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Abstract

Computational Proxies:
An Object-based Infrastructure
for

Computational Science

Judith Bayard Cushing, Ph.D.
Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: David Maier

Scientific computing’s rich legacy of data and programs contains its own major disadvan-
tage: lack of interoperability at the user level. Even within a single subfield, scientists are
faced with a plethora of potentially useful programs that run on a number of different com-
puters. When these programs do not “interoperate”, such simple but desirable tasks as
using the output of one program as the input of another become major obstacles to “doing
science”. Accessing data and running programs in heterogeneous computing environments
further compounds problems of interoperability because of considerable differences in data
representation, file transfer and program control protocols among computer platforms. In
addition, during a single investigation, a typical scientist might name and keep track of
hundreds of files on several different computers.

This dissertation addresses problems of data management and of program and data
interoperability among computational science applications. We postulate that a database
of experiment data would alleviate problems of interoperability and file management,

but that connecting a database to existing applications is neither straightforward nor

XV



adequate for computational applications. We propose a middleware solution built within
a database tradition, and describe the functionality needed for computational experiment
management. We believe that a data-centered solution to interoperabilty problems - one
that makes current versions of data available to cooperating user applications and system
services — shows particular promise. Our solution consists of a domain-specific information
model and an object-oriented persistent structure that supports computation as well as
data management. This abstract data structure, dubbed “computational proxy”, models
within an object database scientific programs and processes.

Proxies maintain persistent local records of on-going computational experiments, and
provide a consistent view of different applications executing on multiple processors. They
provide for launching and monitoring experiments; generating data input to the experi-
ment from the database; and capturing experimental results. The computational proxy
mechanism also provides ways to declaratively define the database interface to computa-
tional applications. The infrastructure we propose can be used in a migration path from
stand-alone legacy applications to distributed database services and adapted for newer
object-based applications. A prototype of the computational proxy infrastructure has
been implemented in C++ and ObjectStore on a Sun Sparcstation for applications in ab

initio computational chemistry.
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Chapter 1

Introduction

Physical scientists have been intensive users of modern digital computers since the late
1940’s and early 1950's, and the world of scientific computation carries forward a rich
legacy of data and programs [69]. Indeed, the many and varied scientific applications
constitute a major economic investment, and new scientific applications often stretch the
state of the art in computing techuology. While the pull of scientific applications greatly
affects computing technology, computers also transform the ways in which many scientists
work [96] and scientists have come to depend heavily upon them. Indeed, computing plays
a central role in the daily activity of scientists today, and many use a range of computers
and platforms — from persona! workstations, through mid-sized computers attached to a
local network, to massively parallel machines available over a wide-area network.
Unfortunately, this legacy of the many scientific applications developed over the past
forty years entails a major disadvantage: Jack of interoperability at the user level. Even
within a single sub-discipline, scientists confront a plethora of potentially useful but often
incompatible programs. While different programs may be scientifically applicable to a
single investigation, outputs from two different programs are rarely comparable and out-
put from one program cannot easily be used as input to another — especially if those
programs run on different platforms. Levels of incompatibility range from differences in
physical formats (at the lowest level), to divergence in the logical structure and grouping
of information, to disagreement at the conceptual level (sometimes dangerously implicit)
about the actval meaning of terms. In addition to dealing with data and program inter-
operability, a scientist may need to name and keep track of hundreds of files on several

computers during one investigation. Because most scientists use more than one computer,



problems of program incompatibility and file management are compounded by the lack of
interoperability of computer platforms and operating systems.

Problems of data management and of program and data interoperability can signifi-
cantly decrease the amount of time spent on science per se. Some scientists are so discour-
aged by complex computing environments that they do not use computers at all, or only
for word processing [128]. Other scientists have become highly trained users or expert
programmers and deal effectively with this range of problems, though at some consid-
erable cost. Computational scientists, who investigate scientific problems by performing
computer simulations of physical systems, often use five or six programs and two or three
computers during a typical day. Their programs are computationally intensive and one
{nvocation may run for several hours, or even days or weeks. Improvements in computing
power and software over the past ten years have greatly enhanced the computational scien-
tist's “laboratory” but have exacerbated data management and interoperability problems.
As further increases in computing power make computational science methods useful to a
wider range of scientists, however, we expect an increase in both casual and expert use of
computational applications. These new users will be less willing or able to cope with the
current complexity of the computing environment. In addition to help with data man-
agement and interoperability, they will undoubtedly need better software to set up, run,
and interpret computational experiments. Such help, we believe, will also be welcomed
by expert uvsers, who would prefer to focus on scientific, rather than data management,
problems.

This dissertation addresses problems of data management and interoperability for com-
putational science applications. Of course, computing problems other than data manage-
ment face the computational scientist, such as scheduling multiple related experiments
and scheduling and migrating experiments across a network. We chose to address prob-
lems of data and file management first because we believe that solving the scientists’ data
management problems will provide both the infrastructure and experience for approaching
other problems.

Initial efforts for this research focused on building a database repository of past ex-

periments for the domain of computational chemistry. Aimed at helping non-experts run



computational experiments, the database repository work addressed data management
issues alone. Our collaborators from Pacific Northwest Laboratories had observed that
users have considerable difficulty setting up and interpreting computational experiments
and believed that a database of past experiments could help.

We considered the database and programming language alternatives available to us,
and chose object-oriented technology as our implementation vehicle. We then built an
object-oriented database — called the “Computational Chemistry Database” or CCDB —
to maintain experiment data (inputs, parameters, and outputs) from different applications
in comparable formats. Initial results indicated that the CCDB alleviated some problems
facing computational scientists. However, we became convinced that lack of program
interoperability precluded the effective maintenance of our repository. Loading experiment
data remained a problem because there was no direct connection between the application
programs and the database. We also realized that computational scientists needed help
not only setting up but also running their experiments, given the wide range of computers
on which their applications are instalied. In short, we found that providing data services in
the absence of ways to load experiment data and to manage long-lived computations was an
inadequate solution to the data management problems facing computational scientists. We

then proposed and prototyped an infrastructure for managing computational experiments.

1.1 Building an Experiment Management Infrastructure

The major barrier to building an infrastructure for computational experiment manage-
ment is the lack of interoperability among programs. Analogous problems of interoper-
ability and shared file management in the realm of business data processing are being
solved through common data models and distributed databases. Unfortunately, current
record-oriented database technology does not support scientific applications well. While
object-oriented systems will likely provide the flexibility for modeling complex scientific
data structures that the relational model lacks {60, 91, 164], neither relational nor object-

oriented database systems provide the support for managing long-lived processes! needed

'By process we mean a program in execution, as per the standard operating system definition[176}. For
Our purposes, a process is aiways an activated computational application program, i.e., a computational



for doing computational science. This dissertation describes the additional functionality
needed for computational experiment management and proposes an object-oriented in-
frastructure to meet those needs. An effective solution to managing experiment processes
should provide a consistent and persistent view of both experiment data and ongoing
experiments. Hence, our infrastructure combines database services and computation ser-
vices, and integrates loading experiment data with experiment management.

Data services (a repository of past experiments) are provided through a domain-specific
information model implemented in an object-oriented database system. Computation
services (on-line connections between application programs and the database) are provided
by “computational proxies”. Computational proxies model executions of applications as
database objects and directly store application inputs and outputs in the domain database.
We call our infrastructure “data-centered” because the object database, containing both
domain data and the proxy representation of ongoing experiments, is the mediator of
experimental activity between the user interface and computational applications. {See
Figure 1.1.) The proxy uses network services to make input data available to applications
and experimental results available to users. We faced two major issues in developing this

infrastructure:

1. Defining and implementing a conceptual model general enough to cover the inputs
and outputs of computational applications within a particular domain, yet intuitive

and acceptable to end users.

2. Defining and implementing a data structure powerful enough to model remote invo-

cations of the computational applications in the database.

These two 1ssues are discussed below in Sections 1.1.1 and 1.1.2. We contend that the do-
main model and the computational proxy together provide an infrastructure for managing

computational experiments effectively.

experiment in execution phase.
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Figure 1.1: A data-centered infrastructure for experiment manage-
ment.

1.1.1 Developing a Domain-Level Conceptual Model

Developing a conceptual model general enough to cover the major inputs and outputs of
the application programs of interest is critical for three reasons. First, scientists using
a number of applications must themselves have a unified conceptual view of the domain
before they can effectively navigate among applications. Secondly, implicit conceptual
views of individual researchers may be in conflict either with each other or with those
of an application. Without agreement at the conceptual level, mapping inputs from one
program to another is difficult at best, error prone or impossible at worst. Thirdly, a
common model into which application inputs and outputs can be translated is necessary
before experimental results can be rendered comparable.

While a common conceptual view is often implicitly held across researchers and appli-
cations, it i3 rarely written down — except as data structures internal to the application
programs. The implicit common model must become explicit before any mapping of out-

put from one application to the input of another can be automated. The domain-level



conceptual model explicitly documents the common view that makes such mapping pos-
sible.

Developing a common conceptual model is difficult because users must agree on and
write down such basic definitions as ezpertment and subject of ezperiment. What seem
trivial tasks attainable by simply referring to a freshman text are soon hotly debated.
Is an experiment one single run? Is it a series of runs that produces an array of values,
say, a potential energy surface? Is the subject of a computational chemistry experiment
a molecule, or a particular geometrical structure, or a chemical mixture undergoing a
reaction?

Once the conceptual model has been developed it must be rendered into a logical
database design. This requires casting the conceptual model first into an information
model and then into an existing (logical) data model. This existing data model must also
be implemented as an operational and reliable database management system product.
Here also lay challenges resulting from the inherent complexity of the data: How should
ternary relationships or attributed binary relationships be represented if the chosen data
model does not support them? What intermediate abstract data structures would simplify
the design and facilitate understanding? Such data types might be general to several
computational domains, or specific to one, and might involve further modeling at the

conceptual or information level.

1.1.2 Developing a Model for Computational Services

Our model for computational services consisted of an abstract data type, dubbed “com-
putational proxy”. The computational proxy is the locus of experiment control in our
experiment management infrastructure. A computational proxy stands-in, within the
database, for an active process (usually remote) that is running a scientific application
(usuvally computationally intensive and long-lived). The proxy provides the user with con-
sistent and persistent views of different applications executing on distributed processors.
The proxy can be used for specifying computational experiments, generating input to
experiments from the database, launching and monitoring experiments, and loading ex-

perimental results into the database. In effect, proxies and related objects model scientific



programs and processes.

Our primary goal is to provide computational services while hiding syntactic differences
between applications and environments from the end user. Proxies also reduce the number
of explicit user actions — converting and transferring files, logging on to remote computers,
and so forth — required to run a single experiment. To make the proxy’s use feasible, we
have attempted to provide tools that allow users to create proxies for new applications
without writing special-purpose programs. Thus, the computational proxy mechanism
provides ways to register an application and define its database interface.

A proxy maintains a persistent record of an on-going computational experiment and
makes this information available to users locally. Because proxies model not only the
application program, but also the life of a particular invocation of that program (i.e.,
the process), they constitute a convenient means for querying or recording the status of
computations. Thus they are especially useful for computationally intense applications
that run for extended periods of time.

Computational proxies offer functionality not now provided in database systems, ful-
filling key requirements for database use by computational scientists. Challenges faced in

developing the proxy mechanism include:

¢ Defining an information model to represent input and output formats for the chosen
computational applications. These representations should be easy for scientists to

understand.

¢ Building generators and interpreters so that input files to applications can be auto-
matically generated and output files parsed — without programming specific appli-

cation interfaces.
e Defining an interface between the proxy and the network services.

e Extending the information model to represent information about active (ongoing)
application processes. (The domain-level model does not address processes per se,

only application programs and their inputs and outputs.)



1.2 Research Design

To render the research goals into realizable objectives, we decided to address one partic-
ular computational science in depth. To that end, we selected ab initio computational
chemistry as a model domain science and established a collaboration with the Molecular
Science Research Center at Battelle’s Pacific Northwest Laboratory in Richiand, Washing-
ton. We worked with Dr. David Feller, a computational chemist who not only uses a wide
range of applications in his own research but also develops computational applications and
tools for users of those applications. Drawing extensively upon the domain knowledge and
vision of Dr. Feller [44, 51, 53, 54], we built a domain model and established requirements
for an experiment-management database for computational chemistry. We corroborated
our understanding of the computational chemists’ needs by interviewing other developers
of software for computational chemistry [98, 123, 147, 161], by using standard domain
references {145] and by listening in on electronic conversations among members of the
computational chemistry community [103].

Focusing the research problem and issues on a single domain adjusted the research

issues identified above in Section 1.1.2 to realistic objectives as follows:

e Define a conceptual model covering the data objects of importance to computa-
tional chemists when they are using the three most commonly employed computa-
tional applications. Where it was not possible to model all objects in use, we chose

representative samples.

e Define a computational proxy data structure that adequately modeled the kinds of
experiments usually performed. We chose as representative five experiment types

ranging over the three applications of interest.

¢ Define associated computational proxy structures and mechanisms to generate input
files and parse output files for the chosen subsets of applications and experiment

types.

e Define a facility to register new applications declaratively rather than by writing

programs specific to each application.



e Define an application program interface between the proxy and the distributed op-

erating system services, i.e., the network services.

Frequent feedback from our collaborators and other scientific database researchers
helped us validate the conceptual model [39, 40, 43, 118). After translating the conceptual
model to an information mode) and designing the computational proxy data structures,
we implemented a prototype system by extending an existing object-oriented database
management system to meet our requirements. The implementation was tested with a
representative subset of experiment data. Finally, in order to determine if the infrastruc-
ture met user needs, we analyzed three experiment management scenarios from the user’s
point of view — experiment management as now done, experiment management with a
repository of past experiments to use as reference in setting up new experiments, and
experiment management with both the repository and proxies.

We thus validated the proxy mechanism by testing the clarity and completeness of the
logical design and demonstrating its fcasibility through a prototype implementation, We
developed three distinct user scenarios corresponding to (1) current experiment manage-
ment, (2) experiment management with a database available, and (3) experiment manage-
ment with a database plus proxy; we subsequently verified that the experiment manage-
ment system we designed met user needs and solved user problems identified in the first
two scenarjos. We illustrated the utility of the proxy by (1) comparing the programming
required to connect computational applications to a database both with and without the
proxy, and (2) determining the degree to which the proxy is amenable to avtomated con-
struction or whether customized code must be written for each application interface. We
also sought evidence that the data model and computational proxy concept are generaliz-
able beyond the domain of ab initio computational chemistry and implementable in any

(object-oriented) database system.
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1.3 Major Contributions of the Research

The major contribution of this research is the idea of computational proxies as a con-
struct for managing and modeling computational processes in the database — for effec-
tively solving problems of program interoperability and for improving the accessibility of
computational applications. We demonstrate the feasibility of the proxy through a pro-
totype implementation. This research also contributes a conceptual data model for ab
initio computational chemistry and mechanisms for constructing connections to applica-
tions declaratively rather than programmatically. While it is probably not possible to
automate the construction of proxies for every parameter of every application in a given
domain, we have automatically generated interfaces for a useful subset of experiment types
from our domain. This work automating the construction of proxies contributes indirectly
to research in database integration, and in data loading and automatic report generation
for object-oriented databases.

In addition to the explicit research results we offer, the prototype database itself con-
stitutes a contribution. The proxy mechanism will enable building a database of past
computational experiments. Such a database could serve as an empirical basis upon which
a “smart” user interface could suggest parameters for new experiments. It could also be
used for estimating resource needs when scheduling application processes.

More generally, this thesis offers evidence of the value of a unifying conceptual model as
a first step towards solving problems of program interoperability in the computational sci-
ences. An effective long-term solution to the interoperability problem can be achieved by
rewriting legacy applications to work against a common database. However, it is unlikely
that program authors will simply agree to convert their respective applications in concert,
if at all. It is certainly infeasible for them to do so without experimentation to determine
which information models and which database and integration technology to use in the
long term. The combination of conceptual and information models and the computational
proxy model that we develop here provides a middle ground between continuing with in-
dividual, isolated applications and completely rewriting application programs to interface

with a2 common database. Thus our experiment management infrastructure provides a
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viable migration path from the present complications of stand-alone heterogeneous appli-
cations to the achievement of shared distributed database environments for the various

computational sciences.

1.3.1 Additional Potential of Proxies

While we have been primarily interested in using the proxy mechanism as the interface
between the database and a single invocation of a computational application, we believe
that the proxy idea holds additional potential.

Proxies could be used to group several experiments into a chain of experiments, where
the invocation of some experiments is dependent upon the successful completion of some
previons experiments. In effect, the proxy could link several runs of the same or different
applications into one, more complex, computational experiment. Proxies could also be
used to schedule a set of experiments, where an input parameter to members of that
set varies over some range. Assume, for example, that a scientist wishes to compute a
potential energy surface, where the Cartesian coordinates of some of the atoms in the input
molecule vary by .5 angstrom increments over a certain range. Such an investigation might
require the scheduling, monitoring and file management of hundreds of almost identical
experiments, a tedious task even with our computational proxy framework. To use proxies
to specify such a set of experiments by varying the input parameters according to some
formula would involve a logical and straightforward extension of our mechanism.

A more complex extension to proxies would involve interfacing interactive applications
such as such as molecular editors, scientific visualization programs or analysis packages to
the experiment database. For example, several recent scientific visualization packages such
as Chem3D [24] and CAChe Scientific [23) help scientists build molecular structures to use
as input to computational applications and provide a means for viewing results. However,
interfacing such visualization packages to applications is still done on an ad hoc basis.
The so-called “data flow” solutions [184) to connecting visualization, computational, and
analysis packages do help interoperability but are largely process-oriented as opposed to
data-oriented. As such, they do not explicitly require that the data to be shared conform

to common semantics; rather, the user writes a procedure that passes the data along a
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pipeline (of sorts) in the expected syntactic form. Data-flow solutions provide short run
interoperability between two programs, but scaling up to provide interoperability among
numerous programs carries the attendant technical hassles of writing many pair-wise data
conversion programs and the risks of error due to differences in the implicit understanding
of underlying conceptual entities. The proxy idea could perhaps be extended to provide a
common data-oriented interface between a wider variety of applications than we address

here.

1.4 Organization of the Thesis

After describing previous research related to scientific data management in Chapter 2, we
go on in Chapter 3 to illuminate the need for a computational experiment management
infrastructure by describing the current computing environment available to computa-
tional scientists. We also establish ab initio computational chemistry as a viable domain
in which to search for a general solution to current problems, and define functional re-
quirements for experiment management within this particular domain. The domain-level
conceptual model prerequisite to our solution js presented, and the database design and
requirements for implementing it are elucidated. Chapter 4 first describes the computa-
tional proxy concept, functions, data structures and architecture. We then articulate the
proxy’s role with respect to the network services and the user interface. We pay particular
attention to the need for describing the input and output of computational applications
to the proxy in a non-procedural manner, to avoid requiring special-purpose programming
for each application. Chapter 5 addresses the prototype implementation of the database
and proxy, and our evaluation of the infrastructure is presented in Chapter 6. Chapter 7
concludes the thesis. There, we identify our research contribution and state the research
conclusions. We also summarize the lessons we learned that might be applicable to other

efforts to integrate applications and outline follow-on work suggested by our research.



Chapter 2

Background and Related Work

While modeling remote, distributed programs and computations within an object database
constitutes the major contribution of our work, we view its interdisciplinary aspects as im-
portant secondary contributions. Building an infrastructure for computational experiment
management has necessarily been an interdisciplinary effort, involving domain scientists
as well as computer scientists. Because our infrastructure relates not only to scientific
computing, but to several sub-disciplines of computer science as well, we have drawn
on previous work in application integration, software systems and databases, as well as
current research in scientific computing.

This chapter recounts the research context in which we worked. Within the realm
of scientific computing, we describe current applications in computational chemistry and
tools used by computational chemists. We also discuss how our research relates to other
work in computation management, scientific data management, and experiment manage-
ment. With respect to current work in application integration, we describe (1) eflorts
to integrate applications by integrating the user interfaces of those applications and (2)
efforts in distributed system support such as domain-specific software architectures and
middleware. Finally, we place our work in the context of other research in database
systems.

