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Abstract

Incorporating Inheritance and Feature Structures
into a Logic Grammar Formalism

Haryy 11, Porter, I1J, Ph.D.
QOregon Graduate Center, 1988

Supervising Professor: David Maier

The use of Definite Clause Grammrrs (DCGs) to describe Natural Language gram-
mars as logic programs has been particularly {ruitful in building NL interfaces for rela-
tional databases. First-order logic, however, suflers from several shortcomings as a

language for knowledge representation and computational linguistics.

This dissertation desceribes a new logic, called ¢-logic, remedying these shortcom-
ings. NL processing is one application of ¥-logic and the Inheritence Grammar formal-
s, whose semantics are rooted in ¥-logic, is also defined. First-order logic i1s a special
case of Y-logic and, conscquently, every DCG is an Inheritance Grammar. This logic
differs from traditional logic in that the primary data structure encompasses the
feature-based structures used in unification-based grammatical formalisms such as
PATR. In addition, an ordering on the symbols of the grammar facilitates taxonomic

reasoning, a problematic task in DCGs.

An interpreter for ¥-logic programs has been implemented (in Smalltalk) and vari-
ous implementation techniques have been cxplored. In addition, several Inheritance
Grammars have been implemented and the perspicuity ol the Inheritance Grammar for-

malism is discussed.



Introduction

The ability to use symbols to communicate and process information is the charac-
teristic that distinguishes human intelligence from animal behavier. The goal of pro-
cessing Natural Language with a computer is motivated by both practical concern — to
learn how it can be done — and theoretical curiosity — to learn how it is done. The
former aim motivates this dissertation, giving it a more computational flavor than most
linguistic inquiry. To summarize, this work introduces a formal language for expressing
Natural Language grammars, called the nherilance Grammar formalism. We will pro-
vide a formsal semantics, describe our implementation, and show example applications to

NL processing problems.

It is important to Jocate new research in the context of existing work and there
are two general approaches that can be used to introduce a new formalism. First, the
new formalism can be described, followed by a description of other similar formalisms
under the rubric of related work. Alternatively, the existing work can be presented first
and followed by the formalism being introduced. The first approach seems more suited
for situations where there is a loose coupling between the old and the new. The second
15 preferred when there is a stronger relationship since the preliminary review serves to
focus attention on the aspects of existing work that should be compared. When the new
formalism is introduced, its similarities and dissimilarities, strengths and weaknesses are

then easily exposed.

We will adopt the second strategy, setting the stage in Part One (Chapters 1-2)

with a review of similar, existing research. This work is divided into two categories:



logic-based grammatical formalisms and unification-based grammatical formalisms'.

Chapter 1 begins with a concise refresher on logic programming, which can be safely
skipped by the reader familiar with Prolog and its theoretical underpinnings. We then
review the Definite Clause Grammar formalism and discuss its application in computa-
tional linguistics research. Chapter 2 discusses two unification-based formalisms, called
Lexical-Functional Grammar and PATR-JI, which at first sight may appear different
from the logic-based formalisms but provide important context for Inhkeritance Gram-

mar.

In Part Two, we introduce (Chapter 3) and formally describe (Chapter 4) Inheri-
tance Grammar and its underlying logic. In Chapter 3, we view Inheritance Grammar
as a generalization of both Definite Clause Grammar and PATR-TI. (In [act, every
Definite Clause Grammar is a Jegal Inheritance Grammar and there is a simple transla-
tion from PATR-II into Inheritance Grammar.) In Chapter 4, we extend the traditional
first-order logic system to the %-logic system, giving several definitions and results
analogous to those in the classical development of first-order logic. The semantics of
the Inheritance Grammar formalism is based on this new logic. From this point of view,

NL processing is just one application of ¢-logic, the one that motivated its existence.

We conclude in Part Three by discussing execution strategies for implementing -
logic and Inheritance Grammars. Using the Smalltalk environment, we constructed two
concrete implementations, both based on Prolog’s fast, depth-first execution strategy.
First, we imoplemented an interpreter for ¢-logic and then, to achieve greater speed, we

implemented a compiler and run-time execution system. These implementations are

) The term unification-based is vsed by linguists to circumseribe work besed on an operation similar to,
but distinet from, the unification of first-order logic.



described in Chapter 5, while three example grammars we executed are listed in the
appendices. The presentation of the formal semantics mm Cbapter 4 concludes by
describing what an implementation must do to be complete. In Chapter 6 several com-
plete evaluation strategies are discussed. We attempt to evaluate these strategies and
include information gained from several experiments we performed on a strategy called

Earley Deduction.

I owe thanks to many people for providing emotional and intellectua)l support
throughout this research. The most important is of course my wife, Nancy McCarter, a
wonderful individual whom [ love very deeply. Thank you, Nancy. My advisor and
friend, David Maier, deserves credit for all of the good ideas presented herein. By bring-
ing his broad experience and deep thoughtfulness to bear on the minutize of y¥-logic, he
forced my brain to dangerously exceed its rated capacity on a number of occasions.
Thank you, Dave. The other members of my committee—Dick Kieburtz, Dan Hammer-
strom, and Brian Phillips—have shared many exciting ideas with me. Thank you. T am
also grateful to a number of other people wheo have transmitted information-intense
Input to this process. This list certainly includes Hassan Ait-Kaci, Lauri Karttunen,
Martin Kay, Fernando Pereira, and David S. Warren. Finally, through the research
community at the Oregon Graduate Center and in Portland generally, I have come into
contact with a number of really bright and entertaining computer-nerds. Thank you all

for existing; life would be a lot less interesting without you.



Part 1
Background and Context




Chapter 1:
Logic-Based Grammar Formalisms

1.1. Introduction

This chapter surveys the logic-based approach to grammatical analysis. After
reviewing the notation of first-order predicate logic and Logic Programming (see, for
exatople, [Maier and Warren 1988|, {Apt and Van Emden 1982] or [Van Ewmden and
Kowalski 1976] for a review of Logic Programming), this chapter describes the Definite
Clause Grammar (DCG) formalism. In Chapters 3 and 4, we introduce a new grammar
formalism; the goal of this chapter and the next is to provide the background and con-

text necessary to evaluate the new {formalism vis-a-vis existing grammatical research.

1.2. First-Order Logic and Logic Programming

We will use the syntax of first-order predicate logic given in Figure 1.1. In the
extended BNF (eBNF) we will use throughout this document, brackets enclose optional
constituents, the vertical bar separates alternate constituents, and ellipses are used
(loosely) to indicate repetition in lists of constituents and separators. Other punctua-
tion symbols — including parentheses — are terminals and are in boldface when possible.
Non-terminals defined by the grammar are capitalized and non-terminals defined else-

where are in lower case.

We write AFRE to mean that axioms A logically imply expressicn E vis-a-vis model
theoretic semantics and we write AFE to mean that a specific proof procedure proves

E. A proof procedure is called sound (also consistent) if



TERM u=  constant

| function TERMLIST

| variable
TERMLIST = ( TERM, TERM, ... TERM )
ATOM = predicate | TERMLIST ]
EXPRESSION = ATOM

| true

| false

| = EXPRESSION

| EXPRESSION BINARYOP EXPRESSION

| 3 variable . EXPRESSION

| ¥ variable . EXPRESSION

| ( EXPRESSION )
BINARYOP = AlVi=s|<=

Figure 1.1: Syntax Of Predicate Logic

AFE implies AFE
and complete if

AFEE implies AFE

Clauses are disjunctions of literals where all variables are universally quantified.
Horn clauses have at most one positive literal and zero or more pegative literals.
Definite clauses bave exactly ope positive literal (the head literal) and zero or more
negative literals (the body). While all Jogic expressions can be transformed into a set
(i.e., a conjunction) of clauses, not all expressions can be transformed into a set of Horn
clauses. The premise of logic programming is that many interesting reasoning problems

can be expressed using Horn clause sets.

A Logic Program consists of zero or more definite clauses {called tbe database rules
or axioms) and a single clause with no positive literals (the query), which is the theorem

to be proved. The standard convention is to write a definite clause



poVpV=p, V..V -p

as

Po '~ Py P -+ Pk

and to write a query

- p, v —Pg V V _'pk

as
- Pu Pos -+ 5 Py

To understand the logical interpretation of a rule and the quantification of the
variables within the rule, let Y be the variables that occur in the body but not in the
head of the rule and let X be all remaining variables, The following expressions are

seen to be equivalent by standard identities of frst-order logic.

VX VY. (pfX) V -, XYV ... V =p(X.T))

VX (po®) V VY. (-pXY) V .. V =X, 7))

VX (pfX) V VY. ~(pXT) A - A pulXY))

VX (0o %) V =37 0 XY) A - A plEY))

VX, (3Y. 0:ED) A - A puXT) = polX))
In words, the rule is equivalent to the following (declarative) statement for any X: “If
p(XY) and ... and py(X,Y) are true (for at least one Y) then py(X) is true.” Expressing

this relationship procedurally: “To show that py(X) is true (for any X), it is sufficient to

find a Y such that py(X,Y) and ... and py(X,Y) are true.”

A query asks “Does there exist ap X such that p,(X) and ... and p(X) are true.”

