Experience with Three Parallel Processing Systems

Marta Kallstrom
B.A., University of Oregon, 1872

A thesis submitted to the faculty
of the Oregon Graduate Center
in partial fulfillment of the
requirements for the degree
Master of Science
in
Computer Science and Engineering

March 2, 1987

copyright® 1987 by Marta Kallstrom

The thesis "Experience with Three Parallel Processing Systems”, by Marta Kallstrom,

has been examined and approved by the following Examination Committee:

Shreekant T. Thakkar
Adjunct Assistant Professor
Thesis Research Advisor

Robert G. Babb II
Associate Professor

Richard Hamlet
Professor

David Maier
Associate Professor

Acknowledgements

| wouldv like to thank my thesis advisor Shreekant Thakkar for his attention, his
guidance, and his confidence in me, and for the time he took out of his busy schedule
at Sequent Computer Systems to work with me. My committee members provided
valuable advice in the final stages of my thesis and made a special effort to help me
meet my deadline. I am especially grateful to Wm Leler, who commented on many

iterations of this thesis and who has inspired and encouraged me during my studies at

OGC.

In addition, I want to thank Sequent Computer Systems, Floating Point Systems,
INMOS, Tektronix, and Intel Scientific Computers for the use of their computers and
their willingness to assist in this study. Dave Olien and Ron Parsons at Sequent,
Stuart Hawkinson at Floating Point, Pete Wilson at INMOS, Peter Borgwardt at
Tektronix Computer Research Labs, and Chris Grant at Intel answered a number of

questions and helped me familiarize myself with the different systems.

Table of Contents

ABSTPEEE] L@ e oo e B oo d s e B oot @7 o & oG] S 2 o B e S e @ s MR e s
Chapter ¢ IEtROdUEEION il e d ? b odiid o m bl B e 2 ol e oo ers e e e o s
1.1 Parallel Processing Conceptsiiiveivineeenn
1.2 Literature b cs gl b0 8 SRR B B0 S i 4 X
1.3 Three Parallel Processing Systems
Chaptier 2: The LanNGUAGES: |« «ic e oo o« «os s o= s dn o esnossssy
2.1 C with Parallel Library on the iPSC
2.2 C with Parallel Library on the Sequent Balance
2.3 Occam on INMOS TransSputerscceeierunerennn
Chapter 3: The ProgramsSeeins oot oeerosnstonoenssenes
3:1 Dining Philosophers :.cceiwaas iaogoanieenassbes
S22 IMatrdsx MUBEIPTY 5. o f 2dt o v dge e Pem v obesmepe R
3.3 Traveling Salesman Problem using
Simulated ANREalifg .« cws debemas ndes s oBes s s e
Chapter 4: Comparison of Three Parallel
Programming Systems ettt neenns
4.1 Division of Work: Designation of Parallel and
Sequential Computation0i00vnn
Acrded, HPSC fwalasd el sueellee o bes s dbbsme' Mo e e B he
4.1.2 Occam on Transputersu0cce02c0u..
4.1.3 BSequent Balancecicieincencnnnn
4,.1.4 Comparison of Division of Work
4.2 Sharing of Datacecu0es.. o o B8 6 i o o & B jals
drZal, APEC sesrommeenas s omeagssvEme o B BEE e
4.2.2 Occam on Transputerscceeess oo
4.2.3 Segquernt Balancec.caditeioaamsmen

Chapter 5:

ot n
B W

Chapter 6:

a »
N

Appendix A:

5§ e
B Wk

Appendix B:

References

4.2.4 Compariscn of Data Sharing

Synchronization Methodscciitiineuann.
2:.85ds APSC MAws e dhame® s mend NN e d s shmb s s ol
4.3.2 Occam on Transputerseveeooueea.
&.3.3 Sequent ' Bal@nce .ewrssome s0mase 5065 37es 8
4.3.4 Comparison of Synchronization Methods
Parallel Program Development
MPSE 90 KANAEE S di ae ol B el ab orde oo s o o @ W56 ol e o 5 66
Ogcam 'oH Transpliters i gestonss S o, « o dous obebd e
Sequent Balance ol 5wl ia TeF shishie 8 fo 914} f6 S @ @ (61 16 e S e
Comparison of Program Development Methods
COoRCLUSIONS e+ ned @b owec s dars aminFo vios®sdhs o
Strengths and Weaknesses of Each System
Fuature Directiens .sesseadaas vamalecdses S el e

Timing and Results of the
Traveling Salesman Programc.coe0e...

IPSC \VErSiOm va 3@ 0.6, w5 e|E & @a) s e d =l o 2 e = § 5w 2iais 5 @
Sequent Balance Versioncciceiuicunnsas
Docal . VIErS1on sns neg sgems @t isgats s dha.erddmeio.s

Sample OULPULttt i i it e

Dining Philosophers Program Listings

--

Abstract

Several programs were developed using three different parallel programming sys-
tems: the Intel iPSC, Sequent Balance and INMOS transputers. The objective was to
examine different approaches to parallel processing from a programmer’s point of
view. The study compares methods for dividing work among processors, for sharing
data, and for synchronizing processes. It also examines program development, includ-

ing compilation, process management and debugging techniques.

The Sequent Balance provides the "friendliest” environment, but its shared
memory limits parallelism in some cases. Programming in occam on transputers
requires the longest learning curve, but the language’s support for pervasive parallel-
ism allows flexibility and promotes creativity in the development of parallel algo-
rithms. The iPSC embodies only a high-level parallelism and is not particularly easy

to program.

iv

Chapter 1

Introduction

Until recently parallel processing was largely experimental, but now a number of
multiprocessors have arrived in the marketplace and with them a profusion of new
program development systems. An import;ant consideration in evaluating a parallel
processing system is how it is to be programmed. In some cases smart compilers can
search for parallelism in existing sequential programs and free the programmer from
the job of parallelizing code. Currently, however, compilers are limited in the amount
of parallelism they can find and compilers that detect any parallelism are not widely
available. Efficient use of multiprocessors relies on the programmer to implement
parallel, or parallelizable, algorithms. On some systems, such as the Sequent
Balance[TGF], Intel iPSC|Int85], Cray X-MP|[CHL, CCC85, and
Alliant FX/8™[AAA86,KDL86], library extensions to conventional operating systems
and languages help the programmer to specify actions of multiple processes. Other
systems offer new languages that embody concepts of parallelism, including the Meiko
Computing Surface®™[86], Floating Point Systems T Series[GHS86], and the Connec- |
tion Machine{Hil85]. While information on architectures and programming models
abound, little has been available on the practical aspects of parallel programming.

This study is a step in that direction.

@ Alliant and FX/8 are both trademarks of the Alliant Computer Systems Corporation.
@ Computing Surface is a trademark of Meiko Ltd.

Three typical programming problems were implemented on each of three com-
mercially available systems. They include the Sequent Balance®, the Intel iPSC® and
INMOS transputers. The objective was to compare the expressive power of the three
parallel processing language implementations, to discover the degree to which these
typical problems could be solved in a straightforward and efficient manner, and to
understand the different viewpoints that must be taken when programming on each

system.

The remainder of this chapter covers parallel processing concepts that form the
basis for the comparisons made in the study, a review of background literature, and a

description of the three systems used in the study.

1.1. Parallel Processing Concepts
Flynn [Fly66] classifies parallel processing systems as:

Single instruction stream - single data stream (SISD)

Single instruction stream - multiple data stream (SIMD)
Multiple instruction stream - single data stream (MISD)
Multiple instruction stream - multiple data stream (MIMD)

Most serial computers available today are SISD. MISD has no real representatives,
but parallelism has been achieved by array and vector processors in the SIMD
category and multiprocessors in the MIMD category. The systems in this study are all
MIMD. The Sequent Balance is a shared-memory multiprocessor, and the Intel iPSC

and INMOS transputers are both distributed systems that rely on message passing.

® Balance is a registered trademark of Sequent Computer Systems.
@ iPSC is a trademark of Intel Scientific Computers.

Hwang and Briggs [HwB84] define parallel processing as follows:

Parallel processing is an efficient form of information processing which emphasizes the
exploitation of concurrent events in the computing process. Concurrency implies
parallelism, simultaneity, and pipelining.

They describe four levels of parallel processing. First is multiprogramming and time
sharing at the program or job level. Second is multiple tasks or procedures within the
same program. Third is parallelism among multiple instructions, including pipelined
execution. Fourth is parallelism within an instruction, including the operation of a
single instr‘uction on multiple data items. The three systems examined in this study
share the characteristic of the second level, although in certain cases they allow addi-

tional levels of parallelism.

For procedures within the same program to execute concurrently, a program
must be decomposed into separate tasks. Imperative languages are based on a process
model, so the separate tasks are processes. Dividing the program can be the job of

the programmer or of the system. This study is concerned with the programmer’s job.

The granularity of parallelism is a factor of the algorithm itself and the judg-
ment of the programmer. It may range from large procedures to single instructions
executing in parallel. The programmer must be aware of the effect of granularity on
efficiency of the program. The overhead associated with a process varies from system
to system. Creating more processes than necessary can introduce overheads that slow
execution, but creating too few processes, or the wrong size processes, can result in

underutilized processors.

If processes are to cooperate in problem solving, they must be able to communi-
cate with each other to share computational results. Parallel processing architectures
may be divided into two main categories: shared-memory multiprocessors and
distributed-memory systems. In the former, all processes share some global memory
and communicate through shared variables. In the latter, each processor’s memory is

separate, and processes communicate by passing messages over communication links.

Synchronization specifies how processes order events and coordinate updates to
shared data. One process must signal that it is in a certain state, and other process
must receive that signal. Several mechanisms support synchronization, including mes-

sage passing, shared variables, and explicit synchronization routines.

On shared-memory systems a basic synchronization mechanism is a semaphore, a
shared data structure that has two or more states. A lock, the simplest form of a
semaphore, may be used to protect variables in shared global memory. A lock is asso-
ciated with a variable. A process that locks a variable obtains exclusive access to it.
Barriers are a second low-level mechanism for synchronizing processes. Two or more
processes may share a variable defined as a barrier. They may meet at the barrier to
ensure that they are at the same point in execution. Another form of synchronization
provides protection for an entire section of shared code that one process must execute
indivisibly, called a critical region [Bri72|[Hoa72]. A shared-memory parallel program-
ming environment typically provides higher-level control mechanisms based on sema-

phores or barriers to accomplish these forms of synchronization.

Distributed systems achieve synchronization by sending messages. There are two
types of message transmission: blocking and nonblocking. In the first type, the sender
blocks its execution until the message has been received. In a nonblocking send, a pro-
cess sends a message but then continues executing code without waiting for the mes-
sage to be received. Nonblocking messages can be simulated using blocking messages
by buffering messages through a third process. Since the purpose of synchronization is
typically to insure that a process has certain information before continuing its execu-

tion, either type of message may be sufficient for synchronization.

Three error conditions can arise when executing a set of parallel processes:
deadlock, starvation and race. On a shared-memory system, a process is blocked while
it waits for a busy semaphore to become free; on a distributed system, a process may
be blocked when a message transfer cannot be completed. If a cycle of processes are
blocked, they are deadlocked. This condition can result from a set of processes each
holding a shared resource while attempting to access another; or, on a distributed sys-
tem, from a set of processes all trying to send messages when none is receiving or all
walting to receive while none is sending. Starvation occurs when a particular process
cannot access a shared resource while other processes continue to execute. The cause
of starvation is often a matter of priority among the processes. In a race condition,
multiple processes vie for the same resource in an unsynchronized manner, and the
results are unpredictable and incorrect. On a shared-memory system, races may
result from accessing shared resources outside of a critical region or in an improper
order. In a distributed-memory environment where message transfer is not tightly

synchronized, races occur when messages arrive out of order.

By incorporating a library of interface routines, conventional imperative
languages can be used to specify concurrent execution. For example, the utilities
fork () and join () are familiar to most UNIX® programmers [KeR78]. By invoking
these routines a program may dynamically create and terminate a child process that
cooperates in the execution of a section of code. Libraries to describe parallel execu-
tion must include concepts of multiple processes and processors, communication and
synchronization. In addition to extending existing commercial languages, new
lfmguages with built-in support for concurrency are appearing in the marketplace,
such as Occam|[Inm85a,MaS84|, Ada[UUU80], Modula-2{Wir83}, and C++[Str80, Str86).

The choices are complex.

While the programming task grows more complicated, the programmer’s inter-
face to the physical system may also require new skills. Different systems allow the
programmer varying degrees of control over the palellel processing elements. They
may also provide tools to help a programmer cope with the increasingly complex
environment, such as parallel compilers|CHL,PKL80|, debuggers[PaL,SSS86b], and

monitors [SSS85].

1.2. Literature

Commercial multiprocessors have existed for more than a two decades but have .
only become widely available in the past several years. To date, most papers address-
ing multiprocessor programming issues have focused on a particular system or have

compared theoretical aspects of various models. Case studies comparing program

@ UNIX is a trademark of AT&T.

development on different multiprocessors have only recently become possible.

A paper by McGraw and Axelrod of Lawrence Livermore National Laboratory
[McA] inspired this study. The authors describe their experiences porting programs
from a single-processor system to two different shared-memory multiprocessors. They
recount typical problems involving assignment of work to different processes, sharing

of data, and races and deadlocks.

Three general references on parallel processing were most instructive. Andrews
and Schneider [AnS83] provide a comprehensive introduction to basic concepts, includ-
ing process interaction and synchronization. Filman and Friedman [FiF84] focus on
language models for distributed systems and include a number of programming exam-
ples implemented in different languages. Wand and Wellings [WaW84] present a brief V
introduction to parallel processing primitives and their implementation in various

languages, plus a comprehensive bibliography.

A number of papers describe the development of a particular language or operat-
ing system for a given multiprocessor. These papers reveal issues important to the
designer. Jones, et al., [JJD78] describe general issues of parallel programming with
respect to the Cm* system. They emphasize that a multiprocessor architecture is not
necessarily programmable; that to be programmable, it must be possible to invent
algorithms that suit the architecture and to code them expediently. They list issues
that make programming multiprocessors more difficult than uniprocessors. These
include methods for decomposing problems, managing failure of individual processors,

I/O support software, object manipulation, and management of software development.

All of these issues are still important. A programmer’s response to these issues depends
on the architecture and operating system of a particular multiprocessor. On some
systems they are hidden from the programmer, and on others they require detailed

attention.

Another category of papers examines parallel processing primitives and process
structures in different languages and their effect on the expressive power of the
language. These papers include ones by Liskov, et al. [LHG86] and Kieburtz and Sil-

berschatz [KiS79].

A final category of papers compares theoretical aspects of different languages
and systems. Representative papers included ones by Stotts [Sto82], Shaw, et al.
[SANS81], and Welsh, et al. [WLS79]. These papers help form criteria for comparison of

the three systems discussed herein.

The main reason for the dearth of articles comparing practical experiences with
parallel processing systems is that until quite recently few systems were commercially

avallable.