We hope this thesis will encourage researchers in the related fields to address the
interdisciplinary issues we raise. We also hope data collected in the course of use of an
experiment infrastructure such as ours will yield empirical information about experiments
that could aid researchers in intelligent user interfaces, network services, and parallel

computing.

13
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2.1 Scientific Computing

Research in scientific computing has traditionally fallen into two categories: algorithm
development and the quest for high-performance [96]. Early work concentrated on the
problems of finding numerical solutions to continuous equations and of making the result-
ing computationally intense applications run faster.

As computers themselves became more powerful and as the performance of scientific
programs improved, other research efforts began to address the accessibility of scientific
computing [66, 109]. The organization of research on important scientific problems into
big national projects, such as the Human Genome Project {141] and the Earth Observing
System [48], also has pushed scientific applications towards better support of collaborative
research. As a result, new areas of research in scientific computing have emerged, such
as data management, visualization, and data standards for information exchange. In
addition, researchers and practitioners are extending the use of computing not only beyond
traditional research and engineering in the physical sciences but also to other fields such as
biology. botany, and ecology that have traditionally shunned computational modeling. Our
own research in computational science aims to increase both the usability and accessibility
of computational tools previously available only to scientists with specialized training and
local access to high-performance computing.

Our work draws on areas of scientific computing, in particular computational science
applications! and scientific data management. Scientific visualization systems and file
interchange standards are relevant inasmuch as they are used as tools by computational
scientists. We focus the following discussion on current uses of such computing in the
molecular sciences, since they are particularly relevant to our work in the domain of

computational chemistry.

'We define computational applications as those that model physical phenomena and typically run on
super computers for extended periods.
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2.1.1 Computational Chemistry Applications

Commonly used programs that perform ab initio chemistry computations include Gaus-
sian (which includes a data browser) {62], the General Atomic and Molecular Electronic
Structure System (GAMESS) (64], HONDO [50), and MELDF [55).2 Continued develop-
ment efforts are improving the performance and accuracy of these applications, and many
are being converted to parallel implementations. Our work builds upon this research,
which has produced the applications that our infrastructure models. McLean, Replogle
and other researchers at IBM Almaden Research Center are pursuing a particularly novel
approach to computational chemistry in an effort to alleviate some of the problems our
research addresses. They are working on ways to break up the typical ab initio functions
as single components so that experiments can be more easily organized into user-specified
sequences than currently is the case. To that end, they are defining a file interface and
scripting language so that applications contributed to common libraries can easily be used
in series [123]. McLean and Replogle’s work is file-based, not database-oriented (as is
ours). In addition, their proposed system requires the rewriting of applications into func-
tional units that fit their file structures, whereas ours jis designed to interface with existing

computational applications.

2.1.2 Tools For Computational Scientists

The commercial and public domain programs commonly used by computational scientists
define the data modeling entities with which research such as ours must cope when in-
tegrating these programs. Thus, those programs are one empirical basis for determining
an information model for program integration. The most popular of these programs are
candidates for interfacing to the scientist’s data repository, whether directly (by being
modified), indirectly (by some kind of encapsulation or interface mechanism), or (eventu-

ally perhaps) via standard data-interchange structures. In addition to the computational

Z«HONDO” is not ap acronym; HONDO the program was named for John “Hondo” Havlicek, a bas-
ketball player for the Boston Celtics in the 1960's. MELDF was originally named for the first jmitials of
the scientists who wrote it: McMurchie, Elbert, Langhoff, Davidson, and Feller; the term has also been
known to stand for “Many ELectron Description” {52].
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programs themselves, related areas include visualization and computational tools, and

physical interchange standards.

Visualization Tools

Numerous molecular editors and visualization tools are available both commercially and in
the public domain. Many chemists use graphical molecular display and editing packages
such as CAChe Scientific [23} and Chem3D [24] to prepare molecular structure input
to computational programs. Specialized toolkits such as Daylight Tools [45] and AVS
Chemistry subsystems [184] that allow visual rendering of molecular structures are also
available to program developers.

Some efforts to provide persistent stores for visual data are similar to ours in that
they rely upon a common conceptual model. Shapiro and Tanimoto’s database facility
for graphics objects (developed specifically for computer vision researchers) [165], Jirak’s
Aurora Dataserver [92], and Chu and Cardenas’ query system for radiological data (31)
all rely upon a common conceptual model in their effort to integrate data from several
sources and support scientific work with data that is visualized. These efforts differ from
ours in that the objects supporied are primarily spatial angd relatively static (ours are
ongoing computational processes) and their focus is on viewing or querying rather than

computation.

Computational Tools

The work of Peskin and Walther at Rutgers [187] offers an excellent example of recent
efforts to integrate cornputational services with a scientific visualization facility. The Sci-
entific Computing Environment for Numerical Experimentation (SCENE) system provides
a way to visualize the output of remote high performance physical dynamics calculations
so that the scientist can adjust experimental parameters. The SCENE information model
is built on a single (vector-like) data structure that can be used to represent physical-
dynamics objects. Peskin and Walther have focused on aiding the set-up and analysis of
computational experiments, but are currently extending SCENE to allow users to store

experimental inputs and results across sessions, and to share data with other users. Both
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our work and theirs involve computation management. Aside from the obvious difference
in application domain, the SCENE effort differs from our work in that its major thrust
has been experiment setup and analysis for a particular domain rather than developing a
model for application and data integration that could be employed independently of the

particular domain as a general solution for computational scientists.

Physical Interchange Standardization

Scientists recognize thal exchanging data is critical to their work, and have been active
in efforts to develop physical interchange standards. Unfortunately, most development in
comruercial scientific systems today seems directed towards reading other applications’ file
formats, but not towards writing them. The netCDF project (primarily for atmospheric
data} and the Hierarchical Data Format (HDF) (63], the Crystallographic Interchange
Formats (CIF) {21], and the Flexible Image Transport System (FITS) [134] are example
standards to address the problems of physical interchange.

Recently, some physical interchange formats have evolved into database systems of
sorts — with capabilities to search, display, catalog, and modify files. While convenient
in the short term, evolving physical interchange formats into database systems will prove
problematic in the long term unless the standards are based upon agreement at the con-
ceptual level. Most work in physical interchange standards (though critical for low-level
data exchange) differs from ours in that our focus is at the conceptual, not the physical,
level, and in that our system provides computational support. Some recent efforts in com-
puterized chemical data standards do address the conceptual level, for example the 1993

ASTM Symposium on Computerized Chemical Data Standards [114].

2.1.3 Scientific Data Management

Past work by computer scientists concerning scientific databases has included general
characterizations of scientific databases [135, 136, 166], studies of scientific knowledge
and data structures (11, 12, 47, 97], and specifications of future data-intensive scientific
application systems, such as the Earth Observing System {29, 48]. Other database research

areas, such as geographical information systems {191}, temporal data structures {74, 162],
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and statistical databases [68, 100, 149, 150] exhibit important similarities to scientific
databases.

The Invitational NSF Workshop on Scientific Database Management brought about
forty computer scientists and domain scientists together in March of 1990 to address
data management problems facing scientific researchers. Their report corroborates other
research on scientific databases: most scientists still manage their information with pro-
grams that read and write flat files. Almost every scientific domain has an investment in
programs (usually in FORTRAN) that use flat files and have evolved over many years.
While database management systems could ultimately improve the reliability, availability,
and programmability of scientific applications (just as in other application areas), some
scientists now attempting to use databases find that current technology does not match
their needs. Even if current technology were adequate, changing from flat file access to
database access would involve retraining programmers as well as extensive conversion of
existing programs and files to database representations [60, 61).

To our knowledge, until quite recently no efforts have been made to interface database

management systems to computational applications.

Data Management for the Individual Scientist

Scientific data management systems are typically aimed either towards supporting the
individual scientist or towards making databases publicly available. Important database
projects oriented toward the individual scientist’s work in the laboratory include three
protein structure databases (Compo-OWL [16], BIPED [180], and P/FDM [71]), each
representing similar structures, but using different methods. These systems differ from
ours in that they involve biological, not chemical, structures and that they do not involve
computational applications.

The Molecular Interactive Display and Simulation (MIDAS) system (56, 57, 58, 87]
integrates display, storage and manipulation of large macromolecular models. MIDAS
database structures take advantage of the considerable redundancy in these molecules
to save disk storage space and to provide for efficient real time access. The main fo-

cus of MIDAS is the graphical display of large molecules (proteins and nucleic acids),
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and the special-purpose MIDAS storage manager was developed specifically to make such
displays fast enough for real time use. In contrast to MIDAS, our Computational Chem-
istry Database (CCDB) project uses a commercial database system and targets the com-
putational (not graphical) manipulation of significantly smaller molecules. For viewing
molecular structures stored in the CCDB, we propose an interface to existing specialized
graphical display systems, such as CACHE, Chem3D, or MIDAS.

Experiment management systems are closer to our own interests, but have traditionally
focused on providing laboratory automation facilities or data collection for laboratory
apparatus [158]. Commercial systems such as Labview [160] that directly support the
chemist’s work in the traditional laboratory (at the bench) are now available. Qur work,
on the other hand, is aimed at supporting the use of computational tools by theoretical
and bench chemists, and other molecular scientists.

More recent related work aimed specifically to support experiment management in-
cludes Ioannidis, Weiner and Naughton’s work modeling complex inputs to a scientific
simulation program. Their MOOSE system [77] has dealt with modeling the complex
inputs to a scientific simulation program. Our research differs from theirs in that they are
building a database management system specialized for experiment management; we are
building our tools using a commercial database system. More importantly, our domain
model covers a class of applications, while they build a new database schema specifically
for each particular application.

Sparr and his associates are developing an experiment management system that can
be applied to multiple domains {172]. The system is designed to support general scientific
inquiry, and is a long term effort to explore how scientists reason about information. In
particular, Sparr aims to develop tools that allow ad hoc queries across different experi-
ments and subdisciplines. A major objective of his work is to discover “new” knowledge
by making inferences and connections across experiments and subdisciplines. Qur infras-
tructure, on the other hand, is specifically designed to support the individual scientist in
running computational experiments. Hachem’s work with temporal data for global change
research supports individual researchers as does ours, but focuses on query optimization

techniques for data gathered by satellite [148]. We concentrate on support for the scientist
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performing experiments rather than querying data gathered elsewhere.

Research on personal databases and laboratory notebooks addresses the information
about their experiments that scientists need to record (15, 113, 190], and is tangentially
relevant to ours. To be of use to the scientist in this way, the CCDB would have to record
experiment annotation. More importantly, laboratory notebook research has raised jssues
of personal privacy and data validation. Ultimately, solutions to these problems will need
to be implemented in the CCDB as part of our long term goal of making components
of individual scientists’ private experiment data available in laboratory-wide or public

databases.

Data Management of Public Scientific Repositories

While our research deals directly with experiment data management for the single user, the
considerable existing work to support public scientific repositories is indirectly relevant.
First, we expect that computational scientists will want to import data sets from public
repositories to use as experiment input or as corroboration of computational results. Thus,
the data formats supported by public repositories are of concern to us; our data types
should be general enough so that we can read from or write to files using those public
formats that are in wide use. Secondly, as computational methods become more widely
used, scientific communities may wish to make computational results generally available.
At that time we will find valuable the current curators’ experiences verifying, validating
and distributing scientific data®. Thirdly, as computational scientists begin to make their
data publicly available, bibliographic references to that data will be required, and should be
accessible along with it. Thus, we will want to consider how to connect experimental data
effectively with bibliographic data. Because we may also consider connecting experimental
data with property data, the public repositories of chemical, biological and materials
science data are relevant to our work with computational chemistry.

Currently available public repositories of chemical data are either bibliographically-

oriented (for example, Chemical Abstract Service) or substance-oriented. A few combine

3“Curators” are those responsible for gathering data for public repositories and determining whether a
specific data item should be added to the repository.
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bibliographic and substance information. Substance-oriented databases may contain prop-
erty data only (for example, Beilstein [83] or Gmelin [130]), reaction characteristics (the
Reaction Access System, REACCS [195]), or aid with structure analysis and elucidation
(the Cambridge Crystallographic Database [4, 115] and the Mass Spectral Search Sys-
tem (MSSS) in the NIH/EPA Chemical Information System [82]). Some research has
also attempted to integrate bibliographic services into substance-oriented databases {95].
Innovative data structures and methods for molecule representation and for molecular
substructure searching developed by public data repositories are valuable models for de-
veloping data browsers of laboratory and experiment chemical databases such as ours
(35. 36, 37, 65, 195]. In particular, Beilstein's connectivity tables and Lawson numbers
[108] provide simple and eflective means for building indices based on general representa-
tions of molecular formulae.

Biological scientists have been among the first to use public databases, perhaps because
genome sequence data is (at least superficially) easily represented as ASCII character
strings [18, 22, 59]. While the past four years have seen “only” a 7-fold increase in the
number of nucleotides in the centralized DNA databases (from 3 million to 21 million), and
the data is accumulating at “only” 7 million nucleotides per year, automated sequencing
methods promise to increase this rate by an order of magnitude [188]. Of particular
interest is the Human Genome Project {110]; work spurred by the genome project in
protein sequencing has seen the development of innovative data structures for roemory
storage (for use with sequence and structure algorithms) {59, 85, 107, 140]. While many of
these systems provide bibliographic references, Futrelle’s work in biological text processing
endeavors to make textual material itself directly accessible to and manipulable by the
biologist [7].

Another discipline where public repositories have facilitated scientific inquiry is mate-
rials science [84]. Here, numeric or property databases abound, though their proliferation
has raised issues in database interoperability analogous to the issues in program interop-
erability that we address. Hansen, Maier and Stanley’s work addresses issues of database

heterogeneity in materials science and parallels our own work in program heterogeneity

(79, 80).



22

2.2 Application Integration Efforts

Of course, problems of data and program interoperability are not unique to scientific com-
puting; they plague users across many domains. As computing becomes an integral part
of many business environments, serious efforts to provide application integration architec-
tures are emerging. Current research and development in application integration focuses
on both (1) eflorts to integrate applications by integrating their user interfaces and (2)

software system support such as domain-specific software architectures and middleware.

2.2.1 Integration via the User Interface

The visualization of scientific information is an active research area not only for computer
scientists and domain scientists interested in facilitating the work of individual researchers,
but also for those working to increase the accessibility of scientific information [91, 155].
Some of these systems are relevant to our own work in that they attempt user-friendly
interfaces to programs that hitherto have been accessible only to specialists. Soloway’s
work in providing a common gateway to scientific applications is an attempt to integrate
scientific applications by integrating the graphical interfaces to those programs into one
interface [170]. He intends to develop a “digital workbench” to support key activities of
computational scientists working in nuclear engineering. The workbench focuses on ap-
plication integration at the user interface level, providing a uniform interface to a number
of commercial tools by “wrapping” the applications. His work differs from ours in that
his initial emphasis is consistency at the user interface (ours is on the underlying data).
In his system, applications continue to use individualized file structures for storing and
viewing data across sessions and experiments; our work has focused on data integration
as a first step towards application integration.

The Application Visualization System (AVS) [184] and IBM’s EXPLOR [89] are of
interest because they provide a facility for linking together programs to perform a series
of data transformations or computations. These so-called “data flow” solutions to the

program interoperability problem integrate applications at the program interface level by
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providing a means of visually connecting applications with each other and with data re-
formatting tools. They do not address the underlying conceptual information or integrate
data from applications into a single source. Our work has focused on first providing a com-
mon conceptual model of the underlying data and programs, and then working towards

generating application interfaces from a database repository.

2.2.2 Software Systems

The software systems research relevant to our own falls into two categories — domain-
specific architecture and middleware. Both aim to provide productivity tools for building
new applications and for systems integration of new applications. Our efforts are intended
to support legacy applications in addition to new development, and focus on solutions

specifically for computational science.

Domain Specific Architectures

Current research in domain-specific software architectures (DSSAs) aims to create build-
ing blocks for system construction that can be configured by application engineers us-
ing domain-specific languages for stating system specifications. DSSAs attempt to make
software development more efficient and effective by raising the level of abstraction of
programming new systems from that of algorithms to that of domain-specific problems
[178]. One emphasis among DSSA researchers is to determine appropriate mechanisms for
connecting large granularity modules.

The problems addressed by DSSA efforts are similar to those we address in that both
are domain-specific. However, our work is aimed primarily at supporting the data manage-
ment needs of computational scientists and increasing the interoperability of existing pro-
grams, rather than increasing the productivity of development programmers. Two DSSA
efforts, Coglianese, Batori and others’ in Avionics [34] and Baum, Balzer and others’ in
Command and Control [10], exhibit an additional similarity to ours in that critical aspects
of the domain are represented in a logical model; the logical model yields an architecture
that describes a family of solutions. Our project defines a domain model for application

programs, inputs, parameters and results; from that model we defined an architecture
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for experiment management. In addition, Baum’s project includes application generators
that allow software developers to work in a higher-level, domain-specific language — not
unlike our effort to provide a declarative mechanism for generating interfaces to existing
computational programs. While DSSA efforts incidentally often enhance the usability and
interoperability of heterogeneous systems, that is not their primary objective.

In sum, the primary difference between the DSSAs and our work is that the DSSAs
aim to support developers of new programs. Our CCDB supports users of ezisting (legacy)

applications.

Middleware

The term middleware has been used by Bernstein to refer to a system architecture compo-
nent that fits between the user interface and the application or other system services [14].
Middleware integrates application or system services into a consistent view. Middleware
can be geared either to the application Jevel (as a domain-specific information model or
application program interface) or to the system level. The client programs for application
middleware are user interfaces; the intended client programs for system-level middleware
are application middleware programs. Of course, if there is no application-specific mid-
dleware, clients of sysiem-level middleware can be user-interface programs.

While domain-specific software architectures address primarily the software engineer-
ing of applications, research in middleware addresses system integration primarily through
the reusability and development of applications running on networked heterogeneous com-
puters {14, 67, 72, 86, 131, 154).

Some middleware systems provide Jow-level support for coordinating remote processes
via UNIX system calls (Remote Procedure Call or RPC) {154} or UNIX message passing
[67]. Our experiment management infrastructure is similar to system-level middleware in
that it provides an application program interface that hides heterogeneity; we differ from
those efforts in that our infrastructure operates at a higher conceptual level — that of the
computational science domain area — rather than at the algorithm or program level for
any application area. In short, our effort is domain-area-specific and could be used in con-

junction with middleware systems, to specialize those system services for computational
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Such middleware as the Parallel Virtual Machine (PVM) [67] and Distributed Com-
puting Environment (DCE) [154] are important first steps towards providing the general-
purpose network services that domain-specific infrastructures such as ours might use.
However, general-purpose services such as PVM and DCE require efforts such as our infras-
tructure to provide domain-specific information models for sharing data across programs.
The information model facilitates greatly the definition of a domain-specific application
program interface so that a single user interface can address numerous programs. Lower-
level services such as PVM provide system-level integration services such as network file
service and message passing to domain-specific integration efforts. Our infrastructure pro-
vides an additional level of support for long-lived computational science processes between
the application domain level and the network services.

The current industry-wide effort to solve problems of platform heterogeneity by defin-
ing protocols for message passing is a key area of software systems work. Object Manage-
ment Group’s Common Object Request Broker (CORBA), for example, defines the stan-
dard protocols for building “Object Request Brokers” (ORBs) to pass messages among
applications running in a distributed environment. Vendors are currently implementing
ORBs to run on their respective architectures (93, 126, 189]. These future software prod-
ucts will provide message passing among objects residing on different systems and are
important to our work in that they will provide the distributed system foundation upon
which to implement our proxy infrastructure. They will not replace the proxy infrastuc-
ture, which provides not only a domain-specific model of data common to the applications
of interest, but also a model of computational applications and processes. The ORB spec-
ification does not explicitly address long-lived application processes. In addition, using
the ORB, for example, will require the rewriting of all applications as “objects”. It is
impossible to predict when, if ever, computational science applications will be rewritten
to iterface with a common protocol. In the meantime, our encapsulation of these legacy

applications provides a migration strategy.
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2.3 Database Research

Because our infrastructure for experiment management is data-centered, and has as critical
components a domain-specific database and a persistent representation of computational
applications and’ processes, we draw upon current database research for our work. In
this section, after briefly addressing efforts at providing wmigration paths for data and
applications from flat files to relational systems, we place our work in the context of other

object-oriented database research.

