~ and verbCompl~subj~

corefer. 0

Definition. The coreference relation == on a term t is the equivalence relation

relating exactly those addresses that corefer. 0
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In other words, the relation a ==b is true for addresses a and b if and only if the

variables at addresses a and b are the same. ADy function, f, defined on set S induces

an equivalence relation on S !Lipson 1981]; this is called the kernel relation induced by

that function and is denoted kernel(f). The coreference relation ==is the kernel relation

induced by T and each coreference class contains coreferring addresses. That is, for a, b

E A, we have a ==b if and only if r(a) = r(b). Clearly, given an equivalence relation ==,

we can construct a function r such that kernel(r) is ==since we have an infinite supply of

variables.

The intent of variables is to force the subterms at different addresses to be identi-

cal. Since the definition of 1/J-terms given above does not include this constraint, we

next introduce the notion of well-formed terms.

Definition. A term t = <A, t/J, r> is well-formed if, for any two addresses a and

b that corefer (i.e., a ==b), then, for all addresses c E F* such that a.c E A,

(i) b.c E A,

(ii) t/J(b.c) = t/J(a.c), and

(iii) r(b.c)= r(a.c) 0

In other words, a term is well-formed if the same subterm occurs at all addresses

that have the same variable. Since a ==b implies a.c ==b.c (for any addresses a, b, c E

F* such that a.c E A and b.c E A), == is a right-invariant equivalence relation (or right-

congruence).

EXaIIlple 14. Term t) is not a well-formed term since the addresses subj~ and

verbCompl~subj~ corefer but different terms occur at subj~ and at

verbCompl~subj~. 0
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Example 15. The term t2 (differing from ti only at verbComp19subj9)

shown below is well-formed:

tPi

£

subj
verb

verbCompl
verbCompl. subj
verbCompl.verb

sentence

john
wanted

predicate
john
dance

x
Y
Z
V
Y
W

This term can be represented textually as:

sentence (
subj
verb

verbCompl

9 Y:john,
9 wanted,
9 predicate (

sub j 9
verb 9

Y: john,
dance) )

o

Since address domains for terms are regular, the following statements hold for

every well-formed term, t.

(i) The number of subterms occurring in t is finite.

(ii) The number of symbols occurring in t (i.e., the number of addresses for which

the value of tP is non- T ) is finite.

(iii) The number of variables occurring in t is finite.

Henceforth, we shall only be concerned with well-formed terms. If a term t is

well-formed, its textual representation is usually abbreviated by writing the subterm

occurring at a set of coreferring addresses only once. Since the same term appears at

each address in a set of coreferring addresses, the term only needs to appear after the

first occurrence of the variable; all remaining addresses will just include the variable

with the understanding that the shared term is meant. This abbreviation will allow
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cyclic terms (defined below) to be represented textually.

For convenience, the implementation allows different but unifiable sub terms to

appear at corefering addresses. During parsing, these subterms are unified to yield the

ultimate subterm used. (We will define 1/J-term unification later.) IT a variable X

appears in one or more places in a textual representation, but no occurrences have an

associated subterm, then the associated subterm is assumed to be T , the most general

term.

Example 16. Term t2 from Example 15 is a well-formed term and hence could

also be represented textually as:

sentence (
subj
verb
verbCompl

~ Y:john,
~ wanted,
~ predi.cate(

subj
verb

~ Y,
~ dance»

The subterm at address verbCompl~subj~ is john but it is left off since the vari-

able Y appears elsewhere with the same subterm. 0

Example 17. We can write the well-formed term

Z: f (k ~

1 ~
m~
n~

X:g,.
Y: T ,

X:g,

Y:T)

as

Z: f (k ~ X: g,

1 ~ y,
m ~ X,
n ~ Y)

o
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A well-formed term can be represented as a finite, rooted digraph. Just as in the

tree representation. edges are annotated with features from F. Each node corresponds

to an address and is annotated with the variable assigned to that address by T. a colon,

and the signature symbol assigned to the address by ,po Furthermore. when two

addresses corefer, the graph is drawn so that the shared sub term is represented only

once. The root of the shared sub term is represented by a single node and edges

corresponding to the coreferring addresses are all directed to that node. Since the con-

nectivity of the graph captures effectively all the meaning the variables are meant to

convey and since actual variable identifiers are often irrelevant identifiers such as X, Y,

Z. they are often left out of the graphical representation. especially for singleton

address coreference classes.

Figure 4.5: Graphical representation of t2
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Example 18. Figure 4.5 shows the graphical representation of term t2 (from

Example 15). Figure 4.6 shows t2 with some variables omitted. 0

Representing terms with graphs rather than trees makes it possible to represent

infinite (but regular) terms by using cyclic graphs. We discuss the distinction between

cyclic and acyclic terms next.

Definition. A variable X occurs below address a (written X below a) if X is in

the codomain of T\a. 0

Example Ig. In term t2 (as given in Example 15 and Figure 4.5), we have W

below £, Y below verbComp19, and, as a boundary case, Z below verb9. 0

Definition. There is an non-empty edge sequence from address a to address b,

written a edge b, if 7(b) below a.c for some c E F.

Figure 4.6: Term t2 With Some Variables Elided
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Definition. The path relation is defined as the transitive closure of edge. We

use + to denote the transitive closure of a relation, so path = edge+. 0

The relation path between addresses is true of two addresses, a path b, if there is

a (non-empty) path in the graph representation of t from a to b.

Definition. A term is acyclic if path is irreflexive. All other terms are cyclic. 0

Example 20. The term t2 shown in Figures 4.5 and 4.6 is acyclic. 0

Example 21. The following term, t3, which might be a loose representation of the

man running the show, is cyclic. It is shown in Figure 4.7.

X:nounPh (
det
head
modifier

=9 the,
=9 man,
=9 clause (

subj
verb
obj

=9 X,
=9 run,
=9 nounPh(

det
head

=9 the,
=9 show)))

o

Since the purpose of variables is to show the connectivity structure of a term and

we are not really concerned with the actual variable names used, we introduce the fol-

lowing definition.

Definition. Two terms are alphabetic variants if they are identical up to a one-

t<rone renaming of variables. More specifically, we write t1at2 to mean

(iii) kernel( Td = kernel( T2)' 0
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Figure 4.7: Graphical representation of t3

Note that the graphical representation of a ,p-term in which the variables have

been omitted is incapable of distinguishing alphabetic variants.

Definition. The term consisting of a single address, £, and such that 1/1maps that

address to T , the top element in the symbol signature, is called the most general term

and is written textually as T. 0

Note that x, X: T , and T are all perfectly legitimate representations of the

most general term.



The 1. symbol of the signature is to be considered as an inconsistent or error sym-

bol. Since any term containing 1. should also be treated as an error, i.e., as 1. itself, we

need the following definition.

Definition. The error relation equates two terms containing 1.. We write tl~t2 if

and only if tl=t2 or both tl and t2 contain 1.. By "both contain 1.," we mean ,pI maps

some address in Al to 1. and,p2 maps some (possibly different) address in ~ to 1.. 0

The definition of ,p-terms used up to here (well-formed terms) is inadequate

because it ignores variable renaming and error terms. However, it is close enough that

it can easily be fixed by defining an equality among those terms we desire to be one-

and-the-same. In the following definition of equality among ,p-terms, we ignore sys-

tematic renaming of variables (i.e., treat alphabetic variants as equal) and treat all

error terms as equal.

Definition. Let ~ be the relation relating alphabetic variants to each other and

relating all error terms to 1., i.e., let ~ = (0 U ~). 0

Theorem 2. The relation ~ is an equivalence relation. 0

Proof. (original) We need to show that ~ is reflexive, symmetric, and transitive.

Reflexivity and symmetry follow from the reflexivity and symmetry of 0 and of~. To

show transitivity, we need to show that if a ~ band b ~ c then a ~ c. The only non-

trivial case is to show that a is related c when a is an alphabetic variant of b and when

band c both contain 1.. Since a is an alphabetic variant of b, it too contains 1. and is

thus related to c by~. 0

Finally we are ready to define the set of all ,p-terms. We call this set '11.

Definition. Let W be the set of well-formed terms. Let '11be the quotient set of

W modulo the equivalence relation ~, i.e., '11= W /~. 0
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Technically, the elements of \II are not ,p-terms, but equivalence classes of well-

formed terms. However, we will represent each class by one of its members, t, rather

than using the more formal It]. Henceforth, by ,p-term we will mean elements of \II. The

symbol .1 will represent any and all terms containing .1 anywhere, and it will be under-

stood that the variables in a ,p-term may be (consistently) renamed without altering the

identity of that ,p-term. In other words, two ,p-terms tl and t2 are equal if and only if

4.3. A Lattice of ,p-Terms

Using subsumption as an ordering, the set of first-order terms of logic forms a lat-

tice. Is this property also true of '11,the set of t/1-terms? The next line of development

shows that it is. We begin by defining three operators: subsumption (!;), generalization

(U), and unification (n). Then we show that '11is a lattice with respect to subsump-

tion (!;), that U is the least upper bound (L.U.B.)operator, and that n is the greatest

lower bound (G.L.B.) operator.

Definition. A term tl = <AI> ,pI, TI> is subsumed by another term

(i) ~ ~ Al (Every address in t2 is in tl),

(ii) =2 ~ =1 (All addresses that corefer in t2 also corefer in tli i.e., tl is more con-

strainedJ, and

(iii) ,pl(a) :::; ,p~a) for all addresses a E ~, where:::; is the partial order on symbols

(the symbol at any address in tl is less than the symbol at the corresponding

We also say that t2 is more general than tl. 0
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Technically, we have just defined ~ on well-formed terms but this definition

extends naturally to ,p-terms, using It!] ~ [t2] if and only if t1 ~ t2. The choice of

equivalence class representative is immaterial since subsumption is defined in such a

way that variable renaming has no effect and since 1. is subsumed by all terms.

Example 22. The ,p-term

nounPh(number~singular. head~fish)

is subsumed by

nounPh(head~fish)

o

Example 23. Assume that singular < countable in the signature E. Then

nounPh(number~countable, head~person)

is more general than

nounPh(number~singular, head~person)

o

Example 24. The term

f (l~X. m~Y)

subsumes

f (l~Z. m~Z)

since the second term has a more constrained variable tagging. 0

Theorem 3. Subsumption of t/J-terms is a partial order. 0

Proof. (original) We need to show reflexivity, antisymmetry, and transitivity.

First, reflexivity, t ~ t, clearly holds.
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Second, antisymmetry (if tl ~ t2 and t2 ~ tl then tl = t2) holds because the opera-

tors used in the definition of subsumption (:5; and ~) are antisymmetric.

Third, we need to show transitivity. Assume that tl ~ t2 and t2 ~ t3. Obviously,

implies =3 ~ =1' Finally, tPl(a) :5; tP3(a) holds for all aEA3 since aEAI> aEA2

Next, we define the generalization (U) and unification (n) operators. Viewing tP-

terms as representations or descriptions of sets of objects (from some domain - more on

domains later), generalization corresponds to set union. Dually, unification can be

understood as an intersection operator for set descriptions. Since the generalization

operation has the simpler definition, we begin with it.

Definition. The generalization of two terms tl = <AI> tPl> Tl> and

(i) A = Al n ~

(ii) T is a function in A - V such that kernel( T) is =1n =2,and

(iii) tP(a)= tPl(a) V tP~a) for every address a in A and where V is the L.V.B. opera-

tor for the signature. 0

This definition says that (i) the only addresses in the generalization are those

addresses that are in both tl and t2, (ii) addresses in the generalization will corefer if

and only if they coreferred in both tl and t2, and (iii) symbols that occur at the same

address in tl and t2 are generalized.

This definition of generalization is based on class representatives, not equivalence

classes. To show this definition is well-formed, we need to show that it is independent of
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Since the definition is given in terms of coreference equivalence classes =1 and =2 and

not of specific variable mapping functions T1and T2.the choice of alphabetic variants is

irrelevant. However, the definition says:

f (l=s=>a) U f (l=s=> 1.) = f (l=s=>a)

while

f (l=s=>a) U 1. = f

Since f (l=s=>a) and f are not the same term, we must ammend the definition of gen-

eralization to stipulate that

[t] U [1.] = [1.] U [t]= [t].

Example 25. Assume that employee < person in the signature and that

t4 =
employee(id

dept
=S=> name(last=s=>smith, first=s=>joe),
=S=> sales)

~=
person(id =S=>name(last=s=>smith, first=s=>fred».

Then we have

t4 U t6 = person (id =S=>name (last=s=>smith, first=s=>X».

Informally, this example shows that the class of employees with first name "joe", last

name "smith" and department named "sales" and the class of persons with first name

"fred" and last name "smith" are generalized to the class of persons with last name

"smith". In first-order logic, terms with distinct functors (such as employee and per-

son) can not be generalized since there is no relation amongst functors other than

equality. 0

Example 26. Figure 4.8 shows two terms and their generalization, all represented

graphically. In examining how coreference is treated in the U operation, notice how
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only the common parts of the two argument graphs are included in their generalization.

o

While generalization of two terms results in a term that essentially contains only

the information that was in both argument terms, unification will produce a term con-

taining the information that was present in either argument term. Before defining

unification, we need some preliminary definitions.

u

Figure 4.8: The join of two terms
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For the unification of two terms tl and t2, we want coreferring addresses in an

argument to corefer in the result. Thus the coreference relation must (at least) contain

the least equivalence relation on A containing both =1 and =2' Start by letting

A = A1U~ be the set of addresses that occur in the arguments tl or t2. Next, extend

the equivalence relations =1 and =2 to A by letting ='1 and ='2 be their reflexive

extensions onto A. Since the coreference relation must also be transitive, we define =

by composing ='1 and ='2 and taking transitive closure:

= - (-' U -, )+- - =1 =2

Unfortunately, this definition is not good enough since, for example, a and b may

be placed in the same equivalence class in = without a.c and b.c being placed in the

same equivalence class. The problem is that =is not necessarily right-invariant.

Example 27. Consider the two terms

t6 = f(j 9- X: g(k9-U, 19-V), m 9- X)
t7 = f (n 9- Y: g (k9-W), m 9- Y)

In the coreference relation =6, the addresses j and m corefer and in =7 the addresses n

and m corefer. By extending them to =6' and =7' and taking the transitive closure, j

and n are made to corefer. However, j.k does not corefer with n.k. 0

If there exist two addresses a, b E A such that a = b, then what we want is, for

any address a.c, to add b.c to the equivalence class of a.c so that a.c = b.c. To

emphasize that the resulting equivalence is a function of =1 and =2, we define an infix

operator ext with the following inductive definitions:
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=1 extk =2 = (=1 extk-I =2) U { <a.c, b.c> I<a,b> E (=1 extk-I =2),
c E F, and either a.c E A or b.c E A }

00

=1ext =2 = U (=1 extk-I =2)
k..o

Is ext an equivalence relation? Examining the definition of ext for coreference

relations, we see that if we add <a,b> at step k, we also add <b,a> at step k. ITwe

add <a,b> at step k, <b,b> will be added by step k+l. (It is not sufficient to note

that b ext b by step 0 since, as we will see in the example below, b might not have been

included at all in step 0.) And if <a,b> and <b,c> are added at step k, <a,c> will also

be added by step k. (To see that transitivity holds, let a = a'.a", b = b'.b",and c = c'.c"

be addresses where a", b", c" E F. First, note that transitivity holds in ext°. Next,

assume that transitivity holds in step k, i.e., <a',b'> and <b',c'> implies <a',c'>. IT

<a'.a", b'.b"> and <b'.b", c'.c"> are added at step k+l, then it must be because a" = b"

and b" = c". Consequently, since a" = c", <a'.a", c'.c"> will also be added at step k+l.)

Consequently, =1 ext =2 is an equivalence relation. An induction argument on k shows

that ext for coreference relations is also commutative and associative since union (U) is

commutative and associative.

Example 27 (continued). We begin by constructing the transitive closure

=6 extO =7, in which j and n corefer. In the inductive construction of =6 ext =7, we

see that since j.1 is in A and since j and n corefer, j.1 is made to corefer with

n .1. However, n.1 is not even in A! [J

To remedy the anomaly shown in Example 27, we define Al ext ~ to be the smal-

lest set of addresses containing all the addresses in t1 and t2 and all the addresses gen-

erated in the construction of =1 ext =2. Formally, the definition of ext for address



87

domains is:

Al extO ~ = Al U ~

Al extk ~ = (AI extk-1 ~) U { b.c I a.c E (AI extk-1 ~) and
<a,b> E (=1 extk-1 =2) }

00

Al ext ~ = U (AI extk~)k~

Note that the definition of extk for address domains depends on the definition of extk-1

for coreference relations; the former essentially constructs all the addresses needed by

the definition of ext for coreference relations. Also note that Al ext ~ is finite if Al

and ~ are finite. Finally, since union (U) and ext over coreference relations are both

commutative and associative, an inductive argument on k shows that ext over address

domains is also commutative and associative.

Example 28. For t6 and t7 of Example 27,

A6 = {£, j,
A7 = {£, n,
AI extO A2
Al ext1 ~ =

j.k, j.l, m}
n.k, m}
{£, j, j.k,

Al ext ~ =
j.l, m, n, n.k}

{£, j, j.k, j.l, m, n, n.k, n.l}

o

Lemma 1. Assume =1 is a coreference relation over Al and that =2 is a corefer-

ence relation over ~ and that AI ~ ~ and =1 ~ =2. Then Al ext ~ = ~ and

Proof. When =1 ~ =2 we see that =1 extO=2 = =2. When Al ~ ~ we see that

=1 extk-1=2 = =2 and Al extk-1 ~ = ~, we have Al extk ~ = ~, By induction on

k, we get =1 ext =2 = =2 and Al ext ~ =~. 0
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Now that we have said what the address domain and coreference structure are to

look like, we are ready to define the unification operator.

(denoted tlnt2) is the term t = <A, tP,T>where

(i) A = Al ext ~

(ii) T is a function (in A - V) such that kernel( T) is =1 ext =2, and

where 1\ is the GL.B. operation in the signature lattice. 0

Part (iii) of this definition says approximately tP(a) = tPI(a)1\ tP2(a) for all a E A.

The more complex definition of tP is needed since tPl (or tP2)may not actually be defined

for all a in A. But note that <a,a> E (=1 ext =2) so that the definition of tP given

implies tP(a) = tPI(a) 1\ tPia) when tPl and tP2are defined on address a.

The definition of unification is well-formed since tl ~ 1- implies tl n t2 ~ 1- and

since alphabetic variation will not effect the result.

The definition of unification is more complex than the definition of generalization

because it is easier to throw information away (which is effectively what generalization

does) than it is to consistently integrate two sources of information, which is the task of

unification.

Example 29. The unification of tl and t2 from the previous two examples is:

f(j ~ X:g(k~U, l~V),
m ~ X,

n ~ X)

o
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Example 30. When the 1/J-term

(agreement ~ X:(number ~ singular),
subject ~ (agreement ~ X)

is unified with

(subject ~ (agreement ~ (person ~ third»))

the result is

(agreement ~ X: (number ~ singular,
person ~ third),

subject ~ (agreement ~ X»

This example, which appeared in Chapter 3, was adapted from the PATR literature

[Schieber 1985a, page 19]. 0

Example 31. Assume that a properNP is a kind of np, i.e., properNP < np,

and that the intersection of male with child is boy, i.e., that maleAchild=boy.

Then the term

properNP(lex ~ chris,

type =9 child)

unifies with

np (lex
translation

type
role
number

=9 X,
~ X,
=9 male,

~ subject,
~ singular)

to give

properNP(lex
translation

type
role
number

~ X:chris,
~ X,
~ boy,
=9 subject,
~ singular)

In this example, we see a hint of how the mechanism of unification can be used to
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perform semantic type-class reasoning. 0

Now for the promised result.

TheorelIl 4. \f1 is a lattice with respect to ~. The operators U and n are the

join and meet operations. 0

Proof. (original) It is sufficient to show the following:

(la) xnx=x (idempotency)
(lb) xUx=x (idempotency)
(2a) xny=ynx (commutativity)
(2b) xUy=yUx (commutativity)
(3a) xn(ynz) = (xny)nz (associativity)
(3b) xU(yUz) = (xUy)Uz (associativity)
(4a) xn(xUy) = x (absorption)
(4b) xU(xny) = x (absorption)

To show that ~ is the lattice order, we must also show:

(5) x~y is equivalent to xny = x and xUy = y (consistency)

(There are other approaches to constructing a lattice of t/J-terms. We could, for

example, have taken the ordering ~ and shown that for every term t1 and t2, there is a

have t. ~ t3. Finally, we would show our definition of n is the same term as t3. And

symmetrically for U. Alternately, we could have shown that the term t3 computed by

n as we defined it on ,p-terms satisfies the glb conditions, namely that t3 ~ t1 and t3 ~

U. We choose the approach of proving the lattice axioms because it seems easier.)

We use Ax to denote the address domain of term x and Axn y to denote the

address domain of term xn y, etc. Likewise, we use subscripts on == and t/J to indicate

the relevant terms.

(la) Idempotency of unification follows from the definition of n since Ax =
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(lb) Idempotency of generalization follows from the definition of U since Ax =
Axn Axand =x = =x n =x-

(2a) Unification (n) is commutative because it is defined from commutative opera-
tors; that is (Ax ext Ay) = (Ay ext Ax), (=x ext =y) = (=y ext Ex), and
tPx(a) /\ tPy(b)= tPy(b) /\ tPx(a).

(2b) Commutativity of U follows from the commutativity of the operators (n and
V) in terms of which U is defined.

(3a) Associativity of n follows because ext over addresses is associative, because
ext over coreference relations is associative, and because /\ is associative.

(3b) Associativity of U follows from the associativity of nand V.

(4a) Let =xUy = =x n =y, AxUy = Ax n Ay, and tPxuy(a)= tPia)VtPy(a) (for all a
E AxUy) describe xUy. Since =xUy ~ Ex, we have =xUy ext =x = =xby
Lemma 1. Since AxU y ~ Ax, we have AxU y ext Ax = Ax by Lemma 1.
Since E is a lattice, we have tPxuy(a)/\tPx(a)= tPx(a). Thus, by the definition
of n, we have xn(xUy)=x.

(4b) Let =xny = =x ext =Y' Axny = Ax ext Ay, and tPxny(a) = tPx(bj)/\tPy(Cj)(for
all a =xny bj and a =xny Ci)describe xn y. Clearly =x ext =y ~ =x since
the definition of ext only adds relationships to the constructed coreference
relation. Likewise, Ax ext Ay ~ Ax since the definition of ext for addresses
only adds addresses to the constructed set. So =xny ~ =xand Axny ~ Ax.
Since E is a lattice, tPxny(a) ~ tPx(a). Let =xu(xny) = =xn =xny, and let
Axu(xny) = Ax n Axny, and let tPxU(xny)(a) = tPx(a)VtPxny(a), for every
a E Axu(xny). Since =xu(xny) ~ Ex, we have =xu(xny) = =xby Lemma 1.
Since Axu(xny) ~ Ax, we have Axu(xny) = Ax by Lemma 1. And since E is
a lattice, we have tPxU(xny)(a) = tPx(a). Thus xU(xny)=x.

So \If is a lattice with G.L.B. given by our definition of nand L.U.B. given by our

definition of U. For subsumption, we break the equivalence into 4 cases.

(5a) Assume x ~ y. By the definition of ~ we have Ay ~ Ax and =y ~ =x and
tPx(a) ~ tPy(a). From Lemma 1, we conclude that Ax ext Ay = Ax and
=x ext =y = Ex' Since E is a lattice, tPx(a)~ tPy(a) implies tPia) /\
tPy(a)= tPx(a). Note that since =xny = Ex, tPx(a)/\ "'y(a)= tPxny(a). Thus
xny = x.

(5b) Assume x ~ y. Then Ay ~ Ax implies Ax n Ay = Ay,and= ~ =x implies
=x n =y = =Y' and tPx(a)~ tPy(a)implies tPxUy(a) - tPia) \! tPy(a) - tPy(a).
Thus xUy = y.

(5c) Assume xU y = y. From Ax n Ay = Ay conclude Ay ~ Ax- From
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=x n =y = =y conclude =y ~ =x' From ,px(a)V ,py(a)= ,py(a)conclude
,px(a)::; ,py(a).Thusx ~ y.

(5d) Assumexn y = x. Since step 0 in the construction of Ax ext Ay begins by
adding in all addresses in Ay, from Ax ext Ay = Ax conclude Ay ~ Ax. Like-
wise, since step 0 in the construction of =x ext =y begins by adding in all
equivalences in =Y' from =x ext =y = =x conclude =y ~ =x' From ,pia) /\
,py(bj)= ,px(a) for all a E Ax and all bj E Ay such that a =xny bj, conclude
,pib) ::; ,py(b) for all b E Ay since Ay ~ A and E is a lattice. Thus x ~ y.

o

The top of the lattice is the most general term, T , since t ~ T for every term t.

The bottom of the lattice is .1 since .1 ~ t for every term t.

Theorem 5. \11is not a distributive lattice. 0

Proof. (Ait-Kaci) We must show that

r n ( s U t ) = ( r n s) U ( r n t )

does not always hold. Let

r = f

s= f(l~a)

t = 9

Assume that f, g, and a are unrelated in E. Then

f n (f (l~a) U g) = f

(f n f (l~a» U (f n g) = f (l~a)

o

A traditional first-order term can be translated into a ,p-term by generating

features for the arguments of the first-order term from the sequence 1, 2, 3, ... .

First-order variables are translated into corresponding variables from V and functor

and constant symbols are translated into corresponding symbols in E.
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Example 32. The first-order term

f(a. g(X). Y. X)

would be translated to:

f(l 9 a.
2 9 g(19X).
39 Y.
4 9 X)

o

When the signature is flat, i.e., when unequal symbols are unrelated, unification of

,p-terms so generated is very similar to unification of first-order terms.

Example 33. Unifying the first-order term from the previous example with

f (a. g (b), Z. Z)

gives

f(a. g(b). b. b)

Unifying the ,p-term in that example with

f (1 9 a.
2 9 g(19b).
3 9 Z.
4 9 Z)

gives

f(l 9 a.
2 9 g(19b).
3 9 b.
4 9 b)

o

Let h represent the first-order to ,p-term translation and let n f.o.represent first-

order unification. Unfortunately, the following statement is not quite true:



One difference from first-order unification occurs when the number of

attributes/arguments varies.

Example 34. The first-order terms f (a) and f (X, b) do not unify. But when

translated to 1/J-terms they do. The result is the 1/J-term translation of f (a, b). [:J

We can remedy this problem by adding another attribute, called ar i ty, to every

1/J-term so, for example, the first-order term f (X, b) would be translated to the follow-

ing 1/J-term:

f (arity ~ 2,
1 ~ X,

2 ~ b)

In some discussions of first-order logic, two functors with the same spelling are con-

sidered to be distinct if they are used with different numbers of arguments. To

emphasize this difference, a functor such as f above is renamed f/2 to indicate that it

takes two arguments.

Another difference between first-order and 1/J-Iogichas to do with the way address

coreference is dealt with.