1.3. Three Parallel Processing Systems

This study focuses on three different systems, one shared-memory multiprocessor
and two distributed-memory systems, all programmed using imperative languages.
These particular systems were chosen because they represented the spectrum of paral-
lel processing systems on the market. Programs were also implemented on a Cray X-
MP and an Alliant, and several other systems were explored, including the Floating

Point Systems T Series and Meiko’s Computing Surface, both based on INMOS

transputers. The final choice of systems was limited to three in order to have time to

adequately explore each system.
The three program development systems are:

e C with a parallel programming library [SSS86a| on the Sequent Balance
8000 [SSS85]. The Balance 8000 is a shared-memory multiprocessor consisting of up
to twelve processors. Programs run under DYNIX® (a multiprocessor UNIX system)
using C with multitasking and microtasking support to provide forking of processes,
synchronization primitives and management of interprocess communication through

shared memory.

e C with a parallel programming library on a 32-node Intel iPSC (Per-
sonal SuperComputer) [Int85]. The iPSC is a distributed system with 32 to 128 pro-
cessors connected in a hypercube topology. Code is developed under XENIXT (a
microprocessor UNIX system) on a host processor (the Cube Manager). Processes may
be mapped to a node in the hypercube network. Each node has its own processor and
memory, and communicates with its neighbors by queued message passing over
bidirectional communications channels and with the cube manager over a global
Ethernet[MeB76] channel. An interface library provides message passing primitives to
allow communication between processes. For background information on the iPSC
and the Cosmic Cube, its precursor at CalTech, see articles by Rattner[Rat85] and

Seitz[Sei85].

® DYNIX is a registered trademark of Sequent Computer Systems.
@ XENIX is a trademark of Microsoft.

10

e occam on transputers. The occam®™ language [MaS84] was designed to run
on INMOS transputers [Whi83] and is based on Hoare’s Communicating Sequential
Processes (CSP) [Hoa78]. The transputer is a microprocessor with local memory and
communication links that allow easy connection to other transputers. Occam and the
transputer were developed concurrently with the objective that code intended for a
network of transputers could be developed and verified on a single transputer. Pro-
grams are typically developed on a mainframe or personal-computer development sys-
tem, and then downloaded to transputer networks for execution. Two of the programs
for this study were implemented in occam I using the Occam Programming System
(OPS)[Inm85a] and have not actually run on transputers. One was implemented in a
beta release of occam II on a PC-based occam evaluation board. In this case, pro-
gram development actually occurs on the transputer using the Transputer Develop-

ment System (TDS)[Inm86].

Within the confines of procedural languages, the three systems chosen cover the
range of currently available systems. This study explores the effect of memory and
processor organization, language, and development toolsets on the implementation of
parallel programs. Chapter 2 provides a brief introduction to the languages and
parallel libraries. An explanation of the algorithms developed on each system follows
in Chapter 3. Using illustrative segments of code, Chapter 4 details how each system
handles division of work onto multiple processors, communication and synchronization
of the processes. Chapter 5 discusses the program development environment on each

system, including program visualization tools, debugging methods and real-time

@ Occam is a trademark of the INMOS Group of Companies.

11

support. Throughout the study, the focus is on ease of program development. By
implementing the same problem on each system, it was possible to compare the
development process and the overhead required to handle concurrency. Admittedly,
some bias results when implementing an algorithm on several systems. The process
becomes easier each time. To try to erase some of the bias, a different system was

used initially for each algorithm.

12

Chapter 2

The Languages

A rudimentary overview of the languages and parallel libraries of each system
will provide a basis for concepts discussed in the following chapters. Both the Intel
IPSC and Sequent Balance use the general purpose language C. Parallel interface
libraries augment the language to permit C processes to run concurrently and
cooperatively. On the other hand, the notion of parallelism is built into the occam

language.

2.1. C with Parallel Library on the iPSC

C processes on the iPSC use two different parallel libraries, one for the Cube
Manager and one for the nodes, but many of the functions are identical. Routines in
each of these libraries are divided into three categories: message sending and receiv-
ing, informational, and process management. All library routines are not discussed

here, only those required for the programs in the study.

The cube manager is connected to every node in the hypercube by a global Eth-
ernet link. The message routines for host processes on the cube manager are
sendmsg () and recvmsg (). These procedures allow a host process (1) to transmit
a message to another host process, to a single node process, or to all node processes at
once, and (2) to receive a message from a host process or an individual node. The

sendmsg () routine requires six parameters to indicate the communication channel,

13

type of message, message buffer, message length, and the destination node id and pro-
cess id. The recvmsg() routine requires seven parameters, all identical to those of
sendmsg () plus a parameter specifying the number of bytes actually received in the

message buffer.

Nodes communicate with each other over bidirectional links and with the host
over the global Ethernet. The node interfage library includes two types of routines for
sending and receiving messages, the non-blocking send () / recv () and the blocking
sendw () / recvw (). When a non-blocking function is called, it returns to the calling
process as soon as the request is recorded. The return status of a send () or recv ()
must always be checked before reusing a message buffer to prevent overwriting by
another message. Blocking sends and receives do not return until the kernel has actu-
ally finished the operation and the message buffer is ready for reuse. The programs in
this study used the blocking sendw () and recvw {) exclusively.

The sendw () routine uses six parameters, identical to those of sendmsg().
The recvw () routine has seven parameters, which are similar to those of the host’s
recvmsg () except that the type parameter qualifies the type of message received,

whereas on the host type is a pointer to the type received.

Both the cube manager and node libraries provide routines copen() and
cclose () to create and close a communication channel. A routine called syslog{()
permits host and node processes to log messages to a system log file on the cube
manager. Time stamps and originating node and process ids are added to each mes-

sage.

14

Informational routines on the host and nodes include cubedim() to determine
the dimension of the hypercube in which the program is running and mypid () to find
the process id of the calling process. In addition, the node library includes a routine

called mynode (), which returns the node id.

Process management routines on the cube manager allow the host process to
direct the node processes. They include load () to load a file onto a specified node
and start it, lwaitall () to wait until a node process has completed, and 1kill ()
to kill a node process. In all cases, the host may act on a single node or all nodes at

once by specifying a special parameter.

Figures 2.1 and 2.2 show the skeletons of typical host and node processes. The
parameters in all capital letters are constants defined in a header file common to both

the host and node processes.

15

main() {
hostpia = getpid(): /* get my process id */
hostcid = copen (hostpid): /* open channel */
load("test", ALL_NODES, PID): /* node process */

/* put something in the message buffer */

/* send to all nodes */
sendmsg (hostcid, MSGTYPE, send_buf, BUFLEN, ALL_NODES, PID):
num = 1 << cubedim(): /* how many nodes? */
for (1 = 0; i < num; i++) { /* receive from nodes */
recvmsg (hostcid, &type, recv_buf, BUFLEN, &cnt, &node, &pid):

/* process the information received */

¥
lwaitall (ALL_NODES, ALL_PROCS):; /* wait til nodes finish */
1kill (ALL_NODES, ALL_PROCS) : /* kill node processes */

}

Figure 2.1 Parallel Library Calls by an iPSC Cube Manager Process

main() {

cid = copen (PID): /* open channel */
/* receive from host */
recvw (cid, MSGTYPE, recv_buf, BUFLEN, &cnt, &hostname,
&hostpid):

/* process the message and do other work */
P

/* send to host */
sendw (cid, MSGTYPE, send_buf, BUFLEN, hostname, hostpid):
cclose (cid) ; /* close channel */

}

Figure 2.2 Parallel Library Calls by an iPSC Node Process

16

2.2. C with Parallel Library on the Sequent Balance

The Sequent Balance supports an extended UNIX process model, which uses a
shared-data segment in addition to private address spaces. The DYNIX C compiler
supports the variable declaration modifiers shared and private to specify the
proper location of the data in memory. The parallel library includes functions shmal-

loc () and shfree () to dynamically manage shared data.

The parallel library on the Balance consists of routines to support microtasking
and multitasking models of parallel programming. Microtasking is a shared-memory
parallel programming model that has a master thread of execution and zero or more
slave threads. The master thread runs the sequential parts of the application and at
appropriate points in the algorithm causes all slaves to work with it in executing some
procedures in parallel. The master and slave processes together are called workers.
Each worker is identified by a variable id number m_myid. The m_myid of the mas-
ter thread is O. Functions are provided to create the slaves, dispatch them to work on
any procedure with arbitrary arguments, and suspend, resume or kill them (in a UNIX
sense). Synchronization primitives in the multitasking model are used to manage

shared memory, lock individual data structures and provide process barriers.

Low-level multitasking synchronization primitives include the data types
slock_t to associate a lock with a variable and sbarrier_t declare a barrier for
two or more processes. The routines s_init_lock(), s_lock () and s_unlock()
initialize, lock and unlock an slock_t variable. The routines s_init_barrier ()

and s_wait_barrier () initialize a barrier of type sbarrier_t for a specified

17

number of processes and cause the calling process to wait at the barrier. The call

cpus_online () returns the number of processors available for use.

All other parallel library routines are part of the microtasking model. These
routines are more abstract and do not require explicit declaration or initialization.
Often they do not require parameters. Microtasking supports ways to explicitly paral-
lelize code, including routines to manage processes, access shared variables and syn-
chronize concurrent activity. The routine m_set_procs (nprocs) initializes a
specified number of processes that will cooperate in executing a task, and
m_fork (func[,arg ...]) creates nprocs - 1 new slave processes if processes
have not been created already. Otherwise, it reuses existing processes. The parame-
ter to m_fork is the name of the function to be executed. The master process joins
the slave processes to cooperatively execute the function. When the function has been
completed, the master process calls m_kill_procs{) to kill the forked processes.

Code enclosed by microtask calls m_lock () and m_unlock () is executed by

one thread at a time. These microtasks are interfaces to a single slock_t lock. The

calls are one way of specifying a critical section of code.

Two microtasks cause processes to synchronize, but in slightly different ways.
On an m_sync () and m_single () call processes wait at a barrier, in the first case
until all processes arrive and in the second case until the master thread executes a
call to a corresponding m_multi (). The m_single () /m_multi () pair are used to

implement single-threading, where only the master thread executes a section of code.

18

Figure 2.3 demonstrates some of the constructs that might be used in a typical

application on the Balance.

19

/* global declarations */

shared int x:

shared struct y_struct {
int state:

slock_t 1p: /* primitive lock */
¥y

/* master thread */

main () {
s_init_lock (&y.lp): /* initialize primitive lock */
m_set_procs (nprocs) ; /* initialize processes */
m_fork (work) ; /* create processes and start */
m_kill_procs(): /* kill slave processes */
3

/* process to be executed concurrently */

work () {
m_lock(): /* begin a critical section */
X¥+: /* increment shared variable */
printf ("Hello, world"):
m_unlock () » /* end critical section */
m_single(): /* slaves wait at barrier */
printf("x = 44", x): /* only master thread prints */
m_multi (); /* slaves commence execution */
s_lock (&y.1p): /* lock y's primitive lock */
y.state = O; /* change shared variable */
s_unlock (&y.1lp):
}

Figure 2.3 Sequent Balance Program Using Multitasking and Microtasking

20

2.3. Occam on INMOS Transputers

The occam language employs three primitives, := to support assignment of vari-
ables, ! to output to a channel, and ? to input from a channel. A process consists of
a sequence of these primitive actions. Communication in occam is synchronous and
unbuffered. When two processes are ready to communicate over the same channel, a
message is output from one process and input to the other. Assignment could be simu-

lated by the communication primitives, but a primitive operator is more convenient.

Primitive processes are combined into more complex processes using SEQ to exe-
cute statements sequentially, PAR to execute them in parallel, and ALT to accept
input from a number of alternative constructs. Wherever two or more statements
appear in an occam program, one of these constructs must precede them to specify

how they are to be executed.

For two processes to communicate, they need to execute in parallel and share a
common channel, declared using a variable of type CHAN. In the following example,
one process outputs (!) the value 2, and the second process inputs (?) that value and
assigns it to x. A variable is local to the construct that immediately follows it. In
this case, the scope of the variables x and c is the PAR. (Examples in this section

were drawn from a tutorial introduction to occam [Pou86].)

INT x:
CHAN OF INT c:
PAR

e | 2
€ 7 .x

21

Declaration of two channels provides two-way communication between processes.
The SEQ constructs in the following example ensure that two processes exchange

values sequentia’lly, first over channel c1 and then over channel c2.

CHAN OF INT cl, c2:

PAR
INT x:
SEQ
el &, 2
E2' 2. 2%
INT y:
SEQ
el Z.v
e2 1:8

The following example demonstrates the ALT construct. The ALT watches a
number of channels for the first input and then executes the process associated with
that input. For example, if input arrives first on channel c2, the second process is
executed. The process does not continue waiting for input on channels c1 and ¢3. If

this were desired, a PAR construct would suffice.

CHAN OF INT cl, c2, c3:

INT x:
ALT
Gl 7 =
first process
€2\ P gt
second process
c3 ? x

... third process

The purpose of ALT is to allow a process to be influenced by its environment and to

preserve the nondeterminism of a parallel system. If three processes are proceeding

22

toward output on channels c1, c2, and ¢3, ALT allows this process to handle the first

available input. This policy avoids deadlock and makes the system more efficient.

An IF construct is followed by a number of conditions. The processes under the

first true condition are executed.

cl 4 ¥y

cZz2 !ty

A WHILE causes the process under it to be executed repeatedly as long as the
condition is true. In this example, the process reads input from channel input and

outputs to output until x is no longer greater than 0.

INT x:
SEQ
x =0
WHILE x >= O
SEQ
input ? x
output ! x

The three basic constructs SEQ, PAR, and ALT can be replicated to create multi-
ple copies of the process. A replicated SEQ is similar to a for loop in C and causes a
sequential process to be executed multiple times. When an ALT is replicated, n
processes concurrently watch for input on the channels specified in the ALT. This con-
struct is used for arrays of channels. A replicated PAR builds an array of parallel

processes as shown in the following example. Assuming that a separate process,

23

possibly the host, begins by sending data on channel c[0], each process accepts input

on channel c[i] and outputs on channel c[i + 1] forever.

CHAN OF BYTE cln + 17:
PAR i = O EOR n
WHILE TRUE
BYTE x:
SEQ
clid] 23
e+ q], U

A name can be given to a process using the label PROC. The body of the pro-
cedure is then executed whenever its name is is referenced in a program. Procedures
may contain formal parameters, passed by reference and prefixed by keywords indicat-
ing their data types. In fact, since transputers have local memories, occam has no con-
cept of global variables. All variables are declared locally and passed as parameters.

In this example, 4 occurrences of the procedure buf fer are executed concurrently.

PROC buffer (CHAN of INT in, out)
WHILE TRUE
INT x:
SEQ
in ? x
out ! x
VAL num IS 4:
PAR i = O FOR num
buffer (cl1[i], <c2[i])

Once the logical behavior of a program is established, the program is configured
onto a network of transputers by associating logical channel names with physical links

and PAR processes with processors.

24

The samples of occam programs in this study are written in two versions of the
language, occam I and occam II. Occam I is the earlier version and contains no data
types. In occam II, both data and channel variables are typed, as illustrated in the

examples in this section.

Chapter 3

The Programs

A wide range of problem areas are appropriate for parallel processing; including
numerical analysis, image processing, graphics, programming artificial intelligence and
scientific simulation. Parallel algorithms used to solve these problems may be homo-
geneous, where all processes are identical, or heterogeneous, where algorithms are par-
titioned into different sub-functions. The problems chosen for this study come from

several disciplines and their solutions are primarily homogeneous algorithms.

To compare the three parallel processing environments, a number of problems
were solved on each system. Three were chosen as representative: dining philoso-
phers, matrix multiply and the traveling salesman problem. Four additional programs
were written on one or more of these systems, including the Sieve of Eratosthenes, cal-
culation of p? using integration, a linear system solution and two-dimensional convolu-
tion. They provided some further information but to keep comparisons clear, only

three programs are discussed in depth.

The solution to the dining philosophers problem is a relatively small model of
operating system contention problems. The matrix multiply problem is one example
of a numerical application than can be parallelized in several different ways. The trav-
eling salesman problem was selected for being large enough to be more representative

of the complexity of problems that may be required for industry.

28

The following sections describe each of the problems and their abstract solutions.

