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5 Abstract 

Leukemias comprise a family of hematologic malignancies characterized by 

the over-proliferation of myeloid precursor cells. Leukemia development depends on 

multiple factors, including supportive growth signals from non-leukemia cells in the 

surrounding tumor microenvironment. Identifying these critical supportive cells, and 

eliminating their support, remains challenging.  

This dissertation contains novel research that identifies supportive 

monocyte/macrophage cells expressing colony stimulating factor 1 receptor (CSF1R) 

in human chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). 

These discoveries were made from ex vivo screening of CSF1R-specific small-

molecule inhibitors in hundreds of primary patient specimens. For both leukemia 

subtypes, roughly one-quarter of samples are sensitive to CSF1R inhibition or 

knockdown, and CSF1R inhibitor sensitivity does not strongly correlate with 

common genetic/clinical characteristics of disease. 

In CLL, CSF1R is expressed on nurse-like cells, a population of supportive 

monocytes, and CSF1R inhibitor treatment eliminated their growth. Combining 

CSF1R inhibitors with idelalisib or ibrutinib, two small-molecule inhibitors currently 

used in CLL treatment, was synergistic, suggesting that combination therapy could 

prove effective in clinical practice. In AML, CSF1R is expressed on a previously 

undiscovered subpopulation of reprogrammed, supportive monocytes/macrophages 

whose presence correlates with CSF1R inhibitor sensitivity. This sensitivity 

correlated with leukemia cell growth after exogenous exposure to HGF and other 
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cytokines, and direct modulation of CSF1R activity showed concomitant regulation 

of HGF and other cytokine levels in patient sample conditioned media.  

These results identify CSF1R inhibition as a novel therapeutic strategy for 

CLL and AML, spurring the efforts of forthcoming early-stage clinical trials 

evaluating its effectiveness in patients.
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6 Introduction 

This introduction contains a broad overview of the literature relevant to this 

dissertation, including: (1) a description of hematologic malignancies, with particular 

focus on acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL); 

(2) the discovery and function of colony stimulating factor 1 receptor (CSF1R); and 

(3) the contribution of CSF1R in cancer and the ongoing efforts to neutralize CSF1R 

in clinical trials. Because I undertook two separate projects to investigate CSF1R in 

leukemia, one in AML and the other in CLL, I have included leukemia subtype-

specific introductions available in their corresponding sections in this dissertation 

(see section 7.3 Introduction for CSF1R in CLL and section 8.4 Introduction for 

CSF1R in AML). 

 

6.1 Hematologic malignancies 

Cancer is the second most common cause of death in the United States, 

surpassed only by heart disease,1 and can be found in various tissues throughout the 

body. The family of cancers that appear in the body’s blood-forming tissues are 

called hematologic malignancies, known colloquially as blood cancers. These blood 

cancers can appear in the bone marrow and lymphatic vessels and are predominantly 

found in circulatory and lymphatic systems. Like many other cancer families, blood 

cancers originate from a rapidly dividing population of progenitor cells that 

overcome conventional pro-apoptotic signals. The unchecked proliferation of the 

hematologic malignancy overwhelms the residual population of normal blood cells, 
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leading to symptoms that include weakness, bone/joint pain, recurrent infections, 

enhanced bleeding/bruising, and enlarged lymph nodes. 

The classification of blood cancer subtypes arose from the conventional 

understanding of hematopoiesis, or the formation of normal blood cells and tissues. 

Hematopoiesis begins with the regulated differentiation of hematopoietic stem cells, 

a group of self-propagating cells that reside in the bone marrow, into two types of 

progenitor cells: lymphoid (consisting of B cells, T cells, and natural killer (NK) cells, 

which are critical for adaptive immune system function) and myeloid (consisting of 

granulocytes, monocytes, erythrocytes, and platelets, which contribute to innate 

immune system function). The most recognizable “gold standard” classification 

scheme for hematologic malignancies,2 managed by the World Health Organization 

(WHO), categorizes blood cancers within these two broad categories: lymphocytic 

leukemias or lymphomas, and myeloid leukemias, respectively.2 Titled The WHO 

Classification of Hematological Malignancies, the guidelines were developed by a 

consortium of researchers and clinicians based on the subtype and morphology of the 

originating progenitor cell, the presence of specific genetic abnormalities within the 

tumor cells, and/or the presence of specific cell-surface markers.2 

Within the WHO classification scheme,3 the lymphoid tumors can be 

subcategorized into four groups: small B-cell lymphoid neoplasms, diffuse large B‐

cell lymphoma, high grade B‐cell lymphomas, and mature T‐and NK‐cell 

neoplasms.2,a Although small B-cell lymphoid neoplasms are commonly referred to 

                                                 

a Traditionally, these diseases have been subdivided into Hodgkin lymphoma (HL) and non-Hodgkin 

lymphoma (nHL), based on the presence of large, multinucleated Reed-Sternberg cells, with nHL 
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as “low-grade lymphomas” by clinicians, the WHO classification intentionally omits 

tumor grade for lymphoma classification, hence the preferred term is “small B-cell 

lymphomas”.4 The two most common small B-cell lymphomas are “chronic 

lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL)” and “follicular 

lymphoma”.5 The second category, “diffuse large B‐cell lymphoma (DLBCL)”, 

contains the largest number of lymphoma patients.5 Although DLBCL can be further 

subdivided based on cell origin and some clinical characteristics, most of the patients 

remain uncategorized or “not otherwise specified (NOS)”.3 The other two categories, 

“high grade B‐cell lymphomas” and “mature T‐and NK‐cell neoplasms”, represent 

rarer disease subtypes with less well-defined pathological characteristics and few 

defining genetic alterations.4 

The WHO classification of myeloid tumors can be broadly subcategorized 

into acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), 

myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative 

neoplasms (MDS/MPN), B-lymphoblastic leukemia/lymphoma, and T-

lymphoblastic leukemia/lymphoma.2 AML is the deadliest hematological 

malignancy and contains many definitional genetic and cytogenetic abnormalities to 

distinguish among subtypes.6 MDS is characterized as “ineffective hematopoiesis” 

and defined as presenting with at least 10% dysplasia either in erythrocytes, 

granulocytes, or megakaryocytes.6 MPN contains the uniquely treatable chronic 

myeloid leukemia (CML), defined and identified by the BCR-ABL1 translocation, as 

                                                 

being the most predominant form. Although there is an explicit “Hodgkin lymphoma” category in the 

WHO classification, a greater emphasis is placed on progenitor cell type, which I have replicated here. 
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well as polycythemia vera (PV), primary myelofibrosis (PMF), and essential 

thrombocythemia (ET). MDS/MPN contains chronic myelomonocytic leukemia 

(CMML) and additional rare subtypes,7 including atypical CML which lacks BCR-

ABL1.2 The remaining two categories are often grouped together as “acute 

lymphoblastic leukemia (ALL)” and are subdivided and differentiated based on 

whether the leukemia originated from B or T cells.6  

In general, hematologic malignancies share many characteristics that 

differentiate them from conventional solid tumors like breast and prostate cancers. 

This distinction presents unique challenges and opportunities to 

hematology/oncology researchers and clinicians. First, accessing tumor samples 

from patients is generally easier for liquid tumors, not only because blood cancers 

rapidly circulate throughout the body but also because blood draws are a routine part 

of the clinical management of their disease. Second, critical components of tumor 

evolution such as metastasis and epithelial-to-mesenchymal transition (EMT) are not 

broadly applicable to blood tumors,b reducing the imperative to identify their 

geographical distribution throughout the body. Third, on the whole, hematological 

malignancies contain many fewer mutations than most solid tumors. In one study 

reviewing sequencing data from 12 cancer subtypes collected by The Cancer 

Genome Atlas (TCGA), AML was shown to have the lowest median mutation 

frequency at 0.28 mutations per megabase (Mb), with all other tumor types having 

                                                 

b There are rare instances of leukemia that migrates outside of blood vessels into surrounding tissue,7 

called extramedullary leukemia (EML) or myeloid sarcoma, which does share characteristics with 

solid tumors.8 However, EML is probably not detectable in the majority of leukemia patients and 

remains poorly understood. 
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greater than 1 mutation per Mb.9 Notably, this analysis excludes pediatric tumors, 

although leukemia is one of the most prominent childhood cancers— ALL being the 

most common malignancy in children10—and the mutation burden of ALL is 

roughly equivalent to that of AML, a disease found preferentially in older adults.11 

Fourth, the molecular profile of hematological malignancies is markedly different 

from that of solid tumors, with a uniquely high frequency of tumor-type-specific 

mutations in genes such as fms related tyrosine kinase 3 (FLT3), nucleophosmin 1 

(NPM1), DNA methyltransferase 3 alpha (DNMT3A), and tet methylcytosine 

dioxygenase 2 (TET2).9 

 Having said that, there are important characteristics shared by hematologic 

malignancies and other cancer subtypes. First, because they are both cancer 

subtypes, they possess many of the essential “hallmarks of cancer,” including 

stimulating proliferative signaling, avoiding cell death, and not activating growth 

suppression pathways.12 Second, on average, blood cancers possess the same 

extensive heterogeneity and complex clonal architecture of solid tumors that makes it 

difficult to achieve lasting clinical benefits in patients with certain hematologic 

malignancies, including developing resistance to therapy.13 Third, both blood cancers 

and solid tumors have been shown to reprogram surrounding normal tissue, 

including stromal cells and components of the immune system, to produce a tumor-

promotional environment, called the tumor microenvironment, that enhances cancer 

growth and survival.14 
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 This dissertation focuses on the contribution of one element of the tumor 

microenvironment in the two most common leukemias: acute myeloid leukemia 

(AML) and chronic lymphocytic leukemia (CLL). 

 

6.1.1 Acute myeloid leukemia 

Acute myeloid leukemia (AML) is the second most common hematological 

malignancy by incidence and also the deadliest, with an estimated 19,520 new cases 

and 10,670 deaths occurring in the United States in 2018.1 AML is a disease 

commonly found in elderly people (the median age of diagnosis is 68).1 The 

incidence of AML is increasing, in large part because the general population is living 

longer. Another contributor is the increased incidence of “therapy-related AML” 

caused by cancer treatment, a consequence of DNA-damaging chemotherapy and/or 

ionizing radiation for patients with prior cancers.15 As previously mentioned, AML is 

characterized by the blocked differentiation and increased proliferation of myeloid 

precursor cells, commonly referred to as “blasts”, inhibiting the growth of normal 

granulocytes, monocytes, and erythrocytes. 

The diagnostic criteria for AML have changed throughout the years, 

adjusting with advancements in technology and a better understanding of disease 

biology. The first universal method of categorizing acute leukemias was developed 

by a cooperative group of seven French, American, and British hematologists in 

1976.16 Called the French-American-British (FAB) classification system, it was 

created to establish uniform guidelines for separating myeloid and lymphoblastic 
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leukemias and develop consistent nomenclature of disease subtypes.16,c Their 

guidelines were based on cell morphology and cytogenetic staining, focusing on 

cytological features, including cell size, nuclear chromatin, nuclear shape, nucleoli, 

amount of cytoplasm, basophilia of cytoplasm, and cytoplasmic vacuolation.16  

AML was distinguished from lymphoblastic leukemia based on these 

characteristics and further subdivided based on the “direction of differentiation” 

among one or more myeloid cell types and the degree of cell maturation. This 

subdivision created six categories called M1-M6, with “M” standing for “myeloid”: 

• M1: acute myeloblastic leukemia, without maturation 

• M2: acute myeloblastic leukemia, with granulocytic maturation 

• M3: acute promyelocytic leukemia (APL) 

• M4: acute myelomonocytic leukemia; there is an additional M4eo 

category, which is M4 with bone marrow eosinophilila (increase in 

eosinophil count) 

• M5: subdivided into acute monoblastic leukemia (M5a) and acute 

monocytic leukemia (M5b) 

• M6: acute erythroid leukemias 

In later revisions of the FAB classification system, two additional categories were 

added: M0: acute myeloblastic leukemia, minimally differentiated17 and M7: acute 

megakaryoblastic leukemia.18 Furthermore, to distinguish AML from high-grade 

                                                 

c Interestingly, the participants of the meeting circulated 150 stained peripheral blood and bone 

marrow slides from acute leukemias and similar-looking diseases. The hematologists diagnosed each 

slide separately, met and discussed their differences, and created standards that were applied to a new 

set of slides deliberately intended to be confusing. They independently achieved an 85% consensus.16 
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MDS, the FAB classification system mandated that a diagnosis of AML required the 

blast percentage to be greater than 30.16 Overall, the FAB classification strategy was 

effective in helping researchers determine the relative frequency of AML subtypes 

and establish consistent examination protocols. However, over time, it suffered from 

limitations, including low reproducibility and an inability to identify which patients 

would respond poorly to chemotherapy.19 

Later, with a better understanding of the gene mutations and translocations 

underlying AML pathogenesis and development, the classification of AML subtypes 

shifted. The appearance of leukemia cells under the microscope gave way to the 

presence of genetic abnormalities contained within those cells. Currently, the 

classification system that best embodies this approach was proposed by the World 

Health Organization (WHO), first published in 2001.2 The WHO classification of 

myeloid neoplasms, which underwent a revision in 2016,6 incorporates many well-

known gene mutations and translocations along with the morphologic and 

cytogenetic characteristics. The number of AML subtypes more than doubled under 

the WHO classification compared to the  FAB classification system; additionally, the 

diagnostic blast percentage threshold was lowered from 30% to 20%, based on 

epidemiological data.15,d Overall, this integrative approach to classification has not 

only improved the reliability and reproducibility of AML diagnoses, but has 

enhanced our understanding of AML pathobiology.6  

                                                 

d There are two subtypes, “AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1” and “AML with 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11,” that can be classified as AML regardless of 

blast percentage. 
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Similarly, determining prognostic risk in AML—the prediction of the risk of 

relapse when a patient is treated with chemotherapy alone—has incorporated more 

mutational data along with clinical characteristics. Although there are many different 

methods employed to calculate prognostic risk, one of the most widely used methods 

was developed by the European LeukemiaNet (ELN).20 These guidelines were 

established to identify which genetic abnormalities held the most significance in 

predicting AML patient outcomes and how best to inform physician decisions during 

treatment. 

The ELN examined survival data from thousands of AML patients and 

identified four critical characteristics that would minimally subdivide patients by 

treatment outcome: (1) the presence of specific karyotypic abnormalities; and (2) 

internal tandem duplications in FLT3, (3) NPM1 mutations, and (4) CEBPA 

mutations. The guidelines, first published in 2008, were independently validated 

using a separate European patient cohort.21 In 2017, the ELN guidelines for AML 

prognostic risk were updated, recommending that physicians consider three new 

karyotypic abnormalities: monosomy 17, monosomal karyotype, and t(9;22); BCR-

ABL1.22 They also included mutations in TP53, RUNX1, and ASXL1; biallelic 

instead of monoallelic CEBPA mutations; and the consideration of FLT3-ITD allele 

ratio.22  

When a patient is diagnosed with AML, that individual receives a 

combination of routine cytochemical staining to identify morphology and ascertain 

the extent of differentiation, as well as full karyotyping and fluorescent in situ 
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hybridization (FISH) to identify common translocations.15 The most common 

prognostically significant translocations include: 

• t(8;21)(q22;q22.1); RUNX1-RUNX1T1 (favorable risk) 

• inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 (favorable) 

• t(9;11)(p21.3;q23.3); MLLT3-KMT2A (intermediate) 

• t(6;9)(p23;q34.1); DEK-NUP214 (adverse) 

• t(v;11q23.3); KMT2A rearranged (adverse) 

• inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) 

(adverse) 

• t(9;22)(q34.1;q11.2); BCR-ABL1 (adverse) 

There are additional cytogenetic abnormalities, including -5 or del(5q), -7, and 

abnormal 17, whose presence can classify a patient with “AML with myelodysplastic 

changes”, which constitutes poor prognosis.20 

In addition to cytogenetic abnormalities, there are gene mutations that have 

been identified as prognostically significant over the years. Screening AML patients 

for these mutations is important because 40-50% of patients have cytogenetically 

normal AML (CN-AML), meaning that their disease does not present with any 

detectable cytogenetic abnormalities.23 As mentioned above, according to the ELN 

guidelines, the six genes with prognostically significant mutations are FLT3-ITD, 

NPM1, CEBPA, TP53, RUNX1, and ASXL1.20 There are many additional driver 

mutations that have been discovered in AML, especially in recent landmark surveys 

of hundreds of patients using next-generation sequencing.24,25 Although the 

prognostic significance of many of these mutations is unknown, partly because they 
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are not commonly found in the broader AML population, the increased ubiquity of 

gene mutation panel screening will help determine whether their presence can predict 

treatment response. 

 

6.1.2 Chronic lymphocytic leukemia 

Chronic lymphocytic leukemia is the most common leukemia in the Western 

world, with an estimated 20,940 new cases in the United States in 2018.1 However, it 

has a significantly reduced mortality rate compared to AML, with 4,510 estimated 

deaths in the United States in 2018.1 CLL is predominantly found in elderly people, 

with the median age at diagnosis between 67 and 72 years old, and affects men more 

than women (1.7:1).26 It is a slow-growing and indolent disease, often lying dormant 

in the bone marrow for years before undergoing a sudden aggressive transformation 

(in a process called “blast crisis”). The most common risk factor for CLL is having a 

family history of the disease—around 10% of CLL cases constitute so-called 

“familial CLL,” in which the disease is found in two or more individuals in the same 

family—although minor additional factors, such as ethnicity (there is a lower 

incidence among East Asians), have been identified.26 

 The pathogenesis of CLL involves the clonal expansion and proliferation of B 

cells within the blood and bone marrow, hence the “leukemia” designation. If CLL 

is found predominantly in the lymph nodes and spleen, it is called small lymphocytic 

lymphoma (SLL), although both diseases are functionally identical. Some research 

suggest that the CLL development originates not from B-cell progenitors but from a 

multipotent hematopoietic stem cell (HSC), although this process remains poorly 
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understood.27 Recent studies examining the mutational landscape of CLL postulated 

that the disease might be initiated by a large chromosomal abnormality followed by 

additional gene mutations that produce a more aggressive disease.28,e 

Unlike AML, CLL represents a single disease, according to the WHO 

classification,2 and therefore does not have subtypes defined by common recurrent 

cytogenetic abnormalities and gene mutations. Additionally, the most common 

cytogenetic abnormalities in CLL are not translocations but large chromosomal 

deletions. They include: 

• del(13q14), found in ~55% of patients;26 no prognostic significance 

• del(11q), found in 25% of advanced-stage patients;26 poor prognosis 

• trisomy 12, found in 10-20% of patients;26 unknown prognostic 

significance29 

• del(17p), found in 5-8% of untreated patients;26 poor prognosis 

There have been many efforts throughout the years to identify recurrent gene 

mutations in CLL.28,30-32 One recent study identified 44 recurrently mutated genes 

and 11 recurrent somatic copy number variations.28 Notably, the significance of 26 of 

those mutated genes had not been previously determined in CLL, and a few of 

them— RPS15 and IKZF3, for example—had never been previously identified in 

human cancers.28 These recent discoveries highlight the relative infancy of using 

genetic mutations to determine prognostic significance in CLL, especially compared 

to AML. 

                                                 

e The overall mutation frequency in CLL is relatively low and comparable to that of AML. 
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There are two commonly used classification systems for CLL clinical staging: 

the Rai system, published in 1975,33 and the Binet system, published in 1981.34 Both 

classification systems were named after the first authors on the original publications, 

Kanti R. Rai and Jacques-Louis Binet. The Rai system was modified in 1987,35 

decreasing the original number of prognostic categories. Both systems subdivide 

patients into three categories based on clinical characteristics. The modified Rai 

staging system classifies patients as follows: 

• Low-risk disease: lymphocytosis with leukemia cells in the blood and/or 

marrow (lymphoid cells greater than 30%) 

• Intermediate-risk disease: lymphocytosis, enlarged nodes in any site, and 

splenomegaly and/or hepatomegaly 

• High-risk disease: disease-related anemia (hemoglobin less than 11g/dl) or 

thrombocytopenia (platelet count less than 100×109/L) 

The Binet system classifies patients slightly differently, using a combination of the 

number of “involved areas” (defined as enlarged lymph nodes greater than 1cm in 

diameter, or organomegaly) and whether the patient has anemia or 

thrombocytopenia (using very similar numbers as the Rai system).26 

 Recently, due to a combination of incredibly effective treatments that have 

been developed for CLL and a greater understanding of which CLL genetic 

abnormalities are prognostically significant, these staging systems have become 

insufficient.36 In response, an international working group of researchers developed 

the CLL International Prognostic Index (CLL-IPI), based on a multivariate analysis 

of 27 baseline factors in 3,472 patients from Europe and the United States.37 The 
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CLL-IPI guidelines is built around five characteristics: the presence of 

mutations/deletions in TP53 (termed “TP53 dysfunction”), the presence of 

mutations in the immunoglobulin heavy-chain variable region (IGHV), the serum 

levels of beta-2 microglobulin (B2M), the clinical stage (based on Rai and/or Binet 

classification), and patient age.37 Each characteristic is assigned a point score: 

• del(17p) or TP53 mutation: 4 points 

• IGHV mutation: 2 points 

• B2M greater than 3.5 mg/L: 2 points 

• Clinical stage (intermediate- or high-risk Rai or Binet score): 1 point 

• Age greater than 65 years: 1 point 

The point values of each characteristic are summed and patients are subdivided into 

four categories: low risk (0-1), intermediate risk (2-3), high risk (4-6), and very high 

risk (7-10).37 Although these guidelines have been independently validated,38 

demonstrating that they not only predict overall survival but also inform the time to 

first treatment, additional data will be required to demonstrate their significance in 

the clinic. 

 

6.2 Treatment of AML and CLL 

Due to substantial differences in their clinical presentation—namely, the 

acute versus chronic nature of their development in patients—AML and CLL have 

very different treatment strategies. AML is a highly aggressive leukemia, and AML 

patients are given chemotherapy as quickly as possible, often within days of the 

initial diagnosis. On the other hand, CLL a slow-growing, indolent leukemia, and 
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the recommended strategy is “watch and wait”—patients only receive treatment 

upon disease progression.  

 The treatment of AML is divided into two categories: induction 

chemotherapy and consolidation (or post-remission) therapy. The induction phase of 

treatment is challenging because the clinician is working to deliver enough 

chemotherapy to achieve complete remission while ensuring that the patient can 

tolerate the consolidation phase, without which the patient is likely to relapse within 

6-9 months.15 In this way, the induction strategy depends on a variety of 

characteristics, including patient age, the presence of comorbid conditions that could 

affect performance status and decrease tolerance to treatment,39  and preexisting 

myelodysplasia.15,f AML patients are usually separated based on age; they are also 

considered separately, with patients older than 60 receiving different 

recommendations offered to patients younger than 60. 

 Younger AML patients receive the standard induction therapy combining 

cytarabine (also called Ara-C), a modified cytosine analog, for seven days, and an 

anthracycline (either daunorubicin, the most common, or idarubicin), a DNA 

intercalating agent and topoisomerase-II inhibitor, for three days. Nicknamed “7+3”, 

this treatment strategy has remained the standard induction treatment for over 40 

years, underscoring the historical challenge of treating AML.41 After 7-10 days, a 

bone marrow aspirate is collected, and additional doses of cytarabine are given, 

                                                 

f The treatment of acute promyelocytic leukemia (APL), defined by the translocation of the 

promyelocytic leukemia (PML) gene to retinoic acid receptor alpha (RARA), is dramatically different 

from standard AML because of the unique ability all-trans retinoic acid (ATRA) possesses to induce 

differentiation in the blasts of this subtype. Consequently, it should be classified differently from other 

leukemia subtypes, as has been recommended by independent ELN guidelines.40 
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depending on the presence or extent of residual disease. If a complete remission (no 

measurable disease) is achieved, then patients receive consolidation therapy 

consisting of multiple cycles of high-dose Ara-C.15 This is sometimes accompanied 

by a hematopoietic stem cell transplant (HSCT), either from the patient’s own cells 

(autologous) or from a donor with acceptable human leukocyte antigen (HLA) 

matching (allogeneic).15 

Older AML patients either receive standard induction therapy or low-dose 

Ara-C or hydroxyurea, depending on their performance status, the presence of poor-

risk genetic abnormalities, and presence of co-morbidities.15 They could also receive 

the same consolidation therapy, depending on their response, although there are 

many variations in alternative consolidation strategies, including different dosing 

combinations of Ara-C, anthracycline, and hydroxyurea, an inhibitor of 

ribonucleotide reductase (RNR).15 HSCTs are less common in this population due to 

adverse side effects.15 

The treatment of CLL, as previously mentioned, is dramatically different. 

Over 90% of CLL patients are initially diagnosed with asymptomatic, early-stage 

disease, the majority of which contain an indolent disease and often reach normal 

life expectancy.42 Therefore, the standard-of-care treatment is “watch and wait,” 

where a patient’s condition is closely monitored using blood tests and physical 

exams, and treatment is only considered if symptoms appear or if the patient’s 

condition changes.42 Although the monitoring schedule might be adjusted based on 

the disease staging, the application of newly appreciated prognostic risk markers 
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(according to the CLL-IWI guidelines) and novel targeted therapies on improving 

survival in these patients remains poorly understood.42 

If patients diagnosed with CLL develop “active disease”, the recommended 

treatment for patients with a high performance status is FCR, which is the 

combination of fludarabine, a purine analog, cyclophosphamide, an alkylating agent, 

and rituximab, a monoclonal antibody targeting CD20.43 For patients that cannot 

tolerate this aggressive treatment, or for those with very high risk disease classified as 

previously defined, receiving an alternative CD20-targeting antibody (ofatumumab 

or obinutuzumab), with its demonstrated higher efficacy and lower toxicity, 

administered in combination with other chemotherapies is recommended.42 

These treatment approaches have demonstrated efficacy in patients with 

AML and CLL, and have therefore become standard-of-care. However, newer 

strategies have emerged, specifically new targeted therapies, that have shown 

promise in recent clinical trials, with some becoming FDA-approved for treatment of 

these diseases. 

 

6.2.1 Targeted therapy 

The notion of targeted therapy, or the idea of eliminating only diseased cells 

within a patient while leaving the surrounding healthy cells unharmed, is 

commonplace in cancer treatment. It is generally viewed as a natural progression 

from traditional chemotherapy, which affects all rapidly dividing cells, causing such 

symptoms in patients as increased susceptibility to infections (reduced leukocytes), 

gastrointestinal problems (reduced intestinal epithelial cells), and alopecia (reduced 
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hair follicles). However, its broad adoption required a paradigm shift among 

clinicians and researchers, which happened gradually following a few key 

discoveries. 

