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Abstract

An
Object-Oriented

Heterogeneous Database Architecture

David Marshall Hansen, Ph.D.
Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: David Maier

Many data management environments face a critical need to integrate heterogeneous

data—data that are stored in varying locations using various data management systems
with diverse data formats and schemas. To address this problem, the database research
community has developed the concept of a heterogeneous database system (HDB) that
provides users with the illusion of a single unified database. However, HDBs rely on the
implicit assumption that all data to be integrated into the HDB are stored in full-fledged
database management systems (DBMS). This assumption leaves environments that need
to integrate non-DBMS data unserved by HDB systems. Furthermore, HDBs are complex
software solutions that are not easily implementable by database developers wrestling with
heterogeneous data. This thesis presents a new, easily implemented HDB architecture that
is suitable for integrating non-DBMS data.

The key to our architecture is using an object-oriented database management system
(OODBMS) as an implementation tool. Rather than developing an HDB from scratch, we
leverage the power and facilities of the underlying OODBMS to provide a query language,

application programmer interface, interactive query interface, concurrency control, etc.

XV



Using object-oriented technology gives us an additional benefit—our HDB becomes an
object-oriented HDB (OOHDB) providing users with greater data model expressivity along
with a powerful behavioral component.

The OOHDB architecture we present is independent of a particular OODBMS and
can be implemented using a number of commercial OODBMSs for a variety of data man-
agement environments. We describe one implementation of our architecture using the
GemStone OODBMS for accessing heterogeneous materials science data. This implemen-
tation demonstrates how easily the architecture can be implemented. We use this imple-
mentation to analyze the performance of the architecture and exaimine the effectiveness
of strategies for enhancing performance.

We conclude that for many environments with heterogeneous non-DBMS data, our
OOHDB architecture provides a good solution that is easy to implement using commercial

OODBMS technology.



Chapter 1

Introduction

1.1 Overview

Many data management environments face a critical need to integrate heterogeneous
data—data that are stored in varying locations using various data management systems
with diverse data formats and schemas. To address this problem, the database research
community has developed the concept of a heterogeneous database system (HDB) that pro-
vides users with the illusion of a single unified database [Kim95a, Ram91, SL90, LMR90,
LA86, EP90]. However, proposed HDB architectures implicitly assume that all data to be
integrated into the HDB are stored in full-fledged database management systems (DBMS).
This assumption leaves environments that need to integrate non-DBMS data unserved by
HDB systems. Furthermore, HDBs are complex solflware solutions that are not easily
implementable by database developers wrestling with heterogeneous data. This thesis
presents a new, easily implemented HDB architecture that is suitable for integrating non-

DBMS data.

1.2 What is a Heterogeneous Data Base?

Database researcher Won Kim provides the following succinct description of what an HDB

should be and do (referring to the concept as a multidatabase system (MDBS)):

Simply put, a multidatabase system (MDBS) is a database system that
resides unobtrusively on top of existing database and file systems (called local

database systems) and presents a single global database schema against which



its users will issue queries and updates; an MDBS maintains only the global
schema, and the local database systems actually maintain all user data. The
global schema is constructed by consolidating (integrating) the schemas of the
local databases;...The MDBS translates the global queries and updates for
dispatch to appropriate local database systems [or actual processing, merges
the results from them, and generates the final result for the user [Kim95a,

p.516].
Kim goes on to list 9 general objectives of an HDB (or MDBS) [Kim95a, pp.516-517}:

OBJECTIVE 1 [t must obviate the need for a batch conversion and migration of data
from one data source (e.g., an ORACLE database) to another {e.g., a Sybase data-

base).

OBJECTIVE 2 It must tequire absolutely no changes to the local database system
(LDBS) software; this preserves what is known as design «utonomy. In other words,

an MDBS must appear to any of the LDBSs as just another application user.

OBJECTIVE 3 [t must not prevent any of the LDBSs from being used in its native
mode. In other words, users of an LDBS may continue to work with the system for
transactions that require access only to data managed by the systems, while users
will use the MDBS to issue transactions that require access to more than one data
source. In this way, applications written in any of the LDBSs are preserved, and
new applications that require access to more than one data source may be developed

using the MDRBS.

