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ABSTRACT

The asymptotic behavior of the pair correlation functions of a
one-dimensional binary mixture of simple model fluids is investigated.
The method of investigation is an extension of a technique developed by
Fisher and Widoml for simple one-component systems. The technique
consists of examining the poles of the Laplace transform of the pair
correlation function to determine the pole of least negative real part,

The present investigation has been restricted to systems interacting
through either hard-sphere or square-well intermolecular pair potentials.
In all cases the pair potentials are short ranged and strictly nearest-
neighbor.

The actual extraction of the poles of the Laplace transform of the
pair correlation functions is carried out numerically. One specific case
of a hard-sphere system has been solved analytically. In the case of hard
spheres, a locus is generated in the density, concentration plane across
which, the pair correlation function abruptly changes its spatial frequency.
Both linear continum and lattice gas models are investigated for the
hard-sphere systems and the results are found to be in qualitative agree-
ment with each other.

The square-well systems exhibit loci which divide the density
temperature plane into several regions. Each region is characterized

by the value of the spatial frequency associated with the damped sinusodial
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decay of the pair correlation function. The zero frequency region

corresponds to monotonic exponential decay.
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FIGURE CAPTIONS

1. Construction for determining the roots of equation (3.12).
The solid lines are the branches of cosy = f (ycot) and the
dashed line is the simple fluid indicial for the case u= 1.

2 Graphical solution of equation (3.30).
3 Construction for determining the roots of eq. (3.24). The solid
lines are the branches of cosy = f (ycoty) and the dashed line
is the binary mixture indicial for the case u= 1, and Xl = ,5,
3-1, Relation between the simple fluid and binary mixture indicials.

The solid lines are the branches of cosy = f (ycoty). The
dashed line is the simple fluid indicial and the binary mixture
indicials are represented by x (xl = .b), o (xl = .95), and
; (X1 = 999),

4, Transition locus in the (X, a) plane for a binary mixture of
hard spheres with N = 2. The x's are numerical solution data,
and the o's are analytical solution data.

= Construction for determining the N of least negative real part
that is a solution of eq. (3.10) for the case N = 2, x, = .5.
The x's are \ = \;, and the o's are A = \,. The das]hed line
is the N\ of least negative real part.

6. Transition locus in the (u,x;) plane for a binary mixture of
hard spheres with N = 2,

T Transition locus in the (p, x;) plane for a mixture of hard
spheres with N = 1.75 (—), 2 (---), and 2.25 (— - —).

8. Transition locus in the (p, N) plane for a mixture of hard spheres
Withxl = .,125 (—), .5(°"""), and .75 (— - —). The dashed

line is the limit of bp as x; —~ 0; s odi
, Transition locus in the (p,T) plane for a mixture of square-wells

1
-4, with N =2, R=1, H=1, andx = .1, .4, .5, and .8. The
dashed line is the simple fluid square-well locus.
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10-1, Transition locus in the (p,T) plane for a mixture of square-
10-4. wells with N =2, R=1, H=1, and x = .1, .4, .5, and .8.
The dashed line is the simple fluid square-well locus.

11.1. Transition locus in the (p,T) plane for a mixture of square-wells
with N =2, R=1, H=1.5, and % = .5.

11.2. Transition locus in the (p,T) plane for a mixture of square-
wells with N =2, R=1, H=1.5, and x) = D

12, Peak pressure reached by the transition locus versus con-
centration for a mixture of square-wells with N =2, R =1,

and H = 1 ( }, and 1.5 (--=-).

13 Comparison of the transition loci for a mixture of square-wells
with the van der Wall's spinodal (---) with N =2, R =1, H=1,
and p o= s &b

14, Transition locus in the (T,xj) plane for a mixture of square-
wells withN =2, R=1,p =.2,and H =1 ( ), and 1.5
s b

15, Comparison of -Re(\) versus u for a mixture of hard spheres,

N = 2 linear continuum ( ) and MN = 3 lattice gas (----- ).
15-1. X\ versus ] for both lattice gas MN =3 (u = .5, ;u=1, -3
u = 4,+) and linear continuum N= 2 (u= .5, ;u=1, x;
u= 4, o). The points at x; = 0 and x] = 1 are the values for
'pure A' and 'pure B' systems respectively. The dashed lines
indicate the abrupt changes in Im(\).

16. Transition locus in the (p, x;) plane for a mixture of hard spheres.
) and lattice gas MN = 3 (----- i

Linear continuum N = 2 (

1% wb ( ) from eq. (8.9) (open circles, o) and eq. (3.12)
(filled circles, ), and - kb(----- ) from eq. (8.10) (open
squares, )and eq. (3.12) (filled squares, ).

D-1. Real part of the root of least negative real part that is a solution
to the hard-sphere equation versus u.

D-2. Imaginary part of the root 1c:%\least negative real part that

is a solution of the eq. ue~ =u+t+ N\ versus N, scaled to a
N =1 system.
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INTRODUCTION

Much of physics deals with systems of enormously many degrees
of freedom. The investigation of such systems is greatly facilitated
if attention can be restricted to quantities of direct physical significance.
While there is little difficulty in selecting a few physical parameters
which encompass all information which can reasonably be required, it
is far more difficult to formulate a theory, even an approximate one,
which relates these few physically significant quantities to the almost
infinite number of degrees of freedom of the system. For a classical
fluid in thermal equilibrium, the pair correlation function provides the
necessary link between the interparticle forces and the bulk of single-

time observations which can be made.

The mean local density p(r) at a distance r from any given particle
in the system differs from the overall average density p_ . The radial
distribution function g(r) is defined as the ratio of these two densities,

and the pair correlation G(r) as g(r)-1. Hence

G(r) = (o (r)/py) - 1 . (A)

With this definition the pair correlation function is then a measure of
the degree of correlation, or structure, that exists around the chosen

particle.



The pair correlation function is related to the thermodynamic
properties of the system through various relations. For example, the

fluctuation compressibility theorem

d9p - I
kT 5p T © kTp kT =1 pf G(r)dr i (B)

where p is the number density, p is the pressure, T is the absolute
temperature, kg is the isothermal compressibility, and k is Boltzmann's

constant. (Occasionally Boltzmann's constant will be repres ented by kB).

Since we are interested in the long range properties of the
correlation function, we want to know how G(r) behaves for large values
of r. We already know that G(r) - 0, as r ~ oo since, as stated before,
there is no gross overall structure to our liquid models. However, we
wish to know how this approach to zero takes place. To this end we
shall follow the methods of Fisher and Widoml and examine the Laplace
transform of the pair correlation function. The poles of the transform

will give us information concerning the asymptotic behavior of G(r).

Previous workl 853 has shown that if the correlation at long
range reflects primarily the correlating effects of the intermolecular
repulsions, then the decay of the correlation function is expected to be
oscillatory, whereas if it reflects the correlating effects of the attractive
component of the intermolecular potential, then G(r) will be asymptotically

positive and its decay monotonic.



Thus in a system with an intermolecular potential that contains
both attractive and repulsive components one might expect regions in
the thermodynamic state space of the system where the asymptotic decay
of G(r) is either oscillatory or monotonic depending upon the particular
thermodynamic state of the system. Indeed, such regions have been

1
found for several types of intermolecular pair potentials., ’

For the present study we shall be interested in binary mixtures
of simple model fluids. All our systems will be described by an inter-
molecular pair potential @ij(r) which is bounded below, has an infinite
repulsion as r - 0, and is strictly nearest neighbor, i.e. particle i
interacts only with particles i-1 and i+ 1. For these binary mixtures
the mixed interaction parameters of the pair potential will be given by

the Lorentz-Berthelot4 combining rules

b, = (by+by)/2 (C)

1/
and €y * (elez)/a , (D)

where bi is the hard-core diameter of an i type particle and ¢, is the
well depth. Equation (C) is, of course, exact for a mixture of hard
spheres. Our two mixing parameters are N, the ratio of the hard-core
diameter of the larger species to the hard-core diameter of the smaller

species, and H, the ratio of the well-depth of the larger species to the

well-depth of the smaller species. Thus



N = sz/bll , (E)

i
1

and (F)

€x2/€11

where the subscript (11) refers to the smaller species. The values
chosen for N were somewhat larger than what one would find for real
systems. This was done to emphasize the effect of the hard-core repul-
sions. The values of H were close to those found in real systems.

One additional parameter R, the ratio of the well-depth to the hard-core
diameter for a single species, was included. In the present work R was

always set equal to one for both species.

When we examine the asymptotic behavior of G(r) we find that it
can have various forms depending upon the thermodynamic state of the
system. Thus we generate loci in the (p,T), (p,T), and (T, x,) planes
across which the asymptotic decay of the pair correlation function abruptly
changes. Here x; is the concentration of the smaller species. The
transition loci divide the state space of the system into several regions.
Each region is characterized by the value of the spatial frequency
associated with the damped sinusoidal decay of G(r). The zero frequency

region corresponds to monotonic exponential decay.

The first part of the thesis is concerned with deriving the equa-
tions for the pole of least negative real part of the Laplace transform of

the pair correlation function. Once these equations and the equation of



state are derived they are applied to hard-sphere and square-well linear

continuum systems. The next section carries out the calculation for a
hard-sphere lattice gas. The final section is devoted to evaluation of

the results obtained from the calculations.

We note here that these abrupt changes in the asymptotic form
of the pair correlation function in no way imply a phase transition in our
our-dimensional systems. Indeed, the systems treated are completely

without any phase transition.



DERIVATION OF BASIC EQUATION

Consider a one-dimensional system of N; particles of type 1
and N2 particles of type 2, where N; + N, = M. Let the particles interact
on a line of length L through a strictly nearest-neighbor pair potential
@ij(r). We shall be interested in the thermodynamic limit of this system,
i.e. L > oo, M~ oo, M/L — o and NIIM** Xp.

Following Lebowitz and Zomick6 we define the conditional

probability Pij(n){r) such that

(n)

P (r) = conditional probability density that {1:1)

E the nth neighbor of a given particle
of species i is a particle of species

j located a distance r away.

Then

m(r-r')dr' . (1.2)

P (n)( ) Zz rP (n']‘} np
i gt ik Py

o
The radial distribution function g,.(r) is then given by
1]

oo (n)

g..(r) N = r 5 1.3

PiE;; nZ:l o @ (1.3)
Hence, defining the symmetric Laplace transforms

oo

_ -or v,
Gy (o) = jo e pppy) gy ar (1.4)
and
P. (o) . [ eoer o e, My a
ij —fo e (pi pj) ij (r) r . (1'5)



we have, in matrix notation
-1
G (0) = P (o) (L-P (0)) , (1.6)
where Iis the unit matrix.

Equation (1.6) will be the basic equation for our analysis. The

pole of G (o) at ¢ = 0 will contribute a constant to g; Hence, the

j(r)’
asymptotic form of Gij(r) will then be determined by the nature of the
singularity (possibly more complex than a pole) of next largest real part.

Thus

G(r) ~ yel® : (1s30)

where Y) is the residue at the pole of least negative real part oy. If oy

is real, G(r) will decay monotonically from positive values. If oy is
complex, G(r) will decay as a damped sinusoid. Let the inverse range of
correlation k be given by « = -Re(c;) and the spatial frequency w by

w = Im(trl), then

G(r) ~ Yle_Kr, oy real (1.8)
and G(r) ~ Z]Ylj g cos(wr + arg (Y;)), oy complex . (1.9)
Now let I-P (o) = D(o) . (1.10)
Then G (o) = P(@)D (o) (1.11)
-1 D33 A7)
with (D (U})ij = @-Tg)—r : (1.12)
_ Dji (o)
|D(o) | ’



where D, .(0) is the cofactor of the (ij)th element of D (0) and |D(o) | is
1] =it

the determinant of D (o). Writing out equation (1.11) in component form
: 1
Gy (o) = kZ_l P (@7 (@), (1.13)

2

1]

L Py o) Dyin/ R(o)

Thus the asymptotic form of Gij(r) will be determined from

|D(@) | = 0 , (1.14)

or

- - + . =
1 pll PZZ' PllPZZ PZlPIZ 0 2 (1:15)

We now wish to derive expressions for the P_j(cr}’s. First we
i

note the following theorem from probability theory.7 Let

P(A) = probability of A ;
P(AB) = probability of A and B ,
and PA(B) = probability of B given A ,
then
P,(B) = P(AB)/P(A) . (1.16)

Using a method due to Kikuchi,8 we define a two-point probability density
function f,. (Y., ‘{.t) such that
1 1 ]
fij(Y-l, vj') = probability density that the first neighbor

of a particle of species i located at Vj is
a particle of species j located at \_/jT .



