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Abstract

High Resolution
Voice Transformation

Alexander Kain, B.A.
Ph.D., OGI School of Science and Engineering

Thesis Advisor: Jan P. H. van Santen

Speaker identity, the sound of a person’s voice, plays an important role in human commu-
nication. With speech systems becoming more and more ubiquitous, Voice Transformation
(VT), a technology that modifies a source speaker’s speech utterance to sound as if a target
speaker had spoken it, offers a number of useful applications. For example, a novice user
can adapt a text-to-speech system to speak with a new voice quickly and inexpensively.

In this dissertation, we consider new approaches in both the design and the evaluation
of VT techniques. We propose a new type of speech corpus that is especially suited to
VT research and development by consisting of naturally time-aligned sentences. Con-
sequently, removal of individual prosodic characteristics, such as fundamental pitch and
durations, requires only very little processing and results in high-quality speech samples
that only differ in their segmental properties, our focus of transformation. These ” prosody-
normalized” speech samples are used for training VT systems, as well as for evaluating
their transformation performance objectively and subjectively.

Our baseline transformation system (SET) is based on transforming the spectral enve-
lope as represented by the LPC spectrum, using a harmonic sinusoidal model for analysis

and synthesis. The transformation function is implemented as a regressive, joint-density

xiii



Gaussian mixture model, trained on aligned LSF vectors by an expectation maximization
algorithm. We improve upon the baseline by adding a residual prediction module, which
predicts target LPC residuals from transformed LPC spectral envelopes, using a classifier
and residual codebooks. The resulting high resolution transformation system (HRT) is
capable of rendering transformed speech with a high degree of spectral detail.

Because of the severe shortcomings of evaluating VT performance objectively, we pro-
pose a subjective evaluation strategy, consisting of several listening tests. In a speaker
discrimination test, the HRT system performed significantly better than the SET system.
However, discrimination is below that of natural utterances. Similarly, listeners selected
the HRT system over other systems in a system comparison test. Finally, listeners rated
the speech quality of the HRT system as better than the SET system. However, the

quality of natural utterances was considered better than that of transformed speech.
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Chapter 1

Introduction

In this dissertation, we consider new approaches in both the design and the evaluation of
a newly emerging speech technology called voice transformation (VT). The goal of VT is
to modify a source speaker’s speech utterance to sound as if a target speaker had spoken
it. An effective VT system generates natural, intelligible speech that is clearly identifiable
as spoken by the target speaker.

In this chapter, we first motivate the use of VT systems by a number of example ap-
plications, followed by a brief description of current voice transformation approaches. We
then continue with presenting a summary of our proposed approach and our contributions.

Finally, we outline the organization of the dissertation.

1.1 Motivation

The sound of a person’s voice, also known as speaker identity, plays an important part
in our daily communication. For example, speaker identity allows us to recognize family
members and friends from their voices alone. Also, speaker identity makes it possible to
differentiate between speakers in a conference call or on a radio program. Consequently,
there are a number of useful applications for controlling the speaker identity by means of
a VT system, especially when integrated into other speech systems with either synthetic
or natural speech output.

An example application is the integration of a VT system with a text-to-speech (TTS)
synthesizer. Today’s state-of-the-art T'TS systems are based on a concatenative synthesis

method in which a system retrieves natural speech segments from a database and joins



them together to generate a new utterance. The synthesis database contains an organized
collection of carefully recorded speech, and the speaker identity of the synthesis output
bears resemblance to the original speaker identity of the database speaker. The creation of
a synthesis database for a new synthesis voice is a significant recording and labeling effort,
and requires a significant amount of computational resources. For example, a speaker
may be required to talk in a constrained way for several hours to collect even a relatively
small speech inventory of 2,500 diphones. The speech waveforms are stored on disk and
processed, typically requiring on the order of hundreds of megabytes and several hours of
CPU time. In addition, trained labelers can spend from 10-100 hours for every hour of
recorded speech, depending on the complexity of the transcriptions [14].

Using VT technology, new synthesis voices can be created by novice users quickly and
inexpeunsively by creating a “speaker model” from a small number of speech utterances
produced by the desired target speaker. The speaker model describes the characteristics
of the target speaker’s voice. Using different speaker models, the synthesis system can
generate speech signals with different speaker identities from a single speaker database
(see Figure 1.1), which plays the role of the source speaker [57, 37, 38, 36]. This approach
is very well suited for the development of a voice of a speaking-impaired person who is
unable to sustain continuous speech or if the speech for a desired target speaker is limited
to recordings, such as for a diseased or unavailable speaker. In another application, the
speaker model can be in the form of a small attachment to an email message describing
the sender’s voice characteristics which can then used by a system or service to speak the
message in the sender’s voice.

Another application is in the area of very-low-bandwidth coding of speech. Speech
coding systems that are designed to operate at 2400 bps or less do not preserve speaker
identity during transmission [78]. For these systems, VT algorithms have the potential to
render the decoded speech at the receiver so that it matches the speaker identity of the
transmitting speaker.

Provided a sufficiently high level of VT quality is achieved, movies and TV-shows
could be dubbed in the original actors’ voices, and language interpreters may assume the

voices of their clients [4, 3]. Researchers have also considered a VT system for rendering
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Figure 1.1: A text-to-speech synthesizer in conjunction with a voice transformation sys-
tem. Fonts are used to represent speaker identity. The synthesizer retrieves chimmks of
speech from a database, according to an input text. The assembled synthetic speech is
input to the voice transformation system, which nses a speaker model to render the final
output speech to sound like a desired target speaker.

acoustically hnpaired speech more intelligible {3, 61, 85).