OBJECTIVE 4 It must make it possible for users and applications to interact with it in
onc database language. In other words, the users and applications should not have

to work with the different interface languages of the LDBSs.

OBJECTIVE 5 It must shield the users and applications from the heterogeneity of the
operating environments of the LDBSs, including the computer, operating system,

and network protocol.



OBJECTIVE 6 It, unlike most previous attempts at allowing the interoperability of
heterogeneous database systems, must support distributed transactions involving

both reads and updates against different databases.

OBJECTIVE 7 It must be a full-blown database svstem—that is, it must make avail-
able to users all the facilities provided by standard database systems, including
schema definition, non-procedural queries, automatic query optimization, updates,
transaction management, concurrency control and recovery, integrity control, ac-
cess authorization, both interactive and host-language application support, graphics

application development tools, and so forth.

OBJECTIVE 8 It must introduce virtually no changes in the operation and adminis-

tration of any of the LDBSs.

OBJECTIVE 9 It must provide run-time performance that approaches that of a homo-

geneous distributed database system.

Two points regarding Kim’s description and objectives must be made. First, the de-
scription and objectives are prescriptive. That is, they are an ambitious list of capabilities
that an HDB should strive to achieve to be a fully-functional, non-intrusive solution. In
fact, while most of Kim's objectives are met by current HDB approaches, objectives deal-
ing with updating heterogeneous external data via the HDB (objectives 6 and T) remain
a topic of research. Propagating updates to external data via an HDB is difficult because
it not only requires a mechanism, but an invertible mapping from elements of the hetero-
geneous schemas to elements of the homogeneous schema as well. Thus, HDBs typically
do not provide an update capability.

Second, though Kim’s description mentions sitting atop “existing database and file
systems...”, data that is not stored in a DBMS is rarely integrated into an HDB. Close
examination of Kim'’s objectives makes it clear that the objectives are biased toward
describing an HDB that accesses data managed by DBMSs. To begin with, Kim refers
to external sources as “local database systems”. Objectives 2, 3, 6, and 7 deal with

transactional issues that ate not tvpically relevant for files. Objective 4 mentions the



“interface language” of the local databases. These subtle hints suggest that HDBs are
oriented towards supporting the integration of DBMS data and non-DBMS data is largely
ignored. As we shall see in Chapter 2, the prototypical HDB architecture, where queries
over the global HDB schema are translated into sub-queries that are passed along to local

databases for execution, all but excludes data that is not managed by a powerful DBMS.

1.3 What is the Problem with HDBs

We see two problems with current HDB approaches. First, the implicit assumption that
all external databases! are managed using DBMSs makes these approaches unsuitable
for environments with data that is not stored in a DBMS. Kim’s description notwith-
standing, his list of objectives is heavily biased towards integrating DBMS data and the
fact is that most HDB architectures provide little or no support for accessing non-DBMS
data. Second, and more generally, HDB systems are complex one-of-a-kind soltware so-
lutions that are not easily implemented by database developers wishing to integrate their

heterogeneous databases.

1.3.1 “Lightly-Managed” Data

One drawback of Kim’s objectives, and virtually all HDB research, is that it presumes
that all external databases are managed using powerful general-purpose DBMSs. Fur-
thermore, the assumption is that these databases are relational [BHP92]. However, many
environments have “databases” that are not managed by a general-purpose DBMS includ-
ing: defense [AMR94], medicine [WH94], telecommunications {CD93], geophysics [DSH94],
molecular biclogy and genomics [Kar94, Aid93, SR94], chemistry [RL85], and materials
science [HS91]. “Databases” in these envitonments are often formatted files containing
large data sets that may include historical data (e.g., telephone customer records, chem-
istry experiment records) or databases of factual information (e.g., the map of a gene

fragment, physical properties of a material). The data in these sorts of databases remain

1 We use the term external datobose as a synonym for local database [rom here on because it is more
accurate. The term local incorrectly connotes that the databases are co-located with the HDB. However,
in practice, databases accessed by an HDB are often distributed, sormuetimes widely.



static once collected.

We term these databases “lightly-managed”. The common characteristic of these
lightly-managed databases is that they lack a powerful, general-purpose query interface.
[nstead, custom data access programs provide limited access to the data along pre-defined
access paths. Without a general-purpose query access mechanism, lightly-managed data-
bases remain outside the realm of current HDB approaches.

