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Abstract 

High Resolution 
Voice Transformation 

Alexander Kain, B.A. 

Ph.D., OGI School of Science and Engineering 

Thesis Advisor: Jan P. H. van Santen 

Speaker identity, the sound of a person's voice, plays an important role in human commu- 

nication. With speech systems becoming more and more ubiquitous, Voice Transformation 

(VT), a technology that modifies a source speaker's speech utterance to sound as if a target 

speaker had spoken it, offers a number of useful applications. For example, a novice user 

can adapt a text-to-speech system to speak with a new voice quickly and inexpensively. 

In this dissertation, we consider new approaches in both the design and the evaluation 

of VT techniques. We propose a new type of speech corpus that is especially suited to 

VT research and development by consisting of naturally time-aligned sentences. Con- 

sequently, removal of individual prosodic characteristics, such as fundamental pitch and 

durations, requires only very little processing and results in high-quality speech samples 

that only differ in their segmental properties, our focus of transformation. These "prosody- 

normalized" speech samples are used for training VT systems, as well as for evaluating 

their transformation performance objectively and subjectively. 

Our baseline transformation system (SET) is based on transforming the spectral enve- 

lope as represented by the LPC spectrum, using a harmonic sinusoidal model for analysis 

and synthesis. The transformation function is implemented as a regressive, joint-density 

xiii 



Gaussian mixture model, trained on aligned LSF vectors by an expectation maximization 

algorithm. We improve upon the baseline by adding a residual prediction module, which 

predicts target LPC residuals from transformed LPC spectral envelopes, using a classifier 

and residual codebooks. The resulting high resolution transformation system (HRT) is 

capable of rendering transformed speech with a high degree of spectral detail. 

Because of the severe shortcomings of evaluating VT performance objectively, we pro- 

pose a subjective evaluation strategy, consisting of several listening tests. In a speaker 

discrimination test, the HRT system performed significantly better than the SET system. 

However, discrimination is below that of natural utterances. Similarly, listeners selected 

the HRT system over other systems in a system comparison test. Finally, listeners rated 

the speech quality of the HRT system as better than the SET system. However, the 

quality of natural utterances was considered better than that of transformed speech. 

xiv 



Chapter 1 

Introduction 

In this dissertation, we consider new approaches in both the design and the evaluation of 

a newly emerging speech technology called voice transformation (VT). The goal of VT is 

to modify a source speaker's speech utterance to sound as if a target speaker had spoken 

it. An effective VT system generates natural, intelligible speech that is clearly identifiable 

as spoken by the target speaker. 

In this chapter, we first motivate the use of VT systems by a number of example ap- 

plications, followed by a brief description of current voice transformation approaches. We 

then continue with presenting a summary of our proposed approach and our contributions. 

Finally, we outline the organization of the dissertation. 

1.1 Motivation 

The sound of a person's voice, also known as speaker identity, plays an important part 

in our daily communication. For example, speaker identity allows us to recognize family 

members and friends from their voices alone. Also, speaker identity makes it possible to 

differentiate between speakers in a conference call or on a radio program. Consequently, 

there are a number of useful applications for controlling the speaker identity by means of 

a VT system, especially when integrated into other speech systems with either synthetic 

or natural speech output. 

An example application is the integration of a VT system with a text-to-speech (TTS) 

synthesizer. Today's state-of-the-art TTS systems are based on a concatenative synthesis 

method in which a system retrieves natural speech segments from a database and joins 



them together to generate a new utterance. The synthesis database contains an organized 

collection of carefully recorded speech, and the speaker identity of the synthesis output 

bears resemblance to the original speaker identity of the database speaker. The creation of 

a synthesis database for a new synthesis voice is a significant recording and labeling effort, 

and requires a significant amount of computational resources. For example, a speaker 

may be required to talk in a constrained way for several hours to collect even a relatively 

small speech inventory of 2,500 diphones. The speech waveforms are stored on disk and 

processed, typically requiring on the order of hundreds of megabytes and several hours of 

CPU time. In addition, trained labelers can spend from 10-100 hours for every hour of 

recorded speech, depending on the complexity of the transcriptions [14]. 

Using VT technology, new synthesis voices can be created by novice users quickly and 

inexpensively by creating a "speaker model" from a small number of speech utterances 

produced by the desired target speaker. The speaker model describes the characteristics 

of the target speaker's voice. Using different speaker models, the synthesis system can 

generate speech signals with different speaker identities from a single speaker database 

(see Figure 1.1), which plays the role of the source speaker [57, 37, 38, 361. This approach 

is very well suited for the development of a voice of a speaking-impaired person who is 

unable to sustain continuous speech or if the speech for a desired target speaker is limited 

to recordings, such as for a diseased or unavailable speaker. In another application, the 

speaker model can be in the form of a small attachment to an email message describing 

the sender's voice characteristics which can then used by a system or service to speak the 

message in the sender's voice. 

Another application is in the area of very-low-bandwidth coding of speech. Speech 

coding systems that are designed to operate at 2400 bps or less do not preserve speaker 

identity during transmission [78]. For these systems, VT algorithms have the potential to 

render the decoded speech at the receiver so that it matches the speaker identity of the 

transmitting speaker. 

Provided a sufficiently high level of VT quality is achieved, movies and TV-shows 

could be dubbed in the original actors' voices, and language interpreters may assume the 

voices of their clients [4, 31. Researchers have also considered a VT system for rendering 
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hello ,~,,'lv

1
loJ~~1!1 100(11:1

Figure 1.1: A text-to-speech synthesizer in conjunction with a voice transformation sys-
tem. Fonts are used to represent speaker identity. The synthesizer retrieves chunks of
speech from a database, according to an input text. The assembled synthetic speech is
input to the voice transformation system, which uses a speaker model to render the final
output speech to sound like a desired target speaker.

acoustically impaired speech more intelligible [3, 61, 85].

A logical extension of VT research is the control of a single speaker's voice quality.

For example, the assessment and correction of voice quality is desirable in large speech

databases for concatenative synthesizers, because the qualitative perception of a speaker's

voice often changes over the course of a long recording session [82]. Another application

is the modeling of voice quality changes with prosodic factors, such as spectral changes

that occur with varying pitch [40].

1.2 Summary of current voice transformation approaches

VT systems modify speech by changing the parameters of an acoustic representation of

the speech signal. Often, the acoustic parameters represent a model of the short-term

spectrum, such as spectral envelopes and formant estimates. Before use, the VT system

must be trained on examples of speech from the source and target speakers. A transfor-

mation function captures the relationship between speech model parameters of the source

and target speech. Researchers have implemented the transformation function in many

ways, including mapping codebooks, class-based functions, artificial neural networks and

mixture models. While new research on VT systems is published continuously, transfor-



mation performance is difficult to assess because of several shortcomings in the evaluation 

process. Most notably, researchers use perceptual listening tests that are not well-suited 

for evaluating speaker recognizability, the recognizability of the transformed speaker as 

the desired target speaker. Often, these types of listening tests have yielded inconclusive 

results and included few speaker combinations, raising doubts about the generality of the 

algorithm. Despite the lack of conclusive test results, the performance of current VT 

systems falls short of expectations. For example, transformations within the same gender 

are problematic, due to an insufficiently coarse [2, 37, 61, 64, 911 or ineffective [5, 521 

generation of the target speaker's speech spectrum. 

1.3 Summary of proposed approach 

In this work, we propose a high resolution VT algorithm that generates a detailed descrip- 

tion of the transformed speech spectrum. We claim that it is ineffective and unnecessary 

to model and transform spectral details between the source and target speaker; instead, 

we propose to predict spectral details of the target from the transformed spectral envelope 

of the source. As a result, we show that speaker recognizability improves, as compared to 

other approaches. Further, we propose an evaluation framework designed for accurately 

measuring the speaker recognizability of the transformed speech. The framework consists 

of a custom-designed speech corpus and a series of speaker discrimination tests which 

include measurements of the natural ability of humans to distinguish and recognize the 

speakers of the speech corpus. 

The following is a summary of our contributions: 

A novel VT algorithm which, for a given target speaker, predicts LPC residuals 

from LPC spectral envelopes (these terms are defined in Section 6.1.2), resulting 

in a high resolution spectral transformation. We show that our high resolution 

transformation approach leads to a significant increase in speaker recognizability as 

compared to other approaches. 

A subjective evaluation framework consisting of a special-purpose database, speaker 



recognizability listening tests, and a measurement of the natural speaker recogniz- 

ability of database speakers as a baseline for VT system performance. 

1.4 Outline 

The remainder of the dissertation is organized as follows: 

Chapter 2 introduces some of the fundamental properties of the speech signal. We de- 

scribe a physical and mathematical model of the speech production process and 

consider properties of the speech signal that are characteristic of the speaker. 

Chapter 3 explains the modes and components of a VT system, followed by descriptions 

of previous approaches in the literature. 

Chapter 4 identifies shortcomings in the previous approaches and presents our thesis 

and proposed approach. 

Chapter 5 describes the design and recording of the special-purpose speech corpus. 

Chapter 6 introduces the baseline transformation system. The system transforms the 

spectral envelope of speech by changing parameters of an all-pole model, using a 

transformation function implemented by a Gaussian mixture regression model. 

Chapter 7 introduces the proposed residual prediction algorithm. After a detailed tech- 

nical description, we integrate the algorithm into a new VT system and compare the 

results to several baselines. 

Chapter 8 proposes a subjective evaluation methodology designed for measuring the 

speaker recognizability of the transformed speech signal. After a description of the 

design and administration of the perceptual test, we analyze and report the results. 

Chapter 9 concludes our work and takes a look at the future. 



Chapter 2 

Basic Properties of the Speech Signal 

In order to develop an effective VT system it is important to understand the fundamental 

properties of speech. The first section provides background on how speech sounds are 

produced and how their acoustics are modeled mathematically. The next section describes 

the speaker characteristics of a speech signal. Finally, the last section presents research 

on the recognition of speakers by humans. 

2.1 A model of speech production 

Human speech is produced by a part of the human anatomy called the vocal tract, which 

begins at the vocal cords, or glottis, and ends at the lips. The compression of the lungs 

induces a stream of air which flows through the windpipe and throat and escapes through 

the oral and nasal cavities. This airflow is the source of four types of sounds [88, 671: 

Aspiration noise The sound of air rushing through the entire vocal tract, similar to 

breathing through the mouth. 

Frication noise The sound of turbulent flow at a point of narrow constriction, for ex- 

ample during the initial sound in "fair". 

Plosion The sound of an air-burst, for example during the initial consonant in ''&onV. 

Voicing A quasi-periodic vibration of the vocal cords or glottis, for example during the 

vowel in " k e ~ " .  The frequency of vibration is called the fundamental frequency or 

Fo and is perceived as pitch. 



The four types of sounds can occur in combination. For example, the initial sound in 

"vault" - combines frication noise with voicing. 

The sound-waves from these sound sources are further modified by the vocal tract 

shape, defined by the location and position of the tongue, jaw, lips, and velum (the soft 

part of the roof of the mouth). Different vocal tract shapes have different resonant fre- 

quencies, called formants, which are instrumental in developing the nature of the different 

speech sounds, called phonemes. Phonemes can be classified according to their man- 

ner of articulation, namely vowels ("beet"), nasals ("mag"), plosives ( " Q O ~ ) ,  fricatives 

( "fayor"), affricates (LL&urr&"), and approximants (LLrolJ") [67]. 

It is useful to describe the acoustic properties of speech production under the assump- 

tions of the source-filter model [56, 741. In this model, a source or excitation waveform 

is input to a time-varying filter. This view of speech production is very powerful because 

it can explain the majority of speech phenomena. In the distinctions of the model, the 

excitation waveform accounts for the physiological sound sources listed above. For ex- 

ample, aspiration and frication noise can be modeled as random processes, plosion as a 

step-function, and voicing as a pulse train. A number of glottal pulse models have been 

proposed to describe the details of the pulse shape during voicing [76, 22, 441. It is pos- 

sible to classify the excitation waveform into an unvoiced and a voiced signal, which, in 

their simplest form, can be modeled as either a random signal or an impulse-train with 

varying Fo , respectively. Finally, the time-varying filter represents the contribution of the 

vocal tract shape by selectively attenuating certain frequencies of the excitation spectrum 

resulting in a speech spectrum with a particular spectral envelope and formant structure. 

2.2 Speaker characteristics 

The acoustic speech signal contains many types of information. Primarily, the signal 

carries information about the message (what was said), but also includes information about 

the speaker (who said it) and the environment (where it was said). Speaker characteristics 

describe the aspects of speech that are related to the person that produced it, independent 

of the message and the environment. The task of VT is thus to change the speaker 



characteristics of a speech signal, while preserving other types of information. 

The characteristics of a speaker are commonly divided into the following types of cues: 

Segmental cues These describe the "sound" or "timbre" of the speaker's voice. Acoustic 

descriptors of segmental cues include formant locations and bandwidths, spectral tilt, 

Fo, and energy. Segmental cues depend mainly on the physiological and physical 

properties of the speech organs, but also on the speaker's emotional state [44]. 

Suprasegmental cues These describe the prosodic features related to the style of speak- 

ing, for example the duration of phonemes and the evolution of Fo (intonation) and 

energy (stress) over an utterance. The average behavior of phoneme duration, Fo, 

and energy are perceived as rate of speech, average pitch, and loudness. These cues 

are influenced by social and psychological conditions [48]. 

Linguistic cues These include particular choices of words, dialects and accents. Linguis- 

tic cues are beyond the scope of this dissertation and will not be considered. At the 

same time, they are significantly reduced by the speaking style contained within the 

speech corpus of this work (see Section 5.2). 

We will illustrate some of the segmental and suprasegmental cues by considering the 

differences between two different speakers in an example. Figure 2.1 shows the waveforms 

and spectrograms of a male and a female speaker uttering the sentence "Our plans right 

now are hazy". Examining the spectrograms, the differences in segmental cues can be 

observed in the different spectral realizations of the same phonemes. For instance, the 

formant bandwidths of the female speaker are wider and formant locations higher than 

that of the male speaker. It is generally assumed that some phonemes carry more speaker 

information than other phonemes. For example, a phoneme ranking based on automatic 

speaker verification scores resulted in vowels and nasals in first place, followed by fricatives, 

affricates and approximants, and plosives [19]. 

One of the differences in suprasegmental cues are manifested in the different dura- 

tion lengths of the same individual phoneme groups between the different speakers. For 

instance, the duration of the initial word "our" is greater for the female speaker than 



for the male speaker. Another discrepancy is the insertion of a small pause between the 

words "now" and "are" in the female example. Finally, an examination of the waveforms 

reveals a significantly higher Fo and energy for the female speaker as compared to the 

male speaker. 

Suprasegmental cues can easily be changed at will. For example, it is easy for a 

speaker to slow his or her speech, lower the voice, or speak more softly. Segmental cues, 

however, are closely linked to the physiology of the speech production organs and can thus 

be considered as immutable. Indeed, impersonators predominantly mimic suprasegmental 

characteristics [48]. However, some segmental cues can be mimicked by impersonators 

who are especially skilled in changing some part of their vocal tract physically or in 

modifying the behavior of their glottal pulse. In this manner, even formant frequencies 

and bandwidths can be affected. 

2.3 Speaker recognition and discrimination by humans 

Human listeners are capable of identifying voices under various conditions and contexts 

with a fairly high degree of accuracy, especially when the voices are familiar to the listener. 

A perceptual experiment conducted by the Ladefogeds [49] measured the ability of one 

listener to recognize voices that were familiar to him, from a set that included 29 familiar 

and 24 unfamiliar voices. The experiment showed that 31% of the 29 familiar voices were 

correctly identified from the single word "hello", 66% from a single sentence, and only 

83% from 30 s of speech.' Thus, human recognition is far from perfect, a fact we must 

consider during the evaluation of a VT system (see Chapter 8). 

We now present three types of experiments from the literature that aim to uncover the 

perceptual significance of various acoustic cues on the identification of speakers: a voice 

rating test, correlation analysis on the discrimination of speakers, and correlation analysis 

on the recognition of artificially modified speech signals. 

'The recognition of a speaker by a witness as evidence in a court of law is controversial [43, 11, 491. 
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Figure 2.1: Speech waveforms and pitch-synchronous magnitude spectrograms of a male
and female speaker uttering the sentence "Our plans right now are hazy". Care has been
taken to correctly display the pitch-synchronous spectrogram on the linear time-axis.



