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Images provide vital information about this world. Multiple images often share the same

scene observed at different times, from different view angles or using different sensors.

Image registration is a method of aligning two or more images into the same coordinate

system, so that the aligned images can be directly compared, combined and analyzed. Cor-

respondence identification between the images is usually a simple task for human visual

system, but for the computer algorithm it represents a challenging problem. Automated

estimation of the correspondences between the imaged objects and recovery of the under-

lying geometrical transformation is a fundamental goal of image registration. In medical

imaging, images are often related through complex non-rigid deformations. Method to

recover such non-rigid geometrical transformations are called non-rigid image registration

methods.

In this thesis, we have developed several contributions to the field of non-rigid image
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registration. These contributions are linked under the common theme of non-rigid image

registration, but stand on their own as valuable components within image registration

framework.

We have developed a new intensity-based similarity measure, called Residual Complex-

ity (RC), to cope with images corrupted by spatially-varying intensity distortions. Such

distortions are common in microscopy and magnetic resonance imaging, and represent

many challenges for image registration. RC is optimized when the residual image can be

sparsly coded using a few known basis functions, which explicitly account for spatially-

varying distortions.

We have also developed a novel method for rigid and non-rigid point set registration,

called Coherent Point Drift (CPD) algorithm. The algorithm simultaneously recovers

the correspondences between two sets of multidimensional points as well as the underlying

non-rigid transformation. CPD can be used as a key component in feature-based non-rigid

image registration, but also has many applications in different computer vision areas.

Finally, we have developed an automated system for motion estimation from 3D+T

echocardiography. The system is based on sequential non-rigid image registration, and

includes several new contribution, such as ultrasound-specific similarity measure, shape

and dynamic constraints. The system outputs the dense deformation field, which we

use to derive myocardium quantitative characteristics, such as strain and torsion. We

have validated the accuracy of our approach with the groundtruth measurements from

implanted markers.
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Chapter 1

Introduction

1.1 What is Image Registration?

Image registration is a method of transforming two images into the same coordinate sys-

tem [21, 42]. Often, images of the same scene are obtained at different times, from different

perspectives or using different modalities. Image registration is required to find the cor-

respondences between the imaged objects and to recover the geometrical transformation

that aligns the images, so that the aligned images can be directly compared, combined and

analyzed. Main application domains of image registration include medical imaging [68, 42],

remote sensing [48, 60] and computer vision [166]. In different applications, image reg-

istration can be also called image alignment, matching, stabilization, fusion or stitching.

Historically, image registration has been rigid, where images need to be rotated and shifted

with respect to each other to achieve correspondence, e.g. to correct for different head

positions between scans or to register satellite images.

Non-rigid image registration is a class of methods where two image are related through

non-rigid geometric transformation. Such non-rigid transformations often arise in medical

imaging, where an imaged body organ undergoes soft-tissue type of deformation. Non-

rigid image registration is one of the key technologies in medical image analysis following

closely after image segmentation.

Applications of non-rigid image registration include: a) Motion compensation, which is

required to correct for the anatomical body deformations, e.g for respiratory lung motion

during radiosurgery or for iris jittering during microscopic imaging [159, 162]. b) De-

formable tracking, which is required for motion analysis of the underlying objects. For

1
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instance, in 3D echocardiography non-rigid image registration allows to recover the un-

derlying myocardial motion, which provides insights into heart architecture and func-

tion [115, 116]. c) Multimodality fusion, which combines images of the same subject

taken from scans with different modalities, e.g. X-ray and MRI, PET and CT [42, 175].

d) Monitoring of changes, e.g. due to disease progression, tumor growth or surgery [68]

e) Segmentation. If one of the images has apriory labeled structures or delineated segment

boundaries, then the estimated geometrical transformation can be applied to these labels

or boundaries to segment the second image [135, 7]. f) Atlas construction, which is used

to describe anatomical variations of populations. Atlas construction requires simultaneous

registration of several patient scans, e.g brain MRIs, to a common coordinate system using

groupwise image registration.

Despite large amount of work and relative success, non-rigid image registration is still

not a solved problem [42, 71]. Many challenges remain in definition of correspondences

between the image elements and of transformation models. Correspondence definition

between the anatomical elements is difficult to formulate mathematically. In the sim-

plest case, one can assume equal intensity levels for all the corresponding image elements.

Such assumption rarely holds. Real-world images can be corrupted by noise, illumination

changes and spatially-varying bias fields. Furthermore, if two images are from different

modalities, then the same anatomical object can have completely different intensities. An

image can be also corrupted by outliers, e.g. contrast agent, growing tumor or moving

cells, which have no correspondences in the other image. The second main challenge in

non-rigid image registration is the transformation model definition. The true underly-

ing deformation is often unknown. One usually assumes a certain transformation model

that produces physically realizable adequate approximation for a given application, e.g.

smooth or locally rigid deformation. Comprehensive surveys on image registration and

it applications can be found in works of Brown [21], Maintz and Viergever [100], Hill et

al. [68], Crum et al. [42], Zitova and Flusser [197] and Szeliski [166].
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1.2 Contributions of This Work

Most of the contributions of this thesis have been successfully completed and published

during the course of the thesis research. A number of ancillary issues were addressed

as needed within the larger scope of the thesis. In summary, the following concrete and

substantial contributions to the body of knowledge in non-rigid image registration and its

applications were made:

1. Similarity measure: We have developed a novel similarity measure, called Resid-

ual Complexity (RC), that is robust to spatially-varying intensity distortions. RC is

minimized when the residual image can be sparsely coded using only a few basis func-

tions. We have derived numerically efficient implementation of RC and its derivative

and demonstrated the accuracy of RC in comparison with the other state-of-the-art

similarity measures. We have also developed a system for non-rigid motion stabiliza-

tion of microscopic time lapse videos with severe illumination and reflectance arti-

facts. The system is based on sequential and groupwise non-rigid image registration

with the RC similarity measure. The system produces accurate video stabilization

results.

2. Point set registration: We have developed a novel probabilistic method for rigid and

non-rigid point set registration. The algorithm is called Coherent Point Drift and

is currently the state-of-the-art in point set registration. The algorithm is of gen-

eral interest in computer vision with many applications, including stereo matching,

non-rigid image registration, 3D object registration, pattern recognition and shape

correspondence estimation. Several key contributions made for CPD are: a) we

derived a closed form solution of the optimal rotation matrix for the rigid case of

CPD; b) we formulated the motion coherence constraint and derived a solution of the

regularized maximum likelihood estimation through the variational approach in the

non-rigid CPD case; c) we derived a closed form update for the non-rigid CPD kernel

coefficients within the expectation maximization framework; d) we developed fast

CPD implementations using low-rank matrix approximations and fast Gauss trans-

form; e) we compared the CPD performance on multiple synthetic and real-world
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examples with the other leading point set registration methods; CPD demonstrated

the supreme performance in almost all tested cases.

3. Real-world application of non-rigid image registration in 3D+T echocardiography:

We have develop an automated system for motion estimation from 3D+T echocar-

diography based on sequential non-rigid image registration with the following key

contributions: a) we derived a new similarity measure that takes into account speckle

formation, correlation and acquisition process. b) we developed an approach for reg-

istration in spherical coordinate system. c) we introduced shape and dynamic con-

straints for myocardial tracking. d) we validated the system in vivo on open-chest

pigs with the groundtruth measurements from implanted sonomicrometers.

4. Matlab software libraries: We have developed and released the following tooboxes.

a) Medical Image Registration Toolbox (MIRT) for MATLAB. The toolbox allows

2D and 3D non-rigid image registration. Multiple similarity measures are imple-

mented, including Residual Complexity and Mutual Information. Parametric (B-

splines) and non-parametric transformation models are available. MIRT also sup-

ports pair-wise, sequential and groupwise image registration modes. b) Point Set

Registration Toolbox for MATLAB, based on the Coherent Point Drift (CPD) algo-

rithm. The toolbox finds the correspondences between two multidimensional point

sets, as well as rigid or non-rigid transformation to align the point sets. The toolbox

has been downloaded thousands of times since 2007.

1.3 Thesis Outline

Chapter 2 overviews the image registration framework. It discusses different approaches

to image registration including intensity- and feature-based ones, parametric and non-

parametric ones. It also emphasizes the importance of regularization in all aspects of

image registration. In Chapter 3, we introduce a novel intensity-based similarity measure,

called Residual Complexity. We show the analytical derivation of RC, analyze its prop-

erties and test its performance on multiple synthetic and real-world examples. We also

develop a system for non-rigid stabilization of microscopic time lapse videos, where the
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RC similarity measure is the key component. In Chapter 4, we introduce a new probabilis-

tic method for rigid and non-rigid point set registration called the Coherent Point Drift

algorithm. We derive the method, analyze it properties and validate it against the other

popular methods. We also demonstrate CPD application to the non-rigid registration of

images. In Chapter 5, we introduce a system for an automated motion estimation from

3D+T echocardiography. The system is based on sequential non-rigid registration of the

3D ultrasound volumes. We validate the system against the groundtruth measurements

provided by implanted sonomicrometers. Chapter 6 summarizes the thesis and suggests

possible extensions and future directions.

1.4 Publications

A large amount of work contained in this thesis has already been published in the peer-

reviewed literature and presented at numerous conferences and workshops [111, 113, 116,

115, 114, 160, 159]. Here is a list of those publications:

[1] Andriy Myronenko and Xubo Song: “Intensity-based Image Registration by Mini-

mizing Residual Complexity”, Accepted to IEEE Trans. on Medical Imaging.

[2] Andriy Myronenko and Xubo Song: “Point-Set Registration: Coherent Point Drift”,

Accepted to IEEE Trans. on Pattern Analysis and Machine Intelligence.

[3] Andriy Myronenko and Xubo Song: “Image Registration by Minimization of Resid-

ual Complexity”, Proc. of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 49-56, 2009.

[4] Andriy Myronenko, Xubo Song and David J. Sahn: “Maximum Likelihood Motion

Estimation in 3D Echocardiography through Non-rigid Registration in Spherical

Coordinates”, Functional Imaging and Modeling of the Heart (FIMH), pp. 427-436,

LNCS vol. 5528, 2009.

[5] Andriy Myronenko, Xubo Song and David J. Sahn: “LV Motion Tracking from 3D

Echocardiography Using Textural and Structural Information”, Proc. of Interna-

tional Conference on Medical Image Computing and Computer-Assisted Intervention



6

(MICCAI), LNCS vol. 4792, Springer, pp. 428-435, 2007.

[6] Xubo Song, Andriy Myronenko and David J. Sahn: “Speckle Tracking in 3D Echocar-

diography with Motion Coherence”, Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 1-7, 2007.

[7] Andriy Myronenko, Xubo Song and Miguel A. Carreira-Perpinan: “Non-rigid point

set registration: Coherent Point Drift”, Advances in Neural Information Processing

Systems 19 (NIPS), pp. 1009-1016, 2006.

[8] Xubo Song, Andriy Myronenko, Stephen R. Plank and Stephen R. Plank: “Reg-

istration of Microscopic Iris Image Sequences Using Probabilistic Mesh”, Proc. of

International Conference on Medical Image Computing and Computer-Assisted In-

tervention (MICCAI), LNCS vol. 4191, Springer, pp. 553-560, 2006.

[9] Muhammad Ashraf, Andriy Myronenko, Thuan Nguyen, Akio Inage, Wayne Smith,

Robert I. Lowe, Karl Thiele, Carol A. Gibbons Kroeker, John V. Tyberg, Jeffrey

F. Smallhorn, David J. Sahn and Xubo Song: “Defining Left Ventricular Apex

to Base Twist Mechanics Computed from High-Resolution 3D Echocardiography:

Validation against Sonomicrometry”, Journal of American College of Cardiology

(JACC) Imaging, vol. 3, pp. 227-234, 2010.



Chapter 2

Non-rigid Image Registration Framework

2.1 Introduction

Two fundamental approaches to image registration are the feature-based and intensity-

based ones [42, 68]. Feature-based image registration methods extract a set of geometrical

features from one image beforehand and match them with their counterparts in the sec-

ond image. These features typically include locations of corner points, landmarks, line

segments, curves and surfaces. In medical imaging, such features can represent distinct

anatomical regions or fiducial markers, which ensure registration validity and allows the

transformation to be consistent with the underlying anatomy [68]. The key advantage of

the feature-based methods is their dimensionality reduction property, which significantly

reduces the computational time and load. Once the geometrical features are identified, the

image intensities are no longer required for the registration process, because the matching

is based solely on geometrical features. The disadvantage of using features is that they

heavily rely on the robust feature extraction and correspondence estimation pre-processing

steps. Automatic feature extraction [94, 65] and correspondence estimation [13, 113] are

themselves large areas of research in computer vision.

In contrast, intensity-based image registration aligns images directly based on their

intensities and does not require any pre-processing steps [42, 68, 100]. Dense intensity

information, which is available at each voxel, allows for more accurate estimation of local

non-rigid deformations. However, the definition of the correspondences between the im-

aged areas based solely on intensities is non-trivial and currently remains a great challenge

in computer vision. Another downside of intensity-based methods is their high computer

7
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memory and computational time requirements especially in volumetric 3D registration

tasks. Nevertheless, most of the research works in image registration are intensity-based,

because the registration procedure uses all the available image information without relying

on any preprocessing steps.

Aside from the source of information used (features or intensities levels), an image

registration algorithm consists of three main components: the similarity measure, the

transformation model and the optimization method. The first component of an image

registration algorithm is the similarity measure. The similarity measure is a criterion,

usually an objective function, that achieves its optimum when two images verify a certain

relationship. For instance, sum-of-squared-differences remains a popular similarity mea-

sure with the identity intensity relationship assumption between the images. We discuss

different similarity measures in Section 2.2.

The second component of an image registration algorithm is the transformation model.

The transformation model defines the admissible set of transformations (e.g. physically

realizable ones) that is required to align the images. For instance, rigid parametrization

is adequate to align two images with different object orientations. Transformation models

subdivide into rigid and non-rigid ones. A rigid transformation allows only rotation and

translation. The simplest non-rigid transformation is affine, which also allows anisotropic

scaling and skews. Non-rigid image registration is the most interesting and challenging

work in registration today. For instance, medical images are often related through soft-

tissue type of transformation due to the physical properties of body organs. Non-rigid

transformations subdivide into parametric and non-parametric ones. Parametric methods

assume a particular parametrization of the transformation, e.g. locally-affine or spline-

based [71]. From this perspective, rigid image registration is parametric by definition.

Non-parametric methods estimate a transformation as an unknown function within varia-

tional calculus [108]. Regularization of non-parametric transformations is always required

to make the problem well-posed and to constrain the transformation, e.g. to be smooth

and invertable. Such regularization defines the key properties and behavior of the cor-

responding non-parametric transformation model. We overview different transformation

models in Section 2.3.
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The last component of an image registration algorithm is the optimization method.

The optimization method is an algorithm to find a set of parameters that optimize a

given similarity measure. Usually, standard optimization methods are employed including

Gradient Descent, Quasi-Newton, Conjugate Gradient, Levenberg-Marquardt, BFGS and

Stochastic Gradient Descent methods [121, 85].

Finally, the vital mechanism that occurs throughout any image registration algorithm

is regularization. Image registration is inherently ill-posed; the existence and the unique-

ness of the solution is not guaranteed. Thus, regularization is essential. Non-parametric

registration methods completely rely on the regularization, which fully defines admissi-

ble deformations. Parametric methods implicitly regularize the transformation by using

low dimensional set of parameters. Many parameterizations, including splines, are the

variational solutions of the corresponding regularized functionals. Not only the transfor-

mation model, but the similarity measure also takes advantage of the regularization. We

reserve the detailed discussion of the regularization approaches in image registration for

Section 2.4.

In many applications it is not a pair but a set of multiple images that we need to

transform into a common coordinates system. Such methods are called groupwise im-

age registration methods, and are usually build upon conventional image registration ap-

proaches with several specifics. We overview the groupwise image registration methods in

Section 2.5

2.2 Similarity Measure

2.2.1 Feature-based Registration

Feature-based image registration methods define a similarity measure directly based on

geometrical features extracted from the images beforehand. One of the simplest feature-

based similarity measures is the L2 norm between the corresponding pairs of landmarks.

Esim =

K
∑

k=1

∥

∥T (cJ
k ) − cI

k

∥

∥

2
(2.1)
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where cJ
k and cI

k are the locations of feature points extracted from the images J and I re-

spectively. Several robust distance measures, including L1 norm have been also used [143].

One of the main advantages of L2 norm is that the optimal transformation can be found

in the closed form both for rigid [173] and some non-rigid [17] parameterizations. Equa-

tion 2.1 implies that both images have equal number of feature points with known cor-

respondences. In real-world applications, the correspondences are not known in advance.

Furthermore, a feature extraction method may detect different number of points in two

images with several outliers and missing points. Automated point set matching methods

are required. The methods to estimate point-wise correspondences are often referred to

as point set registration methods [151, 32, 114, 113]. Some point set registration meth-

ods only estimate the unknown correspondences [151], whereas newer advanced methods

simultaneously estimate the correspondences and the transformation [13, 113]. Methods

based on simultaneous estimation usually alternate between the assignment of correspon-

dences and the minimization of a similarity measure given the correspondences. In the

simplest case, the correspondence assignment is based on the closest distance criterion,

and then the familiar L2 norm is used as the similarity measure [13]. A more fundamental

approach is to assign the correspondences between all possible combinations of points up

to some probability. Then the similarity measure a generalized distance measure [113, 32]

Esim =

K
∑

k=1

L
∑

l=1

Pkl

∥

∥T (cJ
k ) − cI

l

∥

∥

2
(2.2)

where Pkl is the probability of the point cJ
k to correspond to the point cI

l . Such similarity

measure analytically comes from the maximum likelihood approach to the probabilistic

point set registration [113]. We thoroughly overview existing and introduce a novel point

set registration method in Chapter 4.

2.2.2 Intensity-based Registration

Intensity-based registration methods define the similarity measure directly on image in-

tensities and do not require any feature extraction or matching steps. These methods use

dense voxel-wise similarity measures, which are suitable to estimate dense deformation
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fields. Intensity based similarity measures are distinguished based on their application

area: monomodal or multimodal.

One of the simplest intensity-based similarity measures is the sum-of-squared-differences

(SSD)

ESSD(T ) =

N
∑

n=1

(

In − JT
n

)2
(2.3)

SSD is the optimal similarity measure when two image only differ by Gaussian noise.

SSD is widely used in image registration due to its simplicity [68], but is very sensitive to

outliers and image artifacts. To reduce the effect of outliers, one can use sum-of-absolute-

differences (SAD)

ESAD(T ) =
N
∑

n=1

∣

∣In − JT
n

∣

∣ (2.4)

Both SSD and SAD assume two images to have equal intensities at the correct alignment.

In contrast, squared correlation coefficient (CC) is maximized when the images are linearly

related

ECC(T ) =
(
∑N

n=1(In − Ī)(Jn − J̄T ))2
∑N

n=1(In − Ī)2
∑N

n=1(Jn − J̄T )2
(2.5)

where Ī is the intensity mean of image I and J̄ is the intensity mean of image J .

Mutual information (MI) [175] takes the most general assumption between the im-

age intensities. It maximizes for the simultaneous low joint entropy H(I, J T ) and high

marginal entropies H(I) and H(JT )

EMI(T ) = H(I) + H(JT ) −H(I, JT ) =
∑

i

∑

j

pT (i, j) log
pT (i, j)

pT (j)p(i)
(2.6)

where pT (i, j) is the joint probability of the intensities of the images, and pT (j),p(i) are

the marginal probabilities. MI can be seen as a measure of how well one image explains

the other. MI is maximized when the value of a voxel in the first image is a good predictor

of the corresponding voxel in the second image. Due to only the statistical relationship

assumption, MI found a wide-spread application in multimodal image registration, e.g.

MR-CT, MR-PET [133].

Mutual information depends on the amount of image overlap during the registration.

Studholme et al. [163] proposed a normalized variant of mutual information (NMI) to
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overcome the sensitivity of MI to the image overlap:

ENMI(T ) =
H(I) + H(JT )

H(I, JT )
(2.7)

This version of normalized mutual information has been shown to be considerably more

robust than standard mutual information for multimodal registration in which the overlap

volume changes substantially [163, 68].

MI and NMI require an estimate of the joint probability density function of the in-

tensities, which is practically done using histograms or kernel density estimation meth-

ods [133, 168].

Maximum Likelihood Approach

Many intensity-based similarity measures can be formulated within the Bayesian frame-

work, where the minimization of a similarity measure is equivalent to the maximum like-

lihood (ML) estimation of the transformation [141]. Popular image registration similarity

measures, such as SSD, CC and MI, correspond to the ML estimation given the identity,

affine or statistical relationship between the intensities of the images. ML approach al-

lows to implement prior knowledge of image acquisition process and derive the efficient

similarity measure for the given image modality. ML approach to register two images I

and J is to maximize the conditional probability

T̂ = arg max
T

P (I|J, T ) = arg max
T

P (I|JT ) (2.8)

where JT denotes the image J after the coordinate transformation T . To simplify, we

assume that conditional probabilities of image voxels are independent:

P (I|J, T ) =
∏

n

P (I(xn)|J(T (xn))) (2.9)

For practical convenience, we minimize the negative log-likelihood function, which is equiv-

alent to the maximization of the likelihood function:

T̂ = arg min
T

∑

n

− log P (I(xn)|J(T (xn)), T ) (2.10)

The conditional probabilities P (I(xn)|J(T (xn))) may depend on a set of parameters θ,

which we can also estimate within the ML approach.



13

Identity relationship: If we assume that the image I is simply the image J corrupted

by additive stationary Gaussian noise

I(xn) = J(T (xn)) + ηn (2.11)

then the conditional probabilities have the Gaussian form:

P (I(xn)|J(T (xn))) =
1√

2πσ2
e−

(I(xn)−J(T (xn)))2

2σ2 . (2.12)

And the negative log-likelihood function takes the form

− log P (I|J, T ) =
N

2
log(2πσ2) +

1

2σ2

∑

n

(I(xn) − J(T (xn)))2 (2.13)

If the noise variance σ2 is fixed, then the negative loglikelihood function is the familiar

SSD similarity measure.

Linear relationship: If we assume that the image I is the image J after some linear

intensity transformation corrupted by additive stationary Gaussian noise

I(xn) = aJ(T (xn)) + b+ ηn (2.14)

where a and b are unknown constants of linear intensity transformation, then we can

obtain the correlation coefficient (CC) similarity measure. The negative log-likelihood

function takes the form

E(a, b, T ) = − logP (I|J, T ) =
N

2
log(2πσ2) +

1

2σ2

∑

n

(I(xn) − aJ(T (xn) − b))2 (2.15)

We can estimate a and b by minimizing Equation 2.15 with respect to these parameters.

Taking the partial derivatives, we obtain:

∂E(a, b, T )

∂a
= − 1

σ2

∑

n

J(T (xn))(I(xn) − aJ(T (xn) − b)) = 0

∂E(a, b, T )

∂b
= − 1

σ2

∑

n

(I(xn) − aJ(T (xn) − b)) = 0
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Simplifying for b and a we get

b =
1

N

∑

n

(I(xn) − aJ(T (xn))) = µI − aµJ (2.16)

and

∑

n

J(T (xn))(I(xn) − aJ(T (xn) − µI + aµJ)) = 0

∑

n

J(T (xn))(I(xn) − µI − a(J(T (xn)) − µJ)) = 0

∑

n

J(T (xn))(Î(xn) − aĴ(T (xn))) = 0

∑

n

Ĵ(T (xn))(Î(xn) − aĴ(T (xn))) = 0

a =

∑

n Ĵ(T (xn))Î(xn)
∑

n Ĵ(T (xn))Ĵ(T (xn))
=

cov(I, JT )

var(JT )

Now, we can substitute a and b back in Equation 2.15

E(a, b, T ) =
N

2
log(2πσ2) +

1

2σ2

∑

n

(Î(xn) − cov(I, JT )

var(JT )
Ĵ(T (xn)))2 =

N

2
log(2πσ2) +

N

2σ2
var(I) − N

2σ2

cov(I, JT )2

var(JT )
∝ −

(

cov(I, JT )
√

var(JT )
√

var(I)

)2

(2.17)

Thus the assumption of a linear intensity relationship between the images leads to the

familiar squared CC similarity measure [21, 68].

Functional relationship: Roche et al. [141, 142] proposed to use a functional relation-

ship between image intensities plus an additive Gaussian noise.

I(xn) = f(J(T (xn))) + ηn (2.18)

where f is an unknown function (parametric or nonparametric) that has to be also esti-

mated withing ML framework. The similarity function, based on such image relationship

depends on the functional form of f and is called Correlation Ratio (CR) [141, 142].
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Statistical relationship: If we make no assumptions neither on the intensity relation-

ship nor on the noise model, then the final similarity function is Mutual Information

(MI) [175]. We can rewrite the sum over the voxels in Equation 2.10 as a summation over

the areas of constant intensity.

E(T ) =
∑

x

− log P (I(x)|J(T (x)), T ) = −N
∑

i

∑

j

p(i, j) log P (i|j) (2.19)

where p(i, j) is a total number voxels with intensity i in the image I that correspond to

the voxels j in the image JT , which is a joint probability of the intensities of the images.

Now we have to find the P (i|j),∀i, j withing the ML approach, subject to the constraint
∑

i P (i|j) = 1,∀j. Introducing the Lagrange multipliers λj for the constraint, we can find

the partial derivative of negative log-likelihood function and equate them to zero:

E(T ) = −N
∑

i

∑

j

p(i, j) log P (i|j) +
∑

j

λj(
∑

i

P (i|j) − 1)

∂E

∂P (i|j) = −Np(i, j)
P (i|j) + λj = 0,⇒ λj =

∑

i

Np(i, j) = Np(j)

P (i|j) =
p(i, j)

p(j)

where P(j) is the marginal distribution of J T voxels. Thus the negative log-likelihood

function takes the form

E(T ) = −N
∑

i

∑

j

p(i, j) log P (i|j) = −N
∑

i

∑

j

p(i, j) log
p(i, j)

p(j)
=

−N(
∑

i

∑

j

p(i, j) log p(i) −
∑

i

∑

j

p(i, j) log
p(i, j)

p(j)p(i)
) =

−N(
∑

i

p(i) log p(i) −
∑

i

∑

j

p(i, j) log
p(i, j)

p(j)p(i)
) = N(H(I) − I(I, JT )) ∝ −I(I, JT )

(2.20)

where I is mutual information. Thus, if we make no assumptions on conditional proba-

bility P (I|J, T ), except it is voxelwise independent and stationary, then ML estimation of

the conditional probabilities and the transformation is equivalent to the maximization of

MI [175].



