
Automatic Program Restructuring for

Distributed Memory Multico~puters

Mitsuru Ikei

B.S.E.E., Yokohama National University, 1982

A thesis submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree
Master of Science

In

Computer Science a.nd Engineering

April 1992

The thesis "Automatic Program Restructuring for Distributed Memory Multicom-

puters" by Mitsuru lkei has been examined and approved by the following Examination

Committee:

-., , '.MIchael Wolfe
Associate Professor
Thesis Research Adviser

~r:::-pv

Steve W. Otto
Assistant Professor ..

Jingke Li
Portland State University
Assistant Professor

11

Acknowledgements

First I would like to thank my advisor, Michael Wolfe, for his support and encouragement

of my research. Without his precise suggestions, I would not have been able to complete

this work. I would also like to thank my thesis examiners, Jingke Li and Steve Otto, for

their invaluable, inspiring comments and research discussion.

I would like to thank Hitachi Chemical Shimodate Research Laboratory President

Keiji Hazama for giving me an opportunity to study here at Oregon Graduate Institute. I

would also like to thank Senior Researcher Hiroyuki Iyama who taught me many research

skills.

I would like to thank all my friends at OGI and Hitachi Chemical. At OGI, I would

especially thank Harini Srinivasan who always spared time to discuss issues, and Jon

Inouye for his help formatting the manuscript. I would also thank Miyoko Yagai of

Hitachi Chemical who acted as a liason to Japan, and Atsushi Suzunaga who took care

of the laboratory computers at Hitachi while I was working in the US.

Finally, I would like to thank my wife, Fujie and my children, Marie and Ray.

iii

Contents

Acknowledgements III

Abstract IX

1 Introd uction

1.1 Distributed Memory Multicomputer

1.2 Compiling Steps

1.2.1 Loop Restructuring

1.2.2 Array Alignment
1.2.3 Communication Generation

1.3 Array Alignment and Communication

1

3

4

6

7

8

10

2 Crystal

2.1 Program Example

2.2 Index Domain Alignment .
2.3 Control Structure Synthesis

2.3.1 Call-Dependence Graph

2.3.2 Loop Derivation

2.4 Spatial Domain Alignment. . .
2.4.1 Component Affinity Graph
2.4.2 Optimal Partition of CAG .

2.5 Communication Generation

12

12

14

15

15

17

19

19

21

23

3 Tiny

3.1 Data Dependence.
3.2 Distance and Direction Vectors ..

3.3 Loop Restructuring Transformation.

26

27

29

31

iv

4 Compilation

4.1 Preprocess..............

4.2 Loop Restructuring.

4.2.1 Data DependenceAnalysis

4.2.2 Program Decomposition

4.2.3 Loop Paralle1iza~ion
4.3 ArrayAlignment.

4.3.1 Component Affinity Graph
4.3.2 Optimal Partition of CAG .

33

33

34

34

35

36

37

38

39

5 Issues of Program Restructuring

5.1 Array Alignment vs Spatial Domain Alignment

5.2 Optimal Program Structure

42

42

45

6 Implementation

6.1 Program Decomposition

6.2 Loop Parallelization

6.3 CAG Building. . .

6.4 CAG Partitioning.

47

47

49

49

53

.7 Conclusion 55

Bibliography 57

v

List of Tables

2.1 Simple communication routines and their matching patterns. 24

VI

List of Figures

1.1 Compiling steps for DMMC
1.2 An example parallel program

1.3 An example optimal shared memory data parallel program

1.4 An example aligned shared memory data parallel program.

1.5 I-D and 2-D array distribution of the example program ..
1.6 A DMMC data parallel program corresponds to Figure 1.5(b)

1.7 Misaligned array distribution of the example program

5

6

7

8

9

10

11

2.1 Crystal compiling steps for DMMC .

2.2 An MM Crystal program

2.3 An aligned MM Crystal program . .

2.4 Reference Patterns of MM program.
2.5 CDG of MM program

2.6 A 8M data parallel MM program . .
2.7 Reference Patterns of 8M MM program
2.8 CAG of MM program

2.9 Partitioned CAG of MM program. . . .

2.10 An aligned 8M data parallel MM program .
2.11 A DMMC data parallel MM progra.m .

13

13

15

16

16

18

19

20
22

22

25

4.1 An MM Tiny program.

4.2 Data Dependence of MM program
4.3 A decomposed MM Tiny program

4.4 A Parallelized MM Tiny program .

4.5 Reference Patterns of MM program.
4.6 Partitioned CAG for MM program

4.7 An Aligned MM Tiny program

34

35

36

38

39

40

40

5.1 An Aligned MM Tiny program 45

6.1 Program Decomposition Algorithm 48

Vll

6.2 Loop Parallelization Algorithm .
6.3 CAG Building Algorithm ..
6.4 CAG Building Algorithm ..
6.5 CAG Partitioning Algorithm

50

51

52

54

viii

Abstract

Automatic Program Restructuring for

Distributed Memory Multicomputers

Mitsuru Ikei, M.S.

Oregon Graduate Institute of Science & Technology, 1992

Supervising Professor: Michael Wolfe

To compile a Single Program Multiple Data (SPMD) program for a Distributed Mem-

ory Multicomputer (DMMC), we need to find data that can be processed in parallel in

the program and we need to distribute the data among processors such that the inter-

processor communication becomes reasonably small. Loop restructuring is needed for

finding parallelism in imperative programs and array alignment is one effective step to

reduce interprocessor communication caused by array references. Automatic conversion

of imperative programs using these two program restructuring steps has been imple-

mented in the Tiny loop restructuring tool. The restructuring strategy is derived by

translating the way that the compiler uses for the functional language Crystal, to the

imperative language Tiny. Although an imperative language can have more varied loop

structures than a functional language and it is more difficult to select the optimal one,

we can get a loop structure which is comparable to Crystal. We also can find array

alignment preference (temporal + spatial) relations in a Tiny source program and add a

new construct, the align statement, to Tiny to express the array alignment preferences.

IX

,.

In this thesis, we discuss these program restructuring strategies which we used for Tiny

by comparison with Crystal.

x

Chapter 1

Introduction

Scientific computer programs need more computation power and more memory. Dis-

tributed memory multicomputers (DMMC) can satisfy this need since the hardware is

scalable both in computation size and memory size. Although many commercial DMMCs

are available, software support for DMMC is currently insufficient. We need four kinds of

additional software support to write a program which runs on a DMMC: (l)Process Cre-

ation, (2)Synchronization, (3)Data. Distribution and (4)Communication. For each need

of the software support, we can take two approaches, (a)the use of a new language con-

struct which explicitly describe the manner of execution or (b)the use of a new construct

or a new assumption (for an old construct) which implies some particular semantics.

Process Creation and Synchronization are necessary not only for DMMCs but also

for the shared memory parallel computers (SMPC) such as CRAY X-MP, Alliant FX

and Sequent Symmetry. We already have software support for this on SMPCs. These

can be used for DMMCs. For Process Creation, the use of fork and join lis one solution,

using approach (a). A programmer can explicitly specify the creation of a new processes

by placing a fork and terminate the process by placing a join anywhere in the program.

Although this pair of constructs is very powerful to express various kinds of concurrent

execution patterns, it is also error-prone because it has too much freedom. The Single

Program Multiple Data (SPMD) parallel programming model [Kar87] is another solution,

but uses approach (b). In this model, one program is compiled and replicated on all

1Join is also a. construct for synchroniza.tion.

1

2

processors. Each processor runs the same program but manipulates different parts of

the data. All processes are created at the beginning of an execution and exist until

the end of the program. In this thesis, we use SPMD since this model fits scientific

applications.

Synchronization between some processors is needed when they want access to the

same data. A lock is a construct for explicit synchronization which is used in PCF

Parallel Fortran [Par91] . Our interest in this paper is only for synchronization which

is implied by the loop constructs such as PARALLEL DO of PCF Parallel Fortran.

Scientific application programs tend to have huge arrays and therefore we concentrate

on data parallel algorithm [HS86]. Loops are the most common way to manipulate

these arrays and often take most of the computing time, therefore we want to solve the

synchronization problem in loops.

There are two types of language that support SPMD and implicit synchronization

programming. These are:

. Language Extension: Parallel constructs are added to conventional an imperative

language. Fortran 90[IS091] and Fortran-D[FHK+90] are extensions to FORTRAN

77. Fortran 90 has array and vector manipulation extensions which implies par-

allel execution. Fortran-D has FORALL constructs to specify parallel execution

explicitly.

. New Language: Design a new language for parallel programming. SISAL[OCA86]

and Crystal[Li91] both belong to this category. Both are functional languages, so

are declarative and free from side effects.

There are few languages which belong to one of above categories and can be compiled

for DMMCs. Crystal has a compiler for DMMCs. Fortran-D has constructs to specify

Data Distribution explicitly in contrast to Crystal and will depend on an aggressive

compiler. Neither one has explicit communication constructs in their languages.

In this thesis, we use Language Extensions but we do not use explicit Data Distri-

bution, unlike Fortran-D. We use Tiny[WoI90a] as a base language and try to achieve

3

implicit data decomposition on a conventional imperative language. The focus of this

thesis is on Data Distribution. Although we assume communication can be implicit, au-

tomatic generation of communication primitives is left for future work. We use the way

that Crystal compiler decomposes and distributes the data in their functional language,

and apply it to an imperative language Tiny. Automatic generation of communication

primitives should be similar to the method of Crystal compiler.