Letting X represent the variables in the query, this question is:



IR EE) A - A )
For refutation proofs, the query is first negated and then converted to clause form:

3% (PX) A . A piX))
vX. —\(pl(sz) A A pk(m)
VX, (-p,(X) V ... V =, (X))

Logic programming consists of using a resotution-based theorem prover to prove a
query. The resolution rule is summarized as follows: If a rule head matches a predicate
in the query body, then we can find a solution for the query if we can find solutions for
al]l of the predicates in the body of the rule and we ¢an find solutions for all the remain-
ing goals in the query. The computational interpretation parallels this summary: A pro-
gram task consists of a conjunction of procedures to be called. The rules are used to
execute the calls. If a rule head unifies with a call in the task body, then we can exe-

cute the task by executing all the calls in the rule body and executing all the remaining

calls in the task.

The Prolog language imposes an order on the set of clauses and an order on the
literals within the clauses. In choosing a literal from a goal or rule body to match
against the rules, Prolog tries to solve the literals in the order listed. In choosing a rule
to match against a selected literal, Prolog tries the rules in order. In searching for a
refutation proof, all the literals in the body must be solved because they are conjoined
(motivating and-parallelism in multiprocess implementations) while only one rule that
solves a selected Jitera) needs to be found (motivating or-parallelism). When a particu-
lar rule fails to solve a goal literal, Prolog backtracks to try successive rules in the
database; when a literal with a goal or rule body can not be solved, the entire goal or

rule fails.
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Finding a refutation can be viewed as a problem of searching an and-or tree. The
Prolog execution rule is a depth-first search. Since the tree may have a finite solution
among many infinite branches, a depth-first search may follow an infinite path angd fail
to find an existing solution. Prolog’s execution strategy is not complete: there may exist
solutions to a given logic program that Prolog will never find. Next, we show how
context-free parsing can be done with Logic Programs by turning the search for 2 proof

tree into a search for parse tree.

1.3. Context-Free Grammars

Recall that a context-free grammar (CFG) describes a context-free language
(CFL), also called a Chomsky type-2 language. The grammar identifies the set of sen-
tences (input strings) in the language. There are many well studied context-free parsing
algorithms to analyze a potential sentence and determine whether it is syntactically
legal {e.g., Aho and Ullman 1972]. A parser uvsually produces a parse tree, which
linguists often call a phrase struclure (ree, a consiituent structure iree, or a synlaz tree

to distinguish it from other deeper representations of the sentence.

Context-free grammars are represented naturally in Backus-Naur Form (BNF), the
rules of which contain a non-terminal on the left side and a sequence of terminals and
non-terminals on the right. In the parse tree constructed, the internal nodes are labeled
with non-terminals and the leaves are labeled with terminals. Lexical (or morphologi-
cal) analysis categorizes the words of an input into lexical categories (word classes),

which appear as terminals in the grammar.

In spite of persisting debate to the contrary {e.g., Pullum 1984], it is clear that
context-free lapguages are by themselves inadequate to desecribe natural languages.

Nevertheless, much of the superficial structure of language can be described quite easily
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with CF rules. Almost every NL system has a syntactic component founded on & CFG
skeleton and augmented with constraints and code to construct some form of semantic
representation. Constraints (for example, the number agreement constraint between
determiner and head noun or the constraini between noun phrase and verb sequence)
serve to restrict the applicability of CF rules. Definite Clause Grammars make it easy
to integrate the context-free analysis with such constraint checking and structure build-

ng.

1.4. Definite Clause Grammars

Colmerauer and Kowalski observed that there is a simple translation from
contexi-free BNF rules to definite clauses such that the problem of parsing a given sen-
tence is equivalent to proving a theorem [Colmerauer 1978, Kowalski 1979|. Further-
more, whep translated into logic, there is an obvious extension to the context-free skele-
ton that makes such tasks as constraint checking and tree building easy. The basic for-

malism used to express NL grammars in logic is called Definite Clause Grammars

[Pereira and Warren 1980).
Consider the following BINF rule:
Su=8, S ... 5
where the S; are non-terminals. It can be translated into the following logic clause:
S(Py, Pyay) 1= 51(Py, Po), sofPy Pg), oo, 51(Py, Prut)-
During execution, the variables P; will be instantiated to positions in the input. By con-

ventvion, positions fall between the word symbols and can be jdentified by integers as in

the input

o The | messenger , delivered ; the , news g
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Declaratively, this rule can be read as “There is an S constituent in the input between
positions P; and Py if there is an S, constituent between position P; and Py and ...

and an S, constituent between position Py and Py,,.”

If the right side of the BNF rule contains a terminal as, for example, the word w

S = . Si—l: w, Si-l-l! JOR

it is translated into the following clause:

S(P), Peyy) i~ - - -, s34(Py-y, Py), connects(w, P, Pyy), s4.4(Py.y, Pyag)y

This clause can be read as “There is an S constituent in the input between Py and Py,
if there is ... and an S;_, between P,_; and P; and 2 word w between positions P; and

Py;1 and an S;;, between P;,, and P, and ... .” For example, the grammar

S == NP VERB NP
NP ::= the NOUN
NOUN ::= messenger
NOUN ::= news
VERB ::= delivered

is represented in definite clauses as

s(P1, P4) :- np(P1, P2), verb(P2, P3). np(P3. P4).
np(P1, P3) :- connects(the, P1, P2), noun (P2, P3).
noun (P1, P2) :- connects(messenger, Pl1, P2).

noun (P1, P2) :- connects(news, P1, P2).

verb (P1, P2) :- connects(delivered, P1l, P2).

The input sentence to be parsed is then specified with a series of connects facts,

such as:
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connects (the, 0. 1).
connects (messenger, 1, 2).
connects (delivered, 2, 3).
connects (the, 3, 4).
connects (news, 4, 5).

To use a Definite Clause Grammar as a parser, the grammar is executed as a logic
program. To determine whether the input is syntactically correct, i.e. whether a legal

constituent S lies between positions 1 and 5, the following goal is evaluated:
t- s(1, 5).

The depth-first evaluation strategy of Prolog applied to a2 DCG performs a top-down
parse, atteropting to prove the input is syntactically correct. Different execution stra-
tegies {e.g., Earley Deduction), resulting in correspondingly different parse strategies,
will be discussed later. The deductive mechanism of the DCG formahsm 1s a direct
consequence of the execution strategy used for the corresponding logic program. The
incompleteness of Prolog deduction in implementing logic program semantics motivates

the discussion of different, complete strategies in Chapter 6.

Above, input positions were represented with integers. An optimization is to

represent, positions with lists' of words instead of integers. In particular, a position P in
the input is represented as the list of all words following position P. The connects

facts then become

LAdist [X1, X2, ... , Xk] issyntactic shorthang for the first-order term cons (X1, cons (X2,
cons (X, nfl) ... )). The notetion (X1, X2, ... , Xk | Y) is short for cons (X1,
cons (X2, ... cons(Xk, Y) ... )) and [} is short for nil. Most Prolog implementations accept llst

notation znd we shall use it throughout.
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connects (the, [the,messenger, delivered, the, nevws],
(messenger,delivered, the.news]).

connects (messenger, [messenger, delivered, the,news],
[delivered, the, news]).

connects (delivered, [delivered.the,news],
[the,news]) .

connects (the, [the,news], [news]).

connects (news., [news], [J]).

All such rules can be collapsed into one general purpose rule:
connects (W, [W | List]. List).

thus making the program independent of particular input strings. The parsing can then

be initiated with a query such as

:~ s{[the,messenger, delivered, the, news], []).

When the terminals in the CF grammar represent word classes (noun, adjective,
etc.) a Jexicon, which maps specific words into their classes, can be represented as a

sequence of rules such as:

noun (P1, P2) :- connects(man, P1l, P2).

noun (P1, P2) :- connects(woman, P1, P2).

adjective (P1, P2) :- connects(big, P1, P2).

adjective (P1, P2) :- connects(red, Pl, P2).
ele.

This organization for the lexicon is not particularly efficient under Prolog execution
since every noun rule must be tried when the grammar expects a noun, making the
speed ol parsing proportional to the size of the lexicon. A more efficient technique is to
use the indexing mechanisms built in to some Prolog implementations. For example, the

same lexicon would be coded as:
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noun (P2, P2) :- connects(W, P1, P2). isNoun(W).
isNoun (man) .
isNoun (woman) .

ete.

adjective (P1, P2) :- connects (W, Pl, P2), isAdjective(W).
isAdjective (big) .
isAdjective (red).

elc.

Another improvement is to preprocess out explicit calls to connects. For exam-
ple, the following rule
noun (P1, P2) :- connects(W. P1l, P2), isNoun(W).
can be rewritten as
noun ([W | P2), P2) :- isNoun (W).
Likewise, the rule
s(Pl1, P4) :- s1l(P1l, P2). connects(W. P2, P3)., s3(P3, P4).
can be condensed to
s(PL, P4) :- sil(Pl1. [W | P3]), s3(P3. P4).

The connects rule can tben be eliminated altogether.