The next chapter discusses implementations of the solutions on different systems.

3.1. Dining Philosophers

Dining philosophers is a classic resource allocation problem where philosophers
alternately think and eat, but in order to eat must acquire two shared forks. A suc-
cessful solution provides an environment where every philosopher can think and eat in

a continuous cycle [Dij72][Car82].

Cargill has proposed a distributed solution to the Dining Philosophers problem
that is suitable to various concurrent programming styles [Car82]. In the introduction

to his paper, he describes the problem:

Dijkstra’s "dining philosophers” problem is one of the standard program-
ming exercises in resource allocation. An arbitrary number of “philoso-
phers" are seated at a circular table. In front of each is a plate of "a very
difficult kind of spaghetti”. Between each pair of philosophers is a fork.
The philosophers alternately "think" and “eat" in an unpredictable
manner. When thinking a philosopher requires no forks. In order to eat a
philosopher must acquire the two adjacent forks. The problem is to pro-
vide a deadlock-free and starvation-free fork allocation discipline.

Cargill’s solution is to label the forks consecutively around the table shown in
Figure 3.1, and when a philosopher wants to eat he must pick up his odd-numbered
fork before his even-numbered one. Each fork is under the control of an independent
"fork proprietor”. Each philosopher requests of a fork proprietor that a fork be allo-

cated or released. If a fork is in use the philosopher waits until it is free. There is no

other control in the algorithm.

27

Figure 3.1 Dining Philosophers’ Table

Cargill’s solution is given in Ada. It includes three separate tasks: a maitre d’, a
fork proprietor and a philosopher. There is one maitre d’ who assigns places at the
tables to the philosophers, and N fork proprietors and N philosophers modeled by
processes running in parallel. The programs in this study are modeled on his imple-

mentation.

The algorithm to describe the cycle of one philosopher is:

THINK
pick up odd fork
pick up even fork

EAT
put down both forks

The behavior of a fork proprietor is as follows:

allocate fork
release fork

Of course, a fork proprietor cannot allocate a fork if it is already in use. The actual

28

program representing the fork proprietor varies according to how a particular system
handles synchronization. Throughout the simulation, each philosopher reports his pro-

gress by printing informational messages.

3.2. Matrix Multiply

In the matrix multiply program, matrices A and B are multiplied to form the
product matrix C. Below is the body of a sequential version of the program written in

C. Matrices were not necessarily square and could differ in size from each other.

for (1 = 0; 1 < m; 1++)
for (j = 0: J < p: j++) {
sum = O;
for (k = 0; k < n; kt++)
sum += A[i]} (k] * B[k][3]:
C[i][j] = sum;
¥

Gustafson and Hawkinson [GuH86] suggest that "matrix multiplication should
execute at very close to peak theoretical speed on most scientific computers.” This
situation may be true on an array processor, but dividing the problem among
general-purpose processors vastly increases the communication costs required to per-
form each multiplication and addition on a different functional unit. It would involve

a pipelined algorithm where each process performed partial products and partial sums.

Matrix multiplication can be parallelized in many other ways with larger grain
solutions. Each process can calculate one element of the product matrix using a row
from the A matrix and a column from B. A larger grain solution is for each process to

calculate an entire row or column of the product matrix. For this approach, each

29

process must know a row of the A matrix and the entire B matrix or vice versa.
Finally, a process may calculate a submatrix of the product matrix. This solution
involves little communication of data once the parameters for the computation have

been established.

A fine-grain pipelined solution in occam, modeled after Hoare’s iterative array
solution in CSP, proved successful. Processes are arranged in a grid with communica-
tion links to each of four neighbors as shown in Figure 3.2. Each of the central pro-
cessing nodes knows one element of the B matrix. Vectors of the A matrix enter the
grid from the west. Central nodes find partial products and send their sums south.
The sums emerging from the southern end of the grid are rows of the product matrix.
Each central node sequentially receives an element of the matrix, performs a multipli-
cation and addition and sends the element on. Details of the implementation of this

algorithm are covered later.

Figure 3.2 Matrix Multiply Grid for occam Solution

30

Such a solution was tried both on the Balance and on the iPSC, but resulted in a
large number of extra calculations to partition the data. Because of the high over-
head of pipelining at the instruction level, a larger grain solution was chosen. The
solution chosen for the Balance was for each process to calculate a row of the product
matrix. This algorithm was simple to implement on a shared-memory system. Its
details are discussed later. For the iPSC, the largest grain solution was chosen to

keep communication to a minimum.

3.3. Traveling Salesman Problem using Simulated Annealing

The traveling salesman problem involves finding the shortest route connecting a
set of cities, visiting each city only once. The difficulty with the problem is that as
the number of cities grows the number of possible paths connecting them grows

exponentially (faster than any finite power of the number of cities).

The solution chosen uses simulated annealing to sample a subset of the possible
routes to find an approximate solution [FKOS85]. Starting with some initial
configuration of paths connecting cities, at each iteration we go through the route and
swap pairs of cities so that the total path length is shortened. If a swap makes the
route shorter always accept it; if not, reject it. When no more swaps can be made,
the algorithm stops. The problem with this method is that the path length can easily

get trapped in a local minimum.

Simulated annealing uses a technique borrowed from statistical mechanics to
help overcome local minima. Changes that make the route shorter are still accepted,

but now a change that lengthens the route may also be accepted with a conditional

31

probability. The probability depends on the state of the entire system and a factor
that the user controls. By occasionally accepting swaps that do not necessarily

improve the length of the route, the system can escape from local minima.

By analogy with the physical process of annealing, the factor that the user con-
trols is called temperature. As the temperature is lowered the system freezes, allowing
fewer changes. Parameters can be controlled to avoid getting trapped in frozen

states.

Researchers at the California Institute of Technology (CalTech) published a
parallel version of this algorithm for a hypercubic MIMD computer [FKO85]. To com-
municate information, the nodes are mapped in a ring configuration. Each node
knows the identity of a node on either side of itself. A node receives a section of the
path containing a group of cities and swaps cities within its path and with its neigh-
bors a number of times at each drop in the temperature of the system. The end result

is usually a "good" total path length. A small example is shown in Figure 3.3

/d d

Figure 3.3 Shortening of a Traveling Salesman’s Path

Chapter 4

Comparison of Three Parallel Programming Systems

Specification of concurrency by a programmer always entails some overhead. It
may be simply a call to execute a routine on multiple processors, or it can mean a
sizeable piece of code to determine the partitioning of the problem, including code,
data and communication paths. This chapter considers these differences by studying
examples of code from the three sample programs. The focus is primarily on the din-
ing philosophers program, but examples from the other two programs are included
when they illustrate important points. Comments on the code fall under three major
components of parallel programming: how execution is divided among processing ele-

ments and how it is controlled, how data are shared, and how events are synchronized.

4.1. Division of Work: Designation of Parallel and Sequential Computation

The ideal parallel programming language would allow a programmer to specify
an algorithm without regard to whether it will be run on a single or multiple proces-
sors and let the compiler restructure it as required. The Sequent Balance is the only
one of the three environments studied that currently has such a facility, but it is lim-
ited. The Balance FORTRAN compiler provides a C$DOACROSS directive to parti-
tion DO loops. When the compiler encounters this directive, it restructures the code
within the DO loop to execute concurrently on a specified number of processors.

Unfortunately, technique is not general enough to handle all the potential concurrency

33

in algorithms.

In each of the systems examined here, a program must be divided in some way
into parts that éxecute sequentially and parts that execute concurrently. The grain of
the parallelism differs among the three systems. On the iPSC, large-grain parallelism
must be emphasized for efficient computation. On the Sequent Balance and especially
the transputer, various levels of parallelism can be achieved efficiently using parallel

and sequential constructs.

4.1.1. iPSC

The programmer has to develop at least two separate programs for a homogene-
ous application on the iPSC: the host program on the cube manager and the node pro-
gram for concurrent processes on the hypercube. At a high level, division of work on
the iPSC is intuitive. The host program is responsible for communicating with the
outside world and with the nodes. Typically, the host gathers data and disseminates it
throughout the hypercube, then later collects data from the nodes and displays

results. The nodes are used for the computation-intensive sections of the algorithm.

In the dining philosophers program, the maitre d’ process runs on the host, as
shown in Figure 4.1. Each node contains two processes, as in the original Ada imple-
mentation by Cargill [Car82|, one representing a philosopher and the other a fork
proprietor. In this particular implementation the number of philosophers is limited to
the number of nodes in the hypercube because each philosopher and each fork is
identified in communications only by its node number. A greater degree of parallelism

could be simulated by placing more than one philosopher and fork process on each

34

node. Unique process identification numbers would have to supplement node numbers
to insure proper routing of messages. Multiple processes on the same node are time-
sliced by the node operating system or can be suspended under programmer control

(via a command called flick()).

Aside from managing the node processes, the maitre d’ process assigns places at
the table to the philosophers. The simulation occurs in the node processes of the
hypercube itself. After receiving a place assignment, the philosopher acquires two

forks, "eats" and then replaces the forks and "thinks" for a random amount of time,

Cube Manager
maitre d'

load ("phil", ALL_NODES, PPID);
load (*fork”, ALL_NODES, FPID); R AE—

lwaitall (ALL_NODES, ALL_PROCS);
Ikill (ALL_NODES, ALL_PROCS);

phil fork
nodes

Figure 4.1 Dining Philosophers on iPSC Host

35

continuing these activities in a loop.

The simulation is monitored by syslog() messages to the host. Note that log-
ging to a central file forces sequentiality into an otherwise parallel program. The

overhead of sending messages to the host also slows processing.

Each fork proprietor manages control of one fork and has two functions: to make
the fork busy and to make it free. Two philosophers share each fork. The fork
proprietor waits to receive a message from one of the philosophers. If the fork is
free, the proprietor allocates it to that philosopher by sending a message. If a
philosopher’s neighbor is using the fork, the proprietor remembers the node and pro-
cess id of the requesting philosopher and sets a wait_ptr so that when the fork is

free, a message can be sent to the waiting philosopher and the fork can be allocated.

If the philosopher is releasing the fork, it is set to free. The wait_ptr is tested
to see if the other philosopher is queued for this fork. If so, wait_ptr is nullified, the
fork made busy and a message sent back to the waiting philosopher to notify him

that the fork has been granted.

The division of work in the dining philosophers program is straightforward since
it has clear sequential and parallel components. In other applications, there are times
when concurrency in the nodes must be interrupted so that a single stream of activity
can take place. To achieve a single thread of execution nodes must synchronize and
return control to the host process or a specified node process. Synchronization on the

1PSC is described in Section 4.4.

38

4.1.2. Occam on Transputers

In occam, a programmer has control over parallelism at many levels. At the top
level, a program may be divided into large-grain processes or procedures. At a finer
level, any number of individual statements may be grouped to executed concurrently.
An array of identical processes may be placed on a network of transputers to describe
a homogeneous application, or a different process may be placed on each transputer

for a heterogeneous application.

The dining philosophers program consists of a maitre d’ process, and philosopher
and fork processes that are replicated to run concurrently. Figure 4.2 shows how the
maitre d’ process on the host invokes the philosopher and fork procedures. On an
actual transputer network, code to configure the processes on processors would be

added to the code shown.

As a result of the SEQ construct in Figure 4.2, the maitre d’ calculates the
indices of each philosopher’s forks before calling the philosopher and fork procedures.
The parameters to phil () include i, the philosopher’s identity and the particular
channels that the process will need to communicate with the fork proprietors. Arrays
of communications channels are declared as CHAN. The individual phil () process
only needs to know four of those channels, two for his odd-numbered fork and two for
his even-numbered fork. When this program is physically mapped to a transputer net-
work, the channels must be statically mapped onto transputer links. The PAR immedi-
ately preceding the calls to phil () and fork() means that these two processes will

execute in parallel. The replicated PAR at the top of the maitre d’ process means

maitre o'

PAR i = [0 FOR num]
SEQ
.. calculate channel indices
PAR

host
transputer
CHAN pickup [num], putdown [num], debug [num]: 4
phif (i, pickup[odd], pickup[even],
putdown [odd], putdown [even |,
debug{ij)
fork (i, pickup[i], putdown[i})
|
1
1
4

hil
node E
transputers L |

fork

Figure 4.2 Dining Philosophers in occam I

that they will execute concurrently on num nodes.

37

In the code below, the ALT accepts the first input available from a process’

debug channel. In the maitre d’ process, the ALT is replicated to accept input from

any of the philosopher processes. The purpose of the routine is to receive and print

messages to the screen. In this occam I version, the channel receives only one byte of

the message at a time, so it must loop to receive the entire message. After the mes-

sage has been received and printed, the routine returns to the top of the WHILE loop

to receive input on another debug channel.

38

WHILE TRUE
ALT i = [0 FOR num)
debug[i] ? msg.char
. code to output message tc screen

This is another example where two high-level routines must be written at once.
It is impossible to send a message from a routine before the screen output routine has
been written to receive the message. Therefore, before the philosopher process could
send messages, the screen output routine had to be included. It runs on the host in

parallel with the maitre d’.

4.1.3. Sequent Balance

Under the Balance’s microtasking model, the routine m_fork () can fork only
one process per processor. The call locks a process onto a processor during execution.
For this reason, a program must check that the number of requested processes does
not exceed the number of available processors, leaving one processor for the operating
system. Figure 4.3 shows part of the maitre d’ code for the dining philosophers pro-
gram. The master thread compares the number of philosophers to the number of
available processors. If an application requires more processes than processors, the
DYNIX fork() routine may be used to allow the operating system to allocate

processes to processors.

The master thread initializes n slave processes and then forks them to run the
function phil. The rest of the dining philsophers program consists solely of philoso-

pher processes that run concurrently until the simulation is through.

39

maitre d'

if (n >= cpus_online())

n = cpus_online{) - 1
m_set_procs (n);
m_fork { phil);

ghit 0 phil 1 phil n-1
m_kili_procs ();

shared forks [0 .. n-1]

Figure 4.3 Dining Philosophers on Sequent Balance

A more interesting example of division of work on the Balance comes from a sec-
tion of the traveling salesman program shown in Figure 4.4. The node processes in this
program must repeatedly give control back to the host, while the host gathers more
information from the user or performs calculations. Rather than dividing a program
into two separate processes, host and node, it is possible to integrate single and multi-
ple streams into one process using microtasks m_single() and m_multi (). A
problem with this method is that the slave processes use processor time while they
spin at the m_single () barrier. An alternative to this method would be to return
to the host process, suspend the slave processes, execute the sequential code and then
fork new processes. Using this technique, the slave processes do not waste processor

time by spinning, and there is no overhead when the next m_fork () is issued.

On the Balance, all processors are capable of performing 1/O. Since printing
causes a side effect, print statements should be enclosed in a critical region using locks

so that a block of statements from one process will print coherently. When the

40

m_single(): /* master only */

for (currtemp = itemp: currtemp > ftemp: currtemp —= drop) {
pathlen = O;
m_multi(): /* slaves calculate path lengths */

mypathlen = 0.0;
for (j = low, city = bottom:; j <= top; j++,
city = city->next) {
mypathlen += distance(city, city->next):
printf ("myid (%d) path length = %f\n",
m_myid, mypathlen):

I

m_lock () :

pathlen += mypathlen:

m_unlock () :

m_single(): /* master prints statistics */
printf("current temp = %6.3f ", currtemp):
printf ("current path length = ¥%6.3f\n", pathlen):
}
m_multi (): /* slaves participate */

Figure 4.4 Division of Work in Traveling Salesman Problem on Balance

program requires that results from all of the nodes be printed by one process, an
m_single () may precede the print statements, as shown near the end of the for

loop in Figure 4.4,

4.1.4. Comparison of Division of Work

The way work is divided determines the overall appearance of a program. It
influences the amount of communication and synchronization required and thus is the

basis for determining program efficiency. Occam seems to present the clearest

41

representation of parallelism at many levels. Occam is based closely on CSP, and
CSP is used to model parallel processes. Keywords that indicate parallel and sequen-
tial flow make occam programs easy to read. Identical syntax is used to achieve both

large- and fine-grain parallelism.