When dealing with lightly-managed data, some of Kim’s objectives take on less signif-
icance, others more. Of the objectives listed, those that deal with the “design autonomy”
of the local DBMS and the coordination of distributed transactions (objectives 2, 3, 6, and
8) become largely irrelevant in the absence of a DBMS. Objectives that define the level of
transparency and performance (objectives 1, 4, 5 and 9) remain important, while objective
7-—specifying that the HDB should be a full-fledged DBMS—takes on additional impor-
tance since it tmplies that the HDB should provide even greater query and management
capabilities than those of the lightly-managed database. In essence, an HDB that includes

a lightly-managed database should expand the capabilities for users of that database.

1.3.2 Keeping it Simple

Another drawback to most HDB systems is that they are very complex pieces of software.
Decomposing and optimizing a global query across the external databasesis a complex task
in itself. The architecture of Pegasus, a heterogeneous information management system
from researchers at Hewlett-Packard Laboratories, is presented in Figure 1.1. Pegasus is
representative of the complexity of most HDB solutions.

As complex, customized pieces of software, each HDB solution is a one-of-a-kind system
that may be tailored for a particular environment. As of yet, HDBs remain a topic of
research. M.W. Bright et al., surveying current muitidatabase systems, note that of the
16 HDBs surveyed, 13 are “prototypes” and the other 3 are “research” systems [BHP92,
p.56]. HDB research may eventually lead to a general-purpose HDB that is customizable
for a particular environment. However, as long as HDB syslems continue to ignore lightly-
managed data, users with such data will find it a daunting task to develop or modify an

HDB to suit their needs.
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1.4 Our Thesis

Our thesis is two-fold. First, we believe that an HDB can provide optimized access lo
lightly-managed detabases. What is needed is a new HDB approach to integrating external
databases that does not assume them to be managed by a DBMS.

Second, we believe that a general-purpose high-level HDB architecture can be spec-
ified that is easy lo wmplement. Ease of implementation has two facets. First, powerful
tools for implementing the HDB must be readily available. Second, the implementation

must be simple, straightforward, and must not require significant code development. The
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reader might reasonably ask how we hope to achieve much simplification in the devel-
opment of such a complex software system. The answer lies mainly in our decision to
use object-oriented database management system (OODBMS) technology for building an
HDB. Much of the complexity involved in programming an HDB is in the task of building
the components that translate, decompose and optimize a global query across external
databases. Our approach uses the query language and query processing engine of the
underlying OODBMS instead of developing a custom query engine. In fact, by building
an DB using a DBMS as the implementation tool we leverage the features of the DBMS
to build an HDB with all the “full-blown” DBMS features outlined by Kim in objective
7. The HDB “inherits” the query language, concurrency mechanisms, application pro-
grammer interface, etc. of the underlying OODBMS. Furthermore, using object-oriented
technology to construct our HDB provides the added benefit of turning the HDB into an
object-oriented HDB (OOHDB). The power of the object-oriented paradigm is especially
significant when applying the HDB in domains where complex data models have hindered
the use of traditional DBMS technology, such as scientific data management [FJP90]. An
object-oriented data model provides a rich and powerful mechanism that can be used to
model data that is not easily decomposed into the rows and columns of the relational
model. An object-oriented data model can describe the domain using entities intuitively

understood by the users of the database.

1.5 Research Methodology

Chronologically, our research was conducted in three phases. We began by identifying a
suitable real-world domain for developing and testing an OOHDB. Next, we implemented
an OOHDDB that provides users and their application programs with access to a number
of heterogeneous lightly-managed databases. Finally, a high-level generalized OOHDB
architecture was identified that can be applied in a variety of domains and implemented

using commercial OODBMS products.



1.5.1 The Test Domain—Materials Science & Crystallography

Materials science provided a useful domain for implementing and testing an OOHDB.
Malerials scientists rely extensively on programs and computerized data for conducting
research [Hal85]. Much of the data relevant to materials science is contained in lightly-
managed databases. In particular, published commercial data sets covering the crystal-
lographic structure of many materials are available from standards organizations. Data
stored using standardized data-interchange formats designed for crystallographers provides

another lightly-managed data source.