16

2.3 Transformation Model

The transformation model defines the way to deform one image to match the other. His-

torically, the most common transformation model is rigid, which has a small number of

parameters: rotation and translation parameters. The simplest non-rigid transformation

is affine, which allows for skews and shearing. Affine transformation is often consid-

ered rigid due to its simplicity. Non-rigid transformations subdivide into parametric and

non-parametric ones [71]. Parametric transformations depend on a set of parameters.

For instance, B-spline parametrization uses a mesh of control points (parameters) and

interpolates in between with the B-spline basis functions. The shape of the B-spline ba-

sis functions and the sparseness of control points limit the admissible transformations.

Non-parametric image registration methods estimate the transformation as an unknown

function within the variational calculus [108]. Non-parametric approach allows to model

complex local deformations. This approach is ill posed and requires to use a regularization

term to constrain the transformation, e.g. to be smooth or locally rigid.

2.3.1 Parametric Approach

Parametric image registration methods define the spatial transformation as a function of

a set of parameters. Rigid image registration methods are parametric by definition, where

unknown parameters are the rotation matrix and the translation vector. Popular non-

rigid parametric transformations include piecewise affine, radial basis functions (RBF)

and B-splines. Piecewise affine approach subdivides the image into rectangular blocks

and assumes a simple transformation model, usually affine or rigid, for each block [66].

Such approach is fast, but introduces many approximation errors to the truly non-rigid

deformation. RBF approach defines the transformation as a linear combination of the

basis functions

T (x) =

N
∑

n=1

wnR(‖x− xn‖) (2.21)

where wn are unknown parameters. The basis function R depends on the Euclidean

distance from x to the given control point xn. Examples of RBFs include Gaussian, mul-

tiquadric and thin plate spline (TPS). These functions approach zero asymptotically, but
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have global support, which significantly increases the computation complexity with each

additional control point. Among different RBFs, TPS has found many applications in

medical image registration [17, 33]. In contrast to RBFs, B-splines define the transforma-

tion locally. B-spline control points can be shared among several connected segments to

ensure the continuity. Cubic B-splines are probably the most popular parametric non-rigid

transformation parametrization [145, 8, 79]. Cubic B-splines are twice differentiable and

continuous at the joints. They can model localized deformations with low computational

complexity. Due to its wide popularity in medical image analysis, we review the TPS and

the cubic B-spline transformation models in more details in the following subsections.

Thin Plate Spline

Thin Plate Spline (TPS) is an RBF defined as [17, 176]

T (x) = Ax + t +
∑

n

wnU(xn,x). (2.22)

where A is an affine transformation matrix, t is a translation vector, wn are the TPS

coefficients and U is the TPS basis function. In 2D, U = r2 log r2 and in 3D, U = r, where

r = ‖xn − x‖ is the Euclidean distance from x to the control point xn. In 4D or higher

dimensions the TPS solution does not exist [156]. TPS arises from the Euler-Lagrange

differential equation corresponding to minimization of bending energy (See Sec. 2.4.2).

The function U is a solution to the squared Laplacian equation, ∆2U ∝ δ0,0 [17].

Bookstein [17] applied TPS to interpolate the transformation from the given set of

the corresponding landmarks in medical images. TPS transformation resembles the defor-

mation of thin metal plate, which allows to approximate soft-tissue type of deformations.

One of the advantages of TPS is its explicit decomposition into linear and non-linear parts.

Among the disadvantages of TPS is its global support, that is each control point has a

global influence on the overall transformation. Global support does not allow to model

complex localized transformations and has high computational complexity [17, 176]. Nev-

ertheless, TPS became popular in feature-based methods based on point set registration,

where a set feature points is extracted from two image beforehand and matched subject

to the TPS parameters [33, 76].
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Cubic B-splines

Cubic B-splines parametrization found a wide-spread attention in non-rigid medical image

registration [145, 8, 79]. The transformation is often called Free Form Deformation (FFD)

after it was first introduced to deform solid geometric models [152].

The basic idea of FFD is to deform a 3D object by manipulating a mesh of control

points. The main advantage of FFD is that the complex non-rigid transformation is

defined by a small number of parameters (control points positions).

We denote the 3D image volume as Ω = {(x, y, z)|0 ≤ xn ≤ N, 0 ≤ ym ≤ M, 0 ≤
zk ≤ K}. We place a nx × ny × nz mesh of equally spaced control points pi,j,l over the

image domain. The number of control points defines the complexity of the transformation.

Then, the transformation T is a 3D tensor product of the 1D cubic B-splines:

T (x, y, z; p) =

3
∑

k=0

3
∑

m=0

3
∑

n=0

Bk(ux)Bm(vy)Bn(wz)pi+k,j+m,l+n (2.23)

where i = bx/nxc − 1, j = by/nyc − 1, l = bz/nzc − 1. B-splines are compactly sup-

ported, and thus are defined it terms of local coordinates (ux, vy, wz), where ux = x/nx −
bx/nxc, vy = y/ny − by/nyc, wz = z/nz − bz/nzc. Bk are the kth B-spline basis function:

B1(u) = (1 − u)3/6 B2(u) = (3u3 − 6u2 + 4)/6

B3(u) = (−3u3 + 3u2 + 3u+ 1)/6 B4(u) = u3/6

The key advantage of cubic B-splines is their local support, which provides local trans-

formation control and low computational complexity. They are also twice continuously

differentiable at the control point joints. For digital images on a regular grid, the B-spline

basis functions can be precomputed to allow fast transformation computations.

2.3.2 Non-parametric Approach

Non-parametric image registration estimates the transformation as an unknown function

without explicit parametrization. Such problem is ill-posed, because the solution is not

unique. To constrain the problem one can use a regularization term that penalizes some

undesirable transformation properties, e.g. oscillations. The transformation is usually
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defined as

T (x) = x + u(x) (2.24)

where u(x) is a unknown displacement function that optimizes the objective function:

E(u) = Esim (I, J(x + u(x))) + αEreg (u(x)) (2.25)

where Esim is the similarity measure term, Ereg(u) is the regularization term and α is a

trade-off parameter. The objective function is rather a functional, because the unknown

u is a function. One can think of the similarity measure as of the external energy function

that moves the image, whereas the regularization term is an internal energy function that

keeps the transformation coherent and constrained. We overview different regularization

terms used in non-parametric image registration in Section 2.4.3

2.4 Regularization

Regularization plays an essential role in image registration. It enforces certain properties

on a function, e.g. smoothness, sparsity or rigidity. For instance, consider estimation

of a non-rigid transformation over the image domain given only a set of corresponding

landmarks. The solution to such problem is not unique. There is an infinite number of

transformations that will match the corresponding landmarks, but have totally different

behavior in the remaining image parts. However, if we impose an additional requirement

of using the smoothest transformation, as defined by the corresponding regularization

term, then the problem can be uniquely solved. Alternatively, one can regularize the

solution by using explicit parametrization, e.g. rigid, which also makes the solution unique.

Regularization is essential not only in image registration; it is one of the key components

in many machine learning and computer vision area. In this section, we overview the

regularization framework and show its applications in image registration.

2.4.1 Theory

Regularization is a key tool to make a problem well posed. A problem is well posed in the

Hadamard sense if it satisfies all of the following conditions: existence, uniqueness and
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continuity. Otherwise the problem is called ill posed. Most of the engineering problems

are ill posed including such areas as computer vision, system identification, reconstruction

and density estimation [27].

The classical regularization theory originates from the works of Tikhonov [169]. A

standard regularization approach is to augment the existing optimization problem with a

regularization term and minimize the following functional

E(f) = S(f) + αR(f) (2.26)

where S(f) is some objective function, R(f) is the regularization term and α is a trade-off

parameter. One famous regularization example is to fit a function f to the given data

points yi specified at locations xi by minimizing the regularized loss function

E(f) =
∑

i

(yi − f(xi))
2 + α ‖Pf‖2 (2.27)

where P is a linear operator, e.g. first or second order derivative operator.

In general an operator can be linear or nonlinear, finite- or infinite-dimensional. An

operator extracts certain properties of the function for penalization, e.g. oscillations.

In finite dimensions one can draw an analogy of an operator with a matrix, and the

application of an operator to a function is equivalent to a matrix-vector product. A

regularization term is usually a norm, R(f) = ‖Pf‖2 = ‖f‖2
Hm

, in the Hilbert space H
m:

‖f‖2
Hm =

m
∑

k=0

∥

∥

∥

∥

∂kf

∂xk

∥

∥

∥

∥

2

2

(2.28)

It reduces to the squared L2 norm for m = 0. Alternatively, we can define such norm in

the Reproducing Kernel Hilbert Space (RKHS) [27, 55] as

‖f‖2
Hm =

∫

RD

|f̃(s)|2
G̃(s)

ds (2.29)

where G is a unique kernel function associated with the RKHS, and G̃ is its Fourier

transform. Function f̃ indicates the Fourier transform of the function f and s is a frequency

domain variable [55]. Regularization in the spectral (frequency) domain is essentially

equivalent to the the spatial norm based approach [27]. Whereas spatial approach usually

penalizes function derivatives to enforce smoothness, spectral approach penalizes high
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frequency function content for the same purpose. Many regularization operators in spatial

domain have their counterparts in the spectral domain [27].

Often regularization problems can be solved analytically. The solution involves using

the Green’s function, which is a continuous analog to the matrix inverse. The function

G(x, ξ) is the Green’s function for a linear operator P̂P if P̂PG(x, ξ) = δ(x − ξ) and

G(x, ξ) is differentiable everywhere but x = ξ. One can obtain the analytical solution

to Equation 2.27 using the Representer Theorem [83, 150], which states that the optimal

functional form of f is a linear combination of the reproducing kernels (G) in the space

produced by the operator P; where the Green’s function, G, of P̂P is the reproducing

kernel.

f(x) =
∑

i

wiG(x,xi) + ψ(x) (2.30)

Here, the coefficients wi = (yi − f(xi))/α are obtained by evaluating Equation 2.30 at

xi points. The term ψ(x) is a null space of the operator P, which can be, e.g. con-

stant or zero [83, 150]. Thus, eventhough the objective function in Equation 2.27 is being

minimized over the whole function space, the optimal f is in the kernel form, which is

analogous to RBF parametrization. An explicit function parametrization, e.g. RBFs, is

thus equivalent to variational formulation with the corresponding regularization term. In

practice, one can choose an explicit parametrization, e.g. B-splines, without prior knowl-

edge of the corresponding regularization term, as soon as such parametrization sufficiently

limits the admissible function space.

In the cases where the objective function, S(f), is non-linear non-quadratic functional

of f and/or the regularization term is non-linear then analytical solutions are not available;

one usually has to discretize the function f and to use iterative optimization. In the

following subsections, we show how the regularization approach is employed in image

registration.

2.4.2 Regularization in Parametric Transformations

Parametric transformation model explicitly regularizes the admissible set of transforma-

tions in image registration. For instance, rigid parametrization only allows for rotation
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and translation transformations. B-spline parametrization limits the deformation by the

control point spacing and by smoothness of the B-spline basis functions. The regular-

ization is imposed implicitly by using a low dimensional set of parameters. Parametric

and non-parametric transformation models are linked to each other. As we showed in the

previous section, an RBF parametrization is a solution of the non-parametric problem

with the corresponding regularization term.

Thin Plate Spline: TPS parametrization (Equation 2.22) is a variational solution to

the following problem [17, 176]

E(f) =
∑

i

(yi − f(xi))
2 + α

∫

Rd

d
∑

m,n=1

(

∂2f

∂xn∂xm

)2

dx (2.31)

where the second term penalizes squared second order derivatives, which has a mechanical

interpretation. If an infinite elastic flat thin plate is slightly deformed then the bending

energy of the thin plate is to first order proportional to the integral over squared second

order derivatives as in Equation 2.31. For this reason the solution (function) to the

Equation 2.31 is called thin plate spline. The null space of such regularization includes

affine transformations. Alternatively, one can obtain the TPS solution using the spectral

form of regularization,
∫

R2 ‖s‖4 |f̃(s)|2ds, which is a special case of the regularization that

leads to the Duchon splines [47].

Gaussian Radial Basis Function: Gaussian RBF parametrization is a variational

solution to the following minimization problem

E(f) =
∑

i

(yi − f(xi))
2 + α

∫

Rd

∞
∑

l=0

β2l

l!2l

∥

∥

∥
Dlv(x)

∥

∥

∥

2
dx (2.32)

where β is a parameter andD is a derivative operator such thatD2lv = ∇2lv andD2l+1v =

∇(∇2lv) [188]. Such regularization term penalizes all order derivatives. Its spectral analog

is in the form
∫

RD
|f̃(s)|2
G̃(s)

ds, where G is the Gaussian function with width β. The null space

of such regularization operator is zero, ψ(x) = 0 [55]. In Section 4.5 we will show that

Gaussian RBF is also a variational solution to the generalized distance measure in the

context of non-rigid point set registration [113].
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2.4.3 Regularization in Non-parametric Transformations

Non-parametric registration approach estimates the transformation function as an un-

known function without assuming any parameterizations. Regularization term is always

required to make the problem well posed. Standard regularization terms include the dif-

fusion, curvature, elastic and fluid regularization of the displacement function u [108, 52]:

Regularization term (Ereg) Variational derivative (∇Ereg)

Diffusion 1
2

∫

‖∇u‖2 dx ∆u

Curvature 1
2

∫

(∆u)2 dx ∆2u

Elastic
∫ µ

2

∑D
i=1

∥

∥∇ui
∥

∥

2
+ λ+µ

2 (∇ · u)2 dx µ∆u + (λ+ µ)∇(∇ · u)

Fluid
∫ µ

2

∑D
i=1

∥

∥∇vi
∥

∥

2
+ λ+µ

2 (∇ · v)2 dx µ∆v + (λ+ µ)∇(∇ · v)

Table 2.1: Common regularization operators of the displacement field and their variational
derivatives.

where ui is the ith component of u, λ and µ are so-called the Lamé constants. The

fluid regularization is similar to elastic, but applied to the velocity field v = d
dtu(x, t).

The elastic regularization term corresponds to the image deformation as a linear elastic

material, whereas fluid regularization allows deformation similar to idealistic behavior of

fluids [71, 108]. One feature of the fluid regularization is that it allows large deformations

and forces them to be continuous and invertable [29].

The similarity measure is usually a non-linear functional of the transformation. In this

case the analytical closed form solution is not available. Optimization of Equation 2.25

requires solving the corresponding Euler-Lagrange differential equation

∇Esim(u) + α∇Ereg(u) = 0, (2.33)

which is usually done iteratively. For instance, using the SSD similarity measure and the

curvature regularization term, the corresponding Euler-Lagrange differential equation is

− (I − J(x + u(x)))∇J(x + u(x)) + α∆u = 0 (2.34)

Fast partial differential equation solvers include FFT-based and multigrid methods [108],

which require only O(N logN) operations per iteration up to the multiplicative constant.
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2.4.4 Invertibility of the Transformation

Both parametric and non-parametric non-rigid registration methods do not guarantee the

existence of the inverse transformation1. The inverse transformation, T −1, may never

be used, however its existence is required to ensure that the transformation is physically

meaningful. If the inverse transformation exists and T ◦ T −1 = Id, T −1 ◦ T = Id then

such transformation is called isomorphic. Such a structure-preserving transformation does

not allow for any local foldings or twists, which are not physically realizable.

One indicator of the invertibility of the transformation is the determinant of the Ja-

cobian matrix (or simply Jacobian). In 3D the Jacobian is

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂Tx
∂x

∂Tx
∂y

∂Tx
∂z

∂Ty

∂x
∂Ty

∂y
∂Ty

∂z

∂Tz
∂x

∂Tz
∂y

∂Tz
∂z

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + ∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x 1 +
∂uy

∂y
∂uy

∂z

∂uz
∂x

∂uz
∂y 1 + ∂uz

∂z

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.35)

The Jacobian equals 1 if the volume remains constant after the transformation. The

Jacobian is smaller than 1 in the presence of local volume shrinkage and is greater than 1 in

the presence of local volume expansion. Negative Jacobian implies that local foldings and

twists had occurred, which is physically not realizable and mathematically not invertible.

There are several ways to enforce the existence of the inverse transformation. If the

final transformation has local foldings, one can re-run the registration algorithm with a

higher regularization weight α or simply post-smooth the transformation [2]. A more

fundamental approach is to constrain the Jacobian to be non-negative [64] or to impose

an additional regularization term on the Jacobian using L2 norm [28] or KL-divergence

regularization [183]. Implementation of the additional regularization on the Jacobian can

significantly increase the computation load of non-parametric registration algorithms.

Diffeomorphic Approach: An alternative idea to ensure the invertibility of the trans-

formation is to consider the transformation as a solution of the ordinary differential equa-

tion [11]
dTt(x)

dt
= vt(Tt(x)) (2.36)

1with the exception of Fluid-based regularizer.
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The function Tt(x) describes a diffeomorphic transformation through space and time. A

diffeomorphic transformation ensures that the inverse transformation and its derivatives

exist and are both smooth functions, which is a stronger property than isomorphism. The

initial transformation at t = 0 is the identity transformation: T0(x) = Id(x) = x. The

final transformation at t = 1 is the diffeomorphic transformation that aligns the images.

Typical objective functional of diffeomorphic methods is

E(v) = Esim(I, J(T1(x))) + α

∫ 1

0
‖vt(x)‖2

V dt (2.37)

where Esim(I, JT ) is a similarity measure (typically SSD) and ‖vt‖V is a Sobolev norm

on the velocity field (typically ‖vt‖V = ‖Pvt‖2
2, where P is a linear differential operator).

Thus, by minimizing Equation 2.37, one seeks a time-dependent velocity vector field v

that when integrated from Equation 2.36 generates the diffeomorphic transformation T1

that aligns the images [11].

Iterative computation of the final transformation T1 by integration from Equation 2.36

is required at each registration iteration, which is extremely computationally expensive.

Alternatively, one can assume a time-independent velocity field v, which allows to in-

tegrate from Equation 2.36 fast through recursion [4, 6]. The downside of using the

time-independent velocity field is that some transformations can be impossible to reach

or the transformation flow can require a very windy trajectories. In summary, the diffeo-

morphic image registration methods explicitly account for invertible transformation, but

suffer from a large computational complexity.

2.4.5 Regularization in Similarity Measures

Regularization is often present in the similarity measure definition. For instance, the CC

similarity measure can be seen as the SSD similarity measure between two images, where

one of the images is intensity normalized by the global scaling and shift. Such linear

parametrization of the underlying intensity normalization function implements implicit

regularization of the similarity measure. Optimal parameters of the intensity normal-

ization can be determined analytically, which leads to the CC similarity measure (see

Sec. 2.2.2). Mutual information also can be seen to implement regularization by assuming
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voxels of equal intensities to belong to the same class. Historically, transformation was the

only unknown function of an image registration algorithm. In many situations, the simi-

larity measure itself includes several unknowns that need to be estimated simultaneously

with the transformation. For instance, images often require intensity correction prior to

registration. One can define an intensity correction function as an unknown component of

the similarity measure and estimate it simultaneously with the transformation. Depending

on the application, parametric or non-parametric models are used for the intensity correc-

tion function. In non-parametric case an additional regularization term of the correction

function is required [111, 109, 110]. In Chapter 3 we will develop a new similarity measure

that uses non-parametric estimation of the correction field.

2.5 Groupwise Image Registration

Groupwise image registration methods register several images to a common coordinate

system. It is not a single geometric transformation, but a group of transformations that

has to be found [198, 172]. There are several approaches to groupwise image registration.

In the simplest case, one can pick the first (or any other) image as the reference image,

and then register the rest of the images to the reference one using conventional (pairwise)

image registration. Such approach is very sensitive to the choice of the reference image.

When images are acquired at consecutive time instance, such as in time lapse video

imaging, then two consecutive images should be close to each other in terms of the un-

derlying transformation. Thus, one can sequentially register next image frame onto the

previous and track the deformation field over time. Often two neighboring image frames

have a large overlap, whereas some distant frames have small or zero overlap due to the

progressive object or camera shift, which is common in such areas as remote sensing or

time lapse video microscopy. Sequential image registration not only significantly improves

the processing speed, but also benefits from a large area overlap between the consecutive

frames, in contrast to the fixed-reference-image approach.

Another variation of sequential image registration, is to register the next image onto

the average of previously aligned images. The main benefit of averaging is to remove noise
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and artifacts (e.g. from moving cells). The disadvantage can be in the reduction of the

texture statistics (e.g. speckle patterns in ultrasound images).

Finally, the so-called “true” groupwise non-rigid image registration registers all im-

ages simultaneously [198, 102, 172, 78]. Such formulation eliminates the bias of choosing

any particular reference image. Twining et al. [172, 102] proposed to use a Minimum

Description Length (MDL) criterion to align the images. The MDL principle states that

the transmission of a model of the data, together with the parameters of that model,

should be as short as possible. Zollei et al. [198] investigated the congealing approach

for groupwise registration. Their objective function is the total element-wise entropy of

the input image sequence. The entropies are computed at each coordinate location and

then added together. Vedaldi et al. [174] improved the congealing approach by minimizing

the amount of complexity of the data set together with the amount of image distortion.

Joshi et al. [78] used a sum of SSD’s between all images and the reference one, which is

estimated simultaneously with registration. By choosing the SSD similarity measure the

reference image can be found analytically as an arithmetical average of the data set.

We would like to emphasize that most of the groupwise registration methods register

several images to build a statistical model of the population, while in this thesis we will

employ groupwise image registration for a different purpose. In Chapter 3, we will use

the groupwise approach to stabilize the time lapse video microscopy, which is necessary

for the analysis of moving cells. In Chapter 5, we we will sequentially estimate the non-

rigid transformation between 3D ultrasound volumes in order to track the myocardial

deformation.

2.6 Conclusion

In this chapter, we overviewed the general framework to image registration. We showed

that two fundamental approaches to image registration are feature- and intensity-based

ones. We overviewed the key components of image registration, including popular similar-

ity measures and transformation models, and showed the essential role of the regularization

theory in image registration.



Chapter 3

Image Registration by Minimization of

Residual Complexity

3.1 Introduction

Image registration is a method of aligning two images into the same coordinate system,

so that the aligned images can be directly compared, combined and analyzed. One of

the key components of image registration is the similarity measure between the images

that is optimized at the correct spatial alignment. Intensity-based similarity measures are

defined directly on image intensities, and often rely on the assumption of independence

and stationarity of the intensities from pixel to pixel [141, 68]. Such similarity measures,

including Sum-of-Squared-Differences (SSD), Correlation Coefficient (CC), Correlation

Ratio (CR) and Mutual Information (MI), are defined only between the corresponding

pixels without considering their spatial dependencies. Further, the intensity relationship

is assumed to be spatially stationary1. As a result, such measures are less robust and tend

to fail when registering two images corrupted by spatially-varying intensity distortion.

Real-world images often have spatially-varying intensity distortions. For instance,

brain MRI images often can be corrupted by slow-varying intensity bias fields [162]; visual-

band images can have illumination non-homogeneity and reflectance artifacts [68]. These

complex distortions do not obey the pixel-wise independence or stationarity assumption

and cannot be captured by simplistic intensity relationships. To illustrate this argument,

1Spatial stationarity implies the equal form of the probability density function regardless of any shift
in image spatial dimension.

28
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A

B

Figure 3.1: Gray stripe registration experiment.

consider aligning the two images in Figure 3.1. The smaller image (B) is a crop of the

larger image (A) corrupted by an additive spatially-varying intensity field (simulated by

a sum of random Gaussians). Figure 3.2 plots the values of several similarity measures,

including our new similarity measure called Residual Complexity (RC), with respect to

the horizontal shift of image B over A. Global similarity measures, including SSD, CC and

MI, do not give an optimum at the correct image alignment (zero translation), whereas

RC achieves a distinct optimum with a wide convergence range (Fig. 3.2). We also applied

the L1 and L2 norms to the difference of the gradient magnitude images, which provides a

correct optimum position, however optimization of such similarity measures is challenging

due to its uniformity even in a small vicinity from the optimum. In this example, global

similarity measures are not adequate to register the images. It would require our method

or local similarity measures to cope with the given spatially-varying intensity distortion.

The effect of slow-varying intensity distortions becomes even more apparent with dense

non-rigid registration, which estimates the transformation (e.g. displacement vector) at

every image pixel. Such methods require high accuracy and consistency of the similar-

ity measure at every pixel. Dense non-rigid registration using global criteria, e.g. MI

or normalized MI, often provides solutions with significant local errors in the estimated

transformation, as the similarity criteria attempts to reduce the size of locally corrupted

regions to increase the overall image similarity [162].

Among current methods to deal with spatially-varying intensity distortion are methods

based on simultaneous intensity correction and registration [54, 134, 109], on modeling

higher order pixel interdependencies [49, 180, 191], and on employing local similarity

criteria [2, 162, 184]. Such methods perform relatively well with spatially-varying intensity
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Figure 3.2: Plot of several similarity measures (RC, SSD, CC, MI, L1 and L2 norm
gradient magnitude) with respect to the translation of the smaller image over the larger
one in Figure 3.1. Zero translation corresponds to the accurate registration.

distorted images, but have disadvantages in their high computation complexity or presence

of multiple local minima of its similarity function.