1.1 Distributed Memory Multicomputer

A DMMC is a computer which consists of many small processors. Each processor has

local memory and bi-directional communication paths. All are connected by a commu-

nication network. Any two processors can send and receive data frol? each other, but

there is no hardware support for a shared global memory space among the processors.

In other words, each processor only has its own local address space.

There are several commercial DMMCs like iPSCj2, iPSCj860, Paragon, nCUBE 2

and CM-5 already on the market. Although no two of the above commercial machines

have exactly the same processors and the same network topology, they have all adopted

cut-through or worm-hole routing to send data to non directly-connected processors.

This helps to keep communication time to be independent of the distance between two

nodes by sending data in pipelining style.

To run an SPMD program on a DMMC, Data Distribution is needed. Since there

is no global address space, it is obvious that large data such as huge arrays should be

decomposed into pieces and distributed among all processors. Otherwise the program

on a DMMC fails to be scalable in terms of memory size. To distribute the data, the

followingtwo properties should be considered ca.refully.

. Loca.lity: Data access cost is not uniform. Data, that resides inside each processor

can be referenced as cheaply as the memory access of a conventional sequential

computer. Access to the data outside a processor needs a certain amount of time

for communication.

4

. Communication Pattern: Communication can be slowed down by a communication

contention between two or more pairs of processors. To avoid this contention,

uniform or globally controlled communication is needed.

Data Distribution has a potential to cause communication since the necessary data

can 'be placed outside of the processor which manipulates it. We want to stick the

frequently accessed data in the processor which uses the data. Fortran 90 has array

manipulation constructs such as shift and spread which implies uniform communication.

These can be handled efficiently using the underlying communication network. Generat-

ing this kind of communication primitive is more feasible than generating only send and

receive primitives. The goal of this thesis is to distribute large arrays in an SPMD pro-

gram among processors such that (l)the communication between processors is reduced as

much as possible and (2)the communication patterns become as uniform as possible and

the communication can be executed efficiently by machine dependent communication

libraries.

1.2 Compiling Steps

To run an SPMD program on DMMC, we need to convert the program to one which

can be compiled (by a conventional compiler) for the target processor. The converted

program will be linked to communication and other libraries, after the compilation. The

input of this step is an SPMD user program which is written in an extended imperative

languag~ or a functional language. The output is the program which is written in an im-

perative language and calls interprocessor communication subroutines. We concentrate

this conversion step in this thesis.

We divided this conversion into three phases (l)Loop Restructuring, (2)Array Align-

ment and (3)Communication Generation; see Figure 1.1. In the Loop Restructuring

phase, a parallel program is transformed to a data parallel program. Since this out-

put program does not have the information concerning data distribution, we call this a

shared memory data parallel program. In the Array Alignment phase, all arrays in the

5

a shared memory pjU'allel program

(1)Loop Restructuring

an optimal shared meJYIory data parallel program

(2)Array Alignment

an aligned shared meQ"lory data parallel program

(3)Communication Generation

a DMMC data parallel program

Figure 1.1: Compiling steps for DMMC

6

real a(1:100.1:100)

real b(1:100)

real c(1:100)

integer n

for i = 1.n do

c(i) = 0.0

doall j = 1.n do

a(i.j) = a(i.j) + b(i)

endfor

endfor

Figure 1.2: An example parallel program

program are aligned to some virtual processor array. In the Communication Generation

phase, all arrays are actually distributed among physical processors and communication

primitives are inserted in the program.

1.2.1 Loop Restructuring

In Figure 1.2, we show a small example parallel program which is written in the Tiny

language. (This is not a realistic program. This is written only to show how compiling

steps look like.) An input program looks like a usual sequential program except for the

use of the parallel doall construct. This doall construct of Tiny has exactly the same

semantics as PARALLEL DO of PCF Parallel Fortran. In this program, b(i) can be

added to all members of the ith row of the array a in any order.

To convert this program to an optimal data parallel program, we need to select a loop

that has uniform access to large data and can be executed parallel. Although explicitly

described parallel loops are good candidates, sequential loops should also be considered

to get better performance. Data dependence analysis is needed to detect parallelizable

sequential loops.

In Figure 1.3, we show the output of this phase. The outer-most loop is parallelized

and distributed as two independent, adjacent loops. All three loops becomes parallel

7

real a(1:100,1:100)

real b(1: 100)

real c(1:100)

integer n

doall i = 1,n do

c(i) = 0.0

endfor

doall i = 1,n do

doall j = 1,n do

a(i,j) = a(i,j) + b(i)
endfor

endfor

Figure 1.3: An example optimal shared memory data parallel program

and selected as key loops for the data parallel program.

1.2.2 Array Alignment

Before decomposing all arrays to distribute them among processors, we want to relate all

dimensions of arrays in the program to each other. This is done by mapping all arrays

in a program to a unique virtual processor array. This phase ~scalled array alignment.

Fortran-D has an align construct for this purpose and the user has the responsibility for

this. We added the same align construct to Tiny to specify the alignment of arrays in

the intermediate output of this phase, although the align in Tiny is both syntactically

and semantically slightly different from that of Fortran-D.

In Figure 1.4, we show the output of this phase. We use the largest (in terms

of dimensionalities) array a for the virtual processor array. The relation between the

largest array and the other arrays are declared in the align statements. The first align

statement in the Figure 1.4 declares that array c should be aligned to the first dimension

of array a. Only the processor which owns a(i,l) should also own c(i). In the second

align statement, the array b is aligned similarly. Note that in both cases, array a is

referenced as the virtual processor array.

8

real a(1:100,1:100)

real b(1:100)

real c(1:100)

integer n

align(c(.1),a(.1,1))

align(b(.1),a(.1,1))

deall i = 1,n de

c(i) = 0.0

endfer

deall i = 1,n de

deall j = 1,n do

a(i,j) = a(i,j) + b(i)

endfor

endfor

Figure 1.4: An example aligned shared memory data parallel program

1.2.3 Communication Generation

Once the compiler has aligned all arrays in a program to some virtual processor array,

the only array it needs to distribute is the virtual processor array since all other arrays

are already mapped to it. There are many ways to distribute the virtual processor array

to physical DMMC processors. In Figure 1.5, we show two examples of data distribution.

For simplicity, here we assume that we have a vector of n processors or a square of nx n

processors. In the I-D case, the entire ith row of array a is stored in the single processor

Pi. The ith elements of arrays band c are also stored in Pi. In the other example, the

a(i,j) is mapped to processor Pi,j' The ith elements of arrays band c are stored only on

Pi,I by the constraints of align statement.

After data decomposition, each processor has two types of data which it uses and/or

it defines. These are the data that the processor owns and the data that the other

processors own. Each processor should receive the necessary data which belong to other

processors before calculating and defining a new variable. Each processor should then

send the updated data to any processors which use the new data.

9

a a a Pit

Pna a a a Pnl

(a) I-D Distribution (b) 2-D Distribution

Figure 1.5: I-D a.nd 2-D array distribution of the example program

In Figure 1.5(a), there is no need for communication since all processors own all

the data which they use. We show a DMMC program corresponding to Figure 1.5(b),

in Figure 1.6 in quasi-Tiny language. We assume that the initial values of arrays are

distributed before this program starts and the result will be gathered after the execution.

Each processor has an unique processor id proc_id and the row and column positions can

be calculated by the macros my.row.pos and my.column.pos respectively. In the body

of first if statement, the processors which are in the first column set array c to 0.0.

Similarly in the second if-then-else statement, the array b is multi casted row-wise from

the processor Pi,l and the others receive that value. The communication pattern of this

program is shown in Figure 1.5.

Although some assumptions may not be practical in many cases, we can extend this

method without losing generality. For instance, the assumption that we have n or nx n

processors can be avoided by changing the DMMC program to calculate blocks of data

instead of calculating one elements.

b(i) c(i) a(i,l:n) b(i),c(i) a(1:n,l:n)
I I

PIa a a a Pll

P2a a a a P21

r
t

10

rea1 a(1:100.1:100)

rea]. b(1:100)

rea]. c(1:100)

integer n

my_row = my_row_pos(proc_id)

my_column = my_column_pos(proc_id)

if(my_column == 1) then

c(my_row) = 0.0

endif

if(my_column == 1) then

multicast_in_row(b(my_row))

else

recei ve (b (my _row))

endif

a(my_column.my_row) = a(my_column.my_row) + b(my_row)

Figure1.6: A DMMC data parallel program corresponds to Figure 1.5(b)

1.3 Array Alignment and Communication

We showed that a shared memory pa.rallel progra.m can be converted to a SPMD program

which runs on DMMCs through three steps. We used two steps, Array Alignment and

Communication Generation, to distribute all arrays in a program to processor arrays.

Array Alignment has an important role to reduce the communication between processors.

Assume we have aligned as follows in the program of Figure 1.4.

align (c(#l),a(l,#l))

align(b(#1),a(1,# 1))

Both array c and array b are aligned to the second dimension of array a. The distribution

on physical processors becomes as shown in Figure 1.7.

In Figure 1.7(a), the entire array band c are stored in processor Pl' Since all

processors which have a(i,j) need b(i), b(i) should be sent to processor Pi. Figure 1.7(b)

is worse. Here, b(i) should be multicasted to the ith row of the processor array. It is

11

Pna

a a Pit

a a Pnl

a(1:n,l:n)

(a) I-D Distribution (b) 2-D Distribution

Figure 1.7: Misaligned array distribution of the example program

clear that the first alignment is better and can be executed efficiently.

