
The Role of Timing in Shaping
Information Processing in Neural

Systems

Ovidiu Dan Iancu

BS, Mathematical Sciences, Oregon State University, 1997
BS, Computer Science, Oregon State University, 1997
MS, Mathematics, Oregon State University, 1999

Presented to the Division of Biomedical Engineering within
The Department of Science & Engineering
and the Oregon Health & Science University

School of Medicine
in partial ful�llment of

the requirements for the degree of
Doctor of Philosophy

in
Biomedical Engineering

September 2008



Patrick Roberts, Ph.D.

Thesis Advisor

Adjunct Professor, Department of Physiology and Pharmacology

Adjunct Assistant Professor, Biomedical Engineering

Oregon Health Sciences University

Curtis Bell, Ph.D.

Tamara Hayes, Ph.D.

Assistant Professor, Biomedical Engineering

Oregon Health Sciences University

William Roberts, Ph.D.

Assistant Professor, Biomedical Engineering

Oregon Health Sciences University

Dan Hammerstrom, Ph.D.

Professor, Electrical and Computer Engineering

Portland State University

ii



Contents

1 Introduction 1
1.1 Synaptic response to precisely timed inputs . . . . . . . . . . . . . . . . . 3

1.2 System level integration of timing information and its role on sensory

processing and motor corollary signals . . . . . . . . . . . . . . . . . . . 4

1.3 Topographical representation of complex vocalizations in the telencephalon

of zebra �nch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Synaptic response to precisely timed inputs 6
2.1 Importance of timing in the electrosensory system . . . . . . . . . . . . . 7

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Construction of the compartmental model . . . . . . . . . . . . . 9

2.2.2 Tuning the model using a genetic algorithm . . . . . . . . . . . . 12

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Behavior of the genetic algorithm tuning procedure . . . . . . . . 13

2.3.2 Reproducing biophysical properties of granular cells . . . . . . . . 13

3 Response attenuation to paired sounds in the primary auditory cortex 17
3.1 Relationship between interstimulus interval and response magnitude . . . 18

3.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Methods for the analysis of LFP traces . . . . . . . . . . . . . . . 20

3.2.2 Methods for the analysis of spike trains . . . . . . . . . . . . . . . 26

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Di¤erent neural representations of sound stimuli and somatosen-

sory inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Topographical representation of complex vocalizations in the telen-
cephalon of zebra �nch 41
4.1 Temporal structure of song re�ected in spatial patterns of cell activation 42

iii



4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Automatic detection of nuclear and cytoplasmic IEG expression . 44

4.2.2 Selective temporal or spectral degradation of songs . . . . . . . . 68

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Visualization of the density of activated cells . . . . . . . . . . . . 72

5 Conclusions and future directions 79
5.1 Timing and coincidence detection at di¤erent levels of neural processing . 79

5.2 Further re�nements of the methods . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Translation of timing into spike count . . . . . . . . . . . . . . . . 81

5.2.2 Wavelet transform for time-scale analysis . . . . . . . . . . . . . . 83

5.2.3 Voronoi tessellations and a measure of similarity between overlap-

ping sets of points . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 87

iv



List of Tables

2.1 Biophysical parameter values of the model. . . . . . . . . . . . . . . . . . 11

2.2 Compartmental dimensions of the model. . . . . . . . . . . . . . . . . . . 12

2.3 Final parameter values of the model. . . . . . . . . . . . . . . . . . . . . 14

4.1 Concordance coe¢ cients for manual and automatic cell counts. . . . . . . 61

4.2 Concordance coe¢ cients for ZENK labeling of cell nuclei. . . . . . . . . . 65

4.3 Confusion matrix of true and assigned stimulus category of each image. . 74

v



List of Figures

2.1 A. Current-voltage relationship from slice data. B. Two types of relationship

between holding potential and EPSP size. . . . . . . . . . . . . . . . . . . . 8

2.2 Model morphology. A myelinated a¤erent axon terminates into a terminal,

which is connected to the granular cell soma by an electrical gap junction.

The granular cell consists of a soma connected to the axon by a high resistance

hillock. In addition, the granular soma is connected to a dendritic compartment

with a large membrane surface (not shown in �gure). . . . . . . . . . . . . . 9

2.3 A. Fitness of best individual. B. Euclidian distance between vectors represent-

ing parameter models (individuals). C. Average population �tness. . . . . . . 14

2.4 A. Data and model current-voltage relationship. B. Dependence of EPSP on

the postsynaptic potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Voltage traces generated by simulating an a¤erent spike in the a¤erent axon.

A large a¤erent spike is attenuated at the terminal, presumably due to the

inactivation of Na channels. Granular soma postsynaptic response has small

amplitude but a long duration. This voltage de�ection generates the spike in

the granular axon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Two alternative forced choice task training paradigm: water is associated with

two tone presentation, and no water is presented following one tone. Courtesy

of Paulo Rodrigues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Performance improvement as over the course of training. Filled circles: per-

centage lick for two tone trials. Empty circles: percentages lick for one tone

trials. Courtesy of Paulo Rodrigues. . . . . . . . . . . . . . . . . . . . . . 21

vi



3.3 A. Two di¤erent but overlapping distributions are labeled as N:negatives (left

bell-shaped curve) and P: positives (right bell-shaped curve). The distributions

are separated using a variable threshold (vertical line). TP: true positives, FP:

false positive, TN: true negatives. B. Plot of true positives versus false positives,

expressed in percentages, as the threshold value is varied over the whole range

of data values. P(TP) is proportion of true positives, P(FP) is the proportion

of false positives resulting from a particular threshold. Green arrow illustrates

how the ROC curve is traced by varying the threshold. . . . . . . . . . . . . 22

3.4 Information content along ROC curves. Black curves: iso-information, marked

with information in bits. Red curves: ROC curves. A: Iso-information curves

for P (positives) = 0:5. The maximum information content point is the inter-

section of the ROC curve and the highest iso-information line. B: P (positives) =

0:2: The iso-information curves are shifted by the change in the a priori prob-

abilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 A: Illustration of the LDA dimensionality reduction procedure, for two dimen-

sions. Data points are projected on the direction most discriminative. Modi�ed

from (Park and Fry, 2004). B: Performance (AUC) in discriminating between

the two categories is computed at each time point. The projection on LDA

direction has superior performance to any individual time point. . . . . . . . 24

3.6 Illustration of a series of steps that transforms the spike pattern on top (A) to

the pattern on the bottom (B). Red spike in is deleted during the �rst step,

green spike is added during 7th step (row). Blue arrows mark the spikes shifted

for a cost of qt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 A. LFP responses to either one (top) or two tones (bottom) Trials where the

animal licked are represented on the right. B. Spike rasters collected after

either one or two tones. Blue: two tones, lick. Green: One tone, lick. Red:

two tones, no lick. Cyan: one tone, no lick. . . . . . . . . . . . . . . . . . . 30

3.8 Firing rate (spikes/sec) versus time (sec). A: one tone, no lick. B: one tone,

with lick. C: two tone, no lick. C: two tones, lick. Firing rates were computed

using a Gaussian averaging window with width of 20 ms. Blue trace represents

mean �ring rate, green traces show the standard deviation. . . . . . . . . . . 31

3.9 A: ROC analysis of the power spectrogram contrasting one tone, no lick with

the two tones, lick trials. B: ROC analysis of the coherograms contrasting the

same data as in A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



3.10 A: Isomap projection of the tone (red) and no tone spike trains for q = 0. The

tone (red) and no tone (blue) are not well discriminated based on spike count

alone. Axes represent two dimensional projections of the data (arbitrary units

on axes not represented). B: Discrimination information versus shift cost q.

Larger q0s attach more weight to spike timing and improve discrimination. C:
Isomap projection for q = 100. The discrimination is much improved (compare

to A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Boxplots quantifying di¤erences between response to �rst and second tone.

The boxes have lines at the lower quartile, median, and upper quartile values.

The whiskers extend an addition 1.5 interquartile range to show the extent the

data. Non-overlapping notches indicate that the medians of the two groups

di¤er at the 5% signi�cance level. A: example of a recorded LFP channel. B:

aggregate spike counts from all recorded animals and channels. . . . . . . . . 34

3.12 Amount of response attenuation as a function of the intertone interval. Longer

intertone intervals lead to a smaller attenuation of the response to second tone. 35

3.13 A: Decreasing response to the �rst tone over the course of the experiment, as

measured by the projection on the LDA axis. B: Response to the second tone,

as in A. No signi�cant trend detected. . . . . . . . . . . . . . . . . . . . . . 36

3.14 A: Correlation between total spectral power in 80-130 Hz range and the amount

of response attenuation. B: Correlation coe¢ cient between level response at-

tenuation and power at each frequency. . . . . . . . . . . . . . . . . . . . . 36

3.15 A: Response attenuation in correct versus incorrect trials in LFP�s. B: Spike

count di¤erences between correct and incorrect trials. . . . . . . . . . . . . . 38

3.16 Relative increase in intertone LFP power relative to pre-tone baseline. A:

average ratio of power in correct (blue) and incorrect (red) trials. B: p-values in

comparing the values in A. C: AUC based on the quantities in A. D: maximum

information content based on ROC�s in C. . . . . . . . . . . . . . . . . . . . 39

4.1 Example of a ZENK labeled brain slice, photographed under 40X magni�cation

under an optical microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 A: Typical nuclear ZENK expressing nuclei. The red spots represent di¤erent

loci of transcription. B: Typical cytoplasmic expression of ZENK. The �u-

orescent labelling consists of a concentration of color nearly surrounding the

nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



4.3 Graylevel images from the blue channel. A: the image prior to opening. The

edges are blurry and irregular. B: Image after the opening operation. The

shapes are more rounded, the graylevel inside the nuclei is more uniform. . . . 47

4.4 Example of the Canny edge detection algorithm appied to the edge image.

Overlapping cell nuclei that partially occlude each other still retain their nearly

circular shape on the non-overlapping portions of the nuclei. . . . . . . . . . 49

4.5 Procedure for �nding the center of circle starting from (x; y) coordinates. Cir-

cles with radius r, centered at each (x; y), will intersect at the desired center

(a; b): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 A: Illustration of the e¤ect of computing the Hough transform for a radius

slightly smaller than the true radius. The circles drawn using the (x; y) points

in the edge image will trace the small red circle, instead of intersecting on

a point. B: The Hough transform is computed for a set of di¤erent radii r,

resulting in a conical surface spanned by the points of intersection. The apex

of this cone correspond to the correct r. . . . . . . . . . . . . . . . . . . . . 50

4.7 Sections through the Hough accumulator array, corresponding to increasing

radii. A: r = 7 pixels. B: r = 8 pixels. C: r = 9 pixels. D: r = 10 pixels,

closest value to the true radius. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 A: raw image. B: Hough transform for a radius r. Each nuclear shape in image

above gives rise to a high intensity point in the Hough transform, surround by

an artefactual circle of radius double the radius of the cell nucleus. . . . . . . 52

4.9 Local intensity information associated with candidate cell nuclei. A: Histogram

of average intensity values inside detected circles. B: Histogram of ratios be-

tween the average intensity inside the candidate cell nucleus and the average

intensity in the region immediately adjacent. . . . . . . . . . . . . . . . . . 53

4.10 Comparison of clustering results. x�axis: average intensity inside the nucleus.
y � axis: ratio inside versus outside the candidate nucleus. A: Information
clustering. B: k-means clustering. Note the labeling of more points in red at

the boundary between clusters. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Example of detected cell nuclei. A: original image. B: detected cell nuclei are

marked with a green circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.12 A: Example of the attraction forces generated by the edge points. Arrows indi-

cate the direction of the force, with the length proportional with the magnitude.

B: E¤ects of the force on the original snake (blue curve). The edge information

is represented by the red curve. The deformed contour is represented by the

green curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



4.13 Example of fully labeled image. Top: raw image with blue and red channels.

Bottom: image with nuclear labeling (red points, see also yellow arrow) and

cytoplasmic labeling (red circles, see also green arrow). Red arrow: example

of double-labeled cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.14 A. Illustration of the counts performed by humans and the counts performed
by the automatic procedures. B. Direct comparison between the Hough and

the LoG automated procedures. Perfect agreement would place all the points

on the main diagonal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.15 A. Image of 100 cells with variability in size and intensity. The images do not
overlap, their borders touch due to the averaging �lter that blurs the edges. B.

Image of 100 cells which are allowed to overlap by 15 pixels, and with Gaussian

noise added. This was the most challenging of the arti�cial images. . . . . . . 63

4.16 A. Comparison of automated counting methods using image sets with variable
cell size and intensity. B. Counting results for images with same number of

cells as A, but with added noise. Di¤erence between dashed lines and solid

lines represent the false positives, as identi�ed by manual inspection. . . . . . 64

4.17 Results of manual counts and our automated procedure, applied to the 14

images in the data set. First three images were generated from the silent

controls, images 4-6 from birds presented with conspeci�c songs, 7-9 from

heterospeci�c songs stimuli, 9-12 from white noise and 13-14 from pure tone

stimulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.18 Illustration of the Delaunay triangulation and Voronoi tesselation of a set of

points. Original points are denoted by black dots. Thick lines represent the

Delaunay triangulation. The de�nition implies that no triangle sides intersect.

Dashed lines outline the Voronoi polygons. . . . . . . . . . . . . . . . . . . . 66

4.19 A: Two neighboring images with overlap on the borders. Delaunay triangles are

identi�ed in each image (�lled triangles). B: The images are stitched together

using the overlap suggested by the triangles. . . . . . . . . . . . . . . . . . . 67

4.20 Illustration of a Voronoi tesselation applied to the whole NCM. The areas of

the polygons are inversely proportional with the intensity of the color, resulting

in areas of high density in warmer colors. . . . . . . . . . . . . . . . . . . . 68

4.21 Results of image registration. Overlapping lines show the contours of same

brain regions from di¤erent animals. A: CMM, prior to registration. B: CMM,

post registration. C: NCM, prior to registration. D: NCM, post registration. . 69

Dan Iancu
Text Box

Dan Iancu
Text Box
x



4.22 Decomposition of original sound using partially overlapping �lters. Each �lter

covers a speci�ed frequency band. The output of these �lters can be used to

reconstruct the signal. The �lters used covered the range between 500 and

8000 Hz. Modi�ed from (Theunissen and Doupe, 1998). . . . . . . . . . . . . 70

4.23 Spectrograms of song stimuli. A: unmodi�ed song. B: temporally preserved

song. C: spectrally preserved song. . . . . . . . . . . . . . . . . . . . . . . . 71

4.24 Image processing steps. Starting from the positions of activated cells (red dots

in top left image), we registered the images to a common standard, we combined

them by common stimulus class, and then we displayed them as heatmaps. . . 72

4.25 Density of ZENK expressing cells in NCM. A: conspeci�c songs; B: canary

songs�C: white noise; D: pure tones; E: unstimulated controls. . . . . . . . . 73

4.26 A: Two dimensional Isomap projection of the pairwise distances between im-

ages. B: Boxplots comparing the distances between same-category stimuli im-

ages and di¤erent category images. . . . . . . . . . . . . . . . . . . . . . . . 74

4.27 The e¤ect of reducing the number of points on the Hausdor¤ distance. Each

curve represent the distance between a selected image and the rest of the im-

ages. As we decrease the number of points in the selected image, the distances

to the other images remain relatively constant. . . . . . . . . . . . . . . . . 75

4.28 Excitatory (top row) and inhibitory (bottom row) density of activated cells in

NCM, in response to auditory stimuli. . . . . . . . . . . . . . . . . . . . . . 76

4.29 Spatial pattern of ZENK expressing cells in NCM. A-C: spectrograms of intact

or modi�ed songs. D-F: heatmaps representing the density of activated cells. . 77

4.30 Excitatory (top) and inhibitory (bottom) spatial distribution in response to

original (left) and modi�ed (middle, right) versions of the same song. . . . . . 78

5.1 A. Simulation results illustrate translation from latency to spike count. Top:

time of arrival of the second input. White portions represent the stimulus

on. B: Phase space illustration of the canonical model. Parabola and straight

lines are nullclines, short curve is the trajectory. Color along the trajectory

represents the speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 A. Spectrogram of a trial where the animal was presented with two tones and

licked. The spectrogram was computed using overlapping windows 100 ms

in length. B. Wavelet transform using the sym2 wavelet (Daubechies, 1994).

Note that small scales (low on the y axis) approximately correspond to high

frequencies (high on y axis in A) . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



Abstract

The Role of Timing in Shaping Information
Processing in Neural Systems

Ovidiu Dan Iancu, B.S., M.S.

Doctor of Philosophy

Division of Biomedical Engineering within

The Department of Science & Engineering

and the Oregon Health & Science University

School of Medicine

September 2008

Thesis Advisor: Patrick Roberts

In many biological systems, information about the environment is detected by a

large array of sensory receptors; it reaches more central regions of the nervous system

as parallel streams of spike trains. How this �ow of information is processed and which

features are most salient to the organism is a central problem in neuroscience. A com-

prehensive and systematic approach to the analysis of the relationships between stimuli

and their neural representations is illustrated. This approach is complementary to the

hypothesis driven research paradigm, where the investigator states a hypothesis and

then performs experiments in order to validate or invalidate the stated hypothesis. This

alternative methodology enlarges the possible relationships between stimuli and their

representations beyond one speci�c hypothesis and aims to evaluate all possible rela-

tionships between neural stimuli and their neural representations. For a speci�c set of

data, both the set of stimuli and the set of neural response are characterized either by

membership in discrete categories or as a continuous space with a similarity measure.

In order to quantify these input-output relationships, existing methods of analysis are

adapted or new ones developed where necessary. In the speci�c data sets analyzed here,

timing emerges as a critical parameter for the description of neural stimuli and their

representations.
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Chapter 1

Introduction

In many neurophysiological experiments, the investigator starts with a speci�c hy-

pothesis which guides the experimental design, the collection of the data, and the analysis

of the results. However, the resulting data sets could contain additional information,

which, even though not part of the original hypothesis, can reveal important informa-

tion about the neuronal system under study. In many scienti�c or economic �elds,

rapidly accumulating data sets have motivated the development of rigorous and sys-

tematic methods of exploring the data, methods generally known as data mining. The

overall goal of such a comprehensive review and analysis of the collected data is "the

nontrivial extraction of implicit, previously unknown, and potentially useful information

from data" (Frawley et al., 1992), for a review see also (Piatetsky-Shapiro and Frawley,

1991).

In the present work, we apply data analysis techniques to experimental data result-

ing from three neurophysiological experiments. Our general approach is to expand the

possibilities of input-output relationships beyond those stated in the original hypothe-

sis generated by the experimentalists. The goals of this project are twofold. First, we

seek to �nd scienti�cally meaningful relationships between the inputs to the neuronal

system and the resulting outputs, the neuronal activity. This approach is inspired from

the classic information theory paradigm, which is usually applied to a communication

channel in order to quantify how much the received message tells us about what was

being sent originally (Shannon et al., 1998). In the case of the neuronal system, the

stimulus is the original message and the neuronal activity is the received message. Here,

we aim to identify which speci�c parameters and which temporal resolution results in

the most informative or predictive relationship between the stimuli and the resulting

neuronal activity.

A second and equally important goal of our work is to develop analysis methods

which are appropriate for each of the data sets and at the same time have the potential

1
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to be of wider applicability in the �eld of neuroscience. In implementing our approach

for each of the data sets, the analysis was necessarily speci�c to the details of the

experimental results. However, in each case we paid particular attention to the issues

regarding timing in the relationship between neuronal stimuli and the resulting neuronal

activity. For example, �ring rates are computed using a sliding window, the temporal

width of which has to be chosen appropriately. Another example of the importance of

timing can be illustrated by decomposing auditory inputs in the spectrogram, which can

be accomplished at di¤erent levels of time or frequency precision.