We propose a new intensity-based similarity measure to deal with complex spatially-

varying intensity distortions. We start deriving the similarity measure by introducing an

intensity correction field that brings images into agreement in the intensity space. We learn

the adaptive regularization for the correction field. Analytically solving for the correction

field and adaptive regularization allows us to derive a similarity measure that is robust

to spatial intensity distortions. Interestingly, the final form of our similarity measure has

many analogies in several computer vision areas, such as image compression, sparse coding

and topographic learning. Our similarity measure can be interpreted as one that favors a

registration with minimum complexity of the residual (difference) image between the two

registered images. Thus, we name it the Residual Complexity (RC) similarity measure.

Intuitively, the residual image is expected to achieve the minimal complexity at the

correct spatial alignment. RC measures the sparseness of the residual image in terms

of the given basis functions. From this perspective, one can consider the SSD similarity

measure as the one that favors all zeros residual regardless of the spatial positions of

misaligned structures; a random simultaneous shuffle of pixel positions in both images
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does not change the SSD measure. In contrast to SSD, RC is minimized when the residual

image can be sparsely coded using only a few basis functions (e.g. favoring smooth or

piece-wise smooth residual). Such properties of RC allow robust alignment of the images

distorted by the spatially-varying intensity distortions.

3.2 Background

Definition of proper similarity measure is a challenging task in the presence of non-

stationary intensity distortions [68]. Many intensity-based similarity measures can be

unified within a maximum likelihood (ML) framework [141], which is to maximize the

joint probability of two images given the transformation. To simplify the likelihood func-

tion, it is commonly assumed that pixel-wise probabilities are independent and stationary,

which allows likelihood factorization, and the final intensity similarity measure is defined

only between the corresponding pixels. Random shuffle of all the corresponding image

pixels in both images does not change the value of such similarity functions, because it is

only pixel-wise defined and evaluated.

Spatial stationarity and pixel-wise independence are often not realistic in medical imag-

ing, especially in the presence of spatially-varying intensity distortions. To overcome inten-

sity non-stationarities, current registration methods include ones based on 1) simultaneous

intensity correction and registration, 2) on modeling higher order pixel interdependencies

and, 3) on employing local similarity estimation.

The first group of methods correct for intensity distortions simultaneously with image

registration [54, 134, 109]. Friston et al. [54] proposed to align the images using SSD, but

assumed that one of the images has to be intensity corrected with non-linear intensity

transformation and a convolution filter. The intensity correction function was defined as

a linear combination of some basis functions with spatially smooth-varying coefficients.

The convolution filter needed to be chosen manually for a specific problem or estimated

from the images. Modersitzki and Wirtz [109] used a similar approach, but defined a

multiplicative intensity correction function with a total variation regularizer. The authors

had to iteratively solve a non-linear system of partial differential equations simultaneously
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with respect to the transformation and intensity correction. In more recent work, Ash-

burner and Friston [7] proposed a probabilistic framework for joint registration, intensity

normalization and segmentation, using alternating optimization of corresponding param-

eters. Such combined approaches require ad hoc definition of the intensity normalization

function and can be more time consuming.

The second group of methods address the problem of non-stationary distortions from

a Bayesian perspective by using more complex probabilistic models, beyond simplistic

assumptions of pixel-wise independence and stationarity [49, 180, 191]. El-Baz et al. [49]

proposed to learn a prior appearance model of the first image using a Markov-Gibbs ran-

dom field with pairwise interaction, and then to transform the second image to maximize

its probability under the learned appearance model. Wyatt and Noble [180] proposed to

use Markov random fields (MRF) to iteratively segment the images and register the class

labels. Zheng and Zhang [191] proposed a MAP-MRF framework, which includes some

standard similarity measures and allows the definition of new ones by taking advantage

of local pairwise intensity interactions. Such MRF-based methods heavily rely on the

initialization of parameters [180] and defnition of local intensity interactions [191].

The last and the largest group of methods use local similarity measures or similarities

defined only on a small pixel neighborhood averaged over the image domain. The intu-

itive idea behind such approaches is that a spatially-varying intensity distortion is constant

within a small pixel neighborhood. Ardecani et al. [2] used a local correlation coefficient

similarity measure within a small window centered at every pixel and averaged over the

image domain. To overcome multiple local minima, the registration is carried at increasing

image sizes with block-matchin strategy for every pixel. Hermosillo et al. [67] proposed

a framework for local similarity measures, by localizing the correlation ratio and mutual

information similarity criteria. Studholme et al. [162] considered the spatial location as

third channel in estimation of mutual information. Their similarity measure was a sum of

regional MI criteria evaluated within small overlapping regions, centered on a sparse regu-

lar grid of points. The regional MI similarity functions were weighted proportional to the

size of the corresponding region. Regional MI showed improved registration performance

compared to the global MI in the presence of slow-varying intensity distortions. Similar
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to [162], Loeckx et al. [93] proposed to use the probability distributions conditioned on

spatial location, which resulted in a conditional MI similarity measure. Klein et al. [86]

also used local MI, defined as sum of MIs evaluated over small overlapping regions. The

overlapping regions were reinitialized randomly at every iterations, in contrast to pre-

defined region centers on a regular grid. They also adopted stochastic gradient descent

optimization algorithm, which often has faster convergence and is less likely to get stuck in

a local minima. Yi and Soatto [184] used local neighborhood NMI at each pixel (averaged

over the image domain), but combine it with the global NMI. The influence of local NMI

versus global NMI is weighted at every pixel proportional to the confidence of local image

agreement (given by the local NMI). Whereas global NMI has less local optima, local NMI

is less sensitive to spatially-varying intensity distortions.

Overall, the methods based on local similarity measures showed better performance

compared to global ones in the presence of non-stationary intensity distortions. The

problem of such local approaches is that local statistics are only effective within a small

image region, which created numerous local minima of the objective function. Also such

local estimates are much more sensitive to noise and outliers then global measures.

We introduce a new similarity measure that is closely related to the first group of

above-mentioned methods, of simultaneous image registration and intensity correction.

The unique feature of our approach is that we analytically solve for the intensity correction

field and eliminate it from the similarity function. Thus, the intensity correction field does

not appear in the final registration algorithm. We use the definition of the correction field

mostly to set up an elegant theoretical framework. From a Bayesian perspective, the

pixel-wise probabilities, by our method, are independent only conditioned on the intensity

correction field.

3.3 Method

Consider two images I and J to be aligned, assuming the following intensity relationship:

I = J(T ) + S + η (3.1)
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where S is an intensity correction field and η is zero mean Gaussian noise (note that for

any two images there always exists a correction field S, such that Equation 3.1 holds, if

the shape of S is not restricted). T is the geometric transformation that aligns I and

J . The maximum a posteriori (MAP) approach to estimate S and T is to maximize the

probability

P (T , S|I, J) ∝ P (I, J |T , S)P (T )P (S), (3.2)

where we assume the independence of T and S. The term P (I, J |T , S) is a joint likelihood

of the images, which leads to the familiar similarity measure of SSD [141]; P (T ) is a prior

used to regularize the transformation and P (S) ∝ e−β‖PS‖2
is a prior on S that reflects

our assumption on spatial intensity interactions [27]. Now, we also assume that pixel-wise

probabilities are i.i.d., but only given the correction field. Maximization of the posterior

probability in Equation 3.2 (excluding the transformation regularization2) is equivalent to

minimization of the following objective function:

E(S, T ) = ‖I− J(T ) − S‖2 + β ‖PS‖2 (3.3)

where I,J and S are in column-vector form, ‖·‖ is the Euclidean norm and P is a regu-

larization operator for S (we have not yet specified the form of P). We can analytically

solve for S, and thus eliminate it from the objective function. Equating the gradient to

zero, we solve for S:

− 2(I − J(T ) − S) + 2βPT PS = 0 (3.4)

S = (Id + βPT P)−1r (3.5)

where Id is the identity matrix and r = I− J(T ) is the residual vector (difference image)

that explicitly depends on the transformation T . The inverse always exists, because PT P

is positive semidefinite. Defining a new square symmetric matrix V = (Id + βPT P)−1

2Depending on the transformation model T , Equation 3.3 can also include the regularization on T

term, which comes from a prior P (T ).
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and substituting S back into the objective function (3.3), we obtain:

E(T ) = ‖r −Vr‖2 + β ‖PVr‖2 = rT
(

(Id−V)T (Id−V)
)

r + βrT
(

VTPT PV
)

r =

rT
(

Id− 2V + VT (Id + βPT P)V
)

r = rT (Id− 2V + V) r = rT (Id−V) r =

rT
(

Id− (Id + βPT P)−1
)

r (3.6)

To simplify further, consider the matrix PTP; it is square, symmetric and positive

semidefinite. Thus, it allows spectral decomposition:

PTP = QΛQT , Λ = d [λ1, .., λN ], λi ≥ 0 (3.7)

where Λ is the diagonal matrix of eigenvalues and Q is the eigenvector matrix. Substituting

Equation 3.7 in Equation 3.6, we can simplify the objective function greatly, because Q

is orthogonal, and the majority of multiplications and inversions are only with diagonal

matrices within.

E(T ) = rTQd

(

1 − 1

1 + βλi

)

QT r = rTQd

(

βλi

1 + βλi

)

QT r = rTQLQT r = rTAr.

(3.8)

where d() denotes a diagonal matrix. With A = QLQT we defined a new square, sym-

metric and positive semidefinite matrix with eigenvalues L:

L = d(l1, .., lN ) = d

(

βλi

1 + βλi

)

, 1 ≥ li ≥ 0 (3.9)

Note that eigenvalues of A are all nonnegative and bounded between [0, 1]. Now, if we

choose a particular regularization operator P, then A is known and we can minimize

E(T ) = rTAr = (I− J(T ))T A(I− J(T )) (3.10)

with respect to the transformation T . The matrix A is of size N 2, where N is a number

of image pixels. This equation can be interpreted as the squared Mahalanobis distance

between the two random vectors I and J of the same distribution with the inverse covari-

ance A. Alternatively, Equation 3.10 can be seen as the generalized distance measure,

with the distance metric A.
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So far we have not specified the eigenvectors and eigenvalues of the operator PTP =

QΛQT . A large class of operators PTP have the same eigenvector basis Q and differ only

in eigenvalues. In our method, we will choose a particular form of Q (see Section 3.4)

without specifying the eigenvalues, which are absorbed in a matrix L. Instead, we esti-

mate L within the optimization framework. Such adaptive regularization allows greater

flexibility with respect to the choice of P. Consider solving for the eigenvalues matrix L:

E(L, T ) = rT Ar = (QT r)TL(QT r), 1 ≥ li ≥ 0 (3.11)

A trivial, but not interesting, minimum for E(L) is with an all-zeros matrix L. To avoid

this, we impose a regularization on the eigenvalues L that prefers L to be flat (has relatively

equal elements) and large but still bounded in [0, 1]. The motivation is as follows. Notice

that if L is identity (or multiples of identity), then the inverse covariance A is also identity,

and the objective function simplifies to regular SSD:

E(L, T ) = (QT r)T I(QT r) = rT r = ‖r‖2 (3.12)

which is equivalent to no intensity correction (S = 0). SSD is a valid and optimal objective

function if the images are corrupted by i.i.d. Gaussian noise. The more the eigenspectra

(L) deviate from flat, the more off-diagonal elements appear in A, which means that the

noise is more correlated. As far as the true noise covariance is unknown, we want to assume

the least required correlation possible and thus a flat L. We define the regularization

term on L as a Kullback-Leibler (KL) divergence between a uniform distribution p and a

distribution given by eigenvalues L

R(L) = KL(p||L) =
∑

i

pi log
pi

li
+ li − pi (3.13)

where the last two terms is a correction factor, so that it applies to unnormalized dis-

tributions [106, 192]. KL-based regularization enforces closeness of the data to satisfy

an information measure rather than some distance measure (associated with its function

space) [137]. Also it guarantees positivity for the regularized solution, in contrast to

other regularizers, such as the L2 norm. Including the regularization term, our objective

function takes the form

E(L, T ) = (QT r)T L(QT r) + αR(L) (3.14)
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where α is a trade-off parameter. Differentiating the equation with respect to all li and

equating the derivative to zero, we obtain

(qT
i r)2 − α

1

li
+ α = 0 ⇒ li =

1

(qT
i r)2/α+ 1

(3.15)

where qi are eigenvectors in Q (Q = [q1, ..,qN ]). As a check we see that li are indeed

bounded within [0, 1]. Substituting this result back into Equation 3.14, we obtain

E(T ) =
N
∑

n=1

(

(qT
n r)2

(qT
nr)2/α+ 1

− α log
1

(qT
n r)2/α+ 1

+
α

(qT
n r)2/α + 1

)

=

αN − α

N
∑

n=1

log
1

(qT
nr)2/α+ 1

(3.16)

Ignoring the terms independent of T , we obtain a novel similarity measure

E(T ) =

N
∑

n=1

log((qT
n r)2/α+ 1); r = (I− J(T )) (3.17)

Note that even though we have derived it starting from solving for the correction field

and its regularizer, they are not explicitly present in the final similarity function form.

However, we still need to define the basis eigenvectors Q.

3.4 DCT basis

We proceed to specify Q. Recall that the functional form of basis Q initially comes from

the eigenvectors of PT P = QΛQT , where P is a regularization operator of the correction

field. We choose the discrete cosine transform (DCT) basis [161] as a functional form of

Q, because it corresponds to the discrete derivative-based regularizer P. In this case, the

matrix multiplication QT r is just a discrete cosine transform (DCT) of r, which can be

computed through FFT in O(N logN) [161].

Consider the first order derivative regularizer (finite differences matrix) P1, the cor-

responding self-adjoint operator P2 = PT
1 P1, which appears after taking the gradient

of ‖P1S‖2, is a second order derivative matrix (discrete Laplacian), which decomposes

as [161]:

P2 = PT
1 P1 = QΛQT (3.18)
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Figure 3.3: A comparison of the distributions of the DCT coefficients for the different
spatial translations (pixels) of the images shown in Figure 3.1. Here, we computed each
histogram from log(x2 + 1), where x are the 50 largest DCT coefficients of the residual
image for the given translation. The correct alignment (zero translation) corresponds to
the maximum number of zero coefficients. By enforcing sparseness on the DCT coefficients
of the residual image, the RC similarity measure achieves optimum at the correct spatial
alignment.

where Q is the DCT basis (real and orthogonal). Depending on a choice of boundary

conditions and boundary approximations, there are several DCT choices. The most com-

mon in image processing is DCT-2, which corresponds to Neumann midpoint boundary

conditions [161]. For instance, in 1D the DCT basis functions are

qn(k) =
wn√
N

cos

(

π(2k − 1)(n− 1)

2N

)

, (3.19)

for k = 1..N , n = 1..N , and

wn =











1 for n = 1,

√
2 for n = 2..N.

(3.20)

If we use the second order regularizer P2, the corresponding self-adjoint operator,

PT
2 P2, is the fourth order discrete derivative operator P4 = PT

2 P2 = QΛQTQΛQT =

QΛ2QT , with same set of eigenvectors as P2. Similarly, derivative operators of higher

orders and their linear combinations lead to the same eigenvectors Q and differ only in

eigenvalues.

3.5 Analysis of Residual Complexity

Low complexity of a signal expressed in the DCT basis corresponds to a small number

of non-zero coefficients. Our similarity measure penalizes small DCT coefficients dispro-

portionally stronger than the large ones. Thus, it encourages the presence of few large
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coefficients opposed to many small ones. Let x = QT r be the DCT coefficients of the

residual image. Intuitively, the image can be highly compressed if only a few coefficients

are non-zero. The term
∑

log(x2 + 1) indeed forces sparseness of the DCT coefficients of

the residual image, because the logarithm function decreases quickly to zero compaired to

its increase for larger values of the DCT coefficients.

Figure 3.3 shows the histogram of the DCT coefficients of the residual image for the

different spatial translation positions from the example in Figure 3.1. At the correct spatial

alignment, zero translation, the residual image has the maximum number of (almost)

zero DCT coefficients. By enforcing sparseness of the DCT coefficients, RC reaches the

optimum that corresponds to the correct alignment.

Several other sparseness measures have been proposed for image and speech analysis,

neural networks, independent component analysis, sparse coding, etc. [81, 125]. Popular

sparseness measures include:

• |x|b, for b ≤ 1

• log(x2 + 1)

• tanh(|ax|b), for b > 1

In our case the signal x represents the DCT coefficient of the residual image. Karvanen

and Chichocki showed no consistent advantage of one sparseness measure over the oth-

ers [81]. The L1 norm |x| perhaps is the most popular sparseness measure due to its simple

representation. The tanh function has a nice property of saturating to 1 when |x| → ∞.

Our sparseness measure log(x2 + 1) comes from the formulation and analytical derivation

described in Section 3.3.

Some other similarity measures, including SSD and entropy of the difference (EOD)

image [132], also define an objective function on the residual image. The SSD similarity

measure favors all zeros residual regardless of the spatial positions of misaligned structures.

EOD is optimized when the residual image is clustered into a small number of intensity

levels, regardless of the spatial position. In contrast to SSD and EOD, the RC similarity

measure is minimized when the residual image can be sparsely represented using only a
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few basis functions (e.g. favoring spatially smooth or piece-wise smooth residual). Such

properties of RC allow robust alignment of the images distorted by the spatially-varying

intensity distortions.

Analogy with sparse coding: In sparse coding [125], one tries to decompose images

in terms of basis functions W = [w1, ..,wN ] and sparse coefficients c = [c1, .., cN ]T , by

minimizing

E(W, c) =
∑

i

∥

∥xi −Wc
∥

∥

2
+ λ

∑

n

log(1 + (
cn
σ

)2) (3.21)

where xi are vectorized image patches, and the bases (W) are usually overcomplete and

nonorthogonal. The last term measures the sparseness of coefficients c [125], which is

similar to our objective function in Equation 3.17. Variations of this formulation lead to

principal components, independent components, or more specialized filters [178].

Welling et al. [178] proposed to learn the overcomplete set of filters J = [J1, ..,JN ],

using the product of experts (PoE) framework. PoE is an energy based method, which

defines a probability of x as a normalized product of all the distributions represented by

the individual experts. Unnormalized experts are chosen to be Student-t distributions,

because this distribution has heavy tails, which makes it a suitable candidate for modeling

constraints that are found in natural images. The energy of the PoE model is

E(α,J) = −
M
∑

i=1

αi log
1

(1 + 1
2 (JT

i x)2)
+ log(Z) (3.22)

which is again similar to our objective function in Equation 3.17, but for a different

purpose. The estimated filters Ji are further applied for image denoising and inpainting

tasks [178].

Whereas in sparse coding, the task is to search for sparse bases and coefficients to

represent the image, in image registration we are given the bases and looking for the

alignment where the residual image has sparse representation by the bases.
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3.6 Implementation

We model the transformation T using the Free Form Deformation (FFD) transformation

with 3 hierarchical levels of B-spline control points [146]. We use the gradient descent

optimization method to iteratively update the transformation parameters T . The pseudo-

code to compute the objective function and its gradient is

r = I− J(T ); c = dctn(r); E =
∑

log(c2/α + 1);

∇E = −idctn
(

2c/α

c2/α+ 1

)

∇J(T )
∂T
∂θ

where dctn and idctn are the forward and inverse multidimensional DCTs, ∇J is the

intensity image gradient and θ represents the transformation parameters. We set the

parameter α = 0.05. We have also used an addition regularization term for FFD; we

penalized the Euclidean distance between all the neighboring displacements of B-spline

control points to prevent unnatural wraps. The weight of the regularization term was set

to 0.01, which we empirically determined to give the best performance.

3.7 Results

We have implemented the algorithm in Matlab, and tested it on a AMD Opteron CPU

2GHz Linux machine with 4GB RAM. We show the performance of the Residual Com-

plexity similarity measure on several challenging synthetic and real-life examples. For the

synthetic experiments, we simulated additive and multiplicative spatially varying intensity

distortion fields. Such distortion fields are consistent with the common assumptions in

medical imaging, e.g. MRI can be corrupted a multiplicative bias field. We compare our

similarity measure with the local CC and local MI similarity measures implemented in

Elastix [84, 86].

3.7.1 Elastix Configuration

Elastix is an image registration software toolbox. It provides a broad range of intensity-

based registration options and settings. We used B-spline parametrization of non-rigid
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transformation with 3 hierarchical levels. We used mesh size of 48, 24 and 12 pixels

respectively for both our and Elastix implementations.

Elastix includes local similarity measure implementations (local CC and local MI),

which are well suited to cope with image intensity inhomogeneity and non-stationarity.

At each iteration Elastix randomly selects one voxel, and then selects a set of random

samples in a local square region around that voxel [84, 86]. From the local region, the

local similarity measure is computed and used to update the transformation using the

Gradient Descent optimization method. Empirically, we found a 15 × 15 region size with

1000 random samples3 to produce the best results in our synthetic experiments. We

set a maximum number of iterations of 2000 for each of Elastix hierarchical levels. The

maximum number of iteration was also the only stopping condition available in the Elastix

implementation. We have empirically found the 2000 iterations to be sufficient to achieve

an accurate registration result with no further improvements.

3.7.2 Synthetic Experiment 1

We used the BrainWeb T1-weighted MRI images [35]. We selected a 2D slice (216×180) for

the experiments. We normalized image intensities to the [0, 1] interval before registration.

We generated synthetic examples by introducing both geometric and intensity distortions

to the images. To simulate the geometric distortion, we perturbed a uniform grid of

points followed by the thin-plate spline (TPS) interpolation of the source image according

to the grid deformation to create the target images. The grid size was 7×7 and its random

perturbation was drawn from a zero-mean Gaussian with 3 pixels standard deviation (std).

To simulate the spatially-varying intensity distortion we corrupted both images according

to the formula

• I(x, y) = I(x, y) + 1
K

∑K
k=1 e

−‖[x;y]−µk‖2

2(30)2 ;

• Rescale I to [0, 1].

The last term models locally-varying intensity field with mixture of K randomly centered

Gaussians.

3A large number of samples has been chosen to ensure the full information use from the neighborhood.
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(a) reference (b) source (c) RC result (d) NMI result (e) local CC result

(f) reference bias (g) source bias (h) transformation(i) Preprocessing+SSD(j) local MI result

Figure 3.4: Synthetic experiment 1. We register the source image (b) onto the reference
image (a). (f,g) Intensity distortion fields added to the reference and source images respec-
tively. (d) The RC registration result. RC performs well. (d,e,i,j) Typical performance of
global NMI, local CC, local MI and Preprocessing+SSD respectively. NMI shows unsat-
isfactory result. Local CC and local MI performs satisfactorily with slight misalignments,
which we highlighted with contours (e,j). Preprocessing+SSD approach produces overall
satisfactory result, but with several misalignments of the smaller structures.

Figure 3.4 shows typical registration results for K = 2 (two Gaussians). The RC

similarity measure showed accurate performance. Global normalized MI showed poor per-

formance with significant misalignment. We have also tested some other global measures

including CC, CR and SSD, all of which performed poorly. Local similarity measures

performed well with a slight advantage of local CC over the local MI. Both local CC and

local MI accurately aligns most of the image regions. We also tested the performance of

SSD after both images were Gaussian high pass filtered with 10 std, which led to an overall

satisfactory alignment, except for some smaller structures that still remained misaligned.

To quantify the registration performance, we used two different error measures. The

first one is the transformation root mean square error (RMSE) between the true and

estimated transformations: εRMSE =
√

1
N

∑ ‖Ttrue − Testimated‖2. We did not include

the area outside the skull (roughly found by thresholding) for the transformation RMSE

computation to avoid the boundary error influence. The second error is the intensity



44

0 2 4 6 80.01

0.02

0.03

0.04

0.05

0.06

0.07

K

In
te

ns
ity

 R
M

SE

 

 

Residual Complexity
Local CC
Local MI
Preprocessing+SSD

0 2 4 6 80

0.5

1

1.5

2

2.5

K

Tr
an

sf
or

m
at

io
n 

RM
SE

 

 

Residual Complexity
Local CC
Local MI
Preprocessing+SSD

(a) Intensity error (b) Transformation error

Figure 3.5: Registration performances of RC, local CC, local MI and Preprocessing+SSD.
Both images were corrupted by additive intensity field (simulated by a mixture of K
random Gaussians) and scaled. RC performs comparably well, often better, with the
other tested similarity measures. Local CC and local MI produce similar satisfactory
results. Preprocessing+SSD approach showed the worst performance.

RMSE between the reference and the clean registered images, where the clean registered

image was obtained by applying the estimated transformation T to the source image

without intensity distortion.

We performed 120 automatic registrations for K = [1..6]. The random intensity and

spatial distortions were reinitialized at every run. Figure 3.5 demonstrates the registra-

tion performances of RC, local CC, local MI and Preprocessing+SSD. For the Preprocess-

ing+SSD, we preprocessed the images with a Gaussian high pass filter (10 std) followed

by SSD-based registration. RC performed well and outperformed the local CC and local

MI similarity measures. All tested similarity measures produced satisfactory results with

subpixel accuracy. Nevertheless, visually local CC and local MI tend to align all image

regions except for one or two problematic regions, which remained misaligned. The aver-

age processing time with RC was 20 sec for a pair of images, whereas local MI and local

CC Elastix implementations took around 60 sec.

We also tested the sensitivity of RC with respect to the choice of the α parameter. We

conducted 50 runs with random deformation and intensity distortion (K = 3) initializa-

tions for each of α = [0.01, 3]. Figure 3.6 shows the mean and standard deviation of the

Transformation RMSE obtained for various α. Overall, the values of α in a range [0.01, 3]
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Figure 3.6: Transformation error with respect to the different parameter α settings.

produce similar accurate registration results with a small advantage when α = 0.05.

3.7.3 Synthetic Experiment 2

We corrupted both images with a multiplicative intensity field, otherwise using similar

set-up as in the synthetic experiment 1. We simulated the spatially-varying multiplicative

intensity distortion according to the formula

• I(x, y) = I(x, y) ·
(

0.2 + 1
K

∑K
k=1 e

−‖[x;y]−µk‖2

2(30)2

)

;

• Rescale I to [0, 1].

