
A Reflective Framework for

Implementing Extended Transactions

Roger S. Barga

B.S. Mathematics, Boise State University, 1985

M.S. Computer Science, University of Idaho, 1987

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

April 1999

The dissertation "A Reflective Framework for Implementing Extended Transactionsn

by Roger S. Barga has been examined and approved by the following Examination Com-

mittee:

Calton Pu
Professor
Thesis Research Adviser

Jonathan Walp
Professor

Andrew Black
Professor

Phi l Hernstein
Microsoft Corporation

Acknowledgements

First I would like t o thank Calton. I could not have asked for a better advisor or mentor.

He always made time t o meet with me, despite his increasingly busy schedule, and he never

failed t o provide insightful feedback on my work. He was patient and encouraging when I

struggled, and demanding when I needed t o be challenged. He taught me tha t research is

about asking the right questions and searching for answers that embody general principles

or abstractions, and instilled in me the value of clearly expressing these questions and

answers. Calton, working with you has been a privilege.

I would like to thank the members of my thesis committee, Phil Bernstein, Andrew

Black, and Jon Walpole for their contributions t o the ideas described here, and t o the form

of their presentation. Phil deserves especial mention for painstakingly reviewing various

drafts of this document and providing detailed suggestions t o improve the presentation.

Various students and faculty a t OGI were an invaluable source of friendship, criticism,

and advice t o me over the years. In particular, I wish t o acknowledge Crispin Cowan,

Ashvin Goel, Jon Inouye, Buck Krasic, David Novick, Walid Taha, Jenny Orr, Ben-

net Vance, and Tong Zhou. They all deserve better recompense than a few words here.

I'll get around t o you all in time.

Finally, I wish t o thank my parents, Jim and Cathy, whose unfaltering love and encour-

agement were an essential ingredient in the development of this thesis. Their continual

queries as t o whether or not "my paper was done yet" and, in general, their never-ending

interest in my work and accomplishments, helped keep me oriented and on track.

Thank you all.

iii

Contents

... Acknowledgements 111

. List of Tables vii

... List of Figures viii

. Abstract x

. 1 Introduction 1

. 1.1 The Problem 2

. 1.2 The Approach 3
1.3 The Thesis . 4

. 1.4 Outline of the Dissertation 5

. 2 Technical Background 6
. 2.1 Extended Transaction Processing 7

. 2.1.1 Advanced Transaction Models 7
. 2.1.2 Semantics-Based Concurrency Control Protocols 10

. 2.1.3 Common Extended Transaction Functionality 12

2.1.4 Related Extended Transaction Implementation Efforts 14
2.1.5 Reflective Transaction Framework Implementation Strategy 21

. 2.2 Conventional TP Monitor Architecture 22
. 2.2.1 Transaction Manager 23

. 2.2.2 Lock Manager 25
. 2.2.3 Building on Existing T P Monitor Functionality 28

. 2.3 Reflection and Open Implementation 29
. 2.3.1 The Myth of "Abstraction" 29

. 2.3.2 Mapping Dilemmas 31
. 2.3.3 Gaining Control over Abstractions 32

. 2.3.4 Open Implementation 32
. 2.3.5 Designing an Open Implementation for an TP Monitor 33

2.4 Summary . 37

3 Reflective Transaction Framework . 38

3.1 Framework Design . 38

3.1.1 Objectives . 38

3.1.2 Focus on Specific Extensions . 40

3.1.3 Design Summary . 40

3.2 Architecture . 41

3.2.1 System Components . 41

3.2.2 A Separation of Programming Interfaces 43

3.2.3 Open Implementation of an TP Monitor 45

3.2.4 Binding Extensions t o Transaction Significant Events 52

3.3 Extended Transaction Services . 58

3.3.1 Dynamic Transaction Restructuring 58

3.3.2 Semantic Transaction Synchronization 67

3.3.3 Transaction Execution Control . 77
3.4 Closing Remarks . 85

4 Demonstration . 87

4.1 Application Structure . 87

4.1.1 Configuring or Extending the Base Level 89

4.1.2 Metalevel Interface Commands . 90

. 4.2 Implementing Extended Transactions 93

. 4.2.1 The Split/Join Advanced Transaction Model 94

. 4.2.2 The Chain Transaction Model 97

4.2.3 The Reporting Transaction Model 98

. 4.2.4 The Cooperative Transaction Group Model 99

4.2.5 Operation Commutativity . 105

4.2.6 Operation Recoverability . 106

4.2.7 Epsilon Serializability . 106

4.2.8 Altruistic Locking . 113

. 4.3 Application Development Using Extended Transactions 119

4.3.1 Programming Using an Advanced Transaction Model 119

4.3.2 Programming Using SBCC Protocols 121
4.4 Summary . 125

. 5 Implementation and Evaluation .12 6.

. 5.1 Implementation Chapter Overview 126

5.1.1 Design of the Encina TP Monitor . 126
5.1.2 Design of ENCINA/ET . 128

5.1.3 Design of the Metalevel Interface . 129
. 5.2 Implementation of ENCINA/ET 130

. 5.2.1 Extended Transaction Data Structures 130

5.2.2 Implementing Transaction Restructuring 133

5.2.3 Implementing Semantic Transaction Synchronization 137
. 5.2.4 Implementing Transaction Execution Control 142

. 5.3 ENCINA/ET Evaluation Overview 144
. 5.3.1 System Size and Functionality 145

. 5.3.2 Performance Overhead for Library Operations 147
. 5.4 Reflective Transaction Framework Evaluation 157

. 5.4.1 Comparing the Extended Transaction Implementations 158
. 5.4.2 Comparing the Reflective Transaction Framework 159

. 5.4.3 0 1 and Reflection in the Reflective Transaction Framework 161
. 5.5 Discussion - 162

. 6 Summary and Conclusion 165
. 6.1 Recapitulation 165

. 6.2 Contributions 168
. 6.3 Future Work and Opportunities 170

. 6.4 Parting Shot 174

. Bibliography 176

. Biographical Note 186

List of Tables

2.1 Functional characteristics of extended transactions 13

. 3.1 Mapping extended transaction services to transaction adapters 43

3.2 Attributes present in the descriptor for an extended transaction 46

3.3 Commands to inspect and modify an extended transaction descriptor 48
3.4 Summary of the commands in the metalevel interface 56

Summary of Transaction Adapter Command Set (TRACS) 90
Operation commutativity for the ACCOUNT data type 105

Operation recoverability for the ACCOUNT data type 106
Compatibility relation based on epsilon-serializability (ESR) 108
Altruistic locking requirements . 113
Compatibility relation based on altruistic locking 116
Operation commutativity for the COMPONENT-LOG data type 122

. Operation recoverability for the COMPONENT-LOG data type 122

5.1 Breakdown of lines of code (loc) in ENCINA/ET software modules 146

5.2 Execution times for managing an extended transaction descriptor 150

5.3 Execution times for performing transaction restructuring 152

5.4 Execution times for performing semantic transaction synchronization 154

5.5 Execution times for performing transaction execution control 156

vii

List of Figures

2.1 Sample Asset workflow program . 16

. 2.2 Modular Functional Components of an T P Monitor 23

. 2.3 Conventional Lock Manager implementation structures 26

2.4 A traditional black box abstraction locks implementation details away behind an

abstraction barrier . 30

. 2.5 Black box abstraction contrasted with open implementation 33

3.1 Major components and interfaces of Reflective Transaction Framework 42
. 3.2 Separation of interfaces to Reflective Transaction Framework 44

3.3 Basic structure for representing a transaction event 51

4.1 Schematic structure of developing transactional applications using the RTF 88

4.2 Definition of the s p l i t transaction control operation 95
4.3 Definition of the j o i n transaction control operation 96

4.4 Definition of j o i n for the Chain Transaction Model 97

4.5 Definition of j o i n for the Reporting Transaction Model 99
4.6 Implementation of the creategroup operation 100
4.7 Implementation of the g e t g r o u p i d function . 101

4.8 Implementation of the getmembers function . 101
4.9 Implementation of the groupaddmember function 102
4.10 Implementation of the groupdropmember function 103

4.11 Implementation of the member transaction j o i n function 104

4.12 Implementation of the member transaction commit function 104

4.13 Implementation of the predicate ESR . 110

4.14 Implementation of val id-tolerance function . 111

4.15 Implementation of incrementaccum function . 112

4.16 Implementation of the altruistic locking donate function 114
4.17 Implementation of the begin-al-tran function 114

4.18 Implementation of the complete-tran function 115

4.19 Implementation of the l o c k a f t e r function . 115

4.20 Implementation of the after-unlock function . 116

viii

4.21 Implementation of the predicate A L ~ . 117
4.22 Implementation of the predicate A L ~ . 117
4.23 Implementation of the update-inset operation 118

4.24 Implementation of the predicate WAKETEST . 118

4.25 Implementation of the i sdonated operation . 118

Software modules in the Encina Toolkit . 127

. Relationship between applications. ENCINA/ET and Encina TP monitor 128
Main data structures in the internal extended transaction representation . Each

rectangular box corresponds to a major data item arid the shaded areas represent

. data structures that are further explained in subsequent discussions 130

Basic data structure for a delegate set . 135
. Basic data structures for semantic compatibility table 139

. . . Data Structure for an ignore-conflict record in the cooperative transaction set 140
. Data structure for an extended transaction dependency graph 143

. Data structure for recording individual dependencies 143

Abstract

A Reflective Framework for Implementing Extended Transactions

Roger S. Barga

Supervising Professor: Calton Pu

Databases are being deployed in more and more complex application domains t o store and

manipulate information tha t stresses the limits of the performance as well as functionality

of traditional transaction processing techniques. In the past decade the topic of extended

transaction processing has emerged and enormous strides have been made in improving

the performance of traditional ACID transactions; a t the same time, advances have been

made in addressing their inherent limitations. Suggested extensions of ACID transactions

abound in the literature. However, few of these extensions have ever been implemented,

not even as research prototypes, and today most remain mere theoretical constructs.

In this dissertation we present the Reflective Transaction Framework t o support the

implementation of extended transactions on conventional TP monitor software. There are

two key insights behind our work. The first is our observation that in most cases, the

base functionality provided by TP monitor software is "almost right" for implementing

extended transactions. While certain functions and structures are missing, the existing

services of TP monitor software provide a useful substrate for implementing extended

transactions. The second insight is that the services we have identified as essential for

extended transactions can be implemented as extensions t o base functionality of a TP

monitor. To validate this thesis, we present the design of the Reflective Transaction

Framework, provide examples that illustrate how it can be used t o implement extended

transactions, describe its implementation on a commercial TP monitor, and present an

evaluation of both framework design and resulting implementation.

This research is the first t o demonstrate convincingly a method of extending con-

ventional TP monitor software t o support extended transactions, one that can readily

implement a wide range of extended transactions. This research addresses three main

issues in the implementation of extended transactions on a conventional transaction sys-

tem. First, it identifies key extended services required t o implement extended transactions.

Second, i t defines an effective interface t o these extended transaction services and t o the

existing functionality provided by the underlying TP monitor. And third, it shows how

t o integrate these extended services with an existing transaction system in an extensible

and incremental way.

Chapter 1

Introduction

Transactions have been used effectively in database systems t o synchronize concurrent

accesses to a shared database and t o provide reliable access in the face of failures. A
transaction is an atomic unit of work against the database. The ACID properties of

transactions (atomicity, consistency, isolation, and durability) guarantee correct concur-

rent execution as well as reliability [HR83, BHG87, GR931.

In recent years, databases have been deployed in increasingly complex applications t o

store and manipulate information that stresses the limits of the functionality as well as the

performavzce of traditional transaction processing techniques. The list of such applications

includes computer-aided design and manufacturing (CAD/CAM) environments, multime-

dia, mobile computing, cooperative group software, and workflow management systems.

This list is growing. Further, the ability of transactions to hide the effects of concurrency

and failure makes them appropriate building blocks for structuring advanced distributed

systems. Industry is embracing transactions, with a near explosion occurring in usage,

requirements and sophistication of transaction processing [Moh94, SSU961. Enormous

strides have been made in improving the performance of traditional ACID transactions; a t

the same time, advances have been made in addressing their inherent limitations.

In the past decade the topic of extended transaction processing, also known as ad-

vanced or relaxed transaction processing, has emerged in the database community, t o

extend the transaction concept beyond conventional da ta processing and online trans-

action processing (OLTP) applications. Broadly speaking, recent accomplishments in

extended transaction processing can be classified into two areas: advanced transaction

models and semantics-based concurrency control methods. Advanced transaction models,

such as the Split/Join model [PKH88] and Cooperative Transaction Groups [MP92], asso-

ciate "broader" interpretations with the ACID properties t o provide enhanced transaction

processing functionality. Semantics-based concurrency control (SBCC) methods, such as

commutativity [Wei88], recoverability [BR91] and cooperative serializability [RC92], ex-

ploit available semantic information to synchronize transactions in an attempt to obtain

additional concurrency and hence improve transaction processing performance. Suggested

extensions of traditional ACID transactions abound in the literature. However, few of these

extensions have ever been implemented, not even as research prototypes, and today most

remain mere theoretical constructs.

This thesis rectifies this deficiency. Building on the functionality present in conven-

tional transaction processing systems we focus on understanding the functionality required

t o implement extended transactions and define extended transaction services as modular

extensions to conventional transaction processing structures and services. The software

framework we present addresses three main issues in the implementation of extended trans-

actions on a conventional transaction system. First, it identifies key extended transaction

services required to implement a wide range of extended transactions in the literature.

Second, it defines an effective interface to these new extended services and t o the existing

functionality provided by conventional transaction processing system software. And third,

it shows how to integrate these extended services with an existing transaction system in

an extensible and incremental way.

1.1 The Problem

Because of the practical import of advanced transaction models and semantics-based con-

currency control protocols, one would expect their implementation t o proceed apace. How-

ever, this has not happened. To date, the vast majority of the proposals for advanced

transaction models and semantics-based concurrency control have remained just that -

proposals. As a result, there is no way t o readily apply these ideas t o emerging database

applications. Given that for many advanced applications extended transactions have been

shown, on paper, t o have the potential t o improve transaction processing performance and

functionality, we feel that the time has come t o migrate these ideas into practice. Indeed,

providing effective support for extended transactions has been identified as one of the key

database research areas for the next century [SSU96].

Despite advances in advanced transaction models and semantics-based concurrency

control over the past decade, the implementation of extended transactions remains difficult

and expensive. Much of the effort and cost arises because researchers and application

developers attempt to construct the extended transaction implementation from scratch

rather than reusing conventional transaction processing software. This forces them to

rediscover and reimplement core functions and components, which is time-consuming,

error-prone, and expensive. However, to date this has been considered the only reasonable

approach, as extended transactions would seem t o require the replacement of conventional

transaction services with new techniques and mechanisms for transaction processing.

Conventional transaction processing systems, in particular 'I'E' monitors, have accu-

mulated large amounts of transaction implementation technology. We do not think it is

particularly clever simply to throw this technology away and build an extended transac-

tion facility from scratch. Indeed, TP monitors are mission critical - that is, they are

essential t o day-to-day business operations and must remain in use. Replacement of ex-

isting TP monitors is not an option for companies that rely on ACID transactions t o run

mission-critical applications. Moreover, advanced transaction models and semantics-based

concurrency control protocols have largely been designed to complement conventional

transaction processing and address an entirely new range of transaction requirements that

would make their combination suitable for building advanced database applications. Con-

sequently, we view conventional TP monitor software as a natural basis on which t o build

implementation support for extended transactions.

1.2 The Approach

In this dissertation we present the Reflective Transaction Framework t o support the im-

plementation of advanced transaction models and semantics-based concurrency control

protocols on conventional T P monitor software. There are two key insights behind our

work. The first is our observation that in most cases, the base functionality provided by

a conventional TP monitor is "almost right" for implementing both advanced transaction

models and semantics-based concurrency control protocols. While certain functions and

da ta structures are missing, the existing services and da ta structures of the TP monitor

software provide a useful substrate for implementing extended transactions. The second

insight is tha t each of the extended services that we have identified as essential for im-

plementing extended transactions can be implemented as an incremental extension to the

base services of a T P monitor. This approach ensures that transactional applications using

ACID transactions keep running, and facilitates the development of a software framework

for implementing extended transactions in a systematic rather than an ad hoc manner.

We do not advocate that T P rnonitors should simply include more features to im-

plement selected extended transactions. There is no consensus as t o which extended

transactions should be included for advanced application development: most likely, there

never will be since each advanced transaction model and semantics-based concurrency

control protocol has been optimized for a particular application. Furthermore, as appli-

cation requirements continue to evolve, transaction processing requirements will change

and new transaction models and semantics-based concurrency protocols will be proposed.

Instead, the Reflective Transaction Framework is designed to expose selected aspects of

the underlying transaction processing system and to enable a programmer t o reach in and

adjust system functionality and tailor new extended transaction services to the needs of

their particular application. This approach is called open implementation [Kic92].

The Reflective Transaction Framework draws from a variety of techniques t o achieve

the open implementation of a TP monitor. The framework uses computational reflec-

tion [Mae871 t o offer principled, effective access t o T P monitor system internals. A met-

alevel interface [KdRBSl] is introduced in the framework t o provide explicit descriptions

of extended transaction behaviors. Good software engineering practices are followed for

abstraction and modularity of the software modules that implement the framework.

The implementation of the Reflective Transaction Framework introduces transaction

adapters, which are reflective software modules built on top of the TP monitor software. A

transaction adapter leverages existing transaction services of the underlying TP monitor

as building blocks for constructing extended transaction functionality. Each transaction

adapter contains a representation, or metalevel description, of selected TP monitor func-

tions, and maintains a cause2 connection (Mae871 between this representation and the

actual behavior of the system. The causal connection is two-way; not only are changes in

the TP monitor reflected in equivalent changes in the representation, but changes in the

representation will also cause changes in the behavior of the TP monitor. Each extended

transaction has a representation that is causiilly connected with a transaction running on

the T P monitor. This representation holds information about the extended transaction

and how it is used; in essence, this representation defines control and policy. The causal

connection between the Reflective Transaction Framework and the underlying TP monitor

is built on the ability t o intercept transaction events, together with the means t o access

T P monitor functions through an available application programming interface (API).

1.3 The Thesis

The thesis is that conventional TP monitor software can be used t o support the implemen-

tation of advanced transaction models and semantics based concurrency control protocols,

through the provision of new extended services specifically designed for implementing ex-

tended transactions. These extended transaction services can be implemented efficiently

as extensions of the functionality of the underlying TP monitor, and used t o implement

a wide range of advanced transaction models and semantics-based concurrency control

protocols. The thesis claims that the ability t o leverage, or reuse, the functionality of

conventional TP monitor software more than makes up for the additional effort required

in system design. To validate this thesis, we present the detailed design of the Reflective

Transaction Framework, provide examples that illustrate how it can be used t o implement

a number of extended transactions from the literature, describe its concrete implementa.

tion on a commercial T P monitor, and present an evaluation of both framework design

and the resulting implementation.

1.4 Outline of the Dissertation

This dissertation is organized into five chapters. Chapter 2 provides the technical back-

ground for our work on the Reflective Transaction Framework. The chapter first sketches

an overview of extended transaction processing and identifies functional extensions re-

quired to support the implementation of advanced transaction models and semantics-

based concurrency control protocols. Following this, the chapter presents a review of

related efforts t o implement extended transactions, with particular emphasis on the range

of extended transactions that they support. Then, an overview of the conventional T P

monitor architecture is presented, along with a brief discussion on extending it to pro-

vide implementation support for extended transactions. The chapter concludes with an

overview of the Open Implementation approach and a discussion of the development of an

open implementation of a conventional T P monitor.

Chapter 3 presents the design of the Relective Transaction Framework. The chap-

ter begins with a discussion of our main design objectives, followed by an architectural

overview of the Reflective Transaction Framework, and then presents a detailed description

of the extended transaction services provided by the framework, specifically (1) dynamic

transaction restructuring, (2) semantic transaction synchronization, and (3) transaction

execution control. Where appropriate, we describe how the extended transaction ser-

vices provided by the framework can be used t o implement extended transactions, and we

explain the relevant mechanisms from a user's perspective. Chapter 4 presents several ex-

amples of applying the Reflective Transaction Framework to advanced transaction models

and semantics-based concurrency control protocols from the literature, t o give a clearer

overall picture of the framework and its uses.

Chapter 5 describes an implementation of the Reflective Transaction Framework on

ENCINA, a commercial TP monitor, along with a performance evaluation of our Encina

implementation. The evaluation measures the system resources consumed in supporting

the extended transaction services and presents an evaluation of the framework design t o

augment the quantitative data. Chapter 6 concludes the dissertation with a summary of

the main contributions of this research, and identifies opportunities for future work.

Chapter 2

Technical Background

In this chapter, we provide the technical background for our work on the Reflective Trans-

action Framework. We divide this chapter into three sections: extended transaction pro-

cessing, conventional TP monitors, and Open Implementation.

In designing the Reflective Transaction Framework it was necessary t o identify common

services for advanced transaction models and semantics-based concurrency control that

should be included in the framework. However, the lack of a general model of extended

transactions hinders any meaningful discussion of the issues and approaches. Section 2.1

provides a basis by examining extended transactions from the literature. In doing so,

key extended services required t o implement extended transactions are identified in a

naturai way. We then present a brief review of related efforts t o implement extended

transactions and identify their main features, with particular emphasis on the range of

extended services that they support. Finally, having identified key extended transaction

services and reviewed related implementation efforts, we close the section by presenting

our strategy for developing the Reflective Transaction Framework.

Following this, in Section. 2.2, we present an overview of the conventional TP monitor

architecture. Conventional transaction processing systems, such as T P monitors, have

accumulated large amounts of transaction implementation technology that we would like

t o leverage in our implementation of the Reflective Transaction Framework. Thus, we

examine the TP monitor architecture with an eye towards how we can leverage existing

functions and incrementally extend available services to implement extended transactions.

Finally, in Section 2.3, we draw on work in computational reflection and Open Imple-

mentation t o confront challenges that arise in designing a framework that builds on legacy

TP monitor software and incrementally extend the existing functionality t o implement

extended transactions.

2.1 Extended Transaction Processing

In response t o functionality and performance deficiencies of the traditional ACID trans-

action model, several new extended transaction proposals have emerged. Such proposals

often s tar t from a specific application, analyze its dynamic behavior, specify a fault model,

and then add as many features to the classic ACID transaction model as necessary t o sup-

port that application. Suggested extended transactions abound in the literature. In an

informal literature survey, we identified over fifty distinct extended transaction types, with

new proposals appearing in the database literature at an average rate of six per year.

Because this is an area of active research, this section can do little more than give an

overview of the current state of discussion. As pointed' out in Gray and Reuter [GR93j,
no Grand Unified Theory of Extended Transactions has yet been developed. To give a

better impression of the differences between various advanced transaction models and

semantics-based concurrency control protocols - beyond the fact that they are meant t o

support different types of applications - we present selected examples. These examples not

only shaped our understanding of the functional requirements for implementing extended

transactions, but are commonly identified in the literature as providing features useful for

implementing advanced database applications.

For our background discussion on extended transaction processing, we present selected

advanced transaction models in Section 2.1.1 and selected semantics-based concurrency

control protocols in Section 2.1.2. We have attempted t o provide a bird's-eye view of the

functionality required for the different proposals. To this end, in Section 2.1.3 we identify

key extended transaction services and relate advanced transaction models and semantics-

based concurrency control protocols t o them. Following this, in Section 2.1.4, we present

an overview of related efforts to implement extended transactions. Finally, we put forth

our strategy for developing the Reflective Transaction Framework in Section 2.1.5.

2.1.1 Advanced Transaction Models

Research on extended transactions was first motivated and necessitated by the function-

ality and performance deficiencies of traditional ACID transactions. Today, the area has

attained some maturity, and a large number of advanced transaction models have been

formulated. Before looking a t specific examples, let us consider an informal definition. An

extended transaction consists of either a set of operations on da ta objects that execute

atomically in a predefined order, or a set of extended transactions with an explicitly given

control related to the notions of atomicity, consistency, isolation, and durability [RC97].

This recursive formulation implies that an extended transaction may exhibit a rich and

complex internal structure; in contrast, traditional ACID transactions have a flat single-

level structure.

The manner in which component extended transactions are combined t o form an ad-

vanced transaction model typically reflects the semantics of the application for which it

was originally designed. The application may allow the introduction of new, weaker no-

tions of conflict among operations not possible with information available only on data

objects and their types. For instance, operations invoked by two transactions can be in-

terleaved as if they commuted, if the semantics of the application allow the dependencies

between the transactions t o be ignored. Such application-specific transaction synchro-

nization might not achieve serializability, but still preserves consistency. Similarly, based

on application semantics, in the event that an extended transaction fails, changes made

by completed components of the transaction may be committed. The failed portions of

the transaction can be retried, compensated, replaced by another (contingent) alternative

transaction, or even ignored. These relaxed but controlled transaction guarantees pro-

vided by advanced transaction models potentially promise t o cater t o the functionality

and performance needs of a wide range of emerging database applications.

The Nested Transaction model [Mos85], for example, has been proposed in the context

of distributed languages t o handle partial failures. However, Nested Transactions support

only hierarchical computations, similar t o the ones that result from procedure call invoca-

tions. The Recoverable Communicating Actions model [VRS86] supports arbitrary compu-

tation topologies, and proposed in the context of distributed operating systems, where in-

teractions are more complex. In addition, Split and Join Transactions [PKH88], Compen-

sating Transactions [KLSSO], Cooperative Transactions [MP92, NZ901, and Sagas [GMS87]

have been proposed for capturing the interactions found in advanced applications. In the

remainder of this section we will review some of these advanced transaction models.

Possibly the best known advanced transaction model is the Nested Transaction model

[Mos85]. In this model, extended transactions are composed of subtransactions or "child"

transactions, which are designed to localize application failures and t o exploit transaction

parallelism. Each subtransaction can be further decomposed into other subtransactions,

and thus an extended transaction may expand in a hierarchical manner. A subtransaction

executes atomically with respect t o its siblings and t o other, nonrelated transactions, and

is atomic with respect to its parent. A subtransaction can abort independently without

causing the abort of the whole transaction: but if a parent transaction fails, then it will

abort all active child subtransactions.

A subtransaction can potentially access any da ta object that is currently accessed by

one of its ancestor transactions. In addition, any da ta object in the database is potentially

accessible to the subtransaction. When a subtransaction commits, the da ta objects that

it modified are made accessible t o its parent transaction. However, the effects on the da ta

objects are made permanent in the database only when the root transaction commits.

There is an emerging trend in the use of databases in applications that involve long-

running activities that possess transaction-like properties. These activities involve a num-

ber of steps, where subsequent steps in the activity are executed depending on the dis-

position of steps that have already executed, and depending on the state of the data

and environment. A number of transaction models have been proposed t o organize and

manage such activities; one of the more popular is the Split/Join Transaction model.

In the Split/Join Transaction model [PKH88, KP921, i t is possible for a transaction

t, t o split into two transactions, t , and tb, and for two transactions, t, and tb, t o join

into one joint transaction tb. For simplicity, we will discuss Split Transactions and Joint

Transactions as two distinct advanced transaction models.

Split transactions allow a user t o split a (long) transaction dynamically into two or

more smaller transactions in such a manner that the two new transactions are serializable.

This allows an application t o release partial results to other transactions by committing

the transaction tha t has been split off, even before the transaction from which it split

is committed. Splitting also allows other short-duration transactions tha t are waiting

for data objects t o be released as a result of the partial commitment, t o proceed. This

approach has the potential for increasing concurrency, as short duration transactions would

not be made t o wait until the long transaction commits. Split transactions can further

split, creating new split transactions. This leads t o a type of hierarchically structured

computation different from that of nested transactions. Such possibilities are especially

beneficial for CAD/CAM, VLSI design, and software development applications because of

their long-running activities ERC92, CR941.

In the Joint Transaction model, it is possible for a transaction, instead of committing or

aborting, t o join another transaction. The joining transaction releases i ts da ta objects t o

the joirlt transaction. However, the effects of the joining transaction are made permanent

in the database only when the joint transaction commits. If the joint transaction aborts,

the joining transaction is aborted too.

The Cooperative Transaction Group model was introduced to support collaborative

work [MP92, RC921, primarily in design and software engineering environments. In this

model, extended transactions can create and join a cooperative transaction group. Each

cooperative group consists of a set of member transactions, whose interactions are struc-

tured t o reflect the decomposition of the task they are working on. The execution of

the member transactions in a cooperative group need not be serializable; rather, the

transaction group defines the rules that regulate the interactions among member transac-

tions. This correctness criterion is referred to as cooperative scrializability [MP92, RC921.

Because of the cooperative nature of the transaction group, it is not assumed that the

operations of a single member transaction necessarily leaves the database in a correct

state. Instead, the effects of the member transactions are only made permanent in the

database when the entire group commits. If the transaction that created the group aborts,

then all member transactions are forced t o abort, while member transactions can abort

independently without causing the abort of the cooperative group.

2.1.2 Semantics-Based Concurrency Control Protocols

Concurrency control is the activity of coordinating the actions of different transactions

when they simultaneously access a shared database. When two transactions are allowed t o

interleave their accesses to the database arbitrarily, anomalies can occur and the database

can be left in an inconsistent state. The traditional approach to preventing such incon-

sistencies has been to provide a concurrency control mechanism that guarantees serializ-

ability [BHG87]: a concurrent execution is serializable if it is equivalent t o some serial

execution of the same transactions. Traditional concurrency control schemes, such as

two-phase locking and timestamping, use a conflict-based serializability test in which the

database is viewed as a set of records, operations read and write records, and two oper-

ations conflict if one is a write. However, these conflict tests are overly conservative and

can seriously degrade performance.

Various techniques have been proposed t o increase concurrency by effectively reducing

the time a transaction must hold a lock. Examples are transaction splitting [PKH88,

KP921, discussed in the previous section, and the altruistic locking protocol [SGMS94].
The altruistic locking protocol is an extension of two-phase locking that accommodates

long-lived transactions. Under two-phase locking, short transactions can encounter serious

delays, since a long-lived transaction may tie up database resources for significant lengths

of time. In altruistic locking, a transaction t; can donate a da ta object that it wilI no

longer access, thus allowing other transactions t o access it. Donating a da ta object does

not release the lock t; holds on the da ta object, but simply allows other transactions t o

acquire a conflicting lock on the da ta object. Transaction ti must still explicitly unlock

data items that it has donated - thus, t; is free t o continue locking da ta items even

after some have been donated. The basis for altruistic locking is the recognition that a

transaction t j that obtains a lock released earlier by a transaction ti must be serialized

after t i . This is ensured by ascertaining that t j executes in the "wake" of t i ; that is, all

accesses t o da ta shared by t ; and t j occur in the order ti followed by t j .

One advantage of altruistic locking is that transactions need not advertise their access

patterns beforehand. Also, although transactions are not two-phase, it is compatibIe with

the two-phase locking approach, since a transaction is not required t o release locks early.

This protocol is especially beneficial when long-duration transactions coexist with short

transactions, since the latter do not have t o wait until the former are completed.

The search for higher concurrency has been carried further by viewing the database as

a collection of objects that are instances of abstract types manipulated through abstract

operations with known semantics. Whereas with untyped data , all operations on a par-

ticular da ta item conflict unless both are reads, the semantics of the abstract operations

can be used t o detect operations that , for example, modify the value of an object and

yet do not conflict. Serializability is still the goal of this approach, but the use of opera-

tion semantics allows the notion of conflict t o be narrowed and hence permits increased

concurrency. One example of this approach is operation commutativity [Wei88].

Operation commutativity is the traditional semantic notion used t o determine if two

operations can be allowed to execute concurrently (for example, two reads commute). If

two operations commute, then their effects on the state of a d a t a object and their return

values are the same irrespective of their execution order. For example, consider the incre-

ment and decrement operations defined on a da ta object, which do not return any value of

the data object. Both increment and decrement operations update the value of the data

object, but the conflict between them can be ignored because these are commuting opera-

tions. Moreover, if the concurrency control m-echanism allows only commuting operations

t o execute concurrently, then it prevents cascading aborts.

Operation recoverability is another criterion used to define conflict among operations.

An operation q is recoverable relative to another operation p if q returns the same value

whether or not p is executed immediately before q. For example, a successful Push oper-

ation on a stack is recoverable relative t o a preceding Push operation on the same stack.

Even if the preceding Push operation is aborted and its pushed value is removed from

the stack, the pushed value and the return value of the second Push operation are not

affected. Transactions invoking operations p and q are required t o commit in the order

of the invocation of the two operations. When used with locking-based protocols, recov-

erability, like commutativity, avoids cascading aborts while also avoiding the deIay in the

processing of many noncommutative operations.

Epsilon Serializability (ESR) is a generalization of classic serializability that relaxes

operation conflicts, t o explicitly allow a bounded amount of inconsistency in transaction

processing. The amount of inconsistency is given by some measure of the database opera-

tions or distance function over the database state space [RP95]. In a commercial banking

application, for example, inconsistency would be measured in dollars. ESR enhances con-

currency by permitting query transactions t o read uncommitted da ta from a concurrent

update transactior~ and by permitting update transactions to write t o data items locked

by a concurrent query transaction. For example, an epsilon transaction that can tolerate

a bounded amount of inconsistency, measured in dollars, can query the balance of bank

accounts and execute in spite of ongoing concurrent updates t o the database.

Let us t ry t o consolidate the different concepts that we have introduced in this section.

Two operations conflict when their effect on the data objects or the values they return are

dependent on execution order. Nonconflicting operations are said t o be compatible. One

approach t o reducing conflicts is to simply reduce the amount of time a transaction holds

a lock, as illustrated by transaction splitting and the altruistic locking protocol, Another

approach is t o use operation semantics t o define semantic compatibility between operations.

The simplest compatibility relationship is the one based on operation commutativity and

is typically used t o determine whether two operations can execute concurrently while

updating the objects in place. With recovembility, the conflicting operation is allowed

t o execute concurrently, provided that the abort of the first operation does not lead t o

the abort of the second operation executed later. Recoverability demands that the two

transactions commit in the order that they executed the two operations. In addition,

it is possible to utilize transaction semantics to define compatibility, as illustrated by

epsilon-serializability and the proclamation method, both of which bound the amount

of inconsistency of the result returned by a transaction. It is important t o note that

all of these semantics-based concurrency control protocols can be seen as extensions of

conventional lock-based concurrency control, in which semantic information is used to

grant semantically compatible lock requests, even though they canflict at the level of the

implementation.

2.1.3 Common Extended Transaction Functionality

Many different extended transaction types have been proposed. In order t o characterize

the functional requirements of existing proposals, thereby shedding light on the simi-

larities among and differences between them, we present Table 2.1. This table identifies

three extended transaction services and relates specific extended transactions t o these new

services. Specifically, we identify the advanced transaction models and semantics-based

concurrency control protocols that require the extended services of transaction restruc-

turing, semantic transaction synchronization, and execution control. For concreteness, we

offer a brief description of each service and provide an example of an extended transaction

that requires this service, but defer the detailed description of these extended services

until later in the dissertation. We can see that even though these advanced transaction

models and semantics-based concurrency control proposals were motivated by different

applications, they share common extended functional requirements. And from an im-

plementation perspective, we can see that the functional requirements of a wide range of

extended transactions can largely be satisfied by these three extended transaction services.

Table 2.1: Functional characteristics of extended transactions.

I Nested Trans. [Mos85] 11 static I transaction I commit, abort I
I
I Sagas [GMS87] /I static

Extended Model

Split and Join + 1 Trans. [PKH88, KP921

Trans. Restructuring

Compensating

RCA [VRS86]

Semantic Synchronization Execution Control

dynamic - global I
dynamic - partial

dynamic - global N A

dynamic - partial NA

N A

N A I transaction

dynamic - partial NA

static

static

execution order, I
commit-on-abort

N A

execution order

NA

commit-on-abort

commit, abort

execution order

commit, abort

execution order

Coop Groups [RKT+95]

Patterns/TG [NZ90]

Polytransactions [ASK921

DSR - Significant

DOM-Transactions

[BOH+ 921

Commutativity [Wei88]

ESR [RP95]

dynamic - global -
static

dynamic - global

I SD - Serial

static

N A

transaction

operation, transaction

operation

I commit, abort

commit, abort

commit, abort

execution order

transaction

operation

operation

operation

operation, transaction I NA I

execution order,

commit, abort

NA

abort

serial order,

I
operation, transaction 1 serial order

operation, transaction serial order

Co-SR - Cooperative

Serializability [MP92]

Proclamations [JS92]

Transaction restructuring allows an advanced transaction model t o irnpose an inher-

ent s t ructure on component transactions. We classify t he restructuring required by an

Altruistic locking [SGMS94]

N A

N A

Nz4

transaction

operation, transaction

commit, abort

N A

operation, transaction serial order I

advanced transaction model as either static or dynamic, depending on whether the struc-

ture is determined in advance or whether restructuring can occur dynamically a t runtime.

The Saga model is an example of static restructuring, in which operations and resources

are specified in advance for each component transaction, as is the execution order between

these component transactions. The Split and Join transaction models are examples of dy-

namic restructuring, in which the component transactions and resources are determined

dynamically a t runtime. Dynamic transaction restructuring can be further classified as

global, in which a transaction releases all resources it holds, or partial, in which a transac-

tion selectively releases resources t o another transaction or the stable database.

Semantic transaction synchronization permits a transaction processing system t o ex-

ploit semantic information t o coordinate extended transactions. We can classify semantic

synchronization requirements depending on whether the extended transaction model ex-

ploits the semantics of the operations, the individual transactions, or the application itself

to determine semantic compatibility.

Execution control is the ability of a transaction processing system t o control the exe-

cution order of transactions in an advanced transaction model. We can classify the exe-

cution control requirements of an extended transaction by the nature of control required

over its component transactions. The Nested-Transaction model, for example, allows child

subtransactions t o abort, but they cannot commit before the parent transaction commits;

however, if the parent transaction aborts then all child subtransactions must abort as well.

Transactions following the recoverability protocol can form abort dependencies when con-

flicts are relaxed, while transactions following the altruistic locking protocol form serial

order dependencies when they share access to data objects.

It is not possible to capture in a single table all the nuances of the advanced transaction

models and semantics-based concurrency control protocols in the literature. Furthermore,

given the many papers in these areas, it is not possible t o be all-inclusive. We believe,

however, this is a good starting point for understanding the functional requirements of

extended transactions. Transaction restructuring, semantic transaction synchronization,

and execution control can be viewed as a common set of services for implementing many

advanced transaction models and semantics-based concurrency control protocols that exist

today, and if properly designed, these services can be tailored to meet the needs of a range

of advanced database applications.

2.1.4 Related Extended Transaction Implementation Efforts

This section presents four extended transaction implementations of various sorts - Asset

[BDG+94], TSME [GHKM94], Apricots [Sch93], and Pern [Hei97]. These systems were

chosen because they represent leading edge solutians t o the problem of implementing and

managing extended transactions. The implementations vary widely in both form and

focus. In our discussion we shall present aspects of the structure and design of each, and

identify what support, if any, they provide for the extended transaction services ident,ified

in the previous section.

ASSET

Using a C++ programming interface, Asset [RDG+94] (A System for Supporting Extended

Transactions) allows a programmer to produce programs with extended transaction spec-

ifications compiled into application code. Asset consists of a set of transaction primitives

which are classified as basic or new primitives. The basic primitives i n i t i a t e (f , a r g s) ,

b e g i n (t) , commit (t) , wa i t (t) and a b o r t (t) , are similar t o transaction control opera-

tions found in most transaction processing systems. The new primitives, d e l e g a t e (& , t j ,
obj), permit (t i , t i) and f orm-dependency (type , t; , t j) , are included in the system

to enable the construction of advanced transaction models.

Briefly, the primitive i n i t i a t e (f , a r g s) creates a new transaction that executes the

function f with the arguments args. 'I'he primitives b e g i n (t) , commit (t) and a b o r t (t)

respectively start , commit, and abort the transaction whose transaction identifier is t.

Waiting for a transaction t t o complete is accomplished by using the primitive w a i t (t) ,

which returns the value 1 when transaction t commits and 0 when t aborts. The primitive

d e l e g a t e (& , t j , obj) transfers the responsibility of operations performed on data object

obj from transaction t; t o t j . Cooperation among transactions is achieved by using the

permit (t i , ti) primitive, which permits transaction t j t o perform conflicting operations

on da ta objects held by ti, without creating a conflict edge in the serialization graph from

t; t o t j . The permit operation can be used t o implement semantic synchronization using

transaction semantics. The last primitive f orm-dependency(type , t; , t j) establishes

a dependency of the specified type between ti and t j , where type includes transaction

commit and abort dependencies.

To illustrate how these primitives are used, consider the sample code fragment in

Figure 2.1, taken from [BDG+94], that executes a simple reservation workflow involving

hotel, car, and flight reservations. The function t-conf e rence attempts t o complete all

the necessary reservations for a particular conference. First, a ticket is booked on the

first airline that has available seats; Delta, United, and American Airlines are tried in

order. This operation will require anywhere from one t o three transactions. Next, the

hotel reservation is attempted; on failure, the flight reservation is canceled through a

compensatory transaction, t 5 , and 0 is returned. Finally, a car reservation is attempted

for either National or Avis. If a t least one succeeds, the arrangements are complete.

// the following tuo functions make (or cancel) the appropriate reservations;
// The last tso functions in the example are compens4tions.
void flight-reservation (Airline air. Date dl. Date d2);
void hotel-reservation (Hotol h. Date dl. Date d2);
void car-reservation (Carlent c . Date dl. Date 62);
void cancel-flight-reservation (Airline air. Date dl. Date d2):
void cancel~hotel~reservation (Hotel h, Date dl. Date d2);
// Using there functions, the desired sorkflow can be defined as follosr:
void exclusiv~~car~reservation(CarRent car. Date dl, Date d2, tld t) f

car-rerorvation(car. dl. d2) ;
if (wait (self0)) abortct);

>
int t-conference(Dace dl. Date d2)(

tid t1, t2. C3, t4, t5. t6:
Airline *air;
// Rake soma airline reservation
ti - initiate(t1ighc-reservation. "Delta". dl, d2);
begin(t1):
if (!couitttl)) t

t2 - initiate(f1ight~reservatlon. "United", dl, d2):
begintC2) ;
it (!coluittt2)) i

c3 - inltiate(f1ight-reservacisn. "herican". dl. d2);
begin(t3) :
if (!couictc3)) return 0; I / Activity failed
else air = "American":

) else air - "United";
> else air = "Delta";

// Plight reservation has been made at chis polnt
t4 - iniciate(hote1-reservation. "Equator". dl. d2);
beginttt);
if (!corit(tl)) f
do < tS - i n i t i a t e (c a n c e l ~ f 1 i g h t ~ n r e r v a t i o n . air. d l , d2);

begin(t5); ?
while (!couit(tS)) ;
//wait for c o u i t m m c before proceeding
I / Compensate for the flight reservation already made
return 0;

?
/ I At chis point, hotel and flight reservations have both bnen made
t5 - iniciate(car-reservaclon. "national", dl. 42):
begin(t5);
t6 - in~tiate(exclusive~car~re8ervation. "Avir". dl, d2);
begin(t6) ;
if (wait(c5)) t //whichever completes first wins

abort(c6);
couit(t5) :

? else co.aIt(t6);
return 1; // Successful completion of all reservations

Figure 2.1: Sample Asset workflow program.

A shortcoming of the Asset approach is its low-level focus. Asset primitives allow for

programming-in-the-small, but do little to aid using an estended transaction processing

system. Indeed, while care was most likely exercised throughout in the development of

the Asset example (presented in Figure 2.1), taken from [BDG+94], to guarantee that

either all work was performed, or partial work was aborted or compensated for, this pro-

cedure still has a flaw. If both car reservation transactions fail, the procedure will return

a successful status indicator; there is no way t o recover from failure of transactions t 5 and

t6 . This gives rise to the argument that embedding extended transaction extension code

in application code is inappropriate for systems requiring complex transaction behavior,

since it is hard to prevent bugs like these from happening. Moreover, requiring applica-

tion programmers t o "step down" from application code t o specify extended transaction

functionality is unreasonable; the task of correctly coding an application is hard enough,

without also requiring the programmer to develop the necessary extended transaction sup-

port. However, the primitives do capture useful extended transaction behaviors and could

be generated from a higher-level specification, showing promise for the approach.

TSME

The Transaction Specification and Management Environment (TSME) [GHKM94] is a

transaction processing toolkit, specifically designed to be used in combination with the

DOMS architecture [MHG+92] of GTE Laboratories. The toolkit was developed for for-

mulating advanced transaction models in a workflow application domain [GHS95a]. The

three main components of TSME are a specification language, a Transaction Dependency

Specification Facility (TDSF), and a corresponding programmable Transaction Manage-

ment Mechanism (TMM) .
Advanced transaction models are specified in TSME as transaction dependencies be-

tween constituent ACID transactions. In TSME, transaction dependencies are described

using 5-tuple elements of the form (ti, T , 0, El P) where ti is the dependent transaction,

T is the set of transactions that t; depends on, 0 is the set of data objects the dependency

must consider, and E and P are logical predicates representing the enabling condition and

postcondition, respectively. E denotes when the postcondition must be evaluated, while

evaluation of the postcondition determines whether the dependency is satisfied or not.

Transaction dependencies are classified into state dependencies and correctness dependen-

cies. State dependencies express relationships between the states of transactions where a

transaction can be in either the begin, prepare, commit or abort state. Three kinds of

state dependencies are supported: backward, forward and strong.

TSME supports static structuring of transactions through the definition of complex

transactions. In TSME, a complex transaction is defined by a collection of ACID trans-

actions and a set of dependencies defined between these component transactions. TSEM

does not, however, provide implementation support for dynamic restructuring. The only

semantic synchronization supported by TSME is trunsaction level, in which the compo-

nents of a complex transaction can access a shared set of DOM objects. One of the

strengths of TSME is its support for execution control. By defining backward, forward

and strong dependencies over transaction state, it is possible to coordinate the execution

of the components in a complex transaction, imposing commit, abort and serial orderings.

Transactions dependencies are submitted to the TDSF which translates them into com-

binations of event-condition-action (ECA) rule definitions and instructions to transaction

schedulers that will serve to constrain the execution structure of the individual transac-

tions. Once processed, the extended transaction specification is stored in a repository

managed by the TDSF. The final component of the architecture, the TMM, supports t h e

implementation of the advanced transaction model by configuring a DOM-specific trans-

action runtime environment to ensure the preservation of the transaction dependencies.

The TSME provides a promising framework for constructing simple workflows, sepa-

rating workflow modelling from runtime implementation. The approach allows workflow

modelers t o reason about the correctness of a workflow based on the specified transac-

tion dependencies and provides repository facilities for maintaining developed workflows.

While a research prototype of the programmable TMM was implemented a t G T E on

DOMS, the TSME was never fully implemented and the project was eventually termi-

nated when commercial workflow products became available.