Example 35. Let

t1 = f (a, a)

and

t2 = f (X, X)

These two first-order terms unify to produce

The two 1/J-term translations of t1 and t2
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unify to produce the 1/J-term

h(t2) n h(t2) = f(arity =9 2,
1 =9 X:a,
2 =9 X)

That term is not equal to the translation of the first-order unification

h(t2 n t2) = f(arity =9 2,
1 =9 a,
2 =9 a)

When the result of a first-order unification violates the occurs-check, producing an

infinite term, the result is declared invalid and the two first-order terms are said not to

unify. Their 1/J-term translations do, however, unify producing a cyclic 1/J-term as the

result.

4.4. Extending Horn Clause Logic to 1/J-Logic

The next few definitions describe 1/J-programs. Intuitively, a 1/J-program is just like

a first-order logic program except 1/J-terms are used instead of literals and terms. An

Inheritance Grammar is just a 1/J-program. We begin with the definition of 1/J-clauses,

which will be revised later on.

Definition (first cut). A 1/J-clauseis a sequence of k+l 1/J-terms (k ~ 0) and is

written as:

or as

h (t1) = f(arity=9 2,
1 =9 a,
2 =9 a)

h (t2) = f (a r i ty =9 2,
1 =9 X,
2 =9 X)
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when k = O. The first term, to, is called the p08itive t/J-literal or the clau8e head and

tl> t2, ... , tk are the negative t/J-literals or the body. We also call t/J-clauses t/J-rule8. 0

Just as in Horn clauses, the scope of variables names is the entire clause. Analo-

gously to well-formed terms, a t/J-clause to :- tl> t2, ... , tk is well-formed if the same sub-

term occurs at all addresses that have the same variable.

To make the definition of t/J-clauses more rigorous, we must extend the concept of

address coreference to t/J-clauses and then stipulate that two addresses aj and aj that

corefer (possibly from distinct tj and tj) must reference the same subterm. We begin by

nammg the literals in a clause with integer indices. For example, the literals in the

cla use

are named from the index set 0, 1, ... , k. Then, we prepend these indices to addresses

so that subterms can properly be located within an entire clause.

Definition. Given a set of t/J-terms to, ... , tk, define the 8hared addre88 domain, A,

as

A = { i.a Ia E Ai for O~i~k }

Technically, we must add the indices 0, ... , k to F if not already present. 0

Example 36. Consider the clause

f(m~a, n~X) :-
g(m~a, n~h(p~c, q~X».

with the head labeled 0 and the single body term labeled 1. The shared address domain

used in this clause is
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{ O=;}>, O=;}>m=;}>, O=;}>n=;}>, 1=;}> , l=;}>m=;}> ,

l=;}>n=;}> , l=;}>n=;}>p=;}>, l=;}>n=;}>q=;}> }.

Note that a shared address domain has no root address. [J

Although we could have easily defined shared address domains independently of

,p-clauses (just as we defined address domains independently of ,p-terms), we chose this

approach to emphasize the connection between the shared address domain and the

address domains Ai of which it is constructed.

Since variables in a ,p-clause are to be quantified over the entire clause, we must

construct an equivalence relation 5 over the shared address domain.

Definition. Let Tibe the variable tagging functions for the terms in a set of ,p-

terms to, ... , tk and let A be the shared address domain of the set of ,p-terms. The

shaTed variable tagging function

T:A-V

is defined as

1(i.a) = Ti(a) for all aEAi

The kernel of T induces a shared address coreference relation, denoted 5. [J

Example 37. In the shared address domain 5 of Example 36, the addresses

O=;}>n=;}>and l=;}>n=;}>q=;}>corefer. [J

Similarly, we extend the symbol mapping functions, ,pi'

Definition. Let,pi be the symbol mapping functions for the terms in the set of ,p-

terms to, ... , tk' The shared symbol mapping

,p:F*-E

is defined as
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,p(i.a) = ,pj(a)
,p(X) = T

for all aEAj
otherwise

o

Definition. A set of shared ,p-terms,T, is a quadruple <8, A, ,p, T> where

8 is an index set, i.e., 0, 1, ... k,

A is a shared address domain,

,p is a shared symbol mapping, F* -+ E, and

T is a shared variable tagging, A -+ V.

o

A ,p-clause is just a set of shared ,p-terms with a distinguished head term.

Definition (final). A ,p-c/auseis a quintuple <8, s, A, ,p, T> where <8, A, ,p, T>

is a set of shared ,p-terms and s E 8 is called the head index. D

We assume that clauses are indexed by 0, 1, ... , k with head ° unless explicitly

stated otherwise.

Example 38. Let 01 be the quintuple <8, 5,A, ,p,T> where

8 = { 0, 1, 2},

s = 0, and

A = { O:=;>, O:=;>i:=;> , O:=;>j:=;>, O:=;>j:=;>k:=;>,

1:=;>, 1:=;>1:=;>, 1:=;>m:=;>, 1:=;>m:=;>n:=;>, 2:=;>}

and where ,pincludes
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1/I(0~) = a
1/1(O~i~) = b
1/1(O~j~) = c

1/1(O~j~k~) = d
1/1(1~) = e
1/1(1~1~) = c
1/1(l~l~k~) = d
1/1(l~m~) = f
1/I(1~m~n~) = 9
1/1(2~) = f
1/1(2~n~) = 9

(all other values of 1/1are T) and where T includes

r(O~j~) =X
T(l~l~) =X
T(l~m~) =Y
T(2~) =Y

(all other values of T are distinct). O} is a clause. 0

We extend the conventions for textual and graphical representation of 1/I-terms to

1/I-clauses. To associate a name (e.g., 01) with a clauses, we will prefix the clause with

its name followed by a colon.

Example 39. The textual representation of clause 01 from the previous example

is more enlightening:

a(i~b, j~X:c(k~d» :-
e(l~X:c(k~d), m~Y:f(n~g»,
Y: f (n~g) .

In its graphical representation in Figure 4.9, note the convention used to identify the

head (index 0) and body 1/I-terms (indices 1, 2,...). 0

Definition. A set of shared 1/I-terms

is well-formed if the subterms occurring at coreferring addresses in T are equal. More

specifically, if a ==b then, for all c E F* such that a.c E A
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Figure 4.9: Graphical representation of C1

(i) b.c E A,

(ii) 1/J(b.c)= 1/J(a.c),and

(iii) 1(b.c) = 1(a.c).

A 1/J-clauseis well-formed if the underlying set of shared 1/J-terms is well-formed. 0

EXaIIlple 40. The 1/J-clause C1 from the previous example is well-formed. 0

Clauses consist of terms and subterms. The 1/J-term in clause C at address a,

denoted C\a, is defined analogously to subterms of 1/J-terms, i.e., as a restriction of A, 1/J,

and T. The term at address s is the clause head and the terms at the other indices in S

comprise the body. For well-formed terms, Aj = A\i, 1/Jj = 1/J\i, and Tj = T\i hold.

Definition. For any well-formed clause, the terms tj = <Ai> 1/JitTj> (for i E S) are

the 1/J-literalsfrom which the clause is constructed. 0
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Just as in 'f/I-terms, we ignore consistent variable renamings within a 'f/I-clause and

treat all alphabetic variants as equal. Also, any clause containing the symbol .1 at any

address should be considered an error. Such error clauses will not arise during computa-

tion, so we will say little more about them. In particular, we won't bother to equate

error clauses, since we are not constructing a lattice of clauses. Note that the index

numbering is lost in the textual representation of a clause. It is generally irrelevant and

we ignore the indices but, technically, two clauses identical up to indexing on their

bodies are nevertheless distinct.

Recall that 'f/I-terms were defined in a context of fixed E, F, and V. Given the tex-

tual representation of several clauses, we can easily see which symbols, features, and

variables are used so this is no problem. To specify the ordering of the symbols, we

introduce ordering 6tatement6.

Definition. An ordering 6tatement is a syntactic entity of the form:

for k ~ 1. When k = 1, we may also write

Each Sj is an identifier beginning with a lowercase letter or number. Within each order-

ing statement, we require Sj =FSofor 1 ::;i ::; k. 0

Definition. Given a set of ordering statements, we can construct a corre6ponding

order (represented with ::;) by assuming reflexivity and transitive closure. A set of ord-

ering statements is well-formed if and only if the corresponding order is partial, i.e., if

antisymmetry (S1::; ~ and ~ ::; S1implies S1= ~) also holds. 0

Example 41. The following ordering statements are well-formed.
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properNoun < noun.

{noun, verb} < word.

The corresponding order includes properNoun$word and noun$noun.0

Example 42. The following ordering statements are not well-formed.

a < b.
b < c.
c < a.

Since a$c and c$a but a;ec. 0

Theorem 6. Any partial order (Sp, $p) can be embedded in (or extended to) a lat-

tice (SL' $d that respects the partial order. That is Sp ~ SL and for any x, y ESp,

X ~L y if and only if x ~p y. 0

Proof. (Birkhoff) Omitted; see [Maier 1980]. 0

In general, there are many extensions, none necessarily minimal. We prefer an

extension with fewer elements but, otherwise, any will do. We are now ready to

describe ?/I-programs.

Definition. A ?/I-program, G, is a set of well-formed ?/I-clauses and well-formed

ordering statements. E is taken to comprise the symbols appearing in the ?/I-clauses and

ordering statements (and T and ..L). The lattice structure is taken to be an extension

of the order corresponding to ordering statements. 0

A ?/I-program is also called a ?/I-database or an Inheritance Grammar. Since the

scope of variables is the clause and not the program, there is no concept of well-formed

?/I-program.

A ?/I-query is just a ?/I-clausewith no head, as given in the next definition.

Definition. A ?/I-query,represented textually as



103

where k 2 0, is a set of shared 1/J-terms <8, A, 1/J,T>. A well-formed 1/J-query is a 1/J-

query in which the same sub-term occurs at all addresses that are tagged with the same

variable. Henceforth, we shall assume all1/J-queries are well-formed. 0

4.5. A Resolution Rule for 1/J-Clauses

In this section, we define a resolution rule for 1/J-clauses. We view 1/J-clauseresolu-

tion as an operation that takes two 1/J-clausesas arguments and produces a 1/J-clause as

a result. Just as in first-order resolution, a literal in the body of one clause C1 is unified

with the head of the second clause C2. Consider the two clauses

C1: to:- tl> ... , tj.

C2: tj+l: - tj+2' ... , tk.

where O<j<k. These clauses will unify exactly when some literal tj (l$;i$;j) in C1 unifies

with the head of C2, i.e., tj n tj+l :;e.1. The result is approximatdy:

This representation of the result is not quite correct for two reasons. First, it fails

to take into account changes (i.e., substitutions) made as a result of the unification.

Second, we need a little more precision in our manipulation of indices in constructing

the result.

In the usual definition of first-order resolution, the unification operation results in

a substitution which is then applied to the head and body literals of the result. How-

ever, 1/J-unification produces a new 1/J-term, not a substitution. It would certainly have

been possible to define 1/J-unification so that it produced a substitution object and to

define how a substitution can be applied to a term or clause. But a first-order substitu-

tion is a very syntactic entity (built from the operation of textual substitution) while a

1/J-substitution would be a more complex object, essentially containing all the
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information in the two argument terms. Consequently, the approach we adopt instead

is to define unification directly on ,p-clauses or, more accurately, on sets of shared ,p-

terms.

Before progressing, note that the definitions of ext apply, as given above, to

shared address domains and shared coreference relations. For convenience, these

definitions are repeated here:

='1 = the reflexive extension of =1 onto A.

='2 = the reflexiveextension of =2 onto A.

=1 extk =2 = (=1 extk-1=2) U { <a.c, b.c> I<a,b> E (=1 extk-1 =2)
and either a.c E A or b.c E A }

00

=1ext =2 = U (=1 extk-1 =2)
k=O

Al extk ~ = (AI extk-1 ~) U { b.c I a.c E (AI extk-1 ~) and
<a,b> E (=1 extk-1 =2) }

00

Al ext Az = U (AI extk Az)
k=O

Here is the definition of the unification of two sets of shared ,p-terms. Notice how

the relationship between 81 and 8z affects the character of this operation: since all

addresses begin with an index, the intersection of 81 and 82 determines which literals

are "unified together".

Definition. Given two sets of shared ,p-terms
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define their unification TI n T2 as

T = <8, A, ,p, T>

where

(i) 8 = 81 U 82

(ii) A = Al ext A2

(iii) T is a function (in A -+ V) such that kernel(T)is =1 ext =2, and

<a,bi> E (=1 ext =2) and for all CiE ~ such that <a,ci> E (=1 ext =2),

where /\ is the G.L.B. operation in the signature lattice. 0

Example 43. Let T I be the set of shared ,p-terms

a(fl~c, f2~X:d(f5~e, f9~n»,

with the terms indexed by 0 and 1, respectively. Let T2 be the set

j (f7 ~ Y, f8 ~ k)

indexed by 1 and 2, respectively, so the b (. . .) term will be unified with the

f(...) term. We have

Al = {O~, O~fl~, O~f2~, O~f2~f5~, O~f2~f9~,
1~, 1~f3~, 1~f3~f5~, 1~f3~f9~, 1~f4~,
1~f4~f6~ }

where
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09> f29> = 19> f39>
09>f29>f69> = 19>f39>f69>
09>f2:9fg:9 = 1:9f3:9fg:9

and

~ = {19>, 19>f39> , 19>f39>f69>, 19>f49> , 19> f49>f69>,
29>, 29>f79> , 29> f79>f69> , 29>fS:9}

where

19>f39> = 29>f79>
19>f39>f59> = 19>f49>f69> = 29>f79>f69>

The construction of A introduces the address

The constructionof = introduces

The result of the unification is the set

a(f19 c, f29 X:dg(f69 Y:eim, fg9 n»,

bf (f3 9> X, f4 9> hI (f6 9> Y»,

indexed by 1, 2, and 2, respectively, where

dg = dl\g
eim = el\il\m
bf = bl\f
hI = hl\l

in the signature. 0

Since the definition of 1/J-clause unification deals with variable coreference using

equivalence relations and not with specific variable mapping functions, variable names

are unimportant. In other words, one variable may appear in two clauses without
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causmg confusion: clauses do not share variables. When 81 and 82 are disjoint,

unification of two sets of shared ,p-terms simply concatenates the two sets. When 81 =

82, the definition performs pairwise unification of the "'-terms, much the same way that

the definition of "'-term unification performs pairwise unification of the subterII1!! of

matching features.

Later, we will find it convenient to also have a subsumption ordering on sets of

shared "'-terms and on "'-clauses. We provide this ordering relation in the next

definition before going on.

Definition. A set of shared "'-terms

is subsumed by another set of shared "'-terms

(ii) =2 ~ =1 (All addresses that corefer in T2 also corefer in T1; i.e., TI is more con-

strained), and

(iii) ,pl(a) 5 "'2(a) for all addresses a E A2' where 5 is the partial order on symbols

(the symbol at any address in TI is less than the symbol at the corresponding

We say that a "'-clause

is subsumed by another "'-clause
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if

and SI =~. 0

Before we can extend the definition of unification of sets of shared 1/J-terms into

the desired resolution rule, we need an operator to re-index terms in a clause. To per-

form the re-indexing, we introduce a post-fix re-indexing operator, using the following

notation, where T is a set of k shared 1/J-terms:

The j's are the indices of T before re-indexing and the i's are the new indices for the

corresponding terms after the re-indexing.

Example 44. Consider the set of shared 1/J-terms

with index set 5 = {O, 1, 2, 3} . We can re-index T with the expression

and write the result as

where

t.n = to
t42 = tl

t43 = tz
t44 = t3

o

We also use this operator to remove a term from a shared 1/J-term set by suitably

restricting 5, A, 1/J,and T. The symbol. is used to indicate which term(s) to remove.
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Example 45. Using the terms from the previous example, with 8 = {O, 1, 2,

3}, the expression

is the set of shared t/J-terms

We are now ready to define t/J-clause resolution.

Definition. Consider two .p-clauses

where

81 = {O,... , j}
82 = {j+l, ... , k}
SI = 0
5:z= j+l

for O<j<k, i.e.,

Cl: to: - t.. ... , t1, ... , tj.
C2: tj+l: - tj+2, ... , tk.

Assume that, for some i (O<i:5;j), tj n tj+l -:F-..L. 01 and O2 can be resolved to produce

the resolvent clause

o = <8, s, A, .p, T>

where <8, A, .p, T> is the shared term set

( 01 n ( O2{ i-j+l, j+2-j+2, ... , k-k } ) )
{0-0, ... , i-l-i-l, .-i, i+l-i+l, ... , j-j , j+2-j+2, ... , k-k }

and where s=O, i.e., the resulting clause has the structure indicated approximately by
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o

This definition first re-indexes O2 so that its head has the same index as term tj in

the body of 01. Thus, when the unification is done, these two terms will be unified

together and, in general, the other terms will be modified as a side-effect. Finally, we

remove the unified term tj from the result.

Technically, we have just defined resolution only on terms with disjoint index sets.

Since, as mentioned earlier, the actual indices are unimportant, this definition IS

extended by allowing re-indexing of 01 and O2 as necessary to ensure 81 n 82 = 0.

Example 46. Using the sets of shared 1/J-terms from Example 43, we see that the

clauses

and

f (f3 ='3> Y: 9 (fij ='3> Z: i), f4 ='3> h (fe ='3> Z» .
j (f7 ='3> Y, fs ='3> k) .

resolve to yield the clause

a (fl ='3> c, f2 ='3>X:dg(fij ='3> eim, fg ='3>n» .

assuming that

d/\g = dg :F ..L
e/\i/\m = eim :F ..L
b/\ f :F ..L
h/\ 1 :F ..L
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in the signature. 0

We can extend the resolution rule to resolve a tI'-query with a tI'-clause by ignoring

term to in the above definition.

Example 47. Let 01 be the tI'-query

:- p, q, r.

and O2 be the tI'-clause

q : - s, t, u.

Then 01 and O2 can be resolved to produce the tI'-query

. p, r, s, t, u.

o

4.6. A Model-Theoretic Semantics for tI'-Programs

The definitions and development of a semantics presented in this section parallel

the development done for traditional first-order logic. In giving a meaning to tI'-terms

and tI'-clauses we must first describe a domain (the "real world"). Arter doing so, we

define the meaning of tI'-clauses in terms of this domain by defining an interpretation.

We then say what it means for an interpretation to satisfy a tI'-clause. A satisfying

interpretation for a set of tI'-clauses is called a model.

We use ,p-terms for reasoning about the "real world" or a "domain of discourse."

The only structure that we impose on the domain is that it consists of a (universal) set

of objects, U, and a set of binary relations, R, amongst the elements of U. This

approach should be contrasted to a semantics for traditional first-order logic where n-
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ary functions are used3 and where functions that map into true/false (i.e., relations)

are segregated from the other functions. We also stipulate that the universe U must

contain at least one element, which we will name u.

Since the signature, E, and the set of features, F, are assumed to be part of the

context in which a ,p-clause has meaning, we need to relate E and F to the domain

before a meaning can be assigned to a ,p-clause.

Definition. Given a signature E and set of features, F, an interpretation I is a

pair <h, r> where

h is an order homomorphism from E to 2u. That is, h is a function respecting the

order of E:

(i) a ~ b implies h(a) ~ h(b),

(ii) h(T) = V,

(iii) h( 1.) = {u}, and

(iv) h(al\b) = h(a) n h(b)

r is a function mapping F (features) to R, the binary relations over the domain. 0

We write r[f] to denote the relation corresponding to feature f. Note that u E h(a)

for all aEE follows from this definition.

Our intent is for ,p-terms (and their subterms, as well) to denote sets of objects in

U and for ,p-clauses to make statements about domain objects and the relations

between them. The domain element u is placed in every set h(a) to ensure that each set

is non-empty and, thus, that the statement a clause makes is never vacuously true. We

will assume that u participates in every relation, i.e., that

3 Deliyanni and Kowlaski discuss the adequacy of binary relations instead of full n-ary relations in the
context of a knowledge representation scheme vaguely similar to the one presented here IDeliyanni and
Kowalski 19791.
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<d, u> E r[f]

and

<u, d> E rlf]

hold for every domain element d and feature f. The element u might be called a fanta8Y

obiect since it satisfies every relation. The ability to name a specific element satisfying

the requirements of a clause will come in handy later but, for the most part, such as in

the examples, u will be ignored.

Before we can discuss the meaning of clauses, we need to describe the association

between the terms in a clause and domain elements. Since hand r impose structure on

the domain, we only want a term t to be a description of an object dEU if the structure

of t - its head symbol and attributes - respects the structure of the interpretation.

The first definition describes the association. The second definition describes the

requirements of the association for it to even be meaningful. The third definition tells

when the association respects the interpretation.

Definition. A grounding function g is a partial function mapping addresses to

domain elements:

g: F* - U

o

Definition. Let <8, A, .p, T> be the set of shared .p-terms t1, ... ,tk' Given an

interpretation I = <h, r>, a grounding function is said to be sensible if the following

conditions hold:

(i) g(a) is defined for all a EA.

(ii) g(a) E h(.p(a)) when g(a) is defined.
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o

Definition. An interpretation I = <h, r> satisfies a grounding function g if

<g(a), g(aJ» E r[ll

whenever g(a) and g(aJ) are defined, where a E F* and f E F. 0

Definition. Let <8, A, t/J, r> be the set of shared t/J-terms tl> ... , tk and I be an

interpretation. We say that a grounding function g satisfies t" ... , tk if g is sensible for

tl> ... , tk and I satisfies g. An interpretation I satisfies tl> ... , tk if I satisfies every sensi-

ble grounding function for tl> ... ,tk. 0

A grounding function may be thought of as associating a domain object d with

every vertex in the graphical representation of the t/J-terms. The object (i) must be in

the set of domain objects whose name (from E) labels the vertex and (ii) all coreferring

subterms must be grounded to the same object for the grounding function to be sensible.

For such a grounding function to satisfy the t/J-terms, the object must be related to other

objects as indicated by the attribute list. When feature fj is present and has a value tj,

then the r[fjl property of d must include object dj, where dj = g(tJ Features serve to

constrain the set of domain elements intended by a t/J-term. When a feature fj is absent,

then the r[fil property of d must include all objects di E U since the values of missing

features "default" to T.

Example 48. Consider the singleton set of shared t/J-terms consisting of the t/J-

term

X: (manager='7X)

and an interpretation I, in which manager is mapped to a relation m and where

<dl> d,> E m. Then the following grounding function g
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g(l~) =d1

g(l~manager~) = d1

is sensible since (i) g is defined for all addresses in the term, (ii) no address is more con-

strained than T (and d1 is trivially in the set h( T )) and (iii)g maps both corefering

addresses into the same object. Function g also satisfies this "1/i-termsince the term

describes any object dj such that dj has as a manager dj itselfand d1 is a manager of d1

in the interpretation. 0

Example 49. Consider the set of shared 1/J-terms

john (owns ~ car, loves ~ W:woman).
bill (loves ~ W).

Let these terms be indexed by ° and 1, respectively.Let the domain include the fol-

lowing objects

johnSmith, johnBrown, billJones. fredBaker, fredWilson,
car54, carGO, suzieBrown, maryThomas

Let h map the symbols in E to sets of objects as follows:

john -+ {johnSmith, johnBrown}
bill -+ {biIIJones}
car -+ {car54, carGO}
woman -+ {suzieBrown, maryThomas}

Assume that, in the interpretation, there is a straightforward mapping between features

and relation names. We will italicize relation names so, for example, r[loves] = loves.

This domain includes the following relationships, given in infix notation:
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johnSmith loves suzieBrown.
johnBrown loves maryThomas.
johnBrown owns car 54.
bi11Jones loves maryThomas.
bi11Jones loves suzieBrown.
fredWi1son love8 suzieBrown.
fredWi1son loves maryThomas.
fredBaker loves suzieBrown.
fredBaker loves maryThomas.

To visualize this interpretation, see Figure 4.10. Then the function

g(19) = johnBrown

g(190wns9) = car54
g(191oves9) = maryThomas
g(29) = billJones
g( 291 oves9) = maryThomas

is a grounding function that satisfies this set of shared ,p-terms. The grounding function

loves
fredBaker

john woman fred

johnBrown

suzleBrown fredW11sonjohnSmlth

Ccar60)

Figure 4.10:An Interpretation
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g(l9» = johnBrown

g(l9>owns9» = car60
g(l9>loves9» = maryThomas

g(29)) = billJones
g(29)loves9>) = maryThomas

is sensible for this set of shared t/J-terms but does not satisfy it since j ohnBrown owns

car 54, not car60. In fact, there is no other grounding function that satisfies this t/J-

term. 0

A grounding function gl may be extended to additional addresses, producing a new

grounding function g2 such that g2 ~ gl' Function g2 is called an extension of gl and gl

is called a restriction of g2'

In first-order logic, the notion of an interpretation satisfying a clause is introduced

in preface to the definition of logical implication. The next definition extends this con-

cept to t/J-Iogic.

Definition. A clause

is satisfied by an interpretation I = <h, r> if, for any grounding function gl satisfying

the set of shared t/J-terms tl> ... , ticand for any sensible grounding function g2 for the set

of shared ,p-terms to, tl> ... , tic that extends gl (that is, g2 ~ gl), g2 necessarily satisfies

the set of shared ""-terms to, tl> ... ,tiC" 0

In first-order logic, the quantification of a clause has the general form

VX. [body 9> (V?head)]

where X are the variables occurring at least once in the body and the Yare the vari-

abIes that only appear in the head. Because of the way the function of first-order vari-

abIes is subsumed by the symbols of the signature and because of the more complex
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relationship between these symbols and the domain elements, the definition of a 1/J-

clause quantifies indirectly over the grounding function, using the (approximate) form:

Example 50. Using the interpretation from Example 49 (see Figure 4.10), con-

sider the clause

fred (loves~W:woman) .
john (loves~W), bill (loves~W).

This clause might be loosely paraphrased as Fred loves every woman that both John and

B£II love, where Fred, John, and Bill refer to all individuals whose first names are Fred,

John, and Bill, respectively.

Since the symbol fredwas not used in Example 49, let us extend h as follows:

fred -+ {fredBaker, fredWilson}

The clause body

john (loves~W), bill (loves~W).

is satisfied by 2 grounding functions. The first (call it gd is

g(l~) = johnBrown
g(l~loves~) = maryThomas

g(2~) = billJones
g( 2~ I oves~) = maryThomas

There are two sensible extensions of gl onto the clause head. Call them glt and gl'"

The first extension, gJ', is the following grounding function:

g(l~) = johnBrown
g(l~loves~) =maryThomas
g(2~) = billJones
g(2~ I oves~) =maryThomas
g(O~) = fredBaker
g(O~loves~) = maryThomas
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The function gl' satisfies the clause since

fredBaker loves maryThomas.

The second extension, gi"' is the function

g( l:::§» =johnBrown
g(l:::§>loves:::§» =maryThomas
g(2:::§» =billJones
g( 2:::§>loves:::§» =maryThomas
g(O:::§» = fredWilson
g(O:::§>loves:::§» =maryThomas

The function gi" also satisfies the clause since

fredWilson loves maryThomas.

The second grounding function satisfying the body (call it g2) is:

g(l='J» = johnSmith
g(l='J>loves:::§» = suzieBrown
g(2:::§» = billJones
g( 2:::§>loves:::§» = suzieBrown

There are also two ways to extend g2 onto the clause head. Call them g2' and gl. The

g( l:::§» = johnSmi th

g(l:::§>loves:::§» = suzieBrown
g( 2:::§» = bi11J ones
g(2:::§>loves:::§» = suzieBrown
g( O:::§» = fredBaker
g( O:::§>loves:::§» = suzieBrown

The function g2' satisfies the clause since

fredBaker loves suzieBrown.