This paper mainly discusses automatic array alignment. We want to derive an op-

timal aligned parallel program from an imperative source program which does not have

explicit align statements. The rest of this paper is organized as follows. Chapter 2 dis-

cusses the compiling approach for the functional language Crystal; I used its strategy for

array alignment of imperative programs. In Chapter 3 we discuss an imperative language

Tiny, for which I implement automatic array alignment. Chapter 4 shows the differences

between Tiny and Crystal, Chapter 5 discusses issues of program restructuring, Chapter

6 shows the algorithms and Chapter 7 is a conclusion.

b(i) c(i) a(i,l:n) b(i),c(i)

PIa I Q I G I a I Pll

P2a ct\ a I a I
P21

Chapter 2

Crystal

y
"

Crystal is a functional language which has a compiler for DMMC. Crystal has neither par-

allel constructs nor data decomposition constructs. Even though everything is implicit,

Crystal programs can be converted to iPSCj2 C programs by the steps in Figure 2.1.

The first phase, Index Domain Alignment, is a necessary preprocess for the Control

Structure phase. In this phase, all index domains of a Crystal program are aligned and

the output becomes an aligned Crystal progra.m. The three following steps almost cor-

respond to the ones in Figure 1.1. In the Control Structure Synthesis phase, necessary

control structures for execution are derived from the declarative description of Crystal.

In the Spatial Domain Alignment phase, all index domains are re-aligned in the context

of an imperative language. In the Communication Generation phase, communication

primitives are inserted. In this section, we describe how the Crystal compiler converts

programs in each of the four steps.

2.1 Program Example

In Figure 2.2, we show a Matrix Multiplication(MM) Crystal program as an example.

This program consists of index domain definitions, the first four lines, and data field

definitions, the rest of the program. An index domain definition defines the shape of

composite data structure. An index domain can be either a basic index domain or a

combination of basic domains which are combined by some operator. In this program,

we use an interval domain [O..n} for T, and we use another interval domain [1..n} for Dl.

12

13

a user Crystal program

(1)Index Domain Alignment

An aligned Crystal program

(2)Control Structure Synthesis

a shared memory data parallel program

(3)Spatial Domain Alignment

an aligned shared memofY data parallel program

(4)Communication Generation

a DMMC data parallel program

Figure 2.1: Crystal compiling steps for DMMC

dom T = [0. .n]

dom D 1 = [1.. n]

dom D2 = Dl * Dl

dom D3 = D2 * T

dfield a(i,j): D2 = aO[i,j]

dfield b(i,j): D2 = bO[i,j]

dfield c(i,j,k): D3 = if (k = 0) then 0.0

II else c(i,j,k-l) + a(i,k) * b(k,j)

fi

Figure 2.2: An MM Crystal program

14

D2 is defined as a domain product of Dl and Dl. Similarly D3 is defined as a product

of D2 and T.

A data field definition is a definition of a function over specified index domain. Both

a(i,j) and b(i,j) are defined on D2 to be initialized by the 2-D arrays aO[i,j]and bO[i,j],

respectively. In the definition of c(i,j,k) on D3, c(i,j,O) is set to 0.0 and c(i,j,n) has

the result of the matrix multiplication. Crystal has a reduction operator "\" and the

solution c2(i,j) could have been defined as:

dfieldc2(i,j): D2 = \ + {a(i,k) * b(k,j) I 1<=k<=n}

Here we assume the program is written to assure the calculation order since later we

want to compare the result to Tiny which has no reduction operator.

2.2 Index Domain Alignment

The first step to compile a Crystal program is Index Domain Alignment. The objective

of this step is to align all data fields to the data field which has the highest dimensionality.

The output program of this phase only has data fields which have the same shape, as

shown in Figure 2.3. In this aligned version of Crystal program, all data field definitions

are on D3. In the definition of a(i,j,k), a new dimension is added as a second dimension

j where all but j=l are set to 0.0. Similarly the new dimension i is added as the first

dimension in the definition of b(i,j,k).

We have two index domain alignment phases in Figure 2.1. Both these two phases

consist of almost the same processes, (l)building a component affinity graph(CAG) and

(2)finding the optimal partition of the CAG. Since the Spatial Domain Alignment phase

is more closely related to the imperative language case, here we only show the result and

the details are left for later in this chapter.

15

dom T = [0. .n]
dom D1 = [1. .n]
dom D2 = D1 * D1
dom D3 = D1 * D1 * T
dfield a(i.j.k): D3 = if (j = 1) then aO[i.k]

I I else 0.0
fi

dfield b(i.j.k): D3 = if (i = 1) then bO[k.j]
II else 0.0
fi

dfield c(i.j.k): D3 = if (k = 0) then 0.0
II else c(i.j.k-1) + a(i.1.k) * b(1.j.k)
fi

Figure 2.3:An alignedMM Crystal program

2.3 Control Structure Synthesis

In Control Structure Synthesis, an aligned Crystal program is' converted to an imperative

shared memory data parallel program. To compile a Crystal program, we need to derive

at least one sequential order on which processors can execute its definition. We have

to select the order such that the data dependence relations in the Data Field definition

are preserved. To derive this order, the Crystal compiler takes. two steps, (l)building a

Call-Dependence Graph(CDG) and (2)deriving the loop structure from the CDG. We

describe these two steps in this section.

2.3.1 Call-Dependence Graph

Call-Dependence Graph(CDG) is the graph which represents data dependences in a

Crystal program. To build a CDG, first we make a list of reference patterns. Reference

patterns are derived from data field definitions. A reference pattern has the following

form:

(2.1)

16

c(i,j,k) ..- c(ij,k-1)
c(ij,k) ..- a(i,1,k)
c(i,j,k) ..- b(1,j,k)

Figure 2.4: Reference Patterns of MM program

Figure 2.5: CDG of MM program

Above a(i}, . . ., in) is the data field which is defined by a data field definition, and

b(T}, . . . , Tn) is used in the definition. This can be read a(i}, . . ., in) depends on b(T}, . . ., Tn)

and the dependence is called call-dependence. In Figure 2.4, we show reference patterns

of the example MM program in Figure 2.3. Direction vectors[WoI78, Wo189] can be de-

fined on this reference pattern list in a similar way as originally defined. Using Form 2.1,

here direction vector is defined as:

(sign(i} - Td,. . ., sign(in - Tn))

where

From a reference pattern list, we can draw a CDG. The CDG is a directed graph such

that each node represents a data field and each directed edge represents call-dependence.

In Figure 2.5, we show a CDG of the example program in Figure 2.3. This graph is

similar to a data dependence graph except for the following:

< if T[i]< 0 Vi

sign(T[i]) = I if T[i) = 0 Vi

> if T[i] > 0 Vi

* otherwise

17

1. Dependence is defined between function definitions (data fields) not between state-

men ts(i.e. call-dependence)

2. There is neither anti-dependence nor output dependence.

In Figure 2.5, we also show direction vectors at corresponding edges.

2.3.2 Loop Derivation

Using the Call-Dependence Graph and direction vectors, we can derive a shared memory

version of the parallel program. The Crystal compiler uses three kinds of loop constructs

to form an execution order. These are:

for A sequential loop, which has the same semantics with DO in FORTRAN.

foraH A parallel loop, which has the same semantics with PARALLEL DO in PCF

Fortran.

while-active A special loop which can be executed by checking given call-dependence

to handle difficult cyclic CDGs.

To derive necessary loop constructs, the Crystal compiler .takes the following three

strategies:

1. Treat each strongly connected component in CDG as a unit.

2. Apply topological sort to the strongly connected components of the CDG to decide

the execution order of all units.

3. Break cycles in a unit by finding a dependence carrying component in the direction

vectors involved in the cycle.

In Figure 2.5, the strongly connected components are {a}, {b} and {c}. By topologically

sorting the graph, execution order can be either abc or bac. Since {a} and {b} have no

cycle, they both can form forallloops. To break a. cycle in {c}, we have to form a for

18

dom T = [0. .n]
dom Dl = [1. .n]
dom D2 = Dl * Dl
dom D2T = Dl * T
dom D3 = Dl * Dl * T
forall «i,k):D2T){

a(i,k) = aO[i,k]
}

forall «j,k):D2T){
b(j ,k) = bO[k,j]

}
for (k: T){

forall «i,j):D2){
c(i,j,k) = if (k = 0) then 0.0

I I elsec(i,j,k-l) + a(i,k) * b(j,k)
fi

}
}

Figure 2.6: A SM data parallel MM program

loop for the dependence carrying component, k. The output of this phase is shown in

Figure 2.6.

In this example, strongly connected components are all singletons and the cycle is a

self cycle. Finding a dependence earring component was easy, so we didn't need to use

while-active loops. In generally, we need while-active loops to resolve a cycle which has

no dependence carrying components. We won't discuss this case since we don't use this

kind of loop construct in imperative languages in this thesis. We also have a chance to

get multiple dependence carrying loops. In this case, the Crystal compiler keeps multiple

. loop structures, which are ordered by the degrees of parallelism. The most effective one

will be selected in a later phase. In Figure 2.6, the compiler applied minor optimizations

to reduce necessary memory size. As the result, a and b return to be defined on 2-D

domain.

19

c(i,j,k) - c(i,j,k-1)
c(i,j,k) - a(i,k)
c(i,j,k) - b(j,k)

Figure 2.7: Reference Patterns of SM MM program

2.4 Spatial Domain Alignment

To reduce data movement during program execution, we want to align all data fields to

a common index domain such that a related dimensions of data field definitions are the

same dimension of the common index domain. This is exactly the same need which we

had when we wanted to preprocess for Control Structure Synthesis. The only difference

is that we are now interested in the dimensions of data fields which are distributed among

processors because data movement along such dimensions has potential communication.