2.3.1 Data Conversion Research

Our task of database support for a class of scientific applications still using flat files was
not unlike that facing researchers and developers considering migration paths to relational
systems in the late 1970’s. We drew heavily upon Shu, Housel, and others’ research in
this regard: their Data EXtraction, Processing, and REStructuring System (EXPRESS)
was an experimental prototype that could access data in a wide variety of formats and
restructure it for new uses. Driven by two high-level nonprocedural languages, DEFINE
for data description and CONVERT for data restructuring, EXPRESS used program
generation and cooperating process techniques to achieve efficient operation. The system’s
modular structure permitted extensions or adaptation to another environment.
EXPRESS is similar to our work in that we also define high-level nonprocedural lan-
guages for the textual data written by application programs. Both EXPRESS and our
infrastructure attempt to provide a practical migration path towards database use for
legacy applications. The major differences between their work and ours is that theirs was
designed to support batch conversion of data from files to relational databases, and ours
is designed to provide a way to continue using existing legacy applications by providing

an on-line interface to an object-oriented database.

2.3.2 Object-Oriented Databases

Object-oriented database management systems (OODBMS) have grown out of two goals:

providing persistence to programming languages {112, 120}, and meeting applications needs
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in computer-aided design. document processing, and multimedia applications that were
not well served by record-oriented database systems [3. 75, 119]. Qur connections to
object-oriented database research are at three points: First, we are among a number of
scientific application developers using object-oriented databases to test the modeling power
of OODBMS. Second, we are among those identifying migration paths towards OODBMS
for existing applications. Third, we are among those extending an object-oriented database
system to provide new capabiljties, in our case, support for computation services and a
data model for programs and processes.

Surveys of data structures used in scientific applications {11, 12] indicate that scientific
applications exhibit characteristics similar to the application areas listed in the previous
paragraph as “unserved” by traditional relational database technology. Object-oriented
databases seem appropriate vehicles for representing the complex data structures of scien-
tific computing. The 1990 NSF workshop on scientific databases [60, 61] showed object-
oriented approaches used for protein-structure data, medical research, macromolecules,
global change data and scientific visualization. MOOSE (77] uses object-oriented struc-
tures to model the complex inputs to a scientific simulation program. Other notable re-
search using object-oriented databases in domains related to ours includes Marr’s Genome
Topographer for integrating and browsing genomic databases {122}, Goodman’s Jaboratory
data management system for genome sequencing [70), Shapirc and Tanimoto’s computer
graphic database (165}, and Hansen, Maier and Stanley’s system integrating heterogeneous
materials science databases [79, 80]. Bourne and Pu’s Protein Data Bank Tool (PDBTool)
[146] uses object-oriented languages and tools to manipulate complex molecular structures,
and is primarily designed to provide support for the new macro-molecular file interchange
standard [21].

We know of a few efforts to provide support for converting legacy applications and
data to OODBMS, in particular automated tools for loading data into object-oriented
database systems. Weiner and Naughton’s work introduces algorithms for loading large
quantities of legacy data into an OODB; it differs from ours in that their focus is on
data not programs and that the quantities of data with which Weiner deals are orders

of magnitude larger than what is needed for our computational applications. Paton and
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Gray {138] and Orenstein {137} have alsc written bulk loaders for OODBMS. The work of
Weiner, Paton, and Orenstein is similar to ours in that we, too, must provide a description
of the data to be loaded, a tool to parse data according to that description, and a tool to
Joad data according to the OODBMS schema. These efforts differ from ours in that their
focus is on data generated in bulk and existing in files, rather than data generated in the
context of an ongoing experiment.

We are not aware of any previous efforts to extend an OODBMS to support compu-

tational objects, but we hope that other researchers will follow our lead.



Chapter 3

Providing Data Services: The CCDB

Ab initio computational chemistry applications compute chemical properties from first
principles alone, using the Schrédinger equation. No empirical data are input to ab initio
computational applications, although empirical data are often used to validate results.
Both casual and expert users of ab initio applications frequently have difficulty selecting
and formatting program inputs. The proper selection of input parameters determines
whether a particular invocation of an application runs efficiently or terminates at all.
More critically, an incorrect input parameter can engender plausible but incorrect results.

Our collaborators wanted to build a graphical front end to help users select experimen-
tal parameters, and believed that a database of successful past experiments would provide
useful examples of input parameters for user reference. In addition, since a successful
investigation may involve hundreds of runs and many more files, a database that stored
experimental inputs and outputs would help users manage their data files. This chapter
presents the functional requirements and design for a computational chemistry database
(the CCDB) that meets these needs.

Eliciting requirements for database applications and the subsequent database design

typically involve the following steps:

1. Develop a conceptual model, i.e., requirements. In the analysis phase, the systems
analyst familiarizes herself with the application domain and develops a clear writ-
ten statement of the application problem to be addressed. To these ends, she may
interview key users of the proposed system, read documentation on existing appli-

cations, and consult standard references. The analyst prepares written statements

29
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of the goals and objectives of the proposed system, and narratives describing the
real world objects about which information will be stored. The parrative describing
the domain objects of interest is sometimes called a conceptual model. Capturing
behavioral aspects of the domain objects was particularly important to us, since we
wanted to avtomate them where possible. The systems analyst often writes down
user scenarios for the current modus operond: and for how a database user might
interact with the proposed system. The problem statement, conceptual model and
user scenario(s) provide the mechanism through which the developer and end user

dccide on what the proposed system should do.

These preliminary narratives are written in the language of the application domain,
not in a formal mathematical or computer language. Describing the conceptual
model in the domain language is important so that the client can easily verify the
analyst’s understanding of the system requirements {171]. A complicating factor in
writing these narratives arises when more than one domain language is relevant, as
would be the case if a database is to be used by both ab initio and bench chemists,
or by both chemists and materials scientists. Thus, for example, narratives might
describe a given molecule in two different ways (say, in terms of atoms and bonds
versus the symmetrical distribution of a space group). One can apply the same
conceptual operation to either representation, though the algorithmic details of each
might differ. In such cases it is preferable, though not always practical, to choose a

single language to describe concepts.

In conceptual modeling, one captures current usage, rather than proposing new
scientific paradigms. At times, however, the analyst is faced with terms that have
multiple senses and must manufacture new terms to eliminate ambiguities. For
example, is an “atomic element” just an atomic number, or does it mean a particular
isotope, or some distribution of isotopes? Such a distinction matters in defining what
the “atomic weight” operation should yield when applied to an atomic element.
Also, we would like to express our models so they can be specialized and adapted

for particular applications and sub-domains [114).
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2. Develop an information model. During this phase the designer begins to impose
a formal structure on the conceptual model prepared in the analysis phase. The
resulting information model, sometimes cast into an informal structure such as an
entity-telationship (ER) model {28, 169] or an object model {19, 27, 157, 193], orga-
nizes information about the entities, attributes, relationships and behaviors that are
likely to be implemented in the database. Both the information modeling language
and the model itself are independent of any particular database management system.
Developing an adequate information model is a crucial, and non-trivial, first step to-
wards building a database. The information mode! is often used to determine what
database technology is needed to implement the system, or whether a particular
technology is adequate. If a feature used in the information model is not supported
in the data description language of the database management system chosen, then
one must encode those features to the database management system. In our case,
we determined from the information model that the ObjectStore database system

[104] would adequately support our needs, with very little additional encoding.

3. Develop a logical model. The information model is the basis for the logical database
design {182}, which is typically a database schema. Since we decided to build our
database in ObjectStore, our logical model consists of an ObjectStore schema that
depicts database classes, the relationships between those classes, and the signatures
of database methods within the classes. Note that the logical model is still declar-
ative in nature, and simply specifies more formally what the database system is to
accomplish. The logical model is the view that programmers have of the database,

and it is independent of the data’s physical storage characteristics.

4. Develop a physical design. To render the logical model into a physical design, the
designer specifies how the database will perform its functions. Some aspects of this
task are automated; for example, an ObjectStore design tool translates the logi-
cal database design (schema) into C++ classes, generating additional classes and

appropriate object pointers as required to implement binary relationships. Other
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aspects of this task, such as designating indices for accessing particular classes di-
rectly, are represented by the designer in the database programming language. Still
other aspects of the database design, such as program-level design for methods, may

be represented as pseudocode.

At each step in the design process, the design is validated by reviews with typical end
users and with the client. Note that we distinguish between user and client. By user, we
mean a person who will actually be using the system. By client, we mean the person or
organization who commnissions the system. The user and the client may of course be the
same person, or the client may be one of many users,

Our major domain problems were that applications were unusable without extensive
specialized training, that even experienced computational chemists were spending too
much eflort running programs and formatting data, and that experimental results of dif-
ferent programs were not directly comparable. We needed to solve problems of data and
program incompatibility, and we felt that efforts to reconcile differences at the lowest
{physical) level would be ineflective without agreement at the information model and con-
ceptual levels. There is no point in discussing physical compatibility of data if there is
fundamental disagreement on the meaning or interpretation of that data. The applications
sometimes use diflerent names for the same information, or the same names for different
information; thus, it was not always easy to identify semantically identical data elements
across applications, nor to determine whether one data structure was “better than” an-
other, nor to find appropriate mappings from one to another. Because of the critical
importance of achieving general agreement among users and programs at the conceptual
level, we emphasized the conceptual modeling phase. Thus, we attempted to reconcile
incompatibilities of molecular information top-down through the conceptual, information,
logical and physical levels.

This chapter describes the design of our database. We first define the conceptual
structures of ab initio computational chemistry and outline the functional requirements
of a database for computational chemists. After casting conceptual structures into an
information model, we identify challenges inherent in reifying computational chemistry

information structures as a logical model and a physical database. While details of the
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physical design are too numerous to include in toto, we sketch salient aspects of the phys-
ical design and conclude the chapter with lessons learned in building the database. The
physical design is treated in greater detail in Chapter 5 where we describe our prototype
implementation of the database.

Section 3.1 provides background on the domain of interest along with an initial prob-
lem statement. We describe the field of ab initio computational chemistry and explore how
ab initio computational chemists use computational applications. We then epumerate the
shortcomings of the current computational environment with respect to program interop-
erability, file management and network services. For novice or casual users, the complexity
of input parameters and interpretation of results are also problematical. To illustrate the
current typical use of computational chemistry programs we present a user scenario, and
suggest how a database of past experiments might solve the problems identified, especially
for nonspecialists.

Section 3.2 contains the conceptual model for the database. Section 3.3 describes our
refinement that conceptual model to an information model using a notation similar to
Chen’s entity-relationship modeling {28]. We also identify modeling challenges inherent
in the domain. Section 3.4 describes the logical and physical design of the database. We
discuss our choice of an object-oriented data mode) and then show how the information
model was translated into a logical design, i.e., an object schema plus the persistent roots
of the database. An outline of the physical design of the database follows, and we end
the chapter with a brief description of our implementation of a prototype database — an
experience that led us to conclude that database services alone will not solve the crucial
problems of program interoperability.

Our understanding of the domain (i.e., our conceptual model and requirements analy-
sis) Is largely based upon interviews and close collaboration with computational chemist
Dr. David Feller. The property data angd folklore of the academic subdiscipline were also
important sources of data for us. The term property data is often used by scientists to refer
to data values that are generally accepted within a discipline or subdiscipline. Property
data are so well understood that, when cited, they are often not referenced, or, if cited, the

reference is a standard textbook. Property data often measure or describe a property of
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some real-world object; for example, an atom has properties of mass, number of protons, a
set of valid electron configurations, etc. Properties are generally thought of as immutable,
and a property datum as an established and accepted fact {78, 158].

In addition to collaboration with Dr. Feller and study of the domain’s property data
and folklore, we also drew upon our own experience reading the user’s manuals of com-
putational chemistry packages and running those programs [50, 55, 62, 64]. Informal
conversations with other chemists (8, 20, 142, 147, 152, 175, 179], standard texts and
papers {102, 111, 127, 174, 168], and non-research oriented accounts of quantum theory
{73, 125, 159} supplemented our primary sources. The computational chemistry bulletin
board and network, run by Dr. Jan K. Labanowski of the Ohio Supercornputer Center
[103], corroborated our understanding of the computational challenges facing chemists.
Computational chemists at PNL have reviewed drafts of the conceptval and information
models, and our work with the chemists from PNI,, CAChe Scientific, and IBM Almaden
suggests that our computational chemistry model is an appropriate subset of a more
general model of chemistry experimeots [114]. Any errors or misunderstanding in this
rendition of computational chemistry for computer scientists are of course those of the

author.

3.1 Ab Initio Computational Chemistry

The computational sciences bring applied mathematicians and computer scientists to-
gether with scientists from application domains to use computers in modeling physical
phenomena. Typical computational science domains include environmental science, biol-
ogy, chemistry and physics. The term computational science is often narrowly construed
to denote computational algorithms and high performance computing. We believe, how-
ever, that the computational sciences have in common not only the need for increasing the
speed and precision of computation, but also the need for promoting sharing of scientific
data and better supporting the individual scientist’s research activities. Such support in-
cludes help in managing an increasingly high volume of data, providing visualization and

analysis facilities, and easily-used computer program libraries. Our work has focused on
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support for scientists’ research, exploring how object databases can promote better access
to computational science applications and more facile sharing of experiment results from
these programs. We address the requirements of one domain of computational science in
depth, with an aim to generalize eventually to other computational sciences.

Ab initio computational chemistry uses computerized molecular-orbital methods to cal-
culate chemical properties. Semi-empirical computational chemistry uses (at least some)
laboratory observations as input to programs, while ab initio computational chemistry, or
chemistry from first principles, uses none. We chose ab initio computational chemistry
because we believe its data management problems are representative of computational sci-
ence in general, and because data files are manageable in size and complexity. An equally
important factor was the availability of willing and able collaborators.

Ab initio molecular-orbital methods apply quantum-mechanical techniques to molecu-
lar structure and energetics, solving the Schrddinger equation to various levels of approx-
imation. From the resulting wave function and associated electron density map, certain
observable molecular properties such as vibrational frequencies or electrostatic moments
(dipoles, quadrupoles, etc.) can be computed. As early as 1929, scientists realized that
quantum chemistry calculations could, in theory, predict molecular structure and chemical
properties from first principles, but most believed that calculations precise enough for sci-
entific investigations would be impossible. By the 1950’s, approximate methods exhibiting
adequate precision had been developed, but these were impractical for molecules of any
complexity. Because of this limitation, ab initio methods have traditionally been of inter-
est primarily to theoretical chemists, who use them to determine molecular properties and
structure for relatively small molecules. Only semi-empirical methods, which are generally
Jess accurate, can be used for molecules larger than 50-100 atoms. Recent improvements
in algorithms and rapid increases in computing power, however, should soon make ab
initio methods applicable to larger molecules, including those of interest to molecular bi-
ologists. Thus ab initio computational chemistry, once the arcane purview of a relatively

small group of theorists, is emerging as a useful tool for bench chemists!, pharmaceutical

"The term “bench chemist” refers to an experimental chemist (i.e., non-theoretician) involved in syn-
thetic work or analysis, such as spectroscopy.
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researchers and molecular biologists, as well as theoretical chemists. Just the possibility
of dealing with larger molecules, however, hardly makes ab initio methods usable to the
non-specialist, who will be loathe to invest the time now required for learning how to use
these applications {25, 111, 145, 159).

Ab initio computational chemistry? applications run on a variety of platforms, such as
IBM RS6000s, Sun SparcStations, and Cray supercomputers. For an ab initio computa-
tional experiment to take several days or weeks even on a supercomputer is not unusual,
and we characterize executions of this application class as computationally long-lived. Ex-
periments typically create scratch files of one or more gigabytes and results files that are
one to two megabytes in size. Current computational chemistry applications are stand-
alone packages, typically written in FORTRAN, that each perform a variety of functions.
One or more input files define the subject molecule and starting conditions, and specify
computational functions and control. Input files are highly structured, and each applica-
tion has its own command formats. Experimental results are written to output files, again
in formats relatively idiosyncratic to the particular application.

Principal inputs to an ab initio application include the atomic components of a molecule,
an initial guess at their molecular structure (most often expressed as the location in three-
space of the atomic components), and a basis set of functions on which the first iteration
of the computation is based. These inputs provide a starting point for an iterative so-
lution to the Schrodinger equation. Many other input parameters can also be specified,
depending on the particular application; these usually include the level of approximation
to which to take the calculation (level of theory), some maximum number of iterations,
and the choice of a particular algorithm. The major outputs of an application include
an optimized molecular structure, a total energy value corresponding to that structure,
and the corresponding wave function (with its associated molecular orbitals and electron
density function or molecular orbitals). By optimizing a structure, we mean adjusting

the initial molecular structure with respect to the wave function. From the wave function

*From this point on in the thesis, for the sake of brevity, we shall use the term computational chemistry
interchangeably with ab initio computationel chemistry, though the former term covers a much broader
spectrum of applications.
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Figure 3.1: Inputs and outputs for computational chemistry codes.

itself are calculated the outputs of interest to non-theorists: chemical properties such as
electrostatic moments or hydrophobicity. Thus, for example, given a starting geometry for
water, a chemist might calculate its dipole moment. Figure 3.1 gives an overview of these
inputs and outputs for computational chemistry applications. We call a single invocation
of a quantum chemistry application a computational experiment.

During the course of a scientific investigation into a given molecular substance, a
chemist usually performs many computational experiments before that substance’s struc-
ture is adequately determined. A chemist may also study several conformations of the
same molecular substance during the course of a single investigation. (Two conformations
of the same molecular substance would consist of different molecular structures but would
involve the same atoms.) For example, in studying transition states from hydrogen and
oxygen to water, four computational experiments would be needed to optimize structures
for the three different conformations of hydrogen and oxygen atoms. In Figure 3.2 we
have plotted the total energy values for: (1) two initial experiments that model the stable
states of hydrogen and oxygen molecules, (2) an intermediate experiment that models

the unstable state of these elements at the energy level required for the transition, and
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Figure 3.2: Transition of hydrogen and oxygen to water.

(3) a fourth experiment that models the final and stable state of the water molecule.
These computational experiments predict molecular properties of the hydrogen and oxy-
gen atoms at the points where the energy values, computed and stored as results of the
computational experiment, are minimal (at the three stable states), and maxirmal (at the
unstable state). Note that energy curves are typically not so smooth as those depicted
in Figure 3.2, and that an improper or careless determination of molecular structure or
some other parameter can cause the computation to converge, deceptively, only to a local
minimum or local maximum.

The following sections define the most important inputs and outputs in greater detail.

Molecular Structure

Molecular structure is both an input and an output of computational applications. As an
input it is the chemist’s initial guess as to the molecule’s structure; as an output it is the
application’s optimization of that initial structure. Computational chemistry applications

represent molecular structure in three different ways:

1. Three-dimensional Cartesian coordinates, also called spatial structure. Here, Carte-
sian coordinates, atomic mass and charge are specified for each atom in the molecule.

Cartesian coordinates are the preferred way for communicating molecular structure.
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2. Partjal structure with symmetries. Molecular structures, as they occur in nature,
often exhibit symmetry about the x-, y-, or z-axis. Especially for large molecules,
considerable space and computation can be saved by using symmetry conventions to
specify the locations of symmetry-unique atoms of the structure. The locations of the
symmetric atoms are then calculated using conventional symmetry rules. Specifying
just the symmetry-unique atoms can be viewed as a short-hand representation of
the molecular geometry. By utilizing the available symmetry, an application can

effectively reduce the amount of computer time by 2 factor of two or more.