An important constraint needs to be considered in order to fully understand and

contextualize the relationship between the sensory stimuli and neural activity. This

parameter is the saliency of the stimuli for the subsequent behavior of the animal. In

mammalian auditory cortex data analyzed in Chapter 3, we have direct access to the

behavioral choices of the animal, which are based on a discrimination task, and therefore

the stimuli are highly salient to the animal. When we take into account the subsequent

behavior of the animal, the analysis of the neural activity is faced with additional chal-

lenges. First, the time window for analysis is shortened drastically, since the behavioral

choice succeeds the sensory presentation at a very short latency. In addition, the be-

havior itself can result in neural activity, even in neural structures considered primarily

sensory. In this case, high temporal resolution of the analysis window is necessary to

separate the sensory response from behavioral correlates.

In the songbird system analyzed in Chapter 4, we can infer a measure of the saliency

of the sensory inputs by comparing their neural representations with those of stimuli

known to be of high importance, such as conspeci�c songs. In this data set, high temporal

resolution is available only for the space of inputs. Therefore, speci�c manipulations of

the input parameters are performed, with the goal of identifying which manipulations

have the biggest e¤ect in the resulting neural activity.

While striving for general methods with wider applicability, we evaluate the validity

of our analysis methods primarily by the biological relevance of the results which they

achieve. Biological data in the form or neural recordings and spatial patterns of gene ex-

pression have guided our computational and modeling investigations. In vitro recordings

from granular cells of the electric �sh Gnathonemus petersii (Zhang et al., 2007) have

guided our biophysical model of synaptic integration of precise spiking inputs. Obser-

vations about the relative importance of spike latency versus spike count at subsequent

levels of sensory processing spurred our investigation of a possible cellular mechanism of

translation from spike latency to spike count. At the system level, we used recordings

from the primary auditory cortex of awake behaving rats (Paulo Rodrigues, personal
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communication) to investigate the importance of spiking precision in the representation

of auditory information. Fluorescent images of immediate-early gene expression in the

brain of songbirds (Velho, 2008) have inspired our development of automated imaging

techniques which resulted in high resolution information about the distribution of acti-

vated neuronal cells. This topographical distribution of excitatory and inhibitory cells

which are activated by a stimulus was further analyzed in order to draw inferences about

possible local e¤ect of inhibitory neuronal activity.

1.1 Synaptic response to precisely timed inputs

Our �rst set of data consisted of in vitro recordings (Zhang et al., 2007) from neu-

ronal slices of a cerebellar structure, the electrosensory line lobe (ELL) of the electric �sh

Gnathonemus petersii. The ELL is a laminar structure, with the granular layer contain-

ing small compact cells similar in morphology to the cerebellar granule cells (Zhang et

al., 2007). The granular cells receive two precisely timed inputs: a centrally originating

signal which can be used as a timing reference, followed by a variable latency a¤erent

spike encoding stimulus intensity. Current injections revealed the high sensitivity of the

postsynaptic response to the holding potential of the cells, which we hypothesize is in

turn determined by the time elapsed from the �rst input.

In Chapter 2, we systematically explore the relationship between the speci�c bio-

physical properties of a model granular cell and its synaptic response properties, in the

context of high sensitivity of the cells to the interspike interval of the input spikes. A

related goal is the development of an automated search method that can explore the

space of biophysically plausible parameters for values capable of reproducing the exper-

imental results. Our space of inputs is the space of all biologically plausible parameters

of the model neuron, and the dissimilarity measure on this space is simply the Euclidean

distance. The space of outputs is characterized by the appropriately de�ned distance

between the behavior of the model and the behavior of the real neuron. In order to

search the space of inputs for the set of parameters with the closest behavior to the real

neuron, we adapt a search procedure capable searching high-dimensional spaces, namely

a genetic algorithm (GA)..
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1.2 System level integration of timing information and its

role on sensory processing and motor corollary signals

Our second set of data consisted of local �eld potentials (LFP�s) and neuronal spikes

recorded from the primary auditory cortex of rats trained in a behavioral task based on

auditory clues (Paulo Rodrigues, personal communication). In Chapter 3, our goals are

to explore the relationship between the neural representation of simple auditory tones

and the subsequent behavior of the animal. Once again, our general approach is to

comprehensively analyze all the possible connections between the set of inputs and the

set of neural responses. Our space of inputs consisted of two categories of sound stimuli,

which the animals have been trained to discriminate. The space of outputs consisted of

the two categories of responses - correct and incorrect. An intermediate space is the space

of neural responses recorded from the primary auditory cortex while the animals were

stimulated with the sounds and reacted with either a correct or incorrect response. The

methods developed or adapted for this project aimed to achieve the best characterization

of the space of recorded neural responses, consisting of spike trains and �eld potentials.

The biological aim consisted of determining if any characteristics of the neural response

in a sensory area (primary auditory cortex) have predictive power about a subsequent

behavioral choice.

1.3 Topographical representation of complex vocalizations in

the telencephalon of zebra �nch

Our �nal set of data was comprised of spatial patterns of activated cells in the telen-

cephalon of the zebra �nch. The cells were activated in response to auditory stimulation

with complex sounds such as conspeci�c songs. In Chapter 4, we analyze the relationship

between the structure of sound stimuli presented to songbirds and the spatial patterns

of activated cells resulting from presenting these stimuli. The space of inputs consisted

of several categories of sounds played to the zebra �nches: conspeci�c and heterospeci�c

songs, white noise and pure tones. The space of outputs consisted of spatial patterns

of activated cells, together with a similarity measure quantifying similarity between two

dimensional sets of points. One speci�c question addressed is whether the spatial dis-

tribution of cells, in addition to the number of activated cells, is speci�c to each stimuli.

The importance of the �ne temporal structure of the inputs was revealed by speci�c

modi�cations to the spectral and temporal parameters of the songs.

In order to make the above analysis feasible, we developed a method for automatically
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identifying activated cells in labeled tissue sections. We test this procedure against

manual counts performed by humans and also against a di¤erent automated procedure,

both on images collected from zebra �nches brain slices and also using sets of arti�cial

images. Our procedure proves accurate and robust in both cases.



Chapter 2

Synaptic response to precisely timed inputs

Communication in neuronal systems primarily takes the form of discrete signals or

spikes. As spikes arrive at the pre-synaptic terminals of neuronal cells, their e¤ect on

their targets results in post-synaptic potentials (PSP�s). The cumulative e¤ect of a col-

lection of PSP�s can push the target neuron over the threshold and make it produce a

spike. In many systems, neurons conform to the above model and generally act as inte-

grators, modulating their �ring rates or spike count in proportion to the strength of the

input. However, there are examples of neurons that produce just one spike in response

to appropriate stimulation and the exact timing of this spike encodes information, for

instance by decreasing the time to the �rst spike in response to stronger stimulation

(Bell, 1990).

In this chapter, we investigate the postsynaptic integration of a precisely timed

spike arriving after a centrally originating timing signal. Electric �eld intensity on the

mormyrid skin is encoded in the a¤erents by the latency from the electric organ dis-

charge (EOD) to the �rst a¤erent spike. Primary a¤erent axons from electroreceptors

terminate in the deep layers of electrosensory line lobe (ELL), where they form electrical

synapses on granular cells. Granular cells are the �rst stage of the sensory pathway to

also receive descending input which marks the exact time or the EOD. The granular

cells are a clear example of neurons for which the relevant inputs are the precise rela-

tive timing of PSP�s. They are acting as coincidence detectors since their post-synaptic

activity is dependent on these timing signals (Zhang et al., 2007).

We applied our general approach of input-output analysis to the problem of �nding

parameters for a biophysically detailed model for the granular cells. Formally, our inputs

consisted of speci�c electrophysiological properties of the cells, such as the current-

voltage relationship and the size of the synaptic response. The outputs consisted of sets

of parameters consistent with these measured properties of the granular cells. Once a

set of parameters that conforms to experimental observations has been identi�ed, the

6
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resulting model is used in simulations intended to test and re�ne speci�c hypotheses

resulting from the electrophysiological experiments.

2.1 Importance of timing in the electrosensory system

The mormyrid electric �sh senses its environment by emitting an EOD and detecting

the perturbations that nearby objects cause in its self-generated electric �eld. Specialized

mormyromast electroreceptors sense the self-generated �eld and its distortions. Electric

�eld intensity on the mormyrid skin is encoded in the a¤erents by the latency from the

EOD to the �rst a¤erent spike. These responses are conveyed to the cortex of the ELL

where the a¤erent �bers terminate in the mormyromast zone, a¤ecting the granular cells

through electrical synapses (Bell, 1990).

With each EOD, the ELL cortex is a¤ected not only by input from the periphery but

also by the electric organ corollary discharge (EOCD) signals that originate centrally.

These EOCD signals are time-locked with the EOD motor command, which elicits the

EOD (Zipser and Bennet, 1976). Therefore, the synaptic response of the granular cells

needs to be responsive to the precise relative timing of the two PSP�s.

The mormyrid ELL has a highly regular structure similar to the organization of

the cerebellum (Bell et al., 1997). Work on the mormyrid ELL is, thus, relevant to

other structures, such as the gymnotid ELL (Bastian, 1995), the octavolateral nucleus

of sharks and rays (Montgomery and Bodznick, 1994), and the dorsal cochlear nucleus

of mammals (Oertel and Young, 2004). An advantage of studying the mormyrid ELL is

that the information carried by the centrally generated signals is well understood: these

signals inform the ELL when an EOD has taken place. The EOCD signals originate

in central structures such as the juxtalobar nucleus (JLN) and provide a �xed latency

signal to the deeper layers of the ELL. Interaction between the variable a¤erent input

and the �xed latency corollary discharge signal is thought to be the means by which

a¤erent latency is decoded as a measure of stimulus intensity (Bell et al., 1992).

In vitro patch clamp recordings from the granular cell soma have revealed large (5-25

mV), all-or-none electrical excitatory postsynaptic potentials (eEPSPs) in response to

a¤erent �ber stimulation (Zhang et al., 2007). These eEPSPs are consistent with the gap

junctions observed morphologically (Bell, 1989). Additionally, in previous experiments,

antidromic spikes were recorded in the a¤erent axon, suggesting that the conductance of

the gap junction is signi�cant in both directions (Bell, 1990). Experimental data shows

that the amplitude, and even the occurrence of the a¤erent evoked eEPSP�s depends on

the granular cell�s own membrane potential. The eEPSP is absent at depolarizations
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above �40 mV. As the membrane is hyperpolarized below this level, the eEPSP grows
in a roughly linear manner, but then disappears abruptly with hyperpolarization beyond

�90 mV. The eEPSP dependence on the holding membrane potential appears to be

stronger than the expected, ohmic e¤ect of the reversal potential. In a subset of granular

cells, the disappearance of the eEPSP proceeds in a more gradual manner (See Figure

2.1).

Figure 2.1: A. Current-voltage relationship from slice data. B. Two types of relationship
between holding potential and EPSP size.

One hypothesis generated by the these experimental results was that the activation

and inactivation levels of the Na channels in the a¤erent terminals are sensitive to the

membrane potential of the granular cells. Such a mechanism of bidirectional interaction

would provide an explanation for the sensitivity of the postsynaptic response to the

holding voltage, which we hypothesize to depend on the time elapsed since the EOD.

The sequence of events at the terminal-granular cell gap junction would proceed as

follows: EOD input would arrive at the granular cell in the form of release of chemical

neurotransmitter, a¤ecting the voltage of the granular cell. This voltage then propagates

through the gap junction to the a¤erent terminal, where it a¤ects the inactivation levels

of Na channels. Therefore, the elapsed time from the EOD is the determinant factor for

the amount of current injected into the granular cells when the a¤erent spikes arrives at

the terminal. At that time, the available Na channels in the terminal are activated and

current is injected into the terminal and, through the gap junction, into the granular

cell. An alternative hypothesis would be that the granular cell itself has Na channels.

This alternative is not consistent with the experimental data, since the size of the spikes

recorded at the granular soma is relatively small (Zhang et al., 2007), which precludes

the presence of Na channels in the granular soma itself.

A biophysically realistic model of the granular cell and a¤erent terminal complex
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would allow for simulations intended to test and potentially corroborate the presumptive

mechanisms of synaptic interactions outlined above. Therefore, our next step was to

integrate available information about these cells into a mathematical model. This model

was based on the observed morphology and the pharmacological evidence about the

presence of speci�c ionic channels in these cells (Zhang et al., 2007).

2.2 Methods

The morphology and connectivity between the a¤erent neurons and the granular

cells are relatively well-described (Zhang et al., 2007). Based on this data, we created

a detailed biophysical model of the a¤erent cell terminal and granular cell circuit, using

the NEURON simulation environment (Hines and Carnevale, 1997). We tuned this

compartmental model using a genetic algorithm (GA) approach, using custom software

developed in Matlab (MathWorks, Inc.). This model, in turn, was used to test our

hypotheses outlined above, and could also be used to inform further electrophysiological

experiments.

2.2.1 Construction of the compartmental model

Our model included the a¤erent axon with two myelinated sections separated by

nodes of Ranvier, an a¤erent terminal and a gap junction. The gap junction was con-

nected to the granular cell, which was comprised of a small compact soma, a dendrite

and an axon (see Figure 2.2). We tuned the model parameters, within a biologically

plausible range encountered in cells with similar morphology (Hille, 2001), (D�Angelo et

al., 2001) to re�ect the measured electrical properties of the neuronal circuit.

Figure 2.2: Model morphology. A myelinated a¤erent axon terminates into a terminal, which
is connected to the granular cell soma by an electrical gap junction. The granular cell consists
of a soma connected to the axon by a high resistance hillock. In addition, the granular soma
is connected to a dendritic compartment with a large membrane surface (not shown in �gure).

Three signi�cant features of the physiological recordings guided our construction
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of the model, features which we aimed to replicate in simulations. First, the spikes

recorded at the soma were small (10 � 20 mV) and the membrane potential was not
reset to the resting potential following a spike. This implied to us that the spike was

generated at a signi�cant electrotonic distance from the soma thus reducing its recorded

amplitude and preventing the reset of the soma membrane potential. In the model, a

high-resistance hillock was inserted in between the granular soma and axon. Second,

the cells show outward recti�cation due presumably to non-inactivating, depolarization

activated outward current. Third, the cells have a long time constant (greater than 40

ms) and high input resistance (~2G
). The long time constant implies a relatively

large membrane surface which was re�ected in the model by the inclusion of a dendritic

compartment, consistent with the observed morphology of the granular cells (Zhang et

al., 2007).

The design of the currents in the soma relied on the second and third features of the

physiological data described above. We inserted a non-inactivating potassium current,

IKV ; into the soma and we allowed the GA tuning procedure to modify the maximum

conductance, since the reversal potential of this type of channel is likely responsible

for the de�ection of the IV curve, illustrated in Figure 2.1. The input resistance was

measured experimentally (Zhang et al., 2007) and the capacitance was determined from

the resistance and the time constant. The size of the spikes recorded at the soma was

therefore dependent on the hillock resistance. We simulated the voltage time course at

the granular cell soma as the JLN chemical EPSP is succeeded, at variable latencies,

by the a¤erent spike. The construction of our model assumed a single compartment

for the granular soma. For this type of model, the time course of the voltage can be

approximated by the equation

cm
dV

dt
= �gL(V � EL) +

IE
A
+
IKV
A

where cm is the speci�c membrane capacitance, gL is the maximum leak conductance

per unit area, EL is the leak current reversal potential, A is the total area of the cell

and IE is the sum of currents entering the granular cell soma from the granular hillock

and the gap junction.

Following the general framework of the Hodgkin-Huxley model (Hodgkin and Huxley,

l952), each ionic conductance is approximated using the formula:

I = gLn
kh(V � Vrev)

where gKV is the maximum conductance, n is the activation variable, k is the number

of gating events necessary to open and therefore activate a channel, h is the inactivation
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Table 2.1: Biophysical parameter values of the model.
g( mS
mm2 ) k Vrev(mV) �(sec�1) �(sec�1)

INa;terminal 0:12 to 2:4 3 50 0:1(V+40)

1�e�0:1(V+40) 4e�0:056(V+65)

inactivation 1 0:07e�0:05(V+65) 1
1+e�0:1(V+35)

IK ;terminal 0:036 to 0:72 1 �77 0:01(V+55)

1�e�0:1(V+55) :125e�0:125(V+65)

Ileak; soma 0:001 to 0:1 �54
IKV ;soma 0:001 to 0:5 4 �70 0:13(V+25)

1�e�0:1(V+25) 1:69e�0:0125(V+35)

INa;axon 0:12 3 50 0:1(V+40)

1�e�0:1(V+40) 4e�0:056(V+65)

inactivation 0:036 1 0:07e�0:05(V+65) 1
1+e�0:1(V+35)

variable, V is the instantaneous voltage and Vrev is the reversal voltage of the channel.

The probability of each of the k gating units being open is dependent on the instan-

taneous voltage V and is governed by the equation

dn

dt
= �(V )(1� n) + �(V )n

with �(V ) and �(V ) being speci�c for each ionic channel. The h variable dependence

on voltage is similar.

Based on measured values in cerebellar granule cells (D�Angelo et al., 2001) and

their morphological similarity with the granular cells of the ELL (Zhang et al., 2007),

the parameters of the granular cells and a¤erent terminal were allowed to vary within

physiological ranges which have been measured in channels of these types (Hille, 2001).

We present the range of parameters used in our model in Table 2.1.

The speci�c dimensions of each compartment, together with the axial resistances,

are also necessary for a full description of the model. The axial resistance is inversely

proportional to the area of the segment and grows linearly with the length. The constant

of proportionality is the axial resistivity, which is also a parameter in the model. In

addition, the long time constant measured of the granular cells required a high total

capacitance. Since the capacitance of neuronal membranes has a fairly constant value

per unit area, (Hille, 2001), the large capacitance is likely a result of a large surface area.

Experimental observations (Zhang et al., 2007) revealed that the granular soma itself

has a small size. Therefore we hypothesize that the large dendritic processes connected

to the soma are likely the source of the additional membrane surface. We summarize

bellow the size and the axial resistivity of each compartment. Some of the parameters

were allowed to vary during the tuning procedure We we present the admissible ranges

for their values in Table 2.2.
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Table 2.2: Compartmental dimensions of the model.
length (�m) diameter (�m) axial resistivity (k
 �mm)

a¤erent axon 500 2 100
a¤erent terminal 1 to 3 1 100
granular soma 8 8 100
granular dendrite 600 to 1000 1 100

hillock 10 0:1 100 to 300
axon 20 0:5 100

2.2.2 Tuning the model using a genetic algorithm

Finding a suitable set of parameters which reproduces basic properties of the cells

required searching a large dimensional parameter space. A �exible method to search the

range of parameters is provided by a genetic algorithm approach (Keren et al., 2005).

The procedure involves constructing a set of models, each with di¤erent parameters,

and evaluating their �tness using a �tness value. In our case, the �tness value F re�ects

the di¤erence of desired behavior (experimental data) and the behavior of the model.

Minimizing this di¤erence results in �tting the voltage-current relationship (IV curve),

the eEPSP dependence of the holding voltage, and also the relatively long time constant

of the granular cell:

F (�) = FIV (�) + FEPSP (�) + w � (� cell � �m(�))2

where FIV is the mean squared error contribution from the IV curve, FEPSP the con-

tribution from the eEPSP and w� (� cell � �m(�))2 re�ects the error contribution from
the di¤erence between the time constant of the cell � cell and the time constant of the

model cell �m(�). The set of parameters, collectively represented by �; consisted of the

dimensions of the cellular compartments in the model (a¤erent axon and terminal, gap

junction, granular soma, dendrite, hillock and axon) together with the electrophysiolog-

ical properties of the membranes, such as capacitance and speci�c conductance.