1.4.1. DCG Notation

DCGs are really nothing more than stylized logic programs with conventions for
the use of position variables to encode the CFG. The position variables are used so reg-
ularly, in fact, that a simple bit of syntactic sugar allows them to be generated
automatically, leaving the essence of the grammar unfettered with a proliferation of

position variables. The standard is to write a BNF rule as:

S —=> 8y, Sgy s+, Sy
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When the right side includes a terminal, it is inclosed in brackets:
s -=> ..., 8.y, W, S

A simple syntactic transformation recognizes the --> symbol and translates the rule

into a legal clause by adding the appropriate position variables. A rule such as
RELCLAUSE := ¢

1s coded as
relclause -->

When the grammar writer intends a clause such as:
noun (P1l.P2) :- connects (W,P1,P2), isNoun(W).

which includes a goal that is not to have position variables, the DCG notation allows
the goal to be explicitly escaped with braces. So, the clause above can be expressed

DCG notation as:

noun --> {W]. { isNoun(W) }.

1.4.2. Beyond Context-Free Rules: Additional Arguments

The obvious extension to the context-free Definite Clause notation allows non-

terminal symbols to have additional arguments. For example, the rule:
s --> np (Num), vp (Num).

shows how additional arguments might be used to check the number agreement con-
straint between subject and verb phrase. Assume evaluation (parsing) of the np goal
results in binding the Num variable to singular or plural. This value is then

passed to the vp goal, constraining the form of verb phrase to be accepted.
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A famibar benefit of using unification for all data manipulation is that informa-
tion is used if it 1s available, but not required to be present. In the sentence The sheep
kit the ball, the number information is not provided by the subject so the verb phrase is
not constrained. The verb phrase is free to add in (unify) either singular (...hils the ball)
or plural (...Att the ball). In the sentence The sheep wanled the ball, which is ambiguous

since the number is not specified by either subject or verb, Num is never bound.

Contrast Prolog’s treatment of arguments with synthesized attributes (in the con-
text of parsing), which are always bound in the subconstituent and passed upward to
the calling rules, and with fnherited atiributes which are always bound before being
passed down to the called cobnstituent {Aho and Ullman 1972, Aho and Ullman 1977,

Knuth 1968).

1.4.2.1. Other Uses for Arguments

These ancillary arguments can also be used to build structure. In the next exam-
ple, we want to construct and return a term representing the parse tree. The second
arguments of np and vp are assumed to return structures representing the noun phrase
and verb phrase constituents, respectively. The s rule combines them to return the

structure for the entire sentence.

s (sent (NPtree, VPtree)) --> np{Num,NPtree),
vp (Num, VPtree) .

The use of arguments to build and return parse trees is very regular and additional
arguments could easily be generated automatically like the position variables are in
DCG notation. In fact, this feature exists in some variants of DCG (e.g., Restriction
Grammars and Definite Clause Translation Grammars, to be discussed below). “Stan-

dard” DCGs do not have this extension, since the grammar writer often finds it con-
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venient to build a more abstract representation, which may differ from a parse tree by
(1) rearrangement of podes and simplification, (2) the inclusion of constraints and
features (e.g., number), and (3) the inclusion of computed information such as sermantic

franslations.

In the composttional approach to understanding, syntactic constituents — at least
the major constituents — return computed translations instead of returning parse trees.
In extreme versions of the compositional approach, the meaning of an entire subconsti-
tuent (e.g. a noun phrase) is determined in isolation from its context, the enclosing con-
stituent. This approach doesn't scale well; the meaning of a constituent often depends
crucially on its context and can not be built in isolation but must be built using inher-

ited information.

Finally, additional arguments can pass semantic fragments (i.e., partial tramsla-
tions), which are combined in arbitrary computation. Typically, semantic fragments are
passed both up, down, and sideways, and predicates escaped with braces are used to

perform semantic constraint checking and structure building.

To summarize, the context-free skeleton of DCGs is augmented with (1) ancillary
arguments to perform constraint checking, (2) ancillary arguments to build and manipu-
late arbitrary structures, and (3) embedding of arbitrary computations using the brace-
escape mechanism. By allowing arbitrary computations, the formalism inherits Chom-
sky type-0 power from the Turing Machine power of logic programming while still
retaining the context-free skeleton in the BNF-like rules. Pereira and Warren {1980
compare the DCG formalism to Augmented Transition Networks [\Voods 1970, Bates

1978) and conclude that DCGs are superior.
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1.5. Logic-Based Approaches to NL Processing

Research in applying the DCG formalism to Natural Language processipg can be
divided into two general categories: (1) implementations of NL grammars using DCG

techniques and (2) modifications and improvements to the DCG formalism itself.

Early work in DCG grammars by Veronica Dahl argued for the use of logic for
both the deductive component of a database and for a natural language interface to
that database {Dahl 1979, 1981, 1982; see also Gallaire, et al. 1984]. Logic variables are
untyped, while attributes in the relaticoal data model are (typically) typed [Codd 1970).
Dahl pointed out that typing information 1s needed in the NL component to sort out
ambiguities (e.g., how to attach relative clauses). She also discussed semantic data

modeling issues in the context of logic-based grammars.

Alain Colmerauver addressed the need to have set-valued expressions and multiple
truth values in any logic into which a NL query might be translated. In his more
rigorous approach |Colmerauer 1982], he provided a formal semantics for a 3-valued
logic system with particular emphasis on translating NL quantifiers (e.g., every, the,
each). He also circumscribed a subset of Natural Language (initially French but also
English) and specified a simple set of rules for translating sentences and questions into

expressions in his logic.

Perhaps the most influential DCG was one written by Michael McCord synthesiz-
ing 2 number of important DCG tecbniques [McCord 1980, 1982|. Each input sentence
is understood in isolation and processed against a relational database over the domains
of courses, classes, students, and faculty. The system answers interrogatives ang verifies
declaratives as correct or incorrect. The linguistic coverage — at least for isolated

queries — Js quite complete; the primary limitation is the semsantic data mode)l. The
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grammar’s main strengths are its treatment of quantification and jts resolution of verb-
complement coordination using a semantic hierarchy. McCord’s 1nitial DCG was fol-
lowed by research into the nature of focalizers [McCord 1986] and with the construction

of a single-pass semantic backend called SEM [McCord 1984, 1985].

A number of rules in McCord’s grammar contain several extra arguments used
solely for passing information from one place in a sentence to another distant location.
The linguistic phenomenon called left extraposition or fronfing is responsible for this
effect. Left extraposition occurs when some linguistic construct Y contajns a missing
subconstituent X and another, related phrase X' has been inserted to the left of con-

struct Y. For example, the sentence

The revolution that we believed tn was lost.
contains a relative clause, that we believed in, which is analyzed as a sentence with a
nussing element, the revolution, which has been moved to the left to become a relative

pronoun, that. This phenomenon also occurs in auxiliary fronting and wh-questions; in

the question
Which critic did the woman with the golden tongue seduce?
the noun phrase which ¢ritic and the verb auxiliary did are both left extraposed.

To handle extraposed constituents, Fernando Pereira introduced Eztrapesttion
Grammars (XGs) as an extension to the DCG formalism [Pereira 1981]. To execute an
XG, a simple translation scheme is used to transform the XG into an efficient definite
clause program, which can then be executed by the Prolog interpreter. An Extraposi-
tion Grammar was used in the interface to CHAT-80, a logic database of geographic
data that used a clever query planning algoritbm [Warren 1981, Warren and Pereira

1982). See also the related work by Dahl and Abramson on Gapping Grammars [Dahl
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and Abramson 1984].

In analyzing a natural language sentence, several distinct activities are comamonly
distinguished: context-free parsing, parse tree construction, constraint enforcement, and
construction of the semantic representations of syntactic constituents. In DCGs, these
tasks are not described or performed separately; instead all are intermixed in the gram-
mar. In another extension to the DCG formalism, called Definite Cleuse Translation
Grammars (DCTGs), the CF component of the grammar and the parse tree construction
are separated from the other tasks, collectively called semantics [Abramson 1984a,
1984b]. Each DCTG rule then consists of two parts: a syntax part and a& semantics

part.

Anotbher modification to the DCG formalism was motivated by the Linguistic
String Project (LSP), which culminated in 2 grammar combining BNF rules with restric-
ttons [Sager 1981]. Their implementation (in Fortran!) builds a parse tree and checks
the restrictions. Hirschman and Puder have adapted this approach to the DCG frame-
work and call the resulting formalism Restriction Grammars (RGs) [Hirschman and
Puder 1986]. During execution, a parse tree is constructed avtomatically. A restriction
consists of Instructions to move a pointer around this parse tree and to check node

labels and attributes to validate the parse.

In the work presented here, we take first-order logic (rather than DCGs) as our
departure point. We first describe a generalization of first-order logic called ¢¥-logic.
Then we extend the DCG notation {rom first-order logic to ¢-logic to yield the Inheri-

tance Grammar (IG) notation for expressing Natural Language grammars.

Before introducing -logic and Inheritance Grammars however, we will survey a

different line of research into a family of grammar formalisms called Unification-Based
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Gremmars. While the DCG formalism and its variants were introduced primarily by
computer scientists for linguistic processing, unification-based grammars were cham-
pioned by computational linguists for using computers. One goal of Inheritance Gram-
mars is to gracefully incorporate the important features of the unification-based formal-

isms 1nto the framework of logic programming.
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Chapter 2:
Unification-Based Grammar Formalisms

2.1. Introduction

Jn this chapter we discuss two grammar formalisms based on unification of data
structures, but developed independently of the logic programming paradigm. The first,
Lexical-Functional Grammar (LFG), was developed primarily as a theory about human
language competence and less as a notationp for expressing computer-executable gram-
mars. The second, PATR-1I, was developed as a general-purpose language in which
several types of grammatical theories (e.g,, LFG and Functional Unification Grammar)
could be expressed in computer-executable form. As such. it can be viewed as a syn-

thesis of other unification-based formalisms.