Figure 3.7 demonstrates the registration performances of RC, local CC, local MI and

Preprocessing+SSD. The registration performances are comparable with a slight advan-

tage of RC, and definite disadvantage of Preprocessing+SSD. Interestingly local MI shows

a comparable performance to RC in terms of transformation RMSE, but larger error in

terms of intensity RMSE between the clean reference and the final registered images.

Visually both RC, local CC and local MI produced accurate results.

3.7.4 Retina Images

We registered retina images taken 2 years apart [189]. Retinal images are used in ophthal-

mology to assess the evolution of illness, e.g. diabetic retinopathy [148, 123]. The images

show the vascular tree of the eye, which permits to determine the areas where blood flow

seems occluded or leaking. For this, the images have to be aligned first.
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(a) Intensity error (b) Transformation error

Figure 3.7: Registration performances of RC, local CC, local MI and Preprocessing+SSD.
Both images were corrupted by multiplicative intensity field. (simulated by a mixture of K
random Gaussians) and scaled. Artificial spatial and intensity distortions were reinitialized
at every run. RC performs comparably well, often better, with the other tested similarity
measures in almost all cases.

Retina images are challenging to register due to multiple intensity artifacts including

non-uniform background and blood vessels (with intensity variations and changed struc-

ture) [123]. Most of the retina registration methods are feature-based [148, 189]; they

extract the vascular structure or landmarks and align them. Figure 3.8 demonstrates the

RC performance on 2 retina images (200 × 250 pixels). We achieved accurate registration

results as demonstrated through composite views. We did not do image preprocessing or

normalization and did not excluded the background outside the retina circle. We used the

images as they appear in the figure and did no rigid pre-registration beforehand. Both

global and local CC and MI similarity measures (see Elastix configuration in Section 3.7.1)

produced similar registration results, but only after we defined the region of interest to

exclude the area outside the retina circle and after image filtering and heavy regularization

of the transformation (to the extent where the transformation is almost rigid).

3.7.5 Iris Images

We stabilize a video sequence of microscopic iris images through frame-by-frame regis-

tration. This was necessary to remove the severe jitter and deformation across frames

in order to be able to track leukocyte motion [159]. The deformation between frames

is highly nonlinear. Notice the intensity variation across the images as well as intensity
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(a) reference (b) source (c) composite before

(d) composite after (e) registered (f) composite contour

Figure 3.8: Registration of retina images. (a) reference image; (b) source image (taken 2
years prior); (c) composite view before registration; (d) composite view after registration;
(e) registered source image; (f) composite view through contour overlap after the registra-
tion. The RC registration result is accurate; vessel structures are aligned despite intensity
distortions and artifacts.

artifacts from moving cells, nonconsistent vessel reflections, etc. Our algorithm proved

accurate and effective for these images (Figure 3.9). Other similarity measures, including

local CC and local MI showed poor performance on iris images without preprocessing,

even though different combinations of parameters were tried.

3.7.6 3D Echocardiography

We sequentially registered a set of 3D echo images (24 frames 192×274×248 pixels) to find

a displacement field of imaged area through time [115]. The idea is to register the next 3D

volume onto the previous, sequentially, in order to track the underlying myocardial motion.

We have used the similar set up for each pair of 3D volumes as described in Section 3.6.

The estimated transformation field can be used to study the myocardial deformation.

We acquired the 3D echo sequences using a Philips iE33 with EKG gating from openchest

piglets. Figure 3.10 shows the estimated motion of LV superimposed on the 3D echo images

and the displacement vector field visualized at the LV endocardium position between

end diastole and end systole volumes. We used a groundtruth sonomicrometer motion
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reference source

composite before composite after

Figure 3.9: Registration of two iris images. Notice the intensity variation across the images
as well as intensity artifacts including moving cells and nonconsistent vessel reflections.
Our method accurately registers the images without any additional preprocessing.

to validate the algorithm. The estimated motion showed a high correlation with the

groundtruth one, which shows the high accuracy of our method [115].

3.8 Non-rigid Stabilization of Time Lapse Videos

In this section we introduce a system for non-rigid stabilization of time lapse videos. The

RC similarity measure plays a key role in stabilization of such videos, which have many

illumination artifacts and slow-varying intensity distortions.

The videos were taken of sedated murine eyes infected with uveitis (inflammation of

the uveal tract), with static microscopic camera looking at a portion of the iris. Videos

were taken at 3 frames per minute rate for 30 to 90 minutes. The images are monotone

of size 720 × 480. The motion artifacts are caused by wandering of the eye, dilation and

contraction of the pupil, head and respiration motion, and sometimes refocusing of the

camera during imaging. The net result is jitter and distortion (both spatial and intensity)

in the image plane, which subsequently obscure the T-cell motion.

The motion patterns of leukocytes, specifically T-cells, are directly related to the

cellular and chemical environment at the site of eye inflammation and can reveal underlying
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a
volume 1 volume 8 volume 13 volume 18 volume 24 displ. ED-ES

Figure 3.10: Estimated motion of the LV contour found during the cardiac cycle (24
consecutive volumes). LV achieves the maximum contraction at volume 13, then the LV
dilates (diastolic phase) up to the volume 22 and starts contracting again (systolic phase).
The last plot shows the displacement fields on LV endocardium between end diastole
(ED) and end systole (ES) volumes. We validate the accuracy of RC registration with
groundtruth motion of implanted sonomicrometers. The RC registration-based estimated
motion is accurate.

disease mechanisms [10, 9]. Visualization of T-cell behavior in disease models is made

possible by the state-of-the-art intravital microscopy technology which can record cellular

activity in the eye in vivo without resorting to any surgical trauma [144]. These records

(videos) have revealed patterns of T-cell migration in the ocular uveal tract, indicating a

complexity in immune responses that has not been closely examined before. By studying

these microscopic videos, we can expect to characterize the migration of T-cells within the

iris stroma in disease models.

Groupwise image registration (see Sec. 2.5) is needed to stabilize and rectify the image

sequences, which will pave the way for subsequent T-cell tracking. The deformation across

frames are locally non-linear, and it is not feasible to obtain an accurate closed-form

deformation model by examining the image formation process. In addition, the motion

artifacts can cause the region on the iris being imaged to go in and out of depth of field

of the camera, resulting in local blurring and local intensity instability.

The first step in video stabilization is to compensate for global motion. In partic-

ular we compensate for the translation, because our videos have significant view-area

shifts between the frames. We find the translation between every two consecutive pair of

video frames and then transform all image frames into the same coordinate system. The

translation vector for a particular image is given by a cumulative sum of all inter-frame

translations prior to the given frame. To find the translation between two images we

compute the normalized cross-correlation function, which is the normalized CC computed
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(frame 1) (frame 13) (frame 25)

(frame 32) (frame 98) (Average)

Figure 3.11: Typical translation compensated image frames from the first video and the
average image. Notice local intensity inconsistency, blurring and moving cells. The av-
erage image has blurred boundaries and a low contrast, which indicates non-rigid image
misalignments.

for all (x, y) image shifts. We use the coordinates of the maximum of the computed cross-

correlation function as the translation vector. Such an exhaustive search is much more

reliable compared to the gradient based optimization. As far the parameter space is small

(x and y shift in 2D plane), we can compensate for the translation fast. For a video of a

100 frames, the translation comensation takes around 1 minute. Figure 3.11 shows several

translation compensated video frames of the example video 1.

The second step in video stabilization is to comensate for local deformations. We use

the sequential image registration approach. We first register and transform the second

image frame into the coordinate system of the first one. Then, we use the obtained

transformation as the initialization to search for the transformation that aligns the third

frame to the (registered) second frame. Similarly, we can sequentially map all image

frames into the same coordinate system of the first frame. We emphasize that we do not

register all image frames to the first one, we register the consecutive frames and then

map the result into the coordinate system of the first one. For the inter-frame (pair-wise)

registration, we use FFD parametrization with 3 hierarchical levels and RC similarity
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(frame 1) (frame 13) (frame 25)

(frame 32) (frame 98) (Average)

Figure 3.12: The registered image frames from the first video after applying the trans-
formation found using the groupwise non-rigid registration. The average image has much
sharper boundaries than prior to registration, which indicates accurate image alignment.

measure. Because the image frames are large, 720 × 480, registration of the 100 frames

sequence takes around 1 hour. Often the finall stabilization result is sufficiently accurate.

However, in some cases an additional fine tuning is required.

To fine tune the non-rigid stabilization result, we proceed to register all image frames

onto the average (mean) image. We compute the arithmetical mean for each of the image

pixels. Only the images whose domain (visible area) exist for a given pixel are used

during averaging. We then register all image frames onto the average image, update

the average and continue in this fashion until convergence. We use the RC similarity

measure. Such groupwise non-rigid registration is accurate because all image frames have

full overlap with the average image. Also the average image has less noise and little

artifacts, such as moving cells, due to averaging. Such an “all-to-the-mean” registration

can be very computationally expensive, as it can take many cycles for the average image to

converge. Without preliminary sequential non-rigid registration, such groupwise approach

takes around 10 hours. After pre-registration, it takes only around 1 hour for a video of

100 frames.

Figure 3.12 demonstrates the non-rigidly registered image frames from the first video,
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(frame 1) (frame 2) (frame 5)

(frame 20) (frame 24) (Average)

Figure 3.13: Typical image frames from the second video and the average image. Notice
local intensity inconsistency, blurring and moving cells. The average image has blurred
boundaries and a low contrast, which indicates non-rigid image misalignment.

as well as the average image. Notice that the average image after the registration have

sharp vessel structures with little blurring, which shows the accuracy of the registration.

We also show the non-rigid stabilization of the second video example. Figure 3.13 shows

several frames from the second video after translation compensation. Notice, high local

area deformations, which results in significant average image blur. Figure 3.14 demon-

strates the accurate non-rigid stabilization result, because the average image has sharp

structures with little blur. We emphasize that utilization of the RC similarity measure in

stabilization of such microscopic videos was vital. We have also tested this stabilization

approach with other similarity measures, including SSD, SAD and CC, after advanced

preprocessing to remove image artifacts and normalize the intensity. Only the RC allows

to achieve stable and accurate registration result.

3.9 Discussion and Conclusion

We have derived a novel similarity measure for image registration, which accounts for

spatially-varying intensity distortions. The similarity measure intuitively measures the
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(frame 1) (frame 2) (frame 5)

(frame 20) (frame 24) (Average)

Figure 3.14: The registered image frames from the second video after applying the trans-
formation found during the group-wise non-rigid registration. The average image has much
sharper boundaries than prior to registration, which indicates accurate image alignment.

coding complexity of the residual image. This measure produces accurate registration

results on both artificial and real-world problems that we have tested, and outperforms

other state-of-the-art similarity measures, in term of accuracy, in these cases.

The key advantage of our new similarity measure is its simplicity in terms of both

computational complexity (O(N logN)) and implementation. The similarity measure and

its pixel-wise gradient can be implemented within several Matlab lines. Nevertheless,

our new similarity measure shows robust and accurate performance on real-word tested

examples corrupted by severe intensity distotion fields. The limitation of our approach is

that it is only applicable to areas where images are from the same modality.

Our similarity measure requires initialization of the coefficient α. For the examples we

tested, we found its value in a range [0.01, 3] to give accurate results with no significant

difference in performance. Generally smaller values of α forced sparser coefficients, which

resulted in more accurate registration, but also lead to more local minima of the similarity

measure.
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Our underlying assumption on the correction field was a simple additive one. Nev-

ertheless, our similarity measure showed robust performance for both synthetic and real

examples, where the intensity correction function can be complex. Our explanation for

the accurate performance of RC in such cases is that even when the real residual image is

complex, its form still has to be simpler (represented sparsely by the basis functions) than

the one with inaccurate registration. Thus, RC will still work with some complex inten-

sity distortions. We discuss the future directions to improve the RC similarity measure in

Section 6.2.



Chapter 4

Point Set Registration: Coherent Point

Drift

Point set registration is a key component in many computer vision tasks. The goal of

point set registration is to assign correspondences between two sets of points and to re-

cover the transformation that maps one point set to the other. Multiple factors, including

an unknown non-rigid spatial transformation, large dimensionality of point set, noise and

outliers, make the point set registration a challenging problem. We introduce a prob-

abilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid and

non-rigid point set registration. We consider the alignment of two point sets as a proba-

bility density estimation problem. We fit the Gaussian mixture model (GMM) centroids

(representing the first point set) to the data (the second point set) by maximizing the

likelihood. We force the GMM centroids to move coherently as a group to preserve the

topological structure of the point sets. In the rigid case, we impose the coherence con-

straint by re-parametrization of GMM centroid locations with rigid parameters and derive

a closed form solution of the maximization step of the EM algorithm in arbitrary di-

mensions. In the non-rigid case, we impose the coherence constraint by regularizing the

displacement field and using the variational calculus to derive the optimal transformation.

We also introduce a fast algorithm that reduces the method computation complexity to

linear. We test the CPD algorithm for both rigid and non-rigid transformations in the

presence of noise, outliers and missing points, where CPD shows accurate results and

outperforms current state-of-the-art methods.

55
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4.1 Introduction

Registration of point sets is a key component in many computer vision tasks including

stereo matching, content-based image retrieval, image registration and shape recognition.

The goal of point set registration is to assign correspondences between two sets of points

and/or to recover the transformation that maps one point set to the other. For example, in

stereo matching, in order to recover depth and infer structure from a pair of stereo images,

it is necessary to first define a set of points in each image and find the correspondence

between them. An example of point set registration problem is shown in Fig. 4.1. The

“points” in a point set are often features extracted from an image, such as the locations

of corners, boundary points or salient regions. The points can represent both geometric

and intensity characteristics of an image.

Practical point set registration algorithms should have several desirable properties:

(1) Ability to accurately model the transformation required to align the point sets with

tractable computational complexity; (2) Ability to handle possibly high dimensionality of

the point sets; (3) Robustness to degradations such as noise, outliers and missing points

that occur due to imperfect image acquisition and feature extraction.

The transformation usually falls into two categories: rigid or non-rigid. A rigid trans-

formation allows only for translation, rotation and scaling. The simplest non-rigid trans-

formation is affine, which also allows anisotropic scaling and skews. Non-rigid transfor-

mation occurs in many real-world problems including deformable motion tracking, shape

recognition and medical image registration. The true underlying non-rigid transformation

model is often unknown and challenging to model. Simplistic approximations of the true

non-rigid transformation, including piece-wise affine and polynomial models, are often in-

adequate for correct alignment and can produce erroneous correspondences. Due to the

usually large number of transformation parameters, the non-rigid point set registration

methods tend to be sensitive to noise and outliers and are likely to converge into local min-

ima. They also tend to have a high computational complexity. A practical non-rigid point

set registration method should be able to accurately model the non-rigid transformation

with tractable computational complexity.
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X: −0.1183
Y: 2.111

?

Figure 4.1: The point set registration problem: Given two sets of points, assign the
correspondences and the transformation that maps one point set to the other.

Multidimensional point sets are common in many real world problems. Most current

rigid and non-rigid point sets registration algorithm are well suited for 2D and 3D cases,

but their generalization to higher dimensions are not always trivial. Furthermore, degra-

dations such as noise, outliers and missing points significantly complicates the problem.

Outliers are the points that are incorrectly extracted from the image; outliers have no

correspondences in the other point set. Missing points are the features that are not found

in the image due to occlusion or inaccurate feature extraction. A point set registration

method should be robust to these degradations.

We present a robust probabilistic multidimensional point set registration algorithm

for both rigid and non-rigid transforms. We consider the alignment of two point sets as

a probability density estimation problem, where one point set represents the Gaussian

Mixture Model (GMM) centroids, and the other one represents the data points. We fit

the GMM centroids to the data by maximizing the likelihood. At the optimum, the point

sets become aligned and the correspondence is obtained using the posterior probabilities of

the GMM components. Core to our method is to force GMM centroids to move coherently

as a group, which preserves the topological structure of the point sets. We impose the

coherence constraint by explicit re-parametrization of GMM centroid locations (for rigid

and affine transformations) or by regularization of the displacement field (for smooth non-

rigid transformation). We also show how the computational complexity of the method

can be reduced to linear, which makes it applicable for large data sets. The rest of

the chapter is organized as follows. In Section 4.2, we overview the current rigid and

non-rigid point set registration methods and state our contributions. In Section 4.3, we

formulate a probabilistic point set registration framework. In Sections 4.4 and 4.5, we
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describe our algorithms for rigid, affine and non-rigid registration cases, and relate them

to existing works. In Section 4.6, we discuss the computational complexity of the method

and introduce its fast implementation. In Section 4.7, we evaluate the performance of our

algorithm. Section 4.8 concludes with some discussions.

4.2 Previous Work

Many algorithms exist for rigid and for non-rigid point set registration. They aim to re-

cover the correspondence or the transformation required to align the point sets or both.

Many algorithms involve a dual-step update, iteratively alternating between the corre-

spondence and the transformation estimation. Here, we briefly overview the rigid and

non-rigid point set registration methods and state our contributions.

4.2.1 Rigid Point Set Registration Methods

Iterative Closest Point (ICP) algorithm, introduced by Besl and McKay [13] and Zhang [190],

is the most popular method for rigid point set registration due to its simplicity and low

computational complexity. ICP iteratively assigns correspondences based on the closest

distance criterion and finds the least-squares rigid transformation relating the two point

sets. The algorithm then redetermines the correspondences and continues until it reaches

the local minimum. Many variants of ICP have been proposed that affect all phases of the

algorithm from the selection and matching of points to the minimization strategy [53, 147].

ICP requires that the initial position of the two point sets be adequately close.

To overcome the ICP limitations, many probabilistic methods were developed [136, 96].

These methods use soft-assignment of correspondences that establishes correspondences

between all combinations of points according to some probability, which generalizes the

binary assignment of correspondences in ICP. Among these methods are Robust Point

Matching (RPM) algorithm introduced by Gold et al. [56], and its later variants [136, 32].

In [31] it was shown that in RPM alternating soft-assignment of correspondences and

transformation is equivalent to the Expectation Maximization (EM) algorithm for GMM,

where one point sets is treated as GMM centroids with equal isotropic covariances and the
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other point set is treated as data points. In fact, several rigid point set methods, including

Joshi and Lee [77], Wells [179], Cross and Hancock [41], Luo and Hancock [96, 98], McNeill

and Vijayakumar [103] explicitly formulate point set registration as a maximum likelihood

(ML) estimation problem, to fit the GMM centroids to the data points. These methods

re-parameterize GMM centroids by a set of rigid transformation parameters (translation

and rotation). The EM algorithm used for optimization of the likelihood function consists

of two steps: E-step to compute the probabilities, M-step to update the transformation.

Common to such probabilistic methods is the inclusion of an extra distribution term to

account for outliers (e.g. large Gaussian [136] or uniform distribution [179]) and deter-

ministic annealing on the Gaussian width to avoid poor local minima. These probabilistic

methods perform better than conventional ICP, especially in presence of noise and outliers.

Another class of rigid point sets registration methods are the spectral methods. Scott

and Longuet-Higgins [151] introduced a non-iterative algorithm to associate points of

two arbitrary patterns, exploiting some properties of Gaussian proximity matrix (Gram

matrix) of point sets. The algorithm works well with translation, shearing and scaling

deformations, but performs poorly with non-rigid transformations. Li and Hartley showed

that correspondence and transformation are two factors of Gram matrices, and can be

found iteratively using Newton-Schulz factorization [89]. This method performs well for

moderate linear transformations. In spite of its elegance, the large computational effort

required for spectral methods prohibits its wide applicability. There are a few other

nonspectral methods worth mentioning. Ho et al. [70] proposed an elegant non-iterative

algorithm for 2D affine registration by searching for the roots of the associated polynomials.

Unfortunately this method does not generalize to higher dimensions. Belongie et al. [12]

introduced the “shape context” descriptor, which incorporates the neighborhood structure

of the point set and thus helps to recover the correspondence between the point sets.

Our approach to the rigid point set registration is probabilistic and most closely re-

lated to the works of Rangarajan et al. [136], Wells [179] and Luo and Hancock [98].

Despite extensive work in rigid probabilistic registration, none of the methods, to our best

knowledge, provides a closed form solution to the maximization step (M-step) of the EM

algorithm for a general multidimensional case. The fact that the rotation matrix should
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be constrained to be orthogonal and to have a positive determinant further complicates

its estimation. Rangarajan and collaborators [136] showed the solution for 2D case only,

where rotation is parametrized by a single angle. In higher dimensions the closed form so-

lution with Euler angles parametrization is not feasible. Luo and Hancock [96, 98] find the

rotation matrix through singular value decomposition (SVD). They ignored some terms

of the objective function, which leads to only an approximate solution. We shall derive

the exact closed form solution (M-step) for the rigid point set registration and discuss its

difference from the related methods in Section 4.4.

4.2.2 Non-rigid Point Set Registration Methods

Earlier works on non-rigid point set registration include Hinton et al. [69, 139], who used

the probabilistic GMM formulation. The GMM centroids are uniformly positioned along

the contour (modeled using splines), which allows for non-rigid transformations. In prac-

tice, the method is applicable only to contour-like point sets. One of the most popular

non-rigid point set registration method is by Chui and Rangarajan [32]. They proposed

to use Thin Plate Spline (TPS) [176, 17] parametrization of the transformation, follow-

ing RPM, which results into the TPS-RPM method. Similar to the rigid case, they use

deterministic annealing and alternate updates for soft-assignment and TPS parameters

estimation. They also showed that TPS-RPM is equivalent (with several modifications)

to EM for GMM [31]. Tsin and Kanade [170] proposed a correlation-based approach to

point set registration, which was later improved by Jian and Vemuri [76]. The method con-

siders the registration as an alignment between two distributions, where each of the point

sets represents the GMM centroids. One of the point sets is parametrized by rigid/affine

parameters (in rigid/affine case) or TPS (in non-rigid case). The transformation param-

eters are estimated to minimize the L2 norm between the distributions. These methods

all use explicit TPS parametrization, which is equivalent to a regularization of second

order derivatives of the transformation [176, 17]. The TPS parametrization does not exist

when the dimension of points is higher than three, which limits the applicability of such

methods.

Huang et al. [73] proposed to implicitly embed the shape (or point sets in our case)
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into distance transform space, and align them similar to non-rigid image registration

algorithms. The authors use sum-of-squared-differences similarity measure between the

embedded spaces and incremental free form deformation (FFD) to parameterize the trans-

formation. The method performs well on relatively simple data sets.

Finally, we introduced the Coherent Point Drift (CPD) algorithm [113, 114] for non-

rigid point sets registration. The algorithm regularizes the displacement (velocity) field

between the point sets following the motion coherence theory (MCT) [187, 188]. Using

variational calculus, we obtained that the optimal displacement field has an elegant kernel

form in multiple dimensions. We shall discuss and compare our method to the works of

Chui and Rangarajan [32], and Jian and Vemuri [76] in Section 4.5.

4.3 General Methodology

We consider the alignment of two point sets as a probability density estimation problem,

where one point set represents the Gaussian mixture model (GMM) centroids, and the

other one represents the data points. At the optimum, two point sets become aligned and

the correspondence is obtained using the maximum of the GMM posterior probability for

a given data point. Core to our method is to force GMM centroids to move coherently as

a group to preserve the topological structure of the point sets. Throughout the chapter

we use the following notations:

• D - dimension of the point sets,

• N,M - number of points in the point sets,

• XN×D = (x1, . . . ,xN )T - the first point set (the data points),

• YM×D = (y1, . . . ,yM )T - the second point set (the GMM centroids),

• T (Y, θ) - Transformation T applied to Y, where θ is a set of the transformation

parameters,

• I - identity matrix,

• 1 - column vector of all ones,
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• d(a) - diagonal matrix formed from the vector a.

We consider the points in Y as the GMM centroids, and the points in X as the data points

generated by the GMM. The GMM probability density function is

p(x) =
M+1
∑

m=1

P (m)p(x|m) (4.1)

where p(x|m) = 1
(2πσ2)D/2 exp− ‖x−ym‖2

2σ2 . We also added an additional uniform distribution

p(x|M + 1) = 1
N to the mixture model to account for noise and outliers. We use equal

isotropic covariances σ2 and equal membership probabilities P (m) = 1
M for all GMM

components (m = 1, . . . ,M). Denoting the weight of the uniform distribution as w,

0 ≤ w ≤ 1, the mixture model takes the form

p(x) = w
1

N
+ (1 − w)

M
∑

m=1

1

M
p(x|m) (4.2)

We re-parameterize the GMM centroid locations by a set of parameters θ and esti-

mate them by maximizing the likelihood, or equivalently by minimizing the negative

log-likelihood function

E(θ, σ2) = −
N
∑

n=1

log

M+1
∑

m=1

P (m)p(xn|m) (4.3)

where we make the i.i.d. data assumption. We define the correspondence probability

between two points ym and xn as the posterior probability of the GMM centroid given

the data point: P (m|xn) = P (m)p(xn|m)/p(xn).

We use the Expectation Maximization (EM) algorithm [44, 14] to find θ and σ2. The

idea of EM is first to guess the values of parameters (“old” parameter values) and then

use the Bayes’ theorem to compute a posteriori probability distributions P old(m|xn) of

mixture components, which is the expectation or E-step of the algorithm. The “new”

parameter values are then found by minimizing the expectation of the complete negative

log-likelihood function [14]

Q = −
N
∑

n=1

M+1
∑

m=1

P old(m|xn) log(P new(m)pnew(xn|m)) (4.4)
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with respect to the “new” parameters, which is called the maximization or M-step of the

algorithm. The Q function, which we call the objective function, is also an upper bound of

the negative log-likelihood function in (4.3). The EM algorithm proceeds by alternating

between E- and M-steps until convergence. Ignoring the constants independent of θ and

σ2, we rewrite (4.4) as

Q(θ, σ2) =
1

2σ2

N
∑

n=1

M
∑

m=1

P old(m|xn) ‖xn − T (ym, θ)‖2 +
NPD

2
log σ2 (4.5)

where NP =
∑N

n=1

∑M
m=1 P

old(m|xn) ≤ N (with N = NP only if w = 0) and P old denotes

the posterior probabilities of GMM components calculated using the previous parameter

values:

P old(m|xn) =
exp

− 1
2

‚

‚

‚

‚

xn−T (ym,θold)

σold

‚

‚

‚

‚

2

∑M
k=1 exp

− 1
2

‚

‚

‚

‚

xn−T (yk,θold)

σold

‚

‚

‚

‚

2

+c

(4.6)

where c = (2πσ2)D/2 w
1−w

M
N . Minimizing the function Q, we necessarily decrease the

negative log-likelihood function E, unless it is already at a local minimum. To proceed,

we specify the transformation T for rigid, affine and non-rigid point set registration cases

separately.