At a high level, division of work on the iPSC also seems clear. A process on the
Cube Manager controls node processes that run concurrently. Only the host can

invoke parallel processes, so fine-grain parallelism is precluded by the significant over-

head.

The two distributed systems share one problem. Control flow can be difficult to
trace since it changes with the passing of messages. To read the text of a program,
message sends and receives have to be matched. This is slightly easier in occam

because of named channels, as will be discussed in the next section.

Explicit code for forking processes and specifying single and multiple streams
make parallelism and control flow evident on the Sequent Balance. The problem is
that these microtasks are not the only methods for specifying parallelism on the Bal-
ance. Processes may be forked using a UNIX fork or a microtask fork. Once multiple
processes are running, a number of routines are available to enforce sequential execu-
tion; some of them are not as apparent as others. Locks and synchronization mechan-
isms have side effects that are described in the following two sections. There is no
easy way of achieving the fine-grain parallelism available with occam. At this time,
microtask forks cannot be nested. Even if they could, the overhead for forking a

single-statement process would be high.

42

4.2. Sharing of Data

Parallel tasks would be much easier to program if there were no sharing of data
between sub-tasks or processes; however, in practical applications data is required.

This section examines how processing elements access data.

4.2.1. iPSC

On the iPSC, the programmer is responsible for managing message consistency.
The primary requirement of message passing is that the sender must have the address

of the receiver, but message formats require more than just an address.

In the dining philosophers program, after determining the number of nodes in the
hypercube, the maitre d’ assigns a 1left and right fork to each philosopher, sending
the odd-numbered one first and then the even-numbered one, thus establishing his
place at the table. The node processes are waiting for this information in order to
begin the simulation. Figure 4.5 shows how the host process sends a message to each
of the nodes. The parameters that indicate the message destination are node i and

process id PPID for the philosopher process on that node.

The message buffer send_buf must be a character string, so it is necessary to
transform the integer fork identities into characters. If there are never more than 128
nodes, there will not be more than 128 forks, so one character is sufficient to store the
fork identity, (but this means that our program is limited to running on 256 or fewer

processors). The size of the message buffer in this case is 2 characters.

The philosopher process will communicate with the host, so it must remember

the host name and process id that came with the message containing its place

43

Cube Manager

maitre d'

num = 1 << cubedim ();

for (i = 0; i < num; i++){
send buf[0] ={1%21=0) ? (char)i: {char) ({i + 1) % num); e
send_buf[1] = 21_% 2==0)? (char)i: (char) ((i + 1) ‘V: num);
sendmsg (hostcid, MSGTYPE, send_buf, BUFLEN, i, PPID);

node i phil i

recvw (cid, MSGTYPE, rec_buf, BUFLEN, -
&cnt, &hostname, &hostpid);

odd = (int) rec_buf [0];

even = (int} rec_buf [1];

Figure 4.5 Host-Node Message Passing in Dining Philosophers on iPSC

assignment. The node numbers of the neighboring forks are unpacked from that

message’s buffer.

For the remainder of the simulation the philosopher and fork processes communi-
cate in a cycle. The philosopher process requests a left and right fork by sending an
allocate message to the fork proprietor. The requests will always be filled, but the
philosopher may have to wait awhile in one or both fork processes if the forks are in
use. A confirming message is used to prevent the philosopher from continuing before he
has received both forks. When the philosoper is done eating, he releases his forks with
a release message to the appropriate fork proprietors. Figure 4.6 shows two philo-

sopher processes trying to pick up the same fork.

44

node i
phil i fork i
sendw (¢id, MSGTYPE,
send_buf, BUFLEN,
odd_fork, FPID);
N
-
node j \
~
phil j fork j
sendw (cid, MSGTYPE, = recvw (cid, MSGTYPE,
send_buf, BUFLEN, rec_buf, BUFLEN,
even_fork, FPID); &cnt, &snode, &spid);

Figure 4.6 Node-Node Message Passing in Dining Philosophers on iPSC

The message-passing sections of the philosopher and fork proprietor processes are

shown in Figure 4.7.

Aside from making sure that all message parameters are properly included, cer-
tain parameters can be helpful or may present complications, depending on the experi-

ence of the user.

The original CalTech code for the traveling salesman problem also required mes-
sage length specification. Their solution was portable to the iPSC. Each message con-
sisted of one packet of information with two floating point numbers. Messages were
either commands to the nodes or data. When the host sent a command to the nodes,
the first item in the packet was a predefined value indicating the command. The

second item in the packet could be used for a numeric value if needed. For instance,

From phil on nodes

send_buf[0] = (char) Allocate:

sendw (cid, MSGTYPE, send_buf, 1, odd, FPID):

recvw(cid, MSGTYPE, rec_buf, BUFLEN, &cnt, &snode, &spid):
sendw (cid, MSGTYPE, send_buf, 1, even, FPID);:

recvw(cid, MSGTYPE, rec_buf, BUFLEN, &cnt, &snode, &spid):;

send_buf[0] = (char) Release:
‘sendw (cid, MSGTYPE, send_buf, 1, odd, FPID):
sendw (cid, MSGTYPE, send_buf, 1, odd, FPID):

From fork on nodes

recvw(cid, MSGTYPE, rec_buf, BUFLEN, &cnt, &snode, &spid):
action = (actionkind) rec_buf[0]:

switch (action) {
case Allocate:
if (fork == Not_Busy) {
fork = Busy:
sendw (cid, MSGTYPE, send_buf, strlen(send_buf),
snode, spid): }

else {
walting.snode = snode:
waiting.spid = spid:
wait_ptr = Occupied: }
break;

case Release:

fork = Not_Busy:

if (wait_ptr == Occupied) {
fork = Busy:
wait_ptr = Empty:
sendw (cid, MSGIYPE, send_buf, strlen (send_buf),

waiting.snode, waiting.spid): }
break:

default: /* error */
break: }

Figure 4.7 Communication between fork and phil Processes on iPSC

45

46

the command to set the temperature could also send the temperature, or the com-
mand to ierate could specify the number of times to iterate. All other messages con-
sisted of a point with floating-point x and y coordinates. The constant message length
meant one less parameter to calculate. The only data coercion necessary was charac-

ter string to float, and vice versa, and that was not difficult.

In Figure 4.8 the host process instructs the nodes that it intends to write data
points from an input file to the nodes. In addition to the write command, it also
sends the number of points in the path. The message is only sent to node 0 because it
will be disseminated throughout the nodes using a spanning tree. (The routine
grecvw () [Mol-], which is a global receive, spares the expense of the host sequen-
tially sending messages to each node. A recent version of the iPSC System Software
(R3.0) allows the host to efficiently broadcast a message to the nodes by altering only
one parameter in sendmsg().) The host then sends the x, y coordinates, one per
packet, to node 0. Each node keeps a section of the path and sends on the points that

are not on its path.

By the nature of the algorithm, the traveling salesman messages had to be short
and frequent. A more efficient use of the iPSC is to use fewer, but larger, messages
since each message carries an overhead of at least one kilobyte. When the program-
mer tries to pack as much data as possible into each message, the nature of the mes-
sage buffer can complicate coding. In one program it was helpful to write a special

macro to handle data packing and unpacking.

47

From wrtcon () on host

packet [0] WRITE:;
packet [1] (float) numpts:
sendmsg (hostcid, GTYPE, packet, PACKET _LEN, NODE_O, PID):

for(i = 0; i < numpts; ++i){
fscanf (fp.,"%f %f", &packet[0], &packet[1l]):
sendmsg (hostcid, DTYPE, packet, PACKET_LEN, NODE_O, PID):
)

From writecom() on nodes

grecvw (cid, GTYPE, (char *) packet, PACKET_LEN, cnt, dim);

for(i = 0: 1 < put; ++i){
recvw (cid, DTYPE, (char *) packet, PACKET_LEN, &cnt, é&snode,

&spid) :
sendw (cid, DTYPE, (char *) packet, PACKET_LEN, dest, PID):
}
for(i = keep + 1; 1 > 1; --i)
recvw (cid, DTYPE, (char *) ppoint[i], PACKET_LEN, é&cnt, &snode,
&spid) ;

Figure 4.8 Message Parameters in Traveling Salesman Problem on iPSC

48

temp = p;
stuff (temp. int., part->x_start):
stuff (temp, int, part->x_dim):

for (i = part->x_start: i < part->x_start + part->x_dim: i++)
for (j = 0: j < P; j++) {
c[i - part->x_start][j] = O:
for (k = 0; k < N: k++)
c[i - part->x_start] [j] += a[i][k] * b[k][]]:
stuff (temp, double, c[i - part->x_start] [j]):
}

sendw (cid, UTYPE, p. sizeof (PART) + subsize, hostname, hostpid):;

Figure 4.9 Data Partitioning in Matrix Multiply on iPSC

The code in Figure 4.9 is from the node procedure of the matrix multiply pro-
gram. It was by far the most complicated example of packing information into mes-
sage strings. Rather than send a single element or row of the product matrix back to
the host, each node computed a submatrix consisting of several rows of the product
matrix and sent it all back to the host in a single message. For the data to be mean-
ingful, the packet also had to include parameters to specify the starting row and
number of rows of the submatrix. A data structure described the parameters and the
data. In this section of code, the parameters and data are coerced into the character
message buffer as soon as they are known using a macro called stuff. Finally, it was
necessary to calculate the size of the message buffer in bytes. A true application
would have also needed to handle a message that exceeded 64 kilobytes, the maximum

size for the program model.

49

The message parameter type specifies the message type and is user-definable.
Its purpose is to identify the message or its content. Cube manager processes and
node processes use type differently. On the nodes, a message is received only if the
type specified in the send matches that in the receive. On the cube manager the
receipt of a message does not depend on its type. It is up to the programmer to check

the type and determine how to handle the message.

From wrtcon () on host

for (L = 0; i < numpts; i++) {
fscanf (fp, "%f %f". &packet[0]. &packet[l]):
sendmsg (hostcid, DTYPE, packet, PKT_LEN, NODE_O, PID);:
}

From iterate () on node

/* Send point to prev node; receive point from next node */

sendw (cid, TYPEl, {(char *)ppoint[2], PKT_LEN, prev, PID):

recvw(cid, TYPEl, (char *)ppointf[keep + 2]. PKT_LEN, é&cnt,
&snode, &spid):

/* Send point to next node; receive point from prev node */

sendw (cid, TYPE2, (char *)ppoint[keep + 1], PKT_LEN, next, PID):

recvw (cid, TYPE2, (char *)ppoint[1l], PKT_LEN, &cnt,
&snode, &spid):

Figure 4.10 Type Parameters in Traveling Salesman Problem on iPSC

50

One problem in the traveling salesman program involved the type parameter in
the sendw () command; the code is shown in Figure 4.10. At each drop in tempera-
ture the entire system synchronizes and sends the total path length to the host. For
each iteration a node first tries to shorten its own path. Then, in three steps, the
node first sends a city to its previous node and decides if it should swaps cities in its
own path, sends a city to its successor node and swaps, and again sends a city to its
successor node and swaps. The mistake is to think that, since these send/receive steps
happen sequentially in each node, they are synchronized with each other. They are
not. It is easy to get a race condition where a node is accepting a message from its
previous node before it receives a message from its successor node because the previ-
ous node happens to have sent a message first. The result is that cities mysteriously
drop out of the path when they are swapped between nodes. There are two solutions
to the problem. One is to have all nodes synchronize after each node swap. This
approach would be inefficient and involve extra message transmissions. An easier
solution is to change the type of each message so that when a message of TYPEL is

sent it can only be received by a recvw () expecting a TYPEL.

The iPSC programmer must ensure consistency over a number of message
parameters, often in physically separate files. The compiler may catch some errors,

but many are left to create illogical results, race conditions and deadlock.

4.2.2. Occam on Transputers

On a transputer-based system, the programmer does not have to manage mes-

sages explicity. Message passing in occam is simple in some respects: (1) messages are

51

not buffered, hence eliminating the need for a message buffer associated with each
channel and message length parameters; and (2) two processes must synchronize to

pass data, thus eliminating a message queue and preventing the possible loss of data.

Figure 4.11 demonstrates simple message transfers, where a philosopher commun-
icates with each fork proprietor in occam 1. To pick up his odd-numbered fork, the
philosopher sends out a message on the channel pickup.odd. The occam I keyword
ANY may be used in place of an actual message when the content of the message is
irrelevant, as in this case. The fork process knows the meaning of the message by the

channel on which it arrives.

Proc fork (VAR odd,

PROC phil (VAR me, CHAN pickup, putdown)

CHAN pickup.odd, pickup.even,

putdown.odd, putdown.even, WHLl'EEQTRUE

i I pickup ? ANY

WHILE timer < sim.length putdown ? ANY
SEQ
— think

pickupodd | ANY <@
pickup.even! ANY <@

~ eat Proc fork (VAR even,
g odd 1| ANY CHAN pickup, putdown)
putdown. !

putdown.even | ANY WHILE TRUE
Loy ? ANY
— ickup 7
gutdown ? ANY

Figure 4.11 Message Passing in Dining Philosophers in occam 1

52

Each fork proprietor executes a loop to allow a philosopher to pick up his fork
and put it down. Control is achieved by the order in which messages are sent. If a
fork is busy, a request to pick it up will not be received until communication has

occurred on the putdown channel.

The occam matrix multiply program provides an example of data sharing in a
pipelined program. Figure 4.12 shows the process matnode. These processes reside
on the central nodes of the grid that was shown in Figure 3.2. They receive data from
east and north nodes and send data to west and south nodes. As in the earlier
example, a node’s communication channels are sent to it as parameters. The
programmer’s task is simply a matter of directing the data to the appropriate channel
and determining which activities may take place in parallel. Here, matnode is receiv-
ing a data value x on channel east from its eastern neighbor and then sending that
value out channel west to its western neighber. The declaration of those channels
was CHAN WE[(m * n) + m], an array of channels crossing a grid from west to
east, dimensioned by the size of the matrix (plus an extra column). Two elements of
that array were passed to each matnode process as its west and east channels when
it was invoked. When one matnode process sends the value x out its east channel,

its neighbor process will receive the value on its west channel.

A benefit of the ALT construct is demonstrated in Figure 4.13. It can eliminate
the need for an explicit message. An action can be taken depending upon which chan-
nel is activated first. It does require the declaration, and eventually the physical

mapping, of additional channels. In this example, the host sends an arbitrary (ANY)

53

PROC matnode (VALUE y, CHAN east, west, north, south) =

VAR k, -- loop index
x, -- element of A
sum: -- partial sum
SEQ k = [0 FOR 1] -- for each row in A
SEQ
PAR
east ? x -- receive element
north ? sum -- receive partial sum
PAR
west ! x -~ to next column
south ! (x * y) + sum -- send partial sum
SKIP:

Figure 4.12 Pipelined Matrix Multiply Processes in occam I

message to the nodes on a particular channel indicating the command. A more fami-
liar method of achieving the same result would have been to send the command as a

message on a generic channel and have the nodes interpret the command.