The second extension, gl, is the function
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g(l~) = johnSmith
g(l~loves~) = suzieBrown

g(2~) = billJones

g(2~loves~) = suzieBrown

g(O~) = fredWilson

g(O~loves~) = suzieBrown

The function gz/l also satisfies the clause since

fredWilson loves suzieBrown.

Consequently, the clause is satisfied by this interpretation.

As this example illustrates, a more accurate paraphrase of the clause might be

Any woman that is loved by a person named John and by a person named Bill is loved by

all persons named Fretf. Mary Thomas, who is loved by John Brown and Bill Jones, is

loved by both Fred Baker and Fred Wilson. Another woman - Suzie Brown - meets

the conditions of the body by being loved by both John Smith and Bill Jones. She, too,

is loved by both Fred Baker and Fred Wilson. 0

The following two definitions extend satisfaction to ,p-programs and to ,p-queries.

Definition. Let G be a ,p-program. We say that an interpretation I satisfies G

when I satisfies all the ,p-clauses in G. 0

Definition. An interpretation I satisfies a ,p-query Q

if there exists a grounding function satisfying the corresponding shared clause set

o

4 Since there is no symbol person in the signature, an even more accurate paraphrue might rea.d AnI!
woman that is loved bl! anI! thing named John and...
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4.6.1. Soundness and Completeness

Next, we define soundness and comphtenessfor proof procedures. These

definitions are essentially the same definitions used in first-order logic, adapted to 1/J-

logic. We begin by defining logical implication (1=) and provability (1-).

Definition. Given a set of 1/J-clausesP and a 1/J-query Q, we write PI=Q if, for

every interpretation I satisfying P, I also satisfies Q. Likewise, given a set of 1/J-clauses

P and a 1/J-clause C, we write PI=C if, for every interpretation I satisfying P, I also

satisfies C. 0

Definition. A proof rule is a procedure that takes as input two ?/i-clauses (C1 and

C2) and produces as output a third 1/J-clause. If a given rule produces as output the 1/J-

clause C, we write ClI C2 I- C. A ,p..theorem prover (or 1/J-interpreter) is a program that

takes as input a set of 1/J-clauses P and a 1/J-query Q and produces as output a set of

shared 1/J-terms. If, given a 1/J-query Q, a 1/J-interpreter produces as output the set of

shared 1/J-termsQ', we write P[Q] I- Q'. 0

Example 51. Let P be the following program

p (f=9>a) .
p(f=9>b).

Assume all symbols are unrelated, i.e., that E is a flat lattice. For the 1/J-queryQ

: - p.

our interpreter, described in Chapter 5, produces two outputs, Q'1:

. p(f=9>b).

and Q' 2:

. p(f=9>b).
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Thus, we write P[Q] I- Q'I and P[Q] I- Q'2' 0

Now, we can say what it means for a proof procedure to be sound and/or com-

plete.

Definition. A proof rule is 80und if 01> O2 I- 0 implies 01 U O2 1= O. A.,p-

interpreter is 80und if, for any ,p-query Q, P[Q] I- Q' implies P 1= Q'. 0

Example 52. Note that, for program P, query Q, and outputs Q'1 and Q'2, from

Example 51, our interpreter behaves soundly since

and

P 1= Q'2

both hold. 0

Prolog interpreters are given a query and a program and, upon finding a proof,

print ''Yes'' and the variable substitution used in the proof. Printing a substitution

doesn't work well in ,p-Iogic, since the coreference and cyclic structure of ,p-terms is

difficult for the interpreter to display clearly when several related ,p-terms are displayed

in a variable-substitution format. After initially exploring several techniques for

displaying answers, we found that it was clearest to display the original query with the

results of the various unifications applied to it. Thus, the answer displayed when a

proof is found will be a more specific instance of the original query, i.e., if P[Q] I- Q'

then Q' ~ Q.

Definition. A proof procedure is complete if, for all ,p-queries Q, whenever PI=Q"

for some Q" ~ Q, we have P[Q] I- Q' for some Q' such that Q" ~ Q'. 0
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If some instance Q" of the query is logically implied by the program, then the

interpreter had better produce an output that is at least as general as Q".

Example 63. Consider program P from Example 51 and let Q"l be the "'-query

. p (f=s>a, g=s>c).

and Q"2 be

. p(f=s>b, g=s>d).

Notice that

P 1= Q"l and Q"l ~ Q

and

Although our ,p-interpreter is not in general complete, it behaves completely for query Q

by producing two outputs Q'l and Q'2. That is,

P[Q] I- Q'l and Q"l ~ Q'l ~ Q

and

o

As in logic programming, soundness is required and completeness is desired of a

candidate execution environment for Inheritance Grammars.

4.6.2. Soundness or "'-Resolution

We conclude this chapter by showing that the "'-clause resolution rule as defined

above is sound. We first make several observations and present four useful lemmata as

a prelude to the soundness result.
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Lemma 2. Let T = <8, A, ,p, T> and T' = <8', A', ,p', I> be two sets of shared

,p-terms such that T' ~ T. If grounding function g is sensible for T', then g is sensible

for T. 0

Proof. Let g be any arbitrary grounding function sensible for T'. Since g(a') is

defined for all a' E A' and A ~ A', g(a) is defined for all a EA. Since g(a) E h(,p'(a)) for

all a E A and since ,p'(a) :::; ,p(a) and since h is an order homomorphism, g(a) E h(,p(a)).

Since g(aj) = g(aj) for all at> aj E A whenever aj 5' aj and since 5 ~ 5' (i.e., 5 is less

constraining than 5'), g(aj) = g(aj) whenever aj 5 aj' Thus, g is sensible for T.

Example 54. Let's modify the interpretation from Example 49 (Figure 4.10) by

adding anouther signature symbol johnny. Johnny is to be a nickname for John

Brown but not for John Smith so we will add

johnny - {johnBrown}

to h. The following grounding function g

g(l:::.;» = johnBrown
g(l:::.;>owns:::';>) = car54
g(l:::.;>1oves:::.;>) = suzieBrown

is sensible for the term:

johnny (owns:::';> car, loves:::';> woman)

The function g is also a sensible grounding function for a more general term

john (loves :::.;> woman)

Note that g fails to satisfy either of these terms since John Brown does not love Suzie

Brown in the interpretation. 0

Lemma 3. Let T and T' be two sets of shared ,p-terms.
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T = t1, ... , tk
T' = t'17 ... , t'k

Let T' be more specific than T, i.e., T' I; T. Every grounding function g that satisfies T'

necessarily satisfies T. 0

Proof. If g satisfies T', then g must be sensible for T'. By Lemma 2, if g is sensi-

ble for T', then g must be sensible for T. If g satisfies T', then the interpretation must,

by definition, satisfy g. Finally, if g is sensible for T and is satisfied by the interpreta-

tion, g must satisfy T. 0

Example 55. Let

T' = johnny (owns ~ car, loves ~ W:woman) ,
bill (loves ~ W)

and

T = john (loves ~ woman),
bill (loves ~ woman)

Clearly T' I; T. The function g

g(l~) = johnBrown
g(l~owns~) = car54
g(l~loves~) = maryThomas
g(2~) = billJones
g(2~loves~) = maryThomas

satisfies T'. The grounding function g is sensible for T' and, by Lemma 2, for T. Since g

satisfies T', g is satisfied by the interpretation. Thus, g satisfies T. 0

Lemma 4. Let T = <8, A, ,p, T> and T' = <8', A', ,p', I> be two sets of shared

,p-terms such that T' I; T. If interpretation I satisfies T then I satisfies T'. 0

Proof. Let g be any sensible grounding function for T'. Since T' I; T, g is sensi-

ble for T by Lemma 2. Since I satisfies T, I satisfies g. Thus, since g is sensible for T'

and since I satisfies g and g was chosen arbitrarily, I satisfies T' by the definition of ,p-
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clause satisfaction. 0

Example 66. Oonsider the following two (sets of shared) t/J-terms

T = john (loves =;> woman)

and

T' = johnny (loves =;> woman)

Olearly T' ~ T. First, consider the following grounding function g:

g(l=;» = johnBrown
g(l=;>loves=;» = maryThomas

This grounding function satisfies T (under the interpretation given earlier) and, as

Lemma 4 would seem to imply5, g also satisfies T'. Now consider the set of shared ,p-

terms:

T" = johnny (loves =;> woman, owns =;> car)

and note that T" ~ T. The function g is not even sensible for T" and so g does not

satisfy T". Since g satisfies T, shouldn't g also satisfy T" by Lemma 41 Not necessarily;

Lemma 4 makes a statment about interpretations satisfying sets of shared ,p-terms. For

an interpretation to satisfy T", every grounding function that is sensible for T" must be

satisfied by the interpretation.

So let's modify g so that it is sensible for T".

g'(l=;» = johnBrown
g'(l=;>loves=;» =maryThomas
g'(l=;>owns=;» = car54

Now g' is sensible for T" and satisfies T" since

6 Specious reasoning; keep reading.
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johnBrown owns car 54.

But what ifwe had extended g as follows instead?

g"(19) = johnBrown

g"(1910ves9) = maryThomas
g"(190wns9) = carGO

In the interpretation, johnBrown does not own carGO, so g" does not satisfyT".

Since g" is sensible for T", Lemma 4 seems to say that it should do so. What's going on

here?

The problem now is that g" does not satisfy T either. The fact that g" is sensible

for T but is not satisfied by the interpretation means that T is not satisfied by the

interpretation in the first place. So Lemma 4 doesn't apply. Intuitively,T says that

Johnny loves allwomen and, by ommision of an ownS9 attribute,that Johnny owns

everything! In the interpretationwe are using,Johnny only loves one woman and owns

one car. 0

This property of t/J-Iogic- where missing attributes imply a relationship to all ele-

ments in the domain - is both a strength and weakness. The implied value of T for

missing attributes makes it possible to elide unimportant attributes, thereby simplifying

,p..terms while still allowing ,p..clause resolution to proceed. But, on several occasions in

the development of the Inheritance Grammar of Appendix 4, missing attributes caused

subtle bugs.

The following rule-of-thumb seems to make writing t/J-Iogicprograms easier. It is

okay to omit attributes from terms in a clause body but never omit attributes from a clause

head. This rule only makes sense when there is a specific set of attributes. associated

with a given head symbol. Only then does it make sense for "an attribute to be omitted

accidentally." Of course an association of specific attributes with specific symbols of the
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signature is totally absent from the definition of ,p-terms. The association is only in the

mind of the grammar writer. In type checking a traditional programming language, a

symbol can be used correctly or incorrectly. An interesting question is how to modify

'!/I-logicto capture what appears to be some form of high-level type checking currently

being performed by the grammar writer.

The next lemma discusses whether a clause is satisfied when it is subsumed by

another satisfied clause.

Lemma 5. Let C' = <8', s', A', .,p',-I> be a '!/I-clause:

and let C = <8, s, A, '!/I,T> be a .,p-clause

such that C' is subsumed by C, i.e., C' ~ C. If an interpretation I satisfies C then I also

satisfies C'. 0

Proof. Let gl be an arbitrary grounding function sensible for t'l> ... , t'k that is

satisfied by interpretation I. To show I satisfies C', we must show that I also satisfies

any sensible extension of gl onto t'o, t'l, ... , t'k' Let g2 be an arbitrary extension of gl

(g2:2 gl) onto t'o, t'l> ... , t'k' By Lemma 2, gl is sensible for tl> ... , tk and g2 is sensible

for to, tl> ... , tk. - Since gl is sensible for tl> ... , tk and is satisfied by I, gl satisfies

tl> ... , tk. By assumption, I satisfies C so the definition of clause satisfaction allows us

to conclude that I must satisfy g2' Thus, I satisfies t'o : - t'l> ... , t'k, again by the

definition of clause satisfaction. 0

Theorem 7. Resolution of .,p-clauses is sound. That is, if an interpretation I

satisfies clause CI and C2 and they are resolved to produce clause C, then I satisfies C.
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o

Proof. (original) Assume that clause 01 = <8}> 0, A}> 1/1}>T1> denoted

resolve on index i (i.e., tj n tj+l ~ -L) to produce the clause 0 = <8, 0, A, 1/1,T>

Assume that interpretation I satisfies 01 and O2; we must show that I satisfies O.

To show that I satisfies 0, we must show that., for every grounding function that

satisfies the body of 0

and for every extension onto the head of 0, t'o, the interpretation satisfies the extension.

Let gl be an arbitrary grounding function satisfying the body of 0

and let g2 be any extension onto t'o, such that g2 :2gl' It is sufficient to prove that I

satisfies g2'

0'1 = ( O2{i-j+I, __j+2, ... , --k}) n 01

0'2 = ( 01{--O, --I, ... , --i-I, i-i, --i+I, ... , --j} ) n O2 ( {i-j+I} )

More intuitively, we may write 0'1 as
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t'o : - t'l, ... , t'b ... , t'j'

and C'2 as

Clearly C't ~ Ct and C'2 ~ C2. Consequently, by Lemma 5, C'l and C'2 are satisfied by

I.

The general approach of the proof is as follows: To show that g2 is satisfied, we

first define an extension (called g'l) of gl onto t'i' Since I satisfies clause C'2, we can con-

clude g'l is satisfied. Then we define an extension (called gild of g'l onto t'o. Since I

satisfies clause C'l> we can conclude g"t is satisfied. Finally, by the way we will define

g"l> it is an extension of g2' Since g"l is satisfied, any restriction of g"l is also satisfied.

To simplify matters, let us first define a clause ~ = <~, 0, AR'1/1R'TR> as:

Intuitively, we write CR as

r"_. t ' . t ' t ' t ' t ' t ''-'R' o. - l>"', b"" j' j+2, ..., k'

Clause CR is so named because it contains all relevant addresses. Clearly, A'l ~ AR'

A'2 CAR' and A ~ AR. Also note that =R contains all the coreference information

from C't, C'2,and C, i.e.,

a ='1 b if and only if a =R b for a, b E A'l>
a ='2 b if and only if a =R b for a, b E A'2, and
a = b if and only if a =R b for a, b E A.

Finally note that

1/1't( a) = 1/1R(a)

1/1'2(a) = 1/1R(a)

1/1(a) = 1/1R(a)

for all a E A'l>
for all a E A'2, and
for all a EA.
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Let X9a denote an address that begins with index x. We define the grounding

function g't as follows:

g't(a) = gt(a)
g't(i9a) = gt(b)
g't(i9a) = gz(b)
g't(i9a) = u
g't(a) = undefined.

when gt(a) is defined, otherwise
when i9a =R band gt(b) is defined, otherwise
when i9a =R band gz(b) is defined, otherwise
when i9a is in AR but is not defined above, otherwise

Next, define the grounding function gilt as follows:

g"t(a) = g't(a)
g"t(a) = gz(a)
g"t(a) = undefined.

when g't(a) is defined, otherwise
when gz(a) is defined, otherwise

Clearly gilt is an extension of g't and g't is an extension of gt, Le., gt ~ g't ~ gilt.

Also, these definitions are constructed in such a way that the restriction of g''t onto the

domain of gz is gz itself, Le., g"t(a) = gz(a) when gz(a) is defined, since gt ~ gz.

To show that g't is satisfied, we must first show that g't is sensible for clause C'z.

Intuitively, g't is defined over A'z because gt is defined over addresses beginning with

indices j+2 though k and the definition of g't adds definitions for all addresses beginning

with index L The ordering h is also respected, Le., g't(a) E h(,p'z(a)), since the value of

g't(a) is taken from either gt(a) or g2(a), which respect h, i.e., gt(a) E h(,p(a)) and g2(a) E

h(,p(a)) and ,pea) = ,p'2(a) when both are defined, or the value of g't(a) is u, which trivi-

ally respects h since u E h(O') for all 0' E E. To see that the coreference relation is

respected, i.e., g't(a) = g't(b) whenever a ='z b, note that the definition of g't respects =R

and that ='2 and =R agree when both are defined. So, g't is an extension of gt sensible

for clause C'2. Since C'2 is satisfied, we conclude that g't is satisfied.

To show that gilt is satisfied, we must first show that g"t is sensible for-C't. Intui-

tively, gilt is defined on A't since g't is defined over addresses beginning with indices 1, ...
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, i, ... , j, j+2, ... , k and the definition of gill extends il by adding the remaining map-

pings in g2' which include the addresses beginning with index O. The order is respected,

i.e., g'\(a) E h(t/1'l(a)), since the value of g"l(a) is taken from either g\(a) or g2(a). Since

h(t/1'l(a)). The coreference relation is respected, i.e., g"l(a) = g"l(b) whenever a ='1 b, for

the same reason g'l respected ='2' Namely, gill takes its values from g2 and, indirectly,

from gl, and gl and g2 both respect =R which agrees with ='1 whenever both are

defined. So, gill is an extension of g'l sensible for clause C'l' Since C'l is satisfied, we

conclude that gill is satisfied.

Recapping, g'l is an extension of gl sensible for clause C'2 and so g'l is satisfied.

Likewise, gill is an extension of g'l onto clause C'1> so gill is also satisfied. Thus, since g2

is a restriction of a satisfied grounding function (g"l), we conclude g2 is satisfied. Since

we chose gl as an arbitrary grounding function satisfying the body of C and g2 as an

arbitrary extension of gl sensible for the head of C, we have shown that C is satisfied by

interpretation I. Thus, the resolution rule is sound. 0

We have implemented a t/1-interpreter (in Smalltalk-80) which we will describe in

the Chapter 5. We conjecture that our implementation is sound but the system is far

too large for any formal proof. Our interpreter in certainly not complete; we will how-

ever take up issues of complete strategies in Chapter 6.
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Part 3

Implementation
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Chapter 5:

Implementations of Inheritance Grammar

5.1. Introduction

To test our ideas about Inheritance Grammars and their implementation and to

experiment with sample Inheritance Grammars we have produced two resolution-based

theorem provers to execute IGs. Both systems are written in Smalltalk for the Tek-

tronix 4317 worksta~ion and both use a depth-first evaluation strategy, which makes

them incomplete by the definition of completeness given in Chapter 4.

The first implementation of Inheritance Grammar is an interpreter that does not

handle t/J-term predications. That is, head and body literals look like first-order literals

with t/J-terms as arguments. This system was written first and proved useful in evaluat-

ing the formalisms in spite of this limitation. The interpreter includes a window-

oriented grammar development environment, several useful built-in predicates, and list

and DCG-like notational abbreviations. To speed execution, clauses are parsed and

translated into an internal representation before being used. This representation closely

mirrors the textual representation of the clauses. To facilitate rapid grammar proto-

typing, the parsing and translation is done incrementally.

The second system implements full Inheritance Grammar, with t/J-term predica-

tions. This system is based on the stack architecture used to implement Prolog

efficiently. Each clause is viewed as a procedure and is compiled into a sequence of

operators for an abstract machine. When executed, these operators allocate activation

records, copy terms, and perform unifications. See [Maier and Warren 1988] for an
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exposition of Prolog execution algorithms.

To differentiate between the two implementations, we call the first the interpreter

system and the second the compiler system. While the compiler system is faster than

the interpreter, it has not been integrated with the window-oriented user interface.

The purpose of this chapter is to describe both of these implementations and the

user interface for the interpreter system. In order to provide an overview of the tech-

niques employed in the systems, the discussion is at a fairly high level of abstraction.

To describe the systems in detail would require a detailed digression into the particulars

of programming in Smalltalk.

5.2. The Interpreter System

The interpreter implements the full LOGIN language (as documented in [Ait-Kaci

and Nasr 1986]) as well as several useful extensions. A LOGIN program is similar to a

,p-program in that it consists of clauses and ,p-terms are used in place of first-order

terms. The primary difference is that LOGIN does not allow ,p-term predications.

Instead, each clause is composed is composed of literals, which have the form

p(X.. ... , Xn) where p is the predicate name and the Xi are ,p-terms.

For example

p(a(m9s, n9t» :- q(X:b(m9s), c), r, sex, d(n9t), X).

is a legal LOGIN clause, as well as a legal ,p-clause. However, the following clause

a(m9s, n9t) :- X:b(m9s), c, X, d(n9t), X.

is a legal ,p-clause but is not a legal LOGIN clause because it uses ,p-terms at the predi-

cate level.
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The parser is fairly robust, displaying descriptive syntax error messages. List

notation - where a list of 1/J-terms is enclosed in brackets - and grammar rule notation

- where the punctuation symbol --> is used in place of the punctuation : - in a clause

- are supported by the parser. (Examples of list and rule notation are given later in

this chapter when the the syntax of IGs is discussed in detail.) The lexical analyzer sup-

ports comments, handles numerals, and supports arbitrary length strings containing

non-alphanumeric characters.

The interpreter implements several built-in predicates. The arithmetic predicates

support numeric comparison and simple computation on integers. The output predi-

cates can be used by the grammar to produce responses to natural language input. The

predicates assert, ca 11, and not can be used to modify and access a database con-

taining semantic information. For example, an Inheritance Grammar might process an

English declarative statement by translating it into a clause and assert-ing that

clause into the database. A question would be translated into a goal which would then

be call-ed against that database. Finally, the write predicate would be used to

print a response to the question.

The grammar development environment is window-oriented and menu-driven in

the spirit of most Small talk applications. Grammar files are stored on the disk in a

machine-readable, semi-human-readable format. One menu entree allows the user to

file in a grammar. Another entree allows him to open a brow8er on the grammar.

When a grammar is read in, it is parsed and translated into an internal data represen-

tation. To facilitate incremental translation, the user may break the grammar into a

number of pages. The user may move around from page to page using the ~row8er and

may open several browsers on the same grammar for viewing different parts of a single

grammar simultaneously. To change the grammar, the user makes the changes to the
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textual representation using the standard Small talk editor. (He can cut and paste

blocks of text and move text from one page to another.) When the changes are com-

plete, only the modified text is reparsed and retranslated.

Another menu entree allows a dialog window to be opened. The user can enter

natural language input into this window. This input is then broken into lexical tokens

(using the same lexical analyzer) and the grammar is called to analyze the string.

Presumably, the rules of the grammar will produce some response, which is then inserted

into the dialog window.

The signature created by the ordering statements in the grammar can be viewed

by using another menu entree. The partial order is displayed graphically and menu

entrees allow LUBs and GLBs to be computed, dynamically adding new elements to the

display as required. The user can also modify the symbols and their ordering, if desired,

through menu options.

The interpreter produces descriptive error messages during parsing, execution, and

use of the environment. For the lexical analyzer and parser, the messages include the

location of the error.

For a symbol table, the interpreter uses a package, called Lattice. st, which

implements an abstract data type (in the sense of [Goguen, et a1. 1978]) for manipulation

and display of the signature ordering. This code provides classes called Lattice and

Latticeltem. Each instance of Lattice is actually a partial order. Each instance

of Latticeltem is an element of such an order. Messages can be sent to a lattice

object to add new symbols and to add new relationships between elements. The order-

ing statements in the grammar use these messages to build a partial order. Other lat-

tice messages allow GLBs and LUBs to be found and returned. When the GLB of a set
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of items is requested from a lattice object that does not contain a unique GLB, it is

created and added to the order. This addition is done incrementally and dynamically

as GLBs and LUBs are requested. The lattice protocol also supports ma1lbe 8et8, which

are defined in the discussion of the compiler. The window-interface provided for lattice

objects will be discussed below, when we discuss the user interface for the interpreter.

The interpreter represents each ,p-term as an object with 4 instance variables, i.e.,

a record with 4 fields. The first is the root symbol of the term and is implemented by a

pointer to a Latticeltem object. The second is an IdentityDictionary mapping

features (i.e., Strings) into other ,p-term objects. The third is a String giving the

variable name associated with the term, if any. This string is used only during the

printing of ,p-terms so that the user sees the variables he used, rather than machine-

generated names. The fourth field is a coreference pointer. Initially, this pointer is nil;

coreference of ,p-terms in an input program is captured by shared subterms.

The core of the interpreter is the ,p-term unification algorithm. It is a destructive

operation: it is passed two ,p-term objects and returns a pointer to the result object (if

the unification succeeds). This result object is constructed from the arguments by alter-

ing their fields. When two terms are unified, the coreference field of one is used as a for-

warding pointer to the second, which is modified to become the result of the unification.

This modification involves finding the GLB of the root symbols in the signature lattice

and recursively unifying any subterms. The results of these recursive unifications are

then moved into the result term. B)' always following any non-nil coreference pointers,

a reference to either of the original two arguments to the unification will end up at the

same term, the result of the unification. See [Ait-Kaci and Nasr 1986] for tlte complete

algorithm.
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X: f (m9a)

and

Y:g(m=9b, n=9c)
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The internal representation of these terms is shown in Figure 5.1. (To simplify the

figure, pointers to Latticeltems and Strings have been replaced with the

corresponding strings themselves.) Assume that neither fg = fAg nor ab = aAb is

1. in the signature. The result of the unification, shown in Figure 5.2, is

head
attrs
var
coref

IdDict IdDict

'm'
'n'

Figure 5.1: The Representation of Two ,p-Terms

head '
attrs
var r!'
coref

term-
head

attrs
var "

core f I

head head battrs 0 attrs
var " var ' ,

coref J7\ core f
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X:fg(m~ab, n~c)

Since unification overwrites the terms in place, in many cases it can complete without

allocating any new objects, as this example illustrates. New objects must be created,

however, when new elements are added to the signature or when the IdentityDic-

tionar ies change substantially.

Given this unification algorithm, the interpreter works as follows. A goal list is

satisfied by satisfying each of its literals in turn. A literal is satisfied by first identifying

the clauses in the database with a matching predicate name. The clauses of the

head
attrs
var
coref

term

head
attrs

'X'

ildDict IdDict

head
attrs
var
coref

~
'n'

~
'n'

, ,

head

attrs
var

core f

. ,

Figure 5.2: The Result of their Unification
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database are stored in a dictionary mapping predicates to OrderedCollections of

clause objects to facilitate this retrieval. Each clause is then copied. Since clauses are,

in general, cyclic data structures, this copying can be time consuming and is improved

in the compiler. Next, the goal literal is unified with the clause head, which generally

modifies many terms in the body. The literals of the body, if any, are prepended onto

the list of literals remaining in to be satisfied and the evaluation procedure is called

recursively. 'When all the literals of a goal are satisfied, answers are displayed on the

System Transcript, along with execution-timing information.

When no clause can be found to satisfy a goal list, failure occurs, necessitating

backtracking. The unification algorithm is constructed so that a trail is kept of all

terms modified. Using this trail, it is possible to undo the effects of several clause invo-

cations and backup to a previous goal list. A new clause is then selected.

5.3. The Compiler System

The compiler implementation executes full Inheritance Grammar, allowing ?/i-term

predications. The compiler system is faster than the interpreter, but the window-

oriented user interface has not yet been adapted to use the compiler.

The language accepted by the compiler system is very similar to the language

accepted by the interpreter system. Beside allowing ?/i-term predication, the major

differences are in the non-logical extensions. The compiler supports the cut operator (I)

but the interpreter does not!. The interpreter supports assert, call, and not; the

compiler does not, although there is no fundamental reason why these operators could

1 Cut has proven useful for many users of depth-first execution systems. Unfortunately, €be interpreter
constructs and modifies goal lists explicitly. making the implementation of cut in the interpreter virtually
impossible.