Technically, the first example of targeted therapy was employed in the 1940s 

with iodine treatment for thyroid cancer. Thyroid cancer cells exclusively uptake 131I 

and the tumor is eliminated by the accumulated radioactivity.44 Later, in the 1950s, 

5-fluorouracil was developed for the treatment of hepatoma, and is currently a 

mainstay in colorectal cancer treatment, because researchers discovered that the 

hepatoma demonstrated greater uptake and requirement for uracil relative to normal 

tissue.45 In the 1970s, the creation of tamoxifen fulfilled the more conventional 

understanding of targeted therapy, in which the therapeutic competitively binds and 

alters the downstream function of protein uniquely required for cancer survival.46 As 

a selective estrogen receptor modulator (SERM), tamoxifen is used for the treatment 

of estrogen receptor-positive breast cancer, which requires estrogen to proliferate and 

survive.47 

Perhaps the best-known, most quintessential example of targeted therapy is 

the development of imatinib (commonly known as Gleevec) for the treatment of 

patients with CML. Unlike most other cancer subtypes, CML is unique because the 

BCR-ABL1 translocation defines the disease, so developing a kinase inhibitor that 

fits in the ATP pocket of the resulting fusion protein and inhibiting its downstream 

function serves as an excellent proof-of-principle for targeted therapies.48 Ultimately, 

imatinib produced remarkable survival benefits in patients with CML.49,50 
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It is important to mention that targeted therapies include both small-molecule 

inhibitors and monoclonal antibodies, and their similarities and differences should be 

discussed. Both small-molecule inhibitors and neutralizing antibodies target growth-

factor receptors to prevent downstream signaling and have been developed for (and 

their effectiveness evaluated in) large-scale clinical trials.51 There are notable 

differences between them, however. First, small-molecule inhibitors are significantly 

smaller than monoclonal antibodies, which helps explain why small-molecules are 

well distributed across tissues and antibodies are more restricted to plasma and 

extracellular fluids.52 In addition, the circulation half-life for monoclonal antibodies 

is significantly longer (days vs. hours),52 and researchers have speculated that there 

might be less variance in the degradation time (and therefore less variance in the 

plasma concentration) of monoclonal antibodies across patients than small-molecule 

inhibitors.51   

Although the development of imatinib for CML appeared to herald the 

application of targeted therapies in other hematologic malignancies, there has been 

little success of targeted therapies to treat patients with AML.41 There are many 

possible explanations. First, as previously mentioned, AML is an extremely 

heterogeneous disease, so targeting a single protein for inhibition would likely be 

insufficient to eliminate the rest of the leukemia cell population.53 Second, 

xenotransplantation assays, in which patient cells are injected into recipient mice, 

can stimulate the growth of functionally different subclones, changing the clonal 

proportions from the original patient sample and generating erroneous results.54 

Third, many of the experimental approaches have been problematic, with insufficient 
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sample size in clinical trials and few human models of certain molecular subsets of 

AML subsets.53 Fourth, many of these targeted therapies are being investigated with 

a single-agent approach instead of in combination with existing chemotherapies, 

greatly limiting their clinical utility and applicability.41 

However, there have been an increasing number of successes for targeted 

therapies in recent years. Inhibitors against FLT3 mutations or internal tandem 

duplications (FLT3-ITD), including crenolanib, quizartinib, and sorafenib, have 

been showing promise. Indeed, multi-kinase inhibitor midostaurin was recently 

shown to be effective in combination with 7+3 in patients with newly diagnosed 

FLT3-mutated AML,55 leading to its FDA approval in 2017. In addition, the IDH2-

specific inhibitor enasidenib was recently shown to be effective against IDH2-mutant 

relapsed or refractory AML,56 and the inhibitor was granted FDA Breakthrough 

Therapy designation in 2017. There are other targeted therapies under investigation 

at various stages in clinical development, including gilteritinib (a dual FLT3 and 

AXL inhibitor), venetoclax (a BCL2 inhibitor), gemtuzumab ozogamicin (an 

antibody-drug conjugate against CD33), and many others.57 

In CLL, although most patients are not recommended to receive immediate 

treatment for their disease, there have recently been substantial recent, exciting 

developments in targeted therapy. Besides the anti-CD20 antibodies mentioned 

previously that have become standard-of-care for acute-phase CLL, there is another 

targeted monoclonal antibody against CD52, alemtuzumab, that was approved for 

frontline CLL treatment.58 However, the drug license was withdrawn in 2012 and 

remains available only for compassionate use cases.26 
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There are three prominent small-molecule inhibitors in clinical development 

for CLL. Two of them target B-cell receptor signaling, which is critically important 

in CLL cell survival,59 and inhibiting their activity has become an active area of 

clinical investigation.26 The first, idelalisib, is an inhibitor of p110 delta isoform of 

phosphatidylinositol 3-kinase (PI3Kδ), which is required for B cell proliferation and 

survival and whose activity is required in CLL cells.60 Idelalisib induces apoptosis in 

primary CLL cells without impacting normal T cells or natural killer cells.26 Idelalisib 

has been tested in combination with ofatumumab, which doubled progression-free 

survival compared to ofatumumab alone.61 

The second, ibrutinib, is an inhibitor of Bruton tyrosine kinase (BTK), 

activating downstream NFKB1 and MAPK pathways, both of which are involved in 

the signal transduction of the B-cell receptor.62 Ibrutinib has been tested extensively 

and demonstrated efficacy as a single-agent in patients, most recently in a phase 3 

clinical trial against ofatumumab in patients with relapsed or refractory CLL.63 It is 

now considered as a possible frontline treatment for acute, symptomatic CLL.26 In 

addition, ibrutinib has shown remarkable benefit in combination with other drugs, 

including: rituximab;64,65 bendamustine, an alkylating agent, with rituximab (BR);66 

and ofatumumab.67 

 

6.2.2 Targeting the tumor microenvironment 

As the number of successful targeted therapies for cancer treatment increased 

over the past couple decades, a greater understanding of the corruption of normal, 

healthy cells surrounding the tumor by cancer cells to promote tumor proliferation 
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and survival has emerged. These surrounding cells and their corresponding 

supportive cytokines and growth factors were termed the tumor microenvironment, 

and their interaction with tumor cells has since become a significant focus of tumor 

biology research. 

The first observation that these microenvironmental signals can become 

hijacked by cancer was made in 1863 by Rudolf Virchow, who discovered that solid 

tumors also presented with infiltrating leukocytes.68 The immune system plays a 

critical and complicated role in tumor proliferation and evolution. It was discovered 

that tissues subjected to chronic inflammation from various diseases also exhibited 

increased incidence of cancer—for example, liver cirrhosis in hepatocellular 

carcinoma, or long-term colitis and colorectal cancer.69 At the same time, 

immunocompromised or immunosuppressed individuals, including transplant 

recipients and people with acquired immunodeficiency syndrome (AIDS), also 

showed higher cancer incidence.70,71 These juxtaposing observations highlight the 

dual, context-dependent roles of the tumor microenvironment in cancer. 

To understand the tumor microenvironment in hematologic malignancies, it 

is important to understand the regulation of hematopoietic stem cells (HSCs) by 

neighboring cells during normal hematopoiesis. The bone marrow consists of a 

complex arrangement of nerve bundles, blood vessels, smooth muscle cells, and 

various other cell types.72 In normal hematopoiesis, HSCs exist in a geographically 

separate area of the bone that is adjacent to blood vessels, commonly referred to as 

the perivascular niche.73 In the perivascular niche, HSCs receive supportive signals 

such as CXCL12 or SCF from neighboring cells.74 Examples of neighboring cells that 
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could provide this regulatory signaling include nonhematopoietic cells (osteoblasts, 

endothelial cells, pericytes, adipocytes, Schwann cells, and nerves) and 

hematopoietic cells (macrophages, osteoclasts, megakaryocytes, lymphocytes, and 

neutrophils).72 

Hematologic malignancies, and cancer in general, disrupt the normal 

interaction between these cells and modify the surrounding tissue in such a way that 

the microenvironment evolves alongside the growing tumor to support and protect 

it.75 Tumor cells accomplish this through a variety of strategies, including: blocking 

the release of cytolytic granules by neutrophils, reducing the pro-inflammatory 

phenotype of macrophages, inhibiting the tumor-associated antigen presentation by 

dendritic cells, and directly inhibiting normal B and T cell responses.75 In this way, 

ordinary macrophages evolve into so-called tumor-associated macrophages (TAMs), 

which have been shown to promote tumor progression and enhance therapeutic 

resistance.76 Similarly, ordinary myeloid precursors evolve into myeloid-derived 

suppressor cells (MDSCs), immunosuppressive precursor cells that disrupt multiple 

pathways of tumor immunosurveillance.77 This pattern of phenotypic modification 

manifests in other cell types, and eliminating or reversing these modifications has 

been an active, albeit challenging, area of research.75 

Targeting the tumor microenvironment is an attractive plan of attack, not 

only because blocking this signaling can overcome the heterogeneous nature of the 

tumor itself,78 but also because the microenvironment is genetically stable and less 

susceptible to the classic “acquisition of resistance mutation” mechanism of therapy 

resistance.75 Perhaps the most broadly successful approach is blocking the 
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mechanism by which tumors evade the immune system. One inhibitor, ipilimumab, 

targets CTLA-4, which activates T cells and thereby promotes an anti-tumor immune 

response. Ipilimumab has been FDA-approved by demonstrating effectiveness in 

metastatic melanoma;79,80 combining it with other antibodies have also shown 

promise, including nivolumab,81,82 which targets the programmed death 1 (PD1) 

receptor, and lambrolizumab,83 which blocks the PD1 ligand (PDL-1). Similarly, 

antibodies that target CD40, a TNF receptor superfamily member that, when 

targeted, activates antigen-presenting cells and promotes other immune responses,84 

have demonstrated some efficacy in preclinical pancreatic cancer.85 

The second approach involves neutralizing tumor-promotional inflammation 

caused by immune cell recruitment and activity. For example, blocking CCL2-CCR2 

signaling reduces the recruitment of inflammatory monocytes and extends overall 

survival in breast cancer mouse models.86 In addition, targeting other components of 

immune cell recruitment such as CXCR2 (using S-265610) and CXCR4 (using 

AMD3100) is being actively investigated.75 Ultimately, some of the most promising 

treatment strategies inspired by this approach are inhibitors against a protein 

ubiquitously expressed on macrophages: colony stimulating factor 1 receptor 

(CSF1R).75 

 

6.3 Colony stimulating factor 1 receptor (CSF1R) 

6.3.1 Discovery of CSF1R 

The first colony-stimulating factor was discovered when researchers were 

looking into how hematopoietic cells differentiated into mature granulocytes, 
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monocytes, and macrophages. These researchers already knew that when they 

isolated bone marrow cells from mice and plated them in soft agar, these cells had 

the capacity to proliferate extensively and form small colonies. Sometimes, 

depending on what the cells were incubated with—blood serum, conditioned media, 

and even urineg—these colonies would consist only of granulocytes, or only of 

macrophages, or a combination of both.88 Researchers defined “colony-stimulating 

factors” as the external additives that are absolutely required to produce these 

colonies.88 

In 1977, E. Richard Stanley and Patricia M. Heard, then working at the 

Ontario Cancer Institute, purified the first colony-stimulating factor, known as 

colony-stimulating factor 1 (CSF1), through repeated dialysis of conditioned media 

from L60T mouse fibroblasts.88 Stanley’s group discovered that CSF, even at 

extremely low concentrations, stimulated the formation of macrophage colonies in 

multiple different cell types.89 Using radiolabeled iodine, they confirmed that CSF 

was binding to a then unknown receptor found almost exclusively on macrophages 

and their progenitors.90  

Around the same time, Charles J. Sherr, working at the Viral Pathology 

Section of the National Cancer Institute, was studying SM-FeSV, a strain of feline 

sarcoma virus (FeSV) developed by Susan McDonough (SM) and colleagues. At the 

time, researchers used different strains of FeSVs to discover how they induced 

sarcomas in their recipient animals. Sherr and colleagues discovered that SM-FeSV 

                                                 

g One study investigated the colony-forming potential of urine samples from patients with a variety of 

hematological malignancies, including acute leukemia.87 Even after waiting 24 hours, half of the 

samples produced colonies, highlighting the persistence of CSF1R in the bloodstream and beyond.  
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contained the sequence for a unique transforming gene they called v-fms (viral feline 

McDonough sarcoma).91 They found that the eukaryotic DNA sequences that were 

homologous to v-fms, which they dubbed c-fms (cellular feline McDonough sarcoma), 

encoded a glycoprotein that showed tyrosine-specific protein kinase activity in vitro.92 

Eventually, both research groups discovered that there was significant 

similarity in tissue distribution and biochemical properties between the CSF1 

receptor and the glycoprotein encoded by c-fms.93 Working together, they discovered 

that the c-fms glycoprotein was expressed at high levels in macrophages, and that 

rabbit antibodies specific for v-fms recognize the murine CSF1 receptor.93 In 

conclusion, they speculated that “[t]he murine c-fms proto-oncogene product and the 

CSF-1 receptor are therefore related, and possibly identical, molecules”.93 Two years 

later, the cDNA nucleotide sequence for c-FMS was discovered,94 confirming their 

suspicions and revealing the identity of the receptor, officially called CSF1R but still 

occasionally referred as c-FMS, as a classical cell-surface tyrosine kinase. 

 

6.3.2 Structure and function of CSF1R 

CSF1R (colony stimulating factor 1 receptor; also referred to as c-FMS, M-

CSF, or CD115) is a 972-amino-acid protein with three topological domains: 

extracellular (amino acids 20-517), transmembrane (518-538), and cytoplasmic (539-

972). The extracellular domain (498 amino acids) is highly glycosylated and contains 

five immunoglobulin domains, while the intracellular domain consists of a kinase 

insert domain (73 amino acids) sandwiched between a tyrosine kinase domain (398 

amino acids).95 CSF1R is located on human chromosome 5 (5q32) and contains 21 
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introns and 22 exons. It is a member of the class III receptor tyrosine kinase family, 

which includes PDGFRA and PDGFRB, KIT, and FLT3. 

There are two ligands that bind to CSF1R: CSF1 and IL-34 (interleukin 34). 

IL-34 was later discovered through a large-scale functional screen of the extracellular 

proteome and was identified as an additional ligand for CSF1R.96 Even though both 

ligands produce a different biological response in CSF1R,97 their primary differences 

are based on how the ligands themselves are regulated and expressed throughout the 

body. There are three isoforms of CSF1: a secreted glycoprotein, a secreted 

proteoglycan, and a transmembrane glycoprotein expressed on the surface of cells.95 

The transmembrane and proteoglycan isoforms of CSF1 have been demonstrated to 

act locally, although the secreted glycoprotein can circulate through the bloodstream, 

resulting in humoral regulation.98 Additionally, CSF1R appears to be the only 

receptor for CSF1, based on the observation that the phenotype of CSF1R-deficient 

mice99—including osteopetrosis, or increased bone hardening, and hematologic 

abnormalities in the peripheral blood, bone marrow and spleen—matches the 

phenotype of CSF1-deficient mice.98 On the other hand, IL-34 is not detectable in 

normal blood circulation,100,101 and has been shown to bind to an additional receptor, 

PTP-ζ.102 

CSF1R expression is low on hematopoietic stem cells (HSCs) but increases 

stepwise as cells differentiate into macrophage progenitors, then monoblasts, 

promonocytes, monocytes, and macrophages.95 This gradual increase in expression 

occurs through two pathways: (1) the upregulation of the transcription factor SPI1, 

which binds both to the CSF1R promotor and the so-called FIRE enhancer 
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element;103 and (2) chromatin remodeling and factor assembly at the FIRE 

enhancer.104 There are distinct downstream biological functions regulated by CSF1R 

tyrosine residues, including CSF1R activation/degradation and macrophage 

survival, proliferation, differentiation, and migration.105  

During macrophage survival, CSF1R degradation is inhibited and 

PI3K/AKT pathways are activated, signaling downstream to pro-survival proteins.95 

During macrophage proliferation, there is a CSF1 dose-dependent increase in 

CSF1R synthesis and CSF1R phosphorylation activates both the MEK and PI3K 

pathways.106,107 During monocyte/macrophage differentiation, CSF1R downstream 

is different depending on the cell type expressing CSF1R. In multipotent precursor 

cells, differentiation is promoted through signaling of PLCG2108 and separately by 

phosphorylation of ERK1 and ERK2,95 which is regulated by DUSP5 in a negative 

feedback loop.109 In myeloblasts, monoblasts, and promonocytes, the ERK1/2 

pathway is critical in differentiation,110 particularly through the inactivation of 

PP2A.111 Additionally, in these cell types, GAB2 regulates ERK1/2 in a 

differentiation stage-specific manner, increasing its downstream activity in 

monoblasts and promonocytes but decreasing its activity in macrophages.112 During 

migration, CSF1 stimulation produces a rapid membrane ruffling followed by two 

waves of actin polymerization, regulated by the two actin nucleators WASP and 

WAVE2, resulting in motility and chemotaxis.95 
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6.4 CSF1R and cancer 

To understand the contribution of CSF1R in cancer, it is important to first 

understand basic macrophage biology. Macrophages, which are found in every tissue 

in the body, are the most phenotypically plastic cells in the hematopoietic system, 

which makes defining and classifying macrophages a notoriously challenging task.113 

Perhaps the most classic definition of macrophages—the terminal cells of the 

mononuclear phagocytic lineage—is incomplete because some macrophages have 

different origins during development and persist into adulthood.114 Another common 

method to classify macrophages is by their inflammatory state, which produces two 

categories.115,116 The first is the “classically activated macrophage” or M1, which is 

thought to be pro-inflammatory and anti-tumorigenic, responding to IFNγ and the 

activation of toll-like receptors (TLRs). The second is the “alternatively activated 

macrophage” or M2, which is thought to be anti-inflammatory and pro-tumorigenic, 

responding to IL-4 and IL-13.h However, these classical subdivisions do not represent 

the complexity of macrophages receiving numerous cytokine and growth factor 

signaling in vivo, as recent transcriptional profiling studies of macrophages have 

demonstrated.114,119 Regardless of this complexity, CSF1R exists as the predominant 

lineage regulator for virtually all macrophages in the body.113 

In cancer, macrophages play a significant role in establishing and maintaining 

the tumor microenvironment. In response to various cytokines encountered in the 

                                                 

h Traditionally, CSF1 stimulation is associated with M2 macrophage polarization, although CSF1R is 

similarly activated in M1 vs M2 phenotype marcophages.117,118 
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microenvironment (e.g. CSF1, IL-4 and IL-13), they synthesize and secrete 

inflammatory cytokines (e.g. IFNγ, TNFα and IL-6) which engenders a state of 

chronic inflammation, although there are other unique signaling partners and 

molecules depending on the tumor type.113 In mice, although these pro-tumor 

macrophages can be subdivided based on the expression of many additional cell-

surface markers, they all express canonical macrophage markers, including CSF1R.76 

In addition, depending on cancer subtype, there are significant differences in terms of 

the number of macrophages within the tumor and their phenotype, either pro-

tumorigenic or anti-tumorigenic.120 In 2002, Zhang et al conducted a meta-analysis 

consisting of 55 studies involving 8,692 patients in order to evaluate the prognostic 

significance of TAMs in solid tumors.121 The researchers observed no difference 

between the proportion of the M1 versus M2 macrophage phenotype and overall 

survival, highlighting the complexity and tumor-subtype-specific contribution of 

macrophages to tumor development and treatment response.121,i 

  

6.4.1 CSF1R clinical trials 

Based on these discoveries showing the contribution of CSF1R-expressing 

cells on cancer progression and resistance, there is a commensurate focus on clinical 

trials involving targeting CSF1R activation in cancer. As of June 2017, there are 39 

clinical trials completed or in development involving CSF1/CSF1R small-molecule 

inhibitors or monoclonal antibodies for cancer treatment (see Table 6.1 for complete 

                                                 

i Zhang et al defined the presence of TAMs as 20% anti-CD68 cells by immunochemistry, and 

defined M1 by HLA-DR expression and M2 by CD163 expression.121 
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list).122 These clinical trials can be subdivided into three categories: (1) evaluating the 

inhibition of CSF1R activity as monotherapy, (2) in combination with chemotherapy 

regimens, and (3) in combination with immunotherapy regimens.  

Slightly more than half of the trials involve small-molecule inhibitors (23/39 

or 59%), including PLX3397 (also known as pexidartinib, which is singlehandedly 

being evaluated in no less than 8 ongoing trials as a monotherapy), ARRY-382, 

PLX7486, BLZ945, and JNJ-40346527. The remaining clinical trials involve 

monoclonal antibodies (16/39 or 41%), including emactuzumab, AMG820, IMC-

CS4, cabiralizumab, and the CSF1-ligand-targeting antibodies MCS110 PD-

0360324. (There are no IL-34-targeting compounds or monoclonal antibodies 

currently in clinical development.) Broadly, the results that have been published123-134 

suggest that these compounds are well-tolerated, although their efficacy has yet to be 

determined in large-scale phase 3 clinical trials.122 
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Table 6.1. Clinical trials with CSF1/CSF1R small molecules or monoclonal 

antibodies currently in clinical development (as of June 2017). 

Modified from Cannarile et al.122 See below for list of abbreviations. 
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[Table 6.1. Clinical trials with CSF1/CSF1R small molecules or monoclonal 

antibodies currently in clinical development (as of June 2017).] 
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6.4.2 CSF1R in acute myeloid leukemia 

Initially, when considering CSF1R genetic abnormalities, the presence of 

CSF1R mutations in acute myeloid leukemia was a controversial issue. The first 

major study addressing this question used mutant-specific DNA hybridizing probes 

to two codons critical for CSF1R transformation activity and found that 16.7% of 

AML patients (8/48) contained CSF1R mutations.135 However, the large-scale study 

undertaken by TCGA, which analyzed 200 de novo AML patient samples using 

whole-exome sequencing, found no CSF1R mutations.24 Indeed, the prevailing 

hypothesis is that CSF1R mutations are extremely rare in acute myeloid leukemia, 

and that the results from the initial study are indicative of the high false-positive rate 

of hybridization-based studies.136  

It should be noted that there are two cell lines that contain CSF1R genetic 

abnormalities. These cell lines require CSF1R for their survival and proliferation and 

are sensitive to CSF1R small-molecule inhibitors. The first, GDM-1, is an acute 

myelomonoblastic leukemia cell line established from a 65-year-old woman.137 

GDM-1 contains a point mutation (Y571D) in CSF1R, resulting in its constitutive 

activation and phosphorylation.138 The second, MKPL-1, is an acute 

megakaryoblastic cell line established from a 66-year-old man.139 MKPL-1 possesses 

a novel fusion of CSF1R to RBM6, producing the t(3;5)(p21;q33) RBM6-CSF1R 

translocation, which renders it sensitive to CSF1R-targeting small-molecule 

inhibitors.140 Neither of these CSF1R abnormalities has been reported in patient 

samples other than the ones from which these cell lines were derived. 
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One study found a novel population of CSF1R high-expressing leukemia cells 

in an AML mouse model driven by MOZ fusion proteins.141 These CSF1Rhigh cells 

demonstrated similar morphology and colony-forming ability as CSF1Rlow cells, 

although they had enhanced leukemia-initiating activity, and elimination of these 

cells resulted in the elimination of AML.141 Mechanistically, CSF1Rhigh cells showed 

enhanced STAT5 activation in a manner dependent upon the hematopoietic 

transcription factor SPI1.141 However, although MOZ translocations have appeared 

occasionally in the literature,142 the activation of CSF1R by another specific genetic 

abnormality in AML has not been documented elsewhere. 

Recently, a study of 140 Taiwanese colorectal, ovarian, and endometrial 

cancer patients identified a CSF1R genetic variant (c1085A>G; H362R) that was 

present in 42.9% of their tumors.143 This variant, which was found at the same 

frequency in healthy Taiwanese (and East Asians in generalj), resulted in reduced 

CSF1R internalization and phosphorylation after CSF1 stimulation and, 

paradoxically, increased macrophage sensitivity to CSF1R small-molecule inhibitors. 

However, since this variant is only found in ~10% of healthy Americans, which 

comprise the vast majority of our patient population, it is unlikely to be chiefly 

responsible for the phenotype of CSF1R sensitivity that we observe in leukemia 

patients. Still, it is worth considering in future studies, especially to confirm that the 

frequency of this variant in leukemia patients matches that of other cancer types, and 

                                                 

j Ethnic groupings were classified by 1000 Genomes Project.144 
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in identifying patient populations that would benefit from CSF1R inhibitor clinical 

trials. 

 

6.4.3 CSF1R in chronic lymphocytic leukemia 

 Regarding CSF1R genetic abnormalities, two back-to-back studies28,32 

performed next-generation sequencing on hundreds of CLL patients (452 CLL 

patients from Puente et al., 278 from Landau et al.) and found no CSF1R mutations. 

Additionally, unlike AML, there have been no reported cases of CSF1R 

translocations or fusion proteins identified in CLL patients. However, the 

contribution of CSF1R in CLL has received greater attention recently, particularly 

because of two studies identifying its expression on nurse-like cells (NLCs) that were 

essential to leukemia cell survival.k 

First, it is important to provide some background information on NLCs. The 

discovery of NLCs was motivated by the observation that despite their longevity in 

vivo, isolated CLL cells underwent rapid, spontaneous apoptosis upon in vitro 

culture.145 However, cell survival could be rescued by co-culturing CLL cells with 

bone marrow stromal cells,146,147 suggesting a critical contribution by the tumor 

microenvironment. Separately, Whitlock and Witte developed a method for long-

term culturing of B cells,148 and observed that B cells migrated underneath a newly-

formed layer of bone-marrow-derived stromal cells.149 A similar observation was 

                                                 

k These two studies were published a couple of months before we first submitted our manuscript, 

Targeting of Colony-Stimulating Factor 1 Receptor (CSF1R) in the CLL Microenvironment Yields 

Antineoplastic Activity in Primary Patient Samples. The researchers perform extremely similar 

experiments and reach similar conclusions, which is why I discuss their results in some detail. 
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made in CLL cells,150 further suggesting that short-range cell contact and growth 

factor secretion were required for CLL survival. Eventually, these large, adherent 

cells were discovered to regulate survival through a CXCL12–mediated “nursing” of 

CLL cells, and were therefore described as “nurse-like cells” (NLCs).151 Later studies 

characterized NLCs as being the leukemic counterpart of tumor-associated 

macrophages, expressing CD68 and CD163,152,153 enhancing chemoresistance,154 and 

mediating CLL survival through additional mechanisms, including upregulating 

TNFSF13 and TNFSF13B155 and indirectly stimulating CCL3/CCL4 release from B 

cells.156 

The first study describing the contribution of CSF1R in CLL, conducted by 

Ryan Wilcox’s group at the University of Michigan (Polk et al), isolated peripheral 

blood mononuclear cells (PBMCs) from CLL patients.157 The researchers exposed 

them to H27K15, a monoclonal antibody that partially inhibits CSF1R without 

blocking its internalization of degradation,158 and observed a decrease in nurse-like 

cells (NLCs) based on their distinctly high forward- and side-scatter pattern 

compared to CLL cells.157 Adding H27K15 significantly decreased cell viability, and 

combining it with ibrutinib further decreased viability.157 Notably, instead of testing 

CSF1R-specific small-molecule inhibitors, Polk et al used pacritinib, a tyrosine 

kinase inhibitor with multiple targets including CSF1R, and successfully replicated 

their experiments with the monoclonal antibody using pacritinib.157 

The second study, led by a group of Italian scientists, performed experiments 

in which they administered clodrolip, a liposomal encapsulation of clodronate used 

for the in vivo depletion of macrophages, to mice with CLL (specifically, Rag2-/-γc
-/- 
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mice injected with MEC1,159 a CLL cell line).160 They showed that clondrolip reduces 

tumor burden, especially in the bone marrow, and demonstrated that this effect was 

specific for CSF1R using the anti-mouse CSF1R monoclonal antibody 2G2.160 

Interestingly, clondrolip treatment increased the circulation of CD20+ leukemia 

cells, and combining clondrolip with anti-CD20 monoclonal antibodies produced a 

distinct survival advantage compared to treating with anti-CD20 antibodies alone.160 

 

6.5 Targeting CSF1R in acute myeloid leukemia and chronic 

lymphocytic leukemia 

Historically, our laboratory—specifically, the laboratories of Brian Druker 

and Jeffrey Tyner—has utilized targeted therapies to conduct pioneering research to 

treat hematologic malignancies. Over many years, our lab has undertaken functional 

screening of hundreds of patient samples, whereby blood samples are collected from 

patients with various hematological malignancies and the mononuclear cells are 

exposed to dose-escalating concentrations of dozens of small-molecule inhibitors. 