2.2. Lexjical-Functional Grammar

A Lexical-Functional Grammar [Bresnan and Kaplan 1982] is a context-free gramn-
mar jn which each rule 1s avgmented with one or more equation schemata that express
the contexb-sensini_ve constraings among the constituents. LFG parsing proceeds in three
steps. Given an input sentence to analyze, the first step is to Oind a context-free parse
(called the c¢-structure in LFG terminclogy). The second step is to examine the rules
used in the parse and their assoctated equation schemata and o instantiate those sche-
mata, thereby producing a set of equations (called the f-description) to be solved. The

final step is Lo solve the equalions.
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The context-free rules describe a superset of the target language and the equations
serve to constrain the number of potential parses. When a consistent solution for the
equations can be found. vbe analysis is coruplete and information about the analysis of
the input is captured in that solution. When the equations do not have a consistent

solution, another context-free parse is sought and new equations are produced.

The variables in these equations range over f-struciures (short (or funclional struc-
{urcs). An [-structure is a finite function mapping allribule labels (atomic symbols) into
allribute values (again atoms) or other f-structures. Attributes are also called features
or funclions. Semantic formulas or sets (of symbols or f-structures) also appear occa-
sionally as attribute values. F-structures are traditionally shown using a matrix-like

notabion. In the f-structure shown in Figure 2.1 there are two attribute labels, SUBJ
and VP!, The value of each is itsell 2 nested {-structure.
It is important 1o distinguish between values vhat are equal and values that are

identical (equality of value versus equality of reference). All identical values are equal,

but equai values are not necessarily identical. In Figure 2.1. the NUM atiribute of the

DET  THE ]
SUBJ |NUM  PLURAL

INOUN  GIRLS

[ NUM PLURAL
VP TENSE PRESENT

'VERB  RUN

Figure 2.1: An F-Structure

' Many of our LFG examples are from Bresnan and Kaplan [1982] and Winograd [1983].
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SUBJ attribute has a value equal to the NUM atiribute of the VP attribute. When two
attributes share the same value, they are said to be identical Identical attributes are
generally indicated graphically by linking them with a line as in Figure 2.2, but there

are also other notations to indicate identity.

In the original description of LFG, it is unclear whether or not cyclic f-structures
are allowed A cychic f-structure is one in which the value of one attribute contains the

[-structure itself. A rigorous definition of cyclicity appears in Chapter 4.

[figure 2.3 shows a simple LFG (nol necessarily the one that generated the f-
structures in Figure 2.1 or Figure 2.2). Tt contains 3 grammar rules followed by a lexi-
con of six words. The equation schemata associated with each grammar rule are state-

ments of identity between the different parts of the functional structures to be bujlt and

ARTICLE INDEF
SUBJ NUM SG

PRED "GIRL”
TENSE  PAST

PRED "PERSUADE<GIRL,BABY,GO<BABY>>"

[ARTICLE  DEF

OBJ NUM SG
PRED *BABY”
[SUBJ ]
INF +

VCOMP |14 +
PRED 'GO<BABY>’

Figure 2.2: An F-Structure Containing Shared Attributes
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are shown directly beneath non-terminals on the right side of the context-free rules.

The analysis of an input proceeds by first finding a context-free analysis of the
sentence. In the second step, an single [-structure will be associated with each node in
the parsc tree. Initially, these f-structures are unknown and are represented by vari-
ables. Next., the [-description is constructed by instanttating the equation schemata to
vield a set of equations over these unknown f-structures. Finally, the equations are

solved by performing a unification for each equation in the [-description.

S — NP VP
(1 SUBJ) = | T=1

NP — DET N

VP — \Y NP NP
(1 OBJ) = | (t OBI2) = |

a: DET (f DEF-INDEF) = INDEF

(T NUM) = sG
girl: N (1 NUM) = sG

(t PRED) = ‘GIRL’
handed: V (T TENSE) = PAST

(1 PRED) = ‘HAND<(} SUBJ) (1 OBJ) (1 OBJ2)>’
the: DET (T DEF-INDEF) = DEF
baby: N (T NUM) = SG

(1 PRED) = ‘BABY’
toy: N (T NUM) = SG

(T PRED) = ‘TOY’

Figure 2.3: A Simple Lexical-Functional Grammar
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An up-arrow () in an equatjon schemata refers to the structure for the non-
terminal on the left side of the rule. A down-arrow (]) refers to a structure associated
with 2 non-terminal of the right side of the grammar rule. These arrows indicate

immediale domination. [For example, the equation
(1 SUBJ) = |

in the first rule says that the value of the SUBJ feature of the [-structure associated
with the S constituent is equivalent to the f-structure associated with the NP consti-
tuent. The terminals in the lexicon are handled similarly, with equation schemata con-

taining only up-arrows.

Each side of an equation can either name a part of an f-structure or provide a
constant value. Struclture locations are given using feature names or sequences ol
feature names. These sequences are called path names and are given relative to the
functional structure associated with the non-terminals of the grammar rule. In several
of the schemata associated with lexical eptries, quoted constant values appear. The
quotes are used to indicate semantic translation forms. This grammar translates the
verb handed using a three-placed predicate HAND. For instance, this grammar

translates the sentence The girl handed the baby a toy. into
HAND<GIRL, TOY, BABY>

Note that the semantic forms appearing in the equation schemata are not atomic but

can contain path names. The second schema associated with handed is an example.

The equations are processed sequentially to incrementally build up the functional
structures. The processing of a rule can affect the (incomplete) functional structure in
several ways. It can equate different feature values (i.e., bind them as with variable

binding in Prolog), add in new values where there were previously none, create new
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functional structures (by providing functional structures as literals in the equation} and,
finally, disallow particular grammar interpretations by trying to equate two conflicting
feature values. All this processing is just specializations of unification. In 2 valid solu-
vion for an f-deseription, the f-structure associated with the root non-terminal is con-

sidered the imterpretation ol the sentence.

To illustrate the use of the LFG shown in Figure 2.3, look at Figure 2.4, which
shows a context-free parse of The girl handed the baby a loy. Functional structures
labeled z!, z2, 28, 24, and 5 are associated with the interior nodes in the parse tree and
Figure 2.5 shows the equations with these names substituted in place of the arrows,
(These instantiated equations constitute the functional description. Finally, Figure 2.6
shows a (minimal) solution for these equations. The minimal solution is unique, if it
exists. The functional structure z! (associated with the root non-terminal S) is the

result of the LFG parse.

S (z1)
VP (z3)
NP (z2) NP (z4) NP (z5)
DET N \" DET N DET N
the girl handed the baby a toy

Figure 2.4: A Context-Free Parse




Rule or Word Instantiated Equations

S — NP VP (x1 SUBJJ = x2

x1 = x3
VP — V NP NP (x3 OBJ) = x4

(x3 OBJ2) = x5
the (x2 DEF-INDEF) = DEF
girl (x2 NUM) = SG

(x2 PRED) = ‘GIRL’
handed (x3 TENSE) = PAST

(x3 PRED) =

‘HAND< (x3 SUBJ) (x3 OBJ) (x3 OBJ2)>’

the (x4 DEF-INDEF) = DEF
baby (x4 NUM) = SG

(x4 PRED) = ‘BABY’
a (x5 DEF-INDEF) = INDEF
(x5 NUM) = SG
(
(

x5 NUM) = SG
xh PRED] ‘TOY’

toy

Figure 2.5: The Instantiated Equations

[SUBJ  x2

OB} x4
x1=x3= |OBJ2 x5

TENSE PAST

[PRED  "HAND<GIRL BABY,TOY>"

: [DEF-INDEF DEF
X9= NUM SG

| PRED *GIRL’
[DEF-INDEF DEF
xd= NUM SG
| PRED *BABY”’
[DEF-INDEF INDEF
X5= NUM SG
[ PRED “TOY”

Figure 2.6: The Solutions
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In addition to providing contexl-sensitive constraints to weed oul the ungrammat-
cal interpretations, the equations are also used to add semantic structures to represent
the meaning of the sentence. The equations of Figure 2.5 are designed to bwld the

predication
Hand < Girl, Baby, Toy >

to represent the sentence’s meaning. However, the resulting functional structure will be
highly annotated with extra-syntactic information from the parse and is thusin a form
convement for further domain-specific processing when such a simple translation scheme

is inadequate.

The paragraphs above describe what we will call the LFG core. Next, we describe

additional aspects and features of LFG.

So far, the path names in the equations have been linear sequences of feature
names To handle the long distance dependency associated with left extraposition. we
often need to do some (simple) searching in the parse tree 1o locate the appropriate con-

stituent to use in an equation.