Then substituting (1.1) and (1.17) into equation (1.16) we have

1

= (1

53 (r) = (L/xi)fij (\.fi,v.

) ;
j
where L~! x is the probability of i at ¥;, and r = V+ k - V.

For our binary mixture we define four fij's

’ \;I = ! i,

11
Y g B A
o Ty 1
and flz(\/l,\z)- f21(—\{2,—\f1) .

We also define one-point probability density functions f_l(\/i) such that

L-ktY; L-k+Y;
f(y) :I dY'f.(Y,Y')"'f d'\:"f(\('l,\/') ’
11 -k+Yi 1 i1 1 1 _k+\,i J iy J

subject to the normalization

Tif2
¥ j avY;f;(v;) ;
sTaf2

and symmetry
Y = - Vi
£(Y) = £(-Y)
In equation (1.22) j# 1, andk =L/M=1/p .

The configurational entropy and internal energy are then given by

(1.18)

(1..19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)



2 {2
3. f dv;f; () In £ (¥;)
i=1 J -1L/2

L-k+Y;
f j d‘(lfn(Yl, )T £ (Vi 94
W) kY

I

S/kBM

L/2 L-k+Y;
| y y
_Zj d\.lf in flz(Vl,Yz ) In le (V]_’Yz ¥ &
=T f2 --k+'\f1

2 Ii/2 L-k+‘fi

). I d‘fij, dv;' ¢ (Y5, Y5") £550v5, ;")
1= —L/Z -k‘+Yi

and E/M

I

L/Z L-k+Vq 1
+2j I dyz (Vs ¥ "YE (Y.L, Y.) . (1.26)
2 2 1’
/2 -k+Y; " Le 2

We can now construct the free energy F = E-TS and minimize F with
respect to fi(Yi) and fij(\fi,\’-‘) under the restrictions of equations (1.19-
1.24). Using the method of Lagrange undetermined multipliers (see

Appendix A for the details of the calculation) we arrive at Kikuchi's resultg

L = Bl 2%]
% TEl-2x
;;fzz(r) = _f-q__-i_ exp [ 5“22_ prr - ﬁazzz{r)] » (1'28)
2(1-x )
;q £,(r) = T:T—eXp [‘3”12 - Ppr - B @12(1')] , (1.29)
" aig
and ;2— £,,0)% =77 exp [Bu,; - Bpr - B3, ()] , (1.30

10



where

x, = 1-x i (1.31)
7 = §d 4X1x2(epw(§)-l) )
w(@)= 2w,E) - pll(ﬁ) - 922(6),
g€ = Bp=p/kT ; (1.32)
and 3,(r) = B0 YY) .
-Bp.. -
Now define e E gf e-gr e-ﬁ@ij(r)dr. {1.33)
o

Taking Laplace transforms and using eqs. (1.18) and (1.33) we have

| ™ 1‘1“23(1 Jll (E+ o)
Py, (o) = E TTE (1.34)
2x J (¢ +0)
o 12 ‘&
Pipl9) = T3 T B ’ =250
2x J (¢ + o)
- 1 21
Po1(9) = +771 T (£) ’ (1:56)
21 ¢
. . I'+1-2x,  J,,(E+ o) .
By 22\ T+ 1 Tss €] ° s2f)

where now J(x) is the Laplace transform of the Boltzmann factor given by

00
J..(x) = j g e'ﬁﬁij (t) dt . (1.38)
1] O

11



Substituting (1.34-1.37) into equation (1.15) gives

Tl J§ (£+cr)/J11(§) -C

" - (+0) /T, (E)

o
tC1iCoy 40T E /T, () T,y8)

- €, C T, (Ev0) T, (E40)/T, () T, (€) =0,  (1.39

211221
with
C,, = @C-F2x)/@*1) (1.40)
C,, =(Trl-2x))/(T*1) : (1.41)
C,, = 2x,/(T+1) : (1.42)
and Ci, = 2x,/(T+1) . (1.43)

We shall now proceed to solve equation (1.39) for various types of

intermolecular pair potentials,.

12



EQUATION OF STATE

Before proceeding further to solve equation (1.39) we first
derive the equation of state for our model mixtures.

From appendix A equation (1.09) we have

-F/MkT = £ k+ In (D+ 1) -x(By, FIn(D-1 + 2x))
-x,(Bp,, + In (PH1-2x))) .

£ is determined from the condition that F of equation (1.29) is made a
minimum with respect to £, keeping k and T constant. Then one obtains

the equation of state:

1 8
P - 8&

(In(T+1)-x | (B, +In)(T-1 + 2x )

_xz(ﬁpzzﬂn (T+1-2x 1)}i). (2.

Or, using equation (1.33) we have

1)

_1 , . 8
o7 = x gy @I @) X7, €T, 5 C (2.2)

where Go= =ln(IEl)4 X In(I" -1 + le) +x2
and where the prime denotes differentiation of the function with respect
to its argument.

Equation (2.2) is in agreement with the work of Lebowitz and

Zomick6 and C.C. Carterg for the case of an hard-sphere interaction.

In (T+1-2x) , (2.3)

In the simple fluid limit equation (2.2) agrees with the work of Katsura and

13



1
Tage . for a system with a square-well interaction. (see appendix C

for details of the comparison.)

14



HARD-SPHERE CALCULATIONS

Let Gjij{r] be a hard-sphere potential given by

= <
Gjij(r) cor bij
= 0 »=b,. .
1]
where
TR LA
b22= Nb ,
= = +
and b12 b21 (N+1)b/2 .

First we need the value of I" given by

l"2 = Lk 4x1x2(eﬁw(g)_l) =
where wilE)= Zplz(g) - 11@ - sz{g}.
00
as e—Bpij{§)=Ie-§r- ﬁ@ij(r) dr )
0
Thas R RNV IR L

The Boltzmann factors are given by

© b ©
J11(6) :j e_gr_ﬁdpll(r)dr:f e_gre_mdr+j g “Br
o o b
_ L e
= -g e b

-£b
e

£ ’

15

(3.1)

(3.72)

(3.3)



22 (‘—-) o
o o
-Nbé&
B
N+1
2 bE ) -fr -o
and le(g)_ e dr-l-f e ° e dr
N+1b
2 2
N+1
—_ e— g
R g

1 _-tb 1 -N¢b
0 g =

E
Thus e =
__1..
[1 N—%bﬁ] ’
£

2
Therefore I’ = land I'= 1.

We then have,

P (o) = x te P/ (t+ o) :
P,,(0) = xzse“%}i(m”/(&w)
Py (o) = Xlﬁe-%&mﬂ)/(ﬁﬁ)
and P, (o) = nge"“Nb/(&ﬂr) ’

T
hus PllPZZ

N -NA
u(x e+ (1-x1)e B ) =uth

16

(I"'is defined as + (I')

cancel and equation (1.39) reduces to

(3.4)

{3.9)

(3.6)

i .-

(3.8)

(2.49)

(3.10)



where N = bo and u= b#f .
Equation (3.10) is in exact agreement with the work of C.C. Carterg on

the hard-sphere limit of a van der Waal's mixture.

Now let
G(\) = u(x'le‘}‘ - (1-x1)e"m) = f(\)
and HA)=u+ X = 1f(\)
and look at a graph of f(\) vs. A. £(\)
G(N)
H\)
u

w N

Since the only crossing is at A= 0, there are no non-zero real roots of
equation (3.10). The decay of G(r) will then be determined by the complex
root of least negative real part. The pair correlation function will decay
as a damped sinusoid with the real part of the root determining the damp-
ing and the imaginary part determining the frequency of the spatial

oscillation.
17



We shall now proceed to solve equation (3.10) both analytically,
using a technique developed by Fisher and Widoml, and numerically
using the Muller's rnethodll technique., First the analytical solution.
Let N = 1 in equation (3.10) and we generate the equation for a simple fluid

= w hdig . (3.11)

Now rewrite equation (3.11) as

e-ue-)\ = {e_u/u)(}\ + u)

and define ¢ =\ +uand\ = e "/u. This gives

=L _
e =Nt . (3.12)

Now let { = x+ iy with x and y real. Then

e"X(cosy-isiny) = ?\O(x iy)
“Xcos = A
e osy = X (3.13)
e siny = Ay (3.14)
Now multiply equation (3.14) by coty. This gives
e cosy = ?\Ox = ?\ocoty . (3.15)

We now note that equation (3.15) has extraneous roots when x = 0 while
cosy = ycoty = 0. Also, the second of equations (3.15) is spurious when

y = 0. We also note the special case x = 0, cosy = 0, while

18



7\0 = ((2n+ 3/2 ¢ }"1. From the second and third members of (3.15) we

have

x = -ycoty, (3.16)

while the first and third parts give

"

e “cosy \ ycoty ;

cosy }\oycotyex : (3.17)

Or, using equation (3.16) in equation (3.17), then gives
cosy = --?toyr.:otyv.e“YCOty " (3.18)

We shall call equation (3.18) the indicial. The indicial is shown if

Figure (1) for the case )\.O = .368. (This value corresponds tou = 1.)
Independently of (3.18) cosy is a certain many valued function of ycoty.
Each branch of this function may be labeled by an index y such that

my< y <(v+l)m on the branch. The first several branches of this function
are also shown in Figure (1). The roots of equation (3.18) are then given
by the intersections of the indicial with one of the infinitely many branches
of cosy = f(ycoty)., From (3.16) one can see that the smaller ycoty will
correspond to the larger x. The intersections at the origin are the
extraneous roots mentioned earlier. The branches of cosy = f(ycoty) pass
through the origin with slope m = (-1)v/(v+ %’)‘ﬁ on the branch of index v,
while the indicial passes through the origin with slope m = -RO. Thus the

intersection occurring at the smallest value of ycoty will always be the
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intersection of the indicial with the v = 1 branch of cosy = f(ycoty).

equation (3.11) has a unique complex root of least negative real part.

From Figure (1) we can read the values of A

and

Numerical solution of equation (3.11) gives

and

?\1 % «1.504% 1 4.65
?\2 S =2655 * 1410085
?\3= «2:874 4 17,15
?\1 = -1,53 +1i 4,60
?\z= -2.40 +110.80
)\3 =-2.85 ¥1i17.17

Now let N = 2 in equation (3.10)

(a(x e-}\

1

-2\
t(l-x)e™ ) = ut \

1

g N

e"?‘ ((1..x1)e')‘+ x) = (u +\)/u

2’

and ?\3 and we have

e“re—)\ ((l-xl)e-)\/xl +1) = (lfxlu)e-? (u+ N\).