In the context of GA operation, an individual consists of a model constructed using

a speci�c set of parameter values. A population consists of a collection of individuals,

with each individual characterized by a unique set of biophysical parameters. After a

random initial population of individuals is created, each individual is evaluated using

its �tness value, which measures how well the model conforms to the experimental data.

In our implementation, the initial population was generated by independently choosing

a random value for each parameter, drawn from a uniform distribution bounded by the

range derived from experimental data (Zhang et al., 2007). The next step consists of

computing the �tness value of each individual and assigning to each a rank, re�ecting
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their position in the list of ordered �tness values. The rank is used to assign to each

individual a probability of being selected for reproduction.

There were three choices for reproduction or creation of children, or members of the

next generation. Elite children were the individuals kept unchanged from the current

generation. They were the individuals with the best �tness values, and their preservation

guaranteed a monotonic decrease in the error from one generation to the next. Crossover

children were created by combining the parameter values of two parents. For the �rst

generations, our implementation of the genetic algorithm used random selection, where

each parameter value will be chosen at random from one of the two parents. For the later

generations, we used an intermediate value for the value of the parameter. In this case

the parameter value of the child was chosen from a uniform distribution bounded by the

values of the parameter values of the two parents. Mutation children were created by

introducing random changes, or mutations, to some of the parameters of a single parent.

In our implementation, the random mutation consisted of choosing a parameter value

by drawing from the same uniform distribution used to construct the �rst generation.

Criteria for termination of the algorithm was based on examining the diversity of the

population. This was accomplished by measuring the distance between the individuals

in each generation and measuring the average �tness value of all individuals. When

these quantities have decreased signi�cantly the algorithm was terminated and the best

parameter values were reported.

2.3 Results

2.3.1 Behavior of the genetic algorithm tuning procedure

The behavior of this tuning procedure is displayed in Figure 2.3. We see a relatively

rapid convergence in the best individual �tness value, which reaches a stable value in

about 10 generations. In generations 10�20, the improvement in best individual �tness
(Figure 2.3A) is much smaller, but the population diversity and average generation

�tness decrease further (Figure 2.3 B and C). After further 10 generations, our criteria

for stopping the search procedure is satis�ed and we select the best individual model for

further exploration.

2.3.2 Reproducing biophysical properties of granular cells

The best individual resulting from our GA tuning procedure are listed in Table 2.3.
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Figure 2.3: A. Fitness of best individual. B. Euclidian distance between vectors representing
parameter models (individuals). C. Average population �tness.

Table 2.3: Final parameter values of the model.
INa; terminal 2:15 mS

mm2

IK; terminal 0:41 mS
mm2

I
leak; soma 0:06 mS

mm2

IKV; soma 0:42 mS
mm2

a¤erent terminal 2; 6�m
granular dendrite 874�m

hillock axial resistivity 212k
 �mm

We note the large value of the Na conductance, which is probably required in order

for a su¢ cient amount of charge to be injected into the granular soma. The large K

conductance in the terminal is required for the rectifying phase of the a¤erent terminal

action potential. The IKV conductance is responsible for the knee in the IV curve

illustrated in Figure 2.1 A. The a¤erent terminal size, in conjunction with the density

of active Na conductance, generates the electrical charge entering the granular soma

through the gap junction. The size of the granular dendrite is large, re�ecting the

large capacitance which underlies the long time constant of the granular cells. The

relatively high hillock resistivity ensures that spikes generated in the granular axon do

not backpropagate into the soma.

The parameter values outlined above are consistent with biophysical mechanisms

likely to underlie the behavior of the granular-a¤erent cell complex and also with the

intuitive outline of the sequence of events generated by an a¤erent spike. However,

�nding speci�c values for the 7 parameters which �ne tune the biophysical responses has

proven very di¢ cult to achieve manually. In contrast, our search procedure using the

GA has been proven to be able to �nd parameter values which are balanced and satisfy

all the competing requirements.

Speci�cally, our model cell reproduced the current-voltage relationship measured in

granular cells, as illustrated in Figure 2.4 A. In addition, the model replicated many
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of the properties of the electrical EPSP, in particular its modulation by the membrane

potential of the granular cell. Our simulation results were therefore consistent with the

hypothesized mechanism of pre-synaptic control of the EPSP size, namely the electric

coupling through the gap junction (Zhang et al., 2007). In Figure 2.4 B we illustrate

the relative contribution of the Na channel inactivation vs. simple ohmic dependence on

the holding potential. For di¤erent holding potentials, we injected a constant amount

of current, approximately equivalent with the Na current due to an a¤erent spike at

a holding potential of �90 mV, into the terminal. The resulting EPSP relation to

holding potential is due solely to ohmic factors. This procedure revealed that the electric

coupling between the axon terminal and the granular cell has a signi�cant e¤ect on the

post-synaptic EPSP.

The model also reproduced the abrupt disappearance of the EPSP at about �90
mV. This e¤ect was presumed to be due to inhibition of the presynaptic spike by the

hyperpolarizing current from the gap junction.(Zhang et al., 2007), hypothesis consistent

with our modelling results.

Figure 2.4: A. Data and model current-voltage relationship. B. Dependence of EPSP on the
postsynaptic potential.

Physiological recordings under voltage clamp (Zhang et al., 2007) showed that cur-

rents of a magnitude of about 1 nA underlie the eEPSP. To simulate the eEPSP, we

injected a brief current into the a¤erent, such that a spike was initiated. The a¤erent

spike propagates to the a¤erent terminal and, through the gap junction, propagates

further into the granular cell soma, as illustrated in Figure 2.5.

The results of the simulation illustrated in Figure 2.5 revealed that an a¤erent spike

generates a sharp de�ection in the voltage recorded at the granular soma. This de�ection

is smaller than a de�ection generated by a typical spike, as expected since the granular

soma does not have active Na channels and it is connected to the terminal by a gap
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Figure 2.5: Voltage traces generated by simulating an a¤erent spike in the a¤erent axon. A
large a¤erent spike is attenuated at the terminal, presumably due to the inactivation of Na
channels. Granular soma postsynaptic response has small amplitude but a long duration. This
voltage de�ection generates the spike in the granular axon.

junction with a relatively high axial resistance. In addition, the soma voltage relaxed

toward its original resting voltage in a slow manner, consistent with the electrophysiolog-

ical recordings (Zhang et al., 2007). Nevertheless, a spike was generated in the granular

cell axon, which is connected to the soma by the high-resistance hillock.

The importance of this model lies the expansion the possibilities of investigation.

The availability of the model allows us access to parameters such as the level of Na

activation in the pre-synaptic compartment, a parameter which is inaccessible during in

vitro experiments. We note that, due to the high dimensionality of the search space,

we have no guarantee about the uniqueness of the parameter set found. In the strict

sense, we have shown the existence of a solution, but we have no guarantees about its

uniqueness. However, the fact that our mathematical model reproduces in a biologically

realistic manner so many of the characteristics of the granular cells and its interaction

with the a¤erent terminal is notable. Such a level of concordance between the experi-

mental and modeling results makes it unlikely that the model operates in a drastically

di¤erent manner from the granular cells of the ELL.



Chapter 3

Response attenuation to paired sounds in the

primary auditory cortex

In complex neuronal systems such as the mammalian primary auditory cortex, large

numbers of neurons contribute to the representation of sensory information, decision

making and motor action. In this chapter we analyze cortical responses to pairs of iden-

tical tones presented as part of a behavioral task. Neural responses consist of recordings

of simultaneous �eld potentials and spikes from multiple sites. We show that awake

behaving rats display di¤erences between the responses to the �rst and second tone, a

phenomenon known as response attenuation, consistent with previous �ndings in several

species (Näätänen and Picton, 1987), (Mäntysalo and Näätänen, 1987), (Gottlieb et al.,

1989), (Javitt et al., 1992), (Brosch et al., 1999). We investigate how the response atten-

uation changes during the course of the experiments, which consist of several hundred

trials. We also inquire whether the amount of response attenuation is predictive of the

performance in a behavioral task.

As mentioned in Introduction, our aim is to explore the data in a comprehensive

manner in order to �nd signi�cant relationships between the stimuli, neural representa-

tions and subsequent behavioral choices. In this set of data, the neural stimuli consisted

of two simple categories: either a single tone or a pair of tones. The behavioral choices

consisted of either a lick or the absence of a lick in response to stimuli. In contrast, the

space of neural responses recorded consisted of traces LFP�s and spike trains recorded

simultaneously from multiple electrodes. Consequently, we identify and evaluate a set of

methods which can be used for describing these high dimensional responses and compare

them across di¤erent stimulus classes or behavioral responses.

In order to evaluate the statistical signi�cance of our �ndings, we adapted established

pattern recognition procedures such as linear discriminant analysis (LDA) (Duda et

al., 2000) to the speci�c characteristics of our LFP data. Subsequently, we employed a

17
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non-parametric bootstrapping procedure (Chernick, 1999), which allowed an evaluation

of the statistical signi�cance of the �ndings with only minimal assumptions about the

speci�c probability distribution. For analysis of the spike trains resulting from auditory

stimulation, we used a spike metric approach, which allows quantitative evaluation of

the amount of information that spike patterns convey about a given set of stimuli, taking

into consideration both the spike counts and spike timings.

In this series of experiments, we had direct access to the behavioral saliency of

di¤erent features of neural representation, since the animals were awake and performing

a task related to the stimuli presented. We observed that the behavioral action of the

animal succeeded the stimulus presentation at a very short latency, presenting challenges

for the use of analysis techniques such as spectral decomposition of the recorded signals.

This observation motivates the choice of analysis techniques used.

3.1 Relationship between interstimulus interval and response

magnitude

In many species, the brain responds to closely spaced identical sounds with dimin-

ishing neural activity (Näätänen and Picton, 1987), (Mäntysalo and Näätänen, 1987),

(Gottlieb et al., 1989), (Javitt et al., 1992), (Brosch et al., 1999). While this e¤ect is

consistently found across species and recording paradigms, its role in sensory process-

ing and in subsequent behavioral choices remains unclear (Werner-Reiss et al., 2006).

This dependence on sound history is thought to be involved in auditory perception

phenomena at various timescales, including the precedence e¤ect and forward mask-

ing at short timescales, and speech comprehension and loudness adaptation at longer

timescales (Werner-Reiss et al., 2006). Consequently, a number of studies have investi-

gated and quanti�ed the diminishing neural response to the second of two closely spaced

but separate auditory stimuli: anesthetized cat (Hocherman and Gilat, 1981), (Calford

and Semple, 1995), (Brosch and Schreiner, 1997), (Lu et al., 2000), (Reale and Brugge,

2000), awake baboon (Gottlieb et al., 1989), anesthetized monkey (Brosch et al., 1999),

and awake rabbit: (Fitzpatrick et al., 1999). A more recent study has detailed the long

persistence (5 s or even longer) and inter-stimulus interval dependence of the diminishing

e¤ect of successive stimuli in awake behaving monkeys (Werner-Reiss et al., 2006).

High frequency oscillations (gamma range: 30 to 100 Hz) in the neocortex have

been correlated with di¤erent aspects of sensory processing, and have been proposed

as a possible sensory binding mechanism or as correlates of behavioral states such as

attention and arousal (Lakatos et al., 2004), for a review see also (Lee et al., 2003).
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We analyzed the responses of awake behaving rats to sequences of two closely spaced,

identical sounds. Our data consisted of recordings from several channels of a multiple

electrode array placed over the primary auditory cortex. Our stimuli consisted of either

one or two 10 kHz tones, each 20 ms long, with the intertone interval varied between

100 and 400 ms. Some of the animals were trained to recognize and respond to two

tones by licking a water spout, which dispensed water only in the two tones trials. The

training regimen allowed us to evaluate the behavioral e¤ects of the neural responses to

sound, by quantifying whether we can predict the future behavior of the animal based

on characteristics of the neural response to these behaviorally relevant auditory stimuli.

Our experimental paradigm allowed the observation of the response attenuation in

the auditory cortex of awake behaving rats, the quanti�cation of this e¤ect and compar-

ison with previous studies, speci�cally in relation to the magnitude of the attenuation as

a function of inter-stimulus interval duration (Werner-Reiss et al., 2006). We have also

investigated the evolution of the relationship between the neural response to the �rst

and second tone over the course of our experiment, which consisted typically of several

hundred trials. In addition, the inter-stimulus interval of 200 ms was long enough to

permit the estimation of the power spectrum with an acceptable level of accuracy, given

our sampling rate fs = 1KHz. We investigated the relationship between the spectral

power of gamma-frequency oscillations in the LFP, measured in the interval between the

tones, and the amount of response attenuation to the second tone. Finally, we inves-

tigated whether the response attenuation and gamma-frequency power have predictive

power in relation to the future behavior of the animal.

3.1.1 Experimental setup

For several weeks preceding the recording experiments, rats were trained to dis-

tinguish between one-tone versus a two-tone sound presentation. The animals were

presented with 2 kHz tones, 20 ms long. During this training or acquisition phase,

animals learned to associate two tones with a reward, which was lacking when just one

tone was presented. The interval between the tones was varied randomly between 25

ms and 400 ms, with the intention of conditioning the animal to the presence of two

tones, as opposed to learning a speci�c intertone interval. Water was released through

the spout at a latency of 800 ms following the second tone. Neural recordings in the

form of LFP�s and spikes were extracted using standard neurophysiologic laboratory

procedures (Paulo Rodrigues, personal communication).

During the course of several weeks of training, the animals gradually learned to
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Figure 3.1: Two alternative forced choice task training paradigm: water is associated with two
tone presentation, and no water is presented following one tone. Courtesy of Paulo Rodrigues.

associate two tones with the expected reward and started to lick the water spout in

anticipation of the reward (see Figure 3.1). The animals were considered trained when

the frequency of licking in response to two tones was signi�cantly higher than the fre-

quency of licking in response to one tone. The animal had the opportunity to lick and

was judged to have a correct or incorrect trial during a window of time of 800 ms fol-

lowing the second tone. A trial is judged correct if the animal licks in response to two

tones, and if it does not lick following a one tone presentation. The evolution of the

performance during several weeks of training is illustrated in Figure 3.2.

.

3.2 Methods

3.2.1 Methods for the analysis of LFP traces

Dimensionality reduction and statistical analysis

We have collected LFP waveforms in a time window starting 10 ms before the onset

of each tone and ending 50 ms after the onset of the tone, resulting in a collection of 60

dimensional vectors. In order to quantify di¤erences between these vectors, one approach

employed was receiver operator characteristic (ROC) analysis (Green and Swets, 1966).

Each of the 60 time points (dimensions) was initially compared independently, in order

to �nd signi�cant di¤erences between the responses to the �rst and second tone. The

process is illustrated in Figure 3.3. A threshold is chosen to separate the values in

two categories. The amount of overlap between the assigned categories and the true

categories of the data is computed. The process is repeated for all possible values of the
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Figure 3.2: Performance improvement as over the course of training. Filled circles: percentage
lick for two tone trials. Empty circles: percentages lick for one tone trials. Courtesy of Paulo
Rodrigues.

separating threshold. Each such value of the threshold results in proportions of correctly

and incorrectly labeled data points. Plotting of true positives versus the false positives

traces a curve between the points (0; 0) and (1; 1). For a perfect classi�er, the curve will

trace the left and top segments of the unit square, resulting in an area under the curve

(AUC) of one. We also note that the diagram in Figure 3.3 is symmetric with respect to

labeling in A and with respect with the main diagonal in B, respectively: if the labeling

of the T and N data points is switched, the ROC curve will be traced in the other side

of the main diagonal, resulting into and AUC between 0 and 0:5.

The reasons for employing the ROC analysis are twofold. First, this method is very

sensitive to small di¤erences between two distributions. A deviation from the 0:5 value

signi�es a potential di¤erence between the two sets of values, which can subsequently be

evaluated using more rigorous statistical tests. Second, computing the AUC is relatively

fast, which is convenient when a very large number of comparison need to be computed.

Examples of such large data sets include collections of spectrograms where statistical

comparisons are performed on each coe¢ cient in the spectrogram separately.

TheAUC has a clear interpretation when used in the context of two-alternative forced

choice task: it is the probability of making a correct choice (Green and Swets, 1966).
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Figure 3.3: A. Two di¤erent but overlapping distributions are labeled as N:negatives (left bell-
shaped curve) and P: positives (right bell-shaped curve). The distributions are separated using
a variable threshold (vertical line). TP: true positives, FP: false positive, TN: true negatives.
B. Plot of true positives versus false positives, expressed in percentages, as the threshold value
is varied over the whole range of data values. P(TP) is proportion of true positives, P(FP) is
the proportion of false positives resulting from a particular threshold. Green arrow illustrates
how the ROC curve is traced by varying the threshold.

However, this measure can be ambiguous when comparing two curves from di¤erent

experiments, where the probability of a positive signal is di¤erent (Metz et al., 1973). In

this case, a more appropriate measure of the performance of a classi�er is provided by

the maximum information content of a particular ROC curve. A speci�c point on the

ROC curve, called an operating point, has associated with it the amount of transmitted

information or Shannon information (Shannon, 1946).

We note that the transmitted information measure, in contrast with the AUC mea-

sure, makes use of the a priori probabilities P (T ) and P (F ). The transmitted informa-

tion de�nes a set of curves in the unit square, called iso-information curves (Metz et al.,

1973). Along each of these curves, the amount of transmitted information is constant

(See Figure 3.4). We evaluate each ROC curve by the operating point on the ROC curve

which belongs with the maximal iso-information curve. This procedure allows meaning-

ful comparisons among ROC curves generated by di¤erent a priori probabilities P (T )

and also among ROC curves which have same AUC but intersect in just one point.

In a subsequent step in our analysis, we used LDA in order to reduce the dimension-

ality of the recorded neural responses. This procedure is similar to principal component

analysis, but where the latter attempts to �nd an ordered basis based on the values of

the eigenvalues, the former attempts to project the data onto an ordered orthogonal ba-

sis with the �rst vector corresponding to the dimension which is the most discriminative

between a set of categories (Duda et al., 2000).

In order to illustrate the procedure, we consider the problem of projecting an n-
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Figure 3.4: Information content along ROC curves. Black curves: iso-information,
marked with information in bits. Red curves: ROC curves. A: Iso-information curves for
P (positives) = 0:5. The maximum information content point is the intersection of the ROC
curve and the highest iso-information line. B: P (positives) = 0:2: The iso-information curves
are shifted by the change in the a priori probabilities.

dimensional set of points x, divided into two categories D1; D2, onto a single direction.

We can accomplish this projection by choosing a set of weights wi; i = 1::n and com-

puting the inner product w � x :

y = w � x = w1x1 + :::+ wnxn

Choosing the set of weights w is a subject of a set of constraints. The samples

y1; y2 correspond to the two categories in our data, and let mi=
1
ni

P
y2Di

y be the means

of the projected two categories of data points. The LDA procedure consists of making

the di¤erence in the projected means jm1 �m2j small relative to the variance of the
data. This requirement can be formally represented as a generalized eigenvalue problem

(Duda et al., 2000). The solution can also be interpreted as the set of weights w which

minimizes the within group variance relative to the between group variance of the two

sets of projected data points y1; y2: A simple illustration of this process is displayed in

Figure 3.5 A.

We applied this dimensionality reduction procedure to our data. Restricting the

representation of the data to the most discriminative component, we obtained a value y

for each LFP trace. For each trial, the amount of response attenuation was quanti�ed

as the di¤erence of the scalar value corresponding to the �rst tone and second tone.
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Figure 3.5: A: Illustration of the LDA dimensionality reduction procedure, for two dimensions.
Data points are projected on the direction most discriminative. Modi�ed from (Park and Fry,
2004). B: Performance (AUC) in discriminating between the two categories is computed at
each time point. The projection on LDA direction has superior performance to any individual
time point.