A logical extension of VT research is the control of a single speaker's voice quality.
For example, the assessment and correction of voice quality is desirable in large speech
databases for concatenative synthesizers, because the qualitative perception of a speaker’s
voice often changes over the course of a long recording session [82]. Another application
is the modeling of voice quality changes with prosodic factors, such as spectral changes

that occur with varying pitch [40].

1.2  Summary of current voice transformation approaches

VT systems modify speech by changing the parameters of an acoustic representation of
the speech signal. Often, the acoustic parapeters represent a model of the short-term
spectrum, such as spectral envelopes and formant estimates. Before use, the VT system
ronst be trained on examples of speech from the source and target speakers. A transfor-
mation function captures the relationship between speech model parawmeters of the source
and target speech. Researchers bave implemented the transformation function in many
ways, including mapping codebooks, class-based functions, artificial nenral networks and

mixture models. While new rescarch on VT systems is published continuously. transfor-



mation performance is difficult to assess because of several shortcomings in the evaluation
process, Most notably, researchers use perceptual listening tests that are not well-suited
for evaluating speaker recognizability, the recognizability of the transformed speaker as
the desired target speaker. Often, these types of listening tests have yielded inconclusive
results and included few speaker combinations, raising doubts about the generality of the
algorithm. Despite the lack of conclusive test results, the performance of current VT
systems falls short of expectations. For example, transformations within the same gender
are problematic, due to an insufficiently coarse [2, 37, 61, 64, 91] or ineffective [5, 52]

generation of the target speaker’s speech spectrum.

1.3 Summary of proposed approach

In this work, we propose a high resolution VT algorithm that generates a detailed descrip-
tion of the transformed speech spectrum. We claim that it is ineffective and unnecessary
to model and transform spectral details between the source and target speaker; instead,
we propose to predict spectral details of the target from the transformed spectral envelope
of the source. As a result, we show that speaker recognizability improves, as compared to
other approaches. Further, we propose an evaluation framework designed for accurately
measuring the speaker recognizability of the transformed speech. The framework consists
of a custom-designed speech corpus and a series of speaker discrimination tests which
include measurements of the natural ability of humans to distinguish and recognize the
speakers of the speech corpus.

The following is a summary of our contributions:

e A novel VT algorithm which, for a given target speaker, predicts LPC residuals
from LPC spectral envelopes (these terms are defined in Section 6.1.2), resulting
in a high resolution spectral transformation. We show that our high resolution
transformation approach leads to a significant increase in speaker recognizability as

compared to other approaches.

¢ A subjective evaluation framework consisting of a special-purpose database, speaker



recognizability listening tests, and a measurement of the natural speaker recogniz-

ability of database speakers as a baseline for VT system performance.

1.4 Outline
The remainder of the dissertation is organized as follows:

Chapter 2 introduces some of the fundamental properties of the speech signal. We de-
scribe a physical and mathematical model of the speech production process and

consider properties of the speech signal that are characteristic of the speaker.

Chapter 3 explains the modes and components of a VT system, followed by descriptions

of previous approaches in the literature.

Chapter 4 identifies shortcomings in the previous approaches and presents our thesis

and proposed approach.
Chapter 5 describes the design and recording of the special-purpose speech corpus.

Chapter 6 introduces the baseline transformation system. The system transforms the
spectral envelope of speech by changing parameters of an all-pole model, using a

transformation function implemented by a Gaussian mixture regression model.

Chapter 7 introduces the proposed residual prediction algorithm. After a detailed tech-
nical description, we integrate the algorithm into a new VT system and compare the

results to several baselines.

Chapter 8 proposes a subjective evaluation methodology designed for measuring the
speaker recognizability of the transformed speech signal. After a description of the

design and administration of the perceptual test, we analyze and report the results.

Chapter 9 concludes our work and takes a look at the future.



Chapter 2

Basic Properties of the Speech Signal

In order to develop an effective VT system it is important to understand the fundamental
properties of speech. The first section provides background on how speech sounds are
produced and how their acoustics are modeled mathematically. The next section describes
the speaker characteristics of a speech signal. Finally, the last section presents research

on the recognition of speakers by humans.

2.1 A model of speech production

Human speech is produced by a part of the human anatomy called the vocal tract, which
begins at the vocal cords, or glottis, and ends at the lips. The compression of the lungs
induces a stream of air which flows through the windpipe and throat and escapes through

the oral and nasal cavities. This airflow is the source of four types of sounds [88, 67]:

Aspiration noise The sound of air rushing through the entire vocal tract, similar to

breathing through the mouth.

Frication noise The sound of turbulent flow at a point of narrow constriction, for ex-

ample during the initial sound in “fair”.
Plosion The sound of an air-burst, for example during the initial consonant in “ton”.

Voicing A quasi-periodic vibration of the vocal cords or glottis, for example during the
vowel in "key”. The frequency of vibration is called the fundamental frequency or

Fy and is perceived as pitch.



The four types of sounds can occur in combination. For example, the initial sound in
“vault” combines frication noise with voicing.

The sound-waves from these sound sources are further modified by the vocal tract
shape, defined by the location and position of the tongue, jaw, lips, and velum (the soft
part of the roof of the mouth). Different vocal tract shapes have different resonant fre-
quencies, called formants, which are instrumental in developing the nature of the different
speech sounds, called phonemes. Phonemes can be classified according to their man-
ner of articulation, namely vowels (“beet”), nasals (“man”), plosives (“pod”), fricatives
(“favor”), affricates (“church”), and approximants (“roll”) [67].