The results from these functional screens revealed that a substantial percentage of 

AML and CLL patient samples showed sensitivity to CSF1R-specific small-molecule 

inhibitors. These observations and others spurred an investigation into the 

mechanism and functional significance of CSF1R in these leukemia subtypes. 

Ultimately, this dissertation contains original research investigating the 

clinical benefit of targeting CSF1R in AML and CLL, and presents the experimental 

data from two similar, independent projects. The results from the first project—

Targeting of Colony-Stimulating Factor 1 Receptor (CSF1R) in the CLL 
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Microenvironment Yields Antineoplastic Activity in Primary Patient Samples—was 

published as an article under the same name in Oncotarget in March 2018. The results 

from the second project—CSF1R inhibitors exhibit anti-tumor activity in acute 

myeloid leukemia by blocking paracrine signals from support cells—was compiled 

into a manuscript and submitted to Blood in March 2018. 

To provide essential, project-specific context for these results, each section in 

this dissertation contains the original Introduction and Discussion sections that were 

included in their submission. However, a more integrated discussion of these two 

projects, including a comparison of their similarities and differences, is described in 

greater detail in section 9 Discussion.  
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7.1 Contribution to Project 

7.1.1 Conception or design of the work 

The CSF1R-in-CLL project was initiated by Tyler Sweeney (TS), a research 

associate working under the joint mentorship of Stephen Spurgeon (SES) and Mark 

Loriaux (ML). Although it was run in parallel to the CSF1R-in-AML project, there 

was very little interaction between TS and me in the beginning, primarily because of 

different mentors, different patient sample cohorts, and different initial approaches. 

(The CSF1R-in-AML project focused on identifying a genetic/clinical marker for 

CSF1R inhibitor sensitivity after observing CSF1R as a significant hit on the siRNA 

kinome screen. The CSF1R-in-CLL project focused on evaluating synergy between 

CSF1R inhibitors and current standard-of-care drugs.) 

However, a couple of months before the abstract deadline for the 2015 

American Society of Hematology (ASH) meeting, I was approached by TS to help 

him understand, visualize, and analyze the data he had collected. Because I had 

spent significantly more time on data analysis for the CSF1R-in-AML project, I 

helped him prepare an abstract for the conference. 

During the months between preparing the abstract and the conference itself, I 

became more and more involved in the project, overseeing much of its progression 

and development. We became collaborators, with him providing me with his 

experimental data and me analyzing and graphing that data. He began receiving 

informal mentorship from Jeffrey Tyner (JWT), my primary mentor, and attended 

our weekly meetings. Eventually, the data turned into polished figures, which turned 

into a complete manuscript. 
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Because of my significant help with data analysis and visualization, I became 

co-first authors on the manuscript, with my name listed second. After the manuscript 

had been submitted and the first round of reviewer comments had been received, TS 

left to attend graduate school in Virginia. I addressed all the reviewer comments and 

handled the revisions myself, so although we were still co-first authors, my name was 

listed first. 

 

7.1.2 Data collection, analysis, and interpretation 

The experiments handling and processing the CLL samples themselves (i.e. 

exposure to CSF1R inhibitors, CD14+ cell depletion) were mostly conducted by TS. 

However, during the revision process, the reviewers suggested two experiments that 

were performed by me: the effect of CSF1R inhibitors on inducing apoptosis (Figure 

7.6) and preventing nurse-like cell growth (Figure 7.4C-D) in primary patient 

samples. 

Figure 7.1. Ex vivo inhibitor screening reveals CSF1R sensitivity in CLL 

patient specimens. The patient sample data on CSF1R was collected and input into 

the database by others. I designed and created the protocol visualization and the 

table of CSF1R inhibitor information. I exported the that patient sample data and 

graphed it, along with identifying and graphing representative sensitive/non-sensitive 

patient samples. The supplemental figure was made by me. 

Figure 7.2. No genetic or clinical characteristic readily co-segregate with 

sensitivity to CSF1R inhibition in CLL patient samples. Based on my prior 

experience with extracting information from patient charts, I taught TS how to go 
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through electronic medical records and enter clinical/genetic information into the 

database. Once that had finished, I exported the data myself and graphed/formatted 

it using a combination of the heat map function in Prism 7.0 and Adobe Illustrator. I 

conducted all statistical analyses and generated the supplemental figure and tables. 

Figure 7.3. CSF1R is not found on CD19+ CLL cells but instead expressed 

on a CD14+ myeloid subpopulation. The antibody cocktails used to identify the 

CSF1R-expressing subpopulation were created by TS and me in conjunction with the 

OHSU hematopathology group. TS created the FlowJo figures and I formatted them 

for the manuscript. Additionally, TS gathered the drug sensitivity and percent 

CD14+ cells and I graphed and analyzed the resulting data. 

Figure 7.4. Sensitivity of CLL cells to CD14+ depletion correlates with 

sensitivity to CSF1R inhibitors. TS and I developed the CD14-depletion protocol 

together, although he performed the depletion experiments himself. I performed the 

nurse-like cell experiment on my own. I designed and created the protocol 

visualization, devised and conducted the data analysis, and made the supplemental 

figure. 

Figure 7.5. Synergy between ibrutinib or idelalisib and CSF1R inhibitors in 

majority of CLL patient specimens. TS exposed all of the patient samples to 

inhibitors and gathered the data. TS used CalcuSyn to determine the synergy scores 

for each patient sample, and I grouped those scores and used GenePattern to perform 

hierarchical clustering on them. I visualized and graphed all of the data (including 

supplemental figure) and performed the relevant statistics.  
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7.1.3 Article drafting/submission/revision 

TS and I contributed equally to the initial drafting of the manuscript; TS 

wrote the Introduction and Discussion sections, while I wrote the Abstract, Results, 

and Methods sections, along with the Figure Legends. I revised his sections of the 

manuscript and incorporated them into the final product, which was subsequently 

revised by JWT and SES. 

 SES submitted the article to Clinical Cancer Research, and upon rejection, TS 

and I went through the reviewer comments together. He gathered additional data 

that he had already collected while I made improvements to the graphs and 

manuscript. SES subsequently submitted it to Leukemia and, after getting rejected, I 

submitted it to Oncotarget. The revisions to Oncotarget, including rewriting the 

manuscript and drafting the rebuttal letter, were done by me, with slight assistance 

from SES and JWT. 
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7.2 Abstract  

In many malignancies, the tumor microenvironment includes CSF1R-

expressing supportive monocyte/macrophages that promote tumor cell survival. For 

chronic lymphocytic leukemia (CLL), these supportive monocyte/macrophages are 

known as nurse-like cells (NLCs), although the potential effectiveness of selective 

small-molecule inhibitors of CSF1R against CLL is understudied. Here, we 

demonstrate the preclinical activity of two inhibitors of CSF1R, GW-2580 and 

ARRY-382, in primary CLL patient samples. We observed at least 25% of CLL 

samples showed sub-micromolar sensitivity to CSF1R inhibitors. This sensitivity was 

observed in samples with varying genetic and clinical backgrounds, although higher 

white cell count and monocyte cell percentage was associated with increased 

sensitivity. Depleting CD14-expressing monocytes preferentially decreased viability 

in samples sensitive to CSF1R inhibitors, and treating samples with CSF1R 

inhibitors eliminated the presence of NLCs in long-term culture conditions. These 

results indicate that CSF1R small-molecule inhibitors target CD14-expressing 

monocytes in the CLL microenvironment, thereby depriving leukemia cells of 

extrinsic support signals. In addition, significant synergy was observed combining 

CSF1R inhibitors with idelalisib or ibrutinib, two current CLL therapies that disrupt 

tumor cell intrinsic B-cell receptor signaling. These findings support the concept of 

simultaneously targeting supportive NLCs and CLL cells and demonstrate the 

potential clinical utility of this combination. 
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7.3 Introduction 

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the 

Western world, with nearly 19,000 new cases reported annually in the United 

States.161 The disease is characterized by an accumulation of small mature B-

lymphocytes in the lymph nodes, bone marrow and peripheral blood. CLL is 

predominantly an indolent disease; however, around 25% of patients progress 

rapidly.162 

Therapy is generally reserved for patients with symptomatic disease and, until 

recently, has largely relied on chemo-immunotherapy combination regimens. 

Introduction of novel targeted therapies that inhibit B-cell receptor (BCR) 

signaling—such as ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor, and 

idelalisib, a phosphatidylinositol-3-kinase delta isoform specific (PI3kδ) inhibitor—

have dramatically improved patient outcomes and treatment options.163 However, 

CLL remains incurable with these classical treatments, and most patients succumb to 

the disease or its complications.  

 One significant barrier to treatment is the contribution of the tumor 

microenvironment, which has been shown to be critical for cancer cell growth and 

survival. Tumor-associated macrophages (TAMs) have been shown to provide 

microenvironmental support that maintains tumor cell viability and proliferation in a 

variety of solid tumor types.164 These TAMs have protean pro-survival effects 

including increased angiogenesis, tumor cell invasion, metastasis, and inhibition of 

immune-mediated anti-tumor responses.165 TAMs have also been isolated from the 
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peripheral blood, spleen, and lymph nodes in CLL patients where they have shown 

to be essential for CLL cell survival in the tumor microenvironment.166 

 In this setting, these TAMs, which are known as nurse-like cells (NLCs) or 

lymphoid-associated macrophages (LAMs), share a similar gene expression profile to 

TAMs derived from other tumor types.152 Specifically, these NLCs are derived from 

CD14-positive monocytes and, in the presence of CLL cells, differentiate into 

abnormal macrophages,153,167-169 which promote CLL cell survival.167 This has 

particular clinical relevance given the finding that elevated peripheral blood 

monocyte count at the time of CLL diagnosis is associated with inferior outcomes.170 

In solid tumors, TAM function has been shown to depend on the receptor 

tyrosine kinase CSF1R.171 CSF1R, also known as cFMS and M-CSFR, is a member 

of the type III receptor tyrosine kinase family and is activated by binding of its 

ligands CSF-1 (MCSF) or IL-34.94,96,172 CSF1R is predominantly expressed on 

monocytes and tissue macrophages90,173 and is required for proliferation,89 

differentiation,174 and chemotaxis,175 all functions critical to TAM activity.  

Recent studies suggest an important potential role for targeting CSF1R in 

CLL. In mice, depletion or targeting of TAMs has been associated with reduction in 

leukemic burden via reprogramming of the tumor microenvironment.160,176 

Furthermore, using patient samples, neutralization or inhibition of CSF1R has been 

shown to inhibit NLC formation and decrease CLL cell viability, a finding mimicked 

by NLC depletion.177 Given the role of NLCs in CLL as well as possible therapeutic 

implications, we evaluated the impact of CSF1R inhibition using highly selective 

small-molecule inhibitors across a broad spectrum of primary CLL samples.  
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7.4 Results 

7.4.1 CLL Patient Specimens Are Sensitive to CSF1R-Specific Small-Molecule Inhibitors  

We analyzed primary CLL samples using an ex vivo functional screen in 

which cells were exposed to dose-escalating concentrations of small-molecule 

inhibitors for 72 hours and then relative numbers of viable cells were assessed to 

generate dose-response curves (Figure 7.1A). The inhibitors tested included the 

highly selective CSF1R inhibitors GW-2580 (n = 197) (GlaxoSmithKline) and 

ARRY-382 (n = 131) (Array BioPharma), the latter of which has completed Phase I 

clinical testing. Both inhibitors exhibit a high degree of specificity for CSF1R across 

the kinome, including other class III receptor tyrosine kinases (Figure 7.1B).124,178 We 

observed that a proportion of CLL specimens showed sensitivity to these selective 

CSF1R inhibitors, with 25.9% (51/197) and 27.5% (36/131) of specimens showing 

sub-micromolar IC50s (the concentration of inhibitor required to reduce viability to 

50%) for GW-2580 and ARRY-382, respectively (Figure 7.1C-D). We confirmed that 

increased exposure to CSF1R inhibitors induced apoptosis in patient sample cells via 

annexin V staining (Figure 7.6). 

Previous genomic analyses of CLL patients have identified no mutations in 

CSF1R,28,32 nor is CSF1R significantly overexpressed in CLL compared to healthy 

monocytes. To identify a potential association with known clinical and biological 

characteristics, we evaluated these characteristics across the cohort of patient 

specimens that had been screened for CSF1R inhibitor sensitivity (Figure 7.2 and 

Figure 7.7A; see Table 7.1 and additional supplemental table from published 

manuscript submission). For GW-2580 and ARRY-382, the IC50 and average area 



 49 

 

under the curve (AUC) were calculated for each patient specimen, and the specimens 

were organized by decreasing sensitivity to GW-2580. As expected, we observed a 

strong correlation between GW-2580 IC50 and GW-2580 AUC, and between GW-

2580 AUC and ARRY-382 AUC (p < 0.0001; Figure 7.7B-C). We did not observe 

an association between specimen type (either from peripheral blood or bone marrow 

aspirate) and CSF1R inhibitor sensitivity (Figure 7.7D). 

We compared the CSF1R inhibitor sensitivity across CLL primary patient 

specimens with various clinical and genetic characteristics (Figure 7.2 and Figure 

7.7E-P). Of the clinical characteristics, lower white blood cell (WBC) count is 

associated with sensitivity to CSF1R inhibitors. Furthermore, treatment status also 

significantly correlates with sensitivity to CSF1R inhibition, with relapsed patient 

specimens showing more resistance compared to specimens obtained from untreated 

patients. Additionally, of the cytogenetic abnormalities, deletion 11q is found more 

frequently in CSF1R-resistant patient specimens. However, none of these 

characteristics are uniformly enriched in the specimens that are sensitive to CSF1R 

inhibitors, suggesting that other mechanisms might be responsible for inhibitor 

response. 

 

7.4.2 CD14+ Cell Subpopulation Expresses CSF1R and Is Associated with CSF1R Inhibitor 

Sensitivity  

Since no obvious characteristics of the CLL patient specimens readily co-

segregated with CSF1R sensitivity, we examined the contribution of tumor-extrinsic 

factors. The tumor microenvironment has been shown to be critically important in 
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the development of CLL and partly responsible for the ineffectiveness of modern 

chemotherapy regimens.179,180 We first assessed the profile of CSF1R expression 

across various cell populations in fresh CLL patient specimens using flow cytometry 

conducted by hematopathologists. Consistent with a tumor cell-extrinsic role of 

CSF1R, we did not find CSF1R expressed on CLL leukemic lymphocytes 

(CD5+/CD19+), but we did find it expressed on a subpopulation expressing CD14, 

a surface marker found predominantly on monocytes and macrophages (Figure 

7.3A-B).  

These findings led to a hypothesis whereby CSF1R inhibitors act indirectly on 

CLL leukemic cells via direct inhibition of CSF1R-expressing monocytes, suggesting 

that the presence of varying levels of CSF1R-expressing monocytes may correlate 

with varying degrees of CSF1R inhibitor sensitivity. Therefore, we wanted to 

determine whether quantitative levels of CD14 expression correlate with CSF1R 

sensitivity. We compared the percentages of CD14-positive cells in patient samples, 

as measured by flow cytometry, to the AUC values for GW-2580 and ARRY-382. 

We found that a higher CD14-positive percentage of cells is associated with 

increased sensitivity to CSF1R inhibitors (p = 0.07 for GW-2580; p = 0.01 for 

ARRY-382) (Figure 7.3C). These results suggest that the CD14-positive 

subpopulation of cells is associated with CSF1R inhibitor sensitivity. 
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7.4.3 CD14+ Depletion in CLL Patient Samples Decreases Cell Viability and Eliminates 

CSF1R Inhibitor Sensitivity  

We next wanted to orthogonally validate that the impact of CSF1R inhibition 

on CLL cell viability is due to the presence (or, rather, the post-inhibitor depletion) of 

CSF1R-expressing CD14-positive cells. We therefore performed a CD14 antibody 

depletion experiment with magnetic column cell separation. After depleting CD14-

positive cells, we incubated the remaining CD14-negative fraction (“depleted”) and 

whole mononuclear cells (“non-depleted”) from the same specimen for 72 hours and 

measured relative numbers of viable cells to compare the impacts of CD14+ 

depletion versus CSF1R inhibition on cell viability (Figure 7.4A). We confirmed that 

the depletion protocol itself has no significant effect on overall cell viability by 

measuring viability pre- and post-depletion (Figure 7.8A). 

To quantify the impact of CD14+ depletion, we generated a CD14+ depletion 

sensitivity ratio that expresses the number of viable cells in CD14+ depleted 

conditions relative to whole mononuclear cells after 3 days in culture (following 

normalization to the starting cell viability in order to correct for variance in cell 

input). A CD14+ depletion sensitivity ratio less than 100 indicates a deleterious 

effect of CD14+ depletion on the viability of the depleted cells relative to the viability 

of whole mononuclear cells from the same specimen. The CD14+ depletion 

sensitivity ratio was compared to CSF1R inhibitor sensitivity in non-depleted cells.  

We observed a correlation between sensitivity to CD14+ depletion (sensitivity ratio 

less than 100) and sensitivity to CSF1R inhibition (p = 0.03 for GW-2580; p = 0.06 

for ARRY-382) (Figure 7.4B). 
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To confirm that this correlation was specific to CSF1R sensitivity and not 

more generally to overall drug sensitivity, we compared the CD14+ depletion 

sensitivity ratio against sensitivity to two small-molecule inhibitors that exhibit 

recurrent efficacy in CLL—ibrutinib, which targets Bruton’s tyrosine kinase (BTK), 

and idelalisib, which targets phosphoinositide 3-kinase delta (PI3Kδ). We confirmed 

that there is no association between CSF1R inhibitor sensitivity and sensitivity to 

ibrutinib or idelalisib (Figure 7.8B-C). In addition, we observed no correlation 

between sensitivity to CD14+ depletion and sensitivity to ibrutinib or idelalisib 

(Figure 7.8D-E), suggesting that the mechanism underlying the loss of cell viability 

after CD14+ depletion is specific to CSF1R inhibitor sensitivity and not with 

sensitivity to any effective small-molecule kinase inhibitor. 

Based on our hypothesis that CSF1R inhibition is mediated by the CD14-

positive cells, we predicted that CD14+ depletion would prevent any further impact 

of CSF1R inhibitors on the viability of the remaining cells post-depletion. To test this 

prediction, we examined the correlation between the change in CSF1R sensitivity 

imparted by CD14+ depletion relative to the sensitivity to CSF1R inhibitors of the 

whole mononuclear cell fraction (Figure 7.9A). We determined the degree to which 

CSF1R dose-response curves were altered after CD14+ depletion versus the CSF1R 

dose-response curves of whole mononuclear cells from the same specimens. We 

observed that specimens with higher CSF1R inhibitor sensitivity in whole 

mononuclear cells were the same ones that showed the greatest decrease in 

sensitivity after CD14+ depletion (p = 0.04 for GW-2580; p = 0.13 for ARRY-382) 

(Figure 7.9B-C). We did not observe this same correlation when comparing ibrutinib 
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or idelalisib sensitivity (Figure 7.9D-E), again supporting the observation that 

CSF1R sensitivity is directly connected to the CD14-positive cell population. 

In chronic lymphocytic leukemia, CD14-positive monocytes can differentiate 

into nurse-like cells (NLCs) that provide a critical tumor-promotional and -protective 

microenvironment for the leukemia. To directly confirm that CSF1R inhibition was 

targeting the subpopulation of supportive CD14-expressing nurse-like cells (NLCs), 

we performed long-term culturing experiments to isolate adherent NLCs from the 

bulk CLL cell population.167 We exposed primary patient specimens to CSF1R 

inhibitors before culturing NLCs and measured the change in the number of NLCs 

that grew on the plate. We found that the addition of 1M GW2580 or ARRY-382 

dramatically decreased the number of NLCs compared to untreated cells (Figure 

7.4C). Interestingly, for one patient specimen unable to produce a significant number 

of NLCs even in the untreated condition, the CSF1R inhibitors did not decrease 

viability, suggesting that their efficacy is dependent on the presence and activity of 

NLCs within the leukemia (Figure 7.4D). 

Overall, these results demonstrate that the depletion of CD14-positive cells, or 

the removal of these cells after their differentiation into nurse-like cells, results in 

decreased CLL cell viability and decreased sensitivity to CSF1R inhibitors. They 

demonstrate that the effectiveness of CSF1R inhibitors is dependent on a paracrine 

interaction of leukemic cells with CD14-positive/CSF1R-positive supportive 

monocytes. 
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7.4.4 CSF1R Inhibitors Work Synergistically in Combination with Ibrutinib and Idelalisib 

in a Majority of CLL Patient Samples  

To determine the potential utility of combining CSF1R inhibitors with 

currently approved therapies for CLL, we evaluated the sensitivity of patient samples 

to GW-2580 and ARRY-382 in combination with ibrutinib or idelalisib. CLL 

primary patient samples were exposed to each CSF1R inhibitor alone and to 

combinations of each inhibitor with ibrutinib or idelalisib in equimolar 

concentrations, and combination index (CI) values were calculated (Figure 7.5A).181 

We observed a strong synergistic effect when combining CSF1R inhibitors with 

ibrutinib or idelalisib in the majority of patient specimens (Figure 7.5B-E; see  

Figure 7.10 for examples of the drug-dose response curves from representative 

synergistic and antagonistic patient samples). To assess the possibility that this effect 

was driven primarily by single-agent sensitivity, we performed unsupervised 

hierarchal clustering of CI values across the range of drug concentrations, grouping 

specimens into a spectrum from most to least synergistic. We compared the IC50s of 

the single agents across the spectrum of patient samples and did not observe any 

significant association between single-agent sensitivity and combination synergy 

(Figure 7.5B-E). Moreover, many patient samples that had been resistant to ibrutinib 

and idelalisib alone became sensitive to the inhibitor in combination with GW-2580 

or ARRY-382, suggesting the broad applicability of using CSF1R inhibitors with 

currently approved inhibitors to target CLL. 
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7.5 Discussion 

The implementation of kinase inhibitors in CLL such as ibrutinib and 

idelalisib has shown durable response in patients with refractory or poor-risk 

disease.60,182,183 However, as quickly as ibrutinib reached success, a population of 

patients began to develop resistance,184 resulting in significantly decreased overall 

survival.185 In our study, we focused on therapeutic approaches that would 

potentially have a lasting, significant impact in treating CLL patients: successfully 

targeting both leukemic cells and their protective NLCs. 

Many solid tumors depend upon microenvironmental support through 

TAMs,68,186 which enhance primary tumor growth and suppress the immune 

response.187 There is a similar contribution of the microenvironment in hematologic 

malignancies, including CLL and lymphoma.167,188,189 For example, LAMs, which 

highly express CSF1R, have been found to support Hodgkin and non-Hodgkin’s 

lymphoma.117 In Hodgkin lymphoma patients treated with standard chemotherapy, 

higher CSF1R expression was associated with shorter survival.190,191 In CLL, the 

importance of NLCs has been widely demonstrated, and CD14-positive NLC 

monocytes are critical in maintaining CLL cell viability, and depletion of cells from 

CLL patient specimens results in leukemic cell death.167,188 

In this study, we demonstrated a novel mechanism for targeting of the CLL 

microenvironment using two highly selective small molecule inhibitors of CSF1R. 

Through ex vivo functional screening of 197 CLL patient specimens, we found that 

more than 25% of these CLL specimens are highly sensitive to CSF1R inhibition 

(Figure 7.1). While ex vivo screening can result in variability among cell 
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subpopulations from sample to sample, we aimed to reduce the impact of variability 

by using a large data set. Furthermore, the variability seen likely reflects the inherent 

biologic differences across patient samples and therefore potentially represents the 

variety of drug responses that may be observed in vivo. 

A comparison of CSF1R sensitivity against various clinical, genetic, and 

cytogenetic characteristics revealed no major correlations. We did observe a trend 

toward white cell count correlating with CSF1R sensitivity, and flow cytometric 

analysis revealed a correlation between CSF1R sensitivity and quantitative levels of 

CD14-positive cells (Figure 7.3). These interesting correlations are consistent with 

recently reported clinical data which showed that these characteristics resulted in a 

shorter time to initiation of treatment and reduced overall survival.170  

Furthermore, we also observed that primary CLL specimens contain a sub-

population of CSF1R+/CD14+ cells (Figure 7.3A), suggesting that CSF1R signaling 

may be an important marker and novel target of the CLL microenvironment. 

Consistent with these findings, we have also validated the findings that CD14+ 

depletion deleteriously impacts on CLL cell viability, and we show for the first time 

in patient samples using selective small-molecule inhibitors that this phenomenon is 

mimicked by CSF1R inhibition, suggesting a new potential therapeutic route to 

target the CLL microenvironment.  

A recent theme in clinical oncology research and patient care is the need for 

combination therapies. The contribution of agents targeting tumor-associated 

macrophage/monocyte lineage cells in these combination regimens has been 

robustly demonstrated in solid tumors, in which inhibition of microenvironmental 
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cell types (such as TAMs) dramatically synergizes with tumor-directed therapies via 

inhibition of microenvironmental rescue signals and induction of immune responses 

against tumor cells.192,193 Our findings extend this concept of targeting TAM-

promoted neoplasia into hematologic malignancies. In addition, we show that 

combinations of CSF1R inhibitors with tumor-directed therapies in CLL (ibrutinib or 

idelalisib) exhibit strong synergy across numerous CLL patient specimens (Figure 

7.5). These data are suggestive of candidate combination therapy regimens for CLL 

patients that may improve the duration of response and mitigate single-agent drug 

resistance. Simultaneous targeting of BTK and CSF1R may be of particular interest. 

Despite the ability of ibrutinib to disrupt CLL cell interactions within their protective 

niches, inhibiting BTK in NLCs may actually promote CLL cell survival, which may 

explain the inability of ibrutinib to overcome the protective effects provided by 

NLCs.154,194  

A recent report showing that pharmacologic depletion of macrophages in a 

CLL cell-line mouse model with a liposomal formulation of a bisphosphonate 

(clodrolip) or an anti-CSF1R monoclonal antibody (emactuzumab) results in 

significant anti-leukemic activity.160 In addition, it has been recently shown that 

CSF1R is expressed in NLCs and in lymph nodes derived from CLL patients, and 

that neutralization or inhibition of CSF1R inhibits NLC formation, decreases CLL 

cell viability, and enhances the anti-tumor effects of ibrutinib.177 This research further 

supports the potential for targeting CSF1R in CLL. 