In choosing the appropriate length of our LFP trace, we �rst evaluated the individual

performance of each time point, as measured by AUC, in discriminating between �rst

and second tone (see Figure 3.5 B). As di¤erences between traces become informative,

the plot departs from the AUC= 0:5 value, which represents chance performance. The

discrimination information becomes nearly zero (AUC= 0:5) around 60 ms after the

tone, providing us with a criterion for choosing the appropriate length of LFP trace

to be selected for LDA analysis. When the scalar value which is the output of LDA

projection is used for discrimination, its performance is superior to that of any individual

time point (Figure 3.5 B).

When investigating the statistical signi�cance of our results, we chose statistical

tests that are not dependent on normality assumptions for the data. For two sam-

ple comparison test, we used the Wilcoxon rank sum test for equal medians (Gibbons

and Chakraborti, 2003). When computing the strength of correlation between two ran-

dom variables, we used the non-parametric Spearman � coe¢ cient (Spearman, 1987).

Since our � coe¢ cient values where often relatively small, we evaluated their statistical

signi�cance using a non-parametric bootstrap procedure (Press et al., 2007). Unless oth-

erwise noted, all our statistical comparisons and correlation inferences were signi�cant

at p < 0:05, as evaluated using these non-parametric statistical techniques.

Multitaper methods for spectral estimates

LFP data consisted of electrode recordings that were low-pass �ltered at 500 Hz in

order to prevent contamination from spiking activity (Paulo Rodrigues, personal com-
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munication). Spectral analysis of the continuous data in LFP�s was performed using

multitaper methods, which provide an optimal balance between the bias and variance of

estimated spectral quantities (Mitra and Pesaran, 1999), and consequently have gained

acceptance on the neuroscience community. In our particular case, the relatively short

length of the traces used to compute spectral quantities (150 ms for a sampling fre-

quency of 1000 Hz) made it imperative to use low-bias, low variance methods of spec-

tral estimation. In the multitaper approach to spectral estimation, a segment of data

is multiplied by a taper as a preprocessing step in advance of Fourier transformation.

Slepian functions (Slepian and Pollak, 1961) are used as data tapers, due to their prop-

erty of concentrating the frequency power in the interval [�W::W ], for each choice of
time length T . The improvement in the estimation of spectral quantities is mainly due

to the use of multiple Slepian functions as data tapers (Slepian and Pollak, 1961).

Formally, our multitaper spectral estimate will be expressed as an average over several

tapered estimates (Mitra and Pesaran, 1999) 1:

SMT (f) =
1

K

KX
k=1

jexk(f)j2
where

exk(f) = NX
1

wt(k)xt exp(�2�ift)

with N being the data points in the time domain x1::xN and wt(k), (k = 1; 2; :::; K)

being K orthogonal taper functions with characteristics determined by the bandwidth

parameterW:We note that the bandwidth parameterW is still subject to the fundamen-

tal time-frequency estimation trade-o¤ which limits the frequency resolution available

for a taper of length N (Jarvis and Mitra, 2001). Following considerations outlined in

(Mitra and Pesaran, 1999), we choose the bandwidth W equal to a small multiple of

the best theoretically attainable frequency resolution, the Raleigh frequency fs
N
:where

fs = 1KHz is the sampling frequency of the data.

For simultaneously recorded LFP traces, we can compute the average coherency

between two simultaneous signals. To compute the coherency, one starts from the ex-

pression for the cross-spectrum:

1For the implementation of the spectral estimation methods, we used Matlab (MathWorks,
Inc.) libraries freely available at www.chronux.org, as well as custom code speci�cally tailored
to our data sets
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Syx(f) =
1

K

KX
k=1

eyk(f)ex�k(f)
and then normalizes by the respective spectra:

Cyx(f) =
Syx(f)p
Sx(f)Sx(f)

The absolute value of the coherency, the coherence, is a quantity between 0 and 1 that

quanti�es the amount of variation in one signal that can be explained as a linear �lter

of the other signal.

3.2.2 Methods for the analysis of spike trains

A method of incorporating the burst count as well as spike timing into a decoding

scheme that aims to �nd the amount of information present in a set of neural responses

is given by the spike metric approach (Victor, 2005)2.

A metric is an abstract notion of distance between points belonging to a set. Our

points consist of spike trains Sa; Sb and their collection is the set of all recorded spike

trains. A spike metric must satisfy the following properties:

Symmetry: D(Sa; Sb) = D(Sb; Sa)

Triangle inequality: D(Sa; Sc) <= D(Sa; Sb) +D(Sb; Sc)

Non-negativity: D(Sz; Sb) > 0 unless Sa = Sb:

We note that the non-negativity condition is relaxed in reference to spike trains, in

the sense that distinct spike trains can still have zero distance. Formally, our notion of

distance is then transferred to distance between equivalence classes of spike trains.

The spike distance is the sum of a series of costs corresponding to steps by which the

�rst spike train can be transformed into the second spike train - see Figure 3.6. Insertion

or deletion of a spike into the spike train always has a cost of one. Changing the timing

of a spike by an amount of time t has an associated cost of qt , where the parameter q

results in di¤erent metrics and is useful in providing a balance between the spike count

and the spike timing in a burst: if q is very small, then the metric is equivalent to a

spike count. If q = 0, spike trains with the same number of spikes belong to the same

equivalence class. If q is large, temporal di¤erences in spikes become dominant.

2Information theoretic analyses in this study were conducted with the Spike Train Analysis
Toolkit� a neuroinformatics resource funded by the NIH�s Human Brain Project, which is freely
available at http://neuroanalysis.org.
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An e¢ cient dynamic programming algorithm for computing pairwise distances be-

tween spike trains was provided by (Victor et al., 2007).

Figure 3.6: Illustration of a series of steps that transforms the spike pattern on top (A) to the
pattern on the bottom (B). Red spike in is deleted during the �rst step, green spike is added
during 7th step (row). Blue arrows mark the spikes shifted for a cost of qt.

Based on these pairwise distances between spike patterns, the neural responses can

be categorized in clusters. The level of overlap between these clusters and stimulus

categories in a particular experimental paradigm quanti�es the information that spike

patterns convey about the stimulus.

Our procedure followed the general method outlined in (Victor, 2005). We start with

N spike trains, in response to a set of stimuli. For each spike response, we calculate

average distance to stimuli of each category:

d(S; s
) = [


(Dq (S; S

0))
z�
s0
]
1
z

where s
 is the set of responses to a particular stimulus 
 and S is a particular spike

train. Next, each spike train is assigned to the stimulus category corresponding to the

smallest d. The above procedure results in a confusion matrix, with the o¤-diagonal

elements corresponding to mislabeled spike trains. This confusion matrix is transformed

into a two dimensional frequency histogram, which allows evaluation of the amount

of information. Here, by information we mean the decrease in uncertainty about the

stimulus that is achieved by observing the neural response. Intuitively, we can consider

the case when there are two stimulus categories, strong and weak, which typically result

in two di¤erent neural responses, for instance in a high or a low �ring rate. However,

occasionally the strong stimulus will result in a low rate and the weak stimulus will
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generate a high rate. If these events are rare, then we can say that the response conveys

a high amount of information about the stimulus. As such, the relationship between the

stimulus and neural response can be analyzed similarly with any communication channel

(Shannon et al., 1998), (Rieke et al., 1997), (Dayan and Abbott, 2005).

The concept of entropy has been associated with how "interesting" a set of responses

is (Dayan and Abbott, 2005). For the random variable r associated with the response,

we de�ne the entropy of its probability distribution P (r):

H = �
X
r

P [r] logP [r]

The logarithm function is used in the above sum due to several desirable properties.

First, it is a decreasing function, which satis�es the intuitive concept that events with

low probability have higher measure of surprise. Second, products get transformed into

sums by the log function, satisfying the condition that witnessing a response consisting of

two independent events should sum their respective entropies (Dayan and Abbott, 2005).

The logarithm function satis�es these conditions and therefore it is used in computing

the entropy. Low-probability events have a high amount of surprise, but their weight in

the sum is low. In contrast, high probability events have high weight but their logarithm

is nearly zero.

The entropy of the responses can have two separate sources. The neural responses

could have an inherent source of entropy, unrelated to the stimulus, which we call noise

entropy, which is present even when the stimulus is held constant. For a speci�c stimulus

s, held constant, the response entropy can be calculated:

Hs = �
X
r

P [rjs] logP [rjs]

The total noise entropy is calculated by a weighted averaging the above entropy Hs over

all stimulus conditions:

Hnoise = �
X
s

P [s]Hs = �
X
s;r

P [s]P [rjs] logP [rjs]

The mutual information between stimuli and responses is the di¤erence between the

entropy due to variations in the stimulus and the entropy that is present in the responses

regardless of the entropy of the stimulus:
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Im = H�Hnoise = �
X
r

P [r] logP [r]+
X

P [s]P [rjs] logP [rjs] =
X
s;r

P [r; s] log
P [r; s]

P [r]P [s]

where the last equality makes use of the fact that P [r; s] = P [s]P [rjs] = P [r]P [sjr] by
Bayes rule. The last expression reveals that the mutual information is symmetric, in the

sense that the information gained about the stimulus by observing the neural responses

is equal with the information known about the neural responses if one has access to

the stimuli presented to the system. Our discussion above closely follows the outline

provided in (Dayan and Abbott, 2005), chapter 4.

Often times it is desirable to have a visually intuitive way of displaying the data. A

set of pairwise distances can be inspected visually by using a multidimensional scaling

procedure such as Isomap (Tenenbaum et al., 2000). This procedure �nds the best two

dimensional representation of the data that preserves as much as possible of the pairwise

relationships between the data points. Therefore, even though the data is formally

residing in a high dimensional space, in some cases a two dimensional representation is

still intuitively helpful, especially in cases in which a small number of factors explain

much of the structure of the data. In the case of pairwise distances between spike trains,

Isomap is especially convenient since it accepts as input pairwise distances.

3.3 Results

3.3.1 Di¤erent neural representations of sound stimuli and so-

matosensory inputs

The LFP traces recorded from the primary auditory cortex reveal a sharp, precisely

timed de�ection immediately following the presentation of a sound stimulus (see Figure

3.7 A). This response is characteristic of recordings from the auditory cortex. We also

observed a precisely timed series of spikes immediately following each tone presentation

(see Figure 3.7 B).

Visual inspection of the spike rasters in Figure 3.7 B suggested that there was an

increase in spiking during the time of the lick (compare blue and green spike rasters

versus red and cyan). In order to quantify this observation, we computed the average

�ring rate for each animal, pooling all the spikes recorded across di¤erent electrodes.

The number of well-isolated electrodes from each animal varied between 8 and 14 across

the 4 animals used in the experiments. All animals/experiments revealed similar results;
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Figure 3.7: A. LFP responses to either one (top) or two tones (bottom) Trials where the
animal licked are represented on the right. B. Spike rasters collected after either one or two
tones. Blue: two tones, lick. Green: One tone, lick. Red: two tones, no lick. Cyan: one tone,
no lick.

we present a typical example in Figure 3.8.

The increase in spiking corresponding to the licking action is somewhat surprising

considering that our recordings come from the primary auditory cortex. While our

experimental paradigm does not permit us to assess with absolute certainty whether the

licking itself generated some low level sound, audibly undetectable to the experimenter

(Paulo Rodrigues, personal communication), we believe that a more likely explanation is

a direct modulation of the �ring rate by the motor action. This is consistent with recent

work in a variety of mammalian systems which describe modulation of the �ring in the

auditory cortex by a variety of non-auditory stimuli, including motor action (Kayser et

al., 2008), (Bizley et al., 2007), (Noesselt et al., 2007), (Martuzzi et al., 2007).

Spectral analysis of the oscillations in the LFP has revealed an increase in the power

in a broad range of frequencies (Paulo Rodrigues, personal communication), in response

to both auditory input and motor action. However, while there was a similar increase in

power for these qualitatively di¤erent inputs (auditory tone and motor action), there was

a notable di¤erence in the coherence computed between pairs of recording electrodes.

For each trial, we computed the spectrogram of the recorded LFP. Each spectrogram

resulted in a time-frequency plot represented as a matrix. For each element in these

matrices, we performed an ROC analysis contrasting the trials where the animal was

presented with two tones and licked, versus the trials where the animal was presented

with one tone and did not lick. In Figure 3.9 A we illustrate the results of this compar-

ison. In order to have su¢ cient time resolution to distinguish between the response to
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Figure 3.8: Firing rate (spikes/sec) versus time (sec). A: one tone, no lick. B: one tone, with
lick. C: two tone, no lick. C: two tones, lick. Firing rates were computed using a Gaussian
averaging window with width of 20 ms. Blue trace represents mean �ring rate, green traces
show the standard deviation.

the second tone (0:3 to 0:4 s into the trial) from the response to the lick (approx.0:5 s

into the trial), we had to use a short time window in computing the spectrogram (100

ms), which resulted in the loss of frequency resolution. Therefore, we emphasize that

the plots in Figure 3.9 are not intended to identify speci�c frequencies and do not allow

the interpretation of the apparent break in the frequency plot at around 40 Hz. We will

return to the issues related to time-frequency resolution in Chapter 5.

The colors in the plots represent AUC values, with dark red (AUC = 1) illustrating

the fact that the power in trials with two tones and lick was greater than the power in

trials with one tone and no lick. Cyan color corresponds to AUC = 0:5, which means

that there is no signi�cant di¤erence in power between the two conditions. For the time

between 0:1 and 0:2 s, corresponding to the �rst tone, there is no di¤erence between the

two conditions, as expected since the �rst tone was present in both conditions. For the

time between 0:3 and 0:4 s into the trial, the presence of the second tone is apparent
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by the increase in power. After a brief pause, the response to the lick is signi�ed by the

increase in power corresponding to the time when the animal licks the water spout.

Figure 3.9: A: ROC analysis of the power spectrogram contrasting one tone, no lick with the
two tones, lick trials. B: ROC analysis of the coherograms contrasting the same data as in A.

We performed the same ROC analysis on the coherograms - see Figure 3.9 B. For

the response to the tone, we see a similar increase in the coherence, corresponding to the

presence of the second tone between 0:3 and 0:4 s into the trial. However, during the

lick, we see a marked decrease in the coherence between the LFP signals, represented

by the blue color (AUC<0.5), between 0:5 and 1 s into the trial.

The underlying causes and the functional roles of this marked di¤erence between

power and coherence are unclear at this point. While a number of recent studies have

detected neural correlates of motor activity in the auditory cortex, (Kayser et al., 2008),

(Bizley et al., 2007), (Noesselt et al., 2007), (Martuzzi et al., 2007), a precise quanti�ca-

tion of the neural encoding of non-auditory signals by the auditory cortex is not available

as of yet. One immediate question raised by our observation concerns a contrast between

representation of motor signals in the auditory cortex, compared with the somatosensory

cortex. As noted above, the primary auditory cortex responds with increased activity

to both auditory stimulation and also motor corollary signals. However, our results sug-

gest that coherent neural activity is speci�c to auditory inputs and it actually decreases

during motor activity.

Spiking activity was also correlated with both auditory stimulation and motor ac-

tion (See �gure 3.7 B). The tones are represented by a well-timed increase in spiking,

immediately after the tone. In contrast, representation of motor action resulted in a

more persistent but less precise increase in the �ring rate. In order to quantify the

relative importance of the spike count versus spike timing in the neural representation



33

of these di¤erent kind of stimuli, we applied a spike metric analysis to spike trains (see

Figure 3.10). The spikes were collected from a time window covering 50 ms, beginning

immediately before the time of the second tone, if second tone was present.

Figure 3.10: A: Isomap projection of the tone (red) and no tone spike trains for q = 0. The
tone (red) and no tone (blue) are not well discriminated based on spike count alone. Axes
represent two dimensional projections of the data (arbitrary units on axes not represented). B:
Discrimination information versus shift cost q. Larger q0s attach more weight to spike timing
and improve discrimination. C: Isomap projection for q = 100. The discrimination is much
improved (compare to A).

The spike metric analysis produces a set of pairwise distances between spike trains.

In order to visualize the data, we used a multidimensional scaling procedure (Isomap),

which can operate on pairwise distances (Tenenbaum et al., 2000). We collected spike

trains from a window which spans 300 to 350 ms into the trial. In the trials where a

second tone was presented at t = 300 ms, a well timed series of spikes were generated

in response. In Figure 3.10 A, the relatively low amount of information contained in

the spike counts is illustrated by the overlapping clusters of spike patterns. As the

temporal sensitivity of the spike metric is increased by larger values for the q parameter,

the amount of information increases accordingly (Figure 3.10 B), resulting in clusters of

spike patterns which are well separated (Figure 3.10 C). In computing the information

illustrated in Figure 3.10 B, we followed the outline detailed in the Methods section of

this chapter: we computed the pairwise distances between spike and then we computed

the confusion matrix. The confusion matrix was used to compute a two dimensional

histogram, followed by the computation of the mutual information.

The bene�ts of using the spike metric approach become now apparent. In Figure

3.7 B, the spike rasters suggest that a well-timed increase in the �ring rate represents

the neural response to the auditory tone. When a �ring rate is computed in Figure 3.8,

one has to choose a window for averaging over the spikes represented as � functions.

The choice of the window width is often arbitrary. By inspecting Figure 3.10 B, a

systematic way of choosing the best window width becomes apparent. For q = 100; the
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information between stimuli and responses is maximal. This value of the parameter q is

equivalent to considering two spikes separated by a distance of less than 2
q
= 20 ms as

being equivalent. In conclusion, a window width of 20 ms should be chosen to provide a

smooth approximation to the instantaneous �ring rate. For shorter window widths, one

runs the risk of not including all the spikes produced in response to the tone. For larger

window widths, there is increased risk of including spikes removed temporally from the

brief tone, in this case possibly spikes generated by the motor action. For instance, a

large window would result in a less distinct peak in the �ring rate corresponding to the

second tone (see Figure 3.8), which would merge with the peak in �ring rate caused later

by the motor action.

The average LFP traces plotted in Figure 3.7 A suggested a smaller response to the

second of the tones. Initially, this was quanti�ed simply as the di¤erence between the

lowest point and the next highest point in a window of 20 ms immediately following each

tone. In all the channels recorded the di¤erence was consistent; we present an example

of one channel in Figure 3.11 A. An equivalent result was quanti�ed in the spike counts

collected in a window of 50 ms immediately following each tone. The number of spikes

in response to the second tone was smaller than the number of spikes in response to

the �rst tone. Individual recorded channels had an insu¢ cient spike count to quantify

this result, but pooled spikes from all the channels recorded in an animal/experiment

produced a statistically signi�cant result. Figure 3.11 B presents the pooled data from

all channels/animals/experiments.

Figure 3.11: Boxplots quantifying di¤erences between response to �rst and second tone. The
boxes have lines at the lower quartile, median, and upper quartile values. The whiskers extend
an addition 1.5 interquartile range to show the extent the data. Non-overlapping notches
indicate that the medians of the two groups di¤er at the 5% signi�cance level. A: example of
a recorded LFP channel. B: aggregate spike counts from all recorded animals and channels.

We also asked whether the attenuation in the response to the second tone is depen-



35

dent on the time passed from the �rst tone. We grouped together trials with 100; 200

and 400 ms intertone intervals, and we used LDA analysis to identify the direction most

discriminative between the LFP traces recorded after the �rst and second tone. Consis-

tent with previous studies in several mammalian preparations (Hocherman and Gilat,

1981), (Calford and Semple, 1995), (Brosch and Schreiner, 1997), (Reale and Brugge,

2000), (Fitzpatrick et al., 1999), (Werner-Reiss et al., 2006) we found that the amount

of the attenuation decreased for longer intertone intervals, as shown in Figure 3.12.

Figure 3.12: Amount of response attenuation as a function of the intertone interval. Longer
intertone intervals lead to a smaller attenuation of the response to second tone.

During the recording session, we also observed a systematic decrease in the response

to the �rst tone (Figure 3.13). Since this change was quanti�ed as the projection on the

LDA axis that discriminates between the response to the �rst and second tones, and the

second tone response was generally smaller, we consider the change in response to be a

decrease.