It is useful to describe the acoustic properties of speech production under the assump-
tions of the source-filter model [56, 74]. In this model, a source or ezcitation waveform
is input to a time-varying filter. This view of speech production is very powerful because
it can explain the majority of speech phenomena. In the distinctions of the model, the
excitation waveform accounts for the physiological sound sources listed above. For ex-
ample, aspiration and frication noise can be modeled as random processes, plosion as a
step-function, and voicing as a pulse train. A number of glottal pulse models have been
proposed to describe the details of the pulse shape during voicing [76, 22, 44]. It is pos-
sible to classify the excitation waveform into an unvoiced and a voiced signal, which, in
their simplest form, can be modeled as either a random signal or an impulse-train with
varying Fp, respectively. Finally, the time-varying filter represents the contribution of the
vocal tract shape by selectively attenuating certain frequencies of the excitation spectrum

resulting in a speech spectrum with a particular spectral envelope and formant structure.

2.2 Speaker characteristics

The acoustic speech signal contains many types of information. Primarily, the signal
carries information about the message (what was said), but also includes information about
the speaker (who said it) and the environment (where it was said). Speaker characteristics
describe the aspects of speech that are related to the person that produced it, independent

of the message and the environment. The task of VT is thus to change the speaker



characteristics of a speech signal, while preserving other types of information.

The characteristics of a speaker are commonly divided into the following types of cues:

Segmental cues These describe the “sound” or “timbre” of the speaker’s voice. Acoustic
descriptors of segmental cues include formant locations and bandwidths, spectral tilt,
Fp, and energy. Segmental cues depend mainly on the physiological and physical

properties of the speech organs, but also on the speaker’s emotional state [44].

Suprasegmental cues These describe the prosodic features related to the style of speak-
ing, for example the duration of phonemes and the evolution of Fj (intonation) and
energy (stress) over an utterance. The average behavior of phoneme duration, Fy,
and energy are perceived as rate of speech, average pitch, and loudness. These cues

are influenced by social and psychological conditions [48].

Linguistic cues These include particular choices of words, dialects and accents. Linguis-
tic cues are beyond the scope of this dissertation and will not be considered. At the
same time, they are significantly reduced by the speaking style contained within the

speech corpus of this work (see Section 5.2).

We will illustrate some of the segmental and suprasegmental cues by considering the
differences between two different speakers in an example. Figure 2.1 shows the waveforms
and spectrograms of a male and a female speaker uttering the sentence “Our plans right
now are hazy”. Examining the spectrograms, the differences in segmental cues can be
observed in the different spectral realizations of the same phonemes. For instance, the
formant bandwidths of the female speaker are wider and formant locations higher than
that of the male speaker. It is generally assumed that some phonemes carry more speaker
information than other phonemes. For example, a phoneme ranking based on automatic
speaker verification scores resulted in vowels and nasals in first place, followed by fricatives,
affricates and approximants, and plosives [19].

One of the differences in suprasegmental cues are manifested in the different dura-
tion lengths of the same individual phoneme groups between the different speakers. For

instance, the duration of the initial word “our” is greater for the female speaker than



for the male speaker. Another discrepancy is the insertion of a small pause between the
words “now” and “are” in the female example. Finally, an examination of the waveforms
reveals a significantly higher Fy and energy for the female speaker as compared to the
male speaker.

Suprasegmental cues can easily be changed at will. For example, it is easy for a
speaker to slow his or her speech, lower the voice, or speak more softly. Segmental cues,
however, are closely linked to the physiology of the speech production organs and can thus
be considered as immutable. Indeed, impersonators predominantly mimic suprasegmental
characteristics [48]. However, some segmental cues can be mimicked by impersonators
who are especially skilled in changing some part of their vocal tract physically or in
modifying the behavior of their glottal pulse. In this manner, even formant frequencies

and bandwidths can be affected.

2.3 Speaker recognition and discrimination by humans

Human listeners are capable of identifying voices under various conditions and contexts
with a fairly high degree of accuracy, especially when the voices are familiar to the listener.
A perceptual experiment conducted by the Ladefogeds [49] measured the ability of one
listener to recognize voices that were familiar to him, from a set that included 29 familiar
and 24 unfamiliar voices. The experiment showed that 31% of the 29 familiar voices were
correctly identified from the single word “hello”, 66% from a single sentence, and only
83% from 30 s of speech.! Thus, human recognition is far from perfect, a fact we must
consider during the evaluation of a VT system (see Chapter §).

We now present three types of experiments from the literature that aim to uncover the
perceptual significance of various acoustic cues on the identification of speakers: a voice
rating test, correlation analysis on the discrimination of speakers, and correlation analysis

on the recognition of artificially modified speech signals.

!The recognition of a speaker by a witness as evidence in a court of law is controversial [43, 11, 49].
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2.3.1 Voice rating

Voiers [96] classified speakers’ voices using a multi-dimensional, perceptual taxonomy
based on a set of English words. Starting with 550 potential voice descriptors, a more
refined set of 48 bipolar (such as “fast” versus “slow”) and 27 mono-polar (such as
“scratchy”) rating scales were developed by preliminary experimentation. Nine listeners
characterized the voices of 80 young adult males after listening to one minute of speech.
After a factor analysis using principal factors the author found that eight orthogonal di-
mensions were required to account for the systematic voice rating variance. He called the
leading two dimensions “animation”, which was highly correlated with the perceived rate
of speech, and “perceived pitch”. The last six dimensions had no direct correlation with

any single test rating scale, but were correlated to a combination of scales.