A P R I C O T S

The next system we examine is Apricots [Sch93] (A PRototypical Implementation of a

COnTract System). Apricots is not a general-purpose extended transaction implementa-

tion facility, but was developed t o implement the ConTract model [WR92]. The ConTract

model was proposed t o provide a basis for defining and controlling long-lived activities.

Specifically, it is an advanced transaction model with a mechanism for grouping traditional

ACID transactions into a multi-transaction-like activity.

A ConTract, which is the basis for the model, consists of a set of predefined ACID

transactions called steps and a separate explicitly specified execution plan called a script.

In addition t o the relaxed isolation that results from the division of a ConTract into mul-

tiple ACrD transactions, ConTracts provide relaxed atomicity, so that a ConTract may be

interrupted and reinstantiated. For a given ConTract it is guaranteed that execution will

either successfully complete within a finite amount of time, or a state logically equivalent

to the original s ta te will be reconstructed via compensating steps.

Steps are the basic atomic building blocks of ConTracts. They represent elementary

units of work and are implemented by conventional ACID transactions. There is no inter-

nal parallelism in a step (visible t o the script level) and therefore the transaction can be

coded in any arbitrary sequential programming language. Control flow between the steps

is specified by a scripting language that includes the usual control elements, such as se-

quence, branch, loop and some parallel constructors, thus providing a means for explicitly

specifying control flow for operations on shared persistent da ta objects. It is also possible

t o define dependencies between the steps (transactions implementing the steps).

Because ConTracts are built out of traditional ACID transactions, the results of which

are externalized before the entire ConTract is finished (or compensated), there is a need for

mechanisms to synchronize ConTracts that are running in parallel. In the ConTract model

this is accomplished by defining so called invariants. Through invariants it is possible t o

protect shared da ta from the concurrent access of other ConTract steps. These invariants

do not need to prevent concurrent access of shared da ta items totally, but rather ensure

that the value of the da ta items stay within the defined limits.

ConTracts define static structure between the transactions that make up the contract,

but can not support dynamic restructuring of any kind. The ConTract model and Apricots

architecture approach does not support any kind of cooperation between different users,

and can only support transaction level synchronization between the components of a con-

tract. Execution control of the transactions that make up a ConTract is defined explicitly

in the ConTract script. The ConTract manager is responsible (among other things) for

the execution of the script and the failure tolerant control flow management. The Con-

Tract manager communicates with the Apricots transaction manager t o implement the

transactional semantics of a ConTract.

The Apricots implementation, described in [Sch93], is essentially a transaction pro-

cessing monitor designed t o support the implementation and management of ConTracts.

Apricots consists of the following components: a ConTract manager, step server, tmns-

action manager and a resource manager. The ConTract manager is responsible for the

execution of the script. It has to guarantee the reliable execution of a started ConTract

and is responsible for the forward recovery i'h the event of a crash. The step server man-

ages the control flow. It decides which steps t o activate and sends an asynchronous call to

the transaction manager that will execute each step as an ACID transaction. The Apricots

resource manager manages da ta collections and supports functions on da ta objects.

To illustrate, a user or application can start a ConTract of a specific type with the

command activate(contract-script-name). The ConTract is assigned a system unique

identification (cid). The execution of a ConTract, addressed by its cid, can be suspended,

resumed, migrated to another machine in the network, or compensated. The textual de-

scription of the ConTract script is transformed by the ConTract manager into a predicate

transition net for reasons of efficiency. If the start event of a step occurs, the ConTract

manager gives an appropriate stepserver the order to execute the step. The execution

of the step-code is done asynchronously with the execution of the script. If the execu-

tion of the step is finished, a completion event is sent to the ConTract manager. The

ConTract manager provides a function stepFinished that receives the return messages of

steps and executes the script depending on the return values. The advantage of an event-

driven script execution is tha t the ConTract manager does not have t o wait synchronously

(blocking) for the end of a step execution.

PERN

Pern is an external transaction manager developed a t Columbia University [Hei97]. Pern

supports ACID transactions, and provides the option to define application or project specific

concurrency control using a coordination modeling language (CORD) [HK97].
Pern was designed t o be incorporated into a software development environment, to

provide transaction support for the process of developing software. Pern defines a basic

transaction model that implements ACID transactions with a shared read and an exclusive

write lock mode. Standard transaction operations such as tx-begin, tx-commit, txabor t ,

tx lock and tx-unlock are provided. The architecture of the Pern transaction manager

defines a number of events related to the execution of a transaction, and allows users

t o define handlers that are t o be invoked before and after each event. By defining an

appropriate set of handlers, a programmer can alter the execution of the transaction

operations in various ways t o satisfy the needs of a particular extended transaction.

CORD includes tables for specifying the compatibility of application-specific locking

modes. More significantly, it provides a rule-based (condition-action) notation for de-

scribing special-purpose conflict resolution when transaction conflicts arise; the CORD

notation builds on the conflict resolution language introduced by Barghouti [BK91]. To

illustrate, the CORD rule presented below specifies that when a lock conflict occurs on a

M A N U A L da ta object, the handler will check whether the two conflicting transactions are

running the "revise~manual" task and "addsection" task respectively, and whether the

''revise~manua1" task is run by the owner of the manual and the "addsection" task is run

by the co-author. If these conditions hold, then both transactions are allowed t o access

MANUAL. This particular CORD rule also specifies that the "revisemanual" transaction

should receive a notification via the "EDIT-conflict" message.

EDIT-conf lict [MANUAL 1
bindings :

?ti = holds-lock()
?t2 = requested-lock0

body :

if (and (?tl.rule = revise-manual)
(?t2.rule = add-section)

(?tl.user = ?ConflictObject.ouner)

(?t2.user = ?~onflictObject.coauthor))

then<

notify (?tl, "EDIT-conf lict")

ignore()

3
end-body ;

By coupling CORD mechanisms with the Pern event architecture, it should be pos-

sible to implement semantic transaction synchronization policies that utilize operation,

transaction and application level semantics. In addition, by defining the appropriate han-

dlers i t should also be possible t o implement static transaction restructuring, though no

evidence of this is presented in the literature. Pern, however, does not provide support for

dynamic restructuring, nor does it provide explicit support for execution control. These

extended services were simply outside the original design goal of Pern and CORD, which

was support for cooperative transactions in a software design environment.

Summary

This quick tour through the related implementation efforts has revealed a host of mech-

anisms and approaches t o implement extended transactions. In addition, these imple-

mentations use different mechanisms t o allow their facilities to be tailored, controlled or

adapted to the variety of extended transactions which they might support. As we pointed

out earlier, these systems have largely implemented base transaction support from scratch,

rather than building on conventional transaction processing software. We also note that

few of the related implementation efforts address transaction restructuring and semantic

synchronization, thereby limiting the range of extended transactions they can implement.

2.1.5 Reflective Transaction Framework Implementation Strategy

With an improved understanding of the functional requirements of extended transactions

and the related implementation efforts, we turn our attention t o choosing an implementa-

tion strategy. There are two options. First, we could s tar t anew by building an extended

transaction facility from scratch, similar to the TSME and PERN. Such an effort removes

the burden of preexisting decisions and tradeoffs in an existing transaction processing sys-

tem, and allows the use of knowledge of extended transaction requirements t o guide the

development of a new extended transaction facility. The danger, however, is of making

new, more grievous design mistakes. In addition, so much time can be spent building up

base transaction support and re-inventing wheels, that little innovation takes place.

Alternatively, an existing transaction processing system may be adopted as a platform

upon which incremental development may take place. Extending an existing transaction

system lirnits the scope of the work, but ensures that one is never far from a functioning

system that can be tested to guide development, and secures a base of users upon comple-

tion. Moreover, if an irrcremental extension fails, only the failed step rnust be repeated,

not the entire project. If the extensions are relatively modest in scope, such incremental

steps do not need to promise dramatic new functions t o get immediate results. On the

down side, such an approach may necessarily limit the amount of innovation and creativ-.

ity brought t o the process and possibly carry along any preexisting biases built in by the

originators of the transaction system, reducing the impact the research might have on

providing broad-ranging support for implementing extended transactions.

We have chosen the second direction, deciding t o provide implementation support for

extended transactions by extending the base services of a conventional transaction pro-

cessing system. The key insight that shaped this decision was the understanding that

each of the extended services essential for implementing extended transactions can be re-

alized as an incremental extension of base transaction processing services. Indeed, it is a

claim of this thesis that conventional transaction mechanisms can be used successfully to

support the implementation of extended transactions. A second, more pragmatic, consid-

eration is the recognition tha t conventional transaction processing systems, in particular

TP monitors, have accumulated large amounts of transaction implementation technology.

We don't think t h a t it would be particularly clever simply t o throw this technology away

and build an extended transaction facility from scratch. Thus, we will leverage existing

functionality, t o the extent possible, and incrementally add functionality required t o im-

plement extended transactions. Moreover, we shall endeavor to do so in a manner that

ensures that the TP monitor continues t o finction as before, so that applications built

using ACID transactions do not have t o be modified.

In the next section, we consider issues that arise when we attempt t o apply our incre-

mental extension strategy directly to a conventional TP monitor. Later, in Section 2.3, we

introduce Open Implementation as a design approach t o meet the challenges that arise,

such as providing effective access to legacy interfaces, structures and functions; the main-

tenance of shared representations; and the treatment of unavoidable problems (e.g., scope

control and the conceptual separation of various transaction extensions).

2.2 Conventional TP Monitor Architecture

For the last 20 years TP monitors have provided a general framework for transaction

processing, supplying the "glue" t o bind together the components of a transaction sys-

tem through services such as multithreaded processes, interprocess communication, queue

management, and system administration [BerSO]. For our background discussion, we use

a simplified description of an OTLP monitor consisting of five components: I) transac-

tional application program, 2) transaction manager, 3) lock manager, 4) log manager,

and 5) resource manager. The structure of these components is shown in Figure 2.2. In

a commercial setting, we might find an TI' monitor such as Transarc's Encina providing

access to a resource manager such as Microsoft's SQL Server.

I I
I Transaction Processing System I
I I
L----,--------,---------------------------J

Figure 2.2: Modular Functional Components of an TP Monitor.

The architecture of commercial T P monitors varies widely on a spectrum from un-

structured (i.e., a single monolithic software module, not decomposable into its compo-

nent parts) t o well-structured (i.e., modular, hence decomposable). These architectural

differences reflect the history of TP monitor development. When early TP monitors, such

as IBM's CICS, were first developed, they were not as complex as today's TP moni-

tors. Not only was functional decomposition unnecessary for implementing the TP mon-

itor, it was not even conceived. As function_al requirements increased (such as three-tier

client server), and new architectural forms (like distribution and heterogeneity) were intro-

duced, implementation required more functional decomposition, thus prompting methods

such as structured design, which resulted in the TP monitor software being "architected"

into functional components or modules. Today, modern TP monitors, such as Transarc's

Encina, DEC's ACMSxp, and IBM's CICS/6000, are modular and constructed from open

transaction processing middleware [Ber96]. Each of these middleware modules provides a

specific transaction service, such as transaction management, lock management, and log

management, and exports its transaction processing services through a relatively simple

and uniform "application programming interface" (API).

In the remainder of this section we will describe the services provided by the TRANS-

ACTION M A N A G E R and the LOCK MANAGER. The descriptions are high-level, but serve

to advance our claim that these base services provide useful functionality for implement-

ing extended transactions, and that design decisions have limited their applicability by

committing to a particular approach to transaction support.

2.2.1 Transaction Manager

The Transaction Manager processes the basic transaction control operations for transac-

tional applications, such as Begin, Commit, and Abort. An application calls Begin to

start executing a new transaction. It calls Commit to ask the Transaction Manager t o

commit the transaction. It calls Abort to request the Transaction Manager to abort the-

transaction. All operations within the scope of a transaction in an application go through

the Transaction Manager, whereas operations outside the scope of a transaction may be

issued t o the Resource Manager directly.

The Transaction Manager is primarily a bookkeeper that keeps track of all active trans-

actions and available Resource Managers, and maintains information on the transaction

accesses to Resource Managers - the status of each transaction; for example, active, pre-

pared, aborted, committed - and the resollrces held by a transaction. This requires some

cooperation with the transactional application and the Resource Managers.

When an application calls Begin, the Transaction Manager creates a unique identifier

for the transaction called a trartsaction identifier (TID) and allocates a descriptor for the

transaction. The transaction descriptor is used t o hold all information used in processing

the transaction. Subsequent calls submitted by the application have the transaction's TID

attached. The descriptor is the focal point during a transaction's execution. Depending

on the scheduler implemented in the TP monitor, the descriptor may also be used t o

maintain a list of the locks held and requested by a transaction, and a list of data objects

read and written by a transaction. These lists are often referred t o as locks held, locks

requested, read set and write set, respectively.-

A Transaction Manager may perform a number of other functions depending on the

specific concurrency control and recovery algorithms implemented by the Resource Man-

ager. For example, if two-phase locking is used for the concurrency control algorithm,

then the Transaction Manager will participate in enforcing the protocol, and may be in-

volved in detecting and resolving lock deadlocks. A deadlock between two transactions

occurs when each transaction holds a lock on a da ta object which the other transaction

is attempting t o acquire. The Transaction Manager can detect deadlocks by examining

the locks held and locks requested lists in the transaction descriptor of active transactions,

and constructing a wait-for graph [BHG87]. A cycle in the wait-for graph indicates that

a transaction deadlock exists.

When a transactional application finishes execution and issues the commit operation,

the commit operation goes to the Transaction Manager, which processes the operation by

executing a twephase commit protocol. Similarly, if the Transaction Manager receives

a message t o issue the abort operation, it tells the Resource Manager t o undo all the

transaction's updates; that is, to abort the transaction a t each database system.

Recall from our discussion on extended transactions in Section 2.1 that many advanced

transaction models and semantics-based concurrency control protocols require explicit

control over the execution of member transactions. However, the set of services provided

by the Transaction Manager does not provide this level of support. There are two major

shortcomings. First, while an application can control the execution of the transaction it is

currently running, it can not influence other transactions running on the TP monitor. This

is because an T P monitor provides each transaction with the illusion that it is executing

in isolation, and thus the Transaction Manager does not export the necessary services for

an application to view other concurrently executing transactions or to explicitly control

their execution. Second, the Transaction Manager does not allow applications access

to the state information on active transactions, such as the transaction descriptor, nor

does it allow applications to update or store additional information in these structures.

However, if an application is going to execute a cooperative transaction group, it will

require all of these services to designate a transaction ,as the group coordinator, identify

other active transactions that are members of the group, and control their execution in

order to implement group commit and abort dependencies.

2.2.2 Lock Manager

Conventional T P monitors typically use a locking protocol to synchronize transactions.

The protocol allocates locks to requesting transactions, and detects conflict and deadlock

among the requesters. Traditional protocols support just two basic lock types, Read

(Share) and Write (Exclusive), and every data access is automatically cast as one or the

other, regardless of the operation, the type of data, or the application context.

The Lock Manager is a major component in synchronizing transactions. However, a

Lock Manager does not enforce the locking protocol. Enforcing the locking protocol is the

responsibility of the resource manager1. In fact, the Lock Manager is essentially a black

box that manages locks in the manner prescribed by the software modules that invoke

the Lock Manager. Conceptually, the scheduler invokes the Lock Manager to determine

whether there are conflicts that prevent the granting of the locks and ensuing actions from

being scheduled or executed immediately. A Lock Manager may delay granting some locks

and thus delay the corresponding actions when conflicts occur. In addition, it manages

the data structures necessary to handle deadlock detection.

The interface to a typical Lock Manager exports the following functions:

I. lock: Executes a lock request for a single transaction;

2. unlock: Removes a previously granted lock on a data object for a transaction;

3. unlock-all: Releases all previously granted locks for a transaction.

'It is difficult to isolate a single module that implements the scheduler. For performance reasons, a
scheduler's functionality is typically distributed among different pieces of the TP monitor software such
as the Trarisaction Manager, access method routines, and Lock Manager.

A lock request for a specific transaction involves specifying values for the identifier of

the requesting transaction (tid), the identifier for the lock being requested (lid), and the

mode in which the lock is requested (mode). The Lock Manager will grant transaction

tid a lock on lid in mode mode if no other transaction currently holds a lock on lid, or

the mode of the request does not conflict with the lock mode(s) currently granted on the

lock. Transactions record all the locks they own in a bookkeeping structure referred t o as

a lockset. Once a transaction tid has acquired a lock lid, it adds it t o its lockset.

If a lock conflict exists and a lock request is blocked, then the lock request must wait

for all previously blocked lock requests to be granted. The only exception to this rule

occurs when a transaction makes a lock request on a lock that it already holds. In this

situation, the Lock Manager converts the requested lock mode to the weakest lock mode

that is greater than or equal in strength t o both the granted lock mode and the requested

lock mode, and tests if the new request is compatible with all lock holders.

Figure 2.3 illustrates the implementation structures of a Lock Manager as commonly

described in the literature [GR93], where each flag represents a latch.

Lock Control Block (LCB)

I& G r w d pending Next

Nme Mode
R q u e t R q u a ~ r

Il& Table
of locks

Lock Request Block (LRB)

Figure 2.3: Conventional Lock Manager implementation structures.

A lock is implemented by a Lock Control Block (LCB) which contains information

such as it.s name, its current mode (read or write), a latch, and links. A fixed-size hash

table is used t o store and retrieve LCB's using their name. The LCB is also the head of

two doubly-linked lists of Lock Request Blocks (LRBs). One list implements the granted

requests. The other list holds pending requests, and corresponds t o blocked transactions.

Each LRB relates to one transaction, and contains information such as the transaction's

identity, the requested locking mode, and the links t o its lockset.

To set a lock on a resource (e.g., a page or an object), the Lock Manager first selects

a hash chain using the resource's name as the hashing key. If there is no LCB for the

resource, it initializes a new one and appends it to the hash chain. Otherwise, it scans the

LCB's LRB chain to see if the requester already has a LRB. If there is no LRB for the

requester, it allocates a new LRB, chains it to the requester's lockset, and chains it to the

right LCB chain according to the conflict detection result. Conflict detection is performed

when the LRB chain is traversed to look up the LRB of the requester.

Looking back at our discussion in Section 2.1, we note that the basis for many extended

transactions is the ability to use a synchronization algorithm that exploits the semantics

of the operations, data and application to increase the number of transactions that can

execute concurrently. However, the current Lock Manager services do not provide the

necessary support for semantic transaction synchronization or for dynamic transaction

restructuring. There are three main shortcomings. First, the interface to the Lock Man-

ager does not allow an application to specify the conditions under which it should relax

the definition of lock conflict. That is, an application cannot identify update operations

that are compatible or declare that two transactions are members of a cooperative group

and that the application will coordinate data access. The interface is closed in that the

only information the Lock Manager will consider is the transaction identifier, the identifier

for the lock being requested, and the mode in which the lock is being requested. More-

over, the only information the Lock Manager provides in response to a lock request is an

acknowledgment that the lock has been granted or a message indicating that a conflict

exists. There is no way for the application to identify the operation or transaction that is

holding the lock, and thus it cannot determine the consequence of relaxing the conflict.

Second, the Lock Manager does not export its base interface, which typically consists

of requests to lock, unlock and unEocLaEl data objects, outside of the T P monitor. Thus it

is not possible for an application to access these operations and participate in managing

lock resources on its own behalf. The lock services are presented to the application as a

black box and are effectively hidden from the application.

Third, even if the application could access the interface of the Lock Manager in an

attempt to manage data resources, the visible aspects of the underlying implementation

are not sufficient to gain control over the abstractions. Consider an application that

wishes to transfer ownership of a data object from a transaction ti to another transaction

t j using the available commands in the interface. The application might first unlock the

data object from transaction t i and then lock it for transaction tS. I-Iowever, if there were

another unrelated transaction t k already waiting for a lock on the object, then as soon a s

the application unlocked the data object from t , the Lock Manager would proceed to pass

the lock to t k . Clearly, the implenlentation corlstrains the way in which the lock service

abstraction behaves, and the original design decisions limit the Lock Manager applicability

by committing t o a particular approach to transaction support.

2.2.3 Building on Existing TP Monitor Functionality

One seemingly straightforward way t o implement extended transactions would be to use

the services provided by the functional components of an TP monitor directly. Two

major impediments complicate this proposition. The first is the lack of an interface

for customization of the TP monitor. The application interface to an TP monitor is

fixed, as are the services provided by commands in this interface. Application program-

mers access transaction services through ACID transaction control operations, such as

Begin-Transaction, Commit-Transaction, and Abort-Transaction. Ideally, application

programmers would be able to define and then use similar transaction control operations

for extended transactions, such as Sp l i t -Transac t ion or Join-Transaction introduced

in the splitljoin transaction model. However, the single, fixed application interface does

not provide access t o the underlying transaction services of the T P monitor and does

not permit extensions. Though the individual functional components of the TP moni-

tor provide a rich set of transaction services, the application programmer would have to

learn intricate details of the component-level API and run-time system. The size and

complexity of the API alone presents a formidable barrier t o even the most accomplished

application programmer. The second impediment is the level of custornization. TP moni-

tor system-level code functions "underneath" the code of a transactional application, and

is not subject t o the same programming abstractions. This requires the TP monitor to

be customized outside of the application, rather than wathin it , making i t impossible for

an application t o specify its requirements for extended transaction behaviors a t runtime.

At best, a transaction system programmer could adjust TP monitor functionality through

the API to implement a selected extended transaction model a priori. Unfortunately, such

a customization t o the run-time system could alter the entire system and, consequently,

come at the expense of reusability; i.e., it is hard t o localize the customization.

These issues, among others, combine t o give users no convenient way t o use T P moni-

tor software directly to define new application interfaces and leverage existing transaction

services to implement extended transaction functionality. It is for exactly these reasons

that efforts to provide implementation support for extended transactions have gravitated

towards the construction of entirely new transaction facilities. These efforts have proven

t o be expensive, and have limited practicality. What is required, from our perspective, is

a framework that will carefully expose T P monitor functionality and provide the means

t o define new extended transaction services and application interfaces. The new services

defined by the framework must be separate from the TP monitor runtime, so that ex7

isting transactional applications will function properly, and be presented to application

programmers through familiar transaction control operations so they do not have to "step

down" t o an operational description of extended transactions.

2.3 Reflection and Open Implementation

In this section, we discuss the problem of extending the functionality of software with

reference to very general notions of abstraction in software design, and the Open Im-

plementation approach. Open Implementations reveal aspects of system structure and

behavior, providing applications (clients of the abstractions) with a principled means for

examining and manipulating the internal operation of the abstractions. As a result, clients

can become involved in how the infrastructure supports their operation, and can tailor

the behavior of system abstractions t o their own particular needs. Along with the Open

Implementation approach, we shall also review the design principle on which it is based

(computational reflection).

2.3.1 The Myth of "Abstraction" -

Abstraction is one of the fundamental tools of computer science and system design. It is

the means by which we can break down large problems into small ones and, conversely,

combine small solutions t o create large systems. Abstraction allows us t o isolate one

part of a system from another and consider the two separately. It is the key to analysis,

modularity, and reuse; it is also, potentially, the source of a range of problems throughout

systems design practice [CFN96].

The traditional form of abstraction in systems design relies on three basic components

- black boxes, clients, and the abstraction barrier, as illustrated in Figure 2.4. The black

box implements some abstraction which is offered to clients a t an abstraction barrier.

The abstraction barrier is a point of separation between client and implementation; the

concepts, terms and structr~res in which the abstraction is phrased a t the barrier are

the only ones that clients can use t o manipulate and control the abstraction. In an T P

monitor, the abstraction barrier is typically presented as an application programming

interface. The term "barrier" refers to the way in which the abstraction hides aspects of

the transaction system implementation from the client. Behind the abstraction barrier,

the internal details of ACID transaction processing functionality are not revealed t o the

client application.

There are two important features of abstraction being employed here. First, separation

divorces the use of the abstraction from the details of its implementation, allowing a client

c Client

(A Requests and responses

Figure 2.4: -4 traditional black box abstraction locks implementation details away behind an
abstraction barrier.

t o use an abstraction without understanding all the details that lie behind it. Second,

generalization divorces the abstraction itself from any particular implementation, so the

implementation may be changed without changing the abstraction (and hence, without

forcing changes in its clients). By using separation and generalization in this way, systems

can be modularized and their components reused. This model of abstraction runs through-

out system design. The most basic elements of software systems, such as programming

languages and instruction sets, are built upon it.

This notion of abstraction, as used in software development, is derived from the math-

ematical use of abstraction [I<ru92]. However, software entities differ from mathematical

entities. In software, the abstractions are not truly "abstract." Instead, they are the visi-

ble aspects of underlying implementations, and the implementation constrains the way in

which the abstraction behaves. While any (correct) implementation of the abstraction will

agree with the abstraction's specification, and hence operate in the "same" way, differ-

ent implementation strategies will result in different performance characteristics, memory

usage patterns, and so on. 1 shall use the term "behavior" t o refer t o the manifestation

of these properties - that is, not just the semantics of the implementation, but also the

details of its acceptable patterns of operation and performance.

Lists and arrays, for instance, are different implementations of a collection abstraction.

Although they might share an interface, they exhibit different performance characteristics

(different behavior). These particular examples happen t o be so endemic to the problems

we solve that we think of them as different abstractions; but the differences in their be-

havior are not expressed in the abstraction. This variability is something we often depend

upon in implementation; for instance, caching in memory systems and memoization in pro-

gramming language implementation are both techniques which change the performance

characteristics while maintaining the original abstraction.

The same variability, though, can also introduce significant problems. To illustrate

these problems, consider a situation opposite to that described above. Rather than one

client and multiple possible implementations, consider a single implementation and mul-

tiple clients. This is a common arrangement: an operating system supports a text editor;

an email reader and a database system; a window system supports a word processor, a

spreadsheet and a game; the Lock Manager of an TP monitor supporting ACID transactions

and extended transactions. The clients all make use of the same implementation, accessed

through the same abstraction, in service of whatever functionality they themselves provide

to their own clients. However, the clients have different needs. Consider the challenges

that arise when we attempt to use the existing services of the Lock Manager for different

transaction models. Some applications will need conventional read-write conflict behav-

ior; some will require a relaxed definition of conflict using operation semantics; some will

redefine conflict based on transaction or application semantics; others might require the

ability t o give up ownership of locks t o restructure dynamically. In fact, the more clients

there are, the more likely it is that there are going t o be conflicts with their requirements

for the behavior of the implementation. However, as observed above, the abstraction does

not express the difference in behavior. In fact, those aspects of the implementation that

would cause a programmer to choose one over another are systematically hidden by the

abstraction barrier.

In this case, it's not the abstraction that is a t fault. The simple specification of the

abstraction (the transaction synchronization abstraction, defined in terms of the acquisi-

tion of locks and conflict detection) can be used effectively by all the clients. The problem

lies, first, in the fact that the "abstraction" is not abstract a t all, but is the interface t o

an implementation; and second, in the way in which a single implementation must serve

multiple purposes. But this isn't some unusual special case; it's simply everyday reuse.

2.3.2 Mapping Dilemmas

The root of these problems can be explained in terms of mapping decisions, mapping con-

flicts and mapping dilemmas [KPng]. A mapping decision occurs when the implementor of

an abstraction must choose between a number of possible strategies for implementing some

internal mechanism. A mapping conflict occurs when some implementor makes the deci-

sion one way, but the needs of a client would be better met if the decision had been made

another way. A mapping dilemma occurs when two clients of the same implementation

require different mapping choices: whatever choice is made, a conflict results.

Mapping decisions arise not from the structure of the abstraction itself, but from

the way in which it is implemented. Thus, since mapping decisions are not part of the

abstraction, they are not visible t.hrough the abstraction barrier. ,While it is clear that

the incidence of mapping conflicts can be exacerbated by poor mapping decisions, it is

important to recognize mapping dilemmas are not the result of particular implementations

or abstractions, but are inherent in the model of abstraction itself. As such, software

developers encounter them every day, and must employ some strategy t o deal with them.

2.3.3 Gaining Control over Abstractions

As systems have become larger and more complex, and as hardware has improved and

exposed more performance problems in software, strategies for overcoming these abstrac-

tion problems have become more common. One solution is t o offer a number of different

implementations t o choose from (compiler optimization strategies often operate this way).

Another is to provide switches that allow the application t o select a particular strategy.

For instance, the U N I X system call madvise allows application programmers to specify

the style of memory access particular memory regions will experience, so that an effective

paging strategy can be employed.

Recently, more radical solutions have been adopted, in various areas of system design.

For example, the Mach operating system provides facilities for virtual memory behavior t o

be controlled directly by application programs - "external pagers" [RJY+88]. Scheduler

activations [ABLLSl] allow application control over thread facilities, addressing the design

trade-offs involved i n locating thread information and control in user space or kernel space.

More generally, flexible object-oriented operating systems such' as Spring [HK93] have

allowed applications (or user-space code) a great deal of control over the implementation

details of "lower-level" operating system abstractions [KN93, NKM931.

2.3.4 Open Implementation

Open Implementation (01) is an approach to system architecture that "opens up" ab-

stractions and provides clients with principled access to examine and control aspects of

the implementation. The most important foundational principle behind Open Implemen-

tation is computational reflection [Smi82]. The reflection principle states that a system

can embody a causally-connected representation of its own behavior, amenable t o exam-

ination and change from within the system itself. The causal connection is a two-way

relationship between the representation and the behavior it describes; this representation

is maintained in correspondence with the system's behavior, and the behavior itself is

controlled through manipulation of the representation. So, a reflective system can use the

model to reason about its own behavior (introspection); and it can make changes to the

model t o effect changes in its behavior (explicit control). This causally connected self-

representation creates a link between two c'levels" of processing - the "base" level, which

is the traditional domain of computation for the given system, and the "metalevel" where

the domain of computation is the system itself.

At the same time these new capabilities are introduced into a system, it is important

to retain useful properties of the existing notion of abstraction. principally the concep-

tual simplification that it provides. There are two ways in which this is achieved in an

Open Implementation, illustrated in Figure 2.5. First, a standard or default interface is

available t o access base services of the system, and a new metalevel interface is provided

to access the causally-connected representation: the interface t o the metalevel augments

the traditional abstraction barrier, rather than replacing it. Second, the view into the

implementation reveals its inherent structure and function, rather than the details of the

specific implementation. It does not simply provide a set of "hooks" directly into the im-

plementation; that would both constrain the implementor of the abstraction and require

too much of the implementor of a client. Instead, i t provides a rationalized model of the

inherent behavior of the system offering its particular functionality.

"meta-level"
interface

Figure 2.5: Black box abstraction contrasted with open implementation. .

2.3.5 Designing an Open Implementation for an TP Monitor

We now consider how t o apply the Open Implementation approach t o design a framework

for implementing extended transactions on a conventional TP monitor. To date, there have

been few systems designed following the Open Implement,ation approach, and no one has

applied it to extend an existing software system. There are, however, examples of Open

Implementation-style concepts in otherwise traditional systems, such as operating sys-

tems [Yok92, ABLL91, PA4B+95], composable microprotocols [BS95, BD95, EPT951, and

external paging facilities [RJY+88]. On the basis of these experiences, what has emerged

is not so much a process for Open Iniplementation design, but more a set of design princi-

ples. Emerging work on Open Implementation Analysis and Design (OIA/D) [KDLM95]

represents an early attempt t o draw out these principles.

In what follows, I shall describe a number of these principles, drawn from the Open

Implementation literature, that shaped the design of the Reflective Transaction Frame-

work. While each design principle is presented separately, it will become clear that they

are strongly related to each other. First, however, a digression regarding reflective self-

representations will provide some context.

Reflection and Self-Representation

When thinking about self-representations in reflective systems, it's important to bear in

mind that they are just that - representations. The causal connection, in particular the

computational effectiveness it supports, can lead t o confusion between the representation

and the mechanism that is represented. Similarly, the metaphorical relationship drawn

between reflective systems and mechanical ones - in which mechanism is "exposed t o

view," and users can "reach in" to effect changes - can also contribute to this confusion.

When thinking of the design of a reflective system, there are two important aspects of the

representation qua representation to be considered: maintenance and partiality.

Maintenance refers to the way in which the representation is actively maintained by

the reflective system. Elements of the representation can be created as needed, and/or

maintained in correspondence with elements of the system itself, rather than being con-

tinually present. The lazily-created reflective interpreter layers of the 3-Lisp implemen-

tation [dRS84] illustrates this. While the 3-Lisp model guarantees the representation is

available when requested, it may not actually exist until requested. At the point it is cre-

ated, the elements of the representation (or rather, an instance of the representation) are

a rationalization of the system's state according t o an idealized model. So, when designing

the Reflective Transaction Framework and considering the terms in which the metalevel

interface is cast, it is important to remember the distinction between "exposed structure"

and actual implementation mechanisms, a distinction the system must actively maintain.

Another design principle that follows from the maintenance of the representation is

its inherent partiality. The purpose of the representation is not to provide an absolute,

decontextualized or impartial description of the system's activity. Rather, the representa-

tion describes selected aspects of the system's behavior for the purposes of some domain

of expected behavior [Kic92]. It reveals certain aspects of behavior, and hides others;

similarly, it supports certain forms of tailoring and modification, but not others. The r e p

resentation is a designed artifact; and, in line with perceived needs and expectations, we,

as the designers, set the bounds on the flexibility it embodies. The representation, then,

is guided more by expectations of use than it is by the structure of the implementation.

Scope Control

A critical design property is scope control, the ability t o restrict attention (and changes)

to a particular set of objects. The ability to maintain and manipulate different scopes

not only sets up protection boundaries, but also allows for different behaviors to be mixed

together in a single system [Yok92].

In CLOS, the Common Lisp Object System [BGW93], scope control is achieved through

the class/metaclass mechanism. Since class behaviors are encapsulated by metaclasses,

new behaviors are introduced into only those classes that specify a modified metaclass.

Introducing a change to slot access or method dispatch in CLOS will not affect every class

in the system. The metaclass mechanism bounds the effect of the change, restricting its

scope. At the same time, it allows multiple behaviors t o coexist. While a change in the

slot access mechanism can be introduced for a new metaclass. the default behavior exists

alongside it, associated with the original metaclass. Indeed, any number of new behav-

iors might be introduced, and the scope control introduced by the metaclass namespace

allows them t o co-exist without interference. A similar approach is used in Silica [Raogl],

through the use of specific "contracts" between types of windows and their subwindows.

The ability to name and distinguish between sets of alternative behaviors is an impor-

tant factor in maintaining scope control. It is also critical that the groupings and categories

t o which these behaviors can be applied are a t an appropriate level of granularity. For

example, in CLOS, it would be unwieldy to have t o discuss metaclass-level behaviors in-

dividually for each object, or to have to talk about all classes a t once. CLOS associates

these behaviors with classes, which are a convenient unit of scope for the flexibility that

CLOS provides. In the design of the Reflective Transaction Framework, the convenient

unit of scope is likely to be individual t ransxt ions within an application. Scope control

would then establish boundaries between different extensions t o transaction services, and

would also provide a mechanism for bounding the effects of changes applied t o specific

extended transactions within an application.

Conceptual Separation

Another design property is the separation of conceptual concerns expressed by the

metalevel interface. Again, this is essentially a scoping issue, but of a different sort: scope

control addresses which cipplicntion objects will be affected by a particular change, while

conceptual separation is concerned with the extent of the behaviors that are affected.

A metalevel interface can express a range of different behaviors and present many

aspects of the system's internals; the principle of conceptual separation states that the

separation between different aspects of internal behavior should be expressed in a similar

separation between those aspects of the interface used t o control them. So, i t should be

possible t o introduce a change in one aspect of the system's behavior, relatively indepen-

dent of the other aspects that the metalevel interface may control. Similarly, i t should be

possible t o d o this using only specific aspects of the metalevel interface relevant for that

concern, without having t o bring in (or even understand) the other areas. Simple changes

or extensions t o the base transaction system should be simple t o introduce.

Conceptual separation, perhaps more than the other design principles, highlights the

fact that the metalevel interface is designed to support a particular range of behaviors,

based on the designer's expectations. The separation of concerns in the metalevel inter-

face provided by the Reflective Transaction Framework will reflect our assumptions and

expectations about the transaction behaviors that will be tailored independently.

Incrementality

Another design property often discussed in the Open Implementation literature is incre-

mentality, which deals with the ways in which changes introduced into the system relate

to, and build upon, existing or default behaviors. The provision of a metalevel interface,

and thereby a means t o change the system and adapt it t o particular needs and circum-

stances, does not relieve the system designer of the burden of designing a good base-level

system. Open Implementations are intended t o be usable; the metalevel interface is an

added facility tha t many clients will not use.

The default behavior serves two ends. First, it provides the standard functionality of

the system. I t should be usable in a normal range of circumstances, without any appeal to

the metalevel interface. Second, when the metalevel interface is used t o introduce changes,

the default behavior should be the basis for reuse. Incrementality concerns this second

use of default behaviors. It states that it should be possible t o introduce new behaviors

by incrementally extending old ones, specifying what is new and different relative to the

original behavior. Thus a programmer using the Reflective Transaction Framework should

not have t o recraft transaction behavior from scratch, but rather use the default ACID

transaction behavior a s a baseline. So, default transaction behavior is provided not only

as a usable system in its own right, but also as the basis for redefinition and extension

t o implement extended transactions; that is, ACID transactions are both the default and

basis for changes made a t the metalevel.

2.4 Summary

This chapter presented the technical background for our work on the Reflective Trans-

action Framework. First, t o understand the functional requirements of implementing

extended transactions, a number of advanced transaction models and semantics-based

concurrency control protocols were presented, and we identified three common extended

services. Following this, we reviewed related implementation efforts and identified how

they incorporated these extended services into their designs. We concluded the first sec-

tion of the chapter with a discussion outlining our strategy for building the Reflective

Transaction Framework on top of transaction services provided by conventional TP mon-

itor software. Our approach is aimed a t keeping the conventional TP monitor and ACID

transactions running while incrementally adding extended transaction functionality.

In the second part of the chapter we presented an overview of the TP monitor ar-

chitecture, along with a brief discussion of extending existing functionality t o implement

extended transactions. We argued that T P monitor software provides a useful substrate

for implementing extended transactions, but gives programmers only limited control over

the ways in which the transaction mechanisms will support their applications (and hence,

limiting the range of transaction services that the system can support). In making a set of

structures, behaviors, and mechanisms available t o application programmers, TP monitor

implementations also make a set of commitments t o particular styles of application and

interaction. So the traditional model of abstraction in modern TP monitor system design,

which is meant t o support the reuse of implementations, is actually getting in the way of

reuse for implementing extended transactions.

Finally, in the third part of the chapter, we drew on ongoing work in the use of

computational reflection and Open Implementation for guidance in designing the Reflec-

tive Transaction Framework. The Open Implementation approach provides a new way of

thinking about the relationships between a client, the abstraction the client is using, and

the implementation that realizes the abstraction. Drawing on computational reflection as

a way of relating the abstraction and the implementation, Open Implementations provide

clients not only with abstractions that they can use, but also with the means t o exam-

ine and manipulate those abstractions. Using these facilities, applications can become

involved in how the infrastructure supports their operation, and so can tailor the services

of transaction system abstractions t o their own particular needs.

Chapter 3

Reflective Transaction Framework

In this chapter we present the Reflective Transaction Framework. In Section 3.1 we first

outline our design objectives and put forth the specific extensions provided by the Re-

flective Transaction Framework to implement extended transactions. In Section 3.2 we

present the framework architecture, which constructs extended transaction services as a

collection of transparent extensions t o an existing TP monitor, and we discuss the compu-

tational model of the framework, which provides an open implementation of the underlying

TP monitor. Finally, in Section 3.3 we present the detailed design of extended transaction

services supported by the Reflective TransaEtion Framework.

3.1 Framework Design

We commence our design description of the Reflective Transaction Framework with a
brief discussion of the main objectives. We present these objectives before describing

the Reflective Transaction Framework because this discussion clarifies key rationales and

justifies important design features.

3.1.1 Objectives

The primary objectives of this research were t o define a software framework t o support

extended transactions and develop a practical implementation of the framework. Practi-

cality was an overriding constraint in the definition of the framework, and it translated

into the following specific design objectives: support for key extended transaction services,

ease of implementation, compatibility with legacy transactional applications, ease of use,

and acceptable overall performance. We elaborate on each of these as follows.

Key Transaction Functionality The ultimate goal of the Reflective Transaction Frame-

work is t o support the implementation of extended transactions. Therefore, the frame-

work must provide extended transaction services sufficient to implement a wide range of

advanced transaction models and semantics-based concurrency control protocols from the

literature.

Ease of Implementation An important goal is tha t the Reflective Transaction Frame-

work be designed for ease of implementation. We recognize that conventional transaction

processing systems, in particular TP monitors, have already accumulated large amounts

of implementation technology. We don't think that is clever t o throw it away and at-

tempt t o build an extended transaction facility from scratch. TP monitors provide basic

mechanisms such as lock-based concurrency control, logging and recovery services, and

transaction management services. Therefore, we decided t o leverage existing transaction

processing functionality and structures in constructing the extended transaction services.

This not only eliminates unnecessary infrastructure development but provides efficient,

robust base processing for extended transactions.

Compatibility with Legacy Applications Maintaining compatibility with ACID transac-

tions is a major priority. Legacy applications are here t o stay; we must ensure that the

behavior of ACID transactional applications remain unchanged when the services of the Re-

flective Transaction Framework are not involved. In addition, existing ACID applications

should be able t o exploit the Reflective Transaction Framework services with little change.

Ease of Use For programmers, we pursue two complementary goals of conceptual sim-

plicity and access flexibility. The framework functionality must be presented t o both

transaction system programmers and application programmers through a simple abstrac-

tion that is easily understood and fully compatible with the traditional ACID application

paradigm; programmers should not have t o bend over backwards to achieve desired effects.

Moreover, the mechanisms through which the framework services are accessed must be

flexible and easy t o use.

Acceptable Overall Performance Finally, i t is widely recognized that good performance

is an intrinsic aspect- of system usability. Excessive application performance degradation

would seriously undermine the usability of the Reflective Transaction Framework. While

we accept that the extended transaction services and mechanisms will incur a certain

amount of overhead, it is imperative that we seek good overall system performance in our

design and implementation.

3.1.2 Focus on Specific Extensions

We limit the scope of this research by focusi:rg on three specific extensions for imple

menting extended transactions: dynamic transaction restructuring, semantic transaction

synchronization, and transaction execution control. The detailed design of each extended

service is presented later in this chapter, in Section 3.3. There are two reasons for this

narrowing of focus. The first is purely practical - any effort must s tar t somewhere. These

extensions provide a starting point to illustrate the application of the Open Implemen-

tation approach t o a conventional TP monitor and demonstrate the gains tha t result,

without having t o open up absolutely everything in the T P monitor. The second reason is

that these extensions offer the greatest leverage. As we saw in our background discussion

on extended transactions in Chapter 2, these extensions are the common dimensions of

change found in most extended transactions in the literature. Addressing the require-

ments of dynamic transaction restructuring, semantic transaction synchronization, and

execution control, provides a base for implementing most extended transaction behaviors.

While it may be tempting to design a facility- that is richer in functionality, we feel such

sophistication would come a t the cost of runtime efficiency, ease of use, and more onerous

programming constraints. Thus, one can view this decision as an exercise in minimalism.

Instead of conjuring up all the ext.ended transaction features we wouid like t o include in the

framework, we have determined what can be omitted while still being able to implement

a number of extended transactions.

3.1.3 Design Summary

In this section we have presented the main considerations for the framework design. As

subsequent design and implementation trade-off analysis will demonstrate, the specific

objectives of extended transaction services, ease of implementation, ACID compatibility,

ease of use, and reasonable overall performance often create competing demands a t both

design and implementation levels. Our approach is t o balance these concerns and make

the necessary compromises that best serve the ultimate purpose of practical usability.

3.2 Architecture

This section presents the architecture of the Reflective Transaction Framework. We first

discuss the system architecture, which is decomposed into a collection of software modules

called transaction adapters. These adapters expose selected functions and da ta structures

of the underlying TP monitor and implement specific extended transaction services. We
then describe the computational model, which builds extended transaction services as an

extensible collection of transparent extensions t o existing TP monitor functionality. In

particular, we describe the role transaction adapters play in constructing an effective Open

Implementation for the underlying T P monitor, and explain how framework extensions are -

coupled t o the underlying TP monitor through tmnsaction significant events. Throughout --.
this section we identify framework interfaces that enable programmers both t o implement

extended transactions and develop applications using extended transactions, and we try

t o explain relevant mechanisms from the user's perspective as much as possible.

3.2.1 System Components

Figure 3.1 illustrates the major components and interfaces defined by the Reflective Trans-

action Framework. The framework is a layered architecture, designed to be implemented

over an existing TP monitor. Reflective software modules, called transaction adapters,

correspond t o a particular functional aspect of the TP monitor, .such as transaction exe-

cution, lock management and transaction conflict. Transaction adapters invoke services of

the underlying TP monitor through "down" calls using the TP monitor service API, while

functional components of the TP monitor pass state information and request extended

transaction services from the transaction adapter layer through "up" calls or callbacks.

A transactional application program is linked t o one or more libraries, labelled RTF
Library in Figure 3.1, which provide a collection of extended transaction functions. Each

function in this library is model-specific, implemented by a transaction system programmer

familiar with the semantics of the advanced transaction model. Applications invoke func-

tions in this library t o access extended transaction functionality provided by the Reflective

Transaction Framework in an T P monitor-independent manner. As we shall describe later

in this section, the Reflective Transaction Framework manages communication between a
transactional application and these RTF Libraries both t o simplify the calling of functions

and t o guard against improper usage.

The layered architecture in Figure 3.1 does not specify how the transaction adapters

in the framework should be connected t o the underlying TP monitor t o produce a work-

ing system. If the software modules that implement the transaction adapters were each

in their own operating system process, then the inter-layer calls might require an RPC

Application
Program

RTF Library

Application
Program

RTF Library

Application
Program

RTF Library

Application Programs

Extended
Transaction

Reflective Transaction Framework
Services

Figure 3.1: Major components and interfaces of Reflective Transaction Framework.

Transaction Processing Monitor
I Log Managar Transaction Manager 1 Lock Manager

(Remote Procedure Call) mechanism, or perhaps a specially designed IPC (Inter-Process

Communication) layer. If the transaction adapters that make up the framework were

each built into the same operating system executable as the application program, then

the inter-layer function calls between an application program and the framework services

would be more efficient. Alternatively, the transaction adapters in the Reflective Trans-

action Framework could be integrated with the operating system process tha t executes

the T P monitor. We shall revisit these options later in Chapter 5, when we present the

Encina implementation of the Reflective Transaction Framework.

Transaction adapters are designed t o provide principled access t o selected functions

and data structures of a particular functional component of the underlying T P monitor,

and augment the basic bransaction services it provides with a set of extended transaction

services. Table 3.1 summarizes the Reflective Transaction Framework's initial set of trans-

action adapters, identifying s ta te and extended transaction services that each provides.

Other transaction adapters for extended transaction recovery, workflow management, and

distributed extended transaction management are possible in the future.