2.3.1 Voice rating 

Voiers [96] classified speakers' voices using a multi-dimensional, perceptual taxonomy 

based on a set of English words. Starting with 550 potential voice descriptors, a more 

refined set of 48 bipolar (such as "fast" versus "slow") and 27 mono-polar (such as 

"scratchy") rating scales were developed by preliminary experimentation. Nine listeners 

characterized the voices of 80 young adult males after listening to one minute of speech. 

After a factor analysis using principal factors the author found that eight orthogonal di- 

mensions were required to account for the systematic voice rating variance. He called the 

leading two dimensions "animation", which was highly correlated with the perceived rate 

of speech, and "perceived pitch". The last six dimensions had no direct correlation with 

any single test rating scale, but were correlated to a combination of scales. 

2.3.2 Correlation analysis on natural speech 

Matsumoto et al. [58] explored the correlation between the perceptual discrimination of 

speaker identity and the difference in elementary acoustical parameters of five sustained 

Japanese vowels. To measure speaker discrimination they employed a "same-different" 

listening test. In this type of test, listeners are presented with two speech samples in 

sequence and are then asked to indicate whether they thought the sentences were spo- 

ken by the same speaker or by two different speakers. Based on the results of this test, 

a psychological auditory space (PAS) was constructed using a multi-dimensional scaling 

procedure. The average Fo was found to explain 55% of the total variance of the PAS. 

Adding the slope or tilt of the glottal source spectrum increased the explained variance 

by 16%; alternatively, adding the three lowest formant frequencies increased it by 26%. 

All together, all three acoustic features explained 84% of the total variance. In a related 

experiment, the authors studied hybrid voices produced by interchanging the approxi- 

mated glottal source wave and vocal tract spectrum among speakers. The results suggest 

a relatively greater contribution of the vocal tract over the glottal source characteristics, 

other than the average Fo, to the ability of humans to discriminate speakers. 

Similarly, Necioglu [65] analyzed the TIMIT continuous speech corpus [25] with a 



number of measures relevant to the discrimination of speaker characteristics. The following 

descriptors were found to have significant correlations with the perceptual dimensions of 

a multi-dimensional scaling of subjective speaker pair similarity judgments: median pitch, 

vocal tract length and other vocal tract features for males; median pitch, glottal tilt, and 

average duration of unvoiced segments for females. These results confirm that average 

pitch is the most identifying cue in discriminating between speakers, followed by segmental 

cues. 

2.3.3 Correlation analysis on synthetic speech 

Itoh et al. [34, 331 studied the effects of modifying acoustical parameters on the identifi- 

cation of speakers that were familiar to the listeners. The authors employed an ABX test, 

in which listeners are requested to judge whether the speaker of the stimulus labeled "X" 

was more likely to be speaker "A" or "B". Stimuli were created with a speech analysis- 

synthesis system capable of producing "hybrid" voices based on the interchange of the 

linear prediction coefficient (LPC) residual waveforms of two speakers, while keeping their 

respective LPC spectra constant. (LPC is defined in Section 6.1.2). The authors con- 

cluded from the results of the listening test that the LPC spectral envelope has a greater 

effect on speaker identification than the LPC residual. 

In a thorough investigation by van Lancker et al. [92] on the recognition of familiar 

voices, recordings of famous voices (known to the listeners at the time) were presented in 

a test where the speech signal was played normally "forward", or "backward" by reversing 

the signal. Playing the speech forward as compared to playing it backward resulted in 

some voices being nearly unrecognizable, while others were recognized nearly as well. The 

authors concluded that people use different acoustic clues for the recognition of different 

voices and the set of critical parameters is not the same for all voices; instead, listeners 

select a subset from potential candidates. Further experiments with voices whose rate of 

speech was modified lead to the same conclusion [93]. 

A similar conclusion was drawn by Lavner et al. [51] on the identification of familiar 

voices from a single vowel. Stimuli were created by an analysis-synthesis system that 

modified parameters of a carefully estimated glottal waveform model, Fo, and formant 



frequencies and bandwidths. Listeners were instructed to identify speech samples from 

a set of speakers. From the results of this test, the authors concluded that vocal tract 

features are more important to the identification process than glottal source features. 

Moreover, they found that changes to the same features affected the identification rate of 

speakers differently, suggesting that different sets of acoustic cues are used for identifying 

different speakers. 

2.4 Summary and conclusion 

Human speech is produced by a physiological process involving the lungs, vocal cords, and 

vocal tract. The resulting speech signal has measurable acoustic properties such as energy, 

Fo, and formant frequencies. The source-filter model is a simple yet powerful description 

of speech production. In this model, an excitation waveform, modeling sound sources 

such as frication noise and vocal cord vibrations during voicing, is input to a linear filter, 

describing the acoustic effects of the vocal tract shape. 

Researchers have shown that both segmental and suprasegmental cues are perceptu- 

ally significant for speaker recognition. Specifically, among the suprasegmental cues, the 

average value of Fo and the rate of speech were found to contribute significantly to speaker 

recognition. However, it is an open question as to how much the exact behavior of prosodic 

movements, also known as microprosody, affects speaker recognition. Among the segmen- 

tal cues, researchers have considered the spectral envelope and formant locations of major 

importance. 

It is probable that the perception of speaker identity depends on all acoustic cues with 

varying degree. A VT approach taking into account a more comprehensive set of acoustic 

features is likely to outperform approaches with a simpler acoustic feature set. 



Chapter 3 

An Overview of Voice Transformat ion 

Systems 

This chapter introduces published works in the area of VT research. The first section 

introduces the modes and components of a VT system in detail. Section 3.2 summarizes 

various evaluation methodologies and the obtained results. 

3.1 Modes and components of voice transformation systems 

There are two basic modes in a VT system: 

Training In this mode, the system uses speech samples of a source and target speaker to 

estimate a transformation function. 

Transformation After training has completed, the system transforms the source speaker's 

voice to sound like the target speaker. 

Minimally, a VT system has the following components: 

Speech corpus A collection of speech utterances that serve as training data during the 

training process and as test data during performance evaluations. 

Speech model and features The speech model is a mathematical model of the speech 

signal. The type of model determines which aspects of the speech signal are modifi- 

able by the system. The model parameters, or features, are obtained during a speech 

analysis step, both in training and transformation mode. 



Transformation function The purpose of the transformation function is to map acous- 

tic features of the source speaker to a new set of features that approximate those of 

the target speaker. 

In training mode, the system analyzes speech utterances from a source and target speaker 

under the assumptions of a particular speech model (see top of Figure 3.1). Commonly 

used speech models are based on variants of a linear prediction technique, resulting in 

spectral envelope parameters [2, 37, 851 or formant estimates [61]. Recently, researchers 

have proposed systems that attempt to go beyond a spectral envelope transformation by 

modeling and transforming a detailed spectral representation [5, 521. Every VT algo- 

rithm has a speech analysis stage, in which parameters of the speech model are extracted. 

After the analysis stage, the training process first constructs training data by grouping 

source and target features corresponding to the same underlying speech sounds. This 

feature association is typically achieved by applying a time-alignment or classification 

procedure such as dynamic time warping [2, 851, unsupervised hidden Markov modeling 

[5], or forced-alignment speech recognition [5]. These training data are then used to es- 

timate a transformation function. The goal of this function is to capture the statistical 

relationship between the source and target features. The transformation function has 

been implemented in a variety of ways, including mapping codebooks [2], discrete trans- 

formation functions [61, 911, neural networks [64], and Gaussian mixture models [85, 381. 

In transformation mode, the "trained" transformation function predicts target speech 

features from newly analyzed source speech features (see bottom of Figure 3.1). Finally, 

the predicted features are used to produce the final, transformed speech signal at the syn- 

thesis stage. Additionally, prosodic features such as Fo contour, energy contour, and speak- 

ing rate of the source speaker are often trivially adjusted to match the target speaker's 

average prosody. The reason for not modeling suprasegmental cues in detail (for example 

intonation) is the difficult extraction and manipulation of higher level information (such 

as pitch-tones [77]) with present speech technologies [48]. While some progress has been 

made already regarding models of duration [80, 281, models of intonation are, at the mo- 
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ment, notoriously difficult, inaccurate, and controversial [62, 451. In almost all cases, the 

acquisition of knowledge about prosody specific to a speaker involves a significant manual 

effort, which currently makes transforming prosodic details unsuitable for automatic VT 

systems. For these reasons, we will focus on transforming only the segmental properties 

of the speech signal. 

We now take a closer look at the various components of a VT system and their method 

of implementation in previously published research. 

3.1.1 Speech corpus 

The purpose of a speech corpus is to provide the necessary speech data for training the 

transformation function and for testing the performance of the VT system using objective 

and subjective evaluation measures. The size and contents of speech corpora in previous 

approaches vary widely. For example, a speech corpus may contain as little as five vowels 

[64, 121, a set of words [2, 911, short sentences [7], or one hour of read speech [5]. Alterna- 

tively, researchers have also used speech databases created for text-to-speech synthesizers 

[84, 371. The optimal size of the speech corpus depends on the application, which may 

limit the amount of available speech data by design, for instance in the case of adapting 

a text-to-speech synthesizer to a user's voice [36]. 

Another aspect of a speech corpus is the number of speakers it contains. Speech 

corpora in published works have included at least two and at most six different speakers. 

A larger number of available speakers is advantageous for the evaluation of a VT system, 

because a larger sample size better represents the general speaker population. 

There are many other factors that characterize a speech corpus. We will discuss them 

in Section 5, where we describe the process of designing and recording a speech corpus for 

VT system training and testing. 

3.1.2 Speech model and features 

To manipulate a speech signal by computer, it must be represented as the parameters 

of a speech model. In general, selecting an appropriate speech model depends on the 

application. For example, a speech recording and storage system may be designed to 



store the signal as a digitized, sampled waveform. In this case, the model is simple 

with few assumptions on the form of the signal itself; however, the number of model 

parameters is high. The opposite is true for speech models used in the transmission of 

speech over low-bandwidth communication channels. In this case, the speech model is 

complex and contains a number of assumptions about the form or generating process of 

the signal. However, the number of parameters to be transmitted is low, as required by 

this application. 

In the realm of VT systems, the optimal speech model is capable of producing a 

wide variety of speech that is intelligible, as well as natural and accurate with respect to 

speaker recognizability. These goals call for a speech model with many degrees of freedom 

and hence numerous parameters. At the same time, the transformation function is often 

trained from a limited amount of training data, favoring a low-dimensional parameter set. 

Because of these conflicting requirements, a judicious selection of a well-matched speech 

model and transformation function is essential. 

In Section 2.3, we have shown that voice individuality is manifested in all acoustic cues 

with varying degrees. However, researchers have found evidence that segmental features 

(in the form of a description of the short-term spectrum) and the average behavior of 

suprasegmental features (mainly the rate of speech and average Fo) are sufficient for a 

high degree of speaker discrimination by humans. Moreover, studies in the related field 

of automatic speaker identification have demonstrated that the spectral envelope alone 

contains a great deal of information to identify speakers with the help of a computer 

[24, 231. Specifically, systems based on a classification of the short-term spectral envelope 

can identify 16 speakers from a population of 49 speakers with an accuracy of as high as 

94.5% using 5 seconds of clean speech [75]. Thus it is not surprising that VT systems 

have focused on transforming a representation of the short-term spectral envelope, while 

adjusting a source speaker's Fo, energy, and rate of speech to match those of the target 

speaker on average. The speech processing in VT systems is usually performed on small 

sections of speech at a time, also known as frame-based processing (see 6.2 for a more 

detailed description). An interesting exception to frame-based processing is a system by 

Abe that transforms entire phonetic units [I]. 



One very successful representation of the short-term spectrum in VT systems is the 

source-filter speech model (see Section 2.1), which approximates the vocal tract as a slowly 

varying filter by fitting a spectral envelope to the magnitude spectrum of a short segment 

of speech. Often, the model parameters are obtained by linear prediction (defined in 

Section 6.1.2), and the filter coefficients are called linear prediction coefficients (LPC). 

These parameters are usually converted to a number of alternative representations with 

more desirable properties, such as the ability to interpolate between parameters. For 

example, researchers have used cepstral coefficients [85], line spectral frequencies (LSF) 

[5, 381, and log area ratios [2]. Further analysis of the LPC spectrum can yield formant 

frequencies and bandwidths, derived either automatically [61] or manually [64]. 

An LPC residual is obtained by inverse filtering a speech segment with its correspond- 

ing LPC filters. Since the filter approximates the vocal tract, an inverse filtering removes 

the vocal tract contribution of the speech signal. Thus, the LPC residual approximates 

the glottal excitation waveform. It is possible to utilize the LPC residual of the source 

speaker without any spectral modifications during synthesis of a transformed utterance 

[91, 381. The result is a more natural sounding speech signal. However, the residual also 

contains a certain degree of speaker information. To address this, several authors have 

proposed ways of improving VT algorithms by transforming either the original speech 

spectrum directly or the LPC residual in addition to the LPC spectrum. Because these 

approaches generate a detailed description of the transformed speech spectrum, or spec- 

tral detail, we will refer to them as high resolution voice transformation approaches. For 

example, Valbret et al. proposed a dynamic frequency warping (DFW) operating directly 

on the magnitude spectrum [91]. DFW is a technique that aims at obtaining an optimal, 

nonlinear warping function of the frequency axis to simulate the changes of speaker char- 

acteristics. However, the authors found DFW to be inferior to a more traditional spectral 

envelope mapping. Arslan et al. [6, 7, 51 formulated a codebook-based transformation of 

LPC residuals using a weighted combination of "excitation" filters, one for each speech 

class of a spectral envelope transformation. The "excitation" filters were derived from the 

average source and target residual spectra within one class. This approach can be viewed 

as a "two-level" spectral transformation, because both the original speech spectrum en- 



velope and the LPC residual spectrum are transformed based on a single classification. 

This method seems problematic, because the authors found it necessary to incorporate a 

bandwidth modification method for improving the quality of transformed speech. Finally, 

in an altogether different approach, a long delay neural network predictor was trained to 

predict the excitation waveform. During transformation, the network weights were trans- 

formed along with spectral envelope parameters [52]. Unfortunately, a formal evaluation 

of this approach was neglected and thus its performance remains speculative. 

3.1.3 Transformation function 

The purpose of the transformation function is to capture the differences between source 

and target features that are due to the difference in speaker characteristics. Naturally, the 

durations of linguistic units (e.g , phonemes, diphones) differ between speakers, even when 

producing the same utterances. Therefore, the stream of features stemming from both 

speakers must be linguistically grouped or aligned in time with each other before training 

the transformation function. The timealignment of a feature stream or the grouping of 

features of similar classes yields the necessary feature vector associations that ensure the 

preservation of linguistic content. Time-alignment has been implemented by a dynamic 

time warping (DTW) algorithm [74] in most of the previous approaches [2, 91, 61, 84, 521. 

However, it is also possible to use a form of linguistic labeling, as obtained from the 

states of an unsupervised hidden Markov model (HMM) [7, 51, by forced-alignment speech 

recognition [36], or by a phonetic classifier [6, 51. We now present three different methods 

for implementing a transformation function. 

Mapping codebooks 

One of the earliest works in the field of VT used a transformation technique called mapping 

codebooks [2]. In this implementation, the codevectors of a source codebook have a one-to- 

one correspondence to the codevectors of a target codebook. To generate these mapping 

codebooks, a vector quantization (VQ) algorithm first partitions the source and target 

feature spaces. Then, a DTW algorithm associates source and target vectors with each 

other and generates a two-dimensional histogram of their codevector correspondences. The 



final target codebook is defined as the linear combination of the target codevectors, using 

the histogram as a weighting function. A fundamental problem with this technique is the 

fact that only a discrete set of target features are possible, which results in discontinuities 

in the speech signal. To overcome the shortcomings of the simple VQ approach, several 

researchers proposed a technique called weighted-VQ or fuzzy-VQ [48, 51. This technique 

expresses the input vector as a combination of the neighboring codevectors, not as the 

nearest codevector. As a result, discontinuities in the feature stream disappear and the 

quality of the speech signal improves. 

Discrete transformation functions 

Several researchers have proposed to use individual transformation functions for each kind, 

or class, of speech sound. Each transformation function is representative of the relation- 

ship between source and target features of one class, also referred to as a local function. 