We are not interested in the dimensions which are traversed sequentially, since such

dimensions carry dependences and distributing along those dimensions doesn't make

sense. These two domains are called the spatial domain and the temporal domain.

The Crystal compiler uses the following two steps, (l)building a Component Affinity

Graph(CAG) and (2)finding the optimal partition of the CAG, to align a spatial domain.

We describe these two steps in this section.

2.4.1 Component Affinity Graph

The CAG is weighted undirected graph. Nodes of CAG are domain components and

edges are relations which are derived from the reference patterns. In Figure 2.7, we show

reference patterns of an example program in Figure 2.6. We denote a domain component

of a reference pattern as dom(c,l) which refers to the l-st domain component of the data

field c. Given a reference pattern, we define a distance between a domain component in

LHS and that in RHS as subtraction of an index expression in the RHS domain from

the corresponding LHS index expression. If the distance between two different domain

components dom(p, i) and dom(q,j) is constant, we say that there is a affinity relation

between dom(p,i) and dom(q,j) and denote this as (dom(p,i),dom(q,j). We can ignore the

20

Figure 2.8: CAG of MM program

first reference pattern since we are only interested in inter-data field relations. From the

second, we can derive two affinity relations, one between domain component dom(c,l},

which is the first component of data field c, and dom(a,l}, and other between dom(c,3}

and dom(a,2}. These two affinity relations can be denoted by (dom(c,l), dom(a,l}} and

(dom(c,3), dom(a,2}}. From the third reference pattern, two affinity relations, (dom(c,2),

dom(b,l}} and (dom(c,3), dom(b,2}} are derived. In Figure 2.8, we show a CAG of the

example program in Figure 2.6. The domain components of the same data field are

place in the same column in this figure. There are two types of domain components,

spatial component and temporal component. Dom(c,3} is the temporal component which

is represented by double circles, since it is defined by the index k which resides in the

temporal domain. All other components in the figure are spatial components.

The weights in the figure show strength or preference of these affinity relations. There

are three levels of weight, 00, 1 and f.. The 1 and f shows strength of relation between

two components. The f represents a value much smaller than 1. If two relations derived

from one reference pattern compete with each other, fS are assigned to these relations.

For example, from the following reference pattern:

a(i,j) ~ b(i, i)

21

two competing relations (dom(a,l), dom(b,l)), and (dom(a,l), dom(b,2)) are derived

and both edges will be rated as (. Infinity shows preference rather than strength of

relation. Edges between two temporal components are rated as 00. Since we don't want

to distribute data along a temporal domain, all temporal components would better be

aligned to the same domain. In Figure 2.8, we have neither a competi~g relation nor a

relation between two temporal components, so all edges are rated 1.

2.4.2 Optimal Partition of CAG

Using the CAG, the spatial domain alignment problem can be interpreted to the optimal

partition problem of the CAG. We want to partition the CAG into n groups such that

the stlm of the edge weights cut by partitioning is minimal, assuming n is the maximum

dimensionality of index domains in a program. Components which are derived from the

same data field must be belong to different groups. This problem is NP-complete. The

Crystal compiler uses heuristics to solve this problem. The rough sketch of this algorithm

is:

1. Select one data field(column) which has the largest dimensionality as the common

index domain.

2. For each data field(column) in CAG, form a bipartite graph with the common index

domain. An edge is placed between two components in the bipartite graph if there

is a path between the two components in CAG. The weight of the edge is the sum

of all edges connected to the two nodes.

3. For each bipartite graph, align the target to the common index domain according

to edge weights in the bipartite graph and reduce the CAG by the aligned data

field.

In Figure 2.9, we show the partitioned CAG of the example MM program. Using

the alignment in the figure, the aligned SM data parallel MM program can be derived

as shown in Figure 2.10. In this program, new dimensions are added as the second

22

Figure 2.9: Partitioned CAG of MM program

dom T = [0. .n]
dom D1 = [1. .n]
dom D2 = D1 * D1
dom D3 = D1 * D1 * T

forall «i,j,k):D3){
a(i,j,k) = if (j = 1) then aO[i,k]

II else0.0
fi

}

forall «i,j,k):D3){
b(i,j,k) = if (i = 1) then bO[k,j]

II else 0.0
fi

}
for (k: T){

forall «i,j):D2){
c(i,j,k) = if (k = 0) then 0.0

I I else c(i,j,k-1) + a(i,l,k) * b(l,j,k)
fi

}

}

Figure 2.10: An aligned 5M data parallel MM program

23

dimension j of a(i,j,k) and as the first dimension i of b(i,j,k) again. Since we don't have

any 00 edges in the CAG, the result of spatial domain alignment becomes exactly the

same as the result of the previous index domain alignment.

2.5 Communication Generation

To run a program on DMMCs, we have to distribute data in the program among proces-

sors and insert communication primitives into the program. We know which data fields

can be distributed from the aligned SM program. The data field which is defined by

forall constructs can be distributed. Since we have aligned all data fields to the common

index domain, the only data field we have to distribute is the one which was selected as

the common index domain. However we still don't know which dimensions should be

distributed nor which layout strategies(i.e. block, interleaving, etc.) should be taken to

run the program efficiently. All these factors depend on the actual DMMC on which the

program run. Not only the kind (architecture) of DMMC but also the configurations(i.e.

numbers of processors, size of memory, etc.) of the computer should be considered at

compile time. The Crystal compiler takes three steps for this phase. These are:

1. Distribute all spatial domains by blocked interleaving strategy. The number of

processors and the block size are not fixed but given as parameters.

2. Generate communication primitives by pattern matching the reference patterns to

the predefined communication primitives.

3. Select values of all the parameters by estimating computation and communication

time of a given DMMC and optimize it further.

There are ten communication basic primitives: five simple routines and five general

routines. (More primitives, such as gather and scatter can be added to this.) The

only differences between these are that simple routines only communicate on a single

dimension but general routines can communicate on multiple dimensions. In table 2.1,

we show simple routines with their matching pattern. In the table, D is an index domain

24

Table 2.1: Simple communication routines and their matching patterns

representing a processor array, p is the dimension where they communicate, s denotes the

index of the source processor, d denotes the destination processor index, a is a pointer

to the input data, at is a pointer to the output data, and B is the size of message. In

the patterns, all subscript shows a position of indices, ip and jp are variable, dp, sp and

c are constant.

Using these primitives, the Crystal compiler can derive the example DMMC data

parallel program as shown in Figure 2.11. In this program, index domain E denotes a

processor array which we use as a DMMC and index domain D2B is the portion of global

data field which each processor has. Since we take blocked interleaving distribution, we

use data field P to describe how to interleave. For simplicity, we set E and D2B as squares

and we didn't define P. We can think of these as being parameterized. There are two

macros used here. LocaUo_ Global can calculate the global index from P, a global index

domain, a local index and a processor index. Index_to_Pid is used to find the processor

index which has given global indices. The example MM program has been transformed

to the program which explicitly communicates on a DMMC.

Routines Patterns

Spread(D,p, s, a, at, B) (it, .., ip, .., in) - (it.., sp, ..in)
Reduce(D,p, d, a, at, B, €B) (it,..,dp,..,in) - (it..,ip,..in)
Multispread(D,p, a, at, B) (it,..,ip,..,in) - (it..,jp,..in)
Copy(D,p, s, d,a, at, B) (it,..,dp,..,in) - (it..,sp,..in)
Shift(D,p, c,a,at, B) (it,..,ip+c,..,in) - (it..,ip,..in)

dom T = [0. .n]
dom D1 = [1. .n]
dom D2 = D1 * D1
dom D3 = D1 * D1 * T
dom E = [0. .m] [0. .m]

dom D2B = [0. .1] [0. .1]

forall ((p,q): E){

forall ((il,jl):D2B){

(i,j) = Local_to_Global(P,D2,(il,jl),(p,q))

foraH (k: T){

al(il,k) = if (j = 1) then aO[i,k]
II else 0.0
fi

}

}

forall ((il,jl):D2B){

(i,j) = Local_to_Global(P,D2,(il,jl),(p,q))

foraH (k: T){

bl(jl,k) = if (i = 1) then bO[k,j]
II else 0.0

fi
}

}
for (k:T){

forall ((il,jl):D2B){

(i,j) = Local_to_Global(P,D2,(il,jl),(p,q))

(pi1,pj1) = Index_to_Pid(P,D2,(i,1))

(pi2,pj2) = Index_to_Pid(P,D2,(l,j))

Spread(E,2,(pil,pjl),al(il,k),aa(il,k),1)

Spread(E,l,(pi2,pj2),bl(jl,k),bb(jl,k),1)

cl(il,jl,k) = if (k=O) then 0.0
I I else cl(il,jl,k-1) + aa(il,k) * bb(jl,k)

fi

}
}

}

Figure 2.11: A DMMC data parallel MM program

25

Chapter 3

.
TIny

Tiny is a program restructuring tool for imperative languages. The main objective of

Tiny is loop restructuring. Tiny has a menu based user interface, which allows users to

restructure loops interactively. During an interactive session, illegal restructurings(i.e.

restructurings which may change the semantics of the original program) are detected

by its built-in data dependence analysis, and users are informed automatically. After

the session, Tiny can convert the program to a C program or a Fortran program with

parallel execution directives. These programs can be compiled and run on Sequent or

Alliant shared memory parallel computers(SMPC).