Although occam does not buffer messages, the programmer may wish to add
buflering routines. A buffering routine running as a separate process can capture data
without forcing the original two processes to synchronize. In addition, occam I pro-
grams need routines to buffer their single-word messages and convert them into typed
data. A program with buffering and data-conversion routines sacrifices some readabil-
ity since these routines may obscure the presence of message traffic. Occam II has
data types and eliminates the need for extensive buffering. In exchange, channel

declarations must specify the type and amount of data that may travel over them.

54

From run.nodes () in Traveling Salesman Problem

-- global declarations

BYTE ANY:

[numnodes] CHAN OF BYTE anneal.cmd, exit.cmd, read.cmd,
write.cmd:

PROC run.nodes (VAL INT me, CHAN anneal.cmd, exit.cmd, read.cmd,
write.cmd)
-- local declarations
SEQ
WHILE NOT done
ALT
write.cmd ? ANY
-- receive points from host
anneal.cmd ? ANY
-- shorten path using simulated annealing
read.cmd ? ANY
-- send points back to host
exit.cmd 7 ANY
-~ stop this loop and send stop message to screen

Figure 4.13 ALT in Traveling Salesman Problem in occam II (beta)

4.2.3. Sequent Balance

In the dining philosophers program, the function of the fork proprietor is really
that of a binary semaphore, ensuring that a fork is either busy or free. On the Bal-
ance version of the program, the forks are represented simply as a shared array of

binary semaphores, or locks. The declaration is shown in Figure 4.14.

A second shared variable place allows the philosophers to assign their own

places at the table by updating a shared counter. This variable needs no associated

55

lock since it will be locked by m_lock ().

In order to find his place at the table, each philosopher must look at the shared
variable place and increment it. A microtask lock was chosen for this part of the
algorithm because it is simpler to code than a primitive lock, and the resulting execu-
tion would have been similar in either case. Each slave process must access the
place variable once at the beginning of the program, so either type of lock would

have required the slaves to execute sequentially.

Microtask locks were used exclusively in the traveling salesman program. Since .
m_lock () creates a critical section, the entire program runs sequentially whenever
data is locked. The work-intensive loop of the program is in the iterate () routine.
Over multiple iterations, processes try to shorten their section of the path, which is
stored in a shared array. A routine called cswap () determines if two points in a
path should be swapped. In making this decision, four points are used to calculate dis-
tances. Originally this entire routine was locked. If it was not locked, other processes

could change the same points that one process was considering.

Timing the program for different numbers of processes revealed that no matter
how many processors were applied, the time remained the same. This behavior
resulted because all of the calculations in the routine were locked. The program was
behaving as a sequential program. The solution was to lock only the section of code
where data points were actually swapped. Such a solution would normally be unsafe.
It could change the actual value of a point that a process was considering. In this

particular case, it would only affect the border points and so only be likely with a

656

shared slock_t forks[n]: /* global declarations */
shared int place:;

void /* philosopher */

phil () {

int odd, even:

m_lock(): /* get my place assignment */
odd = (place % 2) !'= 0 ? place : (place + 1) ¥% n:

even = (place ¥ 2) == 0 ? place : (place + 1) % n;

place++:;

m_unlock () :
while (1) {
/* think */

s_lock (&forks[ocdd]) ; /* pick up both forks */
s_lock (&forks{even]):

/* eat */
s_unlock (&forks [odd]) ; /* put down both forks */

s_unlock (&forks[even]):

}

Figure 4.14 Data Sharing in Dining Philosophers on Sequent Balance

small data set. In addition, the decision to swap data points is partially random, so a
little more randomness should not influence the outcome to a great degree. With this
change, speedups were linear according to the number of processes added. This
experience points out one of the hazards of a shared-memory system. The microtask

m_lock () was the only easy way of accessing such a large global data structure.

57

Locking individual sections would have complicated the program.

4.2.4. Comparison of Data Sharing

The mechanisms of sharing data may influence how an algorithm is implemented.
A message on the IPSC carries the overhead of a kilobyte-long message buffer. Conse-
quently, an application must have a high computation-to-communication ratio to be
efficient. A second deterrant to sending many messages is coding of their complicated
syntax. A possible solution is for the programmer to write higher-level routines to call
the message sends and receives, but this still involves added work. On transputers,
messages are efficient. Traveling on named channels, messages require no parameters
and so are simple conceptually. Messages proliferate in occam programs. In applica-
tions that require many types of massages, however, occam messages can be as com-

plicated as those on the iPSC because of the need for explicit data typing.

A problem that distributed systems share is global transfer of messages. The
iPSC’s global Ethernet link between the host and nodes automatically routes messages
from the host to any node, whereas a host transputer can only be connected to at
most four other transputers, so each transputer must run a process to forward mes-

sages for global host-node transmissions.

Access to shared memory requires locks instead of messages. The important
decisions for the programmer are what type of lock to use, a primitive multitasking
lock or a microtask lock. The choice can have a large impact on program efficiency

depending upon the number of processes that are blocked.

58

For a programmer accustomed to sequential programming, it may be easier to
conceptualize shared memory than distributed memory because the data resides in one
location. Large data structures in shared memory still have to be partitioned. Lock-
ing and unlocking data is conceptually easy, but the result may be cluttered code with
a barely visible algorithm, or a supposedly parallel program that actually runs sequen-

tially.

4.3. Synchronization Methods

A process in a distributed system runs autonomously until it needs to share infor-
mation or wait for a event. Since data is not globally available to all processes, as it
is on a shared-memory system, there is no need for synchronization to ensure mutual
exclusion or to protect shared variables. Synchronization is needed to ensure proper
ordering of events. Data must be explicitly sent and received, so messages enforce
synchronization. They insure that a process only receives data at the proper time and
in a proper state. When messages are used only for synchronization, they need not
contain data. Synchronization on a distributed system does not require that all
processes be exactly the same point in execution at a given time. It simply means

that they have all passed through the same state.

On a shared memory system, all processes have access to global data. A process
can access a variable before the variable i1s in a proper state or after it has changed to
a new state. Therefore, mechanisms are required to force processes to access the vari-
able only when it is in a suitable state. Proper access to a variable can be assured by

repeatedly testing its state. This method can also be used to control the order of

59

events. Another technique is to force all processes to wait at some point in execution
until a specified number of other processes have also arrived. Processes also need a
mechanism to ensure mutual exclusion so that only one process at a time may update
a variable or execute a section of code. This is often accomplished by locking out other

processes.

4.3.1. iPSC

The dining philosophers program requires synchronization of events in two places.
First, the philosophers cannot commence their cycle of eating and thinking until they
have their place assignments. The host sequentially sends messages containing this
information to each of the nodes. Second, the philosophers cannot eat until they have
acquired both their left and right forks. Here they must synchronize with the two
other philosopher processes that share their two forks. The fork proprietors act as
binary semaphores that allow the forks to be in one of two states, busy or free.

Only one philosopher can use a fork at a time.

In the traveling salesman program, at each drop in temperature, nodes must
finish processing before the host process can proceed. Such a transfer of control
requires some form of global synchronization. A simple method might be one similar
to that used at the conclusion of the dining philosophers program, where the host
waits for a message from each of the nodes. However, in the traveling salesman pro-
gram time is a factor, and numerous node-to-host messages cost time. A method that
is presumably more expedient is a global synchronization message, where a message

visits each of the nodes before the final node passes it on to the host. The CalTech

80

traveling salesman program used a routine where each node contributed a byte of
information to a packet that was transmitted to the host. A similar routine for the
iPSC by Intel is gop () [Mol--], in which a global operation is performed on data from
all nodes. For this implementation, the routine was modified slightly to perform a
no-op. In this way, the lowest nodes in a spanning tree initialize a global synchroniza-
tion of the nodes, and node O sends the message to the host when all of the nodes have
been synchronized. The difference between gop () and grecvw () is that the latter
réutine begins with one node and directs a message down the tree; the former starts

at the leaves of a tree and completes when the message reaches node 0.

As mentioned in a previous section, the newest release of the iPSC operating sys-
tem has a broadcast message capability from the host. This capability slightly eases
the job of synchronizing processes from one direction. Synchronization from the nodes,

owever, must be performed as described above.

4.3.2. Occam on Transputers

Synchronization is built into the occam language. Two processes must synchron-
ize in order to communicate. In fact, communication over channels is the only form of
synchronization provided. To order events among parallel processes, nodes can send
and receive an arbitrary (possibly empty) message. The word ANY, which was a key-

word in occam I and is a declared variable in occam II, is typically used.

A host process can synchronize a number of similar node processes by performing
a message send inside a replicated PAR construct. In the code below, the host process

of the traveling salesman problem sends an arbitrary message to the nodes on a

61

channel that indicates a read-data command. (This construct is not necessarily sup-
ported in a physical implementation of an occam program, a problem that is discussed
in Chapter 5.) The channel that is used for synchronization can convey implicit infor-
mation. The content of the synchronization message can provide explicit information.

PAR i = 0 FOR numnodes
read.cmd[i] ! ANY

4.3.3. Sequent Balance

A shared-memory system requires two types of synchronization: condition syn-
chronization, a method of ordering the execution of events, and mutual exclusion,
where a section of code must be indivisibly executed by one process [AnS83]. The
parallel programming library on the Balance offers several mechanisms for both forms

of synchromnization.

Conditional synchronization can be accomplished by having processes spin at a
barrier or by having them wait for a shared variable to change state. At the primi-
tive level, the multitasking library allows initialization of a rendevous point for
exactly n processes using s_init_barrier (). Processes issue a
s_wait_barrier () command and wait until n processes have arrived at the same

point in execution before continuing.

The microtasking library provides a more general form of conditional synchroni-
zation that involves all processes forked by an m_fork (). Each worker executing an

m_sync () spins at a barrier until all workers have arrived. The microtask

62

m_single() also synchronizes slave processes and should be used when a single
stream of execution is required. Slave processes wait until a corresponding

m_multi () is executed by the master process.

A second method of conditional synchronization is to have processes wait for the
state of a shared variable to change. This strategy is simply a matter of data sharing

and requires the same locking mechanisms used for data sharing.

For mutual exclusion, a process executes a sequence of statements surrounded by
the microtasking calls m_lock () / m_unlock (). For instance, the dining philoso-
phers program uses microtask locks whenever the philsopher processes prints progress

messages during the simulation.

4.3.4. Comparison of Synchronization Methods

The concept of synchronization encompasses flow of control, so many of the ear-
lier comments on division of work apply here. Since messages are the synchronization
mechanism on distributed systems, the programmer only needs to learn one concept.
Implementation of synchronization messages may require a great deal of work if mes-
sages have to be distributed throughout a network of processes, but the same methods
would apply to global dissemination of data. The Balance’s explicit library calls for
synchronization are simple to use, but again the two programming models, multitask-

ing and microtasking, provide numerous ways to synchronize processes.

Chapter 5

Parallel Program Development

One striking difference among the three programming environments was the
length of time it took to develop the programs on each. As mentioned earlier, the
traﬁeling salesman problem was ported from a CalTech implementation written for a
hypercube MIMD computer similar to the iPSC. Although the only actual changes
required fo;‘ the iPSC were substitution of parallel library calls, process mapping rou-
tines and makefile’s, the port took a month of full-time work. It was a large pro-
gram, and part of this time was spent understanding the algorithm, but the majority
of it was spent debugging message traffic, handling system software failure and con-
structing the makefile. When the program was finally finished, message traffic was
so slow that only very small data sets (16 cities) produced reasonably straight paths

during interactive runs.

Development of the program in occam was slow because of the low level of the
language and by the need to incorporate I/O and data-handling utilities, which were
borrowed from other programs or written as required. A port from VMS occam I to
the beta release of occam Il on a Transputer Development System also influenced the

development time. In all, this work spanned two months.

By the time the program was ported to the Sequent Balance, the algorithm was

familiar, but surprisingly, it took only three days to write and debug.

64

The large differences in program development time were due in part to the paral-
lel programming toolsets available on each system. This chapter explores some of the
possible reasons for the discrepancies in development times, including how a program
is conceptualized, coded and debugged. Another factor is how familiar the program-

mer must be with the physical machine in order to implement a logical algorithm.

65.1. iPSC

The XENIX operating system on the iPSC cube manager resembles UNIX but in
addition supports system calls to manage nodes on the hypercube. Since programs are
developed on the cube manager, the environment is familiar to a UNIX programmer.
Programs are developed as separate modules, usually consisting of a host process and
one or more node processes. These processes may be compiled using a makefile just
as on a conventional uniprocessor, with the exception that host and node processes

require different flags and files for linkage.

A programmer often approaches the iPSC with a sequential program that is to
be converted to a parallel one. An algorithm may be parallelized in a number of
ways, including replicating a section of code and dividing the data equally among mul-
tiple processes or pipelining data through the processes, or partitioning the algorithm
into separate functions that run concurrently. Perhaps the easiest type of parallel -
program to describe on the iPSC is the homogeneous one, where the nodes execute

identical processes.

In addition to the functional division of the program, the data may have to be

partitioned. The programmer must determine whether the division is to be

85

accomplished by the host process before data is sent to the nodes, or in the nodes

themselves after they receive data.

The next consideration is how the nodes are to communicate. Each node in an »
dimension iPSC hypercube is physically linked to n neighbors via bidirectional com-
munication paths and is identified by an n-bit binary address, as shown in the physical
representation of the hypercube in Figure 5.1. A node’s nearest neighbors are nodes
whose addresses differ by a single bit. When a hypercube topology is not the most
efficient in terms of the distances messages must travel, software mappings can change

the topology used by an application.

The traveling salesman program uses a form of mapping that minimizes com-

munication distances. Each node in this program swaps cities with two neighbors.

Figure 5.1 Physical and Gray Code Representations of Hypercube

66

This communication implies a ring configuration. To find a mapping where each node
communicates with only two of its closest n neighbors, the node’s binary address is
mapped to a Gray code. A node in the traveling salesman program learns its own
address by caliing mynode () and then uses routines to determine its predecessor and

successor nodes whose addresses differ from its own by a single bit.

After a mapping has been determined, communication and synchronization calls
may be added to the code. A simple application might localize all concurrent activity
in one routine so that the entire program consists of nodes computing and returning a
result to the host. In this type of algorithm synchronizing messages are not required,
but most algorithms are not this simple, so the programmer must determine how to

synchronize node processes to transfer control between the host and nodes.

The conceptual barrier that makes programming on the iPSC difficult is that
separately compiled routines must communicate with each other as a cohesive system.
Message sends and receives between routines in physically different files must match.
On the positive side, because of the separate files, it is easy to distinguish the code
that is executed sequentially on the host from that that is executed in parallel in the

nodes.

When a parallel program has been completely coded, it may not be easy to follow
the logic of the algorithm because of the addition of sends, receives and system logs,
and often substantial code for partitioning data and mapping. Since the flow of con-
trol can go from host to nodes and back again, and since synchronization looks like

any other message, it i1s often difficult to trace the execution of a program.

67

To run a program on the hypercube, the programmer executes instructions from
the cube manager. The programmer controls the number of nodes used in an applica-
tion by initializing the iPSC to the desired dimension. The value of the cube dimen-
sion is available to the running process. Reinitialization is required to change the
cube dimension; it is not possible to alter it by command-line arguments to a program.
Other commands allow the programmer to log process messages to a local file and to

kill processes on the nodes after unsuccessful program runs.

Debugging an iPSC program usually means tracing communication. The sorts of
things that tended to go wrong during program development were improper mapping
functions, resulting in messages going where they were not intended, improper message
parameters, resulting in incorrect message contents or destinations, and improper
data partitioning. A combination of approaches may be used to debug a program on
the IPSC. The first step is often to run a program on a cube of dimension O {1 node).
Such low dimension cubes may be used to debug message passing; however, passing
this test does not ensure that the program will run on a higher dimension cube
without problems. The nodes have no I/O capability other than messages, so mes-
sages must be sent to a system log file using the syslog() command. This is a
costly procedure that can interfere with program timing and detection of deadlock,
and typically results in a large log file. It also requires recompilation of the program
each time messages are changed. Using this method with larger cube dimensions is

especially impractical.