Ultimately, these results suggest a treatment strategy whereby 

CSF1R+/CD14+ cells can be chemically targeted by highly selective CSF1R 
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inhibitors, and that this targeting deprives CLL cells of crucial microenvironmental 

support. We propose enhancing this strategy in CLL patients through combination 

drug approaches by simultaneously giving CSF1R inhibitors, which target NLCs, 

with BTK and/or PI3Kδ inhibitors as well as other agents, which target the leukemia 

cells themselves. 

 

7.6 Methods 

7.6.1 Patient Sample Acquisition and Processing   

Primary leukemia samples were obtained from CLL patients by informed 

consent according to a protocol approved by the Institutional Review Board at 

Oregon Health & Science University. These samples were subsequently processed 

and exposed to an ex vivo small-molecule inhibitor screen as described previously.195 

Briefly, peripheral blood samples were extracted from CLL patients and the fresh 

mononuclear cells were isolated from whole blood using a Ficoll density gradient. 

The isolated cells were plated in R20 media consisting of RPMI (#11875; Thermo 

Fisher, Waltham, MA) with 20% FBS (#S11550; Atlanta Biologicals, Lawrenceville, 

GA), 1% penicillin-streptomycin (#15140; Thermo Fisher), 2% glutamine (#25030; 

Thermo Fisher), and 0.1% amphotericin B (#SV3007801; Thermo Fisher).  

The mononuclear cells were plated with dose-escalating concentration 

gradients of small-molecule inhibitors, or a combination of inhibitors following the 

same fixed concentrations, and incubated for 72 hours at 37°C in 5% CO2. After 

incubation, the relative number of remaining viable mononuclear cells in the plate 

was measured using a tetrazolium-based colorimetric assay (CellTiter AQueous One 
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Solution Cell Proliferation Assay; Promega, Madison, WI). To determine the degree 

of apoptosis after exposure to CSF1R inhibitors, the mononuclear cells were plated 

with either 1uM or 10uM of GW-2580 (GlaxoSmithKline, Brentford, United 

Kingdom) or ARRY-382 (Array BioPharma, Boulder, CO). The percentage of 

apoptotic cells was measured after 24, 48, and 72 hours using the Guava Nexin 

Assay (Merck Millipore, Billerica, MA) 

Dose-response curves were generated for GW-2580 (n = 191 specimens) and 

ARRY-382 (n = 131), along with the BTK inhibitor ibrutinib (n = 84) (AbbVie, 

North Chicago, IL) and the PI3Kδ inhibitor idelalisib (n = 160) (Gilead Sciences, 

Seattle, WA). Based on cell availability, multiple replicates for each inhibitor dose-

response curves were generated on different test plates using our ex vivo screen. To 

calculate an overall drug sensitivity profile for each sample, for each inhibitor 

replicate, outliers were manually removed and the IC50 and AUC were calculated 

after fitting the data using a third-order polynomial regression model. Inhibitor 

curves were removed from further analysis if: (1) AUC < 1100 and (2) r < 0.4 

(Pearson’s correlation coefficient). Additionally, test plates were removed if the 

percent standard deviation (%stdev) among replicates—calculated as (mean ÷ stdev) 

* 100—was less than 50%. Similarly, samples were removed if the %stdev among test 

plates was less than 50%. 

Most clinical and genetic information was collected during routine standard-

of-care patient sample evaluation obtained using electronic medical records. Some 

samples that had not been evaluated for the presence of immunoglobulin heavy chain 

(IGHV) gene mutations during initial treatment were subsequently analyzed using 
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the IGH Somatic Hypermutation Assay v2.0 (#5-101-0031; Invivoscribe, San Diego, 

CA). The NCBI IgBLAST tool was used to determine the percent divergence of each 

clonal sequence, where samples with equal or less than 2% divergence from the 

germline sequence were considered to have non-mutated IGHV. 

 

7.6.2 Immunophenotype Analysis of CLL Patient Samples 

Patient sample mononuclear cells that had undergone Ficoll gradient isolation 

were immunophenotyped to standard clinical specifications by the OHSU 

Histopathology Shared Resource laboratory. The following antibodies were used: 

CD3-FITC (#349201; BD Biosciences, Franklin Lakes, NJ), CD5-PC-Cy7 (#348790; 

BD Biosciences), CD14-APC-H7 (#643077; BD Biosciences), CD19-V450 (#644492; 

BD Biosciences), CD33-PerCP-Cy-5.5 (#341640; BD Biosciences), CD45-Pacific-

Orange (#MHCD4530; Invitrogen, Carlsbad, CA), CD64-PE (#558592; BD 

Biosciences), and CSF1R-APC (#347306; BioLegend, San Diego, CA). Surface 

marker analysis was performed on a BD FACSCanto II flow cytometer and the data 

were analyzed using FlowJo (FlowJo, LLC, Ashland, OR). 

 

7.6.3 Depletion of CD14+ Cells from Primary Patient Specimens 

Primary patient mononuclear cells were depleted of CD14-expressing cells 

using MACS MicroBead technology (Miltenyi Biotec, Bergisch Gladbach, 

Germany).  CD14-expressing cells were labeled with magnetic anti-CD14 

MicroBeads (#130-050-201; Miltenyi Biotec), resuspended in MACS buffer 

(phosphate-buffered saline pH 7.2, 0.5% bovine serum albumin, and 2 mM EDTA) 
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per protocol, and separated with MACS MS columns (#130-042-201; Miltenyi 

Biotec). Cell viability of CD14+ depleted and non-depleted mononuclear cells was 

measured using the Guava easyCyte cell counter (Merck Millipore).  

Both CD14+ depleted and non-depleted mononuclear cells from the same 

specimen were plated in R20 cell culture media with or without a concentration 

gradient of GW-2580 or ARRY-382. Relative numbers of viable cells were measured 

at 0, 24, and 72 hours after plating using a tetrazolium-based colorimetric assay. 

 

7.6.4 Isolating Nurse-Like Cells (NLCs) from Primary Patient Specimens 

 Long-term NLC culturing experiments were conducted based on established 

protocols.167 For each patient specimen, primary patient mononuclear cells were 

isolated and pipetted into 6 wells of a 24-well plates (1ml at 1.5 x 107 cells/ml in R20 

media). Three wells were exposed to inhibitors immediately after plating (1M GW-

2580, 1M ARRY-382, and untreated). The cells were incubated for 14 days at 37°C 

in 5% CO2, after which the non-adherent cells were removed from all wells by 

vigorous pipetting and cell viability for each well was calculated using the Guava 

easyCyte cell counter (Merck Millipore).  

For the three pre-treated wells, the remaining adherent NLCs were washed 

with RPMI media and exposed to 500l 5mM EDTA in PBS for 30 minutes, 

followed by 100l trypsin for 10 minutes. The cells were spun down, resuspended in 

R20 media, and counted using a hemocytometer. For the remaining three wells, the 

non-adherent cells were combined, spun down and resuspended in fresh R20 media. 

They were pipetted into six wells, three into the original wells containing the 
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adherent NLCs and three into fresh wells. Wells from each group were either 

exposed to 1M GW-2580, 1M ARRY-382, or untreated, and incubated for 72 

hours at 37°C in 5% CO2, after which the relative number of viable cells was 

determined using a tetrazolium-based colorimetric assay. 

 

7.6.5 Synergy Calculations between CSF1R Inhibitors and Ibrutinib/Idelalisib 

 CLL primary patient specimens were exposed to GW-2580/ARRY-382 and 

ibrutinib/idelalisib, either to each inhibitor alone and in combination with one 

another in equimolar concentrations. The patient sample cells were incubated for 72 

hours and assessed for viability using a colorimetric assay. We used CalcuSyn 

(Biosoft, Cambridge, Great Britain) to calculate the combination index,196 which 

measures the degree of synergy for each combination, and binned each value 

according to established categories of synergy and antagonism.181 The hierarchical 

clustering of specimens was performed using the GenePattern platform.197 
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Figure 7.1. Ex vivo inhibitor screening reveals CSF1R sensitivity in CLL patient 

specimens. 

(A) Mononuclear cells isolated from peripheral blood or bone marrow of CLL 

patients were added to 384-well plates containing dose-escalating concentrations of 

small-molecule inhibitors. Following incubation for 72 hours, the relative number of 
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remaining viable mononuclear cells was evaluated by subjecting cells to a 

colorimetric cell viability assay. 

(B) GW-2580 and ARRY-382 are highly specific small-molecule inhibitors of CSF1R 

(and not other class III receptor tyrosine kinases). Data from [24] Davis et al198 and 

[25] Wright et al.199 

(C-D) CLL primary patient specimens were exposed (C) GW-2580 and (D) ARRY-

382, as described in (A), and dose-response curves for each specimen were included 

along with an average dose-response curve for all specimens. 

(E-F) Waterfall plot of the IC50 values for each patient specimen after exposure to 

(E) GW-2580 and (F) ARRY-382. The IC50 was calculated from the dose-response 

curve using a cubic logarithmic regression, and each specimen was positioned in 

order of increasing IC50. 
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Figure 7.2. No genetic or clinical characteristic readily co-segregate with 

sensitivity to CSF1R inhibition in CLL patient samples.  

The 197 CLL patient specimens that were evaluated by ex vivo inhibitor screening in 

Figure 7.1 were ordered by increasing AUC for GW-2580, which was calculated 

using a cubic logarithmic regression model. Various demographic, clinical, and 

genetic/cytogenetic characteristics of each patient were determined (the continuous 
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variables are broken into quartiles) and each characteristic was evaluated for 

statistical significance (see Figure 7.7, Table 7.1, and additional large supplemental 

table from published manuscript).  
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Figure 7.3. CSF1R is not found on CD19+ CLL cells but instead expressed on a 

CD14+ myeloid subpopulation.  

(A-B) Mononuclear cells isolated from CLL patients were subjected to flow 

cytometry using antibodies specific for CSF1R and CD19, with CSF1R expression 

(A) not observed in CD19+ lymphocytes (CLL cells) but (B) observed in a 

subpopulation of CD14+ cells. 

(C) Sensitivity to CSF1R inhibitors, as determined in Figure 7.1 and Figure 7.2, was 

correlated with percentage of CD14-positive cells as determined in Figure 7.3B. 

Statistics were calculated using Spearman’s rank correlation.  
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Figure 7.4. Sensitivity of CLL cells to CD14+ depletion correlates with sensitivity 

to CSF1R inhibitors.  

(A) CD14+ cells were depleted from patient specimens using magnetic cell-

separation columns, and incubated in 384-well plates for 72 hours. The CD14+ 
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depletion sensitivity ratio was calculated by comparing the relative remaining 

numbers of viable cells in depleted versus non-depleted conditions using a 

colorimetric assay. The ratio of cell viability readings in depleted to non-depleted 

cells at 72 hours was normalized to the same ratio at the start of the experiment to 

control for variance in cell input. 

(B) The CD14+ depletion sensitivity ratio was generated for a panel of primary CLL 

patient samples as described in (A). This ratio was compared to GW-2580 and 

ARRY-382 AUCs. Statistics determined by Spearman’s rank correlation.  

(C) Primary CLL patient samples cells were exposed to CSF1R inhibitors and were 

subjected to long-term culture conditions to produce nurse-like cells (NLCs). The 

number of NLCs was quantified using a hemocytometer. 

(D) For one primary patient sample that did not produce NLCs, the addition of 

CSF1R inhibitors did not have a significant impact on cell viability compared to 

untreated control. 
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Figure 7.5. Synergy between ibrutinib or idelalisib and CSF1R inhibitors in 

majority of CLL patient specimens.  

(A) Mononuclear cells from CLL patient specimens were cultured with dose 

gradients of single-agent CSF1R inhibitors, ibrutinib, or idelalisib, as well as 

equimolar ratio dose gradients of CSF1R inhibitors combined with ibrutinib or 
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idelalisib. After a 72-hour incubation, relative numbers of remaining viable cells were 

assessed using a colorimetric cell viability assay, and synergy calculations were 

generated from the dose-response curves.  

(B-E) A hierarchically clustered heat map was generated showing the combination 

indices at increasing concentrations of inhibitors (rows) in CLL patient samples 

(columns) for (B) GW-2580 with ibrutinib; (C) ARRY-382 with ibrutinib; (D) GW-

2580 with idelalisib; and (E) ARRY-382 with idelalisib. The single-agent sensitivity 

(IC50) to each drug used in the combination is included (depicted as a heat map) 

below the corresponding patient sample. 
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Figure 7.6. CSF1R inhibitor exposure induces apoptosis in CLL primary patient 

samples. 

(A-C) Percent apoptosis after exposure to GW-2580 and ARRY-382 at 24, 48, and 

72 hrs in three CLL primary patient samples: (A) 17-01031, (B) 17-01032, and (C) 

17-01034. The percentage of apoptotic cells for each patient sample was normalized 
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to untreated control cells to account for sample-specific variations in cell viability 

over time. 
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Figure 7.7. Box-and-whisker plots for continuous variables in CLL patient sample 

comparisons and plots of statistically significant characteristics.  

(A) Box-and-whisker plots of the clinical characteristics measured by continuous 

variables that are displayed in Figure 7.2.  
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(B-C) Correlation between GW-2580 area under the curve (AUC) in CLL patient 

samples and (B) GW-2580 IC50 and (C) ARRY-382 AUC. 

(D-P) Association or correlation between GW-2580 AUC and (D) specimen type; 

(E) treatment status; (F) patient gender; (G) age; (H) white blood cell count (WBC); 

(I) monocyte count; and the presence/absence of (J) ZAP70 overexpression, (K) 

IGHV mutations, (L) del(6q), (M) del(11q), (N) trisomy 12, (O) del(13q), and (P) 

del(17p). Statistics for (D-F; J-P) was evaluated using Mann-Whitney U test; 

statistics for (G-I) were evaluated using Spearman’s rank correlation. 
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Figure 7.8. GW-2580 sensitivity and viability after CD14+ depletion is not 

correlated with sensitivity to ibrutinib and idelalisib.  

(A) No significant difference in overall cell viability between CLL patient specimens 

before and after depletion protocol, as measured by Guava easyCyte cell counter. 
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(B-C) Correlation between GW-2580 area under the curve (AUC) in CLL patient 

samples and the AUC values for (A) ibrutinib and (B) idelalisib.  

(D-E) CD14+ depletion viability ratio compared to area under the curve (AUC) for 

(A) ibrutinib and (B) idelalisib. Statistics for (B-E) determined by Spearman’s rank 

correlation. 
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Figure 7.9. CD14+ depletion significantly impact sensitivity to CSF1R inhibitors 

but does not impact sensitivity to ibrutinib and idelalisib.  

(A) CD14+ depleted and whole mononuclear cells were plated with dose-escalating 

concentrations of inhibitors and incubated for 72 hours. The drug sensitivity ratio 
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was calculated by comparing sensitivity to inhibitors of CD14+ depleted versus 

whole mononuclear cells. 

(B-E) There is a correlation or trend between the drug sensitivity ratio and the cell 

viability ratio for CD14+ cell depletion after exposure to CSF1R inhibitors—(B) 

GW-2580 and (C) ARRY-382—but not to (D) ibrutinib and (E) idelalisib. Statistics 

determined by Spearman’s rank correlation. 
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Figure 7.10. Representative synergistic and antagonistic dose-response curves 

from patient specimens exposed to the combination of CSF1R inhibitor and 

ibrutinib/idelalisib.  

Dose-response curves for each single agent inhibitor and combination for (A) GW-

2580 and ibrutinib, (B) ARRY-382 and ibrutinib, (C) ARRY-382 and idelalisib, and 
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(D) GW-2580 and idelalisib in which the combination was synergistic (Specimen 15-

808) and non-synergistic (Specimen 15-639). 
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Table 7.1. Statistical analysis of clinical and genetic/cytogenetic characteristics of 

CLL patient sample cohort evaluated for sensitivity to CSF1R inhibitors. 

 

 

Category 
Samples with 

available data (%) 
Statistical test 

Correlation 

coefficient 
P-value 

Inhibitor sensitivity     

GW-2580 IC50 

ARRY-382 IC50 

197 (100) 

102 (52) 

Spearman’s rank correlation 

Spearman’s rank correlation 

0.8291 

0.5790 

<0.0001 

<0.0001 

Clinical     

treatment status 

gender 

age 

WBC (K/μL) 

monocytes (K/μl) 

177 (90) 

193 (98) 

185 (94) 

171 (87) 

159 (81) 

Mann-Whitney test 

Mann-Whitney test 

Spearman’s rank correlation 

Spearman’s rank correlation 

Spearman’s rank correlation 

-- 

-- 

0.0484 

0.2761 

0.0127 

0.0259 

0.4080 

0.5128 

0.0003 

0.8740 

Mutations     

IGVH 

ZAP70 

73 (37) 

89 (45) 

Mann-Whitney test 

Mann-Whitney test 

-- 

-- 

0.0726 

0.6680 

Cytogenetics     

del(6q) 

del(11q) 

trisomy 12 

del(13q) 

del(17p) 

191 (97) 

191 (97) 

191 (97) 

191 (97) 

191 (97) 

Mann-Whitney test 

Mann-Whitney test 

Mann-Whitney test 

Mann-Whitney test 

Mann-Whitney test 

-- 

-- 

-- 

-- 

-- 

0.1094 

0.0154 

0.2151 

0.8621 

0.1237 
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8.1 Contribution to Project 

8.1.1 Conception or design of the work 

The CSF1R-in-AML project was my primary project throughout graduate 

school. It was an outgrowth of the RAPID (RNAi-assisted protein target 

identification) functional screen, a technique developed by my mentor, Jeffrey Tyner 

(JWT). The RAPID screen exposes primary AML patient sample cells to siRNAs 

against the tyrosine kinome (and NRAS/KRAS) to identify which kinases are 

critical to cell viability. The lab had already screened hundreds of patient samples 

using this technique and observed that the siRNA that significantly decreased cell 

viability in the largest number of samples was siCSF1R. 

Over the years, there had been attempts in our group to understand the role of 

CSF1R in acute myeloid leukemia. However, they were unsuccessful in identifying 

the mechanism behind CSF1R sensitivity or predicting which patients would 

respond to CSF1R small-molecule inhibitors. My investigations into answering these 

two questions became the basis for my dissertation research. 

As with many dissertation projects, a significant amount of work (CD14+ 

depletion followed by CSF1R inhibitor sensitivity in primary patient samples, 

CSF1R activation and regulation in AML cell lines) is not included here. Most of 

that work was conducted by me, although some of the earlier work was done in 

conjunction with Angela Rofelty (AR), a former technician in our lab. 

 

8.1.2 Data collection, analysis, and interpretation 
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Figure 8.1 Ex vivo AML patient sample screen reveals that 

knockdown/inhibition of CSF1R reduces leukemia cell survival in >20% of samples. 

The patient samples used in this analysis have been screened for inhibitor and siRNA 

sensitivity over the course of many years by a team of dedicated technicians, so I did 

not collect this data myself. I developed a method to quality-filter the data from the 

RAPID functional screen, which I did in partnership with Kevin Watanabe-Smith 

(KWS), a postdoctoral fellow in our group. I decided how to measure the correlation 

between CSF1R inhibitor sensitivity and siCSF1R impact and calculated it with 

KWS. The drug sensitivity data was determined using probit regression by Andy 

Kaempf (AK), a biostatistician in Tomi Mori’s group. I designed the figure layout 

and graphed the results, with some assistance from KWS, and built the supplemental 

figure. 

Figure 8.2. Resistance to CSF1R inhibitor is associated with adverse 

prognostic risk gene mutations and cytogenetic abnormalities. A significant amount 

of the patient sample information, including demographics, treatment history, and 

diagnostic test results, is stored in a massive online database. When I arrived, the 

clinical and genetic annotations for the patients in the database had received sporadic 

attention from JWT and others. I worked to comprehensively update the database 

for months, receiving some assistance from Matt Siegel, a clinical fellow who was 

doing a research rotation in our lab.  I entered in the information from hundreds of 

patient sample records into a database, creating a standardized hierarchy of assigning 

specific diagnosis. In addition, I designed and built an automated decision tree to 

compute prognostic risk based on established guidelines. I selected which clinical 
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and genetic characteristics to compare and, working with KWS, extracted that 

information from the database. I graphed and visualized that information myself 

(both the primary heatmap and the individual graphs included in the supplemental 

material) and conducted all statistical tests. Additionally, for the survival data, I 

worked with Mara Rosenberg (MR), a medical student with a computational biology 

background. She exported the data for me based on my instructions, and I graphed 

and visualized it (including the supplemental data) with her feedback. 

Figure 8.3. CSF1R is expressed not on the bulk leukemia population in 

primary AML patient samples but on a small subpopulation of supportive cells. The 

CyTOF data was generated by Evan Lind (EL), an assistant professor and close 

collaborator (and member of my dissertation advisory committee), and analyzed by 

Ted Laderas (TL), an assistant professor. Working with both of them, I provided 

guidelines for how to represent and visualize the data, and both TL and I 

summarized and graphed the data included in the figure. Although the CSF1Rhi cell 

clustering was performed by TL, I performed the downstream analysis, including its 

significance in drug sensitivity and distribution across patient samples. The flow 

cytometry data was generated by AR and me. The samples were evaluated by 

Mandy Gilchrist (MG) at OHSU’s flow cytometry core. The gating, data analysis, 

and visualization was performed by me, with some feedback from Marc Loriaux 

(ML), a hematopathologist. 

Figure 8.4. HGF stimulates growth in CSF1R inhibitor sensitive samples and 

its secretion is regulated by CSF1R activation. The cytokine/growth factor data was 

the result of a collaboration between me and Anupriya Agarwal (AA), an assistant 
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professor. (I was second author on the original manuscript.) The raw data was 

combined with the GW-2580 sensitivity data and KWS and I analyzed and graphed 

the data. The conditioned media experiments were performed by me, as was the 

Luminex assay (with assistance from Bri Garcia at OHSU’s flow cytometry core) 

and all of the downstream data analysis and visualization. The experiments 

evaluating the CSF1 levels in the plasma were performed by AR and me. In addition, 

I modified an existing protocol for isolating stromal cells from AML patient samples 

and, working with AR, performed this isolation on dozens of samples. AR and I 

performed the CSF1 level experiments of stromal cell conditioned media. The data 

was analyzed and graphed by me. 

Figure 8.5. Sensitivity to CSF1R inhibitors correlates with MET inhibitor 

sensitivity and is eliminated after external HGF stimulation. AK performed the 

probit regression analysis on the MET inhibitors and I analyzed the data. 

 

8.1.3 Article drafting/submission/revision 

I drafted the entire manuscript myself and, after incorporating revisions from 

JWT and other co-authors, submitted it to Blood in March 2018. 
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8.2 Key Points 

• CSF1R inhibition reduces cell viability in more than 20% of AML patient 

samples and is expressed on a subpopulation of supportive cells. 

• CSF1R activation stimulates paracrine cytokine secretion (e.g. HGF), 

suggesting that CSF1R is novel target of the AML microenvironment. 

 

8.3 Abstract 

To identify new therapeutic targets in AML, we performed small-molecule 

and siRNA screens of primary AML patient samples. In 23% of samples, we found 

sensitivity to inhibition of CSF1R, a receptor tyrosine kinase responsible for survival, 

proliferation, and differentiation of myeloid-lineage cells. Sensitivity to the CSF1R 

inhibitor GW-2580 was found preferentially in de novo and favorable risk patients, 

and resistance to GW-2580 was associated with reduced overall survival. Using flow 

cytometry, we discovered that CSF1R is not expressed on the majority of leukemic 

blasts but instead on a subpopulation of supportive cells. Comparison of CSF1R-

expressing cells in AML versus healthy donors by mass cytometry (CyTOF) revealed 

the expression of unique cell-surface markers. The quantity of CSF1R-expressing 

cells correlated with GW-2580 sensitivity.  

Exposure of primary AML patient samples to a panel of recombinant 

cytokines revealed that CSF1R inhibitor sensitivity correlated with a growth response 

to CSF1R ligand, CSF1, and other cytokines, including an alternative growth factor, 

HGF. The addition of CSF1 increased the secretion of HGF and other cytokines in 

conditioned media from AML patient samples, while adding GW-2580 reduced their 
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secretion. In untreated cells, HGF levels correlated significantly with GW-2580 

sensitivity. Finally, recombinant HGF and HS-5-conditioned media rescued cell 

viability after GW-2580 treatment in AML patient samples. Our results suggest that 

CSF1R-expressing cells support the bulk leukemia population through the secretion 

of HGF and other cytokines. This study identifies CSF1R as a novel therapeutic 

target of AML and provide a mechanism of paracrine cytokine/growth factor 

signaling in this disease. 

 

8.4 Introduction 

Acute myeloid leukemia (AML) is the deadliest hematological malignancy, 

with 10,670 estimated new deaths from the disease in the United States in 2018.1 

One of the factors complicating AML treatment is its genetic heterogeneity, with 

hundreds of drivers collectively observed across AML patient tumors and an average 

of ~5-15 somatic mutations observed within each patient tumor.24,25 The use of 

genetically targeted therapies to treat AML has produced some clinical responses, 

but the development of disease resistance and relapse remains a continuous problem, 

in part because of the presence of multiple genetic subclones of leukemia cells in each 

patient.41,201 

To overcome the inherent genetic complexity of AML, researchers have 

investigated methods of targeting the supportive leukemia microenvironment.202 

Indeed, the development of resistance in AML is driven by multiple factors, 

including external signals from the bone marrow microenvironment.203 Leukemia 

cells disrupt normal hematopoietic stem cell growth,204 and changes in the 
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microenvironment are sufficient to induce leukemia or myelodysplastic 

syndromes.205 The modification and reprogramming of multiple cell types in the bone 

marrow niche have been shown to enhance AML tumor cell proliferation and 

survival, including mesenchymal stromal cells (MSCs),206-208 osteoblasts,209,210 and T 

cells.211-213 

In solid tumors, a key contributor to the microenvironment is supportive 

monocytes/macrophages, also known as tumor-associated macrophages (TAMs).214 

TAMs express a variety of proteins, including colony stimulating factor 1 receptor 

(CSF1R), which signals downstream through PI3K/AKT and MEK/ERK and 

promotes cell proliferation and differentiation.215 There have been significant efforts 

to target and eliminate TAMs in solid tumors, and many ongoing clinical trials exist 

using CSF1R small-molecule inhibitors and monoclonal antibodies.122 More recently, 

the same phenomenon has been shown in chronic lymphocytic leukemia (CLL), 

where targeting CSF1R-expressing nurse-like cells (NLCs) has shown efficacy in 

mouse models157,160 and ex vivo patient samples.216 Recently, it was shown in mouse 

models that AML induces an increase in monocytes/macrophages in the bone 

marrow and spleen that supports a pro-tumorigenic microenvironment.217 However, 

the biological significance of supportive monocyte/macrophages, including the 

possibility of targeting and eliminating these cells, has never before been 

demonstrated in humans. 

 Using functional screening of ex vivo primary AML patient samples, we report 

for the first time that CSF1R signaling is essential for the survival of AML samples. 

CSF1R sensitivity is not confined to a particular clinical or genetic subtype, although 
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it is less prevalent in patients with adverse risk features. Using mass cytometry 

(CyTOF) and conventional, fluorescence-based flow cytometry, we found that 

CSF1R surface expression is not found on the tumor cells themselves but instead 

confined to a small subpopulation of supportive monocyte/macrophage-like cells 

that show evidence of phenotypic reprogramming. Samples with CSF1R inhibitor 

sensitivity show increased response to CSF1 and HGF growth factor stimulation, 

and HGF secretion was directly modulated after stimulation or inhibition of CSF1R 

in sensitive samples. These data indicate that CSF1R is a novel therapeutic target in 

AML and provide evidence for paracrine signaling from CSF1R-expressing 

supportive cells, suggesting that CSF1R small-molecule inhibitors would be broadly 

effective in treating AML. 