Tiny has its own imperative language to describe programs. (We use Tiny to mean

both the tool and its language.) Unlike Fortran, this language is not designed to write

big scientific programs. We can easily convert a well-formed loop structure as would be

written by Fortran DO statements to a Tiny program and can restructure the program

to get more parallelism, although it does not have several important features to write

real application programs, like subroutine calls. We select Tiny as a base language for

this project because:

1. Tiny is a simple imperative language with parallel loop constructs.

2. Tiny has strong loop restructuring features supported by its dependence analysis.

Our goal is to compile an imperative parallel program for distributed memory multi-

computers(DMMC) by focusing on loop structures. The simplicity of Tiny allows us to

26

27

avoid other issues which require expensive interprocedural analysis [CK87]. We want

to restructure a given parallel program to an appropriate data parallel form. Powerful

restructuring features are feasible for this. In this chapter, we describe the features of

Tiny which we use for this project.

3.1 Data Dependence

Since Tiny is an imperative language, a Tiny program does not show the definition of

some function directly but does show the execution order of statements. In a Tiny

program, functions are thought to be defined indirectly by the sequence of program

statements. We want to restructure the program without changing the function which is

coded into the program. However once a program is written as a sequ~nce of executable

statements, one can easily imagine that reproduction of the original function is very

difficult. The most popular way to solve this problem is to restructure the program so

that the effect of original (imperative) program is preserved. Data dependence analysis is

the analysis of program execution effects in (the execution of) a sequence of statements.

For instance, in the following program:

Sl:a = b + C

S2:d = 2.

statement 51 changes the value of a and statement 52 changes the value of d. We can

change the execution order of 51 and 52 since the values of a and d are independent of

the execution order of these statements. There is no data dependence between 51 and

52. Note that all the statements independent each other can be executed any order, thus

can be executed in parallel.

In the next example:

Sl:a = b + C

S2:d = a + 2.

28

we can not change the execution order of 51 and 52 since 52 uses a to calculate d and a

is computed by 51' In other words, 52 depends on 51' This data dependence is called

true dependence or flow dependence and is denoted 51 fJ52. There are two other data

dependences which force us to keep execution order of two statements. In the program

segment:

SI:a = b + C

S2:b = d / 2.

51 uses the value of band 52 reassigns a new value to b. Since 51 uses an old value of

b, 51 should be executed before 52. This is called antidependence and is denoted 51652.

The third data dependence can be found in the following example:

SI:a =b + C

S2:d = a + 2.

S3:a = e + f

where 51 assigns a value to a and 53 reassigns a new value to a. Since the assignment

of 53 should be effective after the execution of this segment of the program, we can not

change the execution order of 51 and 53' This is called output dependence and is denoted

51fJo53. In this example, we also have two other data dependences, 51fJ52 and 52653,

The data dependence can be represented by a directed graph as shown in the following:

Since all three relations between 51, 52 and 53 are fixed by the dependences, we can not

change the execution order of these three statements nor we can not execute these in

29

parallel.

Analyzing data dependences, the flow of control should also be considered. For

instance, in the following program:

we have exactly the same statements as the previous example, SI, S2 and S3 but with

different flow of control. Although S100S3 and Sl052 hold in this example, S2fJS3 does

not hold since we know either 52 or 53 is executed, but not both.

3.2 Distance and Direction Vectors

Inside loop structures, the data dependence relations become more complicated. Not

only inter-statement dependences but also inter-iteration dependences can be exist since

the same statement is executed many times. In the following example:

52 depends on 51 for all i, regardless of whether Sl and S2 are inside the loop. There

is another dependence; S2 depends on S2, since d(i-I) was computed by S2 in the

previous iteration. To distinguish the same statement in different iterations, we use

superscripting. These dependences can be denoted 5ioS~ and 5~-10S~. The distance

51:a = b + c

if (x >= 0.) then

52: d = a + 2.

else

53: a=e+f

endif

for i = 1,n do

51: a(i) = b(i) + c(i)

52: d(i) = a(i) + d(i-1)

endfor

30

and the direction in the iteration space are defined on these relations. The iteration space

distance between Sf and S~ is0, and the distance between S~-1 and S~ is i- (i- 1) =1.

The direction is defined as follows:

< The distance is always positive in the iteration space.

= The distance is always zero in the iteration space.

> The distance is always negative in the iteration space.

* The distance can vary in the iteration space.

Using these directions, the relations in the example are usually denoted 51°=52 and

52°<52.

In multiple-nested loops, there is a distance for each loop. We make a tuple (d1 ,...,dn)

by putting alldistancesfrom outer-loop to inner. We call this tuple a distance vector.

In a similar way, we can define the direction vector (s},...,sn). For instance, in the loop:

for i = 1,n do

for j = 1,n do

we can find the following dependences, direction vectors and distance vectors:

51: a(i,j) = a(i,j-l) + b(i,j)

52: c(i,j) = a(i,j) + d(i+l,j)

53: d(i,j) = 0.1

endfor

endfor

51 0(=.<) 51 (=,<) (0,1)

51 0(=.=) 52 (=,=) (0,0)

52 8«.=) 53 «,=) 0,0)

31

In this example, we have dependences with non-(=) directions in both columns of

direction vectors. The outermost loop which has non-(=) direction dependences is usually

called a. dependence carrying loop, which has an important roll for loop restructuring

discussed later in this chapter. Each loop in the example carries one dependence relation.

In the examples, we have constant distances so that directions can be found easily.

In general, finding dependence and computing distances and directions are not trivial

problems. We usually combine GCD test and Banerjee's Inequality[Ban76] to solve the

common cases of these problems. So does Tiny!.

3.3 Loop Restructuring Transformation

Using direction vectors and/or other results of the dependence analysis, Tiny can re-

structure loops without changing the semantics of the original program. Currently Tiny

supports the following eight loop restructuring transformations[WoI90b]:

Parallelization Try to parallelize a loop. If there is no loop carrying dependence at

the loop, this transformation succeeds.

Vectorization Try to vectorize a loop. If the loop is the innermost and it has no loop

carried dependence cycle, this transformation succeeds.

Distribution Try to distribute a multi-statement loop. All dependence cycles should

be kept in a single loop.

Interchange Try to interchange a loop with its immediate outer loop. If there is no

«, » dependence relation concerning the (outer, inner) loops, this succeeds.

Circulation Try to move the innermost(or outermost) loop to the outer-most (or in-

nermost) position in a single step. A sufficient condition for this restructuring is

discussed in [WoI91a].

1Tiny also has several more tests for more complex cases.

32

Skewing Add (or subtract) an outer loop index to the lower and the upper limits for

an inner loop. This is always legal and can change its direction vectors.

Reversal Try to reverse the execution order of a loop. If the loop carries no dependence,

this succeeds.

Bumping Add (or subtract) some constant integer to the upper and the lower limit of

a loop. This is always legal.

More precise discussions and the algorithms for these loop restructuring are in [Wol9l b].

More wide range of program restructuring based on the data dependence analysis are

introduced in [PW86].

Chapter 4

Compilation

Our goal is to compile Tiny programs for Distributed Memory Multicomputers(DMMC).

One obvious way to achieve the goal is to apply the methods used in the Crystal compiler

to compile Tiny programs. This sounds straightforward, however there is a gap between

the declarative (functional) language Crystal and the imperative language Tiny, which

needs to be resolved somehow. In this chapter, we translate the Crystal compilation

steps for an imperative language and apply them to Tiny programs. We use the same

matrix multiply (MM) program which we used to illustrate the Crystal compiler. We

also discuss the differences in each step between Crystal and Tiny.

4.1 Preprocess

Index Domain Alignment is a necessary preprocess step for Control Structure Synthesis

in the Crystal compiler. Since a Crystal program only defines each data field, the compiler

needs to relate the dimensions of all data fields to produce proper loop structures later.

For imperative languages, this process is done by the programmer. In Figure 4.1, we

show a Tiny version of the MM program. All necessary control structures including loops

are already encoded in a program as you see in the figure. Although the Tiny compiler

does not need this preprocess step, it may still be important to produce an efficient code.

A program which is poorly written or hides the potential parallelism may be compiled

to a slower DMMC program.

33

34

real a(1:100,1:100)

real b(1:100,1:100)

real c(1:100,1:100)

integer n

for i = 1,n do

for j = l,n do

S1: c(i,j) = 0.0

for k = 1,n do

S2: c(i,j) = c(i,j) + a(i,k) * b(k,j)
endfor

endfor

endfor

Figure 4.1: An MM Tiny program

4.2 Loop Restructuring

The second compiling step for the Crystal compiler is Control Structure Synthesis. The

compiler derives loops and other constructs such that (1)the data dependence relations

in programs are preserved and (2)the output fits in the data parallel model. Since a

Tiny program already has a flow of control, we can translate this compiling step to

restructuring a program such that (1) and (2) are satisfied. To satisfy (1), we need to

analyze the data dependence relations of a program. We also need some systematic way

to restructure loops for (2).

4.2.1 Data DependenceAnalysis

After the Preprocess step, all Crystal program data fields are defined on the common

index domain which has the largest dimensionality in the program. All functions are

redefined on this common index domain and all loops are derived to be able to scan this.

The Call-Dependence Graph (CDG) is used (l)to find functions which should be involved

in the same loop (strongly connected component), (2)to decide the calculation order of

each function (topological sort) and (3)to select the correct loop structures (breaking

cycles). This graph is crucial to convert declarative descriptions to imperative codes.