68

Deadlock is one of the most common symptoms of a malfunctioning program on
the IPSC. The causes of deadlock are either that all nodes are waiting to receive a
message but none has been sent, or that the message queues have been filled but no
nodes are waiting to receive the messages. The easiest way to spot deadlock is by the
indicator lights on the front panel of the iPSC. The lights exhibit different patterns
depending upon whether a node is sending or waiting to receive a message. This panel
allows the programmer to observe the operation of the program, and certain light pat-
terns indicate abnormalities. This feature makes it almost imperative that the pro-

grammer be working near the hypercube.

The debugging procedure that is possibly most helpful is to visualize node
interactions. Unfortunately, at the time of this study the only method for visualizing
iPSC processes was by pencil and paper. Concurrent with this study, however,
another student was developing a tool to visualize iPSC program behavior called the
Parallel Programming Event Monitor [BrT87]. It shows the distribution of work
among the nodes, communication paths and the amount of time spent communicating
versus computing. It can be helpful in tracing events leading up to deadlock or star-
vation. Two of the completed programs in this study were used to test the monitor.

It appeared to be a vast improvement over hand-tracing methods.

A final comment concerns timing on the iPSC. Each node has an independent
clock, which is not synchronized with the clocks of other nodes. The library includes a
routine clock (), callable from a node process, which returns the number of mil-

liseconds interval that have elapsed since the node was initialized. To use this rou-

89

tine, all nodes must calculate individual times and then send them to the host process.
To find the total time of a process performed on multiple nodes, it is easier to calcu-

late elapsed time in the host process using the C Library times () routine.

Programming the iPSC is a process that appears familiar at first but becomes
complicated in practice. Visualization tools will be a valuable aid to program
development. One of the greatest problems is to find algorithms suitable for the
hyp;:rcube that keep communication and synchronization calls to a minimum and use

appropriate topologies and simple mapping routines.

5.2. Occam on Transputers

An occam program is developed in two steps, first as a logical program that
simulates a network of transputers on a single processor, and then as a physical pro-
gram that is configured to run on a network. Logical programs are written and
debugged on a host computer using the Transputer Development System (TDS)
Mnm85b]. TDS includes a special folding editor and utilities for compiling, filing, and
running programs. Later the logical program is mapped to a physical network of

transputers using TDS configuration utilities.

The folding editor is designed to help visualize a program as a group of modules.
Cohesive sections of code may be hidden from view on the screen by folding them in a
manner similar to folding a piece of paper, and then labeling the fold. Figure 5.2 illus-

trates the concept of folds, which are represented by the notation "...", followed by a
label. A directory holds a single program or a number of related programs. Using the

editor, the programmer organizes the program as a tree structure, starting with a

70

generic top-level file and adding a substructure of program modules in folds. The pro-

grammer may enter code or include existing files; folds may be nested and filed.

All support definitions and functions such as I/O routines must be present in a
program. The programmer must ensure that functions are within the scope of the cal-
ling process. By filing folded functions, functions may be referenced in any number of

places without increasing the size of the program.

PROC host (CHAN keyboard, screen)
... tdshdr -- header values
«+« pProcs -- user routines
... numeric io routines
... tsm declarations

... node.tsr node controller -- filed fold
PROC run.nodes {(...)
‘e -- folded code

... host.tsr host controller -- filed fold
... write.point -- fold containing PROC
PROC write.point(...)
... Wwrite point to screen -- folded code
PAR
... screen output -- folded code

... run node processes
... user input loop

-- delimiter of PROC host

Figure 5.2 High-Level View of occam II (beta) TSM Program

71

Utilities in TDS are not to be confused with 1/O routinés and other user-written
procedures. Utilities are the system routines that either check, compile and run pro-
grams or configure the processes on the physical transputer network. To invoke a sys-
tem utility, it is necessary to first load one of two sets of utilities, those for compila-
tion or those for configuration. When the utilities are loaded, a different function key
1s associated with each utility. Pressing a function key may bring down a menu to
request further parameters. For instance, the compile utility will ask for the name

of the executable file.

The compilation utilities include make routines that turn sections of code into
COMMENT, SC, PROGRAM, and EXE code. The programmer must label major sections
of code so that the compiler knows how to treat them. The COMMENT feature can aid
program development by allowing the programmer to fold large sections of unneeded
code and comment them. SC turns procedures into separately compiled procedures.
Since occam programs require inclusion of utilities, this feature allows procedures that
are known to function correctly to be compiled once and then ignored during program

development.

Organizing the entire program under these code labels requires some clarification
at first. The top level of the traveling salesman program, running on TDS, is a PROC
with two CHAN parameters for the screen and keyboard. The PROC is encased in
a fold, labeled EXE, to indicate that it is to be an indivisible piece of executable code.
This fold is compiled by pressing the key for the compile utility. (The executable

code is also stored in folds in the structure.) The next step is to press a key to get

72

code and then a key to run code. All of this processing is done without leaving
TDS. If a compile error is found, a locate error utility places the cursor at the
offending statement. The locater can only find one error at a time, so the program-
mer must exit the folds and recompile the entire program to find the next error.
Occam I was also able to locate run-time errors, but run-time errors in the beta relase

of occam II result in an error flag from the transputer, which causes TDS to abort.

Using either the check or compile utility, TDS performs semantic checking on
channel assignments to ensure that message sends have matching receives and that
component processes in a PAR do not share variables. Many bugs can be programmed

out of a system before it is actually tested.

The parallel environment of a transputer network is simulated in the develop-
ment system, and a program can be thoroughly tested before it actually runs on a net-
work. When the program functions properly on one processor, the programmer
switches to the configuration utilities and modifies the program code to place processes
on processors and channels on physical links. Procedures and their parameters are
loaded onto transputers in the network. A transputer network was not available at
the time this study was completed, so it was not possible to experiment with the
configuration process. Several facts about the logical versus physical development of a

program are of interest, however.

The logical development process is not totally independent of the physical sys-
tem. Two problems are apparent. First, while the host process can load processes

onto all transputers, it cannot communicate with them. The code below, used to

73

describe synchronization in Chapter 4, works on a single processor but can function on
an actual transputer network only with the help of extra hardware or software.

PAR 1 = 0 FOR numnodes
read.cmd[i] ! any

Current transputers have four bidirectional communication links. The host transputer
dedicates one link to input/output with the terminal. That leaves at most three
channels that can connect to the transputer network. To physically execute the ! in
the statement above it would have to be connected to the entire network. This topol-
ogy is possible if a crossbar switch is added to the network or if each transputer has a
dedicated 1/O port. A software solution is to place a process on each node that pro-

pagates messages throughout the network.

Because of the physical nature of a transputer, a grid configuration is the most
easily conceptualized. A grid is ideal for certain applications such as Hoare’s pipelined
matrix multiply, but it is not as »general as a hypercube. A certain amount of map-
ping is required even in the logical program. The host procedure of the matrix multi-
ply program is shown in Figure 5.3. Channels are declared as arrays NS and EW.
Channel indices for each process are calculated when specific channels are sent as

parameters to PROC’s west, north, center, east and south.

74

-- host
DEF 1 = 200, -~ rows in A
m = 300, -- cols in A, rows in B
n = 200: -- cols in B
CHAN NS[(m * n) + n], -- north to south channels
WE[(m * n) + m]: -- east to west channels
PAR
PAR j = [0 FOR m]
west(j, WE[] * (n + 1)]) -~ rows of A to col 1 of B

PAR j = [0 FOR n]j
north(NS{j * (m + 1)]) -- north sends zeroces

PAR i = [0 FOR m]
PAR j = [0 EOR n]
center (B[(1 * n) + j],.

WE[(1 * n) + 1 + J].
WE[(L *n) + i+ 3+ 1],
NS[(3 * m) + 1+ 3],
NS[(j *m) + i + j + 1]) -- perform partial mult.
PAR j = [0 FOR m]
east (WE[(n * (§ + 1)) + j1) -- sink for values from A
PAR
screen.out -- output data to screen
PAR j = [0 FOR n]
south(j, NS[((m + 1) * j) + m]) -- product matrix columns

Figure 5.3 Channel Communication in Matrix Multiply in occam I

The greatest hurdle in developing a program for a transputer network may be
the unfamiliarity of the occam language. While it supports pervasive concurrency,
other details of this relatively young language limit its acceptablility. Occam I is a

simple language to learn, with its three primitive processes and three constructors, but

75

because of its simplicity it was often necessary to write assembly-level routines to sup-
port operations that are built into familiar higher-level languages such as reading and
writing characters, numbers and strings. Collections of bytes always had to be

translated into the appropriate data type.

Occam II eliminates the need for explicit data-typing routines, but it does not
perform automatic type conversions. Not only must variables be typed, but so must
real‘ numbers. The method for doing this differs depending upon whether the number
is being assigned to a variable or being used in an expression. Furthermore, to con-
vert a 32-bit integer to a REAL 32, the programmer must specify whether it should be

truncated or rounded.

x := 0.5 (REAL32) * (REAL32 TRUNC ((p * p) + (q * q)))

A second problem apparent from the example is that arithmetic operators in occam

bhave no precedence. All of the subexpressions must be fully parenthesized.

A problem that remains in occam II is the static nature of the language. Chan-
nels must be statically defined. Replicators allow more than one instance of the same
channel, but if the programmer does not know in advance how many channels are
required, the only solution is to dimension the channels to some maximum number.
Similarly, there is no way to dynamically allocate new instances of variables or

processes, and thus no recursion.

Debug messages and all other I/O to the screen or to files must be managed by

the programmer using a host process running in parallel with the node processes. This

76

process captures messages on various channels and outputs them. This interplay was
described in some detail in Chapter 4. Log files were not as necessary in occam as on
the iPSC. It seemed to be more helpful to examine program structure than to trace
activity.

A common problem encountered at runtime is deadlock. Although the checker
detects errors in channel protocol that might produce mismatched inputs and outputs,
deadlock can still occur. It frequently occurs at program startup or termination. If
input data is missing or if a process has nowhere to send output, the result is
deadlock. The usual case is deadlock upon termination of processes under a PAR.
Processes must determine when to terminate, either algorithmically or by receipt of a
message. If the termination message comes from outside of the PAR, from a user, for
instance, one of the parallel processes must be monitoring the source of the message.
The best way to find the cause of deadlock was to reduce the size of the program to a
skeleton, which is where the COMMENT utility was handy, and to test the flow of data

through communication channels.

For timing occam programs, the language includes a special data type called
clock. It measures the number of clock ticks in an execution. The time per tick

depends upon the transputer model being used.

5.3. Sequent Balance

Program development on the Balance is based on an entirely different model.
The features that distinguish it from distributed systems are shared memory and

shared resources such as access to standard input and output. It is possible, although

77

not necessarily recommended, to develop a parallel program by gradually adding
microtasks to a sequential program. Multiple high-level routines do not have to be
developed at the same time as on the distributed systems. One implication of this
difference 1s that programs can be developed in a top-down fashion using program

stubs.

The first step in program implementation is to determine what data must be
used by multiple processes and to assign it to shared memory by inserting the keyword
shared in front of the declaration. For dynamic memory allocation to shared

memory shmalloc () calls are substituted for malloc ().

Shared memory implies several changes to a program. First, every time a pro-
cess writes to shared memory, it may have to block the execution of one or more
processes that are attempting to access the same variable. Blocking processes forces
sequentiality into the program. If the process executes code in a critical region using
the microtask m_lock (), the greater the number of processes and the larger the crit-
ical region, the longer the other processes are blocked from execution. Second, shared
memory implies that data does not have to be disseminated and collected. Results are

stored in shared memory and can be printed by the master process.

Child processes are forked to run concurrently with the master using the micro-
task m_fork (). The number of processors may be determined at run time by user
input to the program. Using the microtasking library exclusively, the number of
processes is limited by the number of processors (minus one, which is reserved for the

operating system). The ability to dynamically allocate processes speeds the develop-

78

ment and testing of a program.

The child processes contain code that will be executed in parallel, but it is not
absolutely necessary that they contain only multi-stream code. Changing the flow of
control between single and multiple streams is simple. Within a forked process, nodes
can synchronize themselves using an m_single () microtask and spin at a barrier
while the master process executes a single stream. Because of this feature, a Balance
program may look much like a sequential program with m_single() and

m_multi () commands interspersed to change the flow control.

In a homogeneous model, some method must be determined for partitioning work
and data. Development of the matrix multiply program demonstrated how this task
can be deceptively simple at first glance. Rather than a complicated algorithmic divi-
sion of the matrices, the Balance implementation used a shared variable to represent
the row index of the product matrix. Processes simply picked up a new row index and
began work. Attempts to divide the data more evenly or at a finer grain resulted only

in increased calculations, which slowed the entire process.

Since processes also share resources, any process may print messages to the
screen or to a file. This capability eliminates the need to pass messages to a host pro-
cess. However, the process printing the message should execute in a critical region so
that it has control of the resource and the message prints cohesively. By executing in
a critical region, a process may print a block of messages at once, something not
always possible on a parallel system. A disadvantage is that the program becomes

more sequential.

80

easier to grasp with its central memory and cohesive program structure. Also, shared
memory eliminated the need for routines to disseminate and collect data, and the abil-
ity to print messages from any process eased debugging. Finally, the Balance was
designed to support a general multi-user environment in addition to parallel applica-
tions. By dividing user jobs over all available processors, throughput is faster and

reduces the time it takes to perform routine tasks such as editing and compiling.

The major obstacle to coding programs quickly in occam, aside from learning the
language and development system, is the low level of coding required. Routines were
written for monitoring and buffering I/O and for typing data. Utilities developed for

occam I had to be rewritten for the beta release of occam II.

Message parameters provide the greatest hindrance on the iPSC. While it is easy
to begin development of a program, tracing errant message communication requires a
major effort. Since some of the problems in this study were due to topology mappings,
one question is whether it would be easier to write a logical version of the program on
the IPSC and later include mapping routines. This method would certainly be possi-
ble. The problem is that, unlike in the Transputer Development System where paral-
lel processes are developed on one transputer and then mapped onto a network, on the
iIPSC, the program must be developed on the hypercube itself to be certain that it will
work correctly. Some sort of mapping would be necessary for message passing, so it

may as well be the proper mapping.

The algorithms changed slightly from system to system. The most extreme case

was the matrix multiply program. The iPSC required complex data partitioning to

81

maximize computation on the nodes and minimize message traffic, whereas the occam
version was written to take advantage of fast communications links by pipelining
data. On the Balance it was possible to write a parallel version of a matrix multiply
that differed only slightly from the sequential version. Some differences were
encouraged because of machine design and performance. Others were based on simpli-
city, gaining some performance for little work. The Balance perhaps encourages the
latter. Occam requires careful consideration of the algorithm before implementation, -
something that is time-consuming but that may result in a more elegant implementa-

tion. The iPSC seems to have neither benefit.

Chapter 6

Conclusions

This study has contrasted programming experiences on three parallel processing
systems: two systems that modify an existing language to provide primitives for pro-
cess management and sharing of data, and a system that introduces a new language
to handle parallel computation. No matter how novel the environment, a key to suc-
cess for each of these systems will be the how the programmer perceives its ease of

use.

All three systems force the programmer to partition both program function and
program data according to the constraints of the architecture. Once a parallel algo-
rithm is chosen, the programmer’s attention must be diverted to certain systems pro-

gramming tasks and other nuances of the particular system.