3. Internal coordinates, sometimes called “z-matrix format”. Here, the molecular ge-
ometry is specified using bond lengths and angles instead of Cartesian coordinates.
There is no unique set of internal coordinates corresponding to a given set of Carte-
sians, but by conforming to any one of a number of conventions that fix the positions
of the first few atoms in the molecule with respect to a fixed Cartesjan axis system,
one can define the remainder of the molecule in terms of a variety of internal coor-
dinates [52]. (Because of the difficulties inherent in using internal coordinates, the
GAMESS manual refers to these as infernal coordinates. If present trends continue,

internal coordinates will be rarely used as input to future applications [52].)

Cartesian coordinates in 3-space are acceptable as input to most applications, but some
programs require different representations. Sometimes the same program may even require
different representations depending on the property to be calculated. Figure 3.3 indicates
the extent to which automatic translation among the three representations is possible.
Converting between Cartesians and partial structures and from internals to Cartesians
or partial structures is straightforward, but arriving at appropriate internal coordinates
from Cartesians or partial structures usually requires some human judgement as well as
calculation.

Below is a sample textual representation of the molecular structure of water, as found

in an output file for the GAMESS program:
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ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z
OXYGEN 8.0 0.0000000000 0.0000000000 -0.1238074000
HYDROGEN 1.0 0.0000000000 -1.4304294000 0.9832501000
HYDROGEN 1.0 0.0000000000 1.4304294000 0.9832501000
Basis Sets

Selecting a basis set for a computational experiment is one of the most exacting tasks for
users of ab initio applications. A basis set is a set of real functions over three-dimensional
space, and is used for describing the electron density about the molecule. The term basis
function refers to one of the functions in a basis set.

Basis sets are in effect artifacts used as starting points for the iterative computation

that approximates solutions to the Schrodinger equation:
HY = EY,

where H represents the Hamiltonian operator, ¥ is the wave function of the system (atom
or molecule), and E is the energy of the systemn. Basis functions are used as the basis of
linear combination of atomic orbitals to generate molecular orbitals (the wave function for
the molecule). A basis set (a set of basis functions) can be thought of as a starting point

for the calculation leading to a wave function, but it is not itself a wave function.
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Although the solution of the Schrodinger equation does not explicitly require their use,
the overwhelming majority of quantum chemistry techniques are formulated assuming that
a suitable basis set is available for the particular computation [52]. The heart of the ab
initio calculation will be to determine the co-efficients of linear combination (the c(%, 7)’s
below) for the wave function for a particular molecule: ¥ = N»W (1)« L (2)xT(3)x...x¥(n),

where N is a normalization constant, and

U(1) =c(1,1) = (1) + ¢(2,1) x D(2) + ¢(3,1) x B(3) + ... +¢(n, 1) * D(n),
T(2) =c(1,2) * (1) + ¢(2,2) * &(2) + ¢(3,2) * B(3) + ... + ¢(n,2) * D(n),...,
Y(n) =c(l,n) = B(1) + c(2,7) * B(2) + ¢(3,7) * B(3) + ... + ¢(n,n) * B(n).

The ®(z)’s are the basis functions for the molecule in question, and are given as the basis

set input to the ab initio application;
&(z) = N(z) * coef ficient * explexponentr?] + coef ficient * explezponentr?] + ...,

and N(z) 1s a normalization constant. Once ¥, the wave function of the system (atom
or molecule), is calculated, then E, the energy of the system, can be calculated using the
Hamiltonian operator H.

A large number of basis sets are in popular use, and these can be categorized according
to the families of molecules for which they render effective and efficient solutions. Deter-
mining which basis set to use as input to an experiment is a complicated process, even
for theoretical chemists. For a new investigation, it is possible that no known basis set is
appropriate and the chemist will need to develop his or her own.

A number of standard basis sets are usually furnished with an application, and a user
can specify by name which one to use in an experiment. Different applications might
have basis sets by the same name, but the fact that two basis sets go by the same name
is mot a guarantee that they are identical. Thus, some research sites prefer their own
basis sets, and all applications (to our knowledge) allow the option of including explicit
basis sets. Battelle Pacific Northwest Laboratory maintains an electronic basis set library,
along with programs that generate basis sets for particular computational experiments

(i.e., particular molecules and applications).



42

The basis functions comprising the STO-3 basis set for water, can be constructed
from the STO-3G basis functions for oxygen and hydrogen, using the initial molecular
structure. Water has 4 shells (1, 2, 3 and 4). The basis functions corresponding to shells
I, 3 and 4 can each be thought of as a single contracted basis function having three s-type
Gaussians. The basis function for shell 1 is (1) = N (1) * 4.251943 * exp[130.70932072] +
4.112294 * exp[23.8088672] + 1.281623 * exp[6.44360872). The second shell is of type L,
which is jargon for a group of (s,p) functions with shared exponents. The p functions in
the L shell expand into three basis functions, each combining with one of the Cartesian

coordinates x, y, and 2:

B(pl) = N(z) * z * coef ficient + explezponentr?] + ...,
®(p2) = N(z) * y * coef ficient + explezponentr?) + ...,

®(p3) = N(z) * z * coef ficient * e;rp[ezponentrQ] + .

where the normalization coefficient N(x) is the same as that used for the s function in the
L shell. Thus, for water, there are seven basis functions.

Once a basis set has been constructed for 2 given molecule, it must also be formatted
for a particular ab initio application before it can be used. Below is a sample textual rep-
resentation of the STO-3G basis set for water, as found in an output file for the GAMESS
application; note that the basis set for hydrogen is given only once; this is because of the

symmetry of the hydrogen atoms in water.

SHELL TYPE PRIM EXPONENT CONTRACTION COEFFICIENTS
OXYGEN
1 S8 1 130.709320 4.251943 ( 0.154329)
I S 2 23,808861 4.112294 ( 0.535328)
1 S 3 6.443608  1.281623 ( 0.444635)
2 L 4 5.033151 -0.239413 ( -0.099967) 1.67545C ( 0.155916)
2 L 5 1.189596  0.320234 ( 0.399513) 1.053568 ( 0.607684)
2 L 6 0.380389  0.241686 ( 0.700115) 0.166903 ( 0.391957)
HYDROGEN
4 S 7 3.426251 0.276934 ( 0.154329)
4 S 8 0.623914  0.26783% ( 0.535328)

4 S 9 0.168855  0.083474 ( 0.444635)

In this example, there are three explicit shells (1, 2, and 4). Shell 3 is the shell for the
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first hydrogen atom and is implicit because of the symmetry of the two hydrogen atoms in
water. Note that for the shell of type L, there are two columns of contraction coefficients;
the left corresponds to the s functions and the right to p functions. (The numbers in
parentheses can be ignored for this purpose.)

A short general introduction to basis sets can be found in the Appendix of M. Rao’s

thesis [151], and a more extensive treatment in a paper by E. Davidson and D. Feller {44].

Level of Theory

The chemist uses a level-of-theory parameter to specify the degree of accuracy with which
an application is to “describe” the motion of the electrons around a molecule. Higher lev-
els of theory usually result in better agreement with a laboratory measurement, but can
cost much more in terms of computer time. Computational chemistry experiments gener-
ally become increasingly accurate with “better” basis sets and “higher” levels of theory.
Paradoxically, the benefits of a “better” basis set can be nullified uunless an appropriate
level of theory is selected; with an inappropriate level of theory for a particular basis set
one may experience a diminishing degree of accuracy. Choices for level of theory and
basis set are thus not independent: an experiment run with a lower level of theory and
more primitive basis set can give more accurate results than one run with a higher level of
theory and better basis sets if respective discrepancies in the former case cancel each other
out. Levels of theory can be paired with basis sets that “work” for a family of molecules,

and the pairings can be arranged in an order according to accuracy.

Molecular Orbitals

Molecular orbitals constitute one of the major outputs of many computational applica-
tions, and constitute the major result of the solution to the Schrodinger equation. From
molecular orbitals applications calculate observable properties. Molecular orbitals are typ-
ically represented as a matrix of floating point numbers, organized by atom and shell. The
number of orbitals (and hence the size of the matrix) can be calculated from the size of

the basis set and the atomic constituents of the molecule.
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3.1.1 User Scenario for Ab Initio Applications

The laboratory of the ab initio computational chemist is a computer (more recently, a
network of heterogeneous computers) where he or she performs numerical experiments
using programs based on quantum-theoretical models. Results consist of chemical prop-
erties (structure, dynamics and molecular properties) for a molecule under investigation.
Since each application program offers slightly different capabilities, experienced users may
employ more than one for a given investigation. We use investigation to refer to the
collection of computational experiments that a chemist conducts during a scientific in-
quiry on a particular molecule. The chemist constructs an investigation in an iterative
manner, rerunning experiments while adjusting and tuning parameters for the molecule
under investigation [52]. A particular experiment fails if it does not converge in the time
allotted or if calculated properties do not agree with empirically-measured properties.
An Investigation 1s considered successful and complete when the chemist achieves one or
more experiments that adequately model the molecule in question. Our research addresses
the applications used to compute chemical properties using ab initio methods, but other
programs such as molecular editors are important components of the ab initio chemists’
laboratory.

The semantic complexity of computational chemistry applications lies primarily in
selecting input parameters appropriate for the subject molecule and desired properties,
and in correctly interpreting experimental results. A single run may require hundreds
of numbers as input; getting even a few of these “wrong” can result in many lost CPU
hours or, worse, a plausible but incorrect result. Because applications depend on the same
physical theory, they are semantically similar. Input and output conventions, however,
vary considerably. This syntactic complexity lies primarily in the relatively diverse and
arcane formats of input files and output files, a result of their independent development
over a number of years. Unfortunately, even though one application might be preferable
to another for calculating a particular property, casual users and even many theoretical

chemists use only one application package, rather than deal with learning the idiosyncrasies

of several.
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We helieve that a chemist should be able to use the output of one program “transpar-
ently” as the input to another. “Transparently” here means using (perhaps reformatting)
the output of one program as the input to another without conscious action on the part
of the user. The current modus operandi is unfortunately far from this ideal. At best, the
chemist must explicitly run programs that translate data from one file format to another.
Sometimes, a chemist may even have to write a special-purpose data conversion program.
In the worst case, no algorithm exists to reliably translate one data format to another,
and each program-rendered translation must be adjudicated by an experienced user.

As we have seen, the semantic and syntactic complexity of ab initio applications is high.
The data volume, however, is not particularly large: a single successful experiment results
in Jong-term storage of only about two megabytes of data. Each successful run, however,
may be preceded by hundreds of “unsuccessful” runs, each generating two megabytes of
short-term storage. In addition, a single run can generate several gigabytes of intermediate
data, written temporarily to disk, and used by the application to solve the problem or by
the chemist to restart an interrupted run. Battelle’s Molecular Science Research Center
now generates about 1.2 gigabytes of data per year that are candidates for permanent
archiving. This laboratory-wide reference material should be accessible by casual and off-
site users. In addition, data from other laboratories will be imported to this repository.

In order to better understand how computational chemists use ab initio applications
and to determine specific problems with their use, we have constructed a user scenario.

The following scenario involves a typical investigation of a single state of a single molecule.

1. Define the subject molecule. Either by hand or using a molecular structure
editor, the chemist defines an initial structure for the molecule. He or she may also
perform heuristic structure optimizations, though during the course of the investiga-
tion this initial geometry will likely be changed. When the investigation is complete
and an optimized structure computed, the chemist will probably not want to save

this initial structure.

$For purposes of clarity, we chose a simple investigation for this scenario. Chemists frequently perform
more complicated investigations involving interacting molecules or different states of the same molecule.
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2. Comnsult previous runs on similar molecules. The chemist may consult compu-
tational and laboratory experiments on molecules of similar structure and properties
to determine likely experimental parameters. Because experimental results are rarely
filed in a form that can be easily queried, such consultations are typically limited to

one’s own recent runs or those of a close colleague,

3. Annotate records of previous runs. While consulting previous runs, the chemist
often annotates his or her copy of previous experimental results with information
from the literature [49, 166]. Such annotations, often consisting of references to
property data, are in effect pointers to laboratory experiments and can be thought

of as evidence confirming the computational experiment.

4. Choose input parameters for the current run and prepare an input file.
Drawing on his or her experience with the application, or the help of expert users,
the chemist considers the particular molecular properties of interest and chooses an
appropriate application and associated input parameters. Selecting input parameters
is a highly specialized and critical activity. The chemist then prepares an input file

for the application.

5. Perform the experiment. Many activities comprise performing a computational

chemistry experiment:

(a) Based on initial input parameters and the choice of application, the chemist

selects a target machine on which to run the experiment.

(b) To determine if the experiment is feasible, the chemist usually estimates re-
source requirements, e.g., how long a single experiment will run and how much
CPU time is required. The chemist may then further optimize the molecular

structure or modify parameters before scheduling the experiment.

(c) If the experiment is to be run remotely, the chemist must first transfer the

input file to the remote machine.

(d) The chemist then invokes the application, i.e., “runs the experiment”. If the

experiment is run remotely, this step also requires logging on to that machine,
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which may be of a different type than his or her own workstation.

(e) If the experiment takes longer than an hour or so, the chemist usually monitors
its execution. which involves inspecting a file into which the application places
preliminary results on an iteration-by-iteration basis. The file is produced on

the machine on which the experiment is executing.

(f) Once a remote experiment has completed, the chemist transfers results back to
the local machine. Alternatively, the chemist might move the files for remote

or local experimenis to a different area on the same machine.

6. Analyze results, adjust parameters and rerun the experiment, until it
runs successfully. The chemist will likely invoke the application many times during
the course of a single investigation before being satisfied with the results, repeating
items 5 and 6. It may also be scientifically advisable to run the computational
experiment using severa! applications to validate results. However, such comparative

runs are rarely made in practice because of file format differences among applications.

7. Make public and archive the results of the experiment. Once the chemist has
successfully completed an investigation, he or she publishes the results, either locally
to colleagues working on the same or related projects, or formally in a scientific report
or journal. Often, the chemist makes input and output files publically accessible to
colleagues, so that results can be consulted or corroborated. The chemist must
also clean up the “laboratory” after the investigation; here that includes deleting,

archiving, or compressing unsuccessful runs.
Difficulties abound in the scenario above, even for highly trained theoretical chemists:

1. Even if a chemist uses only one application on one computer, work on even relatively
small molecules is hampered by the number of files he or she can effectively name,
store, search, and manage. Running experiments on molecules significantly larger
than 50 to 100 atoms (which is expected in the next five years) will exacerbate these

data management problems:
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(a) A much larger set of sample experiments will be relevant to the process of
choosing input parameters because larger molecules typically have more sub-

structures.

(b} Larger molecules will likely require more application runs, and hence necessitate

managing more input and output files.

(c) Larger molecules have more complex structures and will likely require larger

basis sets, and hence larger input and output fhles.

2. Consulting previous runs on similar molecules is an ad hoc process. Because there is
no electronic index to experiments already run, finding successful previous successful
experiments relevant to a new study is difficult. Furthermore, becanse experimental
results from different programs are not in consistent format, a chemist often lim-
its consultations to applications using similar formats. Finally, the chemist usually
works from copies (on paper or in data files) of the previous runs, rather than con-

sulting the original (and presumed more correct) electronic record of the experiment.

3. Little or no information associating application inputs (molecular structure and
parameters) with results is captured from the experimental process in a way directly

applicable to later experiments with other molecules.

4. Since at least some of the computational chemistry programs are little more than
research prototypes, it may be difficult for a bench chemist to properly prepare input,
due to the combination of mathematical sophistication and research orientation of

such applications.

5. While much of the semantics of one application is transferable to another, the syn-
tares are not transferable. If a chemist wants to compare outputs from several
different applications, he or she must perform tedious data conversions. Figure 3.4
shows the format conversions needed in order to compare a property calculated by
computational chemistry application A with properties calculated by applications B
and C. Assuming that the chemist understands how to invoke the same calculation

across the three applications and specify the same level of theory, at a minimum
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Figure 3.4: Syntactical complexity of computational chemistry ap-
plications.

he or she must convert the molecular structure and basis set formats for program
inputs, and convert the properties produced by applications B and C to the format

of the property value produced by application A.

6. Syntactic differences among applications also make it difficult for chemists to use the
inputs from experiments using one application as models for successfully designing

experiments using another application.

7. Because computational experiments require highly variable amounts of system re-
sources, the applications run on a range of platforms. A chemist who wishes to
choose an appropriate target machine for an experiment must be familiar with the
network and operating system idiosyncrasies of that machine, as well as knowing
how to access the machine remotely. We call this distributed, heterogeneous char-

acteristic of the computing environment architectural complezity.

The above problems fall into categories common to other computational sciences

[43, 60, 61, 158]. They include the management by hand of many large files spread over
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several physical computers; the semantic, syntactic and architectural complexity of the ap-
plications themselves; and the lack of data interoperability among the applications. Pro-
viding a database to hold input and output files of computational experiments ameliorates
some data management problems, though it does not address problems of architectural
complexity or interoperability.

A public database of past runs could be used by chemists to consult previous exper-
iments on similar molecules. Of course, if a chemist wanted to use previous successful
experiments on, say, all alkanes to determine which application and basis set to use for
determining a particular property for a specific alkane, output files would have to be in-
dexed by molecular substructure. To allow searching for molecules similar to the one under
study, the database could hold templates of atomic substructures, each of which defines
a “family of chemicals” and could be used as an index into molecular structures. Once
defined, a new molecule or template could be placed within a chemist’s personal database
and reused.

To set up a new experiment, one would want to know the specific machine on which
the previous samples were run, with which version of which application, when it was run,
and by whom. Even with the information above, determining which method was used
to perform the calculation usually requires an understanding of the application. Such
metadata, while necessary for correctly interpretating results or applying previous work
to a new investigation, is not necessarily explicitly contained in either the input or output
files.

While such a properly indexed database repository of input and output files as described
above would be useful, a datobase of ezperiment date that renders the data contained in
input and output files into 2 common format would be even more helpful. Such a database
could support the needs for public data as well as provide working data to individuals, and
the same entities (molecules, basis sets, experiments) can participate in multiple collections
to support varied searches and personalized subsets of data.

Such a database could also hold experimental inputs and results in canonical form,
or contain functions to display in comparable formats data that are stored in different

formats, thus alleviating some syntactic incompatibility of applications. Outputs from
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one application could be more easily compared to outputs of another application, or used
as inputs to new experiments. Equally important, the data in a database could also
be used by applications that assist in selecting previous experiments relevant to a new
experiment, and to develop initial inputs and parameters to new experiments based on
them.

A database that can display inputs and outputs of ongoing experiments and past runs

in comparable form simplifies the user scenario given above as follows:

1. Define the subject molecule. Instead of defining a molecular structure from
scratch, the chemist can consult the database to find a similar molecule to use or
modify as an initia) structure. During an investigation, the imitial geometry will
likely change radically, and the database can keep track of versions of molecular
structure, without requiring the chemist to think up and remember a series of ap-
propriate file names. The advantages of using a database separate from the file-based
databases supplied with most molecular editors are that scientists can more easily
share structures if they prefer to use different editors, the database can integrate
experimental results with molecular structure, and optimized molecular structures

can be more easily annotated with metadata that indicate how they were derived.

2. Consult previous runs on similar molecules. The chemist may now query
the database for previous successful computational and laboratory experiments on
molecules with similar structure and their calculated properties. Consulting a database
for similar runs is a considerably easier task than gathering electronic files or print-
outs. Because the chemist may not be familiar with all of the computational pro-
grams or apparatus on which the selected experiments were run, associated infor-
mation (metadata) can be available to help interpret input parameters and results.
Data may be physically stored in the database, archived at the site, or resident at
another location, but the chemist can be presented with a consistent view of data
irrespective of physical location or the format or machine on which the data were

generated or stored.

3. Annotate records of previous runs. A chemist’s annotations on an experiment
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may include additional information, such as “property data” [49, 166). With a shared
database of experiments, annotations can be made publicly available upon release
from the author. Without a shared database, such annotations are made on copies
of the experiment and are usually lost to other chemists who might later also use

those experiments as models (even if the copies are electronic copies).

4. Choose input parameters for the current run. Using the experiments retrieved
above as examples, the chemist can better determine input parameters for the new

experiment.