35

518(=.=)52

518(=.=)52

528(=,=.<)52

52b(=.=.<)52

528(=.=.<)52

Figure 4.2: Data Dependence of MM program

For Tiny, a CDG is not necessary in the sense that the execution order and the loops

are given as a program. We need the data dependence analysis to preserve the data

dependence relations at this restructuring phase. We show the data dependence relations

for the MM program in Figure 4.2. We use the built-in data dependence analysis of

Tiny to find these relations. Note that the CDG and the data dependence graph (DDG)

are quite different. The CDG shows the dependence relations of functions; by contrast

the DDG shows the dependence relations between statements. Since the statements can

change the values in memory more than once, the DDG has two more dependence types,

anti-dependence and output dependence.

4.2.2 Program Decomposition

Following the Crystal compiler, first we want to find the strongly connected components

in the DDG. Although we already have loops in Tiny programs, the structures and

the kinds of loops may not be the same as those the Crystal compiler produces. To

make these loop structures be similar to Crystal, we distribute all strongly connected

components in the DDG into independent loops. In Figure 4.2, we have two strongly

connected components, {Sd and {S2}' Using the Loop Distribution transformation

of Tiny, the MM program is converted as shown in Figure 4.3.

Even using the same strategy to form loops, the granularity of program decomposition

is not exactly the same between Crystal and Tiny because of the differences between CDG

and DDG. A DDG consists of statement nodes, whereas a CDG consists of definition

36

real a(1:100.1:100)

real b(1:100.1:100)

real c(1:100.1:100)

integer n

for i = 1.n do

for j = 1.n do

SI: c(i.j) = 0.0
endfor

end:for

for i = 1.n do

for j = 1.n do

:for k = 1. n do

S2: c(i.j) = c(i.j) + a(i.k) * b(k.j)
endfor

endfor

end:for

Figure 4.3: A decomposed MM Tiny program

nodes. The definition of a function usually uses more than one statement so Tiny uses

finer granularity at this decomposition. For instance in Figure 4.3, the two definitions of

c(i,j) in 81 and S2 are divided into two loops. Finer granularity of Tiny does not mean

smaller loops. Since the DDG has two more dependence relations which arise from the

side effects of imperative languages, strongly connected components can be larger.

4.2.3 Loop Parallelization

To form a data parallel model, the Crystal compiler assumes that the common index

domain is distributed among processors. Since all data fields are already aligned to

the common domain and can be scanned from any dimension under the restriction of

the CDG, the Crystal compiler tries to find the outermost dependence carrying loops

which free all inner loops to be executed in parallel. As the result the outer dependence

carrying domains become temporal domains and the rest become spatial domains which

correspond to parallel loops.

37

Similarly, we assume that there is a virtual common array distributed among pro-

cessors. We use the shape of an array which has largest dimensionality in the program

as this virtual common array. We have not aligned all arrays to this common array yet,

however we assume that we will be able to do it in the later restructuring phase. We

want to form the loop structure such that the outermost loop carries dependences and

the inner loops can be parallelized. We use the following algorithm to do this.

1. If all loops are processed then we are done.

2. Pick an unprocessed innermost loop.

3. Try to parallelize the loop by the Loop Parallelization transformation.

4. If the parallelization succeeds then repeat from 1.

5. If the parallelization fails then try the Loop Interchange transformation.

6. If the interchange succeeds then try to parallelize the loop.

7. Repeat from 1.

Since we use Loop Parallelization and Loop Interchange of Tiny, the data depen-

dences in the original program are checked and preserved. In Figure 4.4, we show an

output MM program of this phase. In the figure, the two loops around SI are paral-

lelized. The k loop, a dependence carrying loop, is interchanged twice to become the

outermost loop of S2; consequently the two inner loops are pa.rallelized.

4.3 Array Alignment

In the previous step, the Crystal compiler converted a program to intermediate impera-

tive form with loop structures. The common index domain of the Crystal program is now

divided into the temporal domain which is scanned by dependence carrying loops, and the

spatial domain which forms parallel loop constructs. The Spatial Domain Alignment is

the realignment of this common domain in the context of the given loop structure. Tiny

38

real a(1:100,l:100)

real b(1:100,l:100)

real c(1:100,l:100)

integer n

doall i = l,n do

doall j = 1,n do

51: c(i,j) = 0.0
endfor

endfor

for k = l,n do

doall i = l,n do

doall j = l,n do

S2: c(i,j) = c(i,j) + a(i,k) * b(k,j)
endfor

endfor

endfor

Figure 4.4: A Parallelized MM Tiny program

programs have loop structures from the beginning. Since we assumed that the common

array is distributed among processors and we restructured the loops in a similar way to

Crystal, we want to align all arrays in the program to the common array. The objective

is to find the array alignment which causes least communications during the program

execution. To find the optimal alignment, we use the same strategy as Crystal, making

a Component Affinity Graph (CAG) and finding its optimal partition.

4.3.1 Component Affinity Graph

The CAG is a weighted undirected graph built by the reference patterns of a Crystal

program. Nodes of a CA G represent the domain components of Crystal data fields. From

the inter-data field relations of the reference patterns, the affinity relations are derived

and the weighted edges are drawn from this information. To built the CAG, we first

need to derive reference patterns from a Tiny program. The Crystal compiler would

already have found the reference patterns in order to build the CDG; since Tiny uses a

DDG instead, the reference patterns will not ha.ve been found yet. The Crystal reference

39

c(i,j)-c(i,j)
c(i,j)-a(i,k)
c(iJ)-b(k,j)

Figure 4.5: Reference Patterns of MM program

patterns can be interpreted for Tiny as follows:

1. Find an assignment statement which assigns a value to an array A and is located

inside a loop.

2. If the RHS of the assignment also has an array B then there is a reference from

array B to array A.

3. If the assignment is under the control of conditional statements then all the arrays

in the condition expressions should be considered as if they are in the RHS of the

assignment.

In Figure 4.5, we show the reference patterns of the MM program. The index expressions

in the reference patterns are most likely to have at least one loop variable; otherwise it

does not make sense that the original assignment exists inside loops. Using exactly the

same method used for Crystal, we can derive CAGs. The only difference is that the

nodes or domain components in a Tiny CAG are not data fields but are arrays.

4.3.2 Optimal Partition of CAG

Using exactly the same heuristic algorithm as Crystal, we can partition the CAGs. We

show the partitioned CAG of the MM program in Figure 4.6. In the figure, we have three

columns and two rows since there are three arrays, a, band c in the reference patterns and

the largest array is two dimensional. From the second and the third reference patterns,

we derived two edges, (dom(c,l), dom(a,l)) and (dom(c,2), dom(b,2)). All edges are

rated as 1 since neither is along the temporal component nor a competing edge.

Using the align statement we added to Tiny, the aligned MM program is derived as

shown in Figure 4.7. The Tiny compiler selects the largest and the latest declared array

G

G

40

Figure 4.6: Partitioned CAG for MM program

real a(1:100,1:100)
real b(1:100,1:100)

real c(1:100,1:100)

integer n

align(a(#1,#2),c(.1,#2))

align(b(.1,#2),c(#1,#2))

doall i = 1,n do
doall j = 1,n do

81: c(i,j) = 0.0
endfor

endfor
for k = 1,n do

doall i = 1, n do
doall j = 1,n do

82: c(i,j) = c(i,j) + a(i,k) * b(k,j)
endfor

endfor
endfor

Figure 4.7: An Aligned MM Tiny program

41

as the virtual processor array. In the MM program, the array c is selected and used

as a reference in the two align statements. Any Tiny program can be converted to this

aligned form automatically.

Chapter 5

Issues of Program Restructuring

After implementing the Crystal compiling steps in Tiny, we tested the transformations

by converting several Tiny programs to the parallelized and aligned forms. We have

found several problems during the experimental tests. In this chapter, we discuss these

problems and the possible solutions.

5.1 Array Alignment vs Spatial Domain Alignment

We find a problem in the MM program which we used to illustrate both the Crystal

compilation steps and the Tiny compilation steps. The outputs of these compilations

show the different alignments. Using the Tiny align statements, the alignments can be

described as follows:

Crystal Output

align(a(.l,.3,l),c(.l,.2,.3))

align(b(13,.2,l),c(.l,.2,.3))1

Tiny Output

align(a(#l,.2),c(.l,12))

align(b(.l,12),c(.l,.2))

Note that the align statements in the Crystal output include the third dimension #3

which are not distributed among processors but stored in each virtual processor. We

defined the align statement as aligning an array to the common virtual processor array

in the program. We selected the array which has the highest dimensionality as the

IThe direct translation from Figure 2.9 would be align(b(#2,#3.1),c(#1,#2,#3)) though the b is
transposed in the Crystal program.

42

43

common array. This common array is comparable to the spatial domain in a Crystal

program. The Tiny array alignment forced all the arrays to be aligned inside the spatial

domain. This is wrong since we sometimes want to keep values in the same processor

along some dimension of an array. The most common such case is that the domain we

want to keep values along is scanned by a sequential loop, which is comparable to the

Crystal temporal domain. The Crystal compiler does not have this problem because even

at the Spatial Domain Alignment phase, it aligns all data fields to the common index

domain which has both the spatial and temporal domains.