142

not be added to the compiler system. There is also a slight difference in the translation

of DCG rules into ,p-clauses.

Both compiler and interpreter use the same lexical analyzer and lattice packages.

The parser for the compiler system is a slightly modified version of the parser used in

the interpreter system.

A grammar is compiled in one pass by sending it as a string in a message to a

class called NewProgram returning a program object. Queries are executed by sending

them as strings to this program object (A trivial ,p-program execution is shown in Figure

5.3). Adapting the window-oriented user interface to accommodate compilation would

present no fundamental difficulty since the interaction between the user interface and

the interpreter is very simila.r to protocol provided by the compiler system.

The representation of ,p-terms in the compiler system is much more compact than

in the interpreter system. In the interpreter, the features of a ,p-term are stored as a

set. Unification involves merging the scts of features for the two argument terms which,

even if the sets are ordered, is time consuming. In the compiler, ,p-terms are represented

as records in which features are stored at known, fixed offsets. In addition to containing

a field for each subterm, the record also contains fields for the term's head symbol and

coreference pointer. The unification algorithm first looks at the head symbols of the

two 1/J-term arguments and finds their GLB in the signature. It then quickly runs

through the sub term fields, calling itself recursively for each pair of subterms.

But how can fixed offsets be assigned to features? Consider the following grammar

fragment:

p(l=9..., m=9...) :-
... :- ..., q(m=9..., n=9...),
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System Transcript
Number of maybe-sets - 30
Common record size - 3
Max non-common record size - 10

Parsingquery...
Compilingthe query...
Executionbeginning...
HERE IS A SOLUTION:

ans :- append([]; L:[a,b,c);U.
HERE IS A SOLUTION:
ans :- append([X:a); L:[b,c]; [XIL)).
HERE IS A SOLUTION:

ans :- append([X:a,X2:b); L:[c]; [X,X2IL)).
HERE IS A SOLUTION:

ans :- append([X:a,X2:b,X3:c); L:[]; [X,X2,X3IL)).
NO MORE SOLUTIONS.

prog .. NewProgram parse From: '
append([],L,U.
append([XIL1),L2,[XIL3]) :-

append(L1 ,L2,L3).'.

query... prog pt'ove:~",~, i
'append(l1 ,L2;[a,b,c».'. ,.

'"".~
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(The other literals and subterms are unimportant.) Any literal in any clause body (e.g.,

the q literal) might need to be solved and any rule (e.g., the p clause) might be used,

so we might have to unify the q and p literals during execution. The two literals may

or may not successfully unify, depending on whether or not p and q are related in the

signature.

It would seem that, at compile time, we would need to allocate enough fields in the

p and q records to accommodate all possible features. In this case, it would seem that

both records would need fields for 1, m, and n. Since any body literal might be unified

with any head literal, every ?/I-term would also need fields for 1, m, and n.

Given two 1/J-literals at compile time, we can never say whether they will unify

successfully at run time, since the goal literal may have been modified through previous

unifications at run time. But we can look at two 1/J-terms and very often say that they

definitely cannot be unified successfully at run time. If, in this example, the symbols p

and q are unrelated in the signature, then the unification must always fail. This pro-

perty of un-unifiability is the basis of the technique we use to compile ?/I-terms into

fixed-size records. The method is based on the concept of maybe 8et8.

After the grammar has been parsed, the OJ'dering statements are processed to yield

the signature. The symbols of the signature are then partitioned into several maybe

sets. Every symbol (except T and .1) belongs to exactly one maybe set. The partition

is done in such a way that symbols in one maybe set might be comparable or have non-

.1 GLBs or non- T LUBs, but two symbols in different maybe sets are definitely unre-

lated and always have only .1 as GLB and T as LUB.

As an example, consider the following ordering statments:
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These symbols can be partitioned into 2 maybe sets:

{p,q,r,s,t,u}
{a,b,c,d,e}

Call the first set number 51' and the second set 52' Clearly these sets meet the con-

straint that, in this ordering, elements of 51 are completely unrelated with elements in

82, Note that element p and q have been put in the same maybe set even though they

are unrelated and happen to have no LUB.

In constructing the record structure for terms we will build one record structure

for all terms whose heads are in maybe set Sl' We will construct a second record for-

mat for the other terms, terms whose head symbols are in maybe set 82, For example,

assume the following two ,p-terms appear in the grammar:

p (19..., m9...)

q (m9..., n9...)

Since the labels 1, m, and n are all used, the compiler will allocate a field for each in

the record format shared by these two terms. (For simplicity,assume that no other

features appear elsewhere in terms with heads from 81, The compiler will pick an order

for these features, such as:

1
m
n

Thus, the representation of the firstterm will be a record with 3 fields, the last of which

willbe empty. The representationof thesecondterm willalsobe a recordwith 3 fields;

r < p.
{r, s} < q.
{t, u} < r.
u < s.
c < a.
c < b.

{d, e} < c.
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the first will be empty. If, in the course of executing the grammar, we must unify these

two terms, the merging of the features is done in linear time by visiting each field in

turn.

What if we encounter a 1/I-term with no head, such as the following?

(j9..., m9...)

Since it might be unified with either of the above two terms at run time, we must add a

field for j to the 1-m-n record format described above. Since this term might also be

unified with terms in other maybe sets, the compiler must ensure that they also have

fields j and m and that they be at the same offset within the record.

To handle features like j and m, each record will have a number of common

fields, as well as local fields. In this case, fields j and m must be placed in the common

fields and fields 1 and n will remain local fields. There will be a single block of com-

mon fields for the entire grammar, shared by all records, and a block of local fields for

each maybe set. The representation of a term such as:

p (19..., m9...)

will consist of the common fields, which are always listed first, followed by the local

fields:

j
m

1
n

The representation of a term such as:

(j9..., m9...)

will consist of just the common fields (even though it might be unified with a term with
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common and local fields):

j
m

These two terms can be unified quickly by comparing the common fields first, and then

copying the local fields from the first term to the result.

Given this representation of 1/J-terms, how are clauses represented? Each clause is

compiled into a sequence with the following general format:

Activation Record Size
Head Pointers
Head Patches

Body Pointers
Body Patches
Body

As an example, we will consider the clause:

X:f(m~Y:g(n~X, p~Y» .
f(m=9X), y, !, h(q=9X).

Assume that f, g, and h are all placed in distinct maybe sets and that the feature

labels are assigned offsets as follows:

m in field 1
n in field 1
p in field 2
q in field 1

This clause is represented as indicated by Figure 5.4. We will discuss it in detail in the

following paragraphs.

As mentioned above, a stack of activation records is maintained at run time.

When a clause is executed, an activation record will be pushed onto the stack. This

record contains several fixed fields, along with a variable number of slots (the local vari-

abIes). The first item in a clause representation is an integer telling how many of these
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slots will be needed in the activation record when this clause is executed. ID our exam-

pie clause,the firstelement indicatesthat the activationrecord willneed 4 slots.

rderedColl

4 term

head 'f'

coref 0

. 0

{
0 head
2 coref

[

2 1
1 2

[I
0

I ntm
2 head 'f'

coref 0
1 0

0 m

[

3 head 'h'
1 coref 0
0 1 0
1

{

4
1
0
1
0
3
2
-1
4
0

. I

Figure 5.4: The Representation of a 1/I-Clause
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Since unification of ,p-terms is a destructive procedure that modifies both argu-

ments, the ,p-terms comprising the head and body of a clause must be copied from the

database. At run time, we first copy the head ,p-term and then perform the unification

with a goal literal. Only if this unification succeeds do we need to copy the body. (The

interpreter copies the entire clause before testing the head, which introduces

inefficiencies.) The head pointers and head patches are used to do the copying of the

head ,p-term. Here is how they work.

The head pointers (there may be several) all point to acyclic terms with no shared

subterms. In our example, we have two head pointers, following the activation record

size (4). The head of a ,p-clause will in general be cyclic, but experience with the inter-

preter showed that it is expensive to copy cyclic data structures. At compile time, the

term is decomposed into a number of acyclic ,p-terms, which are quickly copied into slots

in the activation record. In our example, the two pointers to acyclic terms used in the

head would be (deep) copied into the first two slots of the activation record. The head

patches are used to modify these terms to add in the appropriate cyclic links.

A head patch (roughly) consists of a sequence of integers. These integers specify

(1) a slot in the activation record, (2) a path within the term pointed to by this slot,

and (3) another slot in the activation record. Each patch causes one link to be added

to a term. The first slot and the path give to location which is modified to point to the

second term. There may be zero or more head patches in a clause. In our example,

there are 3 head patches. (Head and body patches are indicated with braces in the

figure.) The first head patch says to take the record pointed to by slot 1 and modify its

first field to point to the record pointed to by slot 2. After all the head patches are exe-

cuted, the cyclic ,p-term representing the head is pointed to by the first activation

record slot.
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The unification is then performed. If successful, the terms pointed to by the body

pointers are (deeply) copied into the remaining activation record slots and the body

patches are executed to build the cyclic structure of the ,p-terms in the body, just as the

head patches were executed. In our example, there are two body terms and two body

patches. Building a representation of a clause that is suitable for the execution of the

patches in the manner just described is complicated by the fact that the head and body

usually share a number of common subterms. Of course, the subterms that are shared

must be constructed when the head is constructed. The difficulty comes in both identi-

fying these sub terms and selecting a good strategy for building them. Since copying

acyclic terms is faster than executing patches to build equivalent terms (there is an

additional layer of interpretation while processing the patches), the compiler tries to

minimize the number of patches necessary.

After the body has been constructed, it can be executed. The body portion of the

clause representation consists of a sequence of integers, one for each literal in the body.

In our example, the body consists of

3 2 -1 4

Each integer is an offset into the activation record, from which a pointer to the

appropriate ,p-term can be obtained. A distinguished integer (-1) is used to represent

the cut operator. Nil values (0) are used in the clause representation to help identify

the various parts just described.

Backtracking involves undoing changes that have been made to ,p-terms and try-

mg other clauses. In the compiler, as in the interpreter, a record of the effects of

unification is maintained in a trail. A trail is a list that records each change made by

the unifier along with enough information to undo that change.
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The activation records used by the compiler system have the following fields:

callingLiteral
callingAR
callingClause
callingClauselndex
backtrackAR
clauseList
clauseListlndex

beginningTrail
(slots for ~-term pointers)

The fields in the activation record are quite similar to those used in Prolog implementa-

tion and are discussed in the next paragraph. (See [Maier and Warren 19881 for a

thorough discussion of activation records and Prolog implementation techniques.)

When we have a new literal within a goal that is to be solved, we allocate an

activation record. The ca11ingLitera1 fieldpoints to the term representation of

that literal. The callingARpoints to the activation record associated with that goal;

on successful completion of the current clause, we will return to that activation record

for the next goal literal. The ca11ingClausepoints to the representation of the

clause containing the callingLiteral; callingClauselndex in the index into

that clause of the next goal literal to be solved. Should failure occur, backtrackAR

points to the activation record of a goal with more clauses to try. The clauseList

and clauseListlndex point to the next clause to try in solving callingLiteral

in case a subsequent failure causes backtracking to this activation record. The begin-

ningTrail is an index into the trail that is used to undo any changes to bring the

state back to the point when this activation record was first allocated. The remaining

slots are used to build the cyclic structures representing a clause, as described above.
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5.4. The Grammar Development Environment

This section describes the window-oriented user interface for the interpreter. The

interpreter and interface consist of 3 files:

Lattice.st

Login.st
LoginLogo.form

The file Lattice.st contains 4 classes constituting a subpackage that handles

all lattice operations, such as computing LUEs and GLBs. The file Login.st contains

the classes comprising the interpreter and interface. It needs the the Lattice package to

execute properly.

To activate the system, the following message is sent:

Program new edit

This message causes a new interpreter (object) to be created and the Inheritance Gram-

mar logo to appear. The logo has an associated middle button menu with the following

entrees (see Figure 5.5):

open
open
open
file
file

rule browser

dialog browser
signature window
in
out

The file in selection prompts for the name of a file containing an IG. Appen-

dix 1 lists such a file, demoGrammar. ig the name of a file containing a small Inheri-

tance Grammar.

Next, the open rule browserselection is used to frame a window for browsing

the clauses and ordering statements comprising the grammar. This window is a varia-

tion of a Workspace,-so the left button menu can be used for text selection and the
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middle button menu includes the standard entrees for text editing. Figure 5.6 shows a

rule browser and its middle button menu, with the following entrees:

again
undo

copy
cut

paste
next

previous
first
last

accept

Several interpreters may be active simultaneously. When each is initiated, a logo

appears on the screen. There is, at anyone time, only one Inheritance Grammar associ-

ated with each interpreter, although as various commands are executed, this grammar

changes. The menu associated with each logo is used to access the current grammar

associated with the corresponding interpreter. In addition, there may be several rule

browsers active for each grammar, allowing multiple views of a large grammar.

Each grammar is broken up into an ordered sequence of pages. Each page con-

tains several clauses and/or ordering statements, but any clause or ordering statement

must lie entirely within one page. The grammar writer may distribute clause and order-

ing statements across pages arbitrarily.

The grammar is divided into pages so that the time needed for the parsing and

translation, which must occur every time the grammar is modified, can be reduced.

Each rule browser looks at one page of the grammar at a time. When a change is made

to the text of the page in a rule browser, only that page is reparsed and retranslated.

The page mechanism also makes it easier to organize large grammars. -The exam-

pIe grammar contains six pages, identified in the comments as:
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Syntax Section
Semantic Processing Section
Generation Grammar
Lexicon

IS-A Hierarchy
Knowledge Base

These pages reflect a division of the grammar into (1) the clauses associated with the

syntax, (2) the clauses associated with semantic processing, (3) the clauses associated

with generating and writing out responses, (4) the clauses comprising a tiny lexicon, (5)

the ordering statements, and (6) the clauses comprising a small relational database,

respectively.

The middle button menu entrees next and previous can be used to move back

and forth through the pages in the grammar. The entrees first and last can be

used to get to the beginning and the end of the grammar. Changes may be made to a

page by modifying the text and then accept-ing the page, which causes reparsing and

retranslation. (Accepting the first page of this grammar, for example, takes under 2

seconds. )

The file out entree on the main interpreter menu can be used to write the

grammar out to a file after changes have been made. It will prompt for a file name,

defaulting to the last file read in.

Selecting the open dialog window entree on the logo menu allows a dialog

window to be framed on the screen. This window is a Workspace window and input

to be parsed by the Inheritance Grammar can be typed and edited using the standard

workspace text manipulation facilities. Goals may also be executed directly. The mid-

dIe button menu contains the following entrees (see Figure 5.7):
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again
undo

copy
cut

paste
parse it
prove it

Text to be used as input to the IG can be selectedand parsed with the parse

it entree. As the parsing proceeds, messages are written to the System Transcript. For

example, parsing the Collowing text:

Maier gave Smith a B in cslOl.

TransCorms the input into a ,p-query which is then evaluated. This grammar uses the

built-in predicate write to add the Collowing text to the dialog window:

»> Okay.
»> maier gave smith a b in cslOl.

The first line indicates that the grammar has added this Cact to its knowledge base; this

is done by clauses in the semantic processing page. The second line is a translation

Crom the internal representation back into English; see the generation grammar page.

The query succeeds and a prompter appears, asking whether backtracking is desired.

Since there are no other solutions Cor this example query, no may be selected. When

yes is selected, the interpreter will backtrack. In any case, the interpreter then

displays some timing inCormation on the System Transcript, including total elapsed time

(see Figure 5.8).

The clauses perCorming the semantic processing use the built-in predicate assert

to add new clauses to the grammar. If the Knowledge Base pageis viewed with a

rule browser (see Figure 5.9), then the new clause representing the asserted inCormation

IS seen.
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If the followinginput is now parsed:

Did Maier give Smith a B in cslOl?

the grammar will write

»> Yes.

into the dialog window. See Figure 5.10.

The prove it entree in the dialog window can be used to execute "'-queries

directly, which is useful in debugging a grammar. The parse it entree performs some

lexical analysis on the input and packages the result into a legal "'-query. For example,

parsmg

Did Maier give Smith a B in cslOl?

results in evaluating the query

. s(LogicTranslation,
["did", "maier","give", "smith", "a", "b","in", "cslOl"],
[J) .

The prove it option evaluates the text as a ,p-query, without performing the lexical

transformation.

The final option on the main interpreter menu is open signature window,

which opens a graphical view of the signature of the grammar. When this entree is

selected, a window like that shown in Figure 5.11 pops up. The other window shows the

corresponding ordering statements.

Also shown is the middle button menu associated with the view, which includes the

following entrees:
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add relationship
delete symbol
delete relationship
move symbol l/r
rename symbol
find L.U.B.
find G.L.B.

\lVhen the last entree is selected, the system will wait for two elements in the order to be

selected. Consider the elements human and male. In the ordering as itstands, both

boy and man are lower bounds for these two elcments - a unique GLB does not exist.

The system will automatically create a new element and add it to the ordcring. The

view will then flash the new element, indicating that it is the GLB desired. The result

is shown in Figure 5.12.

The firstmenu entree, allowing a symbol to be added, prompts the user to enter a

name for the new symbol. The second entree allows new relationshipsto be added. The

usermust first select the greater symbol and then select the lesser symbol. (Only legal

relationships may be added, i.e., cycles cannot be created.) Symbols and relationships

may also be deleted from the ordering with the second and third entrees. The lattice

package attempts to display the lattice in the most aesthetic way possible, but some-

times it fails. The fifth entree allows symbols to be moved around on the view. The

sixth entree allows symbol names to be changed. For example, the symbol created by

the GLB comman'd is automatically given the name {boy, man}. This entree might be

used to change that name to humanMale. Finally, the find L. U. B. entree works

similarly to the find G.L. B. entree, described above.

5.5. Implementation-Specific Grammar Details

The interpreter accepts grammars whose forms vary slightly from Inheritance

Grammars as describedin Chapter 4. For example, built-in predicates and comments
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are allowed. Next, we discuss the form accepted by the interpreter. If the user

attempts to accept a page that does not conform to this definition (e.g., the page con-

tains a syntax error) a descriptive error message, indicating a location within the page,

pops up.

\Vhen each page is accept-ed it is first processed by a lexical analyzer, which

breaks the grammar into tokens. The tokens used here are the standard types of tokens

that many programming language compilers recognize: identifiers, numbers, and punc-

tuation symbols. White space (blanks, tabs, newlines, and comments) must be used to

separate tokens that would otherwise be interpreted differently when concatenated.

There are two notations for comments. A comment may begin with /* and run

through the next */ (0 syntax) or a comment may begin with -- and run through

end-of-line (Ada syntax). Both forms may be used in the same grammar.

Identifiers are used for ,p-term symbols, variables, and feature labels. An identifier

must begin with an alphanumeric and may contain alphanumerics and hyphens. Arbi-

trary strings are accommodated as identifiers that do not conform to this constraint.

To use such an identifier, it must be enclosed in quotes (either single or double). The

delimiter may itself be included in the string by doubling it. An identifier consisting of

a sequence of digits, possibly preceded by a hyphen (minus), is considered a numeric

identifier and is treated specially by several built-in predicates, but not by the lexical

analysis. Examples of legal identifiers are

noun-phrase
X
'o"clock'

"Ronald ""Ronnie"" Reagan"
-273
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Figure 5.13 gives an extended BNF describing the exact syntax of the grammar

accepted by the system. (As before, brackets enclose optional constituents, the vertical

bar separates alternate constituents, and ellipses are used to indicate repetition.) The

symbols

( ) { } < => = --> .

are terminals. In particular, note that we use => for 9 and note the difference

between the terminals: [ ] and the metasymbols I []. With Chapter 4 as background,

most of this syntax should be self-explanatory. A few comments are, however, in order.

Variable tags are identifiers that must begin with an uppercase letter. Predicates,

labels, and symbols are identifiers that must not begin with an uppercase letter.

Feature labels can be omitted for the first zero or more attributes in a term; in this

case, feature labels are automatically generated from the integers 1, 2, 3, ... . For

example,

np(third, singular, lex=>runs)

is the same as the term

np(19third, 29singular, lex9runs)

Variables are assumed to be quantified over clauses. Variables with the same spelling

appearing in different clauses are assumed to be distinct. Within a clause, if several

occurrences of one variable (say X) are followed by a colon and a term, all such terms

are unified at parse time. If they cannot be unified an error message will be displayed.

Bracket notation can be used for lists of terms. A list is automatically translated,

during parsing, into an equivalent 1/J-term using the symbols cons, head, tail, and

[]. For example, the input
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PAGE PAGE ...PAGE
STATEMENT STATEMENT... STATEMENT
CLAUSE IGRAMMARRULEIORDERINGSTMT IEQDEF

LITERAL : - BODY .
LITERAL .
LITERAL, LITERAL, ... LITERAL
PREDICATE
PREDICATE ( TERM, TERM, ... TERM)
IDENT

SYMBOL[ATTRLIST ]
ATTRLIST
VAR[:TERM]
TERMLIST
IDENT
IDENT
(ATTR SEPARATOR ATTR SEPARATOR... ATTR)
, I;
FEATURE => TERM
TERM
IDENT
[TERM, TERM, 00. TERM [: TERM]]
[ ]

Figure 5,] 3: Syntax Accepted by the Implementation

[a, b, c]

is parsed as the term

GRAMMAR 00

PAGE ..
STATEMENT ..---

CLAUSE 00

BODY ..-
LITERAL 00-

PREDICATE 00

TERM 00

SYMBOL ..-
VAR 00-

ATTRLIST .......
SEPARATOR ..
ATTR ..-

FEATURE 00

TERMLIST ..-

ORDERINGSTMT 00 SYMBOL< SYMBOL.
{ SYMBOL, SYMBOL , ...SYMBOL}< SYMBOL.

GRAMMARRULE ..- LITERAL--> RULEBODY.
LITERAL--> .

RULEBODY ..- RULEITEM , RULEITEM , ... RULEITEM
RULEITEM ..- NONTERMINAL

TERMINALLIST
NONRULECODE

NONTERMINAL ..- LITERAL
TERMINALLIST 00 TERMLIST
NONRULECODE .. { BODY}

EQDEF ..- SYMBOL = TER.L\1.
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If the punctuation symbol - -> is used in a 'clause in place of : - then the clause

is assumed to be a IG grammar rule. That is,the clause follows a syntax similar to

Definite Clause Grammar syntax. The body consists of some combination of non-

terminal literals,terminals, and code. The head literal and the non-terminal literals in

a grammar rule are automatically augmented (during parsing)by adding two arguments

to facilitatedepth-firstparsing. (See the discussionof Definite Clause Grammars in

Chapter 1.)These arguments are each a t/J-termconsistingof only a variable and no

head symbol or attributes. The variables names are generated automatically from

identifiers such as PI, P2, P3, etc. Terminal symbols of the target language are indi-

cated by enclosing them in brackets in the body of the grammar rule. The parser

automatically generates a sequence of queries to pick off the terminals. Finally, if arbi-

trary goal literals are needed within the grammar rule and the grammar writer wishes

to circumvent the automatic addition of the position arguments, these literalscan be

enclosed in curly braces.

These remarks are summarized in an example. Consider the following grammar

rule:

cons (head =3> a,
tail =3> cons (head =3> b,

tail =3> cons (head =3> c,
tail =3> [] ) ) )

and the input

[a, x, c I X]

is parsed as the term

cons (head =3> a,
tail =3> cons (head =3> X,

tail =3> cons (head =3> c,

tail =3> X»)
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s (likes (X,Y» --> properNoun(X),
[likes,a],

noun(Y),
{check ([X,Y])}.

The meaning of this contrived rule might be that a sentence consists of a proper noun

followed by two terminal words followed by a common noun. After parsing the common

noun, we need to call a predicate (named check) to perform some semantic checking.

We then succeed, returning a term through the clause head. The grammar rule nota-

tion is syntactic sugar accepted by the system, which translates this clause exactly the

same way it would translate the following clause:

s(likes(1=>X,2=>Y),Pl,PS) :-

properNoun(X,Pl,P2),

dcgConnect(likes,P2,P3),

dcgConnect(a,P3,P4),

noun(Y,P4,PS),

check (cons (head=>X,

tail=>cons(head=>Y,

tail=> [] » ).

5.6. Built-In Predicates

The interpreter understands the following built-in predicates and handles them

specially when they appear in goals. The predicates are listed with an indication of

their arguments.

lessThan(X,Y)
greaterThan(X,Y)

lessThanOrEqual(X,Y)
greaterThanOrEqual(X,Y)

plus(X,Y,Z)
write (Term)
nl

assert (Clause)

call (Goal)

not (Goal)



171

All these predicates operate similarly to their counterparts in Prolog. The write

and 01 predicates send their output to the dialog window, where it is inserted after the

input that was selected for the parse it menu entree.
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Chapter 6:

Additional Evaluation Strategies!

6.1. Introduction

In the Chapter 4, we gave a description of 1ft-logicand the Inheritance Grammar

formalism. We then provided a semantics for 1ft-logicprograms and introduced the con-

cept of an evaluation (or proof) procedure for executing 1ft-logicprograms (i.e., for pars-

ing with Inheritance Grammars). The traditional Prolog interpreter can be adapted to

the execution of 1ft-logicprograms and, in Chapter 5, we discussed two implementations

based on Prolog execution techniques. The traditional evaluation strategy, however,

performs a depth-first search for a proof and consequently suffers from some of the prob-

lems associated with depth-first parsing algorithms. For example, iCa program contains

left-recursive rules the interpreter may go into an infinite loop, failing to find a proof

even though one exists, just as a top-down parser may fail to find a parse when given a

grammar containing leCt-recursion2. This type oC behavior motivated the definition oC

completeness for evaluation strategies.

In this chapter, we discuss several alternative execution strategies developed for

executing Horn-clause logic programs. \Vhile not originally intended for 1/J-Iogic,we

describe how they can be applied to IG evaluation. These evaluation strategies are

algorithms Cor scheduling unifications and manipulating clauses; they do not depend on

1Portions of this chapter appeared in IPorter 19861.

2 We want to be able to express the grammar as clearly as possible, without letting implementation de-
tails like clause/literal order get ill the way. As in many logic programs, the rules in logic grammars express
general knowledge about language and it is often difficult to foresee how they will be used.



173

particulars of the entities being unified. In general outline, an evaluation strategy

designed for Horn-clause logic using first-order terms can be applied to the evaluation of

,p-Iogic queries by replacing the concepts of term, unification, and resolution where they

occur in the description of the strategy by ,p-term, ,p-term unification, and ,p-term reso-

lution respectively.

The first strategy we discuss is Earley Deduction, a generalization of the Earley

Parsing Algorithm [Earley 1970] to the execution of logic programs. For first-order

logic, we will show that Earley Deduction is both complete and sound. Then, restricting

our attention to a special case of first-order terms - namely functor-free programs - we

show that Earley Deduction is guaranteed to terminate3. We implemented the Earley

Deduction algorithm (for first-order terms, only) and summarize the techniques used and

results obtained. Earley Deduction is elegant but, unfortunately, not very (space)

efficient. We investigated implementation techniques that may make Earley Deduction

practical for Datalog programs and these are also described.