2.3.2 Correlation analysis on natural speech

Matsumoto et al. [58] explored the correlation between the perceptual discrimination of
speaker identity and the difference in elementary acoustical parameters of five sustained
Japanese vowels. To measure speaker discrimination they employed a “same-different”
listening test. In this type of test, listeners are presented with two speech samples in
sequence and are then asked to indicate whether they thought the sentences were spo-
ken by the same speaker or by two different speakers. Based on the results of this test,
a psychological auditory space (PAS) was constructed using a multi-dimensional scaling
procedure. The average Fy was found to explain 55% of the total variance of the PAS.
Adding the slope or tilt of the glottal source spectrum increased the explained variance
by 16%; alternatively, adding the three lowest formant frequencies increased it by 26%.
All together, all three acoustic features explained 84% of the total variance. In a related
experiment, the authors studied hybrid voices produced by interchanging the approxi-
mated glottal source wave and vocal tract spectrum among speakers. The results suggest
a relatively greater contribution of the vocal tract over the glottal source characteristics,
other than the average Fp, to the ability of humans to discriminate speakers.

Similarly, Necioglu [65] analyzed the TIMIT continuous speech corpus [25] with a
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number of measures relevant to the discrimination of speaker characteristics. The following
descriptors were found to have significant correlations with the perceptual dimensions of
a multi-dimensional scaling of subjective speaker pair similarity judgments: median pitch,
vocal tract length and other vocal tract features for males; median pitch, glottal tilt, and
average duration of unvoiced segments for females. These results confirm that average
pitch is the most identifying cue in discriminating between speakers, followed by segmental

cues,

2.3.3 Correlation analysis on synthetic speech

Itoh et al. [34, 33] studied the effects of modifying acoustical parameters on the identifi-
cation of speakers that were familiar to the listeners. The authors employed an ABX test,
in which listeners are requested to judge whether the speaker of the stimulus labeled “X”
was more likely to be speaker “A” or “B”. Stimuli were created with a speech analysis-
synthesis system capable of producing “hybrid” voices based on the interchange of the
linear prediction coefficient (LPC) residual waveforms of two speakers, while keeping their
respective LPC spectra constant. (LPC is defined in Section 6.1.2). The authors con-
cluded from the results of the listening test that the LPC spectral envelope has a greater
effect on speaker identification than the LPC residual.

In a thorough investigation by van Lancker et al. [92) on the recognition of familiar
voices, recordings of famous voices (known to the listeners at the time) were presented in
a test where the speech signal was played normally “forward”, or “backward” by reversing
the signal. Playing the speech forward as compared to playing it backward resulted in
some voices being nearly unrecognizable, while others were recognized nearly as well. The
authors concluded that people use different acoustic clues for the recognition of different
voices and the set of critical parameters is not the same for all voices; instead, listeners
select a subset from potential candidates. Further experiments with voices whose rate of
speech was modified lead to the same conclusion [93].

A similar conclusion was drawn by Lavner et al. [51] on the identification of familiar
voices from a single vowel. Stimuli were created by an analysis-synthesis system that

modified parameters of a carefully estimated glottal waveform model, £y, and formant
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frequencies and bandwidths. Listeners were instructed to identify speech samples from
a set of speakers. From the results of this test, the authors concluded that vocal tract
features are more important to the identification process than glottal source features.
Moreover, they found that changes to the same features affected the identification rate of
speakers differently, suggesting that different sets of acoustic cues are used for identifying

different speakers.

2.4 Summary and conclusion

Human speech is produced by a physiological process involving the lungs, vocal cords, and
vocal tract. The resulting speech signal has measurable acoustic properties such as energy,
Fy, and formant frequencies. The source-filter model is a simple yet powerful description
of speech production. In this model, an excitation waveform, modeling sound sources
such as frication noise and vocal cord vibrations during voicing, is input to a linear filter,
describing the acoustic effects of the vocal tract shape.

Researchers have shown that both segmental and suprasegmental cues are perceptu-
ally significant for speaker recognition. Specifically, among the suprasegmental cues, the
average value of Fy and the rate of speech were found to contribute significantly to speaker
recognition. However, it is an open question as to how much the exact behavior of prosodic
movements, also known as microprosody, affects speaker recognition. Among the segmen-
tal cues, researchers have considered the spectral envelope and formant locations of major
importance.

It is probable that the perception of speaker identity depends on all acoustic cues with
varying degree. A VT approach taking into account a more comprehensive set of acoustic

features is likely to outperform approaches with a simpler acoustic feature set.




Chapter 3

An Overview of Voice Transformation

Systems

This chapter introduces published works in the area of VT research. The first section
introduces the modes and components of a VT system in detail. Section 3.2 summarizes

various evaluation methodologies and the obtained results.

3.1 Modes and components of voice transformation systems
There are two basic modes in a VT system:

Training In this mode, the system uses speech samples of a source and target speaker to

estimate a transformation function.

Transformation After training has completed, the system transforms the source speaker’s

voice to sound like the target speaker.
Minimally, a VT system has the following components:

Speech corpus A collection of speech utterances that serve as training data during the

training process and as test data during performance evaluations.

Speech model and features The speech model is a mathematical model of the speech
signal. The type of model determines which aspects of the speech signal are modifi-
able by the system. The model parameters, or features, are obtained during a speech

analysis step, both in training and transformation mode.

14
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Transformation function The purpose of the transformation function is to map acous-
tic features of the source speaker to a new set of features that approximate those of

the target speaker.