We thought that we interpreted the Crystal Spatial Domain Alignment correctly as

the Tiny Array Alignment, though we had incorrectly dropped the temporal domain part

from a Tiny program. The next question is "Where can we find the temporal domain in

a Tiny program?" The answer is "In the sequential loops. " We can't find the temporal

domain in the Tiny arrays as we could find in the Crystal data fields because we do not

need it. For instance, in the following Crystal program:

dom T = [0. .n]

dfield fact(i): T = if (i = 0) then 1.0

I I else fact(i-l) * i

fi

we need the index domain T to express the data dependence relations in the definition

of fact. This turns out to be the temporal domain because the domain carries the call-

dependence. A naive Tiny interpretation of this program would be as follows:

real fact(O:100)

integer n

fact(0) = 1. 0

for i = 1,n do

fact(i) = fact(i-l) * i

endfor

44

But in a Tiny program we do not need the domain which corresponds to T in the Crystal

program since we are not defining the function; instead we can just assign a value and

overwrite the value. The more realistic equivalent program is as follows:

real fact

integer n

fact = 1.0

for i = l,n do

fact = fact * i

endfor

In this program, fact is defined as a scalar. Although we have no arrays in the program,

fact is reassigned n times and therefore we can see a sequence of assignments to fact

along a temporal domain. We missed this case because we only collected the information

concerning the arrays in Tiny programs.

We can fix this problem using the loop iteration spaces in a Tiny program as domains

for a variable. We can relabel a variable inside loops such that the variable has all the

loop variables as indices. The relabeling algorithm is roughly as follows:

1. Find an assignment which is located inside loops.

2. Add all the loop variables as indices to a variable in the LHS of the assign statement

as if it is an array that has exactly the same dimensionality as the nesting level of

the statement.

3. Change the all variables for which new indices are added and is in the same level

of loop nesting as its RHS counterpart. (If a new loop variable is added to LHS,

the variable should be decremented by the step of the loop in RHS.)

We can add the relabeling step followed by the steps we already developed for Tiny

programs. For instance relabeled 52 in Figure 4.4 would be:

c(i,j)(k.i.j) = c(i.j)(k-1.i.j) + a(i.k) * b(k.j)

45

real a(i:i00,i:i00)

real b(i:i00,i:i00)

real c(i:i00,i:i00)

integer n

align(a(.2,.i),.2(.i..2..3))

align(b(.i,.3),.2(.i..2..3))

align(c(.2,.3),.2(.i,.2..3))

doall i = i.n do

doall j = i.n do

Sl: c(i,j) = 0.0
endfor

endfor

for k = i.n do

doall i = i.n do

doall j = i.n do

S2: c(i.j) = c(i,j) + a(i,k) * b(k,j)
endfor

endfor

endfor

Figure 5.1:An Aligned MM Tiny program

The second pseudo indicesare added to the c(i,j)references.In the followingsteps,we

use these pseudo indices to create reference patterns and to build the CAG. Finding the

deepest nested loop structure and selecting it as a common index domain for the Tiny

program we canderive the same aligned program as the Crystal program as shown in

Figure 5.1. Each array is aligned to an iteration space domain, similar to a Crystal do-

main. A domain denoted #i(#h,..,#jn) to refer to the i-th independent loop structure,

and #h,..,#jn refers to the nested loops of that structure. In Figure 5.1, #2(#1,#2,#3)

refers to the second loop structure (the k-i-j loop).

5.2 Optimal Program Structure

In the loop restructuring phase, we tried to find the outermost dependence carrying loop

to parallelize as many inner loops as possible. The algorithm we used is not the optimal

46

because of the following two reasons:

1. We have not tried to reduce cycles which are made by anti-dependence and/or

output dependence, which Crystal programs do not have. These cycles can be

eliminated through additional memory usage and data copying.

2. We have not taken all possible loop transformations to get more parallelism. For

instance, we could use the Tiny Loop Skewing transformation to parallelize loops

which have flow dependence cycles in programs.

We have to describe two more things we have not considered. First we only use the

doall construct for this project. Tiny has another construct forall which is comparable

to the FORALL of Fortran-D. This may give us more appropriate representation of

parallelism. Second we have not discussed the optimization of mapping parallel loops

to physical processors. Our strategy was (1)Assume all array elements are distributed

among all (virtual) processors, (2)Distribute virtual processors to physical processors,

and (3)Simulate virtual processors by sequential loops in each node. We do not know

how we can convert all parallel loops. into efficient virtual processor simulation loops.

Further more, comparing the Tiny output of the MM program to one which is hand-

coded for a DMMC[Ott91], we found more sophisticated data movement in the latter

program. So far we assumed that arrays in a program will be statically distributed

in blocked interleaved fashion after the alignment phase. However in that program,

Otto dynamically redistributes the arrays such that each processor cycles through the

entire array. Assuming that n is the number of processors, Otto adds a new sequential

outermost loop which changes the distribution n times. A block of array data travels

around all processors in n iterations. Although this schema does not break our alignment

policy, we don't have the method to form this kind of loop structure.

Chapter 6

Implementation

The compilation steps we have described are implemented as one of the menus of the Tiny

loop restructuring tool. An user can select Crystal from the menu, and can perform all

compilation steps at once or separately step by step. The compilation steps are divided

into four programs, (l)Program Decomposition, (2)Loop Parallelization, (3)CAG Build-

ing~ and (3)CAG Optimal Partioning. In this chapter we show these four algorithms.

6.1 Program Decomposition

The Tiny compiler parses an input program and creates a symbol table and an abstract

syntax tree. Each node of the syntax tree has two special pointers for a list of incoming

dependence relations and a list of outgoing dependence relations. An element of the

relation list consists of a pointer to a node which is related by the dependence and a

direction vector for the dependence. The Tiny compiler can handle its loop restructuring

transformations using this data dependence information. We use these loop restructuring

subroutines for the compilation for DMMC. In Figure 6.1, we show an algorithm for the

program decomposition phase. The procedure Traverse_Distribute simply traverses the

abstract syntax tree in the depth first fashion and tries to distribute loops using the Tiny

builtin procedure Distribute_Loop.

47

48

Algorithm Decompose(Entry)
Input: Entry node Entry of a Tiny abstract syntax tree.
Output: A decomposed Tiny abstract syntax tree.
begin

Traverse..Distribute(Entry)
end

Proced ure Traverse..Distribute(N)
Input: A node N of a Tiny abstract syntax tree.
Output: A decomposed Tiny abstract syntax tree.
begin

if a node N is null then return

Traverse..Distribute(N-+Child)
Traverse..Distribute(N-+Next)
if a node N is a loop then

Distribute_Loop(N)
end

Procedure Distribute_Loop(N)
Input: A loop node N of a Tiny abstract syntax tree.
Comment: Using data dependence information, try to distribute the nodes belong to the
loop.

Figure 6.1: Program Decomposition Algorithm

49

6.2 Loop Parallelization

In Figure 6.2, we show an algorithm for the loop parallelization phase. The procedure

Traverse.Yarallelize also traverses the abstract syntax tree in depth first fashion and

tries to apply Parallelize_Loop and/or Interchange_Loop for each loop. Because of the

side effect of the loop interchange, the algorithm becomes slightly complicated. When

the loop interchange is valid, we have to traverse nodes next to the new inner loop since

we will not visit the node again as we would do if no interchange occurred. Although

not shown in Figure 6.2, Traverse_Parallelize counts valid loop interchanges. In this

algorithm, we continue to call Traverse_Parallelize while the count is not zero. This is

somewhat similar to the bubble sort. Again because the Tiny functions Parallelize-Loop

and Interchange_Loop take care of all data dependence constraints, the algorithm was

implemented easily.

6.3 CAG Building

To find a good alignment of arrays, we build a CAG from reference patterns in a program.

We added two data structures for components and edges to Tiny. The CAG nodes are

represented by multiple columns of the components. Each component has pointers to

incoming and outgoing edges for affinity relations. Each edge has a weight. In the Tiny

symbol table, we added a pointer to the column of components for each array entry.

In Figure 6.3, we show an algorithm to build the CAG. Make_Gomponent prepares all

data structures needed in the following procedures. Traverse..Build_GA G traverses the

abstract syntax tree and finds reference patterns. Fix_Edgeweight checks all edges and

changes the weights if the edge connects two temporal components.

In Figure 6.4, we show Traverse_Build_GAG. Traverse_Build_GAG tries to find two

particular statements, assign statement and if statement. From an assign statement, it

searches reference patterns by scanning RHS expressions and all conditional expressions

which have a control dependence to the assignment. From a if statement, it pushes a

pointer to conditional expressions.

50

Algorithm Parallelize(Entry)
Input: Entry node Entry of a Tiny abstract syntax tree.
Output: A loop restructured Tiny abstract syntax tree.
begin

repeat
Tra verse-P arallelize(Entry)

until no interchanges
end

Proced ure Traverse.J>arallelize(N)
Input: A node N of a Tiny abstract syntax tree.
Output: A loop restructured Tiny abstract syntax tree.
begin

if a node N is null then return

Traverse-Parallelize(N- Chile!)
Traverse-Parallelize(N- Next)
if a node N is not a loop then return
if Parallelize(N) fails then begin

find an immediate outer loop N2
if Interchange..Loop(N) succeeds then

if Parallelize_Loop(N2) fails then
/* restore the loop structure */
Interchange..Loop(N2)

else

Tra verse.J> arallelize(N - Next)
end

end

Proced ure Parallelize_Loop(N)
Input: A loop node N of a Tiny abstract syntax tree.
Comment: Using data dependence information, try to parallelize the node. If paral-
lelization fails, return false.

Proced ure Interchange-Loop(N)
Input: A loop node N of a Tiny abstract syntax tree.
Comment: Using data dependence information, try to interchange the loop node with
its immediate outer one. If interchange fails, return false.