Transaction
Services

Table 3.1: Mapping extended transaction services to transaction adapters.
11 ADAPTER EXPOSES I EXTENDED SERVICES

I I

(TRANSACTION ADAPTER (1 '&ansaction State I Extended Transaction State

I 1) Execution control 1 Transaction Significant Events 1

LOCK ADAPTER 1

I 11 Lock Conflicts I Explicit Cooperation I
CONFLICT ADAPTER

Three major arguments justify the functional partitioning of the Reflective Transac-

tion Framework into separate transaction adapters. The first argument is scope control.

Each adapter encapsulates a set of extended transaction services that augment the base

services of a particular functional component in the TP monitor. By factoring extended

transaction functionality into separate transaction adapters, we can isolate these func-

tional extensions of the T P monitor. The second argument is conceptual separation. This

is a scoping issue, but of a different sort. Conceptual separation is concerned with the

extent of the behaviors that are affected. Each adapter implements a specific extended

transaction service and provides an interface that expresses the range of different behav-

iors that i t can support. By selecting particular adapters and invoking their interfaces to

customize their behavior, adapters can be used in combination t o create a different Re-

flective Transaction Framework configuration. The third argument is incrementality. It is

essential t o design the Reflective Transaction Framework for incremental extension. One

aspect of extended transaction semantics can be modified in transaction adapter without

affecting other services (transaction adapters) in the framework. For example, we could

extend the TRANSACTION MANAGEMENT ADAPTER t o support a richer set of transaction

dependencies without having t o modify the code of other adapters in the framework.

Explicit Lock Control

3.2.2 A Separation of Programming Interfaces

Intra-Transaction Dependencies

Lock Sharing
Lock Table Information

Lock Table State

The Reflective Transaction Framework defines two new interfaces (sets of APIs) corre-

sponding t o two levels of understanding of transaction management. The purpose is t o

support two categories of programmers: transaction system programmers with skills in

transaction model specification who implement primitives for new extended transactions,

and application developers who program transactional applications using the available

extended transaction primitives.

Application developers prograrrl transactional applications using a set of transaction

model-specific verbs, or transaction control operations. For example, ACID transactions

Lock Delegation

Semantic Conflict Definition

are typically initiated by the operation Begin-Transaction and terminated by either a

Commit-Transaction or Abort-Transaction operation. Extended transactions often in-

troduce additional operations to control their execution, such as the operations Split and

Join introduced in the split/join transaction model, or the operation Join-Group intro-

duced in the cooperative group model. A transaction model defines not only the control

operations available to a transaction, but the semantics of these operations. For example,

whereas the Commit-Transaction operation of the atomic transaction model implies that

the transaction is terminating successfully and that i ts effects on da ta objects should be

made permanent in the database, the Commit-Transaction operation for a member trans-

action in a cooperative transaction group merely implies tha t its effects on data objects

be made persistent and visible t o transactions that belong t o the same cooperative group.

To accommodate this diversity of interface and operation semantics between differ-

ent advanced transaction models, we introduce a separation of programming interfaces,

presented figuratively in Figure 3.2. Both the base interface and extended transaction in-

terface are used for application-level programming, subdivided for clarity only, while the

metalevel interface is used t o introduce new extended transaction control operations and

t o define their semantics (implementation).

Base Integace: provides ACID Extended Transaction Interface: provides
transaction functionality ... an integace for extended transaction models. -..

Metalevel Interface: provides
control over implementation ... I

Transaction ProceSsing Monitor

Figure 3.2: Separation of interfaces to Reflective Transaction Framework.

The extended transaction interface provides application programmers with a functional

view of extended transaction management. It is intended for programmers who under-

stand how t o use the control operations of the extended transaction model(s) best suited

for their application. They are responsible for the implementation of the transaction-aware

portion of the application, which should account for only a small portion of the applica-

tion code. This extended transaction-aware code will typically identify transactions that

require extended services, select a specific model for the transaction, and then invoke

control operations specific to the extended transaction model(s) selected (e.g., split and

join for the split/join transaction model). Similarly, the base interface provides conven-

tional transaction control operations for ACID transactions that do not require extended

services. These default control operations are implemented by the underlying T P moni-

tor and typically ir~clude the operations: Begin-Transact ion, Commit-Transact ion and

Abort-Transaction. Hence, with the exception of identifying transactions that require

extended services and selecting the appropriate model, there is no discernible difference

from ordinary transactional application development.

The metalevel interface provides an implementation view of extended transaction man-

agement. This interface concerns the transaction system programmer who wishes to aug-

ment the set of available transaction models to satisfy new application requirements. The

metalevel interface consists of building blocks that may be used t o implement a specializa-

tion of an existing control operation, such as Commit-Transaction operation for a member

transaction in a cooperative group, or to introduce new extended control operations, such

as split and join. The building blocks for implementing extended control operations

are the extended transaction services provided by transaction adapters and functionality

of the underlying TP monitor that the adapters expose.

When the need arises, new extended transaction behaviors can be defined using the

metalevel interface and made available to application developers through the introduc-

tion of control operations in the extended transaction interface; the extended transaction

interface augments the default transaction interface. This separation of programming in-

terfaces provides the means of both introducing new extended transaction behaviors and

interfaces, and developing transactional applications using these new extended transaction

operations in a manner that does not deviate significantly from "normal" transactional

application programming.

3.2.3 Open Implementation of an TP Monitor

From the Open Implementation perspective, transaction adapters present three kinds of

opening t o the underlying T P monitor on which t o build extended transaction function-

ality. Each opening serves a different purpose and has its own set of operations. In this

section we describe the purpose for each opening, how it is realized, and the operations

that each provides.

Introspection

The first opening of the underlying T P monitor is through introspection. It involves the

reification of selected aspects of an executing transaction's internal information, such as

execution state, transaction dependencies, lock conflict, and transaction relationships into

a structure called an extended transaction descriptor. Every extended transaction has

an extended transaction descriptor, which applications can use to examine reified state

information. Table 3.2 lists attributes of the extended transaction descriptor.

Table 3.2: Attributes present in the descriptor for an extended transaction.

I NAME Unique name for the extended transaction, assigned by the application. I

Attribute

ETRID

TFLID

STATE

TRANEVENTS

Description

Unique extended transaction identifier, assigned by the RTF.

Unique transaction identifier, assigned by the TP monitor.

Extended transaction state: one of'Initiated, Active, Pending, Commit-

ted, Aborted, or Terminated.

Extended transaction management events. Represented as a list of

event descriptor structures.

TYPE

INTERNALSTATE

PROPERTYLIST

EVENTHISTORY

DELEGATEXNABLED

ACQUIRE-ENABLED

DELEGATESETLIST

Ordered list of management events that have been executed, recorded

as a tuple in the form <event descriptor, timestamp>.

Transaction type (optional), assigned by application program. I
Internal transaction state (optional), assigned by application program. I
Transaction properties-(optional), assigned by application program.

Indicates whether the transaction can delegate locks.

Indicates whether the transaction can acquire delegated locks. I
List of delegate sets owned by this transaction. I

I ZBCCSNABLED I Indicates whether the transaction can relax n/w confiicts. I I S B C C ~ O L I C S I Specifies the order in which to apply semantic compatibility definitions. I I COMPATIBLITYTABLES List of semantic compatibility tables loaded by the application. I I
COOPTRANSET

DEPENDENCY-EN ABLED

To register a transaction with the Reflective Transaction Framework and create an

extended transaction descriptor for the transaction, an application uses the instantiate

command. When instantiated, a descriptor is created and the transaction is assigned an

extended transaction identifier (etrid) that uniquely identifies the extended transaction

and can be used to access its corresponding descriptor.

There is an external state attached t o each extended transaction. Typically, an ex-

tended transaction is in one of the states INITIATED, ACTIVE, PENDING, COMMITTED,

ABORTED, or TERMINATED. The external state of an extended transaction is set t o INI-

TIATED when its descriptor is created. An extended transaction is ACTIVE if it has been

initiated by an initiation event, such as a Begin-Transaction, and has not yet executed

Table of active ignore-conflict relationships.

Indicates whether the transaction is permitted to form dependencies.

DEPENDSET Table of active transaction dependencies.

one of the termination events associated with it. Eventually, the extended transaction will

either abort and move to the ABORTED state, or move to the PENDING state by issuing a

prepare operation. From the P E N D I N G state, an extended transaction can either commit

(i.e., make the COMMITTED transition), or abort (i.e., make the ABORTED transition). If

the application wishes t o express the fact that a transaction is no longer active, irrespective

of whether it aborted or committed, we refer to the state as TERMINATED.

The descriptors for all active extended transactions are stored in an extended trans-

action table, complementary t o the transaction table managed by the T P monitor. The

transaction manager of the TP monitor creates an entry in the transaction table t o record

the TRID of an executing transaction along with other pertinent information, and to track

the transaction through its execution. However, while every active transaction in the TP
monitor will have an entry in the transaction table, only extended transactions have an

entry in the extended transaction table. Data stored in both the transaction table entry

and the extended transaction table entry permit bidirectional access t o the information

stored in these tables.

Operation Definition 3.1 (instantiate) The operation instantiate (tranname , TRIDtl)

creates an extended transaction descriptor and a unique extended transaction identifier

(etrid) for t l . Both the transaction identifier (TRIDt l) and transaction name (tran-name)

are stored in the descriptor, along with the etrid. The state of the extended transaction

is set to INITIATED and the descriptor is entered into the extended transaction table. The

instantiate operation returns either the etrid value indicating success or an error code.

The reification of state information for an active extended transaction is implemented

using callbacks. Callbacks support efficient cross-layer communications and enable the TP
monitor t o pass state information t o the adapters in the Reflective Transaction Framework.

Callbacks are associated with significant events, such as a transaction attempting t o change

state (e.g., the transaction begins, aborts or commits) or a transaction requesting a service

from the TP monitor. For each transaction event there is an associated callback tha t can

be called before and after the event. If a function is registered with a callback and the event

is raised during transaction processing, execution control is passed t o the function, along

with all information relating t o the event. For example, when a transaction attempts

t o commit, an event is raised and control passed t o the TRANSACTION MANAGEMENT

ADAPTER. The adapter can perform commit pre-processing functions, such as checking

for termination dependencies tha t might exist with other extended transactions, then

update the extended transaction descriptor. Once the extended transaction descriptor

has been updated and processing for the event is complete, the adapter will then return

execution control to the TP monitor for normal processing.

The most important decisions made in designing the introspective capability involve

selecting aspects of the underlying T P monitor component that should be reified. We

systematically identified the aspects required t o implement extended transactions, by first

identifying the state required for each extended transaction service and then defining a

callback t o pass this information on t o the appropriate transaction adapter.

Introspection provides programmers with a principled way of examining selected im-

plementation state. The interface is principled in the sense that it allows access t o this

state information without forcing the transaction processing system implementation t o

expose the internal da ta structures they actually use t o represent it. An application can

use this representation to reason about the transaction,system and t o implement utilities

such as an application monitor or browser, a trigger facility, or t o compile program statis-

tics. However, a programmer cannot yet change how the underlying TP monitor behaves.

The next opening begins t o provide that additional power.

Table 3.3: Commands to inspect and modify an extended transaction descriptor.

I I both name and trid in the structure. I

Command

instantiate(name, trid)

Description

Generate an exteflded transaction identifier (etrid) and create

an extended transaction descriptor for the transaction, storing

getetrid-using-name(name) Returns the etrid value of the extended transaction descriptor

identified by the string name.

getetrid-using-trid(trid)

I gettrid-using-name(name) I Returns the trid of extended transaction identified by narne. I

Returns the etrid value of the extended transaction descriptor

identified by the value trid assigned by the TP monitor.

getname-using-etrid(etrid)

getname-using-trid(trid)

I gettrid-using-etrid(etrid) I Returns the trid of extended transaction identified by etrid. I

Returns the name of the extended transaction descriptor iden-

tified by etrid.

Returns the name of extended transaction identified by trid.

get-type(name)

setstate(name, val)

Returns the extended transaction state - initiated, active, pend-

ing, committed, aborted, or terminated.

Sets the (optional) type of the extended transaction identified

by name to the assigned value.

Returns the type of the extended transaction identified by name.

Sets the (optional) state value of the extended transaction iden-

tified by the input argument name to the value supplied as input.

continued on next page

Explicit Invocation

continued from previous page

A transaction system hides not just the state that would be useful for an application t o have

access to, but also pieces of functionality inherently present in every transaction system

tha t would be useful if exposed. For example, the ability for an application t o explicitly

acquire a lock on a dataobject or t o release a lock held by a transaction. The second kind of

opening that transaction adapters provide is called explicit invocation, which is the ability

of an application t o invoke existing functions of the underlying transaction processing

system directly, without going through the ordinary transaction system interface.

Explicit invocation is implemented by linking transaction adapters t o the functional

components of the underlying TP monitor. Applications can directly invoke T P monitor

functions through the API presented by transaction adapters. For example, an application

can query the LOCK ADAPTER for the list of locks held by an extended transaction, then

release locks on selected da ta objects. The most challenging issue in implementing explicit

invocation is t o identify the appropriate interface t o expose these new capabilities. Extra

care may be required to avoid introducing new failure modes, but runtime usage checking

can be performed t o avoid such failures. Ideally, this task of identifying the appropriate

API calls and linking the transaction adapters t o the T P monitor is performed only once

during the implementation of the framework, by someone familiar with the underlying

TP monitor. Once complete, each transaction adapter in the framework not only reifies

selected aspects of the underlying transaction system, enabling introspection, but now

provides the means t o affect the state and control behavior of active transactions.

Command

getstate(name)

set-etranprop(etrid, key, val)

get-etranprop(etrid, key)

setp(etrid, switch, val)

getp(etrid, switch)

record-event(etrid, desc, tstamp)

find-event(etrid, desc, tstarnp)

Description

Returns the state of extended transaction identified by name.

Sets the value of the property list identified by key for extended

transaction etrid to the supplied value val.

Returns the value of key for the extended transaction etrid.

Sets the value of switch for extended transaction etrtd to the

supplied value val.

Returns the value of switch for extended transaction etrid.

Record that a transaction management event has been exe-

cuted by appending the entry (description,timestarnp) to the
field eventHistory.

Search the eventHistory field for an entry matching the input

descriptor, beginning with the first entry after tstamp. If found,

then return the value of the timestamp (found) or the value 0

(not found).

So far, the cost t o transaction system implementors has been modest. They have

been asked only t o expose information and functionality that is inherently part of any

transaction processing system. In a sense, the new functionality that introspection and

explicit invocation offer has "been there all along." We now consider a new challenge,

in which application programmers want more than enhanced access t o what is already

there. Instead, they require some additional or extended transaction functionality for their

application. For example, an application may wish t o use SPLIT or JOIN t o restructure

transactions dynamically, or t o redefine the notion of operation conflict. This is where

the decision t o represent each extended transaction as a metalevel object, an extended

transaction descriptor, will come into its own. An extended transaction descriptor makes

it possible t o ensure that when a programmer changes or extends a transaction's behavior,

it will have an appropriately localized effect - they provide scope control.

Intercession - customizing transaction behavior

The third opening that transaction adapters provide is called intercession, and i t allows

programmers t o introduce extensions into a transaction processing system. Intercession

is qualitatively different from the two previous openings. Intercession builds on the intro-

spection and explicit invocation capabilities of the framework t o extend the processing of

transaction significant events in a controlled manner.

Intercession is implemented, in part, through transaction events, which are "hooks"

onto which applications can attach their extensions. Events are generally recognized as

an effective technique for implementing loosely-coupled, flexible systems where relation-

ships between code components can be dynamically established [SN92]. In the Reflective

Transaction Framework, a transaction event can be passed t o an event handler, which is

code that is executed in response to a specific event. In the framework, every transaction

management primitive, such as BEGIN, SPLIT, JOIN, COMMIT, ABORT, etc., represents an

event, as does a transaction changing state (to ACTIVE, ABORTED, COMMITTED, etc.) or

requesting a service (e.g., lock request) from the TP monitor. Consequently, all relation-

ships between a transaction and TP monitor are subject to change simply by changing

the handler associated with a given transaction event. The binding between a transaction

event and corresponding handler is captured in an event descriptor, depicted in Figure

3.3. The event descriptor identifies the name of a transaction event, provides a function

pointer t o the handler that is t o be invoked when the event is raised, and records other

information, such as guards (predicates) that are t o be evaluated prior t o invoking the

handler and properties for event execution control.

An extended transaction can own multiple event descriptors - there is a descriptor

for each event tha t has been extended. Event descriptors for an extended transaction are

TYPE

event-type: STRUCT;

EVENTNAME: char*;

GUARDS: list of char*;

HANDLER: ptrfHandler;

ATTRIBUTE: enumerated type, one of ' 'normal' ', ' 'inevitable' ' or ' ' immediate' ';
TRIGGERABLE: boolean;

end; (* event-type *I

Figure 3.3: Basic structure for representing a transaction event.

stored in the tranEvents field of the associated extended transaction descriptor (refer t o

Table 3.2). Event descriptors enable the framework t o bind an extension t o an extended

transaction seamlessly, so that applications see the original (or expected) behavior and

interface, unless the handler requires the application t o be informed about some exception

(for example, an error message returned for lack of access rights). The actual invocation

of the handler is hidden. This is accomplished by linking the application program t o

the transaction adapters in the framework, which will t r ap all control operations, such

as BEGIN, COMMIT, SPLIT, etc., and transaction system events, such as lock requests,

lock conflicts, transaction initiations and terminations, etc. After detecting an event, the

framework first locates the corresponding event descriptor in the extended transaction

descriptor, then passes the arguments t o the specified event handler. In the next section

we describe how transaction adapters actually bind a transaction significant event t o the

function tha t implements the handler, but first we identify measures that can be taken to

ensure that these extensions do not corrupt the transaction processing system.

What we have implied throughout our discussion is tha t when applications use transac-

tion adapters, their behavior must be moderated by "rules of behavior," as is customary

for software engineering in general. The capabilities available t o programmers through

introspection, explicit invocation, and intercession potentially allow private transaction

information t o be accessed and system behavior t o be altered inappropriately. To control

the set of operations that an application can invoke through the metalevel interface, the

Reflective Transaction Framework uses guards. Guards encode the rules of behavior for

accessing metalevel interface operations and processing transaction events.

Each event in the Reflective Transaction Framework can have an associated guard that

identifies a predicate t o evaluate prior t o invoking the handler. If the predicate is true

when the event is raised, the handler is invoked; otherwise, the event will be delayed or

rejected. For example, when an application calls COMMIT for an extended transaction, an.

event is raised and the framework evaluates any guards that are in place before calling the

handler assigned for commit processing. If, for example, the transaction had established a

dynamic commit-dependency during execution, a guard could be written to verify that the

dependent transaction has been committed and, if not, block the execution of the handler

until the dependency is eliminated. In this manner, transaction adapters can guard events

on a per-transaction basis, separating the specification of what should happen from when it

should happen for each extended transaction. Thus, while the extensions in the Reflective

Transaction Framework define the function that is to occur in response t o a transaction

event, guards ensure that this function is executed only at the proper time.

3.2.4 Binding Extensions to Transaction Significant Events

The current design of the Reflective Transaction Framework makes only one aspect of

the underlying TP monitor reflective, namely transaction significant event processing.

The basic idea is that transaction event invocation can be intercepted by the framework

and passed t o a corresponding handler. In this way, transaction systems programmers

can make significant events behave according to a particular extended transaction model

through the implementation of a model-specific handler. The extended transaction de-

scriptor, specifically the event descriptor field, describes how t o deal with the invocation

- i t identifies the event and handler that is t o be invoked when the event is raised.

Handlers for significant events are implemented as functions in an RTF Library (refer t o

Figure 3.1). Each function is specific t o an extended transaction model; for example, there

might be a handler for the control operation jo in of a member transaction in a cooperative

group, as well as handlers for the control operations split and jo in of a Split/Join

transaction. This immediately raises a technical difficulty: how can an application call

the same function for different extended transactions but have it execute different code?

Any developer knows that if an application defines a function twice, the linker will generate

an error saying something like, "Duplicate symbol defined: function name."

The framework could solve this problem by simply supplying the handlers in RTF

Libraries t o application programmers, but consider what would happen if an application

attempted t o call the handlers (functions) in an RTF Library directly. Unless the appli-

cation was linked directly to a particular RTF Library, it would have to build a table of

pointers t o the handlers in that RTF Library and call those handlers by pointer. Using

the same code for more than one RTF Library at a time would add yet another level of

complexity. The application would first have t o set a function pointer t o point t o the cor-

rect handler in the correct RTF Library, and then call the handler through that pointer.

Exposing RTF Libraries clearly introduces new complexities for application development.

It forces application programmers to be aware of the contents and organization of the

RTF Libraries, and to understand the functionality and differences of available handlers,

as well as creating and managing function pointers t o the required handlers.

The Reflective Transaction Framework solves this problem by providing a single place

for an application t o call each transaction control operation - the extended transaction

interface. The application is linked t o the transaction adapters in the framework and calls

extended transaction control functions exported by the extended transaction interface, not

the functions implemented in the RTF Library. The application identifies the extended

transaction for which it is making the call, either explicitly by passing the name of the

extended transaction with the call or implicitly by virtue of a call attribute. For example,

the framework can identify the extended transaction using a common TP monitor function

that performs a thread-to-trid mapping; and using the trid, the framework can retrieve the

extended transaction identifier. The framework can use the extended transaction identifier

to retrieve the associated extended transaction descriptor, then locate the address of the

function for the event handler and, finallx call that function by address. For the most

part, the framework just passes function calls from the application t o the correct handler

(function) in an RTF Library, but it can also evaluate any guards placed on the event and

perform basic error checking. Thus, the application program calls extended transaction

control operations by name in the extended transaction interface, rather than by pointer

in an RTF Library.

Relieving application developers from the burden of invoking the appropriate handler

when a transaction significant event is raised is only one role that adapters play in the

framework. Anot.her is t o bind the set of events an extended transaction can invoke,

hence defining the interface to extended services available to an application. The Reflec-

tive Transaction Framework does not a priori assume a specific transaction model for an

extended transaction. Instead, it provides the means for an application programmer to se-

lect a model for each extended transaction using the select command from the extended

transaction interface.

O p e r a t i o n Definit ion 3.2 (select) - select (transactionname, modelname) binds

a set of transaction significant events associated with the spec$ed transaction model to the

extended transaction descriptor for transactionxame.

The select command fixes the interface of an extended transaction. The framework,

however, does not assume a fixed set of events for a given t.ransaction model, nor does it

associate a handler with each event. Instead, the framework provides the means t o specify

the transaction significant events for a named transaction model, and bind a handler and

guards to each event using the following commands from the metalevel interface.

Operation Definition 3.3 (register-event) - register-event (e t r id , eventname).

creates an event descriptor structure (see Figure 3.3) for the named event eventmame and

initializes all fields in the structure. The event descriptor is stored in the TRANEVENTS

entry of the extended transaction descriptor for the transaction identified by etrid.

To bind a transaction significant event t o a handler function in an RTF Library, the

transaction system programmer calls bindhandler, providing both the name of the trans-

action event and the name of the function that will act as the handler. Normally, binding

occurs only when an extended transaction is initialized, but i t can also be used when

runtime conditions are altered and an alternate handler is required t o process the event.

Operation Definition 3.4 (bind-handler) - bindhandler (e t r i d , event name,

handler3 unctionname) sets the handler for an event to the named handler function by

storing a pointer to handler-function-name in the HANDLER field of the event descriptor.

When the application raises the event an indirect function call will be made by referencing

a pointer to the HANDLER field.

Each event can be associated with one or more guards tha t identify a predicate to

evaluate prior t o invoking the handler. Guards are implemented as functions in an RTF
Library. If all predicates (guards) evaluate t o TRUE when the event is raised, the handler

is invoked. Otherwise, the event may be delayed or rejected, depending on scheduling

properties of the event.

Operation Definition 3.5 (assign-guard) - assign_guard(etridtl, eventname,

guardname) appends the string guard-name to the GUARDS field of the event descriptor for

event-name. If the keyword NULL is supplied as input for guard-name, all values recorded

in the GUARDS field are removed and the field is set to null.

Each event is associated with properties that specify what actions the framework can

take in scheduling the execution of the associated handler. The possible actions include

variously allowing, delaying or rejecting the execution of the handler, or possibly triggering

another event t o satisfy a dependency or runtime correctness constraint. We describe the

use of event properties later in Section 3.3.3, but note here tha t event properties are

recorded in two fields: the ATTRIBUTE field and the TRIGGERABLE field.

When an event descriptor is created, the ATTRIBUTE field is initialized to "normal",

indicating that , if necessary, the execution of the handler can be delayed or rejected. The

ATTRIBUTE field can be redefined using the command event-property.

Operation Definition 3.6 (event-property) - event-property(etrid, 'eventname,

event-type) sets the attribute field of the event descriptor for event-name to the value

event-type, where event-type is either ' 'normal ' ' , ' ' inevi table ' ' or ' ' immediate' ' .

The triggerable field of the event descriptor indicates whether the framework can ini-

tiate the event, a property orthogonal to the event properties "normal", "inevitable" or

"immediate". When an event descriptor is created, the triggerable field is initialized t o

FALSE, indicating that event event-name cannot be triggered. The field can be reset using

can-trigger, providing the name of the event and boolean value as input.

Operation Definition 3.7 (can-trigger) - can-trigger (etrid , eventname, bool)

sets the triggerable field of the event descriptor for eventdame to the boolean value.

To summarize, when a transactional application needs t o run an extended transaction,

it first creates an extended transaction descriptor, then selects a specific extended trans-

action model. In response, the framework creates and initializes an extended transaction

descriptor, along with an event descriptor for each transaction significant event the model

supports, storing the address of the event handler function in the event descriptor. To

invoke a control operation in an RTF Library, an application calls that function in the

extended transaction interface and passes the identifier of the extended transaction. The

framework retrieves the extended transaction descriptor, then calls the handler function

using the address stored in the event descriptor.

We close our discussion on the architecture of the Reflective Transaction Framework

with a summary of commands in the metalevel interface, presented in Table 3.4. These

commands are made possible via various openings presented by the open implementation

of the TP monitor - introspection, which enables an application t o reify selected state

for a transaction in an extended transaction descriptor; explicit invocation, which enables

an application t o directly invoke existing functions provided by functional components of

the T P monitor; and, intercession, which builds on introspective and explicit invocation

capabilities t o define new extended transaction control operations and link these operations

with a specific extended transaction. Some of the commands listed in Table 3.2 have

already been introduced; the balance of the metalevel interface will be presented in Section

3.3 as we describe the extended transaction services provided by the framework.

Table 3.4: Summary of the commands in the metalevel interface.

Transactzon Adapter Command

i n s t a n t i a t e

register-event

bindhandler

ass ignguard

event p r o p e r t y

event - tr igger

g e t e t r i d v s ingname

g e t e t r i d v s i n g - t r i d

getnamevsing-etrid

getnameusing-trid

g e t t r i d v s i n g n a m e

g e t t r i d v s i n g - e t r i d

t r a n s t a t e

set- type

g e t -type

set s t a t e

g e t s t a t e

s e t s tranprop

get-etranprop

record-event

f ind-event

s e t p

ge tp
begin-tran

commit-tran

abort -tran

thread-to-trid

def inedependency

co~ltinued on next page

Interface Exported B y

TRANSACTION

MANAGEMENT

ADAPTER

I

Responszbzlzty

Initialization

Extended

Transaction

Descriptor

Transaction

Management

Execution

Transaction Adapter Command

f ormdependency

deletedependency

enabledependency

disabledependency

l i s t dependency

lock

unlock

unlock-all

l ockshe ld

l o c k s s a i t f or

l o c k l i s t

create

de l e t e

insert

remove

delegate

acquire

load-t able

remove-table

ignore-conflict

removeicrecord

c lear- icset

s e l e c t -table

clear-policy

continued from previous

Interface Exported By

LOCK

ADAPTER

CONFLICT

ADAPTER

page

Responsibility

Control

Lock

Management

Transaction

Restructuring

Semantic

Conflict

3.3 Extended Transaction Services

This section presents the detailed design of the extended transaction services provided

by the Reflective Transaction Framework. Specifically, we present the design of dynamic

transaction restructuring, semantic transaction synchronization and transaction execution

control. These extensions were selected because they provide a base for expressing a wide

range of extended transaction behaviors and, consequently, provide the greatest lever-

age t o implement advanced transaction models and semantics-based concurrency control

protocols. In this section we consider each extended transaction service in turn, first pre-

senting an overview of the extension as supported by our design, then considering the

implications of adding this extension and identifying assurances that must be made to

guarantee transaction correctness and, finally, listing commands provided to utilize this

new extended transaction service.

It should be emphasized that we do not intend that an application programmer use

these extended transaction services directly. Rather, we expect these services and associ-

ated commands t o be used by systems programmers t o implement higher-level primitives

for extended transactions. In terms of our separation of programming interfaces, described

in Section 3.2.2, commands for these extended transaction services make up the metalevel
interface that transaction system programmers will use t o implement extended transaction

control operations in the extended transaction interface.

3.3.1 Dynamic Transaction Restructuring

An essential requirement of many advanced transaction models is the ability for mem-

ber transactions t o dynamicaZly restructure. From a transaction execution point of view,

dynamic restructuring is the ability of an extended transaction t o transfer ownership of

da ta objects to another extended transaction explicitly. Dynamic restructuring allows an

extended transaction to selectively make tentative and partial results, as well as give hints,

such as coordination information, accessible t o other extended transactions. Dynamic re-

structuring also makes it possible to decouple the fate of updates t o data objects from

that of the extended transaction that performed the operation(s); for instance, an extended

transaction can transfer selected data objects that will remain uncommitted but alive af-

ter i t aborts. Examples of advanced transaction models tha t can be synthesized using

transaction restructuring by resource delegation include Reporting Transactions [CRgla],

Chained Transactions [Chrgl], SAGAS [GMS87, CR921, Nested Transactions [Mos85], and

both Split and Join Transaction models fPKII88, KP921.

In our design, dynamic transaction restructuring is realized through the delegation of

locks held on da ta objects from one extended transaction t o another. After the delegation

of a lock is complete, the scope and fate of the da ta object that it protects, i.e., its visibility

and conflicts with the operations of other transactions, are dictated by the scope and fate

of the delegatee transaction.

Definition 3.1 (Delegation) The operation Delegate(tl, tn , obName) transfers owner-

ship of the lock extended transaction tl holds on obName to extended transaction t2 . More

generally, Delegate(t1, t2, DelegateSet) delegates the lock held by tl on each data object in

DelegateSet to t2 .

To perform dynamic restructuring operations, an extended transaction must have the

appropriate permissions set. Specifically, to delegate a lock, the property Delegate-Enabled

must be set t o TRUE for the delegator; and similarly, t o acquire a lock the property

Acquire-Enabled must be set t o TRUE for the delegatee. These properties, recorded in

the descriptor for an extended transaction, are set using the command setp. Thus, in

preparation for extended transaction tl t o delegate locks on data objects to extended

transaction t2 , the application must first set permissions setp (t , delegate-enabled ,
TRUE) and setp (t , acquire-enabled, TRUE), respectively.

In what we have discussed so far, a transaction delegates the lock for a single da ta

object with each invocation of deiegate. Delegation of a set of locks in a single invocation

can be regarded as the atomic invoc,d,ion of multiple delegations, one for each lock in the

set. We speak of global delegation when a transaction transfers the responsibility for all

its locks a t once, and partial delegation when a transaction transfers the responsibility for

only a subset of its locks. Global delegation is best suited for transaction models where

the set of da ta objects that will be delegated a t the termination of the transaction is

known in advance. The Nested Transaction model [Mos85] is a well-known example of

global delegation: upon commit, a sub-transaction does a global delegation of all locks

that it holds on da ta objects to its parent transaction. Other advanced transaction mod-

els that use global delegation include the Chained Transaction model [Chrgl], the Join

transaction model [KP92] and SAGAS [GMS87, CR921. Partial delegation is best suited

for transaction models that make partial results, such as hints and coordination informa-

tion, accessible t o other extended transactions, and for transaction models that support

open-ended activities where processing is unpredictable and the set of data objects that

must be transferred is only known a t the time restructuring actually occurs. The Split

transaction model [PI<H88] is a straightforward example of the use of partial delegation:

an application can select a set of objects that an extended trarlsaction holds and delegate

locks on these objects to another extended transaction. Other advanced transaction mod-.

els that use partial delegation include the Co-Transaction model [CRSlb] and Reporting

Transactions [CRSla].

To perform a delegate operation, an extended transaction must provide the name of

a structure that lists the data objects to be delegated. This structure is referred to as the

delegate set.

Definition 3.2 (Delegate Set) A delegate set is a named container of logical lock names,

where each name is associated with a data object that an extended transaction wishes to

delegate. T o create a delegate set the transaction must provide a unique name for the

delegate set and identify which transaction (delegator or delegatee) is responsible for the

delegate set (the purpose of declaring responsibility wild be described later i n this section).

After creating a delegate set, an extended transaction can then insert and remove data

objects for which it holds a lock.

The LOCK ADAPTER provides a command to create a named (empty) delegate set,

along with commands to insert and remove the names of data objects that it wishes

to delegate. Thus, to perform partial delegation, an extended transaction first creates a

named delegate set, then inserts the names of selected data objects. Similarly, to perform

global delegation, an extended transaction first creates a named delegate set and then

issues the insert command, using the keyword ALL to insert the names of all data objects

that it currently has locked at that point in time.

Operation Definition 3.8 (Delegate) de legate(t l , t a , DelegateSet, dtype)

directs the LOCK ADAPTER to transfer ownership of the lock o n each data object specified

i n the named DelegateSet from extended transaction t l to extended transaction tn . The
parameter dtype specifies when the transfer of locks is t o take place - the keyword IMME-

DIATE indicates that the transfer is to take place at once, while the keyword DEFERRED

specifies that the transfer will be deferred until the delegatee requests the locks.

Requirements for performing delegation are that the transaction have permission set

to delegate and that it hold a lock on each data object it is attempting to delegate.

Requirements for receiving the delegated locks are that the transaction have permission

set to acquire delegated data objects. In addition, both delegator and delegatee must

currently be active (i.e., initiated but not terminated). Thus, we have the following guard

for well-formed delegation.

Guard 3.1 (Well-Formed Delegation) For the delegate(t1 , t 2 , DelegateSet) operation:

Preconditions

State(t l , Active) = True AND

State(tz, Active) = True AND

Delegate-Enabled(tl) = True AND

AcquireEnabled(t2) = True AND

For each obname in the DelegateSet, Holds-Lock(tl,obname) = True

Postconditions

For each obname in the DelegateSet, folds-Loct(tl , obname) = False AND

For each obname in the DelegateSet, Holds-Lock(t2,0bname) = True

The transfer of locks from the delegator to the delegatee occurs immediately after the

delegator issues the delegate command. An alternative is to defer the transfer of the

locks on the delegated data objects until the delegatee indicates it is ready to acquire the

locks. This is referred to as deferred delegation. To perform a deferred delegation the

delegator must specify which transaction, the delegator or delegatee, is responsible for the

delegate set. This value is set when the delegate set is created. IntuitiveIy, the responsible

transaction is obligated to eventually acquire the locks on the data objects in the delegate

set. A brief example is presented to clarify this.

create(tl, mydelset , DTEE)

insert (tl , mydelset , account003)
insert (tl , mydelset , account007)
delegate (t tz , mydelset , DEFERRED)

In Line 1 extended transaction t l creates a named delegate set and identifies the del-

egatee as the responsible transaction. In Line 2 and Line 3, t l inserts named data objects

into the delegate set. Finally, in Line 4, t l delegates the locks on the data objects in the

named delegate set to t2, specifying that the actual transfer is to be deferred until t2 is

prepared to acquire the delegate set. After the delegate operation has successfully com-

pleted, t l will no longer hold locks on the data objects specified in delegateset. However,

since the actual transfer was deferred, t 2 does not yet own the locks. Until t 2 requests

the locks, they will be held by a intermediary transaction managed by the TRANSACTION

MANAGEMENT ADAPTER.

To realize the deferred delegation of data objects we introduce the operation acquire.

This operation indicates that the intended recipient of a deferred delegation (e.g., the

delegatee) is prepared to receive the locks on the delegated data objects and directs the

LOCK ADAPTER to complete the transfer.

Operation Definition 3.9 (Acquire) The operation acquire (t2, delSet) indicates

that extended transaction t2 is prepared to acquire and directs the LOCK ADAPTER to

perform the transfer.

For a transaction t o acquire a delegate set, it must be permitted t o acquire delegated

da ta objects and be the intended recipient of the named delegate set. Thus, we have the

following guard for well-formed acquire.

Guard 3.2 (Well-Formed Acquire) For the acquire operation:

Preconditions:

State(t2,Active) = True AND

AcquireEnabled(t2) = True A N D

DeEegatee(DelegateSet) = t 2

Postconditions:

For each obname in the Delegateset, Holds-Lock(tz,obname) = True

Adding Dynamic Transaction Restructuring

We now discuss the issues that arise from adding the capability for extended transactions

t o restructure dynamically through delegation, and discuss how these issues are handled.

Specifically, we first identify properties that the Reflective Transaction Framework must

preserve during transaction restructuring for key transaction correctness requirements to

be satisfied. Next, we present the application programming interface commands the LOCK

ADAPTER provides t o support dynamic transaction restructuring. Finally, we identify

transaction services required from the lock management services the TP monitor provides,

and any underlying assumptions in our design.

Bypassing the Lock Scheduler The delegation of data objects involves explicitly

passing ownership of the lock on delegated data objects from one transaction t o another.

However, the lock service of the underlying T P monitor is responsible for servicing lock

requests, typically in a first come first served manner, queuing lock requests that cannot

be immediately granted following a FIFO queuing policy. If the delegator were t o release

its lock on a da ta object that it wished t o delegate, the lock service of the underlying TP

monitor would grant the lock t o the first transaction in the lock queue - not necessarily

the delegatee transaction. Thus, to realize lock delegation, the LOCK ADAPTER must

effectively bypass the lock request scheduler of the underlying TP monitor.

To accomplish this, the LOCK ADAPTER utilizes the services of the CONFLICT ADAPTER,

t o lock and unlock da ta objects explicitly, and to relax conflicts between incompatible

lock requests. For each data object being delegated, the LOCK ADAPTER first notifies the

CONFLICT ADAPTER that a single instance of a lock conflict between the delegator and

delegatee transaction on this data object should be relaxed. The LOCI< ADAPTER then

issues a lock command to obtain a lock on the data object on behalf of the delegatee.

The lock service of the T P monitor will detect a lock request conflict, due to the fact

that a lock on the data object is already held by the delegator, raising a conflict event

to the CONFLICT ADAPTER. The CONFLICT ADAPTER relaxes the lock conflict, allowing

the delegatee transaction to obtain the lock on the data object (see the semantic conflict

discussion in Section 3.3.2 for more details). At this point, both delegator and delegatee

hold a lock on the data object. Finally, the lock adapter issues an unlock command to

release the lock on the data object on behalf of the delegator.

Preventing Transaction Deadlock One consequence of the fact that delegation by-

passes the lock request scheduler is the potential for transaction deadlock; namely, the

potential for deadlock between the delegatee and another transaction waiting for a lock

on one of the data objects being delegated. There are two approaches to dealing with

deadlocks: detection and avoidance. The first approach, detection, assumes deadlocks are

rare and allows delegation to proceed unchecked, then relies on the TP monitor to detect

deadlocks. The second approach, avoidance, explicitly checks whether the call to delegate

a lock would result in a deadlock, returning a status code to disallow the delegation.

The latter mechanism was chosen to prevent transaction deadlocks from occurring af-

ter delegation for two reasons. First, while deadlocks might be rare in correctly written

application code, the added flexibility of transaction restructuring can introduce program-

ming errors, increasing the chance for deadlocks to occur. Second, we do not want the

underlying transaction system to resolve deadlocks, as it would likely terminate the waiting

transaction, which in all likelihood would be a conventional ACID transaction. Instead, the

computational cost (e.g., CPU cycles) and risk of blocking or possible termination should

be the responsibility of the extended transaction attempting to perform the delegation.

The current LOCK ADAPTER design uses a simple procedure for detecting deadlocks during

delegation. For the delegatee transaction, the implementation simply examines the list of

locks that it is waiting for. If lock waits are rare, which is common in most application

environments, the procedure can immediately conclude that no deadlocks exist. Other-

wise, for each transaction holding the lock, the list of locks that transaction is waiting for

is examined and so on, until a cycle is detected or all locks are examined.

Guard 3.3 (Deadlock Prevention) If the delegation of any data object would result in-

deadlock the delegate operation wall not proceed and an error will be reported.

Preventing Orphaned Data Objects When performing a deferred delegation it is

necessary to protect against orphaned data objects. This can occur if both delegator

and delegatee transactions were to terminate before the delegatee executes the acquire

command, leaving the locks on the data objects "unclaimed". To prevent this, the LOCK

ADAPTER requires the transaction performing a deferred delegation to indicate which

transaction is responsible for the delegate set, the delegator (itself) or the intended del-

egatee. The transaction responsible for the delegate set will not be allowed to commit

until it has acquired the delegate set; if the responsible transaction is preparing to abort,

the locks on the data objects in the delegate set must first be acquired. Thus, the fate

of the data objects in the delegate set lie with the responsible transaction, in the sense

of visibility and committing or aborting the updates that have been made to the data

objects.

To accomplish this, the LOCK ADAPTER notifies the TRANSACTION MANAGER ADAPTER

to record a termination dependency between the responsible transaction and the named

delegate set. If the dependency cannot be created, the deferred delegation is not allowed

to succeed. This dependency is removed only when the intended delegatee issues the

acquire operation, or the responsible transaction terminates. Therefore, the termination

of the responsible transaction dictates the fate of the locks on the data objects in the

delegate set, eliminating the possibility of orphaned data objects due t o delegation.

Guard 3.4 (Preventing Orphaned Resources) The transaction responsible for a de-

ferred delegation is not allowed to commit or abort until it has acquired the delegate set.

Preserving Transaction Dependencies Delegating data objects not only means trans-

ferring ownership of the delegated locks, but also transferring the transaction dependencies

that were created by acquiring these locks. To illustrate, if transaction tl delegates an

exclusive write lock on a data object ob to transaction t2, t l is no longer able to access ob

after the delegation until t2 either releases its lock on ob or delegates the lock back to tl.

kloreover, if tl acquired the lock on ob by ignoring a conflict with transaction t3, forming a

dependency between tl and tJ, then ti's dependency on transaction ts is also transferred,

such that after delegation, ta now depends on t3.

A prerequisite for the successful delegation of data objects, then, is the successful

delegation of the dependencies associated with these data objects. This implies that the

transfer of the dependency does not introduce a cycle in the dependency graph of the

delegatee transaction. This gives rise to the following guard:

Guard 3.5 (Preserving Transaction Dependencies) If the transfer of a dependency

associated with a data object being delegated would introduce a cycle in the dependency

graph of the delegatee transaction then the delegate operation will fail.

To support the specification and implementation of dynamic transaction restructuring,

the LOCK ADAPTER provides the following operations that permit an extended transac-

tion to create and manipulate named delegate sets during transaction execution. Where

appropriate, selected status codes for each operation are provided. . c r e a t e (t l : e t r i d , d e l e g a t e s e t : s t r i n g , resp: s t r i n g) : creates a named (empty) con-
tainer for transferring access to and responsibility for data object resources from one trans-
action to another, referred to as the delegate set. The owner of the named delegate set is set
to the identifier (etrid) of extended transaction t l . The parameter resp identifies the trans-
action responsible for the delegate set (dtor = delegator and d t e e = delegatee). Return
codes for this command include:

- success

- delegate se t name not unique

- responsible transaction not specified

d e l e t e (t l : e t r i d , d e l e g a t e s e t : s t r i n g) : deletes the named delegate set. Transaction t l
must be the owner of the delegate set. The set does not have to be empty (it can contain
lock names), but it must not have already been delegated in a deferred delegation. Return
codes for this command include:

- success

- delegate se t not found

- not owner of delegate se t

- deferred delegat ion in progress

i n s e r t (t l : e t r i d , d e l e g a t e s e t : s t r i n g , dataobject : s t r i n g) : inserts the name of the
data object into the specified delegate set. If the keyword ALL is specified, in place of a data
object name, the name of all locks that t l currently holds will be inserted into the specified
delegate set. Return codes for this command include:

- success

- delegate se t not found

- not owner of delegate se t

r remove(t : e t r i d , d e l e g a t e s e t : s t r i n g ,dataObj ect : s t r i n g) : removes the name of the
data object from the specified deiegate set. If the keyword A L L is specified in place of data
object name, the names of all locks currently in the specified delegate set will be removed.
Return codes for this command include:

- success

- delegate set not found

- not owner of delegate set

- deferred delegat ion in progress

- data object not found

delegate(dtor : e t r i d , dtee : e t r i d , delegateset : s t r ing , dtype: s t r ing) : transfers .
locks on the data object specified in the named delegate set from extended transaction t l .
If the parameter dtype is set to immediate, the transfer of locks is attempted immediately.
However, if the parameter dtype is set to deferred, the locks are transferred to an inter-
mediary transaction managed by the TRANSACTION MANAGEMENT ADAPTER. Return codes
for this command include:

- success

- delegation not enabled for delegator

- delegatee is not act ive
- acquire not enabled for delegatee

- transaction deadlock detected

- transaction dependency cycle detected

acquire(ta: e t r i d , de legateset : s tr ing) : transfers locks on data objects specified in the
named delegate set to transaction t 2 . Extended transaction t a must be the intended recipient
of the delegate set and must have the property acquire-enabled set to true. Return codes
for this command include:

- success

- delegate s e t not found

- not spec i f i ed delegatee

- acquire not enabled

- dependency cycle detected

- transact ion deadlock detected

Finally, we identify the support that the LOCK. ADAPTER requires from the transaction

services of the underlying TP monitor, primarily from the Lock Manager, t o implement

dynamic transaction restructuring.

To interface with the Lock Manager of the underlying T P monitor, the LOCK ADAPTER

requires access t o the d a t a type for lock names (lockname-t). This type will be

used in constructing the delegate set, and for explicitly locking and unlocking da ta

objects during lock delegation.

To implement the delegate and acquire operations, the LOCK ADAPTER requires

that the Lock Manager export lock service interface functions t o lock and unlock

individual d a t a objects explicitly on behalf of an extended transaction.

To perform global delegation? the LOCK ADAPTER requires that the Lock Manager

export a function that returns a list of all locks held by a transaction, referred t o as

the transaction lock list.

To perform efficient deadlock detection, the LOCK ADAPTER also requires an access

function tha t returns a list of the transactions waiting for a lock on a specific data

object, referred to as the lock request list.

Finally, the LOCK ADAPTER requires that the Lock Manager allow multiple transacT

tions t o possess a lock on a data object in the same mode simultaneously. A typical

Iock manager already allows multiple transactions to hold Read (Shared) locks on a

d a t a object, so tha t multiple possession is common. However, the LOCK ADAPTER

requires the ability for multiple transactions to hold Write (Exclusive) locks as well.