A similar trend was not detected in the responses to the second tone, which generally

did not display a decreasing trend when the �rst tone did (14 out of 40 analyzed chan-

nels). This phenomenon has similarities to the general adaptation of neural responses to

repeated stimuli. However, in our preparation this adaptation was selectively expressed

for just the �rst tone in a succession of two tones.

The amount of response attenuation appears to be correlated with the amount of

high-gamma power (80� 130 Hz) measured in the interval between the two tones (see
Figure 3.14 A).

The relationship between the lower frequencies and the amount of response attenua-

tion was opposite that of the high gamma (see Figure 3.14 B). However, the interpreta-
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Figure 3.13: A: Decreasing response to the �rst tone over the course of the experiment, as
measured by the projection on the LDA axis. B: Response to the second tone, as in A. No
signi�cant trend detected.

Figure 3.14: A: Correlation between total spectral power in 80-130 Hz range and the amount
of response attenuation. B: Correlation coe¢ cient between level response attenuation and
power at each frequency.

tion of the lower frequencies power and the response attenuation is complicated by the

autocorrelation present in the LFP traces. As mentioned above, the LFP traces used in

the computation of the LDA direction end about 50 ms after the tone and do not overlap

with the traces used for computation of the spectral power. However, the increase in

lower frequencies which is directly attributable to the tone will last longer than the 50

ms. A large response to the �rst tone will be quanti�ed as a large response attenuation

(assuming the second tone response does not increase as well). The same large response

to the �rst tone will also lead to a larger low-frequency spectral power, which we believe

is leading to the positive correlation measured between the low frequency power and

the amount of response attenuation. Under this assumption, the negative correlation
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quanti�ed in Figure 3.14 is likely underestimated due to frequency spillover e¤ects from

lower frequencies, and the correlation between frequencies immediately under 80 Hz are

skewed by the strong positive correlation between low frequencies and the amount of re-

sponse attenuation. While theoretically the Fourier decomposition uses a set of linearly

independent basis vectors, corresponding to the di¤erent frequencies, spectral estimation

methods, including the multitaper method, are a¤ected by the time-frequency trade-o¤

which limits the resolution of the spectral parameters and cannot eliminate frequency

spillover e¤ects (Mitra and Pesaran, 1999).

Regardless of the issues regarding the lower frequencies outlined above, the rela-

tionship between the high frequencies and the di¤erence between the �rst and second

tone, computed along the LDA axis, is clear: more high-frequency spectral power in the

interval between the tones leads to a lower level of response attenuation.

We have also investigated the possible involvement of response attenuation to the

subsequent behavioral choice of the animal. In a subset of our recordings, we observed

a signi�cant di¤erence in the amount of response attenuation between the correct and

incorrect trials.

In the LFP�s, more response attenuation was observed in the incorrect trials (Figure

3.15 A). In the spiking activity, the spike count in response to the second tone, but

not that in response to the �rst tone, was signi�cantly di¤erent in the two conditions

(Figure 3.15 B). For the LFP data, the projection on the LDA axis of the �rst tone or

second tone traces, individually, did not reveal a signi�cant e¤ect, which was only visible

in analyzing the di¤erence, for each trial, between the response to the �rst and second

tone. The reasons for this discrepancy between the LFP and spike data remain unclear;

we hypothesize that trial variability a¤ects the overall amplitude of the LFP traces but

a¤ects less their di¤erence.

The tone presented to the animal resulted in an increase in the LFP oscillatory

amplitude across a broad range of frequencies. We compared the ratio between the

spectral power of the LFP traces in a range of 150 ms immediately before the �rst tone,

and traces starting 50 ms after the tone. The amount of the increase varied as a function

of the frequency (see Figure 3.16). We quanti�ed this di¤erence in several di¤erent ways.

In Figure 3.16 B, we plot the p-values of a ranksum test of equality of the medians. In

3.16 C, we plot the AUC determined by discriminating between the correct and incorrect

trials. Finally, in D we plot the maximum information content along the ROC curve.

These measures illustrate the fact that, for frequencies in the range of approximately

80 � 130 Hz, the LFP oscillations in the interval between the tones have more power

in the correct trials. While the power ratio was highest for frequencies bellow 30 Hz,
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Figure 3.15: A: Response attenuation in correct versus incorrect trials in LFP�s. B: Spike
count di¤erences between correct and incorrect trials.

a signi�cant di¤erence between the correct and incorrect trials was observed only for

80� 130 Hz.
To our knowledge, this is the �rst example of a change in behavioral response being

correlated to attributes of the sensory response such as the level of response attenuation.

Previous work in awake behaving monkeys did not detect a change in the response

attenuation based on the attentional state of the animal (Werner-Reiss et al., 2006).

While this result is certainly intriguing, we remain cautious since a signi�cant di¤erence

was observed consistently in just one experiment (6 out of 8 recorded LFP channels),

and in the spiking from the pooled channels in the same experiment. An additional LFP

channel in a second experiment showed this e¤ect. Additional experiments, preferably

using carefully placed electrodes over a speci�c region/layer of the auditory cortex, would

be required. In particular, the frequency tuning of the individual neurons would be a

possible determining factor.

While the amount of response attenuation has not been previously correlated with

behavioral performance, gamma-band oscillations have been proposed as mechanisms for

a varied collection of sensory or cognitive functions (Steriade et al., 1996), (Llinas and

Ribary, 1993), (Tiitinen et al., 1993), (Pantev, 1995). Several studies have associated

increased gamma band oscillatory power with the formation of percepts and memory

(Singer, 1990), (Engel et al., 1991), (Pantev et al., 1995). Linguistic processing has also

been associated with gamma band oscillations in recorded EEG potentials (Pulvermüller

et al., 1995).

Our analysis has shown a correlation between the gamma-band power in LFP record-

ings between the two tones and the amount of response attenuation. This e¤ect was

detected in nearly all the channels/experiments analyzed. In a subset of our recordings,
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Figure 3.16: Relative increase in intertone LFP power relative to pre-tone baseline. A: average
ratio of power in correct (blue) and incorrect (red) trials. B: p-values in comparing the values
in A. C: AUC based on the quantities in A. D: maximum information content based on ROC�s
in C.

we have also been able to predict the behavioral performance of the animal based on

the amount of gamma band power in anticipation of the second tone. A possible inter-

pretation for this e¤ect is an increase in attention that is associated with an increase in

gamma band activity. Attention has been related to modulations in the gamma band

activity in a number of di¤erent studies: (Vidal et al., 2006), (Bauer et al., 2006), (Gru-

ber et al., 1999), (Tallon-Baudry et al., 2005), (Doesburg et al., 2008). Our experimental

results are consistent with an attentional e¤ect that is detected as an increase in the

gamma band power. Attention could increase the saliency of the second tone, therefore

decreasing the amount of response attenuation.

The analysis performed on the recordings from the primary auditory cortex illustrate

the bene�ts of our comprehensive approach of data analysis. We started by computing

spectrograms and coherograms for all the LFP recordings and comparing the average

spectrograms across conditions: correct versus incorrect, one tone versus two tones,

lick versus no lick. The comparisons were accomplished by a ROC analysis performed

individually on each spectrogram coe¢ cient. Signi�cant di¤erences between these coe¢ -



40

cients revealed novel and biologically relevant aspects of neural activity, such as response

attenuation and its relationship with future behavior, and also the decrease in coherence

in the auditory cortex during motor action. These e¤ects were not stated as hypothesis

prior to the data analysis, either by the experimental investigator, or by the author. In

addition to uncovering these novel e¤ects, our data analysis procedure also con�rmed

a hypothesis generated by the experimentalist (Paulo Rodrigues, personal communica-

tion), namely that increased gamma range oscillatory activity between the tones leads

to an increase in behavioral performance.

Our second goal for this project was the identi�cation and evaluation of appropriate

methods for analysis of the data set. Examining the regions in the spectrograms with

signi�cant di¤erences between the experimental conditions led to the re�nement of the

analysis by the use of more sensitive methods. The di¤erences between the response

to the �rst and second tones were quanti�ed using the LDA approach, which is more

appropriate due to the fact that the short duration of the tone response (at most 60

ms) precludes the use of Fourier analysis, inappropriate for such short duration signals.

In contrast, the estimation of the gamma frequency power can use the whole interval

between the tones (200 ms), which is su¢ ciently long for an estimate of the frequencies

in the gamma range.



Chapter 4

Topographical representation of complex

vocalizations in the telencephalon of zebra �nch

Songbirds are vocal learners that generate songs, patterns of sound with a highly

complex spectral-temporal pattern. Conspeci�c songs are very important to the birds,

and are used to attract mates or mark territory. Several distinct areas in the zebra �nch

brain respond to song exposure by an elevated level of expression of activity-dependent

genes (Mello et al., 1992), (Velho et al., 2005). The overall level of response, as measured

by the total number of cells expressing activity dependent genes, is dependent on the

stimulus type. For example, conspeci�c song activates a larger number of cells than

white noise. An immediate question regards the kind of information contained in the

exact topographical distribution of activated cells in a particular brain region. This kind

of analysis requires an automated method of detecting activated cells, a way to describe

their topographical distribution, and also quantitative ways of distinguishing between

di¤erent patterns of spatial distribution. In addition, the stimulus space of conspeci�c

songs can be manipulated in ways designed to reveal the most salient features in the

acoustical components of song. As in our analysis of synaptic integration and the system

level processing, we observe a marked sensitivity to the �ne temporal features of the

input, in this case the temporal aspects of the song syllables.

In a similar manner to the previous chapters, we explore, in a comprehensive way,

the space of inputs and its relationship with the neural responses recorded during the

experiment. In this series of experiments, the behavioral saliency of di¤erent sensory

stimuli is inferred indirectly, by comparing with the neural response of conspeci�c songs,

a highly salient stimulus class.

41
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4.1 Temporal structure of song re�ected in spatial patterns of

cell activation

Neural recordings from single neurons or small groups of neurons clearly show the

temporal sensitivity of neural sensory systems, as we detailed in the above chapters.

Current neural recording techniques su¤er from a lack of spatial resolution, since even

multi-electrode recordings can access at most hundreds of units at a time (Kralik et

al., 2001), (Nicolelis and Ribeiro, 2002). A di¤erent method of accessing the spatial

distribution of neural representations is o¤ered by the mapping of immediate-early-genes

(IEGs) in response to appropriate stimulation (Pinaud and Tremere, 2006), (Terleph et

al., 2006), (Mello, 2002). Using exclusively mapping, information about the speci�c

temporal patterns of the neural response (�ring patterns of the neurons involved) is not

available. However, we can still examine the saliency of the �ne temporal structure of

the songs. We accomplish this by modifying the songs in speci�c ways that preserve

di¤erent amounts of the �ne temporal and spectral structure, and then we quantify the

changes in the spatial distribution of activated cells.

Complex acoustical signals constitute an important communication mechanism for

a variety of species. Mapping the neural representation of complex sounds is essential

for the understanding the mechanisms of sensory/perceptual processing. While signif-

icant progress has been made in understanding the neural basis of sound localization

in owls and echolocation in bats, the study of complex sounds in the context of vocal

communication is in a more incipient phase (Ribeiro et al., 1998), (Tchernichovski et

al., 2001).

Songbirds represent one of the most accessible animal models for the study of neural

representation of auditory communication signals. The brain regions involved in song

processing and discrimination have been identi�ed and their electrophysiological re-

sponses are relatively well characterized. Exposure to conspeci�c songs, a naturally

learned behavior commonly used for communication, induces the expression of a num-

ber of activity dependent genes in auditory processing brain areas (Mello et al., 1992),

(Velho et al., 2005). The identi�cation of the brain regions involved in song can be

helped by the mapping of the neuronal cells expressing genes such as ZENK, which en-

codes a transcription factor associated with neuronal depolarization and therefore has

been previously used as a marker for neuronal activation (Mello, 2002). While in some

areas of the songbird brain there is evidence for electrophysiological activity which does

not induce expression of activity-dependent genes (Velho et al., 2007), as of yet we are

unaware of upregulation of these genes in the absence of neuronal activation.



43

A combination of electrophysiological, pharmacological, lesions and gene expression

evidence suggests that the caudomedial nidopallium (NCM) is essential for the processing

of song. Among the functions associated with this structure are perceptual processing,

discrimination and the formation and storage of song-related auditory memories (Mello

et al., 1992), (Gobes and Bolhuis, 2007). In canaries, expression of the ZENK gene has

been shown to have a spatial structure dependent on the acoustic features of the songs

used as stimuli, with di¤erent song syllables generating expression in di¤erent NCM

spatial subdomains (Ribeiro et al., 1998).

The spatial distribution of IEG expressing cells has been leveraged to study a variety

of systems (Pinaud and Tremere, 2006). The study of the auditory pathways of songbirds

has made extensive use of these mapping techniques (Ribeiro et al., 1998), (Terleph et al.,

2006). The high level of interest in the avian song system is due to several factors. First,

complex vocalizations learned from a tutor is a trait found in just a few species besides

songbirds: humans, cetaceans and bats (Brenowitz et al., 1997), (Nottebohm, 1991).

Therefore the study of the neural representation and memorization of complex auditory

inputs can give us insight into the perceptual aspects of vocal communication, perhaps

including in humans (Doupe and Kuhl, 1999). Second, the songbird neural circuits, in

contrast with the other vocal learners, are relatively well characterized (Brenowitz et al.,

1997).

The spatial pattern of activated cells is stimulus speci�c, in the sense that, after a

certain threshold, the amount of stimulation (number of repetitions) has no e¤ect on

the number of activated cells, while the type of stimulation (for instance white noise

versus conspeci�c songs) is a determining factor for the spatial distribution of activated

cells (Mello et al., 1992). Additionally, the induction of IEGs is rapid and transient,

being detected �rst in the transcription sites within the nucleus, and then becoming

detectable in to the cytoplasm in the form of mRNA products. This rapid transient

expression is essential for the purposes of comparing responses to di¤erent stimuli in the

same animal. Di¤erentiating between nuclear and cytoplasmic expression is equivalent

to di¤erentiating between stimuli presented at di¤erent times. Therefore, an automated

procedure capable of detecting and di¤erentiating nuclear and cytoplasmic cell labeling

is of high interest, and creating such an algorithm constitutes an important component

of the present work.

Once the exact positions of the activated cells are determined, either manually or

using our automated procedure, the next step is the analysis of the resulting spatial

patterns. Principal component analysis (PCA) has been previously used to quantify the

similarity between the spatial representations of songs in the avian brain (Ribeiro et al.,
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1998). Due to the small number of images available, the use of PCA is not appropriate

for our data set. Instead, we compute pairwise distances between images consisting

of two dimensional patterns of activated cells. Based on these pairwise distances, we

generate a confusion matrix, in a manner similar to the classi�cation of the spike trains

generated in Chapter 3.

Electrophysiological experiments have revealed that the brain areas involved in song

processing contain neurons responding to very complex auditory features. These �song-

selective�neurons respond more strongly to conspeci�c songs or to the bird�s own song

than to other sounds (Margoliash, 1983), (Margoliash and Fortune, 1992). In the context

of electrophysiological recordings from the song areas in the bird brain, speci�c meth-

ods of song manipulation have been developed (Theunissen and Doupe, 1998), These

methods allow for selective degradation of speci�c spectral and temporal parameters of

the songs and they also have been used in functional MRI studies of the bird brain

(Boumans et al., 2007). We employ these techniques of song manipulation and selec-

tive degradation of song features in the context of mapping activated cells. Next, we

evaluate the resulting changes in the spatial patterns of IEG expression compared with

the patterns of intact songs. In turn, the results of these studies could be used to guide

electrophysiological experiments, for instance the optimal placing of recording electrodes

within a brain structure.

4.2 Methods

4.2.1 Automatic detection of nuclear and cytoplasmic IEG ex-

pression

The neuronal cells displaying IEG expression can be mapped using �uorescent in-

situ hybridization (FISH). This procedure yields a series of pictures consisting of all the

nuclei in a brain slice (blue channel in Figure 4.1 bellow) and also the �uorescent markers

for IEG expression (red channel).

There are two distinct patterns of ZENK expression. Nuclear expression consists

typically of small, intense �uorescent markers contained inside the nucleus (Figure 4.2

A). Cytoplasmic expression consists of a "halo" nearly surrounding the cell nucleus

(Figure 4.2 A).

The goal of an automated procedure for quantifying the gene expression consist of

detecting each cell nuclei and also detecting the cells expressing nuclear or cytoplasmic

ZENK. The challenges facing this task are immediately apparent. Figure 4.1 reveals that



45

Figure 4.1: Example of a ZENK labeled brain slice, photographed under 40X magni�cation
under an optical microscope.

the nuclear shapes are often di¤use and occlude each other. The close proximity of most

of the cells implies that the cytoplasmic expression of one cell can be easily mislabeled

as nuclear expression for a nearby cell.

Previous attempts to automatically detect and classify labeled cells have been based

on confocal image stacks (Lin et al., 2003), (Lin et al., 2007). However, the images used

for this work consist of two dimensional images as collected from an optical microscope.

To our knowledge, an automated procedure for segmenting and labeling two dimensional

images, capable of overcoming the challenges listed above, is not available.

Preprocessing steps

Accurate and robust detection of the cell nuclei is the essential �rst step toward a

quanti�cation of the ZENK patterns. Our approach was to use the edge information

to detect circular or nearly circular shapes in the blue channel. The initial step was a

series of mathematical morphological operations applied to the graylevel images in the

blue channel. The goal of these operations is to remove small, low intensity features of

the image, which are not cell nuclei, and also enhance the sharpness of the boundaries

of the remaining shapes.

In digital image processing, morphological operations consist of functions applied
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Figure 4.2: A: Typical nuclear ZENK expressing nuclei. The red spots represent di¤erent
loci of transcription. B: Typical cytoplasmic expression of ZENK. The �uorescent labelling
consists of a concentration of color nearly surrounding the nuclei.

to a pair of inputs. The �rst input is the original image, while the second input is a

structuring element. For the purposes of the present work, the structuring element used

is a disk with the radius of 3 pixels. A typical nucleus in the analyzed pictures has a

radius of 10 pixels. The structuring element is translated over the whole range of the

image, and our morphological operations are applied at each point.

Morphological operations are de�ned on sets of pixels. They are based on the fun-

damental concepts of Minkowski addition and subtraction (Gonzalez and Woods, 2007).

For two sets A and B, we de�ne Minkowski addition and Minkowski subtraction, re-

spectively:

A�B = [
�2B
(A+ �)

A	B = \
�2B
(A� �)

In the context of digital image processing, we use these operations to de�ne operations

of dilation and erosion. We start by considering the case of binary images. Image dilation

is equivalent with Minkowski addition, with the structuring element being translated

over the whole range of the image and the addition being performed at each pixel. If the

structuring element intersects the original image even at just one pixel, then the whole

surface of the structuring element is added to the original image.

Image erosion is de�ned formally as

E(I; SE) = I 	 (�SE) = \
�2SE

(I � �)

where I is our original image, SE is the structuring element and �SE = f��j� 2
SEg: Intuitively, as we translate the structuring element over the whole image, any
portion of the image that does not contain the whole of the structuring element is set
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to zero.

The above de�nitions apply to binary images. The concepts can be easily generalized

to grayscale images. The essential di¤erence consists of the fact that the input image is

almost never zero, but instead takes a whole range of (grayscale) values. The structuring

element, for the purposes of our work, has a �at value over its extent. As the structuring

element is moved over the input image, the intersection between the image and the

currently positioned structuring element is set to the smallest value of the intersection

in the case of erosion, respectively the highest value in the case of dilation. The net

e¤ect is the fading of small specs of noise, up to the size of the structuring element,

the uniformization of the intensity values inside high or low intensity regions, and the

smoothing of jagged borders separating regions of overall di¤erent intensity.