The second strategy is the extension tables algorithm [Dietrich and Warren 1986]

and can be viewed as an adaptation of memo tables (for saving results in functional pro-

gramming) to the domain of logic programs. While not as elegant as Earley Deduction,

the method offers some flexibility that may make it more useful in executing IGs.

The final strategy is called Staged Depth-First Search Strategy [Stickel 19841.

This simple technique just bounds the search space. By repeatedly increasing this

bound after the search space has been exhaustively searched, a complete search strategy

3 The functor-free subset of Prolog is called Datalog and can be used to compute relational join, selec-
tion, transitive closure, etc. The discussion of Datalog is not directly pertinent to natural language parsing,
but is indirectly relevant since the primary application envisioned for IGs is for front-end access to deductive
relational databases.
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obtains. We conclude the chapter with a discussion of the application of the various

search strategies to the execution of Inheritance Grammars.

6.2. Earley Deduction

We begin this subsection by describing Earley Deduction via tracing its execution

on a small example program. Our strategy is to first describe the algorithm using a

first-order logic example and then to describe the application of the algorithm to 1/J-Iogic

programs. We then discuss correctness and completeness of the algorithm and show

that it terminates for functor-free programs. Finally, we discuss implementation tech-

niques and give results for a version of the algorithm restricted to functor-free pro-

grams.

6.2.1. Description of Earley Deduction

In 1970, Jay Earley described an algorithm called Earley Parsing, which overcomes

some of the problems of both top-down and bottom-up parsing by combining aspects of

both IEarley 1970]. In computational linguistics, various incarnations of this algorithm

have been studied under the name Active Chart Parsing !Kaplan 1973]. F. C. N. Pereira

and D. H. D. Warren extended Earley Parsing to the execution of logic programs and

call the method Earley Deduction IPereira and Warren 1983]. Their algorithm has three

desirable properties. First, it is sound and complete. Second, it is guaranteed to ter-

minate for an interesting subset of logic, namely functor-free programs. Finally, Earley

Deduction is straightforward and easy to implement.

To illustrate the algorithm, we use an example program containing a transitive

closure rule (which would cause nontermination for a depth-first evaluation strategy).

The clauses comprising the example are:



p (X, Z) : - p (X, Y), P (Y, Z) .
p(a,b) .
p (b, c) .

These are called the program clauses. (As usual, variables are assumed to be quantified

over individual clauses: variables in different clauses are assumed to be distinct.)

The goal is transformed into a goal clause by adding a dummy literal (with head

symbol ans) as the clause head. The attributes of this ans literal will be used to

accumulate the bindings computed in a successful proof. The goal clause we will use is:

ans(Z) :- p(a,Z).

This goal has only one literal but, in general, there will be several literals on the right-

hand side.

The method works by building up a set of derived clauses. As an initialization

step, the goal clause is added as the first element to the set of derived clauses. Each

step of the method adds another clause to the set of derived clauses and, when no more

clauses can be added, terminates.

There are two inference rules, called reduction and instantiation. Bothrules work

by combining a derived clause with another clause (either program or derived). The

former (derived) clause is called the selected clause and the latter clause is called the

side clause. One literal within the body of each derived clause will be marked as the

selected literal. It is chosen when the clause is first created and added to the derived

clause set. The choice is arbitrary; we will always select the left-most literal in the

body of a derived clause4.

<IChoosing the left-most literal gives the top-down aspect of the algorithm a left-to-right orientation;
choosing the right-most literal would give a. right-to-left orientation.

175

(1)
(2)
(3)

(4)
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The reduction step applies when the side clause is a unit clause and is a special

case of the regular resolution rule. Reduction works as follows. First, the selected

literal of the selected clause is unified with the unit clause. The selected clause must

always be a derived clause, but the side clause can be either a program or a derived

clause. Let q be the most general unifier of the selected literal and the head of the unit

clause. Second, remove thl: selected literal from the selected clause, apply q to what

remains and add the result as a new derived clause.

For example, let clause (4) be the selected clause and let clause (2) be the side

clause. The selected literal of the selected clause is p (a, Z) since it is the left-most

literal on the right-hand side. The unifier is q = { Z - b}. Removing the selected

literal gives ans (Z) and applying the unifier gives ans (b), which is added to the

derived clause set.

ans(b) . (5)

Whenever a unit clause is derived that has ans as its head symbol, it is output as

a solution. Thus, ans (b) is printed as an answer. Earley Deduction never backtracks:

it continues executing, producing answers along the way, until it terminates (if ever).

The second rule is instantiation. For this rule, we take the selected literal of the

selected clause and unify it with the positive literal (i.e., the head) of a non-unit pro-

gram clause (the side clause), giving a most general unifier q. We then apply q to the

program clause and add the result as a new derived clause.

To illustrate this rule, we use clause (4) as the selected clause to instantiate clause

(1). The unification of the selected literal p (a, Z) with the head of clause (1) p (X, Z)

gives q = { X - a}. (Technically, the two z's should be renamed to distinct names

and q should then bind these names together. In this example the result is the same.)
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Instantiating the program clause with (J'gives the new derived clause.

p(a,Z) :- p(a,Y), p(Y,Z). (6)

Continuing the inferencing, the reduction rule can be applied to clause (2) and

clause (6). We say that clause (2) reduces clause (6) and the result is clause (7):

p (a, Z) : - p (b, Z) . (7)

It is possible for a reduction or instantiation step to produce a clause that has

been derived earlier. For example, clause (6) can now be used to instantiate clause (1)

but the result has already been derived (as clause (6) itself). To avoid this redundancy,

we stipulate that a clause is not to be added as a new derived clause if it is subsumed

by an already-derived clause.

For our purposes, we will say that a first-order clause

Po : - PI> ... ,Pj'

subsumes another clause

when j=k and when every literal Pi subsumes the corresponding literal CU. The obvious

way to perform this check is to take a new candidate clause and look through all the

derived clauses, performing the subsumption check on each. This blind searching can be

quite time consuming and we will have something to say below about doing it more

intelligently.

We complete the specification of Earley Deduction by specifying how the algo-

rithm selects pairs of clauses for combination. Not every selection strategy will find

answers even when they exist, as the sequence in Figure 6.1 demonstrates.
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Program Clauses:
p (X) : - p (f (X» .
p (a) .

Derived Clauses:
ans :- p(a).
pea) :- p(f(a».
p(f(a» :- p(f(f(a»).
p(f(f(a») :- p(f(f(f(a»».

Goal
16 instantiates 14
17 instantiates 14
18 instantiates 14

(14)
(15)

(16)
(17)
(18)
(19).

.

.

Figure 6.1: An Infinite Deduction Sequence

At some step in the algorithm let clauses C1 and C2 be two clauses that can be

combined (either using inst.antiation or reduction) to produce a new clause Os. We

require a selection strategy to eventually get around to combining C1 and O2 and con-

sidering C3. Consequently, a clause at least as general as Os will eventually be added

to the derived set, since 03 itself will be added unless it is subsumed by some other pre-

viously derived clause. We call such a selection strategy fair.

Assume the program clauses are numbered from 1 to n, clause n+l is the goal

clause and new derived clauses are numbered sequentially from n+2 as they are added.

Here is the obvious fair scheduling policy:

i := n+1

repeat
for j := 1 to i -1 do

Attempt to combine clause i and clause j using

instantiation and reduction and add any new

clauses to the set of derived clauses.

endfor

i := i+1

until i > the number of clauses
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In our transitive closure example, there are several more instantiations and reduc-

tions we can perform before we reach a point where no new clauses can be derived. The

deduction quickly terminates and we show the resulting clauses in Figure 6.2. We have

included comments and, for convenience, clauses (1) through (7) are repeated. (Note

that, although a fair scheduling policy was used, it was not the one listed above.)

6.2.1.1. Discussion

In examining these clauses, note how the right-hand sides of derived non-unit

clauses represent goals that need to be solved to produce an answer. For example, the

right-hand side of clause (7) indicates that we need to solve p (b,Z) in order to com-

plete a proof. The head of clause (7) is the subgoal that motivates the proof of

P (b, Z) , namely p (a, Z). The goal p (b, Z) was encountered while trying to solve the

body of clause (6) and was produced when clause (2) reduced clause (6).

Figure 6.2: A Completed Earley Deduction

Program Clauses:
p (X, Z) :- p(X,Y), p(Y,Z). (1)

p(a,b) . (2)

p (b, c) . (3)
Derived Clauses:

ans (Z) :- p(a,Z). Goal (4)

ans(b) . 2 reduces 4 (5)
p (a, Z) :- p(a,Y), p(Y,Z). 4 instantiates 1 (6)
p(a,Z) : - p (b, Z) . 2 reduces 6 (7)
p (b,Z) :- p(b,Y), p(Y,Z). 7 instantiates 1 (8)
p(a,c) .

3 reduces 7 (9)
P (b, Z) :- p(c,Z). 3 reduces 8 (10)
p (c,Z) :- p(c,Y), p(Y,Z). 10 instantiates 1 (11)
ans(c) . 9 reduces 4 (12)
P (a, Z) :- p(c,Z). 9 reduces 6 (13)
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The algorithm has a top-down component since new goals are only produced when

needed to satisfy existing goals. The instantiation rule provides the top-down behavior:

the selected literal of a clause body drives instantiation, which recruits a program rule

to solve the literal. Thus, goals are only created when their solution is relevant in solv-

ing the goal clause.

The algorithm also has a strong bottom-up flavor since once proven, solutions are

stored and reused, rather than recomput,ed. The bottom-up behavior comes from the

reduction rule: once a unit clause is derived, it can be used to satisfy selected literals in

any number of clause bodies. For example, once a solution for p (a, Z) is produced

(e.g., clause (9)) it can be used by both clause (4) and clause (6).

6.2.2. Application of Earley Deduction to ""-Logic

The Earley Deduction algorithm can be applied to the execution of .p-logic pro-

grams by providing definitions of the reduction and instantiation rules for .p-clauses.

Adopting the notational conventions of Chapter 4, we assume that the selected clause

C1 is a quintuple <81, Sl>AI> ""I>TI> and is represented schematically as

where 1 ~ i ~ j. Literal tj is the selected literal. When the selected literal is always

the left-most literal of the selected clause's body, we have i = 1.

The side clause C2 is a quintuple <82, Sz,A2' .p2' T2> and is represented as

where k ~ j+ 1.

Reduction of ""-clauses is a special case of ""-resolution, namely when the side

clause C2 has no body, i.e., k = j+1. In such a case, we represent the side clause as
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The instantiation of program clause C2 by a side clause C1 requires that C2 be a

rule, i.e., that k > j+1. The result of thc instantiation can be given in the notation of

Chapter 4 as

(C2 n (C1{ 0-0, ... , i-I-i-I, j+I-i, i+I-i+l, ... , j-j} ))

{__O, ... , --i-I, --i+I, ... ,__j, j+I-j+I, .., , k-k}

To illustrate Earley Deduction on a 1/I-Iogic program, we have transformed our

first-order example into a similar 1/I-Iogicexample, shown in Figure 6.3. The first pro-

gram clause may be thought of as a simple grammar rule

adj --> adj, adj.

for parsing sequences of adjectives. Note how the entire query is collected and saved in

the ans goal clause. \Vhen there is morc than one literal in the query

we can use a list in the constructed goal clause:

6.2.3. Soundness of Earley Deduction

The Earley Deduction proof procedure is correct (sound) for both first-order logic

and 1/I-Iogic,in the sense that any answcr obtained implies the query is a logical conse-

quence of the program clauses. To show this, we first note that both inference rules are

sound (see below). Then, by induction on the order of the derived clauses, each derived

clause is a logical consequence of the program clauses and goal clause.
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Program Clauses:
adj(from~Pl, to~P3)

adj (from~Pl, to~P2), adj (from~P2, to~P3). (1)
adj (from~l, to~2). (2)
adj(from~2, to~3). (3)

Derived Clauses:

ans(query~Q) :- Q:adj (from~l). Goal (4)
ans (query~adj (from~l, to~2». 2 reduces4 (5)
adj(from~l, to~P3) :-

adj(from~l, to~P2),
adj (from~P2, to~P3). 4 instantiates1 (6)

adj(from~l, to~P3)
adj (from~2, to~P3). 2 reduces6 (7)

adj(from~2, to~P3) :-
adj(from~2, to~P2),
adj (from~P2, to~P3). 7 instantiates1 (8)

adj(from~l, to~3). 3 reduces7 (9)
adj(from~2, to~P3) :-

adj(from~3, to~P3). 3 reduces8 (10)
adj(from~3, to~P3)

adj(from~3, to~P2),
adj (from~P2, to~P3). 10instantiates1 (11)

ans (query~adj (from~l, to~3». 9 reduces4 (12)
adj(from~l, to~P3) :-

adj(from~3, to~P3). 9 reduces6 (13)

Figure 6.3: Earley Deduction using "'-Logic

Recall that a first-orderclefinite clanse is a disjunct.ion of literals, one positive and

zero or more negative, although it is more intuitively written using an implication whose

antecedent is a conjunction of positive literals. The query, a conjunction of positive

literals, is negated (and then rc-written as a disjunction of negative literals) and the

proof is by refutation. The contradiction is represented by the empty clause. In the

Earley Deduction algorithm, the unit clause ans ( . . .) denotes the empty clause and

also captures information about the bindings obtained in its derivation. The technique

of adding additional dummy literals to clauses to accumulate answer substitutions is

well-known (e.g. [Nilsson 1971]).
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In a traditional refutation proof, there is only one inference rule: resolution. Here

we have 2 rules, instantiation and reduction. Reduction is clearly a special case of reso-

lution, namely when one of the two clauses consists of a single positive literal. Thus, by

Theorem 8 of Ohapter 4, the reduction rule is sound for the case of 1ft-logic. A clause

produced by instantiation can also be seen to be a logical consequence of previous

clauses, since it is just an instantiated version of an axiom. (Theorem 7 of Ohapter 4

showed this result for 1ft-logic.)Thus, if the unit clause ans (. . .) is derived, the empty

clause has been produced and thus the refutation has been shown. Figure 6.4, which

shows graphically the relationships between derived clauses in a proof of ans (c) from

the earlier first-order example in Figure 6.2, may make the correspondence between Ear-

ley Deduction proofs and the resolution proof process clearer.

6.2.4. Completenessof Earley Deduction

In this section we provide a proof that Earley Deduction is a complete evaluation

strategy for first-order programs. We conjecture that Earley Deduction is also complete

for 1ft-program execution. "VIlebegin with the definition of Earley Deduction Trees.

Definition. Given an Earley Deduction, an Earley Deduction Tree is a tree III

which every node is labeled with a clause from the deduction and in which the root is

labeled with an answer clause

ans (...)

that has no body. The root and each interior node corresponds to one application of

the reduction or instantiation rule and has two children, corresponding to the selected

and side clauses used in that rule application. A leaf is either a program clause, the

goal clause, or a derived unit clause and the clause corresponding to every parent will

have been derived after the clauses corresponding to its children in the Earley
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ans (c) [clause 12]

/",001
ans (Z) : - p (a, Z) [clause 4] p (a, c) [clause 9]

jtiOOI
p (a, Z) : - p (b, Z) [clause 7] p(b,c) [clause 3]

[reduction]

/
p(a,Z) :- p(a,Y) ,p(Y,Z) [clause 6] p (a, b) [clause 2]

[instan tia tion]

/
p(X,Z) :- p(X,Y) ,p(Y,Z) [clause 1] ans (Z) : - p (a, Z) [clause 4]

Figure 6.4: An Earley Deduction Tree

Deduction. 0

For clauses produced by reduction, one child will be a unit clause, since one of the

clauses used in the reduction step must be a unit clause. Clauses produced by
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instantiation will simply be less general instantiations of some program rule. Such an

Earley Deduction tree clearly exists for every answer produced by the Earley Deduction.

Example. Figure 6.4 shows an example Earley Deduction tree based on the

deduction given in Figure 6.2. Comments are shown in brackets and, technically, are

not part of the tree. 0

Since it should be obvious which child is the selected clause and which is the side

clause, the order of the two children in the graphical presentation of Earley Deduction

tree is unimportant.

Definition. A proof tree is a tree in which each node is labeled with a clause from

the program, perhaps with a substitution applied. The root node of the proof tree is the

query clause with the answer substitution applied. Each child of an interior node is

associated with one literal in the body of its parent and each parent has one child for

each literal in its body. Consequently, every leaf is labeled with a unit clause and every

interior node is labeled with a non-unit clause. The head literal of a child matches

exactly the corresponding literal in the body of its parent. (Note that some authors

attach a substitution to each node instead of performing the substitution on the clause.)

o

Example. Using the program given in Figure 6.2, Figure 6.5 shows an example

proof tree for the answer

p(a,c).

o

The proof tree corresponds closely to a resolution-based proof. If a resolution-

based proof of a query Q exists, then such a proof tree with root labeled Q can be con-

structed.
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ans(c) :- p(a,c).

p(a,c) .

Figure 6.5: A Proof Tree

In showing that Earley Deduction is complete, we will appeal to the (refutation)

completeness of binary resolutionfor Horn clauses. Since we have not shown extended

this result to to ,p-Iogic, the completeness result for Earley Deduction using ,p-Iogic must

be qualifiedwith the words Assuming binary resolution to be refutation complete for ,p-

clauses. ..

Arter making this assumption, we must show that every answer that can be pro-

duced by any refutation proof strategy will be produced by Earley Deduction. Our

approach is to consider one such answer solution - that is, to consider a query that log-

ically follows from the program clauses. Since there is a straightforward correspondence

between proofs and proof trees, if the query is true, then a proof tree exists, although

not all proof strategies will necessarily discover it. We show how this proof tree can be

used to construct an Earley Deduction tree. Finally,we show that Earley Deduction
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will produce a proof or the answer solution that corresponds to an Earley Deduction

tree at least as general as the constructed tree.

We begin by showing how to construct an Earley Deduction tree from a proof tree.

Call the result the constructed tree. In the construction, we will associate an Earley tree

with every node in the proof tree. The construction is defined recursively, starting at

the leaves of the proof tree and working toward the root. The Earley tree associated

with the root is the resulting constructed tree.

The leaves of the proof tree are unit clauses from the program. With these, asso-

ciate one-node Earley trees consisting of the same program unit clauses.

The translation of interior nodes of the proof trees is shown diagrammatically in

Figures 6.6 and 6.7. Figure 6.6 shows an interior node of the proof tree, labeled

pO: - ql 0 ' q2 0, ... , 'in 0

with n children. The subtrces labeled q1 0 represent the Earley Deduction trees associ-

ated with each of the interior node's n children. These Earley trees are labeled with the

Figure 6.6: An Interior Node
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head literal of the root node of the ith tree, namely qi O. Figure 6.7 shows the Earley

tree to be associated with the interior node of the proof tree shown in Figure 6.6.

As an example, Figure 6.8 shows the constructed tree associated with the proof

tree shown in Figure 6.5. All interior nodes in the constructed Earley Deduction tree

correspond to reduction steps. The root of the proof tree will always be labeled with a

clause with the ans () predicate as its positive literal and the root of the constructed

tree will always be labeled with a unit ans () clause. In Figure 6.8, the root is labeled

ans (c) .

PO

/...
/

P () : - q3 () , ..., <In0
...

Figure 6.7: Resulting Earley Deduction Tree
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ans (c)

ans (c) : - p (a, c) p(a,c)

p (a , c) : - p (b, c) P (b, c)

p (a, c) : - p (a, b) ,p (b, c) p(a,b)

Figure 6.8: A Constructed Earley Deduction Tree

To conclude our proof, we must show that, given such a constructed Earley Deduc-

tion tree, Earley Deduction will produce an answer at least a general as the answer

labeling the root of the tree. The proof is by structural induction on the constructed

Earley Deduction tree.

As the basis, note that the Earley Deduction algorithm begins with a collection of

program and goal clauses containing clauses at least as general as each of the clauses

labeling the leaves of the constructed tree. For the inductive step, consider an interior

node of the constructed tree. It is labeled with a clause 03 and has two children whose

roots are labeled with clauses 01 and Oz. If the Earley Deduction algorithm has

already produced two clauses that arc at least as general as 01 and O2 then, because
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the selection strategy must be fair, these clauses will ultimately be combined to derive a

clause at least as general as °3,

Thus, we conclude that the algorithm will ultimately derive a clause which is at

least as general as the head of the goal clause labeling the root of the constructed tree.

Earley Deduction will ultimately derive the ans () clause (in this example, ans (c»)

and, consequently, is a complete evaluation strategy, assuming that binary resolution

itself is complete.

6.2.5. Termination for Datalog

We next restrict our attention to a special case of Earley Deduction. A Datalog

program is a definite clause program using first-order terms that contain no functors.

The example program from Figure (3.2 happens to meet the Datalog restriction. The

functor-free subset of first-order logic is important because it can be used to express

data and queries from relational algebra in a clear and concise way. In addition, it can

be used to express queries involving recursively defined data (e.g., transitive closure

queries), which are inexpressible in relational algebra.

Depth-first evaluation is unsatisfactory for executing such queries because left-

recursIve rules may cause non-termination and avoiding left-recursive rules may be

inconvenient. Fortunately, Earley Dcduction is guaranteed to terminate whenever the

program clauses contain no functors.

Theorem. Earley Deduction always terminates when applied to a Datalog pro-

gram. 0

Proof. Every step of the deduction adds a new clause to the set of derived
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clauses but no added clause is ever any longer than the longest program clause6. To see

that infinitely long clauses can nevcr be derived, consider the reduction and instantia-

tion rules. Reduction takes a given clause (the selected clause) and removes the selected

literal. Thus, reduction can't be uscd to make longer clauses.. Instantiation takes a

program clause and instantiates it. Since a variable can only be replaced with a single

symbol, instatiation can not be used to make a longer clause either.

There are a finite number of predicates and constant symbols appearing in the

program and goal clauses (assuming the Datalog program is finite in size, of course).

Given a finite number of symbols and some size k, there are only a finite number of

clauses of length k or fewer symbols. (Two clauses differing only in the names of vari-

abIes are considered equal, so an infinite supply of variable names does not affect this

bound.)

At any step in the deduction, there are only finitely many pairs of derived and

program clauses and there are only two ways to combine each pair to produce a new

clause. Given a newly produced clause, the subsumption check can also be done in a

finite amount of time. Thus, there is either another clause that can be derived - in

which case the algorithm will find it and add it to the derived set in finite time - or

there are no new clauses that can be derived that have not already been added to the

derived set - in which case the algorithm will halt.

Thus, since we are guaranteed to either produce a new derived clause in finite

time or halt and since we are guaranteed to never produce clauses longer than a given

bound and since there are only a finite number of such clauses, the process is guaranteed

f>By length we mean number of symbols (i.e., lexical tokens), ignoring the number of characters in any
given symbol.
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to terminate. 0

In the case of first-order terms in general, the derived clauses may be larger than

either of the two existing cla.uses. For example, when we use the clause

p(a) :- p(f(a».

to instantiate the clause

p (X) : - p (f (X) ) .

the result

p(f(a» :- p(f(f(a»).

is larger than either original clause. Thus, the procedure is not guaranteed to terminate

for programs not meeting the Datalog restriction.

6.2.6. Implementation

We produced two implementations to evaluate the Earley Deduction algorithm

and explore several optimizations, both for first-order programs and for Datalog pro-

grams. The first system implemented the first-order version of the algorithm. Based on

experience with this implementation, we concluded that Earley Deduction is not efficient

enough to evaluate full ,p-Iogic programs. We did not implement a ,p-Iogic version of

the algorithm and, instead, turned to development of the depth-first implementation

described in Chapter 5. The second system implemented a version of Earley Deduction

restricted to and optimized for the execution of Datalog programs.

In the next subsection, we discuss several indexing schemes employed in the first-

order implementation. Then, we will discuss the implementation restricted to Datalog

programs and describe several optimizations that can be applied to the Datalog case.

The first-order implementation served as a useful control for evaluation of the Datalog
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optimizations. Following the explanation of the optimizations, we present performance

results. The Earley Deduction study was done using Small talk on a Tektronix 4400 per-

sonal workstation.

6.2.6.1. Indexing the Clauses

All program and derived clauses are indexed using three different keys to avoid

searching all clauses during the subsumption check, the reduction step and the instan-

tiation step. To speed up the subsumption check, a complete key is created. The com-

plete key of a clause is the concatenat.ion of the predicate names and arities of all

literals occurring in that clause. For exa.mple, the clause:

p(X,Y) :- q(a,X,Y), r(f(X,Y».

has the complete key p-2-q-3-r-1. To determine whether a clause is subsumed (see the

definition of subsumption of clauses given ea1'lier) by any existing derived clauses, only

the clauses in the clause database with the same complete key need to be considered.

To facilitate reduction, we maintain second index of the non-unit program and

derived clauses based on the selected-literal key, which consists of the predicate name of

the selected literal and its arity. In this implementation, the selected literal is always

the first (i.e., left-most) literal in the clause body. The selected-literal key for this

clause is q-3. Each unit clause is used in an attempt to reduce all other clauses in the

database. Since the unit clause must unify with the selected literal of other clauses,

only those clauses with a selected-literal key equal to the complete key of the unit

clause need to be retrieved.

Finally, for instantiation, an index for all non-unit program clauses based on the

program-rule-head key is maintained. A program-rule-head key consists of the predicate

name of the head (positive) literal and its arity. For the clause above, it is p-2. Given
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a non-unit derived clause that we wish to use to instantiate program clauses, we com-

pute a key based on itsselected literaland arity. Then we need only consider those

clauses with an identical program-rule-head iudex.

Example. To illustratehow the indices are organized, consider the deduction

sequence shown in Figure 6.2. In Figure 6.9, the complete-key index is shown as it is

after the deduction has terminated. In presenting an index, each key is followed by the

clauses with that key. The actual clause is shown instead of a pointer to the internal

representation of the clause. In the implementation, there is only one copy of each

clause and the index entries point to those copies. Every clause is reachable from the

complete-key index.

p-2-p-2-p-2
p (X, Z) :- p(X,Y), p(Y,Z). (1)

p(a,Z) :- p(a,Y), p(Y,Z). (6)

P (b, Z) :- p(b,Y), p(Y,Z). (8)

p (c, Z) :- p (c,Y), P (Y, Z) . (11)

p-2-p-2
p (a, Z) : - p (b, Z) . (7)

P (b, Z) :- p(c,Z). (10)

p(a,Z) :- p(c,Z). (13)

p-2

p(a,b) . (2)

p (b,c) . (3)

p(a,c). (9)

ans-l-p-2

ans (Z) :- p(a,Z). (4)

ans-l

ans(b) . (5)

ans(c) . (12)

Figure 6.9:A Complete-Key Index
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In Figure 6.10, the selected-litera.l key is shown. Note that not every clause

appears in this index since only non-unit clauses have selected literals. Also note that,

in this example, all non-unit clauses happen to have the same selected-literal key.