6.1. Strengths and Weaknesses of Each System

The Sequent Balance requires little low-level intervention on the part of the pro-
grammer and with its familiar UNIX environment was the easiest system to learn.
Often only minor changes to a program can allow it to take advantage of multiple
processors, and mechanisms for altering the flow of control, sharing data and syn-
chronizing processes are simple. However, large global data structures can create
bottlenecks when multiple processes try to access them. The number of processes that

can participate on shared-memory systems is limited for this reason. Even with a

83

small number of processes, the programmer may have to simulate distributed methods
of data sharing to achieve adequate parallelism, and this simulation may be unduly

complicated.

Occam encourages a programmer to think creatively about concurrent processes
because a uniform approach to concurrency is built into the language, not bolted on
through a procedure call interface. Separating logical design from physical design
should free the programmer to consider the algorithm apart from some of the system
details. Unfortunately, occam is still a low-level language that requires attention to
details, such as data-type conversions and explicitly typed channels. In addition, the
physical implementation can impose restrictions on the logical program, for instance,
the limitations on the number of nodes with which a host process can directly com-
municate, and eventually the programmer must be familiar with the physical system

in order to configure the program on the network.

The Transputer Development System introduces new concepts in program
development. The folding editor is designed to help the programmer visualize the pro-
gram structure, but it can be tedious to use. Similarly, many of the TDS utilities
show symptoms of a language that has not fully matured. On the other hand, certain
utilitites such as the compiler and checker are designed for parallel programming and

can catch many common errors before programs are run.

What makes occam worthwhile is its support for pervasive parallelism. Con-

currency in an algorithm may be exploited at many levels.

84

The iPSC has few of the advantages of either system. Its global Ethernet link
between the Cube Manager and hypercube does remove the physical limitations of
message transfer that complicates programming on the transputer network, but in
practice this type of message transfer is too slow. Most applications route messages
from the host to the nodes using one host-to-node message and a spanning tree in the
hypercube. The complexity of the iPSC’s parallel library interfaces requires a pro-
grammer to think at a systems level and to lose sight of the purpose of the program.
Programs become bulky and tend to run slowly unless they have been optimized for a

hypercube environment.

6.2. Future Directions

Parallel programs have their own set of problems and are typically difficult to
write, especially when the programmer must delve into system-specific details. The
programming systems studied here could benefit from tools for visualizing program
behavior. Watching a dynamic, graphical representation of a parallel program would

provide much more information than tracing a file of debug messages.

To allow the programmer to concentrate on the algorithm rather than system
details, certain improvements must be made to these parallel processing systems. Pri-
marily, they could benefit from more abstraction within their languages and system
interfaces. Occam is certainly more suited to expressing parallel concepts than C;
however, the transputer is designed to execute many levels of parallelism, while the
other two architectures are limited by overhead to a larger-grain parallelism. Such a

uniform approach to specifying concurrency may not be appropriate in those cases.

85

Still, a simple directive to the compiler to execute a section of code in parallel or to
synchronize a number of distributed processes would ease the job of coding. The Bal-

ance approaches this simplicity with its microtasking library.

Another abstraction would be the ability to express certain data structures and
tasks as objects. A candidate is message passing on the 1IPSC. Topologies of processes
could be abstracted so that processes did not have to include mapping calculations.
Messages themselves could be abstracted to eliminate the complicated parameteriza-
tion of send and receive calls. Occam demonstrates this concept in its division of logi-
cal and physical development, but a programmer still has to map topologies and
specify data types and sizes for channels. On an ideal parallel processing system, the

programmer would only have to write the logical program.

The basis for this study was the diversity of parallel processing systems. Thus, a
final recommendation is for more consistency among software interfaces to the various
architectures. Certainly, abstraction of system and physical details is a starting
point. Further studies are needed to determine what is an appropriate software model

for parallel processing.

The notion that a programmer should only have to write sequential code and let
the system find concurrency is limiting. Concurrency can be conceptualized. Learning
to write concurrent code requires a clear model and tools that help rather than
hinder. Managing parallel processes can become an integral part of a programmer’s

skills.

Appendix A

Timing and Results of the Traveling Salesman Program

Although the purpose of this study was to examine the process of parallel code
development, the question of value-for-effort will certa;inly arise. Did the performance
of the systems in this study merit the extra programming effort? To answer this ques-
tlon timing experiments were performed on the traveling salesman program. Timing
of this program should produce the most meaningful results of the three programs.
Since the code was ported from a working version produced at CalTech, it is reason-
ably certain that the algorithm is sound. In addition, Felten, ef al. [FKOB85] report

timing statistics to which the three systems in this study can be compared.

The other two programs were not timed. Timing a dining philosophers program
has little meaning. The program goes through the time-consuming process of logging
messages to show the process of the simulation and does not have a completion point.
The matrix multiply algorithms differed significantly depending upon the architecture
of the system. In particular, the occam version was pipelined, while the other two
versions used a larger grain of parallelism. Also, parallel versions of the LINPACK
library matrix multiply have been developed by Intel [Mol86] and Sequent [SSS85] and
presumably run much faster than the algorithms developed in this study. A final hin-
drence to timing both of these programs is that neither was run on a transputer, much
less a network of transputers. They were programmed in occam on a mainframe com-

puter that simulated a transputer environment.

87

One problem that does arise in comparison of traveling salesman program tim-
ings is that the occam version was run only on a single transputer and may only be

compared to the single-node timings of the other two implementations.

A.1, iPSC Version

The program was developed on the R2.0 version of the iPSC System Software.
The newest software release R3.0 occurred in January 1987. Timings were performed
with both versions of the software. Since the new system was intended to speed mes-
sage traffic, significant speedups were expected. The speed increased some but not as

much as hoped for this application.

Three factors influenced times on the iPSC. First was the number of iterations
performed by the program. With few iterations, times per iteration were high. At 50
iterations and higher, times became consistent. The number of iterations used for
timing the CalTech program was not specified. Second, the subtitle of the timing
table in the paper was "256 Cities Arranged in a Circle." The significance of the circle
and its possible impact on timing was not clear. Third, the original CalTech code did
not contain any code that indicated how timing was performed. Exact placement of
timing calls in the iPSC and CalTech versions of the program may differ. On the
iPSC, timings were done in the host process before the host directed the nodes to
begin processing. One sendmsg () from the host to node 0, the global dissemination
of the message and one recvmsg () were included in timings. The total time for -
iterations was divided in the host process by the number of iterations. When compar-

ing the iPSC timings with those of the other two systems, note that even with only

88

one node, a process passes messages to itself to swap cities. Times were obtained by

calls to the iPSC’s C library times () routine.

On a full 5-dimension cube, the new version of the iPSC software only resulted in
a speedup of 1.66 over the older version. Using the R3.0 software, however, the appli-
cation of more nodes to the problem resulted in greater speedup. In neither case did
times per iteration nor speedup match those of the CalTech hypercube. Comparing
the R3.0 times to those of CalTech, the iPSC peforms nearly two (1.97) times as
slowly on a 0-d cube and nearly 3 (2.77) times as slowly on a 5-d cube. The processors
on the CalTech nodes are 8086/8087’s and should run slower than the 80286 /80287
processors on the iPSC. The algorithm is communication-intense, so message traffic

may be the slowing factor.

Comparison of iPSC and CalTech Traveling Salesman Programs
256 Cities
iPSC CalTech
R2.0 R3.0
d | time/iter. speedup | time/iter. speedup | time/iter. speedup
(msec) (msec) {msec)
0 1668 1.00 1260 1.00 639 1.00
1 730 2.28 638 1.97 332 1.92
2 271 6.15 326 3.87 167 3.82
3 216 iy 173 7.28 85 7.54
4 139 12.00 95 13.26 43 14.82
5 101 16.51 61 20.66 22 28.80

Figure A.1 iPSC and CalTech Timings

89

Results of the program were not dramatic. That is, it was difficult to optimize a
path that contained more than 16 cities. Four reasons were possible. First was the
algorithm itself. The published paper presented two versions of the program, an adja-
cency swap version where nodes exchange cities with two nearest neighbors and a
hyperswap version where nodes also exchange cities with distant nodes. The code pro- -
vided by CalTech was for the adjacency swap version. Adding hyperswap code to the

program did not yield better results.

The second possible reason for less-than-expected results may be that a successful
user should be familiar with simulated annealing techniques. Felten, et al., provided
one example, which involved a path of 64 cities and 60,000 iterations of city-swaps per
temperature drop. This brings us to a third possible reason for poor performance. At
10,000 iterations, the time for a simulation on the iPSC (running R2.0) became prohi-
bitive. A smaller number of iterations was required. Without fully understanding the
mechanics of simulated annealing, it was possible to approximate initial and final tem-
peratures and temperature drops and gain some improvement in path lengths. With
this caveat, a 16-city path was the largest sample for which a good approximation of

a minimum path was achieved.

A fourth, and most likely, reason is the original configuration of the cities. The
CalTech paper notes that its 64 cities were organized in 4 groups of 16 cities each. It
is unclear how this differed from a completely random group of 64 points, which our

study used.

80

A.2. Sequent Balance Version

The master thread of the traveling salesman program called the DYNIX routine
getrusage () to time the multiple-process section of the iterate () routine. The
Balance 8000 that was used for development had only 7 available processors, so to
test higher dimensions the program was moved to a Balance 21000, which supports up
to 30 processors. In this case, 27 was the maximum number available for testing. The

speedup is linear up to 16 processes and appears to drop off at 27 processes.

Traveling Salesman Programs
256 Cities
iPSC Balance Transputer
processes | time/iter. speedup | time/iter. speedup | time/iter. speedup
(msec) (msec) (msec)
1 1260 1 363 1 115 1
2 638 2 181 2 - -
4 326 4 93 4 - -
8 173 7 45 8 - -
16 95 13 22 16 - -
27 - - 14 26 - -
32 61 21 - - - -

Figure A.2 iPSC, Balance, and Transputer Timings

The tests used to acquire the speedups could be run quickly, but they did not
result in much of an improvement in the salesman’s path. On the Balance it was pos-
sible to run the 64-city example test from the CalTech paper that required 60,000
iterations per temperature drop (an overnight run). The result of the test was a noted
improvement in path length, but it was still far from optimal. Again, this result

might be due to the original configuration of the cities, which was random in all of the

91

tests.

A.3. Occam Version

As noted earlier, the final implementation of the program in occam was on a
Transputer Development System with a single T414 transputer. The time per itera-
tion for a 256-city test, shown in Figure A.2, is faster than that of the Balance and
iPSC, but with caveats. Since the program ran on one transputer, the concept of a
host tramsputer and single node transputer were simulated by two processes on one
chip. To accurately compare transputer times against the other two systems, it is be
important to know the comparative times of an on-chip and a off-chip message
transfer. Most of the time involved in a message pass is in set-up. Since set-up can be
done in parallel when a message passes between two transputers, the on-chip and ofl-
chip transfer times are almost identical. A factor that may have reduced the timings
was that a square root function, used frequently in each iteration of the algorithm,

never worked, so it is estimated by multiplication, which should be faster.

A.4. Sample Output

Each line of the sample log file in Figure A.3 lists the current temperature and
the path length after the nodes have iterated at that temperature. In simulated
annealing at high temperatures, there is a higher amount of randomness that allows
points to travel from one node to another with higher frequency, even if the resulting
path is not necessarily shorter. At lower temperatures the randomness decreases and

the path may shorten substantially.

Number of processes = 4
Number of points on path = 64

Number of iterations per drop in temperature = 60,000

current temperature = 1.000
current temperature = 0.975

current temperature = 0.950

current temperature = 0.350
current temperature = 0.325
current temperature = 0.300

path length = 31.911
path length = 30.121
path length = 30.568

path length = 28.052
path length = 23.345
path length = 25.163

Number of iterations per drop = 40,000

current temperature = 0.300
current temperature = 0.290
current temperature = 0.280

current temperature = 0.070
current temperature = 0.060
current temperature = 0.050

path length = 23.474
path length = 23.064
path length = 22.276

path length = 12.426
path length = 12.902
path length = 11.076

92

Figure A.3 A Typical Traveling Salesman Log File

Figures A.4 and A.5 show test results for a path of 16 cities, the largest sample

for which a relatively straight path was achieved.

Figure A.4 16 Cities in Random Configuration

Figure A.5 16 Cities - Path Straightened by Simulated Annealing

93

Appendix B

Dining Philosophers Program Listings

Figure B.1 Dining Philosophers in C on iPSC

for dynamic loading */
for dynamic loading */
message buffer */
number of loops */
message type */

phils' process id */
forks' process id */

/*

* dining.h

* Macros for dining philosophers programs

*

/
#define ALL_NODES -1 /*
#fdefine ALL_PROCESSES -1 7
#idefine BUELEN 100 /¥
#define SIM_LENGTH 100 Vi
#define MSGTYPE O /*
#define PPID 10 7
#define FPID 11 /*
typedef

enum {Allocate, Release, Stop} actionkind:

94

/*
* maitre_d.c
* Host process for dining philosophers problem
4

#include <stdio.h>

#include "/usr/ipsc/lib/chost.def”

#include "dining.h"

main ()

{

int cnt: /* number of bytes in message */
char debug_buf [BUFLEN]: /* debug message buffer */
int hostcid: /* global channel id */

int hostpid: /* host process id */

int i: /* loop index */

int num: /* number of philosophers */
char rec_buf [BUFLEN] : /* recelive message buffer */
char send_buf [BUFLEN]: /* send message buffer */
int snode; /* node of sender */

int spid: /* pid of sender */

int type: /* message type */

/* Dynamically load the node processes. */

load ("phil", ALL_NODES, PPID):;
load ("fork", ALL_NODES, FPID):

/* Get host id and set up communications channel to the nodes. */

hostpid getpid():
hostcid = copen (hostpid):

/* Assign a left and right fork to the requesting philosopher,
but send the odd-numbered one followed by the even-numbered
one. The maitre d' fills places at the table sequentially as
messages arrive from the philosophers. Assume the value of
a fork will not be greater than 128, so it can be stored in
a char. */

num = 1 << cubedim():
for (1 = 0; i < num; i++) {
send_buf{0] = (1 % 2 = 0) ? (char) i {(char) ((1 + 1) % num):

send_buffl] = (1 % 2 == 0) ? (char) i : (char) ((i + 1) % num):
sendmsg (hostcid, MSGTYPE, send_buf, 2, snode, spid):
hy

lwaitall (ALL_NODES, ALL_PROCESSES) :
1kill (ALL_NODES, ALL_PROCESSES):
cclose (hostcid);

¥

06

St
* phil.c
* Philosopher node process for dining philosophers problem
*
7

#include "/Jusr/ipsc/lib/cnode.def"

#include "dining.h"

main {)

{

int cid: /* channel id */

int cent: /* number of bytes in message */
int even: /* index of even fork */

int hostname; /* host node id */

int Thostpid: /* host process id */

int odd; /* index of odd fork */

char rec_buf [BUFLEN]: /* receive message buffer */

int snode; /* node of process sending message */
int spid: /* pid of sender */

char send_buf [BUFLEN]; /* send message buffer */

int count = 0O; /* loop counter */

cid = copen (PPID) ; /* open node channels */

/* Recelive place assignment from maitre d' */

recvw (cid, MSGTYPE, rec_buf, BUFLEN, &cnt, &hostname, &hostpid):
odd = (int) rec_buf[0]:
even = {int) rec_buf[l]:

while (count <= SIM_LENGTH) {
syslog(PPID, "Phil is thinking"):

send_buf[0] = (char) Allocate; /* Pick up forks */
sendw (cid, MSGTYPE, send_buf, 1, odd, FPID):

recvw {cid, MSGTYPE, rec_buf, BUELEN, &cnt, &snode, &spid):
sendw (cid, MSGTYPE, send_buf, 1, even, EFPID):

recvw (cid, MSGTYPE, rec_buf, BUFLEN, &cnt, &snode, &spid):

syslog(PPID, "Phil is eating"):

send_buf[{0] = (char) Release; /* Put down forks */
sendw (cid, MSGTYPE, send_buf, 1, odd, EPID);:

sendw (cid, MSGTYPE, send_buf, 1, even, FPID):