Now define

and

e = (1-x1)/X1
}\O = (I/xlu)e_T
a = u-=-rT

C, = A+T P

Substituting equations (3.20-3.23) into equation (3.19) we have

e

=

(e

=&

+1) = N _(L+a)

21

Thus

(3.19)

(3.20)
(3.21)
(3.22)

(3.23)

(3.24)



Now let ¢{= x+ iy, x and y real and equation (3.24) becomes the pair

-2 -
e XcosZy+ e Xcosy :?\O(x-l- a) s

i =
e XsinZy +e Xsiny = _)\Oy s

or, after some trigonometry, we have
S 2 -
e X(Zcos y-1l)te Xcosy: ko(x +a) , (3:25)

and e-zx(Zsinycosy)-F e-xsinyz -?\Oy. (3.26)

Multiply equation (3.26) by coty giving

- Z = -2
Ze 2'Kcos‘ﬁy + e Xc:osy = e % ?LO(X +a) = -?\choty i (3wi2®)

Again we have introduced extraneous roots. This time when x satisfies

-

e T+ Ao (xta) = 0, while cosy = ycoty = 0. Also the last equality in
equation (3.27) is spurious when y = 0. From the second and third

members of equation (3.27) we have

sdx
+ =S =
e }xox ?\choty ?xoa i
or ?\O_le-ZXJr x = sycoty = a ,
1 2 1/ 1
or (\ /2eX) e i e 26 = -ycoty -a+1n\ 2 (3.28)
o] (o] o]
Equation (3.28) can be written as
3 1/
ho/zex = h(-ycoty -u+1n?k0/a) ; (3.28)
where h is defined to be the smallest real solution of
-2
(h(t)) + In(h(t))=t . (3.29)
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-1
Now let gq=h

Ya
o]
2

2
q -Ing= -8 -a *+ Ink

Inq = q2+ s+ a -ln\

._.
NO\*‘

q= ed%+ s+ a -ln}\0

q=eq2+A (3.30)

2
where A= s+ a -Iln }\0/2 . Equation (3.30) is plotted in Figure (2) as

2
q=f(q)=e9 % A For a real solution to equation (3.30) to exist f(q) = q

24
and f(q) = eq must cross. To find the value of A which makes the

curves just tangent we differentiate and set the slopes equal to each other.

Thus we have

df (@) _ d (q)
dq dg =~
2 q+A
d fiq= 3(e9F4) = 2qe .
dq dq
and thus 2-I- A
I= sqeq !
Now solving q2+A
1= Zqe 4
Z
and q = eq A

simultaneously, one obtains

q=nN2/2

and A= -0,.855 :
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Thus for a real solution to equation (3.30) to exist A must be < -.855.

For all values of A < -,855

gy~ oo as A - -oo0 4
and q, ~ 0 as A— -oo P
or h1 - 0 as A— -oo i
and _ hz-—r oo as A— -oo )

h1 is then the smallest real root. Also we have

v
A = s+a -1nx0/"‘< -.855 ,
or ycoty < -(0.855+c1-1n?\02) . (3.31)

From the first and third members of equation (3.27) we have

w2 .
2e” “Cos yte Xcosy = -)\choty,
Z b'¢ 23
(4cosy) + 2e (4cosy)t 8 }\05 e =0 ,
i
or 4cosy = (-1+ (1-8 ?\Os) Je .
and using equation (3.28")
1 1 1/
4?\oﬁ'cosy= (-l_t(1-BKoycoty)/z)h(-ycoty-a+1n?\0/2) . (3.32)

Again we shall call equation (3.32) an indicial, and as before the
intersections of the indicial with the various branches of cosy = f(ycoty)
will yield the solutions of equation (3.19). Figure (3) shows a plot of
the indicial for the case x; = 0.5, u= 1.0. Also shown in the figure are

the first few branches of cosy = f(ycoty).
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We now wish to see if equation (3.32) reduces properly in the
simple fluid limit. Equation (3.32) came from solving the first and third
members of equation (3.27) for 4cosy. If we use the definitions (3.21)

and (3.23) and set X =A_+ i X, ; N, and A\ real, we have, after multiplying

1 2" 1 2
through by e” 7 and setting x; = 1
s SPPT S W
e cosh, = -\, cotX,/u .

Setting \ = }\1 +1i )\z - ?xl and ?\2 real, in equation (3.12) and using equation

(3.16), equation (3.18) gives

=N

e cos A\, = _?\Zcot No/u ;

2

It must be noted that because equation (3.19) was multiplied through by
e~ , and this quantity goes to zero in the simple fluid limit, we must
remove this factor before the limit can be taken. As we increase Xy, the
mixture curves approach the simple fluid curve. However, since the
mixture curves are dependent upon the logarithm of the concentration X,
must be very near 1 before the curves will be similar. Figure (3-1)
shows the curves for the simple fluid and for a mixture with x; equal to
0.5, 0.95, and 0.999. As X increases the lower intersection (with v = 0

branch) moves out to -oo, and the upper intersection (with v = 1 branch)

moves toward the simple fluid intersection,

From equation (3.28') and equation (3.29), it follows that the

largest x will be associated with the largest ycoty.
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For the case shown in Figure (3) the two largest values of ycoty at an
intersection are the ones associated with the v = 0 and v = 1 branches.
This will always be the case since the branches of cosy = f(ycoty) pass

through the origin with slope m = (-.1)v/(v+ %‘)Tl’ , and the slope of the

indicials will always be greater than this, i.e. near the origin the indicials

are more nearly vertical and above the cosy = f(ycoty) curves.

(For values

of ycoty near -0 the value of the indicial is always greater than the value

of any of the cosy = f(ycoty) curves).

At the upper intersection

72 . Ve
4)\0 Kl(ycoty) = (-1+(1-8 Kos) )h,

where cosy= Kl(ycoty) s w=J1 branch

At the lower intersection

Y vz
4x K, (yeoty) (-1-(1-8 X s) %,

where cosy = Kz(ycoty) ; v= 0 branch
Now let

Kl = Kl (ycoty) ,
and K, =

> Kz (ycoty) ,

then inverting equations (3.34) and (3.36) we have

i ; 2.Y5 = | 2.V
K,cos " K,/ (1-K))""= -K, cos Kl/(l-Kl)

with -1<K2<O and O<K1< 1 5

29
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(3.34)

(3.35)

(3.36)

(3.37)



Now when the real parts of the two complex roots are equal we have,

from equations (3.33) and (3.35),
KII(-]+(1-8 kos)l/a)h =K£1{-1-(1-8 xos)%)h )
(1-8 X s)l/‘;e (K,-K.)/(K, +K.) ,
o 2 1 ) 1
N =K.K./(2s(K, +K.)5)
o 172 2 1

but

2%

s = K COS.—IKZ/(I-KZ) s

2

so ;
2 -1 2
)\O: Kl(l-Kz) /2cos KZ(KZ +K1) r (3.38)

From equation (3.29) we have

1
h"2+1nh: -s-atln ?\0/2 ,
<
or a :-hqz-lnh-s +1n ?\0/2 "
1 1/
However, h= 4\ /ZK (=1+(1-8 X S)/a)-l 3
o 1 o
Ya "
_4)\0 Kl(-1+(K2-K1)/(K2 -l—Kl))
v
or h= 22 )LO (K2 +Kl) . (3.39)
Then

Y 2 Y <1 2.Y% Vs
= ~(2\ + - o - X
a (2 o (]’:(2 Kl)) In(-2 ?\o (K2+Kl)) chos K2/(1 KZ) +1n}\o .
or

a= -1/acos-1K2(1+2K1K2)/K1(1-K§)1/2 -In(-2(K,+K,)) . (3.40)

30



Equations (3.38) and (3.40) together with equation (3.37) are
parametric equations for the transition locus in the (ho, a) plane. This
locus is shown in Figure (4). From Figure (3) we may read the values of

N N
1 and > and we get

>
i

-1.04 +1i 2.45

>
"

£1.12 14 5.38

Numerical solution of equation (3.19) gives

A, = -0.97+ i 2.52

e
I

-1.08 +i 5.38 .

Here )\1 is the intersection with the v = 0 branch and ?\2 is the intersection

with the v = 1 branch.
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MULLER'S METHOD HARD SPHERES

Recall equation (3.10)
u(xle-}\ + (l-xl)e-N}\) =t K

This equation may be solved numerically using the Muller's method

technique. Muller's method utilizes the following algorithm:

Z1s 2y, and z, are the initial guesses to the root. Now let
Fl-= f(zl) )
) A f(zz) 4
and F3 = f(z3) 5

then the new guess is given by

= + = -
ZNew 23 (z3 zz)( 2F3 )/ (DEW) ,
where D FI?\Z -F2 52+ F3 (AM+6) |,
W = (D2 -4F385N(F1\ -F26 + F3)) ,

5

1+ X

N

e U
and the bottom sign is positive if D+ W > D-W .
Convergence is then tested by

g 2t
z3 ZNew Cl 4

-6
where for our study C1 = 10 . If the convergence criterion is not met let

33



e 3
B = By
%3 % "New

and try again.

When this method was applied to equation (3.10) using a UNIVAC
1108 computer the following results were obtained: Figure (5) shows
a plot of the real parts of the two complex roots of largest real part.
The dotted line is the locus of the complex root of least negative real
part. Thus we see that the complex root of least negative real part changes
abruptly as a function of u at constant X Plots similar to Figure (5) can
be made for various values of X and we generate a locus in the (u,x,)
plane across which the asymptotic decay of the pair correlation function
abruptly changes its spatial frequency. This locus is shown in Figure (6)
for the case N = 2, The equation of state of our model mixture is given
by equation (2. 2)

-1 >
e =X BT 6 x5, )T, 80 ¢ _g_é.q ’

For the hard sphere pair potential case we have for the Boltzmann factors

-£b =
Jll = e § & ., Jll'z (-e gb/_E)(b +1/€) i (4.1)
-NEb -NEb
and JZZ: e § g , JZZT z (-e € /E)(Nb + 1/¢) . (4.2)
Since I' =1, C is a constant and %Eg =0,

Substituting these Boltzmann factors into equation (2.2) gives
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Figure 6



bp = u/u(l+x,(N-1))+ 1) , (4.3)

where as usual u= b§ = pb/kT .

Figure (7) shows the transition locus in the (p,xl) plane for

various values of the hard-core diameter ratio N.

Figure (8) shows the transition loci in the (p,N) plane for the
cases x, = .125 , .5, and .75. The dashed line is the limit of bp as

Xl -0, u —oo.

lim bp = lim 1/(1+x2(N-1)+1/u)—> 1/N , (4.4)

which merely renormalizes the density, i.e. p/p = Nbp =1 when

max.

pb/kT —oo0.
As X, approaches 1 the transition loci drop to zero because a

simple fluid, i.e. X, = 1, has only one spatial frequency associated with

the asymptotic decay of the pair correlation function.
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SQUARE-WELL POTENTIAL RESULTS

Letd .;(r) be a square-well potential given by
J

Gij(r)
1]
| r
€ i —  a —
1] 1]
A .
= <hb 6.0
= =€,. b. S r<a.,.+Thb
1] 1) 1] 1]
= 0 r=zb..+ a
1] 1]
where bi' = hard-core diameter, a.. = well -width, and 6_1. = well -depth.
J
Furthermore let
.. = Rb..
1] 1]
Pap = NB, .
(N+1)
PR -
bAB 2 AA CbAA
€ BB - €aa
Y
€ap = €L

40



bpa =P

€ap = € . (6.0")

SQUARE-WELL CASES

Case 1 N=2 R=1 H= 1
AA AB BB

Case 2 N=2 R=1 H=1.5
AA AB BB

41




We now wish to derive an equation for the pole of least negative
real part of the Laplace transform of the pair correlation function for a
system interacting through a square-well intermolecular pair potential.