 

8.5 Methods 

8.5.1 Patient sample acquisition and functional screening 

Primary AML samples were obtained from patients by informed consent 

according to a protocol approved by the Oregon Health & Science University 

Institutional Review Board, and processed as described previously.218 Briefly, 

peripheral blood, bone marrow, and leukapheresis samples were extracted from 

patients with AML. The mononuclear cells (MNCs) were isolated from whole blood 

by Ficoll density gradient and plated in media containing RPMI with 20% FBS, 1% 

penicillin-streptomycin, 2% glutamine, and 0.1% amphotericin B. MNCs underwent 

two functional screens, depending on available cell number. First, MNCs were 

exposed to dose-escalating concentration gradients of small-molecule inhibitors219—
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including GW-2580, ARRY-382, JNJ-28312141, crizotinib, foretinib, and SGX-

523—and incubated for 72 hours at 37°C in 5% CO2. Second, MNCs were 

electroporated with a library of 93 siRNAs collectively targeting the tyrosine kinome 

(plus NRAS/KRAS), as described previously,220,221 and incubated for 96 hours at 

37°C in 5% CO2. After incubation, the relative number of remaining viable 

mononuclear cells for each screen was measured using a tetrazolium-based 

colorimetric assay (CellTiter AQueous One Solution Cell Proliferation Assay; 

Promega, Madison, WI). 

The half maximal inhibitory concentration (IC50) and area under the curve 

(AUC) were determined for each sample using probit regression analysis (see 

Supplemental Methods). Within each patient sample, a “hit” for a specific siRNA 

was determined if its cell viability was at least 2 standard deviations less than the 

mean computed across all siRNAs tested (z-score ≤ -2).11,12 

To evaluate apoptosis, MNCs were exposed to either GW-2580 or ARRY-

382 at 10µM, and apoptosis was measured after 24, 48, and 72 hours by Annexin V 

staining (Guava Nexin Assay; Merck Millipore, Billerica, MA). The percentage of 

apoptotic cells from untreated control wells was subtracted from the drug-exposed 

wells to accommodate sample-specific variation in overall cell viability. 

Most of these samples originated from the Beat AML program, a 

collaborative, multi-institutional project that evaluated a cohort of 672 tumor 

specimens collected from 562 patients. For more information about the selection of 

our patient sample cohort, see Supplemental Methods. 
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8.5.2 Mass cytometry (CyTOF) and flow cytometry analysis of cell surface markers 

MNCs were isolated from primary AML patient samples and evaluated for a 

variety of cell surface markers using mass spectrometry-based flow cytometry, as 

described previously.222 Briefly, 3 x 106 cells from primary AML bone marrow 

aspirates were stained with a custom-built panel of 16 metal-conjugated antibodies 

for cell surface markers (including a cell viability stain, a DNA intercalator for 

doublet removal, a core panel of 13 well-established phenotypic markers, and a 

variety of other markers of myeloid cells and their major subsets). The samples were 

run on a CyTOF Mass Cytometer (DVS Sciences, Markham, Ontario), and the 

resulting FCS files were processed and visualized. Automated gating was performed 

using the openCyto pipeline and comparison of the population percentages of 

expressed surface markers was performed using various Bioconductor packages.223-225 

For conventional flow cytometry, MNCs were stained with Live/Dead Aqua 

(L34957; Thermo Fisher, Waltham, MA), CD45-PerCP (304025; BioLegend, San 

Diego, CA), CD34-PE-CF594 (562383; BD Biosciences, Franklin Lakes, NJ), and 

CSF1R-APC (347306; BioLegend), according to manufacturer’s instructions. Surface 

marker analysis was performed on a BD FACSCanto II flow cytometer and the data 

were analyzed using FlowJo (FlowJo, LLC, Ashland, OR). Blast gating was 

performed under the direction of a hematopathologist.  
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8.5.3 CSF1 expression in plasma and stromal cell conditioned media 

Blood plasma was isolated from peripheral blood samples and bone marrow 

aspirates and flash-frozen. Stromal cells were isolated from red blood cell (RBC) 

pellets from post-Ficoll primary AML patient samples. RBC pellets were incubated 

with ammonium-chloride-potassium (ACK) lysis buffer for 30 minutes and plated 

onto 15cm dishes in MEM-alpha with 20% FBS, 1% penicillin-streptomycin, 2% 

glutamine, and 0.1% amphotericin B. The plates were cultured for at least 2 weeks at 

37°C in 5% CO2, with media changed every 7 days to remove non-adherent cells. 

When the plate was ~70% confluent, conditioned media was collected and flash-

frozen. The levels of CSF1 and IL34 were determined using the Human M-CSF and 

IL-34 Quantikine ELISA Kits (R&D Systems, Minneapolis, MN), respectively, 

according to manufacturer’s instructions. 

 

8.5.4 Cytokine/growth factor analysis 

We analyzed data assessing cytokine growth response ex vivo in AML patient 

samples.226 Briefly, mononuclear cells isolated from primary AML patient samples 

were exposed to low, medium, or high doses of 94 cytokines, chemokines, and 

growth factors (see Carey et al226 for details). After 72 hours of incubation, cell 

viability was measured using a tetrazolium-based colorimetric assay (CellTiter 

AQueous One Solution Cell Proliferation Assay; Promega). For each cytokine, the 

growth response was compared to positive (HS-5-conditioned media and previously 

published combinations of IL-6, IL-11, FLT-3L, SCF, GM-CSF, G-CSF, and/or 

SCF227,228) and negative (no cytokine) controls. Each sample was labeled as a 
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“responder” for specific cytokines that significantly increased cell growth over 

control wells, and a “non-responder” for cytokines that did not.226 These samples 

were also screened for sensitivity to small-molecule inhibitors as described above. 

For each cytokine, the log2 fold change (mean AUC for responders divided by mean 

AUC for non-responders) was calculated and an unpaired Student’s t-test conducted 

to compare sensitivity to GW-2580 between these two groups. 

 

8.5.5 Cytokine secretion in conditioned media 

 Primary AML patient samples were added to 12-well plates (1ml at 1x106 

cells/well) and treated with 10M GW-2580, 100ng/ml CSF1 (Peprotech, Rocky 

Hill, New Jersey), or remained untreated. The plates were incubated for 48 hours, 

after which the cells from each condition were centrifuged and the conditioned 

media was collected and flash-frozen in liquid nitrogen. The levels of cytokines, 

chemokines, and growth factors were measured using the Human Cytokine 

Magnetic 30-Plex Panel for the Luminex platform (Thermo Fisher). 

 

8.5.6 Cytokine rescue from GW-2580 sensitivity 

 Primary AML patient samples were exposed to GW-2580 as described above. 

Cells were incubated either with HGF (1µg/ml), the maximum concentration used in 

Carey et al,226 or conditioned media from the human marrow stromal cell line HS-

5229 at a 1:1 ratio with normal media. Cells were incubated for 3 days and viability 

was evaluated by colorimetric assay. 
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8.6 Supplemental Methods 

8.6.1 Patient sample selection 

 There are 672 samples and 562 patients in the final Beat AML patient sample 

cohort, of which 447 samples had received either small-molecule inhibitor screening 

or RNAi-assisted protein target identification (RAPID) screening (see the Beat AML 

manuscript, currently in preparation, for a more comprehensive list of samples). For 

the CSF1R small-molecule inhibitor analysis, we removed any samples that were not 

diagnosed as “ACUTE MYELOID LEUKAEMIA (AML) AND RELATED 

PRECURSOR NEOPLASMS,” leaving 637 samples from 532 patients. Then, we 

removed samples without seven-dose-point GW-2580 inhibitor sensitivity data, 

leaving 345 samples from 315 patients. Finally, we removed duplicate samples from 

the same patient (the earliest sample was selected), leaving 315 samples. For the 

RAPID analysis patient sample selection process, see “siRNA screening data 

analysis”. See the supplemental table,l available upon request and included in the 

manuscript submission, for complete details of clinical and genetic annotations. 

 

8.6.2 Small-molecule inhibitor screening data analysis 

 The tetrazolium-based colorimetric assay produced absorbance values (optical 

density) that were used to calculate cell viability. For each sample, the wells treated 

with inhibitors were normalized to the average viability in each plate’s untreated 

                                                 

l This table contains the complete table of clinical and genetic characteristics of 302 patients with 

AML evaluated in this study. For each patient, the specimen ID, diagnosis and specific diagnosis 

(according to the WHO classifications of hematological malignancies), and clinical and genetic factors 

are included. For translocations and mutations, 0 = absent, 1 = present, and NA = not available. 
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control wells. These normalized values were confined to a 0-100 range to produce a 

response variable that represented the percentage of the average control well 

viability. Viability percentages for each sample/drug pairing, plated on a seven-dose 

dilution series (10µM, 3.33µM, 1.11µM, 0.307µM, 0.124µM, 0.0412µM, and 

0.0137µM), were modeled using probit regression after log-transforming the dose 

concentration to enhance model fit. Roughly 60% of the seven-dose sample/drug 

profiles included same-plate replicates at each dose. For these profiles with two or 

three observed response values (viability percentages) per dose point, a single probit 

model was fit. 

Two measures of drug efficacy, IC50 and AUC, were calculated based on the 

fitted probit curve. The IC50, or half-maximal inhibitory concentration, was defined 

as the lowest concentration within the plated dose range with a predicted viability ≤ 

50%. The AUC, defined as the area under the fitted probit curve over the plated dose 

range, was computed by integration and later rescaled by the maximum possible area 

to produce values between 0 and 100. The probit model could not be used for dose-

response profiles with a single constant viability value of either 0 or 100. In the first 

scenario (viability values all equal 0), the IC50 was set to the minimum plated dose 

and the AUC was set to 0. In the second scenario (viability values all equal 100), the 

IC50 was set to the maximum plated dose and the AUC was set to the maximum 

possible area (equal to 286.27 for the 7-dose series, although renormalized to 100). 
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8.6.3 siRNA screening data analysis 

From the complete dataset of 332 patient samples that underwent RNAi-

assisted protein target identification (RAPID) screening,230 we selected those who 

were part of the Beat AML project (n = 257). Each sample was analyzed on 96-well 

plates, which were run in triplicate. The mean viability for each siRNA was 

calculated from the triplicate values and normalized based on the median of the 

mean absorbance values for all siRNAs (excluding the blank well). A z-score for each 

siRNA was calculated by comparing this triplicate-averaged mean viability to the 

mean viability of all siRNAs. 

The dataset was further filtered using the following steps: (1) within-siCSF1R 

variance; (2) plate-to-plate variance; and (3) optical density variance. First, for 

within-siCSF1R variance, the standard deviation for the siCSF1R triplicate values 

needed to be less than 20% of the average of means (the average of the mean 

absorbance values for all siRNAs). Second, for plate-to-plate variance, the standard 

deviation of the absorbance values within a single plate needed to be less than 30% of 

the average of means (which averages all three plates). Third, for optical density 

variance, the mean optical density (meanOD) and standard deviation optical density 

(stdevOD) across all three plates were evaluated using the following criteria based 

upon a blinded visual inspection of the data: if meanOD < 0.04, then did not pass; or 

if 0.04 ≤ meanOD ≤ 0.075 and stdevOD > 30% of meanOD, then did not pass; or if 

stdevOD > 50% of meanOD, then did not pass. If any one of those three variance 

filtering criteria was not met, the siRNA screening results from that sample were 

discarded.  
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In total, 162 samples passed all three variance filtering criteria. Five of those 

162 samples (09-00427, 09-00438, 09-00453, 09-00456, and 09-00496) were run on 

older versions of the panel and therefore do not have viability testing for ABL1, 

CSK, EPHA8, FES, FYN, LMTK2, NTRK2, RET, and TNK1 siRNAs. Therefore, 

for these kinases, the data was analyzed for the remaining 157 samples. 

For the samples who passed the variance filtering criteria, an siRNA “hit” for 

a particular sample was considered to be less than or equal to two standard 

deviations below the mean viability for all siRNAs (z-score ≤ -2). 

8.6.4 Comparing small-molecule inhibitor and siRNA data 

 The comparison between GW-2580 sensitivity and siRNA response was 

conducted in R. For each unique patient in our dataset that underwent both the 

RAPID and small-molecule inhibitor screen (n = 162), a linear regression was 

performed between GW-2580 AUC and the siCSF1R z-score, and the slope and p-

value were obtained. This regression was repeated for each siRNA on the panel and 

represented as the negative log of the uncorrected p-value versus the slope of the 

linear regression line. 

 

8.6.5 Clinical and genetic characteristics 

Clinical data was obtained from the clinical annotations included in the Beat 

AML project dataset. Age was calculated by subtracting the date of AML diagnosis 

from the date of birth. The prognostic risk calculation was determined using an 

automated decision tree that we developed to evaluate prognostically significant 

mutations and cytogenetic abnormalities based on the newly revised European 
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LeukemiaNet guidelines.231 Briefly, the karyotype and presence or absence of FLT3-

ITD, NPM1, CEBPA, TP53, RUNX1, and ASXL1 mutations were extracted from our 

dataset. Entries with incomplete information were excluded, including karyotypes 

that did not follow standardly defined nomenclature.232 Regular expressions were 

used to identify prognostically significant abnormalities (including common 

monosomies/translocations) within a karyotype. In addition, the presence of 

complex karyotype and monosomal karyotype, as previously defined,22 along with 

the number of cytogenetic abnormalities, was determined. Cases of acute 

promyelocytic leukemia were classified as Favorable risk based on separate ELN 

guidelines.40 For samples with a karyotype, the presence of common cytogenetic 

abnormalities was determined using regular expressions (see above). 

 The presence of gene mutations: For patients treated at Oregon Health & 

Science University, the results of GeneTrails testing, a mutation panel test that 

combines amplicon-based DNA library preparation with semiconductor sequencing, 

were included. The results from similar mutation panels were included from patients 

from Stanford University (GeneTrails), The University of Utah (ARUP Myeloid 

Panel), The University of Texas Southwestern (Foundation Medicine), and The 

University of Miami (Genoptix). In addition, for many patients, the NPM1 or FLT3-

ITD mutations were determined using in-house testing methods (see “In-house 

FLT3-ITD and NPM1 sequencing” for protocol). Some patients also received exome 

sequencing (see “Exome and RNA sequencing” for analysis protocol), from which 

only non-synonymous mutations that had not failed subsequent custom-capture and 
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RNA-sequencing validation steps were selected (described in detail in the 

forthcoming Beat AML manuscript). 

 

8.6.6 In-house FLT3-ITD and NPM1 sequencing 

After the mononuclear cells were isolated from the AML patient samples, cell 

pellets were flash-frozen in liquid nitrogen. DNA was extracted using the DNeasy 

Blood and Tissue kit (#69506; Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. FLT3-ITD and NPM1 detection was performed using 

mutations-specific primers as described previously,233 and analyzed by capillary 

electrophoresis using a QIAxcel High Resolution Kit (Qiagen) according to the 

manufacturer’s protocol. 

 

8.6.7 Exome and RNA sequencing 

After the mononuclear cells were isolated from the AML patient samples, cell 

pellets were flash-frozen in liquid nitrogen, and DNA was extracted using the 

DNeasy Blood and Tissue kit (Qiagen). 

For exome sequencing, Illumina Nextera capture probes were used and the 

libraries were run on a HiSeq 2500 System using a paired-end, 100-cycle protocol. 

The initial data processing and alignments were performed using an in-house 

analysis pipeline. Briefly, the FASTQ files were aggregated for each flowcell and 

each sample into single files for reads 1 and 2. The Burrows-Wheeler Aligner 

algorithm BWA-MEM234 (v0.7.10-r789) was used to align the read pairs for each 

sample-lane FASTQ file, with the flowcell/lane information preserved as part of the 
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read group of the resulting SAM file. The Genome Analysis Toolkit235 (GATK; v3.3) 

and the bundled Picard pipeline (v1.120.1579) were used for alignment post-

processing. The files in the Broad Institute’s bundle 2.8 were used, including their 

version of GRCh37. The following steps were performed for each sample-lane SAM 

file: sorting/conversion to BAM via SortSam; marking both lane-level standard and 

optical duplicates via MarkDuplicates; read realignment around indels via 

RealignerTargetCreator/IndelRealigner; and base quality score recalibration. The 

resulting BAM files were aggregated by sample and an additional round of 

MarkDuplicates was conducted. For genotyping, the BAM file for each AML sample 

was realigned at the sample level and genotyped for single nucleotide variations 

using Mutect236 (v1.1.7) and Varscan2237 (v2.4.1), with indels identified via Varscan2. 

Each VCF file was annotated using the Variant Effect Predictor238 (v83) against 

GRCh37. The resulting VCF files were filtered to include only those annotated to 

genes and converted to MAF using vcf2maf (v1.6.6) 

(https://github.com/mskcc/vcf2maf). The complete analysis protocol will be 

described in the final publication of the BeatAML dataset, which is currently in 

preparation. 

For RNA sequencing, libraries were constructed using the SureSelect Strand 

Specific RNA Library Prep system (Agilent, Santa Clara, CA) and the Bravo 

Automated Liquid Handling Platform (Agilent). Libraries are validated using the 

2100 Bioanalyzer (Agilent) and combined to generate 4 samples per lane, with a 

targeted yield of 200 million clusters. Combined libraries were denatured, clustered 

with the cBot System (Illumina), and sequenced on the HiSeq 2500 System using a 
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paired-end, 100-cycle protocol. For each sample, FASTQ files were aggregated into 

single files for reads 1 and 2. Alignment was performed using Subjunc239 (v1.4.6), and 

the resulting SAM files were analyzed by featureCounts240 (v1.4.6) and reads 

summarization was performed. 

 

8.6.8 GW-2580 Sensitivity Survival Analysis 

We selected Beat AML patients having high-quality clinical data (defined as 

having received a manual chart review from our data manager), having been 

screened for sensitivity to GW-2580, and having been diagnosed either with de novo 

AML, secondary AML (transformed from a prior hematologic malignancy), or 

relapsed AML. Of those patients within the analysis cohort, 202 had samples with 

seven-point drug curves for GW-2580: 158 with de novo AML, 24 with secondary 

AML, and 20 with relapsed AML. The area under the curve (AUC) for GW-2580 

was calculated for each patient sample via probit regression as described above. GW-

2580 AUC was compared across the three diagnostic subgroups using the Kruskal-

Wallis test with Dunn’s multiple comparisons test (at α = 0.05). Of those patients 

with GW-2580 AUC data, 173 were unique patients that contained complete clinical 

status information (both last follow up date and survival status). Overall survival 

(OS) for this cohort was calculated from the date of disease diagnosis until date of 

death or last known follow-up and estimated using the Kaplan-Meier estimator. OS 

among diagnosis subgroups was compared using the log-rank test.  

Patients were determined to have relapsed AML if they had recurrence of 

disease after attaining complete remission, as defined by ≥5% blasts in their bone 
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marrow or peripheral blood, or if they developed extramedullary disease. Time to 

relapse was calculated as number of days from the date of diagnosis to the date of 

relapse as confirmed by laboratory testing. Of the 199 patients in our sample cohort, 

41 patients relapsed after their initial sample collection.  All survival data analysis 

was conducted using R (v3.4.0) (http://www.R-project.org).  

 

8.6.9 CyTOF Analysis 

The original dataset (currently in submission) consisted of 98 primary AML 

samples and 11 healthy donors. From this dataset, we only selected unique samples 

that also contained GW-2580 inhibitor data (when a patient had two samples with 

inhibitor data, the earlier sample was selected), resulting in 66 primary AML 

samples. 

Hierarchical clustering of the CSF1Rhi cells was performed, with the 

Euclidean distance as the distance metric and using the complete linkage method 

(performed using the dist and hclust functions, respectively, in R). Due to 

computational demands, for samples with ≥2000 CSF1Rhi cells, only 2000 cells were 

randomly selected from the complete population and used for clustering. The 

heatmaps were generated with an unweighted dendrogram by row only (each row is 

an individual CSF1Rhi cell), with red signifying high arcsinh values and black 

signifying low values (performed using the heatmap.2 function within gplots in R). 

The clusters that defined CSF1Rhi cell phenotypes were determined by cutting the 

dendrogram tree into several groups at a specified cut height (17 for AML samples; 

15 for healthy donor samples), performed using the cutree function in R.  
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Based on a blinded visual inspection of the data, a cluster was considered 

“positive” for a cell-surface marker if there were ≥30% of cells with arcsinh ≥ 3; and 

considered “low” for a marker if there were ≥50% of cells with arcsinh ≥ 2. If there 

were ≥7 markers classified as either “positive” or “low”, the phenotype was 

summarized as “various”. When calculating the overall percentage of cells within 

each CSF1Rhi cluster, for samples with ≥2000 CSF1Rhi cells, the total number of 

CSF1Rhi cells within each cluster was extrapolated from the proportion identified in 

the clustering analysis. 

 

8.7 Results 

To identify new therapeutic targets and effective drugs against acute myeloid 

leukemia, we performed functional screening on primary AML patient samples 

(Figure 8.1A). We screened mononuclear cells from patient samples with small-

molecule inhibitors, or an siRNA library targeting the human tyrosine kinome, and 

measured cell viability after short-term culture. We observed that the siRNA that 

significantly reduced cell viability in the largest number of samples among our 

filtered patient sample population (n = 157 or 162; see Supplemental Methods) was 

siCSF1R (Figure 8.1B), the specificity of which has been validated previously.140 

We next compared these siRNA screening results in samples that were also 

evaluated for sensitivity to CSF1R small-molecule inhibitors as a means of 

orthogonal validation. We chose three inhibitors with single-digit nanomolar 

sensitivity (by IC50) to CSF1R: GW-2580, ARRY-382, and JNJ-28312141 (Figure 

8.1C). We confirmed that GW-2580 and ARRY-382 induce apoptosis in primary 
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AML patient samples (Figure 8.6A-B). As a quality control check, we examined the 

sensitivity profiles of these inhibitors across patient samples and observed a highly 

significant correlation for each pairwise comparison of inhibitors (Figure 8.6C-E). 

Notably, we did not observe GW-2580 sensitivity in MNCs isolated from 5 healthy 

donors (Figure 8.6F-J), which had also been observed previously,241 highlighting the 

unique therapeutic responsiveness of AML samples. Both GW-2580 and ARRY-382 

have extreme specificity for CSF1R, having no interaction with other Class III 

receptor tyrosine kinases.198,199 Because GW-2580 had the highest specificity for 

CSF1R among the other inhibitors, it was used to exclusively represent CSF1R 

inhibitor activity in all subsequent experiments. 

We observed a significant correlation between the z-score for siCSF1R and 

GW-2580 area under the curve (AUC), suggesting that siCSF1R efficacy (lower z-

score) correlates with greater sensitivity to GW-2580 (lower AUC) (Figure 8.1D). 

(Unless otherwise specified, drug sensitivity was quantified using AUC because of its 

effectiveness in combining drug potency and efficacy.242) To confirm that this 

correlation was specific for siCSF1R, we performed the same correlation calculation 

from Figure 1D for each tyrosine kinase siRNA, which includes all other Class III 

receptor tyrosine kinase family members. We found that siCSF1R had the strongest, 

most significant correlation with GW-2580 sensitivity compared to all other siRNAs 

(Figure 8.1E), suggesting that CSF1R is the operational target of inhibition 

underlying CSF1R inhibitor sensitivity. Collectively, our screening of 315 AML 

patient samples for sensitivity to GW-2580 (Figure 8.1F) revealed a wide range of 



 110 

 

responses, with many highly sensitive samples as well as samples that were 

completely resistant (Figure 8.1G-H). 

 To determine if sensitivity to CSF1R inhibitors correlated with prominent 

genetic abnormalities or clinical characteristics found in patients with AML, we 

analyzed patient samples from the Beat AML cohort that had been subjected to 

small-molecule inhibitor screening, many of which had whole exome sequencing and 

detailed clinical annotations (manuscript describing the full Beat AML cohort is in 

review). We compared the distribution of GW-2580 sensitivity as it related to 

demographic or clinical factors of disease (specimen type, age, gender, white blood 

cell count, and prognostic risk) and genetic factors (common translocations and 

mutations found in AML24) (Figure 8.2A). Overall, we found a significant 

association between CSF1R inhibitor resistance and poor prognostic markers, 

including cytogenetic abnormalities (complex karyotype, inversion 3, and 

monosomy 5/deletion 5q), gene mutations (TP53, NRAS, and KRAS), and ELN 

adverse prognostic risk (Figure 8.2A and Figure 8.7A-C).  

To evaluate the relationship between CSF1R inhibitor sensitivity and clinical 

response, we analyzed the patients with high-quality treatment data and GW-2580 

functional screening data within our sample cohort (n = 202 samples from 199 

patients). We subdivided this patient population based on disease presentation: de 

novo, secondary, and relapsed AML. We classified CSF1R inhibitor sensitivity based 

on the GW-2580 AUC for each sample compared to the total population: “sensitive” 

samples were below the 20th percentile, “indeterminate” samples between the 20th 

and 80th percentiles, and “resistant” samples above the 80th percentile. We observed 
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that the relapsed AML samples had a higher GW-2580 AUC than de novo AML 

samples (p = 0.040), while there was no difference between the GW-2580 AUC of 

secondary AML versus de novo AML (Figure 8.2B and Figure 8.8A). In addition, we 

observed that overall survival was different among the CSF1R inhibitor subgroups 

(Figure 8.2C), although there was no difference between the sensitive and 

indeterminate categories. This observation of CSF1R inhibitor resistance correlating 

with worse survival showed a similar trend within de novo, secondary, and relapsed 

disease groups, although it did not achieve statistical significance at α = 0.05 (Figure 

8.8A-D). We observed no correlation between median time to relapse and GW-2580 

sensitivity (Figure 8.8E). 

We next wanted to understand the mechanism of action of CSF1R inhibitors 

in AML. Since CSF1R mutations are not observed in AML,24 and we did not 

observe any single genetic biomarker that could biologically explain sensitivity to 

CSF1R inhibitors, we examined CSF1R expression patterns in AML patient 

samples. In healthy individuals, CSF1R cell-surface expression is found only on 

macrophages and committed macrophage precursor cells.243 This prompted us to 

determine whether CSF1R inhibitor sensitivity correlated with CSF1R expression on 

AML tumor cells or on healthy macrophage-lineage cells that might be interacting 

with the tumor cells. Therefore, we analyzed mass cytometry (CyTOF) data on the 

expression levels of 16 cell surface markers, including CSF1R, on 66 AML patient 

samples and 11 healthy donors (Figure 8.3A) (methods reviewed in Lamble et al;13 

full dataset in submission) as well as conducted conventional flow cytometry on cells 

from 2 patient samples. 
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Our initial examination of CSF1R expression using conventional flow 

cytometry, which allowed for traditional gating of leukemic blasts, revealed 

negligible expression of CSF1R on leukemic blasts, suggesting that CSF1R 

expression is confined to a subpopulation of non-leukemic cells (Figure 8.9). Using 

CyTOF data, we found that the percentage of CSF1Rhi cells (arcsinh ≥ 3) was 

relatively low throughout the AML patient dataset (mean of 1.4% in total cells), and 

was comparable to that of the healthy donor samples (Figure 8.3B and Figure 

8.10A). We observed no association between the percentage of CSF1Rhi cells and 

FLT3-ITD status or FAB morphology (Figure 8.10B-C). CSF1Rhi cells most often 

co-express myeloid-specific markers in patients with AML (Figure 8.3C) and in 

healthy donors (Figure 8.3D), suggesting that these CSF1R-expressing cells are of a 

monocyte/macrophage-lineage. 