An example of a left ex-t,raposihion occurs in the sentence Which man did you want
Sarah to give the book Lo? We want to use the same grammar rules in parsing this sen-
tence as in parsing Sarah gives the book to the man. Since this transformation (picking a
noun phrase out of a declarative clause, changing its form slightly, and moving it to the
beginning of the clause) can happen with many different forms of clauses, we need a way
to parse long distance dependencies without increasing the complexity of the grammar
An typical LFG handles left extraposition by including a grammar rule to parse a null
(zero length) noun phrase called the trace. In the example, Which man did you wunt

Sarah to give the book to? the trace oceurs at the end of the sentence. The equations
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associated with the null noun-phrase rule must link (unify) the extraposed noun phrase
{(which man) into the appropriate slot of the structure for the declarative clause contain-
ing the hole?. To perform this linking, we need a rule that says something like “Look at,
the structure beneath the verb phrase for a noun phrase structure that has a feature
value of Null (ie., the trace position). [ill in information {rom the questioning noun
phrase found at the beginning of the sentence.” The null noun phrase can be just about
anywherc. (Consider Which book did you want Sarah to give jirace/ to the man®) To per-
form this type of searching, a special variety of up- and down-arrows, called bounded-
dominatson, is introduced. The bounded-domination up-arrow searches up the parsc tree
looking for a matching bounded-domination down-arrow. This long-distance linking
performs the identification of the trace and the marker, completing the handling of

extraposed constituents in LFPGs.

In the LFG core. we saw only one kind of equality equation, which corresponds to
the equality of unification. Other kinds of equations are allowed. In a constraint egua-
tion, the equality of atiributes is tested. But unlike the equality equation, the attri-
butes must already be bound: such an equation is not allowed to instantiate variables.
A negalive gqualion requires two atiributes to be distinet without saying what they are.
An existential equation requires that an atiribute exist and be instantiated without pro-
viding its actual value. In the presence of constraint, negalive, and existential equa-
tions, the equality equations are all processed first to bind the variables through

unification. Then, in a second pass, the remaining equations are checked.

Several “conditions™ place restrictions on what is to be considered an acceptable

(-structure solution for a set of equations and hence what constitutes a legal LFG

2 This linking 1s exactly what Extraposition Grammars (see Chapter 1) do in the DCG framework.
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interpretation. To understand these conditions, we need to define governable grammati-
cal functions. The predicate forms appearing in the equation schemata in the lexical
entries make reference to certain attributes in the f-structure to be built for an input.

For example, the equation in the lexicon entry for hended
(1 Predicate) = ‘HAND < (1 SUBJ) (1 OBJ) (1 OBJ2) >’

references the attributes SUBJ, OBJ, and OBJ2. An atiribute (such as SUBJ) is said to
be a3 governable grammalical function if 1t appears in the predication of any lexical

enlry.

The completeness condilion requires an f-struc_ture solution to contain all atiri-
butes that are mentioned in any semantic predication forms. That is, the semantic
predicate’s slots have to be filled in. For example, if a sentence’s [-description included
the above equation for handed, then any f-structure solution had better coniain the
features SUBJ, OBJ, and OBJ2. The coherence condiiton stipulates that the f-structure
contain no governable grammatical functions that are not used in the semantic predica-
tions i.e., no leftovers in the sentence that don’t participate in the meaning. Finally,
the grammaticality condition says that an input is grammatical only if it is assigned 2

unique f-structure that is both complete and coherent?®.

Two other enbancements to the LFG core can be illustrated by the handling of
prepositional phrases. In the core, feature labels were presented as atomic symbols that
were specified literally in the equation schemata and that were not the subject of com-

putation. However, equations such as

(1 (L PREP-CASE)) = )

3 Noue that the uniqueness requirement means that every ambiguous sentence is wngrammatical.



33

are allowed. This equation would be used in a rule that allows the attachment of
prepositional phrases to a clause. The down-arrow refers to the f-structure associated
with the prepositional phrase, the up-arrow with the clause. This equation says: Make
the prepositional phrase’s {-structure the value of one of the clause [-structure’s attri-
butes. Which attribute? The attribute label that also occurs as the wvalue of the
PREP-CASE attribute ol the prepositional phrase’s [-structure. For example, suppose
the prepositional phrase is attached with the preposition to and that its f-structure has
a feature called PREP-CASE with a value of to. This equation then causes the value of
the fo leature of the clause’s f-structure to be set to the prepositional phrase's f-
structure. Thus, (he sel of leature labels and the set of atomic feature values are not
really distinct and incomparable. This type of equation 1s analogous to indirect
addressing, where numbers are treated as both data and addresses of data.

Next. consider how multiple prepositional adjuncts, as in The girl handed the bhoby
a toy on Tuesday in the morning, can be handled. We mentioned that the value of a
feature could be atomic, a nested f-structure, a predication, or a sets of f-structures.
Sets would be used here where there is no way to predict how many adjuncts may be

present. The grammatical rule in question®

VP — V NP NP PP*
(t OBJ)=] (1 OBJ2)=4 {€(1 ADJUNCTS)

contains a set membership (€) equation.

Lexical-Functional Grammars were so named because they tend to place a strong
emphasis on the lexicon. Since each word entry contains semantic information as well

as extensive syntactic usage information (all expressed as equations), the diclionary

1 Note that the Kleene star is allowed in LFG rules.
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tends to be large, conlaining many similar entries. Moving syntactic information down
into each word entry that can use 1t makes it easier to handle exceptions and special
cases, reducing the size of the grammar rules, but results in redundancy in the storage
of grammatical knowledge. Since most words can be used many ways and each requires
a separate entry, there is a profusion of dictionary entries. For example, 1t is difficult to
handle the passive iransformation with LI'G rules. Instead, separate entries are

included in the lexicon for the active and passive senses of each verb.

In order to capture such regularities with any elegance, {czical redundancy rules
are used to generate additional word entries given base eutries. The following rule; for
example, would be used to automatically generate the entry for the passive sense of a

verb given the aciive sense.

(1t OBJ2) = (1 OBIJ)
(1 OBJ) = (1t TO-OBJ)

Consider the lexical entry for handed shown in Figure 2.3. This lexical transformation

rule automatically adds a second entry to the lexicon:

handed:  V (t TENSE) = PAST
(t PRED) = ‘HAND<(1 SUBJ) (1 TO-OBJ) (1 OBJ)>’

2.2.1. Functional Unification Grammars

In work closely related to the development of Lexical Functional Grammars, Mar-
tin Kay developed Functional Unification Grammars (FUG) based on earlier work on
Functional Grammars and Unification Grammars [Kay 1979, 1984a, 1984b, 1985). In
FUG, the grammar is itself expressed with functional structures. Instead of processing
individual equations, unification is done between the structures representing the gram-

mar. Certain features containing information about the context-free component of the
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grammar are recognized as predefined. Special treatment of these features embeds the

context-[ree parse into this framework.

In addition to the definition of {-struclure given above, disjunctions of [-structures
are needed to express alternatives in the grammar (e.g., alternate rules for expanding a
NP). Other aspects of FUG allow the grammar to specify negative information {e.g,
feature [ cannot have a value) and required information (e.g., feature f must have a

value).

In most vanations of the {ormalism, every functional structure contains a feature
named Calegory whose value, which is always an atomic symbol, names the structure.
The name given to a structure is the same as the grammar non-terminal with which it
is associated. A second feature called Patferns (sometimes Constiluent-Slructure or
Constituent-Set) is a list containing information about what syntactic features are
present in the structure. The order of features is unimportant but these two generally
appear first. The special handling of these two features within the unification algorithm
allows context-free parsing to be incorporated into the unification of the f-structures

representing the grammar rules.

2.3. PATR-II

PATR-II grew out of work with several other linguistic formalisms, including
Lexical-Functional Grammar (LFG), Functional Unification Grammar (FUG), General-
ized Phrase Structure Grammar (GSPS), Head-driven Phrase Structure Grammar
(HPSG), and Definite Clause Grammar (DCG). PATR-I[ was developed as a linguistic
tool rather than as a linguistic theory and, as such, the emphasis was on increased

expressiveness instead of restrictive expressiveness [Shieber 1984, 1985a).
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The data structure of PATR-II, the feature structure (or {-structure), is identical
to the f-structure from LFG with only slight notational differences {Karttunen 1984].
PATR-II also allows shared {i.e., identical) values within a structure, which are called

reentran! values and which are indicated using coindexing boxes as shown in Figure 2.7,

Feature structures are most easily understood by viewing them as directed, acychic®
graphs (DAGs) with a single root. The arcs are annotated with feature labels and the
leaves are annotated with atomic feature values. For example, the [-structure of Figure

27 is shown as a DAG in Figure 2.8.

A partial order, called subsumption, i1s defined among f-structures. When [-
structure A subsumes f-structure B, we say thal A is more general than B and that B is
more spectfic than A. In summary, [-structure A subsumes {-structure B if, for every
feature [ occurring in A, [ also occurs in B and the value of f in A subsumes the value of

fin B. When coindexing occurs in B it must be at least as restrictive as the coindexing

occurring in A. I A subsumes B we write A C B¢

[ cat: NP l

number: singular
agreement: person: third

Lsubject: [aggreement: ]

Figure 2.7: A Reentrant F-Structure in PATR-I1 Notation

5Some implementations also accommndate cyclic f-structures

® When Inheritance Grammar 1s presented in Chapters 3 and 4, we will provide a more rigorous
definition of subsumption that generalizes the notion of subsumption used by PATR-II. There, we will use an

order (C) opposite to Lhe order used in PATR-II. When X subsumes Y, we will write Y &= X while the
PATR-II notation writes X C Y.
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agreement agreement

number person

singular third

Figure 2.8: The DAG representation of an F-Structure.

The unification of two f-structures, A and B, is defined formally as the most gen-
eral f-structure, C, such that A & C and B © C. If such a f-structure C exists, it is
umque. If no such [-struclure exists, the unification is said to faill. Generalizalion 1s

defined similarly, as a dual {0 unification.