In training mode, the system analyzes speech utterances from a source and target speaker
under the assumptions of a particular speech model (see top of Figure 3.1). Commonly
used speech models are based on variants of a linear prediction technique, resulting in
spectral envelope parameters 2, 37, 85] or formant estimates [61]. Recently, researchers
have proposed systems that attempt to go beyond a spectral envelope transformation by
modeling and transforming a detailed spectral representation [5, 52]. Every VT algo-
rithm has a speech analysis stage, in which parameters of the speech model are extracted.
After the analysis stage, the training process first constructs training data by grouping
source and target features corresponding to the same underlying speech sounds. This
feature association is typically achieved by applying a time-alignment or classification
procedure such as dynamic time warping [2, 85], unsupervised hidden Markov modeling
[5], or forced-alignment speech recognition [5]. These training data are then used to es-
timate a transformation function. The goal of this function is to capture the statistical
relationship between the source and target features. The transformation function has
been implemented in a variety of ways, including mapping codebooks [2], discrete trans-

formation functions [61, 91], neural networks [64], and Gaussian mixture models (85, 38].

In transformation mode, the “trained” transformation function predicts target speech
features from newly analyzed source speech features (see bottom of Figure 3.1). Finally,
the predicted features are used to produce the final, transformed speech signal at the syn-
thesis stage. Additionally, prosodic features such as Fy contour, energy contour, and speak-
ing rate of the source speaker are often trivially adjusted to match the target speaker’s
average prosody. The reason for not modeling suprasegmental cues in detail (for example
intonation) is the difficult extraction and manipulation of higher level information (such
as pitch-tones [77]) with present speech technologies [48]. While some progress has been

made already regarding models of duration [80, 28], models of intonation are, at the mo-
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ment, notoriously difficult, inaccurate, and controversial [62, 45]. In almost all cases, the
acquisition of knowledge about prosody specific to a speaker involves a significant manual
effort, which currently makes transforming prosodic details unsuitable for automatic VT
systems. For these reasons, we will focus on transforming only the segmental properties
of the speech signal.

We now take a closer look at the various components of a VT system and their method

of implementation in previously published research.

3.1.1 Speech corpus

The purpose of a speech corpus is to provide the necessary speech data for training the
transformation function and for testing the performance of the VT system using objective
and subjective evaluation measures. The size and contents of speech corpora in previous
approaches vary widely. For example, a speech corpus may contain as little as five vowels
[64, 12], a set of words [2, 91], short sentences (7], or one hour of read speech [5]. Alterna-
tively, researchers have also used speech databases created for text-to-speech synthesizers
[84, 37]. The optimal size of the speech corpus depends on the application, which may
limit the amount of available speech data by design, for instance in the case of adapting
a text-to-speech synthesizer to a user’s voice [36].

Another aspect of a speech corpus is the number of speakers it contains. Speech
corpora in published works have included at least two and at most six different speakers.
A larger number of available speakers is advantageous for the evaluation of a VT system,
because a larger sample size better represents the general speaker population.

There are many other factors that characterize a speech corpus. We will discuss them
in Section 5, where we describe the process of designing and recording a speech corpus for

VT system training and testing.

3.1.2 Speech model and features

To manipulate a speech signal by computer, it must be represented as the parameters
of a speech model. In general, selecting an appropriate speech model depends on the

application. For example, a speech recording and storage system may be designed to
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store the signal as a digitized, sampled waveform. In this case, the model is simple
with few assumptions on the form of the signal itself; however, the number of model
parameters is high. The opposite is true for speech models used in the transmission of
speech over low-bandwidth communication channels. In this case, the speech model is
complex and contains a number of assumptions about the form or generating process of
the signal. However, the number of parameters to be transmitted is low, as required by
this application.

In the realm of VT systems, the optimal speech model is capable of producing a
wide variety of speech that is intelligible, as well as natural and accurate with respect to
speaker recognizability. These goals call for a speech model with many degrees of freedom
and hence numerous parameters. At the same time, the transformation function is often
trained from a limited amount of training data, favoring a low-dimensional parameter set.
Because of these conflicting requirements, a judicious selection of a well-matched speech
model and transformation function is essential.

In Section 2.3, we have shown that voice individuality is manifested in all acoustic cues
with varying degrees. However, researchers have found evidence that segmental features
(in the form of a description of the short-term spectrum) and the average behavior of
suprasegmental features (mainly the rate of speech and average Fg) are sufficient for a
high degree of speaker discrimination by humans. Moreover, studies in the related field
of automatic speaker identification have demonstrated that the spectral envelope alone
contains a great deal of information to identify speakers with the help of a computer
[24, 23]. Specifically, systems based on a classification of the short-term spectral envelope
can identify 16 speakers from a population of 49 speakers with an accuracy of as high as
94.5% using 5 seconds of clean speech [75]. Thus it is not surprising that VT systems
have focused on transforming a representation of the short-term spectral envelope, while
adjusting a source speaker’s Fp, energy, and rate of speech to match those of the target
speaker on average. The speech processing in VT systems is usually performed on small
sections of speech at a time, also known as frame-based processing (see 6.2 for a more
detailed description). An interesting exception to frame-based processing is a system by

Abe that transforms entire phonetic units [1].
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One very successful representation of the short-term spectrum in VT systems is the
source-filter speech model (see Section 2.1), which approximates the vocal tract as a slowly
varying filter by fitting a spectral envelope to the magnitude spectrum of a short segment
of speech. Often, the model parameters are obtained by linear prediction (defined in
Section 6.1.2), and the filter coefficients are called linear prediction coefficients (LPC).
These parameters are usually converted to a number of alternative representations with
more desirable properties, such as the ability to interpolate between parameters. For
example, researchers have used cepstral coeflicients [85], line spectral frequencies (LSF)
[5, 38], and log area ratios [2]. Further analysis of the LPC spectrum can yield formant
frequencies and bandwidths, derived either automatically [61] or manually [64].