Specifically, the d a t a structure used in the lock table to count the number of times

a lock is held in a particular mode, referred t o as a possession vector, must permit

multiple transactions to hold the lock in exclusive mode.

3.3.2 Semantic Transaction Synchronization

The purpose of transaction synchronization, or concurrency control, is t o mediate access

to data objects so tha t the consistency of the data is not compromised when accessed by

concurrently executing transactions. Fundamental to all transaction synchronization is

the notion of conflict - incompatibility between operations or transactions. Traditional

concurrency control used in most commercial database systems and transaction processing

systems defines conflict in terms of read and write operations [BHG87] (abbreviated as

R/W) - two operations conflict if one is a write operation.

Definit ion 3.3 (R/W Confl ic t) A n operation P in transaction tl is i n conflict with an-

other operation Q i n transaction t2 , if both operations access the same data object 0 and

at least one of them is a write operation. Operations P and Q are said to be conflicting

operations and, similarly, transactions t l and t 2 are said to be conflicting transactions.

The Lock Manager component of a TP monitor detects R / W conflicts when a trans-

action requests a lock in order to perform an operation on a d a t a object. In our de-

sign, the lock acquisition mechanism of the Lock Manager must also raise a conflict

event when a R / W conflict is detected. To perform semantic transaction synchroniza-

tion, an application must first set the property sbcc-enabled to TRUE using the command

setptl (sbcc-enabled, TRUE). This registers the CONFLICT ADAPTER t o receive a con-

flict event when the Lock Manager detects a R / W conflict involving extended transaction

t l . It is this conflict event tha t enables the CONFLICT ADAPTER to participate in resolving

R / W conflicts.

Def ini t ion 3.4 (Conflict E v e n t) The Lock Manager raises a conflict event when a R / W

conflict is detected for an extended transaction lock request. Each conflict event returns

the fo!lowing information: holdTRrD - zdentzfier of the trnnsactzon holdang the jock, hold, -

operatzon currently actzve, holdmod, - rnode the lock 2s bezng held, lockName - logzcal lock name,

r e q u e s t ~ ~ ~ ~ - identifier of the transaction requesting the lock, requestop - operation pending, and

requestmod, - mode the lock is being requested.

The basis for transaction synchronization in semantics-based concurrency control and

many advanced transaction models is the introduction of their own notion of conflict

that uses available semantic information t o relax R / W conflicts, referred t o as semantic

compatibility. Two operations are semantic compatible if their relative order of execution is

insignificant from the point of view of the application. Semantic compatibility is typically

weaker than traditional R / W compatibility and permits a higher degree of transaction

concurrency [GM83, F089, BR91, RC92).

There are several sources of information available to an application t o define seman-

tic compatibility. One source is operation level semantics, where da ta access semantics

beyond read and write are considered. For example, in the case of credit and debit on

a bank account da ta object - the commutativity property of Deposit and Withdraw

operations allows the transaction system t o achieve higher concurrency by allowing these

operations to run concurrently, where read and write operations could not. Another

source is transaction level semantics, where information on structured interactions between

transactions can be used to specify semantic compatibility. For example, cooperative se-

rializability [MP92, RC92J uses semantic information to permit conflicting operations to

run concurrently, as long as the transactions that issued the conflicting operations are

in the same cooperative transaction group. This supports collaborative and cooperative

work, where the exchange of intermediate information is desirable and necessary. A bank

customer waiting for an account balance or activity summary a t an automatic teller ma-

chine would not be delayed if the request were issued as a cooperative transaction t o other

transactions posting interest or auditing accounts. Yet another source of information is

application level semantics, where information on the application that issued the trans-

action can be used to define semantic compatibility. For example, if the application can

tolerate a limited amount of inconsistency in a query result, this information can be used

t o allow conflicting operations t o execute concurrently as long as the total inconsistency

is below the specified limit. A bank officer requiring branch balance information accurate

t o within f $10,000 could issue such a transaction during times of peak customer activity.

Generally speaking, the more semantic information available for transaction synchro-

nization, the greater the degree of concurrency that can be achieved. However, represent-

ing and using these various forms of semantic information can be problematic. Because

an overriding goal of our design is practical usability, we must strike a balance between

efficiency and the ability t o represent semantic information.

The CONFLICT ADAPTER provides a semantic transaction synchronization service that

allows an application to define and select semantic compatibility for individual extended

transactions. The only restriction it imposes is tha t semantic compatibility be expressible

in terms of either a compatibility relation or an explicit cooperation relation between ex-

tended transactions. These representations have the advantage of being simple to create.

They can be efficiently tested a t runtime and, as we shall demonstrate, they facilitate the

implementation of a wide range of semantic transaction synchronization methods.

Compatibility Relation

A number of semantic t,ransaction synchronization methods in the literature can be ex-

pressed as a compatibility relation between pairs of semantically rich operations. The

compatibility relation specifies whether two conflicting operations can be allowed t o ex-

ecute concurrently, or indicates actions that may be taken t o guide the resolution of the

conflict.

Typically, a compatibility relation reflects the general (i.e., state-independent) commu-

tativity of operations and considers only operation name or transaction type [Kor83, SS841.

In addition, state-dependent commutativity can be exploited, for example, by considering

the return values of the operations [O'N86, Wei881, and this can be further refined by con-

sidering one-sided commutativity [BR91]. In all of these cases, the allowable interleaving

of transactions can be expressed by a compatibility relation as commutative pairs of oper-

ations that can be freely reordered. However, depending on the semantics of an operation

and its relationship t o other active operations, this reordering may produce transaction

dependencies or serialization orderings. In the recoverability protocol [BR91], for example,

if a conflicting lock request is granted because the operation is recoverable with respect

to all uncommitted operations, a commit-dependency ti + t, must be created for each

transaction tj that owns a lock in a mode incompatible but recoverable to ti.

One may even go one step further by declaring two non-commutative operations se-

mantically compatible if the different effects of the two possible execution orders are con-

sidered negligible from an application point of view (e.g., a pair of deposit and withdraw

operations on bank account without overdraft protection, but with a penalty of, say,

$10.00 charged a t the end of the business day if a withdraw operation results in a neg-

ative balance). A compatibility relation may also be derived from a specification of the

precondition of the operations [AAS93]. Further, one can define semantic compatibility

relations that enforce an upper limit on the number of semantically compatible but non-

commutative operations that are out of order with respect to the serialization order of

the transactions. This latter t,ype of "bounded inconsistency" guarantee was introduced

in epsilon-serializability [RP95], and used in the proclamation [JS92] method as well.

Representing semantic information as a compatibility relation between pairs of seman-

tically rich operations can support a wide range of transaction synchronization methods

from the literature. Moreover, it lends itself to a practical implementation, as it is essen-

tially context-free - the method considers only pairs of operations or pairs of transac-

tions, rather than operation sequences, combinations of interleaving transactions, future

database states, etc. As such, these various compatibility relations can be represented

using simple semantic compatibility tables to guide the resolution of conflicts.

Definition 3.5 (Semantic Compatibility Table) The semantic compatibility of oper-

ations performed on a data object is defined by a two dimensional compatibility table: one

dimension corresponds to the operation type currently active and holding a lock on the

data object, the other corresponds to the operation requesting a lock. Each entry in a

compatibility table is of the form [Action, Dependency], where Action is one of: SOK -

the operations are semantically compatible and the conflict can be relaxed, NOK - the

operations conflict, or event - a named event (predicate) that is evaluated to determine

semantic compatibility, and where Dependency is a named transaction dependency that is

to be recorded between the two corresponding transactions if the conflict is relaxed.

A semantic compatibility table specifies the name of the data object t o which it applies,

using the keyword ALL if the table can be used for any data object. Each table also specifies

how its entries are indexed. In our current design, the options for indexing entries in the

table are OPNAME - entries are accessed using the name of the active operation and the

name of the operation requesting a lock, and LOCKMODE - entries are accessed using the

mode in which the lock is currently being held and the mode in which the lock is being

requested. Both OPNAME and LOCKMODE are supplied in the conflict event. This design

can be easily extended to include other values for indexing semantic compatibility tables;

for example, the transaction identifiers (TRIDs) provided by the conflict event could be

used t o look up information in the corresponding extended transaction identifiers, such as

such as transaction type or transaction name.

To illustrate, consider the semantic compatibility table for an Account data object

based on operation commutativity [Wei88]. Semantic compatibility between the opera-

tions Deposit, Withdraw, and Balance is reflected in the entries of the table, in which

columns represent operations currently holding a lock, and rows represent operations re-

questing a lock. Entries marked SOK indicate that the requested operation is semantically

compatible (commutes) with the concurrently executing operation, while an entry marked

NOK indicates the requested operation conflicts. Reordering commutative operations

does not produce a transaction dependency, so no dependency (ND) is recorded.

To perform an operation on the Account data object, an extended transaction would

first request a lock. If the Lock Manager detects a R / W conflict, it raises a conflict event

that the CONFLICT ADAPTER attempts to resolve using the semantic compatibility table.
In this case, a simple table lookup indexed by the name of the operation currently active -

and the name of the operation requesting the lock determine if the conflict can be relaxed.

As another example, consider epsilon serializability (ESR). In ESR, a precondition for

allowing semantically compatible but non-commuting operations is that a predicate, ESR,

must first be evaluated t o determine if a "bounded inconsistency" guarantee still holds.

Example 3.1 (Compatibility relation based on commutativity)
ACCOUNT:OPNAME

Balance

Deposit

Withdraw

As in our previous example, when the Lock Manager detects a R/W conflict, it raises a

conflict event and passes the event to the CONFLICT ADAPTER. The CONFLICT ADAPTER

performs a table lookup using the mode the lock is held and mode the lock is being

requested. If the lookup returns ESR, the CONFLICT ADAPTER evaluates the predicate

ESR using the conflict event da ta - if the predicate returns TRUE, the conflict is relaxed.

Later, in Chapter 4 we shall revisit these examples and present their implementation.

To use a compatibility relation for semantic transaction synchronization, an application

must first load the semantic compatibility table using the command load-table. This

command directs the CONFLICT ADAPTER to load the table from the specified pathname,

and assigns a name and class type to the compatibility table.

Balance Deposit Withdraw

S 0 K ; N D N 0 K ; N D N 0 K ; N D

N 0 K ; N D S 0 K ; N D N 0 K ; N D

N 0 K : N D S 0 K ; N D N 0 K ; N D

Example 3.2 (Compatibility relation based on epsilon serializability)

Operation Definition 3.10 (load-table) - load-table (t pathname, name, class)

directs the CONFLICT ADAPTER to load a compatibility table from the pathname, and assign

this table the specified name and class name.

ALL:LOCKMODE

Share(s)

Using load-table, an application can load multiple semantic compatibility tables.

These tables are stored in a compatibility table set, referred t o as CompTblSet. An

application can specify which semantic compatibility table(s) should be used for seman-

tic transaction synchronization for an extended transaction using the select-table(tl,

Share (s) Exclusive(x)

S 0 K ; N D E S R ; N D

class) command. This command appends the class name t o the sbcc-policy field of the

extended transaction descriptor.

Operat ion Definition 3.11 (select-table) The command s e l e c t - t a b l e (t l , c l a s s)

appends the class name to the sbcc-policy field of t17s extended transaction descriptor.

At runtime, in an attempt to relax a R / W conflict for an extended transaction, the

CONFLICT ADAPTER will use the semantic compatibility table(s) found in the CompTblSet

that match the class names listed in the sbcc-policy field.

Explicit Cooperat ion

The CONFLICT ADAPTER provides support for explicit transaction cooperation by enabling

an application t o establish ignore-conflict relationships between extended transactions. An

ignore-conflict relationship specifies conditions under which a transaction will allow other

transactions access t o da ta objects on which it currently holds a lock. The ignore-conflict

relationship is an essential component in constructing extended transactions that require

explicit cooperation, such as cooperative transaction groups [NZ90, MP92, RKT+9.5],

nested transactions [Mos85], as well as semantics-based concurrency control based on

structured cooperation [GM83, BK91, F089, SGMS941.

Definition 3.6 (ignore-conflict relationship) An ignore-conflict relationship specifies

that an extended transaction wishes to ignore conflicting lock requests from a specific ex-

tended transaction. For example, if an application declares an ignore-conflict relationship

on extended transaction tl with transaction t2, then subsequent lock requests from t2 that

conflict with locks held by t1 will be permitted. The ignore-conflict relationship is not

commutative.

The ignore-conflict relationships established for an extended transaction t l are recorded

in a table, referred t o as the cooperating transaction set for t l .

Definition 3.7 (Cooperating Transaction S e t) The cooperating transaction set for

an extended transaction t17 denoted CoopTr-Sehl, specifies all ignore-conflict relationships

established by t l at that point in time. Each element of CoopTr-SeGl is a unique ignore-

conflict relationship. Thus, if no explicit cooperation occurs between t l and any other

extended transaction, the cooperating transaction set C o ~ p T r S e & ~ is empty.

An application can qualify ignore-conflict relationships for an extended transaction by

specifying da ta objects and operations, thereby restricting the set of conflicts that are to be

relaxed. In addition, the application can specify a named event (predicate) that must be

evaluated t o determine if the conflict can be relaxed, and a transaction dependency that is

to be recorded if the conflict is relaxed. Thus, each ignore-conflict record in CoopTrSettl

for extended transaction t l is of the form: [CoopTran, Obj Name (optional), OperName

(optional), Event (optional), DepName (optional) , Handle (optional)] , where coop-

Tran is the name of the extended transaction that t l will allow conflicting lock requests,

ObjName is an optional parameter specifying the da ta object that t l will allow CoopTran

t o access, OperName is an optional parameter specifying the operation t l will allow C o o p

Tran t o perform on ObjName, Event is an optional parameter specifying a predicate that

is to be evaluated t o determine semantic compatibility, DepName is an optional parameter

specifying a named transaction dependency t o be recorded if the conflict is relaxed, and

Handle is an optional parameter specifying a unique name for the ignore-conflict record.

Operation Definition 3.12 (ignore-conflict) When extended transaction t l issues the

operation ignore-conf l i c t (t l , t 2 , objlame , operName , event , deplame, handle),

an ignore-conflict record is created and placed in CoopTrSehl. This operation establishes

an ignore-conflict relationship between extended transactions t l and t 2 .

To illustrate, consider altruistic locking [SGMS94], an extension t o two-phase locking

(2PL) that accommodates long-lived transactions. Under 'LPL, short transactions can

encounter serious delays, since a long-lived transaction ties up database resources for sig-

nificant lengths of time. In altruistic locking, an application can donate a data object held

by extended transaction tl that it will no longer access, thus allowing other transactions to

access it (certain constraints apply, but will be omitted from this discussion for brevity).

Donating a d a t a object does not release the lock that t l holds on the da ta object, but

simply allows other extended transactions to acquire a conflicting lock on the da ta object.

Transaction t l must still explicitly unlock data items that it has donated - thus, t l is free

to continue locking da ta items even after some have been donated.

ignore-conf lict (tl, ALL, obName, NULL, NULL, AD, DONATE) (1)

To realize lock donation, the application would simply create an ignore-conflict record

for extended transaction t l , as illustrated above in Line 1, specifying that any extended

transaction can obtain a conflicting lock on the da ta object obName. The application has

effectively donated the data object obName held by t l t o any other extended transaction

that requires access t o it.

Another brief but illustrative example of the ignore-conflict operation is the formation

of cooperative groups [NZ90, MP92, RI<T+95]. In a cooperative group the m'ember trans-

actions collaborate over shared data objects while maintaining the consistency of the data

objects. Consistency of the data objects can be maintained if other transactions that do

not belong to the group are serialized with respect t o all the transactions in the group.

Thus, conflicting operations are permitted as long as the conflicting transactions are in

the same cooperative group:

ignore-conflict(t l , t a , ALL, NULL, NULL, ND, NULL) (2)
ignore-conflict(tz, tl, ALL, NULL, NULL, N D , NULL) (3)

In the example above, extended transactions tl and t2 are members of a cooperative group.

In Line 2, tl creates an ignore conflict record, specifying that t2 can obtain a conflicting

lock on any da ta object that tl holds. Similarly, in Line 3, t2 creates an ignore-conflict

record, specifying that t l can obtain a conflicting lock, on any data object that t2 holds.

If other extended transactions, not members of this cooperative group, attempt t o access

a da ta object held by either t l or t 2 , they will receive a lock conflict.

An application can then specify that it wishes t o use explicit cooperation for semantic

transaction synchronization for an extended transaction using the command se lec t - t ab le t l

(ignoreconf l i c t) . The command will append the keyword string "IGNORECONFLICT"

to the sbcc-policy field of t 1's extended transaction descriptor. At runtime, the CONFLICT

ADAPTER will use the ignore conflict records in CoopTrSettl t o relax any R / W conflict

for t l .

Adding Semantic Transaction Synchronization

In our design, the CONFLICT ADAPTER extends the fixed transaction synchronization mech-

anism of the underlying TP monitor to support semantic transaction synchronization.

Operationally, the Lock Manager of the TP monitor and the CONFLICT ADAPTER of the

Reflective Transaction Framework combine t o form a two-step semantic conflict test. Step

one, executed by the lock acquisition mechanism of the Lock Manager, performs the stan-

dard conflict test based on the type of the operation (e.g. read or write). If the Lock

Manager detects a R / W conflict for an extended transaction, it will raise a conflict event

to the CONFLICT ADAPTER. Step two, then, is executed by the CONFLICT ADAPTER, which

will perform semantic compatibility testing using a semantic conflict rule t o determine if

the conflict can be relaxed.

The semantic conflict rule states that an extended transaction ti may acquire a lock

if R / W CONFLICTS with all other transactions owning the lock in a mode incompatible

with t; are relaxed by either a selected compatibility table(s) or an explicit cooperation

agreement between the conflicting transactions. The generality of this relaxed conflict rule

allows the CONFLICT ADAPTER to present and change the definition of conflict for one or

more underlying da ta objects or transactions selectively.

Definition 3.8 (Semantic Conflict Rule) A R / W conflict detected by the lock acqui-

sition mechanism of the underlying TP monitor can be relaxed (i-e., is semantically com-

patible) if either of the following conditions are true:

1. The semantics of the data object indicate that the operation for which the lock is

being requested is compatible with the uncommitted operation holding the lock in an

incompatible mode.

2. The transaction holding the lock on the data object has explicitly indicated that the
transaction requesting the lock has permission to perform the operation, regardless

of the basic conflict.

When operations conflict, the order of access to the d a t a object may imply a dynamic

dependency between the extended transactions that must be recorded and tracked. If a

named transaction dependency is specified in either the semantic compatibility table or

ignore-conflict record, this dependency r?lill be recorded using the services of the TRANSAC-

TION MANAGEMENT ADAPTER. Finally, if an event name is specified in either the semantic

compatibility table or ignore-conflict record, the event will be raised to determine if the

conflict can be relaxed.

In summary, an application that wishes t o use semantic transaction synchronization

must first registerwith the CONFLICT ADAPTER using the command se tp(t l , sbcc-enabled,

TRUE) . Next, the application will either load specified compatibility tables using the

load-table command or establish ignore-conflict relationships between extended trans-

actions using the ignore-conf l i c t command. Finally, the application will select the

semantic specifications for an extended transaction using the se lect command. During

execution, if a R / W conflict is detected by the Lock Manager the transaction processing

system will raise a conffict event to the CONFLICT ADAPTER which will then perform

semantic conflict testing using the selected semantic specification.

To enable an application to define and select semantic compatibility definitions for in-

dividual extended transactions, the CONFLICT ADAPTER provides the following operations.

Where appropriate, selected status codes for each operation are provided.

load-table(tt :etrid, pathname: string, name: string, class: string): Loads the named
compatibility table from the supplied pathname, assigns the unique name to the table and
stores the class name.

- Could not load speci f ied compatibility tab le .
- Table name is not unique.

- Object name not speci f ied in table .

- Index field not speci f ied in table.

remove-table(tl : etrid , name : string) : Removes the named compatibility table.

- Table not found.

ignore-conflict(tl:etrid, t2:etrid, objName:string, opName:string,
event :string, depName: string, handle : string) : Creates an ignore conflict record for
extended transaction t l and places it in CoopTrSettl. The result of this operation is that an
ignore-conflict relationship is formed between t l and t2. The parameters objName, opName,
event, depName and handle are optional.

- Duplicate ignore conflict record.

removeicrecord (t : etrid , handle : string) : Removes the specified ignore-conflict record
from the CoopTrSet for extended transaction t l .

- Could not find specified entry

clearicset (t 1 : etrid) : Removes all ignore-conflict records from the CoopTrSet for ex-
tended transaction tl.

select-table(tl : etrid, name : string) : Appends the name to the sbcc-policy field in
the extended transaction ti's extended transaction descriptor. The sbcc-policy field lists
the sources to be checked by the CONFLICT ADAPTER to relax a conflict. The keyword
"ignoreconflict" indicates the ignore conflict records in CoopTrSettl to use, otherwise the
name specifies the class name of semantic compatibility table(s).

clearpolicy(tl : etrid) : Clears the sbcc-policy field for extended transaction t l , setting
it to null.

The CONFLICT ADAPTER places two requirements on a TP monitor, in particular the

Lock Manager, t o support semantic transaction synchronization. First, the Lock Manager

must generate a conflict event when R / W conflicts are detected, so the CONFLICT ADAPTER

can perform semantic conflict testing. Second, the Lock Manager must allow the CONFLICT

ADAPTER t o affect the decision to ignore the R/W conflict raised by the conflict event. It is

our observation, however, tha t these requirements are reasonable for modern transaction

processing systems.

A conventional Lock Manager detects R / W conflicts by comparing the overall lock

status and the mode in which the lock has been requested. When the lock acquisition

mechanism detects a R/W conflict, it typically passes the conflicting request on for further

analysis, to determine if the conflict is real or whether the Iock request should be granted

- a R / W conflict may be not be a real conflict if, for example, the requesting transaction

already has a lock on the da ta item or is part of a nested transaction tha t is holding the

lock. In these cases, the function informs the lock acquisition mechanism t o grant the

lock request. In a sense, then, the Lock Manager already generates a conflict event in an

attempt to relax R / W conflicts, and we are simply generalizing the processing of this event

for semantic compatibility testing. In fact, commercial TP monitors, such as Transarc's

Encina [Tra94a] and BEA's Tuxedo [Lab93], as well as research database systems, such as

the Exodus extensible database system [CDG+9O] and the Open OODB Project [WBT92],

already allow application programs to register functions to relax detected R / W conflicts.

For these systems the implementation of semantic transaction synchronization is rather

straightforward.

3.3.3 Transaction Execution Control

Fundamental t o many advanced transaction models is the ability t o place constraints

on the execution of individual transactions. Transaction dependency rules? expressed in

terms of transaction significant events, provide a convenient way t o control the execution

of concurrent extended transactions. Simply put, dependency rules are constraints on the

execution of the significant even t s associated with an extended transaction. We begin

our discussion of the services the TRANSACTION MANAGEMENT ADAPTER provides for

transaction execution control with a description of dependency rules.

Dependency Rules

The dependencg rules used in the TRANSACTION MANAGEMENT ADAPTER are based on the

work of Johannes Klein [KIe91] and the formalism introduced in the ACTA model [CRgla,

CR941. Following [Klegl] and [CR92], we specify dependencies as constraints on the

occurrence and temporal order of certain transaction significant events. However, unlike

ACTA, the TRANSACTION M A N A G E M E N T ADAPTER does not use dependency rules merely

t o specify the interactions between the transactions in an advanced transaction model,

but as the basis for synchronizing and coordinating extended transactions a t runtime. We

build on the following two dependency primitives proposed by Klein [Klegl]:

1. el -+ e2: If el occurs, then e2 must also occur. There is no implied ordering on the

occurrences of el and ea. We refer t o this as a causal dependency.

2. es 4 e4: If es and e4 both occur, then es must precede e4. We refer t o this as an

ordering dependency.

The first primitive defines a causal dependency between two events el and e2 - if event

el occurs, then e;! must also occur. -4 causal dependency does not imply that event e2

must have already occurred a t the time el occurs. Rather, it is sufficient to permit event

el to occur if there is reliable knowledge that e2 will eventually occur, or if event ea can be

forced to occur. The second primitive defines an ordering dependency between two events

- event es must occur before e,!, otherwise the dependency rule would be violated. To

demonstrate the use of Klein's primitives in the context of transaction execution, consider

the two following well-known transaction dependency rules:

Abort Dependency [CR92]: If transaction t 1 is abort-dependent on transaction t 2 , then if t 2

aborts then t must also abort. Let the significant events are denoted as aborttl and abortt2.
Then the abort dependency between t l and t2 can be expressed as abortt2 4 aborttl.

Commit Dependency [CR92]: If transaction tl is commit-dependent on transaction t 2 , then if

both transactions commit, t l must commit before t 2 commits. Let the relevant significant

events be denoted as committl and committ2. Then the commit dependency between t l
and t 2 can be expressed as committl 4 committ2.

Klein's primitives can capture most of the important semantic constraints encountered

in practice. To illustrate, below is a list of transaction dependencies t ha t have been defined

by various advanced transaction model descriptions in the literature, taken from [CR92].

We have presented each as a dependency rule using the appropriate Klein primitive.

Begin Dependency: If transaction t 2 is begin-dependent on transaction t l , then t 2 cannot begin

executing until t l has begun. Let the relevant significant events be denoted as begintl and

begintz. Then the begin dependency between t l and t 2 can be expressed as begintl 4 begintz.

Begin-on-Abort Dependency: If transaction t 2 is begin-on-abort dependent on t 1 , then t 2 cannot

begin executing until t l has aborted. A begin on abort dependency between t 2 and t l can be

expressed as abortt2 4 begintl.

Begin-on-Commit Dependency: If transaction t 2 is begin-on-commit dependent on t l , then t 2
cannot begin executing until t l has committed. The begin on commit dependency between

t 2 and t l can be expressed as committ2 4 begintl.

Weak-Abort Dependency: If transaction t 2 is weak-abort dependent on t l l then if t l aborts and

t 2 has not yet committed, then t 2 aborts. Let the relevant significant events be denoted

as aborttll activet2 and aborttz. The weak abort dependency between t l and t 2 can be

expressed as (aborttl AND activeta) 4 abortt2.

Strong Commit Dependency: If transaction t 2 is strong commit dependent on t 1 , then if t l
commits then t 2 must also commit. The strong commit dependency between t l and t 2 can

be expressed as committl + committ2.

Termination Dependency: If transaction t 2 is termination dependent on transaction t l , then t 2
cannot commit or abort until t 1 either commits or aborts. The termination dependency

between t l and t 2 can be expressed as (committl OR aborttl) 4 (committz OR a b o r t t ~) .

Exclusion Dependency: if t l commits and t 2 has begun executing, then t 2 aborts. The exclusion

dependency between t l and t? can be expressed as (committl A N D activeta) -+ abortt2.

Serial Dependency: If transaction t 2 is serially dependent on transaction t l l then t2 cannot begin
executing until t l has terminated (I I either commits or aborts). The serial dependency

between t l and t:! can be expressed as (committl OR aborttl) 4 begint2.

Force Commit on Abort Dependency: If transaction t z is force-commit-on-abort dependent on
transaction t l , then t2 must commit if t l has aborted. The force commit on abort dependency
between t 1 and t z can be expressed as aborttl + committ2.

While this list includes most of the transaction dependencies found in advanced trans-

action model proposals in the literature, it is not exhaustive. Other dependencies that

involve transaction significant events besides the B E G I N , COMMIT and ABORT events can be

defined. Thus, the TRANSACTION MANAGEMENT ADAPTER provides a command to define

new transaction dependencies, based on the constituent events and the KIein primitive

that characterizes the type of the dependency.

Operation Definition 3.13 (Define-Dependency) The command def ine-dependency

(dependencyname, eventname,, eventnameb , dtype) defines a named dependency

between event, and eventb. The dependency type, dtype! is specified by the Klein primitive:

causal or order.

Thus, as new significant events are associated with extended transactions, the TRANS-

ACTION MANAGEMENT ADAPTER can support the definition of the new transaction depen-

dencies based on these events. First, we describe the command form-dependency that is

used t o form transaction dependencies and discuss sources of transaction dependencies.

Then we discuss how the TRANSACTION MANAGEMENT ADAPTER determines whether the

newly defined dependency can actually be enforced a t runtime.

Operation Definition 3.14 (form-dependency) When extended transaction tl issues

the command form-dependency(tl, dependencyname, ta, l a b e l) , a dependency of

type dependencyname is formed between tl and extended transaction t2, and tagged with

the assigned label. The label field is simply a handle that can be used to reference the

dependency, and typically is used to record the name of the data object that induced a

dynamic dependency.

For an extended transaction to form a dependency, we must first verify that the com-

mand is well-formed. Specifically, both extended transactions must have dependency

permissions appropriately set and the specified dependency must have been defined using

the def ine-dependency command.

Guard 3.6 (Well-Formed Dependency) For a dependency operation of the form

f orm-dependency (t dependencyname , t 2 , l a b e l) we have the following guard:

dependency-table(dependency-name) # error A N D

dependency-enabled(tl) = True A N D

dependency-enabled(t2) = True

After the guard has verified that the dependency operation is well-formed, the depen-

dency is recorded in a dependency set managed by t l .

Definition 3.9 (Dependency Set) The dependency set for an extended transaction t l ,

denoted by DepSettl, is the set of inter-transaction dependencies formed during the exe-

cution of tl .

Understanding the Sources of Dependencies

Dependencies between extended transactions may be a direct result of the structural prop-

erties of a particular advanced transaction model, referred t o as a structural dependency,

or may indirectly develop a s a result of the-interactions between extended transactions

over shared da ta objects, referred t o as a dynamic dependency.

Structural Dependency The structure of an advanced transaction model defines its

component transactions and the relationships between them. Transaction dependencies

can express these relationships, and thus specify the links in the structure. For example,

in the Nested Transaction model the parentlchild relationship is established at the time

the child transaction is spawned. This can be expressed by the child transaction, say t,,

establishing a weak-abort dependency on its parent, say t p : f om-dependency(t,, WA ,
t p , no labe l) ; and, the parent establishing a commit dependency on its child:

f orm-dependency (tp, CD , t , , nolabel) . The weak-abort dependency (WA) guarantees

the abort of an uncommitted child if its parent aborts, while the commit dependency (CD)

guarantees tha t an orphan, i.e., a child transaction whose parent has terminated, will not

commit. These structural dependencies would be formed when the child transaction is

first created, in the processing of the Spawn event.

Similarly, transaction dependencies can be used to define structural relationships be-

tween the member transactions of a number of other advanced transaction models. For

example, in the Structured Task model [BHMCSO, GMGK+ 911 and Nested Sagas model

[GMGKS91], a parent can commit only if its vital children commit; tha t is, a parent trans-
action forms an abort dependency on each vital child transaction. Cooperative Group

Transaction models [NZ90, MP92, R,KT+95] define similar dependencies between the

transaction coordinating the group and individual member transactions. Individual trans-

actions may also form structural dependencies with other extended transactions if the ad-

vanced transaction model supports coupling modes. For example, component transactions

of a Saga [GMS87] can be paired according t o a compensate-for/compensating relation-

ship [KLSSO], Relationships between a compensated-for and a compensating transaction,

as well as those between them and the saga itself, can be specified via begin-on-commit

dependency, begin-on-abort dependency, force-commit-on-abort dependency, and strong-

commit dependency [CR92]. In a similar fashion, dependencies that occur in the presence

of alternative transactions and contingency transactions can also be specified [BHMCSO].

Dynamic Dependency Transaction dependencies can also be formed at runtime by the

interaction of extended transactions over a shared data object. However, unlike structural

dependencies which are determined by the semantics of the particular advanced transac-

tion model, dynamic dependencies are determined by the data object's synchronization

properties. As discussed in Section 3.3.2, two operations conflict if the order of their

execution matters. Depending on the semantics of the operation and its relationship t o

other active operations, this conflict can be relaxed, but the reordering may produce a

transaction dependency. That is, if a conflicting lock request is granted t o an extended

transaction t; because of a relaxed conflict, then a dependency must be formed between

ti and each transaction that owns a lock in a mode incompatible with t;. For example,

the recoverability protocol [BR91] defines a compatibility relation in which two operations

can be freely reordered, but the reordering produces a commit dependency between the

two transactions. Thus, if t l invokes an operation p and later a t2 invokes an operation q

on the same d a t a object obName, then t2 can perform q but is commit-dependent on t l .
Using the recoverability relation, the CONFLICT ADAPTER can relax the conflict, but will

first record the commit dependency using the command form-dependency(t2, C D , tl ,
obname 1.

Adding Transaction Execution Control

We now discuss issues in the design of extended transaction execution control. Specifi-

cally, we shall identify what actions the TRANSACTION MANAGEMENT ADAPTER can take

t o enforce transaction dependencies, and then discuss how to ensure that a dependency

rule can be enforced a t runtime. We then conclude with application programming in-

terface commands that the TRANSACTION M A N A G E M E N T ADAPTER provides t o support

transaction execution control.

Enforcing Transac t ion Dependenc ies The TRANSACTION MANAGEMENT ADAPTER.

acts as a passive scheduler that coordinates and synchronizes the execution of transac-

tion significant events such that no transaction dependency is violated. The scheduling

is passive in the sense that the TRANSACTION MANAGEMENT ADAPTER does not raise

transaction significant events or perform the state changes of an extended transaction

by itself. Rather, a transactional application raises a significant event and the TRANS-

ACTION MANAGEMENT ADAPTER decides whether the requested event can be permitted

and at what point in time. When a transaction significant event is raised, the TRANSAC-

TION MANAGEMENT ADAPTER can only take the following actions t o enforce a transaction

dependency:

ALLOW - the event does not violate any dependencies and is permitted to execute.

DELAY - the event is dependent on some other event so it is delayed until the depen-

dency is resolved.

REJECT - execution of the event would violate a dependency rule, so the event is

rejected and an error returned t o the issuing transaction.

RAISE - there is a dependency such thaJ another event is raised (triggered) prior t o

allowing the event execution t o proceed.

Thus, the TRANSACTION MANAGEMENT ADAPTER can enforce transaction dependency

rules by variously allowing, delaying, rejecting or triggering events to occur, so that the

resulting extended transaction computation satisfies the given dependencies.

The enforceability of a transaction dependency rule depends crucially on the attributes

of the transaction significant events that occur in it. We now show how event attributes

can be naturally incorporated into our approach. The following event attributes were

introduced in [ASSR93]: (a) forcible: events that the system can initiate; (b) rejectable:

events that the system can prevent; and, (c) delayable: events that the system can delay.

We note, however, that in an implementation of the Reflective Transaction Framework

a nondelayable event would also be nonrejectable, because it happens before the TRANS-

ACTION MANAGEMENT ADAPTER learns of it. Intuitively, such a transaction significant

event is not attempted, but rather the TRANSACTION MANAGEMENT ADAPTER is notified

of its occurrence after the fact. Further, i t is possible t o have nonrejectable but delayable

events in the execution of a transaction; for example, the begin of a compensating trans-

action, or the abort of a member transaction in a cooperative group. To capture the

above restrictions and to reason more easily about the attributes of transaction significant

events, we find it useful t o introduce the attributes immediate and inevitable as combina-

tions of the above. We also believe that triggerable is a more appropriate name for forcible

events, because of their actual effect during execution - the TRANSACTION MANAGEMENT

ADAPTER can merely trigger an event, not force it t o complete. Thus our attributes for

transaction significant events are as follows. (Triggerability is orthogonal t o the other

attributes, which are easily seen t o be mutually exclusive.)

Normal: events that are delayable and rejectable;

Inevitable: events that are delayable and nonrejectable;

a Immediate: events that are onde delay able and nonrejectable; and

Triggerable: events that are forcible.

To illustrate, in Example 3.3 we present an attribute table for the transaction signifi-

cant events of an ACID transaction.

Example 3.3 (Event Attributes) The TRANSACTION MANAGEMENT ADAPTER may

trigger a transaction begin, but not a commit. It can reject and delay a commit, but

can neither delay nor reject an abort. In other words, commit is normal; begin is both

triggerable and normal.

EVENT Normal Inevitable Immediate Triggerable

COMMIT X - - -

ABORT - - X X

PREPARE X - - -

BEGIN X - - X

As described in Section 3.2.4. an event attribute is set using the metalevel command

event-property, while the triggerable attribute of a transaction event is specified using

the metalevel command can-trigger.

Some dependency rules, however, cannot be enforced a t all. For example, consider the

following ordering dependency: nbort(tl) 4 aborf(t2). This dependency rule specifies an

ordering between the abort of two transactions. But this dependency cannot be enforced

because i t specifies an ordering between two im.mecliate eventrs that can be triggered a t

any time, e.g. by a crash of the database or transactional application. The TRANSACTION

MANAGEMENT ADAPTER has no control over the decision or the triggering of this event,

and hence it cannot guarantee this dependency rule. The TRANSACTION M A N A G E M E N T

ADAPTER can only enforce ordering dependencies if the event on the right side of the

dependency rule is a normal event, such that the TRANSACTION MANAGEMENT ADAPTER.

can delay or even reject the corresponding state transition of an extended transaction.

Enforceability is also an issue for causal dependency rules, such as abort(t2) + commit(tl).

This dependency rule is also not enforceable a t runtime, since on abort of t2, in general,

it cannot be guaranteed that t l will eventually commit. Such a dependency rule can only

be enforced by the TRANSACTION MANAGEMENT ADAPTER if the event on the right side

is triggerable, or is an event that is somehow guaranteed t o succeed eventually. For ex-

ample, the TRANSACTION MANAGEMENT ADAPTER could decide that a transaction must

eventually be aborted by rejecting its commit. The dependency rule above could also be

enforced, e.g., if tl is a compensation transaction for which the system guarantees that it

will finally commit, even in the case of failures. In general, however, if a t least one term

of each clause of a causal dependency rule (in conjunctive normal form) is triggerable,

then the TRANSACTION MANAGEMENT ADAPTER can enforce the dependency rule. To

illustrate, although the ordering dependency in the previous example is not semantically

correct, it can be part of a more complex dependency, such as: (abort(tz) 4 commit(tl))

V abort(t3). In this dependency rule, the term abort(ts) is triggerable, therefore, the de-

pendency rule can be enforced by the TRANSACTION MANAGEMENT ADAPTER. Note that

this is not a necessary condition for the enforceability of a dependency rule, however it is

sufficient and can be checked efficiently a t runtime.

Guard 3.7 (Enforceable Dependencies) When a transaction dependency is defined

using the command def ine-dependency (dependencyname , eventname,, eventnameb,

dtype) , the TRANSACTION MANAGEMENT ADAPTER will attempt to determine i f the de-

pendency can be enforced at runtime, based on the dependency type and the attributes of

the associated events. If it cannot determine whether the dependency is enforceable at run-

time, it will create the dependency but return a status code warning that the dependency

may not be runtime enforceable.

Operations for Dependency Management

To support the specification and management of transaction dependencies for execution

control, the TRANSACTION MANAGEMENT ADAPTER provides the following operations in

its metalevel interface. Where appropriate, selected status codes are provided.

definedependency(dependencyname:string, eventname,:string, eventnameb:
s t r i n g , dtype: s tr ing) : Installs a new transaction dependency type for applications to
use in controlling the execution of extended transactions. The dependency-name is a string
that applications will refer to when forming the dependency, event-name, and eventnameb
are strings identifying the constituent events, and dtype is a string specifying the type of
the dependency (causal or order).

- Success

- Dependency name is not unique

- Transaction significant event (s) not defined

- Dependency type not provided or invalid

- Success with error: dependency not runtime enforceable

f omdependency (t i : e t r i d , dependency: s t r i n g , t j : e t r i d , l a b e l : s t r i n g) : Attempts
to form a transaction dependency of the specified type between between ti and t j . If the
dependency is permitted, it assigns the label to the dependency and installs it in the depen-
dency set.

- Success
- Transaction not allowed t o form dependencies

- Dependency not defined

de le tedependency(t i : e t r i d , dependency: s t r i n g , t j : e t r i d , l a b e l : s t r i n g) :

Rernoves the named dependency between ti and t j from the dependency set. If the keyword
ALL is used for the name of the dependency, then the Dependency Set of ti is emptied.

- Success

- Dependency not found

enabledependency (t i : e t r i d) : Sets a boolean flag indicating that ti can form and partic-
ipate in transaction dependencies.

disabledependency (t i : e t r i d , DependencyType : s t r i n g) : Specifies that extended trans-
action ti cannot form the named dependency.

- Success
- Dependency of t h i s type i s already recorded in dependency se t

l i s t dependency (t i : e t r i d , buf fer : s t r i n g) : Returns a list of the transaction dependen-
cies in the Dependency Set of extended transaction t;. Each dependency is represented in
the form: (dependency-name:string, transaction:etrid, 1abel:string).

- Success

- Invalid transaction name

These operations provided by the TRANSACTION M A N A G E M E N T ADAPTER enable an

application t o define, record and manage both structural and dynamic transaction depen-

dencies for t he execution control of extended transactions.

3.4 Closing Remarks

This chapter presented the Reflect.ive Transaction Framework. First, our design objectives

were s tated, followed by an overview of the framework architecture and description of the

Open Implementation tha t the framework provides t o an underlying TP monitor. Three

kinds of implementation opening were discussed, introspcction, explicit invocation and

intercession, each serving a different purpose. Introspection allows the programmer t o

look into selected aspects of the TP monitor and active extended transactions, through

an appropriate abstraction layer. Explicit invocation makes available selected transaction

processing functionality that was previously hidden. Intercession lets the programmer

add transaction extensions to the substrate and make modifications t o the conventional

transaction processing, all within boundaries defined by the metalevel interface.

The balance of the chapter utilized the Open Implementation provided by the Reflec-

tive Transaction Framework t o introduce three new extended transaction services - trans-

action restructuring through resource delegation, transaction synchronization through

application-defined conflict, and execution control through the management of trans-

action dependencies. These extensions are encapsulated in reflective software modules

called transaction adapters, which are implemented over TP monitor software. Trans-

action adapters do not duplicate existing functionality t o implement these transaction

extensions, but instead extend the functionality provided by the TP monitor - that is, the

framework augments existing transaction behaviors. This not only eliminates unnecessary

infrastructure development by building on existing services, but is designed to provide

efficient, robust base processing for extended transactions. Another way of looking a t

this is that we have taken a divide-and-conquer approach of first identifying services for

extended transactions and then incrementally implementing functional extensions in indi-

vidual transaction adapters. This is in sharp contrast t o related research efforts that have

attempted t o define and construct an extended transaction facility from scratch.

Chapter 4

Demonst ration

The previous chapter introduced the main abstractions and interfaces which the Reflective

Transaction Framework provides for implementing extended transactions, as well as the

means by which these can be tailored to meet the needs of specific situations. Small

examples were used to illustrate how these were embodied in the framework and used in

practice. The purpose of this chapter is to pull together the various ideas encountered

earlier by presenting longer, more detailed examples which also serve to illustrate the range

of extended transaction behaviors the Reflective Transaction Framework can support.

4.1 Application Structure

While applications are free t o select and use framework features in whichever ways are

appropriate, there is a general schema which characterizes most transactional applications.

The scheme, illustrated in Figure 4.1, has two sections - initialization and general running.

The initialization phase sets up and initializes the various structures that will be used

when an application is running. The objective of this initialization phase is to augment

the set of available handlers for extended transaction control operations in order t o satisfy

new application requirements, starting most likely from a published description of an ad-

vanced transaction model. There are three principal steps in this process. The first step is

t o identify the set of transaction significant events associated with the advanced transac-

tion model. This establishes the set of transaction control operations that an application

can invoke t o control the execution of an extended transaction based on this advanced

transaction model. The second step is to define the actions (handler implementation)

for these transaction significant events, characterized first in terms of the different types

of transaction dependencies (for example, commit dependency and abort dependency),

and second, in terms of transactions' effects on da ta objects (their state and concurrency

status, that is, synchronization stat,e). Through the former, one can specify relationships

between significant (transaction management) events, such as begin, commit, s p l i t , and

join, pertaining t o different transactions. Also, conditions under which such events can.

occur can then be specified precisely as structural dependency rules. The third step is

t o consider available semantic information which may be used to relax conflicts between

extended transactions, beginning with any ignore-conflict relationships between extended

transactions, identifying those operations with respect t o which R / W conflicts do not need

to be considered, and conflicts that can be relaxed by specifying the semantics of data

accesses performed by an extended transaction. Once handlers for the extended transac-

tion significant events have been defined, the new control operations can be added t o the

extended transaction interface where they will be available for application programmers

t o use.

Init Run
Link RTF library

/ Link TPM library
Identify Transaction Events
splil join, etc.

Define Event Semantics Select Extended Transaction Model(s)

Structural Dependencies

Transacfion Synchronization

I
Code Transactional Application

Restruchvrhvrng
xmeentimt.

..lect

beein, split, join, mtc.

Available Semantics I
Compatibiliry Tables

Run begin Application / '[[r
split

Add to RTF Library Call TP Monitor

extended transaction operationr
split, join, etc. Update RTF structures

Figure 4.1: Schematic structure of developing transactional applications using the RTF.

Once these initialization tasks have been completed, the extended transaction inter-

face is ready for general use in transactional application programs. In general, application

development proceeds as follows. First, an application programmer links their program

to the transactional constructs provided by the TP monitor and t o the RTF library con-

taining the extended transaction control operations. The available advanced transaction

model control operations may be organized into libraries in a number of ways - one library

containing the extended transaction control operations for all available extended trans-

action models, one library for each particular class of application program, or possibly

a library for each particular class of advanced transaction model (cooperative, controlled

execution, long-lived, etc.). The application programmer will then code the transactional

application, in the 'C' programming language, using the commands instantiate to in-

dicate the transactions that require extended transaction services and se lect t o select a

particular advanced transaction model (i.e., the set of control operations the transaction

can invoke a t runtime) for each extended transaction. The programmer will then finish

coding the application, using commands from both the base transaction interface and

commands from the extended transaction interface.

At runtime, the Reflective Transaction Framework will initialize an extended trans-

action descriptor with event descriptors for each extended transaction. At some point,

triggered either by an extended transaction control operation or a transaction processing

event such as a lock conflict, base transaction processing halts and computation will shift

from the transactional application to a transaction adapter in the framework for extended

transaction processing. The various actions defined for the extended t,ransaction during

the initialization phase will be performed, which may involve making function calls to the

underlying TP monitor on behalf of the extended transaction. Once extended transaction

processing is complete, the da ta structures managed by the framework will be updated to

reflect the newly established state of the extended transaction and control is returned to

the transactional application for default transaction processing.

4.1.1 Configuring or Extending the Base Level

Before going on t o review commands in the Reflective Transaction Framework's metalevel

interface, there is one particular feature pertaining t o the use of the baselmeta distinc-

tion in the framework that is worth exploring. This aspect of the Reflective Transaction

Framework's design represents a departure from earlier Open Implementation designs.