1.5.2 Implement an OOHDB for Materials Science

We implemented an OOHDB for crystallographic databases using a commercial OODBMS.
Out decision to use a “commercial-off-the-shelf” (COTS) OODBMS is an important fea-
ture of our research. HDB systems are too often constructed using custom software systems
that make the technology inaccessible to database developers. We choose to use COTS
systems to demonstrate that powerful tools for building an OOHDB are readily available.

This implementation was used to develop and test general techniques for HDB con-
struction and optimization. This implementation was carefully crafted to avoid using the
proprietary features of a particular QODBMS so that the architecture could be imple-

mented using a number of commercial OODBMSs.

1.5.3 Generalize a High-Level Architecture

Finally, we identified and developed the specification for an OOQHDB architecture that is
independent of any particular data management domain or OODBMS. This architecture
is generalized from the implementation of the our OOHDB for materials science and
embodies a general methodology for constructing an OOHDB using a COTS OODBMS.
The architecture was examined in the light of three COTS OODBMS products to assess

its generality.



1.6 Contributions of Research

The principal contribution of our research is the development of a high-level OOHDB

architecture. We believe that the architecture s:
e Suitable for integrating lightly-managed databases.

e Simple and easy to implement using a variety of COTS OODBMSs

1.7 Limitations

Our research is not without limitations, however, both in scope and applicability. The
scope of the research is confined to the development of an OOHDB architecture. HDB

research has a number of interesting problems we have not set out to solve including:

Tools and techniques for integrating heterogeneous schemas — Though we de-
veloped a global schema for our test domain, this thesis presents no new tools ox
techniques for schema integration. We give examples of how we use the compu-
tational power of methods in the OODBMS to handle instances of syntactic and
semantic heterogeneity among external databases, but in general, the problem of

homogenizing heterogeneous schemas and data remains.

Updates and distributed transactions — As we noted previously, propagating up-
dates to heterogeneous databases via the OOHDB is an open research topic. Our
architecture does not attempt to solve this difficult problem. However, we do suspect
that the underlying transaction management capabilities of the OODBMS can be
used to implement distributed, heterogeneous transactions in an environment that
requires and supports them. Furthermore, in Chapter 6 we outline a mechanism for
extending our architecture to propagate updates. Of course the mechanism does not
solve the difficult problem of developing an invertible mapping from elements of the

external database schemas to elements of the homogeneous schema of the OOHDB.

Decomposing and optimizing global queries — Our architecture is quite different

from traditional HDB approaches. Thus the common problem ol decomposing and
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optimizing global queries is not addressed. However, query optimization within our
OOHDB is an important consideration, and performance enhancing optimizations

are discussed as a part of the architecture.

At its current stage, our work is also somewhat limited in its applicability. The ar-
chitecture we have developed trades real-time currency of the data in the OOHDB for
enhanced query performance. Specifically, a static representation of the data in exter-
nal databases is constructed within the OODBMS. Updates, deletions, and insertions to
external databases are not immediately visible to users of the OOHDB. The representa-
tion within the OOHDB must be updated in order for external database modifications to
become visible. Thus, our architecture is probably not a suitable choice for transaction-

processing environments where external databases are in a constant state of change.

1.8 Outline of the Thesis

The remainder of this thesis follows a logical rather than chranological organization:

Chapter 2 examines approaches to accessing lightly-managed databases. Many of these
approaches fall far short of providing a true HDB. We also survey other HDB
research and demonstrate that lightly-managed data is not well served by current

HD3B approaches.

Chapter 3 presents our high-level domain-independent OOHDB architecture. We de-
scribe how we will leverage the power of the underlying OODBMS to simplify the
implementation while still providing a full-fledged OOHDB. By using the database
features of the underlying OODBMS, most of the complexity in constructing an HDI3
is eliminated. We evaluate our architecture using Won Kim’s objectives discussed

in Section 1.2.

Chapter 4 presents a detailed description the implementation of our OOHDB for a ma-
terials science crystallographic database. This chapter demonstrates that the archi-
tecture can be implemented to solve a real-world problem and provides evidence for

our claim that the architecture can be easily implemented using COTS OODBMS
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technology. We analyze the performance of the materials science OOHDB and ex-

amine the effectiveness of strategies for enhancing performance.