++count:

}

cclose (cid) ;

}

/*

* fork.c

87

* Fork node process for dining philosophers problem

*/

#include "/usr/ipsc/lib/cnode.def"

#include "dining.h"

main ()
{
typedef struct pnode { Y
int snode: /*
int spid; /*
} WNODE:
actionkind action; P&
int <c¢id:; A
int cnt; Pl
char debug_buf[BUEFLEN]: 7¥
enum {Busy, Not_Busy} fork: e
char rec_buf [BUFLEN]: 7
char send_buf [BUFLEN]; A%
int snode: ik
int spid; VA
WNODE waiting: Vil

enum {Empty. Occupied} wait_ptr:

cid = copen (EPID):;

wait_ptr = Empty:

fork = Not_Busy:;

/* Loop until the maitre_d kills
while (1) {

/* Receive message from a phi

recvw (cid, MSGTYPE,
action

rec_buf,

switch(action) {
case Allocate:

/* If fork is free, make
to philosopher saying

if (fork == Not_Busy) {
fork Busy:
sprintf (send_buf,
sendw (cid, MSGTYPE,
snode, spid):

sen

represents a waiting phil */
phil's node id */
phil's pid */

allocate or release */
channel id */
number of bytes in message */
debug message buffer */
fork in use or not */
receive message buffer */
send message buffer */
node id of sender */
pid of sender */
waiting philosopher */
/* occupied if phil waiting */

me */

losopher */

BUFLEN, &cnt, &snode, &spid):

(actionkind) rec_buf[0]:

it busy and send message back
request filled. */

"You have picked up a fork\n"):

d_buf, strlen{send_buf),

}

else {

/* Make the philosopher wait for the fork.
Store his node and process id and continue. */

waiting.snode = snode:
waiting.spid = spid:;
wait_ptr = Occupied:;

L

break;

case Release:
fork = Not_Busy:

/* Check wait ptr to see if the other philosopher is
waiting for this fork. If so, nullify the wait
pointer, make the fork busy and send a message back
to this philosopher. */

if (wait_ptr == Occupied) {
fork = Busy:
wait_ptr = Empty:
sprintf (send_buf, "You have picked up a fork\n"):
sendw (cid, MSGTYPE, send_buf, strlen{send_buf),
wailting.snode, waiting.spid):
}

break:;

default: /* error */
sprintf (debug_buf, "Unknown action in fork: %d\n",

(int) action):
syslog (FPID, debug_buf):
break:

}
}

98

Figure B.2 Dining Philosophers in occam I

-- output string -- load one on every node
PROC out.string (VALUE s{[], CHAN out) =

VAR length:

SEQ

length := s [BYTE O]
SEQ i = [1 FOR 1length]
out! s [BYTE i]:

-- philosophers
PROC phil (VAR me, sim.length, CHAN pickup.cdd, pickup.even,
putdown.odd, putdown.even, debug) =

VAR timer: -- to time simulation
SEQ .
timer := 1
WHILE timer <= sim.length
SEQ
--think
out.string("philosopher ", debug)

debug ! me + 'O

out.string(" thinking.", debug)
pickup.odd ! ANY

pickup.even ! ANY

--eat

out.string("philosopher ", debug)
debug ! me + 'O

out.string (" eating.", debug)

putdown.odd ! ANY
putdown.even ! ANY

timer := timer + 1
SKIP:
-- forks
PROC fork (VAR me, CHAN pickup, putdown) =
WHILE TRUE
SEQ

pickup ? ANY
putdown ? ANY
SKIP:

99

100

-- initialization and control
PAR
-- screen output buffering

DEEF EndBuffer = -3: -- end of message marker
CHAN screen AT 1:
VAR wmsg.char:
VAR msg.not.complete:
VAR 1i:
WHILE TRUE

ALT 1 = [0 FOR num]

debug[i] ? msg.char

SEQ
msg.not.complete := TRUE
WHILE msg.not.complete
SEQ

screen ! msg.char
debug[i] ? msg.char
IF
msg.char = EndBuffer
msg.not.complete := FALSE

TRUE
SKIP
-- maitre_d
DEE num = 4: -- number of philosophers and forks
DEF sim.length = 100: -- number of cycles for simulation
CHAN debug[num]: -- for message buffering
CHAN pickup [num]: -- for picking up fork
CHAN putdown [num]: -- for putting down fork
VAR i:
VAR odd, even: -- fork ids
PAR i = [0 FOR num]
SEQ
iF
(1 2) =1 -- left fork is odd
PAR
odd = 1
even = i1 + 1
(1 2) =0 -- left fork is even
PAR
odd = i + 1
even = i
PAR

phil (i, sim.length, pickup[odd]. pickup[even],
putdown[odd], putdown[even], debug[i])
fork (i. pickup[i]. putdown[i], debug[i])

101

Figure B.3 Dining Philosophers in C on Sequent Balance

#include <stdio.h>
#include <parallel/parallel.h>
#include <parallel/microtask.h>

#define n 4 /* number of philosophers and forks */
#define sim_length 100 /* loops for simulation */

shared slock_t forks[n]; /* forks are just locks */

shared int place:; /* for philosopher place assignments */
void

phil ()

{

int count; /* to count loops in simulation */

int left, right; /* fork numbers */

int odd, even: /* indices of odd and even forks */

m_multi():
/* Get my place assignment. */

m_lock ():

left = place++;
right = place ¥ n:
m_unlock () :

odd = (left % 2) != 0 ? left : right: /* which is my odd fork? */
even = (left % 2) !'= 0 ? right: left:
for (count = O; i < sim_length; count++) {

s_lock (&forks[odd]): /* pick up forks */

s_lock (&forks[even]) ;

m_lock () :
printf ("Philosopher ¥%d is eating\n", left):
m_unlock () ;

s_unlock (&forks[odd]) : /* put down forks */
s_unlock (&forks{even]):

m_lock():
printf ("Philosopher %d is thinking\n", left):
m_unlock () ;

)

102

place = O: /* initialize counter */

< n; i++) /* initialize locks */
ck {&forks[il):

if (m_set_procs(n) != 0) { /* initialize n processes */
perror {"m_set_procs didn't workO):
exit(-1):
}
m_fork (phil): /* fork them to help execute phil */

m_kill_procs():
}

103

References

[AAA86] FX/FORTRAN Programmer’s Handbook, Alliant Computer Systems
Corporation, March 1986.

[AnS83] Andrews, G. R. and Schneider, F. B., "Concepts and Notations for
Concurrent Programming,” Computing Surveys, vol. 15, 1 (March 1983), pp.
3-43.

[BrT87] Brandis, C. and Thakkar, S. S., "A Parallel Program Event Monitor,"
Twentieth Hawair International Conference on System Sciences, January 1987.

[Bri72] Brinch-Hansen, P., "Structured Multiprogramming,” Comm. ACM, vol. 15, 7
(July 1972), pp. 574-578.

[Car82] Cargill, T. A., "A Robust Distributed Solution to the Dining Philosophers
Problem," Software - Practice and Ezperience, vol. 12, 10 (October 1982), pp.

965-969.
[CHL] Chen, S. S., Hsiung, C. C., Larson, J. L. and Somdahl, E. R., "Cray X-MP: A
Multiprocessor Supercomputer,” in Vector and Parallel Processors:

Architecture, Applications, and Performance FEvaluation, M. Ginsberg (ed.),
North Holland, . (to be published in 1987).

[CCC85] "Multitasking User Guide," Cray Computer System Technical Note SN-0222,
Cray Research, Inc., January 1985,

[Dij72] Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes,” in Operating
Systems Techniques, C. A. R. Hoare and R. H. Perrott (ed.), Academic Press,
New York, 1972.

[FKOS85] Felten, E., Karlin, S. and Otto, S. W., "The Traveling Salesman Problem on a
Hypercubic, MIMD Computer," IEEE Proceedings of the 1985 Conference on
“Parallel Processing, 1985.

[FiF84] Filman, R. E. and Friedman, D. P., Coeordiated Computing: Teels and
Techniques for Distributed Software, McGraw-Hill, 1984.

[Fly66] Flynn, M. J., "Very High-Speed Computing Systems," Proceedings of the
IEEE, vol. 54(1966), pp. 1901-1909.

[GuH86| Gustafson, J. L. and Hawkinson, S., "A Language-Independent Set of

Benchmarks for Parallel Processors,” Pre-print, Floating Point Systems, Inc.,
April 1986.

[GHS86] Gustafson, J. L., Hawkinson, S. and Scott, K., The Architecture of a
Homogeneous Vector Supercomputer, Floating Point Systems, Ine., March 27,
1986.

[Hil85] Hillis, W. D., The Connection Machine , MIT Press, Cambridge, MA, 1985.

104

[Hoa72] Hoare, C. A. R., "Towards a Theory of Parallel Programming," in Operating
Systems Techniques, Academic Press, 1972, pp. 61-71.

[Hoa78] Hoare, C. A. R., "Communicating Sequential Processes,” Comm. ACM, vol.
21, 8 (August 1978), pp. 666-677.

[HwB84] Hwang, K. and Briggs, F., Computer Architecture and Parallel Processing,
McGraw-Hill, 1984.
[Inm85a} "Occam Programming System ," System Manual, INMOS Ltd., July 1985.

Inm85b| “Transputer Development System," System Manual, INMOS Ltd., November
1985.

[Inm86] Transputer Development System 2.0 User Manual, INMOS Ltd., June 2, 1986.
[Int85] "iPSC User’s Guide,” System Manual, Intel Corporation, October 1985.

[JJD78] Jones, A. K., Jr., R. J. C., Durham, I., Feiler, P. H., Scelza, D. A., Schwan, K.
and Vegdahl, S. R., "Programming Issues Raised by a Multiprocessor,”
Proceedings of the IEEE, vol. 66, 2 (February 1978), pp. 229 - 237.

[KéR78] Kernighan, B. W. and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

[KiS79] Kieburtz, R. B. and Silberschatz, A., "Comments on Communicating
Sequential Processes,” ACM Transactions on Programming Languages and
Systems, vol. 1, 2 (October 1979), pp. 218-225.

[KDL86] Kuck, D. J., Davidson, E. S., Lawrie, D. H. and Sameh, A. H., "Parallel
Supercomputing Today and the Cedar Approach,” Science, vol. 231, 4741
(February 28, 1986), pp. 967-978.

[LHGS6] Liskov, B., Herlihy, M. and Gilbert, L., "Limitations of Synchronous

Communication with Status Process Structure in Lanaguages for Distributed
Computing,” Principles of Programming Languages, 1986, pp. 150-159.

[MaS84] May, D. and Shepherd, R., "Occam and the Transputer,”" in Proceedings of
the IFIP WG10.8 Workshop on Hardware-Supported Implementation of
Concurrent Languages in Distributed Systems, North Holland Publishing
Company, October 1984.

[McA] McGraw, J. and Axelrod, T. S., "Exploiting Multiprocessors: Issues and
Options," in Programming Parallel Processors, R. G. B. II (ed.), Addison-
Wesley, . (to be published in 1987).

[MeB76] Metcalfe, R. and Boggs, D., "Ethernet: Distributed Packet Switching for
Local Computer Networks,” Comm. ACM, vol. 19, 7 (July 1976), pp. 395-404.

[Mol86] Moler, C., "Matrix Computation on Distributed Memory Multiprocessors,” in
Hypercube Multiprocessors, M. Heath (ed.), SIAM, 1986, pp. 181-195.

[Mol--] Moler, C., (private communication), 1986.

[PKL80] Padua, D. A, Kuck, D. J. and Lawrie, D. H., "High-Speed Multiprocessors
and Compilation Technology,"” Transactions on Computers, September 1980,
pp- 763-776.

105

[PaL| Pase, D. M. and Larrabee, A. R., "Intel iPSC Concurrent Computer,” in
Programming Parallel Processors, R. G. B. II (ed.), Addison-Wesley, . (to be
published in 1987).

[Pou86] Pountain, D., A Tutorial Introduction to OCCAM Programming, INMOS, Ltd.,
July 1986. (preliminary version).

[Rat85] Rattner, J., "Concurrent Processing: A New Direction in Scientific
Computing," in Proceedings of the National Computer Conference, 1985, pp.
158-166.

[Sei85] Seitz, C. L., "The Cosmic Cube," Communications of the ACM, vol. 28, 1
(January 1985), pp. 22-33.

[SSS85] "Balance 8000 Technical Summary,” System Manual, Sequent Computer
Systems, Inc., November 1985.

[SSS86a] "Parallel Product Specification," System Manual, Sequent Computer Systems,
Inc., September 1986.

[SSS86b] DYNIX Pdbx Debugger User’s Manual, Sequent Computer Systems, Inc., May
2, 1986.

[SANS81]| Shaw, M., Almes, G. T., Newcomer, J. M., Reid, B. K. and Wulf, W. A.| "A
Comparison of Programming Languages for Software Engineering,” Software -
Practice and Ezperience, vol. 11(1981), pp. 1-52.

[Sto82] Stotts, P. D., "A Comparative Survey of Concurrent Programming
Languages,” ACM SIGPLAN Notices , vol. 17, 10 (October 1982), pp. 50-61.

[Str8&0] Stroustrup, B., A Set of C Classes for Co-routine Style Programming, Bell
Laboratories Computing Science Technical Report, November 18, 1980.
[Str86] Stroustrup, B., The C++ Programming Language, Addison-Wesley, 1986.

[TGF] Thakkar, S., Gifford, P. and Fielland, G., "Balance: A Shared Memory
Multiprocessor System,” Second International Conference on Supercomputing,
Santa Clara, CA, . (to be published in 1987).

[UUU8O0| Ada Programming Language Reference Manual, U.S. Department of Defense,
July 1980.

[WaW84]
Wand, I. C. and Wellings, A. J., Distributed Computing, 1984, pp. 201-215.

[WLS79] Welsh, J., Lister, A. and Salzman, E. J., "A Comparison of Two Notations for
Process Communication,” Proceedings of the Symposium on Language Design
and Programmaing Methodology, Sydney, September 1979, pp. 225-254.

[Whi85] Whitby-Strevens, C., "The Transputer,”" Twelfth Annual Symposium on
Computer Architecture, Boston, June 1985, pp. 292-300.

[Wir83] Wirth, N., Programming in Modula-2, Springer-Verlag, 1983.

[86] "How Meiko is Getting an Instant Supercomputer,” Electronics, vol. 59, 36
(November 27, 1986), .

108

Biographical Note

The author is a Portland native who graduated from Lincoln High School and
the University of Oregon Honors College. Before beginning studies in computer
science, she coordinated medical conferences and published related books for Medical
Computer Services Association, Seattle, and set up the Department of Continuing
Medical Education at the Dartmouth-Hitchcock Medical Center, Hanover, New
Hampshire. She worked as a programmer/analyst at Tektronix for five years before
accepting a Tektronix fellowship for the Reentry Program in Computer Science at the
University of California, Berkeley in 1985. She received an OGC fellowship for study
towards a Master’s degree, also in 1985. She is leaving the Graduate Center to take a
position as Research Associate on the Parsifal Project at the University of Manchester
in England.