 We investigated the relationship between the frequency of CSF1Rhi cells and 

CSF1R inhibitor sensitivity. We found an association between the overall percentage 

of CSF1Rhi cells and GW-2580 sensitivity (Figure 8.3E), with more sensitive samples 

having a higher percentage of CSF1Rhi cells than resistant samples (Figure 8.3F-G). 

We further combined CSF1Rhi cells from every sample in our dataset (separate 

combinations for AML and healthy donor samples) and subdivided the cells based 

on the co-expression of common hematopoietic-population-defining cell surface 

markers and markers associated with myeloid-derived suppressor cells (MDSCs)244 

(Figure 8.3A). Ultimately, these cells clustered into 6 subgroups in patients with 

AML and 7 subgroups in healthy donor samples (Figure 8.3H-I and Figure 8.10B-C). 

We found that CSF1Rhi cells in AML samples were enriched for co-expression of 
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CD33 and HLA-DR compared to healthy donors (which predominantly co-

expressed CD11c and CD16; Figure 8.3J), showing evidence of CSF1Rhi phenotypic 

reprogramming in AML. We correlated the percentage of each CSF1Rhi subgroup 

with the GW-2580 AUC of the corresponding sample, identifying a possible 

correlation between AML cluster 2 (CSF1R+, CD45+, CD33+, HLADR+) and 

GW-2580 sensitivity (Figure 8.10D-E). Overall, these results suggest that CSF1Rhi 

cells in AML constitute a population of supportive cells that contribute to sensitivity 

to CSF1R inhibitors. 

Next, we wanted to identify the cytokines or growth factors being secreted by 

this population of CSF1R-expressing supportive cells. We recently performed a 

study226 in which we incubated primary AML patient samples with various cytokines 

and growth factors, and classified each sample either as a “responder” (molecule 

increased cell growth) or a “non-responder” (molecule had no effect). For each of 

these cytokines/growth factors, we compared sensitivity to GW-2580 for responders 

and non-responders. We determined the fold change (the ratio of mean AUC values) 

between responder samples and non-responder samples to examine whether CSF1R 

inhibitor sensitivity correlated with responsiveness to any recombinant 

cytokine/growth factor, which could indicate an operational role for that 

cytokine/growth factor in mediating the signal between CSF1Rhi cells and AML 

tumor cells. We identified cytokines and growth factors that showed a negative log2 

fold change, meaning that the cytokine-responsive samples were more sensitive to 

GW-2580 than the samples that were non-responsive to the cytokine (Figure 8.4A). 

The four cytokines and growth factors that correlated most significantly with CSF1R 
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inhibitor sensitivity were LPS, RANTES, CSF1, and HGF (Figure 8.4B). The 

identification of CSF1 in this group reinforces our previous data suggesting that GW-

2580 sensitivity occurs specifically because of inhibition of CSF1R and also suggests 

that the CSF1R inhibitor sensitivity involves a ligand-dependent mechanism. 

To further study the cytokines and growth factors that are operationally 

important in mediating a paracrine signal between leukemia cells and CSF1R-

expressing monocyte/macrophage support cells, we treated primary AML patient 

samples (n = 15) either with CSF1, GW-2580, or nothing (remained untreated). We 

collected cell supernatants to study changes in cytokine levels that were impacted by 

positive or negative perturbation of CSF1R signaling (Figure 8.4C). We calculated 

the change in cytokine levels in conditioned media after CSF1 stimulation (CSF1-

treated minus untreated control) and after CSF1R inhibition (GW-2580-treated 

minus untreated control), ranking each cytokine in order of decreasing median value 

(Figure 8.4D-E). To identify the cytokines that both increased after CSF1 stimulation 

and decreased after CSF1R inhibition, we subtracted the inhibition ranking from the 

stimulation ranking (Figure 8.4F).  

The top three cytokines that we identified were IL-8, MCP-1, and HGF. The 

identification of IL-8 and MCP-1 in this context is not unexpected, as similar results 

have been observed in blood from healthy donors.245 However, HGF has not been 

previously associated as a CSF1/CSF1R-driven growth factor. We observed a 

significant correlation between GW-2580 sensitivity and baseline levels of HGF in 

conditioned media from untreated patient samples (n = 10; 5 samples showed no 

detectable HGF) (Figure 8.4G). We examined our small-molecule inhibitor dataset 



 115 

 

of ex vivo AML patient samples to determine whether there was a correlation 

between CSF1R inhibitor sensitivity and sensitivity to inhibitors of the HGF 

receptor, MET. Using three small-molecule inhibitors with sensitivity to MET 

(crizotinib, foretinib, and SGX-523), whose response in AML patient samples 

significantly correlates with one another (Figure 8.11A-C), we observed a strong 

correlation between their response and the response to GW-2580 (Figure 8.5A-C).  

We performed a rescue experiment where primary AML patient samples were 

treated with GW-2580 for 72 hours and incubated either with HGF or conditioned 

media from the human marrow stromal cell line HS-5. We observed that HGF 

significantly rescued viability in 1 sample (Figure 8.5D), suggesting its importance in 

CSF1R inhibitor sensitivity. However, we also observed that HS-5-conditioned 

media rescued viability in 4 samples (Figure 8.5D-G), emphasizing that multiple 

factors are likely mediating CSF1R inhibitor sensitivity in the majority of samples. 

Overall, our results suggest that, for roughly one quarter of primary AML 

patient samples, a small subpopulation of CSF1R-expressing cells secretes necessary 

survival molecules, including HGF, to the bulk population of leukemia cells. By 

adding small-molecule inhibitors of CSF1R, we can nullify these signals and kill the 

leukemia cells (Figure 8.5H). 

 

8.8 Discussion 

The results of our research suggest that using CSF1R inhibitors or 

neutralizing agents to eliminate supportive monocytes/macrophages may be an 

effective treatment for a subset of patients with AML. This aligns with existing 
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research in solid tumors, in which eliminating tumor-associated macrophages 

(TAMs) can be effective against a variety of tumor subtypes.246 However, whereas 

data from solid tumors generally suggests that a combinatorial approach is required 

for efficacy,122 we observe single-agent sensitivity to CSF1R inhibitors in our ex vivo 

patient samples.  

Although GW-2580 sensitivity did correlate with individual genetic and 

prognostic markers—there was a slight correlation with the presence of NPM1 and 

IDH2 mutations, the significance of which is not understood—we observed a strong 

association between multiple adverse-risk markers and GW-2580 resistance. We 

believe that these CSF1R-inhibitor-resistant samples are potentially resistant to any 

known treatment, targeted or otherwise, which would explain the ineffectiveness of 

CSF1R inhibitors. In addition, perhaps the presence of NRAS/KRAS mutations in 

the leukemia cells, being downstream from the receptor tyrosine kinase signaling, 

obviates the contribution from upstream CSF1R activity. It should be noted that, in 

forthcoming early-stage clinical trials using CSF1R inhibitors in patients with AML, 

the targeted patient population will likely have relapsed/refractory disease, reducing 

the number of candidates we predict would exhibit a clinical response to CSF1R 

inhibitors. 

Even though having a higher percentage of CSF1Rhi cells correlated with 

increased GW-2580 sensitivity, we observed no difference in overall survival between 

patients whose samples were sensitive or resistant to CSF1R inhibitors. In most solid 

tumor types, higher TAM density is generally associated with both late-stage clinical 

presentation and reduced overall survival, although exceptions exist in ovarian and 
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colorectal cancer.121 Our data suggests that AML reflects the complexity underlying 

the prognostic significance of TAMs, in that having more supportive 

monocyte/macrophages is correlated with favorable prognostic risk but shows no 

difference in overall survival. 

There is extraordinary plasticity in the functional activity of TAMs, whose 

phenotype changes depending on tumor subtype and the surrounding tissue 

microenvironment.122 Our results indicate that CSF1Rhi cells show extensive 

reprogramming in AML patient samples compared to healthy donor samples, 

particularly through the increased cell-surface expression of HLA-DR and CD33. 

HLA-DR is an MHC class II molecule whose expression is found on pro-

inflammatory, classically activated TAMs. Enrichment of HLA-DR-expressing 

TAMs has been shown to correlate with better overall survival in non-small cell lung 

cancer247 and ovarian cancer.248 CD33, a sialoadhesin molecule generally expressed 

on myeloid-lineage cells, has been identified as a marker on myeloid-derived 

suppressor cells (MDSCs),249,250 but the role of CD33+ supportive 

monocytes/macrophages remains poorly understood.251 Overall, the functional 

significance of the various CSF1Rhi cell populations identified in this study reflects 

the complexity of TAM phenotypes, which often defy the traditional M1/M2 

classification,214 and provide yet another distinct supportive-cell surface marker 

phenotype that has been identified in many other cancers.252 

One remaining question is the extent to which CSF1R ligand(s) contribute to 

CSF1R inhibitor sensitivity. We demonstrate that the addition of CSF1 to AML 

patient samples increases leukemia cell growth preferentially in samples sensitive to 
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CSF1R inhibition (Figure 8.4A-B), suggesting a ligand-dependent mechanism. We 

did not find an association between the level of CSF1 in patient sample plasma (22 

bone marrow aspirates; 27 peripheral blood) and GW-2580 sensitivity (Figure 8.12A-

D) (IL-34 could not be detected in 28 samples; data not shown). Because CSF1 is 

known to be secreted by bone marrow stromal cells,253 we isolated mesenchymal 

stromal cells from primary AML patient samples and measured the concentration of 

CSF1 in stromal cell conditioned media by ELISA. There was no association 

between the level of CSF1 and the GW-2580 sensitivity of the samples from which 

the stromal cells were isolated (Figure 8.12E), suggesting that the CSF1 ligand-

dependent mechanism could be a localized, autocrine stimulation of CSF1Rhi cells. 

 The contribution of HGF signaling to this supportive-cell-dependent 

phenotype is intriguing, considering that autocrine HGF signaling has been 

previously identified in AML by Kentsis et al.254 They found HGF and MET co-

expression on 58/138 AML patient samples by immunohistochemistry, and 5/13 

samples showed phosphorylated MET on CD34-selected primary blasts by capillary 

isoelectric focusing electrophoresis nanoimmunoassay.254 In addition, while we do 

not know the mechanism of crosstalk between the AML tumor cells and the 

supportive CSF1Rhi cells, there is evidence that interferon beta stimulates HGF 

production in monocytes.255 Notably, our data supports a paracrine signaling 

mechanism in which supportive cells not only secrete HGF but other cytokines, as 

evidenced by the rescuing of cell viability after GW-2580 exposure using HS-5-

conditioned media. There are likely multiple cytokine/growth factor pathways 

responsible for the CSF1R-dependent leukemia cell survival. Perhaps CSF1R-
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sensitive AML comprises an earlier stage of disease development, with dependence 

upon signaling from CSF1Rhi supportive cells for their survival. Eventually, possibly 

due to a genetic perturbation, the disease becomes modified, with AML cells either 

producing their own supportive cytokines (including HGF) or gaining independence 

from supportive signaling entirely through the acquisition of adverse-risk mutations. 

Indeed, this model is consistent with our observation of a higher proportion of 

CSF1R-resistant cases carrying adverse risk features of disease. 

Overall, we have identified a new role for tumor-supportive cells in AML 

biology as well as a novel therapeutic approach for targeting survival signaling 

essential for leukemia survival. Based on our findings, we propose using CSF1R 

inhibitors as a promising targeted therapeutic agent against AML. 
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Figure 8.1 Ex vivo AML patient sample screen reveals that knockdown/inhibition 

of CSF1R reduces leukemia cell survival in >20% of samples.  

(A) Schematic of screening primary AML patient samples against small-molecule 

inhibitors and siRNAs against the tyrosine kinome to identify new therapeutic 

targets. 

(B) siRNA tyrosine kinome screen (n = 93 kinase siRNAs) identifies CSF1R as the 

top “hit” in primary AML patient samples (n = 157 or 162) to significantly reduce 

cell viability. 

(C) High degree of specificity among the CSF1R-targeted small-molecule inhibitors 

GW-2580, ARRY-382, and JNJ-28312141, compared to other Class III receptor 

tyrosine kinases. Data from [1] Davis et al198 and [2] Wright et al199. 

(D) Strong correlation observed between GW-2580 area under the curve (AUC) and 

z-score of the viability from siCSF1R compared to that of other tyrosine kinase 

siRNAs (n = 162 patient samples). Significance determined by Spearman’s rank 

correlation.  

(E) siCSF1R has the strongest correlation and most significant association with GW-

2580 AUC in the siRNA tyrosine kinome screen. Slope of linear regression line 

calculated for each siRNA as indicated in (D) was plotted against the p-value, 

determined by significance test for linear regression. 

(F) Profile of sensitivity to GW-2580 across the cohort of primary AML patient 

samples (n = 315). The relative position of representative dose-response curves (G) 

and (H) are indicated. 
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(G-H) Representative dose response curves for a (G) sensitive and (H) non-sensitive 

primary AML patient sample to GW-2580. 
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Figure 8.2. Resistance to CSF1R inhibitor is associated with adverse prognostic 

risk gene mutations and cytogenetic abnormalities.  

(A) GW-2580 AUC from primary AML patient samples (n = 315) was compared for 

a multitude of clinical and genetic characteristics, with number of samples with 

evaluable data and the p-value listed for each characteristic. Prognostic risk was 

determined using the European LeukemiaNet guidelines for acute myeloid leukemia 

(see Döhner et al20). The presence/absence of translocations was determined from 

karyotype. Only translocations that were found in ≥2 patients were considered. 

Mutational data was collected either by targeted sequencing (OHSU GeneTrails 

panel using Ion Torrent), whole exome sequencing, or targeted PCR-based methods 

(FLT3-ITD and NPM1). Significance was determined using either Mann-Whitney or 

Kruskal-Wallis tests (for categorical variables) or Spearman’s rank correlation (for 

continuous variables). 

(B) GW-2580 AUC among the patient population with clinical data (n = 202 

samples from 199 patients), subdivided into de novo (n = 158), secondary (n = 24), 

and relapsed (n = 20) AML disease presentation categories. Statistics were calculated 

on subdivided categories by Kruskal-Wallis test with Dunn’s multiple comparisons 

test. 

(C) Kaplan-Meier survival curve of patients with AML with both clinical and 

survival data (n = 173), grouped by the response of their corresponding ex vivo 

primary sample to GW-2580: sensitive (0-20th percentile), indeterminate (20th-80th), 

and resistant (80th-100th). Statistics determined by log-rank test. 
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Figure 8.3. CSF1R is expressed not on the bulk leukemia population in primary 

AML patient samples but on a small subpopulation of supportive cells.  
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(A) Schematic diagram of CyTOF analysis to profile CSF1Rhi cells in primary AML 

patient samples. 

(B) Percentage of CSF1Rhi cells in primary samples from patients with AML (n = 66) 

and healthy donors (n = 11). 

(C-D) Violin plots of expression intensity of other cell surface markers in CSF1Rhi 

cells from (C) AML patient and (D) healthy donor samples. 

(E) Correlation of the proportion of CSF1Rhi cells in primary AML patient samples 

with the sample’s response to GW-2580. Significance determined by Spearman’s 

rank test. 

(F-G) Representative CyTOF plots of CSF1R expression in primary AML patient 

samples that show (F) sensitivity and (G) resistance to GW-2580. 

(H-I) Heatmap of cell surface marker expression among all CSF1Rhi cells in (H) 

primary AML patient sample cohort and (I) healthy donors. Subgroups of CSF1Rhi 

cells determined by unsupervised hierarchical clustering of surface marker 

expression. Dashed red line indicates the dendogram cutoff height. 

(J) Cell-surface marker expression (median arcsinh) in CSF1Rhi cells for AML 

patient and healthy donor samples. 
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Figure 8.4. HGF stimulates growth in CSF1R inhibitor sensitive samples and its 

secretion is regulated by CSF1R activation.  

(A) Schematic of analysis connecting cytokine growth assay results (data from Carey 

et al226) with CSF1R inhibitor sensitivity. 
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(B) Cytokines and growth factors that increase AML cell growth are significantly 

associated with sensitivity to GW-2580. Data represents log2 fold change of GW-

2580 AUCs between responders and non-responders (n = 68 primary AML patient 

samples and 94 cytokines/growth factors) versus the unadjusted p-value, determined 

by Student’s t-tests. 

(C) Schematic of evaluating cytokine secretion after stimulation/inhibition of CSF1R 

in primary AML patient samples (n = 15). 

(D-E) Change in cytokine levels in conditioned media of primary AML patient 

samples after (D) CSF1R stimulation and (E) CSF1R inhibition. Cytokine levels for 

each patient sample are normalized to untreated and ranked by median value. 

(F) Difference in rank order of cytokines from (D) and (E) identifies cytokine 

secretion profile associated with up-regulated and down-regulated CSF1R activity.  

(G) Baseline HGF levels in primary AML patient samples correlate with GW-2580 

sensitivity (n = 10). Significance determined by Spearman’s rank correlation. 
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Figure 8.5. Sensitivity to CSF1R inhibitors correlates with MET inhibitor 

sensitivity and is eliminated after external HGF stimulation. 

(A-C) Strong correlation in primary AML patient samples (n = 315) between GW-

2580 sensitivity and sensitivity to three MET inhibitors: (A) crizotinib, (B) foretinib, 

and (C) SGX-523. Significance determined by Spearman’s rank correlation. 
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(D-G) GW-2580 dose-response curves for 4 primary AML patient samples treated 

with recombinant HGF (1µg/ml), HS-5-conditioned media, or untreated. Error bars 

represent mean ± SEM (n = 4 replicates); non-linear curve fitting conducted using 

least squares regression. Significance determined by one-way ANOVA on the area 

under each curve with Dunn’s test for multiple comparisons. 

(H) Model of CSF1R inhibitor sensitivity in primary AML patient samples resulting 

from paracrine secretion of cytokines by CSF1R-expressing supportive cells. 

 

 



 132 

 

 

Figure 8.6. CSF1R inhibitors induce apoptosis in primary AML patient samples, 

not healthy donors, and patient sample sensitivity strongly correlates across all 

inhibitors. 
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(A-B) Percent apoptosis after 24-, 48-, and 72-hour exposure to 10µM GW-2580 or 

ARRY-382 in two primary AML patient samples: (A) 18-00173 and (B) 18-00179. 

The percentage of apoptotic cells for each patient sample was normalized to 

untreated control cells to account for sample-specific variations in cell viability. 

(C-E) Spearman correlation and associated p-value for (A) GW-2580 AUC vs. 

ARRY-382 AUC (n = 244 patient samples); (B) GW-2580 AUC vs. JNJ-28312141 

AUC (n = 305 samples); and (C) ARRY-382 AUC vs. JNJ-28312141 (n = 243 

samples). 

(F-J) GW-2580 dose-response curves for MNCs isolated from five healthy donors: 

(F) 07-00332, (G) 07-00363, (H) 08-00007, (I) 08-00073, and (J) 08-00236. AUCs 

determined by probit regression (see Supplemental Methods). 
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Figure 8.7. Individual correlation graphs of CSF1R inhibitor sensitivity for each 

clinical and genetic characteristic evaluated in this study. 
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(A) Comparison of GW-2580 AUC and GW-2580 IC50, specimen type, patient age, 

patient gender, WBC count, and prognostic risk. Black bars represent mean ± SEM; 

statistics determined by Spearman’s rank correlation (GW-2580 IC50, age, and WBC 

count), Mann-Whitney test (gender), and Kruskal-Wallis test with Dunn’s multiple 

comparison’s test (specimen type and prognostic risk) if necessary.  

(B) Comparison of GW-2580 AUC between patient samples with or without 

karyotypic abnormalities commonly observed in AML. Black bars represent mean ± 

SEM; significance determined by Mann-Whitney test. 

(C) Comparison of GW-2580 AUC between mutant or wildtype patient samples in 

genes commonly mutated in AML. Black bars represent mean ± SEM; significance 

determined by Mann-Whitney test. 
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Figure 8.8. No correlation between CSF1R inhibitor sensitivity and differences in 

overall survival or disease presentation. 

(A) Table comparing the distribution of the CSF1R inhibitor sensitivity subgroups 

across de novo (n = 161), secondary (n = 23), and relapsed (n = 21) AML patient 

samples that had associated clinical data. 

(B-D) Kaplan-Meier survival curve of patients with both clinical and survival data 

whose disease at the time of sample collection presented as (B) de novo (n = 140), (C) 

secondary (n = 20), and (D) relapsed (n = 16) AML, divided into the corresponding 

CSF1R inhibitor sensitivity subgroups. Significance determined by log-rank test. 
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(E) Comparison between time to relapse for the AML patient population (n = 37 

patients with eventual relapse) among the CSF1R inhibitor sensitivity subgroups. 

Significance determined by Spearman’s rank correlation. 
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Figure 8.9. CSF1R is not expressed on leukemia blasts from primary AML patient 

samples.  

(A) Gating strategy for flow cytometry analysis of primary AML patient samples to 

identify CSF1R+ cells. 

(B-C) Overall, CSF1R is not expressed on the CD34+ leukemia blasts from two 

primary AML patient samples, (B) Sample 1 and (C) Sample 2. 
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(D) As a positive control, CSF1R is expressed on a significant proportion of GDM-1 

cells, an AML cell line with an activating mutation in CSF1R (Y571D). 
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Figure 8.10. CSF1Rhi cells cluster into unique subgroups in AML patient samples 

that correlate differently with ex vivo GW-2580 response. 
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(A) Violin plots of CSF1R expression intensity in AML patient samples (n = 66) and 

healthy donors (n = 11). 

(B-C) Association between percentage of CSF1Rhi cells and (B) FLT3-ITD status (n 

= 58 patient samples) or (C) FAB morphology (n = 11). Significance for (B) 

determined by Mann-Whitney test; significance for (C) determined by Kruskal-

Wallis test. 

(D-E) Violin plots of cell-surface marker expression intensity for CSF1Rhi cell 

subgroups in (D) AML samples and (E) healthy donors. 

(F) Percentage and number of CSF1Rhi cell subgroups for AML patient samples, 

ranked in order of GW-2580 AUC.  

(G) Correlation between CSF1Rhi cell subgroup percentage and GW-2580 AUC for 

each CSF1Rhi subgroup in AML patient samples. Significance determined by 

Spearman’s rank correlation. 
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Figure 8.11. Significant correlation exists between inhibitors of MET in AML 

patient samples. 

(A-C) Correlation between the area under the curve for MET inhibitors (A) 

crizotinib and foretinib, (B) crizotinib and SGX-523, and (C) foretinib and SGX-523 

in AML patient samples (n = 300). Significance determined by Spearman’s rank 

correlation. 
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Figure 8.12. CSF1R inhibitor sensitivity is not associated with CSF1 levels in 

AML patient samples or sample-derived stromal cells.  

(A-C) No significant correlation between CSF1 concentration in patient plasma and 

GW-2580 sensitivity for primary AML patient samples isolated from (A) peripheral 

blood (n = 27) and (B) bone marrow (n = 22), or from (C) both sample types 

combined. 

(D) No difference between CSF1 concentration in plasma from bone marrow and 

peripheral blood samples. 

(E) No correlation observed between CSF1 levels secreted from stromal cells isolated 

from primary AML patient samples, and the GW-2580 sensitivity of those samples 

(see Supplemental Methods). 
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9 Discussion 

The results described in this dissertation identify colony stimulating factor 1 

receptor (CSF1R) as a promising therapeutic target that eliminates the tumor 

microenvironment in chronic lymphocytic leukemia (CLL) and acute myeloid 

leukemia (AML) patient samples. The research was compiled into two manuscripts, 

one characterizing CSF1R in CLL, the other CSF1R in AML. For each manuscript, 

a discussion of the implications of these findings on their corresponding subtype-

specific fields of leukemia research was included, and has been faithfully replicated in 

this dissertation (see section 7.5 Discussion for CSF1R in CLL and section 8.8 

Discussion for CSF1R in AML). Therefore, a more thorough discussion integrating 

these two projects—a discussion about their similarities and differences, their 

collective contributions on the field of tumor microenvironment research, and 

intriguing future directions and experiments—will be included here. 

One of the most prominent similarities is the comparable percentage of CLL 

and AML samples that demonstrate sensitivity to CSF1R inhibitors. For CLL, 

roughly one-quarter of ex vivo patient samples showed sub-micromolar sensitivity to 

two CSF1R-specific inhibitors, GW-2580 and ARRY-382 (Figure 7.1), sensitivity 

values that correspond roughly to the physiologically relevant concentrations in 

animal studies. Additionally, for AML, roughly one-quarter of ex vivo patient 

samples were considered “hits” using the RNAi-assisted protein target identification 

(RAPID) siRNA functional screen (Figure 8.1B). Notably, CLL patient samples 

were not evaluated using the RAPID screen because CLL cells have limited survival 
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ex vivo and cannot sufficiently withstand the required electroporation step (see 

Electroporation of siRNA Library BioRad (AML Patient Sample) Protocol). 

Although additional research is required to directly correlate ex vivo screening 

data with clinical trial results in patients with CLL and AML, the percentage of 

sensitive samples observed during my research is similar to the percentage 

demonstrated in clinical trials from other cancer types. Two common endpoint 

measurements for clinical trials are (1) the objective response rate (ORR), or the 

percentage of patients whose disease decreases or disappears (achieves partial or 

complete response); and (2) the clinical benefit rate, or the percentage of patients 

whose disease decreases or remains stable over time. Based on preliminary published 

data from the CSF1/CSF1R clinical trials in patients with various solid tumors, 

Hodgkin’s lymphoma, and glioblastoma, the average ORR and CBR, and the 

corresponding standard error of the mean, is 4.42 ± 6.02 (n = 7) and 32.3 ± 19.3 (n = 

6), respectively (see Table 6.1). These results suggest that the predicted outcome of a 

minority of leukemia patients responding to CSF1R inhibitor treatment might be 

more universal across cancer subtypes. 

In terms of better understanding this minority of leukemia patients, or 

predicting patient sample response to CSF1R inhibitor treatment, it is worth noting 

that the conclusions were similar in both CLL and AML projects. I identified no 

singular genetic and clinical characteristics that could biologically explain CSF1R 

inhibitor sensitivity. This underscores the universality of targeting the tumor 

microenvironment, that CSF1R inhibitors are effective across AML and CLL 

regardless of their genetic or cytogenetic abnormalities. Notably, the AML patient 
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samples utilized in my dissertation research were part of the Beat AML Project and 

had detailed clinical annotations and next-generation sequencing. Consequently, I 

made substantially more detailed comparisons between patient characteristics and 

CSF1R inhibitor sensitivity, including evaluating prognostic risk guidelines that 

combined multiple genetic abnormalities, overall survival data, and time to relapse.  