Chapter 5 strengthens our claim that our architecture is OODBMS-independent by ex-
amining two other COTS OODBMS products to assess their suitability as targets for
implementing our OOHDB. Where a particular OODBMS would require changes to
the implementation described in Chapter 4, we present alternative implementation

strategies.

Chapter 6 revisits our thesis to assess the simplicity and suitability of our architecture
for lightly-managed databases. We reiterate the lessons we have learned along the

way and discuss some directions for future research.



Chapter 2

Related Research

Our discussion of related research examines work by others building HDBs as well as non-
HDB approaches to accessing lightly-managed data. While HDB approaches do a poor
job of integrating lightly-managed databases, non-HDB approaches make no attempt to

provide the transparent integration of an HDB.

2.1 Querying and Accessing Lightly-Managed Data

Most approaches to querying and accessing lightly-managed databases make no attempt

to provide the transparent integrated interface of an HDB.

2.1.1 Querying Files

Front-ends ot querying data stored in operating system files have been around for quite
some time. The commercial product Daiatrieve! is typical of this genre of software solu-
tions.

Datatrieve adds high-level query capabilities to operating system files. Highly-struc-
tured record-oriented files are described using a Cobol-like schema syntax. Datatrieve
provides users and application programs with an SQL-like high-level query language for
expressing queries ovet data stored in operating system files. Access can be optimized by
constructing indexes. Two limitations to Datatrieve are that the data files need to follow
a very rigid record-oriented structure and second, although multiple files can be accessed

simultaneously, there is no capability for homogenizing heterogeneous data sources.

' Datatrieve is a registered trademark of Digital Equipment Corporation

12
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2.1.2 VISTA-—A Metadata Approach

Another common approach to providing access to lightly-managed data is the “metadata”
approach typified by the VISTA System [DSH94]. The VISTA (Visual Interface for Space
and Terrestrial Analysis) System provides a visual query interface to large geophysical data,
sets. VISTA provides the user with a database of metadata—data about the underlying
data sets, such as date and time of collection, location, and general features. Users of
VISTA query the metadata to locate data sets of interest. The data sets themselves are
stored using any number of non-DBMS data-interchange formats such as the Hierarchical
Data Format (HDF), Flexible Image Transport System (FITS), Network Common Data.
Tormat (netCDF), etc. Once selected, a data set may be displayed and manipulated using
the VISTA System,

The approach taken by VISTA differs from our approach in a number of ways. First,
VISTA is clearly a domain-specific system. VISTA understands data-jinterchange formats
that are commaonly used by scientists and is designed to display and manipulate geophysical
data sets. Second, VISTA uses a limited schema of metadata that does not allow a user
to query over all the attributes of the data. This approach is similar to other “directory”
approaches where the database is primarily vsed as a directory manager for locating the
real data. Third, VISTA is useful for locating data sets, but does not attempt to provide
users with a homogeneous view of the data. Finally, VISTA is an end-user system and
provides no genecal-purpose application programmer interface (API) for user applications.

VISTA can only pass selected data sets along to other data analysis software packages.

2.1.3 The Aurora Dataserver—An Extended Relational Approach

The Aurora Dataserver? for visualization applications [XID94, Jir93] also provides a meta-
data approach, but takes the approach a step farther by integrating lightly-managed data-
bases as “dataset” values in an extended relational data model. The Aurora Dalaserver is

built atop the Orion® extended-relational database management system. The dataserver

2 Aurora Dataserver is a trademark of XIDAXK Inc., Palo Alto, CA
®Orion is a trademark of XIDAX [nc., Palo Alto, CA
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is targeted at providing relational data management for scientific domains with large “n-
dimensional coordinate data”. The dataserver extends the relational model by defining
a new datasetl type that provides bulk storage of data sets. The dataserver also defines
a set of operations for manipulating dataset values. Thus, while a query in VISTA re-
turns pointers to help the user locate the real data sets, an Aurora Dataserver query is
capable of returning the data sets themselves. Figure 2.1 depicts the Aurora Dataserver
architecture. The dataserver provides users and their applications with interfaces to the

database typical of a relational database management system. User-developed importer
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Figure 2.1: The Auarora Dataserver Architecture [Jir93, p.6)