. Run the experiment. In addition to containing experimental data, i.e., appli-

v

cation inputs and outputs, a database of past experiments should contain meta-
data about the experiment, such as the application invoked, the machine on which
the experiment was run, and information about the resource use. Experiments on
molecules of similar structure and input parameters are likely to require similar
resources. Thus, sampling previous experiments could help the chemist select an
appropriate target machine on which to run the experiment and estimate how long

the computational experiment will run and (if relevant) how much it will cost.

6. Analyze results, adjust parameters and rerun the experiment. Since the
database must provide capabilities to represent results from different programs and
to view experimental results of past {confirmed) experiments, it could also be used
to view results of completed but not yet confirmed experiments. Because results are
captured in comparable form, results of ongoing experiments can be directly com-
pared to each other and to results of previous successiul experiments, thus helping

users analyze results.

7. Publish and archive the results of the experiment. The database can more
easily effectuate consistent change in status between private and public data than

can the current ad hoc file system.

Such a database would be greatly enhanced by an expert system to help build input

files to computational cxperiments. An intclligent front end would use heuristics and data
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from previous experiments to guide the chemist in his or her input parameter selection.
Such a system is under development at Battelle Pacific Northwest Laboratories by D.
Feller |51]). The database and expert system complement each other; the interface is an
expert system, with the experiment database forming a portion of its knowledge base.
Rather than accessing the database directly, we envision the chemist presenting experi-
mental requirements at a relatively high level to the expert system, which itself would
use a combination of heuristics and empirical data (from the database) to help set up an
experimernt.

The scenario above assumes that a person enters experiments into the database. Simply
having a database available does not guarantee that users will put past runs into it.
In fact, because of format conversions, entering past runs may be a non-trivial task.
The remaining sections of this chapter describe our experience designing, building and

populating a database of computational experiments.

3.2 A Conceptual Model for Ab Initio Computational Chem-
istry

In Section 3.1 we observed that some of the difficulty of using computational chemistry
applications can be alleviated with a repository of past experiments. In this section we give
a conceptual model for that database, identifying and describing the entities of interest.
A conceptual model, though not always explicitly articulated, is the first step towards
constructing a database and provides the basis for further design. We couch our conceptual
model in the language of the domain of interest, avoiding database and computer science
terms where possible, so that users and database specialists can contribute equally to the
effort. Recall that the conceptual is the first of three increasingly formal models in our
design process: it is followed by information and logical models. The physical model,
which is the fourth and final will concretize the logical model in a particular database
management system.

In the conceptual modeling phase, the aim is to capture domain concepts, including

entities, relationships between entities, and functions performed by and on the entities. In
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classic application software engineering, the conceptual modeling phase of database design
proceeds concurrently with the requirements analysis phase of system design [17, 171, 192].
In our conceptual modeling, we tried to capture and formalize current usage, rather than
propose new terms. Unfortunately, as noted earlier, we were faced with situations where
a given term has multiple senses, and we sometimes had to manufacture additional terms
to distinguish those senses. An “atomic element” may be just an atomic number, or a
particular isotope, or a distribution of isotopes. Such distinctions matter in defining what
the “atomic weight” operation should yield when applied to an atomic element and must
be clarified and made explicit.

An additional goal we set was that the model should fit with more general chemistry
models so that it can later be specialized for future applications and subdomains, or
generalized to include other dorains of chemistry such as semi-empirical computational
chemistry and laboratory chemistry.

In spite of the difficulties in developing and expressing a conceptual model, we believe
that an acceptable and generally understood model is a critical first step towards resolv-
ing data incompatibilities. Efforts to reconcile differences at the physical-format level will
be ineffective without agreement at the conceptual level. There is no point in discussing
physical compatibility of data where there is fundamental disagreement on the meaning
or interpretation of that data. Of secondary interest is the role of a conceptual model
in helping resolve semantic ambiguities when using data and programs across larger (in-
terdisciplinary) boundaries. For example, our computational chemistry conceptual model
could be of help to molecular biologists using computational chemistry programs or as a
documentation tool to software engineers developing software for computational chemists.

Below, we describe objects of interest for the computational chemistry database. Those
objects of interest that we chose to include as database objects are italicized on first use
in each subsection. Important relationships between objects are expressed in boldface,

and attributes and behavior of objects are underlined.
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3.2.1 Chemist and Experiment

The model includes simple identifying information about each chemist whose erperiments
or basis sets are included in the database, so that scientists can contact each other.
Ezperiments have as subject a particular molecule, and are arranged in a type hi-
erarchy. An experiment, perhaps the collaborative effort of more than one chemist, is
either a laboratory ezperiment or a computetional chemistry ezperiment. The following
information about each experiment is included in the database: a user-defined textual

experiment name, (a run title or other textual annotation), date-begun, date-completed,

site where the experiment was conducted, a list of citations for the data used as a source of
the experiment, and a list of publications where results of the experiment were reported. A
chemist usuvally organizes his or her experiments by subject and investigation, and within

subject and investigation, by the date begun.

Computational Experiment

A chemist performs a computational (chemistry) experiment on a given molecule using an
application program, specifying parameters such as molecular structure, basis set and level
of theory. In the course of computationally determining a molecule’s structure, a chemist
performs several experiments on that molecule. Only a few (perhaps one or even none)
of these experiments will ultimately be archived as successful. Until deemed successful,
each computational experiment should be identifiable as part of a single investigation and
marked as private and available only to the performing chemist(s).

Among the numbers that appear in the output are some that correspond to physically
observable properties of a molecule, and some that are simply artifacts of the equations
that were solved. The most important output value is the total energy of the molecule.
An important artifact of solving the equation is the set of molecular orbitals (sometimes
called the electron density), an array of numbers whose length varies approximately with
the square of the number of atoms in the molecule.

Molecular properties are generated directly from the detailed molecular structure and

molecular orbitals derived in an experiment. Thus, a computational experiment predicts
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molecular propertics. An experiment is successful when these computed properties “agree
with” properties measured in laborafory ezperiments, e.g., by x-ray crystallographic
methods. This agreement is a matter of human judgment, not a determination that can
be made automatically by the computer. Where such agreement is noted, we say that a
computational chemistry experiment is confirmed by a Jaboratory experiment.

One measure of the accuracy of the computational experiment is the amount of numerical

error. The experiment should include some measure of the cumulative error introduced by

each state of the calculation, from which a rudimentary stability analysis can be performed

upon request.

Laboratory Experiment

A laboratory ezperiment is conducted in a traditional chemistry laboratory by a bench
chemist, using laboratory apparatus such as a mass spectrometer or a cloud chamber, and

producing a value or values for a specific observable property.

3.2.2 Aggregations of Experiment: Investigations, Suites and Personal
Sets

An investigation is an aggregation of ezperiments that groups a series of computational
experiments together for convenience of analysis.

During the course of a single scientific investigation a chemist may study several confor-
mations of the same molecular substance; a conformation is a particular molecular struc-
ture. A suite of ezperiments is an aggregation of computational ezperiments that groups
conformations of the same molecular substance into an ordered collection. Another name

for a conformation is chemical state.

3.2.3 Molecule

A molecule is the subject of one or more laboratory and computational ezperiments,

and can be identified by name, chemical formula or through its corresponding ezperiment.
Some intrinsic properties of a molecule, such as name and chemical formula, are inde-

pendent of any particular experiment. Some properties, such as molecular structure, are
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highly dependent on a particular experiment; other properties are functions of the atoms
or isotopes comprising the molecule, and can be deduced by looking at the molecular struc-
ture. For our purposes in ab initio computational chemistry, a molecule is determined by
its molecular structure; we consider two molecules with the same name and molecular for-
mula, but different molecular structure, to be different molecules. Because such molecules
are thought to be “the same” both in common parlance and for some scientific purposes,
we say that they are the same molecular substance.

Somne of these intrinsic molecular properties, such as molecule name and chemical
formula, are not needed for the actual computation, but are important for the chemist’s

use in retrieving data on molecules.

Molecular Structure

For computational experiments, the most important property of a molecule (indeed, its
defining characteristic) is its molecular structure. Molecular structure specifies the molecule
to the application program, and consists of a list of the component atoms, along with the
location of those atoms in 3-space. Thus molecular structure is a list of atoms. An atom

has molecular weight, molecular charge, and Cartesian coordinates x, y, and z.

A symmetry indicator denotes whether the molecular structure is fully represented,

or partially represented with symmetries. If the latter, then only the symmetiry-unique

atoms of the structure are specified, and symmetry functions calculate the locations of the

symmetric atoms using conventional symmetry rules.

There are no alternative formats in our conceptual model for internal coordinates
(sometimes called “z-matrix format”) or for representing molecular structure as bonds
between atoms. The latter would be useful for graphically displaying molecules.

Conversion operators Cartesians_to_partials and partials_to_Cartesians convert a molec-

ular structure given in Cartesian coordinates to partial symmetry representation and vice
versa.

A chemist performing a suite of experiments for different conformations of a molecule
will create several instances of that molecule, each with a different molecular structure.

Thus, as shown in Figure 3.2, each experiment in a suite of experiments looking at different
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states of a molecule will have as subject a different molecule (and hence molecular
structure) even though in common parlance a chemist would say that all those experiments
deal with the same molecular substance. The subjects of experiments relating to certain
chemical states may not in fact be a molecule in the traditional sense, but simply a
collection of atoms grouped together in one structure for the purposes of a particular
experiment. The example experiment of Figure 3.2 involving the unstable state of water
is a case in point: the subject molecule is in effect merely a collection of hydrogen and

oxygen atoms.

Molecular Template

To browse the database for candidate input parameters to an experiment on a particular
molecule, a chemist will want to examine previous successful experiments on molecules
with a similar structure. We use the term “molecular family” to denote molecules with
similar structure. Molecular families are not disjoint; any given molecule can match a num-
ber of templates and thus belong to a number of families. Molecular templates represent
ways in which chemists mentally group molecules with similar structure into molecular
famnilies.

A molecular template is a different kind of entity than any yet described in our con-
ceptual model. We coined the term molecular template to refer to the way that chemists
specify instances of structure or formula that could be used to search the database for
molecules with similar structure or formula. A molecular template specifies a flexible
search on molecular substructure; it is itself a structure like a molecule (technically more
like a molecular substructure) that can be matched against molecular structures in the
database. For example, if a user wishes to find a basis set to use with ethane, he or she
can define a template for alkanes such as “C, Hon4o” that would match similar molecules

such as methane containing this substructure.

3.2.4 Computational Chemistry Application

An application is an ab initio computational chemistry program or collection of programs.

Each computational experiment uses an application; we also say that a computational
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experiment is run using an application. We sometimes refer to an application as an ap-

plication program or “code”. A computational chemist’s application program is analogous

to the bench chemist’s laboratory instrument; each is an ezperimental apparatus.
Computational chemists want to know precisely the nature of the apparatus on which

they run an experiment; knowing the application name, application author(s), and authors’

address is necessary but not sufficient. The version of the application and computer used
to run an experiment may be necessary to track down resource utilization details or ex-
periments run with an application that contained an implementation error. The chemist
may even want to know which version of which programming language and which com-
puter was used to compile the application. Most theoretical chemists want to know the
particular algorithms used in the application, and often even further details about the
numerical implementations of those algorithms.

Figure 3.5 depicts information that is relevant in some contexts about a particular
computation, and shows how three taxonomies relate: applications and application ver-
sions, computer platforms and particular computers, and programming languages and
versions of programming languages. An installed version of an application is a compiled
version of that application installed on a particular computer. A particular computer
is an instance of a generic computer platform. The installed version of the application
has been compiled for that computer platform using a version of the target (program-
ming) language. A version of that programming language has itself been installed on @
particular computer that is necessarily an instance of the same platform of the particular
computer on which the application has been installed.

For example, a given computational experiment might utilize the GAMESS package,
release 2.0, compiled under version 3.21 of the Sun 3 FORTRAN 77 compiler. Important
meta-information needed at various levels of the taxonomy includes basic formatting and
functional capability of the application at the application level, changes in format at the

release level, and performance characteristics at the compiler version and platform levels.
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Figure 3.5: Application taxonomy.

3.2.5 Basis Set

A basis set is a set of real functions over three-dimensional space. A computational exper-
iment uses a basis set as a starting point for its iterative computation. A user can specify
by name which basis set to use in an experiment. Some research sites have their own basis
set libraries, and individual basis sets can be retrieved by name. A basis set is usually
authored by a chemist and is indexed for retrieval by author. Basis sets can be cate-
gorized according to the families of molecules for which they have generated successful
computational experiments.

A basis set includes a list of coefficients and exponents for every contraction for each

atom that the basis set supports. An operation to generate a basis set instance for a partic-
ular experiment entails producing a list of the caontractions for each atom for the molecule

in question, in the format specific to the application chosen.

3.2.6 Basis Set Library

A basis set library is collection of basis sets. Such a library may be site-specific and hold
the basis sets that are to be used at that site, as in the case of the basis set library available

to PNL chemists. A library of basis sets may also be made avajlable within an application,
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as js the case with the Gaussian application [62]. The basis set contains not only basis sets
themselves but also information about each basis sef that helps determine its applicability
to a particular experiment, e.g., for a given molecule, application, experiment type, and

level of theory.

3.2.7 Level of Theory

Level of theory corresponds to the degree of accuracy with which the motion of the electrons
around a molecule is described in a particular experiment. A level of theory is characterized
by its name. Since application packages use different names to designate the same level
of theory, a level of theory name conversion operation is required for each application
package.

Levels of theory can be paired with basis sets where these parameters have been used
together in successful experiments. A pairing can be retrieved by the molecular family

associated with the subject of those experiments.

Molecular Orbital

A molecular orbital, also called an electron density function or a wave function, is com-
puted by a computational ezperiment.

The molecular orbital must be reported with the molecular structure and the basis set.
The molecular orbital can be represented as an n by n matrix, where n is the number of

basis functions in the corresponding basis set.

3.2.8 Observable Property

Final energy and obseruvable property values are the two major results of interest for com-
putational chemistry applications. Final energy is a scalar value, and may be a2 minimum
energy, or a saddle point.

An observable property for a given molecule is a function of an experiment, not the
molecule itself, and is said to be produced by an experiment. Measured by and
predicted by are synonyms for produced by that are often used in the contexts of

laboratory and computational experiment, respectively.
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Strictly speaking, the observable properties produced by computational experiments
are calculated from the wave function, but chemists associate an observable property with
the experiment, not the molecular orbital.

A computational chemistry experiment is confirmed by a laboratory experiment
(or vice versa) when an observable property calculated by a computational experiment
matches an observable property measured by a laboratory experiment. Whether or not
two observable properties match is a matter of judgement — matches cannot be auto-
mated as a function by the database.

As of this writing, we have modeled each observable property as a separate database
entity. A general representation for property would be preferable so that new properties

could be added to the database without changing the schema.

3.3 The Computational Chemistry Information Model

The previous section described objects of interest to our database design effort at the
conceptual level, in the language of the application domain. In this section, we describe
our efforts to extend the conceptual model to an information model — the first step
towards formalizing a database design.

Information modeling has been an active area of database research and development,
particularly since Chen’s classic work in 1976, which introduced the entity-relationship
model (28, 124, 169, 181, 182]. Given current needs to extend databases to handle new
kinds of applications, other researchers are working to provide more direct transitions
between information modeling and database design, and to incorporate an “object orien-
tation” into information modeling constructs (19, 157, 177, 193].

An ideal modeling methodology would provide an effective means of describing can-
didate entities, their attributes and behavior. Unfortunately, the semantic modeling
methodologies that attempt to integrate entity-relationship modeling with dynamic and
functional (also known as behavioral) modeling are, in our estimation, immature. Even
though capturing behavioral aspects of the conceptual mode! was particularly important

to us, we found no effective means of representing behavior along with data structure at
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the information-modeling level. Thus, the information mode! presented in this section
contains only a model of data structure; only during the next database design step, the
casting of the information model into a database schema, do we explicitly describe the
behavior of the objects.

In Section 3.3.1, we present our information model and describe our information mod-
eling conventions. Sectjon 3.3.2 discusses information modeling issues that surfaced during

this phase.

3.3.1 An Entity-Relationship Model for the Database

We present here the entities and relationships identified during the conceptual modeling
phase. The entity-relationship model in Figure 3.6 depicts the overall structure of our
information model for computational chemistry experiments. An entity is represented
as a box with rounded corners. Aggregations of entities are depicted as multiple entity
boxes, and labeled with the keyword “grouped into”. Relationships between entities are
represented as labeled lines between boxes representing entities; cardinality of greater
than 1 is indicated by a black dot. Is-a relationships (superclass—subclass relationships)
are denoted by thick lines. Sometimes a relationship between a superclass and a related
class is renamed when one speaks of the relationship between the subclasses and the related
class; such synonyms are indicated as dotted lines.

In our diagrams, each entity box represents a type of object and does not require that
there be an extent or collection of all instances associated with the type. Where there is
an expectation of iterating over instances of an entity type, we have indicated a named
entry point with a dashed arrow. In mapping from the information model to a database
schema, each entry point may be rendered as one or more named collections. For example,
each user of the database may have his or her individual collection of experiments, namely
a personal set of experiment.

With the exception of the complex objects representing applications (described above),
and Molecular Orbital and Basis Set (described below), each of the entities we identified
can be mapped directly onto a logical database model, or schema. The instance diagram

in Figure 3.7 reflects the major attributes for each entity.
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Our entity-relationship model above is simplified in that basis set and molecular orbital
entities have been presented as single entities. In fact, each is a complex object (i.e.,
composed of other objects) and each can be modeled using a series of list structures, as
shown in Figures 3.8 and 3.9. In these figures, list structures are shown as a series of ovals
connected by arrows; the first element in the list is “expanded” to show the type of the
list. Thus, for example, AtomBSList is an attribute of the Basis Set Instance entity; each
element in AtomBSList is of type AnAtomBS. {Alternatively, one might represent these
structures using a matrix type. Thus, the symmetry values for molecular orbital could
be column headers, and molecular orbital coefficients could be matrix data “under” the
columns.)

Modeling the relationships between laboratory and computational chemistry experi-
ment also requires a more complicated and interesting structure. Recall that a laboratory
experiment confirms a computational chemistry experiment when an observable property
predicted by the computational experiment matches the observable property measured
by that laboratory experiment. Directionality of the matches relationship is critical, since
it indicates (in this example) the directionality of the derived relationship confirms, i.e.,
that the computational chemistry experiment confirms the laboratory experiment (and
not vice versa). The measures and predicts relationships are synonyms for the pro-
duces relationship. Which term use (measures or predicts) depends on whether the
experiment in question is a Jaboratory or computational experiment. Figure 3.10 shows

explicitly which relationships are explicit and which derived: explicit relationships are
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shown in diamond-shaped boxes; derived relationships are shown as dotted lines.

3.3.2 Information Modeling Issues

During the course of the conceptual and information modeling stages, we encountered
modeling problems of two kinds: complexities in the problem domain that would require
more extensive domain modeling than we were prepared to offer and inadequacies in

modeling methodologies.

Domain Complexities

The major domain-level modeling issue concerned the many semantically overloaded terms
we encountered. These terms can usually be disambiguated within context by a domain
specialist, but their meaning is not always clear when taken out of context or even within
context to a casual user. “Molecule” and “experiment” are prime examples of this over-
loading. Sometimes “molecule” means any collection of specific atoms. For example, “Re-
trieve all experiments on the water molecule” means retrieve all experiments for which the
molecule entity has two hydrogen atoms and one oxygen atom. “Molecule” can also mean

a particular spatial arrangement of atoms associated with the input of an experiment.
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Sometimes a “molecule” includes molecular orbitals and sometimes not.

“Experiment” sometimes means one run of an application, sometimes a set of runs
modeling the states of one molecule, sometimes a number of runs modeling transition
from one or more molecules to one or more different molecules. “Experiment” is also used
as an aggregation of any of these, in the sense that the chemist groups a number of runs
together when doing an experiment focused on solving a molecular structure. We used the
terms “experiment”, “suite of experiments”, and “investigation” to denote those different
senses of the term “experiment,” but there is still considerable subtlety remaining in how
chemists themselves use the word.