4.4 Rigid & Affine Point Set Registration

For rigid point set registration, we define the transformation of the GMM centroid loca-

tions as T (ym;R, t, s) = sRym+t, where RD×D is a rotation matrix, tD×1 is a translation

vector and s is a scaling parameter. The objective function (4.5) takes the form:

Q(R, t, s, σ2) =
1

2σ2

M,N
∑

m,n=1

P old(m|xn) ‖xn − sRym − t‖2 +
NPD

2
log σ2,

s.t. RTR = I, det(R) = 1 (4.7)

Note that the first term is similar to the one in the absolute orientation problem [5, 173],

which is defined as min
∑N

n=1 ‖xn − (sRyn + t)‖2 in our notations. Equation (4.7) can be

seen as a generalized weighted absolute orientation problem, because it includes weighted

differences between all combinations of points. The exact minimization solution of the
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objective function (4.7) is complicated due to the constraints on R. To obtain the closed

form solution we shall use Lemma 1 [112]:

Lemma 1. Let RD×D be an unknown rotation matrix and AD×D be a known real square

matrix. Let USVT be a Singular Value Decomposition (SVD) of A, where UUT =

VVT = I and S = d(si) with s1 ≥ s2 ≥, . . . ,≥ sD ≥ 0. Then the optimal rotation

matrix R that maximizes tr (ATR) is R = UCVT , where C = d(1, 1, . . . , 1,det(UVT )).

To apply this lemma, we need to simplify the Q function to a form equivalent to

tr (AT R). First, we eliminate translation t from Q. Taking partial derivative of Q with

respect to t and equate it to zero, we obtain:

t =
1

NP

XT PT1 − sR
1

NP

YTP1 = µx − sRµy,

where the matrix P has elements pmn = P old(m|xn) in (4.6) and the mean vectors µx and

µy are defined as:

µx = E(X) =
1

N
XTPT 1, µy = E(Y) =

1

N
YTP1.

Substituting t back into the objective function and rewriting it in matrix form, we obtain

Q =
1

2σ2
[tr(X̂T

d(PT 1)X̂) − 2s tr(X̂TPT ŶRT )+

s2 tr(ŶT
d(P1)Ŷ)] +

NPD

2
log σ2 (4.8)

where X̂ = X − 1µT
x and Ŷ = Y − 1µT

y are the centered point set matrices. We use the

fact that trace is invariant under cyclic matrix permutations and R is orthogonal. We can

rewrite (4.8) as Q = −c1 tr((X̂T PT Ŷ)TR) + c2, where c1, c2 are constants independent of

R and c1 > 0. Thus minimization of Q with respect to R is equivalent to maximization

of

max tr(ATR),A = X̂TPT Ŷ, s.t. RTR = I, det(R) = 1.

Now we are ready to use Lemma 1, and the optimal R is in the form

R = UCVT ,where USVT = svd(X̂T PT Ŷ) (4.9)

and C = d(1, .., 1,det(UVT )). To solve for s and σ2, we equate the corresponding partial

derivative of (4.8) to zero. Solving for R, s, t, σ2 is the M-step of the EM algorithm. We

summarize the rigid point sets registration algorithm in Fig. 4.2.
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Rigid point set registration algorithm:

• Initialization: R = I, t = 0, s = 1, 0 ≤ w ≤ 1

σ2 = 1
DNM

∑N
n=1

∑M
m=1 ‖xn − ym‖2

• EM optimization, repeat until convergence:
• E-step: Compute P,

pmn = exp
− 1

2σ2 ‖xn−(sRym+t)‖2

PM
k=1 exp

− 1
2σ2 ‖xn−(sRyk+t)‖2

+(2πσ2)D/2 w
1−w

M
N

• M-step: Solve for R, s, t, σ2:
· NP = 1T P1, µx = 1

NP
XTPT1, µy = 1

NP
YTP1,

· X̂ = X− 1µT
x , Ŷ = Y − 1µT

y ,

· A = X̂TPT Ŷ, compute SVD of A = USVT ,
· R = UCVT ,where C = d(1, .., 1,det(UVT )),

· s = tr(AT R)

tr(ŶT d(P1)Ŷ)
,

· t = µx − sRµy,

· σ2 = 1
NPD (tr(X̂T d(PT 1)X̂) − s tr(ATR)).

• The aligned point set is T (Y) = sYRT + 1tT ,
• The probability of correspondence is given by P.

Figure 4.2: Rigid point set registration algorithm.

The algorithm has one free parameter, w (0 ≤ w ≤ 1), which reflects our assumption

on the amount of noise in the point sets. The solution for the rotation matrix is general

D-dimensional.

Affine point set registration: The affine registration case is simpler compared to

the rigid case, because the optimization is unconstrained. Affine transformation is defined

as T (ym;R, t, s) = Bym + t, where BD×D is an affine transformation matrix, tD×1 is

translation vector. The objective function takes the form:

Q(B, t, σ2) =
1

2σ2

M,N
∑

m,n=1

P old(m|xn) ‖xn − (Bym + t)‖2 +
NPD

2
log σ2 (4.10)

We can directly take the partial derivatives of Q, equate them to zero, and solve the

resulting linear system of equations. The solution is straightforward and similar to the

rigid case. We summarize the affine point set registration algorithm in Fig. 4.3.

4.4.1 Related Rigid Point Set Registration Methods

Here, we discuss the probabilistic rigid point set registration methods most closely related

to ours. Rangarajan et al. [136] presented the RPM method for rigid point set registration.
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Affine point set registration algorithm:

• Initialization: B = I, t = 0, 0 ≤ w ≤ 1

σ2 = 1
DNM

∑N
n=1

∑M
m=1 ‖xn − ym‖2

• EM optimization, repeat until convergence:
• E-step: Compute P,

pmn = exp
− 1

2σ2 ‖xn−(Bym+t)‖2

PM
k=1 exp

− 1
2σ2 ‖xn−(Byk+t)‖2

+(2πσ2)D/2 w
1−w

M
N

• M-step: Solve for B, t, σ2:
· NP = 1T P1, µx = 1

NP
XTPT1, µy = 1

NP
YTP1,

· X̂ = X− 1µT
x , Ŷ = Y − 1µT

y ,

· B = (X̂T PT Ŷ)(ŶT d(P1)Ŷ)−1,
· t = µx −Bµy,

· σ2 = 1
NPD (tr(X̂T d(PT 1)X̂) − tr(X̂T PT ŶBT )).

• The aligned point set is T (Y) = YBT + 1tT ,
• The probability of correspondence is given by P.

Figure 4.3: Affine point set registration algorithm.

The method is shown for 2D case, where rotation matrix is parametrized by a single

rotation angle, which allows to find an explicit update. Such Euler’s angles approach

is not feasible in multidimensional cases. RPM also uses deterministic annealing on σ2,

which requires to set the starting and stopping criteria as well as the annealing rate. The

EM iterations has to be repeated at each annealing step, which can be slow. We argue that

it is preferable to estimate σ2 instead of using deterministic annealing. The deterministic

annealing helps to overcome poor local minima, but for the rigid point set registration

problem the rigid parametrization is a strong constraint that alleviates the advantages of

the deterministic annealing.

Luo and Hancock [97, 98] introduced the rigid point sets registration algorithm that

is the most similar to ours. The authors optimize the objective function rather intuitively

than rigorously, which leads to several assumptions and approximate minimization. They

ignore a few terms of the objective function (see Eqs.10,11 in [97]), where the last term

does depend on transformation parameters, and must not be ignored. If such optimization

converge, the M-step of the EM algorithm is only approximate. Among other differences,

we want to mention that the authors use structural editing, a technique to remove some

undesirable points, instead of using an additional uniform distribution to account for these
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points. Some other authors [103] also follow the rigid parameters estimation steps of Luo

and Hancock [97].

4.5 Non-Rigid Point Set Registration

Non-rigid point set registration remains a challenging problem in computer vision. The

transformation that aligns the point sets is assumed to be unknown and non-rigid, which

is generally broad class of transformations that can lead to an ill-posed problem. In order

to deal with the problem we use Tikhonov regularization framework [169, 27, 150]. We

define the transformation as the initial position plus a displacement function v:

T (Y, v) = Y + v(Y), (4.11)

We regularize the norm of v to enforce the smoothness of the function [27]. Such approach

is also supported by the Motion Coherence Theory (MCT) [187, 188], which states that

points close to one another tend to move coherently, and thus, the displacement func-

tion between the point sets should be smooth. This is mathematically formulated as a

regularization on the displacement (also called velocity) function.

Additing a regularization term to the negative log-likelihood function we obtain

f(v, σ2) = E(v, σ2) +
λ

2
φ(v) (4.12)

where E is the negative log-likelihood function (4.3), φ(v) is a regularization term and λ is

a trade-off parameter. Such regularization is well formulated in Bayesian approach, where

the regularization term comes from a prior on displacement field: p(v) = exp−λ
2
φ(v).

We estimate the displacement function v using variational calculus. We shall define

the regularization term φ(v) in different but equivalent forms and show that the optimal

functional form of v is a linear combination of particular kernel functions. A particular

choice of the regularization will lead to our non-rigid point set registration method.

4.5.1 Regularization of the Displacement Function

A norm of v in the Hilbert space H
m is defined as:

‖v‖2
Hm =

∫

R

m
∑

k=0

∥

∥

∥

∥

∂kv

∂xk

∥

∥

∥

∥

2

dx. (4.13)
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Alternatively, we can define the norm in the Reproducing Kernel Hilbert Space (RKHS) [27,

55] as

‖v‖2
Hm =

∫

RD

|ṽ(s)|2
G̃(s)

ds (4.14)

where G is a unique kernel function associated with the RKHS, and G̃ is its Fourier

transform. Function ṽ indicates the Fourier transform of the function v and s is a frequency

domain variable. The Fourier domain norm definition has been used in the Regularization

Theory (RT) [55] to regularize the smoothness of a function. Regularization theory defines

smoothness as a measure of the “oscillatory” behavior of a function. Within the class of

differentiable functions, one function is said to be smoother than another if it oscillates

less; in other words, if it has less energy at high frequency. The high frequency content of

a function can be measured by first high-pass filtering the function, and then measuring

the resulting power. This can be represented by (4.14), where G̃ represents a symmetric

positive definite low-pass filter, which approaches zero as ‖s‖ → ∞. For convenience, we

shall write the regularization term as

φ(v) = ‖v‖2
Hm = ‖Lv‖2 (4.15)

where an operator L “extracts” a part of the function for regularization, in our case, the

high frequency content part [27, 150].

4.5.2 Variational Solution

We find the functional form of v using calculus of variation. Minimization of regularized

negative log-likelihood function in (4.12) boils down to minimization of the following

objective function (M-step):

Q(v, σ2) =
1

2σ2

M,N
∑

m,n=1

P old(m|xn) ‖xn − (ym + v(ym))‖2 +
NPD

2
log σ2 +

λ

2
‖Lv‖2 (4.16)

A function v that minimizes (4.16) must satisfy the Euler-Lagrange differential equation

1

σ2λ

N
∑

n=1

M
∑

m=1

P old(m|xn)(xn − (ym + v(ym)))δ(z − ym) = L̂Lv(z) (4.17)
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for all vectors z, where L̂ is the adjoint operator to L. The solution to such partial

differential equation can be written as the integral transformation of its left side with a

Green’s function G of the self-adjoint operator L̂L.

v(z) =
1

σ2λ

M,N
∑

m,n=1

P old(m|xn)(xn − (ym + v(ym)))G(z,ym) =
M
∑

m=1

wmG(z,ym) (4.18)

where wm = 1
σ2λ

∑N
n=1 P

old(m|xn)(xn − (ym + v(ym))). Note that this solution is incom-

plete. In general, the solution also includes the term ψ(z) that lies in the null space of

L [55, 83]. Thus, we achieve Lemma 2.

Lemma 2. The optimal displacement function that minimizes (4.16) is given by linear

combination of the particular kernel functions centered at the points Y plus the term ψ(z)

in the null space of L:

v(z) =

M
∑

m=1

wmG(z,ym) + ψ(z) (4.19)

where the kernel function is a Green’s function of the self-adjoint operator L̂L.

4.5.3 The Coherent Point Drift (CPD) Algorithm

We choose the regularization term according to (4.14):

φ(v) =

∫

RD

|ṽ(s)|2
G̃(s)

ds (4.20)

where G is a Gaussian (note it is not related to the Gaussian form of the distribution

chosen for the mixture model). There are several motivations for such a Gaussian choice:

First, the Green’s function (the kernel) corresponding to the regularization term in (4.20) is

also a Gaussian (and remains a Gaussian for an arbitrary dimensional case); the Gaussian

kernel is positive definite and the null space term ψ(z) = 0 [55]. Second, by choosing

an appropriately sized Gaussian function we have the flexibility to control the range of

filtered frequencies and thus the amount of spatial smoothness. Third, the choice of the

Gaussian makes our regularization term equivalent to the one in the Motion Coherence

Theory (MCT) [188]:

φMCT (v) =

∫

Rd

∞
∑

l=0

β2l

l!2l

∥

∥

∥
Dlv(x)

∥

∥

∥

2
dx (4.21)
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where D is a derivative operator so that D2lv = ∇2lv and D2l+1v = ∇(∇2lv), where ∇ is

the gradient operator and ∇2 is the Laplacian operator.

Lemma 3. The regularization term in (4.20) with a Gaussian choice of low-pass filter G

is equivalent to the the regularization term in (4.21). Both terms represent the norm of

the function v, after applying the operator L , and the corresponding Green’s function is

a Gaussian in both cases [27].

The equivalence of our regularization term with that of the Motion Coherence Theory

implies that we are imposing motion coherence among the points and thus we call the

non-rigid point set registration method the Coherent Point Drift (CPD) algorithm.

We can obtain the coefficients wm by evaluating (4.19) at ym points

(G + λσ2d(P1)−1)W = d(P1)−1PX−Y (4.22)

where WM×D = (w1, . . . ,wM )T is a matrix of coefficients, GM×M is a kernel matrix with

elements gij = G(yi,yj) = e
− 1

2

‚

‚

‚

yi−yj
β

‚

‚

‚

2

and d−1(·) is the inverse diagonal matrix. The

transformed position of ym are found according to (4.11) as T = T (Y,W) = Y + GW.

We obtain σ2 by equating the corresponding derivative of Q to zero

σ2 =
1

NPD

N
∑

n=1

M
∑

m=1

‖xn − T (ym,W)‖2 =

1

NPD
(tr(XT

d(PT 1)X) − 2 tr((PX)T T) + tr(TT
d(P1)T)) (4.23)

We summarize the CPD non-rigid point set registration algorithm in Fig. 4.4.

Analysis: The CPD algorithm includes three free parameters: w, λ and β. Param-

eter w (0 ≤ w ≤ 1) reflects our assumption on the amount of noise in the point sets.

Parameters λ and β both reflect the amount of smoothness regularization. A discussion

on the difference between λ and β can be found in [187, 188]. Briefly speaking, parameter

β defines the model of the smoothness regularizer (width of smoothing Gaussian filter in

(4.20)). Parameter λ represents the trade-off between the goodness of maximum likelihood

fit and regularization.

We note that solution of (4.22) gives the exact minimum of Q (4.16), if σ2 is assumed

fixed. As far as we are estimating σ2, (4.22) and (4.23) should be solved simultaneously.
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Non-rigid point set registration algorithm:

• Initialization: W = 0, σ2 =
1

DNM

M,N
∑

m,n=1

‖xn − ym‖2

• Initialize w(0 ≤ w ≤ 1), β > 0, λ > 0,

• Construct G: gij = exp
− 1

2β2 ‖yi−yj‖2

,
• EM optimization, repeat until convergence:

• E-step: Compute P,

pmn = exp
− 1

2σ2 ‖xn−(ym+G(m,·)W)‖2

PM
k=1 exp

− 1
2σ2 ‖xn−(yk+G(k,·)W)‖2

+ w
1−w

(2πσ2)D/2M
N

• M-step:
· Solve (G + λσ2d(P1)−1)W = d(P1)−1PX −Y

· NP = 1T P1, T = Y + GW,
· σ2 = 1

NPD (tr(XT d(PT 1)X) − 2 tr((PX)T T)+

tr(TT d(P1)T)),
• The aligned point set is T = T (Y,W) = Y + GW,
• The probability of correspondence is given by P.

Figure 4.4: The Coherent Point Drift algorithm for non-rigid point set registration.

The non-linear dependency of σ2 on W and vice-verse does not allow for simultaneous

analytical solution. Iterative exact solution can be obtained by performing a few cyclic

iterations on (4.22) and (4.23) within a single EM step. Practically, a single iteration,

given by (4.22) and (4.23), decrease the Q function almost to the exact minimum. Such

an iterative procedure, which decreases the Q function but not to exact minimum, is often

called the generalized EM algorithm [44, 119].

4.5.4 Related Non-rigid Point Set Registration Methods

The CPD algorithm follows our previous work [114] on non-rigid point set registration.

However, previously we have used deterministic annealing on σ2, whereas here, we estimate

the Gaussian width σ2 within ML framework. This allows us to significantly speed up the

algorithm, alleviating the repeated EM-iterations for every single annealing step. We have

not observed any decrease in accuracy of the method related to this change. In [114], we

used a slightly different notation for the GMM centroid locations: we called Y0 the initial

centroids position (which we call Y here), and Y for the final GMM centroid position

(which we call T (Y) here).
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The most relevant non-rigid point sets registration algorithm to ours is TPS-RPM,

more precisely its GMM formulation [31]. TPS-RPM uses Thin Plate Spline (TPS) [176,

17] parametrization of the transformation, which can be obtained by adding the regular-

ization term that penalizes second order derivatives of the transformation. For instance,

in 2D such regularization term is

‖LT ‖2 =

∫ ∫

[(
∂2T
∂x2

)2 + 2(
∂2T
∂x∂y

)2 + (
∂2T
∂y2

)2]dxdy (4.24)

This term can be equivalently formulated in the Fourier space as:

‖LT ‖2 =

∫

R2

‖s‖4 |T̃ (s)|2ds (4.25)

which is a special case of the Duchon splines [47]. The null space of such regularization

includes affine transformations. Using the variational approach we can show that the opti-

mal transformation T for such regularization is in the form T (Y) = YA+KC, where A is

a matrix of affine transformation cooefficients, C is a matrix of non-rigid cooefficients. For

2D case, matrix KM×M is the kernel matrix with elements kij = ‖yi − yj‖2 log ‖yi − yj‖.
For 3D case, matrix K has elements kij = ‖yi − yj‖. For 4D or higher dimensions the

TPS kernel solution does not exist [156]. Finally, to link such regularization to our non-

rigid registration framework, we note that the regularization of the displacement field v,

instead of the transformation itself, is exactly the same, because, (4.24) is invariant un-

der affine transformations, in other words ‖LT (z)‖2 = ‖L(z + v(z))‖2 = ‖Lv(z)‖2. This

means that both CPD and TPS-RPM regularizes the displacement function, but using

different regularization terms.

The advantage of CPD regularization (as given by (4.20) or (4.21)) comparing to TPS

((4.24) or (4.25)), is that it easily generalizes to N dimensions. Also we can control the

locality of spatial smoothness by changing the Gaussian filter width β, whereas TPS does

not have such flexibility. Among other differences, TPS-RPM approximates the M-step

solution of the EM algorithm [31] for simplicity and use deterministic annealing on σ2.

Finally, Jian and Vemuri [76] consider the registration as an alignment between the

distributions of two point sets, where a separate GMMs are used to model the distribution

for the point sets. One of the point sets is parametrized by TPS. The transformation
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parameters are estimated to minimize the L2 norm between the distributions. In our case,

the CPD method maximizes the likelihood function, which is equivalent to KL divergence

minimization between two mixture distributions: GMM and mixture of delta functions.

KL divergence is more appropriate similarity measure for the densities than L2 norm,

because it weights the error according to its probability.

4.6 Fast Implementation

Here we show that CPD computational complexity can be reduced to a linear up to a

multiplicative constant. We use the fast Gauss transform (FGT) [62] to compute the

matrix-vector products P1, PT 1, PX, which are the bottlenecks for both rigid and non-

rigid cases. We use low-rank matrix approximation to speed-up the solution of the linear

system of equations (4.22) for the non-rigid case.

The fast Gauss transform: Greengard and Strain [62] introduced the fast Gauss trans-

form (FGT) for fast computation of the sum of exponentials:

f(ym) =

N
∑

n=1

zn exp− 1
2σ2 ‖xn−ym‖2

, ∀ym, m = 1, . . . ,M. (4.26)

The naive approach takes O(MN) operations, while FGT takes only O(M + N). The

basic idea of FGT is to expand the Gaussians in terms of truncated Hermit expansion,

and approximate (4.26) up to the predefined accuracy. Rewriting (4.26) in matrix form,

we obtain f = Kz, where z is some vector and KM×N is a Gaussian affinity matrix with

elements: kmn = exp− 1
2σ2 ‖xn−T (ym)‖2

, which we have already used in our notations. We

simplify the matrix-vector products P1, PT 1 and PX, to the form of Kz and apply FGT.

Matrix P (4.6) can be partitioned into

P = K d(a), a = 1./(KT 1 + c1) (4.27)

where d(a) is diagonal matrix with a vector a along the diagonal. Here, we use Matlab

element-wise division (./) and element-wise multiplication (.∗) notations. We show the

algorithm to compute the bottleneck matrix-vector products P1, PT 1 and PX using FGT

in Fig. 4.5. We note that for dimensions higher than three, we can use the improved fast
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Compute PT1,P1 and PX:

• Compute KT1 (using FGT),
• a = 1./(KT 1 + c1),
• PT 1 = 1 − ca,
• P1 = Ka (using FGT),
• PX = K(a. ∗X) (using FGT),

Figure 4.5: Matrix-vector products computation through FGT.

Gauss transform (IFGT) method [181], which is a faster alternative to FGT for higher

dimensions.

During the final EM iterations, the width of the Gaussians σ2 becomes small. The

Hermitian expansion thus requires many terms to approximate highly multimodal Gauss-

ian distribution for a given precision. At the final iterations, the Gaussian becomes very

narrow, and we can switch to the truncated Gaussian approximation (set zeros outside a

predefined box).

Low-rank matrix approximation: In the non-rigid case, we need to solve the linear

system (4.22), which is O(M 3) using direct matrix inversion. We note that the left hand

side matrix of (4.22) is symmetric and positive definite.

We use low-rank matrix approximation of G, where G is a Gaussian affinity matrix

with elements gij = exp
− 1

2β2 ‖yi−yj‖2

. We approximate the matrix G as

Ĝ = QΛQT (4.28)

where ΛK×K is a diagonal matrix with K largest eigenvalues and the matrix QM×K is

formed from the corresponding eigenvectors. Ĝ is the closest K-rank matrix approxima-

tion to G both in L2 and Frobenius norms [57]. To solve the linear system in (4.22) we

use the Woodbury identity and invert the first term as

(QΛQT + λσ2
d(P1)−1)−1 =

1

λσ2 d(P1) − 1

(λσ2)2
d(P1)Q(Λ−1 +

1

λσ2
QT

d(P1)Q)−1QT
d(P1) (4.29)

The inside matrix inversion is of O(K3), where K � M . For instance choosing K =

M1/3 largest eigenvalues, we reduce the computational complexity to linear. We can pre-

compute K largest eigenvalues and eigenvectors of G using deflation techniques [43]. It
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b)

c)
Initialization Iteration 10 Iteration 30 Iteration 40 Result (iteration 50)

Figure 4.6: Fish data set, rigid registration examples. We align Y (blue circles) onto X

(red stars). The columns show the iterative alignment progress. a) Registration of the
point sets with missing non-overlapping parts (w = 0.5); b) Registration of the point sets
corrupted by random outliers (w = 0.5); c) A challenging rigid registration example, where
both point sets are corrupted by outliers and biased to different sides of the point sets.
We have also deleted some parts from both point sets. We set w = 0.8 and fix scaling
s = 1. CPD registration is robust and accurate in all experiments.

requires several iterations with the matrix-vector product Gz, which can be implemented

explicitly or through FGT.

The low-rank matrix approximation intuitively constraints the space of the non-rigid

transformations, and can be even desirable to further constrain the non-rigid transforma-

tion. If the number of points is large and well clustered, then an extremely small percent

of eigenvalues will be sufficient for an accurate approximation.

4.7 Results

We implemented the algorithm in Matlab, and tested it on a Pentium4 CPU 3GHz with

4GB RAM. We implemented the matrix-vector products in C as a Matlab mex functions to

avoid the storage of P. The code is available at www.bme.ogi.edu/~myron/matlab/cpd.

We shall refer to our method as Coherent Point Drift (CPD) both for rigid and non-rigid
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a)

b)
Initialization Iteration 10 Iteration 20 Iteration 30 Result (iteration 50)

Figure 4.7: 3D bunny point set rigid registration examples. We align Y (blue circles) onto
X (red dots). The columns show the iterative alignment progress. We initialized one of
the point sets with 50 degree rotation and scaling equal 2. a) Registration of the point sets
with missing points (w = 0.5); b) A challenging example of CPD rigid registration with
missing points, outliers and noise. CPD shows robust and accurate registration result in
all experiments.

point sets registration methodsr. We have also implemented the matrix-vector products

through FGT using the Matlab FGT implementation by Sebastien Paris [131].