2
First we need the value of I' given by

]._'2 = 1+ 4x1X2(eﬁw(E')

-1) ; (6.1)
2
where FEL g )3,/ ,6) (6.2)

and the Jij's are the Laplace transforms of the Boltzmann factors. Now

with u= £b, and v = Be, we have

L. BT B, o B g g By (6.3)
Jzz =(beHv—Nu/u)(1~e-RNu+ e—RNu—Hv) ) (6.4)
and T :(beHl/aV'cu/u){l_e‘CR“+e'CRu"H%V) . (6.5)
Now let
Jyq* (be"““/u)A“ , (6.6)
T,,= be TV A, (6.7)
and A e v“C“"/UL)A12 , (6.8)
where All’ Azz, and A12, are defined from equations (6.3-6.5). Then
Bo_ (e’ ™/ b TN fa)a; 8y,
(( B v-Cuyju) 4, )°
- eVAquz/Alzz ' i)
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1
with V= (H+1-2H ) " (6.10)

Now we must solve equation (1.15)

- o = = : 1.15
: Pll P22+ PIIPZZ PZIPIZ 8 ( )
The Boltzmann factors are given by
be'™ N \(R+1)-Ru -A(R+1)-Ru-v
J.. (E+s)= (e™ -e” TTte ¥ 3 (6.12)
11 u+t+ A
T R i -N(R+ )\ -RNu, -N(R+ 1)\ -RNu-Hv, 6.13)
22(_ S) on u+ )\ {e -€ e » .
and
H v-Cu Vz
_be -CAN -C(R+1)A-RCu, -C(R+1)A\-RCu-H'"v
J12(§+s)———l;—_rf—~(e -e +e )y (6.14)
with X = bs. Now define
C11 = (T'41+ 2x1)/(I‘+ Xl {6.15)
C,,= (T¥l -2x))/(T+1) (6.16)
C,,= 2x,/(T+1) , (6.17)
and C21 - le /(T*1) ‘ (6.18)
Also let
v-u
be
J11(§+s) = = B11 , (6.19)
Hv-Nu
T, (E+s) = L (6.20)
22 u +A 22, ° -
eHl/zv-Cu
and le(g-f-s} =—_u—'|"—)\._——B].2 (6.21)

Then substituting (6.15-6.20) into equation (1.15) and simplifying we have
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u(CllBll/All-i-C B fAzz‘ (cC.,,C..B.. B /A Az)(u/(u+?\)}

22T 2D 1122711 22 1172
s (C..C..B2 /A% Ya/(@tn)) = u s (6.21)
(C51C 2B/ A )/ (u - R A d

Further simplifying we have

BTy ¥ My E=nk X (6.22)
where
-(N+ 1)\
- 2. (e y 2V
T, = (a/u+N)(xx,/(T+1)7) > (D], -e D;;D,,) (6.23)
A
12
T1,=C11By /8 (6.24)
Ty, = Cp2BoalAy (9+72)
\
D“—e Bll , (6.26)
. NA
Dy = e By , 6.27)
C = (N+ 1)/2 ) 6.
%
and DIZ”e B12 (6.28)

We shall now perform several checks on equation (6.22). Firsta
check to see if it reduces to the correct simple fluid form. LetN =1,

R=1, and H= 1, then

A=A .= A s B =B = B and

Equation (6.22) then reduces to

u( (BH/A )(C“+ CZZ))zx»fu ,

11
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but

Cyy ¥ Cpp= (T-lt2x 4T+1-2x))/(T+1) = 2I'/(D¥1) = 1

and thus our equation reduces to

uB , = A, (u+\) (6.29)

Nowletx, =1, ThenI'=1,C. . =1, C

1 13 =

=0;and G, = 1.

22 12 21

Thus equation (6.22) reduces to

uBllell(uH\) : (6.29)

Equation (6.29) is the correct simple fluid form. . Next we check the

-\
high temperature limit, Let T - oo, then v - 0 and B11 - e ,
=N\ -C\ -C\
e E 1. BT S iEgyrT 8 a g et By ™ Il b
Cll X1 CZZ X5, C12 X, and C21 - X, Equation (6.22) then reduces
to
N N\
u{xle + (l-xl)e N Y= ut ., (6.29")

Equation (6.29') is the equation for a hard-sphere mixture. Next we check
to make sure that the trivial root at A = 0 is present. Setting A= 0 we

have

Substituting these into equation (6.22) we have

w@L/T+) (1T /1+D%) =,

or wl+1)/(C+1) = u.
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Thus the trivial root checks.

Let us now examine equation (6.22) to determine the nature of

the non-trivial roots. First we rewrite the equation as

1 2
u(Tll(u +\) + TZZ(u ) + uT3 )= (u+\)™ (6.30)

where T; = ((u+\)/u) T, .

Equation (6.30) will now have an extraneous root when u+ X =0, Now set
G(\)

1

1
+
u(Tll{u N+ Tzz(u +N) + uT3 )

and HRG = dain)”

and look at a graph of G(\) = f(\) = H(\) .

f(\)

H(\)

G(N)
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Thus the roots of equation (6.22) are

}\0 =0 , the trivial root
?\1 = -u , the extraneous root
A_ =X\
> R’ the relevant real root
and A,-N =\ , the infinite set of complex roots.
3 oo c

Thus our square-well mixture will have one relevant real root and an
infinite set of complex conjugate pairs of roots. Our task now is to
determine which of the roots of equation (6.22) is the root of least negative

real part.
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MULLER'S METHOD SQUARE-WELL

Equation (6.22) was programmed in FORTRAN V for a UNIVAC
1108 computer using the Muller's method technique for extracting the
roots. The program proceeds as follows: Appropriate values of the
variables u = bp/kT and v = € /kT are read into arrays. The program then
picks up the values of the parameters R, N, and H., Next the first
Muller's method loop is executed with the restrictions that the extracted
root is both real and negative. When found the root is set equal to Z1.
The program then executes three more Muller's method loops with no
restrictions on the roots. However, each time a root is found, both it
and its complex conjugate are numerically divided out before the program
proceeds to the extraction of the next root. The program begins searching
for roots just off the x,y axis in the second quadrant of the complex plane,
and each time a root is found the program attempts to find another root
whose real part is greater, i.e. less negative.

Once four roots, one real and three complex (actually each complex
root is a complex conjugate pair), have been extracted for a given set of
u and v, the program picks the root of least negative real part and
compares it with the root of least negative real part from the previous
set of u and v. If the root is the same one, i.e. both real or both from
the same complex branch, the program proceeds on to the next set of u

and v. However, if the roots are different the program prints out both
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sets of roots along with the corresponding values of u and v. The entire
program is then looped on various values of X -
Once the roots have been found they are put on paper tape and run
into a BASIC program on a PDP-11 computer which does linear interpola-
tion between the sets of u and v and then prints out the corresponding
values of pressure, temperature, concentration, and density. Plots are
then constructed in the (p,T) and (p, T) planes. From the (p,T) plots a
cut at constant p is taken and a plot in the (T,xl) plane is made. These
plots are shown in Figures (9) through (14).
Figures (9.1) through (9.4) show the transition locus in the (p, T)
plane for the cases N =2, R=1, H= 1, and Xy = wiks oy b Eand w85
As the concentration of the smaller species increases the transition loci
become more complex. At a concentration of 0.8 the plane is divided
into four distinct regions. Each region is characterized by the spatial
frequency of the oscillation of the damped sinusoid characterizing G(r).
The zero frequency region corresponds to monotonic exponential decay
of the pair correlation function. We note that all all concentrations there
exists a maximum pressure, above which, the decay is always oscillatory.
This is in agreement with the results for a cimple fluid square-well. bad
As the concentration of the smaller species increases the w= 0,
w™~ 3, and w ~ 4 regions increase, while the w ~ 2 region decreases. Figures
(10.1) through (10.4) show the transition loci in the (p, T) plane at
constant x,. Once again there is an enhancement of the w= 0, w~ 3, and

1
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w™~ 4 regions as x, increases and a decrease in the o ~ 2 region.
Figures (9.1) through (10.4) also show the transition locus for a simple
fluid square-well for comparison.

Figures (11.1) and (11.2) show the transition loci for the case
N=2,R=1, H= 1.5, and X, = .5 in the (p, T) and (p, T) planes respec-
tively. From the figure we can see that increasing the ratio of the well

d epths has increased the region of monotonic decay.

Figure (12) shows a plot of peak pressure reached by the transi-
tion loci versus concentration for the cases N= 2, R=1, and H= 1 and
1.5. For all concentrations the peak pressure is increased as the well
d epth ratio is increased. This effect, an increase in the region of mono-
tonic decay with an increase in the attractive part of the intermolecular

“ & . 1 ] » 1
pair potential, has been noted in previous work HpdD

on the effect that
the attractive part of the pair potential has on the asymptotic behavior of
the pair correlation function.

Our choice for the mixed interaction parameters of the pair poten-
tial does not favor any phase separation., Figure (13) shows a compari-
son of the transition locus with the van der Waal's spinodal for an equivalent
van der Wall's mixture. The lines do not cross, and only at very low
concentrations is the transition locus even close to the region of phase
separation.

Figure (14) shows a plot of the transition loci in the (T,xl) plane

at constant p for the cases N =2, R =1, and H =1 and 1.5. We note
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here that our plots are not a two dimensional projection from the four

dimensional variable space p, p, T, X, . Rather, only one variable is

held constant in each plot and the fourth is given by the equation of

state.
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van der WAAL's SPINODAL

The free energy of a binary van der Waal's mixture is given by

£(x,T,v) = kT(x nx + (1-x)In(1-x))-a(x)/v - kTln(v-b(x))

+ xhl(T)+ (l-x)hz(T) ) (6.31)

The equation for the spinodal is obtained from the solution of

2
-f
XX VV XV

= g , (6.32)

where the subscripts refer to the various derivatives of the free energy.

The derivatives are given by

£ = sl - B aEE (6.33)
f = -Za{x)/v3+kT/(v-—b(x})2 , (6.34)
Vv
£ = kT(lnx-In(l-x))-a'(x)/vtkTb'(x)/(v-b) , (6.35)
2 2
f = a'(x)/v = kTh'(x)/(v-b(x)) |, (6.36)
XV
and fxx = kT(l/x -1/(l-x))-a''(x)/v +
ka"(x)/(v-b)+kT(b‘(x))Z/(v-b(x}}z . (6.37)

We now note that for a one-dimensional van der Wall's system a(x) and
b(x) are given by

2 2
a(x) = a,x + 2a12x(1-x)+ az(l-.x} , (6.38)

and b (x) b,x + bz(l-x) . (6.39)

1
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If we now let B = 1/kT and substitute equations (6.34) through (6.37)

into equation (6.32) we have

(v(v-b (x)) 2=x(1-x) ((v-b(x)) “Ba’' (x) + v(b'(x))%))*
(-2a(x)B (v-b(x))2 + v°)/x(1-x)v(v-b(x)) v (v<b(x))°)

S((v-bx))pa'x)-v b (x) /(v wbEnt) = 0 . (6. 40)

Multiplying out and collecting terms to the various orders in Bwe have
the following: to order zero
v4(v—b)2 (6.41)
the linear term
2 2 2 2
2v(v-b)“(a(x)(v-b) Fx(1-x)(a' (x)v"/2-a' (x)b' (x)v a(x)b'(x))) , (6.42)
and the quadratic term
4 2
x(l-x)(v-b) (2a(x)a''(x)-(a'(x)) ) . (6.43)
Now for the mixtures we are dealing with b_ = Nb

2 j2 B
v,

ay, = H 2. Using these relations in equations (6.41) through (6.43)

= Hal, and

and letting N= 2, H= 1, one obtains
2
Ts = 2p((1-2p) +p x1(2-.3p)) 5 (6.44)

where ’I‘S is in units of € /k, x_ is the concentration of type 1 particles, and

1

p is the normalized number density.