While the decisions we made to disambiguate these terms were adequate for our pur-

poses, their usage would need to be further resolved for an an industrial-strength database.

Modeling Methodology Inadequacies

Inadequacies in modeling methodologies for representing the information model were

twofold:

1. The difficulty of representing groupings within a domain. A single instance of

molecule, basis set, or computational ezperiment can be grouped into one or more
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collections. For example, a molecule can belong to none, one, or several different

families of molecules depending on how many molecular templates it matches.

While groupings that involve aggregations of entities such as suite of ezperiment
were easily modeled, we could not represent levels of membership within a collec-
tion. Thus, for example, we could not easily show that some molecules in family of

molecule were “more” a member of that family than others.

2. The low degree to which entity-relationship modeling can be integrated with be-
havioral aspects. We chose to avoid including behavioral aspects in the information
mode] itself and worked from the conceptual model to code behavior at the logical

(schema) level.

Some database researchers, particularly those working in scientific databases, have
identified representing the degree to which a particular object belongs to a collection
(9, 30, 31, 88, 94] as a research issue. Their results are still preliminary.

The lack of integration between entity and behavioral modeling is also a research issue
in semantic data modeling [46, 81]. In fact, we bad good success using an object-oriented
approach to integrating behavior with class definitions and in implementing the required
groupings for our domain, even though we found it difficult to represent these integrations
at the information-modeling level. The capacity to deal explicitly with behavioral aspects
is a particular strength of the object-oriented data models in comparison with current
semantic data models, which we feel do not adequately integrate behavioral aspects with
the entity-relationship based modeling.

The object-oriented framework also gave us several mechanisms for coping with detail
and complexity in our conceptual model, albeit at the logical and physical design levels.
First, we could group the attributes of an entity that were of interest into a single object.
Second, we could model behavioral interfaces directly, thus capturing object interactions
rather than providing indirect specification through separate data liow models or procedure
code. Third, we could express the commonalities of similar entity types because object

models support an abstraction or generalization hierarchy of classes.
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Object models also support several extensibility mechanisms, useful in customizing
or refining a domain mode] to a particular application. Those mechanisms include the
creation of new subtypes in the generalization hierarchy, the use of existing object types
in the definition of new types, and the ability to specify new operations for a type. Because
such extension mechanisms are additive, applications that depend on the original model
need not be modified if they do not use the extensions. For example, to incorporate a
molecular editor into our framework, we might create subtypes of molecular structure and
atorn that include informatjon about the graphical display of atoms and bonds between
atoms (such as color, size, rendering style). Tools developed for the original definition
of molecular structure and atom would continue to work on the new subtypes, as those

subtypes would simply extend the existing set of behaviors.

3.4 Logical and Physical Design

This section describes the logical and physical design of the computational chemistry
database. Because the choice of a data model determines the form of the logical design,
we briefly review our database requirements in Section 3.4.1 and summarize our reasons
for choosing an object-oriented system rather than a relational one for implementing the
database. Then, in Section 3.4.2, we show the logical design of the database and give its
persistent roots. An outline of the physical design of the database follows in Section 3.4.3.
Section 3.4.4 relates our experience implementing a prototype database and how this led
us to appreciate the inherent difficulty of loading our database and the importance of
providing a closer interface between the applications and the database than we had first
envisioned. We conclude the section and the chapter in Section 3.4.5 with our realization
that database services alone would not solve the crucial problems of program interoper-
ability that face computational chemists. Building a database for this domain requires an

experiment management infrastructure that provides both data and computation services.
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3.4.1 Choice of Target Database Management System

Classic software engineering principles recommend that a logical design be fully indepen-
dent of the physical implementation [17].

In the case of database management systems, however, choosing between implementing
the system as relational or object-oriented can affect the manner in which the logical design
is described. The logical design of a database application is not altogether independent of
its physical implementation because the logical design is usually couched in data modeling
terms, and given as a database schema. The logical design of a database that will be
implemented in a relational database management system consists of a logical description
of the database couched in the language of the relational model, i.e., normalized relational
tables with indications of primary and foreign keys. Because the relational model is
programming-language independent, the logical database design is largely independent of
the particular relational database management system and target programming langnage
in which the system is implemented. On the other hand, the logical design of an object-
oriented database consists of the classes and method signatures for the database; because
there is no object-oriented data model per se [116], the classes and methods are usually
couched in the target programming language or database manipulation language. Thus,
before describing the logical model for the Computational Chemistry Database, we recount
why we chose to implement the system in an object-oriented database.

An object-oriented database (OODBMS) combines object-oriented language and mod-
eling features (encapsulation, object-identity, subtype and implementation hierarchies,
direct representation of complex structures) with data management capabilities. An ob-
vious advantage is that we can map conceptual-level classes, operations and hierarchies
directly into counterparts in the database’s data definition language (DDL). While some
encoding is required (e.g., for taxonomies), class hierarchies and binary relationships (even
many-to-many binary relationships) usually require no encoding.

On the implementation side, an OODBMS usually provides a data manipulation Jan-
guage (DML) that allows one to implement many operations without recourse to an ex-

ternal application language. This behavioral capability is also useful for building routines
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into the system that convert to and from particular formats. Many OODBMSs can run
in a distributed fashjon on a network of computers of possibly different kinds. OODBMSs
thus provide some location transparency and help mask the heterogeneity of computers
and operating systems. Finally, some OODBMSs provide gateways to the operating sys-
tem file system and relational databases, and hence can serve as an integration mechanism
for multiple data sources [104, 120, 132, 163].

While an OODBMS certainly makes for a simple mapping from information model
to logical model, it is not an absolute requirement. CAChe {23], for example, currently
supports an object-oriented information model using a relational-like tabular represen-
tation. Our survey of scientific database research showed six alternatives for physical
implementation: special-purpose data management facilities [16], extensible tool kits [26],
logic databases [139], relational (32, 33] and extended relational systems [76, 90, 156}, and
OODBMSs [196).

For our purposes, developing a special-purpose data management facility involved too
much overhead and would not meet the need to scale up easily to support additional
applications or experiment types. We felt that extended relational systems and extensible
tool kits are still in the research phases, and logic databases do not in general offer the
database capabilities we required. Thus, relational and object-oriented systems were our
two viable alternatives.

Relational database systems offer some distinct advantages over object-oriented database
systems: they are well-understood, well-grounded in theory, well-documented, and robust.
Unfortunately current record-oriented database technology does not support scientific ap-
plications well. Relational systems are inadequate for representing spatial information
(such as we require for molecules, basis sets and molecular orbitals), for maintaining
meta-information as relations, and for adequately representing the inherent structural
complexity of most scientific data [47, 60, 61, 120].

Working from our conceptual model and analysis of the computational chemistry

database needs, we made the following observations:

1. The schema abounds with highly interrelated data that would require many tables
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(and thus joins)? in order to bring one experiment into memory. Since an experiment
1s the unit of work per interactive session, we believed that the number of joins
required to set up an experiment would have an adverse effect on performance.
While the relational model is flexible enough to implement such structures, albeit
indirectly, we felt that representing logical structure as directly as possible in our
physical implementation was important for efficiency in both implementation and

execution.

2. Normalizing the conceptual data model into relational tables would require breaking
down complex, but scientifically meaningful, structures such as molecule and exper-
iment. We believed that the current relational model lacks the representational
power for an intuitive rendering of the structures required. Computational chemists
are highly skilled programmers, and many write their own programs. Giving expert
users such as the authors of computational chemistry applications an intuitive un-
derstanding of the physical model is important because they will want to program

their own extensions to the system.

3. The application area abounds with the need for writing conversion and display meth-
ods, from properties of one type or unit to ancther, from program parameters from
one application format to another, and so forth. Object-oriented systems allow for
storing methods with data descriptions, a feature we thought particularly helpful in

keeping track of the many small conversion programs.

4. This database application requires collecting a number of entities into sets and lists:
collecting experiments into personal collections, suites and investigations, and col-
lecting molecules into families. Object-oriented database management systems pro-

vide good built-in collection facilities.

5. Finally, our intuition was that object-oriented database systems would serve this
and other scientific applications well, and we wanted to gain experience with this

new technology.

“Even if molecule and molecular orbital entities were not normalized, we estimated about 20 joins per
experiment. If the model were fully normalized, several hundred joins might be required.
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From the observations above, we concluded that object-oriented database manage-
ment systems would be more appropriate for this application than relational systems. We
identified a subset of attributes and methods for each major database entity and con-
ducted a feasibility study to determine which object-oriented database systems would be
adequate to the purpose [42]. This study led to our choice of ObjectStore, a commer-
cial object-oriented database management system designed for distributed client-server

database applications written in C++.

3.4.2 The Logical Design — an Object-Oriented Database Schema

In this section, we briefly describe the logical model for the database, i.e., the computa-
tional chemistry database schema.

As noted above, translating an information model into the logical model using the
relational data model consists (generally) of casting entities into relational tables, and
assigning prmiary keys. To assure that a relationship between entity A and entity B can
be effected by relational joins, one assures that (for example) the primary key of entity A is
among the attributes of entity B. Once candidate relations and keys have been identified,
one assures that the database is normalized by applying well understood tests.

Translating an information model into a logical model for an object-oriented database
is initially simpler, since each entity in an entity-relationship diagram is an object-oriented
class. The data model in which one represents the schema is the programming language
class structure in which the database is to be implemented. The ObjectStore data model
consists of C++ classes plus ObjectStore extensions to C++ that allow the specification
of binary relationships and collection classes.

Each entity in our information model became a C++ class; each relationship an Ob-
jectStore relationship. Casting behavior into the logical model was more complicated
because (as we pointed out in Section 3.3.2) we did not include behavior in our informa-
tion model. To include behavior in our logical model, we had to go back to the less formal
conceptual model and determine which behaviors we would model as C++ methods.

The final stage of our logical modeling was to determine the persistent names for

database objects. Persistent naroes in the logical model correspond to the named entry
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points we defined in the information model. For example, the persistent name Chemist::extent

refers to a set of name and object-identifier pairs for all instances of chemnzst. To find a
chemist named “Feller”, one traverses this set of all chemists, examining the name of each
chemist and then using the associated object-identifier to navigate to the chemist of inter-
est. An alternate (though less desirable) way of providing this same functionality would
be to provide a root variable for each chemaist; thus, for example, we would directly access
the chemist instance for Feller via a root variable Feller.

The logical model depicted in Figure 3.11 presents our choices for the persistent names
i the database. Access to experiments is usually effected through two persistent root
variables, one set of all chemists and one set of all molecules. Basis sets and applications
are similarly independently accessible. In our database, it happens that each root variable
corresponds to a set of instances of a class. Thus, in the figure, each root variable is
underlined and an arrow is drawn to the class whose object-identifiers its corresponding
set contains. As before, the superclass-subclass relationship is represented as a thick
line. One-way relationships, where one can navigate from an object in Class A to its
corresponding object in Cless B (but not vice versa), are named at the Class A side of
the relationship line. Where we need to navigate in both directions the relationship is
named at both ends of the line. We made the simplifying assumption that a laboratory
experiment can confirm a computational experiment, but not vice versa, and that this
relationship is explicitly a relationship between experiments (not properties produced by
experiments).

Since a full implementation of the conceptual model was not required for our research
prototype, we made a number of simplifications. The Molecule entity provides its structure
only as Cartesian coordinates. We did not use the superclass Apparatus for Laboratory
Instrument and Application entities, nor were the Suite of Ezperiment, Investigation, and
Family of Molecule aggregations implemented as classes. Furthermore, we made no dis-
tinction between private and public experiments.

We mapped the computational chemistry information model described above into an
ObjectStore schema by using the ObjectStore Schema Designer, and found a very good

correlation between our requirements and the modeling power of the ObjectStore Data
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Definition Language. Binary relationships, subtypes, and complex structures for molecule,
basis set and molecular orbital mapped directly to ObjectStore. ObjectStore supports
binary relationships of cardinality greater than one by generating an additional C++ class
to represent the relationship. This intermediate class is transparent to the programmer.
Taxonomies for application, however, did not map directly; one reason for this is that a
ternary relationship among application version, compiler version, and computer platform
was required. For the sake of convenience in our prototype, we simplified the taxonomy
by representing the application version and compiler as attributes. To implement the
taxonomy fully, we would have had to generate by hand an intermediate class for each
ternary relationship. (This limitation is discussed further in Section 5.3.2, page 170.)
Our simplification of the application taxonomy seems justified because there are rela-
tively few versions of applications and compilers, and because the number of levels in the

taxonomy is fixed, rather than arbitrary.

3.4.3 Computational Chemistry Database — Physical Design

The physical design of a database describes how the data are actually stored in the
database, and describes complex low-level data structures in detail [101). Many mod-
ern database management systems map the logical design (i.e., the schema) directly into
physical data structures, and the physical design tasks for the developer consist primarily
of index selection and directives or pragmas (i.e., hints) to the system that will improve
performance. In addition, database designers may specify and implement additional pro-
grams to enforce integrity constraints that are not adequately supported by the database
management system. As we had expected, given our decision to implement the database
in an object-oriented database management system, the physical design of the database
was straightforward. ObjectStore automatically enforced integrity constraints for inverse
relationships, and we chose not to specify physical optimizations such as clustering chemist
and experiment classes or providing information about how to physically store particular
collections (e.g., as arrays or lists).

The physical design for our system included the following:

1. Implementing root variables as ObjectStore database roots. Root variables for
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Chemists, Molecules, BasisSets, and Applications are the extents of their respec-
tive classes, and are each implemented as a collection containing all members of the
class. Insert and remove statements for the class extents were explicitly added to

constructor and destructor functions of the element classes.

2. Declaring attributes indexable, as appropriate. Where an ObjectStore query spec-
ifies a particular path, each element in the path must be declared indexable in the
schema; ObjectStore maintains an access method for each data member mentioned
in a path. Thus, for example, we declared chemist name indexable because we wished
to retrieve chemists by name, in alphabetic order. Other indexable attributes in-

cluded application name and basis set name.

3. Designing rank functions to control ordering of instances in a class. ObjectStore
provides a facility for defining an iteration order where a navigation path ends in
the instances of a user-declared class: one need only supply a function called rank,
whose possible values for any pair of instances of the class are enumerable. For
example, since we wished to retrieve experiments for any given chemist in reverse
chronological order, we wrote a ranking function so that the order of experiments

could be determined, given experiment date and experiment time.

4. Designing class methods. For each class, we wrote constructor and destructor meth-
ods, as well as terse {one-line) and verbose (full object) displays. In addition, because
the definition of identity differs from class to class, and because having unique in-
stances of these classes mattered, we wrote class identity methods for classes where

we had defined an extent (collection of all instances).

3.4.4 Loading the Database

To determine the feasibility of building a database of past experiments, we built a proto-
type database of computational chemistry experiments, along with a rudimentary browser
for examining the data. In the course of this experience, loading the prototype database
with input and output files from previous experiments impelled us to make the database

a more integral part of the user’s interaction with the application.
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The prototype implementation consisted of three major activities: building the schema
and creating the database, loading the data from 20 experiments into the database, and
implementing queries on the database. Of these tasks, loading experimental data was by
far the most time-consuming, even though we were working from experiment data that
had already been extracted from the application’s output file.

We 1llustrate here the complexity of this task by showing the steps required for loading
a simplified “experiment” consisting of experimental data (date, energy) and a performing
chemist. To load this experiment we must lecad instances of two classes: experiment and
chemist. Assume in this case that the chemist who performed the experiment is already
in the database and that we do not wish to include duplicate instances of chemist in the
database. Note that ObjectStore distinguishes between temporary and persistent instances
of classes; a persistent instance is one that is stored in the database. Unlike relational
systems, which are value-based, ObjectStore does not preclude instances with identical
attribute values even of persistent classes. Identity in ObjectStore is not value-based; two
references to Objectstore class instances refer to the same instance if those two references,
i.e., object identifiers, are equal. Whether or not two instances of an Object-Store class
are value-equal is a application-level question.

To load the experiment instance in our example, we first read the experiment data
and created the persisteni instance of ezperiment, leaving reference to chemist null. We
then read the chemist data, and created a temporary instance of chemist; we examined all
instances of chemist already in the database to see if the chemist referred to in the new
experiment was already in the database. If we found that chemist in the database, we
placed the object identifier for the new experiment in that chemists’ “performs” collection,
then went back to the ezperiment instance and stored the object identifier for the chemist
instance in the ezperiment’s “is performed by” collection. The intermediate collections for
the performs and is performed by relationships implement one-to-many and many-to-
one experiments. If we did not have a duplicate chemist, then we made the temporary
instance of chemist persistent, and (as above) placed its object identifier into the ezper-
iment instance. What made the loading process so complicated was that we needed the

object identifier for the chemist instance to complete the ezperiment instance (and vice
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versa). Furthermore, to determine if we needed to create a new persistent instance of
chemist, we had to carry with the new experiment data enough information about the
chemist to check value identity with existing instances of chemist, and to create a new
instance if needed.

For every instance of ezperiment to be loaded, there were eight classes for which “exis-
tence” tests like the above were required. These tests made our database loader a coraplex
program. In addition, the loader required that all the necessary disambiguating attributes
be included with the data.

A second and more critical problem with a post fecto database loader is that the
loading of experimental data into the database is not an integral part of the running of
the experiment, but a separate task for the user. Having the loading as a separate task
adds to the chemist’s overhead in running experiments, can be inadvertently forgotten,
and inevitably would prave error-prone. In addition, having the database separate from

the applications did little to simplify the chemists’ computing environment.

3.4.5 Summary: Data Services Alone are Inadequate

Experience loading our prototype database led us to conclude that capturing experimental
parameters and results must be an integral part of setting up and running experiments.
The best way to accomplish this objective, we felt, is to have input parameters origi-
nate in the database and be conveyed to the program, rather than originate externally
and be transferred into the database after the experiment has run. Recognizing object
equivalences after the fact seemed quite hard to automate, while creating inputs from the
database allowed simpler equivalence checks. Thus, for example, references to the chemaist
performing the experiment could be directly inferred from the system, since a chemist logs
in to the system and establishes his or her identity. Similarly, when loading experimental
results we would know exactly which basis set was used because we would have generated
the input to that experiment (which included the basis set).

Chapter 4 treats in detail the problem of connecting computational applications to
our database, and explores the idea of modeling both applications and invocations of

applications as objects — as computational proxy objects. Because the proxy class is part
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of the database, we thiunk of 1t as extending the database to provide computation services.



Chapter 4

Providing Computation Services:

Proxies

In Chapter 3, we showed how a database of past experiments could help computational
chemists make appropriate choices for input parameters to new experiments. We then
described the database design and recounted our experience building a database proto-
type. Problems encountered in loading data into the prototype prompted us to make the
capture of experimental parameters and results an integral part of setting up and running
computational experiments — generating program inputs from the database and captur-
ing results automatically upon experiment completion. That decided, we were then faced
with the problem of how to provide the requisite interface between computational applica-
tions and the database. The database-to-application interface must help the user generate
program inputs and capture program outputs, assure experimental reproducibility by link-
ing program inputs to outputs, and provide experimental comparability by representing
data from different applications in compatible formats. The resulting system should also
simplify the chemists’ complex computing environment.

We considered and eliminated two traditiona) alternatives for mnterfacing applications
with the database. Modifying the applications to read from and write to the database
is impractical, and naively encapsulating the applications as database objects does not
provide adequate flexibility for controlling the running applications. We postulated that
structuring additional information and behavier about computational applications and
their invocations as objects would provide the needed power and flexibility. So we decided

to model programs and computations as complex objects using a structure of our own
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design dubbed “computational proxy”. The idea of modeling programs and computations

as objects arose directly from the following considerations:

e The need to draw inputs directly from the database rather than insert them after

the fact into the database,

¢ The realization that a database object representing the input to an application could

also represent the invocation and control of that application, and

e The need to capture outputs from different applications in comparable formats to

assure experiment reproducibility and comparability.