An LPC residual is obtained by inverse filtering a speech segment with its correspond-
ing LPC filters. Since the filter approximates the vocal tract, an inverse filtering removes
the vocal tract contribution of the speech signal. Thus, the LPC residual approximates
the glottal excitation waveform. It is possible to utilize the LPC residual of the source
speaker without any spectral modifications during synthesis of a transformed utterance
[91, 38]. The result is a more natural sounding speech signal. However, the residual also
contains a certain degree of speaker information. To address this, several authors have
proposed ways of improving VT algorithms by transforming either the original speech
spectrum directly or the LPC residual in addition to the LPC spectrum. Because these
approaches generate a detailed description of the transformed speech spectrum, or spec-
tral detasl, we will refer to them as high resolution voice transformation approaches. For
example, Valbret et al. proposed a dynamic frequency warping (DFW) operating directly
on the magnitude spectrum [91]. DFW is a technique that aims at obtaining an optimal,
nonlinear warping function of the frequency axis to simulate the changes of speaker char-
acteristics. However, the authors found DFW to be inferior to a more traditional spectral
envelope mapping. Arslan et al. [6, 7, 5] formulated a codebook-based transformation of
LPC residuals using a weighted combination of “excitation” filters, one for each speech
class of a spectral envelope transformation. The “excitation” filters were derived from the
average source and target residual spectra within one class. This approach can be viewed

as a “two-level” spectral transformation, because both the original speech spectrum en-
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velope and the LPC residual spectrum are transformed based on a single classification.
This method seems problematic, because the authors found it necessary to incorporate a
bandwidth modification method for improving the quality of transformed speech. Finally,
in an altogether different approach, a long delay neural network predictor was trained to
predict the excitation waveform. During transformation, the network weights were trans-
formed along with spectral envelope parameters [52]. Unfortunately, a formal evaluation

of this approach was neglected and thus its performance remains speculative.

3.1.3 Transformation function

The purpose of the transformation function is to capture the differences between source
and target features that are due to the difference in speaker characteristics. Naturally, the
durations of linguistic units (e.g. phonemes, diphones) differ between speakers, even when
producing the same utterances. Therefore, the stream of features stemming from both
speakers must be linguistically grouped or aligned in time with each other before training
the transformation function. The time-alignment of a feature stream or the grouping of
features of similar classes yields the necessary feature vector associations that ensure the
preservation of linguistic content. Time-alignment has been implemented by a dynamic
time warping (DTW) algorithm [74] in most of the previous approaches [2, 91, 61, 84, 52].
However, it is also possible to use a form of linguistic labeling, as obtained from the
states of an unsupervised hidden Markov model (HMM) {7, 5], by forced-alignment speech
recognition [36], or by a phonetic classifier [6, 5]. We now present three different methods

for implementing a transformation function.

Mapping codebooks

One of the earliest works in the field of VT used a transformation technique called mapping
codebooks [2]. In this implementation, the codevectors of a source codebook have a one-to-
one correspondence to the codevectors of a target codebook. To generate these mapping
codebooks, a vector quantization (VQ) algorithm first partitions the source and target
feature spaces. Then, a DTW algorithm associates source and target vectors with each

other and generates a two-dimensional histogram of their codevector correspondences. The
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final target codebook is defined as the linear combination of the target codevectors, using
the histogram as a weighting function. A fundamental problem with this technique is the
fact that only a discrete set of target features are possible, which results in discontinuities
in the speech signal. To overcome the shortcomings of the simple VQ approach, several
researchers proposed a technique called weighted-VQ or fuzzy-VQ [48, 5]. This technique
expresses the input vector as a combination of the neighboring codevectors, not as the
nearest codevector. As a result, discontinuities in the feature stream disappear and the

quality of the speech signal improves.

Discrete transformation functions

Several researchers have proposed to use individual transformation functions for each kind,
or class, of speech sound. Each transformation function is representative of the relation-
ship between source and target features of one class, also referred to as a local function.
For example, Valbret et al. [91] employed two types of local transformation approaches:
linear regression and dynamic frequency warping (DFW). For each class, an algorithm
calculated the optimal transformations for both linear regression and DFW during the
training process. Similarly, Mizuno et al. [61] calculated a set of linear transformation
rules that depended on the input class. Discrete transformation functions are capable of
producing an infinite number of target features. However, discontinuities can still occur in

the output due to the discrete nature of selecting a single local transformation function.

Continuous transformation functions

An example of a continuous transformation function is an artificial neural network (ANN).
It is well known that, theoretically, an ANN with a nonlinear hidden layer can approximate
any arbitrary mapping [29, page 142]. Capitalizing on this, Narendranath et al. [64]
transformed formant frequencies with the help of an ANN, trained by a back-propagation
algorithm. They found that the network generalized properly to unseen data.