For example, Valbret et al. [91] employed two types of local transformation approaches: 

linear regression and dynamic frequency warping (DFW). For each class, an algorithm 

calculated the optimal transformations for both linear regression and DFW during the 

training process. Similarly, Mizuno et al. [61] calculated a set of linear transformation 

rules that depended on the input class. Discrete transformation functions are capable of 

producing an infinite number of target features. However, discontinuities can still occur in 

the output due to the discrete nature of selecting a single local transformation function. 

Continuous transformation functions 

An example of a continuous transformation function is an artificial neural network (ANN). 

It is well known that, theoretically, an ANN with a nonlinear hidden layer can approximate 

any arbitrary mapping [29, page 1421. Capitalizing on this, Narendranath et al. [64] 

transformed formant frequencies with the help of an ANN, trained by a back-propagation 

algorithm. They found that the network generalized properly to unseen data. 

Using a probabilistic approach, several researchers proposed using Gaussian mixture 

models (GMM) to describe and map the source and target feature distributions. Stylianou 

et al. [85] performed a "soft" classification of the source feature space by constructing 



a GMM that modeled the source feature distribution. Then, they estimated parameters 

of a mixture of locally linear transformation functions by solving normal equations for a 

least-squares problem based on the correspondence between source and target features. 

They demonstrated empirically that a GMM is more efficient and robust than a VQ-based 

technique, which is actually a simplified case of a GMM-based approach [41]. In a compar- 

ative experiment, the performance of a GMM was found to be as good as or better than 

other transformation function implementations, specifically approaches involving ANNs, 

standard VQ, fuzzy VQ, and linear regression [lo]. 

An alternative method of implementing a probabilistic, locally linear transformation 

function using a GMM was introduced by Kain and Macon [37,38,36], drawing on research 

studying the use of GMMs for regression [26,41]. In this approach, a GMM is estimated on 

the joint density of source and target features, and a subsequent regression yields the final 

transformation function (this approach is described in detail in Section 6.3.2). Modeling 

the joint density rather than only the source density can lead to a more judicious allocation 

of mixture components and avoids certain numerical problems when inverting large and 

possibly poorly conditioned matrices. 

3.2 Evaluation and results 

Researchers have used many different objective and subjective measures to gauge trans- 

formation performance. An objective evaluation can be indicative of transformation per- 

formance and is useful in comparing algorithmic alternatives within the same system 

framework. However, the output of a VT system is a speech signal intended to be heard 

by humans, and thus a subjective evaluation in form of perceptual tests is the ultimate per- 

formance measure. The following are common objective and subjective VT performance 

evaluation measures. 

3.2.1 Objective evaluation 

A commonly used error measure in the field of speech research is the spectral distortion 

(SD) between two speech signals. In VT research, the average SD is measured between 



the source, transformed, and target utterances. For example, Abe et al. [2] measured 

the ratio of SD between the transformed and target speech and the source and target 

speech R = SD (transformed, target) / S D  (source, target). They reported the value of 

R to range between 0.27 and 0.66, and concluded that the transformed speech was more 

similar to the target speech than the source speech. Similar ratios have been reported by 

other researchers [5, 381. Stylianou et al. [84] used a SD measure to demonstrate that a 

VQ transformation scheme with 512 codevectors produces a 17% higher average SD than 

their proposed system with 64 Gaussian components. Finally, Abe showed that a simple 

mapping codebook was superior to a transformation based on phonetic units, in terms of 

a SD ratio [I]. However, this result was later contradicted by a perceptual experiment, 

emphasizing the weak correlation between most objective measures and human perception. 

Another avenue is to use transformed speech as input to a speaker identification sys- 

tem and determine the likelihood of the identification of the target speaker. For example, 

Arslan measured the log-likelihood ratio of target speech to that of the source and trans- 

formed speech [5 ] .  In all instances, the ratio increased significantly after the transforma- 

tion process. However, some speaker combinations were transformed less successfully than 

others. 

3.2.2 Subjective evaluation 

The perceptual evaluation of a transformed speech signal has three dimensions of interest: 

intelligibility, naturalness, and speaker recognizability. An example of a test aimed at 

measuring speaker recognizability is the ABX test. In this test, participants listen to 

three stimuli A ,  B, and X, and are asked to decide whether stimulus A or B is closer to 

X in terms of speaker identity. X is typically the transformed voice, and A or B the source 

and target voices. Abe et al. [2] carried out such an ABX test and found that between 57% 

and 65% of transformed utterances were identified as being closer to the target speaker 

(12 listeners judging 40 words from 3 male speakers). Kain and Macon [37] researched the 

application of a VT system in conjunction with a TTS system. Using synthetic sentences, 

they found that male+female transformations were identified as closer to the target speech 

97.5% of the time and those of male+male transformations 52% of the time (20 listeners 



judging 20 sentences). The latter score of 52% indicates that listeners were guessing, and 

indeed interviews after the test revealed that listeners identified the transformed speaker 

as a third speaker, similar to neither the source nor the target speaker. Similarly, Arslan 

[5] reported a result of 100% for male+female transformations, and 78% in a male-+male 

transformation (3 listeners judging ten 2-3 word phrases). Stylianou et al. [85] found that 

a spectral transformation resulted in scores up to 97% (20 listeners judging 3 sentences). 

Although widely used, it is important to understand the fundamental flaw of testing 

speaker recognizability with an ABX test. While a score of 100% indicates that listeners 

thought the transformed speech was closer to the target speaker in terms of speaker 

identity, the test does not determine whether the transformed speaker is indistinguishable 

from the target speaker. In actuality, the transformed speech may no t  be recognizable as 

being spoken by the target speaker. 

An improvement over the ABX test is the pair-comparison or similarity test. In this 

type of test, participants first listen to a stimulus-pair (of differing linguistic content, for 

example two different words) and then rate the similarity of the speakers on a rating 

scale. Using multi-dimensional scaling techniques, results can be projected onto a two- 

dimensional plane, representing the relative perceptual distances between stimuli. For 

example, Abe et al. [2] showed that transformed speech is "closest" to the target speech, 

as compared to partial transformations and the source speech. Stylianou et al. [85] 

compared statistics of listener ratings on several different types of stimulus-pairs on a 

scale from zero ( "identical") to nine ("very different"). On average, source-source and 

target-target pairs were rated 0.5 and 1.5. Compared to the target, spectrally transformed 

stimuli were rated 2.0, and prosodic-only transformations were rated 7.9, almost the same 

as source-target pairs, which were rated at 8.0 (20 listeners judging 3 sentences). As a 

result, the authors concluded that purely prosodic modifications of the source speaker's 

speech did not significantly reduce the perceived dissimilarity between the source and 

target speaker. However, it is possible that the source and target speakers were already 

prosodically similar. 

In this dissertation, we will focus on the subjective evaluation of speaker recognizabil- 

ity (see Chapter 8). Other important aspects of speech quality include the naturalness and 



the intelligibility of the speech signal. For example, Kain and Macon [37] measured the 

naturalness of the transformed speech signal by carrying out a mean opinion score (MOS) 

test [89], a standard test for characterizing the quality of a speech signal with ratings 1 

to 5 ("bad", "poor", "fair", "good", and "excellent"). Listeners scored the naturalness 

of transformed speech signals as 4.2 and 2.7 for a malejmale and male+female trans- 

formation, respectively. In a second example, Arslan [5] measured the intelligibility of 

his system by analyzing transcriptions of transformed nonsense sentences. He found that 

the phone accuracy of the transformed speech was similar to that of the source speaker's 

speech. 



Chapter 4 

Thesis and Proposed Approach 

In this chapter, we analyze the shortcomings of previous approaches and formulate the 

problem we address. We then present the thesis of this dissertation, which will be explored 

in the following chapters. 

4.1 Problems of previous approaches 

We identify two major shortcomings in the area of VT research: transformation perfor- 

mance and the methods by which this performance is evaluated. We define transforma- 

tion performance as a measure that combines the degree of intelligibility, naturalness, and 

speaker recognizability of the transformed speech output. The evaluation of transforma- 

tion performance incorporates the selection of objective and subjective measures, as well 

as a suitable speech corpus. We will now describe the problems in these two areas. 

4.1.1 Transformation Performance 

It is difficult to gauge the success of published VT approaches because of problems in 

the evaluation of VT system performance (addressed below). However, from the results of 

Section 3.2, it is clear that the state-of-the art is still short of satisfactory performance. For 

example, Arslan [5] used a formant bandwidth modification method that post-processes 

transformed speech in order to cope with bandwidth expansion problems. Stylianou et al. 

reported that listeners consider transformed speech to be "rather natural" [85, page 1411, 

but sometimes a m d i n g  effect was heard. In a study by Kain and Macon that focused 

on transformation of TTS utterances [37], listeners judged the naturalness of transformed 



speech to be below that of the original synthetic speech. Moreover, listeners in their study 

reported that the transformed speech sometimes sounded like a third speaker, distinct 

from source and target speakers, though similar to both of them. 

4.1.2 Evaluation 

The following are frequently occurring shortcomings in evaluating transformation perfor- 

mance, drawing on information presented in Section 3.2: 

r Perceptual listening tests are often not carried out, even though objective measures 

alone are inadequate for judging perceptual performance. 

r Listening tests are informal, or are small-scale either in terms of the quantity or 

length of presented stimuli, or in terms of the number of listeners. 

Listening tests contain few source-target speaker combinations, due to the small 

number of available speakers in the researchers' speech corpora. Consequently, it 

is difficult to judge the generality of test results with respect to a larger speaker 

population. 

r The widely administered ABX test does not adequately test for the recognizability 

of the transformed speaker. 

r The lack of a standard VT speech corpus and standard format for evaluating trans- 

formation performance in perceptual listening tests hinders comparisons of results 

between different approaches. 

4.2 Thesis and proposed approach 

In this dissertation, we will advance the state of the art in the area of transformation 

performance and its evaluation. We claim that in order to mimic a speaker precisely and 

naturally, a VT system must produce transformed speech with a high spectral resolution. 

Problems with past VT performance can be traced to either the absence or inappropriate 

modeling of spectral details. Specifically, approaches that rely on transforming the spectral 



properties of speech based on modeling the spectral envelope alone axe low in spectral 

resolution and thus less effective (such as the SET system of Chapter 6). Previous VT 

systems that consider spectral details beyond the spectral envelope attempt to model 

and transform these spectral details of the source and target speaker. However, it is our 

hypothesis that it i s  inegective and unnecessary to  model or transform spectral details of 

the source speaker; instead, we propose to predict spectral details of the target spectrum 

from the transformed spectral envelope. This is motivated by the realization that, for 

a particular speaker, spectral details are correlated with speech sounds and can thus 

be described adequately using a finite number of classes. Chapter 7 describes our new 

transformation approach in detail. 

Further, we propose a new evaluation strategy for measuring transformation perfor- 

mance with a focus on speaker recognizability, described in Chapter 8. As part of the 

evaluation, we measure the natural ability of humans to distinguish and recognize the 

speakers of the speech corpus. These measurements serve as a baseline against which a 

system's transformation performance can be compared. 

Finally, we propose a new type of speech corpus, specifically designed for the task of 

training and evaluating VT systems. This speech corpus, the subject of the next chapter, 

is the exclusive source of speech data for all experiments described in this dissertation. 



Chapter 5 

Speech Corpus 

A speech corpus, or speech database, is a collection of recorded speech data in the form of 

an organized hierarchy of waveforms and supporting files. The purpose of a speech corpus 

is to provide the necessary data for the design, training, and testing of speech systems. 

For VT systems, the speech corpus must satisfy particular requirements. During training, 

an adequate amount of data must be available for estimation of a transformation function. 

During evaluation, a sufficiently large number of sentences and speakers must be available 

for perceptual testing. 

Four major issues concern the designer of a speech corpus for supporting research on 

VT systems: 

Database size This refers to the amount of data that is available for each speaker of the 

corpus. 

Phonetic coverage This measure describes how effectively the speech utterances of a 

speaker "span" the space of possible speech sounds, such as phonemes or diphones, 

the transition from the center of one phoneme to the center of the next phoneme. 

Number of speakers The speakers of the speech corpus are a small sample of the total 

speaker population. Results obtained by testing a great number of source-target 

speaker combinations are more indicative of general performance; therefore, a larger 

pool of speakers is preferable. 

Time-alignment During training of a VT system, source and target features of equiva- 

lent linguistic character must be associated. A very successful way of providing this 



association is the time-alignment of source and target features of sentences with an 

identical phonetic transcription, that is, the same sentence was spoken by the source 

and the target speaker. 

Our goal is to design and create a speech database that contains a "phonetically rich" 

set of sentences produced by multiple speakers. The use of identical sentences maximizes 

the probability of a consistent transcription across speakers, including the effects of vowel 

reduction and coarticulation. Additionally, the recording procedure was designed to result 

in a natural time-alignment between identical sentences produces by different speakers. 

This was achieved by using a "mimicking" approach. The "built-in" time-alignment serves 

two purposes: On one hand, it allows us to factor out some of the prosodic cues of speaker 

identity, and, on the other hand, it ensures an accurate time-alignment of the training 

data with only a minimum of additional signal processing. 

5.1 Text material 

A speech corpus for VT must have adequate phonetic coverage to effectively describe 

the different speech sounds of source and target speakers. One way to achieve phonetic 

coverage is to select the speech material in a specific, careful way. For example, one can 

manually create a list of words to cover all phonemic sounds, or cover a subset of the most 

common diphones. Unless the list is small, this process is labor-intensive. Fortunately, 

automatic procedures for selecting text with desirable features from a larger body of text 

exist. A widely used algorithm for this task is a greedy search [94]. The objective of this 

algorithm is to find a unit (e.g., word, sentence) in the text corpus that contains the largest 

number of features (e.g., diphones, phones) that are not yet covered by previously selected 

units, and then moving this unit from the text corpus to the list of selected units. The 

algorithm can also use a weighting to indicate preference of certain features. For example, 

if the weighting equals the inverse frequency of feature occurrence, then the algorithm will 

select rare units first with regular ones as a by-product, resulting in a shorter list. 

In our work, we ran a greedy algorithm on a list of phonetic transcriptions of 1170 sen- 

tences, taken from the TIMIT [25] and Harvard Psychoacoustic Sentences [20] databases. 
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Figure 5.1: Histogram of phoneme content of the final 50 sentences selected by the greedy

search algorithm.

Our selection criterion maximized the number of occurrences of rare phonemes, while in-

cluding as many unique dip hones as possible. Targeting one hour of recording time for

each speaker, we limited the list of selected sentences to 50 sentences. In the final selection,

each phoneme was represented on average 41 and at least 17 times (see Figure 5.1 for a

phoneme histogram). The number of unique dip hones was 693 out of the 1253 available

unique dip hones in the phonetic transcription. Every phoneme was included at least once

by the third sentence.

5.2 Recording

First, we recorded a template speaker reading the 50 selected sentences. For each sentence,

the text was displayed on a screen, and 3 "count-in" beeps were played before starting

the recording. The template speaker aligned the first stressed syllable of the sentence

with the imaginary 4th beat. He spoke slowly and with a flat intonation. After acquiring

speech from the template speaker, we recorded 5 male and 5 female corpus speakers (see

Table 5.1). American English was the first and primary language for the template and

corpus speakers.



Table 5.1: Identifier, gender, age, and origin of corpus speakers. 

t M1 I male 1 29 1 Northwest 1 

Identifier 

I? 1 
F2 
F3 
F4 
F5 

Age 
24 
29 

Gender 

female 
female 

corpus speakers. 

Origin 

Northwest 
Midwest 

female 
female 
female 

M2 
M3 
M4 
M5 

template 

The recording of a corpus speaker was divided into 3 contiguous tasks for each of the 

50 sentences. All pertinent information was displayed on a screen, including the current 

24 
23 
25 

male 
male 
male 
male 

male 

sentence to be read. The tasks were: 

Northwest 
Northwest 
Northwest 

Task 1 Speakers were instructed to "read the sentence on the screen naturally". This 

35 
28 
25 
21 

32 

resulted in recordings that were unconstrained in terms of timing and intonation. 

Northeast 
Midwest 
Midwest 

Northwest 

Midwest 

Task 2 The instructions were: "Listen and mouth along quietly with the template sen- 

tence, then mimic the sentence on your own." First, the template sentence was 

played, and immediately afterwards a recording of the speaker was taken. 