This thesis offers an improvement over naive encapsulation as a method for interfacing
existing applications to databases, and this chapter constitutes the heart of that work —
the definition of the computational proxy. Design issues and alternatives are described in
Section 4.1, and Section 4.2 defines the computational proxy mechanism and lays out its
functional requirements. Section 4.3 provides design detail, including extensions to the
conceptual model made to accommodate the proxy mechanism. Section 4.4 describes the
infrastructure architecture. There we distinguish “database” (i.e., proxy) responsibilities
from system and user responsibilities by specifying system-level services required to sup-
port the proxy mechanism and outlining the functions to be provided by a graphical user

interface to the computational chemistry applications.

4.1 Design Issues and Alternatives

This section describes design issues for the interface between computational applications
and our database. We first recount our initial design decision not to modify the applica-
tions to read inputs from and write outputs to the database. Section 4.1.1 argues that
neither this alternative nor a naive encapsulation of the application programs is appropri-
ate, and proposes an extension of encapsulation that provides ways to describe and access
applications and invocations of applications. Once our major design strategy was set, we
needed to determine how to describe applications to the database; challenges identified in

describing applications declaratively are Jaid out in Scction 4.1.2.
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4.1.1 Strategy for Connecting the Applications to the Database

The need to avoid post facto database loading and to make loading experimental data an
integral part of running experiments led us to consider the design alternatives described
here. An obvious way to meet our objectives was to interface existing computational
chemistry programs directly to the database by modifying the programs to access the
database for inputs and to write outputs directly into the database. We did not consider
this approach viable because the computational chemistry programs in question are com-
plex, very large (100,000 to 300,000 lines of code!), and revised at least yearly. Creating
and maintaining a direct database interface to these programs would involve, first, finding
and replacing all read accesses to inputs and all write statements for outputs in 5 or 6 very
large programs, and then repeating this exercise whenever new versions of the applications
were released. Such a programming and maintenance task is not feasible.

A second obvious alternative was naive encapsulation. In this case, each application to
be interfaced to the database is “wrapped” with a wrapper object that receives and pro-
cesses requests to run the application. The application would be invoked when a message
with the input data as an argument was sent to its wrapper object. A more integrated
approach than naive encapsulation was to leave the application program untouched, and
encapsulate it as a database object or as a message of a database class. Under this ap-
proach, an application would run when its corresponding message was sent to the object
representing its input. Either encapsulation approach assumes some way of calling out to
the application or linking it in to the database’s executable file, as well as constructing
conversion routines between data objects and files. While “wrapping” a legacy application
may work in some cases, we believe it is too limited an approach in general.

Encapsulating computational chemistry applications, capturing an external application
program as a single object or message as above, assumes a very simple input-output
model, one where all the inputs are passed in as a unit, the program executes and then
outputs are sent out as a unit. Such a simple model is inconvenient and inappropriate

for computational chemistry applications for the following reasons. First, we need to

"MELDF is considered a “small® package at over 100,000 lines. Gaussian 92 is over 300,000 lines.
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separate supplying inputs from scheduling the execution of the program. Second, because
the computations are long, the chemist would not want to wait while it executes. We
wanted the program to run asynchronously from the database session, freeing the chemist
to do other things with the database while the application executes. Thirdly, instead of
treating the program execution as an atomic action, we wanted to monitor its progress
in order to stop it, checkpoint it or observe intermediate results. Finally, a single object
or message gives little help for organizing and gathering inputs or for structuring the
translation process.

We eschewed the two design alternatives above. (1) Directly interfacing the applica-
tions to the database would provide an easy way to provide input parameters from the
database and to capture results into the database, but such modifications would be im-
practical to maintain in the face of continuing releases of these application programs. (2)
Encapsulating the applications as database objects did not provide any ability to monitor
and control ongoing experiments. We thus explored the idea of modeling both applications
and invocations of applications as objects, calling the structure that modeled computa-
tions as objects a “computational proxy” and hypothesizing that the proxy structure
and mechanism would provide an interface of computational applications to the database
without having to immediately modify the programs themselves. We furthermore believed
that the proxy structure could provide the chemist with help setting up and monitoring

experiments.

4.1.2 Challenges in Describing Applications Declaratively

Having made our fundamental design decision about connecting applications to the database,
we were left with the question of how to structure and engineer the computational proxy.
A design goal for the computational proxy was that adding an application or installing an
updated version require neither changes to the database schema nor extensive application-
specific programming. Because changing the database schema requires database design
skill as well as technical knowledge of a specific database management system, we wanted
to represent application inputs and outputs declaratively, within the database. Represent-

ing this information declaratively, and providing database methods for its interpretation,
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minimizes application-specific programming. Application-specific programming is mini-
mized because operational differences in running different applications (where automated
at all) are often handled by special-purpose programs (which are expensive to write);
we reasoned that if the proxy could read declarative information about applications and
generate the desired application-specific action, less application-specific code waould be
needed.

This section describes the challenges in describing the interface to computational appli-
cations declaratively. Writing a special-purpose program to interface one version of one ap-
plication to the database is relatively straightforward. Indeed, we wrote a special-purpose
program to do so in an initial feasibility study (described in Section 5.2.1). However,
writing and maintaining one special-purpose interface per application quickly becomes a
daunting programming effort when faced with yearly releases of several applications. In
addition. writing any new program in the context of an object-oriented database system
often means creating new classes. Creating new classes violates our design goal of min-
imizing database schema changes, and a proliferation of classes would prevent us from
preserving a common and stable conceptual model that facilitates the user’s understand-
ing of the database. Because of these issues, we were committed to finding ways for
application registrars to describe applications in a declarative, rather than procedural or
programmatic, manner.

While writing descriptions of the applications that one wishes to interface to the
database is easier for the non-computer-scientist than writing code and adding classes to
the database, providing the mechanisms to interpret those descriptions is far from trivial.
Interpreting those descriptions and carrying out the actions so defined requires writing,
in essence, an interface to the database general enough to cover the major applications
within a specific domain. Writing such an interface is considerably more complex than
writing one or even several database interfaces for specific applications. The research issue
involved here is whether it is possible to design and implement database objects that can
interpret user-defined descriptions of applications and use them, in conjunction with other
information in the database, to drive program input, invocation and data capture. Our

work has involved designing structures to describe applications and implementing tools



87

that interpret those structures.

For our application descriptor mechanisms to work requires, first, that a single con-
ceptual data model cover the semantic domain so that users can maintain application
interface information without making schema changes. Second, this model must be im-
plemented into a particular database system. Third, inputs and outputs of application
packages must be conformable to the conceptual model. By conformable we mean that the
conceptual model subsumes the types implicit in application inputs and outputs. Being
conformable further implies that database programs can translate database objects to and
from application inputs and outputs.

We summarize our research problem and approach as follows: Creating classes and
methods is difficult, expensive and error-prone; creating instances of existing classes is
much easier. But, can we set up a system so that applications can be attached to the
database simply by creating new object instances? One way to accomplish this task is to
produce new database objects that describes application input and output files along with
their relation to corresponding database objects, and to provide a general interpretation
mechanism for these descriptive objects. We can then design a language that a chemist
can use to create instances of the descriptive objects. Given a way of defining applica-
tion inputs and outputs, we can write additional mechanisms for controlling application
invocation.

Our approach raises the following challenges:

1. Providing an interpreter for application descriptors that is application-independent.
To do this, we must make explicit the division between the part of the proxy that
is application-independent and the part that is application-specific (and hence will

require customization on a per-application basis).

2. Designing 2 language so that a chemist can build a model of application inputs
and outputs. To meet this challenge, both the conceptual model that describes the
semantic content of application inputs and cutputs and the language that describes
the syntax of those inputs and outputs must be sufficiently general to cover a range of

applications in the domain. If the database conceptua! model is adequately general,
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then application inputs and outputs are simply syntactic variants of existing entities

in that model.

3. Clearly dividing responsibility for controlling application invocation between the
proxy and the network services. The proxy can gather domain-specific information
that might affect network-level (policy) decisions, but the network services should
provide the mechanism for accessing processors. Thus, for example, the proxy gath-
ers the program inputs, and the network services physically send inputs to the chosen

processor along with a message (built by the proxy) to start the application.

In spite of the high degree of semantic and syntactic complexity in the application
programs, we believe we can meet the first two challenges because the application programs
are based upon common scientific principles, principles that evolve at a relatively slow
rate. Thus, our conceptual domain model (described in Chapter 3) describes scientific
principles rather than several particular applications. We have approached the challenge
of describing syntactic variants of the domain model by designing an input file generation
language (in effect a scientific database report writer) and an output file (text) parsing
language. These languages cover the major experiment run types in common use, and are
described in Section 4.3.

Our efforts to meet the third challenge, described in Section 4.4, have taken into
account current distributed operating systems research that takes as precept a client-

server (distributed) computing environment clearly separating policy and mechanism [13].

4.2 Computational Proxy: Definition and Functional Spec-

ification

Recalling the user scenario for ab initio applications from Section 3.1, we note that the
database of past runs helped a chemist to choose input parameters, but not to actually
perform the experiment or to place experiment results into the database. The proxy mech-
anism addresses these needs. With it, the user can start up and control computational
processes, as well as capture important information about a given computational experi-

ment. When the user schedules a run, a proxy uses a description of the given application
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Figure 4.1: A data-centered framework for computational science.

to automatically transform experimental attributes beld in the database into appropriate
inputs formatted for that application. Once the run has terminated, the proxy again uses
the application descriptor, this time to parse the outputs and place experimental results
into the database in a common form.

We call our infrastructure “data-centered” because the proxy itself is a database ob-
ject, because the proxy relies on the database for information about applications, because
the proxy takes experiment input from and places results into the database, and because
the proxy uses the database to maintain a persistent representation of an ongoing exper-
iment. Figure 4.1 illustrates the role we envision for computational proxies: the point of
contact between the user interface and computational applications on the one hand, and
between network services and computational applications on the other. The central box
in Figure 4.1 encompasses the proxy plus database. The User Interface, shown in the left
box, includes three components: the Computational Chemistry Interface Advisor {(a user
interface to computational applications under development by Dr, David Feller and oth-
ers at Pacific Northwest Laboratories), one or more molecular editors, and an experiment
database browser. The Network Services component provides distributed system services

such as transferring files and starting up and stopping processes.
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The key component of our experiment management infrastructure is the computational
proxy object. An instance of proxy “stands-in”, within the database, for every compu-
tational experiment in preparation, currently in process, or recently completed. Methods
associated with the proxy class provide an interface to the computational programs that
run those experiments. Implemented as persistent, object-oriented classes with data and
methods, the proxy mechanism encapsulates syntactic differences among semantically re-
lated applications.

Figure 4.2, a simplified view of the proxy and an experiment process, illustrates a func-
tional view of the proxy. The proxy generates an experiment input file. Control of the
computational chemistry experiment process consists of launching the process, controlling
it and registering the fact that the process has terminated (“mooring” the experiment).
Corresponding to each active experiment is a proxy object; the proxy object maintains a
persistent record of the experiment that can be viewed by the chemist. Once the experi-
ment has completed, the proxy transforms results into a format common to all applications,
and loads them into the database. The generate, launch, control, moor and parse functions
may be invoked from a remote machine, using appropriate network services.

Figure 4.3 shows this conceptual encapsulation of computational chemistry applica-

tions. Here, we see two separate experiments on the water molecule, one using the
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GAMESS application and the other the Gaussian application. Inputs to the experiment
are presented in the boxes directly above the experiments themselves, namely molecule,
basis set, basis set instance and level of theory; each comes from the database and is trans-
Jated by a computational proxy (using an input template) into specific formats required
by the respective application. The proxy uses output templates to translate application
outputs into a common format before placing them in the database. In this case, experi-
ment results of interest consist of two molecular orbital objects, one associated with each
experiment.

An instance of a proxy object is created as soon as a chemist begins building an ex-
periment, and holds experiment information that is of an ephemeral nature, i.e., relevant
only to the running of that experiment at a particular point in time, on a particular ma-

chine. The instantiation of a computational proxy extends from the point when a chemist
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begins to conduct an experiment to that point in time when the chemist declares that
the experiment has successfully completed and output data have been retrieved. A proxy
representing an unsuccessful experiment is retained until that experiment is updated and
resubmitted, or until the chemist archives or abandons the investigation containing that
experiment. Thus, the computational proxy object associated with a given experiment
will ultimately be removed from the database or archived. While an experiment is active,
the proxy holds information idiosyncratic to the process actually running that experiment,
such as the process ID, current resource utilization, and names of working files. The ex-
periment object that represents a successful experiment, as opposed to the proxy object
that represents that experiment’s computation, endures within the database as the locus

of scientific information about that experiment.

4.2.1 Computational Proxy: Conceptual Model

This section describes how our conceptual model for the computational chemistry database
was extended to include the computational proxy. After an initial narrative illustrating
how the proxy entity relates to other entities, we go on to list the attributes comprising
the proxy entity. As in Chapter 3, entities (i.e., database objects) are italicized, rela-
tionships between entities are expressed in boldface, and attributes are underlined. The
entity-relationship diagram jn Figure 4.4 represents the information model for the proxy
and illustrates the narrative description of the conceptual design below. The entities com-
putational application and computationel ezperiment have already been described in the
CCDB conceptual model. (See Figure 3.6.)

A computational prozy represents a computational ezperiment and controls the com-
putational process that corresponds to that experiment. A computational experiment is
conducted as a computational process by the proxy. A computational process runs on
a particular computer, which is connected to the same network service to which the proxy
itself is connected. Any particular computer is an instance of some generic computer
platform, e.g., the processor “coho” is an jnstance of a “Sun4” computer platform.

Any running computational experiment uses a computational application. In order for

an experiment to run on a particular computer, the application it uses must be available
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for the corresponding computer platform and installed on a particular computer of that
platform type.

Templates describe the input and output file formats for a computational appli-
cation. The ezperiment type describes the computational activity for an experiment.
Experiment type is a classification of computational activity that cuts across applications;
thus, for example, two applications might support the “optimize” computational activity.

Because parameter requirements differ according to the experiment type, experiment
type within application serves as a grouping factor for femplate objects. Templates are
discussed in Sections 4.3.3 and 4.3.4.

The proxy contains information about the application process that relates to the actual
running of the experiment. Defining the ezperiment entity separately from the prozy
entity allowed us to cleanly separate information of scientific value from information about
the running per se of the experiment. Information of scientific value is stored with the
experiment {or associated objects such as molecule), while information of operational value
1s stored with the proxy. Information of scientific value is maintained in the database as

long as it has scientific value. Data of an operational nature, i.e., the proxy, is deleted as
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soon as it is no longer needed — when the computational experiment has completed. The
primary clients of the ezperiment object are persons, (i.e., the scientists); clients of the
prozy object are other database objects.

The proxy object holds the following information, although some attributes may be

null for any particular proxy object:

1. Date and time the computational process was last monitored.

2. Cumulative resource usage, in terms of the particular computer on which it is be-

ing run: CPU time, disk space utilized, temporary disk space utilized, elapsed time.

Resource usage in general terms, e.g., megaflops?, is stored with the experiment since
general measures of resource utilization are relatively independent of the particular

computer on which the experiment was run.

3. Process identifier of the corresponding computational process.

4. Current status of the computational process, i.e., not-scheduled, scheduled, running,

moored, aborted (by the system) or stopped (by the user).

5. Input file name(s).

oy

. Output file name(s).

The experiment object holds information sufficient to reproduce the experiment, and
the proxy object contains information sufficient to locate and control the experiment’s
computational process.

In Section 3.2.4, we specified what information about computational applications and
particular computers must be available in the database to identify the experimental appa-
ratus on which computational experiments were performed. Adding computation services
to the database means that additional information about computational applications and
particular computers (which we call “compute hosts”) must be made available to invoke
and monitor computational processes. The following network-level information must be

accessible to the computational proxy:

*Millions of foating point operations per second.
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1. For each particular computer (compute host): full network address, subdirectories,

and maximum resources available where each application’s files must be placed.

2. For each computer platform: performance level, e.g., parallel, super, mid-range, mj-

Cro.

3. For each application: invocation signature. By invocation signature, we mean the

explicit calling sequence required to invoke the program.

The above information is available to users, the user interface, and the proxy when making

decisions regarding the scheduling of experimental processes.

4.2.2 Database Support for the Proxy: Registering Applications

In Section 4.2.1 we described the information structure of the proxy itself. To support
computational applications with the computational proxy, we need the ability to register
this information about computatjonal applications with the database.

Information about applications required for our needs falls into two categories: infor-
mation for the scientists’ direct use (already described in Section 3.2.4) and information
needed by the proxy. Information in the latter category consists of descriptions of ap-
plication parameters, inputs and outputs. One goal of the proxy design is to allow a
computational chemist who is an expert user of an application to register that application
with the database. We believe that scientists should be able to add or modify applica-
tion interfaces for the system without having to understand the technical details of the
database design, or having to consult programmers or database administrators when mi-
nor changes to an application occur. There is no substitute for having a domain scientist
knowledgeable in an application define that application to the system, but the application
registrar should not have to be a computer scientist or systems programmer to define his
or her application to the database.

We use the term applicetion registrar to distinguish the application-expert-user who
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registers applications from the application-user.®> The application registrar needs to un-
derstand the computational chemistry database schema, but not the particular database
management system in which the database has been implemented. To write templates,
the registrar needs to understand in detail the experiment types supported by the ap-
plication and the application formats for input and output, but only in general how the
proxy generates input and parses output files. The registrar will also need to know which
compute hosts can run the application, and details about those hosts sufficient to start

up an application on each.

4.2.3 Computational Proxy: Behavior

In this section, we describe the behavior of the computational prozy entity. Because we are
describing an entity of our own creation, rather than capturing an existing process, the
format we use for describing the conceptual model varies from that used for conceptual
models elsewhere in the thesis. Here, to clarify the proxy's behavior, we include a scenario
for the proxy interface to computational applications. Below, each behavioral component
of the proxy is underlined.

Computational proxies generate application input files using information stored in an
experiment object and templates that describe input formats. The proxy launches or
starts a computational process, and controls that process as long as the process is active.
When the process has terminated, the proxy moors the application process by marking
the experiment object complete. The proxy then parses application output files using
templates that describe these output files and loads results into the experiment object.
The functions above may be performed across heterogeneous compute hosts.

Proxies interface computational applications to the object-oriented database system
roughly as follows. When a chemist indicates that he or she intends to conduct a computa-
tional experiment, an instance of a computational proxy is generated within the database

to represent that experiment. A scientist creates or selects an initial molecular structure,

3We did not implement a user interface for application registration. In our prototype, application-

specific templates and information about where applications run are loaded into the database from ASCIL
files.
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views previous experiments on similar molecules, and uses those previous experiments as
exemplars to build or select appropriate inputs and parameters for a new experiment. The
proxy mechanism uses this image of the experiment in conjunction with descriptions of
the application syntax known collectively as an input template to generate input to the
computational process. The proxy then ships the input to the compute host and invokes
the application, starting up a computational process according to specifications in the
experiment object. The chemist need not log on to the compute host. Thus, the proxy
hides both syntactic details of the application and architectural details of the network.
The proxy periodically monitors the computational process, and maintains a record that
the chemist can access, independently of network details or current availability of a remote
machine on the network.

When the experiment has finished, the proxy automatically transfers the output file
to the database. Using descriptions of the application’s output known as output templates
the proxy reads the output file and converts results into a common format independent
of the application and loads the results into the database experiment object. The proxy
provides for the automatic capture not only of outputs of the computational process but
also of associated metadata of the experiment such as date, time, and performing chemist.
The proxy mechanism stores and possibly transforms these data so that they can later be
displayed in a common format regardless of what application generated them. Once the
chemist has analyzed results, the experiment can be repeated by replicating the experiment
object, changing values as needed, and generating a new proxy.

The above functional specification of the proxy led to the logical design of its functional
components: input and output templates, application registration, data input and data
capture, and mission control. The following section of the thesis describes our design of

these components.