We applied to our images the operation of opening, which is simply an erosion followed

by a dilation using the same structuring element. Typical results of opening are the

removal of small specks and small invaginations or extensions on the border of the

image. This results can be described as a general rounding of the borders, an important

step towards our goal of �nding and labeling the cell nuclei. The results of this operation

are visible in Figure 4.3 A, B.

Figure 4.3: Graylevel images from the blue channel. A: the image prior to opening. The edges
are blurry and irregular. B: Image after the opening operation. The shapes are more rounded,
the graylevel inside the nuclei is more uniform.
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Edge detection

Next, an detection routine was applied to the image with the goal of �nding the

nuclei borders. We have selected the Canny edge detection procedure (Canny, 1986),

due to several characteristics. First, the Canny edge detector makes explicit use of the

orientation of the detected edges. The algorithm starts by computing the gradient of the

input image, which in the discrete case of image pixels is more conveniently expressed

using the central di¤erence operators in the x and y directions :

Lx(x; y) = �1
2
L(x� 1; y) + 1

2
L(x+ 1; y)

Ly(x; y) = �1
2
L(x; y � 1) + 1

2
L(x; y + 1)

where L(x; y) represents the pixel intensity at position (x; y). The magnitude and ori-

entation of the presumptive edge are estimated at each pixel:

jrLj =
p
L2x + L

2
x

� = arctan(Lx; Ly)

Using the above information, edge strength values points are evaluated by estimating if

they are local maximum in the gradient direction. Based on these criteria, each point

in the image gets assigned an edge strength value.

The second important characteristic of the Canny edge detection is the use of thresh-

old hysteresis. A stringent threshold is used to detect initial edge points. Starting from

these initial points, neighboring points are evaluated using a less stringent threshold.

This strategy implements the intuitive concept that edges should be continuous curves

through the image An example of this procedure being applied to our image is presented

in Figure 4.4. We note several characteristics of this edge image. First, the edges are

incomplete and occasionally small isolated edges appear super�uously. Second, if cell

nuclei are overlapping, the edge information is lost over their intersection, but is still

present on the non-overlapping contours. The most important characteristic of the edge

image, which is pivotal for our subsequent analysis, is the fact that even incomplete

borders retain their nearly circular shape.

Hough transform

In the next step of the analysis we will use the curvature information for the detection

of the centers of the cell nuclei in the original image, which coincide to the centers of
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Figure 4.4: Example of the Canny edge detection algorithm appied to the edge image. Over-
lapping cell nuclei that partially occlude each other still retain their nearly circular shape on
the non-overlapping portions of the nuclei.

the fragmented but nearly circular shapes in the edge image. The method was initially

used for �nding lines in an image (Hough, 1959). It has since been extended for curves

and adapted for modern image processing applications (Duda and Hart, 1972) and later

generalized to more general shapes (Ballard, 1981).

In practical terms, for a �xed radius r, the procedure of �nding circles in the edge

images is straightforward. Each edge point (x; y) can be parameterized by the position

of its center (a; b) and the radius r :

x = a+ r � cos(�)
y = b+ r � sin(�); � 2 [0; 2�]

The position of the edge points (x; y) is known, and the goal of the algorithm is to

�nd the (a; b) points corresponding to the center of the circle. We observe that if a circle

is drawn, centered at each (x; y) and with radius r, the intersection of all these circles

would intersect at the point (a; b); as illustrated in Figure 4.5.

In theHough transform image, the high intensity points represent likely circle centers.

The large circles surrounding the centers represent artifacts from computing the Hough
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Figure 4.5: Procedure for �nding the center of circle starting from (x; y) coordinates. Circles
with radius r, centered at each (x; y), will intersect at the desired center (a; b):

transform, and they have twice the radius of the real circle, as illustrated in Figure 4.5.

We can also observe some small circles of high intensity. These small circles result from

the fact that the Hough transform is computed for a set of candidate radii, resulting in

a three dimensional matrix known as a Hough accumulator array (Gonzalez and Woods,

2007). The candidate radius closest to the real radii of the cell nucleus results in a high

intensity point surrounded by a large circle, while the other radii considered will result in

a small circle surrounded by a larger circle. The true radius can then be selected based

on the fact that it corresponds to relatively high intensity points in Hough transform

image. The phenomenon is detailed in Figure 4.6.

Figure 4.6: A: Illustration of the e¤ect of computing the Hough transform for a radius slightly
smaller than the true radius. The circles drawn using the (x; y) points in the edge image
will trace the small red circle, instead of intersecting on a point. B: The Hough transform is
computed for a set of di¤erent radii r, resulting in a conical surface spanned by the points of
intersection. The apex of this cone correspond to the correct r.

The arguments outlined above can be illustrated by presenting several sections in

the Hough accumulator array computed using an example image in our data set. In

Figure 4.7, we present sections in the accumulator array corresponding to increasing

radii. Values of the radius that are close but not equal to the true radius will result in
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small circles, with the intensity of these small circles (arrows in Figure 4.7, A, B, C)

being smaller than the intensity of the point corresponding to the true radius (arrow in

Figure 4.7 D).

Figure 4.7: Sections through the Hough accumulator array, corresponding to increasing radii.
A: r = 7 pixels. B: r = 8 pixels. C: r = 9 pixels. D: r = 10 pixels, closest value to the true
radius.

Using the Hough transform, partial occlusion of cell nuclei is overcome. The pro-

cedure is robust to occlusion since the curvature of the edges is not a¤ected by their

intersection. A representative example of the results of the transform applied to our

images is presented in Figure 4.8.

At this point, our procedure resulted in a three dimensional Hough accumulator

array, where local maxima corresponding to the centers of the nuclei. In order to label
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Figure 4.8: A: raw image. B: Hough transform for a radius r. Each nuclear shape in image
above gives rise to a high intensity point in the Hough transform, surround by an artefactual
circle of radius double the radius of the cell nucleus.

the cell nuclei, we needed to choose among these peaks the ones that truly correspond to

cell nuclei, versus spurious peaks. We started with the highest point in the accumulator

array and we retained it as a candidate cell nucleus. Next, for a small radius around this

point, we set the accumulator array to zero, which implements the requirement that no

cell nuclei can be overlapping by more than half their diameter. The accumulator array

was set to zero for all the radii considered, since we cannot have overlapping cell nuclei,

with di¤erent radii, centered on the same point.

Unsupervised clustering of empty circles

A criterion for terminating the previous procedure, e¤ectively deciding how many

nuclei we have in our image, cannot be automatically generated. To overcome this

di¢ culty, we decided to use an unsupervised clustering algorithm to separate true cell

nuclei from false ones. The information used for clustering consisted of the local intensity

values in the neighborhood of each candidate cell nucleus. The Hough accumulator array

provide us with the centers and radii of the candidate cell nuclei. We collected the average

intensity values inside these circles, since false nuclei are expected to have, on average,

smaller intensity values. However, this information is not su¢ cient to separate the cell

nuclei, because the nuclei intensity can vary - see Figure 4.3 A, B. To add additional

information, we collected more information from the immediate neighborhood of each

candidate cell nucleus. We expanded the cell nucleus and we collected ratio of the

intensity values inside the candidate nuclei and the intensity value in the neighborhood
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immediately outside the candidate nucleus. Histograms of these quantities are presented

in Figure 4.9.

Figure 4.9: Local intensity information associated with candidate cell nuclei. A: Histogram
of average intensity values inside detected circles. B: Histogram of ratios between the average
intensity inside the candidate cell nucleus and the average intensity in the region immediately
adjacent.

The bimodal distributions can be used for an unsupervised clustering algorithm that

separates the true nuclei from the peaks in the Hough accumulator array not correspond-

ing to true nuclei. Since we have no a priori knowledge about the true number of nuclei

in a particular image, we collected twice the number of nuclei in the most dense image

in our data set, which results in 500 candidate cell nuclei for each analyzed image.

We evaluated two unsupervised clustering algorithms. The �rst one is the well-known

k-means algorithm, which uses an iterative procedure in order to minimize the variance

between the points assigned to the same category (Duda et al., 2000). The error function

to be minimized can be expressed as:

E =
kX
i=1

kX
xj2Si

(xj � �i)2

where there are k clusters Si, i = 1; 2; :::; k, and �i is the centroid or mean point of all

the points xj 2 Si.
A second clustering algorithm evaluated was information clustering algorithm (Slonim

et al., 2005), based on classic rate-distortion theory (Shannon et al., 1998). In this for-

mulation, a limited bandwidth is available for the representation of the data. This

bandwidth (the rate), in our case is represented by two clusters and is equivalent to one

bit. A distortion function is also de�ned, measuring how much points assigned to the

same cluster di¤er from each other. Formally, following (Slonim et al., 2005), we de�ne

the following quantities:
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Average similarity between elements in the same cluster:

hsi =
NCX
C=1

P (C)s(C)

where P (C) is the probability of a cluster (proportion of total elements), and s(C) is

the average similarity between the elements in the cluster. The input to the algorithm

consist of all the pairwise similarity measures between the data points.

The mutual information between the cluster identities and the data points is de�ned

as:

I(C; i) =
1

N

NX
i=1

NCX
C=1

P (Cji) ln
�
P (Cji)
P (C)

�
which is subject to the constraint that we have a limited number of clusters to represent

the data. The clustering problem can then be formulated as a constrained maximization

problem. Finding the clusters is equivalent with maximizing the functional:

z = hsi � T � I(C; i)

where T is a Lagrangian multiplier (Arfken and Weber, 2005). Results from applying

these procedures are displayed in Figure 4.10.

Figure 4.10: Comparison of clustering results. x� axis: average intensity inside the nucleus.
y � axis: ratio inside versus outside the candidate nucleus. A: Information clustering. B:
k-means clustering. Note the labeling of more points in red at the boundary between clusters.

Generally, the information clustering procedure produced better results, especially

in the reduction of false negatives. The false nuclei (red cluster) is including more

points (false negatives) for the k-means clustering (Figure 4.10 B). The advantage of the

information clustering procedure can be attributed to the fact that it implements the

intuitive notion that "tight groups are hard to join" (Slonim et al., 2005). One example
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of the results of this clustering procedure is presented in Figure 4.11. The robustness

of our procedure in the face of partial occlusion of cell nuclei can be evaluated by

examining the bottom left portion of the images in Figure 4.11. In spite of the fact that

the nuclei are closely packed together, they can be reliably detected - see also Figure

4.8 for a section through the Hough accumulation array. The Hough transform provides

the high sensitivity of our procedure, while the local intensity information provides the

information necessary for discriminating the true cell nuclei.

Figure 4.11: Example of detected cell nuclei. A: original image. B: detected cell nuclei are
marked with a green circle.

Deformation of circles

As a further re�nement, we used the edge information to re�ne the borders of the

detected nuclei. Where the edge information is available, we used a deformable model

(Xu and Prince, 1997) to bend the marker circles, parameterized as a planar curve x(s);

toward the detected edge. In essence, each detected edge point generates an attraction

force 
; with magnitude that decays with the distance, similar to a gravitational force.

At the same time, the circles used to mark the cell nuclei are endowed with rigidity,

adjustable through the parameter �; and elasticity through the parameter �. The net

result of these forces acting on the marker circles is a molding of the circles toward the

true edges of the cell nuclei, which, as a result of our preceding work, is in the immediate

vicinity of the true edges. We can summarize the resulting forces in the expression:

x(s; t) = � � @x
@s
+ � � @

2x

@s2
+ 
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Iterative application of the above expression results in small movements of each point

comprising the original circle. Using this approach, a more accurate representation of

the cell nuclei becomes available - see Figure 4.12.

Figure 4.12: A: Example of the attraction forces generated by the edge points. Arrows indicate
the direction of the force, with the length proportional with the magnitude. B: E¤ects of the
force on the original snake (blue curve). The edge information is represented by the red curve.
The deformed contour is represented by the green curve.

Labeling of nuclear and cytoplasmic ZENK

Once the cell nuclei were detected, we implemented a series of steps for detecting

nuclear and cytoplasmic ZENK, which was present in the red spectral channel (see

Figure 4.1). The detection of ZENK markers followed a di¤erent approach compared to

the detection of cell nuclei. The detection of cell nuclei used a probabilistic approach,

collecting a large number of potential nuclei and subsequently discriminating the correct

ones. For nuclear or cytoplasmic ZENK, a probabilistic approach is not feasible. Many

of the images do not contain any nuclear or cytoplasmic markers and, in the images that

contain ZENK markers, their number is too small for probabilistic approaches.

The detection of ZENK markers was accomplished using a rule-based approach.

Initially, high intensity regions in the red channel were identi�ed and then a series of

tests were applied to these candidate ZENK labels. A cell was labeled as expressing

nuclear or cytoplasmic ZENK only if all the criteria were satis�ed. We start with the

rules for detecting nuclear ZENK.

Select high intensity, compact and relatively small regions in the red channel
The nuclear ZENK marker will consist of compact regions of high intensity (see

Figure 4.2 A). These regions of compact, high intensity regions are detected using

the top-hat transform (Meyer, 1979), (Gonzalez and Woods, 2007). The top-hat

transform consists of an image opening, followed by subtraction from the original
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image. The image opening �attens the intensity of the original image, which in the

case of nuclear ZENK consists of peaks of high intensity, generally convex (highest

value is in the middle and they gradually taper toward the edges). The subtrac-

tion has the role of adjusting for di¤erent levels of overall red (ZENK ) intensity,

for instance when the nuclear ZENK is located on top of more di¤use levels of

cytoplasmic ZENK (Figure 4.1, also Figure 4.2 B). The top-hat transform returns

a set of locations where the intensity image has a local maximum on the scale of

the structuring element used. If these locations fall inside a detected cell nuclei,

we collect a list of these cell nuclei, which are candidates for nuclear ZENK, and

we denote the set as 
bright spots:

Select cell nuclei with high red range The above list of candidate cell nuclei con-
tains typically contains a number of false positives, generally because cytoplasmic

ZENK expression from neighboring nuclei. To eliminate these errors, we imple-

mented the intuitive concept that nuclear expression consists of small, high in-

tensity regions. The range operator (Gonzalez and Woods, 2007) measures large

changes in intensity within a small neighborhood. For all cell nuclei detected, we

compute the red channel range values inside the cell nuclei. Cells marked with

nuclear ZENK are expected to have high range values, compared with cells over-

lapping with cytoplasmic ZENK from neighboring cells. We required that each

cell nuclei have a range value of at least one standard deviation above the mean red

range inside the set of all cell nuclei. The set of cell nuclei satisfying this condition

is denoted as 
high range nuclei:

Formally, our �nal selection of nuclear ZENK marked cells is the intersection of the

above sets:


nuclear = 
bright spots \ 
high range nuclei

In conjunction, the above rules return a more accurate list of nuclear ZENK markers

than either rule by itself. We note that both the top-hat and the range operator are

robust in relation to the overall intensity from image to image. In addition, the fact

that we require coincident satisfaction of both rules serves as an e¤ective measure for

the case where no nuclear ZENK is present, in which case very few locations will be

returned from the top-hat transform, and application of the second rule eliminated most

of them, resulting in very few or no false positives.

A di¤erent set of rules guided the detection of cytoplasmic ZENK.

Select circular shapes in the red channel Cytoplasmic ZENK consist of relatively

large regions of red of moderate intensity, surrounding the cell nuclei (see Figure
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4.2 B). We used the Hough transform to identify circular shapes in the edge image

derived from the raw red channel. For each circular shape, we collected the local

information: the ratio of average red intensity just outside the circular shape and

the red intensity inside the circular shape. For true cytoplasmic ZENK expression,

we expect a concavity corresponding to the position of the blue cell nuclei, and

therefore the intensity inside the circle should be less than the intensity outside.

Out of all the circular shapes collected using the Hough transform, we select the

ones that have a ratio higher than the average ratio and we denote this set as

	red circles:

Identify circular shapes close to detected nuclei The cytoplasmic ZENK must be
in the immediate vicinity of a cell nuclei. For each candidate circular shape, we

�nd the position of the closest detected nuclei. If this position is within one nu-

clei radius of the center of the circular shape, we select the circular shape and we

denote the set of these circular shapes as 	nucleus attached:

Evaluate the cell nuclei border For each cell nuclei close to a circular shape in the
red channels, as identi�ed in the above rule, we collect the average red intensity

on the border. We then compare this intensity with the red intensity on the

border of all nuclei detected. We select the circular shapes for which the attached

nucleus has an intensity greater than the mean intensity. We denote this set as

	red nucleus border:

Formally, our �nal selection of cytoplasmic ZENK cells is the intersection of the

above sets:

	cytoplasmic = 	red circles \	nucleus attached \ :	red nucleus border

We illustrate an example of a fully analyzed picture in Figure 4.13.
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Figure 4.13: Example of fully labeled image. Top: raw image with blue and red channels.
Bottom: image with nuclear labeling (red points, see also yellow arrow) and cytoplasmic
labeling (red circles, see also green arrow). Red arrow: example of double-labeled cell.
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Evaluating and validating the automated cell counting

In order to quantify the results of our automated cell detection procedure, we com-

pared its performance with that of several human observers and to the performance of

a di¤erent cell counting procedure (Byun et al., 2006). This cell counting procedure

is based on convolving the intensity image with a Laplacian of Gaussian (LoG) �lter

(Gonzalez and Woods, 2007), and then detecting local maximums in this �ltered image.

We note two important di¤erences between our approach, based on the Hough trans-

form, and the LoG �lter approach. First, the Hough transform places a heavy emphasis

on the qualitative information present in the image, namely the roundness of the cell

borders. We note that it is not essential for the cells to be perfectly round; a partial

border that is round is su¢ cient to create a peak in the Hough transform. In addi-

tion, our image opening procedure increases the roundness of the borders (Gonzalez and

Woods, 2007). The LoG �lter is also somewhat sensitive to the roundness of the cells,

since the �lter shape is circular in the (x; y) plane, but our comparisons outlined bellow

suggest that occlusion and local noise in the images a¤ects its performance. Second,

while both Hough transform approach make explicit use of the local intensity of the

image, the Hough transform approach is more speci�c, since it compares the intensity

inside a candidate cell with the intensity immediately outside its border. We will relate

these observations with the performance of these automated procedures in the following

paragraphs.

We used a set of 32 images to compare the performance of human observers and the

performance of the two automated procedures. The results of all the counters are shown

in Figure 4.14 A. We observe the large variability in the results of di¤erent observers

and the results of the automatic procedures. In addition, the LoG procedure appears

to systematically undercount the images, as illustrated in Figure 4.14 B, where the

counts from the LoG procedure are signi�cantly lower than the counts from the Hough

transform procedure.

In order to compare the performances of all the di¤erent counters, we computed Lin�s

concordance correlation coe¢ cient (Lin, 1989) between repeated counts of the same

image. This measure is speci�cally designed to compare the performance of di¤erent

observers quantifying the same data (Lin, 1989) and is commonly used to quantify

inter-observer variability in cell counts (Warke et al., 2001), (vanSchaik G. et al., 2002).

As detailed in (Lin, 1989), if two observers are in perfect agreement, then all the pair

observations would fall on the 45� line. The concordance correlation coe¢ cient, as

de�ned in (Lin, 1989), implements the following measure:
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Figure 4.14: A. Illustration of the counts performed by humans and the counts performed by
the automatic procedures. B. Direct comparison between the Hough and the LoG automated
procedures. Perfect agreement would place all the points on the main diagonal.

Table 4.1: Concordance coe¢ cients for manual and automatic cell counts.
Manual 1 Manual 2 Manual 3 Hough LoG

Manual 1 1 :55 :60 :62 :48
Manual 2 :55 1 :86 :84 :25
Manual 3 :60 :86 1 :85 :26
Hough :62 :84 :85 1 :17
LoG :48 :25 :26 :17 1

�c = 1�
Expected squared deviation from 45�

Expected squared deviation from 45� for uncorrelated data

As applied to our measurements, the correlation coe¢ cient returned the results

listed in Table 4.1.