Task 3 Speakers were instructed to "listen and speak along with the template sentence, 

then mimic the sentence on your own." Similar to task 2, the template sentence was 

played, and immediately afterwards a recording of the speaker was taken. 

During Task 2 and Task 3, the original three "count-in" beeps were heard before the 

template speech and three beeps were also heard for the mimick sentences. In this manner, 

it was easy to begin mouthing or speaking along with the template, as the first stressed 

syllable fell on the imagined 4th beat. In Task 2, we asked speakers to mouth along quietly 

to allow for hearing the template sentence clearly, while already providing the opportunity 



for practice. By Task 3, speakers were able to speak along with the template speaker 

easily. The mouthing or speaking along speech was not recorded. The reason for recording 

two "mimick" sentences is to provide the possibility of establishing a measure of intra- 

speaker variance (see Section 6.6). Additionally, mimick performance usually improved 

the second time; therefore, only speech from Task 3 was used for estimating transformation 

functions. Speakers were told to mimic the timing, stress, and intonation patterns, but 

not the average pitch or voice quality. During the entire recording, an operator cued each 

tasklsentence and assured satisfactory quality in the areas of recording levels, mimicking 

timing and intonation, as well as phonetic accuracy. 

We recorded speech and laryngograph signals at a sampling frequency of 22 kHz, using 

a 16 bit encoding. Speakers were located in a professional sound-booth and wore a high- 

quality headphonelheadset with a condenser microphone. The use of a headset ensured 

a consistent distance to the microphone. Beeps and template speech were played over 

the closed-type headphones. Additionally, speakers were connected to a laryngograph, 

which was recorded in parallel for subsequent pitch estimation. The final speech corpus 

contained approximately 5 minutes of speech for each speaker, excluding pauses. 

We included two additional types of information with each speech waveform: time 

marks and pitch marks. To create time marks, every speech utterance was force-aligned 

using the CSLU Speech Toolkit [31, 871. Time marks were defined as at the beginning 

of a new HMM state (up to 3 per phoneme). In other words, time marks divided and 

labeled the recorded speech into linguistic units. This information is necessary for the 

time-alignment process during transformation function estimation (see Section 6.3.2) or 

perceptual test stimulus creation (see Section 8.1.1). The second type of information, pitch 

marks, indicate the instant of glottal closure and allow for a pitch-synchronous analysis 

of the speech signal (see Section 6.2). We ran an algorithm included in the OGIresLPC 

package [53] that analyzed the laryngograph signal and created pitch marks. We verified 

time and pitch marks manually on sentences 41-50, the test set, to ensure a high degree 

of accuracy. Approximately one to five pitch mark corrections (usually additions) were 

necessary per sentence. 
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5.3 Mimick performance

We studied the timing and intonation of the corpus speaker sentences in relation to the

template speaker sentences to answer the question of how well corpus speakers performed

the task of mimicking the template speaker. We measured timing accuracy by examining

the evolution of time marks produced by the force-alignment process. Figure 5.2 shows the

time evolution of an example sentence of all ten corpus speakers and the template speaker.

One can observe that the beginning of the speech utterance is quite variable (the largest

difference between speakers is more than a second), but that the lines are mostly parallel,

indicating a similar time evolution across speakers. We can take a more informative view

by considering the position of the time marks relative to those of the template speaker.

Such a plot is given in Figure 5.3, in which the beginnings of the utterances have been

normalized by a global shift. The average differences between mimicking speakers and

the template speaker, computed as an absolute value (i.e. the drifting away from the

template speaker in either direction) over all sentences, are speaker-dependent. Figure 5.4

shows the values which range from 54-99 ms. Some speakers can be observed to mimic

more accurately than other speakers, on average. Conversely, Figure 5.5 shows the average
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absolute differences over all speakers on a sentence basis. A small improvement in timing

accuracy towards the end of the recordings can be observed. Overall, the average drift

over all speakers and all sentences was 70 ms, less than 2% of the average sentence length.

It is difficult to quantify the accuracy by which intonation has been mimicked. We limit

ourselves to presenting Figure 5.6, which shows time-aligned, sentence-final Fo curves of

five male speakers. We observe that, generally, all speakers share the same pitch accents.

We conclude that we were able to achieve a high degree of natural time alignment and

a reasonably similar pitch contour across speakers in the database by using a mimicking

approach during recording of the speech corpus. In this manner, we minimize the degree

of signal processing required for time-alignment tasks during training and testing of the

VT systems under study.
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Chapter 6 

Transforming the Spectral Envelope 

This chapter introduces a VT system which was implemented as representative of the 

state-of-the-art among spectral envelope transformation algorithms. It serves as a tool 

for measuring the baseline performance, which can be compared to the performance of 

innovations in later chapters. The system is designed to transform the spectral envelope 

of speech by changing parameters of an all-pole model, using a transformation function 

implemented by a Gaussian mixture regression model. For the sake of clarity in later 

chapters, we will refer to this system as the SET system. 

Figure 6.1 shows an overview block diagram for the SET system in transformation 

mode. The system encompasses an analysis, transformation, and synthesis stage. During 

analysis, the system extracts LPC spectral envelope parameters from a sinusoidal rep- 

resentation of the source speech signal. Given the source parameters, a transformation 

function, trained on data from the source and target speaker, generates a new set of spec- 

tral envelope parameters that approximate the target speaker's parameters. Finally, the 

resulting transformed speech signal is synthesized using a simple impulse/noise excitation 

approach. 

L P t  Nu) FREIlL 

GMM - 
Figure 6.1: Block diagram for the spectral envelope transformation (SET) system. 



6.1 Speech model 

In this section, we introduce the mathematical representations of the speech signal in 

the SET system. Specifically, we describe the harmonic sinusoidal model and its coding 

by linear prediction coefficients, as well as a perceptually motivated warping of the linear 

frequency scale. Solutions to model equations and feature extraction is deferred to Section 

6.2. 

6.1.1 Harmonic sinusoidal model 

We use a harmonic sinusoidal model [60, 83, 661 to represent the speech signal, a special 

case of the general sinusoidal model 159, 731. In this model, a short segment of speech 

s (n) is approximated as a sum of L sinusoids with amplitudes A and phases 4, at integer 

multiples of the fundamental frequency in radians wo 

where 

s,,, (n) sinusoidal speech 

H i  (1 )  complex amplitude of the lth harmonic 

wo = fundamental frequency in radians 

Fo = fundamental frequency in Hz 

FS sampling frequency in Hz 

L number of sinusoids, no greater than 

The motivation behind representing speech in this manner is the observation that 

voiced speech consists mostly of harmonics of a fundamental frequency. In fact, the sinu- 

soidal model parameters correspond to the harmonic samples of the short-term Fourier- 

transform of a perfectly periodic signal. Given such a signal, the amplitudes and phases 

of the sinusoids are given by Al = IS (Ewo)l and 41 = LS (lwo) or, equivalently, Hsan (1) = 



S (2wo), where 
N / 2  

S (w)  = C s (n)  e-jwn 

n=-N/2 
(6.3) 

In the more common case in which the speech signal is not perfectly periodic, the param- 

eters correspond to the peaks of the averaged spectrogram or periodogram. McAulay et 

al, have shown that the sinusoidal representation is valid even for unvoiced speech under 

certain assumptions [59]. Even though it is possible to compute parameters of the sinu- 

soidal model via Equation 6.3, we will introduce a different solution algorithm in Section 

6.2. 

One of the great strengths of the harmonic sinusoidal model is that s,in (n)  is percep- 

tually almost indistinguishable from the original speech signal s (n) .  Equally important, it 

has been shown to be capable of high-quality speech processing, particularly in the areas 

of speech coding and pitch and time-scale modifications in speech synthesis [54, 831. It 

is further possible to change the magnitude and the phase of the speech spectrum inde- 

pendently and directly by synthesizing speech with altered model parameters. However, 

a voice transformation of Hsan is problematic because its dimensionality is high. For ex- 

ample, the analysis of a short segment of speech with Fo = 100 H z  and F, = 22,050 H z  

requires L = 110 complex sinusoids or 220 real-valued parameters. 

6.1.2 Sinusoidal parameter coding by a minimum phase all-pole model 

By exploiting more speech production properties, an adequate lower-dimensional repre- 

sentation of Hsin can be found. In 2.1 we described how a linear filter can model the 

resonances of the vocal tract by approximating the spectral envelope of speech. If one 

constrains this filter to be all-pole and minimum phase, its transfer function can be writ- 

ten as 
1 - 1 -- 

H1pc ('I = 1 + E:=l a k ~ - k  A ( z )  

where ak are the coefficients for a filter of order p [68]. The filter coefficients are called 

linear prediction coeficients (LPC)  [56, 741. We will optimize the filter coefficients such 

that 

H ~ P C  ($(W-l('wo)) 2 Hsin (i) ) (6.5) 



where W-I (.) is related to an inverse warping function described below. The spectrum 

of the LPC residual is 

Equation 6.5 demonstrates the advantage of fitting a LPC model in the frequency-domain: 

Using a warping function, we are effectively able to vary the LPC modeling power selec- 

tively within frequency regions of the spectrum. 

The acoustical basis of a minimum phase, all-pole filter is a simple physical model of 

the vocal tract. If one approximates the vocal tract by a sequence of rigid tubes, each 

of constant diameter, and neglects losses due to surface viscosity and other effects, then 

the transfer function of such a lossless tube model results in an all-pole transfer function 

[74]. The advantages of such a filter are its relatively low number of parameters (typically 

between 10 and 20) and their well-studied estimation using linear prediction techniques. 

Despite the simplifying assumptions of this highly constrained model, the quality of speech 

processing using a LPC model can be high [60, 971. 

6.1.3 Spectral warping 

An improvement of the perceptual quality of a speech analysis/synthesis system employ- 

ing minimum phase, all-pole filters for coding sinusoidal parameters can be achieved by 

considering the non-uniform frequency sensitivity of the human ear. Particularly, the 

frequency resolution of the ear has been shown to be greater at low frequencies than at 

high frequencies [63]. One possible scale that approximates this property analytically is 

the bark scale. We can describe the relationship between the perceptual scale f '  and the 

frequency scale f as f '  = b (f) ,  where b represents the bark-scale warping. We use 

and 

f = b-I (f') = 600. ( e g  - 4) 
e 6 

where the units of f are Hz, and the units o f f '  are bark. Figure 6.2 shows a frequency 

conversion graph between the linear and bark scale. 
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Figure 6.2: Frequency conversion between linear and bark scale

An all-pole filter that is fitted to a warped representation of the spectrum will model

details of the spectral shape more closely in the lower frequencies, with a loss of detail at

higher frequencies. This approach has been successfully used to reduce the dimensionality

of model parameters in a speechcoding and a spectral modification task [60,97].

6.2 Analysis

This section describes how the speech features, in this case parameters of a spectral enve-

lope model, are calculated from the speech signal. The speech signals are taken from the

speech corpus described in 5. Each waveform is sampled at 22 kHz, with 16 bit resolution,

and contains pitch marks (seeFigure 6.3) and other additional information.

We perform the analysis, processing, and synthesis of speech by considering a small

section of speech at a time. Therefore, the original speech waveform is apportioned into

small, overlapping frames sm (n), thus the system is said to be frame-based. This operation

is performed synchronously with Fa (also called pitch-synchronously). Each frame contains

the speech signal of two pitch periods, centered around the current pitch mark. In unvoiced

sections of speech a constant frame-rate of 125 Hz is used in place of pitch mark and Fa
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a constant frame-rate of 125 Hz. Pitch marks represent the instant of glottal closure and
are used to define a pitch period.

information.

The sinusoidal parameters for frame m are calculated by minimizing a weighted time-

domain least-squares criterion [50, 86, 83]

r.m0
Esin = L w~ (n) (sm (n) - s~n (n))2

n=-T[;'-l

(6.9)

where, dropping the frame notation,

s(n)

Ssin (n)

original speech frame

sinuisoidal speech frame from Equation 6.1

Wa (n)

1
To = Fo

analysis window

instantanous fundamental period

We use a complex regression to minimize Esin and obtain L sinusoidal spectrum pa-

rameters Hsin (l). The number of complex sinusoids differs from frame to frame, since L

is limited to FFIo2.The advantage of this approach versus a sampling of a periodogram

(derived by Equation 6.3 or similar) is the concentration of minimum error on the center
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Figure 6.4: Speech waveform (solid line) and resynthesized sinusoidal waveform (dashed
line) .

of the speech frame, which is the beginning of a new pitch period. Since the frames are

overlapping, errors at the beginning or at the end of the speech frame do not playa sig-

nificant role. Further, the estimation is performed on a time-domain signal, which allows

for the short time-frame of two pitch-periods, as compared to Fourier-transform-based

methods which would necessitate longer frames with a constant Fo.

Figure 6.4 shows an example region of the original speech waveform and a resynthesized

sinusoidal waveform. The differences between the two waveforms are due to the fact that

Equation 6.9 involves two similar, but not identical, pitch periods of the speech signal.

Next, we resample the magnitude spectrum I~sin (l)j non-uniformly in accordance

to the bark scale warping of the original frequencies, using cubic interpolation [90] (see

Figure 6.5). Then, we compute the LPC filter coefficients ak by an application of the

Levinson-Durbin algorithm on the autocorrelation sequence of the warped power spectrum

IHsin (W (l))12[60], where
b(l . Fo)

W (l) = L . b(L . Fo)
(6.10)

The model fit is displayed in Figures 6.6 and 6.7, compared to the original warped and

unwarped spectra respectively.
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Finally, the filter coefficients ak of A (I) = l+xi=l akz-k  are converted to line spectral 

frequencies (LSF) [32]. In this alternative representation 

where 

Q ( z )  = A (I) + z-(P+')A (z-l) (6.13) 

The LSF parameters are the complex zeros, or roots, of polynomials P (z) and Q (I). Two 

important properties of LSF are that all zeros of P (I) and Q (I) are on the unit circle 

and that their zeros are interlaced with each other. Consequently, A (I) can be expressed 

by a sorted and interleaved list of angles L of the complex zeros of P (I) and Q (I). The 

advantage of converting to L is the fact that all p angle values can easily be modified, 

while the stability and minimum-phase property of the filter is guaranteed [81]. For this 

and other reasons, LSF parameters have been shown to posses superior interpolation 

properties compared to other linear prediction representations [69]. Good interpolation 

properties are critical for our transformation function (see 6.3.2), which uses a weighted 

sum of linear transformations to approximate target features seen during training. LSF 

are used extensively in speech coding [42, 15, 701 and speech compression [81]. 

Figure 6.8 shows the evolution of LSF parameters over an example sentence. A compar- 

ison with the LPC spectrogram reveals a degree of similarity between LPC pole movements 

and LSF trajectories. For instance, two closely spaced LSF parameters correspond to a 

spectral peak with a narrow bandwidth, which is likely to be a formant. 

6.3 Training 

The purpose of the training stage is to estimate parameters of a transformation function 

so that it can predict target speaker features Y from source speaker features X. In our 

frame-based system, the features of one frame describe only a small portion of speech and 

thus a sequence of features, or feature stream, represents an entire utterance. Because 
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of natural variations in the durations of linguistic units between different speakers, the

feature streams X and Y must be time-aligned, allowing the transformation function to

learn the relationship between source and target features of equal phonetic content.

6.3.1 Time-alignment

Time-alignment is performed for each sentence of each source/target speaker pair. The

goal of time-alignment is to modify the source and target speech feature stream in such

a way that the resulting feature streams can be thought of as describing the same pho-

netic content frame by frame. We achieve alignment by selectively deleting or repeating

frames from the target speaker feature stream to match the number of source frames

within phonetically equivalent regions defined by two time marks, as defined in Section

5. Alternatively, we can avoid deleting any frames altogether by stretching the shorter

region of one speaker to the length of the longer one of the other speaker. In practice, the

choice of alignment policy was unimportant, due to the already highly aligned sentences

of the speech corpus. An example alignment path is shown in Figure 6.9.

After alignment, we collect aligned LSF feature vectors into N frames of source data

XpxN = [L;ource L;ource L~ource ... L~urce] (6.14)
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Figure 6.10: Two aligned LSF feature streams. 

After alignment, we collect aligned LSF feature vectors into N frames of source data 

and, respectively, target data 

Beginning and ending silences are not included in the training data sets. An example of 

a single sentence of two aligned LSF feature streams is shown in Figure 6.10. 

The value of N depends on the amount of available training data from both source 

and target speaker. In our experiments, N > 10,000. 