Finally, in Figure 6.11, the program-rule-head index is shown. There is only one

program rule in this example deduction but, in general, there will be several distinct

keys, each pointing to several clauses. 0

6.2.6.2. Optimizations for Datalog Programs

In the second implementation, we explored additional optimizations to increase the

algorithm's performance while restricting it to Datalog programs. In addition to the

primary indices described above, secondary indices based on format tlector8 are main-

tained.

p-2
p(X,Z) :- p(X,Y), p(Y,Z). (1)

Figure 6.11: A Program-Rule-Head Index

p-2

p (X,Z) :- p(X,Y), p(Y,Z). (1)

ans(Z) :- p(a,Z). (4)

p (a,Z) :- p(a,Y), p(Y,Z). (6)

p (a, Z) : - p (b, Z) . (7)

p (b, Z) :- p(b,Y), p(Y,Z). (8)

P (b, Z) :- p(c,Z). (10)
p(c,Z) :- p(c,Y), p(Y,Z). (11)
p (a,Z) :- p(c,Z). (13)

Figure 6.10: A Selected-Literal-Key Index
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The format vector for a clause contains information about which argument posi-

tions are filled by constants and about variable usage in the clause. The format vector

is a concatenation of items, one item for each argument position. The character "#"

appears in the format vector in positions corresponding to arguments filled by constants.

Variables are given normalized names (from 1, 2, ...) and these numbers appear in for-

mat vector positions corresponding to arguments filled by variables. For example, the

format vector for the clause

p (a, X, Y) : - q (Y, b), r (X) .

is #-1-2-2-#-1. Note that the predicate and arity information (which is contained in

the primary keys) is not present in the format vector.

Given the complete key and format vector for a clause, all that is needed to fully

specify the clause (up to renaming of variables) are the values of the constants, which

are represented simply as a tuple.

Example. Figure 6.12 shows the representation of the clauses in the deduction of

Figure 6.2. 0

In a database with more than a few clauses that are equal up to constant values

(and renaming of variables). this rather complex data representation saves space. Since

many clauses with identical keys and format vectors are generated during a typical

Datalog execution, this representation pays off. We will discuss performance in more

depth below.

The main optimization for Datalog, however, is compiling the reduction, instantia-

tion, and subsumption steps. When a new clause is generated, it becomes necessary to

compare it with all existing clauses to see if it is subsumed by another existing clause.

We call such a newly generated clause the candidate clause. If it is not sumbsumed, we
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Figure 6.12: The Representation of a Datalog Program

must then compare the candidate clause to every existing clause to see what new clauses

can be derived from it using the reduction or instantiation rules. Given a candidate

clause, we generate a sequence of "instructions" that can be "executed" to run through

all existing clauses and perform the subsumption check quickly. Then, we generate a

second sequence of "instructions" to run through all existing clauses and derive any new

clauses using the reduction rule. Finally, we generate a third sequence of "instructions"

p-2-p-2-p-2
#-1-#-2-2-1

< a a >
< b b >
< C C >

p-2-p-2-p-2
1-2-1-3-3-2

< >

p-2-p-2
#-1-#-1

< a a >
< b b >
< C C >

p-2
#-#

< a b >
< be>
< a c >

ans-1-p-2
1-#-1

< a >

ans-1
#

< b >
< C >
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to run through the existing clauses and derive any new clauses by instantiation.

Consider t.he subsumption check first. We must look through the primary indices

and, for each, we must look through all format vectors. Associated with each format

vector is a set of tuples S. Each tuple represents one clause. We perform one compila-

tion for each set S and then execute the "instructions" once for each tuple. Since all

the tuples (clauses) in S have the same key and same format vector, the subsumption

check can be done for all the tuples in S at once by abstracting away from the actual

values of the constants. The result of such the compilation is a sequence of equality

checks, which can then be evaluated quickly for each of the tuples in S.

To compile the subsumption check, we use an algorithm that, given two clauses,

determines whether the subsumption relation holds. One of these clauses - the candi-

date clause - is known fully but t.he other clause will not be known fully until "run

time". Instead, the compilation uses a symbolic clause to represent any clause in S. We

do not know the exact values of the constants, but we know everything else about the

clause. Thus, when the value of one of these constants must be examined in the sub-

sumption check, we defer the check until run time.

Example. Let the candidate clause be

p (a, X, Y) : - q (Y) .

and let all the clauses in S have the form

p(#, #, X) :- r(Y, #).

For clarity, we use a symbolic clause containing the symbol #. In fact, the compilation

step is given only the complete key p-3-r-2 and the format vector #-#-1-2-#. Regard-

less of the values of the constants, the candidate clause clearly will not be subsumed by

any clause in S. We don't need to examine the individual tuples. 0
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Example. Let the candidate clause be

p (a, b , c) : - q (b) .

and let all the clauses in S have the form

We have sequentially numbered the constants in S to identify their positions in the

tuples < #1 #2 >. v..re first notice that #1 must be a in order Cor the candidate clause

to be subsumed. This equality check is deferred. Likewise, the check #2 = c is deCerred.

Finally, we note that the substitution { Z +- b } is consistent with the subsumption

order. The result oCthe compilation is the set of instructions

That is, if S contains the tuple

< a c >

then the candidate clause is subsumed by an existing clause and need not be added.

Mter compiling, we "execute" these 2 instructions once for every tuple in S. Testing

these two equalities is much faster than performing a full subsumption check. 0

In the case of a reduction step, we will use the candidate clause (a unit clause) to

reduce all of the non-unit clauses in S. To perform all these reductions at once, we

must perform the reduction of a symbolic clause, i.e., a clause in which the actual con-

stant values are unknown and are represented by ~h at compile time.

There are two cases where these values are needed: when we compare the value to

another value and when we use the value in a substitution. As before, we will defer

value checking until run time, when we get the values from a tuple in S. For substitu-

tions, we don't need the actual value. We can just use the symbolic #1 value.
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When we construct the clause resulting from the reduction step, we end up with a

clause that may contain both actual values (from the candidate clause) and symbolic

values (from the symbolic clause). In any case, we can determine the complete key and

the format vector of the result. Then, given the actual values of the constants at run

time, we can easily build a tuple to represent the result clause.

Example. Consider the candidate clause:

q(a, b, b, U, U, v, V).

This clause must be used to reduce all clauses with a seven-placed predicate named q

as the selected literal. To find these clauses, we first use the selected-literal index,

which will retrieve all those clauses with complete keys of the form :D-:D-q-7-x-x One

such key is p-3-q-7-r-3 and it will be used for this example.

Associated with this key are several format vectors. We will look at

1-2-#-#-2-2-#-#-3-4-4-#-2

For example, the clauses

would be represented by th(' tuples

< a bed e >
< a ace e >
< a b d de>
< cab b d >

These tuples comprise S. Call the tuples (clauses) in S the target tuples (clauses).

The compilation phase may fail, in which case we know that none of the target

tuples unify with the candidate tuple, without ever looking at any of the target tuples.

p (W, X, a) :- q(b,X,X,c,d,Y,Z), r(Z,e,X).

p (U, V, a) :- q(a,V,V,c,c,Y,W), r(W,e,V).

p (W, U, a) :- q(b,U,U,d,d,Y,Z), r(Z,e,U).

p(Z,Y,c) :- q(a,Y,Y,b,b,W,X), r(X,d,Y).
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In this example however, the compilation succeeds producing the following "instruction"

sequence:

These instructions say that any tuple with the constant a in the second position and

with the third and fourth positions equal represents a clause in which the selected literal

unifies with the candidate clause.

For every such tuple we must cOlls(,ruct a new derived clause. By removing the

selected literal from the ta.rget. clauses, we see that the derived clause will have the key

p-3-r-3. The compilation pha.se also produces a format vector describing the new

clauses (1-#-#-2-#-#) along with the following information telling how to construct

the new derived tuples from the target tuples:

#1 +-
#2 +-
#3 +-
#4 +-

Each tuple has 4 components and these "instructions" tell what values to use. On the

right-hand sides, #1 and #5 refer to constant values from the target tuples.

After the compilation is complete, the equality comparisons are evaluated for each

of the target tuples. The second and fourth tuples satisfy them. The following derived

tuples can then be constructed using the tuple creation information:

< b
< b

a e b >
c db>

These tuples represent the desired clauses:

p(X,b,a) .

p(X,b,c)

r(Y,e,b) .

r(Y,d,b) .
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o

The procedure to compile a number of instantiation steps is almost identical to

the compiling of reduction steps. Given a candidate clause and a target set S represent-

ing a number of clauses identical up to constant values, the unification and substitu-

tions are performed using the symbolic constant values, #1' The result is again a

number of equality checks and a sequence of instructions showing how to produce a

tuple representing a derived clause, given a target tuple.

Example. Given the candidate clause

p (X, Y) : - q (X, a, X, b), r (c, Y).

and a target set S of clauses of the form

the following equality checks result

The derived clauses are of the form

The tuples representing the derived clauses are constructed from the target tuples as

follows:

o

#1 -+- #1
#2 -+- #2
#3 -+- #3
#4 -+- b
#5 -+- #4
#6 -+- b
#7 -+- b
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These operations comparmg and manipulating tuple values - are available in

relational algebra [Maier 1983]. Although our implementation did not use relational

operators, and creating new tuples representing reduced clauses for any tuples found to

satisfy the comparisons can always be expressed using standard relational operators.

Example. Consider the example above illustrating the the compilation of the

reduction step. The compiled instructions included the equality checks

and the instructions for building the result tuples

#1 +-
#2 +-
#3 +-
#4 +-

If we label the positions of the target tuples with the attribute names A1.~. . . . As and

call the set of target tuples the relation s, the set of tuples representing the derived

clauses can be represented (using the notation of [Maier 1983]) as:

o

Earley Deduction will terminate for Datalog programs even if the subsumption

check is relaxed to an equality check. In that case, a new tuple is not added to the

derived set if it is already there. By using a hash table index for the individual tuples,

this check can be done in essentially constant time. We will save time when the time

saved by using the equ~lity check outweighs the additional time associated with process-

ing extra clauses that would have been deleted by the full subsumption check. We

implemented this optimization to see whether it saved time and our results are given in
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the next section.

Another optimization we implemented involves bat ching up the subsumption

checking. In the course of a reduction (or instantiation) step, a number of clauses with

identical keys and format vectors will be created. The subsumption check must be per-

formed on each of these before it can be added to the derived set. By delaying the sub-

sumption checking until one of these tuples is referenced, a number of very similar com-

pilations can be replaced with a single compilation. Then the subsumption check for all

of the clauses is performed at one time by repeatedly executing the compiled instruc-

tions.

6.2.6.3. Experimental Evaluation of the Optimizations

All of the optimizations described above were implemented and a several experi-

ments were performed to determine whether and how much each optimization speeded

up the Earley Deduction algorithm.

In the first experiment, the program in Figure 6.13 was used. The figure shows

only one p unit clause symbolically; there were actually several p clauses. We varied

the number of p clauses from 3 to 40, choosing the constants a1 and aj randomly from

the set

s (X, X).
s (X, Y) : - p (X, U), s (U, V), P (Y, V).

p(ai' aj).
s(X, Y).

Figure 6.13: A Test Program
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For each such program, we plotted the time required for the first-order version of the

algorithm to terminate. (Since all our programs were Datalog programs, all deductions

terminated.) For a given number of p clauses, we actually generated several programs,

and ran each program to give a range of running times. These data are given by the

upper curve (labeled Without Data/ou Optimi=ations) in Figure 6.14. The vertical thick-

ness of the upper curve reflects the range of running times observed.

The lower curve (labeled With Data/ou Optimizations) shows the improvement real-

ized in the second implementation of the algorithm, optimized for Datalog programs as

described above. The same programs used to generate the upper curve were used to

generate the lower curve.

The second experiment used the program in Figure 6.15. Again, we varied the

number of unit clauses p and, for each number, generated several programs by ran-

domly selecting constant values from a set of 7 constants. The times to complete the

deduction by both the first-order version of the algorithm and by the Datalog version of

the algorithm are plotted in Figure 6.16.

In the third experiment, we asked whether substituting the equality check for the

full subsumption check in the Datalog version improved the running times. We used the

program given in Figure 6.15, again randomly choosing the ai and aj from a set of 7

constants and varying the number of unit clauses. We also asked whether batching up

the subsumption checking (i.e., doing several subsumption checks at once, rather than

checking each newly derived clause at a time) improved execution time. The results are

shown in Figure 6.17. Although the baseline curve (labeled Basic Data/og Optimization)

is quite lumpy - due to wide variation in the difficulty of the sample programs - the
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Figure 6.14: The Execution Times for Figure 6.13
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s(X, Y) :-
s (X, Y) :-

p(ai, aj).
: - s (b, Y).

p(X, Y).
p(X, Z), s(Z, Y).

Figure 6.15: Another Test Program
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offsets of the other two curves is fairly small and consistent.

Based on these three experiments, we can draw several conclusions about the Ear-

ley Deduction algorithm. First, for first-order programs that can be executed using a



209

SS 1= nuaber of .(a.b) elaua.a

Y =t1a. in aeconda

Bade Datalog Optiaization

so

With EquaUty O1ecking

4S

With Batc:h8ct SubauapUon O1ecking

40

3S

30

30

1S

10

S

o

Figure 6.17: Analysis of Subsumption Checking

top-down strategy6, Earley Deduction is not nearly fast enough to compete with typical

Prolog interpreters, nor do we belieye it can be made fast enough. Its usefulness is in

executing logic programs without concern for the order of the program clauses (or

'That is, when a top-down strategy will produce all desired answers and will not cause non-
termination.



210

literals within the clauses) or when all solutions are wanted in the face of possible non-

termina tion.

Second, the basic Datalog optimization (representing the clauses as tuples and

compiling the reduction step, the instantiation step and the subsumption check),

resulted in a significant speed-up over the first-order version of the algorithm - over 10

times for some of the small programs tried. Furthermore, the improvement realized

from the Datalog optimization increases as the length of the deduction grows, since

compiling has a greater benefit the more times the compiled instructions are executed.

Finally, replacing the subsumption check with the simpler equality check only

speeded up the algorithm a little. Replacing the equality check by the batched sub-

sumption check improved performance a little more. Since these two optimizations

resulted in only small increases, it is unclear whether a significant improvement would

be obtained for other programs. In some cases, the difference in running time between

the different optimizations was less than the difference in running time between different

programs within one version of the algorithm.

Our experiments were performed entirely within the Smalltalk environment. Using

the representation of Datalog clauses described above, it would be fairly straightforward

to store the tuples in a traditional relational database. The compilation and overall

system organizati?n would comprise a front-end and would access the tuples using only

the standard relational operators. In this way, the system could be enhanced to handle

very large Datalog programs. The implementation and empirical evaluation of such a

hybrid system (vis-a-vis a Prolog interpreter) is one direction for further research.
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6.3. Extension Tables

In this section, we describe an evaluation strategy S.W. Dietrich and D.S. Warren

introduced for executing first-order logic programs and discuss its application to "'-logic

[Dietrich and Warren 1986]. The method, which can be viewed as a generalization of

the use of memo functions, uses extension tables to save results and, thus, avoid the

recomputation of answers. In summary, the idea applies the principles dynamic pro-

gramming to the execution of logic programs.

Let us first review how memo tables are used in the context of functional program-

ming by considering the evaluation of some function f. In addition to the code to com-

pute the function, a table is also associated with f This table is initially empty. The

first time f is called with some argument x, the function is evaluated as usual to produce

a result y. Before returning y to the caller, a single entry is added to the table associ-

ated with f. Each table entry is a pair of values. An entry is added for this invocation

of f containing both the argument x and the computed result y. The table is indexed on

the argument field.

Then, on a subsequent call to f with argument x', we first check the table. If the

table contains an entry for x', we need not compute the corresponding result. Instead,

we just return the result stored in the table.

How do memo tables affect the running time of fi Consider, for example, the fol-

lowing functional definition of Fibonacci numbers:
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fib (X) =
if X=l then

1
elseif X=2 then

1
else

fib (X-1) + fib(X-2)
endif

Without the memo table, fib requires exponential time to execute, because each level

of recursion multiplies the number of invocations by two. With a memo table, the first

subroutine call within fib (to fib (X-1») will compute all values of fib (1)

fib (X-2) and save them in the table. The second caB (to fib (X-2) can then be

satisfied by a table lookup. Thus, with the table, fib executes in approximately linear

time, assuming a hash table index for the table.

When the concept of memo tables is applied to logic clauses instead of functions,

the tables are called extension tables since they store extensions of predicates. One

extension table is maintained for each predicate. The several clauses comprising the

predicate's definition are all associated with this one table.

Let's consider what happens when we maintain an extension table for some predi-

cate p. Let Xrepresents the vector of arguments X, Y, ... , Z to predicate p. When p is

called with arguments X,we will check the table associated with p for an entry indexed

by X. Assume that no matching entry exists yet. We will then compute the answers for

p(X) and store them in a newly created table entry. These answers are instantiated

versions of the arguments X. In general, there will be many answers for anyone argu-

ment Xvector, which we will denote Xl>Xz, ... The table entry will then contain both

the original arguments, X, and all the solutions Xl,~, ... . For simplicity, assume that

there are a finite number of solutions, so they can be computed finitely and stored in a

finite table entry. (Don't worry, we will deal with this assumption later.)
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To reduce the size of the extension tables and to reduce the number of redundant

answer solutions returned, when adding a new solution the algorithm first checks the

solutions already in the table and elides duplicate solutions.

Example. Consider the following program:

Evaluation of the query

: - p (a, U, V).

results in the following extension table entry for p.

p (a, U, V):
[ p(a, d, c), p(a, L e), p(a, g, c) ]

o

After exhaustively computing the extension of p(X), each solution Xi can be

returned in turn to the invoking process. On subsequent calls to p (say with arguments

X'), we first check the extension table for p for an entry indexed by X'. If one exists, we

need not recompute the solutions; we can just return the solutions stored in the table.

We call this borrowing an existing entry.

Actually, when we check the extension table to see if we have already called p

with the current arguments X',we don't need an exact match. If we have previously

created an entry for arguments X and if X is more general than X', then we have

already solved a more general problem, of which the current arguments represent a spe-

cial case. Vve do not need to redo the work; we can make use of the solutions already

computed. (By X more general lhalL X', we mean that every argument of X is more

p(X, y, Z) : - q (Z, y, X).
q(c, d, a).
q(e, La).
q(c, g, a).
q (b , a , b).
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general than the corresponding element of X'.)

But we cannot return all the solutions for p(X). Some of them may not even be

subsumed by X' and a solution is always subsumed by the arguments. We can return

any solution Xi in the table entry for X that is subsumed by X'.

Example. In our example, a call to evaluate

:- p(a, U, c).

can use (borrow) the table entry above. The answers

p(a, d, c)
p(a, g, c)

can be returned as solutions, but

p(a, f, e)

cannot be, since it is not subsumed by p (a, U, c). 0

The extension table algorithm as described so far has a couple of problems. First,

we assumed that there were a finite number of solutions to goal p(X): there may be an

infinite number. Even if there are only finitely many, we may be interested in just the

first one or two solutions.

To avoid computing more than necessary (and perhaps failing to terminate and

thus missing other answers that could be produced), the algorithm just computes the

first (or next) solution. This solution is then added to the table and returned. The

table entry is marked as incomplete to indicate that there may be additional solutions.

If the first solution turns out to be inadequate and backtracking forces us to find

another answer, the incomplete computation can be resumed to produce another solu-

tion. The table entry is extended with this new solution and it is returned. If, instead,

no more solutions can be found, the table entry is marked complete and the call to p
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fails.

Second, we tacitly assumed that there was no interaction between calls. When p

was called, we assumed the algorithm backtracked it through all solutions until the

table entry was complete. Only then would other calls to p occur. In practice, we may

encounter a call to p(X') before we have completed building the table entry for p(X),

where X' is an instance of X. If p is defined recursively, the second invocation may

occur while we are trying to compute a new solution for p to be added to the table.

Whether the call is recursive or not, we can use any existing solutions in the table entry

before trying to compute another entry directly. The prescription for the call to p(X') is

to use all the solutions currently in the table entry created by the call to p(X) that are

instances of X. If, on backtracking, more solutions are required and the table entry is

marked incomplete, we must then compute the answers directly.

There are two variations of the algorithm for handling this situation: we can com-

pute another solution to the query p(X') or we can compute another solution to p(X).

Since it is p(X') that we are interested in, it makes sense to compute solutions for it.

Attempting to compute another answer for the more general p(X) could get us into

non-termination, while computing another solution for p(X') might not.

Example. Consider the following program:

r (U, V)
p(c, b,
p (a, d,
p(g, X,
p (c, e,
q (d) .
: - r (U,

:- p(X, y, Z), q(Y), p(Z, U, V).
d) .
c) .
Y) : - p (g, y, X).
f) .

V) .

For the first call to p in the body of the r rule, all three arguments are uninstantiated.

We create a table entry indexed by p (X, y, Z), find the first solution p (c, b, d),
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add it to the entry, and return it. Because q fails, we backtrack, find the second solu-

tion p (a, d, c), and add it to the table entry. This time q succeeds and we call a

new goal p (c, u, V). We can use the table entry indexed by p (X, Y, Z) to print

the first solution r (b, d). On backtracking, the second solution p (a, d, c) is not

an instance of the goal p (c, u, V) so it is skipped. At this point we have exhausted

the table entry for p (X, y, Z) but need more solutions. Attempting to find another

solution for p (X, y, Z) would then use the recursive rule and get into an infinite

loop. Attempting to find another solution for p (c, U, V) results in finding another

answer r (e, f). 0

However, since we have done no actual computation for p(X') (in the example,

p (c, U, v»), there is no backtrack point to return to! The procedure must walk

through solutions already obtained (such as p (c, b, d») until a novel solution is

found. This new solution cannot be added to the table entry, since the table entry is for

p(X) not p(X'). Since we have to compute all the previously returned solutions for p(X')

anyway, a new table entry indexed by p(X') can be created. The recomputed solutions

are added to this entry and the first novel solution is returned. The other option - to

compute more entries for p(X) - is problematic since the current context is p(X') not

p(X). To take this approach, each incomplete table entry is augmented with an addi-

tional field. After each solution of p(X) is found, the extension table procedure stores a

continuation in the table entry, which can be resumed to produce additional solutions as

necessary. The additional work to compute p(X) rather than p(X') must be done even-

tually if we are searching for all answers anyway (and the program is pure in the sense

that it does not contain cuts, etc.). Oonsequently, the second option, while more

difficult to implement, is preferred.
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We conclude the description of the extension table algorithm by looking at one

special case for which we can detect infinite looping. Consider what happens when we

are computing solutions for p(X). Assume we have exhausted any solutions stored in the

table and have turned to the continuation to find the next solution. Perhaps, in the

course of finding this solution, we call p(X) itself and again we turn to the table entry

just mentioned. After exhausting all solutions, we are left with the continuation to

compute the next entry. But, it is that continuation that we are currently executing!

An attempt to use it again will produce an infinite loop. By adding a flag to each table

entry, this case of non-termination can be detected and avoided.

Example. Consider the following program:

pea, b).
P (X, Y) : - p (Y, X).
: - p (U, V).

We first create a table entry for the goal p (U, V), find a solution p (a, b), and store

it in the table entry along with a continuation. When the user requests backtracking,

we resume the continuation which calls a new goal p (Y, X). We begin by borrowing

the previously created table entry and find the solution p (a, b). At this point, we

suspend the goal p (Y, X). In the appropriate activation record, we store an indica-

tion that, upon backtracking, we should return the second solution in this table entry (if

there is one) as the next solution to p (Y, X). We then return this answer to the cal-

ling goal p (X, Y). This leads to a new solution for p (X, Y) - namely p (b, a) -

which we store as the second solution ill the table entry for p (X, Y) and return.

When the user invokes backtracking to find a third answer, we again resume the

continuation to find another solution to p (X, Y). We immediately backtrack to the

goal p (Y, X). Since a new solution p (b, a) has appeared in the table entry, the
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goal p (Y, X) returns it. But, since this leads to no new solutions for p (X, Y), we

again backtrack to the goal p (Y, X). Remember that p (Y, X) was using a bor-

rowed table entry which it has now exhausted. So p (Y, X) looks to the continuation

for another answer. But this continuation is currently being executed.

If we were to copy the continuation and restart the second copy, it would only do

what the first copy did, namely reach this continuation and try to restart it. Instead,

the extension table algorithm can either report back to the user that looping was

detected in the use of a recursive rule or backtrack even further in search of another

solution. 0

Applying the extension table algorithm as described to t/J-Iogic is straightforward,

since the only operations being performed are table lookup and modification and com-

paring goal literals to each other to check for subsumption. The indexing of the exten-

sion tables is the only thing that is not completely straightforward. For example, a

table entry for the goal t/J-literal

p ( ... )

might be useful in providing answers for an apparently unrelated goal t/J-literal

q ( ... )

But this problem exists in any implemcntation when a clause must be retrieved from the

database to solved a given goal t/J-literal. In our depth-first implementation, we solved

it by using maybe sets (see Chapter 5). Maybe sets could also be used in indexing exten-

sion table entries.

Dietrich and \Varren claim that their extension table algorithm is complete for

Datalog programs. We conjecture that, whcn an extension table is maintained for every

predicate, the procedure as described above is complete for the more general cases of
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first-order logic and 1/I-logic. However, the algorithm is complex and completeness is nei-

ther obvious nor proven. Dietrich and Warren discuss a variation, called ET*, that

combines aspects of extension tables wit,h the staged depth-first search strategy (to be

discussed in the next subsection). The completeness of ET* follows from the complete-

ness of the staged depth-first search strategy.

6.4. Staged Depth-First Search Strategy

In [Stickel 1984], Mark Stickel describes a complete evaluation strategy he calls

8taged depth-first search 8trategy that is used in his Prolog Technology Theorem Prover.

The idea is much simpler than Earley Deduction and the extension table algorithm.

First, a depth bound d is maintained during the search for a proof. The proof tree is

not allowed to exceed this depth. (A tree's depth is the length of the longest branch

from root to leaf.) If the depth of a proof tree exceeds d, that branch of the search tree

is pruned and other, shallower proofs are sought.

First, the depth bound d is initialized to some constant. Then, all proofs of depth

less than d are sought. This process terminates after any and all such proofs are found.

Then, the depth bound is increased (say to d+l) and the process is repeated. Clearly,

every proof will ultimately be found, since d will ultimately exceed the depth of every

proof tree. And obviously, when one pass of the algorithm searching for proofs of depth

less than some value of d, terminates without being cut off by the depth-bound, it is

clear that the entire procedure can be terminated. Since the depth bound was not

reached, there are no more proofs to be found.

The staged depth-first search strategy can be adapted to the evaluation of 1/I-Iogic

programs very simply. Given a depth-first execution environment for t/I-Iogic, such as

the systems described in Chapter 5, all that needs to be done is to maintain the depth
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of the current proof. This depth cnn be stored in an additional field of the activation

record. \Vhen each activation record is allocated, its depth is set to 1 greater than the

depth of the calling activation record (see Chapter 5), and is checked against the

current depth bound.

The drawback of the staged depth-first search strategy is that the search with the

depth bound set to d repeats all the work of the previous pass. Stickel shows that, with

a sufficient branching factor in the search space, the work associated with depth d+l

will greatly exceed the work for depth d. Unfortunately, some proofs may include sub-

stantial amounts of linear reasoning in which the branching factor is 1.

6.5. OtherEvaluation Strategies

There is other work on evaluation strategies for first-order logic program execution

that may be adapted to the execution of ""-logic programs. Although we have not

explored these connections, we mentioll several of these efforts next.