We consider rigid and non-rigid experiments separately below. We shall always pre-

align both point sets to zero mean and unit variance before the registration.

4.7.1 Rigid Registration Results

We show the CPD rigid registration on several examples, test the fast CPD implementation

and evaluate its performance in comparison with LM-ICP [53], which is one of the most

popular robust rigid point set registration methods.

Rigid fish point set registration: Fig. 4.6 shows several rigid regsitration tests on

2D fish point sets. In Fig. 4.6a we deleted non-overlapping parts in both point sets and

set w = 0.5, where w is a weight of the uniform distribution that accounts for noise

and outliers. In Fig. 4.6b we corrupted the point sets by outliers. We generate outliers

randomly from a normal zero-mean distribution. CPD demonstrates robust and accurate

performance in all examples. Fig. 4.6c demonstrates a challenging example, where both

point sets have missing points and are corrupted by outliers. The most challenging here

is that we biased the outliers to the different sides of fish point sets. We were able to

register such point sets only by fixing the scaling to be constant (estimating rotation and

translation only). CPD demonstrates accurate and robust registration performance.
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Figure 4.8: A comparison of CPD and LM-ICP rigid registration performances with re-
spect to noise in the X (first row) and the Y point sets (second row). We align Y (blue
circles) onto X (red dots). The columns 2,3 and 4 show the examples of initial point sets
for different random noise stds added to the point set positions. The first column shows
the error in estimating the rotation matrix for CPD (blue) and TPS-RPM (red). CPD
outperforms LM-ICP in all cases.

We also test the CPD algorithm with respect to different initializations of point sets.

Fig. 4.10 shows the registration error under varying degrees of initial rotation when regis-

tering the clean fish point set to itself. CPD performs well if the angle of initial misalign-

ment is less than 70 degrees, whereas ICP get trapped into a local minima with rotations

beyond 40 degrees. Empirically, CPD is not sensitive to the initial translation and scaling

as these parameters are compensated after the first iteration.

Rigid bunny point set registration: We test 3D rigid point sets registration on the

Stanford “bunny” data set [171]. We use a subsampled bunny version of 1889 × 3 points.

In Fig. 4.7a, we have deleted the front and back parts of the bunny point sets. In Fig. 4.7b,

we have added random outliers to different sides of the point sets. We set w = 0.7. CPD

registration is accurate and robust in all examples.

We compare the CPD rigid algorithm to the LM-ICP method [53], a robust version

of ICP. Fig. 4.8 shows the performance of CPD and LM-ICP with respect to noise in the

point sets. We align the Y point set (blue circles) onto the X point set (red dots). We set

w = 0.5. The known initial rotation discrepancy between the point sets is 50 degrees. The

first and second rows shows the alignment performance when a random noise is added to

the X and Y point set positions respectively. We use a norm of the difference between the
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Figure 4.9: A comparison of CPD and LM-ICP rigid registration performances with re-
spect to outliers in the X (first row) and the Y (second row) point sets. We align Y (blue
circles) onto X (red dots). The columns 2,3 and 4 show the examples of initial point sets
with different number of outliers added. The first column show the error in estimating
the rotation matrix. CPD outperforms LM-ICP.

true and estimated rotation matrix as an error measure. A few initial point sets examples

with different noise std are shown in the columns 2, 3 and 4 of Fig. 4.8. For each level

of the noise stds we made 25 independent runs. The first column plots the error values

(mean and standard deviation) in the estimated rotation matrix as a function of noise

levels. On average CPD required 26 iterations (11 sec total), whereas LM-ICP required

40 iterations (10 sec total). The CPD rigid algorithm outperforms the robust LM-ICP

method, especially when the noise is present in the X point set.

Fig. 4.9 shows the performance of CPD and LM-ICP with respect to the outliers in the

point sets. We add different number of outliers (irrelevant random points) to the point

sets. An examples of such initial point sets are shown in columns 2, 3 and 4 of Fig. 4.9

for 600, 1800 and 3000 outlier points added respectively. The first and second row show

the cases of outliers present in the X and Y point sets respectively. CPD performs well

in all experiments, whereas LM-ICP performance is less accurate.

Fast rigid CPD implementation: We also test the CPD performance with FGT im-

plementation of the matrix-vector products. We use four Stanford bunny sets of sizes:

453 × 3, 1889 × 3, 8171 × 3 and 35947 × 3. For each of the cases we add a small amount
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Figure 4.10: Registration error with respect to the initial rotation (degrees) of the fish
point set registered to itself. CPD performs well if the angle of initial misalignment is less
than 70 degrees, whereas ICP get trapped into a local minima with rotations beyond 40
degrees.

N,M Naive FGT

453 × 3 0.6s 0.7s
1889 × 3 11s 3s
8171 × 3 4m 10s
35947 × 3 3.5hr 51s

Table 4.1: The rigid CPD registration time for naive (no FGT) and FGT implementations.
The FGT-based implementation is significantly faster.

of noise and outliers to both point sets, initialized them with 50 degrees rotation and set

w = 0.3. For the FGT parameters, we used “ratio of far field”=8, “number of centers”=80,

“order of truncation”=5. Table. 4.1 shows the registration time with and without FGT.

The FGT implementation is significantly faster. We note that there are several downsides

of using the FGT: a) FGT requires its own parameter initialization; b) CPD (with FGT)

aligns the point sets to 0.1 degree error rotation and then starts being unstable. This is

because σ2 becomes small and the FGT approximation error becomes significant. At this

point one can either stop (the alignment already is reasonably accurate) or proceed with

ICP or truncated Gaussian CPD.

4.7.2 Non-rigid Registration Results

We show CPD non-rigid registration on several examples, test the fast CPD implementa-

tion and evaluate CPD performance in comparison to TPS-RPM [32], which is one of the



80

a)

b)

c)
Initialization Iteration 10 Iteration 20 Iteration 40 Result (iteration 50)

Figure 4.11: Non-rigid CPD registration of 2D fish point sets. a) Noiseless fish point sets
registration (91×2 points, w = 0); b) Registration of 2D fish point set with missing points
(w = 0.5); c) Registration of 2D fish point set in presence of outliers (w = 0.5). CPD
registration is robust and accurate in all experiments.

best performing non-rigid point set registration methods. We set λ = 2, β = 2.

Non-rigid fish point set registration: Fig. 4.11a shows non-rigid CPD registration of

two fish point sets with clean data. Fig. 4.11b is with missing points (w = 0.5). Fig. 4.11c

is with both point sets are corrupted by outliers (w = 0.5). The non-rigid CPD registration

results are accurate in all experiments.

We test CPD against TPS-RPM [32] on synthentically generated 2D fish non-rigid

examples with respect to a) level of non-rigid deformation, b) amount of noise in the point

sets locations c) number of outliers. We set w = 0.3 in all experiments. Since we know the

true correspondences, we use the mean squared distance between the corresponding points

after the registration as an error measure. For each set of parameters we have conducted

25 runs. The computational time of CPD was 3 sec with 31 iterations on average, whereas

TPS-RPM required 12 sec with 79 iterations. Fig. 4.12a shows the methods performances

with respect to the level of initial non-rigid deformation between the point sets. To

generate the non-rigid transformation, we parameterize the point sets domain by a mesh

of control points, perturb the points and use splines to interpolate the deformation. The

higher level of mesh point perturbations produce the higher deformation. CPD shows

accurate registration performance and outperforms the TPS-RPM. Fig. 4.12b shows the
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Figure 4.12: A comparison of CPD and TPS-RPM on the 2D fish point sets with respect
to a) Deformation level; b) Noise level; c) Outliers (x-axis is the ratio of the number
of outliers to the number of clean data points). CPD shows more accurate registration
performance compared to TPS-RPM, especially in presence of outliers and complex non-
rigid deformations. d) Registration error of CPD with respect to the λ and β parameter
settings. CPD performs well for λ in a [0.1..9] and β in a [1.5..3] intervals.

methods performances with respect to the amount of noise. We add a zero-mean white

noise with increasing levels of stds to the point sets. Both CPD and TPS-RPM show

accurate performances. Fig. 4.12c shows the methods performances with respect to the

number of outliers. We add random outliers to the point sets and plot the registration

error with respect to the ration of number of outliers to the number of data points. At

most we have added almost twice as many outliers as the actual data points. CPD shows

robust registration performance and outperforms the TPS-RPM.

We also evaluate CPD with respect to the values of parameters λ and β (Fig. 4.12d)

on the fish data with small amount of noise and outliers added. CPD performs well for

λ in a [0.1..9] and β in a [1.5..3] intervals. CPD is more sensitive to the choice of the

parameter β, because it defines the model of the non-rigid transformation.

Non-rigid 3D face registration: We show the CPD performance on 3D face point sets.

Fig. 4.13a shows two 3D face point sets related through non-rigid deformation. Fig. 4.13b

shows two 3D face point sets point sets with added outliers and non-rigid deformation.

Non-rigid CPD registration is accurate in all experiments.

Non-rigid 3D LV point set registration: Finally, we demonstrate the CPD perfor-

mance on non-rigid a 3D left ventricle (LV) contours segmented from 3D ultrasound im-

ages, using active contour based segmentation [115]. Fig. 4.14 shows (a) two LV point sets

at different time instances, (b) the registration result, (d) the displacement field required

for CPD alignment. The registration result is accurate.
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a)

b)
Initialization Result

Figure 4.13: Non-rigid registration of 3D face point sets. a) Registration of clean point
sets b) Registration of point sets with outliers. CPD shows accurate alignment.

N,M ×D Naive FGT Low-rank FGT & Low-rank

453 × 3 2s 2.3s 1.7s 1.8s
1889 × 3 1m22s 1m16s 19s 11s
8171 × 3 3hr 2hr26m 10m20s 1m37s
35947 × 3 – – 40m 10m

Table 4.2: Registration time required for non-rigid registration of 3D bunny point sets.
The time is shown when using only FGT of vector-matrix products, only low-rank matrix
approximation of Gaussian kernel matrix or both.

Fast non-rigid CPD implementation: We test the computational time of the fast

CPD non-rigid implementation on several subsampled 3D Stanford bunny point sets. We

use FGT of the matrix-vector products, the low-rank matrix approximations of the kernel

matrix, or both. We applied a moderate non-rigid deformation to the bunny point sets.

The registration time of the non-rigid CPD is shown in Table 4.2.

We were unable to run the test without the low-rank matrix approximation for the

largest bunny set (35947 × 3), because of the large RAM requirements to construct the

kernel matrix G. We used only 100 leading eigenvalues and eigenvectors in all cases.

Table 4.2 shows that the main computational bottleneck is in solving the linear system
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(a) Initialization (b) Result (c) Displacement

Figure 4.14: Non-rigid registration of 3D left ventricle (LV) point sets. (a) two LV point
sets at different time instances, (b) the registration result, (c) displacement field between
the corresponding points.

of equations (4.22), because the low-rank matrix approximation alone can reduce the

computational time significantly. Both FGT and low-rank approximations provide further

speed-up with only moderate loss of accuracy. We note that almost 60% of the time

required to complete the CPD registration using the low-rank matrix approximation were

required to pre-compute the eigenvalues and eigenvectors of the kernel matrix G.

4.7.3 Image Registration Results

We show the application of CPD to non-rigid image registration problem. In particular, we

register ultrasound (US) elastography images with histopathology images [30]. Ultrasound

elastography is a relatively new image modality that is derived from an ultrasound signal

by measuring local deformations under the application of an external force. Ultrasound

elastography provides the measurements of elastic properties of tissues and is useful to

localize a malignant tissue that is usually harder than benign tissue. Histopathology

image is an optical, visual band image of the tissue section. Non-rigid registration of

such image modalities is required to better understand the information provided by US

elastography for tumor detection in comparison to histapthology information.

Figure 4.15(a,b) shows two images to be registered: hystopathology and US elastogra-

phy images of the breast cancer. Boundaries of tumors and fibers were selected as feature

points and manually extracted from both images (Fig. 4.15(c)). Given the locations of two
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point sets we applied CPD to estimate the non-rigid transformation. The estimated non-

rigid transformation has been used to transform the hystopathology image (Fig. 4.15(e))

into the coordinate system of the US elastography image. Figure 4.15(f) demonstrates

the combined view of the aligned images. Figure 4.15 shows a similar example of feature-

based non-rigid registration using CPD. In this example we registered the US elastography

image into the coordinate system of the histopathology image. CPD performs well and

demonstrates visually accurate image alignment.

4.8 Discussion and Conclusion

We introduce a probabilistic method for rigid and non-rigid point set registration, called

the Coherent Point Drift algorithm. We consider the alignment of two point sets as

a probability density estimation, where one point set represents the Gaussian Mixture

Model centroids, and the other represents the data points. We iteratively fit the GMM

centroids by maximizing the likelihood and find the posterior probabilities of centroids,

which provide the correspondence probability. Core to our method is to force the GMM

centroids to move coherently as a group, which preserves their topological structure.

Our contribution includes the following aspects. For the rigid case, we derived the

closed form multidimensional solution (of the M-step of the EM algorithm), which has not

been derived exactly before. For the non-rigid point set registration, we formulate the mo-

tion coherence constraint and derive a solution of the regularized ML estimation through

the variational approach, which leads to an elegant kernel form. CPD simultaneously finds

both the transformation and the correspondence between two point sets without making

any prior assumption on the non-rigid transformation model except that of motion coher-

ence. Finally, we introduced the fast CPD implementation using fast Gauss transform and

low-rank matrix approximation to reduce the computational complexity of the method to

as low as linear. On top of the computational advantage, the low-rank kernel approxi-

mation provides more stable solutions in cases where the matrix G is poorly conditioned.

To our best knowledge, CPD is the only method capable of non-rigid registration of large

data sets. Both rigid and non-rigid CPD registration methods can be applied to arbitrary
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dimensional data sets.

We estimate the GMM width, σ2, within the ML formulation. We have not observed

any decrease in performance compared to the deterministic annealing approach. Esti-

mation σ2 allows to reduce the number of free parameters and, most importantly, to

significantly reduce the number of iterations and the processing time.

We have used an addition uniform distribution to account for noise and outliers. The

weight, w, of this distribution provides a flexible control over the method robustness and

allows accurate CPD performance, especially in presence of severe outliers and missing

points.

We have tested CPD on various synthetic and real examples and comare it to LM-

ICP (in rigid case) and TPS-RPM (in non-rigid case). CPD shows robust and accurate

performance with respect to noise, outliers and missing points. Our method is of general

interest with numerous computer vision applications. We provide the Matlab code of the

CPD algorithm free for academic research.
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Figure 4.15: Application of CPD non-rigid point set registration to image registration
of histopathology (a) and ultrasound elastography (b) images. (c) Two point set were
manually extracted from the images. (d) The aligned point sets using CPD non rigid
point set registration. (e) The registered histopathology image. (f) Composite view of the
images after the alignment.
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Figure 4.16: Application of CPD non-rigid point set registration to image registration
of histopathology (a) and ultrasound elastography (b) images. (c) Two point set were
manually extracted from the images. (d) The aligned point sets using CPD non rigid
point set registration. (e) The registered ultrasound elastography image. (f) Composite
view of the images after the alignment.



Chapter 5

Motion Estimation from 3D

Echocardiography

5.1 Introduction

Cardiovascular disease is a major cause of death in the Unites States, claiming 876,000

lives each year [1], as many as cancer, chronic lower respiratory diseases, accidents and

diabetes melliturs combined. Motion of myocardial tissue conveys the presence of disease

processes, and provides insight as to the mechanism by which compensatory processes

manifest themselves in pathologic settings. A long sought goal in imaging in cardiology

and cardiovascular physiology has been to develop tools by which both global and regional

ventricular tissue motion and tissue deformation can be quantitatively analyzed and char-

acterized. Tools for accurate quantification of heart deformation are not well developed

yet, despite the efforts from both commercial vendors and the research community. The

methods available for characterizing myocardial motion are insufficient to examine the

complex array of heart disorders that exist (adult congenital heart disease, cardiomy-

opathies with dysynergic contraction patterns, ischemic heart disease with regional varia-

tions in wall thickening, etc). Even in the normal heart, the complex myocardial motion

is inadequately analyzed by current commercial non-invasive imaging modalities.

Current studies of regional myocardium motion include invasive methods, such as

opaque markers and sonomicrometeres, and non-invasive methods, including MRI and

ultrasound based approaches. In sonomicrometry, an array of sono crystals is implanted

into the myocardium to provide the groundtruth pairwise distance measurements. Such

88
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invasive methods, while being potentially accurate, provides only sparse measurements

(pairwise distances between sono crystals) and incapable to recover the spatially dense

deformation maps of the heart motion. MRI based methods, including MR tissue tagging

and MR velocity imaging may be the most accurate non-invasive methods [61]. However,

high cost and low portability of MRI often prohibits its extensive use in clinical settings.

Ultrasound offers significant advantage over MR based imaging in terms of its avail-

ability, portability, cost, minimal adverse secondary effects and high temporal resolution.

It can go to the patient, into the interventional or electrophysiology catheterization lab,

or into the operating room. Traditionally tissue Doppler imaging has been used to mea-

sure the heart motion velocities [122]. However, Doppler-based imaging suffers from angle

dependency. It can only detect velocity components parallel to the direction of the ultra-

sound wave propagation. To overcome such limitation, speckle tracking methods has been

proposed [26]. Speckle is a random pattern formed from the interference of the backscat-

tered echoes in myocardium tissue. In contrast to other random noise model, speckle

pattern depends on the underlying imaging area, which allows to track speckle (and the

myocardium) from echo images. Thus a regional speckle pattern may be considered as

natural acoustic tags, equivalent to magnetic tags in MRI.

Historically, ultrasound echocardiography images were two dimensional. Recently de-

veloped three dimensional (3D) echocardiography is as a natural evolution of 2D echocar-

diography [87, 74]. It provides realistic and comprehensive views of cardiac valves and

congenital abnormalities; It is extremely useful in the intraoperative and postoperative

settings for allowing immediate feedback on the effectiveness of surgical interventions;

And, it allows accurate evaluation of cardiac chamber volumes.

Quantitative analysis of 3D echo images can provide mechanical measurements such

as strain, wall thickening, torsion, volume and ejection fraction, which can be used to

evaluate the elasticity and contractility of the myocardium. For instance, an ischemic or

infarcted segments of the heart are typically associated with reduced regional elasticity

and contractility. Such measurements may also serve as earlier sub-clinical markers for

ventricular dysfunction and myocardial disease [87, 128].

In this chapter, we introduce an integrated automated system for 3D dense speckle
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tracking from 4D echocardiography. Our speckle tracking approach consists of several

novel components that take into account specifics of ultrasound image formation, speckle

pattern statistics, shape constraints and motion dynamic. The key idea is to consecu-

tively align 3D images one onto another and track the motion field using non-rigid image

registration [115, 116]. The algorithm outputs a spatially-dense displacement field of

heart deformation, which allows to compute quantitative measurements such as strain

and torsion. Our novelties include: a) a new similarity measure for ultrasound image

registration; we derive it from a maximum likelihood perspective taking into account the

physical properties of ultrasound image acquisition and formation; b) an approach to use

envelope-detected 3D echo images in the raw spherical coordinates, which preserves speckle

statistics and represents a compromise between signal detail and data complexity; c) we in-

corporate shape and dynamic constraints to add robustness to the registration procedure;

and d) we validate the algorithm-derived measures to those derived from sonomicrometry

in vivo on open chest pigs.

The rest of the chapter is organized as follows. In Section 5.2 we overview current

approaches to speckle and boundary tracking. In Section 5.3 we describe the common

quantitative characteristics used for regional myocardial analysis. In Section 5.4, we de-

velop a new similarity measure for ultrasound images using physical properties of speckle.

In Sections 5.5, we introduce the shape constraint to assist the registration-based track-

ing. In Sections 5.6,5.7 and 5.8, we overview the transformation model, the optimization

method and the sequential approach that are integrated into the tracking system. In Sec-

tions 5.9, we introduce a dynamic model to constrain and smooth the dense displacement

field through time. In Section 5.10, we introduce the approach for image registration using

envelope-detected 3D echo image in the raw spherical coordinates. In Section 5.11, we

explain our validation procedure using implanted sonomicrometers. In Section 5.12 we

present our experimental results. This section includes descriptions of animal prepara-

tion, data acquisition, automated processing using our system and analysis of the results.

Section 5.13 concludes this chapter with discussions.
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5.2 Motion Estimation Methods

Motion estimation from echocardiography is essential for regional deformation analysis.

Initial studies of myocardial deformation relied on Doppler techniques, which provide the

myocardial velocity only along the beam lines. To overcome the angular dependency of

Doppler techniques, automated tracking methods have appeared; these methods derive

the myocardium deformation from the ultrasound signal itself. Myocardium tracking

approaches subdivide into boundary tracking and speckle tracking methods. Boundary

tracking methods estimate the location of the heart boundaries, usually LV endocardium,

throughout the ultrasound sequence. Thus, motion information is only obtained at the

boundaries.

Speckle tracking methods track several myocardial regions, which are called speckle

patterns. Speckle arises from the effects of interferences caused by microscopic scatterers

from the imaged region. Speckle pattern characterizes the underlying myocardial tissue

acoustically and serves as a fingerprint of the myocardial region within the ultrasound im-

age. Speckle is just noise, however for the tracking purposes, speckle represents valuable

information, because it follows the myocardium motion. Tracking such speckle patterns

during the cardiac cycle thus allows to follow the motion of the myocardium. Speckled

tracking methods subdivide into block matching methods, optical flow and image reg-

istration methods. Block matching methods track one or several square image patches,

whereas optical flow and image registration methods tracks the whole imaged area and

are referred to as dense speckle tracking methods.

Current tracking methods use 3D echo images to estimate the myocardial motion. Such

methods naturally evolved from 2D methods [87, 74]. 3D methods do not suffer from out

of plane regional motion and speckle decorrelation, but have a low temporal and spatial

resolution due to the bigger number of beams required to cover an imaged 3D sector.

5.2.1 Block Matching Methods

The majority of speckle tracking methods are block matching approaches [36, 185, 186,

20, 138, 91]. The idea is to define a square image block (speckle patch) in one image and
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then find its best match in the next image. The matching criterion is usually based on a

standard similarity measure, such as SSD, SAD, CC or MI. The block is usually matched

only within some neighborhood of its initial position to reduce the computational time.

The size of each block has to be chosen sufficiently big to avoid multiple errornous matches,

but sufficiently small for the block-motion approximation to be adequate.

Speckle tracking methods can be defined on different signal types: radio frequency

(RF) or B-mode. B-mode signal is obtained from the RF signal after filtering, envelope

detection and log compression. B-mode signal preserves only signal amplitude and has

lower spatial resolution. The benefits of B-mode singal is its lower storage and processing

load requirements. Interestingly, Yu et al. [186] showed that the correlation-based block

matching of B-mode signals outperforms RF signal matching for the deformations larger

than 2% compression, which is a typical inter-frame deformation in 3D echocardiogarphy.

They showed that B-mode signal is more robust to higher levels of speckle decorelation

caused by larger deformations, because RF finer structure makes it more vulnerable in the

analysis of large deformations.

Tracking individual speckle patches are often prone to errors, which motivated re-

searches to track multiple speckles simultaneously [160, 40]. We proposed to track multiple

speckle patches as a coherent group to obey smooth deformation of the myocardium [160].

We used the CD2 similarity criteria [37] and constrained the groupwise motion to obey the

coherence constraint, which enforces spatial smoothness. We also employed the dynamic

constraint to enforce temporal continuity and smoothness of speckle motion throughtout

the sequence [160]. Our method results showed a good agreement with manual expert

tracking. Gosby et al. [40] proposed to track each speckle block individually with SAD

similarity criteria (followed by CC fine tuning) and post-smooth the individual displace-

ments based on the displacements of its neighbors, which is an ad-hoc way to enforce

coherence of the group motion. The authors validated the method on synthetic exam-

ples with a good agreement of strain and rotation measurements. They also applied the

method to real patient data and showed the reduced strain in the infarcted areas, as was

expected theoretically. Duan et al. [45] used a similar block matching strategy; the ini-

tial blocks were manually allocated along the endocardial surface and tracked with the
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correlation similarity measure followed by local averaging. The ultrasound images were

pre-filtered with anisotropic diffusion, which reduces the amount of noise, but preserves

the boundaries. The downside of such approach is a loss of potentially useful speckle

structure. The endocardial surface tracking method has been validated against manual

segmentation of each volume on 40 open-chest dog data sets in terms of surface geometry

and volume agreement with satisfactory performance [45]. Groupwise speckle tracking is

more accurate compared to the individual speckle tracking. However, even with coher-

ence of block motion, such methods suffer from pure translational motion approximation,

which is truly non-rigid. Finally, such methods provide only sparse measurement of the

displacement fields for the preselected blocks, which have to be allocated in advance.

5.2.2 Boundary Tracking Methods

Boundary tracking methods sequentially segment 3D echo images, typically endo- and

epi-cardial surfaces. Such methods integrate ultrasound segmentation approaches into the

sequential tracking algorithm by take advantage of the shape and dynamic priors [128, 194,

24]. Segmentation of the boundaries can be based on gradient intensity information [38],

phase-based acoustic feature [149], region-based [90] and global and local statistics [19,

195]. A good review of the ultrasound segmentation techniques can be found in [120].

Papademetris et al. [129, 128] decoupled the boundary tracking method into three

steps: a) segmentation of the endocardial and/or epicardial surfaces; b) estimation of the

initial correspondences between the surfaces; c) estimation of the deformation between

the surfaces, which reflects the motion of the myocardium [127]. The key advantage of

their method is the use of biomechanical model at the final deformation estimation step.

The authors assumed a transversely isotropic linear-elastic model, which accounts for

the muscle fiber directions in the LV. Such biomechanical model was implemented as a

quadratic regularization term on the components of the strain tensor [128]. Specifically,

regularization of the strain tensor components along the fiber direction was set several

times greater then the gross-fiber ones. It corresponds to the physical model of fiber

stiffness to be greater then gross-fiber stiffness [128]. The model of fiber orientations

was takes from the work of Guccione and McCulloch [63]. Papademetris et al. [129, 128]
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demonstrated a high correlation of such boundary tracking method with groundtruth

implanted markers on open-chest dogs.