Based on some of these comparisons, I hypothesized that AML samples with 

CSF1R inhibitor resistance might represent a later stage of leukemia development 

than sensitive samples. Because I observed a significant correlation between multiple 

adverse-risk mutations or cytogenetic abnormalities and CSF1R inhibitor resistance 

(Figure 8.2), I postulated that the disease in these patients becomes generally 

resistant to any kind of treatment (see Discussion). In addition, I discovered that 

relapsed AML samples have significantly higher GW-2580 area under the curve 

(AUC) than that of de novo or transformed AML samples (Figure 8.2B). This is a 

similar correlation observed in CLL between treatment-naïve and relapsed samples 

(Figure 7.7E). Additionally, although overall survival data was not available for CLL 

patients, I hypothesize that there would be no association between survival and 

CSF1R inhibitor sensitivity, as observed in AML patients. 

One of the most promising future directions for this dissertation research is 

the multicenter phase II clinical trial currently in development at Oregon Health & 

Science University. The clinical trial is based largely on the preliminary data that 

inspired the development of these two projects (i.e. the appearance of CSF1R-

inhibitor-sensitive AML and CLL samples in the functional screening data). 

Reciprocally, these projects themselves have inspired correlative studies to be 
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conducted throughout the course of the trial. Ultimately, the clinical trial will 

evaluate the effectiveness of an as-yet-undisclosed CSF1R small-molecule inhibitor in 

AML and CLL patients, based on the classification of “sensitive” versus 

“insensitive” groups by patient sample functional screening. 

The primary endpoint for the clinical trial is objective response rate (ORR), 

and the secondary endpoints are the incidence of treatment-related toxicity 

(identified as Grade 3 or higher), duration of response, 12-month progression-free 

survival, and 12-month overall survival. To be included in the trial, patients must 

have histologically confirmed CLL or AML (acute promyelocytic leukemia patients 

are excluded), including a bone marrow biopsy and aspirate or lymph node biopsy. 

They must be at least 18 years old with normal organ and bone marrow function, no 

uncontrolled infections or active hepatitis, and an ECOG (Eastern Cooperative 

Oncology Group) performance grade ≤ 2 (Karnofsky grade ≥ 60).256 CLL patients 

must have received at least two prior therapies and possess measurable relapsed or 

refractory disease in accordance with the 2008 International Workshop on Chronic 

Lymphocytic Leukemia guidelines.257 AML patients must have relapsed or refractory 

disease, having received at least one prior therapy. 

Patients will be assessed throughout the trial with bone marrow biopsies 

collected after treatment cycles 1-3, and then Q3 cycles, where hematologic response 

and transfusion dependence will be measured. Serial samples will be obtained over 

time to evaluate any changes that might occur within the tumor (gene expression or 

genetic/cytogenetic abnormalities), or within the microenvironment, that could 

contribute to treatment resistance. The purpose of obtaining these samples is to 
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determine if a clinical or genetic signature can be identified in patients to predict 

response, and to ascertain how resistance can develop in patients. 

Notably, according to the clinical trial protocol, a “sensitive” sample is one 

whose half maximal inhibitory concentration (IC50) for a particular drug is <20% of 

the median for all patient samples tested with that drug. This measurement has been 

the standard methodology by which our lab has quantified the functional screening 

data, established before I began my dissertation research.195 Now, based upon the 

results of my research, I would recommend modifying this standard in a couple of 

strategic ways. First, I would consider replacing IC50 with AUC, since AUC is a 

better single parameter for combining potency and efficacy, provided that the drug 

range being evaluated is held constant.242 Although IC50 is more recognizable 

clinically, it might not necessarily be the optimal pharmacokinetic “driver for 

efficacy,” or the variable that correlates best with patient response, so multiple 

mathematical representations of drug sensitivity should be considered in preclinical 

profiling.258 

Second, I would suggest replacing that definition of “sensitivity” with other 

definitions or conventions used in this dissertation. Specifically, the definition could 

be replaced by the overall percentage of CSF1Rhi cells (as determined by CyTOFm; 

Figure 8.3) or its relative sensitivity percentile (by AUC) when compared to the 

majority of other patient samples (Figure 8.2). Ultimately, conducting a 

                                                 

m Relying on CyTOF for clinical treatment would be challenging due to the time-consuming nature of 

CyTOF analysis, and defining an exact percentage cutoff would require additional, more precise 

experiments. However, modifying the antibody for traditional fluorescence-based flow cytometry, 

which is conducted routinely for patients in clinic, could be an effective substitute. 
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comprehensive analysis of the incoming trial data will determine the best long-term 

strategy of evaluating sensitivity. 

Throughout the duration of the trial, various monitoring and correlative 

studies will be conducted. First, the pharmacokinetics of the CSF1R inhibitor will be 

evaluated by measuring the plasma inhibitory activity (PIA), which is the percent 

decrease of the phospho-CSF1R band by immunoblotting after drug treatment 

compared to a baseline measurement.259 This is not only crucial information for the 

drug manufacturer to assist in developing that drug for other indications, but also for 

evaluating the functional screening data. Correlating results from in vitro (or ex vivo) 

and in vivo drug experiments can be challenging and vary depending on the type of 

inhibitor,260 and the clinical trial would provide excellent data on correlating the 

IC50 or AUC from our ex vivo patient sample functional screening with the 

appropriate clinical dose for the same patient. As an extension of this monitoring 

study, and partially as a confirmation of the predictive power of the ex vivo functional 

screening assay, any measured change to patient sample sensitivity before and after 

CSF1R inhibition treatment will be correlated with patient response to treatment. 

Second, the effect of CSF1R inhibitor treatment will be evaluated on immune 

cell subpopulations (cytotoxic T cells, etc.) by CyTOF, especially to evaluate the 

potential reversal of reprogramming or anergy induction by the CSF1R-expressing 

cells. As previously mentioned, immune cell subpopulations can be reprogrammed 

by TAMs and other supportive monocytes/macrophages (see section 7.3 

Introduction for CLL and section 8.4 Introduction for AML). This analysis has 

particular clinical interest because the effectiveness of anti-CSF1R treatments is 
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currently being investigated in clinical trials in combination with immunotherapy 

agents.122 Simultaneously blocking the tumor-promotional effect of CSF1R-

expressing cells and stimulating immune function and anti-tumor response could 

have significant lasting benefit for CSF1R-inhibitor-sensitive patients. 

Third, the downstream signaling within CSF1R-expressing cells will be 

measured using a combination of plasma membrane phosphoproteomics (by 

CyTOF) and single-cell RNA (scRNA) sequencing. The results from these 

experiments should be compared to the signaling changes in blood cells from healthy 

donors after CSF1R inhibitor treatment. This will help determine if reprogrammed 

CSF1R-expressing cells have differential activation of regulatory pathways, and if 

these pathways are differentially perturbed after exposure to CSF1R inhibitors. 

These studies also address a remaining question from this dissertation 

research—namely, whether differential regulatory pathways are being activated in 

reprogrammed CSF1R-expressing cells. To answer this question, it is first important 

to understand what is currently known about reprogrammed supportive 

monocytes/macrophages. For CLL, as mentioned previously (see CSF1R in chronic 

lymphocytic leukemia), the extent of phenotypic reprogramming in nurse-like cells 

has been only partly studied, although it has gained more attention in recent 

studies.157,160,216 However, highly CSF1R-expressing nurse-like cells do not appear to 

constitute the entire population of nurse-like cells,157 and if they represent a 

subpopulation of nurse-like cells, the degree to which phenotypic reprogramming has 

impacted these cells remains unknown. 
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To address the extent of phenotypic reprogramming in CSF1R-expressing 

cells, I recommend scRNA sequencing of CSF1R-expressing cells in AML and CLL 

patients, preferably before and after CSF1R inhibitor treatment. Recently, there were 

prominent scRNA sequencing studies performed on CLL patient samples.261,262 

However, in both of these studies, the patient sample cells were sorted by flow 

cytometry to select only CLL cells (CD19+/CD5+) prior to sequencing, and 

therefore any supportive cells (including CSF1R-expressing cells) would have been 

eliminated from the downstream analysis.  

I take inspiration from recent studies on other cancer types, which provide 

examples of effective methodological approaches to address this question. To 

conduct comprehensive immune and tumor cell profiling, Chung et al performed 

scRNA sequencing on 515 cells from 11 patients with breast cancer.263 Using 

chromosomal gene expression patterns and a tumor-purity analysis method called 

ESTIMATE,264 the researchers identified 175 tumor-associated immune cells, further 

subdividing them into B cells, T cells, and macrophages, based on established gene 

ontology terms.265 Another study conducted by Müller et al more directly compared 

phenotypic differences in human glioma TAMs with macrophages isolated from 

mouse models of glioma and from normal human tissue.266 They alternately perform 

CD11b+ selection and no selection on glioma cells, identifying TAMs by positive 

macrophage-associated gene expression and exclusion of somatic tumor 

mutations.266 

Based on these methodologies, I recommend performing a CSF1R selection 

on patient samples and analyze the scRNA sequencing results under two conditions: 
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(1) before and after CSF1R inhibitor treatment; and (2) between leukemia patient 

samples and healthy donors. I found that CSF1R inhibitors eliminate nurse-like cells 

from culturing onto plastic in ex vivo patient samples (Figure 7.4). However, the 

consequence of CSF1R inhibitors on AML patient samples is unknown. There are 

two possible mechanisms of action for CSF1R inhibitors in AML patients: (1) 

CSF1R inhibitors are eliminating CSF1R-expressing cells, thereby depleting their 

secretion of essential growth factors; or (2) CSF1R inhibitors are reprogramming 

CSF1R-expressing cells, transitioning them away from a tumor-promotional 

phenotype and preventing their secretion of growth factors. Because there is no well-

characterized population of “nurse-like cells” in AML, nor are there long-term 

culturing assays designed to isolate supportive cells from the surrounding tumor 

cells, conducting CyTOF experiments before and after CSF1R inhibitor treatment 

would provide an essential, definitive answer to this lingering question. 

The results from these sequencing studies would inspire additional 

downstream experiments. Depending on the transcriptional pathways that are 

identified, one could manipulate primary patient samples ex vivo using various 

specific monoclonal antibodies or cytokines/growth factors and determine if CSF1R-

expressing cell reprogramming can be reversed, or determine how normal CSF1R-

expressing cells can be reprogrammed into tumor-supportive 

monocytes/macrophages. These studies could enable the transition from ex vivo 

patient sample studies into patient-derived xenograft (PDX) mouse models, in which 

primary patient samples would be injected into mice along with reprogrammed 
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CSF1R-expressing monocytes, opening up entirely new offshoots of research 

possibilities. 

Fourth, the effectiveness of combining CSF1R small-molecule inhibitors with 

other targeted small-molecule inhibitors will be evaluated. It should be noted that the 

“targeted” small-molecule inhibitors to which I am referring generally target multiple 

kinases other than their intended primary target. While there are some CSF1R small-

molecule inhibitors that are extremely specific for CSF1R (e.g. GW-2580 and 

ARRY-382), other inhibitors designated as “CSF1R inhibitors” are less specific, 

especially against other Class-III receptor tyrosine kinases (e.g. JNJ-28312141 and 

most inhibitors currently in clinical trials122; see Figure 8.1C). 

There are promising targeted therapies to combine with CSF1R small-

molecule inhibitors. In CLL patient samples, I demonstrated the synergistic 

combination of GW-2580 with both ibrutinib and idelalisib (Figure 7.5). As 

previously mentioned, these two therapies have increased the survival rate for CLL 

patients and are rapidly becoming standard-of-care treatment strategies. This raises 

the likelihood of combining these therapies with CSF1R inhibitors if this preliminary 

clinical trial succeeds, and, if so, these results will encourage inclusion in future 

clinical applications. 

Other research from our lab performed similar functional screening of 

hundreds of samples from patients with various hematological malignancies, with 

samples being exposed to multiple combinations of molecularly targeted therapies. 

The results of this screening were recently published by Kurtz et al, in which 58 

AML samples and 42 CLL samples were screened against 48 drug combinations.219 
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Notably, the CSF1R-specific inhibitor ARRY-382 was featured in 7 combinations, 

paired against venetoclax (selective inhibitor of B-cell lymphoma 2, or BCL-2, an 

anti-apoptotic protein), panobinostat (histone deacetylase, or HDAC, inhibitor), JQ1 

(bromodomain inhibitor), quizartinib (FLT3 inhibitor, although it inhibits other 

Class-III receptor tyrosine kinases, including CSF1R), palbociclib (inhibitor of 

cyclin-dependent kinases 4 and 6, or CDK4/6), idelalisib (as mentioned above, a 

phosphatidylinositol-3-kinase delta isoform specific, or PI3kδ, inhibitor), and 

trametinib (inhibitor of mitogen-activated protein kinase kinase, or MEK).219 

From this functional screening data, 3 significantly effective inhibitor 

combinations were found involving ARRY-382 for AML and CLL patients: 

idelalisib and ARRY-382 (for both AML and CLL samples), venetoclax and ARRY-

382 (AML only), and trametinib and ARRY-382 (AML only).219 As previously 

mentioned, I demonstrated that the combination with idelalisib is effective in a 

different set of CLL patient samples, thus providing external validation of these 

newly published findings. The combination with venetoclax is intriguing for multiple 

reasons. The effectiveness of venetoclax was recently demonstrated AML both as a 

monotherapy and in combination with other inhibitors,267 and there are currently 

three clinical trials recruiting patients to combine venetoclax with other targeted 

therapies (ClinicalTrials.gov ID codes NCT02670044, NCT02670044, and 

NCT02391480). Moreover, venetoclax was shown to be effective in CLL patients 

with relapsed/refractory disease and 17p deletion,268 resulting in a Breakthrough 

Therapy designation by the US Food and Drug Administration (FDA) in 2016. The 

third inhibitor combination with trametinib remains understudied, although the 
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results of a phase 1/2 clinical trial examining the effectiveness of trametinib on 

relapsed or refractory myeloid malignancies found preferential efficacy against RAS-

mutant AML.269 Further research would be required to confirm these effective 

combinations and identify the mechanism of action underlying their synergy. 

Importantly, the results from the Kurtz et al combination screening are not 

comprehensive. Although I did not personally evaluate the potential synergy of 

CSF1R inhibitors with other targeted therapies in AML patient samples, the survey 

of clinical and genetic characteristics of patient samples does hypothesize one 

additional combination. I observed that the presence of IDH2 mutations correlates 

significantly with CSF1R inhibitor response (Figure 8.2), suggesting that a 

combination of CSF1R inhibitors with IDH2 inhibitors might be effective in AML 

patients. Moreover, the population of AML patients that could be impacted by this 

combination is not trivial. IDH2 is the fourth most frequently mutated gene in AML, 

impacting roughly 10% of AML patients.24 My results suggest that the number of 

IDH2-mutant patients whose samples exhibit ex vivo sensitivity to CSF1R inhibitors 

is ~5% (frequency of IDH2-mutant patients whose samples are within the top 20th 

percentile of CSF1R sensitivity; see Figure 8.2). I recommend evaluating this 

combination in our ex vivo functional screening, which would prompt further studies 

into uncovering the underlying mechanism. 

It should be mentioned that although this dissertation describes the 

effectiveness of CSF1R-specific small-molecule inhibitors against primary AML and 

CLL patient samples, I did not evaluate the effectiveness of CSF1R neutralizing 

antibodies. Currently, there are 5 CSF1R small-molecule inhibitors and 5 
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CSF1/CSF1R monoclonal antibodies being evaluated in clinical trials for cancer 

patients.122 Based on dozens of multiple in vitro and in vivo studies from researchers 

across many different cancer subtypes, there is no evidence of any pharmacological 

difference between these two categories of CSF1R-targeted therapies in terms of 

effectiveness or clinical tolerance, and both are often described interchangeably.122 

Consequently, I predict I would observe a similar efficacy profile for neutralizing 

antibodies in ex vivo patient sample screenings. Moreover, because the monoclonal 

antibodies would be administered intravenously, and because the bloodstream is the 

home of the tumor itself in leukemia patients, the phenomenon of reduced tissue 

perfusion common to monoclonal antibodies would not be a significant issue. 

 There are notable differences in the experiments performed on CLL and 

AML patient samples, and many of these disparities are based on distinct biological 

differences between the CSF1R dependencies in both leukemia subtypes. For 

example, we published data where we performed CD14+ depletion in CLL patient 

samples (Figure 7.4 and  

 

Figure 7.9). We showed that the percentage of CD14+ cells correlated with CSF1R 

inhibitor sensitivity, and patient samples with greater sensitivity showed a more 

significant decrease in cell viability upon CD14+ depletion. These results inspired 

CD14+ depletion experiments on primary AML patient samples. However, I 

observed no preferential decrease in cell viability or reduction in CSF1R inhibitor 

sensitivity in CSF1R-inhibitor-sensitive samples (data not shown). 
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Initially, I assumed that the phenotype of CSF1R-expressing cells would be 

similar between CLL and AML patient samples. However, our CyTOF data showed 

that CD14 is co-expressed on a small majority of CSF1Rhi reprogrammed AML cells 

(Figure 8.3), which was unexpected. Performing depletion studies on more 

commonly co-expressed cell surface markers such as HLA-DR and CD33, markers 

that are indicative of tumor-specific phenotypic reprogramming and were found to 

correlate significantly with CSF1R inhibitor sensitivity, might produce similar results 

to CD14 depletion in CLL patient samples. Later, we attempted a CSF1R-specific 

cell depletion by conjugating a biotinylated CSF1R antibody with streptavidin-coated 

magnetic beads, although technical challenges and time limitations prevented these 

studies from achieving success; perhaps employing alternative techniques, such as 

cell sorting by flow cytometry, would prove more effective. 

Anticipating reviewer comments regarding the CSF1R in AML project 

following the manuscript submission, I conducted rescue experiments on primary 

AML patient samples (data not shown). These experiments address the possibility 

that the cytokines and growth factors secreted by CSF1Rhi supportive 

monocytes/macrophages by themselves can rescue tumor cell viability after exposure 

to CSF1R inhibitors. I exposed primary AML patient cells either to recombinant 

HGF, MCP-1, and IL-8 (at the maximum concentrations used in the growth factor 

assay described in Carey et al226), or media conditioned by immortalized HS-5 

human marrow stromal cell line. These cells were subsequently exposed to dose-

escalating concentrations of GW-2580 and incubated for 72 hours, after which cell 

viability was assessed.  
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I observed a rescue of growth for HS-5-conditioned media, which contains a 

multitude of cytokines and growth factors, as well as rescue of slight CSF1R 

inhibitor sensitivity from the aforementioned cytokines at least one patient sample. 

This observation suggests that HGF, MCP-1 and IL-8 are not the only supportive 

signals provided by the supportive monocytes/macrophages. Additional experiments 

could address this question more definitively, including adding antibodies blocking 

the effects of the cytokines in AML cells and measuring their impact on cell viability. 

Moreover, the aforementioned scRNA sequencing of CSF1Rhi cells could provide 

important answers to the pathways that are upregulated in these supportive cells and 

what combination of growth factors they are producing to enhance leukemia cell 

survival. 
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10 Appendix 

10.1 Detailed Protocols Used in Dissertation Research 

This appendix contains more comprehensive versions of the protocols 

described in the CSF1R in AML portion of this dissertation. Although these 

protocols are discussed in Methods and Supplemental Methods, due to the limited 

space requirements for scientific manuscripts, they do not have sufficient detail to 

completely recreate the experiments. To replicate the work contained within this 

dissertation, or to more thoroughly analyze or understand it, having access to these 

detailed protocols is critically important. 

Some of these protocols are copied directly from standardly implemented 

practices in the Druker/Tyner labs (e.g. “Processing Patient Peripheral Blood and 

Bone Marrow Samples Protocol” and “Electroporation of siRNA Library BioRad 

(AML Patient Sample) Protocol”), and the others were developed and written by me, 

unless otherwise indicated. There are two components of computational data 

analysis that have not been included in this section but are been described in 

significant detail in Supplemental Methods. The first is accessing the AML patient 

sample information from the Beat AML database, which was performed by Kevin 

Watanabe-Smith; and the second is evaluating the AML patient survival data, which 

was performed by Mara Rosenberg. Both of these forms of analysis were conducted 

in R, a statistical programming language, and R Markdown files detailing the exact 

computational instructions for analyzing and acquiring the data are available upon 

request from both researchers. 
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This appendix does not contain more comprehensive protocols from the 

CSF1R in CLL portion of this dissertation, mostly because many of those 

experiments—the CD14 depletion of mononuclear blood cells from CLL patient 

samples, the combination experiments using CSF1R inhibitors and targeted small-

molecule inhibitors—were performed by Tyler Sweeney, and that information is 

contained in his personal records and lab notebooks. 
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10.1.1 Processing Patient Peripheral Blood and Bone Marrow Samples Protocol 

This protocol is a reformatted version of the standard patient sample processing protocol used in 

the Tyner/Druker labs. It was last updated on February 9th, 2016, and edited by Christina 

Tognon, Kara Johnson, and Jeffrey Tyner. 

 

Notes on Best Practices and the Patient Sample Database 

 

Patient Sample Viability 

 

• Patient samples collected at OHSU can be stored over night at 4°C. 

• It can take 4-6 hrs to process a sample depending upon the size and what 

needs to be done with it. 

• If a sample is FedEx-ed in, it should be processed the same day. 

• Samples arriving from overseas may also be viable and must be processed the 

same day. 

• If samples are left too long before processing it may not affect initial viability but will 

impact viability at a later time point. 

 

Entering Patient Sample Information into the Database 

 

1. If sample is from OHSU, contact Brian Junio (juniob@ohsu.edu) with the 
MRN and initials of the patient and consent/HIPAA forms if you have them. 

If you pick up consent and HIPAA forms, make sure initials, signatures and 
dates are in the appropriate place.  

2. Enter database computer system using your own login.  Go through: OHSU--
Database—Beat AML (LLS SCOR) Web Portal—Login 
(https://octri.ohsu.edu/lls_scor/login).  

3. Check the MRN (Medical Record Number) to see if patient has been seen 
previously.  

4. View Related—Hem Malignancy—Specimen—Create New—Specimen. A 
form will open. 

5. Assign a Lab ID number (current year 000 sample #; ie 16-00021).  Ensure 

the number has not been previously used. 
6. Record the same information in the LLS database. NOTE: Date Received = 

processing date. 

 

Nomenclature for Database 

 

• Must try to use the same nomenclature when entering values for specimen 

volumes, cell yields, etc.  

• There is no way to make these into pull-down menu format, since they are 
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simply numbers that will be different every time.  

 

Please use the following formats when entering sample information: 

 

• Volume of initial specimen:  just the number, no "ml" afterwards 

• Resuspension volume:  same as above 

• Dilution for cell count:  the actual ratio, ie "1:200" instead of "200" 

• Cell concentration: the actual number, not a shorthand. ie 5000000 instead of 

5e6 

• Cell Viability (%): just the value, no % sign (i think we were ok on this one) 

• Total Viable Cells: same as cell concentration, the actual number, not 

shorthand 

• Plasma:  Cell concentration, just the number, no “ml” afterwards (for 

example 1.0 or 0.5). Entered under the cell number field on the derivative 

upload sheet, and not in the cell concentration field under Specimen.  

 

Protocol 

 

Isolating mononuclear cells 

 

1. Collect plasma from both peripheral blood and bone marrow by spinning the 

tube(s) at 2500rpm for 10min to separate out the plasma.  Move the plasma 

into a barcoded cryotube (0.5 - 1ml/tube) and flash freeze. Mix the remaining 

cells and proceed to next step. 

2. Prepare centrifuge tubes with Ficoll-Paque (Pharmacia). Place 4ml Ficoll in 

15ml conical tubes. Often samples require two or more of these. For samples 

with a larger starting volume or apheresis samples, place 20ml Ficoll in 50ml 

conical tube.  

3. Dilute peripheral blood 1:1, bone marrow 1:4 or apheresis 1:10 with warmed 

IMDM (GibcoBRL). 

4. Carefully layer 10ml diluted sample on top of Ficoll layer. If using 50ml 

conical layer up to 25ml diluted sample on top of Ficoll layer. 

NOTE: If sample contains significant clotting, do not add the clots to the Ficoll. To 

maximize MNC recovery from the clots, pipet the clots into a separate 50ml falcon 

tube, add 20-25ml of patient wash solution and vortex briefly. Incubate this tube on 

ice for 5-10min, vortex briefly again, and filter mixture into a new 50ml tube using 

a 70um cell strainer (BD Bio). Remove the filter and spin down the filtrate at 

1200rpm for 10min. Aspirate off supernatant and proceed with RBC lysis protocol 

as usual. These MNC cells may then be resuspended with their corresponding 

sample’s other Ficolled cells prior to counting. 
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5. Centrifuge at 1300rpm, 20min, no brake, at RT. RBCs will move down 

through the Ficoll and nucleated cells will stay on top of the Ficoll layer. 

6. Aspirate top plasma to within 2mls of interphase or Buffy coat layer 

containing the peripheral blood mononuclear cells (PBMCs), which appear as 

a white band on the interphase layer (see below image). 

 
7. With a 5ml pipet, draw up the mononuclear cells and transfer to a clean 50ml 

tube. Try to minimize the amount of Ficoll taken up. Bring up volume to 

50mls with IMDM to wash out residual Ficoll.  NOTE: Tubes containing 

blood should be disposed of in red biohazard waste bag. Deface patient 

information before throwing tubes out. 

8. Centrifuge mononuclear cells 1100rpm, 10mins, low brake, at RT.  

NOTE: You can use 1200 rpm. If cell counts are high (probably >5x108), 

sometimes an extra 5 min is needed to pellet all cells. 

9. RBC Lysis:  ALL STEPS MUST BE PERFORMED ON ICE. Resuspend 

the sample in 5-20ml cold, sterile 1X ACK lysis buffer (Patient sample TC 

room refrigerator).  Mix by inverting several times. Incubate on ice 15-20 min. 

 

10X LYSIS REAGENT BUFFER (ACK) 

• 41.3g NH4Cl  

• 5g KHCO3  

• 0.1g EDTA  

Dissolve in 500ml H2O and filter sterilize with 0.2uM filter unit. To make 

1X working solution, dilute 10X in sterile H2O. 

 

10. Centrifuge at 1100rpm, 10min, low brake, at RT. 

NOTE: You can add IMDM to 50mls after ACK and then spin instead of 

a second wash step (step 11). 

11. Aspirate ACK buffer and resuspend white blood cell pellet in IMDM. Repeat 

spin. 
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12. Aspirate supernatant avoiding the cell pellet and resuspend in 3-20mls IMDM 

or Inhibitor media. (NOTE: Inhibitor media is RPMI with 10% FBS (20% for 

CLL). Add βME (0.7ul per 100ml media) and sterile filter.)  Volume depends 

upon size of pellet, although shoot for 1-5x107cells/ml. 

13. Count cells by with Guava Viacount, diluting 1:10 or greater depending on 

pellet size. Concentrated cells: dilute 1:200 or 1:100. Count viable and 

nonviable cells. Determine total cell number as well as cell number per ml 

and % viability. Record numbers in database. 

 

Based on the total number of cells in sample process according to the following: 

(IN ORDER OF PRIORITY) 

 

i) Genomic Pellet:  2.5 million cells or less, maximum 5 million. 

ii) GTC lysate (for RNA):  minimum 2.5 million cells, maximum 10 million. 

iii) Inhibitor Plates:  15 million cells per 3 plates, 20 million for 4 plates. 