6.3.2 Estimation of the transformation function 

The purpose of the transformation function is to map the source speaker's speech features 

X to an estimate of the corresponding target speaker's speech features Y. We choose 

a Gaussian mixture model (GMM) approach to implement a locally linear, probabilistic 



transformation function, similar to Stylianou et a1.[85] The advantage of using a mixture 

of locally simple models, such as Gaussians in a GMM, is the fast and accurate fitting 

of the few model parameters, as compared to linear and non-linear global models (for 

example, principal components analysis and neural networks) [41]. Further, a GMM is 

particularly well suited to the task of VT [lo] and is also used successfully in the related 

field of speaker identification [75]. 

In contrast to previous VT approaches utilizing a GMM, we obtain the desired trans- 

formation function by estimating the joint density P ( X , Y )  and then evaluating = 

E [YI X I ,  the expectation of Y given X [26]. This approach uses the estimate of the data 

density to cope with incomplete data, and is thus especially well-suited to the task of VT, 

as it is likely that the acoustical feature spaces of the source and target speaker have been 

sampled sparsely. We now introduce a GMM formally and show how it can be used in the 

role of a transformation function. 

Gaussian mixture model (GMM) 

A mixture model allows the probability distribution of x to be modeled as the sum or mix- 

ture of Q components, also referred to as classes. In the case of a Gaussian mixture mode, 

the components are normal distributions (Gaussians), and the probability distribution is 

given by 

where aq denotes the prior probabilities of x having been generated by component q, 

and N (x; p, C) denotes the n-dimensional normal distribution with mean vector p and 

covariance matrix C given by 

Contrary to classification schemes with "hard" class boundaries, data points have varying 

degrees of "membership" to all local models; this is referred to as "soft" partitioning. The 

conditional probability of a GMM class q given x is derived by direct application of Bayes' 

rule 



The GMM parameters { a , ~ ,  C) are estimated by application of an Expectation- 

Maximization (EM) algorithm [75], an iterative method for computing the maximum 

likelihood parameter estimates. Initially, we set a = 1/Q, p equal to the Q codevectors 

generated by a vector quantization algorithm, and covariances C equal to the identity ma- 

trix. Then, the EM algorithm is run until the likelihood PCMM (xi a, p, C) is maximized 

or the number of iterations exceeds a threshold of ten iterations, at which point we have 

observed the likelihood to increase only marginally. 

During the EM procedure, it is important to guard against any of the covariance 

matrices becoming close to singular. We avoid singularities by adding a constant diagonal 

matrix E . I to the covariance matrices after each iteration, effectively constraining the 

volume of the covariance matrices to a lower bound. This technique also regularizes the 

mixture density. We use an empirically determined value E = 0.001. 

Gaussian mixture model for regression 

The goal of regression analysis is to predict output data from given input data. We fit a 

GMM to the joint probability density of inputs and outputs and estimate the parameters of 

a regression function [26]. The regression is formulated as a weighted sum of linear models, 

where the weights correspond to the posterior probability of a given input belonging to a 

particular class, described by 

where Wq is a transformation matrix and bq a bias vector of class q. Figure 6.11 is an 

illustration of Equation 6.19. 

To estimate parameters of the transformation function F, we begin by estimating a 

GMM of the joint density of source and target features p (Z) = p (X, Y) where 



Figure 6.11: Illustration of transformation function implemented by a mixture of locally 
linear transformation, weighted by a posterior probability. 

and X and Y are the aligned source and target features streams of length N and dimension 

p. The expected value of a feature vector y given feature vector a is the regression 

where 

and Equation 6.18 becomes 

as shown in Kambhatla's work on Gaussian mixture models for statistical data processing 

[41]. From this, it follows that 

and 
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Figure 6.12: Trajectories of the first and second LSF component of the source (diamond
symbols), transformed (star symbols), and target speaker ("X" symbols).

6.4 Transformation

In transformation mode, the system analyzes a source speech file and transforms the

extracted features X to Y, an estimate of the target speaker's LSF parameters. Figure 6.12

shows an example of source, transformed, and target values of a single LSF component.

For each frame, we calculate the transformed spectral envelope by converting the

predicted LSF parameters L back to LPG filter coefficients via Equation 6.11 and evaluate

the resulting LPG system function Hlpc (ej(W-l(W))) = 1/11 (ej(W-l(W))) non-uniformly

on the unit circle. Figure 6.13 shows the unwarped, LPG log-magnitude spectrograms of

the source, transformed, and target speakers. Finally, we set the transformed sinusoidal

spectrum

Hsin (l) = Hlpc (J(W-l(lwo))) (6.28)

the inverse warped LPG spectrum sampled at the harmonics. If the current frame is

unvoiced, then we additionally replace the phase LHsin by a random phase vector. This

heuristic is equivalent to using an impulse train for voiced, and white noise for unvoiced

segments to excite an LPG filter in the time-domain.
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the inverse warped LPC spectrum sampled at the harmonics. If the current frame is 

unvoiced, then we additionally replace the phase ~ f i s i n  by a random phase vector. This 

heuristic is equivalent to using an impulse train for voiced, and white noise for unvoiced 

segments to excite an LPC filter in the time-domain. 

6.5 Synthesis 

Given a transformed sinusoidal spectrum &in, we compute a frame of the speech signal 

by a weighted summation of harmonic sinusoids 

where the scalar g is defined as 

Equation 6.30 adjusts the energy of each transformed frame to equal the energy of its 

respective source frame. 

Since we treat the sinusoidal parameters as constant within one frame of speech, dis- 

continuities are avoided by an overlap-add (OLA) approach that eliminates the need to 

continuously vary the parameters to interpolate between sine-wave tracks. Moreover, OLA 

allows for a simple implementation of pitch and time-scale modifications [73], which will 

be discussed in Section 8.1.1. After all speech frames are computed, they are weighted, 

overlapped, and added, as given by 

?(n) = wy-' (n) P-' (n) + w r  (n - TF) P (n - Tom) (6.31) 

where wr is the complementary synthesis window for frame m obeying the constraint 

and Tom is the fundamental pitch period of frame m in samples. We use an asymmetric 

trapezoidal window of the shape shown in Figure 6.14. 



Figure 6.14: Asymmetric trapezoidal synthesis window. 

6.6 0 b jective evaluation 

In this section, we explore the dependency of SET system performance on the choice of 

training parameters and on particular speaker combinations using an objective evaluation 

function. After introducing the selection method for speaker combinations, we define 

two error measures and two corresponding performance indices and report the resulting 

measurements. 

6.6.1 Speech data 

We use speech data from the speech corpus introduced in Chapter 5 to train the VT 

system under varying conditions. For each speaker, the database contains 50 sentences of 

read speech, resulting in approximately 5 minutes of speech and more than 10,000 feature 

vectors. Sentences 1-40 (80%) are used as training data and sentences 41-50 (20%) as 

test data. 

Out of the lo2 - 10 = 90 possible speaker combinations, we choose 5 malejmale, 5 

male+female, 5 femalejmale, and 5 femalejfemale speaker combinations, for a total of 

20 transformations. Each speaker is used as a source and as a target twice. Table 6.1 



Table 6.1: Speaker combination matrix. Source speakers are represented as rows, target 
speakers as columns. The symbol "X" indicates a speaker combination that was included 
in the objective test. For example, a transformation function exists with M1 as the source 
and M2 as the target speaker. The resulting transformation voice is identified as M14M2. 

shows the speaker combination matrix, using speaker identifiers introduced in Table 5.1. 

6.6.2 Errors and performance indices 

There exist two training parameters in training the SET system: the number of mix- 

ture components Q and the LPC order p. We varied Q = 1,2,4,8,16,32 and p = 

12,14,16,18,20. A transformation function was estimated using the training data for 

all 20 speaker combinations and all 30 training parameter combinations. 

Three kinds of distances, or errors, are of particular interest in a voice transformation 

system: the transformation error E (t (n) , i ( n ) ) ,  the inter-speaker error E (t (n) , s (n)), 

and the intra-speaker error E (t (n) , t a  (n) ) ,  where t (n) represents the target speaker's 

speech, s (n)  the source speaker's speech, r(n) the transformed speech, and t z  (n) a second 

rendition of the target speaker's utterance. The inter-speaker error describes the degree of 

difference between the source and target speaker, the intra-speaker error gives a measure 

of how much variability is present from one rendition to the next of the same sentence, and 

the transformation error represents the difference between the target and the transformed 

speaker. All three errors are conceptual and cannot be measured directly, but can be 

approximated using objective and subjective evaluations. 



To determine transformation performance objectively, we establish two error metrics 

we call performance indices that compare the transformed speech to the target speech, 

using the test data. The first metric involves the mean errors between the source and 

target LSF parameters, and the transformed and target LSF parameters. We define the 

mean LSF error between two feature streams A and B as 

E L S ~  (A, B) = 

where 

M number of frames in feature streams 

p LPC order 

~~r~ LSF vector component i in frame m 

We define the LSF transformation performance index as 

The reason for calculating a performance index PLSF instead of working with the transfor- 

mation error ELSF t (n) , i (n) )  is the need for a normalization of errors across different ( 
speaker combinations and LPC orders. This is achieved by comparing the transformation 

error to the inter-speaker error ELSF (t (n) , s (n)). As a result, PLSF is zero if the transfor- 

mation error equals the inter-speaker error, and less than zero if the transformation error 

is even larger. Conversely, PLSF approaches one as the transformation error approaches 

zero. In practice, the transformation error is unlikely to approach zero, because there are 

many ways in which a speaker may render the same utterance. 

To estimate the magnitude of acceptable renditions, we measure the target intra- 

speaker error ELsF (t (n) , t2 (n)), calculated from time-aligned utterances from Task 2 

and Task 3 recordings (see Section 5.2). Thus, the intra-speaker error approximates the 

lower bound of an achievable transformation error and, consequently, the optimal value 

of PLsF will be less than one. Similarly, the transformation error is expected to be below 

the inter-speaker error for an effective VT system, with PLSF > 0. 



PLSF operates on parameters that are inputs and outputs of the transformation func- 

tion and thus directly describes the performance of the transformation function. However, 

the mean LSF error ELSF is not a standard measure of error between two speech signals. 

To include a widely used error measure, we also test our result by calculating the spectral 

distortion (SD) in dB [71, page 4431 between the spectra of two signals, HA and HB, 

defined as 

with N = 256. Similar to Equation 6.34, we define the SD transformation performance 

l M  
EsD ( A ,  B )  = - C M m= 1 

index as 

l N  
- C (20 . loglo HT (c?~":) - 20 . loglo H g  ( d ~ ' ) ) ~  (6.35) 
N n=l 

The SD performance index represents a variation of a commonly used measure of VT 

system performance [2, 5, 841. The characteristics of PsD are equivalent to those of PLsF 

discussed above. 

6.6.3 Results 

Figures 6.15 and 6.16 show the inter-speaker errors ELSF (t (n) , s (n)), transformation er- 

rors ELSF (t (n) , i (n) ) ,  and intra-speaker errors E L s ~  (t (n) , tz (n)) for one source-target 

speaker combination. ELsr (t (n) , i (n) )  is shown for all values of Q, the number of 

mixture components. All errors are grouped by values of p, the LPC order. 

Examining Figure 6.15, one can observe a decrease of the training error ELSF t (n) , F(n)) ( 
with an increase in Q, for any particular choice of p. This is to be expected, because an 

increase in the number of mixture components results in a more accurate modeling of the 

probability densities (see Section 6.11). In the theoretical limit, using as many mixture 

components as there are feature vectors would result in a degenerate table-lookup algo- 

rithm with perfect prediction (assuming a one-to-one function). It can also be observed 

that the errors at higher values of Q are relatively close to the lower bound approximated 

by ELSF (t (n) , t2 (n)), indicating a good fit of the transformation function to the training 

data. 
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Figure 6.15: Inter-speaker, transformation, and target intra-speaker LSF training errors 
for the speaker combination M1+F2. 

Figure 6.16 shows the same types of errors evaluated on the test data. As expected, 

test errors are generally higher than their corresponding training errors. Initially, the error 

decreases with an increase in Q, but then increases. This indicates an over-fitting of the 

estimation function to the training data for values of Q > 16 for p 5 18, but Q > 8 for 

p > 18. Thus, the optimal number of mixture components depends on the choice of LPC 

order. 

Figure 6.17 shows the resulting LSF transformation performance index PLSF for the 

same speaker combination. In this representation, we can compare the effects of p on 

transformation performance. While a continuous increase in PLsF with p for a fixed Q is 

apparent on the training data, we observe only marginal improvements for Q < 8 and no 

improvements and even small losses at Q > 8 for p > 14. Our interpretation is that once 

p is large enough to model the major events in the spectrum, the LSF parameters are a 

good description of the acoustic "state" of the speaker, and thus a further increase in p 

does not benefit transformation performance. 

We have compared PLSF between several speaker combinations, as well as between av- 

erages of malejmale, malejfemale, female+male, and female-+female transformations. 



Figure 6.16: Inter-speaker, transformation, and target intra-speaker LSF test errors for 
the speaker combination Ml+F2. 

All results were approximately the same, and no dependencies on gender or other factors 

could be identified. Figure 6.18 shows PLSF, averaged over all speaker combinations. In- 

deed, the result is quite similar to the single speaker combination in Figure 6.17, except 

that the values now show the general trends (for example, over-fitting) more clearly. 

Figure 6.19 shows PsD averaged over all speaker combinations. We observe that PsD 

is similar to PLSF. In contrast to PLSF, however, PsD increases slightly with an increase 

in p, for any fixed Q. This is due to an increase of the total number of parameters of 

the transformation function, an effect that was canceled in calculating PLSF through the 

presence of the l /p  term in Equation 6.34. 

Finally, we report the actual values of the spectral distortion errors on the test set. On 

average, EsD (t (n) , s (n)) was 9.3 dB (ranging from 7 dB to 12.7 dB), ELSF (t (n) , i ( n ) )  

was 7.5 dB (ranging from from 5.5 dB to 11.2 dB), and the intra-speaker error EsD (t (n) , tn (n)) 

was 5.3 dB (ranging from 4 dB to 6.1 dB). For comparison, it is commonly thought that 

values of less than 1 dB are not humanly detectable [95], whereas a value of 3 dB is 

considered unacceptable for a LSF-based, 10 bitslframe speech coding system [71]. 

At first, it may seem contradictory that EsD (t (n) , tg (n)), which is much larger than 
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Figure 6.17: LSF transformation performance index PLSF for the speaker combination 
Ml-+F2 for both training and test data. 
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Figure 6.19: SD transformation performance index PSD averaged over all speaker combi-
nations, for both training and test data.



3 dB, should be considered as an unacceptable result. After all, a second rendition of the 

same sentence by the same speaker, aligned in both time and pitch, is the best approxima- 

tion to an original rendition! This situation is a reminder of the limited usefulness of an 

objective function to assess the quality of speech. Rather, they can be useful in comparing 

the performance of varying parameters within the same system, as we have done, and the 

error values of ELSF (t (n) , t ( n ) )  should always be thought to be bounded from below by 

the value of EsD (t (n) , tz  (n)) . In Chapter 8, we will describe a method that allows for a 

subjective evaluation of the transformation performance of the SET system. 



Chapter 7 

High Resolution Voice Transformat ion 

This chapter proposes a new approach to voice transformation. Using the SET system de- 

scribed in Chapter 6 as the baseline system, we design and implement a residual prediction 

system, resulting in high resolution transformations. In the first section, we motivate the 

advantages of synthesizing the transformed output with a high degree of spectral detail 

and give an overview of the algorithm. Section 7.2 describes the technical details of the 

implementation of the residual prediction system. Finally, Section 7.3 presents the results 

of several objective evaluations. 

7.1 Motivation and design overview 

We motivate the generation of a detailed transformation spectrum with an experimental 

result from a study by Kain and Macon [37]. In this study, the authors tested a VT 

system that modified the LPC spectral envelope of the source signal while leaving the 

LPC residuals of the source speaker unmodified. In an ABX test using synthetic speech 

samples, listeners judged a malejmale transformation to be closer to the target speech 

with an average score of 52%. From this result and from interviews with listeners, the 

authors concluded that the transformed speech was perceived as neither the source nor the 

target speaker, but instead as a new, third speaker. In a second test, the authors modified 

the VT system to replace the source LPC residuals with the corresponding target LPC 

residuals from the target speaker's synthesis database. After the modification, the ABX 

scores were 100%. The authors concluded that the LPC residual contains a significant 

amount of speaker information and that an effective VT system must go beyond a spectral 



envelope representation of the speech signal. 