4.3 Functional Components of the Computational Proxy

To provide communication between the database and the computational process, the proxy

supplies the following services: deofa input to computational applications, data capture
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from their output, and control of the application processes themselves. To perform these
functions, the proxy accesses information about each computational application from its
templates; Section 4.3.1 contains a conceptual model for input and output templates, and
shows how templates relate to other database entities. Section 4.3.2 covers registration of
new applications, i.e., how information about applications are entered into the database
and templates are specified. Sections 4.3.3 and 4.3.4 show how the proxy mechanism uses
templates to build input files and parse output files.

Mission conirol, addressed in Section 4.3.5, provides for starting or stopping a compu-
tationa) experiment, examining intermediate outputs, and querying the use of resources

during execution.

4.3.1 Input and Output Templates

This section defines template entities in conceptual modeling terms. A template describes
a syntactic variant of one or more domain database entities. Input and output templates
describe application inputs and outputs, and direct the proxy’s mapping of objects from
the domain-specific database to application-specific inputs and from application-specific
outputs to the database. A template object defines the translation from a particular
database object to a textual representation of that object and vice versa. Thus, for
example, an output template for the molecule entity for the GAMESS application shows
how to transform a textual representation of molecule in the GAMESS output format to
a molecule object in the database.

Figure 4.5 shows the relationship between other database entities and the input tem-
plate. An input template for a particular experiment type for a particular application is
generated from a sequence of statements written in the Computational Chemistry Input
Language. For each application and experiment type supported by that application, there
is one input template, as defined by the ternary relationship (describes inputs) between
experiment type, application and template.

Output templates are organized somewhat differently. A list of output templates called
the master template comprises the definition of the output file for a particular experiment

type and application. There is one master template for each particular experiment type
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Figure 4.5: Conceptual model {or template.

for each application. Any given application will need an cutput template for each database
object to be parsed. The occurrence of an output template for an experiment object in
the master template for a given application and experiment type indicates that we wish
to load data for that experiment object after running an experiment of that type using
that application.

Assume, for example, that the GAMESS application supports two experiment types,
ENERGY and OPTIMIZE, and that for ENERGY experiments we will load an energy
value, and for OPTIMIZE an energy value and an (optimized) molecular structure. As-
sume further that output files for the ENERGY and OPTIMIZE experiment types repre-
sent energy in the same format, so that only one output template is needed to describe
how to load the energy object. Two master templates, i.e., two lists of templates, are re-
quired: one list (for ENERGY experiment type) consists of just an energy-value template.
The other list (for OPTIMIZE) consists of two templates, the energy-value template and a
molecular structure template. There is only one energy-value template for this application,

but it appears in two master template lists.
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Of course, if application-specific formats for output files differ for a given object de-

pending on the experiment type, there must be an output template for each format.

4.3.2 Application Registration

Before a computational application can be invoked through the database proxy mechanism,
it must be registered with the database. In this section, we specify the information about
applications that the proxy needs and describe the process by which this information is
entered in the database. Recall that the person who registers an application is called
the application registrar or simply registrar. The registrar is a computational chemist
who understands the semantic and syntactic profiles of the application being described.
The registrar need not be a programmer or have extensive knowledge of database systems
software, but he or she must understand the computational experiment schema and be able
to map textual elements in the application’s input and output files to the corresponding
elements in the experiment schema.

To register an application the registrar provides a description about the application
and its computing environment sufficient to run an experiment and capture its output. In-
formation about the application (name, allowable experiment types, target processor type,
relative location of files, etc.) is loaded into the computational application database ob-
ject. Information specific to the application’s input and output files is placed in input and
output templates. Where a template cannot describe data conversions, special-purpose
functions to convert database types to or from textual formats for input or cutput files
must be added to the database schema as methods for the appropriate database object. If
the textual format cannot be described using existing database types, the registrar must
also add a new type to the database. We call such a type a foreign fype because it cannot
be described in terms of the types native to the application schema or the database man-
agement system. Even though the registrar is not a programmer, he or she should be able
to recognize whether a new application being registered will require conversion functions
or new database types. If so, the database administrator (a programmer) must modify

the database schema and perhaps write input functions for the new types.
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Figure 4.6: Application registration functions.

Figure 4.6 depicts application registration functions performed by the registrar. Spe-
cific information required for each of these activities is shown at the leading edge of
arrows pointing to the box representing each function. Components of the database that

are changed as a result of each function are shown at the head of the arrows emanating

from the box.

Information about the Application

Information about the application is stored in the Computational Application object, which

consists of the following descriptive information about an application,

1. Name, author and publisher of the application.



102

2. Date and time when the application became available.

3. Any remaining details about the application, for example, the maximum “l-value”*

for a specific basis function that an application supports, the maximum number of
Gaussians in a contraction for each l-value, and whether the code supports pure

spherical components of the Cartesian Gaussians {e.g., 5 component D’s).

In addition to the information above, relationships between the Computational Appli-

cation instance and other database objects must be instantiated:
1. Programming language and language-version of the application.

2. Experiment types, i.e., computational functions (computational algorithms) per-
formed by that application, such as RHF (restricted Hartree-Fock), UHF (unre-

stricted Hartree-Fock), SDCI (singles and doubles configuration-interaction).

The registrar must be aware of nuances in the conceptual model, such as distinctions
between computational application and version of computational application. As discussed
in Section 3.2.4, a single instance of a computational application (from this point on called
“application”) can be versioned. Database information about applications resides either
in the application object or in the version-of-application object. (Recall Figure 3.5.) When
an application is first registered, two objects are created; the application object contains
information that we believe is common across versions of a computational application
(name, publisher, etc.) and the version-of-application object contains information specific
to a particular version such as experiment type and maximum l-value. Application objects
and version-of-application objects are related to each other in two ways: (1) an application
may have several versions, but (2) each application has only one current version. The
publisher’s version number of an application is part of the version-of-application object.
A particular experiment is run using a version-of-application, though the user need not
be aware of the distinction between an application and version-of-application. Thus, for

example, a particular installation may register version 3.0 of Gaussian as its first version

*The term I-value refers to the value of the angular momentum quantum number as represented by the
spherical harmonics s, p, d, {, etc.
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of Gaussian. The next release of Gaussian, say version 4.0, will be the second version of
Gaussian registered. The database differentiates experiments run using version 3.0 from
those using version 4.0. Input and output templates are associated with a version-of-
application, since file formats may change with releases of the application. Of course,
application versions may share input and output templates. (For simplicity’s sake, we
have in this thesis largely ignored the distinction between running different versions of an
application.)

Another example of informatjon that differs among versions of application is program-
ming language version. Version 3.0 of Gaussian may have been written in Fortran 77
v3.0, and versijon 4.0 in Fortran 88 v1.0. The particular compiler for the application is a
function of which platform and machine the application is installed on, and is discussed

in the section on the computational proxy architecture (Section 4.4).

Information about Input and Output Files

Computational chemistry applications produce two kinds of files of interest to the proxy,
intermediate and cutput files. Intermediate files are rarely directly examined by the human
user and typically contain very large matrices written during the n'* iteration of the
simulation. These files are read by the application as input to the (n + 1) iteration.
Intermediate files were historically used to store matrices too large to fit in their entirety
into memory.

The output file contains experiment results. Though normally consulted only when
the experiment has completed, the output file is often used to store information about the
experiment as it is running. This file can be consulted while the experiment is running to
determine if the experiment is converging, and, if so, how close it is to convergence.

In some cases intermediate or output files can be used to restart a computation that
has been stopped or aborted. The computational proxy can read intermediate or output
files while an experiment is in progress and respond to user queries about how close the
calculation is to convergence. Since a badly specified experiment might not terminate, or
might run for months, even very rough estimations are useful.

Information about the syntax of the applications’ input and output files is stored in
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input templates and output templates, respectively. As explained in Sections 4.3.3, 4.3.4
and 4.3.5, the proxy uses the templates to perform input file generation, output capture
and domain-level experiment monitoring. Below is a description of input and output

templates and the process by which they can be added to the database.

1. Input Template. An input template specifies the layout of an application’s input
file for a particular experiment type. An input template contains information suf-
ficient to generate the input file for that application given an experiment object
in the database. As part of application registration, an input template instance,
couched in the “Computational Chemistry Input Language” (CCIL), is loaded into
the database. The input template is stored in the database as CCIL text {(actually
a sequence of CCIL statements). This sequence of CCIL statements is input to the

proxy’s input file generator.

2. Output Template. Analogously, output templates specify the syntax (format) of
an application’s cutput file. An output template maps a textual data object to
a database object, and defines any required syntactic translation. A given output
template is specific to an application, an experiment type, and an object in the
experiment database. The ordering of templates into a master template list defines
the order in which the computational proxy would most efficiently parse the output

file. There is one master template list per application and experiment type.

More detailed information about these templates follows.

4.3.3 Data Input: Generating Input Files from the Database

We distinguish information about the subject of experiment and experimental parameters.
The subject of the experiment is the molecule itself. Information about the subject of the
experiment is added to the database prior to the request to schedule an experiment, via
some domain-specific editing facility (e.g., a graphical molecule editor) or by copying from

a previous experiment.® We have made the simplifying assumption that scientific data

®Since computational chemistry experiments often update (optimize) molecular structure and since
molecular structure is the defining characteristic the CCDB molecule object, “copying” a molecule instance
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Figure 4.7: Application input functions needed by the computational
proxy.

describing the subject of the experiment are present at the time the user asks to launch
an experiment. Experimental parameters (described below) define the experiment to the
application.

The proxy’s data input component has three functions: requesting experimental
parameters from the user, generating the application input file, and moving the input file
to the processor (called the compute host) on which the application is to run. Figure 4.7
depicts these functions; inputs to (and outputs from) each function are shown in italics
above (and to the right of) the box enclosing the function name. Inputs from or updates

to the database are prefixed by db:. The three data input functions are further explained

below:

1. Request Experimental Parameters. Before the input file is generated and the

to set up a new experiment adds a new maolecunle instance to the database, rather than creating a shared
reference to an existing molecule.
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experiment launched, missing input parameters (if any) must be supplied.® Some pa-
rameters, such as experiment type, can be requested in terms general to the domain
and later translated into application-specific formats, but other parameters may be
application-specific or relevant only to a given site. Examples of experimental pa-
rameters generally applicable across several applications include: the seli-consistent
wave function (SCFTYP) and the Moller-Plesset perturbation level desired; the type
of output required (if not obvious from the data item requested) such as minimum
energy only, minimum energy plus field gradients, or geometry optimization: and
the unjts in which the application should cast certain outputs. An example of a
parameter specific to one application (Gaussian) is the parameter that specifies that
a special checkpoint file be saved. This output file is usually deleted after an ex-
periment, but it could be used io restart the application efficiently. An example of

site-specific information is the machine on which to run the experiment.

2. Generate Input File. When a user request triggers the launching of a computa-
tional experiment, the proxy generates an input file for the experiment, formatting
data appropriately for the application using an input template. Which parameters
are required is a function of experiment type. If an experiment type requires a
specific experimental parameter, then one or more CCIL statements in the input
template generate the textual form of that parameter. We make the simplifying as-
sumption that input to a computational application consists of a single ASCII data
file. Although some applications require more than one file as input for certain ex-
periment types, implementing a multi-file or object-level interface is not conceptually

more difficult than generating and shipping a single ASCII file.

3. Move Input File to Compute Host. The computational application is rarely
run on the same machine as the database itself. Thus, the proxy must take care of

sending the input file to the processor on which the application is to be run.

®In a full implementation, a user interface will inspect the experiment for completeness and conduct
a “conversation” with the user to complete the experiment. The proxy will then check whether the
experiment is fully specified before submitting it for execution.
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$CONTRL TIMLIM=959.0 MEMORY=2000000 S$END

$CONTRL SCFTYP=RHF UNITS=BOHER S$END

SCONTRL RUNTYP=OPTMIZE $END

$CONTRL MPLEVL=0 $END

$DATA OPTIMIZE CONV RHF H2/STO-3G/MPO

c1

Hydrogen 1.000000 2.325134 1.729993 0.000000
8 3

1 3.425251 0.154329

2 0.623914 0.535328

3 0.168855 0.444635

Hydrogen 1.000000 -2.325134 1.729993 0.000000
s 3

1 3.425251 0.154325%

2 0.623914 0.535328

3 0.168855 0.4446235

$SEND

$GUESS GUESS=MINGUESS S$END

Figure 4.8: Sample input file for a GAMESS experiment on hydrogen.

For example, to perform an experiment to optimize the geometry for the hydrogen
molecule using the computational application GAMESS, a chemist first tells the system
that he or she wishes to run such an experiment. In response, the proxy creates a new ex-
periment object of experiment type “optimize” that uses the GAMESS application. Once
the chemist has specified additional input parameters and is ready to run the experiment,
the proxy generates an input file that specifies those input parameters.

The input file given in Figure 4.8 controls an invocation of the GAMESS application for
a conventional RHF experiment run on hydrogen, i.e., SCFTYP = RHF and RUNTYP
= OPTIMIZE. The level of theory specified is 0, and the symmetry of the molecule is
assumed to be of type C1 (none). Following the x-y-z coordinates of each atom is the
basis set. To generate this input file, the proxy mechanism uses an instance of input
template for the “optimize” experiment type for the GAMESS application. The input
template object is defined to the database using CCIL. (A praecis of CCIL follows.)

Once the input file is generated, the proxy launches the experiment. While an ex-
periment js running, the proxy monitors the experiment at regular intervals and at user
request. Once the experiment process has terminated, the proxy moors the experiment

and captures its results.
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The Computational Chemistry Input Language

The Computational Chemistry Input Language (CCIL) is a layout language designed to
define ASCII text (input) file formats for ab initio computational chemistry applications.
The proxy mechanism that generates application input files expands CCIL references to
database objects to produce text values for experiment data stored in the database. The
CCIL is in eflect a special purpose “report writing language”, providing for specially
formatted reports of experiments from the database.

A sequence of CCIL statments for a particular experiment type and application is
called an input template. In the context of a particular experiment, the proxy uses an
input template object to generate an input file for that experiment. The sequence of
CCIL statements that constitutes an input template object could be written directly by
the registrar, but we think of the CCIL as an intermediate language to be generated by
the registrar user interface. In either case, a description in CCIL of an application’s input
file format must exist for each experiment type supported by that application before the
proxy can generate input files for experiments with that experiment type and application.

The CCIL Interpreter is the proxy method that reads the input template object in
the context of a given experiment and produces an input file. The interpreter is always
invoked in the context of a particular experiment and expands database references within
the input template so that experiment data from the database is included.

The langunage specification for the CCIL follows below. The reader will find it helpful
to refer to the example input file and CCIL code in Figures 4.8 and 4.9, respectively.

o An input template is a sequence of statements written in the CCIL.
¢ CCIL statements are separated by semi-colons.

» A CCIL statement can consist of an “ITERATE OVER” command. The body of an
ITERATE OVER command is a sequence of CCIL statements. One can ITERATE
OVER a list of CCIL statements or a database collection. Iterating over a list
of CCIL statements generates a sequence of CCIL statements. Iterating over a

database collection causes the interpreter to retrieve a collection of database objects
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one by one and transform each object in that collection to a textual representation.

Examples of these two alternatives follow in the discussion below.

The full syntax of the ITERATE OVER command is:

USING <loop-control-variable> ITERATE OVER <some-collection> {

<a-sequence-of-CCIL-statements>}.

A CCIL “USE...FOR” statement defines a variable that, when later used in a se-
quence of CCIL staiements, is replaced by a literal given in the USE statement. The

syntax of the USE statement is:
USE <variable-name> FOR <literal>.

A CCIL “DEF” statement defines a format, a list of statements, or a sequence of text
characters. Formats and lists of statements must be named, and must be defined

before reference.

— A CCIL format defines a set of simple transformations, each from a value (in
the database) to a textual representation for that application. Each transfor-
mation is given as a value pair separated by “->”. The database value is given
first, followed by “ -> 7, followed by the textual equivalent. Sequences of value
pairs are enclosed in brackets “{...}”, and each value pair is given on a sepa-
rate line. The database value may or may not be a character string. The textual
representation will most often be given as a character string, but it might al-
ternatively be given as a type for which a string conversion method is known
to the CCIL interpreter. Textual representations must be enclosed in quotes;
database values must be enclosed in quotes if the type of the corresponding

database object is a character or string type.

DEF format <name-of-format> {
database-value -> "textual-representation"

database-value -> 'textual-representation"

-}
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For example, assume that a level of theory value in the database is given as (the
character string) “MP1” and that an application requires its corresponding level
of theory to be given as (the character string) “1”. Statement 3 in Figure 4.9

shows such a CCIL format transformation for this situation.

When a format name 1s later referenced in a CCIL statement the “name of

format” is preceded by “%”.

A CCIL list of Statement defines a list of CCIL statements. A defined list of
CCIL statements can be used in an ITERATE OVER command to generate a

sequence of CCIL statements.

DEF list of Statement <name-of-list—-of-Statements> {
CCIL statement;
CCIL statement;

-}

In Statement 4 of the CCIL example in Figure 4.9, the list of Statement Con-
trolStatements is defined. In Statement 5, the ITERATE OVER feature is used
to generate a sequence of CCIL statements each beginning with “SCONTRL”
and each ending with “§END”, as in the first four lines of the example input file
in Figure 4.8. The loop control variable for this ITERATE OVER statement
s ControlStatement; it marks the place in the body of the ITERATE OVER

where an element from the collection is placed.

A CCIL statement not preceded by “DEF” defines a sequence of ASCII char-
acters to be written to a file. The text is generated in the order in which the
CCIL statements appear. The interpreter generates a linefeed character after
generating text for each statement.

Text to be generated by the interpreter is given as CCIL terms. A charac-
ter string generated by a CCIL term is called a “textual term”. CCIL terms
expressed in a single statement are separated by one or more spaces; the inter-
preter generates a space to separate two textual terms on the same line in the

output file. A CCIL term can be:
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+ An escape scquence. Escape sequences are defined as per the language
C [99); those of interest are newline (\n) and tab (\t). No spaces are

generated after an escape sequence.

« A string literal. A string literal is a sequence of characters (as defined for

C) surrounded by quotes, as in “SCONTRL”.

+ A database object. Database objects are referenced using path expressions.
A CCIL path expression consists of a class name followed by one or more
data element pames. Relationship names are preceded by “->”, and at-
tributes of classes by “.”. The head of the path expression is the current
experiment object in context. The proxy input file generator is called in
the context of a particular computational experiment; thus “self” is the
current computational experiment in context, an instance of the CCDB
class “CompExperiment”. All CCIL path expressions are resolved from
the binding of “self”. The name of a database path expression is enclosed
in single quotes in the CCIL.

Database objects, unless otherwise specified, are displayed by the inter-
preter using the standard display function for that object.

For example, ‘CompProxy.timlim’ is a CCIL reference to an ObjectStore
database object; “timlim” is an attribute of the CompProxy object. Where
‘CompProxy.timlim’ appears in a CCIL statement, the value of the cur-
rent instance of that object will be displayed.

A database object can be converted to an alternate format using one of
two format conversions: a format conversion defined in the CCIL pro-
gram by a format statement or a format conversion defined in the database
schema as a method for that database object. Format conversion names
and database method names are preceded by “%”. Where a format con-
version and database method have the same name, the format conversion
name takes precedence.

For example, in Figure 4.9 two format conversions are specified. In State-

roent 4, the database object ‘CompExp->isTakenTo.name’ is transformed



112

according to the “LevelOfTheoryFormat” {ormat conversion defined in the
CCIL. program itself. In Line b of Statement 9, the database object
‘atom.name’ is formatted according to the database method for the atom

class “asAtomicNumber”.

+ CCIL-provided operations, CARDINALITY and COUNT. The CCIL term
“CARDINALITY of <database object>" will output the cardinality of the
database object in character format.

The CCIL term COUNT refers to the implicit counter maintained by the
interpreter as it ITERATEs OVER a collection. If the keyword COUNT
occurs in a CCIL statement in the context of an ITERATE OVER com-
mand, the interpreter prints the value of the counter at that point in the
iteration.

For example, Lines 9e and 9f in F