Based on these concordance values, we can draw several conclusions. First, as illus-

trated in Figure 4.14 A, there is large variability between di¤erent counters, including

the manual ones (concordance as low as 0.55). Second, the LoG counter has lower con-

cordance with the humans than Hough counter (.48, .25 and .25 versus .62, .84 and

.85). Third, the lowest concordance is between the two automated procedures, which

we believe is due in large part to undercounting by LoG (see also Figure 4.14 B).

In order to identify the exact causes of undercounting by the LoG versus Hough

counters, we generated two sets of arti�cial images. These images were constructed

based on the several issues which we believe a¤ect the performance of the counters.
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These issues include partial occlusion (overlapping cells), variability in the intensity of

the �uorescent labeling for each cell, variability in the size of the cells, and the presence of

noise. Consequently, we generated 400x400 size images, and we generated 100 randomly

positioned arti�cial cells in each of these images. In order to replicate in a controlled

fashion the issues a¤ecting the detectability of the cell nuclei (see Figure 4.11), we

allowed variability in both the size and the intensity of the cells. The cell diameter

was generated from a uniform distribution over the set f13; 14; 15; 16; 17g. The intensity
of the cells was also drawn from a uniform distribution of ten levels, such that the

highest intensity was tenfold the intensity of the lowest. The borders of the cells were

blurred by convolving the images with an averaging �lter in the form of a disk with

diameter of 3 pixels. Next, the images were convolved with a two dimensional Gaussian

�lter with standard deviation of 6 pixels, which was intended to reproduce the intensity

spillover e¤ects between neighboring cells observed in real images. Finally, low-passed

Gaussian noise was added to the images. The noise image added to each cell image was

generated using the following procedure: for each pixel, we generated a random value

from a Gaussian distribution with mean 5 (the average intensity of a cell) and standard

deviation 5. This noise image was then �ltered using a two-dimensional Gaussian with

diameter 10 pixels and standard deviation 6 pixels. These values were arrived at by

visually inspecting the real images such as Figure 4.11.

The �rst set of arti�cial images consisted of images with cells of varying sizes and

intensities. The second set of images also included the noise. For each of these sets of

images, we allowed progressively more occlusion, starting from 0 pixels (no overlap) to

14 pixels of overlap. Examples of the resulting images are presented in Figure 4.15.

Using these two sets of arti�cial images, we performed counts using theHough counter

and also the LoG counter. We present the results of this procedure in Figure 4.16. In the

absence of noise, manual inspection revealed no falsely identi�ed cells. When low-pass

Gaussian noise was added, manual inspection revealed the apparition of falsely identi�ed

cells for both the Hough and the LoG counting procedures (see Figure 4.16 B).

The results illustrated in Figure 4.16 suggests to us the following conclusions. First,

there is inherent variability in image-to-image counting performance for both methods.

Performance generally decreases with the amount of overlap, but due to variability the

trend is not strictly monotonous. Second, the decrease in performance is due to an

accumulation of factors. Overlap or heterogeneity in intensity or size, by themselves,

were not su¢ cient to degrade the performance. We note that when the images contained

just one of these confounding factors in isolation, both methods returned a perfect count.

The undercounting of cells is due to a combination of all the above factors as illustrated
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Figure 4.15: A. Image of 100 cells with variability in size and intensity. The images do not
overlap, their borders touch due to the averaging �lter that blurs the edges. B. Image of 100
cells which are allowed to overlap by 15 pixels, and with Gaussian noise added. This was the
most challenging of the arti�cial images.

in Figure 4.16 A.

The introduction of noise had the most dramatic e¤ect in the performance of both

automated procedures (see Figure 4.16 B). In addition to loss of sensitivity, we also

detected by manual inspection the apparition of large numbers of falsely identi�ed cells

(di¤erence between the solid and dashed lines in Figure 4.16 B). The Hough counter was

especially vulnerable to the introduction of noise, and this e¤ect allows us to identify

the limits of our detection procedure. We note that the amount of Gaussian noise

introduced in our arti�cial images (Figure 4.15 B) is much bigger than the amount of

noise that is typically present in the images collected from zebra �nches (see Figure 4.8,

top). We introduced such a large amount of noise in order to identify the point where

our procedure exhibits a drastic loss in performance, and we conclude that the images

collected from the birdsong brains are well within the operating range where we have

con�dence in the automatic procedure.

The low-pass Gaussian noise introduced into the arti�cial images is roughly equiv-

alent to small spots of �uorescence, which nevertheless are not cells and should not

be counted. The size of these spots of noise is dependent on the spatial extent of the

Gaussian �lter used to attenuate the noise added to the images, in this case a stan-

dard deviation of 6 pixels. Based on the above considerations, in practical terms, the
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Figure 4.16: A. Comparison of automated counting methods using image sets with variable
cell size and intensity. B. Counting results for images with same number of cells as A, but
with added noise. Di¤erence between dashed lines and solid lines represent the false positives,
as identi�ed by manual inspection.

Hough cell detector introduced here should be used with caution when the images to

be analyzed contain spots of noise with a diameter close to a third of the diameter of

the real cells to be detected. If the spots of noise are smaller, we expect that our image

opening procedure (erosion followed by dilation) is likely to eliminate them (Gonzalez

and Woods, 2007).

Evaluating and validating the automated detection of nuclear labeling

We evaluated the accuracy of our detection of nuclear labeling in a manner similar

to the evaluation of the cell counting procedure in the preceding section. We compared

the results of four manual counts with the results of our automatic procedure and we

display the results in Figure 4.17.

We note that in the case of nuclear labeling, we can consider the �rst manual count

(Manual 1 ) to be the "gold standard", since it was performed by the experimentalist

with years of experience analyzing �uorescent images (Tarciso Velho, personal communi-

cation). Figure 4.17, suggests that our automated procedure (Hough) is relatively close

to the best performance available. In order to quantify this observation, we computed

the concordance coe¢ cient for the counts and we present the results in Table 4.2:

The concordance between the Hough counter and the most accurate count, Manual

1, is :95. This is the highest concordance in Table 4.2, and therefore we consider our

automated procedure to have high reliability on this particular set of images1.

1The concordance coe¢ cient was computed using only the counts from images 4-14. Images 1-3 came
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Figure 4.17: Results of manual counts and our automated procedure, applied to the 14 images
in the data set. First three images were generated from the silent controls, images 4-6 from
birds presented with conspeci�c songs, 7-9 from heterospeci�c songs stimuli, 9-12 from white
noise and 13-14 from pure tone stimulation.

Table 4.2: Concordance coe¢ cients for ZENK labeling of cell nuclei.
Manual 1 Manual 2 Manual 3 Manual 4 Hough

Manual 1 1 :85 :93 :96 :95
Manual 2 :85 1 :75 :92 :75
Manual 3 :93 :75 1 :87 :83
Manual 4 :96 :92 :87 1 :87
Hough :95 :75 :83 :87 1

Quantifying the spatial distribution of cells

Once we have found the exact positions of the activated cells, their topographical

distribution was quanti�ed using the computational geometry techniques of Delaunay

triangulation (Delaunay, 1934), (Okabe et al., 2000) and Voronoi tessellation (Voronoi,

1907), (Okabe et al., 2000).

De�nition 1 Let P be a set of points in the plane. The Voronoi polygon generated by
a point p2P is the set of all points x in the plane for which the distance from x to p is

from silent controls and had very few numbers of activated cells (100-300) compared to to 900-1200
for conspeci�c stimuli. Computing the concordance coe¢ cient assumes that the true counts are drawn
from the same probability distribution (Lin, 1989). That assumption is violated if we use counts that
vary widely in the number of cells, as they do between silent controls and conspeci�c songs.
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smaller than or equal to the distance from x to q, for all other points q in P. The Voronoi

tessellation of P is the collection of Voronoi polygons of all p2P.

De�nition 2 The Delaunay triangulation of a set P of points in the plane consist of the
set of all triangles spanned by points p2P, such that no triangle contains a point p2P.

We illustrate these concepts in Figure 4.18.

Figure 4.18: Illustration of the Delaunay triangulation and Voronoi tesselation of a set of
points. Original points are denoted by black dots. Thick lines represent the Delaunay triangu-
lation. The de�nition implies that no triangle sides intersect. Dashed lines outline the Voronoi
polygons.

An application of the Delaunay triangulation was the stitching of the images. A

neuronal slice was photographed under the microscope, resulting in about 100 partially

overlapping images. Each image was analyzed individually, resulting in the coordinates

of all identi�ed cell nuclei, as outlined in the previous section. In order to properly

combine the images without counting the overlapping border areas twice, we used the

side length and area of the Delaunay triangles detected in two neighboring images. In

conjunction, these measures provide unique identi�ers for overlapping image borders.

This procedure is robust to the possible errors in identifying all the cells in each image,

since for practical purposes just three Delaunay triangles identi�ed in both images will

su¢ ce to provide a good stitching. The process is illustrated in Figure 4.19.

Once the images were stitched and aligned, a Gaussian spatial �lter was applied each

aligned image, resulting in an average density map for each stimulus type. This density
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Figure 4.19: A: Two neighboring images with overlap on the borders. Delaunay triangles
are identi�ed in each image (�lled triangles). B: The images are stitched together using the
overlap suggested by the triangles.

information was displayed in the form of a heatmap, with the intensity of the color

proportional with the local density of activated cells. An alternative visual representation

can be achieved by plotting the Voronoi polygons centered at each cell, with the display

color inversely proportional to the area of each polygon, as illustrated in Figure 4.20.

Our image segmentation procedure results in a set of coordinates for each labeled cell

in a particular brain slice. In order to compare this topographical distribution across

birds, we performed an image registration procedure aligning di¤erent brain sections to

a common set of anatomical landmarks. This procedure is necessary in order to correct

for histological distortions and individual variability. As landmarks, we manually chose

a set of points common to the anatomy of the zebra �nch brain, such as the ventricle

wall (Velho, 2008). Next, we applied an image registration procedure (Gonzalez and

Woods, 2007), which �nds a spatial transformation which moves the individual landmark

points, manually selected in each image, to a set of global landmark points. Once this

spatial transformation is found, it is applied to the whole image, in e¤ect aligning each

image to the global standard. We used a common registration procedure, known as

projective image registration (Gonzalez and Woods, 2007). The results of this procedure

are displayed in Figure 4.21.

After image registration, the remaining variability in the distribution of cells could be

attributed largely to stimulus variability. Therefore, a measure of similarity between two

sets of points is required. In image processing applications, a frequently used measure

of distance between two sets of points is the Hausdor¤ distance metric (Rote, 1991).

De�nition 3 For two sets of points A = fa1; a2; ::ang and B = fb1; b2; ::bng is de�ned
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Figure 4.20: Illustration of a Voronoi tesselation applied to the whole NCM. The areas of the
polygons are inversely proportional with the intensity of the color, resulting in areas of high
density in warmer colors.

as

H(A;B) = max(h(A;B); h(B;A))

where h(A;B) = max
a2A

min
b2B

ka� bk is the directed distance from A to B.

The directed distance is not symmetric and therefore not a metric. The Hausdor¤

distance identi�es the point a 2 A that is farthest from any point of B, and retains the

distance from this element a to the closest b 2 B.

4.2.2 Selective temporal or spectral degradation of songs

In this section we present the methodology used for systematically altering the songs

presented as stimuli (Theunissen and Doupe, 1998). This method is based on a time�

frequency decomposition of sound commonly used in speech analysis (Flanagan, 1980),

and can describe any song completely using a relatively small set of parameters. This

parametrization can be explicitly related to the spectral and temporal structure of the
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Figure 4.21: Results of image registration. Overlapping lines show the contours of same brain
regions from di¤erent animals. A: CMM, prior to registration. B: CMM, post registration. C:
NCM, prior to registration. D: NCM, post registration.

songs. Access to these parameters also allows a systematic degradation of selective

features of the song, in particular the temporal or spectra resolution.

The original song signal s(t) is �rst divided into n bandpassed component signals

sn(t), illustrated in Figure 4.22. To completely describe the signal with these, the �lters

in the �lter banks need to collectively be equivalent to a �lter transform that is �at over

the spectral extent of s(t): Additionally, the phase distortion of each �lter needs to be

minimized. Under these conditions, the original sound can be reconstructed as the sum

of the bandpassed signals:

s(t) =
X

sn(t)

The output of each �lter is next used to computed the analytical signal in each frequency

band (Cohen, 1994), (Flanagan, 1980):

sn(t) = An(t) � cos [�(t)]

The instantaneous amplitude of the signal sn(t) is represented by the factor An(t),

while the instantaneous phase is represented by �(t): The instantaneous phase is further

decomposed into its derivative, the instantaneous frequency w(�) and an absolute phase
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Figure 4.22: Decomposition of original sound using partially overlapping �lters. Each �lter
covers a speci�ed frequency band. The output of these �lters can be used to reconstruct the
signal. The �lters used covered the range between 500 and 8000 Hz. Modi�ed from (Theunissen
and Doupe, 1998).

�n

sn(t) = An(t) � cos
�Z t

0

w(�)d� + �n

�
Finally, the instantaneous frequency w(�) is expressed as a modulation around the center

frequency for the spectral band, wn :

sn(t) = An(t) � cos
�
wn � t+

Z t

0

wFM(�)d� + �n

�
The information about the original signal s(t) is partially contained in the individual

amplitude envelopes An(t): If a large number of �lters are used, the frequency band

covered by each one is small. With this increased frequency resolution comes the loss

of temporal resolution. Choosing the number of �lters, or equivalently the bandwidth

of each �lter, is the �rst and most critical step in the process of degrading a song. The

amplitude envelopes An(t) still contain spectral information, but limited to frequencies

bellow the bandwidth of the �lter.

The second source of information about the signal s(t) is the collection of instan-

taneous phases �n(t): These instantaneous phases are related across di¤erent frequency

bands, and the information carried by their relative magnitude is known as the �ne
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temporal structure of the signal. A more subtle way of degrading the song is to diminish

the information carried by the �ne temporal structure of the song. This was accom-

plished by low-pass �ltering the modulations wFM around the center frequencies in each

frequency band, wn:

Following suggestions from the authors of the package implementing these methods

(Frederick Theunissen, personal communication), we created two synthetic songs, start-

ing from the same original. The �rst song, which we called temporally preserved, was

obtained by choosing the upper limit of the temporal frequency (modulations in the

amplitude envelope) of up to 500 Hz and setting the spectral frequency cuto¤ to be

0.0005 (or 0.5 cycles/kHz). The second song, which we called spectrally preserved, was

obtained by choosing the upper limit of the temporal frequency (modulations in the

amplitude envelope) of up to 3 Hz and setting the spectral frequency cuto¤ to be 0.016

(or 16 cycles/kHz). The spectrograms of the original song and its modi�ed versions are

presented in Figure 4.23.

Figure 4.23: Spectrograms of song stimuli. A: unmodi�ed song. B: temporally preserved
song. C: spectrally preserved song.

We note that the temporally preserved song (Figure 4.23 B) has kept the pauses

between the syllables, but �ne frequency resolution is lost. In contrast, the spectrally

preserved song (Figure 4.23 C) has good spectral resolution, but the syllable partition

is lost.

4.3 Results

The images analyzed in this section were generated from brain slices from a total of

14 di¤erent birds (Velho, 2008). Prior to the FISH experiment, the birds were exposed

for about 30 min to repeated presentation of auditory stimuli. These stimuli consisted

of conspeci�c song (CON, n = 3 adult females) and other sounds that have very
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di¤erent spectro-temporal organizations, including heterospeci�c (canary) song (HET,

n = 3), white noise (WN, n = 3), and tonal sequences (TONE, n = 2), in addition to

unstimulated controls (UNSTIM ; n = 3).

4.3.1 Visualization of the density of activated cells

Using the mapping tools developed in our Methods section, we investigated the spa-

tial distribution of activated cells following stimulus presentation. Starting from the

unprocessed images containing the cell nuclei and ZENK �uorescent markers (for an ex-

ample see Figure 4.1), we mapped the position of each activated cell, either manually or

using our automated process. Next, we used the common anatomical markers to register

the images to a common standard. For each stimulus type, all images were combined

resulting in an image containing all activated cells from several animals. This image was

smoothed using a Gaussian �lter and visualized as a heatmap. The processing steps are

summarized in Figure 4.24.

Figure 4.24: Image processing steps. Starting from the positions of activated cells (red dots
in top left image), we registered the images to a common standard, we combined them by
common stimulus class, and then we displayed them as heatmaps.

Individual density maps of ZENK expression were registered and averaged. The

resulting average density maps revealed overall increases in ZENK labeled cells in the

NCM of birds hearing CON, HET and WN compared to unstimulated controls. Ad-

ditionally, the spatial pattern was not uniform and varied signi�cantly across stimulus
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type. In CON stimulated birds, ZENK expressing cells were concentrated mostly in

dorsal and ventral NCM, with a lower density in the more central region. A moderate

but signi�cant activation was observed also in the caudal NCM. In contrast, ZENK

expressing cells in HET - andWN stimulated birds were mostly located in central NCM

with some labeled cells detected also in dorsal NCM. ZENK expressing cells in caudal

NCM were very nearly absent for all stimuli except CON, suggesting that this area may

be the most selective NCM subregion.

Figure 4.25: Density of ZENK expressing cells in NCM. A: conspeci�c songs; B: canary songs�
C: white noise; D: pure tones; E: unstimulated controls.

In order to quantify the discriminative power in regards to stimulus type that is

present in the topographical distribution of activated cells in NCM , we computed the

pairwise distances between all images. Our hypothesis is that images generated by the

same stimulus type will be more similar than images generated using di¤erent stimulus

types. We have found a signi�cant di¤erence (ranksum test, p < 0:05; see Figure 4.26

B), showing that same category stimuli produced more similar spatial distributions of

activated cells than di¤erent category stimuli. Our similarity measure was the Hausdor¤

metric introduced in the Methods section. A multidimensional scaling of this set of

pairwise distances in shown in Figure 4.26 A.

Using the distances between images, we performed a clustering procedure that as-

signed each image to a stimulus category, based on the lowest average distance of each

image to images resulting from similar stimuli. This procedure is identical with the

clustering method presented in Chapter 3, where clustering was performed using spike

metric distances. Regardless of the neural responses available in a particular experiment

(spike trains or spatial patterns of activated cells), the approach we use conforms to the

guiding principles and goals outlined in Introduction: we aim to quantify how much the
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Figure 4.26: A: Two dimensional Isomap projection of the pairwise distances between im-
ages. B: Boxplots comparing the distances between same-category stimuli images and di¤erent
category images.

Table 4.3: Confusion matrix of true and assigned stimulus category of each image.
UNSTIM ZF HET WN TONE

UNSTIM 3 0 0 0 0
ZF 0 3 0 0 0
HET 0 1 2 0 0
WN 0 0 1 2 0
TONE 0 0 0 1 1

neural responses tell us about the stimuli presented. The neural responses are clustered

and then each one is assigned to a stimulus category. If these assigned categories are

close to the true stimulus categories, we can conclude that having access to the responses

is informative in regard to the stimuli. We present the results of this procedure in the

confusion matrix outlined in Table 4.3.

In Table 4.3, rows represent the true stimulus categories and columns represent the

category assigned to each image by our clustering procedure. In a perfect assignment, all

the entries not on the main diagonal would be zero. In our case, 11 out of 14 images are

assigned to the correct stimulus category, based solely on the spatial patterns of activated

cells. We note that the Hausdor¤ distance measure used to compute distances between

images is not taking into consideration the numbers of cells in each image. We also

illustrate this observation empirically. We selected one of our images, consisting of 1200

activated cells. We computed the Hausdor¤ distance between this image and the other

13 images in the data set. Next, we undersampled the image, by selecting, at random,

progressively smaller numbers of points from the original points in the image. For each

of these undersampled images, we computed the distance to the other 13 images in the
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data set (which remained intact), in order to detect what e¤ect the number of points

has in computing the Hausdor¤ distance. The results of this procedure are presented in

Figure 4.27.