Using a probabilistic approach, several researchers proposed using Gaussian mixture
models (GMM) to describe and map the source and target feature distributions. Stylianou

et al. [85] performed a “soft” classification of the source feature space by constructing
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a GMM that modeled the source feature distribution. Then, they estimated parameters
of a mixture of locally linear transformation functions by solving normal equations for a
least-squares problem based on the correspondence between source and target features.
They demonstrated empirically that a GMM is more efficient and robust than a VQ-based
technique, which is actually a simplified case of a GMM-based approach [41]. In a compar-
ative experiment, the performance of a GMM was found to be as good as or better than
other transformation function implementations, specifically approaches involving ANNs,
standard VQ, fuzzy VQ, and linear regression [10].

An alternative method of implementing a probabilistic, locally linear transformation
function using a GMM was introduced by Kain and Macon [37, 38, 36], drawing on research
studying the use of GMMs for regression [26, 41]. In this approach, a GMM is estimated on
the joint density of source and target features, and a subsequent regression yields the final
transformation function (this approach is described in detail in Section 6.3.2). Modeling
the joint density rather than only the source density can lead to a more judicious allocation
of mixture components and avoids certain numerical problems when inverting large and

possibly poorly conditioned matrices.

3.2 Evaluation and results

Researchers have used many different objective and subjective measures to gauge trans-
formation performance. An objective evaluation can be indicative of transformation per-
formance and is useful in comparing algorithmic alternatives within the same system
framework. However, the output of a VT system is a speech signal intended to be heard
by humans, and thus a subjective evaluation in form of perceptual tests is the ultimate per-
formance measure. The following are common objective and subjective VT performance

evaluation measures.

3.2.1 Objective evaluation

A commonly used error measure in the field of speech research is the spectral distortion

(SD) between two speech signals. In VT research, the average SD is measured between
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the source, transformed, and target utterances. For example, Abe et al. [2] measured
the ratio of SD between the transformed and target speech and the source and target
speech R = SD (transformed, target) /SD (source, target). They reported the value of
R to range between 0.27 and 0.66, and concluded that the transformed speech was more
similar to the target speech than the source speech. Similar ratios have been reported by
other researchers [5, 38]. Stylianou et al. [84] used a SD measure to demonstrate that a
VQ transformation scheme with 512 codevectors produces a 17% higher average SD than
their proposed system with 64 Gaussian components. Finally, Abe showed that a simple
mapping codebook was superior to a transformation based on phonetic units, in terms of
a SD ratio [1]. However, this result was later contradicted by a perceptual experiment,
emphasizing the weak correlation between most objective measures and human perception.

Another avenue is to use transformed speech as input to a speaker identification sys-
tem and determine the likelihood of the identification of the target speaker. For example,
Arslan measured the log-likelihood ratio of target speech to that of the source and trans-
formed speech [5]. In all instances, the ratio increased significantly after the transforma-
tion process. However, some speaker combinations were transformed less successfully than

others.

3.2.2 Subjective evaluation

The perceptual evaluation of a transformed speech signal has three dimensions of interest:
intelligibility, naturalness, and speaker recognizability. An example of a test aimed at
measuring speaker recognizability is the ABX test. In this test, participants listen to
three stimuli A, B, and X, and are asked to decide whether stimulus A or B is closer to
X in terms of speaker identity. X is typically the transformed voice, and A or B the source
and target voices. Abe et al. [2] carried out such an ABX test and found that between 57%
and 65% of transformed utterances were identified as being closer to the target speaker
(12 listeners judging 40 words from 3 male speakers). Kain and Macon [37] researched the
application of a VT system in conjunction with a T'TS system. Using synthetic sentences,
they found that male—female transformations were identified as closer to the target speech

97.5% of the time and those of male—male transformations 52% of the time (20 listeners
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judging 20 sentences). The latter score of 52% indicates that listeners were guessing, and
indeed interviews after the test revealed that listeners identified the transformed speaker
as a third speaker, similar to neither the source nor the target speaker. Similarly, Arslan
[5] reported a result of 100% for male—female transformations, and 78% in a male—male
transformation (3 listeners judging ten 2-3 word phrases). Stylianou et al. [85] found that
a spectral transformation resulted in scores up to 97% (20 listeners judging 3 sentences).

Although widely used, it is important to understand the fundamental flaw of testing
speaker recognizability with an ABX test. While a score of 100% indicates that listeners
thought the transformed speech was closer to the target speaker in terms of speaker
identity, the test does not determine whether the transformed speaker is indistinguishable
from the target speaker. In actuality, the transformed speech may not be recognizable as
being spoken by the target speaker.

An improvement over the ABX test is the pair-comparison or similarity test. In this
type of test, participants first listen to a stimulus-pair (of differing linguistic content, for
example two different words) and then rate the similarity of the speakers on a rating
scale. Using multi-dimensional scaling techniques, results can be projected onto a two-
dimensional plane, representing the relative perceptual distances between stimuli. For
example, Abe et al. [2] showed that transformed speech is “closest” to the target speech,
as compared to partial transformations and the source speech. Stylianou et al. [85]
compared statistics of listener ratings on several different types of stimulus-pairs on a
scale from zero ( “identical”) to nine (“very different”). On average, source-source and
target-target pairs were rated 0.5 and 1.5. Compared to the target, spectrally transformed
stimuli were rated 2.0, and prosodic-only transformations were rated 7.9, almost the same
as source-target pairs, which were rated at 8.0 (20 listeners judging 3 sentences). As a
result, the authors concluded that purely prosodic modifications of the source speaker’s
speech did not significantly reduce the perceived dissimilarity between the source and
target speaker. However, it is possible that the source and target speakers were already
prosodically similar.