Phase separation is favored if a__ << (a11 + az)/z and

12

b12 >> (b1 ik bZ)IZ. This is not the case for the model mixtures we are

dealing with since for our systems
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By ® 0B F B ). (6.45)

1
and a3, = (a,laz)/2 (6.46)

Recall the general form for the equation of state of a one-dimensional

binary mixture equation (2.2)

-1 1 1 Q.(_:
ST E X T E)T ) EF X, T )T, 00 5 (2:2)

For our square-well model mixtures the Boltzmann factors are given by

I, = be' “Al/u 7.8
T, '(a) = 5e” P arjale (7.2)
T, = be e e gy (7.3)
JZZ‘(u) > bzeHv-Nu(BZ-Nbl-Bl/u)/u s (7.4)
where
A]- - All ] {?0 5)
A2 & Re-hge BEY (7.6)
Bl=B, e
and £ = Ee O p e (7.8)
If we now let
Cl = AIZ y (7.9)
2
and B = Clie o i et W (7.10)

we have for our equation of state

(bp)-1= xl(BZ/m -N-A2/A1)-B2/Bl+ (N + u)/u

+D(x /(C-1+ 2x )+ x,/(T+ 1-2x)) - 1/(T+ 1) Wk G
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where

2 2
lexz(eVAlBZICl +evB 1A2/Cl1 —-ZeVAlBlC 2/C13)

D = , (7.12)
(1 +4x1x2(eVA1B1/Clz - 1) )/"
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LATTICE GAS HARD SPHERES

In going from the linear continuum to the lattice gas we use the

following prescription:

00 [o]6]

f dr>a Z (r— ka). (5.1)
0 =)
Thus
[e]e)
T.(s) = a B e %@ eyl (5.2)
1} k=0

Let ¢>ij(r) be given by

= <
¢1J(r) oo , r bij
= 0 ; 42D, 5 {5.5)
1]
and furthermore let
bll = b
K ESELI
B, = ((N+1)/2)b= Cb
and b = Ma

where a is the lattice constant and b is the hard sphere diameter of the

smaller species. Then

0o
Ti,6) = a T e SR P ()
L k=0
M-1 oo
= a( = e‘gka—e"&b]_l(ka)+ 5 e'gka'ﬁ¢11(ka})
k=0 k=M
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- a(0+ e ME2 /(1757
I Saan | T S (5.4)
Tt s =ae MO et e (5.5)
00
-Eka-Bb,, (ka)
J,,) = a Y e 22
k=0
NM-1
- a( ) e-tka-Béy(ka), OZO o-Eka-Bdyp(ka),
k=0 k=NM
= smfl e T B e
I T , (5.6)
Jzz(g+s)=ae'MN(“ﬂ)/(l..e'(“ﬂ)) , (5.7)
5,®) =ae™M e : (5.8)
and T ,(+s) = g™ LT e o= (5.9

Now for the moment let M = 2. Substituting equations

(5.5-5.9) into

the expressions for the Pi,'s and remembering that I" = 1 for hard-spheres,

we have
P, " xl(l-e'u)e“z}“/(l-e"(uﬂj) ,
P,, = xz(l-e'“)e‘sz{lne“{u“)} :
P12 = X?_(1-e'u)e"(N+1))\/(1—6'(H+M) ,

and Py = xl(l-e“u)e'(N+l)k/(l-e‘{uﬂ})
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(5.10)
(5.11)
(5.12)

(5.13)



From equation (5.12) and equation (5.13) we can see that P11P22: P12P21,

so that our equation reduces to

xl(l_e““)e'”/(1-e“(“+}")+x2(1-e"“)e'2m/(1-e"(uﬂ)) =1,
. J2NA__-u A (1-2N) _ x1(1-3"“)e2”N‘”
-(l-xl)(l-e'u) =0 . (5.14)

We know that \ = 0 is the trivial root and so we divide it out. We then

have
gl g g ENER g et e O (5.15)
where Z = e)\ ’
A = l-e_u 5
B = ].-XI

Therefore, when 2N is integral, the equation governing the asymptotic
behavior of the pair correlation function is a polynomial of degree 2N-1,
where N is the ratio of the hard sphere diameters. Since all the co-
efficients of equation (5.15) are positive, the roots will either be negative,

or complex conjugate pairs.

Let z = z:} , Where zé is a root of equation (5.15). Then if z:) is

real and negative

N
e = z! = .z
o o
X e
e (cosy *+ isiny) = -z
o
X
e cos g
y o
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exsiny' =0

v =kw ., k=0,1,2,3, s .
EXCOS(kTT) = wZ
o
x
e = Z
o
x = 1% KBS 8550w 4
o
since x is real.
So, for cho real and negative
A= lnzo+ ik 5 kK=21.3.5; ;s 5 (5.16)
For z' complex we let z' = x + iy , then
o o o o
x .. .
e (cosy + isiny) = x + iy,
e c 2 X
osy = X
% in =
€ siny = ¥y
tany = y'O/x0
v = atn(yolxo)
x = In(xo/cosy) ,
and thus
N = - + i . 5.
In (xo) In[cos (atn (yo /xoﬂ iatn yolxo (5.17)

Therefore for all allowable values of z, N\ is complex and thus the
asymptotic decay of G(r) will always be oscillatory. However, the form
of X\ changes depending upon whether z(') is real and negative or complex.
When the real root is equal to the real part of the complex root, then a

locus is generated in the {u,xl) plane across which the asymptotic form

11



of the pair correlation function abruptly changes its spatial frequency.
For any value of M equation (5.15) becomes

MN-1 MN-2 MN-3

z + Az "+ ABz *oeu TAB20 (5.18)
where again
A
Z = e
A = l—#.f:-"1
and B = 1_X1

Let us now consider some specific cases.

Case l.) N=1, M= 2, simple fluid case -

z+ A=0 ,
A -
e = e u-l
x L. -
e (cosy + isiny)=e -1 ,
x -u
e cosy = e =1 |,
exsiny = 0
y g Ka 3 KE 0,025,405 .
e e coskm = e 0.1
e = e %1, k=0,2,4,...
e 2 Hep 7 IR BB

Since x is real only odd k are acceptable and we have

A = In(l-e )+ ikr; k=1,3,5,.... . (5.19)

i



Thus the form of A remains the same over the entire range of u.
(Note: This is the expected simple fluid result.) Figure 15 shows a
comparison of the simple fluid case for the linear continuum and the lattice

gas.
Case 2.) N= 1.5, M= 2. -

22+Az+AB= o ,

Vo Z

z= -A/2+"4A"-4AB)

P,
Now let C = A -4AB. The form of z will then change depending upon
whether C is greater than or less than zero. For C> 0

A 1
e = -A/2% C/2/2 ;

or once again setting A= x+ iy

X
e cosy

“A/2+ 01/2/2 ,

exsiny 0

v kp i ¥ D.152,3, cos

»

2

1
and again because x is real and (-A/2+ C’°/2) must be negative, only

odd k are acceptable and thus

y
A = ln(A/2+C/2'/2}+ik1r : k=1,3,5,... .

Por G<0
ehz -A/Ziiclgé/z : Cl= -C=12C ;
exccsy = <~Af2
exsiny = :L‘C%/Z

73



61 9an3rq

74



1
2

y = atn (FC7 /A)
x = In (-A/2cos(am(¢c;2/A})) i
or ]/2 1/3
X = ln{-A/(Zcos(atn{+C1/.A)))}+ iatn {+C1 [A). (5.20)

The change in \ takes place when C = 0. Thus u is given by

A2-4AB

= 0

A = 4B

loe " = 4(1-x,)

u, = -111(4:»:1-3) :

Therefore a locus is generated in the (u,xl} plane across which the
asymptotic decay of the pair correlation function abruptly changes its

spatial frequency.

Case 3.) N=2, M= 2, -

22+ Az®+ ABz+ AB=0 (5.21)
Kt 5 & & , (5.22)
q = AB , (5.23)
r = AB F (5.24)
a = (1/3)(33-p7) (5.25)
b = (1/27)(2p°-9pq + 27r) (5.26)
and C = a3/27+ b2/4 . (5, 27)

Substituting equations (5.22) through (5.26) into equation (5.27) we find
that C > 0 and thus the roots of equation (5.21) will be one real negative

root and one complex pair of roots. For the real part of the complex
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root to equal the real root b must be equal to zero. However, this
implies that 81B2/4 - 54B > 0., Since B < 1 this is impossible and thus

there is no split in spatial frequency.
Case 4.) N=2, M= 1.5 -
2
x +Az+ B=0 (5.28)

This case will have a split in spatial frequency when A = 4b, or

u. & -1n(4x1-3). In fact, due to the nature of the general equation, there
will always be a locus generated in the (p ,XI) plane whenever the product
MN is an odd integer. Figure (16) shows a plot of the locus in the

(p,xl) plane for the case MN = 3, Also shown is the locus for the linear

continuum N = 2 case.

Figures (15-1) and (15-2) show plots of A versus X, for both
lattice gas (MN = 3) and linear continuum (N = 2) systems. The points
at X, = 0 and x, = 1 are the values for 'pureB' and 'pure A' systems
respectively. (See appendix D). The dashed lines in Figure (15-1) indi-
cate the abrupt changes in Im(\). As one can see from the figure both
the lattice gas and linear continuum systems change from 'low'" to 'high"
spatial frequency as x, increases. Again this is the change from "B
type' to "A type' behavior.
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Recalling equation (2.2) and using equation (5.2) we have for
the equation of state of a one-dimensional binary lattice gas with a hard

sphere interaction potential

-Mu
-X_4ae -1
(p)—l . — e == — - M 1taa™ Py s Ty
l-e l-e
5 a‘e-MNu il
L - + M /(ae-MNu/{l-e_u)) ,
=11 -1
l-e l-e
(atp)'1 = e M/(l-e™ + M(1 tx, (N-1)) ,
ap = (e -1)/((e"-1)(1+ @I 1 (5.29)
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We have investigated the asymptotic behavior of the pair
correlation function in a one-dimensional binary mixture interacting
through a strictly nearest neighbor pair potential. Several cases were

examined.

Case 1. -

Hard-sphere potential, linear continuum.

For this case the asymptotic form of G(r) is always a damped sinusoid.
However, there is a locus generated in the (p,xl) plane, across which,

the asymptotic form of G(r) abruptly changes its spatial frequency.

Case 2. -
Hard-sphere potential, lattice gas.

In this case the asymptotic form of the pair correlation function is once
again a damped sinusoid, If we let M be the ratio of the lattice constant

to the hard-sphere diameter of the smaller species, and N be the ratio

g1



of the diameters, then when the product MN is an odd integer we generate
two separate regions in the (p,xl} plane. Each region is characterized
by the value of the spatial frequency of the damped sinusoid associated
with G(r). When MN is an even integer we have only a single frequency

associated with the asymptotic decay of the pair correlation function.

Case 3. -

Square-well potential, linear continuum.

For this case the (p,T) plane is divided into several regions.
Each region is once again characterized by the value of the spatial fre-
quency associated with the damped sinusoidal decay of G(r). The zero
frequency region corresponds to monotonic exponential decay.

The square-well results are all consistent with the idea that the
attractive part of the pair potential governs the monotonic region and
the repulsive part governs the oscillatory regions. This is the reason
for the increase in the monotonic region with an increase in the concen-
tration of the smaller species. As we increase x, we must go to higher
and higher densities in order to maintain oscillatory decay. This is
because the ""effective distance'' between two particles increases as we
add the smaller species and subtract the larger. Our chosen particle
thus '""sees' fewer hard-core repulsions and thus finds itself in a more
attractive environment, resulting in an increase in the region of mono-

tonic decay.
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A simple fluid interacting through a square-well pair potential
with a well-width to hard-core diameter ratio R equal to one has an w
of approximately four associated with the damped sinusoidal decay of
G(r). For a ratio of one-half the associated frequency is approximately
2.4, Figures (10.1) through (10.4) show that, as the concentration of
the smaller species increases, the w ~ 2 region decreases while the w~ 4
region increases. This can be understood in terms of the simple fluid
results. Since we are concerned with the oscillatory regions the repul-
sive part of the pair potential will govern the behavior. At low X, the
smaller particles ''see'' the large repulsions of the larger species and thus
we are in a region of attractive to repulsive ratio less than one. Just as
in the simple fluid case this generates a '"low'" w (low relative to 4, the

w for a pure fluid). However, as we increase x, we begin to approach

1
closer and closer to a simple pure fluid and the w ~ 4 region begins to
dominate.