Jeffrey Ullman and students have developed the NAIL! system for the execution of

functor-free programs [Ullman 1984, 1985]. Summarizing, the system compiles queries

by building a rule/goal graph describing the clauses and their interconnectivity. The

system then analyses this graph trying to find a relational expression that effectively

computes the answer relation. The desired relational expression can be produced if

nodes in the tree can be captured and a number of capture rules are described. L. J.

Henschen and S. A. Naqvi also describe an algorithm for compiling queries in the

functor-Cree subset of logic [Henschen and Naqvi 1984].

D.E. Smith, M.R. Genesereth and M.L. Ginsberg define a recursive inCerence as an

infinite sequence of goals containing repeated similar subgoals. By examing goal

sequences, certain portions of the search space can be identified as unable to produce
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any new answers. They present a number of theoretical results about where the search

for a proof may safely be pruned [Smith, et al. 1986]. In addition, they also present a

number of provocative examples while discussing infinite inference chains and techniques

for dealing wit.h them.

6.6. Discussion of Evaluation Strategies

\Ve have described Earley Deduction (including results on soundness, completeness,

termination for Datalog, and implementation), the extension table algorithm, and the

staged depth-first search strategy and have mentioned other evaluation strategies.

Research in evaluation strategies, particularly for the limited Datalog case, is an active

area. Many of the execution strategies developed for first-order logic can be extended

directly to Inheritance Grammars, since they make no assumptions about the underlying

logic that are not satisfied by 1/I-Iogic. Which strategies are most appropriate for exe-

cuting Inheritance Grammars?

In the Chapter 5, we discussed our implementation of 1/I-Iogicwhich is based on the

depth-first search strategy. This strategy is fast but incomplete and so the implementa-

tion is an incomplete one. We have not attempted to evaluate complete strategies; we

can only speculate and leave the question open.

Earley Deduction is, in some sense, the purest of the strategies. Because of its sim-

plicity, it may be most amenable to hardware/parallel implementations and may hold

the most potential. As it stands, however, it is too costly to be of more than academic

interest.

The staged depth-first search strategy is probably the easiest to implement but,

because it repeats work, will probably be outperformed by Earley Deduction and the

extension table algorithm. For grammatical parsing applications, the extension table
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algorithm may be the most effective of the complete strategies for two reasons.

First, the extension table algorithm has some flexibility the others do not. For

many trivial predicates, it is much faster to recompute results rather than to save

answers and try to reuse them, cspccially whcn the predicates have very large exten-

sions, when the search trees are very shallow, and when a fast depth-first search stra-

tegy can be used. Only for a few predicates will it pay to save partial results. The

extension table algorithm can accommodate this by only building the tables for nasty

predicates. The grammar writer might, for example, flag certain problcm predicates for

extension tables in the process of tuning a grammar for faster execution. (It would be

nice if nasty predicates could be identified automatically, but it is unclear how this

could be done. Perhaps one could devise a nastiness metric based on number of clauses,

number of literals, recursiveness, and the nastiness of called clauses.) Second, it may be

easier for the grammar writer to form a mental model of how the algorithm works, thus

enabling him debug or modify an existing grammar more effectively.
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Conclusions and Future Directions

This dissertation introduced a new formalism, Inheritance Grammar, in which to

express grammars for Natural Languages. We provided a formal semantics based on 1/J-

logic, described our implementations, discussed other implementation techniques and, in

Appendix 4, presented an extended English Grammar using the Inheritance Grammar

formalism. What next?

First and foremost, logic-based and unification-based formalisms need to address

the issue of negative and disjunctive information in greater depth. For example, we

would like to write a term

to mean "those p's that do not have q as a value of feature f." And we would like to

write

p (f=9{q,r,s})

to mean "those p's that have q, r, or s as a value of feature f." These changes to

the formalism open up a whole new can of worms in the semantics, which we have not

addressed. While additional work could surely be done to polish the formal semantics of

1/J-Iogicas it now stands, we feel that revising the definition of 1/J-Iogicto encompass

negation and disjunction would be a more fruitful course.

A second research approach is to do some "field testing" of Inheritance Grammar

by incorporating it into a production-scale Natural Language understanding system.

Our execution environment is stable and considered complete but, under heavy usage,
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the implementation of the v-interpreter might become an important issue. For example,

we do not know whether it would be more profitable to invest additional work on our

system in increasing execution speed or in adding new functionality (e.g., adding more

built-in predicates).

Well... anyway...

The

End
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Appendix 1:

An Example Grammar

This appendix includes a sample IG grammar, called demoGrammar. ig, which is

discussed in Chapter 5. This grammar is designed to illustrate the similarity of Definite

Clause Grammars and Inheritance Grammars and how easily taxonomic reasoning can

be incorporated into an existing DCG by using an IG.

j********** syntax section **********j.

s(Predicate) -->

np(Subject) ,vp (Subject, Predicate, singular) ,
{addFact(Predicate)}.

s(Predicate) -->

[did],
np(Subject) ,
vp(Subject,Predicate, infinitive) ,
{yes No (Predicate)}.

vp(Subject,Predicate,VForm) -->
[V],{verb(V,Verb,VForm),

verbMeaning(Verb,Predicate,
[np(Subject) IComplements])},

vpComplements(Complements) .

vpComplements([np(Complement) IComplements]) -->

np(Complement) ,

vpComplements(Complements) .

vpComplements([]) --> .

vpComplements([in(Complement) IComplements]) -->
[in] ,

np(Complement) ,
vpComplements(Complements).

np(N) --> [N],{properNoun(N)}.
np(Predicate) -->

[A],{article(A)}, [N],{noun(N,Predicate)}.
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dcgConnect(W, [WIL],L).

/********** semantic processing section **********/

yesNo(Predicate) :- knowledge(Predicate),

write("»> Yes."),nl.

yesNo(Predicate) :- not(knowledge(Predicate»,
write("»> No.").nl.

addFact(Predicate) :-
assert(knowledge(Predicate»,

write("»> Okay.").nl,
generateSentence(Predicate) .

/********** generation grammar **********/

generateSentence(Predicate) :-
genS (Predicate.S. []),

write ("»>"),writeList(S),write(".").nl.

writeList([]) .

writeList([XIL]) :- write(" ").write(X),writeList(L).

genS (Predicate) -->
{verbMeaning(Verb,Predicate.

[np(Subject) IComplements]),

verb (V,Verb, singular)},

genNp(Subject),

[V] .

genComplements(Complements) .

genComplements([np(Complement) IComplements]) -->

genNp(Complement) .

genComplements(Complements) .

genComplements([].L,L) .

genComplements([in(Complement) IComplements]) -->

[in].

genNp(Complement),

genComplements(Complements) .

genNp(N) --> {properNoun(N)}, [N].

genNp(Predicate) -->
{noun(N.Predicate).article(A)}, [A], [N].
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/********** lexicon **********/

properNoun(person) .

properNoun(course) .

article (a) .

noun (X:grade,X) .

verb (gave, give, singular) .

verb (give, give, infinitive) .

verbMeaning(give,

take(S,C,F,G) ,

(np(F:faculty),np(S:student),

np(G:grade) ,in(C:course»)).

/********** IS-A hierarchy **********/

{a,b,c,d,f} < grade.

{maier,kieburtz} < faculty.

{smith,jones} < student.

{student, faculty} < person.

{cslOO,cslOl} < course.

/********** knowledge base **********/

knowledge (take (smith,cslOO,kieburtz, a» .

knowledge (take (jones,cslOO,kieburtz,c» .

knowledge(take(jones,cslOl,maier,d».
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Appendix 2:

Implementation Size Statistics

The following table lists the source files comprising the two IG interpreter imple-

mentations in Smalltalk-80, along with statistics about thier sizes.

File Name lines bytes
--------------------------------------------------------------------------------------

Inheritance-Grammar.st
System-Modifications.st
Tokenizer.st

Login.st
Lattice.st

totals

3050
41
219
3058
1845
8213

110,793
1,421
8,237

104,476
59,892
284,819

The following table lists the classes comprising the two implementations along

with (1) the number of instance variables, (2) the number of class variables, (3) the

number of instance messages, and (4) the number of class messages.

inst class inst class
class vars vars methods methods
--------------------------------------------------------------------------------------------------------------

Lattice 11 3 65 2
Latticeltem 11 0 27 0
LatticeView 0 0 1 1
LatticeController 0 0 16 0
Tokenizer 3 0 7 6

System 0 0 0 3
AR 9 0 18 0

NewProgram 9 0 94 2
NewPsiTerm 3 0 14 0
ParseTerm 4 0 16 4
PsiTerm 4 6 26 10
Literal 3 0 10 3
Clause 2 0 10 2

Program 12 0 51 2
Chunk 6 0 13 1
ChunkModel 2 1 5 3
ChunkView 0 0 1 2
ChunkController 0 2 8 1
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Dialog 1 0 2 0

DialogView 0 0 1 2

DialogController 0 2 2 1

LogoView 0 1 1 5

LogoController 2 0 6 0
totals 82 15 394 50



- .. - -..
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Appendix 3:
Comparison of P A TR-II and IG by Example

This appendix contains two grammars to illustrate, by example, the similarities

and differences between the Inheritance Grammar formalism and the PATR-II formal-

ism. The first is a PATR-II grammar that was copied from the PATR-II literature

[Shieber 1985a, Appendix A.3]. The second is an Inheritance Grammar that describes

the same target language as the first.

P ATR-II Grammar

;;; -*- Mode: PATR -*-

...====================================================.. ,
" , Demonstration Grammar Three
" ,

" , Includes: subject-verb agreement
complex subcategorization
logical form construction

" ,

" ,
...===========================================--=--======" ,

Parameter: Start symbol is S.

Parameter: Restrictor is <cat>
<head form>.

Parameter: Attribute order is cat lex sense head

syncat first rest
form agreement
person number gender
trans pred argl arg2
s np vp vp_l vp_2 vp_3 v.

;;;====================================================

" , Grammar Rules
...----------------------------------------------------",



Rule {sentence formation}

8 - NP VP:

<8 head> = <VP head>

<8 head form> = finite

<VP syncat first> = <NP>

<VP syncat rest> = end.

Rule {trivial verb phrase}

VP -V:

<VP head> = <V head>

<VP syncat> = <V sync at>

Rule {complements}

head> = <VP_2 head>

syncat first> = <X>

syncat rest> = <VP_l
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" ,

;;;====================================================

syncat>.

Lexicon
;;;====================================================

Lexicon root.

Word uther:

<cat>
<head
<head
<head
<head

Word cornwall:

<cat>
<head
<head
<head
<head

Word knights:

=NP

agreement gender> =

agreement person> =
agreement number> =
trans> = uther.

= NP

agreement gender> =
agreement person> =
agreement number> =
trans> = cornwall.

<cat> = NP

masculine
third
singular

masculine
third

singular



Word sleeps:

Word sleep:

Word sleep:

Word storms:

<head
<head
<head
<head

agreement gender>

agreement person>
agreement number>
trans> = knights.

= masculine
= third

= plural

<cat> = V

<head form> = finite

<syncat first cat> = NP

<syncat first head agreement person> = third
<syncat first head agreement number> = singular
<syncat rest> = end
<head trans pred> = sleep
<head trans argl> = <syncat first head trans>.

<cat> = V
<head form> = finite

<syncat first cat> = NP
<syncat first head agreement
<syncat rest> = end
<head trans pred> =
<head trans argl> =

number> = plural

sleep
<syncat first head trans>.

<cat> =V
<head form> = non finite

<syncat first cat> = NP
<syncat rest> = end

<head trans pred> =
<head trans argl> =

sleep
<syncat first head trans>.

<cat> = V
<head form> = finite

<syncat first cat> = NP
<syncat rest first cat> = NP
<syncat rest first head agreement person> =

third
number> =

singular
<syncat rest first head agreement

<syncat rest rest> = end

<head trans pred> = storm

<head trans argl> = <syncat rest first head
trans>
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Word stormed:

Word storm:

Word has:

Word have:

<head trans arg2> = <syncat first head trans>.

<cat> = V

<head form> = partparticiple

<sync at first cat> = NP
<sync at rest first cat> = NP
<syncat rest rest> = end

<head trans pred> = storm
<head trans argl> = <syncat rest first head

trans>

<head trans arg2> = <syncat first head trans>.

<cat> = V
<head form> = non finite

<syncat first cat> = NP
<syncat rest first cat> = NP
<syncat rest rest> = end

<head trans pred> = storm

<head trans argl> = <syncat rest first head
trans>

<head trans arg2> = <syncat first head trans>.

<cat> = V
<head form> =
<syncat first
<syncat first
<syncat first
<syncat first

finite
cat> = VP

head form> = pastparticiple

syncat rest> = end
syncat first> = <syncat rest

first>

<syncat rest rest> = end

<head trans pred> = perfective
<head trans argl> = <syncat first head trans>.

<cat> = V
<head form> =
<syncat first

finite
cat> = VP

243

<syncat rest first cat> = NP

<syncat rest first head agreement number> =
singular

<syncat rest first head agreement person> =
third



<syncat
<syncat
<syncat

first
first
first

head form> = pastparticiple

syncat rest> = end

syncat first> = <syncat rest
first>

<syncat rest first cat> = NP
<syncat rest first head agreement number> =

plural

<syncat rest rest> = end

<head trans pred> = perfective

<head trans argl> = <syncat first head trans>.

Word persuades:

Word to:

<cat> = V

<head form> = finite

<sync at first cat> = NP
<syncat rest first cat> = VP
<syncat rest first head form> = infintival
<syncat rest first sync at rest> = end

<syncat rest first syncat first> = <syncat
first>

<syncat rest rest
<syncat rest rest

<syncat rest rest

first cat> = NP

first head agreement

number> = singular

first head agreement

person> = third
rest> = end

= persuade

= <syncat rest

<syncat rest rest
<head trans pred>
<head trans argl> rest first

head trans>
first head trans>
rest first head

trans>.

<head trans arg2> =
<head trans arg3> =

<syncat
<syncat

<cat> = V

<head form> =
<syncat first
<syncat first

<syncat first
<syncat first

infinitival

cat> = VP
head form> = nonfinite

syncat rest> = end
syncat first> = <syncat rest

first>

<syncat rest

<syncat rest
<head trans>

first cat> = NP
rest> = end

= <syncat first head trans>.
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Inheritance Grammar

/******************************************************/

/* Grammar Rules */
/******************************************************/

s(head=>H: (form=>finite» -->
N:np,
vp (head=>H:syncat=>[N])

vp(head=>H:syncat=>S) -->
v (head=>H;syncat=>S) .

vp(head=>H:syncat=>S) -->
vp (head=>H;syncat=> [XIS]) ,

X.

/******************************************************/
/* Lexicon */
/******************************************************/

/***** word: uther *****/

np(head=>(
agreement=>(

gender=>masculine:
person=>third:

number=>singular);

trans=>uther»
--> [uther].

/***** word: cornwall *****/

np(head=>(

agreement=>(

gender=>masculine:

person=>third;

number=>singular):

trans=>cornwall»

--> [cornwall].

/***** word: knights *****/

np(head=>(
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agreement=>(
gender=>masculine;
person=>third;
number=>plural);

trans=>knights»

--> [knights].

/***** word: sleeps *****/

v ( head=> (
form=>finite;

trans=>sleep(X»;

syncat=>[
np( head=>(

agreement=>(
person=>third;
number=>singular) ;

trans=>X»])

--> [sleeps].

/***** word: sleep *****/

v ( head=> (
form=>finite;

trans=>sleep(Subj» ;

syncat=>[
np( head=>(

agreement=>(
number=>plural):

trans=>Subj»])

--> [sleep].

/***** word: sleep *****/

v ( head=> C
form=>nonfinite;

trans=>sleep(Subj»;

syncat=>[
np( head=>(

trans=>Subj»])

--> [sleep].

/***** word: storms *****/

v ( head=> (
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form=>finite;

trans=>storm(Subj,Obj»;

syncat=>[
np(head=>(

trans=>Obj»,

np (head=> (

agreement=>(
person=>third:
number=>singular);

trans=>Subj»])

--> [storms].

/***** word: stormed *****/

v ( head=> (
form=>presentparticiple;
trans=>storm(Subj,Obj»;

syncat=>[
np( head=>(

trans=>Obj»,
np ( head=> (

trans=>Subj»])
--> [stormed].

/***** word: storm *****/

v ( head=> (
form=>nonfinite;
trans=>storm(Subj,Obj»;

syncat=>[
np( head=>(

trans=>Obj» ,

np ( head=> (

trans=>Subj»])
--> [storm].

/***** word: has *****/

v( head=>(
form=>finite:

trans=>perfective(Pred»;

syncat=>[

vp( head=>(
form=>presentparticiple;
trans=>Pred) :

syncat=> [S]) ,
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S:np( head=>(
agreement=>(

number=>singular;

person=>third»)

])
--> [has].

/***** word: have *****/

v ( head=> (
form=>finite;

trans=>perfective(P» ;

syncat=>[
vp ( head=> (

form=>presentparticiple;
trans=>P);

syncat=>[N]) ,

N:np(
head=>(

agreement=>(
number=>plural»)])

--> [have].

/***** word: persuades *****/

v ( head=> (
form=>finite;

trans=>persuade(S,O,P»;
synca t=> [

N:np( head=>(
trans=>O»,

vp( head=>(
form=>infinitival;

trans=>P);

syncat=>[N]),

np ( head=> (
agreement=>(

number=>singular;

person=>third);

trans=>S»])

--> [persuades].

/***** word: to *****/

v ( head=> (
form=>infinitival;
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trans=>P):
syncat=>[

vp ( head=> (
form=>nonfinite;

trans=>P):
syncat=>[NJ) ,

N:npJ)
--> [toJ.
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Appendix 4:

An Extended InheritanceGrammar

This appendix includes an example Inheritance Grammar, followed by examples of

sentences it can parse and the corresponding output produced by the grammar. This

grammar took 86 seconds to compile using the Inheritance Grammar compilation system

discussed in Chapter 5 on a Tektronix 4317.

The lexical transformation done by the compilation system is slightly different

than the transformation described in Chapter 5 for the interpreter system. In particu-

lar, the parse it message transforms an input symbol (i.e., token) such as teaches

into the symbol lexTEACHES. The changed transformation serves two functions.

First, the grammar is robust against ca.pita.lization errors in the input. Second, by

prefixing lex to all symbols that are ma.tched against input tokens, it makes the gram-

mar a little more readable.

The grammar first translates the input into a database query and then executes

that query against a small database, which is included directly in the grammar. The

query contains information to verify some preconceptions discovered in the input. For

example, if a noun phrase in the input is in plural form, the query contains a different

quantifier than if the same noun phrase had appeared in singular form. During the exe-

cution of the query, these preconditions are checked and, if they are not satisfied, the

text Your input makes an invalid assumption. is printed to alert the user

that the answer (which is also printed) may be incorrect or misleading. Such a response

is exhibited in the input-response pairs that follow the grammar.
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The Grammar

/******************** DIALOG CONTROL ********************/

parse -->
sentence (translation=>R:query),
{nl, write ("TRANSLATION:"), nl,

write (R), nl, nl,

R, nl}.

parseNP -->
NP:nounPhr,

{ nl, write ("TRANSLATION:"), nl,

write (NP) , nl, nl }.

{ yesNo,declare,howMany,whoOrWhat, listWhoOrWhat, which } < query.

/******************** SEMANTIC TAXONOMY ********************/

{ thing, event, time} < semanticEntity.

{ animate, inanimate} < thing.

{male, female, person} < animate.
{ student, faculty} < person.
{ harryPorter, marySmith, johnSmith }
{ davidMaier, dickKieburtz, janeBrown
{ harryPorter, johnSmith, davidMaier,
{ marySmith, janeBrown } < female.

< student.

} < faculty.
dickKieburtz } < male.

{ dept, course,
cs < dept.

{ cs100, cs101,
{ a, b, c, d, f

grade} < inanimate.

cs102 } < course.

} < grade.

year < time.

{ 1986, 1987, 1988 } < year.

offering < event.

{ cs100a, cs100b, cs101a, cs102a, cs102b } < offering.

/******************** QUANTIFIER TAXONOMY ********************/



{ question, nonQuestion } < quantifier.
{ howMany, which, whoOrWhat } < question.
{ every, a, any, definite} < nonQuestion.
{ defSingular, defPlural } < definite.

/******************** SEMANTIC DATABASE ********************/

nameR
nameR
nameR
nameR
nameR
nameR

(id=>harryPorter, first=>lexHARRY, last=>lexPORTER).
(id=>marySmith, first=>lexMARY, last=>lexSMITH).
(id=>johnSmith, first=>lexJOHN, last=>lexSMITH).
(id=>davidMaier, first=>lexDAVID, last=>lexMAIER).
(id=>dickKieburtz, first=>lexDICK, last=>lexKIEBURTZ).
(id=>janeBrown, first=>lexJANE, last=>lexBROWN).

courseR (course=>cslOO,
dept=>cs,
subject=>lexCS,
number=>lexlOO,

name=> [lexINTRO, lexTO, 1exCOMPUTER , lexSCIENCE]).
courseR (course=>cslOl,

dept=>cs,

subject=>lexCS,
number=>lexlOl,

name=> [lexCOMPILER, lexDESIGN]).
courseR (course=>csl02,

dept=>cs,

subject=>lexCS,
number=>lexl02,

name=> [lexARTIFICIAL, lexINTELLIGENCE).

deptR (dept=>cs, name=> [lexCOMPUTER , lexSCIENCE).

gradeR
gradeR
gradeR
gradeR
gradeR

yearR
yearR
yearR

(entity=>a,

(entity=>b,

(entity=>c,

(entity=>d,

(enti ty=> f ,

lex=>lexA) .

lex=>lexB) .

lex=>lexC) .

lex=>lexD) .

lex=>lexF) .

(entity=>1986,

(entity=>1987,

(entity=>1988,

lex=>lex1986) .

lex=>lex1987) .

lex=>lex1988) .

offeringR (course=>cslOO,

offering=>cslOOa,
faculty=>davidMaier,

year=>1987) .
offeringR (course=>cslOO,
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offering=>cslOOb,

faculty=>dickKieburtz,
year=>1988) .

offeringR (course=>cslOl,

offering=>cslOla,
faculty=>dickKieburtz,

year=>1987) .

offeringR (course=>csl02,
offering=>csl02a,

faculty=>janeBrown,
year=>1987) .

offeringR (course=>csl02,

offering=>csl02b,
faculty=>davidMaier,

year=>1988) .

enrollR
enrollR
enrollR
enrollR
enrollR
enrollR
enrollR
enrollR
enrollR

(offering=>cslOOa,

(offering=>cslOla,

(offering=>csl02b,

(offering=>cslOOb,

(offering=>cslOla,

(offering=>csl02a,
(offering=>cslOOb,

(offering=>cslOla,

(offering=>csl02b,

student=>harryPorter, grade=>a).
student=>harryPorter, grade=>b).
student=>harryPorter, grade=>c).
student=>marySmith, grade=>c).
student=>marySmith, grade=>b).
student=>marySmith, grade=>a).
student=>johnSmith, grade=>d).
student=>johnSmith, grade=>f).
student=>johnSmith, grade=>c).

inanimateThingR
inanimateThingR
inanimateThingR

(id=>Grade) :- gradeR (entity=>Grade).

(id=>Course) :- courseR (course=>Course).

(id=>Offering) :- offeringR (offering=>Offering).

/****************** SENTENCE PARSING RULES ******************/

Parses: AUX NP VERB ... ?

sentence (translation=>yesNo(Trans» -->
[Aux],
{ verbForm (lex=>Aux, root=>Rl, tense=>Tl, number=>N),

finiteAux (Rl, Tl, T2) },
!,

nounPhr (result=>NP:(number=>N»,
{ notQuestNP(NP) },
[Verb],
{ verbForm (lex=>Verb, root=>R2, tense=>T2),
verbMeaning (root=>R2, predicate=>P,

subject=>S, slotList=>SL) },
verbComplements (subject=>NP, predicate=>P,

slotList=>SL, holdIn=>nil,
predSubject=>S,
ho IdOut=>n.i. 1 ,
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translation=>Trans),

[ 'lex? IJ .

notQuestNP(nounPhrase(quantifier=>question» :- !, fail.
notQuestNP(X) .

Parses: Every other sentence form

sentence (translation=>Trans) -->
nounPhr (result=>NP),
restS (topic=>NP, translation=>Trans).

Parses: WHO/WHAT IS/AREjWASjWERE NP?

restS (topic=>NP: (quantifier=>whoOrWhat),
translation=>listWhoOrWhat(X,P,true») -->

[AuxJ,
{ verbform (lex=>Aux, root=>be, tense=>T, number=>N),

finiteAux (be, T, T2) },
nounPhr (result => (number=>N, quanti fier=>nonQuestion ,

variable=>X, predicate=>P),

['lex?'J, !.

----------
Parses:

or:
QUEST-NP VERB ... ?
QUEST-NP AUX NP VERB ?

----------

restS (topic=>NP: (quantifier=>question), translation=>Trans) -->
!,
questionS (topic=>NP, translation=>Trans),
['lex?'J.

Parses: NP VERB...

restS (topic=>NP:(number=>N), translation=>declare(Trans)) -->
verbSequence (root=>R, number=>N, tense=>T),
{ verbMeaning (root=>R, predicate=>P,

subject=>S, slotList=>SL) },
verbComplements (subject=>NP, predicate=>P, predSubject=>S,

slotList=>SL, holdln=>nll, holdOut=>nil,
translation=>Trans),

['lex. 'J.

Parses: QUEST-NP VERB ... ?

questionS (topic => NP: (number=>N), translation
verbSequence (root=>R, number=>N, tense=>T),
{ verbMeaning (root=>R, predicate=>P,

subject=>S, slotList=>SL) },
verbComplements (subject=>NP, predicate=>P,

=> Trans) -->

predSubject=>S,
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slotList=>SL, holdIn=>nil, holdOut=>nil,
translation=>Trans) .

Parses: QUEST-NP AUX NP VERB ... ?

questionS (topic => QNP: (number=>N), translation => Trans) -->
[Aux], { verbForm (lex=>Aux, root=>Rl, tense=>Tl, number=>N),

finiteAux (Rl, Tl, T2) },
nounPhr (result => NP2) ,

[Verb],
{ verbForm (lex=>Verb, root=>R2, tense=>T2),

verbMeaning (root=>R2, predicate=>P,
subject=>S, slotList=>SL) },

verbComplements (subject=>NP2, predicate=>P, predSubject=>S,
slotList=>SL, holdIn=>QNP, holdOut=>nil,

translation=>Trans) .

Parses: IS TEACHING, HAS TAUGHT, DID TEACH

verbSequence (root=>R, tense=>T2,
[Verbl] ,

{ verbForm

number=>N) -->

(lex=>Verbl, root=>Rl, tense=>Tl, number=>N),

finiteAux (Rl, Tl, T2) },

[Verb2] ,

{ verbForm (lex=>Verb2, root=>R, tense=>T2) }, !.

Parses: TEACHES, TAUGHT

verbSequence (root=>R, tense=>T, number=>N) -->
[Verb], { verbForm (lex=>Verb, root=>R, tense=>T, number=>N),

presentOrPast (T) }.

presentOrPast (present).
presentOrPast (past).