The LPC residual can contain several types of information about the speech signal. 

Since the residual is the "error" of the LPC analysis (as calculated by Equation 6.6) it can 

be considered to contain all the effects of the speech signal which are not accounted for 

by the assumptions of the LPC model described in Section 6.4. Thus, the LPC residual 

may contain effects of one or more of the following: 

Nonlinear interaction of the vocal tract with the sub-glottal area. 

Wave absorption at the muscle tissues. 

Resonances not modeled by the LPC filter, if the LPC order was chosen too small. 

Spectral zeros during nasalization. 

Details of the glottal pulse shape, such as secondary glottal pulses (diplophony). 

We claim that these effects, manifested in spectral details not captured in the LPC spectral 

envelopes, contain important speaker information. This claim is supported by a second 

perceptual experiment conducted by Kain and Macon [39]. In this test, 16 listeners judged 

120 pairs of sentences to be either spoken by the same speaker or by two different speak- 

ers. The results of two conditions, separated by gender, are reproduced in Table 7.1. The 

first condition consisted of natural utterances which were normalized in regard to their 

pitch, time, and energy. The second condition was equivalent to the first condition, with 

the exception of replacing the short-term spectrum by its corresponding spectral envelope 

described by the LPC spectrum, using a sinusoidal analysis-resynthesis scheme. Thus, 

the only difference between the two conditions was the presence and the absence of the 

LPC residual in the first and second condition, respectively. The difference in listeners' 

discrimination abilities was significant for the set of male speakers. The difference among 

the women in the corpus was less pronounced. It follows that a VT system that includes 

LPC residual effects in the transformed speech signal has increased performance in the rec- 

ognizability of some transformed speakers as the target speaker, as we will show explicitly 

in Chapter 8.' 

'It has also been shown that the addition of spectral detail can improve the accuracy of an automatic 



Table 7.1: A subset of perceptual listening test results in a study by Kain and Macon 
[39]. Shown are the percentages of correct discrimination of speakers, averaged over all 
responses and listeners. The 95% confidence interval is in parentheses. 

There exist two previous approaches which attempt to render the transformed speech 

Condition 
prosody normalized 
prosody normalized and LPC coded 

spectrum with the target speaker's spectral details. The systems of Arslan et al. [6, 7, 51 

and Lee et al. [52] are based on a spectral envelope transformation system similar to 

males 
83 (79-87) 
71 (65-76) 

Chapter 6, but in addition, the acoustic feature set includes a parameterization of the 

females 
89 (85-92) 
88 (84-91) 

source and target speakers' LPC residuals, as described in Section 3.1.2. The authors 

of both approaches attribute the improved performance to the integration of the LPC 

residual. However, the representation of the LPC residual was limited in both cases, either 

to a magnitude spectrum representation (Arslan et al.) or to the output of a nonlinear 

predictor (Lee et al.). 

In contrast to transforming the LPC residual, we propose a method in which we pre- 

dict the target LPC residual from the transformed LPC spectral envelopes during voiced 

speech. The underlying assumption of this approach is that for a particular speaker and 

within some phonetically-similar class the residuals are similar and predictable. Specif- 

ically, the residual's magnitude spectrum contains the systematic errors made by the 

spectral envelope fit that are particular to a certain speech sound (e.g., zeros during a 

nasal), and the phase spectrum contains important information about the natural phase 

dispersion of the signal, as opposed to the minimum phase assumption of the LPC model. 

Given a speaker's LPC parameters of an utterance, the proposed residual prediction 

system is able to approximate the original speech waveform more accurately than a simple 

LPC coding by adding spectral details to the LPC spectrum. There is an interesting 

parallel to a recent publication by Etxebarria et a1.[21], in which the authors aim to 

improve the naturalness of a particular TTS system, MBROLA [17, 181. The MBROLA 

speaker identification system by up to 8% [35]. 



system uses a single fixed phase vector for the entire speaker database. The study suggests 

that naturalness improves when different phase vectors are used for different phonemes, 

as shown by informal perceptual tests. The residual prediction system is similar to this 

approach, except it is based on an unsupervised training method, and includes both phase 

and magnitude spectrum information. 

It must be noted that the proposition of predicting the residual from the envelope 

seems counter to the prevailing notion that the residual is "white", that is, completely 

uncorrelated with the spectral envelope. This assumption is made in classical source-filter 

theory (see Section 2.1) and for many speech systems it is fairly good approximation. 

However, when only one speaker is considered, we will show that the residual is correlated 

with the spectral envelope, making prediction possible. Now the process of VT can be 

viewed as a type of speaker-dependent speech coding, where the transformed spectral 

envelope parameters are the transmission parameters, describing the state of the speaker. 

At the receiver, residual prediction is used (after a training phase) to go from the low- 

dimensional representation of speech to the high-dimensional representation, in our case 

the short term spectrum. We will show that this strategy is effective, in terms of both 

objective and subjective evaluation measures. 

7.2 Implementation 

This section describes the implementation of the residual prediction (RP) system. In 

the first two subsections, we will consider the simple case of coding the waveform of an 

individual speaker through LPC parameters. Section 7.2.3 will integrate the RP system 

into the final transformation system. 

The RP system consists of a LPC parameter classifier and a LPC residual codebook. 

Before use, the system must be trained on speech data of the speaker whose LPC residuals 

are to be predicted. We will now describe the training process and the operation of the 

RP system in detail. 



7.2.1 Training 

Two tasks must be carried out during training: building a classifier and constructing a 

codebook. Each class of the classifier is associated with an entry in the codebook. Two 

data sets are necessary for training the RP system, the set of LPC parameters of voiced 

frames (unvoiced frames will be discussed below) and the collection of associated LPC 

residuals. 

To start, we calculate LPC parameters ak using the approach described in 6.2, and 

then convert them to a cepstral representation ck via the recursion [8] 

Let Ctrain p x ~  represent the LPC cepstra of all voiced frames in the training data, where 

p is the LPC order and N is the number of voiced frames. 

In a second step, The LPC residual magnitude and phase spectra are calculated via 

Rm (I) = 20 . loglo Hsin ( I )  - 20 . loglo Hipc (e)(W-l(lwO))) (7.3) 

and similarly 

% (I) = IHsin (I) - LHlpc ($(W-l(lwO))) 

where W-' ( a )  is an inverse warping function described in Section 6.1.3. We resample the 

spectra Rm and Rp to a length of exactly 100 points, because their spectral resolution dif- 

fers from frame to frame, depending on Fo, due to our pitch-synchronous analysis. Given a 

resolution of 100 points, residual spectra can be stored without any losses for any Fo above 

approximately 110 Hz. Resampling the spectrum is implemented by interpolation. We 

assume a cubic function for the residual magnitude spectrum R,. For the residual phase 

spectrum Rp, however, we use a nearest-neighbor interpolation, because of discontinuities 

that arise from the modulo 27~ representation of phase. Let MlooxN and PIOOxN represent 

the frequency-normalized residual magnitude and phase spectra of all voiced frames. 



Classifier 

The goal of the classifier is to assign degrees of class-membership to an incoming LPC 

parameter vector. To this end, we estimate a GMM (see Section 6.3.2) with Q mixture 

components on Ctraan 

where N (x; p, C) denotes the pdimensional normal distribution with mean vector p 

and covariance matrix C (see Equation 6.17). 

The estimation of the GMM is achieved by the EM algorithm described in 6.3.2. 

Since training a GMM minimizes the local mean squared error, the distance metric during 

classification is equivalent to a log magnitude spectral distance because of the use of a 

cepstral representation. 

Residual codebooks 

Once the classifier is established, the residual codebook can be populated. The procedure 

for this differs between magnitude and phase spectra. 

We use the following probabilistic approach for calculating the magnitude of codebook 

spectra. We first calculate the GMM posterior probabilities of CtTaan for each class q and 

frame i 

Then, the magnitude of codebook entry q is 

Thus, each entry is the normalized, weighted sum of all residual magnitude spectra, where 

the weights correspond to the degree of membership to that particular class. This approach 

works well because it is in effect an averaging and smoothing operation, resulting in 

codebook entries that are representative of the spectral trends in their class. 

An example of the magnitude spectra in a complete codebook is shown in Figure 

7.1. We observe that there are some global trends shared by all entries. For example, 
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Figure 7.1: Magnitude spectra in a 16-entry residual codebook.

supporting our hypothesis of a dependence between residuals and the spectral envelope of

a speaker. This is confirmed numerically in Section 7.3.1.

Unfortunately, a probabilistic approach can not be used for determining the phase

of codebook spectra. The values of phase spectra are given modulo 27f, and thus any

summation operation is ill-defined. Using the unwrapped phase spectrum may work for

lower frequencies, where the phases can be assumed to be slowly changing with frequency,

but at higher frequencies phases become more chaotic and the previous assumption is

invalid. For these reasons, we choose the residual phase vector of the centroid of each

class for the phase of the codebook entry for that class by letting

Pq = Pargi max hq,i (7.8)

where residual phase vector with the maximum likelihood. A disadvantage of this method

is that it is possible to choose a residual phase spectrum that is not representative of the

general trends within that class. Vectors m and P together constitute the final codebook.



7.2.2 Residual prediction 

Once the R P  system is trained, it can predict LPC residuals from the LPC spectral 

envelope of one speaker using the following approach. First, we calculate the GMM 

posterior probabilities from a set of new cepstral vectors CteSt for all frames i and classes 

q using Equation 7.6. Then, the frequency-normalized residual magnitude spectrum of all 

voiced frames is given by a weighted sum of magnitude codebook entries 

and the phase spectrum is given by the most likely phase codebook entry 

Similar to Section 7.2.1, it is possible to perform a "soft prediction" on magnitude spectra, 

but not on phase spectra, which do not allow addition. However, the "hard" prediction of 

residual phase vectors introduces an audible degradation of the final speech, most often 

perceived as "roughness". This can happen whenever a switch between phase codebook 

entries occurs. To alleviate the problem phase discontinuity, we first unwrap the tra- 

jectories of each harmonic phase stored in matrix p over all frames. Then, we smooth 

the trajectories of all voiced regions by zero-phase filtering with an eight-point Hanning 

window. 

In order to accommodate the various Fo values of different frames, the lengths of M^ 
and @ are adjusted to match the lengths of their corresponding synthesis frames. This is 

accomplished through a second resampling by cubic interpolation for the magnitudes and 

a nearest-neighbor interpolation for the phases, resulting in & and kp, respectively. 

Finally, the discrete complex spectrum of a synthesis frame is calculated via 

7.2.3 Transformation 

We combine the RP system with the SET system of Chapter 6 resulting in a high resolution 

transformation (HRT) system. An overview block diagram of the HRT system is shown in 



Figure 7.2: Block diagram of the HRT system. 

Figure 7.2. The analysis and transformation stages are unmodified, but the synthesis stage 

now incorporates the RP system, which predicts the target speaker's LPC residuals from 

the transformed LPC spectral envelope parameters. During unvoiced speech, the target 

residual spectra are resampled versions of the source speaker's residual spectra. Using 

Equation 7.11, the HRT system integrates both the transformed LPC spectral envelope 

and the predicted LPC residuals into the transformed speech signal waveform using the 

synthesis approach described in Section 6.5. 

7.3 0 b j ect ive evaluation 

In this section, we will test several aspects of the RP system, using objective measures. 

We use the speech database described in Section 5 and the analysis methods described in 

Section 6.2 to construct training and test data for each of the ten speakers. There are 40 

sentences and approximately 8,000 voiced frames available for training, and 10 sentences 

or approximately 2,000 voiced frames for testing. 

7.3.1 Codebook validation 

In a first experiment, we validate the effectiveness of magnitude codebook entries by 

comparing them to residual magnitude spectra that are either within the entry's class 

or out of its class. We use a spectral distortion similar to Equation 6.35 and define the 

within-class error 

and the out-of-class error 

1 
SDOUt  ( 9 )  = - 
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Figure 7.3: Values of the within-class error SDin and the out-of-class error SDout for an
example codebook with 16 entries.

where hq,i is given by Equation 7.6. The average values of SDin and SDout in dB, measured

on the training data, are shown in Figure 7.3 for an example codebook with 16 entries.

We observe that the within-class SD error is always below that of the out-of-class SD for

any class.

Comparing the values for SDin among different classes, we observe that some codebook

entries have a much lower within-class error. We conclude that some classes have a lower

variance in the residual magnitude spectrum than others. A codebook containing classes

with a high variance may benefit from an increase in the number of classes. This will be

the subject of the next experiment.

7.3.2 Speech coding performance

The goal of a second experiment is to characterize the relationship between the perfor-

mance of the RP system and its training parameters p, the LPC order, and Q, the number

of classes that are used in the classifier and the number of codebook entries, using a speech

coding task. To measure the speech coding performance of the RP system, we measure the

signal-to-noise ratio (SNR) of the coded speech signal. The signal-to-noise ratio (SNR)
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Figure 7.4: A small segment of an original speech signal, the output of the RP system,
and the LPC coded signal.

is defined as the ratio of the signal energy to the quantization noise energy. Assuming

zero-mean signals,

2:s(n)2

SNR (s (n), s(n)) = 10 .log 102:(s(n) - s (n))
(7.12)

on a dB scale, where s (n) represents the original speech signal and s (n) its coded form.

We calculate the SNR value of an utterance by averaging SNR values for small segments

of approximately 20 ms duration. Perceptual quality is better reflected in a segmental

SNR value than in a SNR calculated on an entire utterance, because errors in low- and

high-energy portions of speech are computed separately [47, 9].

Figure 7.4 shows a small segment of three speech signals: the original signal, the

output of the RP system, and the LPC coded signal. The LPC parameters for the latter

are identical to the input of the RP system. We observe that the RP system is capable of

approximating the original waveform much closer than the simple LPC coding.

We calculate SN R (s (n) ,s(n)),where s (n) represents an original waveform of anyone

of ten speakers, and s (n) its coded form, either by a LPC coding, or the output of the RP

system with all possible configurations of p = 12,14,16,18,20,22 and Q = 16,32,64,128.

Figure 7.5 shows the results, averaged over 10 test sentences as well as over all male
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Figure 7.5: Average SNR values between the original speech signal and various coded
forms, for male speakers.

speakers. As we can see, the RP system has a consistently higher SNR value than the

LPC coding. The optimal value of Q depends on p, though not systematically. While

the SNR values for the LPC coded signal increase with an increase in p, the performance

of the RP system is approximately independent of p. SNR values averaged over female

speakers are shown in Figure 7.6. In contrast to male speakers, we see an increase in

SNR values as Q increases, for any p. However, the RP system still results in higher SNR

values than the LPC coded signal, in any configuration. Thus, we have shown that the

RP system is able to approximate the original waveform more closely than a LPC coding

in a speech coding task, using identical LPC parameters.

7.3.3 Transformation performance

In a third experiment, we compare the transformation performance of the baseline SET

system with the HRT system and another recently published high resolution voice trans-

formation approach, called STASC, proposed by Arslan et al. [6, 7, 5]. Because we did

not have access to this system, we implemented its fundamental ideas into the existing

analysis-synthesis framework of Section 6.1, resulting in an alternative (ALT) transforma-
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Figure 7.6: Average SNR values between the original speech signal and various coded
forms, for female speakers.

tion system.

In the ALT system, a transformed speech spectrum corresponds to

s (w)= Fexc (w) . Ftract (w) . S (w) (7.13)

where Fexc (w) represents an excitation filter, Ftract (w) a vocal tract filter, and S (w)

and S (w) denote the source and transformed speech spectrum, respectively. In order to

calculate Ftract (w) and Fexc (w), the algorithm first generates codebooks of phonetically

associated LSF from speech of both the source and the target speaker during training.