In a PATR-1I analysis, a substring of words in the sentence can be associated with
an f-structure. The grammar rules describe how to combine substrings to produce larger
strings and how to combine the associated {-structures to produce the more detailed {-
structure associated with the larger strings. Concatenation is used as the string com-

bining operation and unification is used as the f-structure combining operation.

As an example, consider the following PATR-II grammar rule.
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X—+Y2Z
<XNcat>=S8
<Y cal> = NP

<7 cat> = VP
<X bead> = <Z head>
<X head subject> = <Y head>

The first line of the rule is a context-free grammar rule. The remaining lines each
specify a single unification. In these unification ‘‘equations,” positions within particular
f-structures are given using paths. This rule says thal a string Y can be concatenated
to a string Z Lo form a valid constituent X 1f the f-structures associated with X, Y, and
Z can be unified according to the equations. For example, the last equation says that
the subject attribute of the head attribute of the f-structure associated with X must

unily with the head attribute of the Y structure.

Most untfication-based linguistic theories use a caf feature In every {-structure
associated with a syntactic constituent with the mame of that constituent as 1ts value,
as is done by these equations. PATR-II includes a little notational sugar to make the

expression of PATR-II rules more palatable. This same rule can be written as:

S— NP VP

<S head> = <VP head>
<S head subject> = <NP head>

The lexicon associates [-structures with words. In the textual specification of the
lexicon, the grammar writer provides a set of equaticns for each word. It js the equa-
tions that specily the f-structure to be associated with the word. All paths in the equa-
tions for word W are given relative to the root of the f-structure to be associated with

word W. Solving them builds the desired DAG. Consider the word entry for John:
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Word john:
<cat> = NP
<head agreement gender> = masculine
<head agreement person> = third
<head agreement number> = singular

There is a great regularity among the words and their lexical entries. There are a
lot of masculine, third-person, singular proper nouns. To build a dictionary without
having to repeat each of these features for every word, there is a facibity for grouping
words and repeating common attributes. For example, suppose we wish Lo create a

category for singular nouns called SingNP. This category is treated with the following

declaration:

Let SingNP be
<cat> = NP
<head agreemeni number> = singular

We can then instantiate a word vsing this category and possibly adding additional

features as follows:

Word john: SingNP
<head agreement person> = third
<head agreement gender> = masculine

Hierarchies of word orders can also be accommodated. Another way to define the
word John is to create a kind of 2 StngNP for third-person, singular noun phrases as fo}-

lows:

Let SingNP be
<cat> = NP
<head agreement number> = singular

Let ThirdSingNP be SingNP
<head agreement person> = third

Word john: ThirdSingNP
<head agreement gender> = masculine
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Multiple Inheritance is also accommodated. Supposed we also had a category for

masculine words:

Let Masc be
<head agreement gender> = masculine

Then we could define John in yel a third way:
Word john: Mas¢ ThirdSingNP

Classes, as well as instances of classes, are allowed to have multiple superclasses. Therc

1s 2]so a notation to allow the overwriting of inherjted features within subclasses.

Another technique to aid in constructing the dictionary is the use of Lexical
Transformation Rules. These rules transform an existing f{-structure (called the in
structure) into a new f-structure (the out structure.) For example, a simple PATR-II
translormation rule to generale the agentless passive form of a verb, given the active

form of the verb, is

<out subj> = <in obj>
<out obj> = nil

We next make several comments about how the PATR-IT notation is often used.
First, lists can be represented in a way analogous to how they are represented in first-
order Jogic. A list is represented with an f-structure (ike a cons) whose first value is an
element of the list and whose rest value is a list of the remaining elements. In PATR-II,

an f-structure X representing a list of three elements (A, B, C) can be built with these

equations:

<X first> = A

<X rest first> =B

<X rest rest first> = C
<X rest rest rest> = end
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Second, hsts are used extensively for verb subcategorization. Consider the follow-

ing definition [or the verb fikes as in Mary lskes John.

Word likes:
<cat> =V
<head form> = finite
<syncat first cat> = NP
<syncat rest first cat> = NP
<syncat rest first head agreement person> = third
<syncat rest [irst head agreement number> = singular
<syncal rest rest> = end

This entry contains a feature called syncal whose value is a list. The elements of the
list describe the verbal constraints on the noun phrase complements appearing in the
sentence. The first element describes the object and the second element describes the

constraints on the subject.

The relationship between the order of the hist elements and the verb's comple-
ments 1s determined by the grammar rules, not shown here. Appendix 3 includes a com-
plete PATR-II grammar in which this order is post-verbal complements in left to right

order followed by the pre-verbal subject.

Third. f-structures can be used to represented the translation of an input sentence.
When translating to first-order logic, we need to be able to represent first-order terms
using J-structures. Typically, an f-structure with a pred feature is used to store the
predicate (or functor) symbol and features argl, arg?, etc. are used to store the argu-
ments. For example, to build an f-structure X representing the predication p(a, b, ¢),

the following equations could be used:

<X pred> =p
<X argl> =a
<X arg2>=b
<X argd> =c¢

This idea 1s easily extended for the representation of formulas containing logical
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connectives {and. or, elc.) and quantifiers.

Lexical-Functional Grammar and PATR-II are obviously quite similar, at least
when comparing the LFG core to PATR-]I. Computationally, PATR-II is strictly more
powerful. Parsing an input is semidecidable; any recursively enumerable language can
be described. The offline parsability constraint’ limits LFG (o being decidable, although

recognizing an input s NP-complete.

PATR-II is a declarative formalism while LFG js described in much more pro-
cedural terms, pariicularly the offiine parsability constraint. the completeness and
coherence conditions. bounded-domination, and negative, constrainl and existential
equacions. Botl top-down and bettom-up implementations exist for PATR-II including
a PATR-II development environment called D-PATR, utilizing a chart-parsing approach
Karttunen 19286]. D-PATR runs on XEROX 1100 computers and provides a
window/menu-based interface to perform and monitor incremental parsing. Hirsh has
constructed a system Lo compile a PATR-]I grammar into 2 Prolog program which uses
a left-corner parsing strategy [Hirsh 1986]. A formal semantics of PATR-II, based on
Dana Scott’s domain theory has been developed [Pereira and Shieber 1984]. Additional
work has addressed PATR-II implementation details such as structure-sharing and

evaluation strategy (Karttunen and Kay 1985, Pereira 1986).

? This is the constraint, mentioned earlier, thal says to parse an input using 2 LFG, we first find a
context-free parse and then try to find a solution for the f~description
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Part 2
Inheritance Grammar
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Chapter 3:

Introduction to Inheritance Grammar!

3.1. Introduction

Part One discussed the logic-based and unification-based approaches to NL pro-
cessing. In Part Two, we introduce a new grammar formalism called Inherstance Gram-
mar (IG). We have three goals for this new formalism. First, we want to incorporate
feature-structures into a DCG-like framework. Second, we want to make semantic type
checking more fexible than in the DCG approaches. Finally, we want the new formal-
ism to be a proper superset of the DCG formalism. In this chapter, we informally intro-
duce Inheritance Grammar, providing short examples to communicate its main charac-

teristics and show how our objectives are met. A formal description of IG is given in

the next chapter.

The IG formalism is an extension of Hassan Ait-Kaci’s work on yY-terms to the
domain of grammatical analysis [Ait-ICaci 1984, Ait-Kaci and Nasr 1985). A ¥-term is
an informational structure similar to both the feature structure of LEG/PATR-II and
the first-order term of logic. The set of 4-terms is ordered by subsumption and forms a
lattice in which unification of y-terms amounts to greatest lower bounds (GLB, M)2. In

Inheritance Grammar, ¥-terms are incorporated into a computational paradigm similar

! Portions of this chapter appeared in (Porter 1987].

2 Note that we identify unification with GLB rather than with LUB. In first-order logic and in PATR-
II, upification is identified with LUB. This decision is fairly arbitrary since the development done here could
be replaced by a dual development with unification as LUB. As we will soon see, unification of y-terms is
based on an urderlying JS-A taxonomy of symbols. Traditionally such IS-A taxonomjes are oriented with su-
perclasses above subcelasses, motivating the sense we have chosen.
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to the Definite Clause Grammar (DCG) formalism. Unlike feature structures and first-
order terms, the atomic symbols of ¢-terms are ordered in an IS-A taxonomy, a distine-
tion that is useful in performing semantic type-class reasoning during grammatical

analysis. We begin by discussing this ordering.

3.2. The IS-A Relation Among Feature Values

Like other grammar formalisms using feature-based functional structures, we will
assume a fixed set of atomic symbols. These symbols are the values used to represent
lexical, syntactic and semantic categories and other feature values. This set is called
the signature. In DCGs, it corresponds to the set of constants, functors, and predicate
names. In many formalisms (e.g., DCG and PATR-II), equality is the only operation for
symbols. In IG symbols are related in an IS-A hierarchy. These relationships are indi-

cated in the grammar vsing statements such as:

boy < mascullneObject.
girl < feminineObject.
man < masculineObject.
woman < feminineObiject.
{boy. girl} < child.

{man, woman} < adult.

{child, adult} < human.