In Open Implementations, the separation of base and meta interfaces is normally orga-

nized around the distinction between what the client application requires of the abstraction,

and how the abstraction should go about providing (aspects of) that functionality. One

way of thinking about this is that the base level sets the terms of the abstraction, while

the meta level configures that abstraction appropriately for the needs of the client. The

meta interface typically deals in terms of different sorts of objects - those used (on some

level) to realize (implement) the abstraction. In this way, Open Implementation "opens

up" the implementation of the underlying abstractions through the meta interface.

The Reflective Transaction Framework uses Open Implementation to the same end -

that is, t o allow applications to specialize transaction facilities to their own needs. How-

ever, the metalevel objects in the Reflective Transaction Framework - extended transaction

descriptors, lock conflicts, delegate sets, semantic compatibility specifications, transaction

dependencies, etc.- are abstract. They are quite distant from the implementation level

objects managed by the underlying TP monitor - locks, latches, log records - and much.

closer to application level semantics. This in turn affects the way in which the metalevel

works. Activity at the metalevel in the Reflective Transaction Framework largely special-

izes base level transaction processing with semantic features of the application domain

(such as application-defined conflict, dynamic transaction restructuring or execution con-

trol). Once this specialization has been done, those semantic features become available for

application programmers to use in base-level (application) programming. In other words,

we can think of this not so much as configuring the base level, but more as extending it.

So it is not simply that the framework specializes the structures of the underlying TP
monitor and the implementation which lies behind it, but it specializes and extends the

base level T P monitor services t o the needs of the application.

4.1.2 Metalevel Interface Commands

The basic purpose of the metalevel interface is t o facilitate the implementation of extended

transactions. The metalevel interface provides an implementation view of extended trans-

actions, intended for expert transaction system programmers with skills in transaction

model specification t o implement primitives for new extended transactions. The individ-

ual commands in the metalevel interface generalize extended transaction behaviors and

allow transaction system programmers to master one set of interfaces tha t can be used to

develop a variet.y of advanced transaction models and semantics-based concurrency control

protocols. The commands in the metalevel interface are summarized below in Table 4.1.

Table 4.1: Summary of Transaction Adapter Command Set (TRACS).

in s tan t ia t e

register-event

continued on next page

Generates an extended transaction identifier (ETRID) and creates
an extended transaction descriptor for the transaction.

Creates a descriptor for a named transaction event and stores the
structure in the extended transaction descriptor.

bind-handler

assignguard

Binds a handler to the specified event, recording a pointer to the
handler function in the HANDLER field of the event descriptor.

Records the name of the guard (predicate) in the GUARDS field of
the event descriptor.

continued from previous

Command

event property

event-tr igger
'

g e t e t r i d a s i n g n a m e

g e t e t r i d a s i n g - t r i d

getnamewsing-etrid

getnameasing-trid

ge t tr idws ingname

g e t t r i d w s i n g - e t r i d

t r a n s t a t e

set -type

get-type

s e t s t a t e

g e t s t a t e

set-etranprop

get-etranprop

s e t p

getP

record-event

f ind-event

begin-tran

commit -tran

abort -tran

page

Description

Sets the ATTRIBUTE field of the event descriptor to one of the

values: normal, inevitable, or immediate.

Sets the TRIGGERABLE field of the event descriptor to a boolean

value, indicating whether the event can be triggered.

Returns the ETRID of the named transaction.

Returns the ETRID of the extended transaction identified by TRID.

Returns the name of the extended transaction identified by ETRID.

Returns the name of the extended transaction identified by TRID.

Returns the TRID of the named extended transaction.

Returns the TRID of the extended transaction identified by ETRID.

Returns the extended transaction state, which is one of: initiated,
active, pending, committed, aborted, or terminated.

Sets the optional type of the named extended transaction.

Returns the optional type of the named extended transaction.

Sets the optional application state of the named extended
transact ion.

Returns the optional application st ate of the named extended
transaction.

Sets the value of the property list identified by key to the supplied
value; if the key is not found, a new property list entry is created.

Searches the property list for key and returns the associated value.

Sets the value of the selected field to the supplied value.

Returns the value of the specified field.

Records that a transaction significant event has occurred by
appending the entry (event descriptor, timestamp) to the field

EVENTHISTORY.

Searches the EVENTHISTORY field of the extended transaction de-
scriptor for the specified event starting from a specified point in

the event history. Returns either the value of the timestamp (event
found), or the value 0 (event not found).

Begin normal application processing for a specified transaction.

Calls TP Monitor commit command for a specified transaction.

Calls TP Monitor abort command for a specified transaction.

continued on next page

92

continued from previous

Command

thread-to-trid

def inedependency

f ormdependency

deletedependency

enabledependency

disable-dependency

l i s tdependency

unlock

lock

un1ock;ill

l o c k s b e l d

l o c k s a a i t f o r

l o c k l i s t

create

d e l e t e

insert

remove

delegate

page

Description

Returns the TRID of the transaction associated with the applica-

tion thread, or an error indicating the thread is not running in

the context of an active transaction.

Installs a new transaction dependency type for applications to use

in controlling the execution of extended transactions.

Attempts to form a transaction dependency of the specified type

between two extended transactions.

Removes the specified dependency between two extended

transactions.

Sets a boolean flag indicating that the extended transaction can

form and participate in transaction dependencies.

Specifies that the extended transaction cannot form or participate
in the named transaction dependency.

Returns a list of the dependencies currently active for the spec-
ified extended transaction. Each entry in the list is of the form:
dependency-name, etrid, label.

Directs the LOCK ADAPTER to release the lock that the transaction

holds on the specified data object.

Directs the LOCK ADAPTER to attempt to acquire a lock on the
specified data object for the transaction.

Directs the LOCK ADAPTER to release all locks currently held by

the transaction.

Returns a list of all locks currently held by the transaction.

Returns a list of all locks the transaction is waiting to acquire.

Returns a list of all transactions that hold a lock on the specified

data object.

Creates a named (empty) container for transferring access to and
responsibility for data objects from one transaction to another,

referred to as a delegate set.

Deletes a named delegate set.

Inserts the name of a data object into a specified delegate set.

Removes the name of a data object from a specified delegate set.

Directs the LOCK ADAPTER to transfer ownership of and respon-

sibility for the data objects listed in a specified delegate set from

one extended transaction to another extended transaction.

continued on next page

Most of the metalevel commands outlined here have been seen, in one form or another,

in the discussion and examples laid out in the previous chapter.

continued from previous

Command

acquire

load-table

remove-table

ignore-conf l i c t

removeicrecord

c l e a r i c s e t

select-table

c l earqo l i cy

4.2 Implementing Extended Transactions

page

Descrzptaon

Directs the LOCK ADAPTER to complete the transfer of a deferred

delegation, moving the data objects from an intermediary trans-
action to the delegatee transaction.

Loads the name compatibility table from the specified pathname.

Assigns a unique name to the table and records the class name.

Removes the name compatibility table.

Creates an ignore-conflict record for an extended transaction and
places the record in the cooperative transaction set.

Removes the specified ignore-conflict record from the cooperative
transaction set of the specified extended transaction.

Removes all ignore-conflict records from the cooperative transac-
tion set of the specified extended transaction.

Appends the specified name to the SBCCPOLICY field in the ex-
tended transaction descriptor. The SBCCPOLICY field identifies
sources that are to be checked by the CONFLICT ADAPTER in at-
tempting to relax a R/W CONFLICT.

Clears the s ~ c c s o ~ r c ? field for an extended transaction.

In this section we demonstrate the application of the Reflective Transaction Framework

to implement a number of important extended transactions from the literature. These ex-

amples serve t o demonstrate the various facilities and principles put forth in the previous

chapter, putting them together in larger, more detailed examples which demonstrate both

the range of the Reflective Transaction Framework and the style of programming it sup-

ports. The first set of examples illustrates the implementation of selected advanced trans-

action models, while the second set illustrates the implementation of selected semantics-

based concurrency control protocols. Specifically, we present the implementation of the

following advanced transaction models:

a Split and Join Transactions [PKH88];

a Chain Transactions [CR94];

a Reporting Transactions [CR94];

a Cooperative Transaction Groups [RC92, NZ901.

And, the following methods for semantics-based concurrency control:

Commutativity [Wei88];

Recoverability [BR91] ;

Epsilon-Serializabili ty [RP95] ;

Altruistic Locking [SGMS94].

4.2.1 The SplitIJoin Advanced Transaction Model

In the Split/Join Transaction model [PKH88, KP921 it is possible for an application to

split an extended transaction tl into two transactions, t l and t2, and to join two extended

transactions tl and tz into one joint transaction t2. For simplicity, we will discuss Split

Transactions and Joint Transactions as two distinct advanced transaction models.

Split Transactions Split transactions allow an application to dynamically split the

database resources held by a (long) transaction into two or more smaller transactions. An

application can use split transactions to release partial results, by committing the trans-

action that has been split off before the splitting transaction is committed. This makes

selected changes visible to the other transactions, even though the transaction that made

the changes is still in progress. Splitting also allows other short-duration transactions,

that are waiting for the data objects released as a result of the partial commitment to

proceed. This has the potential for increasing concurrency, as short duration transactions

would not be made to wait until the long transaction commits. Such possibilities are

especially beneficial for CAD/CAM, VLSI design, and software development applications

because of their long-running activities [RC92, CR941.

Extended transactions in the split transaction model are associated with four transac-

tion control operations, namely begin, s p l i t , commit, and abort. The begin, commit,

and abort operations have the same semantics as the corresponding operations of the

default ACID transaction model. In our implementation of split transactions, an applica-

tion splits an extended transaction, say t l , by executing the transaction control operation

s p l i t (nametl, namet:!, objSet). Arguments to the s p l i t command include the name of

the split transaction, which must already exist and have an extended transaction descrip-

tor, and the names of data objects that are to be split off, referred to in the literature as

the object set fPKH88, KP921. At the time of the split, tl will transfer to t2 the locks on

data objects listed in objSet. In practice, applications define the object set by selecting

the data objects to split from the re-structured transaction. Once the split operation is

complete, tl and t2 can commit or abort independently. In addition, the transactions can

further split, creating new split transactions. The following code segment outlines how

the s p l i t transaction control operation handler is synthesized using commands from the

metalevel interface:

split,procedure(tranfrom, t ranto, l ock l i s t) C
splitFrom = getetrid-using-name(tranfrom);
splitTo = getetrid-using-name (tranto) ;
i f active (t ranstate (splitTo)) <

/* create a delegate s e t f o r the lock t ransfer */
status-create (sp l i t From, s p l i t Set , DTOR) ;
i f (s ta tus ! = success) e r ror (spl itFrom, s ta tus) ;
/* inser t locks from lockList into delegate s e t */
fo r each lockname in lockList do C

status=insert (splitFrom, s p l i t s e t , lockname) ;,
if (s ta tus != success) error(splitFrom, s t a tu s) ; 1

/* delegate locks */
s ta tus = delegate(splitFrom, spl i tTo, s p l i t s e t , immediate);
i f (s ta tus != success) error(sp1itFrom. s ta tus) ;
/* create and record event descriptor with timestamp */
stime = timestamp0 ;
eventd = s t r ca t (' ' s p l i t : ' ' , t ran to) ;
recordEvent (splitFrom, eventd, st ime) ;
/* delete the delegate s e t */
s ta tus = delete(sp1itFrom. s p l i t s e t)
/* return execution control t o sp l i t t i ng transaction */
return(success) ; 1

1

Figure 4.2: Definition of the split transaction control operation.

Joint Transactions Extended transactions in the joint transaction model are asso-

ciated with four transaction control operations, namely, begin, jo in , commit and a b o r t .

The begin, commit and a b o r t operations have the same semantics as the corresponding

operations of the default ACID transaction model. The transaction control operation j o i n

is a termination event, in addition t o the standard commit and a b o r t events. That is, it

is possible for an extended transaction, instead of committing or aborting, to join another

extended transaction. The joining transaction transfers its da ta objects bo the joint trans-

action and then terminates. The effects of the joining transaction are made permanent

in the database only when the joint transaction commits; otherwise, they are discarded.

Thus, if the joint transaction aborts, the joining transaction is effectively aborted.

In our implementation, an application can join an extended transaction, say t l , with

another extended transaction ta by executing the transaction management operation

joint l (nametl ,namet2). The argument to the jo in command simply identifies the name of

the joint transaction, which must already exist and have an extended transaction descrip

tor. The join procedure transfers all locks held by tl to t2, then terminates the execution

of t l . This is accomplished by first creating a delegate set, inserting the names of all data

objects tl holds into the set, and delegates the locks. Since the join operation transfers

all locks an extended transaction holds, the transaction system programmer will use the

argument ALL for the insert command. After the delegation is complete, t2 can freely

access the data objects tl delegated and is responsible for committing or aborting the

effects of t l . Thus, we synthesize the jo in operation using commands from the metalevel

interface as follows:

join-procedure(fromtran, totran) C
joinFrom = getetrid-using-name(fromtran) ;
joinTo = getetrid-using-name (totran) :
trid- joinFrom = gettrid-using-name (f romtran) ;
if active (transtate(joinT0) I

/* create a delegate set for the lock transfer */
statuszcreate (joinFrom, joinDelSet , dtorl ;
if (status != success) error(joinFrom, status);
/* insert the locks currently held */
status=insert(joinFrom, joinDelSet, all);
if (status ! = success) error (joinFrom, status) ;
/* delegate locks */
status = delegate(joinFrom, joinTo, joinDelSet, immediate);
if (status != success) error (joinFrom, status) ;
/* create and record event descriptor with timestamp */
stime = timestamp0 ;
eventd = strcat("join:", fromtran);
recordEvent (joinFrom, eventd, st ime) ;
/* delete the delegate set */
status = delete(joinFrom, joinDelSet);
/* commit transaction */
commit,tran(trid-joinFrom);
/* return control to invoking application */
return(snccess) ; 1

3

Figure 4.3: Definition of the join transaction control operation.

Once these handlers for the split and jo in control operations have been defined using

the rnetalevel interface, the operations can be added to the extended transaction interface

where they will be available for transactional application programmers to use.

4.2.2 The Chain Transaction Model

A special case of the joint transaction model is one that restricts the structure of joint

transactions to a linear chain of transactions, which are calIed Chain Transactions [CR94I1.

As with joint transactions, extended transactions in the chain transaction model are asso-

ciated with four transaction control operations, namely, begin, join, commit, and abort.

A chain transaction is formed initially by a transaction joining another extended transac-

tion and subsequently by the joint transaction joining another extended transaction. We

implement chain transactions by introducing a test in the jo in operation that restricts

the invocation such that only linear structures result, as illustrated in Figure 4.4.

chain- join-procedure (fromtran, totran) C
joinFrom = getetrid-using-name (f romtran) ;
joinTo = getetrid-using-name(totran) ;
trid- joinFrom = gettrid-using-name (f romtran) ;
if active (transtate(joinTo)
if f irstsplit (joinFrom) 4

/* create a delegate set for the lock transfer */
status=create(joinFrom, joinDelSet, dtor);
if (status != success) error(joinFrom, status) ;
/* insert the locks currently held */ -
statuszinsert (joinFrom, joinDelSet , all) ;
if (status != success) error(joinFrom, status);
/* delegate locks */
status = delegate (joinFrom, joinTo , joinDelSet , immediate) ;
if (status != success) error (joinFrom, status) ;
/* create and record event descriptor with timestanp */
stime = timestamp();
eventd = strcat (' 'join: ' ' ,totran) ;
recordEvent(joinFrom, eventd, stime);
/* delete the delegate set */
status = delete(joinFrom, joinDelSet);
/* commit transaction */
comnit,tran(trid-joinFrom) ;

/* return control to invoking application */
return(success) ;

1
3

Figure 4.4: Definition of join for the Chain Transaction Model.

Chain transactions can more appropriately capture a reliable computation consisting of

a varying sequence of tasks, each of which can execute in the context of a transaction. That

is, each task in the computation is structured as a transaction. The beginning of the first

extended transaction initiates the computation. The computation expands dynamically

'Chain transactions were designed as a more general form of IBM's Chain transactions.

when an extended transaction completes its execution by joining another transaction and-

hence extending the sequence of transactions. The commitment of any transaction in the

sequence successfully completes the computation. The abort of any transaction terminates

the computation, and its effects, together with those of all previous transactions in the

sequence, are obliterated.

4.2.3 The Reporting Transaction Model

A variation of the joint transaction model is an advanced transaction model in which

join is not a termination event. That is, a joining transaction continues its execution and

periodically reports its results to the joint transaction by transferring more data objects

to the joint transaction. These transactions are called Reporting Transactions [CR94].

As with joint transactions, extended transactions in the reporting transaction model are

associated with four transaction control operations - begin, join, commit and abort.

With the exception of join, the definitions of the other control operations are the same as

in the joint transaction model. Our implementation of the join operation for Reporting

Transactions is presented in Figure 4.5.

Following the semantics of the reporting-transaction model [CR94], we prevent a re-

porting transaction from joining more than one transaction and prevent the joint trans-

action from joining back. Furthermore, to maintain the termination semantics of joining

transactions in the joint transaction model we establish an abort-dependency that guar-

antees the abort of the joining transaction if the joint transaction aborts. Since join is

no longer a termination event, the reporting transaction must call either conunit or abort

to complete their computation.

Reporting transactions provide a more flexible control structure than the joint transac-

tion model for structuring data-driven computations. For example, consider a computation

that requires remote access to a database over an expensive communication link, such as

in a mobile computing environment [IB94]. This computation can be split across the two

sites, using reporting transactions where the joining transaction executes on the remote

site. The joining transaction accesses the database and performs the initial processing

on the data, delegating data objects to the joint transaction only when they need further

processing at the remote site.

Variations on the reporting transaction model are possible - for example, reporting

transactions can be restricted to a linear form in a manner similar to chain transactions,

in which case they would support pip \line-like computations, or allowed to form more

complex control structures by permittli~g a reporting transaction to join more than one

transaction.

report-join-procedure(fromtran, totran, reportset){
reportFrom = getetrid-using-name(fromtran);
reportTo = getetrid-using-name(totran) ;
if active(transtate(reportTo))
if (f irstreport (joinFrom) I l repeatreport (reportTo) {

/* create a delegate set for the lock transfer */
status=create(reportFrom, joinDelSet, dtor);
if (status ! = success) error (reportFrom, status) ;
/* insert locks from reportset into delegate set */
for each lockname in reportset do {
status=insert(reportFrom, joinDelSet, lockname);
if (status != success) error(reportFror, status);

1
/* delegate locks */
status = delegate (reportFrom, reportTo , joinDelSet , immediate) ;
if (status ! = success) error (reportFrom, status) ;
/* create and record event descriptor with timestamp */
stfme = timestamp0 ;
eventd = strcat (' 'join: ' ' . totran) ;
recordEvent(reportFrom, eventd, stime);
/* delete the delegate set */
status = delete(reportFrom, joinDelSet) ;
/* form an abort dependency with the reporting transaction */
status = form-dependency(reportFrom, AD, reportTo, report);
/* return control to invoking application */
return(success) ;

1
1

Figure 4.5: Definition of join for the Reporting Transaction Model.

4.2.4 The Cooperative Transaction Group Model

The Cooperative Transaction Group model was designed t o support applications that wish

to perform collaborative work [MP92, RC921. Using this transaction model an application

is able to create a cooperative group that individual transactions can join t o share access

to data objects. These member transactions cooperate to accomplish a single task, and

their interactions are structured t o reflect the decomposition of the task they are working

on together. Because of the cooperative nature of the transaction group, the operations of

a single member transaction may not necessarily leave the database in a consistent state.

Thus, the effects of member transactions are only made permanent in the database when

the entire group commits. If the transaction managing the cooperative group aborts, then

all member transactions are forced to abort. Member transactions, however, are allowed

to abort independently without forcing the abort of the cooperative group.

Our implementation of cooperative transaction groups defines two types of extended.

transactions, namely group and member transactions, each having its own set of transaction

control operations. The group transaction can create a named cooperative group and is

responsible for committing the results of the member transactions that have joined the

group. A member transaction can join a single named cooperative transaction group and

share cooperative access to data objects held by member transactions, while executing

atomically with respect to the group. Below, we present our implementation of transaction

control operations for group and member transactions.

A group transaction is associated with four transaction control operations: begin,

commit, abort, and creategroup. By recording transaction commit and abort dependen-

cies when a member transaction joins a group, our implementation of group transactions

can use the default ACID transaction commit and abort control operations; the TRANS-

ACTION MANAGEMENT ADAPTER enforces transaction group termination dependencies.

However, the transaction control operation creategroup is new and requires a special

handler function.

boolean-t creategroup~rocedure(groupname)
/* IN groupname: name of the extended transaction that serves as group tran; */
/* OUT boolean: indicates success of group creatien. */
{
/* Initialize the extended transaction descriptor of the named transaction, setting
the group transaction attribute to indicate this transaction is group coordinator, and
initialize the members list. */

/* get extended transaction identifier for transaction group-name */
group-etrid = getetrid-us ing-name (group-name) ;
/* set the group transaction attribute, noting this is a group tran */
set-et ranprop(group-etrid, groupt ran, IS-GROUP) ;
/* set the list of member transactions to null, waiting for members */
set,etranprop(group-etrid, members, NULL-STR) ;
return (TRUE) ;
3

3

Figure 4.6: Implementation of the create_group operation.

A cooperative group grows through member transactions joining the transaction group.

Member transactions may join and leave the cooperative group a t any time as the over-

all task progresses. Since it is not possible t o determine the members of a transaction

group a priori, our implementation of the cooperative transaction group model provides

support functions that relate a member transaction t o a cooperative group dynamically.

These functions can be loosely grouped into two classes. The first class is used to gather

information on a cooperative group, such as the function getgroupid, which returns the

identifier of the cooperative group that a member transaction belongs to, and the function

getmembers, which returns a List of identifiers of the members of a cooperative group.

We synthesize these support functions using commands from the metalevel interface in

Figures 4.7 and 4.8.

etrid-t get-groupid(member_etrid)
/* IN memberxtrid: extended transaction identifier of the member transaction; */
/* OUT group-etrid: extended transaction identifier of the group. */
{
/* Returns the identifier (etrid) of the cooperative transaction group in
which the transaction member-etrid is a member. If a group is not found,
then the constant NOTTOUND (value 0) is returned. */

str-groupid = get-etranprop(member-etrid, groupid) ;
if (str-groupid != NULL) (
group-etrid = at01 (str-groupid) ;
return(group-etrid) ;

3
else return(N0T-FOUND);

) /* End of get-groupid */

Figure 4.7: Implementation of the get-groupid function.

etrid-list-t getmembers(group-etrid)
/* IN group-etrid: extended transaction identifier of the group transaction; */
/* OUT *group-etrid: list of extended transaction identifiers. */
{
/* Returns a list of identifiers (etrids) of the member transactions that
belong to the cooperative transaction group group-etrid. */
member-list = NULL;
str-member-list = get-etranprop(group-etrid, members);
if (str-member-list != NULL)
while (str-member-list != NULL)

str-member-etrid = first(str,member,list);
member-etrid = at01 (str-member-etrid) ;
append(8Raember-list, member-etrid) ;
remove(&str-member-list, str-member-etrid);

1
return(member-list ;

) /* End of get-members */

Figure 4.8: Implementation of the getmembers function.

The second clam, of functions is used t o modify a cooperative transaction group, such.

as the function addmember that adds a transaction t o a cooperative group, establishes the

necessary commit and abort dependencies, and registers the appropriate ignore-conflict

records, and the function dropmember that removes a transaction from a cooperative

group and deletes the associated ignore-conflict records and transaction dependencies.

We synthesize these support functions using commands from the metalevel interface in

Figures 4.9 and 4.10.

booleanf add-member(member_etrid, group-etrid)
/* IN member-etrid: extended transaction identifier of the member transaction; */
/* IN group-etrid: extended transaction identifier of the group; */
/* OUT boolean: indicates success or failure for the operation. */

/* Adds the extended transaction identzfied by member-etrid to the
cooperative transaction group identified by group-etrid. */
sprintf (str-member-etrid , "%d", member-etrid) ;
sprintf(str-group-etrid, "%d", group-etrid);
/* First verify group-etrid is in fact a cooperative group transaction. */
if (strcmp(get-etranprop(group-etrid, grouptran), IS-GROUP) != 0)

return(FALSE);
/* Next verify member-etrid does not alGeady belong to a trans group. */
if (get-et ranprop(member-etrid, groupid) == NULL)

set-etranprop(member-etrid , groupid, str-group-etrid) ;
else return(FALSE1;
status = form-dependency(group-etrid, AD, member-etrid, str-group-etrid);
status = form,dependency(member_etrid, CD, group-etrid, str-group-etrid);
str-member-list = get-etranprop(group-etrid, members);
list-bu = str-member-list;
while (str,member,list != NULL) (
str-member-etrid = first(str-member-list);
other-etrid = atol(str-member-etrid);
status=ignore~conflict(member~etrid, other-etrid, all, all, na, nd, "group");
status=ignore~conflict(other~etrid, member-etrid, all, all, na, nd, "group");
remove(&str-member-list, str-member-etrid);

1
str-member-list = list-bu;
strcat (str-member-list , "; ") ;
strcat (str-member-list , str-member-etrid) ;
set-etranprop(group-etrid, members, str-member-list) ;
/* member-etrid was successfully added to the cooperative group */
return(TRUE) ;

) /* End of group-addnaember */

Figure 4.9: Implementation of the groupaddmember function.

boolean-t group-dropmember(group_etrid, member-etrid)
/* IN memberxtrid: extended transaction identifier of the member transaction; */
/* IN group-etrid: extended transaction identifier of the group; */
/* OUT boolean: indicates success or failure for the operation. */
{
/* Removes the extended transaction identified by the identifier (etrid) fmm
the cooperative transaction group identified by group-etrid. */

/* drop group identifier from member transaction */
set-etranprop(member,etrid, groupid, NULL) ;
/* remove member identifier from group transaction */
sprintf (str-member-etrid, "%dt', member-etrid);
str-group-members = get-etranprop(group-etrid, members);
remove (&str-group-members, str-member-etrid) ;
set-etranprop(group-etrid, members, str-group-members) ;
/* remove commit and abort dependencies to prevent group termination deadlock */
status = delete-dependency(group-etrid, AD, member-etrid, str-group-etrid);
status = delete-dependency(member-etrid, CD, group-etrid, str-group-etrid);
/* removal is complete */
return(TRUE1;

) /* End of group-dropmember */

Figure 4.10: Implementation of the groupdropmember function.

A member transaction in the cooperative group model is associated with four transac-

tion control operations: begin , j o i n , commit, and a b o r t . Both begin and a b o r t opera-

tions are the same as the ACID transaction model, while the j o i n and commit operations

require additional functionality. Individual member transactions can join a named c o o p

erative group when they wish t o share da ta objects with other transactions in tha t group.

Cooperation between the member transactions is specified using ignore-conflict records.

Since member transactions executing concurrently may interact with each other in unde-

sirable ways, an application may need t o specify that member transactions are adequately

isolated from each other. This can be accomplished by specifying a restricted set of d a t a

objects and operations over which conflicts can be relaxed in the ignore-conflict record.

Conflicts specify how the members' operations cannot be ordered t o prevent unwanted

side-effects. The CONFLICT ADAPTER ensures that the members interact only in the ways

allowable by the active set of ignore-conflict records, and in that way guarantees that the

operations by the member transactions as a group leave the database in a correct state.

Thus, the ignore-conflict specifications as a whole identify the allowable interleaving of o p

erations in the transaction group's history. Intuitively, a history for a cooperative group

is correct when it only contains conflicts that conform to the ignore-conflict specifications.

Once a member transaction joins s cooperative group, its eventual commit is deter-

rnined by the commit of the group transaction. When a member transaction executes the

commit operation, all locks on data objects acquired by the transaction are transferred t o

the group transaction, as is the responsibility to make the effects on da ta objects perma-

nent in the database. In this sense, a member transaction only pseudo-commits its results

when it commits. When a member transaction a b o r t s , i t simply releases all locks that it

acquired on da ta objects and the effects of the transaction on those da ta objects are dis-

carded. Aborting a member transaction may mean tha t other member transactions need

t o be aborted as well, either because they read the effects of the aborted transaction, or

because the abort caused the history to become incorrect in some way. This requirement

is application-dependent and can be easily met by specifying an abort dependency in the

ignore-conflict record. We synthesize the new j o i n and commit transaction control oper-

ations for a member transaction using commands from the metalevel interface in Figures

4.11 and 4.12.

boolean-t join-group-procedure(member-name, group-name)<
member-etrid = getetrid-using-name(member-name);
group-etrid = getetrid-using-name(group-name);
set-etranprop(member-etrid, grouptran, IS-MEMBER);
if (add-member(member-etrid, group-etrid))

return(TRUE)
else

return(FALSE1;
3

Figure 4.11: Implementation of the member transaction join function.

boolean-t commit-member-procedure(member-name)(
member-etrid = getetrid-using-name(member-name);
group-etrid = get,etranprop(member-etrid, groupid);
member-trid = gettrid-using-namebember-name);
/* create delegate set, insert all locks being held, then delegate */
status = create(member-etrid, commitset, dtor) ;
status = insert (member-etrid, commitset, all) ;
status = delegate(member-etrid, group-etrid, commitSet, immediate);
if (status != success) error(member,etrid, status) ;
status = delete(member-etrid, commitset) ;
/* drop the member transaction from the group */
set-etranprop(member-etrid , grouptran , NULL) ;
if group-dropmember(group-etrid, member-etrid)

commit-tran(member-trid) ;
return(TRCIE) ; 3

else
return(FALSE1;

1

Figure 4.12: Implementation of the member transaction commit function.

4.2.5 Operation Commutativity

Operation commutativity is the traditional semantic notion used to determine if two op-

erations can be allowed to execute concurrently [Wei88]. When two operations commute,

their effects on the state of a da ta object and their return values are the same, irrespec-

tive of their execution order (for example, two read operations commute). When using

operation commutativity for transaction synchronization, a R /W conflicting operation in-

voked by a transaction is allowed to execute if it commutes with every other uncommitted

operation tha t holds a lock on the da ta object. Further, if the transaction processing sys-

tem allows only commuting operations to execute concurrently, then it prevents cascading

aborts.

To implement commutativity we utilize semantic compatibility tables, as described in

Section 3.3.2, t o identify which operations on a da ta object are semantically compatible.

A semantic compatibility table is typically constructed in advance by the database ad-

ministrator or TP systems programmer based on the semantics of the operations. Each

entry of the table is of the form: [Action, Dependency], where Action is one of: SOK - the

operations are semantically compatible and the conflict can be relaxed, NOK - the opera-

tions conflict, or event - a named event (predicate) that must be evaluated to determine

semantic compatibility, and Dependency is a named transaction dependency that is t o be

recorded between the two corresponding transactions if the conflict is relaxed.

As a simple example, consider operations on a bank account d a t a object for commercial

banking applications. For this da ta type we have the operations Deposit , Withdraw,

and Balance. The Deposit operation adds a specified amount t o the account balance,

Withdraw subtracts a specified amount from the account balance, and Balance returns

the current value of the account. From the semantics of these operations the TP systems

programmer can construct an operation compatibility table based on commutativity, as

illustrated in Table 4.2. Columns in the compatibility table represent operations currently

holding a lock, while rows represent operations requesting a lock.

Table 4.2: Operation commutativity for the ACCOUNT data type.
1 ACCOUNT:OPNAME

Balance
Deposit
Withdraw

Balance Deposit Withdraw

S 0 K ; N D N 0 K ; N D N 0 K ; N D

N 0 K ; N D S 0 K ; N D N 0 K ; N D

N 0 K ; N D S 0 K ; N D N 0 K ; N D

4.2.6 Operation Recoverability

Operation recoverability is another semantic notion proposed to relax conflicts among

operations, weaker than operation commutativity [BR91]. An operation q is recoverable,

relative t o another operation p, if q returns the same value whether or not p is executed

immediately before q. For example, a successful push operation on a stack is recoverable

relative t o a preceding push operation on the same stack. Even if the preceding push

operation is aborted and its pushed value is removed from the stack, the pushed value

and the return value of the second push operation are not affected. Recoverability de-

mands that transactions involving p and q commit in the order of invocation of the two

operations. When used with lock-based transaction synchronization, recoverability, like

commutativity, avoids cascading aborts while also avoiding the delay in the processing of

many noncommutative operations [BR91].

As with commutativity, we implement operation recoverability using semantic com-

patibility tables. This is illustrated in Table 4.3 for an ACCOUNT da ta object, in which

the commit dependencies that arise due t o recoverability are specified as CD. When the

CONFLICT ADAPTER is evaluating a R / W conflict between two extended transactions and

relaxes the conflict using recoverability semantics, the commit dependency between the

two transactions will be recorded and tracked through the execution of the transactions

and used t o sequence transaction completion.

Table 4.3: Operation recoverability for the ACCOUNT data type.
ACC0UNT:OPNAME 11 Balance Deposit Withdraw

Balance
Deposit
Withdraw

4.2.7 Epsilon Serializability

Epsilon Serializability (ESR) is a generalization of classic serializability that relaxes n/w
conflicts, t o explicitly allow a bounded amount of inconsistency in transaction processing.

The amount of inconsistency is given by some measure of the database operations or a

distance function over the database state space [RP95]. In a commercial banking applica-

tion, for example, inconsistency would be measured in dollars. ESR enhances concurrency

by permitting query transactions to read uncommitted da ta from a concurrent update

transaction and by permitting update transactions t o write to da ta items locked by a

concurrent query transaction. For example, an epsilon transaction (ET) that can tolerate

a bounded amount of inconsistency, measured in dollars, can query the balance of bank

account da ta object,^ and execute in spite of ongoing concurrent updates t o the database.

In the rest of our discussion, we will use the term ET t o refer t o both kinds of epsilon

transactions: query ETs denoted by Q ~ ~ , and update ETs denoted by uET. A query

E T imports some inconsistency when it reads a da ta item while uncommitted updates

on that da ta item exist. Conversely, an update E T exports some inconsistency when it

updates a da ta item while query transactions are in progress. Each E T is associated with

an inconsiste~icy specification, referred t o as an €spec, which is divided into two parts
ET - an import inconsistency limit denoted by EspecimPlim;,, and an export inconsistency

limit denoted by For ~s~ecf,'$~,,~ > 0 and ~ s ~ e e ~ ' , ~ , ~ ~ = 0, query ETs

may import inconsistency up t o ~ . s p e ~ ~ l i , i , . For spec^^,^^^, = 0 and rspecE~,imit >
0, update ETs may export inconsistency up t o s s p e c ~ ~ l i m i t . If, however, an E T both

imports and exports inconsistency, it may introduce new and unbounded inconsistency

into the database. Such ETs are the subject of active research and beyond the scope of

our implementation work. Our focus is on the situation where query ETs run concurrently

with consistent update transactions. That is, update transactions are not allowed t o view

uncommitted da ta and hence will produce consistent database states.

Under ESR, a R / W conflicting lock request can be relaxed for an extended transaction if

the resulting inconsistency is within the bounds of both import and export limits. Conflict

in ESR is formally defined as:

Definition 4.1 (Epsilon Serializability (ESR) and Conflict) For two extended tmns-

actions ti and t j , we say that ti epsilon-conflicts with t j if t i 's lock request for the data

object R / W conflicts with the lock held by t j and 1 S a f e (t ;) . The safety precondition of an

extended transaction with respect to performing the operation Oper on data object O b j is

defined as follows [RP95]:

i m p o r t t , + Import~inconsistencY~~PerPobj~ 5 ~ ~ ~ e c f ; ~ ~ ~ ~ ~
S a f e (t i) =

e x p o r t t , + e ~ ~ o r t ~ i n c o n s i s t e n c ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ < f ~ ~ e ~ & , ~ ~ ~

Importti and exportt; are accumulators which record the amount of inconsistency that has

already been imported and exported by t i . And, the value of im~~ort~inconsistency~OPer,o~~~

is the maximum amount of inconsistency that ti can import with respect to performing

operation Oper o n data object Obj, while e ~ p o r t ~ i n c o n s i s t e n c y ~ ~ ~ ~ ~ , ~ ~ ~ ~ is the maximum

amount of inconsistency exported by ti performing Oper on data object Obj.

In our implementation, two inconsistency accumulators are associated with an ex-

tended transaction that utilizes ESR for semantic synchronization: import-accum and

exportnccum, which record the total amount of inconsistency the ET has imported and

exported. These accumulators are stored in the extended transaction descriptor using

the metalevel command set-etranprop (e t r i d , key ,value) , and retrieved using the met-

alevel command get-etranprop (e t r i d , key). Similarly, we store the inconsistency spec-

ification €spec associated with the extended transaction: implimit and explimit, where

implimit records the r spec~~ , imi , I ; , , and explimit records the r ~ ~ e c ~ ~ , ~ , ~ , . Since we are

only concerned with Q~~ (implimit > 0 and explimit = 0) and uET (implimit = 0 and

explimit > 0), we maintain only importaccum for a query E T and only export-accum

for an update ET. To bound inconsistency, then, our implementation must ensure for each

ET that import-accurn 5 implimit and exportaccum 5 explimit.

Our implementation of ESR follows a two-step methodology: detection and relaxation.

In the first stage, detection, we construct asemantic compatibility table that identifies R / W

conflicts detected by the Lock Manager that potentially may be relaxed under ESR. In

this semantic compatibility table, presented in Table 4.4, columns represent locks held and

row locks requested. Under ESR, two concurrent query ETs are always compatible, while

two concurrent update ETs are incompatible. Accordingly, the semantic compatibility

table entry SOK indicates that two read LOCK requests are compatible, while the entry

NOK indicates that two WRITE lock requests conflict. In both of these cases the CONFLICT

ADAPTER can immediately determine whether or not t o relax the conflict and return.

However, entries marked ESR require further processing.

Table 4.4: Compatibility relation based on epsilon-serializability (ESR).
[ALL:LOCKMODE 11 read(^) write(^) I

As described in Section 3.3.2, a lookup in a semantic compatibility table must return one

of SOK, NOK, or the name of a predicate t o evaluate t o determine semantic compatibility.

Two entries in our compatibility table hold the value ESR, which is the name of the

predicate we will implement to determine if the conflict can be relaxed - if the predicate

returns TRUE the conflict will be relaxed.

The definition of the predicate ESR is the second stage of our implementation, re-

laxation, in which we attempt t o relax R / W conflicts for an ET using its inconsistency

specification and current import-accum and export-accurn values. There are two interest-

ing cases in the implementation of the predicate ESR: first, when a QET attempts to read

an uncommitted da ta object that a uET has modified and, second, when a uET attempts

t o update a da ta object that a QET has read. Each of these R /W conflicts, identified

in Table 4.4, can be relaxed as long a s the resulting inconsistency is within the bounds

of both import and export limits of the ETs. Figure 4.13 presents our implementation

of the predicate ESR. For simplicity of presentation, we have used the number of R /W

conflicts as the inconsistency measure t o describe our implementation. Below, we discuss

our implementation of the two special cases:

Conflict between QET and uET
A QET has requested a read (R) lock and an active uET holds the lock in write

mode (w). The QET will export a certain amount of inconsistency to the transac-

tion holding the lock, so the predicate tests the import-accum of the Q~~ and the

export-accum of the conflicting uET t o see if the inconsistency increment is accept-

able. If so, the incrementaccum function is invoked t o increment the appropriate

€spec values for the interfering transactions and the conflict is ignored. If either the

uET's export-accum exceeds its explimit or the import-accum exceeds its

implimit, then we must prevent the lock from being granted.

Conflict between uET and QET

A uET requests a write (w) lock and an active QET holds a conflicting R lock. We

first check t o see if the inconsistency introduced by the .VET requesting the lock

will invalidate the query by the Q~~ holding the lock. If the inconsistency can

be tolerated, the increment-accum function is invoked to update the inconsistency

accumulators and the conflict is ignored; otherwise, we prevent the lock from being

granted.

boolean-t esr(tridhold, modehold, lockname, tridreq, modereq)
/* IN tridhold: identifier of transaction holding lock; */
/* IN modeheld: mode lock is being held; */
/* IN lockname: logical lock name; */
/* IN tridreq: identifier of transaction requesting lock; */
/* I N modereq: mode lock is being requested; */
/* OUT boolean: relax conflict (true) or not (false). */

/* Measure inconsistency by number of conflicts */
#define inconsistency 1

{
etridreq = getetrid-using-trid(tidreq);
etridhold = getetrid-using-trid(tidho1d);

/* conflict between a query transaction requesting a read lock and an update transaction
holding a write lock. Verify the resulting zncrease in inconsistency will be tolemted. */
if ((modereq == LOCK-MODE-READ) &% (modeheld == LOCK-MODE-WRITE))

if valid-tolerance(etridhold, etridreq, inconsistency) (
increment~accum(inconsistency, etridhold, etridreq);
return TRUE;

1
else return FALSE;

/* conflict between an update tmnsaction requesting a write lock and a query transaction
holding a read lock. Verify the resulting increase in inconsistency will be tolemted. */
if ((modereq == LOCK-MODE-WRITE) && (modeheld == LOCK-MODE-BEAD))

if valid-tolerance(etridreq, etridhold, inconsistency) <
increment,accum(inconsistency, etridreq, etridhold);
return TRUE;

1
else return FALSE;

return FALSE; /* Unable to relax conflict. */
) /* End o f E S R */

Figure 4.13: Implementation of the predicate ESR.

boolean-t valid-tolerance(update-etrid, query-etrid, amount)
/* IN update-etrid: etrid of update ET; */
/* IN query-etrid: etrid of query ET; */
/* I N amount: amount of inconsistency being introduced; */
/* OUT boolean: within epspec limits (true) or exceed limits (false). */

{
/* Get current import inconsistency and import limit using
get-etmnprop, then convert return string(s) to long integer */
str-import = get-etranprop(query-etrid, importaccum);
current-import = atol(strimport);
str-limit = get-etranprop(query-etrid, implimit);
importlimit = atol(str1imit);
/* Now get current export inconsistency and export limit * / .
str-export = get-etranprop(update-etrid, export-accum) ;
current-export = atol(str-export);
str-limit = get-etranprop(update-etrid, explimit);
export-limit = atol(str1imit);

/* Perform epsec verzji'cation */
if ((current-import + amount) > importlimit) return FALSE;
if ((current-export + amount) > exportlimit) return FALSE;
/* Passed espec tests, so return true to indicate valid tolerance */
return TRUE;
) /* End of valid-tolerance */

Figure 4.14: Implementation of valid-tolerance function.

Summing up our implementation of ESR, we store three new pieces of information

(import-accum, export-accumu and either impl imi t or e x p l i m i t) with each extended

transaction. This is accomplished by using the metalevel commands se t -e t ranprop and

get -e t ranprop. The implementation itself is carried out in two steps: In the first step,

we constructed a semantic compatibility table, presented in Table 4.4, tha t identifies R / W

conflicts that may potentially be relaxed under ESR. This step is similar to our imple-

mentations of commutativity and recoverability, except tha t the semantic compatibility

table identifies a predicate to evaluate t o determine semantic compatibility. The sec-

ond step of our implementation was to define the predicate ESR, presented in 4.13, tha t

determines if the conflict can be relaxed using the ET7s inconsistency specification and

current import-accum and export-accurn values. If the resulting inconsistency is within

the bounds of both import and export limits of the ET, the inconsistency accumulators

are incremented and the conflict is allowed.

void incrementaccum(amount, update-etrid, query-etrid)
/* IN amount: amount of inconsistency being introduced; */
/* IN update-etrid: etrid of update ET; */
/* IN query-etrid: etrid of query ET; */

{
/* Get current import inconsistency value using get-etranprop,
then convert string to long integer */
/* Get current import inconsistency value */
str-import = get-etranprop(query-etrid, importaccum);
current-import = atol(strimport);
/* Get current export inconsistency value using get-etranprop,
then convert string to long integer */
str-export = get-etranprop(update-etrid, export-accum);
current-export = atol(str-export);

/* Calculate new import inconsistency level and store using get-etranprop */
newimport = current-import + amount;
sprintf(str-import, "%d" , new-import);
set-etranprop(query-etrid, importaccum, str-import);
/* Calculate new export inconsistency level and store using get-etranprop */
new-export = current-export + amount;
sprintf(str-export, "%d" , new-export);
set-etranprop(update-etrid, export-accum, str-export);
) /* End of increment-accum */

Figure 4.15: Implementation of incrementaccum function.

There are a number of strategies for measuring the amount of inconsistency tha t a con-

flict will introduce, more detailed than the one presented here [WYP92, RP95, LHP941.
The selection of an appropriate inconsistency measure is dependent on both the appli-

cation and database [WYP92]. However, once an inconsistency measure has been se-

lected, the implementation can be accomplished by simply replacing t he constant value

inconsistency in the implementation presented here with a function tha t computes the

inconsistency measurement.

4.2.8 Altruistic Locking

Altruistic locking [SGMS94] is an extension t o two-phase locking that is designed to ac-

commodate long-lived transactions. Under two-phase locking, short transactions may

encounter serious delays when a long trarisaction ties up database resources for a signifi-

cant length of time. In altruistic locking, several transactions can hold conflicting locks on

a data object if constraints A L ~ and A L ~ in Table 4.5 are satisfied. In two-phase locking

a well-formed transaction always locks da ta objects before accessing them, and does not

lock any new da ta objects once it has unlocked a da ta object. Under altruistic locking an

application can use the donate operation, a new extended transaction control operation,

to announce that it will no longer access a given da ta item, thus allowing other extended

transactions t o access it. The donate operation is not an unlock, so the transaction re-

tains its lock on da ta objects that it has donated and is free t o continue locking other da ta

objects. Donate operations are optional and are used to permit extended transactions t o

lock a donated da ta object before the original extended transaction unlocks it.

An extended transaction t j enters the wake of another extended transaction t; when

t j locks a da ta object that has been donated, but not yet unlocked, by ti. An extended

transaction t j is completely in the wake o f t ; if all the objects it locks are donated by t;. If

t j locks a data object that has been donated by ti, then tJ is indebted t o ti if and only if

the locks conflict or an intervening lock by a third transaction t k conflicts with both. For

example, even though two read locks are compatible the second read becomes indebted t o

the first when an intervening write occurs between the two reads. The altruistic locking

protocol presented in [SGMS94] upgrades ail read locks t o write locks solely t o preserve

the indebted relationship between transactions. Instead of altering the locks held by an

extended transaction, our implementation will maintain several sets for each database

object obname and transaction t,;, as identified in Table 4.5.

Table 4.5: Altruistic locking requirements.

AI, 1 Two extended transactions may not simultaneously hold conficting locks on
the same data object unless one first donates the data object.

A L ~ If extended transaction ti is andebted to extended transaction tj , then
t i must be completely in the wake of t j until t j terminates.

D(OBNAME) Set of transactions that have donated, but not released their lock on obname.
I N (O B N A M E) Set of transactions that readers of obname must be in the wake of.

W(TI) Set of transactions whose wake that ti is completely within.

J (Ti) The set of transactions whose wakes ti should be completely within (based on
A L ~ and A L ~) .