During transformation, a codebook weight estimation method approximates the LSF vec-

tors X of the source speaker as
Q

X = L Vq .Xq
q=l

where Q is the codebook size, Xq the qth source LSF codeword, and Vq its weight. Given

(7.14)

V, the excitation filter is the weighted combination of codeword excitation filters

Q Tq (w)'" exc

Fexc (w) = L VqS~xc (w)q=l
(7.15)
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where SZ,, (w) and T&, (w) represent average source and target LPC residual magnitude 

spectra of the qth codeword. Similar to Equation 7.14, the LSF vectors p of the trans- 

formed speech are approximated as 

where yq is the qth target LSF codeword. Finally, FbaCt (w) is the LPC filter calculated 

from p. 
The key difference between the HRT and the ALT system is that the ALT system 

produces the target envelope by mixing a fixed set of target envelopes, whereas the HRT 

system applies a transformation function to the source envelope. Further, only the mag- 

nitude of the short-term spectrum is modified, whereas the HRT system operates on the 

complex spectrum. Another difference is the use of identical weights for both the vocal 

tract and the excitation filters in the ALT system. This limits the number and types of 

transformations to the LPC residual. In comparison, the HRT system completely sepa- 

rates the process of generating transformed LPC envelopes and LPC residuals. 

We selected 5 male+male, 5 male+female, 5 female+male, and 5 female+female 

speaker combinations, for a total of 20 transformations, to reduce the complexity of 90 

possible speaker combinations, similar to the evaluation of the SET system in Section 

6.6. Each speaker is used as a source and as a target twice. Table 6.1 shows the speaker 

combination matrix, using speaker identifiers from Table 5.1. 

We measured the following three segmental signal-t~noise ratios: S N R  (t (n) , s (n)), 

S N R  (t (n) , ~ ( n ) ) ,  and S N R  (t (n) , tz (n)), where t (n) represents the target speech sig- 

nal, s (n) the source speech signal, ?(n) the transformed speech signal, and t2 (n) a second 

realization of t (n) by the target speaker. All speech signals were time-aligned appropri- 

ately. Thus, the first measure corresponds to the inter-speaker distance, the second to 

the distance between the target and the transformed speech, and the last to the intra- 

speaker distance. Transformed speech was generated by the SET, ALT, and HRT system 

for comparison. 

Figures 7.7 and 7.8 show results for a male and a female target speaker. Each figure 

displays S N R  values that are averaged over the 10 test sentences, and over 5 male or 



5 female source speaker combinations. Comparing the three transformation systems, we 

observe that the output of the HRT system has the best performance of all three, with 

the SET system in second place. In the case of femalejmale transformations, the perfor- 

mance of all three systems deteriorates. This is due to the degrading effect of the pitch 

modification that is necessary for alignment, which in this case decreases Fo by a factor 

of approximately 2. We further observe that the ALT system is consistently below that 

of the two other systems, even the SET system. We speculate that this is due to the 

difference in paradigms: whereas SET and HRT generate a mixture of mappings acting 

on the input vector, ALT generates a new target feature vector by mixing target feature 

codewords. 

Interestingly, SNR values for both the SET and the ALT systems were lower than 

the inter-speaker distances. However, one must bear in mind the limits of an objective 

evaluation: as we will see, a human is unlikely to rate s (n) as closer to t (n) than F(n). 

While an objective measure allows as a first glimpse of the situation, only a subjective 

evaluation can uncover the perceptual significances between the various systems. Such a 

subjective evaluation is described in the next chapter. 
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Chapter 8 

Subjective Evaluation 

In this chapter we propose a new strategy for the evaluation of VT system performance, 

especially with regard to the speaker recognizability of the transformed speech signal. 

Our evaluation consists of three types of perceptual tests: a speaker discrimination test, 

a system comparison test, and a speech quality comparison test. We first describe the 

design and administration of the perceptual tests in Section 8.1 and then analyze and 

discuss the test results in Section 8.2. 

8.1 Perceptual test design 

The output of a VT system can be evaluated along three major dimensions: Intelligibility, 

naturalness, and speaker recognizability. Evaluation of the first two areas is commonplace 

for many speech systems, for example speech coders and TTS systems, and several test 

standards have been developed [47]. The area of speaker recognizability, however, has 

received relatively little attention [78]. In particular, the evaluation of speaker recogniz- 

ability of transformed speech signals has been limited to the strategies described in Section 

3.2. 

We propose a new approach to measuring the speaker recognizability of a transformed 

speech signal. Using two speaker discrimination tests, we establish the degree by which 

listeners can recognize the speaker identity of a transformed speech signal as that of the 

target speaker. The performance of a listener is estimated using speech from different 

transformation systems as well as untransformed speech. In addition, we describe two 

tests that address the issue of intelligibility and naturalness, namely an ABX system 



comparison test and a comparison category rating (CCR) test of speech quality. We will 

now describe the test stimuli, the three test designs, and the administration of the tests 

to listeners. 

8.1.1 Stimuli 

The following four conditions were used for audio stimuli that are presented during listener 

testing: 

NAT speech from originally recorded sentences, without any spectral transformation. 

SET transformed speech output produced by the SET system described in Chapter 6. 

HRT transformed speech output produced by the HRT system proposed in Chapter 7. 

ALT transformed speech output produced by the ALT system, a previous transformation 

approach described in Section 7.3.3. 

All VT systems were trained on the 40 training sentences (about 5 minutes of speech) of 

the speech corpus (described in Chapter 5). The transformed speech output sentences were 

obtained by using the 10 test sentences as input. We used 5 malejmale, 5 malejfemale, 5 

femalejmale, and 5 femalejfemale speaker combinations. Table 6.1 shows the 20 speaker 

combinations, using speaker identifiers from Table 5.1. Thus, each condition produced 200 

sentences, for a total of 800 available test stimuli. 

Clearly, the four conditions differ in their spectral contents, given the same sentence 

and the same target speaker (or original speaker in the case of NAT). With regards to the 

prosodic content, we aimed at exploring two possibilities. In the first one, we transplant 

the prosody of the target speaker onto the transformed speech, thus simulating the "op- 

timal" prosodic transformation by an idealized system. This scenario has the benefits of 

comparing the impact of a joint spectral and prosodic transformation to a prosodic-only 

transformation (NATtarget), and, at the same time, using unmodified sentences directly 

from the speech corpus for the NAT condition (NAToriginal). 

The second possibility avoids the issue of speaker-specific prosody by normalizing the 

prosodic information of all stimuli, as manifested in pitch, time, and energy. We "aver- 



aged" Fo values, time anchors (as described in Section 5.2) ,  and speech frame energies of 

the same sentence from different speakers of the same gender to produce a single gender- 

specific evolution of these prosodic descriptors. Then, the speech signals of all speakers of 

that gender were modified to be in accordance with the "generic" prosodic descriptors. In 

this manner, pitch, duration, and loudness information contributing to speaker identifica- 

tion was completely removed, while preserving the naturalness of the speech signal. Figure 

8.1 shows an example of speech waveforms of the same sentence, spoken by five different 

male speakers, modified to have generic and identical Fo values, durations, and energies. 

Given such sentences, listeners could only use the short-term spectrum to discriminate 

among speakers. It must be noted that the sentences of the NAT condition (NATnorm) 

had a slightly coded quality due to the normalization process. However, they were nearly 

indistinguishable in quality from the unmodified speech utterances, because only small 

changes to time and pitch were required due to the special properties of the speech car- 

pus (as described in Section 5.3) [16]. In fact, since care is taken that test listeners are 

unfamiliar with the speakers of the database, they accept the "normalized" speakers as 

regular speakers. 

Whether stimuli have normalized prosody or target prosody will be clear from the 

context or indicated by a subscript. Note that the condition NAToriginal denotes the 

completely unmodified speech signal, as provided by the speech corpus. 

8.1.2 Speaker discrimination test 

A VT system has successfully transformed the speaker identity of the source speech if the 

system output can easily be recognized as speech from the target speaker. However, a 

problem with measuring speaker recognition is the assumption of prior knowledge of the 

voices to be recognized. This is troublesome because it is difficult to control familiarity 

and to collect data that matches speakers and listeners. It is possible to use unfamiliar 

voices, but training listeners to recognize a set of unfamiliar voices is subject to memory 

limitations and the results can be significantly affected by the specific composition of the 

speaker set [79]. 

The problems of measuring speaker recognition can be overcome by measuring speaker 



87

x 10'

3

2

-2

5.87 5.88 5.89 5.9

time [samples]

5.91 5.92

x 10'

Figure 8.1: A close-up of speech waveforms of the same sentence spoken by five different

male speakers. The waveforms were modified to have identical Fo values, durations, and
speech frame energies. Consequently, corresponding pitch epochs of all five speakers start

and stop at the same time, and have the same energy.

discrimination or speaker similarity of unfamiliar voices [46]. These measures relate to

recognition in that the process of listening to a set of test stimuli can be viewed as a very

brief training period, followed immediately by a limited-domain recognition process. For

example, an ABX test presents three stimuli A, B, and X and listeners are requested to

decide whether stimulus A or B is closer to X in terms of speaker identity. As a result, the

ABX test compares the speaker similarities or speaker distances between A and X, as well

as B and X, measuring which speaker distance is perceptually smaller. Another type of

test presents two stimuli A and B and requires listeners to indicate the speaker similarity

on a numerical scale, in effect measuring the degree of perceived similarity between A and

B. Both the ABX and the AB test have been used by researchers to test their proposed

VT systems (see Section 3.2).

One useful property of the ABX test is the elimination of any response bias; in other

words, people are equally likely to choose A or B if indeed A=B. However, a disadvantage

of the ABX test is the fact that it involves 3 stimuli. The results may be affected by

memory effects, such as forgetting the first stimulus by the time a participant listens to
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Figure 8.2: Interactive window of the speaker discrimination test.

the third stimulus, or by ordering effects if the test allows for interaction. Perhaps an

even greater problem is its low resolution in assessing speaker similarity - a 100% correct

test result does not imply that the transformed speaker i

t

indiscriminable from the target

speaker.

Because of these shortcomings of the ABX test for measuring speaker recognizability,

we choose an AB test with a "same/different" task, similar to some previous approaches

[58, 78]. Our perceptual test is in the form of an interactive program that presents listeners

with two different sentences in sequence and requests listeners to indicate whether they

think the sentences were spoken by either the same or by two different speakers. The two

sentences are produced by either exclusively male or female speakers, because inter-gender

confusions rarely occur, as was shown in a previous study [72]. We incorporate a measure

of confidence into the same/different decision, resulting in the possible responses shown in

Figure 8.2. The power of testing speaker discrimination lies in the fact that listeners are

presented with an everyday task, as opposed to having to construct an artificial "similarity

distance", as is the case with the ABX test.

In the case of prosody-normalized voices, the sentence pairs compare all four conditions

(SET, HRT, ALT, NAT) to the natural stimuli of condition NAT. In this manner, we are

able to estimate both transformation performance of conditions SET, HRT, and ALT, as

well as discrimination performance of condition NAT (Figure 8.1 shows the four types

of condition pairs). The latter approximates an upper bound of a listener's ability to



Table 8.1: Four ways of pairing conditions within a stimulus pair and their resulting 
measurements, using stimuli with normalized prosody. The subscript denotes the source 
of prosodic content, while the superscript denotes the source of short-term spectral content, 
with x and y representing source and target speakers, respectively. 

Table 8.2: Four ways of pairing conditions within a stimulus pair and their resulting 
measurements, using stimuli with target or original prosody. The subscript denotes the 
source of prosodic content, while the superscript denotes the source of short-term spectral 
content, with x and y representing source and target speakers, respectively. 

A/B 

s~~Xn&Yrn 
A L T X ~ ~ ' ~ T ~  
HRT;~;'?~ 
~ ~ ~ i o r m  

B/A (diff.) 

NATEorm 
NATgorrn 
NAThrrn 
NATEorrn 

B/A (same) 

N~Tgorm 
~ ~ ~ g o r m  
N A T Y , ~ ~ ~  
~ ~ ~ g o r m  

discriminate among the unfamiliar voices of the speech corpus, without being provided 

any speaker-specific prosodic cues. 

In the case of stimuli with target prosody, the sentence pairs compare the original, 

unmodified sentences of the speech corpus NAToriginal to the transformation conditions 

SETtarget, HRTtarget, and NATtarget. The last condition, NATtarget, simulates a trans- 

formation system that operates on prosodic features (pitch, timing, energy) exclusively; 

however, it does so "optimally" by transplanting the desired target speaker's prosody onto 

the source speaker's. The four types of condition pairs are shown in Table 8.2. This test 

is designed to reveal differences between the baseline and the proposed system in the pres- 

ence of speaker-specific prosodic cues. At the same time, we include the prosodic-only 

transformation for an estimation of the general significance of spectral transformations. 

In the interest of limiting the duration of the test administration we did not include the 

ALT system in this configuration. 

Measuring speaker discriminability of 

SET system 
ALT system 
HRT system 

untransformed speech 

Measuring of speaker discriminability of 

SET system 

HRT;-'~ 
NAT? 
N A T ~  

B/A (diff.) 

NAT: 
A/B 

SETC-'~ 
B/A (same) 

N AT: 
NAT; 
N ATT 
N AT$ 

NAT$ 
N AT$ 
NAT; 

HRT system 
prosody-only transformation system 

original speech 



Table 8.3: Example of stimulus pairs presented together with speaker MI. 

Table 8.3 shows an example of all stimuli that involve a transformation to or from the 

speaker M1 (see Table 5.1 for a description of speaker identifiers) while measuring the 

speaker discriminability of a transformed speech signal. When testing transformations 

that result in a speaker other than M1 we use M1 as the source speaker, evaluating 

whether the transformation was successful in removing the speaker identity of MI. We 

include all available speaker combinations involving MI, except for Ml+F2, since we do 

not test across genders (see Table 6.1 for reference). However, we then have to include 

M1+M2 twice, in order to balance the the number of "same" and "different" pairs. This 

pairing is repeated for the four combinations of condition pairs (shown in Tables 8.1 and 

8.2). Thus, testing of each of the 10 speakers requires four trials and each condition pair 

combination requires 40 trials, for a total of 160 trials for all four condition pairs. Both 

tests incorporated 5 short breaks and took approximately 30 minutes to complete. 

While each listener is presented with the same stimuli over the course of the test, the 

sequence of stimuli pairs, the condition pairs, and the order of presenting A and B within 

trials are randomized. Furthermore, a speaker never repeats the same sentence during 

the entire test. However, some sentences are used more than once, spoken by different 

speakers. Finally, we interleave female and male stimuli from trial to trial in order to 

delay the learning of voice characteristics as much as possible. 

A/B 
M5+M1 
F5-+M1 
Ml+M2 
Ml+M2 

8.1.3 System comparison test 

The purpose of the system comparison test is to determine which transformation system 

(in conditions SET, ALT, and HRT) is capable of generating a transformed speech signal 

that is perceptually most similar to the desired target speaker's natural utterance (in 

condition NAT), given the same sentences spoken by the same target speaker. The test is 

B/A 
M1 
M1 
M1 
M1 

sameldifferent 
same 
same 

different 
different 
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1/60

Me A andX.or X andBmoresimilar?

Figure 8.3: Interactive window of the system preference test.

realized as a forced-choice ABX test, where stimuli A and B represent the systems under

comparison, and X represents the natural utterance. The key difference between this test

and the test from Section 8.1.2 is that we are now comparing systems, not speakers.

In each trial, listeners were played stimuli in the order A, X, and then B. They were

then asked to indicate whether they thought A or B was more similar to X, using labeled

buttons (see Figure 8.3). There were 3 different combinations of systems, each of which

was represented by 20 sentences, for a total of 60 trials. The test took 15 minutes to

complete.

8.1.4 Speech quality comparison test

To assess the speech quality of the various VT systems in terms of both intelligibility

and naturalness, we compared them against each other, as well as against the natural

utterances. The test was implemented as a comparison category rating (CCR) test [89],

in which listeners are asked to indicate the change in speech quality of two speech samples

using a response scale, resulting in a comparison mean opinion score (CMOS).

In this test, all conditions are compared to each other, resulting in 6 different combi-

nations. Each combination was represented by 10 sentences, for a total of 60 trials. In

each trial, listeners were played stimuli A and then B. They were asked to select one of

five buttons that best matched their response. The buttons were labeled "much worse",

"slightly worse", "about the same", "slightly better", and "much better" (see Figure 8.4).



92
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HowdoesB comparetoA intermsof quality?
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Figure 8.4: Interactive window of the speech quality comparison test.

The test took 12 minutes to complete.

8.1.5 Administration

Tests were given to listeners who were unfamiliar with the test speakers. Test stimuli were

played over headphones. At the beginning of each test, listeners were first presented with

two task familiarization trials, to get acquainted with the nature of the speech samples and

the test interface. Responses given during familiarization were discarded. It is important

to note that the familiarization phase was not in any way a training phase, since all tasks

are designed to measure the "everyday" performance of listeners.