Symbols appearing in the grammar but pot appearing in the IS-A statements are
assumed to be unrelated. The symbol < can be read as “is a” and the notation
{a), ..., a,} < b is an abbreviation for a; < b, .., a, < b. The grammar writer need
pot distinguish between instances and classes, or between syntactic and semantic
categories when the hierarchy is specified. Such distinctions are only in the mind of the
grammar writer and are reflected in the style with which the symbols are used in the
grammar. Note that this example ordering exhibits multiple inheritance: feminineCb-

jects are not necessarlly humans and humans are not necessarily
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feninineObjects, yet a girl is both a human and a feminineObject.

Computation of LUB (11) and GLB ()} in arbitrary partial orders is problematic.
In 1G, the grammar writer specifies an arbitrary partial ordering that the rule execution
system automatically embeds in a lattice (ap ordering ip which LUB and GLB are
always defined) by the addition of newly created symbols. The extension of the signa-

ture can be done without disturbing the order of the set,

What 1s the intuition behind the ordering statements and the lattice? Symbols
may be thought of as standing for conceptual sets or semantic types and the IS-A rela-
tionship can be thought of as set inclusion. Finding the GLB — l.e., unification of sym-
bols — then amounts to set intersection. For the partial order specified above, two new
symbols are antomatically added, representing semantic categories implied by the IS-A
statements: i.e., human females and human males. The first new category (human

females) can be thought of as the intersection of human and feminineObject or as

the union of girl and woman®

, and similarly for human males. The ordering
corresponding to the IS-A statements is shown in Figure 3.1 and the signature resulting
from the embedding is shown in Figure 3.2. Our implementation automatically gen-

erates names — such as {woman, girl} — for the new symbols. If desired, the user can

easily change these names to more informative strings.

3.3. Viewing y-terms as Enhanced Feature Structures

As we saw in the previous chapter, much work in computational linguistics is
focussed around the application of unification to an informational structure that maps

attribute names to values. A value is either atomic or (recursively) another such

$ Or anything in between. One is the most liberal interpretation, the other the most conmservative.
The signature could be extended by adding both classes, and any number iz between.
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feminineObject human masculineObject

woman man girl boy

Figure 3.1: An IS-A Ordering with Multiple Inheritance

T

feminineObject human masculineObject

adult {woman, girl} {man, boy} _ child

woRman man qirl boy
4

Figure 3.2: The Corresponding Signature Lattice

mapping. These mappings are called by various names: feature structures, functional
structures, [-structures, and feature matrices. Recall the f-structures of PATR-H, which

were described as rooted, directed, acyclic graphs (DAGs) whose arcs are annotated
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with feature labels and whose leaves are annotated with atomic feature values.

IGs use ¢-terms, an informational structure tbat is best understood as a rooted,
possibly cyclic, directed graph. Unlike in [-structures, every node (both leal and inte-
rior) is annotated with a symbol from the signature. Each arc of the graph is labeled
with a fealure {abel (the analog of an atfribule). The set of feature labels is unordered
and is distinct from the signature. For the formal definition of ¥-terms, given in set
theoretic terms, see the definition of the set W in the next chapter. We wil] give several

examples in this chapter to give the flavor of ¥-terms.

In addition to the DAG notation, feature structures are also represented using a
bracketed matrix notation. We represent i¥-terms, on the other hand, using a textual
notation similar to that of first-order terms. The syntax of the textual representation is
given by the following extended BNF grammar. The characters ( ) => , and : are ter-
minals. {Actually, this grammar is a shightly simplified version of the one presented in

Chapter 4, which should be regarded as the complete description.)

TERM n= SYMBOL [ ATTRIBUTELIST ]
| ATTRIBUTELIST
ATTRIBUTELIST = ( ATTRIBUTE, ..., ATTRIBUTE )

ATTRIBUTE

FEATURE = TERM
| FEATURE = VARIABLE | : TERM |

Our first example contains the symbols np, singular. and third. The label
of the root node, np, is called the head symbol. This ¥-term contains two features,

number and person.

np (number = singular,
person = third)

The next example, illustrating nested structures, includes a subterm at agree-

ment=
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(cat = np,
agreement => (number => singular,
person = third))

In this ¢¥-term the head symbol is missing, as is the head symbol of the subterm. When

a symbol is missing, the most general symbol of the signature ( T ) is assumed.

The location of a subterm within 2 ¥-term is given using a path (or address) rela-

tive to that ¢-term. For example, the subterm at address
agreement=>number=>
is the featureless y-term whose head is singular.

As Ait-Kaci has observed, a variable serves two purposes in traditional first-order
terms [Ait-Kaci 1984]. First, as a wild card, it serves as a placeholder that will match
any term. Second, as a constraint, one variable can constrain several positions in the
term to be filled by the same structure. In ¢-terms, the wild card function 1s filled by
the maximal symbol of the signature (T ), which will match any ¢-term during
unification. Variables are used exclusively for the constraint function to indicate ¢~
term coreference. By convention, variables always begin with an uppercase letter while

symbols and labels begin with lowercase letters and digits.

In the following ¥-term, which can be thought of a2s a representation of the sen-
tence The man wants to dance with Mary, X is a variable used to identify the subject of

wants with the subject of dance.

sentence (subject = X:man,
predicate = wants,
verbComp = clause (subject = X,
predicate = dance,
prepObject = mary))
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If 2 variable X appears in a term constraining a subterm ¢, then all subterms con-
strained by other occurrences of X must be consistent with (i.e., unify with) £ If a vari-
able appears without a subterm following it, the term consisting of sitoply the top sym-
bol (T ) is assumed. By convention, we prefer to write the subterm constrained by X
following the first occurrence of X and not include subterms at all other occurrences of
X. These secondary subterms then defauit to T, which will trivially unify with the pri-
mary subterm at X. The constraint implied by variable coreference is not just equality
of structure but equality of reference. Further unifications that add information to one
sub-structure will necessarily add it to the other. Thus, in this example, X constrains

the terms appearing at the paths subject=> and verbComp=>subject=> to be the

same term.

In the #-term representation of the sentence The man with the toupee sneezed
shown below, the np filling the subject role, X, has two attributes. One is 2 qual-

ifier filled by 2 relativeClause whose subject is X itself.

sentence (
subject = X: np(
head => man,
qualifier = relativeClause(
subject = X,
predicate = wear.
object = toupee)).
predicate => sneezed)

As the graphical representation of this term in Figure 3.3 clearly shows, this ¢-term is
cyclic.
3.4. Unification of ¥-terms

Before describing how ¥-terms are used in a grammar, we need to discuss

unification, the operation with which we manipulate ¢-terms. The unification of two



b1

sentence

predicate

sheezed

gualifier

(relativeClause)

predicate

toupee

Figure 3.3: Graphical Representation of a Cyclic ¢-Term

t)-terms is similar to the vunification of two feature structures in PATR-II or two first-
order terms in logic. Unification of two terms t, and t, proceeds as follows. First, the
head symbols of ¢, and t, are unified. Tbat is, the GLB of the two symbols in the signa-
ture lattice becomes the head symbol of the result. Second, the subterms of t; and t,
are unified. When t; and t, both contain the feature f, the corresponding subterms are
unified and added as feature f of the result. I one term, say t, contains [eature  and
the other term does not, then the result will contain feature f with the value from t,.
This resvlt is the same that would obtain if t, contained feature f with value T .
Finally, the subterm coreference constraints implied by the variables in t, and t, are

respected. That is, the result is the least constrained y-term such that if two paths in
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ty (or ty) are tagged by the same variable (i.e., they corefer) then they will corefer in the
result.

As an example of unification (adapted from a similar PATR-IT example [Shieber
18852, page 19])’. when the ¥-term

(agreement = X: (number = singular),
subject = (agreement = X))

is unified with
(subject = (agreement = (person => third)))
the result is

(agreement = X: (number => singular,
person = third),
subject = (agreement = X))

As another example, assume we have an ordering including statements such as:

{smith, jones} < partTimeStudent.

{brown, anderson} < fullTimeStudent.
<partTimeStudent, fullTimeStudent} < student.
student < person.

{cselQl, csel02, csel2l} < course.

In the ¢¥-term

s (subject = X:student,
verb = takes,
object = Y:course)

X and Y function as {yped vartables when unified with another ¢-term, such as:

s (subject = smith,
verb = takes,
object = c¢sel02)

The result of unifying these two -terms 1s exactly the same as the second term:



s (subject = smith,
verb = takes,
object => csel02)

3.5. Relationship to F-gtructures and First-Order Terms

53

The [-structures of PATR-II and LFG can be viewed as a special case of t-terms,

in which three conditions hold. First, the head symbol of all subterms (except those at

the "lowest" level with no features) is T . Second, the signature is a flat lattice, j.e., 2ll

symbols (besides T and 1) are unordered. Third, in the case where cyclic f-structures

are disallowed, the variable tagging of ¢-terms is constrained to be acyclic.

For example, the f-structure shown in Figure 3.4 is represented as the following -

term.