Figure 4.27: The e¤ect of reducing the number of points on the Hausdor¤ distance. Each
curve represent the distance between a selected image and the rest of the images. As we
decrease the number of points in the selected image, the distances to the other images remain
relatively constant.

By examining the relatively �at curves in Figure 4.27, we conclude that changing

the number of points in the image, but leaving the overall spatial distribution the same

does not signi�cantly a¤ect the Hausdor¤ measure. Based on this observation, we

conclude that the speci�c position of the activated cells in the images contains additional

information related to the speci�c stimulus presented to the birds, in addition to the

strong e¤ect in the number of cells activated by each stimulus class.

The number of cells activated is also dependent on the stimulus class used to stimulate

the birds (Velho, 2008). A distance measure to combine the information present in the

number of cells with the information about their relative distribution will be introduced

in Chapter 5.

Auditory stimulation elicits activation of both gabaergic (inhibitory) and non-gabaergic

(probably excitatory) cells (Pinaud et al., 2004). To investigate the separate contribu-

tions of these cell types to the ensemble of song-responsive neurons in NCM, we have

identi�ed and mapped cells expressing ZENK and gad65, a gabaergic marker, using

double-labeling in situ hybridization (Velho, 2008).

We can observe an e¤ect of stimulus type, as the number of ZENK+/gad65+ cells

was signi�cantly higher for HET than for the other stimuli. Indeed, the central region
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Figure 4.28: Excitatory (top row) and inhibitory (bottom row) density of activated cells in
NCM, in response to auditory stimuli.

of NCM in the HET group had a high density of ZENK+/gad65+ cells compared to the

other stimuli, which had rather low levels of this cell type throughout NCM (Figure 4.28,

lower panels). This contrasted with ZENK+/gad65- cells, which were more numerous

for CON and HET than for WN and suggested higher values for CON than HET.

The classes of stimuli presented so far (conspeci�c songs, heterospeci�c, white noise,

tones) di¤er qualitatively in their origin and presumed saliency for the bird. In order

to gain an understanding about the relative importance of the frequency and time com-

positions of conspeci�c song, we compared a normal song (Song A) to the same song

after a decomposition that degraded its frequency and time components. We generated

time-preserved (Song Atp) and frequency-preserved (Song Afp) songs respectively, as

described in the Methods section of this chapter.

The expression pattern evoked by song A (Figure 4.29 D) seemed to di¤er markedly

from those elicited by the modi�ed songs (Figure 4.29 E-F): the modi�ed songs appeared

to have much higher densities of labeled cells in central NCM and lower ones in dorsal,

caudal and ventral regions compared to intact song A.

We also displayed the separate contributions of gabaergic and non-gabaergic cells

to these patterns using dFISH for ZENK and gad65. The density maps indicated that

the spectrally and temporally modi�ed versions of song A resulted in higher densities of

ZENK+/gad65- (non-gabaergic) cells in central NCM as compared to the intact song.

A similar e¤ect was observed for ZENK+/gad65- (gabaergic) cells (Figure 4.30 top,

compare middle and right to left panel).

The techniques introduced in this study demonstrate the capacity of activity-dependent

gene expression to be used as a mapping tool for neural activation. This methodology

allows for brain activation mapping at cellular resolution in awake behaving animals.

This o¤ers the possibility of automated mapping neural activity at a spatiotemporal
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Figure 4.29: Spatial pattern of ZENK expressing cells in NCM. A-C: spectrograms of intact
or modi�ed songs. D-F: heatmaps representing the density of activated cells.

level that is inaccessible to other neurophysiological techniques. Electrode recordings,

even using multielectrode arrays, do not o¤er the possibility of accessing the activity

of large, spatially distributed collections of neurons. Other imaging techniques such as

fMRI lack the spatial resolution required to isolate speci�c brain regions such as the

NCM (Boumans et al., 2007). Our automated method of cell nuclei segmentation and

labeling is extensible to three-dimensional stacks of images, creating the possibility of

visualizing and quantifying the full spatial extent of neuronal activation in response to

various stimuli. Such a method could potentially �ll a gap in the set of methods available

to neurophysiologists.

New methods such as calcium imaging techniques do increase the spatial resolution of

the data collected during an experiment, but they are limited in other ways such as the

requirement that the structure under study be accessible to a microscope. In contrast,

IEG �uorescent labeling accesses neuronal activity in a live, behaving and intact animal.
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Figure 4.30: Excitatory (top) and inhibitory (bottom) spatial distribution in response to
original (left) and modi�ed (middle, right) versions of the same song.



Chapter 5

Conclusions and future directions

5.1 Timing and coincidence detection at di¤erent levels of

neural processing

In the previous chapters, we have analyzed neuronal systems where the role of precise

timing in the transmission and processing of information was important. Our results

suggest that coincidence detection of converging signals in relatively short time windows

plays a signi�cant role in the functioning of neural assemblies. An incoming sensory

signal is evaluated at subsequent levels of neural processing, and its saliency or relevance

to the organism is determined in large part by its arrival time. We can exemplify this

concept in each or our model systems.

At the level of synaptic integration detailed in Chapter 2, we observed how a centrally

originating timing signal, the corollary discharge, has a profound e¤ect at the very early

stages of sensory perception. The granular cells of ELL are just a synapse away from

the �rst neurons responding to sensory stimulation, the a¤erents. At the level of the

granular cells, the integration of the centrally originating corollary discharge signal and

the a¤erent spikes is largely determined by their relative timing (Zhang et al., 2007).

Our simulations reproduced the cellular properties of the granular cells and provided a

candidate biophysical mechanism for implementing interactions at such short time scales.

Overall, these results illustrate how a short window of time is created by the arrival of

the corollary discharge signal at the granular cell. A¤erent spikes that arrive at lower

holding potentials have a considerably larger e¤ect than a¤erent spikes that arrive at

higher holding potentials (see Figure 2.1 B). We hypothesize that the holding potential

is a result of multiple inputs, including the corollary discharge and possible inhibitory

inputs from large gabaergic cells observed in the immediate vicinity of the granular cells

(Han et al., 2000). These inhibitory cells are activated very rapidly, possibly playing a

role in the value of the membrane potential of the granular cell at the time of a¤erent

79
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spike arrival.

At the system level, in Chapter 3 we analyzed the neural activity recorded in the

primary auditory cortex while the animal was presented with auditory stimuli relevant for

performing a task. The importance of signal timing was revealed in several ways. First,

the level of response attenuation was dependent on time interval between stimuli, such

that identical inputs resulted in di¤erent outputs, depending on their timing (see Figure

3.12). Second, the level of �ne temporal coordination of LFP signals, as measured by the

coherence, was consistently increased on the presence of the stimulus (see Figure 3.9).

The spikes emitted in response to the tone were extremely well timed (see spike rasters

in Figure 3.7), and taking into account their timing dramatically increased the capacity

of an observer to detect the presence of a tone (see Figure 3.10). Finally, the relatively

brief interval between the two tones revealed a transitory increase in gamma frequency

power related to the performance of the animal (see Figure 3.16). Taken together, these

results illustrate that at the system level, millisecond scale coordination between multiple

streams of information (coherence) and a well-timed succession of events (increase in

gamma frequency preceding the second tone) are important parameters relating sensory

performance and subsequent behavior.

The neural recording available from the two model systems described above had

extremely �ne temporal resolution, but their spatial resolution was very low. In contrast,

in the songbird system we analyzed in Chapter 4, we had access to extremely high spatial

resolution neural data, but the temporal resolution was on the order of minutes which is

the time necessary for gene expression to become visible in the nucleus of the activated

neurons. However, in this case the importance of timing was revealed by manipulating

the inputs presented to the animals. Since conspeci�c songs are the stimuli with the

highest relevance for the organism, manipulating the �ne temporal structure of the songs

resulted in markedly di¤erent spatial patterns of activated cells over the extent of the

same neural structure (see Figure 4.29). This illustrates the high importance of subtle

cues in the relative timing of di¤erent frequencies composing the zebra �nch song.

In conclusion, our results have illustrated how the analysis of complex spatiotemporal

patterns of neural responses can be guided by two important constraints. The �rst such

constraint is the temporal extent of the stimuli and/or neural responses. An example

is the extreme sensitivity of some neurons in the bird brain to extremely brief features

in the conspeci�c songs. Often, determining the best temporal scale of analysis is an

important step in the selection of appropriate methods.

An additional, related constraint is the saliency of the stimuli or neural responses for

the subsequent stages of processing. In many cases, the temporal window available for
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processing the incoming signals can be determined by considering the latency of response

at subsequent stages. For instance, in the primary auditory cortex, the motor activity

follows the presentation of the second tone by less than 250 ms, implying that within

that time frame the animal has made a decision.

5.2 Further re�nements of the methods

The development of appropriate methods for the analysis and modeling of the sets

of data available for our study has been a central component of the present work. We

outline bellow future steps meant to improve or complement these analysis methods.

Providing to the neuroscience community intuitive, user-friendly versions of the software

developed during our work is also an important goal.

5.2.1 Translation of timing into spike count

In Chapter 2, we developed a biophysically detailed model of the granular cell. The

model was sensitive to the relative timing of two inputs, responding with a large EPSP

(and presumably more spikes) to a shorter inter-stimulus interval. We have shown the

critical importance of timing in a highly speci�c, biophysically detailed model.

This concept can be generalized using a canonical model of a neuron, a two dimen-

sional system capable of reproducing the capabilities of real neurons, such as spiking,

bursting and rebound inhibition. In several sensory systems, the �rst level of sensory

encoding makes use of the latency of the �rst spike for encoding the strength of the

sensory stimulation . At subsequent stages of sensory processing, spike counts appear

to be signi�cantly modulated by the same sensory stimulation. Our aim is to determine

whether the dynamics of two-dimensional system resembling a single neuron are capable

of translating the latency information into a spike count, or a more complex network

based interaction is necessary for such a translation.

A two dimensional dynamical system consists of two equations describing the rate of

change of each variable:

dV

dt
= f(U; V )

dU

dt
= g(U; V )

The nullclines of the system are the loci of the points de�ned by dV
dt
= 0 or dU

dt
= 0,

respectively. The intersections of the nullclines are called critical points, and their num-
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Figure 5.1: A. Simulation results illustrate translation from latency to spike count. Top: time
of arrival of the second input. White portions represent the stimulus on. B: Phase space
illustration of the canonical model. Parabola and straight lines are nullclines, short curve is
the trajectory. Color along the trajectory represents the speed.

ber, nature and relative position can characterize the dynamical system in a qualitative

way (Izhikevich, 2000). This type of mathematical analysis of neuronal excitability has

a rich tradition in neuroscience, beginning with the abstract models of neuronal spike

generation (Fitzhugh, 1961), constructed based on detailed measurements of channel

conductances (Hodgkin and Huxley, l952). In more recent years, many neuronal proper-

ties such as di¤erent models of spike generation ( integration versus resonance) have been

described using this approach (Izhikevich, 2000). We believe that this general method

could be useful in describing the biophysical underpinnings of coincidence detection. A

preliminary version of a model neuron, behaviorally similar to the granular cells but

without biophysical details, has shown promising results (see Figure 5.1).

Two identical pulses, separated by variable a short interval of time, represent the

inputs to our model. The output of the system is a spike burst of variable count, with

shorter interstimulus intervals resulting in more spikes (see Figure 5.1 A). Our proposed

mechanism for this translation can be intuitively visualized in Figure 5.1 B. The �rst

input takes the system from rest (the critical point to the left) to a point close to the

second critical point (to the right and higher). As time progresses, the system returns

toward the rest point along the trajectory depicted in 5.1 B. The speed along this

trajectory is non-uniform, and this is pivotal for our proposed mechanism. The second

input will catch the system somewhere along the trajectory and take it to a new point

in phase space (not shown in �gure). The return from this new point entails a spiraling

trajectory towards the rest point, with each spiral corresponding to a spike. In summary,

the non-uniform speed on the return trajectory ensures that the second input takes the

system to points well separated in the (U; V ) plane. In turn, these new starting points
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Figure 5.2: A. Spectrogram of a trial where the animal was presented with two tones and
licked. The spectrogram was computed using overlapping windows 100 ms in length. B.
Wavelet transform using the sym2 wavelet (Daubechies, 1994). Note that small scales (low on
the y axis) approximately correspond to high frequencies (high on y axis in A)

will generate di¤erent number of spikes by starting the spiraling return trajectory in

di¤erent positions.1

5.2.2 Wavelet transform for time-scale analysis

Our analysis of LFP recordings from the primary auditory cortex had two basic

components. First, we isolated the signal immediately following a tone, a high amplitude

but brief de�ection, and we applied LDA analysis. Second, we isolated the signal between

the tones, longer in extent, and we performed a Fourier spectral decomposition of this

signal. We believe that a comprehensive approach which has the potential to operate at

di¤erent scales is possible using the wavelet transform (Daubechies, 1994). A comparison

of the results of a short time Fourier transform and the wavelet transform is presented

in Figure 5.2)

The advantages of using the wavelet transform are immediately apparent. At small

scales, we have very good temporal resolution, such that we can identify visually the

times of tone presentation (100 ms and 300 ms into the trial, see Figure 5.2 B). Even

though more signal power is present at higher scales, the wavelet transform isolates

the time of onset for the neural response to tone presentation. In addition, we can

also observe neural activity probably related to the licking action, between 700-800 ms

1As depicted above in Figure 5.1 B, the system is not capable of a spiraling trajectories, since this
would intersect the trajectory depicted. The mechanism described above is truly realizable in three
dimensions (Izhikevich, 2000), or alternatively in a two dimensional model with hard reset (Izhikevich,
2003). Our model uses a hard reset.



84

in Figure 5.2 B. In contrast, the spectrogram in Figure 5.2 A is subject to the time-

frequency trade-o¤s inherent in using the short time Fourier transform. The temporal

resolution does not allow the clear identi�cation of the time of tone onset. The high

power present at low frequencies leaks into the higher frequencies in a more dramatic

fashion than in the wavelet transform.

A more precise identi�cation of the timing of neural events related to tone pre-

sentation or licking action opens new avenues of investigation, extending the analysis

presented in Chapter 3. It is possible to evaluate whether the latency of the tone re-

sponses is related to the behavioral performance. We could also quantify the response

attenuation at di¤erent scales of the tone responses. The precise identi�cation of the

licking time would allow for the analysis of an additional piece of information present

in the data set: the exact time the animal licks is identi�ed by the breaking of a light

switch placed in front of water spout.

5.2.3 Voronoi tessellations and a measure of similarity between

overlapping sets of points

Previous studies of the auditory response in the birdsong brain (Velho, 2008) have

shown that the total number of neurons activated in structures such as the NCM is

strongly modulated by the stimulus type, with conspeci�c songs activating the largest

number of cells. In Chapter 4, we have shown that the relative distribution of the

activated neurons is also informative about the stimulus type. In order to quantify

di¤erences between patterns of activated cells, we used the Hausdor¤ distance, a choice

consistent with our goal of determining if the spatial distribution of the activated cells

is informative about the stimulus, above and beyond the information contained in the

number of cells.

The relative insensitivity of the Hausdor¤ distance to the numbers of points (ac-

tivated cells) in the images, combined to the fact that the number of activated cells

is actually informative about the stimulus type, (Velho, 2008), reveals the need for a

distance measure between point sets which is sensitive to both. The reasons for which

such a distance measure is desirable can be illustrated with the case of the spike metric,

which is sensitive to both spike count and to spike timing (see Figure 3.10). As more

information about the spike timing is taken into account, the neural response becomes

more and more informative about the stimulus type, as illustrated by the dramatically

increased clustering in Figure 3.10 C versus Figure 3.10 C. In a similar manner, com-

bining the information in the number of cells and the information about their relative
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distribution would reveal the true strength of the relationship between the stimulus type

and the neural response. We also believe that a method for quantifying distances be-

tween point sets would have immediate applicability to images generated by calcium

imaging, which also consist of patterns of cells activated by di¤erent stimuli. Based on

these considerations, we have constructed a preliminary version of a distance measure

that takes into account both the number of cells and their distribution.

The image in Figure 4.20 suggests that the global distribution of cells can be described

using the area associated with each Voronoi polygon. Based on this insight, we de�ned

a measure of similarity between the spatial distribution of two di¤erent but globally

overlapping sets of points. Each point p 2 A has associated with it the area of its own
Voronoi polygon, AreaAp . The same point in image A is also located in one and only

one polygon in the Voronoi tessellation generated by image B; AreaBp . Without loss of

generality, assume that the number of points in A is greater than the number of points

in B. Thus, the n points of image A generate two vectors, each of length n:

AreaAp2A =
�
AreaA1 ; Area

A
2 :::Area

A
n1

�
AreaBp2A =

�
AreaB1 ; Area

B
2 :::Area

B
n1

�
If two images have a distribution of points that is similar, then they will have Voronoi

polygons with small areas in the same regions. The strength of association can be mea-

sured by the Spearman footrule distance between the vectors representing the polygon

areas (Diaconis and Graham, 1977).

v(AreaAp2A; Area
B
p2A) =

nX
i=1

jai � bij

where ai, bi are the rankings of AreaAp2A and Area
B
p2A respectively. Transforming the

raw scores, in our case the polygon areas, into rankings, guards against too much weight

being given to isolated points that can have Voronoi polygons with large areas.

De�nition 4 The Voronoi tessellation based dissimilarity � between two overlapping

collections of points in R2 is de�ned as

�(A;B) = v(AreaAp2A; Area
B
p2A) + v(Area

A
p2B; Area

B
p2B)

where a;b are the ranking vectors of Voronoi polygon areas and A;B � R2.

If A = B; both v distances will equal zero and therefore � = 0. We note that the

above measure of dissimilarity takes into account both the number of points in the data
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sets and also their relative densities. If the number of points is vastly di¤erent, then

one of the AreaAp2A ,Area
B
p2A will have a large number of duplicates. This will be the

dominant part of the sum. On the other hand, if the number of points are equal, then

the distance between the sets will be completely determined by the relative densities.

Proposition 5 Let � be a set whose elements are sets of points A � R2:Then (�;�)

is a semi-metric space, satisfying the properties of non-negativity and symmetry. For

the appended set b� de�ned bellow, the triangle inequality is satis�ed and (b�;�) is a full
metric space.

Non-negativity: Immediate since de�nition of � involves sums of squares and n � 2.

Symmetry: Interchange of A;B in de�nition yields equal expression, since we choose

the image with the larger number of points.

Triangle inequality: We need to show that

�(A;B) + �(A;C) � �(B;C)

In the case where the sets A;B;C have the same number of points, the triangle in-

equality is an established result.(Diaconis and Graham, 1977):At this point, we

introduce some restrictions on the set � over which our measure � can operate

as a metric. We require that there exist some set of points M 2 � which has

a �nite but maximum number of points compared with any other set of points

X 2 �. For these other sets of points X 2 �; we append the Voronoi tessellation
of X by duplicating the Voronoi polygons in the tessellation of X which contain

multiple points from M , and we call this set bX; resulting in a collection b�: In
the strict mathematical sense, it is (b�;�) which satis�es the triangle inequality
�( bA; bB) + �( bA; bC) � �( bB; bC). To see this, note that the appended sets bA; bB; bC
all have the same number of points equal to jM j.

In order to use the above dissimilarity measure, we will search for a version that

satis�es the triangle inequality. Failing to �nd such a metric, we would clearly identify

the issues arising from using a non-metric dissimilarity measure. Non-metric similarity

measures are useful in evaluating pairwise relationships between images (Tan et al.,

2006). A review of the statistical issues related to non-metric similarity measures can

be found in (Fasham, 1977).
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