Jacob et al. [75] used a Kalman filter tracking of the heart boundaries based on the

dynamic active contour tracking approach of Blake and Isard [16]. Similarly, Orderud and

Rabben [126] tracked the deformable left ventricle surface with extended Kalaman filter.

Bosch et al. [18] used an extension of the active appearance model (AAM) approach to

represent the shape and the appearance of the endocardium, as well as its motion. Manual

delineations were compared with the algorithm contours with an average error of 3.3 mm,

which is comparable with intra observer variability. Mitchell et al. [107] included the time

dimension into the AAM. The model was learned form manually segmented training set

and produces an average error of 3.9 mm between the true and estimated contours.

Yang et al. [182] used a novel one step forward position prediction to generate the

motion prior. Their prediction model depends not only on the most recent boundary

position, but also on all the previous ones, and is estimated from a training set. Such

prediction model was used as an initialization position for the boundary detection based

on steerable features.

Zhu et al. [195] tracked the endo- and epi-cardium surfaces by allocating the boundaries

so that the intensity distribution of the myocardium, of the blood pool and the rest of

the image follow the different parametric Nakagami distributions within the maximum

likelihood framework. The authors also used the incompressibility of the myocardium

constraint to further regularize the problem. Results from 80 sets of synthetic data and

286 sets of real canine data were evaluated against the ground truth and against outlines

from three independent observers, respectively. Improving this work, Zhu et al. [194]

built a shape prior model by accounting for both inter subject variability and temporal

dynamics of cardiac deformation. This prior model was used to predict the next boundary

postion by first identifying the closest subject and then predicting the segmentation. Such

prediction was used to regularize the estimated boundary position.

Boundary tracking methods are much faster then intensity-based speckle tracking

methods, but provide only sparse displacement estimates (along the boundary) and can

suffer from the aperture problem.
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5.2.3 Dense Tracking Methods

Dense speckle tracking methods have emerged based on optical flow [164, 46, 104] and

non-rigid image registration [115, 50, 116, 88]. The idea is to track the deformation of the

whole 3D volume densly. Such methods utilizes the full image information in contrast to

block matching or boundary tracking methods.

Optical Flow Methods: Optical flow speckle tracking methods follow the classical

computer vision optical flow algorithms of Horn and Schunk [72] and Lucas and Kanade [95].

Such approaches assume that the gray values do not change over time. A change of gray

value at any voxel is thus caused only by the motion of this voxel to another location.

Mailloux et al. [99] extended the the Horn-Schunk [72] optical flow method by adding

linearity constraint to the motion field. Zini et al. [196] also added an additional incom-

pressibility constraint. Suhling et al. [164] extended the Lucas-Kanade [95] optical flow

method by using local-affine model for the velocity in space and a linear model in time.

Duan at al. [46] validated optical flow speckle tracking with groundtruth implanted so-

nomicrometers. The assumption of constant gray values is often violated between echo

images, especially when interframe dispalcements are relatively large. Thus, optical flow

methods work well only for small interframe displacements, which requires high frame

rate. In contrast to optical flow methodology, non-rigid image registration allows to spec-

ify the similarity measure between the images, which can account for speckle variability

and allows to capture larger deformations.

Non-rigid Image Registration Methods: Non-rigid image registration has been

proved to be a powerful tool for dense speckle tracking from 2D [88, 101] and recently

from 3D echo images [115, 50, 116, 39]. The idea is to sequentially register the next time

image onto the previous and track the underlying transformation [115]. Some methods

estimate the transforamtions between all image volumes simultaneously by registering all

image volumes onto the first one[39]; such approach can suffer from large speckle decorre-

lation. Most of the 3D methods use B-splines (FFD) transformation parametrization to

be able to cope with large 3D data in a reasonable time.
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The key component of the image registration is the similarity measure, that reaches its

optimum at the correct image alignment. Elen et al. [50] and Craene et al. [39] used mutual

information similarity measure, which is popular for multi-model image registration [175].

While making the least assumption on the image intensity relationship, such similarity

measure may not be the most appropriate for ultrasound images - it does not account

for speckle variability, which makes it less robust in speckle tracking. In Section 5.4 we

introduce a new similarity measure derived specifically for ultrasound images by taking

into account physical image acquisition and speckle formation process [116].

While accounting for the dense speckle information, image registration does not ac-

count for the shape information, e.g., those of endo- and epi-cardium boundaries. We

have proposed a hybrid approach to combine non-rigid image registration and model-based

boundary segmentation [115]. Whereas non-rigid image registration accounts for inten-

sity variations (speckle statistics), model-based segmentation adds shape constraints to

the tracking procedure. Currently motion estimation from 3D echocardiography through

non-rigid image registration is the state-of-the-art in the speckle tracking, especially when

prior information, such as shape and dynamic, is also employed.

5.2.4 Regularization of the Estimated Myocardial Deformation

Regardless of the tracking approach used, estimation of the myocardial motion is an an ill-

posed problem, which requires regularization. Estimated deformations can be regularized

in spatial and temporal domains.

Spatial regularization: Heart is a connected organ and the motion of the adjacent

areas is expected to be coherent. One usually regularizes the estimated displacement field

to be spatially smooth. In block matching speckle tracking methods, the regularization is

imposed by either penalization of spatial derivatives [160] or an ad hoc smoothing of the

adjacent speckle blocks [40, 45] to enforce coherence. In dense speckle tracking methods,

myocardium is usually modeled as an elastic material. Standard regularization terms,

based on penalization of spatial derivatives of the displacement field, are employed (See

Sec. 2.4.3). Such regularization does not account for fiber orientation, which is equivalent
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to the isotropic linear elastic mechanical model of the heart. For instance, optical flow

speckle tracking method penalize first order derivatives of the displacement field [72, 164].

In non-rigid image registration one also regularizes the displacement field either explicitly

(non-parametric approach) or by using parametric approach (e.g. B-splines) that limits

admissible deformations [115].

Boundary tracking method also impose smoothness regularization. As far as the initial

boundary segmentation is available, such methods can take advantage of the myocardium

biomechanical model. Papademetris et al. [128] assumed a transversely isotropic model,

which is essentially equivalent to penalization of the displacement field derivatives taking

into account fiber orientations. This model is more accurate compared to isotropic linear

elastic model, because it takes into account disproportional stiffness of the myocardium

along and across fibers.

Myocardium is often considered to be incompressible, which can be used as an addition

constraint. This assumption is only approximately true due to the blood flow into the wall.

Zhu et al. [193, 195] regularized the volume between the estimated endo- and epi-cardium

contours to be constant by penalizing L2 norm between the initial and current volume

estimates. Incompressibility constaint has been also used in non-rigid image registration

based methods [50, 15, 92]. For instance, Elen et al. [50] penalized the deviation of the

Jacobian determinant from unity in terms of L2 norm. Incompressibility constaint imposed

on the entire image (not only the myocardium) is somewhat questionable as the blood pool

undergoes significant volume changes.

Another spatial regularization approach is to take into account the shape constraints.

Endo- and epi-cardial boundaries should persist and should remain continuous after the

transformation. In fact, boundary tracking method explicitly regularize the heart bound-

aries using either surface parametric model [8] or active shape model (ASM) and its

extensions [194, 120]. Block matching methods can benefit from adaptive smoothing by

putting more importance on the speckle blocks located along the myocardium boundaries.

In non-rigid image registration, one can add an additional regularization term to account

for the boundary shape constraints, e.g. by ensuring that boundaries correspond to the

high intensity gradient regions [115].
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Temporal regularization: Temporal regularization ensures that the dispalcement field

of the myocardium is smooth and continuous in time. Prior motion knowledge, such

as distinct pseudo-periodic dynamics of the myocardium motion, can be also utilized

to regularize tracking in time. Typically, one uses recursive Bayesian estimation [177]

to smooth the estimated displacement field trajectory in time according to a specified

dynamic model [24, 182].

We have used a simple random walk model to smooth the estimated speckle trajectories

over time [160]. Such model does not require any learning steps, can be implemented fast

using the Kalman filter and provides sufficient temporal smoothing of speckle trajectories.

Such a simple model have a low computational complexity, but does not include any heart

specific motion priors.

More sophisticated dynamic models are possible only given the location of heart (e.g.

LV endocardium and epicardium), because one can apply the physical dynamic model

only to the organ, and not to the whole image domain, as in the dense speckle tracking

methods. Such models are usually non-linear and require to use particle filtering [177]. In

notations of tracking methods, the position of heart boundaries can represent the state of

a system. One is interested in modeling the state transition model, which describes the

motion of the heart between two time instances [24]. Sun et al. [165] described cardiac

dynamics using second-order non-linear transition model, which is learned from the train-

ing data. Similarly, Yang et al. [182] used a transition model that depends not only on a

single previous state, but also on all the other previous states. The transition model was

automatically learned from the training data and represented as a manifold that describes

the motion pattern of the heart. Nascimento and Marques [118] proposed to use mixture

of two transition models describing the systole (shrinking) and diastole (dilation) cardiac

cycles, without the need of having an extensive training set. Carneiro and Nascimento [24]

further improved this work by additionally learning the model from the data.

Zhu et al. [194] built a shape prior model by accounting for both inter subject variability

and temporal dynamics of cardiac deformation. They used multilinear PCA and ICA to

reduces the dimensionally, which is similar to the Active Shape Model (ASM) approach

but also includes the temporal variability. This prior model was used to predict the
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next boundary postion by first identifying the closest subject and then predicting the

segmentation, which is similar to recursive Bayesian tracking. Their objective function

consists of data fitness term, which depends on the image and the regularization term,

which is the L2 norm between the the estimated and predicted boundary positions [194].

This is a similar approach to the previous work of Zhu et al. [193, 195], but regularizes the

boundary segmentation based on dynamic model rather then using the incompressibility

constaint.

One downside of the dynamic model learned from the training data is its potential

danger when appling to the cases not described by the training set, e.g. infarcted heart.

In such cases, the dynamic model can significantly bias the deformation estimate toward

the expected normal motion of the myocardium, whereas the actual motion pattern may

include a few disfunctional regions.

5.3 Quantitative Characteristics

From the estimated dense transformation field, we can derive quantitative characteristics

to analyze the cardiac mechanic and function. Strain is one of the fundamental quantita-

tive characteristics that is used to analyze myocardial deformations. Strain is a relative

change of an object length. Linear strain is defined as

ε =
L− L0

L0
(5.1)

where L0 is the initial and L is the current distance between two points. Such strain

is often called Lagrangian strain, which is an object lengthening relative to its original

length. Negative strain corresponds to object shortening. Such strain can be also called

longitudinal strain, but this definition is not advised because of the possible confusion with

longitudinal heart orientation. Stain is dimensionless ratio, which can be also expressed in

percent. Another important quantitative characteristic is strain rate, which is the strain

change per time instance

ε′ =
dε

dt
(5.2)

Strain rate indicates the rate of deformation change. Lagrangian strain is unknown if

the original length is unknown. A more natural approach may be to define instantaneous
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strain in relation to the instantaneous length and integrate over the time of observation

εN =

∫ t1

t0

dL

L
=

∫ t1

t0

L − L0

L
= ln

L

L0
(5.3)

Such strain is called natural or Eulerian strain; it is related to the Lagrangian strain

through the equality

εN = ln(ε+ 1) (5.4)

Myocardial deformation is truly three dimensional, that is any myocardial region, e.g.

speckle patch, undergoes deformation in three dimensions. 3D strain can be described

through the stain tensor, which is a 3 × 3 matrix with 3 diagonal elements corresponding

to normal strain along the coordinate axes and 6 off-diagonal shear components, which

measure angular changes between the axes. The orientation of the coordinate axes can be

global, e.g. relative to the transducer probe location. For LV imaging, a local coordinate

system is often used relative to the LV boundary, so that normal strain components

correspond to longitudinal (along the heart main axis), transmural (perpendicular to the

heart surface) and circumferential (around the heart) directions. Local coordinate system

is always relative to the placement of its origin on the LV; its orientation varies spatially.

Only dense speckle tracking allows to calcute the strain tensor, which provides more

comprehensive evaluation of myocardial deformation.

Another usefull quantitative charactersistic is torsion. Torsion is defined as a base to

apex angle of rotation along the the longitudinal axis of the LV. Usually, one defines the

torsion as a rotational angle between two parallel planes located at 20% and 80% from

the apex level. Other quantitative characteristics include untwisting velocity, LV and RV

volumes and ejection fraction [87, 74].

5.4 Similarity Measure Based on Physics of Speckle Noise

Speckle arises from the effects of interferences caused by microscopic scatterers from the

imaged region. Speckle is just noise, which corrupts the image. For the tracking purposes,

speckle represents a valuable information, because it follows the myocardium motion.

Registration of 3D echocardiogram can take advantage of the physical properties of the

ultrasound images. In this section we derive a new similarity measure from the Maximum
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likelihood (ML) perspective by taking into account speckle formation and acquisition

process.

5.4.1 Speckle Correlation and Blurring

The speckle noise is a random signal, but has implicit dependence on the underlying

imaging object structure. If the static object is imaged twice, the speckle remains the

same [58, 34]. This is in contrast to other noise cases, e.g. electrical noise, which always has

a random nature. In the seminal paper on ultrasound speckle formation, Burckhardt [22]

investigated the speckle correlation for a static object with respect to the rigid translation

of a transducer. He theoretically derived the correlation coefficient to be ρ = (a−b)2/a2 for

|b| ≤ a and zero otherwise, where a is a transducer aperture length and b is a translation

amount. Which means that if we move the transducer, e.g. on 10% of its aperture length,

the correlation coefficeint will be ρ = 0.81. Other researches also showed the dependence of

speckle correlation on object translation [124], rotation [80], linear transformations [104].

The myocardium motion is complex nonrigid deformation, but if two consecutive images

are taken with sufficiently high frame rate, which is the case for modern ultrasound devices,

the speckle noise formation between the consecutive frames is similar, and 2 speckle noise

variables are correlated [34]. Another important aspect to take into account is that the

actual measured speckle is blurred. In an experiment, speckle can not be measured at an

ideal point, but rather is spatial-integrated over some finite area of a detector element. In

addition, even with an extremely tiny detector, a speckle is moving and we are measuring

again a speckle time-integrated pattern [59]. The spatial and temporal speckle integration

both take places in echocardiography and it is important to use statistics of bluerred

speckle for more accurate motion estimation.

5.4.2 Maximum Likelihood Motion Estimation

Consider two 3D ultrasound images I and J acquired at consecutive time instances. The

maximum likelihood (ML) approach to estimate the transformation T between the images

is to maximize the conditional probability [37, 141], p(J(T )|I, T ), or equivalently minimize
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the following energy function

E(T ) =

N
∑

n=1

− log p(Jn(T )|In, T ) (5.5)

where we assumed that all voxelwise conditional probabilities are i.i.d. and Jn(T ) denotes

the intensity values of nth voxel after applying the transformation T . The negative log-

likelihood function defines the (dis-) similarity function between the image voxels, which

is minimized to align the images.

In ultrasound imaging, the image intensities are the log-compressed values of the en-

velope amplitudes (denoted as a and b) [34]:

In = D log(a) +G; Jn(T ) = D log(b) +G (5.6)

where G and D are linear gain and scaling constants of the dynamic range.

When the speckle is fully developed the noise is multiplicative and follows the Rayleigh

pdf [34, 59]:

p(n) =
n

σ2
exp

−n2

2σ2
, n ≥ 0 (5.7)

Thus a = sn1 and b = sn2 can be seen as a realization of the informative signal s corrupter

by multiplicative Rayleigh noise n1 and n2 respectively. Simplifying Eq. 5.6, we achieve

In = Jn(T ) +D log(
n1

n2
) (5.8)

Defining the division of two random variable as η = n1
n2

, we can compute the conditional

probability in Eq. 5.5 as

p(Jn(T )|In, T ) =
1

D
ηp(η) (5.9)

The probability density function of the division of two random variables can be found as

[130]

p(η) =

∫ ∞

−∞
n2p(ηn2, n2)dn2 (5.10)

which defines the conditional probability as

p(Jn(T )|In, T ) =
η

D
p(η) =

η

D

∫

n2p(ηn2, n2)dn2 (5.11)
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5.4.3 Independent Rayleigh Noise Assumption

Cohen and Dinstein [36, 37] assumed the noise at consecutive ultrasound images to be

independent with equal variances, then Eq. 5.11 simplifies to

p(Jn(T )|In, T ) =
η

D

∫ ∞

−∞
n2p(ηn2)p(n2)dn2 =

η

D

∫ ∞

−∞

ηn3
2

σ4
e
−n2

2

„

η2+1

2σ2

«

dn2 =
2η2

D(η2 + 1)2

(5.12)

From the Eq. 5.8, we find that1

η =
n1

n2
= e

Jn(T )−In
D = edn , (5.13)

where by dn we define a scaled difference between the intensities of corresponding image

voxels: dn = Jn(T )−In

D . The similarity function (Eq 5.5) takes the form

E(T ) =
N
∑

n=1

− log
e2dn

(e2dn + 1)2
− log

2

D
; dn =

Jn(T ) − In
D

(5.14)

where the last term log 2
D is a constant, which can be ignored. Cohen and Dinstein derived

this similarity function and called it CD2 similarity measure [36, 37]. We also note, that

Cohen and Dinstein in its original derivation do not account for scaling constant D as

in Eq. 5.6, which is equivalent to assume D = 1. CD2 similarity measure showed an

improved performance comparing to other similarity measure in ultrasound tracking, and

later found a widespread attention in block matching algorithms [20, 138, 160, 91].

5.4.4 Correlated Rayleigh Noise Assumption

In this section we build upon the work of Cohen and Dinstein [36, 37] by assuming that

Rayleigh noise n1 and n2 are not independent. If two consecutive images I and J are

taken with sufficiently high frame rate, which is the case for modern ultrasound devices,

the speckle noise formation between the consecutive frames is similar, and the random

variables n1 and n2 are correlated [34].

1Usually, the ultrasound log-compression is done with decimal logarithm function, which results in
102dn = e

2dn ln 10 terms instead of e
2dn . We absorb the scaling ln 10 into the constant D for convenience.
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The bivariate Rayleigh distribution [59] of two random variable n1 and n2 with equal

variance σ2 is

p(n1, n2) =
n1n2

(1 − ρ)σ4
e
− n2

1+n2
2

2σ2(1−ρ) I0

[ √
ρn1n2

(1 − ρ)σ2

]

(5.15)

where I0 is a modified Bessel function of the first kind with zero order

I0(z) =

∞
∑

k=0

z2k

22k(k!)2
(5.16)

and 0 ≤ ρ < 1 is correlation coefficient and n1 ≥ 0, n2 ≥ 0 . Substitution Eq. 5.15 in

Eq. 5.11, we have to take a non-trivial integral

p(Jn(T )|In, T ) =
η

D

∫ ∞

0
n2p(ηn2, n2)dn2 =

η

D

∫ ∞

0

ηn3
2

(1 − ρ)σ4
e
−n2

2(1+η2)

2σ2(1−ρ) ·I0
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Using the formula
∫ ∞
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we achieve
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Finally, using the formula for infinite series [157]

∞
∑

k=0

zk (2k + 1)!

(k!)2
=

1
√

(1 − 4z)3
(5.20)

we obtain

p(Jn(T )|In, T ) =
2(1 − ρ)η2

D(1 + η2)2

(

1 − 4ρη2

(1 + η2)2

)− 3
2

(5.21)
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The similarity function (Eq 5.5) takes the form

E(T ) =

N
∑

n=1

− log
e2dn

(e2dn + 1)2
+

3

2
log(1 − 4ρe2dn

(e2dn + 1)2
) − log

2(1 − ρ)

D
=

N
∑

n=1

3

2
log(cosh2(dn) − ρ) − 1

2
log(cosh2(dn)) + const (5.22)

where dn is a scaled difference between the intensities of corresponding image voxels:

dn = Jn(T )−In

D . By convention, we shall call this similarity function the MS similarity

measure. As a check on this result, if the correlation coefficient ρ = 0, then MS simplifies

to CD2 in Equation 5.14.

5.4.5 Blurred Speckle

The probability density function of speckle noise at an ideal point in space is quite ideal-

istic. During data acquisition, the speckle is not measured at an ideal point, but rather

integrated over some area of detector element. Also, the speckle pattern motion, caused

by imaging area motion, makes the measurement quantity integrated over some part of

ideal speckle pattern. This results in blurred speckle effect, which modifies the density

function [58, 59].

To deal with the same problem with optical speckle, Goodman [58], following the work

of Rice [140], proposed to approximate the continuous intensity pattern falling on the

detector by a two-dimensional boxcar function, consisting of m rectangular pillboxes with

different height. The intensity values represented by pillboxes are assumed to be iid with

negative exponential distribution. Then the probability density function of intensity is a

Gamma density

p(w) =
1

Γ(m)

( m

2σ2

)m
wm−1e−

mw
2σ2 , w > 0 (5.23)

In ultrasound imaging, the detector is pressure sensitive, which means that we measure

the amplitude (square root of intensity). Using a change of variable for the Gamma pdf

(n =
√
w), we achieved that the blurred speckle has a Nakagami distribution [117]

p(n) =
mm

2m−1σ2mΓ(m)
n2m−1e−

mn2

2σ2 , n > 0 (5.24)
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which is also called a generalized Rayleigh distribution [105]. For m = 1 the distribu-

tion reduces to the Rayleigh distribution (Eq. 5.7). The application of the Nakagami

distribution in ultrasound imaging has been popularized by Shankar [154]. He showed

that the Nakagami distribution fits the real speckle distribution superior to Rayleigh and

K-distributions. There is no relationship between Shankar’s [154] application of the Nak-

agami distribution and Goodman’s [58, 59] approach to blured speckle statistics. Both

works, however, show that Nakagami distribution is superior to other common distribu-

tions to model speckle statistics.

To derive the similarity measure, assuming that two speckle variable are correlated,

we use the bivariate Nakagami distribution [117, 167]

p(n1, n2) =
mm+1(n1n2)

m

2m−1σ2(m+1)(1 − ρ)ρ
m−1

2 Γ(m)
e
−m(n2

1+n2
2)

2(1−ρ)σ2 Im−1

(

m
√
ρn1n2

(1 − ρ)σ2

)

(5.25)

Here, we assumed that the distribution widths σ2 are equal, ρ is a squared correlation

coefficient 0 ≤ ρ < 1, m > 0.5 and Im−1 is a modified Bessel function of the first kind of

order m− 1:

Im−1(z) =

∞
∑

k=0

z2k+m−1

22k+m−1Γ(k +m)k!
(5.26)

As a check, for m = 1 the bivariate Nakagami distribution simplifies to bivariate Rayleigh

distribution in Eq. 5.15.

Substitution Eq. 5.25 in Eq. 5.11, we take the integral
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Using the formula from Eq. 5.18, we achieve

p(Jn(T )|In, T ) =
2(1 − ρ)mη2m

D(η2 + 1)2mΓ(m)

∞
∑
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Finally, using the formula for infinite series [158]
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we obtain

p(Jn(T )|In, T ) = 2(1 − ρ)m Γ(2m)

Γ(m)2
η2m

D(η2 + 1)2m

(

1 − 4ρη2

(1 + η2)2

)− 2m+1
2

(5.30)

By definition β(m) = Γ(m)2

Γ(2m) , where β(m) is a central beta function. The similarity function

(Eq 5.5) takes the form

E(T ) =

N
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−m log
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where dn is a scaled difference between the intensities of corresponding image voxels: dn =

Jn(T )−In

D . By convention, we shall call this similarity function MS2 similarity measure.

The last term is just a constant if m and ρ parameters are fixed. As a check, for m = 1

the MS2 similarity measure simplifies to MS in Eq. 5.22.

5.4.6 Analysis

The CD2 similarity measure, we believe, is of general interest for image registration. We

can rewrite the Eq. 5.14 in different but equivalent form as E(T ) ∝ ∑

n − log sech2(dn),

where sech is a hyperbolic secant function. Thus, we could have achieved the same simi-

larity measure by simply assuming an additive image noise with logistic pdf. The logistic

distribution resembles the Gaussian distribution, but has heavier tails (higher kurtosis)

and thus belongs to the class of super-gaussian distributions.

From the optimization perspective, we can analyze the shape of the voxel-wise simi-

larity function and its derivative (influence function), rather than the distribution itself.

The shape of CD2 similarity function resembles the shape of the absolute value function

( L1 norm between the images), but is also differentiable at the origin. The derivative of

the CD2 function is tanh, which approximates the step function. Figure 5.1 shows the

plot of CD2 similarity function and its derivative versus L1 norm ones. L1 norm belongs

to the family of robust similarity measures with many applications in statistics, machine

learning and computer vision areas. This supports the robust and accurate performance

of CD2 measure in image registration.
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The MS similarity measure generalizes the CD2 measure. Figure 5.2 shows the plot

of MS similarity function and its derivative for different values of correlation coefficient ρ.

For ρ = 0, the MS simplifies to CD2. For the larger values of correlation coefficient, MS

has a sharper peak in a vicinity of the origin and otherwise asymptotically approaches

the L1 norm function. The MS2 similarity measure further generalizes MS. Additional

parameter m controls the angle of side-lobes of the similarity function, which adds ex-

tra control on the difference beetween smaller and larger intensity distance between the

images.

From the optimization perspective, the higher the correlation value, the higher weight

is assigned to the closer intensity differences, which makes the similarity function more

robust to outliers (large differences in intensity). The behavior of MS and MS2 function

becomes similar to the behavior of functions in the robust M-estimator approach. The

robustness to outliers are crucial in registration of ultrasound images, which typically

includes multiple intensity artifacts.
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Figure 5.1: The plot of CD2 similarity function and its derivative versus L1 norm function.