Studies by Throop and Fisk2 have related the spatial frequency o
to the moments of the direct correlation function, For a one-dimensional

14
system of hard spheres the direct correlation function is given exactly by

C(r) -1/(1-bp)2+ pr/(l-b/)z r<b

= 0 r>b (8.1)

where b is the hard-sphere diameter and p is the number density. Follow-

ing Throop and Fisk the spatial frequency w is given by
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_ e Ve, Ve
o = (C,/(4C )+ (1-C)"*/(2(-C V") )%, (8.2)
where
(o] 0] 5
C,. = (p/(2j) )f rcr) ar (8.3)
J 0

and explicitly

C, = P@®-2)/(24) , (8.4)

c2 = (bZPIZ)(3P-4)/(12A) s (8.5)

C, = (b P /24)(5P-6)/(30A) , (8.6)

& = (1-9)2 : (8.7)
and P = bp

Substituting equations (8.4) through (8.7) into equation (8.2) one obtains

i
(3P-4)/(24) . ((2A-P(P-2)/(24)) i

wb =
(5P-6)/(15A) (p(5p-6)/(180A})£2

. (8.9}

Figure (17) shows a plot of wb versus bp for w given by equation (8.9) and
wb given by direct solution of the simple fluid equation. (Equation (3.11)).
Also shown in the figure are the curves for -«kb versus pb from equation

(3.11) and from the moment expansion method which gives -k as

Y

_ Y Y%
k= -((1-C_)*/(2(-C)*) - C,/4C, ) (8.10)

Equations (8.9) and (8.10) are based on truncation of the moment
Fal
expansion of C(k), The Fourier transform of C(r), at O{k4). For purely
repulsive potentials such as hard spheres, this is the first acceptable

approximation since truncation at O(k ) gives a divergent compressibility.
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All of the moments of (8.1) are negative and if higher approxi-
mations for wb only contain ratios of the moments like the k4 case, then
the effect will be to increase the value of w for a given value of the density.
From Figure (17) one can see that this is precisely what is needed to
bring the moment expansion values in line with the direct solution values.

The position of the transition loci in the phase space of a real
three dimensional fluid can be predicted by examining the position of the
spinodal curve for a corresponding van der Waal's mixture. From equa-

tion (6.44) we have

2
Tz = Zp (I—Zp) + pxl (2-3p)) 7 (8.11)

Equation (8.11) corresponds to our mixtures with N= 2, H=1, and R= 1.
Thus for all but very low densities the spinodal curve lies well within the

region of monotonic decay. We may also examine the pseudocritical

given by 2
T, = (8/27)a(x1)/b(x1) (8.12)
and P_= (1/27)a(x1)/b(x1}2 , (8.13)
where _
afa)) = xlze 2x1(1-x1)H/2€ {l_xl)ZHE ,
and b(xl) = xlb (l-xl)Nb . (8.14)

Thus setting N = 2and H= 1, one obtains
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I

k Tc/e (0.296}/(2-x1) (8.15)

Siid bP_/e (0.037)/(Z~x1)2 . (8.16)

These pseudocritical points lie below the spinodal (the true critical point
lying on the spinodal) and thus are in the region of monotonic decay. One
would then expect that for real systems the region of oscillatory decay
will lie comparatively far away from the true (three dimensional)
critical point.

The transition loci may be experimentally investigated by means
of x-ray or thermal neutron scattering studies. For a simple fluid of N
systems each of scattering power f(k) the intensity I(k) of radiation of
wavelength X scattered through angle g from the direction of a primary
beam of intensity IO at a distance R from the scatter is, in the first Born

: ; ; 15,165 17
approximation, given by

I(k) = IoNfz(k)roz( (1 +cos®a)/2R%)x

Qo0
(1 +,aj EoERY) Glz) dE ) (8.17)
0

where k = 4~rr?\_1 sin (g/2) and r is the 'classical electron radius'. With

G(r) given by equation (1.9), equation (8.17) tneccmrles3

I =( (I(k)-l}/lo{k) )/p = ZlYll(AK(K2+ mz+k2) +
Bo (kszZ_ mz) '/ [KZ‘]‘ w2}2+k2(k2 '

e %)y, (8.18)
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where here we have set

I1(k) = 1 Nfz(k)r 2 (1 +coszg)/(2R2) 5 (8.19)
o o o
A = cos(arg(y 1) | B (8.20)
and B = sin{arg(‘(l) ) . (8.21)

The w = 0 case is the well known form for monotonic decay of G(r)
L= (V)/ 0+ K5 8.22)

For a binary mixture of systems of scattering powers fl(k) and fz(k)

1
the corresponding formula is >

I(k)

1]

2 2 2 2 2
I Nr & ((1+cos”g)/2R )[xlfl(k)+(1-xl}f3(k}]

+ pj {xffi (k}Gll(r}+(1_xl)2f2 k) G, (r)
o

~

2 :;cl(l--xl)f1 (k) fz(k} Glz(r):, cos kr dr . (8.23)

Unfortunately, because there are now two scattering powers, and three
pair correlation functions, formulas corresponding to equations (8.18) and
(8.22) cannot be obtained by substituting the asymptotic forms of the
correlation functions into equation (8.23).

Further study of the effect on the transition loci of changes in
the mixing parameters N, H, and R should help to clarify the meaning of
the various oscillatory regions. The detail shown by the loci give us a
valuable tool for investigating the parameters of the intermolecular pair

potential and their contribution to the properties of the entire system.
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APPENDIX A

Define -
1y = | (—
fll(\’l Y. = f ( Yl’ Yl) ;
1 - 1
fzz”z’yz) B fzz(‘yz’"\’z) !
1 = o 1 i
le{Yl’YZ) fZl( YZ’ Yl) ’
fz(Yz) = fz(-Y »
then
L_k-l—\’l Li=lkt Yl

£,V = dY £y, (v, Y+ I dgl £,,(Y,¥%)
K+ k+Y

1

L.kt Y L-kt+Y,

f(Y,)= 3 Pl 15} d\” .,
ot
22 f_k b, 22 2 gy L ALY2

2

The normalizations are
Lif 2

x, = av.f.(y.) ,
1 I-L/Z 1

and Ly2

X. = de(Y} .
2 Lt

The entropy and the internal energy are then given by
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{1:3]

(14:3)
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(1.5)



. Tl
s I dY BN BN J’ i ks, V)il B 0T )
B «Lif2

LIZ
L2 L—-k+\’1
& dy S TR NI 0 )
1 1
jL/Z -k+Y1 (e 1 11> 1
7 L-k+¥1
o ay day! (Y YiYInd _ (V.. ¥Y
2 A |
f £l lf-kﬂ’l 2 1 2 1 2
/2 L_k+\’2
- ay ay (\f LY )y In £ (Y ,w) ;  (1:8)
I_lezf“sz z 22 2 2252
& Lij2 L-k+¥l
and — = ay day! (Y g )f (Y i e
M I_le 1 J-kﬂ’l 1 11 LA |
L./2 I_,.kw1
+2 ay AT, eV S YLYE (\z Y )
I_le 1] -..k+Y1 2 M2 LE 2 12 2
12 L_k+\’2
+ day ay! ¢ ( SN (\( YUy . (1.7)
I-LIZ zj 'kHz 2 g 2 22 2

The free energy F = E-TS is then made 2 minimum with respect to fl,

£, fll’ le’ and f22 under the additional conditions (1.1) and (1.3) to

(1.5). Using undetermined multipliers ?\1 and ?\2 for equations (1.5),

iy 7
27\3 and 2}\4 for egs. (1.4),?\5(‘{1) and 6( 2) for eqs. (1.3), and )\7

I
1
(Yl,YI} and )\S(YZ,YZ) for egs. (1.1), we have

1-Inf (Y )4N 2 0(Y)) (V) =X (-Y)) =0, (1.8)
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S1-Inf, (V) 4 Ay b 2N (V) + A () =X (=Y,) =0, (1.9)

2

! LE kN
Sl 11{\Zl,YI) +1 +lnf11(Y1,Y1) 2?\3(Yl) + ?(Yl,‘{‘l)

S A (Y], -Y)) =0 (1.10)
By, (Y, V) +1Hnf, (Y, Y )=2 N (V)N ), V)Xo (<Y1, 2Y,) = 0 (1.11)
By, (¥, Y F1+InE (Y, V)N, (V) -A,(-Y)) = O t .2y
and -F/MKT = x A+ (1x )N, . (3039

Combining equations (1.3) and (1.1) with eqgs. (1.8) through (1.11), one

can eliminate ?\5, )\6, )\.7, and M\ so that the f(Y)'s and the f(Y, Y')'s are

8,
expressed using only ?\1, }\2’ }\3, and }\.4.
After the elimination of )\5 and ?\8 from equs. (1.1), (1.3}, and

(1.8) through (1.11), one obtains

= + N (=Y,) + N, -
lnfl(\{l) ?\3(\{1} }\3{ Yl] ?\I L. 4

Inf,, (Y MY )+ N (SY,) +X, -1, (1.14)

2) = 2
1y = 2Ny 1y
1nf11(\(1,‘{1) ?\3(Y1)+)\3{ Yl) [icb“(\’l,\fl} 1,
1 }\ )\_ 1 ;
Inf,, (Y, ¥3) =X, (YN (VD) =B, (Y,, V) -1, (1.15)
! — T T
Inle(Yl,Yz) _k3(Y1)+k4(-Yz) -Bd:lz{\( l,YZ) = T
Since f(Y) L-l, it is plausible to choose N (Y)) and \ (Y,) of
equation (1.14) so that fl(\’l) and fz(‘c’z) become constant., This reasoning

gives one
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= Y +
M) 83 Te3

_\4(\f2) = _E4Y2+c4 (1.16)
?\3 and }x4 not necessarily being equal. Putting these into egs. (1.15)
and changing the primed coordinates into relative ones such that
r o = Y:Z + k-\(l etc., one obtains
ok (Vo) = &l ) F2eg=lebl tr P o
lnfzz{YZ,Y'2)= §4{k-r22) i 2c4-1-;3¢22{r22} i (1.17)

! 1 - -
1nf12{Y1,'Y2) = g4(k-r12) + c3 +{:3+c4 1 Bd:lz(rlz)

Of these three relations, f . and f22 are functions only of the rela-

11

tive coordinates. Therefore it is reasonable to conclude that f12 also

depends only on the relative coordinate P to obtain

£3 = £ = ¢ . (1.18
Combining equations (1.16) and (1.18), one obtains
A =
3(‘{1) £Y1+ C3 5

kllod = B by o (1.19)

E; s and 4 being constants. Determining c, and Cy from equation

3

(1.5), one obtains

-1
£1,0V, Y= x L7 exp(h +E(k-r | )B; (r ) :
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o -1
£,2(Y5,Y5) =x, L exp(-A +E(k-r,,)-Po,,(r,5))

D | 1
£,09,Y) = (x,%,)" L exp(-(\ | M) HE(k-r ) -pd ,(r, ). (1.20)

and also

fl(\’l) lL s

1
o]

0. = =5 . (1.21)

Inserting equations (1.20) and (1.21) into equations (1.4), one obtains

W oW exp(-N -fu) + exp(-t % NN ) =By ,) s (1.22)
-£k 1
e 7 = exp(t- (A +N,)-Bp, ) texp(-h,-Bp,,) (1.23)
where
et - (xllxz}l/2

and, where we have defined
00
0
sz(g) and le(g) are defined when one replaces%l(r) in equation (1.25)

by ¢o22(r) and dplz(r), respectively. Solutions of equations (1.22) and

(1:23) are
e ™1 = exp(Bu, -EK)(T-1+2x)) (T+)
e'xz = exp(spzz-gk)(r+1_2x1)/(r 1) |, {1:26
where
oz o1+ 4x1x2(e+ﬁw(€) -1y, (1.27)
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and w(E) = 2“'12 - By tHpp - (1.28)

Inserting equation (1.26) into equation (1.13), one obtains

-F/MKT = £k+In(T+1)-x (B p,,+In(T-1+2x,))

-XZ(BHZZ-I- 1n(F+1-2xl)}. (1.29)

£ is determined from the condition that F of equation (1.29) is made a
minimum with respect to £, keeping k and T constant. Combining equa-
tions (1.20) and (1,26), the final results for the fi_'s are

1 (T-14+2x_)
b Wyalyh = 20 Tr 1) exp(-B¥ | -Er) (B, (r)y)

1l

|, (T+l-2x))
Y ) = X TP lAB e T s <P (M)
ZXZL-I
_(?_?T)_' eXp(-ﬁHIZ-ErIZ_BqJIZ(rlZ) ) ]

1200 %)

and 1

ZXIL—
2102, Y") = <y oxP(-BF, =675 -p05, (5y) )

94



APPENDIX B

11
Muller's Method -

Start: zo,zl,z2, are the initial estimates.
fo = P(zo), fl = P(zl), fz = P(z2)

)\2 = (z2-zl1)/(zl-2z0)

Iterative algorithm:

5. = 1+,
1 1
2 2
g, = £,-2\ -f 8T+ LON 45 ,
X +T = «PES.TG
L 3 B 1
2 Ve
G = g 2l 0N 0 ohi~h 28 TEDT
h, = (A + 1)h )
1 1 1
Xl +1 = z1 + hi-i— 1 :

Comments: The method is based on quadratic interpolation of the last
three estimates. Its rate of convergence is 1.839. It is more efficient
than other methods for n = 85. Note: For the transcendental functions

under consideration n = «© ,
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APPENDIX B

FORTRAN V PROGRAM FOR MULLER'S METHOD

FLOW CHART

Define Complex Variables
Define Real Variables

Dimension Variables

!