and exporter functions are used by the dataserver to access external data. External data
sets are homogenized by convertling them into instances of the Aurora Dataserver datase!
type. Files of external data can either be imported or “registered” with the dataserver.
Files that are imported are copied into Aurora's database and converted into datasets,
allowing the dataserver to optimize future data access. Registered files appear as dataset

values stored by the dataserver, but actually remain in their original location to minimize

data storage requirements.
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Although the Aurora Dataserver is a powertul tool for manipulating scientific data sets,
it is not versatile enough to be a irue HDB. The narrowly defined dataset type used by
the Aurora Dataserver is only suitable for domains with data sets that are n-dimensional

coordinate data (e.g., matrices).

2.2 HDB Research

Heterogeneous database systems have been an on-going topic of research for many years.
HDB research is often divided into those systems that provide “interoperability” among
external databases (no global schema), and those that provide “integrated” access to exter-
nal databases through a global schema. Our research is interested \n the more transparent
integrated solutions, so our discussion here is confined to integrated HDB approaches.
One of the earliest integrated HDB prototypes was the Multibase system [SBD*81].
The simple diagram of Multibase shown in Figure 2.2 has influenced the direction of most
subsequent HDB research. The basic function of Multibase is to maintain a global schema

Global Query

Multibase

Software

Local Queries

Local
DBMS

Figure 2.2: The Multibase Architecture [SBD181, p.336]

and translate queries against that schema into queries over external databases (called “lo-
cal DBMS” by Multibase). An interesting consequence of this simple architecture is that
most HDB research presumes that external databases are managed by powerful DBMSs.
This assumption has resulted in HDB architectures that integrate lightly-managed data-
bases only as an after-thought if at all, and then not very well. Furthermore, the reliance

on a relational model for external DBMSs has become so ingrained in the research that
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one researcher has suggested that the relational data model should simply be adopted as

a standard, canonical model for building HDB systems [LAB6).

2.3 Object-Oriented HDB Research

The notion of building an HDB presenting an object-oriented data model is relatively new
[Mang9, SCGS91, CT91, LMI1, Ber91, TSBY2]. In some cases, the use of object-oriented
technology is for infrastructure only—the HDB appears relational to its users [LM91]. In
other cases, the HDB presents its users with an object-oriented data model yielding a
true OOHDB [CT91, Ber91, KDN90]. These OOHDB efforts are intended to exploit the
expressivity of the object-oriented data model to model complex objects.

One common strategy for homogenizing heterogeneous data using an OOHDB is the
view mechanism proposed by Bertino [Ber91]. The notion is that abstract classes, or views,
can be used to provide a homogenizing layer atop heterogeneous classes and objects.

Kaul et al. [KDN90] also propose an object-oriented view mechanism for integrating
data. Furthermore, they describe a prototype implementation using Smalltalk called the
ViewSystem. “External” classes of objects can be defined in the ViewSystem that are
“non-materialized”. Queries over external classes result in a materialized collection of
objects that satisfy the query. The class hierarchy is used to group similar external and
internal class definitions together using a common superclass to provide a homogeneous
view of data.

The ViewSystem makes an attempt to integrate lightly-managed databases, however,
the mechanism used is primitive—importing files in their entirety on demand. Nonetheless,
this is one of the few attempts to address lightly-managed data in HDB research.

Both IXaul et al. and Bertino use a hierarchy of class definitions to homogenize hetero-
geneous data. However, we believe that the use of the class hierarchy as a mechanism for
homogenization has serious drawbacks and in Chapter 3 we will contrast this approach to
homogenization with our own.

Even more germane to our research, a few researchers are exploring the use of an

OODBMS as a tool for constructing an OOHDB [SAD*95, CL88, RD94, HMZ90].



2.3.1 Building an OOHDB Using an OODBMS

Connors and Lyngbaek [CL88) appear to be the first to propose the use of an OODBMS
as a tool for constructing an HDB. They propose the use of the Iris* QODBMS from
Hewlett-Packard Laboratories to construct a global dala manager providing uniform access
to heterogeneous data. In choosing to use OODBMS technology as an implementation

tool, they note:

The extensible nature of an OODBMS, i.e., the provision for abstract data
types and operations, makes it feasible to write interfaces to a wide varety
of existing information sources and that way create the illusion of a single

integrated database which can be queried in a uniform manner [CL88, p.162].