/******************** VERB CO~~LEMENTS ********************/

verbComplements ( subject=> nounPhrase (quantifier=>Q,
variable=>X,

number=>N,

predicate=>P),

predicate=>Predl,

predSubject=>X,
slotList=>SL,
holdIn=>Hin,
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holdOut=>Hout,

translation=>Pred3) -->
scanComplements ( slotList=>SL,

predicateln=>Predl,

predicateOut=>Pred2,
holdln=>Hin,

holdOut=>Hout),

{ combineQuants ( quantifier=>Q,
number=>N,

variable=>X,

predicate=>P,

predicateln=>Pred2,

predicateOut=>Pred3) }.

/***************** NOUN PHRASE PARSING RULES *****************/

nounPhr (result=>T) -->
nounPhrO (holdIn=>nil, holdOut=>nil, result=>T).

----------

nounPhrO (holdln=>Hin,
holdOut=>Hout,

result=>Result) -->

[Det] ,

determiner ( lex=>Det, number=>N, quantifier=>Q),
[HeadNoun],

{ nounForm (lex=>HeadNoun, number=>N, concept=>X),

nounMeaning (concept=>X, pred=>Pl, slotList=>SL) },
scanComplements ( slotList=>SL,

predicateln=>Pl,
predicateOut=>P2,
holdln=>Hin,

holdOut=>Hout),
relClause ( nounPhrln=>nounPhrase ( number=>N,

quantifier=>Q,
variable=>X,

predicate=>P2),
nounPhrOut=>Result) .

nounPhrO ( holdln=>Hin,
holdOut=>Hout,
result=>nounPhrase number=>N,

quantifier=>Q,
variable=>X,

predicate=>P» -->
[Word] ,
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{ pronoun ( lex=>Word,

quantifier=>Q,
nurnber=>N,

quantifiedEntity=>X,
predicate=>P) }.

nounPhrO ( holdln=>Hin,
holdOut=>Hout,

result=>NP) -->

[Word],
properNP
nounPhrl

word=>Word, entity=>X,
holdln=>Hin,
holdOut=>Hout,
resultln=>nounPhrase

predicate=>P),

(nurnber=>singular,

quantifier=>defSingular,
variable=>X,

predicate=>P),

resultOut=>NP) .

----------

nounPhrl (holdln=>H,holdOut=>H,resultln=>NP,resultOut=>NP) --> .

nounPhrl (holdln=>Hin,
holdOut=>Hout,

resultln=>nounPhrase (variable=>Owner),
resultOut=>nounPhrase (nurnber=>N,

quantifier=>DefQuant,
variable=>X,

predicate=>Pred2» -->
['lex' 'S', HeadNoun],

{ nounForrn (lex=>HeadNoun, nurnber=>N, concept=>X),
defQuantifier (N, DefQuant) ,
nounMeaning (concept=>X,

pred=>Predl,

slotList=> [npPossObj (object=>Owner) I SL] ) },

scanCornplernents ( slotList=>SL,

predicateln=>Predl,
predicateOut=>Pred2,
holdln=>Hin,

holdOut=>Hout) .

defQuantifier (plural, defPlural).

defQuantifier (singular, defSingular).

/******************** PROPER NOUN PHRASES ********************/
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properNP (word=>W, entity=>P:person, predicate=>nameR(id=>P» -->
name (word=>W,entity=>P),!.

properNP (word=>W, entity=>C:course, predicate=>P) -->
[N],

{ P:courseR(course=>C,subject=>W,number=>N) }, I.
properNP (word=>W, entity=>C:course, predicate=>P) -->

{ P:courseR(course=>C,narne=> [WIL]) }, scanList(L), I.
properNP (word=>W, entity=>Y:year, predicate=>P) -->

{ P:yearR(entity=>Y,lex=>W) }, !.

properNP (word=>W, entity=>D:dept, predicate=>P) -->
{ P:deptR(dept=>D,narne=>[WIL]) }, scanList(L), I.

scanList ([]) -->.

scanList ([WIL]) --> [W], scanList (L).

name (word=>lexPROF, entity=>ID:faculty) -->
[L], !, { narneR(id=>ID,last=>L) }.

name (word=>lexMR, entity=>ID:student) -->
[L], !, { narneR(id=>ID:male,last=>L) }.

name (word=>lexMS, entity=>ID:student) -->
[L], !, { nameR(id=>ID:female,last=>L) }.

name (word=>L, entity=>ID:person) -->
{ nameR(id=>ID,last=>L) }.

name (word=>F, entity=>ID:person) -->
[L], { nameR(id=>ID,first=>F,last=>L)}

/******************** RELATIVE CLAUSES ********************/

relClause (nounPhrIn=>NP, nounPhrOut=>NP) --> .

relClause (nounPhrIn=>Hl: (quantifier=>Q,
nurnber=>N,
variable=>X,

predicate=>PO),

nounPhrOut=>nounPhrase (
quantifier=>Q2,
number=>N,
variable=>X,

predicate=>Q3: (X, and(PO,P2), true»)
-->

relPronoun (X),

possiblyHeldNounPhr (holdIn=>Hl,
holdOut=>H2,

result=>NP: (number=>N2»,

verbSequence (root=>R, number=>N2, tense=>T),
{ verbMeaning (root=>R, predicate=>Pl,

subject=>S, slotList=>SL) },



verbComplements (subject=>NP,

predicate=>Pl,
predSubject=>S,
slotList=>SL,

holdln=>H2,

holdOut=>nil,

translation=>P2),

{ copy (Q,Q2), copy(Q,Q3} }.

relPronoun

relPronoun (animate)
relPronoun

--> [lexTHAT].

--> [lexWHO].

--> [lexW.tUCH].

/******************** COMPLEMENTS ********************/

scanComplements ( slotList=>[],

predicateln=>P,

predicateOut=>P,
holdln=>H,

holdOut=>H) --> !.
scanComplements ( slotList=>[SISL],

predicateln=>Pl,
predicateOut=>P3,
holdln=>Hl,

holdOut=>H3) -->
S:slot (holdln=>Hl,

holdOut=>H2,

predicateln=>Pl,

predicateOut=>P2),
scanComplements (slotList=>SL,

predicateln=>P2,
predicateOut=>P3,
holdln=>H2,

holdOut=>H3) .

{ prepObject, npPossObj, directObject } < slot.

prepObject (optional=>yes, holdln=>H, ho1dOut=>H ,
predicateln=>P, predicateOut=>P) -->.

prepObject (prep=>Word, object=>X, holdln=>Hin, holdOut=>Hout,
predicateln=>Predln, predicateOut=>PredOut) -->

[Word],
PN:possiblyHeldNounPhr (
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holdln=>Hin,

holdOut=>Hout,
result=>nounPhrase (quantifier=>Q,

number=>N,

variable=>X, predicate=>P»,

{ combineQuants (quantifier=>Q,
number=>N,

variable=>X,

predicate=>P,

predicateln=>Predln,

predicateOut=>PredOut)}.

npPossObj (object=>X, holdln=>Hin, holdOut=>Hout,
predicateln=>Predln, predicateOut=>PredOut)

[lexOF],

possiblyHeldNounPhr (

-->

{ combineQuants

holdln=>Hin,

holdOut=>Hout,

result=>nounPhrase (

quantifier=>defSingular,
number=>singular,

variable=>X, predicate=>P»,

(quantifier=>defSingular,

number=>singular,
variable=>X,

predicate=>P,

predicateln=>Predln,
predicateOut=>PredOut) }.

directObject (object=>X, holdln=>Hin, ho,IdOut=>Hout
predicateln=>Predln, predicateOut=>PredOut)

possiblyHeldNounPhr ( holdln=>Hin,
holdOut=>Hout,
result=>nounPhrase

-->

quantifier=>Q,
number=>N,
variable=>X,

predicate=>P»,

{combineQuants (quantifier=>Q,
number=>N,

variable=>X,

predicate=>P,

predicateln=>Predln,

predicateOut=>PredOut)}.



possiblyHeldNounPhr (holdln=>NP, holdOut=>nil, result=>NP) -->
{notNil (NP)}.

possiblyHeldNounPhr (holdln=>H, holdOut=>H, result=>R) -->
nounPhr (result=>R).

notNil (nil)
notNil (X).

!, fail.

Note: "predicateln=>" and "quantifier=>" must be bound

upon calling this predicate.
combineQuants ( quantifier=>Q,

variable=>X,

predicate=>Pl,

predicateln=>howMany (Y:P2:P3),

predicateOut=>howMany (Y:P2:Q2: (X:Pl:P3»)
!, copy(Q,Q2).

combineQuants ( quantifier=>Q,
variable=>X,

predicate=>Pl,
predicateln=>which (N:Y:P2:P3),

predicateOut=>which (N:Y:P2:Q2: (X:Pl:P3»)
!, copy(Q,Q2).

combineQuants ( quantifier=>which,
number=>N,

variable=>X,

predicate=>Pl,

predicateln=>P2,

predicateOut=>which (N:X:Pl:P2» .

!.

combineQuants quantifier=>Q,
variable=>X,

predicate=>Pl,

predicateln=>P2,

predicateOut=>Q2: (X:Pl:P2» .

copy(Q,Q2) .

/******************** COMMON NOUNS ********************/

nounForm

nounForm

nounForm
nounForm
nounForm
nounForm

(lex=>lexCOURSE, concept=>course, number=>singular).
(lex=>lexCOURSES, concept=>course, number=>plural).

(lex=>lexPERSON, concept=>person, number=>singular).

(lex=>lexPERSONS, concept=>person, number=>plural).
(lex=>lexSTUDENT, concept=>student, number=>singular).
(lex=>lexSTUDENTS, concept=>student, number=>plural).
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nounForm
nounForm
nounForm
nounForm
nounForm
nounForm
nounForm
nounForm
nounForm
nounForm
nounForm

(lex=>lexPROFESSOR, concept=>faculty, number=>singular).
(lex=>lexPROFESSORS, concept=>faculty, number=>plural).
(lex=>lexA, concept=>a, number=>singular).

(lex=>lexB, concept=>b, number=>singular).
(lex=>lexC, concept=>c, number=>singular).

(lex=>lexD, concept=>d, number=>singular).
(lex=>lexE, concept=>f, number=>singular).

(lex=>lexGRADE, concept=>grade, number=>singular).

(lex=>lexGRADES, concept=>grade, number=>plural).
(lex=>lexTHING, concept=>inanimate, number=>singular).

(lex=>lexTHINGS, concept=>inanimate, number=>plural).

nounMeaning ( concept => G:grade,
pred => gradeR (entity=>G),
slotList=> [] ).

nounMeaning ( concept => G:grade,
pred => and (enrollR (offering=>O:offering,

student=>S:student,

grade=>G:grade) ,

offeringR (course=>C:course,
offering=>O) ),

slotList => r npPossObj(object=>S),

prepObject(prep=>lexIN,

object=>C,
optional=>no) ] ).

nounMeaning ( concept => P:person,

pred => nameR(id=>P),
slotList => [] ).

nounMeaning ( concept => C:course,
pred => courseR (course=>C:course, dept=>D:dept),

slotList => [ prepObject (prep=>lexIN,
object=>D,

optional=>yes) ] ).

/***************** PRONOUNS AND DETERMINERS ******************/

pronoun (lex=>lexWHAT,

quantifier=>which,
quantifiedEntity=>X:inanimate,
predicate=>inanimateThingR(id=>X» .

pronoun (lex=> 1exWHAT ,

quantifier=>whoOrWhat,
quantifiedEntity=>X:inanimate,
predicate=>inanimateThingR(id=>X» .

pronoun (lex=>lexWHO,
quanti fier=>which ,
quantifiedEntity=>X:animate,
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predicate=>nameR(id=>X» .

pronoun (lex=>lexWHO,

quantifier=>whoOrWhat,

quantifiedEntity=>X:animate,

predicate=>nameR(id=>X» .

pronoun (lex=>lexSOMEBODY,

quantifier=>indefinite,

quantifiedEntity=>X:animate,
number=>singular) .

pronoun (lex=>lexEVERYBODY,

quantifier=>every,

quantifiedEntity=>X:animate,
number=>singular) .

determiner (lex=>lexTHE,
number=>singular,

quantifier=>defSingular) --> .

determiner (lex=>lexTHE,

number=>plural,

quantifier=>defPlural) --> .

determiner (lex=>lexA,
number=>singular,

quantifier=>a) -->
determiner (lex=>lexAN,

number=>singular,
quantifier=>a) -->

determiner (lex=>lexANY,
quantifier=>any) -->

determiner (lex=>lexHOW,
number=>plural,

quantifier=>howMany) --> [lexMANYJ.
determiner (lex=>lexEVERY,

number=>singular,

quantifier=>every) -->

determiner (lex=>lexWHAT,

quantifier=>which) -->

determiner (lex=>lexWHICH,

quantifier=>which) -->

/******************** VERBS ********************/

finiteAux

finiteAux

finiteAux

fini teAux

(do, present, infinitive).

(be, present, presentParticiple).

(have, present, pastParticiple).

(do, past, infinitive).



264

finiteAux (be, past, presentParticiple).
finiteAux (have, past, pastParticiple).

verbForm (lex=>lexDOES, root=>do,
tense=>present,

number=>singular) .
verbForm (lex=>lexDO, root=>do,

tense=>present, number=>plural).
verbForm (lex=>lexDID, root=>do,

tense=>past) .

verbForm (lex=>lexDO, root=>do,
tense=>infinitive) .

verbForm (lex=>lexDONE, root=>do,
tense=>pastParticiple) .

verbForm (lex=>lexDOING, root=>do,
tense=>presentParticiple) .

verbForm (lex=>lexIS, root=>be,

tense=>present,

number=>singular) .

verbForm (lex=>lexARE, root=>be,
tense=>present, number=>plural).

verbForm (lex=>lexWAS, root=>be,
tense=>past, number=>singular).

verbForm (lex=>lexWERE, root=>be,
tense=>past, number=>plural).

verbForm (lex=>lexBE, root=>be,
tense=>infinitive) .

verbForm (lex=>lexBEEN, root=>be,

tense=>pastParticiple) .

verbForm (lex=>lexBEING, root=>be,
tense=>presentParticiple) .

verbForm (lex=>lexHAS, root=>have,
tense=>present, number=>singular).

verbForm (lex=>lexHAVE, root=>have,
tense=>present, number=>plural).

verbForm (lex=>lexHAD, root=>have,
tense=>past) .

verbForm (lex=>lexHAVE, root=>have,
tense=>infinitive) .

verbForm (lex=>lexHAVEN, root=>have,
tense=>pastParticiple) .

verbForm (lex=>lexHAVING, root=>have,
tense=>presentParticiple) .

verbForm (lex=>lexTEACHES, root=>teach,
tense=>present, number=>singular).

verbForm (lex=>lexTEACH, root=>teach,



tense=>present, number=>plural).
verbForm (lex=>lexTAUGHT, root=>teach,

tense=>past) .

verbForm (lex=>lexTEACH, root=>teach,
tense=>infinitive) .

verbForm (lex=>lexTAUGHT, root=>teach,
tense=>pastParticiple) .

verbForm (lex=>lexTEACHING, root=>teach,
tense=>presentParticiple) .

verbForm (lex=>lexTAKES, root=>take,
tense=>present, number=>singular).

verbForm (lex=>lexTAKE, root=>take,
tense=>present, number=>plural).

verbForm (lex=>lexTOOK, root=>take,
tense=>past) .

verbForm (lex=>lexTAKE, root=>take,
tense=>infinitive) .

verbForm (lex=>lexTAKEN, root=>take,
tense=>pastParticiple) .

verbForm (lex=>lexTAKING, root=>take,
tense=>presentParticiple) .

verbForm (lex=>lexGETS, root=>get,
tense=>present, number=>singular).

verbForm (lex=>lexGET, root=>get,
tense=>present, number=>plural).

verbForm (lex=>lexGOT, root=>get,
tense=>past) .

verbForm (lex=>lexGET, root=>get,

tense=>infinitive) .

verbForm (lex=>lexGOTTEN, root=>get,

tense=>pastParticiple) .

verbForm (lex=>lexGETTING, root=>get,
tense=>presentParticiple) .

/* faculty teaches course [in year] .

verbMeaning ( root=>teach,
predicate => offeringR

*/

(course=>C,

faculty=>F,
year=>Y),

subject => F:faculty,
slotList => [ directObject (object=>C:course),

prepObject (prep=>lexIN,
object=>Y:year,

optional=>yes)]) .

/* student takes course [from faculty] [in year]. */
verbMeaning ( root=>take,
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predicate => and (enrollR (student=>S,offering=>O),
offeringR (offering=>O,

course=>C,

faculty=>F,

year=>Y»,

subject => S:student,

slotList => [ directObject (object=>C:course),

prepObject (prep=>lexFROM,
object=>F:faculty,
optional=>yes),

prepObject (prep=>lexIN,
object=>Y:year,

optional=>yes)]) .

/* student gets grade [from faculty] [in course]
verbMeaning ( root=>get,

predicate => and ( enrollR

[in year]. */

(student=>S,
offering=>O,

grade=>G),
offeringR (offering=>O,

course=>C,

faculty=>F,

year=>Y»,
subject => S:student,
slotList => [ directObject(object=>G:grade) ,

prepObject (prep=>lexFROM,
object=>F:faculty,

optional=>yes),

prepObject (prep=>lexIN,
object=>C:course,

optional=>yes),

prepObject (prep=>lexIN,
object=>Y:year,

optional=>yes)]) .

/* student has faculty [for course]
verbMeaning ( root=>have,

predicate => and

[in year]. */

(enrollR (student=>S,offering=>O),

offeringR (offering=>O,
course=>C,

faculty=>F,

year=>Y»,

subject => S:student,

slotList => [ directObject (object=>F:faculty),

prepObject (prep=>lexFOR,
object=>C:course,

optional=>yes),

prepObject (prep=>lexIN,
object=>Y:year,
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optional=>yes)]) .

/*************** UTILITY OPERATORS ********************/

and (P, Q) : - p, Q.

not
not

(P) :- p, !, fail.
(P) .

true.

copy (X,Y) :- solutions (X,true. [Y).

eq (X ,X) .

dcgConnect(W, [WIL),L).

/*************** QUANTIfIERS ********************/

every (X, P, Q)
solutions (X, p, L),
checkAll (X, L, Q).

a (X. p, Q)
p,
Q,
! .

defSingular (X, p, Q)

P should have exactly one solution. find that solution

and the binding for X which it imposes. Ensure that,
under this binding for X, Q is also satisfied. Succeed

iff Q succeeds. On success however, do not bind X,P,
or Q.

defSingular (X, p, Q) :-
solutions (X, p, L),
presupposeSingleton (L),
checkAll (X, L, Q), !.

defPlural (X, p, Q)

any (X, P, Q) .
P,
Q,
! .
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P should have at least one solution. Find those

solutions and the bindings for X they impose. Ensure
that. under each such binding for X, Q is also satisfied.
Succeed iff Q succeeds for all bindings. On succe~s.
however. do not bind X.P, or Q.

defPlural (X, p. Q) :-
solutions (X. P. L),
presupposeNotEmpty (L).
checkAll (X, L, Q), !.

checkAll (X. [...,Yi ]. P)
P will usually be a predicate containing occurrences of
X. Bind X to a Yi in the list. For each, see if P is
then satisfied. Succeed exactly once iff P is satisfied
under all bindings. On success however, do not bind
X.Yi. or P.

checkAll (X, []. Q).
checkAll (X. [Y I L], Q)

checkl (X, Y. Q),
checkAll (X, L, Q).

checkl(X,Y,Q)
Unify X,Y and succeed

Do not bind X.Y, or Q
checkl (X. Y. Q)

not (check2 (X, Y, Q».
! .

checkl (X. Y. Q) :-
fail.

exactly once iff Q succeeds.
however.

unify X,Y and see whether Q succeeds. Fail is Q
succeeds & succeed if Q fails.

check2 (X, X. Q) :-
Q,
!,
fail.

check2 (X, Y, Q).

presupposeNotEmpty ([]) .

write ('»»> Your input makes an invalid assumption.'),
nl, !.

presupposeNotEmpty (X).

presupposeSingleton ([X]) :- !.

presupposeSingleton (L) :-

write ('»»> Your input makes an invalid assumption.'), nl.
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/************ OUTERMOST (PRINTING) OPERATORS *****************/

yesNo (P)
P,
write

yesNo (P)
write

.

('»»> Yes. '), nl, !.

('»»> No. '), nl.

declare (P) :-
P,

write ('»»> That is correct. '), nl, !.
declare (P)

write ('»»> That is not correct. '), nl.

howMany (X, p, Q) .

solutions (X, p, L),

presupposeNotEmpty (L),

sumSolutions (X, L, Q, N),

write ('»»> '), write (N), write ('.'), nl.

whoOrWhat (X, P, Q) :-

solutions (X, p, L),

presupposeNotEmpty (L),

weedSolutions (X, L, M, Q),

write ('»»> '), writeList (M).

listWhoOrWhat (X, nonQuestion(Y,Pl,P2), Q) :-

!, solutions (X, and(and(Pl,P2),Q), L),

write ('»»> '), writeList (L).

listWhoOrWhat (X, P, Q) :-

solutions (X, p, L),

presupposeNotEmpty (L),
weedSolutions (X, L, M, Q),

write ('»»> '), writeList (M).

which (plural, X, p, Q) :- !,

solutions (X, p, L),

presupposeNotEmpty (L),
weedSolutions (X, L, M, Q),

write ('»»> '), writeList (M).

which (singular, X, p, Q) :-

solutions (X, P, L),
weedSolutions (X, L, M, Q),
presupposeSingleton (M),

write ('»»> '), writeList (M).

sumSolutions (X, [], Q, 0).
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sumSolutions (X, [YIL], Q, N)

checkl (X, Y, Q),
!,

sumSolutions (X, L,

plus (M, 1, N).

sumSolutions (X, [YIL],
sumSolutions (X, L,

Q, M),

Q, N) :-

Q, N).

writeList ([]) :-

write ("None."), nl.

writeList ([X]) :-

write (X),

wr ite ("."), n I.

writeList ([X,YIL]) .
write (X),

write (", "),

writeList ([YIL]).

Example Queries and Responses

Next, several example queries along wit.h the responses of the grammar are listed.

Except for font changes and line breaking, the expressions in boldface were executed by

the interpreter exactly as shown here, and the text in Courier font was the response

produced by the grammar execution.

prog parselnput: 'Who taught cs lOl?'.

TRANSLATION:

which(N; X: faculty; nameR(id=>X); defSingular(X2:cslOl;

courseR (number=>lexlOl; dept=>cs; course=>X2; subject=>lexCS;
name=>[ lexCOMPILER, lexDESIGN ]); offeringR(year=>year;

course=>X2; faculty=>X»)

»»> dickKieburtz.

weedSolutions (X, [J, [J, Q) .
weedSolutions (X, [YIL1], [YIL2], Q) .

checkl (X, y, Q) ,
!,
weedSolutions (X, Ll, L2, Q) .

weedSolutions (X, [Y ILl], L2, Q)
weedSolutions (X, Ll, L2, Q) .
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prog parselnput: 'Who has taught cs 1011'.

TRANSLATION:

which (singular; X:faculty; nameR(id=>X); defSingular(X2:csIOI;

courseR (number=>lexIOI; dept=>cs; course=>X2; subject=>lexCS;
name=>[ lexCOMPILER, lexDESIGN ]); offeringR(year=>year;
course=>X2; faculty=>X»)

»»> dickKieburtz.

prog parselnput: 'Who isthe professor who taught cs 1011'

TRANSLATION:

listWhoOrWhat(X:faculty; defSingular(X; and(PI:nameR(id=>X);

defSingular(X; PI: defSingular(X2:csI01: courseR (number=>lexIOI:
dept=>cs: course=>X2: subject=>lexCS; name=>[ lexCOMPILER,
lexDESIGN ]): offeringR(year=>year: course=>X2; faculty=>X»»;
true); true)

»»> dickKieburtz.

prog parselnput: 'Did Kieburtz teach cs 1011'

TRANSLATION:

yesNo(defSingular(X:dickKieburtz; nameR(id=>X);
defSingular(X2:cslOI; courseR (number=>lexIOI; dept=>cs;
course=>X2: subject=>lexCS: name=>[ lexCOMPILER, lexDESIGN ]);
offeringR(year=>year; course=>X2: faculty=>X»»

»»> Yes.

prog parselnput:'Did Prof Kieburtz teach cs 1021'

TRANSLATION:

yesNo(defSingular(X:dickKieburtz: nameR(id=>X);

defSingular(X2:csI02; courseR (number=>lexl02; dept=>cs;

course=>X2: subject=>lexCS; name=>[ lexARTIFICIAL,

lexINTELLIGENCE ]); offeringR(year=>year; course=>X2;

faculty=>X»»

»»> No.

progparselnput: 'Kieburtz is teaching cs 101.'

TRANSLATION:

declare (defSingular (X:dickKieburtz; nameR(id=>X);

defSingular(X2:cslOI; courseR (number=>lexI01; dept=>cs;

course=>X2: subject=>lexCS: name=>[ lexCOMPILER, lexDESIGN ]);
offeringR(year=>year; course=>X2: faculty=>X»»
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»»> That is correct.

prog parseInput: 'Prof Maier isteaching cs 101.'

TRANSLATION:

declare (defSingular (X:davidMaier; nameR(id=>X);
defSingular(X2:cslOl: courseR (number=>lexlOl: dept=>cs:

course=>X2: subject=>lexCS: name=>[ lexCOMPILER, lexDESIGN ]);
offeringR(year=>year: course=>X2; faculty=>X»»

»»> That is not correct.

prog parseInput:'Which courses did David Maier teach?'

TRANSLATION:

which (plural; Y:course; courseR (dept=>dept; course=>Y);

defSingular(X:davidMaier; nameR(id=>X); offeringR(year=>year;

course=>Y: faculty=>X»)

»»> cslOO, csl02.

prog parseInput: 'Which course did Maier teach?

TRANSLATION:

which (singular: Y:course:
defSingular(X:davidMaier:

course=>Y; faculty=>X»)

courseR (dept=>dept; course=>Y);

nameR(id=>X); offeringR(year=>year;

»»> Your input makes an invalid assumption.
»»> cslOO, csl02.

prog parseInput: 'What are the courses that Maier teaches?'

TRANSLATION:
listWhoOrWhat(X:course; defPlural(X: and (Pl:courseR(dept=>D:dept:
course=>X); defSingular(X2:davidMaier: nameR(id=>X2);
defPlural(X; Pl; offeringR(year=>year: course=>X;
faculty=>X2»»: true): true)

»»> cslOO, csl02.

Hereafter, the responsesproduced by the executionof the grammar are omitted

for brevity.

prog parseInput: 'The professor who taught cs 100 is teaching cs 102.'



prog parseInputNP: 'the courses that Maier teaches'.

prog parseInputNP: 'the course that Maier taught'.

prog parseInputNP: 'the course which Maier taught'.

prog parseInputNP: 'which courses in computer science'.

prog parseInputNP: 'every grade of Harry Porter in cs 101'.

prog parseInputNP: 'the student that got a B from Kieburtz in cs 101'.

prog parseInputNP: 'the student who had Kieburtz for cs 101'.
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