D¢ 45 L =1,10
u(L) =0.0+ 0,10%*L
45 C@ntinue
1
D@ 46 K= 1,5
V(k) = 0.0+ 0.1*K
46 C@ntinue

!

DI 47K =6, 10
V(k) = 0.0 1.0%(K-5)
47 C@ntinue

Write (6,3)
3 Frmat (IH' ')

D¢ 747 JJ=1,9

I

THETA = 0,10%JJ
Write (6,21) THETA

B1l(0)=0
B2(0)=0
Z1(0)=0
Z 3 (0)= 0
Z 4(0)=0

e,

96

u(0) = 0
V()=0
l
D¢ 100 L =1, 10

|

J=1

J=1

¢

103 FORMAT (1HOZ2F 12.8)
21 FORMAT (2E20.8)
27 FORMAT (1HO8E 16.8)

A

GAMMA =



FIRST MUELLER'S METHOD

EOE

I

CMPLX ( )
CMPLX ( )
CMPLX ( )

X1
X2
X3

i on

1l

M=1

!

202 CALL FCN ( ) gt

FF3 =

CALL FCN ( )

FF2=

CALL FCN ( )

FF3 =

LAM =

DEL =

IF (ciqu (D-W).GT.CABS(D+tW) G@T@ 96
X NEW =
+
Y---IF (R%AL (XNEW).GT.0.0) G@T@ 49

E GO TO 151
T .49 XNEW = -XNEW }

=151 IFi(ABS(AIMAG(XNEW)).GT.1,DE-6) GUT¢ 614
E GO TO 204 -
S;__.614 XNEW = REAL(XNEW)
GO l!ro 204 ——
96 XNEW =
e IF FR%AL(XNEW).GT.0.0) GOTg 48

E GO TO 152
S—=48 XNEV\{: -XNEW (

Y——152 IF(ABS(AIMAG(XNEW)).GT . 1.0E-b) G@T@¢ 615
E GO TO 204 -
S

L—»615 XNEW = REAL(XNEW)
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e A CE’NTlINUE
M- bt 1
IF (M‘GT. 30) 60 TO 101—————— YES ————»—
IF (CAB:S (X3-XNEW).LT.1.0E-6) GO T¢ 24

IF (CABS (XNEW).GT.10)G¢ T¢ 101——YES —

X1
X2
X3

X2
¢
X3
i
XNEW

.

GO T@ 2¢2

=
1 Il

1l

24 X1 (K)= XNEW

SECOND MULLER'S METHOD

,

z1(}<)+0.1
Z1(K)+ 0.12
}

1]

X1

X2
X3

1

Z1(K)+ 0.16

M=1

’

203 CALL FCN( )—e
/
FF3 =
4

CALL FCN.( )
FF2}=
CALL FCN( )
FF1*=
LAN;=

98



-

Y
E

S
—

IF (CABS (D-W).GT.CABS (D+ W) G@#§ T@ 97

}

XNE}V
G@¢ T@ 205
97 X NE W =

205 C@NTINUE

;

M=‘M+ 1

IF (M.GT.30) G¢§ T¢ 101
i

IF (CABS} (V3-XNEW).LT.1E-6) G§ T@ 26
IF (CABS {XNEW).GT:10) GO TO L0l

X1 =32
#

X2= X3
4
X3 = ‘XNEW

|
T

G¢ T@¢ 203

26 Z2(K) = XNEW

)

THIRD MULLER'S METHOD

|

FOURTH MULLER'S METHOD

9%

YES ——

YES —a



B1(K) = AMINI (ABS(REAL(X1 — 4(K))))

}

IF (ABS(B1(K) ;ABS(REAL{ZI(K)))).LT.lE-4} G¢ T¢ 1

IF (ABS) @ 59 i Z2 ) GG T@ 2
IF (ABS) * % Z3 ) G@ T@ 4
Y IF (ABS) * . Z4 ) G@ T@ 5
- )
S Bl1{K) = CN,EPLX (B1(K), AIMAG (Z1(K)))
Y | G@ T¢g 31
E
S 2 BIll (K)= & % G %2
¥
Y
- G¢ T¢ 31
8 4 B11(K) = & g Z3
Y
E

¥

G@¢ T¢ 31
S~g Bll (K) =
4 '
31 IF(ABS (AIMAG (B11(K))).GT 1.) G@¢ T¢ 30 YES — 9
IF (I.EQ.2) G§ T¢ 33 — YES >

J

WRITE (6,103) U(L), V(K-1)

WRITE (6,27)Z1(K-1), Z2(K-1), Z3(k-1), Z4(K-1)
)

WRITE (6,103) U(L), V(K)
.

WRITE (6,27) Z1(K), Z2(K), Z3(K), Z4(K)

l
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I=2

)

33 B1(K) = AMINI (ABS REAL (Z2 — 4(K))))

IF

WO
Ur I =
®

IF
IF

»6 Bl1(K)

L 1e7 B11(K)

-8 Bl1(K)

(AB*S(Bl(K) - ABS(REAL (Z2(K)))).LT.1E-4) G¢ T¢ 6
( g i = Z3 ) G¢ T@ 7
( R Z 4 ) G@ T@ 8
= CMPLX(BI1(K), AIMAG(Z2(K)))
G¢ T@¢ 30
= . B Z3

}
G¢ T¢ 30
= . 74

/ '

—= 30 IF (ABS(ABS(AIMAG(B11(K))) - 2.).GT.1.) G@ T@¢ 40

J

Y
E G¢ T¢ 102 : .
v

40 IF (J.EQ.2) G¢ T¢ 102 -

J

WRITE (6,103) U(L), V(K-1)

WRITE (6,27) Z1(K-1), Z2(K-1), Z3(K-1), Z4(K-1)
'

WRITE (6,103) U(L), V(K)
}

WRITE (6,27) Z1(K), Z2(K), Z3(K), Z4(K)

-
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|

CALL FCN (Z1(K), R, N, U(L), V(K), Cl, C2, FNEW1)

.

CALL FCN (Z2(K) FNEW?2)
CALL FCN(Z3(K) FNEW3)
CALL FCN(Z4 (K) FNEW4)

1

WRITE (6,27) FNEW1l, FNEW2, FNEW3, FNEW4

J

J=2

e 102 IF I+ J.ED.4) ©Y TU 100&I

}

101 CONTINUE

1

100 CONTINUE

Lmt‘j'—d

747 CONTINUE

STOP

SUBROUTINE FCN(A, B, C, D, G, H, P, F)

RETURN
END
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PERRY— PN/ B — R AT 032 9 o o+ 55+ 0PRSS B NE S B RS KE R E
PERM—ALCESSHUPBATE

=

b I I o e e S o TR R
HOPePE e md W9 e NG P E Qe

Ly
[a S

- non
LoV 3 B Y

e
G

T S—PROGRAM —FINBS —THE ROBTS 8F A& CUMPLTX=VALUYUEL FUNCTHUN
S TivG MUELEERYS—METHUD
CEMPEE AN W X PR PRy PR A M DR e Dy 2 £ 2y £33 24
S L S T £ S i T B R S T B e A T B B R
! y FiNEaly FiEwrdy FNEwDy FRID WG
bl Ny
BIMENSTEN—U415 )+ V615 )+ 215 22 3 5 2341 5 2441 5 )
1 51635 by b2 15 ) B LS
gbh—45 t=1+10
=00 5-+D 1051
45— CENTINEE
Ho—4-b—K=1+5
VAK ) =0 . 00+ 0+ 1O =K
40 CLNhNTINGE
U 4] Kbyl
V=0 00+ - 005k —5)
47 COnTINUE
1A41S BEGINS ThHe tUOPING PROCEDURE FOK SULUTION OF T4 Euy
wiktTE{Ey34 :
S—FORMATIH— L 56— Etby Rty N2y M=l o
o447 Jd=849
FHEFA=G«10%d<
wR-TFEoy2 13— HETA
gl ¢o=¢
be)=0
Litld)=
L3t U)
Loty
dtw) =0
Vviu)=0
DE—3100 L=1,10
J= 1
=1
o191 K=1i,10
102 EFORMATIIHOZ2F1I 2 .8)
21 FURMAT(2EZ£U+8)
21 FOXMAT (1 HOBELGL,8)
R=i ey
hN=2.0
MM =1,0
£l=1.=EAP=REULL ) I+EXPL=REYULL )=V EK))
he=l e =EXAP L =RENEUL L)) FEXPL=RENZULL) =MMEV LK)
A=t =B AP =R 2(N+1 )/ 2 P 3L F P+ EXP = REN+T ) 2 UL
i =MME SN LK)
V4= MM+l =2 (Mg () Y (K)
b= XF Ve )malspe/{A3=A3)
GAMMA=SURT (1o O+4 0= THETAR L O~THETA} = (A4=1.0))
L1=G&HM&
Ce=TaETA
e e e e e S T =
X2=CMPEXt=0,15,=0.15)

9
U
G

2N

-
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46
S
-8
—59

__100

101
152

163

5 4 P

165

-_-h‘--.--.[f3
S o < el n

49
151

ol

96

48
152

615
204

203

K 3=CMP A= 2 v

M=1

CRAE—FEn Sy Ryt Wy E v E2 PR3
FF3efRr34%3

CAEE—F N2y RN U VO EL s 2 F R R
=24

EAEEFEN I Ry i Ut WK s E s 625 F R L)
Fri=FFF1/4%3

R B R o Y a3 = |

DEt=1+LAM
UsFFRLIsLAM=s2=FF2aDEL s+ PR3 LAM+DEL)
H=CSART(D*x2 -4 (e FF3upDELSLAMS{FFRI#LAM-FFe=DEL+FF4))
FR(CABSHD~w )b T LABSEL+nw ) ) GO TU 96
ANEW=X3+{ X3 ~Ke)sl=¢o®=FF3=2DEL}/ (D +W)
FFAREALALANEW) «GT «0.0) GO T8 49

6E8—TL-—3151

ANEW==XNEW

FHRABS (ATMAGIXNEN I} CT 1 O0E~-6) 6L T 614
ob—T8—204

ANEN=RERLE XNEWD

63-T5-—264

AN W =X 3+ X3~ K2 P~ = FF33DEL I/ (D=H)
FREREALCANEW I GT 6+ ) GO TE 48

—TFg—152

Ahcw==XNKEW

IF(ABSATIMAGHXNEW) ) G6T 1. DE=6) GO TE 615
GL—TL dus

ANEW=REALL XNEW)

CENTINUE

M=+l

HM 61380 —66—TE8-101

TR{CABS (X3 =XNEW} LT+ 1 0E=6) 60 TO 24
FFCCABSEANERW) 06T .104) GO TO0 101

Ko

Xe=Kh3

K3=ANEW

G010 b2

LI LK) =X NER

Xl=Zi{K)+0,1

pe=F 1y 13

X2=L 1(K)+u,l6

M=

CAEL FONEX3 s R e Ul L) s VIEK) s Cl L2, FFF3)
FES=FFF3 /(X3 (X3=2 F (¥ I )= XI-CONJCLZILK)) )Y
CALL FONIXesRy Ny UL ) o VIK)I,C1,C2,FFF2)
FEZ=FRF2/{ X253 X2 =L 1K} ) = X2 =CONJGLZI LK) ) )
CALL FONAXI Ry N4y UL L) o VERK)CL 4, CR2FFFL)
FRI=FFFI/A6X 1= X 3= LK ) )2 (X I=CONJGHZI4KI)I))
LiaM={X3=X2 )/ xe=X1)