We introduce IN(OBNAME) in our implementation t o replace both RL(OBNAME) and

WL(OBNAME) specified in the original model definition [SGMS94]. The framework main-

tains information on the wake of a transaction (i.e., w (T) and J (T) for each extended trans-

action) and enforces the indebted constraint A L ~ . Initially, for all data objects obname

and any extended transaction t;, ~ (t ~) = D(OBNAME) = IN(OBNAME) = NULL. By de-

fault, when an extended transaction begins, it enters the wake of all active transactions;

transactions are removed and inserted into ~ (t ;) based upon the behavior of ti.

Under altruistic locking a transaction is associated with the usual control operations,

namely begin, commit, and abort , along with a new operation donate. The handler

for donate is defined in Figure 4.16 - the function simply records that a transaction has

donated its lock on a specified da ta object.

void donate-procedure(tran-name, lock-name)
/* IN tran-name: name of the extended transaction donating the lock. */
/* IN lock-name: name of the lock being donated. */
C

/* log that the extended transaction donated its lock on lock-name */
tran-etrid = getetrid-using-name(tran-name);
add-member (D [lock-name] , tran-etrid) ;

1

Figure 4.16: Implementation of the altruistic locking donate function.

The framework initializes the structure w(t;) by tracking the set of active extended

transactions. To register an extended transaction a call t o the procedure begin-al-tran

is placed in the handler for the begin control operation.

void begin-al-tran(tran-name)
/* IN tran-name: name of the extended transaction. */
C

tran-etrid = getetrid-using-name(tran-name) ;
/* initialize the wake list W to all active transactions */
copy-list (copy-active, %active-set) ;
while (f irst(copy-active) != null-etrid) (
active = first(copy-active);
add- member(^ [tran-etrid] , active)
remove (©-active, active) ;

1
/* initialize J to NULL */
J [tran-etrid] = NULL
/* add this transaction to the list of active transactions */
insert(&active-set, tran-etrid);

Figure 4.17: Implementation of the begin~l-tran function

When an extended transaction terminates, it calls complete-tran to update the list

of active transactions.

void complete-tran(term-etrid)
/* IN term-etrid: etrid of the extended transaction that is terminating */
/* OUT no values returned */
/* Transaction termstrid can no longer have any impact on other extended */
/* transactions, so update the appropriate W(term-etrid) sets */
{

/* f i r s t remove t ransact ion from the ac t ive t ransact ion l ist */
remove(&active,set, term-etrid);
/* copy the ac t ive t ransact ion list f o r processing */
copy,l ist(copy~active, &act ive-se t) ;
while (f irst(copy-active) != nul l -e t r id) C

t r a n e t r i d = f i r s t (copy-active) ;
/* update the wake list W */
i f member(W [t ranet r id l , term-etrid)

remove(W [t ranet r id l , term-etrid) ;
remove(©,active, t r a n e t r i d) ;

1
1

Figure 4.18: Implementation of the complete-tran function.

To manage the lists J (T) and w(T), a callback to the function lock-after is made

after a lock is granted; these sets cannot be updated beforehand, as a locking conflict that

failed to set a lock would incorrectly update this information. In addition, a callback is

also attached to the unlock function to manage the donate set D(OBJNAME).

void Iockafter(trantrid, objectname)
/* IN trantrid: etrid of extended transaction that acquired the lock; */
/* IN objectname: name of the data object that was locked; */
{

/* Update the wake l i s t J[tran-etr id] */
t ran-e t r id = getetrid-using-trid(trantrid) ;
l i s t - u n i o n (~ [tran-etrid] , IN[objectname] , &temp-list) ;
J [tran-etrid] = temp-list ;
/* Update the wake l i s t Wctran-etrid] */
l i s t - i n t e r s e c t (W [tran-etr id] , D Cobjectnamel , &temp-list) ;
~ [t r a n - e t r i d] = temp-list ;

1

Figure 4.19: Implementation of the l o c k d t e r function.

void after-unlock(trantrid, objectname)
/* IN trantrid: etrid of extended transaction that acquired the lock; */
/* IN objectname: name of the data object that was locked; */
{

/* Removes downstream transactions from the wake of trantrid */
/* and maintains ~N[objnamel and DCobjnamel . * /
tran-etrid = getetrid-using-trid(trantrid1;
remove(D Cob jname] , tran-etrid) ;
remove(IPICobjname1, tran-etrid) ;
copy-list (copy-act ive, active-set) ;
while(f irst(copy,active) != null-etrid)

worketrid = first (copy-active) ;
if member(J Cworketrid] , tran-etrid)

remove (J [worketrid] , tran-etrid) ;

Figure 4.20: Implementation of the after-unlock function.

Our implementation of altruistic locking is not complete, however, without some way of

specifying the conflicts that can be relaxed. Entries in the altruistic locking compatibility

table, presented in Table 4.6, hold the values A L ~ and A L ~ , which are the names of the

predicates we implement t o determine if a conflict can be relaxed.

The A L ~ predicate is invoked for all R / W conflicts on any da ta object. The predicate

allows an extended transaction t o obtain a read or write lock on a da ta object that was

donated, and maintains the indebted relationship. The A L ~ predicate allows multiple

writers if the conflicting object was donated first. In both cases, predicates A L ~ and A L ~ ,

an abort dependency is established between the two extended transactions to prevent the

abnormal termination of the donating transaction from introducing inconsistency into the

database system.

Table 4.6: Compatibility relation based on altruistic locking.
ALL:LOCKMODE

 read(^)
W r i t e (W)

 read(^) Write (w)
S 0 K ; N D A L ~ ; A D

A L ~ ; A D A L ~ ; A D

boolean-t all(tridhold, modehold, lockname, tridreq, modereq)
/* IN tridhold: identifier of transaction holding lock */
/* IN modeheld: mode lock is being held */
/* IN lockname: logical lock name * /
/* IN tridreq: identifier of the transaction requesting lock */
/* I N modeheld: mode lock is being requested (not used) */
/* OUT boolean: relax conflict (true) or not (false) */

etridreq = getetrid-using-trid(tridreq);
etridhold = getetrid-using-trid(tridho1d);
/* check if the lock has been donated by etridhold */
if (is-donated(1ockname , etridhold))

/* enter etrid into front of the wake */
update-in-set(lockname, etridhold, modehold); .
return TRUE:

3
return FALSE;
3

Figure 4.21: Implementation of the predicate A L ~ .

boolean-t all(tridhold, modehold, lockname, tridreq, modereq)
/* IN tridhold: identifier of transaction holding lock*/
/* IN modeheld: mode lock is being held */
/ * IN lockname: logical lock name */
/ * IN tridreq: identifier of the transaction requesting lock */
/* IN modeheld: mode lock is being requested (not used) */
/* OUT boolean: relax conflict (true) or not (false) */

etridreq = getetrid-using-trid(tridreq);
etridhold = getetrid-using-trid(tridho1d);
if (is-donated(lockname, etridhold, modehold)) return TRUE;
else return FALSE;
3

Figure 4.22: Implementation of the predicate A L ~ .

The implementation of the support function wake-test, is-donated, and update-inset

for the predicates A L ~ and A L ~ is outlined below.

The function update-inset maintains the indebted relationship by recording which

transactions access a donated da ta object in a conflicting (write) mode.

void updateinset(objectname, tranetrid, modeheld)

{
/* does this read request conflict with a write lock? */
if (modeheld == write-type)
add-member(1Ncobject-name] , tranetrid) ;

3

Figure 4.23: Implementation of the updateinset operation.

boolean-t wakefest(etrid, lockname, lockmode)
{ /* Return TRUE if etrid is not completely in the wake of another */

/* transaction. Otherwise, return TRUE if etrid remains completely */
/* in the wake of JCetridI. * /
list-intersect (Wcetrid] , D[objname] , &tamp-listi) ;
list-union(J [etrid] , INCobjname] , &temp_list2) ;
if subset(temp-listi, temp-list21
return TRUE;

else
return FALSE;

3

Figure 4.24: Implementation of the predicate WAKETEST.

The function is-donated searches the list of transactions that have donated their lock

on a da ta object and returns TRUE if the specified extended transaction is found.

booleanf is-donated(objectname, tranetrid)
{

/* Check whether the transaction donated this data object */
if member (D [obj ect-name] . tranetrid)
return(TRUE)

else
return(FALSE);

Figure 4.25: Implementation of the isdonated operation.

4.3 Application Development Using Extended Transact ions

In this section we demonstrate how an application programmer can use the extended

transaction interface to implement a transactional application using extended transactions.

These are not intended as examples of real-world applications, but rather serve t o illustrate

the use of the extended transaction interface and the style of application programming

that it supports. The first example outlines the implementation of an application using

an advanced transaction model. The second example outlines the implementation of an

application using semantics- based concurrency control protocols.

4.3.1 Programming Using an Advanced Transaction Model

To motivate the application of an advanced transaction model, consider the requirements

of CAD support for a team of engineers designing a computer chip. Since the design

process may take an arbitrarily long time and involve multiple engineers, a t some point

in the project the principal engineer might like to split off responsibility for the design of

specific subsystems to component engineers. These component engineers can either join

their results back into the working chip design a t a later time! or choose to commit or abort

their designs independently. Such requirements are not satisfied by traditional database

transactions in a straightforward manner, but can be satisfied by the splitljoin transaction

model easily. The code fragment below outlines how an application programmer might use

the split and join operations to restructure a transaction dynamically t o release subsystem

da ta objects t o a separate extended transaction, and later join with another transaction

that performs quality assurance on the design.

Begin-Transaction PE-Tran
begin

instantiate(PE-Tran, trid)
select(PE-Tran, splitjoin)

. . . { data manzpulation)

split(PE-Tran, CE-Tran. Subsystem)

. . . { data manipulation)

join(PE-'Ikan, $A-Tran, A L L)

end
Commit-Transaction {CAD-design)

Line 1 declares the beginning of the principal engineer's transaction, denoted as PE-Tran,

using the Begin-Transaction command found in the base transaction interface. This is

significant, because it notifies the transaction management system that the operations

between this point and the Commit-Transaction command in line 6 are t o be executed

atomically, according t o the traditional transaction model. Thus, lines 1 and 6 bracket

the transaction. The purpose of the i n s t a n t i a t e metalevel interface command in line

2 is to notify the Reflective Transaction Framework of the programmer's intention t o

"renegotiate" the base transaction model. The s e l e c t command in line 3 details the

terms of the renegotiation, selecting the splitljoin model for the transaction. The im-

portance of the s e l e c t command is twofold. First, i t determines the control operations

and semantics tha t are available t o the transaction. In this example, the split/join model

adds two new transaction control operations, namely s p l i t and j o i n , while the begin,

commit, and a b o r t commands have the same semantics as the corresponding commands

in the traditional database transaction model. Second, the s e l e c t command informs the

transaction adapters in the Reflective Transaction Framework how t o process transaction

events on behalf of this transaction, such as lock request conflicts, transaction dependen-

cies that might arise during execution, etc. In line 4 the application programmer uses

the new extended transaction control operation s p l i t , where CE-Tran is the name of the

transaction tha t the component engineer is running and Subsystem is the name of the

subcomponent that is t o be delegated to the component engineer's transaction. Finally,

in line 5 the application programmer uses the new extended transaction control operation

j o i n t o merge the results and resources held by the transaction PE-Tran with an existing

quality assurance transaction named QA-Tran.

One can see from this example that with the exception of the i n s t a n t i a t e and s e l e c t

operations, the application programmer simply uses familiar transaction control operations

t o code an application. There is no explicit delegation of the locks held on da ta objects in

Subsystem, no need t o explicitly relax the lock conflict tha t arises during the transfer, and

no explicit delegation of data objects held by PE-Tran when the transaction joins with

the quality assurance transaction QA-Tran.

Transaction Adapters Behind the Scenes. Continuing with our CAD example, we

now examine how transaction adapters work behind the scenes t o support extended trans-

action processing on a legacy TP monitor. We begin with the i n s t a n t i a t e metalevel

interface command in line 2. During execution, the instantiate command causes con-

trol t o be passed t o the TRANSACTION MANAGEMENT ADAPTER, which first generates an

extended transaction identifier and then creates and initializes a descriptor for the trans;

action, reifying initial state for transaction PE-Tran, such as the transaction identifier

(TRID) and current execution state of the transaction. When completed the TRANSAC-

TION MANAGEMENT ADAPTER returns control back t o the base transaction for processing.

The s e l e c t command in line 3 also causes control to be passed to the TRANSACTION

MANAGEMENT ADAPTER, which updates the extended transaction descriptor to contain

the transaction control operations s p l i t and jo in , specified by the splitljoin advanced

transaction model.

Processing resumes on the base TP monitor until the transaction control operation

spl i t (PE-Tran, CE-Tran, Subsystem) is processed in line 4. Split is a transaction con-

trol operation defined in the extended transaction interface. When an application invokes a

transaction management control operation, the actual code executed is determined by the

transaction's extended transaction descriptor. Processing the s p l i t operation, PE-Tran

first verifies this control operation is permitted and then calls the handler function. As

defined in Section 4.2.1, the split handler of TRANSACTION MANAGEMENT ADAPTER con-

firms that the extended transaction CE-Tran is active, creates a named delegate set, and

inserts the name of all da ta objects in Subsystem. Once the handler is complete, the LOCK

ADAPTER delegates locks on all da ta objects in the delegate set from PE-Tran t o CE-Tran.

It then directs the CONFLICT ADAPTER to create no-conflict records in order to relax lock

conflicts that may arise during transfer, and calls the T P monitor API commands lock

and unlock t o transfer the locks. Once the transaction restructuring is complete, the

TRANSACTION MANAGEMENT ADAPTER returns control to the TP monitor t o continue

base level transaction processing.

4.3.2 Programming Using SBCC Protocols

An application programmer can construct semantic compatibility tables for objects that

are hot spots or concurrency bottlenecks in an application. Once created, applications

can load these compatibility tables for semantics-based transaction synchronization. To

illustrate we will continue with our CAD example introduced in the previous section, in

which a team of engineers are working together to design a computer chip. During the

initial design several component engineers define new components for the chip, performing

lookups on existing components, modifying existing specifications, and deleting outdated

or unnecessary components. One possible concurrency bottleneck in this activity are

da ta objects of type ComponentLog - a container for specifications of the individual

components in the chip, each identified by a component identifier (key).

A d a t a object of type ComponentLog supports five operations: i n s e r t , d e l e t e ,

lookup, s o r t , and modify. The operation i n s e r t adds a new entry of the form (key,

item) i n t o the C o m p o n e n t L o g and r e t u r n s s u c c e s s ; if the k e y already exists i n the t a b l e

it r e t u r n s f a i l u r e . The o p e r a t i o n delete removes the entry with t h e g i v e n k e y f r o m t h e

C o m p o n e n t - L o g a n d r e t u r n s u c c e s s ; if the k e y is n o t f o u n d i t r e t u r n s f a i l u r e . The s o r t

operation sorts the entries by k e y v a l u e in ascending order. T h e operation lookup searches

the C o m p o n e n t L o g f o r an entry that matches t h e s p e c i f i e d k e y and, if f o u n d , r e t u r n s the

v a l u e o f the item; o t h e r w i s e i t r e t u r n s f a i l u r e . The operation modify r e p l a c e s the c u r r e n t

v a l u e o f the item w i t h the new v a l u e f o r t h e given k e y .

T a b l e 4.7: Operation commutativity for the COMPONENT-LOG data type.

I lookup I/ S 0 K ; N D S0K;ND S 0 K ; N D S 0 K ; N D S 0 K ; N D I

L0G:OPNAME 1
insert
d e l e t e

I sort /I NOK;ND NOK;ND NOK;ND SOK;ND NOK;ND I

insert de l e t e lookup sor t modify

S 0 K ; N D S 0 K ; N D S0K;ND N0K;ND S0K;ND

S 0 K ; N D S 0 K ; N D S 0 K ; N D N0K;ND S 0 K ; N D

modify

I d e l e t e 1 1 SOK;CD SOK;CD SOK;CD NOK;ND. SOK;CD I

S 0 K ; N D S 0 K ; N D S0K;ND N 0 K ; N D S0K;ND

T a b l e 4.8: Operation recoverability for the COMPONENT-LOG data type.
L0G:OPNAME

insert

T a b l e s 4.7 and 4.8 i l l u s t r a t e the c o m m u t a t i v i t y and r e c o v e r a b i l i t y properties o f the

operations p e r f o r m e d o n data objects of type ComponentLog; f o r simplicity, it i s a s s u m e d

that t r a n s a c t i o n s operate c o n c u r r e n t l y on d i f f e r e n t parameters (k e y s) on the objects of type

C o m p o n e n t - L o g . These o p e r a t i o n compatibility t a b l e s are described in f i l e s , for e x a m p l e

u s i n g a text editor or a g r a p h i c a l data entry t o o l . The f o l l o w i n g code f r a g m e n t shows h o w

an a p p l i c a t i o n programmer c o u l d l o a d and activate the tables.

insert de l e t e lookup sort modify

S 0 K ; C D S 0 K ; C D S0K;CD N 0 K ; N D S 0 K ; C D

lookup
sort
modify

S 0 K ; C D S0K;CD S 0 K ; C D N 0 K ; N D S 0 K ; C D
S0K;CD N 0 K ; N D S0K;CD S0K;CD N0K;ND
S 0 K ; C D S 0 K ; C D S0K;CD NOK ;ND S 0 K ; C D

Begin-Transaction CE-Tran
begin

instantiate(CE-Tran, trid)
select (CE-Tran, SBCC)

load-table(CE-Tran, logcornrn, logcornrntbi, cornrn)
load-table(CE-Tran, logrecv, logrecvtbl, recv)
select-table(CE-Tran, logcornrn)
select-tabie(CE-Tran, logrecv)
lookup(CID.237, compspec)

. . . { data manipulation)

.,.
rnodify(CIDB7, cornpspec)
. . . { data manzpulataon)
insert(C1D-109, nullspec)
...
. . . { data manipulation)

rnodify(CID109, cornpspec)
end
Commit-Transaction {CE-Tran)

The Begin-Transaction command in line 1 declares the beginning of the component

engineer's transaction, and together with the Commit-Transaction in line 12 brackets

the transaction. The command i n s t a n t i a t e in Line 2 creates an extended transaction

descriptor and registers the transaction with the Reflective Transaction Framework. The

s e l e c t meta interface command in line 3 indicates the application's intention t o use

semantic information t o relax lock conflicts. The load-table command in lines 4 and 5

directs the framework t o load the specified compatibility tables, logcomm and logrecv (a

full file pathname could be supplied), for the extended transaction and assigns a unique

name to each. The s e l e c t - t a b l e command in lines 6 and 7 specifies the order in which

these compatibility tables are to be applied when attempting t o relax lock conflicts.

If a R / W conflict is detected by the Lock Manager during transaction execution, the

Lock Manager raises a conflict event and the CONFLICT ADAPTER is invoked for semantic

compatibility testing. For example, if an uncommitted transaction performs a lookup

operation (holds a read lock) on the da ta object compspec and transaction CE-Tran calls

the modify operation (a write lock request) in line 8, the Lock Manager detects a R / W

conflict. Since the CONFLICT ADAPTER registered a handler for the event and CE-Tran

selected a commutativity table t o relax lock conflicts (Table $.i), the CONFLICT ADAPTER

performs a table lookup to determine if the operations are semantically compatible and

can be executed concurrently. If the operations are semantically compatible (SOK) , the

conflict adapter grants the lock, which enable both transactions t o access the da ta object.

In summary, t o use semantics-based concurrency control for transaction synchroniza-

tion, the application programmer must first create compatibility tables for data objects

that have been identified as concurrency bottlenecks, and then registers transactions with

the framework and selects from the available semantic compatibility tables. During a p

plication execution, the framework permits transactions t o perform operations on data

objects without conflicting with other transactions that hold locks on the object if the se-

mantic specification relaxes the conflict. In certain cases, where the order of the access t o

a da ta object implies dynamic dependencies between transactions, the framework records

and tracks transaction dependencies throughout transaction execution.

Transaction Adapters Behind the Scenes Continuing with our example, we now

examine how transaction adapters work behind the scenes t o support semantics-based

concurrency control. The metalevel interface command instantiate in line 2 performs

the same initialization as our previous advanced transaction model example. The select

commands in lines 3 and 4 perform two functions. First, they inform the framework of

the transaction's intension to utilize semantic information t o relax lock conflicts. The

TRANSACTION MANAGEMENT ADAPTER responds by registering the CONFLICT ADAPTER

as the handler for lock conflict events. second, they instruct the CONFLICT ADAPTER t o

load the specified compatibility tables for the transaction. If the file cannot be found or

an error occurs loading the file, then the CONFLICT ADAPTER is unregistered and an error

code is returned. During the execution of CE-Tran, all lock conflict events are handled by

the CONFLICT ADAPTER.

During transaction execution, the Lock function performs standard conflict testing for

all lock requests. If a lock conflict is detected, a conflict event is raised. Information

passed t o the CONFLICT ADAPTER in the conflict event descriptor includes the identifier

of the transaction requesting the lock, the mode in which the lock is being requested, the

operation being requested, and a list of the transactions currently holding a lock on the

d a t a object. The CONFLICT ADAPTER uses the function relaxconflict t o implement

semantic compatibility testing.

Operationally, Lock and relaxconf lict combine t o form a two-step semantic conflict

test. Step one, executed by Lock, performs a standard syntactic conflict test based on the

update type of the operation (e.g. read or write). Step two, which is performed only when

a conflict is detected, is executed by the relaxconf lict function which performs semantic

compatibility testing to determine if the two operations are semantically compatible.

The function relaxconflict uses compatibility table(s) that define compatibility re-

lations, and an ignore-conflict table that records conflicts explicitly relazed between trans-

actions, and will relax a R / W conflict if either of the following conditions hold:

1. the semantics of the da ta object indicate the operation for which the lock is being

requested is semantically compatible with all uncommitted operations holding a lock;

2. the transaction holding the conflicting lock has explicitly indicated the transaction

requesting the lock has permission to perform the operation.

This semantic conflict rule effectively states that an extended transaction may acquire

a lock if all other transactions owning the lock in an incompatible mode are relaxed by

either operation semantics or explicit agreement between the transactions. This semantics

based concurrency control is all performed through extensions of the underlying conflict

detection and locking mechanism, demonstrating tha t the use of a conventional locking

mechanism does not preclude the use of semantics-based concurrency control protocols.

4.4 Summary

Building on the concepts and mechanisms introduced in Chapter 2 and Chapter 3, this

chapter presented the application of the Reflective Transaction Framework t o implement

a number of extended transaction types. These examples vary significantly in their scope,

structure and style of interaction. The first set of examples consisted of advanced transac-

tion models tha t selectively relax the ACID properties in a controlled manner, while the

second set consisted of semantics-based concurrency control protocols tha t employ various

forms of semantic information t o relax the definition of conflict. Although the behaviors,

and hence internal organization, of these extended transaction examples differ consider-

ably, they are all supported within the framework tha t the Reflective Transaction Frame-

work defines and implements. Applica.tion and transaction systems programmers can use

the extended transaction and metalevel interfaces t o tailor the basic framework mecha-

nisms t o match the needs of their particular applications or domains, while maintaining

the overall structure of their code and effecting a simple separation between application

code, framework use? and framework specialization.

Chapter 5

Implement at ion and Evaluation

The previous two chapters presented the detailed design of the Reflective Transaction

Framework and demonstrated how it can be used t o implement a number of extended

transaction types. To complete the picture, this chapter presents ENCINA/ET, an im-

plementation of the Reflective Transaction Framework on the commercial TP monitor

Encina [Tra94a], and an evaluation of the Encina implementation.

We begin in Section 5.1 with an implementation overview, addressing issues spe-

cific t o an Encina implementation, and in Section 5.2 we describe the implementation

of ENCINA/ET. In Section 5.3 we present an evaluation of ENCINA/ET that quantifies the

cost of supporting the extended transaction services, along with a qualitative evaluation

of the framework design. We conclude in Section 5.5 with a summary of the experience

gained and lessons learned from the implementation and evaluation effort.

5.1 Implementation Chapter Overview

This section presents an overview of ENCINA/ET, an implementation of the Reflective

Transaction Framework on the commercial TP monitor Encina [Tra94a]. We begin by

describing the overall architecture and main components of the system. Because many

of the basic mechanisms of the framework have already received in-depth coverage in

Chapter 3, we focus on issues specific t o the Encina implementation. These include internal

extended transaction representation, connection with the underlying TP monitor, and the

implementation of key extended transaction services.

5.1.1 Design of the Encina TP Monitor

Our implementation of ENCINA/ET is constructed on top of the Encina TP monitor, in

particular the Encina Toolkit [Tra94b]. The Encina Toolkit, illustrated in Figure 5.1, con-

sists of transaction middleware service modules that provide the core transaction services

of the Encina TP monitor, which include:

Transaction Service Module (TRAN), which provides transaction execution control

and default transaction control operations (begin, commit, abort)

Lock Service Module (LOCI<), which provides a logical locking package to guarantee

transaction isolation.

Recovery Service Module (KEC), which provides undo/redo logic required t o imple-

ment roll-back after abort and roll-forward after system failure.

Log Service Module (LOG), which provides write-ahead log support for transaction

updates and crash recovery.

Volume Service Module (VOL), which provides logic t o view multiple physical and

mirrored disks as a single virtual file.

In addition, the Encina Toolkit includes the Transactional-C (TRAN-C) library, which

consists of macros and routines that enhance ANSI/Standard C for transactional appli-

cation development. The toolkit also includes the Base Development Environment (BDE)

library, which provides services such as POSIX threading, file 110, and memory allocation

to isolate the toolkit from operating system dependencies. With the exception of VOL and

LOCK, these transaction services are the basic building blocks present in most modern TP
monitors [BerSO, GR93, BN961.

Figure 5.1: Software modules in the Encina Toolkit.

TRAN-C and Administration

Each module in the Encina Toolkit provides access t o its transaction services and be-

haviors through a relatively simple and uniform application programming interface (API).

In addition, each module provides a transaction event callback facility in which an appli-

cation may arrange for a procedure t o be called when a selected event occurs during the

processing of a transaction. These events include transaction initialization, transaction

preparation, transaction resolution, transaction commit, tra~lsaction abort, lock conflicts,

and others. The procedure callback is made by an Encina library routine, in a thread

managed by Encina, when the requested event occurs. From the point of view of the

application process, the procedure call happens asynchronously. ENCINA/ET uses the

callback facility extensively to coordinate the execution of a transaction running on the

TRAN

Basic Development Environment

LOCK
REC

LOG VOL

Encina TP monitor with various extended transaction services in ENCINA/ET. In addi-.

tion, we use the API calls to leverage transaction services of the toolkit to implement the

extended transaction services in ENCIN A /ET.

5.1.2 Design of ENCINA/ET

ENCINA/ET is implemented as a user-level C library - a collection of functions and an

associated header file - residing in the same address space as the transactional appli-

cation. The ENCINA/ET library is modularly structured. Each module corresponds t o

a specific transaction adapter, t o allow one t o experiment with different adapter imple

mentations. The functions in the ENCINA /ET library implement the extended transaction

services detailed in Chapter 3, and are linked t o the Encina Toolkit so they can invoke

Encina transaction management functions. The relationship between ENCINA/ET and the

transactional application is illustrated in Figure 5.2. Note that ENCINA/ET is actually

linked t o modules in the Encina Toolkit, but from the application program point of view

all communication is through the Encina TP monitor.

Transactional ~ ~ ~ l i c a t i o n
5

f

Encina/ET
\

f \

Encina Transaction Processing Monitor
\ /

Figure 5.2: Relationship between applications, ENCINA/ET and Encina TP monitor.

Figure 5.2 above shows that the extended transaction library isolates the ENCINA/ET
library from the application - programmers access extended services through available

extended transaction control operations. The figure also shows that both ENCINA/ET and

the application itself can access the resources of the underlying Encina TP monitor.

5.1.3 Design of the Metalevel Interface

An underlying principle of our metalevel interface was tha t it should be as small as possi-

ble. Specifically, the number of operations in the metalevel interface was kept t o a mini-

mum. Each argument of an operation expresses some real information that the extended

transaction service needs from the programmer t o perform its function. The programmer

should never have t o pass information if the extended transaction service can determine

the value. For example, when an application invokes the ignoreconf l i c t command, the

only argument required is the name of t,he cooperative transaction - the identity of the

extended transaction creating the ignore-conflict record is simply the one invoking the

corn m and.

The "minimalist" principle outlined in the preceding paragraph advances our goal of

ease of use and simplicity. Unfortunately, it conflicts with our internal use of metalevel

operations. In our implementation of ENCINA/ET we make use of operations from the

rnetalevel interface to implement extended transactions services. In these cases it is not

always possible t o determine the default value(s) correctly. For example, when the LOCK

ADAPTER is performing a lock delegation, it must establish an ignore-conflict relationship

between the two transactions involved in the delegation. There is no way to determine the

callee, so t o guarantee that the values are set correctly, the LOCK ADAPTER must provide

the identity of both extended transactions to the ignoreconf l i c t command.

Our approach in ENCINA/ET is to provide two versions of metalevel operations for

which we would like default argument values. The simple version always uses the de-

f a u l t (~) . The extended version h a s the same name as the simple version followed by

the characters "L?", and it allows the programmer t o specify the argument's value in

question. For example, the extended version of the i g n o r e c o n f l i c t command, called

ignoreconf l i c t 2 , requires the callee t o specify both transactions in the ignore-conflict

relationship. This approach increases the number of constructs in the library, but reduces

the number of arguments in frequently used operations. The net result is that system

programmers using the metalevel interface to implement new extended transactions gen-

erally have fewer arguments t o worry about and their code is much neater. Programmers

using the metalevel interface t o implement extended transaction services, such as delega-

tion, semantic transaction synchronization, and transaction execution control, have the

uecessary power t o do so.

5.2 Implementation of ENCINA/ET

This section presents the implementation of ENCINA/ET, beginning with a description of

the key da ta structures. As our implementation discussion proceeds, we shall identify how

these structures are used t o implement specific extended transaction functions. Following,

in subsections 5.2.2 - 5.2.4, we describe the implementation of key extended transaction

services. This presentation parallels our framework design discussions presented in Section

3.3. Throughout these discussions we identify the Encina API commands, callbacks,

and functionality that we build on in our implementation. In this sense, we stress the

boundaries between ENCINA/ET and the Encina TP monitor, identifying the features

that are important for our implementation.

5.2.1 Extended Transaction Data Structures

The implementation of the internal representations of extended transaction structures is

very important t o overall system performance and resource consumption. In this section

we describe the main data structures in ENCINA/ET, illustrated in Figure 5.3.

adaptrep

etrep
I I

delegate set
name
dtee
dtor

dtrpe
inprogress

rap
count

1 lockname Iwknarne lockname lockname u-w lock list

Figure 5.3: Main data structures in the internal extended transaction representation. Each
rectangular box corresponds to a major data item and the shaded areas represent data structures
that are further explained in subsequent discussions.

Main Data Structures
To centralize data management, all information for the transaction adapters in ENCINA/ET

is stored in a structure called adaptrep, while all important information for an extended

transaction is stored in a structure called etrep.

Extended Transaction Dependency Set
The extended transaction dependency set, etranDepSet, records the dependency

graphs used to support transaction execution control. Entries are created in the

etranDepSet structure using the metalevel command define-dependency. Our

current implementation of ENCINA/ET maintains two dependency graphs; one for

commit dependencies (CD) and another for abo'rt dependencies (AD) between ex-

tended transactions. Internally, etranDepSet is represented by an array in which

each entry holds a distinct dependency graph. The internal representation of the

individual dependency graphs is described further in Section 5.2.4 and illustrated in

Figures 5.7 and 5.8.

Semantic Compatibility Tables
The semantic compatibility table set, CompTblSet, stores semantic compatibility

tables loaded by an application. It is a key data structure in the implementation

of semantic transaction synchronization. The internal representation of the tables

stored in CompTblSet is described in Section 5.2.3 and illustrated in Figure 5.5.

Cooperative Transaction Set
The cooperative transaction set, CoopTrSet, stores the active ignore conflict records

created between extended transactions. It is a key da ta structure in the implemen-

tation of semantic transaction synchronization. The internal representation of the

ignore conflict records recorded in CoopTrSet is described further in Section 5.2.3

and illustrated in Figure 5.6.

Miscellaneous Data
There are miscellaneous da ta items mainly used by internal ENCINA/ET operations.

One example is the wait-for graph constructed for detecting transaction deadlock.

Extended Transaction Table
The most important adaptrep component is the table of extended transaction de-

scriptors, etran-tbl . Each etran-tbl entry holds the internal representation of an

extended transaction (etrep) . In ENCINA/ET, etran-tbl is represented as an ar-

ray of structures, each entry of which contains a pointer to an extended transaction

descriptor etrep. Each e trep structure contains the following fields:

- etrid: a unique extended transaction identifier, represented by an integer.

that also serves as an index into etran-tbl. There are three support func-

tions: new-etrid0 generates an etrid value by locating an available entry in

etran-tbl; create-etrep(etrid1 allocates and initializes an etrep structure;

and delete-etrep(etrid) frees the space allocated to an entry no longer in

use.

- tid: storage location for the underlying Encina transaction identifier of type

tran-tid-t. The value is set using the Encina TRAN module call get- t id0

when the application issues the metalevel command instantiate (name).

- name: a string variable that records the name assigned to the extended trans-

action by the application. Application programs use this name in performing

extended transaction control operations, such as forming transaction depen-

dencies, establishing ignore-conflict relationships, etc. The support function

getetrid-usingname(name) searches the etrep entries in etran-tbl and re-

turns the etrid (location) of the extended transaction matching the name, or

indicates that it was not found.

- state: an enumerated type consisting of the values {initiated, active, pending,

committed, aborted) that records the transaction state.

- type: an optional transaction type, internally represented a s a character string.

The support functions set-type(name , type) and get-type(name1 set and get

this value, respectively.

- internalstate: an optional application specific transaction state, internally

represented as a character string. The support functions setstate(name,

s tate) and get -state (name) set and get this value, respectively.

- eventlist: a collection of transaction management events associated with the

extended transactions; essentially, this defines the interface applications can

use to access extended transaction functionality. An eventlist is represented as

a linked list of event descriptors. Each event descriptor contains a string that

identifies the name of the event, a linked list of guards (predicates) that are

represented as strings, a pointer to the function that serves as the handler for

the event, an enumerated type variable that characterizes the event execution

properties, and, finally, a boolean value that indicates whether the event is

triggerable.

- sbcc-enabled: a boolean variable t.hat indicates whether the application in-

tends to use semantic transaction synchronization for the extended transaction.

After sbcc-enabled is set to TRUE, the CONFLICT ADAPTER is called when a

lock coriflict is detected for the transaction.

- delegate-enabled: a boolean variable tha t indicates whether the extended

transaction can delegate locks to other extended transactions.

- acquire-enabled: a boolean variable that when set t o TRUE indicates that

the extended transaction can acquire locks on delegated da ta objects.

- dependency-enabled: a boolean variable that indicates whether the ex-

tended transaction can form and participate in transaction dependencies. Af-

ter dependency-enabled is set t~ TRUE, the TRANSACTION MANAGEMENT

ADAPTER scheduler is called when the transaction attempts t o execute trans-

action significant events.

- sbcc-policy: sources t o be checked by the CONFLICT ADAPTER in an attempt

t o relax a R / W lock conflict for this extended transaction. Each source identifies

a compatibility table class name, or the keyword "ignoreconflict" that indicates

that records in the CoopTrSet are to be used. The internal representation of

sbcc-policy is a linked list of strings.

- delegate set: stores information pertaining t o the active delegate sets created

by the extended transaction. It is the main da ta structure in the implemen-

tation of transaction restructuring. Its internal representation is presented in

Section 5.2.2 and illustrated in Figure 5.4.

- proplist: a list for associating property d a t a with an extended transaction, as

illustrated in the implementation of ESR presented in Section 4.2. Property

da ta is a list of (key, value) pairs. Property values are assigned and retrieved us-

ing set-etranprop(etrid, key, value) and get-etranprop(etrid, key),

respectively. Internally, proplist is represented as a linked list of structures

that contain a key and value field, both of which are string variables.

5.2.2 Implementing Transaction Restructuring

Initializing an Extended Transaction To use the services of E N C I N A ~ E T , an

application must first register a transaction using instantiate (name). The TRANSAC-

TION MANAGEMENT ADAPTER locates an open position in the extended transaction table

etran-tbl using new-etrid0 and creates an extended transaction descriptor etrep us-

ing create-etrid(etrid). The newly created etrep structure is initialized, the necessary

transaction callbacks are registered, and the state of the extended transaction is set t o

initialized. Specifically, the TRANsACTlON MANAGEMENT ADAPTER issues the following

operations:

create and initialize extended transaction descriptor. . .
etrid = new-etrid()
TID = getTID0
etrepptr = create-etrep(name,TID)

status = insert-etrep(etrid,etrepptr)
status = tran-CallBeforeAbort(TID,etzvent)
if (status == TRANSUCCESS) then continue else return(status)
status = tran-CallBeforeCommit(TID,etsvent)
if (status == TRANSUCCESS) then continue else return(status)
status = tranXallAfterFinished(T1D ,etsvent)
if (status == TRANSUCCESS) then continue else return(status)
setstate(etrid, initialized)

return(success)

In line 1 new-etrid0 is used t o locate an available entry in the extended transaction

table etran-tbl. In line 2 the current transaction's TID is obtained using the Encina

getTid function. Then, in line 3 create-etrep0 allocates space for the extended trans-

action descriptor, storing the name of the extended transaction and the TID in the newly

created extended transaction descriptor. he extended transaction descriptor is then in-

serted into the table etran-tbl using insert-etrep.

Next, the Encina callbacks are registered for the extended transaction. Line 5 registers

the TRANSACTION MANAGEMENT ADAPTER event handling function et-event as the call-

back function t o be executed before transactionTID is aborted. Similarly, line 7 registers

et-event as the callback function to be executed before transactionTxD commits, and line

9 registers et-event as the function that is to be executed after transaction^^^ has corn-

pleted (i.e., Encina commit or abort processing is complete). Lines 6 , 8 and 10 perform

error checking using the Encina defined constant TRANSUCCESS. Finally, the extended

transaction s ta te is set to initialized in line 11 using s e t s t a t e and in line 12 the function

instantiate returns.

The tran-CallAfterFinished callback might appear redundant from the extended

transaction processing point of view. However, there are callbacks in the Encina Recovery

Service that developers may wish to utilize a t a later date. The tran-CallAfterFinished

event serves as notice that transaction execution is truly complete, and a t that point

the extended transaction descriptor can be removed from the extended transaction table

etran-tbl. Together, these three callbacks effectively enable the TRANSACTION MAN-

AGEMENT ADAPTER t o track the execution of a transaction from the time an application

issues the instantiate command until the time the transaction terminates and its ex-

tended transaction descriptor is deleted.

Transaction Restructuring As described in Section 3.3.1, the LOCK ADAPTER pro-

vides extended transactions with the ability t o restructure dynamically, by delegating

ownership of some or all of the acquired locks on da ta objects. To implement transaction

restructuring, the LOCK ADAPTER utilizes the services of the Encina LOCK service module.

Specifically, ENCINA/ET includes the file lock/lock.h, which contains LOCK da ta type and

function interface declarations, and is linked t o the library 1ibEncServer.a which contains

LOCK service functions. The primary data structure in the implementation of transaction

restructuring is the delegate set, which is illustrated in Figure 5.4.

TYPE

delset-type: STRUCT;

name: char*;

dtee: etrid;

dtor: etrid;

dtype: enumerated type, one of ' 'immediate' ' or ' 'deferred' ';
inprogress: boolean;

resp: enumerated type, one of ' 'dtee' ' or ' 'dtor' I;

count: integer;

locklist: list of lockname-t; (* Encina Lock Manager data type *)
end; (* d e l s e t - t y p e *)

Figure 5.4: Basic data structure for a delegate set.

The implementation of operations that c r e a t e and d e l e t e a delegate set, along with

operations t o i n s e r t and remove the names of data objects from a delegate set is straight-

forward. Of interest, however, is the implementation of the d e l e g a t e operation and how

it interacts with the Lock Manager in the Encina Toolkit. In the paragraphs below we

detail our implementation of d e l e g a t e and its supporting guards.

To perform a d e l e g a t e operation, of the form de lega te l l (t 2 , d e l s e t , d e l t y p e) ,

the LOCK ADAPTER must first determine if the operation is well-formed. The first step

is to evaluate ((S t a t e (t l , Active) == TRUE) AND (S t a t e (t 2 , Active) == TRUE)) ,

which tests tha t both extended transactions are running - otherwise, a call t o the Encina

Lock Manager would result in an application runtime error. The next step is t o evaluate

((Delegate_Enabled(tl) == TRUE) A N D (AcquireEnabled(tz) == TRUE)), which verifies

that delegation has been appropriately enabled for both extended transactions. Next, we

evaluate ((d e l t y p e == immediate) OR (del type == defe r red)) , t o confirm the type of

delegation has been correctly set. These tests are implemented using simple functions that

either look-up information in the. extended transaction table or test local call variables.

The final step to determine if delegate is well-formed is to verify that t l holds a lock

on each data object in de l se t . Otherwise, a call to the Encina Lock Manager to release

a lock not held by the transaction would result in an application runtime error. This test

is facilitated by the Encina Lock Manager command lock-GetTranInfo(TIDfl), which

returns a list of the locks held by a transaction, and for each lock its mode (lockmode),

the space in which the lock resides (lockspace), and its duration (duration). The LOCK

ADAPTER does not interpret these values, but uses them later in Lock Manager calls that

carry out the actual lock transfer. It simply uses the list of its locks t o verify that each

lockname in the delegate set is present in the list.

To avoid introducing transaction deadlock, the LOCK ADAPTER first verifies the lock

delegation will not introduce a deadlock. Deadlock detection is implemented by the

function cycleFree, which returns TRUE if no cycles are detected and FALSE if a cy-

cle (deadlock) is detected. cycleFree effectively constructs the wait-for graph that will

result after the delegation, "marking" transactions as visited by recording their identifier

(TID) in the list visited. It uses the Lock Manager functions lock-GetTranInfo(TIDtl)

and lock-GetLockInf o (lockmode, lockname, lockspace). The latter returns the list

of transactions waiting for a lock on a specific data object. The cycleFree function is

outlined below:

cycleFree(t;:tran-tid-t, de1set:delset-type)

Check whether transaction t; is waiting for any locks using l o c k ~ r a n - w a i t f o r (~ 1 ~ ~ ~) .

Return TRUE if t; is not waiting for any locks.

If firstpass then insert the name of each data object in the delegate set (delset) into

the list holdlock and set firstpass to FALSE, else gather the list of locks t; holds using

lock4etTranInf o (TIDti) and insert them into holdlock.

a If holdlock is empty then return TRUE, else for each lockname in holdlock and each

transaction t j waiting for a lock on lockname do:

- If the waiting transaction's identifier (TIDtj) is in the list visited then a cycle

has been detected, so return FALSE.

- Recursively call cycleFree(t j , n u l l l i s t) for the waiting transaction entry.

- If the recursive call returns FALSE then propagate the result by returning FALSE,

else add the transaction identifier (TIDtj) to the list visited.

Return TRUE. All waiting transactions have been checked, no cycles were found.

Once the LOCK MANAGER has determined the delegate operation is well-formed and

that no transaction deadlocks will result, it can proceed with the actual transfer. For each

lockname identified in locklist of the delegate set, the following operations are performed:

1. Prepare for a lock conflict. The lock transfer will require two extended transactions

t o lock the da ta object concurrently, potentially resulting in a lock conflict. Thus, we

first create an ignore-conflict record by issuing the CONFLICT ADAPTER COMMAND:

ignoreconf lict2(tl, tz , lockname, null, null, null, lockname), where the

name of the lock being transferred is used as the handle for the ignore-conflict record.

2. Transfer lock ownership. First, ownership of the lock is granted t o extended trans-

action t2, by issuing the Encina Lock Manager command lockAcquire(TIDt2,

lockmode, lockname, lockspace, duration). A R / W conflict will be detected

by the Lock Manager, but relaxed by the Conflict Adapter using the ignore-conflict

record created in step 1. Then, the lock is released from t l by issuing the Encina Lock

Manager command lockJtelease(TIDtl, lockmode, lockname, lockspace).

3. Record for undo. Insert the lockname in a temporary da ta structure called the

undolist. If an error is encountered during subsequent lock transfers, this transfer

can be rolled-back using undolist.

4. Clean up. Remove the ignore-conflict record using the CONFLICT ADAPTER COM-

MAND: removeIC2(tl, lockname).

5. Update the dependency graphs. Adjust the CDREL and ADREL graphs to reflect

the delegation of the lock on lockname: Any (ti, tk) edge tagged with lockname

becomes a (t j , t k) edge tagged with lockname. Similarly, any (tk, ti) edge tagged

with lockname becomes a (tk, t j) edge tagged with lockname.

5.2.3 Implementing Semantic Transaction Synchronization

As described in Section 3.3.2, the CONFLICT ADAPTER provides a transaction synchro-

nization service that allows an application to define and select semantic compatibility

definitions for individual extended transactions. To implement semantic transaction syn-

chronization, we utilize the services of the Encina LOCK service module. Specifically, the

CONFLICT ADAPTER module of ENCINA/ET includes the file lock/lock.h during compila-

tion, which contains the LOCK data type and function interface declarations and is linked

to the library l ibEncServer.a, which contains LOCK service functions. .

Semantic transaction synchronization is implemented, in part, using the Encina Lock-

Manager conflict callback facility. The conflict callback facility allows an application t o

specify a function t o call when a R / W lock conflict occurs. When a lock conflict is detected,

the Lock Manager invokes the registered function, passing it arguments pertaining t o

the lock conflict. If the function returns (votes) TRUE, the Lock Manager will ignore

the conflict and grant the lock request; otherwise the Lock Manager will let the conflict

stand. Thus the conflict callback facility enables the CONFLICT ADAPTER to participate

in resolving R / W conflicts.

The function relaxConflict implements semantic transaction synchronization in

E N C I N A ~ E T . It is not, however, automatically registered as the conflict callback function

for an extended transaction. Instead, relaxconf l i c t is registered only when an applica-

tion calls se tp t l (sbcc-enabled, TRUE) . In response the CONFLICT ADAPTER registers

the relaxconf l i c t for t l using the command 1ockRegis terConf l i c t c a l l b a c k , as il-

lustrated below.

sbcc-enabled has been set to true.. .
s tatus = 1ockRegisterConf lictCallback(TIDtl, TRUE, relaxconf l i c t) (1)
i f (s tatus == LOCK-SUCCESS) then continue e l s e return(status1 (2)

Line 1 registers the CONFLICT ADAPTER function relaxConflict as the function to call

when the Lock Manager detects R / W CONFLICTS involving t l . The argument TIDtl is the

transaction identifier of t l , and the argument TRUE indicates that the registered function,

relaxConflict, will vote on the decision t o ignore the conflict. Line 2 performs error checking

using the Encina defined constant L O C K ~ U C C E S S . When rel~xConflict is invoked, it will

applies available semantic information and returns either TRUE or FALSE to the Lock

Manager, indicating whether t o ignore the conflict or not.