In this dissertation, we will focus on the subjective evaluation of speaker recognizabil-

ity (see Chapter 8). Other important aspects of speech quality include the naturalness and
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the intelligibility of the speech signal. For example, Kain and Macon [37] measured the
naturalness of the transformed speech signal by carrying out a mean opinion score (MOS)
test [89], a standard test for characterizing the quality of a speech signal with ratings 1
to 5 (“bad”, “poor”, “fair”, “good”, and “excellent”). Listeners scored the naturalness
of transformed speech signals as 4.2 and 2.7 for a male—male and male—female trans-
formation, respectively. In a second example, Arslan [5] measured the intelligibility of
his system by analyzing transcriptions of transformed nonsense sentences. He found that
the phone accuracy of the transformed speech was similar to that of the source speaker’s

speech.



Chapter 4

Thesis and Proposed Approach

In this chapter, we analyze the shortcomings of previous approaches and formulate the
problem we address. We then present the thesis of this dissertation, which will be explored

in the following chapters.

4.1 Problems of previous approaches

We identify two major shortcomings in the area of VT research: transformation perfor-
mance and the methods by which this performance is evaluated. We define transforma-
tion performance as a measure that combines the degree of intelligibility, naturalness, and
speaker recognizability of the transformed speech output. The evaluation of transforma-
tion performance incorporates the selection of objective and subjective measures, as well

as a suitable speech corpus. We will now describe the problems in these two areas.

4.1.1 Transformation Performance

It is difficult to gauge the success of published VT approaches because of problems in
the evaluation of VT system performance (addressed below). However, from the results of
Section 3.2, it is clear that the state-of-the art is still short of satisfactory performance. For
example, Arslan [5] used a formant bandwidth modification method that post-processes
transformed speech in order to cope with bandwidth expansion problems. Stylianou et al.
reported that listeners consider transformed speech to be “rather natural” [85, page 141],
but sometimes a muffling effect was heard. In a study by Kain and Macon that focused

on transformation of TTS utterances [37], listeners judged the naturalness of transformed
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speech to be below that of the original synthetic speech. Moreover, listeners in their study
reported that the transformed speech sometimes sounded like a third speaker, distinct

from source and target speakers, though similar to both of them.

4.1.2 Ewvaluation

The following are frequently occurring shortcomings in evaluating transformation perfor-

mance, drawing on information presented in Section 3.2:

e Perceptual listening tests are often not carried out, even though objective measures

alone are inadequate for judging perceptual performance.

e Listening tests are informal, or are small-scale either in terms of the quantity or

length of presented stimuli, or in terms of the number of listeners.

¢ Listening tests contain few source-target speaker combinations, due to the small
number of available speakers in the researchers’ speech corpora. Consequently, it
is difficult to judge the generality of test results with respect to a larger speaker

population.

e The widely administered ABX test does not adequately test for the recognizability

of the transformed speaker.

e The lack of a standard VT speech corpus and standard format for evaluating trans-
formation performance in perceptual listening tests hinders comparisons of results

between different approaches.

4.2 Thesis and proposed approach

In this dissertation, we will advance the state of the art in the area of transformation
performance and its evaluation. We claim that in order to mimic a speaker precisely and
naturally, a VT system must produce transformed speech with a high spectral resolution.
Problems with past VT performance can be traced to either the absence or inappropriate

modeling of spectral details. Specifically, approaches that rely on transforming the spectral
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properties of speech based on modeling the spectral envelope alone are low in spectral
resolution and thus less effective (such as the SET system of Chapter 6). Previous VT
systems that consider spectral details beyond the spectral envelope attempt to model
and transform these spectral details of the source and target speaker. However, it is our
hypothesis that it is ineffective and unnecessary to model or transform spectral details of
the source speaker; instead, we propose to predict spectral details of the target spectrum
from the transformed spectral envelope. This is motivated by the realization that, for
a particular speaker, spectral details are correlated with speech sounds and can thus
be described adequately using a finite number of classes. Chapter 7 describes our new
transformation approach in detail.

Further, we propose a new evaluation strategy for measuring transformation perfor-
mance with a focus on speaker recognizability, described in Chapter 8. As part of the
evaluation, we measure the natural ability of humans to distinguish and recognize the
speakers of the speech corpus. These measurements serve as a baseline against which a
system’s transformation performance can be compared.

Finally, we propose a new type of speech corpus, specifically designed for the task of
training and evaluating VT systems. This speech corpus, the subject of the next chapter,

is the exclusive source of speech data for all experiments described in this dissertation.



Chapter 5

Speech Corpus

A speech corpus, or speech database, is a collection of recorded speech data in the form of
an organized hierarchy of waveforms and supporting files. The purpose of a speech corpus
is to provide the necessary data for the design, training, and testing of speech systems.
For VT systems, the speech corpus must satisfy particular requirements. During training,
an adequate amount of data must be available for estimation of a transformation function.
During evaluation, a sufficiently large number of sentences and speakers must be available
for perceptual testing.

Four major issues concern the designer of a speech corpus for supporting research on

VT systems:

Database size This refers to the amount of data that is available for each speaker of the

COTpUS.

Phonetic coverage This measure describes how effectively the speech utterances of a
speaker “span” the space of possible speech sounds, such as phonemes or diphones,

the transition from the center of one phoneme to the center of the next phoneme.

Number of speakers The speakers of the speech corpus are a small sample of the total
speaker population. Results obtained by testing a great number of source-target
speaker combinations are more indicative of general performance; therefore, a larger

pool of speakers is preferable.

Time-alignment During training of a VT system, source and target features of equiva-

lent linguistic character must be associated. A very successful way of providing this
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association is the time-alignment of source and target features of sentences w