Generally try to stick to the ratio of 10,000cells/25ul, making sure to have 

extra volume for plating with EpMotion. 

iv) siRNA plate: 30 million cells. 

v) Frozen Viables:  10 million cells per vial. 

vi) Additional Cell Pellets:  10 million cells per vial. 

 

14. Tubes should be labeled with the sample number, date, and type of sample 

processed (Plasma: Plasma, GTC lysate: GTC, cell pellet: CP, frozen viable: 

FV, and number of cells if frozen viable or cell pellet).  

15. Determine the number of cells/volume to be transferred for each sample type 

and the aliquot cells to the appropriate tubes.  

 

16. Cell pellets:   

a. Place cells into barcoded tubes, spin at 5000rpm for 5mins. 

b. Aspirate the supernatant and flash freeze dried pellets in liquid 

nitrogen. 

c. Scan barcode into database and store at –80oC.  

 

17. GTC lysates:  

a. Prepare GTC lysis buffer by adding 100ul βME per 10mls RLT buffer 

from the Qiagen RNeasy kit. This buffer is stable for 1 month after the 

addition of βME. (Aliquots are found in a box in the sterile H2O 

cabinet in the TC room) 
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b. Place a minimum of 2.5 million cells (5-10 million preferred) in a bar 

coded tube.  Pellet at 5000rpm for 5min. Remove as much liquid as 

possible. 

c. VIGOROUSLY break the pellet by vortexing or pipetting.  

d. Add 350-500ul (350ul if less than 5x106 cells, 500ul for anything over 

5x106) GTC lysis buffer and VORTEX IMMEDIATELY AND 

VIGOROUSLY. Flash freeze, scan barcode into database and store at 

–80oC. 

 

18. Frozen Viables: Cells are frozen in 90% FBS, 10% DMSO. 

a. Centrifuge cells to be frozen at 1000rpm for 2-3 mins and aspirate 

supernatant. 

b. Make up 10% DMSO/90% FBS solution.  Use 1ml/vial of cells. Place 

vials in Mr. Frosty and place at –80oC overnight. Remove the next 

day, scan the bar codes and move to liquid nitrogen storage. Mark 

appropriate sheet with location of sample by ID number. 

 

PATIENT WASH SOLUTION 

• To 500mls Dulbecco’s PBS, Ca, Mg free,    500ml 

• Add: Human Albumin Solution 4.5%    10ml 

• Recombinant human DNase (Pulmozyme)  5ml 

• MgCl2 (1.25M; 500X)      1ml 

           Store at 4oC. 

 

19. Inhibitor Plate 

a. Take out plates from -20 freezer (All 4 plates now found in patient 

sample -20 freezer) and place in 37°C incubator for a minimum of 1 hr. 

Do not stack plates while thawing. 

b. After they have thawed completely spin at 3500 rpm, 15 sec at RT. 

c. For patient samples, resuspend 15 million cells in 35ml or 20 million 

cells in 50ml of the appropriate media (see below).  

d. Plating cells with Multidrop: 

i. Turn on Multidrop 

ii. Set the following parameters: 

i. 384 well plate (standard) 

ii. 25ul dispense volume 

iii. flow rate: medium 

iii. Prepare tubing for dispensing: 

i. Aliquot 40mls PBS to a clean 50ml tube. 
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ii. Prime with 5mls 70% ethanol to clear and sterilize 

tubing 

iii. Prime with 10mls PBS 

iv. Prime with 10mls culture media (R10 or R20), then air 

to clear tubing 

iv. Prime with patient sample until sample begins to come 

through. Place first plate on tray and hit start. Once dispensing 

is completed, check to be sure all wells look filled. Remove 

patient sample plate and repeat for remaining plates. 

v. Wash according to instructions on sheet on TC hood. 

 

OR 

 

e. Plating cells with EPmotion: 

i. Open the program: “3 plates 300 uL tool” (in folder “Inhibitor 

Plates 384”) 

ii. Place 300ul tip box and inhibitor plates in the appropriate 

location as shown on program. NOTE: Place an empty trough 

in the second trough rack, position 6. This will be used for the 

first dispense after every aspiration to assure even dispense into 

the inhibitor plates.  

iii. Put troughs in position 6 & 7 of the rack holder. Mix cells and 

put into the trough in position 7. Be very careful when adding 

the cells/media because 35mls will fill the trough very close to 

the top.  

iv. Run the program, making sure to de-select levels, tips and 

locations. Record volume level of cells/media in trough 7 as 

34ml.  

v. When program is finished, make sure to wash out the troughs 

and put in ‘non-sterile’ box. Wash & clean the tip box lid.  

vi. Place plates in the 37°C incubator for 3 days. 

 

20. Perform MTS assay     

a. Using Multidrop: 

i. Turn on Multidrop. 

ii. Set the following parameters: 

1. 384 well plate (standard) 

2. 5ul dispense volume 

3. flow rate: medium 
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iii. Put MTS into a 50ml tube. You will need 2mls MTS per plate, 

plus ~5mls for priming. 

iv. Prepare tubing for dispensing: 

v. Prime with 10% bleach solution to sterilize tubes. 

vi. Prime with 70% ethanol. Then prime with ddH2O Bottle 2. 

vii. Prime with MTS until you see it flowing through. 

viii. Add MTS to plates. Inspect each plate individually to make 

sure that no well is missing MTS, and if necessary, add 5 uL of 

MTS to those wells. 

ix. Mix on 384well setting with MixMate and place back in 

incubator until ready to read. Make sure to pop all large 

bubbles before reading using either an insulin syringe or a hair 

dryer. 

x. Clean Multidrop tubing as instructed on sheet. 

b. Using EPmotion:       

i. Open the program: MTS 3 or 4 plates (in folder Inhibitor Plates 

384) 

ii. Take a sterile trough and add 8-9 mL of MTS solution (in cold 

room common stock shelf, 2.5-3.0 ml per plate).  

iii. Place trough in position 7 and plates & 50 uL tips in the 

appropriate locations 

iv. Run the program deselecting levels & locations  

v. Once finished, place each plate individually on the Eppendorf 

MixMate and mix each plate with the ‘384’ settings selected.  

vi. Inspect each plate individually to make sure that no well is 

missing MTS, if necessary, add 5 uL of MTS to those wells. 

vii. Incubate until ready to read. Make sure to pop all large bubbles 

before reading using either an insulin syringe or a hair dryer. 

 

INHIBITOR PLATE CELL RESUSPENSION SOLUTION 

 

Myeloid Samples:  

• 10% FBS RPMI 

• B-mercap (use 3.5ul per 500mls media; if making less volume of 

inhibitor media, make a 1:10 dilution of B-mercap) 

 

 CLL Samples: 

• 20% FBS RPMI 

• B-mercap (use 3.5ul per 500mls media, if making less volume of 

inhibitor media make a 1:10 dilution of B-mercap) 
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10.1.2 Electroporation of siRNA Library BioRad (AML Patient Sample) Protocol 

This protocol is a reformatted version of the standard patient sample processing protocol used in 

the Tyner/Druker labs. It was last updated on February 9th, 2016, and edited by Christina 

Tognon, Kara Johnson, and Jeffrey Tyner. 

 

1. Pipette patient sample media (RPMI + 10% FBS + 3.5ul BME per 500ml 

media) into three 96-well plates (90ul per well) and place in incubator.  

a. NOTE: This can be done using the EpMotion. The programs are 

called: “3 plates 90 ul” or “6 plates 90 ul” depending on the number of 

samples. 

2. Add 3x107 patient sample cells to 50ml PBS. 

3. Spin at 1000 rpm for 10 mins. 

4. While this is spinning, thaw an aliquot of the 6ul siRNA library. Once 

thawed, spin at 3500 rpm for 15 sec. Leave the centrifuge break off and let the 

siRNA library slow down while waiting for cells to finish spinning. 

5. Resuspend cells in 10.2ml cold siPort Buffer and transfer to trough. 

6. Aliquot 100ul into each well of the siRNA library (except A1), making sure to 

mix well. 

7. Transfer entire content from each well with multi-channel pipette (set at 150ul). 

8. Add 106ul blank siPORT buffer to A1. 

9. Inspect the plate to make sure each well is fully covered in liquid by gently 

shaking plate. Pop any remaining bubbles with pipette tips. 

10. Select the appropriate protocol by: 

a. User Protocols → User Directory → Jeff 

b. Select AMLPTSAMPLE (for Myeloid samples). 

c. The settings for myeloid samples are: 276 V, 5.0 ms, 2x. Before pulsing 

your sample, check that the correct setting is loaded for your sample. 

11. Place the plate in the plate handler, making sure to push down on plate until 

it is fully inserted. Leave the plate lid on and close the lid of the plate handler. 

12. When ready, press pulse.  

13. Remove the 3 plates with media from the incubator and get the P20 and P200 

multi-channel pipettes. For each row mix well with the P200 multi-channel 

pipette set at 50ul and then transfer 12-14ul (for myeloid samples) from 

electroporation plate into each of the 3 plates with media. 

14. Incubate for 4 days, after which perform an MTS. 

15. For MTS assay, add 20ul MTS solution (located on the cold room common 

shelf). Mix well after adding (no need for MixMate). 

16. Return to incubator. Check color development regularly and read once color 

has developed. Readings can be done up to 24 hr after addition of MTS if 

necessary. 
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10.1.3 CSF1R Flow Cytometry Staining Protocol 

This protocol describes staining CLL and AML primary patient sample cells with a variety of 
hematopoietic-population-staining cell surface marker and CSF1R antibodies by flow 
cytometry. It was developed in conjunction with Angela Rofelty, based on a protocol by 
Anupriya Agarwal. 

 
NOTE: Healthy normal cells are stored as frozen viables (5E6 cells) in liquid nitrogen, labeled 
“D.E. Control, 5e6 PBMC, 6.27.16”. Use normal control for the following: unstained (1E5 
cells), single channels (9 tubes at 5E4 cells each), and FMO CSF1R or CD14 (1E5 cells). 

NOTE: Request 10-20E6 patient sample cells for each sort. Process normal and tumor cells 
using this protocol. Allow 1.5 hr for entire staining protocol. 
 

1. Centrifuge cells at 1500 rpm for 5 min. 

2. Wash cells in 5ml staining buffer (PBS + 0.5% BSA). Centrifuge at 1500 rpm 
for 5 min. 

3. Resuspend control cells at 1E6 cells/ml and divide into staining tubes: 
a. Unstained: 1E5 cells in 100ul 
b. Single stains: 5E4 cells in 50ul 

c. FMO: 1E5 cells in 100ul 
4. Resuspend tumor sample at 10E6 cells/ml.  

5. Create the following antibody dilutions in staining buffer. (For single stain 

tubes, add 2.5ul of each diluted antibody.) 

Marker Channel Dilution Volume Added (ul) 

Live/Dead Aqua 1:10 2.5 

CD33 PerCP/Cy5.5 1:10 2.5 

CSF1R APC 1:50 2.5 

CD34 (AML) PE-CF594 1:50 2.5 

CD64 (CLL) PE 1:20 2.5 

CD14 APC-H7 1:10 2.5 

CD19 V450 1:10 2.5 

CD90 (AML) PE/Cy7 1:100 2.5 

CD5 (CLL) PE/Cy7 1:50 2.5 

CD3 FITC 1:20 2.5 

CD45 PerCP none 2.5 

 

6. (The FMO tubes, which exclude CSF1R APC or CD14 APC-H7, can be 
maintained at 1E6 cells/ml, or 1E5 cells in 100ul. To each 100ul cell 
suspension, add 40ul master mix (if master mix is depleted, add 5uL of each 

diluted antibody): 
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FMO AML Master Mix 

Marker Channel Dilution Volume Added (ul) 

Live/Dead Aqua 1:10 5 

CD33 PerCP/Cy5.5 1:10 5 

CD34 PE-CF594 1:50 5 

CD14 APC-H7 1:10 5 

CD19 V450 1:10 5 

CD90 PE/Cy7 1:100 5 

CD3 FITC 1:20 5 

CD45 PerCP N/A 5 

  Total 40 

FMO CLL Master Mix 

Marker Channel Dilution Volume Added (ul) 

Live/Dead Aqua 1:10 5 

CD33 PerCP/Cy5.5 1:10 5 

CD64 PE 1:20 5 

CD14 APC-H7 1:10 5 

CD19 V450 1:10 5 

CD5 PE/Cy7 1:50 5 

CD3 FITC 1:20 5 

CD45 PerCP N/A 5 

  Total 40 

 

7. Maintain combination staining tubes at a concentration of 10E6 cells/ml. 
(The final volume will be ~1ml). To each tube, add 44ul (for AML) or 45.5ul 
(for CLL) of master mix. If master mixes are depleted, add following volumes 

of undiluted antibody directly to the staining tube: 

AML FACS Antibody Mix 

Marker Channel Volume Added (ul) 

Live/Dead Aqua 5 

CD33 PerCP/Cy5.5 5 

CSF1R APC 2 

CD34 PE-CF594 1 

CD14 APC-H7 2.5 

CD19 V450 5 

CD90 PE/Cy7 1 

CD3 FITC 2.5 

CD45 PerCP 20 

 Total 44 
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CLL FACS Antibody Mix 

Marker Channel Volume Added (ul) 

Live/Dead Aqua 5 

CD33 PerCP/Cy5.5 5 

CSF1R APC 2 

CD64 PE 2.5 

CD14 APC-H7 2.5 

CD19 V450 5 

CD5 PE/Cy7 1 

CD3 FITC 2.5 

CD45 PerCP 20 

 Total 45.5 

 

8. Incubate tubes at 25C in the dark for 30 min.  

9. Add 1ml staining wash buffer to each tube. Centrifuge at 1500 rpm for 5 min. 

10. Decant liquid. Resuspend combination tubes (10E6 cels) in 200ul staining 

buffer. 

11. Cover tubes and store at 4C until time for sorting. 

 

List of Antibodies and their Catalog Numbers/Manufacturer 

Marker Channel Catalog Number Manufacturer 

Live/Dead Aqua L34957 Thermo Fisher 

CD33 PerCP/Cy5.5 341640 BD Biosciences 

CSF1R APC 347306 BioLegend 

CD34 (AML) PE-CF594 562383 BD Biosciences 

CD64 (CLL) PE 558592 BD Biosciences 

CD14 APC-H7 643077 BD Biosciences 

CD19 V450 644492 BD Biosciences 

CD90 (AML) PE/Cy7 561558 BD Biosciences 

CD5 (CLL) PE/Cy7 348790 BD Biosciences 

CD3 FITC 349201 BD Biosciences 

CD45 PerCP 304025 BioLegend 
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10.1.4 CSF1R Inhibition and Stimulation (RNA and Conditioned Media) Protocol 

This protocol explains how to dose primary AML patient sample cells with CSF1R inhibitors 

(ARRY-382 and GW-2580), CSF1 (the ligand to CSF1R), and GM-CSF (a control cytokine 

for monocyte/macrophage activation). 

 

1. Dilute 10E6 primary AML patient sample cells to 1E6 cells/ml (10ml) in R10 

media. 

2. In a 12-well dish, label 10 wells with the following labels: “untreated” (x2), 

“+ARRY” (x2), “+GW” (x2), “+CSF1” (x2), and “+GM-CSF” (x2). 

3. Pipette 1ml diluted primary patient sample cells into each labeled well. 

4. Add the following inhibitors/cytokines to the labeled wells: 

a. 1ul ARRY-382 (stored at 10mM; 10uM final)  

b. 1ul GW-2580 (stored at 10mM; 10uM final) 

c. 10ul GM-CSF (stored at 10ng/ul; 100ng/ml final) 

d. 1ul CSF1 (stored at 100ng/ul; 100ng/ml final) 

5. On the 12-well plate, write down the date/time that the cells will need to be 

harvested (48 hrs after cell inhibition/stimulation).  

6. Cover plate with adhesive covering and incubate at 37C for 48 hours. 

 

After 48 hours but before beginning next step, label 20 Eppendorf tubes with the following 

information: patient sample ID (on each tube, listed as ##-###; e.g. “17-209”), condition 

(“unt 1”, “unt 2”, “ARRY 1”, “ARRY 2”, “GW 1”, GW 2”, “CSF1 1”, CSF1 2”, “GM-

CSF 1”, “GM-CSF 2”), and (“CM” for conditioned media; “RNA” for RNA).  

 

Here is an example of the labeling scheme: Tube 1: 17-209, unt 1, CM. Tube 2:17-209, unt 1, 

RNA. Tube 3: 17-209, unt 2, CM. Tube 4: 17-209, unt 2, RNA. Etc. 

 

7. After incubation, remove adhesive covering. For each well, mix the contents 

well using a p1000 pipette and place into the “RNA” tube for each condition.  

8. Spin down tubes at 5000 rpm for 2 min. 

9. For each condition, pipette 750ul conditioned media into its “CM” tube. 

10. Completely aspirate all of the remaining conditioned media in the “RNA” 

tubes. 

11. Fill bottom of ice bucket with liquid nitrogen and place next to tissue culture hood. 

12. Add 150ul RNA lysis buffer (RLT + BME, found in the patient sample 

processing room) to each tube. Mix thoroughly by pipetting up and down. 

13. Flash-freeze all 20 tubes by placing them into the liquid nitrogen. 

14. After completely frozen, transfer the tubes into -80C for long-term storage. 
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10.1.5 Magnetic 30-Plex Luminex Protocol 

This protocol is a slightly modified version of standard protocol for the Human Cytokine 

Magnetic 30-Plex Panel (Pub #MAN0009850). Modifications were based on discussion with 

Anupriya Agarwal. 

 

NOTE: Before starting, reserve one hour of time on Day 2 for the Luminex 200 machine. 

Email flow cytometry core member to alert them of the reservation. Make sure to have ready the 

technical data sheet from the Luminex kit (which contains the lot number and the lot-specific 

cytokine concentrations) and the plate layout. 

 

Day 1: Sample prep 

 

1. Thaw all conditioned media samples on ice. 

2. Once thawed, invert tubes to mix and spin at 16000 rpm for 10 min. 

3. Pipette 65ul (50ul + extra) conditioned media samples into 96-well plate 

according to pre-determined plate layout. 

4. Incubate plate on ice until needed (Step 16). 

5. Return conditioned media samples to -80C. 

 

Day 1: Assay protocol 

 

NOTE: Allow all reagents to reach room temperature before use. 

 

• Don’t invert the plate unless it’s on the magnetic separator 

• Protect the fluorescent beads and RPE reagents from light when possible. 

• Set orbital shaker to proper speed (500-600 rpm) to avoid splashing liquid on lid. 

• Mix the magnetic beads well before use. 

 

Preparing standards 

 

6. Create standard mixture (2.5ml RPMI (no FBS) and 2.5ml Assay Diluent) 

and mix well. 

7. Pipette 500ul mixture onto lyophilized cytokines in standard vials (Human 

16-Plex Standard and Human 14-Plex Standard). Do not mix yet. Incubate 

for 10 mins at 25C. 

a. While incubating, label 9 tubes: STD1 to STD8 (standards 1-8) and 

BLK (blank). 

b. Add 300ul standard mixture to STD2 to STD8 and BLK. 
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8. Gently mix each vial to ensure complete reconstitution and incubate for 5 

min at 25C. 

9. Pipette entire contents of each vial into STD1. Mix thoroughly. 

10. Pipette 150ul from STD1 to STD2, then STD2 to STD3, etc., making 1:3 

serial dilutions of the standard. Mix thoroughly and change pipettes tips 

between steps. 

 

NOTE: Reconstitute standards 1 hr before use. 

 

Make 1X Wash Solution 

 

• Add 15ml Wash Solution Concentrate (20X) to 285ml ddH2O and mix well. 

• Solution is stable for 2 wks at 25C. 

 

NOTE: If Wash Solution Concentrate has formed precipitate at the bottom, incubate 

in 37C bead bath and mix until fully dissolved. If precipitate still remains after solution 

is diluted, incubate in 37C bead bath until precipitate dissolves. 

 

Washing guidelines 

 

1. Place the plate containing beads and 200ul 1X Wash Solution onto the magnetic 

separator.   

2. Allow the beads to settle for 30-60 sec.   

3. Turn the magnetic separator and plate (held securely together) upside down, decant the 

fluid, and blot excess liquid on a stack of dry paper towels.   

 

NOTE: Blotting excess liquid is important to avoid cross contamination from droplets.   

 

4. Separate the plate from the magnetic separator before adding wash solution or any 

reagent to the plate. 

 

Adding beads/sample 

 

11. Vortex the Antibody Bead (1X) for 30 sec, then sonicate in water bath (in 

FACS room) for 30 sec immediately before use.  

12. Add 25ul Antibody Bead (1X) into each well in assay run. Cover plate with 

aluminum foil.  

13. Wash assay wells twice with 200ul 1X Wash Solution. (see “Washing 

guidelines”). 

14. Add 50ul Incubation Buffer into each well.  
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15. Add 100ul diluted standards and blanks into standard wells.   

16. Add 100ul blank into blank/background wells.  

17. Add 50ul Assay Diluent followed by 50ul sample into the sample wells. 

Transfer samples from 96-well plate to Luminex plate using p200 

multichannel pipette. 

18. Cover plate with an opaque lid and incubate for 2 hr at 25C under agitation 

on an orbital plate shaker.  

 

Cytokine detection  

 

19. Prepare 1X Biotinylated Detector Antibody in a conical tube by adding 100ul 

Biotin Diluent and 10ul 10X Biotinylated Antibody per assay well, e.g. for 

entire plate (96 wells), add 10ml Biotin Diluent and 10ul 10X Biotinylated 

Antibody. 

20. Place the plate onto magnetic separator for 30-60 sec, then decant liquid. 

21. Wash the wells twice with 200ul 1X Wash Solution (see “Washing 

guidelines”).  

22. Add 100ul 1X Biotinylated Detector Antibody to each well. Cover and 

incubate the plate for 1 hr at 25C on orbital plate shaker.  

23. Prepare 1X Streptavidin-RPE solution in a conical tube by adding 100ul RPE-

Diluent and 10ul 10X Streptavidin-RPE per assay well. Protect solution from 

light.  

24. Decant liquid and wash the wells twice with 200ul 1X Wash Solution.  

25. Add 100ul 1X Streptavidin-RPE solution to each assay well. Cover and 

incubate the plate for 30 min at 25C on orbital plate shaker. 

26. Place the plate onto magnetic separator for 30-60 sec, then decant liquid. 

27. Wash the wells 3 times with 200ul 1X Wash Solution.  

28. Add 150ul 1X Wash Solution and cover/store plate overnight in the dark at 

4C. 

 

Day 2: Reading assay 

 

1. Remove existing wash solution from overnight plate. Replace with 150ul 

fresh 1X Wash Solution. 

2. Place plate on orbital plate shaker for 2-3 mins before analysis. 

3. Give plate to flow cytometry core member, along with the lot number and a 

plate diagram showing which wells have been used. 

4. Analyze the collected data. 
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10.1.6 Stromal Cell Isolation Protocol 

This protocol describes how to isolate stromal cells from the red blood cell pellet of a primary 

acute myeloid leukemia patient sample. Developed with assistance from Elie Traer and Shelton 

Viola. 

 

NOTE: This protocol begins after obtaining the bone marrow aspirate from an AML patient. 

 

1. After MNCs have been collected from Ficoll-separated bone marrow, aspirate 

the remaining supernatant and Ficoll, leaving only the red blood cell pellet.  

2. Resuspend the red blood cell pellet in 12mL ACK lysis buffer. 

3. Mix by pipetting and incubate on ice for 20 min. 

4. After incubation, centrifuge at 1500 rpm for 5 min. 

5. Aspirate supernatant and resuspend cell pellet in 10 mL stromal growth 

media (MEM-alpha with 20% fetal bovine serum, 2% L-Glutamine, 1% Pen-

Strep, and 0.1% Fungizone). 

6. Plate cells in 10cm dish. This stage is “Passage 0”. 

7. Incubate cells for 48 hr. After incubation, aspirate culture media to remove 

any non-adherent cells. 

8. Following initial media replacement, allow cells to incubate for 2 wks, 

changing culture media every 7 days. By day 14, adherent cells should adopt a 

fibroblast-like morphology and form small colonies in the dish. If this does 

not occur, discard the sample. 

9. Allow cells to culture until reaching ~80% confluency, then passage the 

sample into one 15cm dish as follows: 

a. Wash 10cm dish with 3 mL sterile PBS and aspirate. 

b. Add 2mL trypsin to dish and incubate at 37C until cells have lifted off 

of the dish (this time can vary widely between samples. Check using 

microscope every 5 min). 

c. Wash cells off the dish with 3mL of media, then centrifuge at 1500 

rpm for 5 min. 

d. Resuspend cells in 15mL culture media and plate in 15cm dish. 

e. After plating in one 15cm dish, the sample is then at “Passage 1”. 

10. Allow the sample to reach ~80% confluency, then split the sample into two 

15 cm dishes. The sample is then at “Passage 2”. 

a. Note: Allow the cells one month to expand during Passage 1. If the 

sample is not ready to be passaged after one month, the stroma is 

considered senescent and should be discarded. 

11. Once both dishes have reached ~80% confluency, wash the cells in PBS and 

add 13 mL exosome-depleted 20 to each dish (Exosome-depleted FBS is 
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made using the exosome isolation protocol listed below). Incubate for three 

days. 

12. After three days of incubation, remove the culture media and centrifuge the 

media at 1500 rpm for 5 min to remove cells/debris. Store the supernatant at 

4C.  

a. Remove 3ml media and pipette into three 1.5ml Eppendorf tubes (1ml 

per tube). Store at -80C for cytokine analysis. 

13. Add 13 mL of fresh exosome-depleted 20 to each dish and incubate for an 

additional three days. 

14. After incubation, remove the culture media, centrifuge to remove cells and 

debris, and combine with the supernatant collected three days prior, for a total 

of approximately 50mL of conditioned media from each sample. 

a. Isolate exosomes using Exosome Isolation Protocol. Media can be 

stored at 4C before exosome isolation. 

15. Harvest both dishes of stroma as follows: 

a. Wash each dish with 5mL PBS. 

b. Add 4mL trypsin to each plate and incubate until cells become non-

adherent. (The time is variable but tends to increase with the total time 

the sample has been in culture). 

c. Wash each dish with 5 mL of media and collect all stromal cells in one 

50 mL conical tube. Centrifuge the stroma at 1500 rpm for 5 minutes). 

16. Resuspend stroma in 1 mL of 20 and divide into the following three 

derivatives: 

a. Cell pellet: transfer 250uL of stromal cell suspension into a 1.5 mL 

Eppendorf tube. Centrifuge at 5000 rpm for 5 min and aspirate 

supernatant. Flash freeze and store at -80C. 

b. RNA isolation: transfer 250uL of stromal cell suspension into a 1.5 

mL Eppendorf tube. Centrifuge at 5000 rpm for 5 min and aspirate 

supernatant. Resuspend cell pellet in 700uL QIAzol lysis reagent and 

store at -80C. 

c. Frozen Viable: Transfer the remaining 500uL of stromal cell 

suspension to a cryovial. Add 400uL of filter-sterile FBS and 100uL of 

DMSO. Freeze in Mr. Frosty overnight, then store in liquid nitrogen. 

 

NOTE: Cells can be passaged until Passage 6, after which they should be either frozen down or 

discarded. Each 15cm dish yields between 5E5 and 1E6 cells. To freeze down cells, use one 

15cm dish in 1ml freezing media. 
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