DEL=1 4] AN
DefFFRlsbaMetd=FresDELod i +FF3 (L AM+DEL)
A=CSARI{ Dudg 4  wFF32E L =L AMS{FFl1 = AM=FF2%0FEL +FF3))
LHELCABS{O=W ) 6T LAEBS(E+R))CUTO 97
ANEWEX3+ (X3 =K2) (=2 ,FF3%DEL) /L D+W)
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jor |u> !h |e |m

20+

9-b
21

407

6o—F3—=265

KN W= X +HEAS— X2 P =23 FF33bEtH/t—w)

CehTINGE
M=pl

Kl=X2

K2=k3

Az =XinEw
4203
L2ty =XiNEW
=245 )1+051
Xx2=F2tH+i=12
X3=¢2-H)H+d=16
M=1

ChttFeh X2y Ry Ny U VHO Ed C2 PR F 3
FE3=FFF3 /(A3 X3=Z 1K 1)1 AX3-CONJGHZ T (K

1ol
HACABS X3 —ANEW )L+ 1+E—6)}—6G8—F0—26
HACABS LANERN )T 10+ )

Gb—Td—3101

FEAKS =L 2K HAK3=CONI G 224K

CALL FONEXZy RNy UL 9 VO CE v C2 v FRFZ)
FFRe2=FFF2 /A Res 4 xe=L i I3 X2=COnJd LK

Ho2 =2 2 LK) X2~ BN G2 L))

Coelk Fewlxbykyhybit Iy Vvl E20FFF L)
FRI=FRFL/4x1 3 X1=Z2 1K 1) X L =CONJGHZIAK I ) )=

Hx =L 2 (K )X = CaNJ GHE2 K
EAM = X=X}/ d =X 1)

dEL=k ot AN

DefFFlscAMxs2~FF2SDEL % e+ PR35 L LAM+DEL)

el SURTloss -4 = FF3%gELaLAMS (FRLISLAM=FF2%0EL+FF3 )
[F{CABSIOD=w) oGT JCABS(D+wIYEL Tu 98

ANER=X 3+ (X3~ Kb fm2 w2 FF33PE-ADr)

GG FU 210

ANEW=XZ+{a3=Xeg) s~ ®FF3=x0EL) /A LL-W)

CLHTINGE
et o

H M 61306818101

PFECaBSEX3-AnEw) oLT el vE=6) Ld- TH &9
TF(CABS(ANEW ). G6T W10

Xl=4%¢e

Ke=K3

A3 =XNEk
GEE—FE—20-7
L3R I=rNEA

Ml =I3 (k) +0.1
Xe=L 348 )+0 .12
A3 =13 (K)+0 .16

M=1

L33 (A3I#{AD=LLI R} )H L AZ-COUNJIGLL ARG =
HX3 =L 2K S 3 = CENJ G 24 -5 3= L34 K S X3~ C BN o HE 3 (4 1))

FF3=F3/63

CALL FLAX 2y Ry Ny UL}y VEK) 9 CE 4 Ce v F2)
Ge={ K25 {Xe=L1 4R} )=l ae=CuNSOAHL RIS
HA2 =L 2 K2 2= G NS e 2K ) 2 (2 =2 3 O = 2 =G BN o (2344 )

105

G 76101



169 FRe=Ferie

lel CAtb—FEN- R N -V B E 2 )

1&g Gl={ X1 %=L LR = CENG L =

1es 1 {x =2 24 K ) ) S X I =CONJGHE 3O = L 3K = X~ CBNG G )

164 FFi=Fl/061

&5 M= X3 =X ) ALK =i1)

166 vEL =1 v baM

167 PRIt aMes2~FrerDE st FR3 AN DL

e W= (SQURT D=2 =4 s wFF35DEL ¥ LAMSLFrL=LAN=FF2=0EL+FF3))

&4 H+CAB- S4B+ 6T CAE S+ W eE—F8—99

17w INEp=X B3R 3K =2 EF P33 DEL )AL U+0)

171 GO To 500

17 99 K NEN=XB A=K )= 3 FF 33D EL VA W)

2 500 ConTinUg

i =+l

175 R (M6 130368 T8 101

176 - CABS A~ X NEW b T kv E-6 ) GE—B—32
----- 1+ 7 TRFCABS EANEW ) 6T 10 6B TB-101

175 Ki=Xe
374 Ae=A3
—+-8-G AZ=ANE W

&1 GO T4 497

1ol 3¢ L4 K }=xdEw

1e3 B K= AMINILAB S REALL- K ABSHREAL 2 A BSHREALZ 34K

loo i rABSHIREALLLGEK))))

165 IFABSLIBI{K)=ABSIREALCZTAR)I )L LT 1 E=4) G0 TO 1
—l&6 ITF(ABSIBI(K)=ABSIREALLZ24K)I) ) LT 1o E-%) GU TL 2
387 JEIABS(B I (K yeARSUREAL {2 3(K )} T 1o B=4) GO T0O 4

- 1£8 IF(ABS(BI(K)=-ABS(REAL(LGLIKIIII LT JLoE=4) GO TO 5
S 1 BLI(K)=CMPLA(BI(R) +AIMAGLZLIERK L))

1S4 GO 10 31 _

Yozl e BII(K)=CMPLXABLIIK)»ATMAGHZ2(K)))

15¢ G- TU 31

193 o B1I(K)=CMPLXIBLIK) AIMAGLZIIEK) )]

194 Gh Ty 31

1e5 5 BlI(K)=CMPLXLELIK)AIMAGLZGIK])))

156 21 LFCABSCATIMAGIEBLIAKY)) 6T 1) GO TU 30

{o EECT EO 2y S 18 33

198 = WRITE(B+103)uli) e VIK=1)

199 WRIFTEA642 71 K=1 )yl 2{ K= )42 3L K=1 )y L4 K=]]

£l WRETELE, LU UL )y VLK)

201 WRITEL 69T ) LILK) vy Ze K I+ L3 LK) 24K

b 1=2
<43 3381 I)=LMINILABSAREALLZ 2 K-+ ABSAREA LIS LK ) v ABSHREAL L4 LK)
n— - L ARSI (K )=8p 5 (REAL LK I LT L E=4) GO TU 6

205 PR AR SR R =R SR E AL G e L S =y Sl o
s AR IE(ABSABIIK)I=ABSIREAL(ZGtK)})) LT . 1. E=4) GO TO 8

207 £ BlIGK)=CMPLYX(BLIIK) ATMAG(ZZE{K )}

RS | Gd TI0 34

259 - BLI L) =CMPLXEB I RIC o RIMAG LT 2 CICT ) )

210 GL 10 30

21 Bl R =CMpEX(E LR RDMACEIGEIC)I T )

il e A0 TELABSIABS LAIMAGIRII(K)))=2 ) GT,1.) Gl T3 48
oo GR TH 302
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WA Ay F2 23— L E4tk—1)
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APPENDIX C

Comparison of equation (2.2) with other work,
Recall equation (2.2)

| , . 0 C

where C=-In(T"+1)+ xlln(f‘ = +2x1) = len(F-I- l-le)

(2:.2)

(2:3)

Let f.1nij(r) be a hard-sphere interaction and equation (2.2) reduces

to

bp = u/(u(l+ x_(N-1)) + 1) )

2

where u = bf .

(Cl)

If welet N =1, or X, = 1, equation (C-1) reduces to the correct simple

fluid form.

C.C. Carter9 gives the equation of state for a van der Waal's

mixture of hard-spheres as

T o= 1/(L-8(x) ,
where = p/kT=¢ 3

£ = 1/ ,
and b(x) = (l-xz}b + XZNb .

Substituting (C-3) through (C-5) into equation (C-2), one obtains

£E = 1/(1)p —(l-xz)b-XZNb)

bp = _1(~1+XZ(1-N)-1/§b)

108

(C-2)
[G=3)
(C-4)

(C-5)



or, withu= b§,

bp= u/(u(l+ x,(N-1)) +1) g (C-6)

Lebowitz and Zomick6 use the following relation for the equation

of state of a one-dimensional hard-sphere system:

P=(p, tp,)/(1-9) , (C-7)
with P=p/kT ’ (C=B)
P;= %P , (C-9)
and £ = p,b-Nbp, . (C10)

Using equations (C-8) through (C-10) along with (C-7) one obtains

P

1]

p/(l-b/(l-x2 + Nxz)

bP

1

bp/(1-b/(x,(N-1) + 1)),

or with u = bp/kT we have
bp = u/(u(xz{N-1)+ 1) + L) 3 (C-11)

If we let ¢'1j (r) be a square-well interaction and take the simple
fluid limit, equation (2.2) reduces to

B w0 L R P . (C=12)

10
Katsura and Tago  give the equation of state of a one-dimensional square-
well system as

-1 -1 t

p = 1+t 7 - (£/((1 +f)e -f)) , (C-13)

where f= e =e -1, (C-14)
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and t=p/kT =u (here b= 1) . (C-15)

Substituting (C-14) and (C-15) into equation (C-13), one obtains

(bp)hl = 1+1/u - (ev-l}/(eveu +1) ;

u v

or (bp}_l e l#1/a -6 (l=e )f(l-e “=e ")) (C=15)

110



APPENDIX D

Consider the equation for a simple fluid of hard spheres with

hard-sphere diameter equal to b

bP/kT(e°’) = bP/KT + bo (D-1)

Now let u = bP/kT, and N = bo, We then obtain ,

el i . (D-2)

This equation is solved for complex A and Figure D-1 shows a plot of
-Re(\) versus u. (Labeled 'Pure A') As usual the X\ plotted is the one of
largest real part.

If we now look at a second hard sphere fluid with a hard-sphere

diameter equal to 2b, the equation is

2bP /kT(e"2”%) = 2bP/KT + 2bo . (D-3)
If we now define
u= 2bP/kT
and N = 2bo

We again arrive at equation (D-2). However, if we wish to keep the
definitions of u and N the same so that we can plot the solutions on the

same graphs equation (D-e) becomes
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1-g @an31 g

2




-2\

2ue 2u+ 2\

1

AN
or ue = fE A . (D-4)

The \ of largest real part that is a solution of equation (D-4) will not be
the same \ that was associated with equation (D-2). This is the curve
labeled 'Pure B' in Figure D-1. Thus, when scaled to the A fluid param-
eters, pure A and pure B are different. The curve labeled 'A+B' is for

a 50/50 mixture of A and B type fluids. Its equation, when scaled to the
A fluid parameters, is

2

u(x e"}‘ + (1-x1)e“ )‘) = ut+ N . (D-5)

1
(this is for a mixture with hard-sphere diameter ratio equal to 2). When
By = 1 equation (D-5) reduces to the pure A form and when X~ 0 it
reduces to the pure B form, exactly as it should since X, is the con-
centration of A.

Figure D-2 shows a plot of Im(\) versus N for systems scaled to
the N = 1 parameters.

The same type of considerations apply to the lattice gas systems.

For example, consider the case MN = 3,

-’éa)e_max ga)eumNas

xl{l-e xz(l-e

+ = 0 (D-6)

l_e-gae_as

If we let x, = 1, then X, = 0 and we obtain,
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N

2= 2andg

[
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= 0 (D-T7)

If we let s 0, the X, = 1, and we obtain

-£a. -mNas
(1-e ) e = 16 ) (D-8)

l_e-ga o 28

but this is scaled to the A system, i.e. a system with hard-sphere
diameter to lattice constant equal to M. If we scale everything to the B

system we obtain

= 0 5 (D-9)

since for this system the hard-sphere diameter is Nb.
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