The relative loudnesses of stimuli using different sentences are equalized using a 'B'

weighting curve [63, p. 56], removing the possibility of discrimination based on different

energy levels. Further, we add a small amount of white noise to stimuli (average signal-

to-noise ratio better than 50 dB) to mask slightly different noise-floors and other varying

recording conditions.

We decided against the possibility of replaying stimuli. Presenting the stimuli only

once has the advantages of a simpler interface and guards against effects of ordering and

exhaustion of excessively careful listeners. Finally, in the interest of keeping the test short,

all stimuli were faded out after 3 seconds, roughly equalizing their length of presentation.



8.2 Perceptual test results 

Four non-identical, but overlapping groups of listeners participated as subjects in the 

listening tests. 16 listeners took part in the speaker discrimination test with normalized 

prosody, 16 listeners in the speaker discrimination test with target prosody, 10 listeners 

in the system preference test, and 10 listeners in the speech quality comparison test. We 

allowed for both native speakers of English and non-native speakers who were fluent in 

English to participate. We now present and discuss the test results. 

8.2.1 Speaker discrimination test with normalized prosody 

We assign a similarity score with each one of the possible responses, as shown in Table 

8.4. The resulting averages of all listeners' responses are shown in Table 8.5 and their 

distributions are shown in Figure 8.5. We observe that the scores given to pairs of different 

speakers are relatively constant across the different conditions. However, the scores given 

to pairs of sentences from the same speaker are significantly different for each condition, 

as shown by sign tests and a one-way analysis of variance of the response scores (with 

a = 0.01, Ho: the means of all condition pairs are the same) [30]. The NAT-NAT 

condition pair resulted in the lowest score, followed by the HRT-NAT, SETHNAT, 

and ALT-NAT pairs, in that order. We conclude that the HRT system allows listeners 

to discriminate between speakers significantly better than the baseline SET system or 

the alternative ALT system. Specifically, this improvement is realized by rendering a 

transformed speech signal that is very similar to the target speaker in comparison, so that 

"same" responses were given with high confidence. This, in turn, means that the speaker 

recognizability of transformed speech by the HRT system is superior to transformed speech 

produced by the SET and ALT systems. At the same time, the output of the HRT system 

is still more confusable than the corresponding natural utterance. 

Analyzing the results further, we can interpret the similarity scores as distances be- 

tween speakers. When distances between speakers are projected onto a lower-dimensional 

plane, clusters of speakers will form. These clusters indicate that its members are perceived 

as similar in terms of speaker identity. Using a technique called multi-dimensional scaling 
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I Speakers I Confidence I Similarity score I

Table 8.4: Perceptual response scale and assigned similarity score.

I Condition pairs I SETBNAT I ALTBNAT I HRTBNAT I NATBNAT I

Table 8.5: Average response scores of the four condition pairs, given that the stimulus
pairs were spoken by the same or by two different speakers.

.....-

[ [

(a) SET-NAT (b) ALT-NAT

-

n.~ CI

(c) HRT-NAT (d) NAT-NAT

Figure 8.5: Distribution of listeners' responses under the four test conditions.

- - - -

same sure 0
same probably 1
same kind of 2

different kind of 3
different probably 4
different sure 5

same 2.21 2.65 1.52 0.81
different 3.47 3.30 3.32 3.35
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Figure 8.6: Similarity scores projected onto a two-dimensional plane, using a multi-
dimensional scaling. For clarity, only stimuli from the condition pair HRT-NAT are dis-
played. The axes have no particular significance, as this is just one out of many possible
configurations.

(MDS) [58], we transform the obtained similarity scores to a two-dimensional picture.

Figure 8.6 shows a subset of the results, for clarity only male speakers and transformed

speakers using the HRT system are included. Information about the distances between

natural speakers are taken from the condition involving natural stimuli. We observe

that transformed speakers are perceived to be close to their targets (M1-+M2, M5-+M1,

M2-+M3) or significantly closer to their target than their source speaker (M4-+M5). The

exception is the transformed speaker M3-+M4, which is as far from M4 as M4 is from

M3. In this case, the system transformed the speaker identity of M3, but not accurately

to match that of M4.

Finally, we study the data using the receiver operating characteristic (ROC) curves

[13] of the four condition combinations. The ROC curves, shown in Figure 8.7, are derived

by plotting the cumulative sum of the percentage of false rejections versus that of correct

acceptances, after collapsing the similarity scores to the binary categories "same speaker"

or "different speaker". The curves are bounded from below by the straight diagonal x = y

which corresponds to listeners responding randomly. The more area is present under the
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Figure 8.7: Receiver operating characteristic curves for the four condition combinations.
The circles are datapoints from direct measurements, connected by straight lines.

ROC curve, the better the discriminability. We observe that the curves are ordered similar

to previous results, with the natural condition as the most discriminant, followed by the

HRT, SET, and ALT system.

In conclusion, we have shown in several ways that the HRT system significantly out-

performs the baseline SET system, and the alternative ALT system. However, its speaker

recognizability is still below that of natural speech.

8.2.2 Speaker discrimination test with target prosody

Table 8.6 shows the averages of all listeners' responses to the stimuli involving target or

original prosody. Table 8.8 shows the distributions, and Figure 8.9 the corresponding ROC

curves. As in the test with normalized prosody, we observe that the scores given to pairs

of different speakers are similar across the condition pairs SET++NAT, HRT++NAT, and

NAT++NATj however, the scores given to pairs involving the same speaker are significantly

different (as shown by sign tests and a one-way analysis of variance of the response scores

with a = 0.01, Ho: the means of all condition pairs are the same). In fact, the proposed

HRT system gave a significantly lower score than the baseline SET system. We conclude



Table 8.6: Average response scores of the four condition pairs, given that the stimulus 
pairs were spoken by the same or by two different speakers. 

1 Condition pairs I NATt,,,,+,~NAT,,i,i,,l 1 SETHNAT I HRTHNAT I NAT-NAT I 

that even in the presence of speaker-specific prosodic cues the HRT system allows listeners 

to discriminate between speakers significantly better than th SET system. This is realized 

not by making different speakers sound more different, but by rendering the transformed 

speech to be very similar to the target speaker, as seen by the higher confidence that was 

given to "same" responses. At the same time, the speaker discriminability of unmodified 

utterances is still significantly greater. 

In the case of the NATtarget *NAToriginal condition, we have the perverse situation 

that a high score results from the "same" responses and a low score results from "different" 

responses. This shows the ineffectiveness of a prosody-only transformation. In other 

words, modifying the prosody of a source speaker to that of a target speaker does not lead 

to a speech signal that is recognized as the target speaker. Rather, it is often perceived 

as a new, third speaker. Equally, modifying the prosody of a speaker does not necessarily 

lead to the perception of a different speaker from the original speech signal. However, this 

depends on the prosodic modification strength; for example, a "different" response is more 

likely for inter-gender transformations. At the same time, these scores also show us the 

strength of a spectral-only transformation, one only has to exchange the labels of "same" 

and "different". Of course, the spectral-only transformation is much more successful when 

performed intra-gender. While prosody may not be the strongest clue for the recognition 

of speakers in our corpus, prosodic information does help, as is evidenced by the larger 

spread between responses and generally lower "samen and higher "different" score for the 

SET-NAT, HRT-NAT, and NATHNAT condition pairs as compared to Table 8.5. 

same 
different 

"-- - w  ""h"'U' 

3.46 
1.43 

2.26 
3.77 

I 

1.40 
3.73 

0.52 
3.95 
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Figure 8.8: Distribution of listeners' responses under the four test conditions.
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Figure 8.9: Receiver operating characteristic curves for the four condition combinations.
The circles are datapoints from direct measurements, connected by straight lines.
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Figure 8.10: Average responses to the three conditions in the system comparison test.

selected the SET system over the ALT system, and 71.5% selected the HRT system over

the SET system. In other words, the HRT system was found to be most similar to the

natural target speaker utterance, followed by the SET system in second place and the

ALT system in last place. The average preference of every listener agreed regarding the

direction of preference. Thus, listeners were unanimous in their preference. This test

confirms that the HRT system comes perceptually closest to the desired target utterance,

compared to the SET and the ALT systems.

8.2.4 Speech quality comparison

Table 8.7 shows the listener response scale and its associated opinion scores. We used

stimuli with normalized prosody in this test. The result of averaging the responses of all

listeners results in the CMOS score, displayed in Figure 8.11. We observe that condition

NAT was perceived to have the best quality, followed by the HRT, SET, and ALT systems.

We note that the CMOS score between the HRT system and the natural condition was

0.97, which corresponds to the output of the HRT system as being rated "slightly worse" ,

as compared to natural stimuli, whereas systems SET and ALT were rated at 1.3 and 1.9,

respectively. Thus, we have several pieces of evidence, direct and indirect, that the HRT



Table 8.7: Perceptual response scale and assigned opinion score. 

Response I Score I 
much worse 

about the same 
slightly better 
much better 

0.97, which corresponds to the output of the HRT system as being rated "slightly worse", 

as compared to natural stimuli, whereas systems SET and ALT were rated at 1.3 and 1.9, 

respectively. Thus, we have several pieces of evidence, direct and indirect, that the HRT 

system produces the highest quality speech of the three transformation systems. 

8.2.5 Conclusion 

We employed four perceptual tests to subjectively evaluate different aspects of the output 

of three transformation systems. We conclude that not only does the HRT system produce 

speech that is more similar to the desired target speaker, but it does so with greater speech 

quality, as compared to our baseline SET system or an alternative approach, the ALT 

system. However, the output of the HRT system is still significantly below the speaker 

recognizability and speech quality of natural stimuli. Further, we have shown that spectral 

transformation is more significant than prosodic transformation, especially for intra-gender 

transformations. However, since the available speech data were of a constrained nature, 

we caution against a generalization of this result to other types of speech, for example 

spontaneous speech. 
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Figure 8.11: Results of speech quality comparison test.



Chapter 9 

Conclusion 

9.1 Summary 

Speaker identity, the sound of a person's voice, plays an important role in the communi- 

cation between humans. With speech systems becoming more and more ubiquitous, VT 

technology offers a number of useful applications. For example, a novice user can adapt a 

TTS system to speak with a new voice quickly and inexpensively, requiring comparatively 

little training data. Other possibilities include the areas of speech coding, interpretive 

telephony, movie dubbing, and assistive technologies for the speaking-impaired. In this 

dissertation, we have considered new approaches in both the design and the evaluation of 

VT techniques. 

In Chapter 5, we proposed and implemented a new type of speech corpus that is 

especially suited to research and development of VT systems by consisting of 50 pho- 

netically balanced, naturally time-aligned sentences, spoken by 5 males and 5 females. 

Consequently, removal of individual prosodic characteristics, such as fundamental pitch 

and durations, requires only very little processing and results in high-quality speech sam- 

ples that only differ in their segmental properties, our focus of transformation. These 

"prosody-normalized" speech samples are used for training VT systems, as well as for 

evaluating the transformation performance objectively and subjectively. 

Chapter 6 introduced the spectral envelope transformation (SET) system, the base- 

line. The SET system is based on transforming the spectral envelope as represented by 

the LPC spectrum, using a harmonic sinusoidal model for analysis and synthesis. The 

transformation function is implemented as a regressive, joint-density Gaussian mixture 



model, trained on aligned line spectral frequencies feature vectors by an expectation max- 

imization algorithm. We evaluated the system with various training parameters, using 

objective measures. 

In Chapter 7, we introduced the proposed high resolution transformation (HRT) sys- 

tem, a combination of the SET system and a residual prediction module, which can predict 

target LPC residuals from transformed LPC spectral envelopes. We described implementa- 

tion details on training the classifier, constructing the residual codebooks, and synthesizing 

the transformed speech. In a series of objective evaluations, we tested the performance of 

the residual prediction module on a speech coding task and on a transformation task. 

Because of the severe shortcomings of evaluating VT performance objectively, we pro- 

pose a subjective evaluation strategy in Chapter 8. Using our speech corpus, we created 

stimuli that have exactly the same (gender-specific) Fo values, frame energies, and pho- 

netic durations. We also trained the SET, HRT, and an alternative VT system (ALT) with 

20 different speaker combinations, adding their outputs to the pool of available stimuli. 

In speaker discrimination tests, the HRT system performed significantly better than the 

SET and ALT system. However, discrimination was not as good as with natural utter- 

ances. It was also found that spectral transformation was more significant than prosodic 

transformation for recognition of the voices in our speech corpus. Similarly, listeners over- 

whelmingly selected the HRT system over the other systems in a system comparison test. 

Finally, listeners rated the speech quality of the HRT system as slightly better than the 

SET system, and much better than the ALT system. However, the quality of natural 

utterances was considered better than that of any system's transformed speech. 

9.2 Conclusion 

The ideal VT system generates transformed speech that is of high quality and is easily 

recognizable as the target speaker. While we have advanced the state-of-the-art towards 

this goal, our system produces transformed speech with a quality slightly below that of 

natural speech, and it is still difficult at times to recognize the transformed speaker as the 

target speaker. However, there are many applications that can greatly benefit from VT 



technologies, and we will no doubt see a continuation of research efforts. 

Our contributions to the field are the improvement of transformation performance and 

its measurement. We succeeded by first developing a speech corpus that was specifically 

designed for training, testing, and evaluating VT systems. We then improved upon the 

baseline by predicting spectral details from the transformed spectral envelope, instead of 

modeling and transforming the source speaker's spectral detail. Finally, we were able to 

study the resulting transformation performance in a series of listening tests. 

Most of our results are useful for other types of speech research as well. For example, 

the residual prediction module can be employed in a TTS system with limited acoustic 

inventory size (also called small-footprint TTS), since it can scalably compress the number 

of stored residuals. This compression may also prove useful in the area of speech coding, 

perhaps by continuously adapting a residual codebook at the receiver to store the current 

speaker's residuals. 

Turning our proposed VT system into an "off-the-shelf' product would necessitate 

some additional components. Firstly, a highly accurate pitch tracking algorithm has to 

replace the laryngograph signal as the source of pitch and glottal closure instant informa- 

tion, since a laryngograph device is expensive and cumbersome in its use. Also, changes 

to the channel or noisy conditions of the input speech may have to be taken into account. 

Secondly, the source speaker's prosody must be matched to that of the target speaker. 

This can be achieved using simple scalings or parametric models to modify the average 

pitch, rate of speech, and loudness of the source speaker. 

9.3 Future work 

Further improvements in voice transformation performance can be achieved by addressing 

problems and extending existing solutions of the method described in this dissertation. 

We will briefly discuss three areas which will benefit greatly from further development: 

Speech corpus The proposed method uses short sentences as speech material, which 

are read by a speaker during the recording of the speech corpus. Unfortunately, 

renditions of a whole sentence can be quite variable. For example, small pauses, 



glottal stops, and vowel reductions may occur. It may be that recording only single, 

non-ambiguous words leads to better control over these variabilities, especially when 

automatic data acquisition is necessary. 

Speech model A fundamental limitation of representing the short-term speech spectrum 

by LPC parameters is that the allocation of spectral peaks is performed indepen- 

dently for each frame. Consequently, the same LSF vector component may describe 

different acoustic events, such as first tracing one formant and then another, re- 

sulting in a discontinuous trajectory. For this reason, the synthesis of LSF vectors 

that have been interpolated or averaged may have problems with the naturalness 

of the speech signal. A solution to this problem may be found by employing more 

constrained methods that make use of the dependence between frames. Alterna- 

tively, one can use methods that extract information from the speech spectrum that 

is closely related to speech production, such as formant trajectories [55, 981. These 

latter approaches allow for an even more compact representation of speaker identity. 

Transformation function The GMM approach can be extended by either incorporating 

a dimension reduction algorithm, or by exploiting temporal dependencies in the 

feature stream. In the first case, a principal component analysis (PCA) can be used 

to first reduce the dimension of the feature space. A mixture representation of this 

is called a mixture of factor analyzers 1271. In the second case, a HMM can be 

used, allowing for context-dependent transformations. Since HMMs work well in 

recognition, they can be expected to work well in the context of VT [57]. 

Finally, another leap in transformation performance would be possible by modeling and 

transforming the detailed prosodic characteristics that are specific to a target speaker. 

This is a very difficult problem, although some beginnings have been made [80, 281. 
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