(subj = (det = the,

num = plural,
noun = glirls),

vp = (num = plural)

tense = present,
verb => run))

sUBJ

[DET THE

NUM PLURAL

INOUN  GIRLS

NUM PLURAL
TENSE PRESENT

[VERB  RUN

Figure 3.4: An F-Structure
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The first-order term from logic can also be viewed as a special case of the ¥-term,
again under three conditions. The symbols in the ¢-term correspond to the constants
and functors of first-order terms. The first condition, that the signature again be a flat
lattice, reflects the fact that the symbols in first-order terms are incomparable. The
second condition reflects the fact that the arguments of a term are specified positionally
and are not labeled. To represent ordered arguments, we restrict the feature labels of
the y-term to be the features 1, 2, 3, .. (In particular, the feature labels of the ¢-
term must come [rom the set of the positive integers and if a feature n (>1) is present
at an address, then feature n-1 must also be present.) Finally, we must constrain the ¢-
term to reflect the fact that, in first-order terms, variables can only tag completely

unbound subterms.
For example, the first-order term
fla, X, g(b, X, ¢). Y)

would be represented as the ¢-term

£(1 = a,

2 = X,

3 = g(l = b,
2 = X,
3 = ¢),

4 = Y)

Unification of #-terms is very similar to unification of f-structures and of first-
order terms. H A, B, and C are f-structures where C is the unification of A and B and
where A’ and B’ are the corresponding representations of A and B as ¢-terms then C' is
the unification of A’ and B/, when C' is the ¢-term representation of C. The same state-
ment, does not quite hold when A, B, and C are first-order terms. We will discuss the

representation of first-order terms as ¢¥-terms further in the next chapter.
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3.8. Inheritance Grammars

An IG consists of IS-A statements and grammar rules. A grammar rule is a
definite clause that uses ¢-terms in place of the literals used in first-order logic program-

ming. For example:
sent (mood = decl) :- np(number = X), vp (number = X).

Most of the notation of Prolog and DCGs is used. In particular, the :- symbol
separates a rule head from the Y-terms comprising the rule body. Analogously to Pro-
log, list notation (using [, |, and ]) can be used as a shorthand for ¥-terms represent-
ing lists and containing head and tail features. When the --> symbol is used
instead of :-, the rule is treated as a context-free grammar rule and the interpreter
automatically appends two additional arguments (start and end) to facilitate pars-
ing. The final syntactic sugar allows feature labels to be elided; numeric feature labels

(i.e., 1, 2, 3, ..)are automatically inserted before unlabeled attributes.
Our first simple Inheritance Grammar consists of the rules:

sent --> noun (number = Num) ,verb (number = Num) .
noun (number = plural)} --> ([cats].
verb (number => plural) --> [meow].

The sentence to be parsed is supplied as a goal clause, as in:
:- sent ([cats,meow], []).

The parser first translates these clauses into the following equivalent IG clauses,

expanding away the notational sugar, before execution begins.
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sent (start = P1, end = P3) :-
noun (number = Num, start =>Pl, end = P2),
verb (number = Num, start = P2. end => P3).
noun (number = plural,
start = list(head = cats, tail = 1),
end = L).
verb (number = plural,
start = list (head = meow, tail = 1),
end =1L).
i~ sent (start = list (head = cats,
tail = list (head = meow,

tail = nil)),
end = nil).

As this example indicates, every DCG is an Inheritance Grammar. However, since the
arguments may be arbitrary t-terms, IG capn alse accommodate feature manipulation

and taxonomic reasoning.

3.7. Search Strategy

The model-theoretic semantics of logic programming are given by defining logical
implication in terms of validity relative to all possible interpretations. An actual imple-
mentation is complete if it is guaranteed to find a proof i the query is logically implied
by the database clauses. The standard implementation, Prolog, is not complete. It uses
a depth-first secarch strategy that can be implemented efficiently and gives the clauses a
comforting procedural reading but that may fail to accurately capture logical implica-
tion by failing to find prools. In this sense, Prolog is an inadequate implementation of

logic programming.

Likewise, the formal semantics of Inberitance Grammar is specified in terms of
models and logical implication. A particular implementation may or may not be com-

plete with respect to this definition. As in logic, the depth-first strategy can be made
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very efficient for IG but may fail to find solutions for some grammars.

The question of completeness is perhaps more important in the context of NL
grammars than in other types of programs because left-recursion is more often a prob-
lem. As ap example of left-recursive grammar rules, consider the following grammar

fragment:

np --> modifiers, noun.
modifiers --> modifiers, adj.
modifiers --> det.

Obviously, this simple grammar can be rewritten to remove left-recursion and avoid
infinite regress. However, an important goal in grammar formalisms 1s to make the for-
malism completely declarative, so that a grammar can be expressed in the ¢clearest and

“most declarative” way.
To illustrate, let us modify the rules so they construct a list of the modifiers:

np --> modifiers (L), noun.
modifiers ([AJL]) --> modifiers (L), adj(A).
modifiers ([D]) --> det (D).

These rules construct the list in a particular order. When the rules were rewritten in

the obvious way to avoid left recursion, the list order is reversed:

np --> modifiers (L), noun.

modlfiers ([D|L]) --> det (D), adjlist(L).
adjlist (A|L]) --> adj (A)., adjlist(L).
adjlist(Q])y --> (1.

Again, we could obviously rewrite these rules to achieve the desired order, but only at
the cost of increased grammar size. While this example is trivial, as the grammar grows
to increase linguistic coverage, the amount of hacking that becomes necessary to accom-

modate the implementation also grows.
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Complexity is 2 major problem in comprehensive grammars. Nontermination due
to left-recursion is an artifact of a particular implementation, not a problem with the

formalism itself. This observation holds for both DCGs and 1Gs equally.

3.8. Type-Class Reasoning in Persing

Several logic-based grammars have used semantic categorization of verb argu-
ments to disambiguate word senses and fill case slots (e.g., [McCord 1980, 1982]). One
important motivation for using t-terms for grammatical analysis is to facilitate such

semantic type-class reasoning during the parsing stage.

The approach taken in the McCord grammar is to use unification to do taxonomic
reasoning. Two types unify if and only if one is a subtype of the other; the result is the
most specific type. For example, if the term smith:_, representing an untyped indivi-
dual, is unified with the type expression X: (person:student), representing student
(2 subtype of person), the result is smith:person:student. Because of the way
first-order unification is used to implement type unification, the type hierarchies must be

tree-shaped.

We perceive two shortcomings to this approach. (1) The semantic hierarchy is
somewhat inflexible because it is distributed throughout the lexicon, rather than being
maintained separately. (2) Multiple Inheritance is not accommodated (although see
McCord [1985)). In IG, the #-term student can act as a typed variable and unifies
with the t¢-term smith (yielding smith) assuming the presence of IS-A statements

such as:

student < person.
{smith, jones. brown} < student.

The taxonomy is specified separately — even with the potential of dynamic modification
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— and multiple inheritance is accommodated naturally.

3.9. Other Grammatical Applications of Taxonomic Reasoning

The taxonomic reasoning mechanism of IG has applications in lexical and syntac-
tic categorization as well as in semantic type-class reasoning. As an illustration, con-
sider the problem of writing a grammar that accepts a prepositional phrase or a rela-
tive clause alter a noun phrase but only accepts a prepositional phrase after the verb
phrase. So The flower under the tree wilted, The flower that was under the tree wilied,
and John ate under the tree should be accepted but not *John ate that was under the

tree.

A simople IG solution includes a taxonomy in which prepositionalPhrase and
relativeClause are both npModifiers but only a prepositionalPhrase is a
vpModifier. In the following highly abbreviated IG, when 2 vpModsi fer is called for
after a vp, either the prepositionalPhrase rule or the relativeClause rule
may be used, while only 2 prepositionalPhrase will do when an npModifier is

called for.

{prepositionalPhrase, relativeClause} < npModifier.
prepositionalPhrase < vpModifier.

sent(...) --> np(...).vp(...).vpModifler(...).
np{...) --> np{...).npModifier (...).

np(...) -=> ...

vp (...) -=> ...

prepositionalPhrase(...) --> ...
relativeClause(...) --> ...

Since predicate names — e.g., npModifier — participate in the signature ordering, this
example shows that ¢-terms are used at the predicate level, not just at the term level

as was done in the LOGIN language [Ait-Kaci and Nasr 1986].
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8.10. Implementation

We have implemented an IG development environment in Sraalltalk on the Tek-
tronix 4317 workstation to empirically investigate the usefulness of the formalism and

have experimented with several grammars using this environment.

The IS-A statements are handled by an ordering package that performs the lattice
completion dynamically by adding additional elements only when GLBs are requested.
This package displays the signature graphically and allows interactive updating of the

ordering.

Many of the techniques used in standard depth-first Prolog execution have been
carried over to our IG execution environment, which we will deseribe in Chapter 5. To
speed grammar execution, our system precompiles the grammar rules. To speed gram-

mar development, incremental compilation allows individual rules to be compiled when

modified.

As mentioned above, top-down, depth-first evaluation (which our implementation
uses) is not complete. In Chapter 6, we will explore several complete evaluation stra-
tegies — including Eerley Deduction, Eztension Tables, and Staged Depth-First Search
Strategy — that have been developed for first-order logic, showing how they can be
adapted to Inheritance Grammars. Before discussing implementation, however, the next

chapter presents a formal definition of IG, based on ¢-logic.
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Chapter 4:
Definition of Inheritance Grammar

4.1. Introduction

In the previous chapter, we introduced Inheritance Grammar and provided some
intuition for jts formalization. In this chapter, we elaborate with several definitions and
results. We begin with a deseription of Y-terms, which are data structures similar to
those in the work of Ait-Kaci [1984]. We provide a proof that the set of ¥-terms forms