In other words, by leveraging the behavioral component of an OODBMS, the OODBMS
can be used as a tool for constructing an OOHDB.

They propose to access external data via “foreign funclions” that retrieve data on de-
mand. For example, using a stock market database they suggest that the foreign function
Market Price, taking a stock symbol as input, could return the current market value of
a stock by interacting with an on-line quote service. Connors and Lyngbaek make an

important observation regarding this functional approach to integration:

The approach described in this paper has a procedoral flavor. By using
information-importing functions, it is not necessary to globally conform the
local schemas. Rather, the programmer defining an information-importing
function explicitly specifies a procedure that immplements a. mapping from the

external information of interest to the importing database (CL8S, p.164].

[n essence, their approach achieves homogeneity by explicitly mapping heterogeneous data
to a homogeneous form during importation. This contrasts with the class-hierarchy ap-
proach to homogenization proposed separately by Kaul et al. and Bertino.

However, the {oreign function approach to importing data does not appear to be partic-

ularly OODBMS-independent. While they suggest that their approach could be supported

*Iris is now available coxmercially as OpenODB from Hewlett-Packard
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by other OODBMS with general-purpose programming languages, they conclude that:

[ris’ support for generalized query processing capabilities and operations writ-
ten in arbitrary programming languages make it a better candidate for a global

data manager than many other OODBMSs [CL88, p.172].

However, we do not believe that “operations™ in the form of the foreign functions used
by Iris are 2ll that convenient or user-friendly. Foreign functions must be compiled and
carefully linked into the Iris query processing engine in order to be accessible. The process
as outlined here is clearly not for the casval Iris user. Furthermore, Iris is a functional
OODBMS that is object-oriented mostly in the sense that it allows for user-defined data
types. Generalized computational behavior i the form of methods is absent from the
Iris data model and must be added through the use of linked-in {unctions written in
“arbitrary” programming languages.

The work of Connots and Lyngback has a number of similarities to our own. Specifi-
cally, both use the power of the underlying OODBMS to provide the basic features of an
OOHDB. Both use a “procedural approach” to schema integration. However, where they
use foreign functions linked into the Iris query processing engine to access external data,
we use nothing more difficult to master than the data manipulation and method defini-
tion language of the underlying OODBMS. We believe that this makes our approach both
simpler and more general. Furthermore, our work presents an approach for integrating
and optimizing data stored in lightly-managed databases, a capability that the global data

manager may possess, but that remains unexplored.

2.3.2 The Pegasus OOHDB

Another OOHDB project developed using Hewlett-Packard’s OpenODB product is the
Pegasus system [Sha93, SAD*95]. However, in contrast to the global data manager of
Connors and Lyngbaek, Pegasus represents a much more traditional HDB approach that
relies less on the native power of the underlying OODBMS than on a complex software

architecture (see IFigure 1.1). With its reliance on powerful external DBMSs, the Pegasus
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system 1s typical of most HDB systems that are not well-suited to integrating lightly-

managed databases.

2.3.3 An OOHDB for Molecular Biology

Using the commercial OODBMS ObjectStore®, Rieche and Dittrich have implemented an
OOHDB for molecular biology that provides access to lightly-managed molecular biology
data [RD94]. Rieche and Dittrich describe a very pragmatic and domain-dependent ap-
proach to data integration that makes no pretense about trying to “invent new concepts
for federated database systems.” The mechanism for querying lightly-managed data is
quite unique—global queries are transformed into programs that scan files [or relevant
data. Files containing any relevant data are loaded in their entirety into the OOHDB.
This sort of brute-force file query mechanism demonstrates a common problem when
integrating lightly-managed databases into an HDB. Since lightly-managed databases
typically lack a query facility, either a query facility must be developed for files (as Rieche
and Dittrich have done}, or the files must be brought into the HDB where a query facility
can be applied. Our architecture presents a simple and novel solution to this problem.
Our solution uses the query processing engine of the underlying OODBMS without Joading

lightly managed databases entirely into the OOHDB.

2.4 Summary

Clearly, there are workable non-DBMS approaches 