As stated in our design of semantic transaction synchronization, presented in Section

3.3.2, the Lock Manager passes the following information t o the CONFLICT ADAPTER when

a conflict is detected: holdTID - identifier of the transaction holding the lock, hold,, -

operation currently active, holdmod, - mode of the lock being held, lockNarne - logical

name of the lock, r e q u e s t ~ r ~ - identifier of the transaction requesting the lock, request,,
- operation pending, and requestmod, - mode of the lock being requested. The Encina

Lock Manager does not store operation names in the lock table, nor does it pass operation

names in lock requests. Thus, i t cannot include operation name in the conflict callback t o

relaxConflict. As a result, the relaxConflict can only apply semantic information pertaining

t o lock modes and transaction identifiers to determine if the conflict can be relaxed.

The implementation of relaxConftict is built around two main da ta structures: a col-

lection of semantic compatibility tables and a set of ignore-conflict records stored in a

cooperative transaction set. As described in Section 3.3.2, a semantic compatibility table

specifies for a specific d a t a object objname whether an operation op; can be executed while

operation opj is uncommitted. The value of each (op;, opj) entry is of the form: [Action,

Dependency], where Action is one of: soK - the operations are semantically compatible

and the conflict can be relaxed, NOK - the operations conflict, or event - a named event

(predicate) that is evaluated to determine semantic compatibility, and where Dependency

is a transaction dependency that is t o be recorded between the two corresponding trans-

actions if the conflict is relaxed.

In ENCINA/ET, compatibility tables are stored in a single table, referred t o in Fig-

ure 5.3 as CompTblSet. Each entry in CompTblSet stores a unique compatibility table,

as illustrated in Figure 5.5. Semantic compatibility tables are loaded and deleted from

the CompTblSet using loadTbl(pathname:string, name:string, c1ass:string) and

removeTbl (name : string), respectively.

TYPE

comptbl-type: STRUCT;

name' char*; (* name of this table *)
class: char*; (* semantic class *)
lockname: char*; (# keyword ALL means this table applies for all data objects #)

entry: pointer to entry-type; (* linked list of table entries *)
end; (* comptb le - t ype *)

entry-type: STRUCT;

hold: lock-mode-t; (* mode lock is being held *)
request: lock-mode-t; (* mode lock is being requested *)

action: enumerated type, one of SOK, NOK or ESR;

depname: enumerated type, one of N D , AD or CD;

next: pointer to entry-type;

end; (* e n t r y - t y p e +)

Figure 5.5: Basic data structures for semantic compatibility table.

The second structure used to store semantic information is the cooperating transaction

set, referred t o in Figure 5.3 as CoopTrSet. CoopTrSet is implemented as an array of

ignore conflict records, illustrated i n Figure 5.6.

TYPE

icrecord-t ype: STRUCT;

creator: etrid;
cooptran: etrid;
lockname: char*;
event: char*;
depname: enumerated type, one of ND, AD or CD;
handle: char*;

end; (* acrecord-type *)

Figure 5.6: Data Structure for an ignore-conflict record in the cooperative transaction set.

The field creator is the identifier of the transaction tha t created the ignore-conflict record,

cooptran is the identifier of the transaction it will allow conflicting lock requests, lock-

name(optiona1) specifyies the data object CoopTran can access, event (optional) speci-

fyies the predicate to evaluate t o determine compatibility, depname (optional) specifies a

dependency t o record if the conflict is relaxed and, finally, handle (optional) specifies a

unique name for the ignore-conflict record.

On receiving a conflict event, relaxConj?ict will use these two da ta structures t o deter-

mine if the R / W conflict can be relaxed and the lock on the da ta object can be granted t o

the requesting transaction. In accordance with the Semantic Conflict Rule, described in

Section 3.3.2, the conflict can be relaxed (i.e., is semantically compatible) if either a com-

patibility table indicates the operation for which the lock is being requested is semantically

compatible with the uncommitted operation holding the lock, or the transaction holding

the lock has explicitly indicated that the transaction requesting the lock has permission

t o perform the operation. The function relaxConftict returns TRUE as soon as it finds

one source that relaxes the conflict or returns FALSE if no source relaxes the conflict. A
high-level description of the relaxConflict function is outlined below.

BEGIN relaxConflict
I N tidhold: identifier of transaction holding lock;
I N modehold: mode lock is being held;

I N lockname: logical lock name;

I N tidreq: identifier of transaction requesting lock;

I N modereq: mode lock is being requested;

etridreq = getetridfrom-tid(tidreq);

etridhold = getetrid-from-tid(tidho1d);

namereq = getnamefrom-etrid(etridreq);
namehold = getnamefrom-etrid(etridho1d);

Get the list of policynames from the sbcc-policy field of the requesting transaction descriptor. For

each policyname listed do:

If (policy-name == ignoreconflict) then

- Search the ignore-conflict records in CoopTrSet for a match, using etridhold, etridreq,
and lockname. If a match is found then:

1. Check the event field of the ignore conflict record to see if an event (predicate)
name is specified. If no event is specified go on to the next step, otherwise eval-

uate(event). If the predicate returns TRUE then go to the next step, otherwise

continue search;

2. Check the dependency name field of the ignore conflict record to see if a transac-
tion dependency needs to be recorded. If not, then return(~RuE);

3. Attempt to form the dependency using the command f ormdependency2(depname,
namereq, namehold, lockname). If successful then return(~~u~), otherwise
continue search;

Else for each table in CompTblSet where ((policyname == tab1e.cla.s~) AND ((table.1ockname
-- -- lockname) OR (table.lockname == ALL)) do

- Search the entries in the compatibility table for a match, using modehold and modereq.
If a match is found then:

1. Check the event field of the compatibility table entry to see if an event (predicate)
name is specified. If no event is specified then go on to the next step, otherwise
evaluate(event). If the predicate returns TRUE then go to the next step, otherwise

continue search;

2. Check the dependency name field of the ignore conflict record to see if a transac-
tion dependency needs to be recorded. If not, then return(T~u~);

3. Attempt to form the dependency using the command f ormdependency2 (depname ,
namereq, namehold, lockname). If successful then return (TRUE), otherwise

continue search;

~ ~ ~ u ~ ~ (F A L s E) . A11 sources checked, unable t o relax conflict.
END (* reloxConflict *)

5.2.4 Implementing Transaction Execution Control

To implement transaction execution control, the TRANSACTION MANAGEMENT ADAPTER

utilizes the transaction service calls and callback facility of Encina T R A N service module.

During compilation, ENCINA/ET includes the file tran/tran.h, which contains TRAN data

type and function interface declarations, and is linked t o the library 1ibEncina.a which

contains TRAN service functions.
Transaction event scheduling is implemented by the function schedule-et. An applica-

tion declares its intension t o use event scheduling for an extended transaction by calling

setpt l (enabledependency , TRUE). Once transaction dependencies have been enabled,

schedule-et is called each time an extended transaction 'raises an event. Specifically, when

the tran-CallBef oreAbort or tran-CallBef orecommit callback is raised, the function

tran-event will first invoke schedule-et t o determine if the event can be processed.

To demonstrate the ability of schedule-et t o coordinate the execution of extended

transactions, we consider two well-known transaction dependencies, commit dependencies

and abort dependencies. The main da ta structures used t o implement schedule-et are

transaction dependency graphs.

Commit Dependency Graph The graph, CDREL, keeps track of the commit depen-
dencies between extended transactions. Its vertices correspond t o extended transactions.

An edge exists from t; t o t j if t j is commit dependent on t;, and this edge is tagged with

the name of the data object that caused the dependency.

Abort Dependency Graph The graph, ADREL, keeps track of the abort dependencies

between extended transactions. Similarly, its vertices correspond to extended transac-

tions, and an edge exists from t; t o t j if t j is abort dependent on t;. Each edge is tagged

with the name of the data object that caused the abort-dependency relation t o form.

In our current implementation, the dependency graphs used for transaction execu-

tion control are stored in the structure etranDepSet. The internal representation of

etranDepSet is an array of dependency graphs, the structure of which is illustrated in

Figure 5.7. Each entry in etranDepSet records the unique name of the dependency,

the type of the dependency (either CAUSAL or ORDER) the transaction significant events

(BEGIN, COMMIT or ABORT) and an array of structures that records the edges of the

dependency graph, detailed in Figure 5.8.

A transaction dependency type is created using the TRANSACTION MANAGEMENT

ADAPTER command def ine-dependency (dependencyname , eventname,, eventnameb ,
deptype). This command searches etranDepSet to verify that the dependency name is

TYPE

dependency-t ype: STRUCT;
depname: char*;
deptype: enumerated type, one of CAUSAL, ORDER;

preevent: enumerated type, one of BEGIN, COMMIT, ABORT;

postevent: enumerated type, one of BEGIN, COMMIT, ABORT;

dependency: array of dependency-entry-type; (* indexed by etrid *)
end; (* dependency - t ype *)

Figure 5.7: Data structure for an extended transaction dependency graph.

unique, then creates a new entry and initializes the name, dependency type, and event

fields. For example, a commit dependency graph is created with def ine-dependency (CD ,
COMMIT, COMMIT, ORDER).

TYPE

dependency-entry-type: STRUCT;

disabled: boolean-t;
count: integer;

with: etrid-t;
label: char*;
next: pointer-t;

end; (* dependency -en t ry - t ype *)

Figure 5.8: Data structure for recording individual dependencies.

Once the graph has been defined (created), an application can record and remove

dependencies between extended transactions using f om-dependencytl (CD , tz , lockname)

and delete-dependencytl (C D , t2, lockname), respectively.

Processing Commit Events Recall from our discussion in Section 3.3.3, when an

extended transaction attempts t o commit, the event can be rejected and delayed. Commit,

like begin and prepare, is a normal event. Since the dependency type of the CDREL graph

is ORDERING (dependency), schedule-et delays the commit of an extended transaction ti

t o enforce the dependency rules.

If there is an edge (t j , ti) in cDREL, then ti is commit dependent on the uncommitted

transaction t j and cannot be committed. Delay, by calling s e t s t a t e (p e n d i n g 1 t o

put the commit request in event pending list, and retry later when t j terminates.

Otherwise, execute the remaining steps below.

1. Remove all edges in CDREL and ADREL involving ti. For each successor, tj, of

t; in CDREL that is in the pending state, if (t;, t j) was the only edge entering

t j in CDREL, perform commit(tj).

2. Finally, call s e t s t a t e (committed) t o set the state of t; t o committed.

Processing Abort Events When an extended transaction aborts the event cannot be

delayed or ignored - abort is an immediate event (see Section 3.3.3). Since the depen-

dency type of the ADREL graph is CAUSAL (dependency), the only option is t o accept

the event and trigger the abort of other extended transactions t o enforce the dependency

rules. To abort a transaction, we use the Encina TRAN function abortNamedTran(TIDtj,

ENFORCEABORTDEPENDENCY), where TIDtj is the TID of the transaction t o be aborted

and ENFORCEABORTDEPENDENCY is a string constant that describes the reason for aborting

the transaction.

1. For each transaction tj such that (ti, t j) in ADREL, abort t j using abortNamedTran(TIDtj,

ENFORCEABORTDEPENDENCY). Remove the corresponding edge in ADREL and decre-

ment the dependency counter. Continue this process until all transactions reachable

from t; in ADREL have been aborted.

2. For each successor, tj, of ti in CDREL that is pending, perform commit(t;) - Recall,

a commit dependency simply orders the occurrence of comnait events, but this depen-

dency has been resolved by the abort of t; and can be removed.

Remove all edges in ADREL and CDREL involving ti.

3. Finally, call s e t s t a t e (a b o r t e d 1 t o set the state of extended transaction ti to

aborted.

5.3 ENCINA/ET Evaluation Overview

In this section we evaluate the Reflective Transaction Framework design and the implemen-

tation of ENCINA/ET. Recall our specific goals from Section 3.1: new extended transaction

functionality; ease of use; ease of implementation; and, acceptable overall performance.

Chapter 3 presented the motivation and detailed design of three new extended transac-

tion services t o implement advanced transaction models and semantics-based concurrency

control protocols. Chapter 4 demonstrated the ease with which the framework could be

used to implement advanced transaction models and semantics-based concurrency control

protocols. Section 5.2 of this chapter described how the extended transaction services

defined in Chapter 3 can be implemented as extensions of the base transaction services

of a commercial TP monitor. In this section we focus on the final goal: showing that the

performance and resource cost for supporting the extended transaction services defined

by the Reflective Transaction Framework are indeed acceptable.

Our evaluation approach consists of an analysis of ENCINA/ET source and framework

design, along with controlled experiments. We consider two distinct perspectives - a

software engineering perspective and a systems perspective. From a software engineering

perspective, we first ask, in Section 5.3.1, whether ENCINA/ET'S code size and complexity

are commensurate with its functionality. Next, in Section 5.3.2, we evaluate the per-

formance of extended transaction services and resource costs of ENCINA/ET based on

quantitative experimentaI results. Finally, in Section 5.4, we evaluate the usability of the

framework and compare its flexibility with that of related extended transaction systems,

and ask how easy it is to use the framework t o construct new extended transactions; how-

ever, because of its subjective nature, only a preliminary assessment of the usability of

the framework is presented.

5.3.1 System Size and Functionality

In Section 5.2 we presented the implementation of ENCINA/ET. This realization of the

Reflective Transaction Framework on a conventional TP monitor allows us t o demon-

strate the practicality and viability of our design. In this section, we present code size

data from the implementation t o explore whether ENCINA/ET'S size and complexity are

commensurate with its functionality.

The ENCINA/ET source code lives in three modules, corresponding to the three transac-

tion adapters that make up the framework - the TRANSACTION MANAGEMENT ADAPTER,

LOCK ADAPTER, and CONFLICT ADAPTER. The TRANSACTION MANAGEMENT ADAPTER

module contains approximately 700 lines of C code, which enables an application to define

and manage dependencies between extended transactions for explicit execution control,

and reifies transaction-specific information in an extended transaction descriptor. The

LOCK ADAPTER module contains approximately 400 lines of C code, which allows an

application t o control the locks held by an extended transaction explicitly and to restruc-

ture an extended transaction dynamically by delegating da ta objects. And, finally, the

CONFLICT ADAPTER module contains roughly 450 lines of C code, which enables an ap-

plication to define semantic notions of conflict and select semantic synchronization for

individual extended transactions. In addition, there are auxiliary files that contain code,

such as macro functions and header files, that define key data structures. In total, the

ENCINA/ET source is on the order of 2000 lines of C code.

Table 5.1: Breakdown of lines of code (loc) in ENCINA/ET software modules.
ENCINA /ET Module I Total loc 1 Callback Handling I Encina API 11

A breakdown of the ENCINA/ET implementation in terms of lines of code (loc) is

presented in Table 5.1. This presentation of code size includes the total loc t o implement

each transaction adapter module and a breakdown of each module that identifies the loc

required t o process Encina transaction event callbacks, and Eoc required t o perform API

calls t o the Encina Toolkit. In contrast, the Encina Toolkit on which ENCINA/ET is

built has a code size of over 100,000 lines of C. Of this the transaction service module

(TRAN) has approximately 14,000 lines of C code, and the lock service module (L O C K) has

approximately 4,000 lines of C code.

The extended transaction services of ENCINA/ET use the services of TRAN and LOCK.

The TRAN module provides services t o manage the definition, execution, and termination

of transactions. This includes the creation and management of the transaction table, trans-

action initialization and termination, a thread-tc+TID mapping service, remote procedure

call management, and an application interface. The LOCK module provides a logical lock-

ing facility t o manage the lock space. It records locks held by a transaction, transactions

holding a lock, and transactions waiting for a lock on a da ta object. It also provides effi-

cient functions t o acquire and release locks, detect transaction deadlocks, and detect R/W

conflicts. These base transaction services serve as the cornerstones for our implementation

of the extended transaction services in ENCINA/ET.
By reusing the transaction services of the Encina Toolkit, we were able t o implement

ENCINA/ET in approximately one man-year. The value of the framework for ease of im-

plementation, then, is the way it allows us t o stand on the work of others so as t o provide

implementation support for extended transactions. At the same time, this architectural

layering does not preclude access to the underlying T P monitor, so applications can con-

tinue t o use base transaction services. As a result, the amount of code to be implemented,

debugged and tuned for implementing the extended services defined by the Reflective

Transaction Framework is significantly reduced, as demonstrated by our ENCINA/ET im-

plementation. We believe these benefits will carry over when porting ENCINA/ET t o

another TP monitor, but some details may differ, e.g. due to the lack of a lock manager

in the target T P monitor. We leave this conjecture open for future validation.

Transaction Management Adapter
Lock Adapter
Conflict Adavter

5 0
60
25

-
700
400
450

80
0

20

We present this information on the source code size of ENCINA/ET t o advance our

claim that the Reflective Transaction Framework can be efficiently implemented as a

thin software layer over the transaction processing services of a conventional TP monitor,

and does not require a system of excessive size or complexity. Thus, the approach can

be seen as a judicious blending of existing transaction system functionality and careful

addition of extended transaction functionality, t o yield a system which provides support

for implementing extended transactions. Novelty is thus more manifest in the methodology

adopted than in the individual components which have been implemented.

5.3.2 Performance Overhead for Library Operat ions

This section presents a series of experiments that measure the performance of the extended

transaction services provided by the ENCINA/ET library. This performance da ta isolates

the cost of various functions in the system and enables us t o not only identify basic system

functions that are computationally expensive, but also to determine where future efforts

should be concentrated t o improve the performance of the implementation. These mea-

surements also serve t o define the bounds of system performance and provide users with

a basis for understanding larger operations, such as implementing new extended control

operations for an advanced transaction model that would make use of these services.

Methodology

Our goal was t o measure the average cost for each extended transaction service. Perfor-

mance numbers presented in the following experiments were obtained by measuring oper-

ations over repeated trials. For each experiment we collected measurements and observed

the results, and when the results converged the experiment was terminated. Outliers,

resulting from transient system events, such as system interruptions, network activity,

aborted transactions, etc., were discarded.

Each experiment involves executing a test that exercises a specific set of extended

transaction functions. For testing purposes we have used a modified version of the TPC-B

transaction processing benchmark [Sergl]. The TPC-B benchmark models a teller a t a

bank. There is one bank with one or more branches, and multiple tellers and multiple

accounts per branch. The database represents the cash position of each entity (branch,

teller, and account) and a history of recent transactions run by the bank. Each transaction

is a deposit or withdrawal on an account by a teller in a branch. The transaction profile is

presented below, where Aid (AccountlD) , Tid (Teller-ID) , and Bid (Branch-ID) are keys

to the relevant records/rows.

/* Given Aid, Bid, Delta by caller */
BEGIN TRANSACTION

Update Account where AccountlD = Aid:

Read AccountBalance from Account

Set AccountBalance = AccountBalance + Delta

Write AccountBalance t o Account

Write t o History:

Aid, Tid, Bid, Delta, Time-stamp

Update Tel ler where Te l le r lD = Tid:

Set TellerBalance = TellerBalance + Delta

Write TellerBalance t o Teller

Update Branch where BranchlD = Bid:

Set BranchBalance + Delta

Write BranchBalance t o Branch

COMMIT TRANSACTION

Return AccountBalance t o driver

In our test program, the benchmark driverselects an account (Aid) and branch (Bid),

generates a random amount (Delta) to withdraw from or deposit to the account, then

calls the teller transaction. The teller first obtains a lock on the account and then updates

the balance, followed by updates to the branch, teller and account balances, and finally

appends a history record t o the audit trail. This simple debitlcredit transaction clearly

does not require extended transaction support. However, using this benchmark we can

compare the performance of conventional ACID transactions against transactions using

extended services, and verify our extensions are functioning correctly.

Our implementation of the benchmark differs from the TPC-B specification in three

aspects. First, the specification requires that the database keep redundant logs on different

devices. We only used a single log. Second, we ran all tests on a single, centralized system,

so there were no remote accesses. Third, we added input parameters t o the driver program

tha t allow us t o specify the bank account (Aid), branch (Bid), teller (Tid) and transaction

amount (Delta) directly, as well as to pause transactions during execution for running

more controlled tests. We also ran different experiments than specified in TPC-3 t o

measure specific extended transaction functions, since our goal is t o evaluate the extended

transaction services of ENCINA/ET, and not t o measure TP monitor performance.

Our performance metric is elapsed time, abbreviated Elapsed. Elapsed time is needed t o

determine if applications will meet response requirements and to estimate the duration that

locks will be held while operations are taking place. When processing a lock conflict call:

back, for example, the Encina TP monitor must hold latches on the lock and transaction

table entries until the registered callback function returns. Elapsed time measurements

were made using the Encina (BDE) (Base Development Environment) bde-GetTime func-

tion call, which uses the gettimeof day0 system call. The gett imeof day0 call returns

a timestamp expressed in elapsed seconds and microseconds since 00 :00 GMT, January

1, 1970 (zero hour). Calls t o bde-GetTime are made before and after the function being

measured, the elapsed time is then accumulated over a number of trials and averaged t o

provide the numbers reported in the following tables.

The elapsed time metrics tha t are reported were measured using the Encina TP mon-

itor version 1.0.1 and SunOS version 4.1.3-U1. The hardware was a Sun SPARCstation

10 Model 41 with a 40 MHz processor. The Sun workstation had 64 megabytes of main

memory, 278 megabytes of swap space, a one-gigabyte internal disk drive, and two external

Seagate Elite-:! two-gigabyte SCSI disks. The Encina TP monitor was configured t o use a

local (raw) logging partition on one of the external SCSI disks, with the Encina structured

file server (SFS) running on a separate external SCSI disk acting as the da ta store for the

test application. Both the Encina TP monitor and our testing application reside on the

internal SCSI disk. The numbers reported 'in the following tables are accurate t o two

significant digits. In all tests, performance measurements were conducted with the Sun

workstation under light load with no contention on any resources Encina consumes (i.e., no

other disk activity and, unless specifically mentioned, no other transactional applications

being executed) .

Performance Overhead for Managing an Extended Transaction Descriptor

Prior to using any extended transaction service, an application must first register a trans-

action with ENCINA/ET, which in turn creates an extended transaction descriptor and

registers the necessary Encina callbacks. This adds a certain amount of overhead. The

question is, How much? More specifically, we want t o know: What is the performance

overhead for creating an extended transaction descriptor, registering the callbacks with

Encina to track the execution of the underlying transaction, and removing the extended

transaction descriptor once the transaction has finished? Our first experiment measures

the costs t o create an extended transaction descriptor for a teller transaction, to register

the necessary callbacks, and t o remove the extended transaction descriptor. Table 5.2

presents the performance measurements from this test.

Table 5.2: Execution times for managing an extended transaction descriptor.
1 Measurement I ENCINA/ET Librarq Primitive I Average Elapsed I]
L I J

n 1 A I Execute teller transaction (ACID) 1 113.63 milliseconds 11
1B /IpP I Begin t i ler transaction (ACID) 1 2.93 milliseconds 11
1 C

1 D

Commit teller transaction (ACID)] 1.08 milliseconds

Execute extended teller transaction 1 115.32 milliseconds

1 Total I Overhead for managing extended transaction descriptor 1 989 microseconds

I

1G
1 H
1 I

To collect the measurements presented in Table 5.2, we used our TPC-B test program,

modified t o create an extended transaction descriptor for each teller transaction prior t o

executing normal account updates. To create an extended transaction descriptor, a name

is required for an extended transaction. This name is generated for each teller transaction

by converting the randomly selected teller identifier to a string and storing i t in the variable

tellername. Each teller transaction then cregtes an extended transaction descriptor using

the command instantiate(tellername1 and performs the account update and logging

operations. When the teller transaction terminates, the extended transaction descriptor

is removed. Once the performance runs were complete, balances for account, teller and

branch were examined, along with the sum of deltas for the history file, to verify that all

the values were changed in accordance with the deltas of the teller transactions.

As a baseline for our evaluation, we first measured the performance of a default (ACID)

teller transaction that did not create an extended transaction descriptor. The timing

for this default teller transaction is presented in Table 5.2 as measurement 1A. In ad-

dition, we measured the performance overhead of Encina operations begin-transaction

and commit-transaction (measurements 1B and lC , respectively). These timings are

high, relative t o published TPC-B results, so a few comments regarding our benchmark

implementation and system configuration are in order.

The remote procedure call, or RPC, and the transactional remote procedure call, or

TRPC, are among the more expensive mechanisms used by Encina; a T R P C consists

of an RPC with additional data used t o track the transaction state. Disk I/O can also

be quite expensive. Our current test configuration uses the Encina structured file server

(SFS) as the bank data store. Most SF'S operations require an RPC between the program

requesting the operation and the SFS, even in both reside on the same machine. For our

TPC-B test program, a teller transaction has the following operations:

420 microseconds
84 microseconds

1 E
1F

J

Create and initialize etrep structure
Register CallBeforeAbort callback
Register CallBeforeCommit callback
Register CallAfterFinished callback
Remove etrep structure upon completion

85 microseconds
84 microseconds

309 microseconds

add delta t o account record

add delta t o branch record

add delta to teller record

add record t o history file

Using s f sReadByKey and sf sApdateByKey calls, each transaction requires a total of six

RPCs for the SFS calls that modify the account, branch, and teller files. Most commercial

database systems, and more recent implementations of SFS, offer a batch update call -
that can replace these six RPCs with a single RPC. To further diagnose this performance

problem, we examine system idle time. The Unix command i o s t a t showed a significant

amount of disk operations (idle time was consistently near zero), while the Unix command

vmstat showed non-zero CPU idle time. Together, these indicate that disk storage is a

bottleneck; vmstat also showed a high number of paging events, indicating additional

memory would be beneficial. Better disk throughput could be obtained by allocating

storage t o SFS across multiple physical disks, each with its own SCSI controller. Since

our goal is t o measure the costs of the extended transaction services, not t o optimize

TPC-B throughput, we proceed with our cuirent benchmark implementation and system

configuration.

Next, we ran our modified TPC-B test program t o measure the performance of an

extended teller transaction, which creates an extended transaction descriptor and registers

callbacks t o report its execution state. The extended teller transaction's total execution

time is presented in Table 5.2 as measurement ID. To identify the sources of the perfor-

mance overhead, we instrumented the i n s t a n t i a t e operation in the ENCINA/ET library

t o collect timings for the individual operations that manage an extended transaction de-

scriptor. In Table 5.2 we see that creating an extended transaction descriptor, presented

as measurement lE, is much slower than other operations being measured. The overhead

comes from allocating memory t o store the extended transaction descriptor e t r e p , initial-

izing da ta fields, and storing the descriptor in e t ran- tb l . The operations tha t register the

TRANSACTION MANAGEMENT ADAPTER with the transaction callback facility for transac-

tion abort, commit and finished events have roughly the same overhead (measurements

IF, 1G and 1H) . An explanation for this is that the algorithm that implements callback

registration is common t o all events - it must latch the transaction table entry for the

transaction, add the callback function and arguments t o the list of callbacks maintained

for that event, and then release the latch and return a status code. Similar performance

overheads for other callbacks, measured in experiments presented later in this section,

support this conjecture. Finally, we measured the overhead for releasing the storage held

by the extended transaction descriptor and to set the extended transaction table entry

to N U L L when the teller transaction is finished (measurement 1 I). Thus, the overhead for

all operations tha t manage an extended transaction descriptor totals 989 microseconds on

average, less than one millisecond per extended transaction.

A review of the measurements in Table 5.2 reveals tha t approximately one-half of the

total cost for managing an extended transaction descriptor comes from storage allocation

and initialization of the e t r e p structure. Another one-third of the total cost comes from

freeing e t r e p storage when an extended transaction terminates. An optimized imple-

mentation of ENCINA/ET could use pooling, in which a collection of e t r e p structures are

preallocated and reused, t o reduce these overheads.

Performance of Transaction Restructuring

Next, we present the costs of the ENCINA/ET operations that perform transaction restruc-

turing. This experiment involves two teller transactions, where the first teller selects an

account and performs a balance update, then delegates the account da ta object t o the

second teller for further update. We use a modified version of our TPC-B test program,

which initiates two concurrent teller transactions, then creates an extended transaction

descriptor for each transaction. Each teller transaction is allowed t o perform its individ-

ual account update, then writes a history record containing the account number, branch

identifier, teller number, and amount of the update. At the end of the first update run,

each teller transaction delegates its account data object t o the other teller, then repeats

the account update loop with the new account object. Once the performance runs were

complete, balances for account, teller and branch were examined, along with the sum of

the deltas in the history file to verify that all values were changed in accordance with the

deltas of the teller transactions. Table 5.3 presents the performance measurements of the

operations that perform transaction restructuring.

1 1 2D I Get the list of locks held (10 locks) 1 66.39 milliseconds 11

Table 5.3: Execution times for performing transaction restructuring.

1 3D I Process lock conflict callback (one ignore-conflict record) 1 7.27 milliseconds 11

Measurement
2A
2B

2C

2E
2F

3C

ENCIN A/ET Library Primitive

Create a named delegate set
Delegate a data object (one lock)

Get the list of locks held (one lock)

A vemge Elapsed
5 16 microseconds

32.37 milliseconds

9.41 milliseconds (

Lock a data object using 1ockAcquire (no contention)
Unlock a data object using lock-Release

Create an zqnore-conflict record and store zn CoopTrSet

7.02 milliseconds
1 1.83 milliseconds

2.70 milliseconds

'

Timings were collected for the time required for a teller transaction to first create

a delegate set using create(accountlist, dtor), presented as measurement 2A. This

cost is independent of the number of da ta objects tha t the extended transaction will even-

tually delegate - only one set is required t o hold the lock names. Next we measured

the overhead t o perform the delegation of the account d a t a object using the operation

delegate(tellerid, accountlist, IMMEDIATE), presented as measurement 2B. Mea-

surements for the insert and remove operations were not included, as they are imple-

mented by simple C expressions. To better understand the cost of delegation, we measured

the constituent primitives of the delegate operation. First, we measured the Encina op-

eration lock-GetTranInfo, which returns the list of locks held by a transaction. This

Encina function is used both to obtain the list of locks held by a transaction performing

a global delegation, and t o obtain the mode and lockspace of each lock being transferred.

lock-GetTranInfo was first timed for a teller transaction holding the lock on one account

(measurement 2C), and again for a teller transaction holding the locks on 10 accounts

(measurement 2D). Next, a single teller transaction was started, which simply locks a

random account da ta object to read the balance and then unlocks it using lockAcquire

and lockllelease, respectively. Costs for the lock and unlock operations are presented as

measurements 2E and 2F. Recall from Sectiori 3.3.1 tha t transaction restructuring requires

support from the semantic transaction synchronization service t o relax the lock conflict

that results from the actual lock transfer. Thus, t o complete the performance analysis,

measurements for overheads required t o create an ignore-conflict record and to relax a lock

conflict using the ignore-conflict record were obtained, and presented as measurements 3C
and 3D, respectively. These measurements are from our performance analysis of semantic

transaction synchronization, presented in Table 5.4, discussed in the following section.

Performance of Semantic Transaction Synchronization

Next, we measured the performance costs for the ENCINA/ET operations that implement

semantic transaction synchronization. This experiment involves two concurrent teller

transactions that attempt to update the same account da ta object. The lock conflict

that results from concurrent transactions attempting t o access the same account is re-

laxed using semantic transaction synchronization, and the operation costs are measured.

Table 5.4 presents performance measurements of the operations that perform semantic

transaction synchronization.

The driver for the original TPC-B test program selects an account a t random from

the 10000 bank accounts in the Encina SF'S (structured file server) database for each

teller transaction. Given that the maximum number of tellers is 10, conflicts between

teller transactions on an account da ta object are rare. To force a lock conflict to occur

Table 5.4: Execution times for performing semantic transaction synchronization.

on each account update, we modified our TPC-B test program. In the new version, the

driver module executes two concurrent teller transactions with fixed teller numbers (teller

1 and teller 2), and fixed the account numbers so that both tellers at tempt to access the

same account. Each transaction creates an extended transaction descriptor and selects an

update amount (delta) a t random. In the first run, teller 1 creates an ignore-conflict record

specifying that teller 2 can access the account. Teller 2 is then delayed for one second using

the BDE command bde-~hreadSleep(delay,tv), t o ensure teller 1 completes its update

operation. Teller 1 performs its account update and logging operations, then blocks until

teller 2 completes processing. Upon waking up, teller 2 can perform the account update.

The conflict tha t results from attempting t o update the account held by teller 1 is relaxed

by the relaxConflictfunction and the processing time was measured. Once the performance

runs were complete, balances for account, teller and branch were examined, along with

the sum of the deltas from the history file, to verify tha t all the values were changed in

accordance with the deltas of the two teller transactions.

As a baseline for measuring the performance of relaxConflict, we first measured the

cost for Encina t o perform a lock conflict call. Tha t is, the elapsed time from the point

the Lock Manager first detects a lock conflict to the point that the registered callback

function returns a vote on the conflict. This effectively measures the amount of time it

takes Encina t o construct a conflict event, place a latch on the transaction table entry for

the conflicting transaction, and then call the registered callback function. For this baseline

measurement we were only interested in the Encina overhead, not the performance of our

relaxConflict function. Thus, we registered a constant function tha t simply returned

FALSE, thereby consuming minimal clock cycles; later in our evaluation, we shall register

relaxConflict in place of this constant function. The time required for the Lock Manager

t o register the conflict callback function is presented in Table 5.4 as measurement 3A.
To carry out this evaluation, we then modify the Encina Lock Manager source t o capture

timing information. Specifically, calls t o bde-GetTime are placed in the Encina source

3E
3F
3G
3H

Average Elapsed]
83 microseconds

39.44 milliseconds

47.82 milliseconds
2.70 milliseconds

Measurement

3 A
3B

t
3C
3D

ENCIN A /ET Library Primitive

Register relaxconf l i c t as conflict callback function
Perform lock conflict callback call (no processing)

Relax R/W conflict with ignore-conflict record
Create ignore-conflict record and store in CoopTrSet
Process lock conflict callback (single IC record)
Search CoopTrSet (10 IC records)
Process lock conflict callback (single SC table)
Search CompTblSet (10 semantic compatibility tables)

7.27 milliseconds
19.08 milliseconds
9.54 milliseconds

18.86 milliseconds

file 1ockConflict.c a t the point that a lock conflict is detected and at the point that the

registered callback function returns. The result of this evaluation is presented in Table

5.4 as measurement 3B.
Once this baseline evaluation was complete we returned t o using the original Encina

library and the modified TPC-B test program. Since both teiler transactions attempt t o

access the same account, each trial results in a lock conflict. The function relaxConflict is

invoked in response t o this conflict event, and the conflict relaxed using the ignore-conflict

record, We measured the time required t o relax this R / W conflict using the available

ignore-conflict record, presented in Table 5.4 as measurement 3C; note, this measurment

includes the 39.44 milliseconds required by Encina t o perform a lock conflict call t o re- --

ZaxConflict. To better understand the overhead involved in relaxing lock conflicts, we

instrumented the support functions for semantic transaction synchronization. We first

measured the time required to create and store an ignore-conflict record in the CoopTrSet

(measurement 3D). Next, we measured the time relaxConfiict actually required to destruc-

ture the conflict event and search CoopTrSet t o relax the conflict (measurement 3E). In

our initial test, CoopTrSet held only one ignore-conflict record, yet in actual applications

we would expect there t o be several ignore-conflict records - especially for cooperative

applications consisting of a number of active transactions. Thus, we placed 10 ignore-

conflict records in the CoopTrSet and measured the time t o search through the records

for a match (measurement 3F). Finally, we measured the time required for the function

reEaxConflict t o search through the semantic compatibility table, first containing only one

table (measurement 3G) and again containing 10 compatibility tables (measurement 3H).
Regardless of the semantic synchronization algorithm being used by the transactional

application, for example altruistic locking, cooperative serializability, commutativity, re-

coverability, etc., these microbenchmarks measure the basic mechanisms that would be

used in their implementation.

Performance of Transaction Execution Control

In our final performance evaluation, we measure the performance costs for ENCINA/ET
operations tha t perform transaction execution control. In this experiment we establish
transaction dependencies between multiple concurrently executing teller transactions, then

measure the operation costs for execution control. Specifically, we measure the overhead

t o define (create) a new transaction dependency type, t o form a dependency between ex-

tended transactions, and to enforce transaction commit and abort dependencies. Table 5.5

presents the performance measurements from this experiment.

Table 5.5: Execution times for performing transaction execution control.
f i Measurement 1 ENCINA/ET Library Primitive I Average Elapsed 11

I L

U 4D I Evaluate transaction abort dependency I 2.61 milliseconds 1

4A
4B
4C

We first measured the overhead for creating a dependency type. This was accomplished

by first instrumenting calls to the operation def ine-dependency, then issuing commands

t o create a commit dependency (cD), an abort dependency (AD), and a begin dependency

(BD). Essentially this test measures the time required for the TRANSACTION MANAGEMENT

ADAPTER t o allocate and intialize a dependency graph structure for each dependency type.

The result of this test is presented in Table 5.5 as measurement 4A. Much of this overhead

is memory allocation costs. If the dependency types are known in advance, preallocation

and caching would reduce this cost.

To measure the cost for forming and enforcing transaction dependencies, we pre-

pared a modified version of our test program. The modified test program uses three

teller transactions, with fixed teller numbers (1 through 3). Each teller transaction has a

name, tellername, whose value is the corresponsing teller number converted t o a string.

Each teller transaction creates an extended transaction descriptor using the command

instantiateCtellername) , and then forms the following commit and abort dependen-

cies with other teller transactions:

84 mzcroseconds
85 microseconds

1 I?
1 G

Essentially, each teller transaction will commit only if all three teller transactions in the

group commit, and all will abort if any one transaction in the group aborts. This modi-

fied test program was then used t o colIect measurements for the formation of transaction

dependencies (measurement 4B) and t o verify the function schedule-et works correctly for

Register CaElBeforeAbort callback
Register CallBeforeCornrnit callback
Create dependency graph structure in etranDepSet

Form a transaction dependency
Evaluate transaction commit dependency

1.22 milliseconds
870 microseconds
3.09 milliseconds

both commit and abort dependencies. The cost for this operation is relatively inexpen-

sive, which is expected since i t simply creates a dependency record and records it in the

appropriate structure (dependency type).

During the first series of runs, each teller transaction selects an account, branch and

delta a t random, and then performs the account update operation and log updates. As

the transactions complete, the function schedule-et enforces the commit dependencies by

delaying their commit until they all raise a commit event (i.e., the tran-CallBef orecommit

callback is raised). We measure the overhead for the framework t o detect and evaluate

the commit dependency for each extended transaction (measurement 4C). Included in this

measurement, and the following abort dependency measurement (4D), is the time required

for Encina t o process the commit (abort) callback and invoke schedule-et. Unfortunately,

we do not have access to source for the library l ibEncina.a, which contains TRAN service

functions, and, thus, cannot instrument commit (abort) callback processing. Based on

measurements for processing lock conflict callbacks (measurement 3B), we know these

costs can be quite high. A series of tests on schedule-et, performed after this experiment

was complete, showed that searching the dependency graphs (both commit and abort) is

performed in less than 800 microseconds; an optimized graph implementation based on

hashing could further reduce this cost.

A second series of test runs was performed in the same fashion, except that each trans-

action executes a conditional statement that randomly aborts the transaction. Again, we

measure the time required for the framework to detect and evaluate the abort dependency

(measurement 4D). In this case, the function schedule-et enforces the abort dependency

by issuing the Encina command abortMamedTran t o abort the active or pending trans-

actions. The cost for enforcing an abort dependency is less than a commit dependency,

as less time is spent evaluating an abort dependency - schedule-et simply aborts any

dependent transactions.

Once these performance runs were complete, balances for account, teller and branch

were examined, along with the sum of deltas for the history file, t o verify that all the

values were changed in accordance with the deltas of the committed teller transactions.

5.4 Reflective Transact ion Framework Evaluation

The Reflective Transaction Framework was designed for flexibility, to implement a wide

range of extended transactions readily. In Chapter 4 we demonstrated the use of the frame-

work t o implement selected advanced transaction models and semantics-based concurrency

control protocols. So, having seen these extended transaction examples separately, it is

worth stepping back t o discuss the wa.ys in which the framework meets this challenge.

First, we briefly compare the extended transaction implementations in terms of their

different requirements and transaction control operations. Next, we discuss how the flex-

i bility in the Reflective Transaction Framework that these extended transactions exploit

compares t o the facilities in other extended transaction implementations discussed earlier.

Finally, we discuss how computational reflection and Open Implementation techniques

make this possible.

5.4.1 Comparing the Extended Transaction Implementations

The advanced transaction models and semantics-based concurrency control protocols pre-

sented in Chapter 4 differ considerably in their intended domains. More importantly, they

also differ considerably in their structures and styles. Consider the various differences:

Split transactions use transaction restructuring t o release partial results selectively

and continue executing; joint transactions use transaction restructuring t o transfer

all database resources held and then terminate.

Chain transactions, a special case of joint transactions, restrict the execution struc-

ture t o a linear chain of extended transactions; joint transactions have no restriction

on their execution structure.

Reporting transactions use transaction restructuring to report results t o another

extended transaction periodically, without terminating execution; joint transactions

terminate execution after performing transaction restructuring.

Cooperative Transaction Groups utilize semantic transaction synchronization to fa-

cilitate cooperation between the individual extended transactions in a cooperative

group.

Commutativity can relax R/W conflicts based on operation semantics, without form-

ing a transaction dependency; Recoverability also relaxes R / W conflicts based on

operation semantics, but places a commit ordering restriction on the transactions.

Epsilon Serializability relaxes R / W conflicts using application semantics, t o explicitly

allow a bounded amount of inconsistency in transaction processing; Commutativ-

ity and Recoverability both restrict extended transaction execution t o consistent

(serializable) schedules.

I t is certainly not the case that the approach adopted by one advanced transaction

model is right, and that adopted by the other is wrong. Nor is it the case that one

rnodel subsumes the other, or even that a particular transaction control operation in

an advanced transaction model is more correct or more general. Rather, an advanced

transaction model reflects the transaction processing requirements of a particular advanced

application domain, and design decisions embodied in the individual control operations

can only be resolved in the context of a particular application or scenario. Consequently,

each advanced transaction model has been optimized for a particular behavior desirable

for only a particular advanced application domain. What's more, new advanced database

applications will not simply require different sets of options for these various decisions,

but will likely introduce entirely new extended transaction control operations, as well

as opening up new areas for extended transaction services. In other words, supporting

these extended transactions means supporting the different extended behaviors which they

might use, mapping the infrastructure supplied by the Reflective Transaction Framework

onto the needs of the application, rather than the other way around.

5.4.2 Comparing the Reflective Transaction Framework

In Chapter 2, related systems for implementing extended transaction were presented,

with particular focus on the range of extended transaction behaviors they could support.

Having now seen the core elements of the Reflective Transaction Framework design and

examples that demonstrate the extended transaction services it offers, it seems appropri-

ate to return t o those systems and contrast the flexibility in the Reflective Transaction

Framework with that offered in the other systems. Could they be used t o implement the

extended transactions presented in Chapter 4, and if not, why not?

There are two sets of reasons why this would be difficult or impossible. One set is

fairly simple; the second is more significant.

Application Interface Flexibility

The first set of reasons arises from the inability of some of the systems t o provide a p

piications with the ability t o specify the extended transaction services they require. For

instance, APRICOTS and TSME do not support interface variability, so an application

cannot select model-specific definitions for a transaction control operation such as commit

and abort; APRICOTS operates in terms of predefined contracts which do not include

arbitrary transaction control operations, while TSME forces an application t o select a

specific extended transaction model that will be used for all transactions. While both

APRICOTS and TSME support highly structured transaction models, such as the chained

transaction model or sagas, neither supports the dynamic transaction interactions found

in the split-join or cooperative group models. This is a more significant issue for APRI-

COTS, since it is intended t o support end-user variability without further programming.

Since TSME is organized as a toolkit for use within other application programs, it may

be possible t o build support for transaction restructuring, although no such applications

have been described in the TSME literature. Simply put, APRICOTS and TSME provide

their extended transaction support on an "all-or-nothingr basis.

Similarly, PERN does not allow an application t o restructure a transaction, as is re-

quired to implement the Split-Join model. Moreover, neither PERN nor APRICOTS

support the free-for-all access illustrated in the cooperative group model. While PERN

provides flexible concurrency control, its control is in terms of rules based on predefined

conditions and facilities, not in terms of application-specific needs. As a result, PERN,

APRICOTS, and TSME cannot implement advanced transaction models such as the co-

operative transaction group, in which arbitrary transactions can join a group and freely

access selected objects. This level of control is simply outside of their design requirements.

System Architecture Flexibility

The second set of reasons, however, is more relevant t o the basic design of these related

systems, and to the use of the Open Implementation approach in the Reflective Transaction

Framework.

Some of the systems described in Chapter 2 have no support for the forms of architec-

tural variability seen in the range of extended transaction examples presented in Chapter 4.

The cooperative group model requires execution control between member transactions,

can utilize transaction restructuring t o delegate locks from member transactions t o the

group transaction upon commit, with automatic relaxation of conflicts between member

transactions. The chained transaction model utilizes execution control to sequence indi-

vidual transactions and does not perform delegations, but can selectively relax conflict

between individual transactions. However, among the systems, only TSME, APRICOTS

and ASSET support execution control. PERN emphasizes concurrency control. While

TSME and APRICOTS provide opportunities for semantic transaction synchronization,

these do not extend to the more dynamic interactions illustrated by cooperative transac-

tion groups and the altruistic locking protocol; thus, extended transactions cannot create

delegate sets or transfer database resources. PERN, similarly, assumes highly structured

extended transactions, while execution control and dynamic restructuring are simply not

issues in its design.

Critically, where mechanisms exist for defining extended transaction functionality in

the related systems presented in Chapter 2, their use of traditional abstraction techniques

requires that the programmer "drop clown" t o the implementation level to gain control.

For instance, ASSET'S separation of mechanism and policy means the functionality of

the extended transaction services must be implemented within the transactional applicaT

tion, requiring application programmers t o deal with a new level of abstraction. These

two levels are inextricably mixed in ASSET. APRICOTS' contract approach constrains

this slightly by dealing in terms of a specific contract for managing, say, execution con-

trol between individual extended transactions (contracts), but still requires a complete

specification of extended transaction services; there is no provision for the incremental

definition of new mechanisms or the optional reuse of existing facilities, since a contract

must be completely defined for a transactional application in advance. To extend the

concurrency control services of PERN t o support application-specific concurrency control

requirements, a transaction systems programmer would have t o write a series of rules

that re-implemented its concurrency control mechanisms. In other words, while the Open

Implementation approach is designed to allow programmers t o become involved in aspects

of the infrastructure which support their applications, these other approaches require pro-

grammers t o take responsibility for them.