Figure 6.2: Loop Parallelization Algorithm

51

Algorithm Build_CAG(Entry)
Input: Entry node Entry of a Tiny abstract syntax tree.
Output: A CAG of the Tiny program.
begin

Make_ComponentO
Traverse..Build_CAG(Entry)
Fix_Edgeweigh t()

end

Procedure Make_ComponentO
Output: Components for all dimensions of all arrays and a pointer to the common array
CT and its dimensionality MaxT.
begin

for all variables in the sym bol table
if the variable is an array then begin

make component nodes for all dimensions of the array
if the dimensionality is greater or equal to MaxT then

set MaxT to the dimensionality and set CT to the component node pointer
end

end

Proced ure Fix_Edgeweigh t()
Input: A CAG with edges weighted € and 1.
Output: A complete CAG with all kinds of edges.
begin

for each component in the CAG
if the component is temporal then

for each affinity edge
if the counterpart component is sequential then

change the edge weight to 00
end

Figure 6.3: CAG Building Algorithm

52

ProcedureTraverse-Build_CAG(N)
Input: A node N of a Tiny abstract syntax tree.
Output: Affinity edges between components which form a CAG.
begin

if a node N is null then return

if a node N is an assignment statement then begin
RHS = N- Child
LHS = N-Child-Next
if a node LHS is an array then

for each dimension of the array
if an index expression has a loop variable then begin

j* try to find reference patterns *j
traverse all RHS nodes to make the affinity edges
j* we have to see all condition expressions *j
for I = 0 to IF_Nest

traverse Cond[l] nodes to make the affinity edges
end

Traverse-Build_CAG(N- Next)
ret urn

end
if a node N is an if statement then begin

Cond[IF_Nest ++] = N-Child
Traverse-Build_CAG(N- Child)
IF_Nest --
Traverse..Build_CAG(N- Next)
ret urn

end
Traverse-Build_CAG(N- Child)
Traverse-Build_CAG(N- Next)

end

Figure 6.4: CAG Building Algorithm

53

6.4 CAG Partitioning

We use exactly the same heuristic algorithm as the Crystal compiler to partition a

CAG. In Figure 6.5, we show this algorithm. We iterate a sequence of three proce-

dures, Form_Bipartite_Graph, OptimaLAlignment and Reduce_Graph, until all columns

ofa CAG are processed. Form_Bipartite_Graph makes a bipartit.e graph GXfrom a CAG.

The optimal partition of GX, which is the maximum bipartite matching M[CLR90], is

calculated by OptimaLAlignment. Reduce_Graph combines CT and CX to reduce the

CAG G. At every iteration an align statement is created from M and is inserted to the

original Tiny program.

54

Algorithm Partition_CAG(G)
Input: A CAG e and a column of CAG which represent the common array CT.
Output: An aligned Tiny program.
begin

get pointers to all columns of the CAG and make a list Clist
Unlink CT from Clist
for each column CX in Clist begin

ex =Form...Bipartite_Graph(CT,CX,G)
M = OptimaLAlignment(eX)
e = Reduce_Graph (CT,CX,G,M)
Insert an align statement specified by the mapping M
Unlink CX from Clist

end
end

Proced ure Form...Bipartite_Graph(CT, CX,G)
Input: A CAG G, a pointer to the common array column CT and a pointer to an array
column Cx.

Output: Bipartite graph ex between CT and Cx.
begin

GX = empty
add all nodes from CT and CX to ex
for each dimension node DX in CX

for each dimension node DT in CT

if there is a path between DX and DT then begin
add an edge E between DX and DT in GX
sum all edge weights in the connected components of DX in e
set the weight of E to this sum

end
end

Procedure OptimaLAlignment(GX)
Comment: This is an algorithm to find maximum bipartite matching[CLR90].

Procedure Reduce_Graph(CT,CX,G,M)
Comment: Using alignment M, combine all nodes in CX to those in CT. Two edges
remaining between the same nodes should be replaced by a single edge weighted by the
sum of the weights of those edges and all self cycles should be eliminated.

Figure 6.5: CAG Partitioning Algorithm

Chapter 7

Conclusion

Automatic program restructuring for Distributed Memory Multicomputers is discussed

and is implemented to the Tiny loop restructuring tool as one of its menu selection.

We interpret the compilation steps for a functional language Crystal to an imperative

language Tiny and implement the steps except for the last communication generation

phase to Tiny. During this process we found:

1. Crystal Index Domain Alignment step is a necessary preprocess for Control Struc-

ture Synthesis. Since any Tiny program has control structure, we do not need this

step to compile Tiny programs.

2. The Crystal compiler creates loop structures in Control Structure Synthesis step.

To restructure a Tiny program to have similar loop structures to Crystal we need

to use loop distribution transformation, loop interchange transformation and

loop parallelize transformation.

3. Crystal Spatial Domain Alignment is an effective step to get efficient interprocessor

communication. Traversing loop structures to find array assignments and making

the reference patterns in a Tiny program, we can build CAGs to use the same

method as Crystal for array alignment of Tiny programs.

Converting several Tiny programs by the method we developed, we found the follow-

mg Issues:

55

56

1. Array alignment we used for Tiny tries to align all arrays to a common array, which

is the alignment only inside spatial domain. To get the same result as Crystal, we

need to align arrays with temporal domain, which is a loop in Tiny.

2. The loop restructuring we did is not optimal. We have other loop transformations

which we did not considered.

The Crystal compiler creates loop structures from reference patterns of Crystal declar-

ative definitions of functions therefore the loop structure inherently follows data parallel

model. Since the loop structure of a Tiny program depends on how a programmer writes

it, the loop restructuring has an important role for the compilation. Although we could

derive the loop structure similar to Crystal, it is not clear that either the structure is

the best for Tiny or not.

Bibliography

[Ban76] Utpal Banerjee. Data dependence in ordinary programs. M.S. thesis

UIUCDCS-R-76-837, Univ. lllinois, Dept. Computer Science, November 1976.

[CK87] David Callahan and Ken Kennedy. Analysis of interprocedure side effects

in a parallel programming environment. Journal of Parallel and Distributed

Computing, 5(5):517-550, October 1987.

[CLR90] Thomas H. Cormen, Charles E. Leiserson,and Ronald L. Rivest. Introduction
to Algorithms, chapter 27.3, page 601. The MIT Press, 1990.

[FHK+90] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kre-

mer, Chau-Wen Tseng, and Min-You Wu. Fortran d language specification.

Technical Report TR90-141, Rice Univ., December 1990. Revised April,1991.

[HS86] W. D. Hillis and Guy 1. Steele. Data parallel algorithms. Communications

of the ACM, 29(12):1170-1183, December 1986.

[IS091] ISO. Fortran 90, May 1991.

[Kar87] Alan H. Karp. Programming for parallelism. IEEE Computer, 20(5):43-57,
May 1987.

[Li91] Jingke Li. Compiling Crystal for Distributed-Memory Machines. PhD disser-

tation, Yale University, Department of Computer Science, October 1991.

[OCA86] R R. Oldehoeft, D C. Cann, and S J. Allan. Sisal: initial mimd performances

results. In Wolfgang Handler, Dieter Haupt, Rolf Jeltsch, Wilfried Juling, and

Otto Lange, editors, CONPAR 86Proc. of the conference on algorithms and

hardware for parallel processing, number 237 in Lecture notes in computer

science, pages 120-127, Aachen, Germany, September 1986. Springer-Verlag

New York, Inc., New York, NY.

[Ott91] Steve W. Otto. Metamp: A higher level abstraction for message-passing

programming. Unpublished, January 1991.

57

58

[Par91] Parallel Computing Forum. PCF Parallel Fortran Extensions, July 1991.

[PW86] David A. Padua and Michael Wolfe. Advanced compiler optimizations for

supercomputers. Communications ACM, 29(12):1184-1201, December 1986.

[WoI78] Michael Wolfe. Techniques for improving the inherent parallelism in pro-

grams. M.S. thesis UIUCDCS-R-78-929, Univ. illinois, Dept. Computer Sci-

ence, July 1978.

[WoI89] Michael Wolfe. Optimizing Supercompilers for Supercomputers. Research

Monographs in Parallel and Distributed Computing. Pitman Publishing, Lon-

don, 1989. (also available from MIT Press).

[WoI90a] Michael Wolfe. A loop restructuring research tool. Technical Report CSE

90-014, Oregon Graduate Institute, August 1990.

[WoI90b] Michael Wolfe. TINY A Loop Restructuring Research Tool. OGI, December
1990.

[WoI91a] Michael Wolfe. Experiences with data dependence abstractions. In Proc.

1991 International ConJ. on Supercomputing, pages 321-329, Cologne, June
1991.

[WoI91b] Michael Wolfe. The Tiny loop restructuring research tool. In Proc. 1991 In-

ternational ConJ. on Parallel Processing, volume II, pages 46-53, St. Charles,

IL, August 1991. Penn State Press.

Biographical Note

Mitsuru Ikei was born on January 5, 1957 in Kagoshima City which is located in the

southernmost prefecture in Kyushu Island in Japan.

He entered Kagoshima La Salle High School in 1969 and graduated in 1975. After

graduation, he moved to Yokohama City to enter Yokohama National University, where

he got his B.S. in Electrical Enginnering in 1982. He joined Hitachi Chemical Company

Ltd., in 1982 and since then he has been working as a researcher at the Shimodate

Research Laboratory in Shimodate City.

In 1990, he came to the US to work with the engineers of Cogent Research, an Ore-

gon based parallel computer company, to parallelize computational chemistry programs.

He enrolled in the graduate program in Computer Science & Engineering at OGI in

September 1990.

59