5.4.3 0 1 and Reflection in the Reflective Transaction Framework

The value of the Reflective Transaction Framework lies in the provision of a framework

within which new extended transaction behaviors and structures can be defined. Each

of the extended transaction implementations presented in Chapter 4 has taken elements

from the Reflective Transaction Framework and tailored them t o its specific needs: to

redefine the notion of conflict t o implement semantic concurrency control or facilitate

transaction cooperation; to control the execution of individual transactions for structur-

ing cooperative groups or t o chain transaction computations together; t o utilize dynamic

transaction restructuring t o pass partial results between transactions; or t o relax atomic-

ity for open-ended activities. These specializations were performed simply and concisely,

and fit naturally into the general structure for developing extended transactions which the

framework sets up and implements. Furthermore, the code that implements the various

control operations employed by these extended transaction examples is similarly straight-

forward. The implementation of the split and join operations, for example, required

less than 50 lines of code; and the addition of application-specific concurrency control was

on the order of a dozen lines of code or simply required the definition of compatibility

tables.

The use of Open Implementation techniques, and the metalevel interface in particular,

is critical t o the way in which this flexibility is achieved.

First, it provides the structures for programmers t o gain control over selected aspects

of transaction processing. This means not only the opportunity t o create new extended

transaction behaviors and transaction control operations that are usable within the framer

work, but also modifications that are seamlessiy integrated into the framework's internal

mechanisms (such as changes t o the definition of conflict, which then take immediate effect

on a per-transaction basis).

Second, it provides the means t o do this more extensively than a parameterized ap-

proach. Tha t is, extensions are made not only through the structural aspects of the

extended transaction encoding, but also through the use of the metalevel interface, rather

than simply "switches. " The difference between the metalevel interface approach and pure

parameterization is best seen in comparisons with TSME.
Third, the available metalevel interface retains the use of high-level specifications that

"dropping down" to the implementation level would preclude. The components that met-

alevel commands address are just those that a transactional application uses, such as

delegate sets, transaction dependencies, conflict relations, compatibility tables, etc. Trans-

action system programmers implement extended transactions in terms of application re-

quirements on these rnetaobjects, while other, implementation-specific details which lie

underneath remain hidden. The same metalevel interface commands can be maintained

across various implementations of the Reflective Transaction Framework, since the met-

alevel interface is written in terms of the revealed structure of the underlying TP monitor,

rather than the details of its implementation. This, in turn, encourages transaction system

programmers t o develop extended transaction implementations in terms of the specific re-

quirements of the application, rather than the specifics of the framework implementation.

So, for instance, the use of semantics-based concurrency control represents the expression

of application-specific requirements, rather than the re-implementation of concurrency

control in the framework (as would be required by, say, A S S E T c-r PERN).
Each of these elements - application-specific control over aspects of the underlying

transaction system's behavior, through programmatic access t o a revealed model of its

inherent structure - derives directly from computational reflection and the metalevel in-

terface as elements of the Open Implementation design approach.

5.5 Discussion

In this chapter we presented the implementation of ENCINA/ET, which extends the Encina

TP monitor t o support the implementation of extended transactions. In addition, we pre-

sented an evaluation of ENCINA/ET and Reflective Transaction Framework. Our experi-

ence in designing the framework and implementing and evaluating ENCINA/ET has taught

us a number of important lessons. Here we review the experience gained and lessons

learned from the implementation and evaluation effort.

The basis of the Reflective Transaction Framework is to define extended transaction

behaviors as careful extensions of existing transaction services. Instead of reimplementing

base transaction services, our approach is t o redefine and leverage available functional-

ity in a conventional transaction processing facility to the extent possible. Implementing

extensions t o an existing transaction processing system is a significant departure from

previous attempts, which implement extended transactions from scratch. It allowed us t o

ignore implementation aspects not specific t o extended transaction functionality, and t o

focus on extended transaction implementation issues. The implementation of ENCINA/ET
was carried out by the incremental addition of new extended transaction services, imple-

mented as separate software modules called transaction adapters. On top of this structure

we introduced the notion of separation of interfaces, providing a metalevel interface for

transaction system programmers t o define extended transaction control operations and

an extended transaction interface for application programmers t o develop transactional

applications.

Our design of the Reflective Transaction Framework and implementation of ENCINA/ET
poses the question, How simple can a facility for implementing extended transactions be,

while still supporting clas.sic ACID transactions? Our answer, as presented in this chapter,

is an application-level library with minimal pfogramming constraints, implemented in 2000

lines of mainline C code, and no more intrusive than a typical transaction library, such

as Encina's TRAN-C. Transactional application programmers simply use calls from the

extended transaction interface, such as Split and Join, to employ extended transaction

functionality in their advanced applications.

Our implementation of ENCINA/ET demonstrates that new requirements for transac-

tion processing d o not necessarily imply a need for radically new transaction processing

technology. ENCINA/ET also demonstrates that existing T P monitor functional compo-

nents are applicable t o extended transaction processing; however, their functionality has

t o be repackaged. The implementation of ENCINA/ET did not require the invention of any

radically new approaches, merely the judicious selection, adaptation, and extension of the

most suitable techniques.

The implementation of ENCINA/ET was facilitated by the transaction event callback

mechanism and open API t o the transaction services of the Encina Toolkit. A valid

question is whether the additional work of exposing an API to the underlying transaction

services and adding a transaction event callback mechanism t o other transaction processing

systems would be worthwhile. In our opinion, the answer to this is in part economic.

There are only a handful of commercially significant TP monitors in circulation, which

offer conventional ACID transaction support. This compares t o thousands of transactional

applications written on top of them, and possibly thousands more that could be developed

using extended transactions. It is our opinion that any additional work invested in TF!
monitor systems software t o enable extensions, such as those introduced by Reflective

Transaction Framework, to widen their application reach and make advanced application

development easier should yield a large payoff.

Although our implementation was carried out in the context of the Encina transaction

processing monitor, its results are not limited t o Encina. The components of the Encina

Toolkit are fairly representative of the core transaction facilities found in modern TP
monitors. Thus, we are confident the approach taken and the lessons learned can be

applied t o other transaction processing systems. In particular, since the Encina toolkit

has been used to implement IBM's CICS/6000, DEC's ACMS/xp, and Transarc's Encina

TP monitors, so it is likely ENCINA/ET will run on all of these systems. Confirmation of

this conjecture, however, awaits future portability experiments.

There are clearly performance costs t o be paid for applications to use extended trans-

action services defined by the Reflective Transaction Framework. In our evaluation of

ENCINA/ET we explored whether the Reflective Transaction Framework could be im-

plemented efficiently on top of a conventional TP monitor, and what the performance

overhead was for each extended transaction service. We presented a set of controlled

experiments that cover the range of extended transaction services defined by the frame-

work and that are implemented in ENCINA/ET. The observed performance overhead for

the extended transaction services was modest across all the experiments. The measured

operations were also in agreement with our relative evaluation to ACID transactions. In

summary, the performance evaluation results presented in this chapter confirm our belief

that the overhead imposed by the framework services is not unduly expensive. Since the

current implementation has not been fully tuned for performance, more careful tuning

could lead t o further reduction in the performance overhead.

Chapter 6

Summary and Conclusion

In this chapter, we briefly summarize our work, identify our contributions, and outline

opportunities for future research.

6.1 Recapitulation

We began in Chapter 1 by describing the problem, tha t is, the lack of practical extended

transaction implementations and the inability of existing transaction processing systems

t o directly support the range of behaviors required t o implement extended transactions.

As a result, the vast majority of advanced transaction models and semantics-based con-

currency control protocols have remained, a t least thus far, mere theoretical constructs

with no practical implementations. This problem has two aspects: one design and one

implementation. The design aspect is the lack of extended transaction functional build-

ing blocks and accompanying application programming interfaces required t o implement

extended transactions. The implementation aspect is that traditional approaches to the

design of transaction processing systems have required developers t o make implementation

decisions that subsequently restrict how those transaction processing systems can be used,

and hence the range and form of the transactional applications that can be built using

them.

These two aspects are related. In Chapter 2, we drew on recent work on Open Imple-

mentation t o analyze these problems in terms of the use of abstraction, in both systems

and applications. This analysis suggests a particular form of solution - the use of Open

Implementation techniques to construct a framework that "opens up" transaction process-

ing system functionality, resulting in a system in which the components and mechanisms

that the framework offers can be manipulated, controlled and specialized by application

developers to match the needs of particular applications and usage situations.

The main body of the dissertation (Chapters 3 - 5) presented our solution. In Chapter

3 we first described the basic form and design principles behind the Reflective Transaction

Framework, an extended transaction facility designed t o be built on top of a conventional

TP monitor. We then presented three novel extended transaction services that the frame-

work provides for realizing extended transaction behaviors. The design of each service is

focused on extending the underlying TP monitor and mapping framework structures onto

transactional application needs, rather than the other way around.

The first extended transaction service is dynamic transaction restructuring, which al-

lows an application t o manage the database resources that i t holds explicitly. This al-

lows an application t o help determine when an extended transaction will obtain and re-

lease database resources. This extended service is designed t o support the ways in which

database resources, that is specific data objects, are processed in a structured and collab-

orative manner. Specifically, transaction restructuring provides support for applications

t o selectively make tentative and partial results, as well as hints such as coordination in-

formation, accessible t o other extended transactions, and t o decouple the fate of updates

from tha t of the transaction that performed the operations. As such, dynamic transac-

tion restructuring offers direct support for implementing extended transactions used in

collaborative and structured transactional applications.

The second extended transaction service is semantic transaction synchronization, which

allows an application t o define and select semantic compatibility for individual extended

transactions. Semantic compatibility not only provides direct support for collaborative

activity between extended transactions (unlike, for example, simple read/write locking

protocols used in a conventional Lock Manager), but is also a means for application pro-

grammers t o express the semantics of application operations. Application semantics pro-

vide a richer basis for decisions about transaction concurrency than would be available if

all transaction operations were simply mapped t o the most general read/write-semantics

model. As a result, transactional applications developed using the Reflective Transaction

Framework have increased potential for concurrency and direct support for transaction co-

operation as appropriate for the particular application (rather than allowable concurrency

embedded within the TP monitor's Lock Manager design).

The third extended transaction service is transaction execution contml, which allows

an application t o control the execution of complex activities reliably. This extended ser-

vice is designed t o allow an application t o place constraints on the execution of individual

extended transactions. These constraints are expressed in terms of dependencies between

the significant events of the extended transactions in an application. Applications can

define new dependencies appropriate for the advanced transaction model they are using,

and then form dependencies between extended transactions a t runtime to determine exe-

cution order. As such, transaction execution control offers direct support for structuring

an application as a sequence of activities, in which each activity is executed by an extended

transaction, and for controlling the interactions of extended transactions operating over a

set of shared d a t a objects.

Access t o the extended transaction behaviors provided by the Reflective Transaction

Framework and the exposed functionality of the underlying TP monitor is carefully orga-

nized through a well-documented metalevel interface. Transactional applications can use

commands from the metalevel interface t o "become involved" in tailoring the extended

transaction infrastructure that supports them. The extended transaction services that the

Reflective Transaction Framework provides (namely, transaction restructuring, semantic

transaction synchronization, and transaction execution control) are designed not just to

support specific extended transactions, but also to provide a basis for extension and spe-

cialization of the Reflective Transaction Framework's internal mechanisms.

Critically, the Reflective Transaction Framework does not simply provide a parame-

terized implementation in which users simply select from a set of extended transactions.

Rather, it provides a framework within which new extended transaction behaviors and

mechanisms can be crafted through the programmatic extension and specialization of re-

vealed aspects of the T P monitor's internals. The view that the Reflective Transaction

Framework provides into aspects of the underlying transaction processing systems struc-

ture, and the opportunities that i t offers for applications t o tailor and specialize this

structure according t o their particular needs, are the essence of the Open Implementa-

tions approach, and also the means by which the Reflective Transaction Framework offers

considerable flexibility and control in the implementation of extended transactions.

To supplement the smaller examples which Chapter 3 used t o illustrate technical

points, Chapter 4 presented two sets of examples - the implementation of selected ad-

vanced transaction models, and the implementation of selected semantics-based concur-

rency control protocols. Individually, these examples illustrate how the Reflective Trans-

action Framework can be used t o define and implement a number of important extended

transactions, and how the relationship between framework facilities and application pro-

gramming is managed. More importantly, when taken together, these examples illustrate

the flexibility which the Reflective Transaction Framework embodies, Indeed, t o the best

of our knowledge, no system has been reported that can implement such a wide range of ad-

vanced transaction models and semantics-based concurrency control protocols. Together,

these examples demonstrate how a single framework can embody radically different trans-

action extensions, and how applications can revise and adapt the framework mechanisms

to leverage underlying TP monitor facilities for their own needs.

Finally, Chapter 5 presented ENCINAIET, an implementation of the Reflective Trans-

action Framework on the commercial T P monitor Encina, and an accompanying evaluation

of the Encina implementation and framework design. This chapter shows how simple a

facility for implementing extended transactions can be, while still supporting classic ACID.

transactions: an application-level library with minimal programming constraints, imple-

mented in 2000 lines of mainline C code and no more intrusive than a typical transaction

library. Our implementation of ENCINA/ET did not require the invention of any radi-

cally new transaction processing approaches, merely the judicious selection and careful

extension of existing T P monitor functional components. This demonstrates both the

practicality of the Reflective Transaction Framework design, and that new requirements

for transaction processing need not require radically new transaction processing technol-

ogy-
Our evaluation of the ENCINA/ET implementation demonstrated that the extended

transaction services do not impose significant overhead. In addition, we explained how

other extended transaction implementations, introduced in Chapter 2, would either fail

altogether t o support these different extended transactions, or would require the pro-

grammer to "step down" into the code of the implementation (if this were available) and

provide implementation-specific extensions and modifications. In contrast, the design of

the Reflective Transaction Framework allows customization a t a high-level through the

available metalevel interface.

In summary, our research shows that i t is possible t o extend a conventional TP monitor

in a practical and modular manner t o implement extended transactions. In doing so, we

have presented not only the design of the Reflective Transaction Framework and extended

transaction services i t offers, but have also identified mechanisms for integrating these

new services with the functionality provided by a conventional TP monitor. To demon-

strate the practicality of these ideas and mechanisms, we have also presented a concrete

implementation on a commercial TP monitor.

6.2 Contributions

This research is the first t o demonstrate convincingly a practical method of extending a

conventional transaction processing facility with mechanisms to support extended trans-

actions, one that can readily implement a wide range of advanced transaction models and

semantics-based concurrency control protocols. In this dissertation, we have presented a

demonstration of our thesis, via design, application, implementation and evaluation of a

working system. The specific technical contributions of each of the three main chapters

are enumerated below.

1. Reflective Transaction Framework Design In Chapter 3 we presented the design of

a software framework, the Reflective Transaction Framework, that balances several

design goals: new extended transaction functionality, ease of implementation, com-

patibility with legacy transaction systems, ease of use, and modest performance and

resource costs. We highlighted the key design issues involved in the definition of new

extended transaction services, specifically dynamic transaction restructuring, seman-

tic transaction synchronization and transaction execution control. We presented a

design in which these extensions could be smoothly integrated into a conventional T P

monitor, advancing our goal for ease of implementation while maintaining compati-

bility with legacy transaction processing. Moreover, the design supports incremental

extension - if only certain advanced transaction models or semantics-based concur-

rency control protocols are required, only those extended transaction services need

be provided; other extended transaction behaviors can be incrementally added t o

the framework over time.

In addition, the framework offers principled access t o extended transaction services

and underlying TP monitor structures and mechanisms for examination and manip

ulation. This access is principled in the sense that the framework does not expose

the functionality of the entire TP monitor, but only selected aspects of it. In addi-

tion, the metalevel interface encapsulates state so the TP monitor need not expose

the internal da ta structures and functions that are actually used.

2. Demonstrataon In Chapter 4 we presented the implementation of several advanced

transaction models and semantics-based concurrency control protocols, t o demon-

strate the flexibility of the Reflective Transaction Framework. The selected examples

vary across a number of dimensions, differing not only in their intended application

domains but also in the nature and structure of their implementation. These imple-

mentation variations - dynamically restructuring transactions versus strict atomic

execution, controlled cooperation between transactions versus strict isolation, and

execution control through both structural and dynamic dependencies - cut across

the barriers that traditional transaction processing implementations erect.

3. Encina/ET Implementation and Evaluation In Chapter 5 we presented ENCINA/ET,
an implementation of the Reflective Transaction Framework on the commercial TP
monitor Encina. The implementation is based on transaction adapters, software

modules built on top of the Encina Toolkit functional components. Each adapter

uses transaction significant events t o reify extended transaction state, and uses ex-

isting application programming interface calls t o reflect changes t o the computa-

tional state of the TP monitor. The extensions implemented by each transaction

adapter builds on the available functionality of the underlying functional compo-

nent of the TP monitor, t o the extent possible, and provides the programmer with a

clean metalevel interface through which he or she can customize and extend system.

functionality. This allows new extensions and model improvements to be quickly

incorporated, and as a result, the implementation can remain up to date with ap-

plication requirements.

Our presentation illustrates the implementation of the extended transaction services

defined by the Reflective Transaction Framework as extensions of base transaction

services provided by the Encina Toolkit. As set forth in our design objectives, the

implementation did not require the invention of any radically new approaches, merely

the judicious selection, adaptation and extension of available transaction services.

We also presented empirical measurements based on controlled experiments that

confirmed ENCINA/ET'S modest performance and resource costs.

6.3 Future Work and Opportunities

The analysis, design and implementation of the Reflective Transaction Framework is a

practical approach t o implement extended transactions on conventional TP monitors. It

is a research area of great practical interest and one in which concerns of openness and ex-

tensibility are paramount. Building on this! there are a number of topics for further inves-

tigation which can be classified roughly into four areas: enhancements of the ENCINA/ET

implementation to make the extended transaction services more complete; further eval-

uation of both the Reflective Transaction Framework and ENCINA/ET implementation

through the application of extended transactions t o real-world problems; research to de-

velop further the Reflective Transaction Framework itself; and, research on the design and

implementation of systems software using ideas from Open Implementations.

1. ENCINA/ET Implementation Extensions

For implementation expediency, a few minor features logically belonging t o the cur-

rent Reflective Transaction Framework design have not yet been fully supported.

Implementation enhancements, such as support for deferred delegation, could be

added t o make the extended transaction services of ENCINA/ET more complete.

Another is the addition of persistence for key ENCINA/ET da ta structures.

Persistent Data Structures Because a transactional application using ENCINA/ET

can crash for various reasons, such as fatal runtime errors and machine shutdown,

t'he system needs to maintain critical information in persistent storage to resume

normal operations after system restart. One way this could be accomplished is by

using RVM [SMK+94], a lightweight transaction facility for maintaining persistent

d a t a structures. RVM exports the abstraction of recoverable virtual memory to its

host application (ENCINA/ET) which can map regions of RVM's recoverable segments

onto portions of its virtual address space. Accesses t o mapped da ta are performed

using normal memory read and write operations. If such accesses are bracketed with

RVM's begin and end-transaction statements, failure atomicity is automatically pro-

vided. RVM asynchronously flushes updates t o recoverable memory to the backing

disk and allows the application t o control the frequency of such flushes. Almost all

the important information included in the ENCINA/ET d a t a structures, described

previously in Section 5.2, could be stored in RVM. Because RVM space is a scarce

resource, the efficient design of ENCINA /ET data structures minimizes the portion

tha t must remain persistent. Data items, such as operation compatibility tables

that could be reloaded from the disk, would not need t o be kept in persistent da ta

structures.

2 . Further Evaluation and Application

So far, we have evaluated the performance overhead, resource cost, and some usabil-

ity issues of the Reflective Transaction Framework and ENCINA/ET implementation

based on controlled experiments and selected extended transaction implementations.

Many other system usability issues arestill unaddressed, pending further accumula-

tion of usage experience. Moreover, the previous quantitative measurement results

could be further strengthened or adjusted with more usage data. Issues such as these

cannot be addressed until there is substantial system usage from a user community

on an actual application. Thus another area for further investigation is t o identify an

area or a killer application that requires extended transaction support. This would

enable a comprehensive usability study of the Reflective Transaction Framework and

further performance evaluations of the ENCINA/ET implementation.

One of the major areas positioned to exploit extended transaction capabilities is

workflow management [SSU96]. In recent years, workflow management has emerged

a s a powerful tool t o improve productivity of organizations [HC93]. Adopting a

process-centric approach, industry has been promoting work.%ow management as a

technique for modeling, executing, and monitoring such applications. A procedural

description of how and what is to be performed to achieve work is termed a workflow.

The individual steps that compromise a workflow are termed activities. Activities

may involve humans as well as programs. Aided by advances in client-server com-

puting and distributed database techniques, early office-automation systems have

evolved into workflow management systems [MNBf 941.

There are several prototype and commercial workflow management systems avail-.

able [GHS95b], and many have features that address the needs of real working en-

vironments that advanced transaction models fail t o consider. However, current

workflow management systems do not have adequate support t o satisfy the model-

ing and correctness requirements of advanced database applications. The deficiencies

include no clear transaction concept, lack of support t o keep track of da ta depen-

dencies among different workflows, lack of support for cooperative activities, and

insufficient support for recovery. Since these issues have been investigated exten-

sively in the area of advanced transaction management, it would be valuable to

cross-fertilize the two areas to develop a model and an architecture that provides

flexibility in defining tasks and specifying the correctness and consistency require-

ments of advanced database applications. In particular, there is a need t o support

coordinated and cooperative tasks and t o handle heterogeneity and interoperability.

One recent work that addresses these requirements is the Transaction Activity Com-

position Model (TAM) introduced by Ling Liu and Calton Pu [LP98a]. TAM pro-

vides a family of transaction activity restructuring operations in a unified frame-

work for declarative specification and dynamic restructuring of workflows [LP98bj.

The TAM framework is designed usingconcepts from computational reflection and

Open Implementation, inspired by the design of the Reflective Transaction Frame-

work. Reflection is employed in TAM to provide a specification interface for flexible

workflow customization and t o provide both application-level and system-level cus-

tomization. As a result, TAM allows activity designers t o incrementally specify the

behavioral composition of complex activities and a wide variety of activity interac-

tion dependencies through a declarative metalevel interface.

3. Further Development of the Reflective Transaction Framework.
Another area for future work is extensions t o the Reflective Transaction Framework.

For instance, relaxed consistency guarantees, support for transaction compensation

and application-specific correctness criteria are areas which our initial design does

not address. These areas were omitted from the initial design and implementation so

as t o concentrate on core elements for implementing extended transactions, but are

candidates for the same sort of development as dynamic transaction restructuring,

semantic transaction synchronization, and transaction execution control.

Beyond these enhancements, two major extensions worth exploring immediately are

crash recovery and support for distributed execution of extended transactions. Work

is, in fact, already underway in each of these areas by other members of our research

group. The rest of this discussion describes that work in slightly more detail.

Extended Transaction Recovery Shu-Wie Chen has introduced a Modular Archi-

tecture for Recovery Systems (MARS) t o construct flexible and efficient recovery

systems t o support extended transactions [Che98]. The MARS architecture is based

on the observation that any recovery algorithm that implements transaction-oriented

recovery must perform three tasks: identify the transactions t o be aborted and com-

mitted, identify the operations associated with each transaction, and recover indi-

vidual transactions by removing the effects of aborted transactions and inserting

the effects of committed transactions. These tasks correspond t o the three MARS

recovery modules: transaction state analysis, transaction operation analysis, and

transaction recovery. In keeping with traditional recovery systems, these recovery

modules are organized so that the two analysis modules generate a recovery plan

that can be executed by the recovery module. In this manner, MARS maintains

backward-compatibility with existing recovery systems on TP monitors.

Associated with each MARS recovery module is a set of efficient, crash-aware al-

gorit hms that have been further decomposed into recovery microprotocols. These

recovery microprotocols can be combined in various ways t o implement different re-

covery functionality. This work includes an examination of various extended trans-

action models t o identify the different recovery properties. In particular, Chen's

work has considered the effects of dynamic transaction restructuring on transaction

operation analysis, as well as the effects of semantic transaction synchronization and

transaction execution control on transaction states analysis.

Distributed Extended Transactions Tong Zhou has recently introduced the Open

Coordination Protocol (OCP) t o support distributed extended transactions [ZPL96].

OCP is a coordination facility for constructing optimized coordination protocols for

distributed extended transactions [ZPL96]. The main idea behind OCP is the de-

composition of existing coordination protocols (e.g., two-phase commit protocol and

its variants) into fine-grain microprotocols, which are then composed and special-

ized with respect t o particular situations for flexibility, reliability, and performance.

By applying OCP, both existing coordination protocols and new protocols can be

developed; for example, the presumed-abort (PA) variant of the two-phase com-

mit protocol [ML83, ML0861, the open commit protocol [RP90], optimistic commit

protocol [LI<S91], or unilateral commit [HS91]. Existing optimizations or new o p

timizations can be incorporated into these protocols as well, much as read-only,

last-agent, voting reliable, etc. [SBCM93, SBCM951. A key component of OCP,

with respect t o the Reflective Transaction Framework, is the development of new.

coordination protocols for a variety of distributed extended transaction management

control primitives, such as de lega te , s p l i t , and joingroup.

4. Open Implementation
A number of areas open for further work focus on the development of Open Imple-

mentation techniques and, in particular, their application t o the design and imple-

mentation of transaction processing and database systems.

First, open implementation is a t an early stage of development, and general tech-

niques building on the experiences of developers are only slowly being developed (e.g.

recent work on OIA/D [KDLMSS]). Each new experience, and each application to a

new domain, brings refinements and insights into the model. As described in C h a p

ter 4, one interesting aspect of the Open Implementation approach in the Reflective

Transaction Framework design is the way in which programmers extend and enrich,

rather than configure, the underlying transaction services. The ways in which this

happens, its consequences, and its applicability t o new domains, all remain avenues

for fruitful investigation in the development of the Open Implementation approach.

Second, as the focus of Open Implemenfation approach has broadened from its orig-

inal grounding in programming language semantics and applications, researchers

from other areas have begun to adopt aspects of the approach and apply them to

their own work. This has included a number of investigations in distributed sys-

tems and operating systems of the value of reflective and metalevel techniques (e.g.

[CM93, EPT95, Yok92, Str93, SW951). These investigations aim principally a t dy-

namic control and configuration of distributed systems, along with augmentation of

programming languages in support of distributed programming, so they typically

focus a t a lower level than the work presented here; their focus is infrastructure

(that is, "be~od' the application). However, they point towards an opportunity to

use reflective techniques to integrate system and application issues by using met-

alevel information t o coordinate the needs of both, and as such, share some of the

motivations which have driven this work.

6.4 Parting Shot

The above list of possible extensions t o the research described in this dissertation is not

intended t o be complete. We hope that the reader has found enough inspiration in this

work t o suggest further additions t o the list. Supporting the next generation of advanced

database applications means we have to rethink how we slice up and present the function-

ality of transaction processing systems, in addition to broadening and narrowing specific

functions. We believe that this dissertation is a step in this direction, and hope it leads

to the further migration of extended transaction research results into practice.

Bibliography

[AAS93]

[ABLLgl]

[ASK921

[ASSR93]

[AY WMSO]

[BD95]

[BDG+94]

[Berg01

D. Agrawal, A. El Abbadi, and A.K. Singh. Consistency and orderability:

Semantics-based correctness criteria for databases. ACM Transactions on

Database Systems, 18(3):460-486, 1993.

T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler

activations: Effective kernel support for the user-level management of par-

allelism. Proceedings of the Thirteenth Symposium on Operating System

Principles, pages 95-109, 1991.

M. Rusinkiesicz A. Sheth and G. Karabatis. Using polytransactions t o man-

age interdependent data. In Ahmed Elmagarmid, editor, Database Transac-

tion Models for Advanced Apptications, pages 555-582. Morgan Kaufmann

Publishers, San Mateo, CA, 1992.

P.C. Attie, M.P. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and

enforcing intertask dependencies. In Proceedings of the 19th International

Conference on Very Large Data Bases, pages 134-145, Dublin, Ireland, 1993.

Elmagarmid A., Leu Y., Litwin W., and Rusinkiewicz M. A Multidatabase

Transaction Model for InterBase. In Proceedings of the 16th International

Conference on Very Large Data Bases, pages 507-518, Brisbane, Australia,

1990.

T . Braun and C. Diot. Protocol implementation using integrated layer pro-

cessing. In Proceedings ACM S I G C O M I V ' ~ ~ , pages 120-128, Boston, MA,

1995.

A. Biliris, S. Dar, N . Gehani, H.V. Jagadish, and I<. Ramamritham. Asset:

A system for supporting extended transactions. In Proceedings of 1994 ACM

S I G W D International Conference on ~Wanagement of Data, pages 44-53,

Minneapolis, MN, 1994.

P.A. Bernstein. 'Transaction processing monitors. Communications of the

ACM, 33(11):75-86, 1990.

P.A. Bernstein. Middleware: A model for distributed system services. Com-

munications of the ACM, 39(2):86-98, 1996.

D.G. Bobrow, R. Gabriel, and J.L. White. CLOS in Context: The Shape of

the Design Space. MIT Press, 1993.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Publishing Company, 1987.

A. Buchmann, M. Hornick, B. Markatos, and C. Chronaki. Specification of a

transaction mechanism for a distributed active object system. In Proceedings

of the OOPSLA/ECOOP Workshop on Transactions and Objects, pages 1-9,

Ottawa, CA, 1990.

N.S. Barghouti and G.E. Kaiser. Concurrency control in advanced database

applications. A CM Computing Surveys, 23(3):269-318, September 1991.

P.A. Bernstein and E. Newcomer. Principles of Transaction Processing.

Morgan Kaufmann Publishers, San Mateo, CA, 1996.

A. Buchrnann, M. Ozsu, M. ~ o r n i k , D. G~orgakopoulos, and F. Manola.

A transaction model for active distributed object system. In Ahmed El-

magarmid, editor, Database Transaction Models for Advanced Applications,

pages 123-158. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

B.R. Badrinath and K. Ramamritham. Semantics-based concurrency con-

trol: Beyond commutativity. ACM Transactions on Database Systems,

16:163-199, September 1991.

N. Bhatti and R. Schlichting. A system for constructing configurable high-

level protocols. In Proceedings ACM SIGCOMM'95, pages 138-150, Boston,

MA, 1995. ,

M.J. Carey, D.J. DeWitt, G. Graefe, D.M Haight, J.E. Richardson, D.T.
Schuh, E.J. Shekita, and S.L. Vandenberg. The EXODUS extensible DBMS

project: An overview. In S.B. Zdonik and D. Maier, editors, Readings an

Object-Oriented Database Systems, pages 474-499. Morgan Kaufmann Pub-

lishers, San Mateo, CA, 1990.

J.C. Cleaveland, J.A. Fertig, and G.W. Newsome. Dividing the software pie.

AT&T Technical Journal, 75(2):8-18,1996.

S.F Chen. Recoveryfor Extended Transaction Models. PhD thesis, Columbia

University, New York, NY, Expected 1999.

S. Chiba and T. Masuda. Designing an extensible distributed language

with metalevel architecture. In Proceedings of the 7th European Conference

on Object-Oriented Programming (ECOOP), pages 482-501, Kaiserlautern,

Germany, 1993.

P.K. Chrysanthis. ACTA, -4 framework for modeling and reasoning about

extended transactions. PhD thesis, University of Massachusetts, Amherst,

MA, 1991.

P.K. Chrysanthis and K. Ramamritham. A formalism for extended trans-

action models. In Proceedings of the 17th International Conference on Very

Large Data Bases, pages 103-1 12, Barcelon, Spain, 1991.

P.K. Chrysanthis and K. Ramamritham. A unifying framework for trans-

actions in competitive and cooperative environments. IEEE Bulletin of the

Technical Committee on Data Engineering, 4(1):3-21, 1991.

P.K. Chrysanthis and K. Ramamritham. ACTA: The Saga continues. In

Ahmed Elmagarmid, editor, Database Transaction Models for Advanced Ap-

plications, pages 349-398. Morgan Kaufmann Publishers, San Mateo, CA,

1992.

P.K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction

models using ACTA. ACM Transactions on Database Systems, 19(3):450-

491, 1994.

W. Du and A.K. Elmagarmid. Quasi serializability: a correctness criterion

for global concurrency control in interbase. In Proceedings of the 15th Inter-

national Conference on Very Large Data Bases, pages 347-355, Amsterdam,

The Netherlands, 1989.

J. des Rivihres and B. Smith. The implementation of procedurally reflective

languages. Technical Report ISL-4, Xerox PARC, 1984.

D. Edmond, M. Papzoglou, and Z. Tari. R-OK: A reflective model for dis-

tributed object management. In Proceedings of the RIDE '95 Workshop

(Research Issues in Data Engineering), pages 34-41, Taipei, Taiwan, 1995.

[F089] A. Farrag and T. Ozsu. Using semantic knowledge of transactions t o increase

concurrency. A CM Transactions on Database Systems, 14(4) :503-525,1989.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in

a distributed database. ACM Transactions on Database Systems, 8(2):186-

213, 1983.

[GMGK+91] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Mod-

elling long-running activities a s nested sagas. IEEE Bulletin of the Technical

Committee on Data Engineering, 14(1):14-18, 1991.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. '1n Proceedings of 1987 ACM SIG-
MOD International Conference on Management of Data, pages 462-473, San

Francisco, CA, 1987.

[GHKM94] D. Georgakopoulos, M. Hornick, P. Krychniak, and F. Manola. Specification

and management of extended transactions in a programmable transaction

environment. In Proceedings of the 1994 IEEE Conference on Data Engi-

neering, pages 462-473, 1994.

[GHS95a] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow

management: From processing modeling t o workflow automation infrastruc-

ture. Distributed and Parallel Database, 3(2):119-152, 1995.

[GHS95b] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow

management: From processing modeling t o workflow automation infrastruc-

ture. Distributed and Parallel Database, 3(2):119-152, 1995.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[HC93] M. Hammer and J. Champy. Reengineering the Corporation. New York

Publishing Co., New York, NY, 1993.

[Hei97] G.T. Heineman. A Transaction Manager Component for Cooperative Trans-

action Models. PhD thesis, Columbia University, New York, NY, 1997.

[HK93] G. Hamilton and P. Kougiouris. The Spring Nucleus: A Microkernel for

Objects. Technical Report SMLI TR-93-14, Sun Microsystems Laboratories,

Inc., 1993.

[Kd RB9 11

[Kic92]

G.T. Heineman and G.E. Kaiser. The cord approach to extensible con:

currency control. In Proceedings of the 1997 IEEE Conference on Data

Engineering, pages 562-571, Birmingham, UK, 1997.

T. Haerder and A. Reuter. Principles of transaction-oriented database re-

covery. ACM computing Surveys, 15(4):287-317, December 1983.

M. Hsu and A. Silberschatz. Unilateral commit: A new paradigm for re-

liable distributed transaction processing. In Proceedings of the 1991 IEEE
Conference on Data Engineering, pages 286-293, Kobe, Japan, 1991.

T. Imielinski and B.R. Badrinath. Wireless mobile computing: Challenges

in d a t a management. Communications of the AChf, 37(10):144-153, 1994.

H.V. Jagadish and 0. Shmueli. A proclamation-based model for cooperating

transactions. In Proceedings of the 18th International Conference on Very

Large Data Bases, pages 265-276, Vancouver, British Columbia, Canada,

1992.

G. Kiczales, R. DeLine, A. Lea, and C. Maeda. Open Implementations
ilnalysis and Design. Tutorial Notes, ACM Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA), 1995.

G. Kiczales, J . des Rivikres, and D.G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, 1991.

G. Kiczales. Towards a new model of abstraction in software engineering.

In Proceedings of the IMSA '92 Workshop on Reflection and Meta-level Ar-

chitectures, pages 1-11, Tokyo, Japan, 1992.

J. Klein. Advanced rule driven transaction management. In Proceedings

of the 36th Computer Society International Conference (CompCon), pages

562-567, Santa Clara, CA, 1991.

Y.A. Khalidi and M.N. Nelson. The spring virtual memory system. Technical

Report SMLI TR-93-09, Sun Microsystems Laboratories, Inc., 1993.

H. Korth, E. Levy, and A. Silberschatz. A formal approach t o recovery by

compensating transactions. In Proceedings of the 16th International Confer-

ence on Very Large Dntu Bases, pages 95-106, Brisbane, Australia, 1990.

G.E. Kaiser and C. Pu. Dynamic restructuring of transactions. In Ahmed El-
magarmid, editor, Database Transaction Models for Advanced Transactions,

pages 265-296. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

G. Kiczales and A. Paepcke. Open Implementations and Metaobject Proto-

cols. The MIT Press, 1998 (forthcoming).

H.F. Korth. Locking primitives in a database system. Journal of the ACM,
30(1):55-79, 1983.

H.F. Korth and G. Speegle. Formal models of correctness without serializ-

ability. In Proceedings of 1988 ACM SIGMOD International Conference on

Management of Data, pages 379-386, Chicago, IL, 1988.

C.W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131-183,

1992.

Unix System Labs. TUXEDO system product overview. Unix System Labs,

Summit, N.J., 1993.

K-Y Lam, S-L Hung, and C. PU. Two locking protocols based on epsilon

serializability for real-time database systems. In Proceedings of the Interna-

tional Conference on Data and Knowledge Systems for Manufacturing and

Engineering, pages 63-72, Hong Kong, 1994.

E. Levy, H.F. Korth, and A. Silberschatz. An optimistic commit protocol for

distributed transaction management. In Proceedings of 1991 A CM SIGMOD,

pages 88-97, Denver, Colorado, 1991.

L. Liu and C. Pu. A Transactional Activity Model for Organizing Open-

ended Cooperative Activities. In Proceedings of the 31st Annual Hawaii

International Conference on System Sciences (HICSS-31), pages 380-387,

Big Island of Hawai'i, HI, 1998.

L. Liu and C. Pu. Methodical Restructuring of Complex Workflow Activities.

In Proceedings of the 1998 IEEE Conference on Data Engineering, pages

342-350, Orlando, Florida, 1998.

P. Maes. Concepts and experiments in computational reflection. In Pro-

ceedings of the Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA), pages 147-155, Orlando, FL, 1987.

F. Manola, S. Heiler, D. Georgakopoulos, M. Hornick, and M. Brodie. Dis-.

tributed object management. Int. J.of Intelligent and Cooperative Informa-

tion Systems, 1(1):18-25, 1992.

C. Mohan and B. Lindsay. Efficient commit protocols for the tree of

processes model of distributed transactions. In Proceedings of 2nd ACM

SIGACT/SIGOPS Symposium on PODC, pages 76-88, Montreal, Canada,

1983.

C. Mohan, B. Lindsay, and R. Obermark. Transaction management in the R*
distributed database management system. ACM Transactaons on Database

Systems, 11(4):378-396, 1986.

L. Markosian, P. Newcomb, R. Brand, S. Burson, and T. Kitzmiller. Using

an enabling technology t o reengineer legacy systems. Communications of

the ACM, 25(10):59-70, May 1994.

C. Mohan. Advanced transaction models - survey and critique. Tutorial

presented a t the ACM SIGMOD International Conference on Management

of Data, 1994.

J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed

Computing. PhD thesis, Massachusetts Institute of Technology, 1985.

B. Martin and C. Pederson. Long-lived concurrent activities. In Amar

Gupta, editor, Distributed Object Management, pages 188-206. Morgan

Kaufmann Publishers, San Mateo, CA, 1992.

M.N. Nelson, Y.A. Khalidi, and P.W. Madany. The spring file system. Tech-

nical Report SMLI TR-93-10, Sun Microsystems Laboratories, Inc., 1993.

M. Nodine and S. Zdonik. Cooperative transaction hierarchies: a trans-

action model t o support design applications. In Proceedings of the 16th

International Conference on Very Large Data Bases, pages 83-94, Brisbane,

Australia, 1990.

P.E. O'Neil. The escrow transactional method. ACM Transactions on

Database Systems, 11 (4) :405-430, December 1986.

C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana,

J. Walpoie, and K. Zhang. Optimistic Incremental Specialization: Stream-

lining a Commercial Operating System. In Symposium on Operating Systems

Principles ('SOSP), pages 314-324, Copper Mountain, Colorado, 1995.

[PKH88] C. Pu, G.E. Kaiser, and N. Hutchinson. Split-transactions for open-ended

activities. In Proceedings of the 17th International Conference on Very Large

Data Bases, pages 26-37, Los Angeles, CA, 1988.

[Raogl] R. Rao. Implementationai reflection in silica. In Proceedings of the Euro-

pean Conference on Object-Oriented Programming, pages 251-266, Geneva,

Switzerland, 1991.

[RC92] K. Ramamritham and P.K. Chrysanthis. In search of acceptability criteria:

Database consistency requirements and transaction correctness properties.

In Amar Gupta? editor, Distributed Object Management, pages 212-230.

Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[RC97] K. Ramamritham and P. Chrysanthis. Executive Briefing: Advances in

Concurrency Control and Transaction Processing. IEEE Computer Society

Press, Los Alamitos, CA., 1997.

[~JY+881 R. Rashid, A. Tevanian Jr, M. Young, D. Golub, R. Baron, D. Black, W. 3.
Bolosky, and J . Chew. Machine-independent virtual memory management

for paged uniprocessor and mu~tiprocessor architectures. IEEE Transactions

on Computers, 37(8):896-908, August 1988.

[RKT+95] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, and P.Muth. Towards a co-

operative activity model. In Proceedings of the 21st International Conference

on Very Large Data Bases, pages 194-205, Zurich, Switzerland, 1995.

[RP90] K. Rothermel and S. Pappe. Open commit protocols for the tree of processes

model. In Proceedings of the 10th International Conference on Distributed

Computing Systems, pages 236-244, Paris, France, 1990.

[RP95] K. Ramamrithan and C. Pu. A formal characterization of epsilon serializabil-

ity. IEEE Transactions on Knowledge and Data Engineering, 7(6):997-1007,

December 1995.

[SBCM93] G. Samaras, K. Britton, A. Citron, and C. Mohan. Two-phase commit

optimizations and tradeoffs in the commercial environment. In Proceedings

of the 1993 IEEE Conference on Data Engineering, pages 325-333, Vienna,

Austria, 1993.

[SBCM95] G. Samaras, I<. Britton, A. Citron, and C. Mohan. Two-phase commit

optimizations in a commercial distributed environment. Distributed and

Parallel Databases, 3(4):325-360, 1995.

[Ser 911

[Str93]

[SW 951

F. Schwenkreis. APRICOTS: A prototype implementation of a ConTract

system. In Proceedings of the 12th Symposium on Reliable Distributed Sys-

tems, pages 12-22, San Jose, CA, 1993.

0. Serlin. The TPC benchmarks. In J. Gray, editor, Database and Trans-

action Processing Systems Performance Handbook. Morgan Kaufmann Pub-

lishers, San Mateo, CA, 1991.

K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Trans-

actions on Database Systems, 19(1):117-165, March 1994.

B. C. Smith. Reflection and Semantics ' in a Procedural Language. PhD

thesis, Massachusetts Institute of Technology, 1982.

M. Satyanarayanan, H.H. Mashburn, P. Kumar, D.C. Steere, and J.J.
Kistler. Lightweight recoverable virtual memory. ACM Transactions on

Computer Systems, 12(1):33-57, February 1994.

K. Sullivan and D. Notkin. Reconciling environment integration and software

evolution. ACM Transactions -on Software Engineering and Methodology,

l(3) :229-268, 1992.

P.M. Schwarz and A.Z. Spector. Synchronizing shared abstract data types.

ACM Transactions on Computer Systems, 2(3):223-250, 1984.

A. Silberschatz, M. Stonebraker, and J. Ullman. Database research: Achieve-

ments and opportunities into the 21st century. ACM SIGMOD Record,

25(1):52-63, 1996.

R.J. Stroud. Transparency and reflection in distributed systems. ACM
Operating Systems Review, 22(2):99-103, April 1993.

R.J. Stroud and Z. Wu. Using metaobject protocols t o implement atomic

da ta objects. In Proceedings of the European Conference on Object-Oriented

Programming (ECOOP), pages 168-189, Aarhus, Denmark, 1995.

Transarc Corporation, Pittsburgh, PA. 15219. Encina Product Overview,

1994.

Transarc Corporation, Pittsburgh, PA. 15219. Encina Toolkit Server Core

Programmer's Reference, 1994.

[VRS86] S. Vinter, K. Ramamritham, and D. Stemple. Recoverable actions in guten:

berg. In Proceedings of the 6th International Conference on Distributed

Computing Systems, pages 242-249, Hong Kong, China, 1986.

[WBT92] D.L. Wells, J. Blakeley, and C.W. Thompson. Architecture of an open

object-oriented database management system. IEEE Computer, 37(5):74-

82, October 1992.

[WeiSS] W.E. Weihl. Commutativity-based concurrency control for abstract data

types. In 2lst Annual Hawaii International Conference on System Sciences,

volume I1 Software Track, pages 205-214, Kona, HI, January 1988.

[W R92] H. Wachter and A. Reuter. The contract model. In Ahmed Elmagarmid,

editor, Database Transaction Models for Advanced Transactions, pages 219-

264. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[WYP92) K.L. Wu, P. S. Yu, and C. Pu. Divergence control for epsilon-serializability.

In Proceedings of Eighth International Conference on Data Engineering,

pages 506-515, Phoenix, AZ, 1992. IEEE/Computer Society.

[Yok92] Y. Yokote. The apertos reflective operating system: The concept and its

implementation. In Proceedings of the Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA), pages 414-

434, Vancouver, British Columbia, Canada, 1992.

[ZPL96] T. Zhou, C. Pu, and L. Liu. Adaptable, efficient, and modular coordination

of distributed extended transactions. In Proceedings of the 4th International

Conference on Parallel and Distributed Information Systems, pages 262-

273, Miami Beach, Florida, 1996.

Biographical Note

Roger Barga received the B.S. degree in Mathematics from Boise State University, Boise,

ID, in 1985, and the M.S. degree in Computer Science from the University of Idaho,

Moscow, ID, in 1987. Roger entered the doctoral program in Computer Science a t the

Oregon Graduate Institute, Portland, OR, in 1992. In 1996, Roger received an Intel

Graduate Fellowship Award from the Intel Foundation.

Roger Barga began his professional career as a software engineer for Ore-Ida Foods

while working towards his B.S. degree, and continued working as a software engineer and

consultant throughout his M.S. degree. From 1987 t o 1992, he was a research scientist

at Battelle Pacific Northwest National Laboratory (PNNL), Richland, WA, where he was

involved in research on machine learning and adaptive pattern recognition. From 1989

t o 1992, he was an adjunct faculty member-in the Department of Computer Science a t

Washington State University, Richland, WA, where he was responsible for teaching courses

in artificial intelligence, pattern recognition, and machine learning. Since 1997, he has been

with the Database Research Group, Microsoft Corporation, Redmond, WA. His current

research interests are in application recovery and advanced transaction processing.

	199904.barga.roger to p. 90.pdf
	199904.barga.roger to p. 186.pdf