We note that some other distribution models have been proposed to model speckle

pdf including K-distribution [153], generalized Nakagami distribution [155] and Rician

Inverse Gaussian (RiIG) distribution [51]. Among them, generalized Nakagami and RiIG

distributions showed to have better performance [51].
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Figure 5.2: The plot of MS similarity function and its derivative for different values of
correlation coefficient ρ. When ρ = 0, the MS similarity measure simplifies to CD2.

?

T
−→

(a) (b)

Figure 5.3: Joint non-rigid image registration and segmentation schema. (a) Given two
3D ultrasound images I and J , and the initial position of the contour Ct (b) We use FFD
to parametrize the transformation T by a mesh of control points (+). By manipulating
the control points positions, we want to solve two tasks simultaneously: to deform the
image I to align it with J , and to deform contour Ct to align it to the high intensity
gradient region of the image J .

5.5 Shape Constraints

Using the speckle pattern (intensity-based similarity measure) alone is prone to errors due

to multiple 3D ultrasound image artifacts. We use the heart shape boundary constraints to

add robustness to the non-rigid image registration tacking [115]. Consider two consecutive

3D ultrasound images, I and J , obtained at time t and t+1 respectively. Assume an initial

boundary segmentations of the LV endocardium and epicardium are available at time t.

These two boundaries define the LV contour Ct.

We seek the transformation T that not only optimizes the intensity-based similarity
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measure but also aligns the initial contour Ct to its new position that lies onto the high

intensity gradient region. We adopt the active contour segmentation approach [82], with

the following objective function

Eshape(T ) =
∥

∥

∥
∇J̃(T (Ct))

∥

∥

∥

2
(5.32)

where J̃ is the image J after preprocessing by anisotropic diffusion to remove noise and

emphasize the boundaries. Thus our tracking method between two consecutive volumes

is a joint non-rigid image registration and active contour segmentation using a shared

transformation T . We minimize the following objective function

E(T ) = Esim(T ) + λEshape(T ) (5.33)

where Esim is the non-rigid image registration similarity measure that utilizes speckle in-

formation, and Eshape is an active contour energy function that accounts for shape struc-

tures. Parameter λ represents a trade-off between the intensity (speckle) and structural

information influences. Figure 5.3 illustrates the schema of the method.

To initialize the contour Ct in the first volume we use the registration-based image seg-

mentation. We have selected a 3D volume with a clear LV view, and manually segmented

its endo- and epi-cardium. We have used 2D cross-section image planes to allocate the

boundary contours and then form a 3D finite element model. We use this 3D volume to-

gether with the boundary countour as a template image and register it to the first volume

of a tested 3D echo sequence to allocate the initial contour Ct.

5.6 Transformation Model

We use the Free Form Deformation (FFD) model [152, 146] to parameterize the trans-

formation of the imaged area T between two consecutive volumes. Such transformation

represents a continuous mapping from every 3D location of one volume to the correspond-

ing 3D location of the next volume.

FFD is defined a tensor product of cubic B-splines basis functions. The basic idea of

FFD is to deform a 3D object by manipulating a mesh of B-spline control points. FFD

has been successfully used for non-rigid medical image registration [146], for tracking of
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cardiac MRI [8] and in 3D echocardiography [115]. The main advantage of FFD is that

the complex non-rigid transformation is defined by a small number of parameters (control

points positions). Since FFD is volumetric transformation, we can transform several

objects (e.g., 3D image, endocardium and epicardium model contours) simultaneously with

a single FFD. More details on the FFD transformation model can be found in Section 2.3.1.

A level of smoothness provided by parametric form of FFD model is not always suf-

ficient, because locally large deformations or unnatural foldings of the B-spline control

points can occur. We use an addition regularization term for FFD; we penalize the Eu-

clidean distance between all the neighboring displacements of B-spline control points to

prevent unnatural wraps. Such regularization penalizes first order derivative over the

displacements of control points, which allows fast computations.

5.7 Optimization

For a given pair of consecutive 3D image volumes, we minimize the following objective

function

E(u) = Esim(u) + λEshape(u) +
α

2
‖∇u‖2 (5.34)

where Esim(u) is the MS2 similarity measure (Eq. 5.31), Eshape(u) is the contour energy

function (Eq. 5.32), u is the displacement vector of all B-splines control points, which

uniquely specify the transformation, ∇ is the gradient operator and ‖∇u‖2 is the regular-

ization term. We do not use a multiresolution registration approach, because consecutive

images are already reasonably close (in terms of the transformation), which alleviates the

need for multiresolution. We equate the gradient of the objective function with respect to

the transformation parameters (displacements of B-spline control points) to zero

∇Esim(u) + λ∇Eshape(u) + α∆u = 0 (5.35)

where ∆ is the Laplacian operator. We use the implicit Euler time marching method to

minimize the objective function [23]:

u = (Id + γα∆)−1 (u− γ (∇Esim(u) + λ∇Eshape(u)))) (5.36)
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where gamma is a time step parameter, which is similar to the gradient descent step size.

The stopping condition was either when the current change in the objective function drops

below the threshold of 10−8 or the number of iterations reaches the maximum of 100.

5.8 Sequential Registration

After aligning two consecutive 3D volumes, we repeat the process in the similar fash-

ion for the next pair of images, until reaching the last image pair. Thus we track the

mesh of B-spline control points throughout the 3D sequence, which gives us a continuous

transformation field as a function of time (volume number).

Sequential image registration, in contrast to the registration to a single template,

benefits in terms of computational effort, allows to incorporate the dynamic model and

supports our assumption of speckle correlation between the consecutive volumes, which

we use to derive the MS2 similarity measure. However, we recognize that such sequential

approach could potentially lead to a slow error accumulation from volume to volume.

5.9 Dynamic Constrains

Speckle motion is also subject to temporal constraint, characterized by the dynamics of

the heart motion. Here, we use a simple dynamic system, and update it with a discrete

Kalman filter.

We define the FFD control points locations as the underlying state. We assume a

simple process model given by

st = Fst−1 + nt−1. (5.37)

The state at time t− 1 is defined as the FFD B-spline control points positions and their

velocities for image I: st−1 = [X;V]. Matrix F is defined as

F6M×6M =





I3M×3M I3M×3M

03M×3M I3M×3M





whereM is total number of control points. Process noise nt−1 is assumed to have Gaussian
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distribution p(n) ∼ N (0,R). We define the measurement model by

zt = Hst + µt (5.38)

Here the measurement (observation) is defined as locations of control points obtained at

the optimum of joint registration and segmentation objective function. Matrix H3M×6M

is given by [I3M×3M ;03M×3M ]. The measurement noise µt is assumed to have Gaussian

distribution with p(µ) ∼ N (0,Q). The discrete Kalman filter can be used to update

the above system. We empirically determined the process and the measurement noise

covariances to be Q = 0.2I,R = 0.01I. The positions of B-spline control points after the

joint registration and segmentation are used as a noisy measurements at time t to update

the predicted state and achieve the final transformation parameters.

5.10 Spherical Coordinates

One factor to consider for quantitative analysis of 3D echo images is the format of the

ultrasound signal. A typical digital ultrasound processing chain consists of the following

four steps: 1) Multiple analog-to-digital converters convert the analog radio frequency

(RF) signal from the ultrasound transducer to a digital RF signal; 2) Beamforming is

applied to individual RF signals by applying time delays and summations as a function of

time and transformed into a single RF signal, which is often called “beamformed RF” data;

3) The RF signal is filtered, is run through an envelope detector and is log compressed

into a gray scale format. At this stage the data is represented as a sequence of 3D

arrays, each of which is a 3D image in the raw spherical coordinate system; 4) Finally, the

envelope-detected signal is scan converted to Cartesian coordinate system and interpolated

at the regular grid to form the digital 3D image (also called B-mode data). The data

corresponding to the third and fourth steps (spherical vs. Cartesian coordinates of post-

converted image) is shown in Figure 5.4.

We propose to use envelope-detected 3D echo image in the raw spherical coordinates

(step 3), before the final conversion to the Cartesian coordinates. In other words, we

can take one step back in 3D echo image formation. We note that such approach differs
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(a) Spherical

Conversion
−→

(b) Cartesian

Figure 5.4: (a) An example of a 2D slice out of 3D spherical data displayed as a 2D array
with 416 × 62 × 56 resolution. (b) The spherical data is converted to the Cartesian data
with 208 × 297 × 269 resolution.

significantly from the registration methods [25] that build a spherical or cylindrical trans-

formation model along the heart orientation axis, using Cartesian post-converted images

(step 4). We use envelope-detected images in raw spherical coordinates (step 3), which

may or may not be in alignment with heart orientation. To implement the non-rigid image

registration in spherical coordinates we define the FFD B-spline control points in spherical

system with uniform spacing. Image interpolation required during the registration itera-

tions is done also from the image voxels in spherical system. At the end of registration

the transformation field can be easily converted to Cartesian system and vise versa.

The main benefits of using envelope-detected image in spherical coordinates, in con-

trast to the final Cartesian coordinates, is the preservation of speckle statistics and avoid-

ance of information loss associated with scan conversion and interpolation. The envelope-

detected data has higher resolution in vicinity of transducer and lower resolution away

from the transducer. Also, the axial resolution is much higher than the lateral. After

conversion to the Cartesian system some information is lost, including high axial resolu-

tion and high resolution closer to the transducer, and additional errors are introduced,

for instance, the new voxels that appear after regular grid interpolation in the areas far

from the transducer. Even though the envelope-detected data in spherical coordinates still

contains less information than RF data, it represents a reasonable compromise between
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Figure 5.5: Placement of sono crystals on the LV.

level of the signal details and computational complexity.

5.11 Validation by Sonomicrometry

To validate our approach, we perform the ground truth strain and torsion estimation

with implanted sonomicrometers (sono crystals) on open chest piglets. An array of six

sonomicrometers (sono crystals) was implanted as two sets: three sonomicrometers at

apex level and three sonomicrometers closer to the base level in the LV myocardium (see

Figure 5.5). Using Sonometrics r©software (ON, Canada), we computed off-line the pair-

wise crystal distances. From these distances, we computed pairwise strains and between-

plane torsion, which were used as a ground truth for validation. The strain between a

pair of sonomicrometers was computed as the relative distance change with respect to the

initial distance, so that the positive values correspond to the dilation. The torsion was

computed as the angle of rotation between the two planes defined by the two sets of sono

crystals, which are approximately parallel. We use a geometrical center of crystal triplets

in LV as a center of rotation, which is approximately true due to the intentional crystal

placement around the myocardium. The actual sonomicrometer motion also involves off-

plane complex motion; we use projections of sonomicrometer positions onto the initial

plane to measure the rotation.

To compare strain and torsion derived from the registration algorithm to those from

the sonomicrometry, we visually located, based on anatomical markers, the sono crystals

positions on the myocardium in the end diastole volume. These locations were propagated

across time by the displacement field obtained from the tracking algorithm. From their
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moving positions we computed strain and torsion in the same fashion as those for sono

crystals. All algorithm-derived and sonomicrometry-derived strains and torsions were

computed relative to the end diastole volume.

We note, that the algorithm and sonomicrometry measurements have different tempo-

ral resolutions. We upsample the algorithm derived measurement to the higher sonomi-

crometer resolution using cubic interpolation.

5.12 Experimental Results

We have implemented the algorithm in Matlab, and tested it on a AMD Opteron CPU

2GHz Linux machine with 4GB RAM. We acquired the 3D echo sequences using Philips

iE33 X7-2 probe with ECG gating from 7 open-chest pigs. We used maximal spatial res-

olution option. The data were combined from 7 cycles (7 stitches). The spatial resolution

was 208×297×269 voxels, with 24 volumes per sequence on average. We use the Cartesian

coordinate system. We put the FFD control points uniformly with 20 voxels spacing. We

set D = 1, ρ = 0.8 and m = 0.5, which we empirically found to give the best performance.

For the boundary shape constraints we use the trade-off parameter λ = 0.1. The weight of

the regularization term was set to α = 0.01. On average, the tracking algorithm between

two volumes requires around 5 minutes (120 minutes for the full sequence).

5.12.1 Animal Preparation

We studied 7 pigs of both sexes approximately 12 weeks of age (18-22 kg). The pigs

were placed in the supine position during the experiment and anesthesia was induced

with 25 mg/kg IV thiopental and maintained with an infusion of 25 mg/mL solution (100

mL/h) of fentanyl citrate. A median sternotomy was performed and the pericardium

split from apex to base to expose the heart. The pigs were ventilated with a constant-

volume ventilator and body temperature was maintained in the physiological range with

a heating pad. LV, RV and aortic pressures were measured with 8F micromanometer-

tipped catheters. Catheters were inserted via peripheral vessels. Ventricular and aortic

pressures were referenced using their respective fluid-filled lumens and atrial pressures, by
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comparison to ventricular values during diastole. Aortic and pulmonary arterial flow was

measured using ultrasonic flowmeters.

Additional perturbation was undertaken by subjecting the piglets to a left anterior

descending (LAD) coronary artery ligation and the inferior vena cava (IVC) occlusion.

Atraumatic vascular occluders were placed around the proximal third of the left anterior

descending coronary artery to induce ischemia. The inferior vena cava was isolated by

blunt dissection in posterior mediastinum and a pneumatic occluder was placed on the

IVC to transiently decrease preload (typically down to an LV end diastolic pressure of 3-4

mmHg). At end-expiration, the respirator was switched off for very short periods to allow

for successive beats to be recorded without the effects of breathing.

5.12.2 Data Acquisition

Three sono crystals were implanted along the LV circumference close to the apex and

three close to the base in the short axis plane. Atraumatic surgical and fine suturing

techniques were used to secure crystals subepicardially to minimize myocardial damage.

To achieve reproducible and parallel planes, the crystals at each level were placed at fixed

distances from LV apex (20% of LV length for apical plane and 80% of LV length for basal

plane, as shown in Figure 5.5). Signals from crystals were acquired at a rate between 250-

300 Hz after optimizing parameters such as inhibit delay and transmit impulse, and after

observing a clear signal.

Full volume 4D image loops were acquired at 24 volumes per heart cycle with placed

directly on the cardiac apex separated only by a small piece of fresh liver as standoff.

Frequency and focus places were optimized to get the best possible myocardial texture

throughout the LV full volume. Baseline images were acquired before and after placing

sono crystals. After acquiring baseline (normal steady state) data, preload to heart was

altered by a graded occlusion of inferior vena cava (IVC) for a short period of time. Sono

data and 4D apical long axis full volume images were acquired during periodic occlusion.

After releasing the IVC, another set of baseline data was acquired. The study was repeated

with ligation of the mid segment of the left anterior descending (LAD) coronary artery

for 5-7 minutes to produce myocardial ischemia.
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Figure 5.6: The LV contour and sonomicrometer motion found during the cardiac cycle
(24 consecutive volumes). LV achieves the maximum contraction at volume 13, then the
LV dilates (diastolic phase) up to the volume 22 and starts contracting again (systolic
phase).

5.12.3 LV Strain Analysis

We show an example of the estimated dense transformation through motion of the LV

endo- and epicardium contours with and without original 4D echo overlay in Figure 5.6 and

Figure 5.7. The green markers show the estimated motion of sonomicrometers. Figure 5.8

demonstrates the color-coded surface strain on the LV endocardium for an example of

baseline scan. Strain between a pair two particular crystals at the apical level is shown

in Figure 5.9. The strain values are plotted for the algorithm and the corresponding

groundtruth sonomicrometry over time for the baseline, IVC occlusion and LAD ligation

experiments. Clearly, the algorithm-derived strains follows the sonomicrometry-derived

strains closely both in the amplitude and shape. Both algorithm and sonomicormetry

strain measurements were able to differentiate between the ischemic and non-ischemic

states caused by LAD ligation. This is also observed in the end systolic (ES) strain plot

for LAD ligated and baseline states in Figure 5.10.

Table 5.1 shows the average peak strain (ES strain) values, derived by the algorithm,
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volume 1 volume 4 volume 6 volume 8 volume 10

volume 13 volume 15 volume 18 volume 21 volume 24

Figure 5.7: Estimated motion of the LV contours and sonomicrometers superimposed on
the 3D echo images in Cartesian coordinates.

Baseline LAD IVC

Apical −19.14 ± 3.78 −13.57 ± 1.21 −24.3 ± 1.44
Basal −18.87 ± 2.35 −16.73 ± 1.16 −21.6 ± 4.37

Apex-Base −18.11 ± 4.52 −17.28 ± 2.12 −18.9 ± 4.13

Table 5.1: Algorithmically estimated peak stain (ES strain) for different segments between
the sono crystals in the apical, basal and in apical-to-basal levels. The measurements were
averaged among the combinations of sono crystal within a particular level and among all
scans. The decrease in the peak strain caused by LAD ligation is clear especially in the
apical region. Also the reduction of preload due to controlled IVC occlusion led to the
slight increase of the overall strain.

between the sono crystals in the apical, basal and in apical-to-basal levels. The apical level

strain was derived using the three apical sono crystals that provide three pairwise strain

measurements, as shown in Fig. 5.5. Similarly the basal level strain was derived from

three intercombinations of basal sono crystals, and the apical-to-basal strains were from

the pairs of the corresponding apical and basal sono crystals. The measurements were

averaged among the combinations of sono crystal within a particular level and among all

scans. The decrease in the peak strain caused by LAD ligation is clear especially in the

apical region. Also the reduction of preload due to controlled IVC occlusion led to the

slight increase of the overall strain.
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volume 3 volume 9 volume 13

volume 18 volume 20 volume 22

Figure 5.8: Color-coded display of LV endocardium strain is visualized at 6 particular
volumes (out of 24 total). LV achieves the maximum contraction at volume 13 (end
diastolic phase).

We compared the algorithm strain to the sonomicrometry-derived strain for matching

segments. Table 5.2 shows the mean absolute error values between the sonomicrometry

and the algorithm strain averaged over time, pairs within the levels (Apical, Basal, Apical

to Basal and overall) and among all 4D echo scans. Our method performs well with the

average error within a few percent from the groundtruth strain.

Baseline LAD IVC

Apical 1.83 ± 0.83 1.12 ± 0.62 1.92 ± 2.03
Basal 2.71 ± 1.39 2.47 ± 1.57 3.17 ± 1.27

Apical-to-Basal 1.76 ± 2.13 1.54 ± 1.83 1.63 ± 1.86
Overall 2.22 ± 1.57 1.69 ± 1.47 2.39 ± 1.78

Table 5.2: Mean absolute error between algorithm and groundtruth sonomicrometry
strain. The error is shown for different levels (apical, basal, apical-to-basal and overall)
against different states (baseline, LAD ligation and IVC occlusion).
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Figure 5.9: Strain values against time (sec) from the apical region (between 2 particular
sono crystals), derived from algorithm and sonomicrometry for the Baseline, IVC occlusion
and LAD ligation states. The algorithm strain follows the sonomicrometry strains closely
both in the amplitude and shape.

Baseline LAD IVC

Algorithm 3.85◦ ± 1.65◦ 5.62◦ ± 1.43◦ 2.79◦ ± 1.21◦

Sonomicrometry 5.25◦ ± 1.20◦ 7.85◦ ± 0.90◦ 3.65◦ ± 0.35◦

Table 5.3: The average peak torsion as estimated by the algorithm and by the sonomi-
crometry.

5.12.4 LV Torsion Analysis

We calculated torsion from the instantaneous differences of apical and basal rotations

in each volume. We can visually see the rotation patterns from the displacement field

between the end diastolic (ED) and end systolic (ES) phases in Figure 5.11.

We illustrate the estimated torsion for different steady states in Figure 5.12. Table 5.3

shows the average peak torsion values derived by the algorithm and by the sonomicrometry.

On average, at baseline peak torsion values were 5.25◦±1.20◦ as detected by sonomicrom-

etry and 3.85◦ ± 1.65◦ as detected by the algorithm. With the reduction of preload due

to controlled temporary IVC occlusion, peak torsion was increased to 7.85◦ ± 0.90◦ by

sonomicrometry and 5.62◦ ± 1.43◦ by the algorithm. With anterior myocardial ischemia

produced by atraumatic occlusion of the distal half of the LAD, peak global torsion was

reduced to 3.65◦ ± 0.35◦ by sonomicrometry and 2.79◦ ± 1.21◦ by the algorithm. Overall

the algorithm consistently underestimates the torsion values. Nonetheless, we achieve a

significant correlation, r = 0.89, between the algorithm and sonomicrometer torsions. We

computed the correlation as an average correlation coefficient between the corresponding
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LAD ligation Baseline

Figure 5.10: Color-coded display of LV endocardium ES-strain for LAD and Baseline
states.

Figure 5.11: The displacement vector fields on LV endocardium between end diastole and
end systole volumes at two different viewing angles.

algorithm and sonomicrometer torsion measurements averaged over all scans.

Underestimation of the torsion values is likely caused by a larger speckle decorrelation

due to myocardium rotation and by the regularization of the transformation. Nonetheless,

a high temporal correlation between the algorithm and sonomicrometry torsions and the

ability to differentiate between different steady states can make the algorithm torsion

measurements a valuable indicator for the actual torsion assessment.
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Figure 5.12: The plots of LV torsion (degrees) against time (sec) in a cardiac cycle at
different steady states. Torsion was increased with reduction in preload due to controlled
IVC occlusion (green) and decreased with myocardial ischemia induced with ligation of
LAD (red) as comared to baseline (blue).

5.13 Discussion and Conclusion

Accurate dense 3D speckle tracking methods are not well developed yet neither by com-

mercial vendors nor by research community. Algorithms to estimate quantitative charac-

teristics from 4D echo, such as 3D strain and torsion, are currently of great interest. While

providing comprehensive 3D information, 3D echo suffers from ultrasound artifacts, low

spatial and temporal resolutions. To overcome low image quality all available information

must be taken into account, including shape priors, dynamic priors and speckle statistics.

Recently, several researches has proposed methods for motion estimation from 3D

echocardiography based on non-rigid image registration [115, 50, 116]. Image registration

explicitly constrains smoothness of the transformation by the non-rigid transformation

parametrization and takes into account full volume speckle information by minimizing the

intensity-based similarity measure.

Here, we proposed a new robust similarity measure (MS2), which takes into account

speckle formation, correlation and practical acquisition process. Eventhough, MS2 ac-

counts for speckle formation specifics, it still assumes the voxel-wise independence. Ac-

counting for spatial dependencies in a similarity measures is an ongoing research in image

registration community. Including such information in the ultrasound similarity measure

will likely further improve the registration performance.
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To assist the non-rigid image registration, our method utilizes shape and dynamic

constraints, which add extra information to the registration procedure and improve the

overall performance. Our dynamic model simply ensures temporal smoothness, but does

not account for pseudo-periodic heart dynamic. Application of more complex dynamic

model requires extensive training sets. Such models can benefit the registration accuracy,

but also can lead to biased results if an analysed cardiac motion had no analogs in the

training set.

We validate our method in vivo on open-chest pigs, which resambles human heart and

allows for groundtruth invasive measurements. In contrast to phantom validation [50],

animal data provide a realistic evaluation of the method accuracy, without relying on

synthetic noise model as in phantom images. We obtained accurate algorithm strain mea-

surements both in amplitude and shape within a few percent from the groundtruth ones.

Similar to sonomicrometry, our algorithm is able to differentiate between the baseline,

LAD ligation and IVC occlusion states. A decrease in strain was observed with LAD

ligation, and a slight increase caused by IVC occlusion as expected.

Our torsion estimation showed a high correlation, but includes a consistent underesti-

mation of torsion values. This errors were most likely caused by higher rotational speckle

decorelation. Nevertheless, our algorithm torsion measurement showed a high correlation

with the groundtruth sonomicrometry ones, and were able to differentiate between the

simulated traumatic states.

We computed only strain and torsion, however our methods provides a dense displace-

ment field throughout the cardiac cycle, which can be used to derive any other regional

or global quantitative characteristics. On average, the tracking algorithm between two

volumes requires less than 10 minutes The computational time of our method can be

greatly improved by implementing the code in C++, which will reduce the processing

time to several minutes for the full scan. Furthermore, parallel implementation and/or

implementation of GPU can make the processing nearly realtime. We discuss the future

directions in motion estimation from 3D+T echocardiography in Section 6.2.



Chapter 6

Conclusions and Future Directions

6.1 Summary

In this thesis we have contributed several new methods to the field of non-rigid image

registration. We have developed a novel similarity measure, called Residual Complexity

(RC), that is robust to spatially-varying intensity distortions. RC is minimized when the

residual image can be sparsely coded using only a few known basis functions. We have

applied RC for non-rigid motion stabilization of time lapse microscopic videos. We have

developed a novel probabilistic method for rigid and non-rigid point set registration. The

algorithm is called Coherent Point Drift, and is currently the state-of-the-art in point set

registration. We have develop an automated system for motion estimation from 3D+T

echocardiography, based on sequential non-rigid image registration.

We have released two Matlab toolboxes: a) We have developed Medical Image Reg-

istration Toolbox (MIRT). The toolbox allows 2D and 3D non-rigid image registration.

The toolbox implements many standard and state-of-the-art non-rigid image registration

methods. MIRT also provides a GUI interface for non-rigid video stabilization. b) We

have developed and implemented Point Set Registration Toolbox for MATLAB, based on

Coherent Point Drift (CPD) algorithm. The toolbox finds the correspondences between

two multidimensional point sets, as well as rigid or non-rigid transformation to align the

point sets. The toolbox has been downloaded thousands of times since 2007.
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6.2 Possible Extensions & Future Work

In this section, we describe some possible extensions of our work. These are mostly

speculations, open questions and promising directions we can take to improve the main

components of non-rigid image registration that are presented in this thesis.

Similarity Measure: Similarity measure is one of the key components in image regis-

tration. Its accurate definition is still problematic. How can we measure the similarity

between two images mathematically? Is there a universal image similarity measure exist

that is optimized at the correct image alignment? Despite many research works, these

questions are not answered.

We have proposed the Residual Complexity similarity measure. It is optimized when

the residual image can be sparsly coded, that is the difference image at the correct align-

ment must have a low complexity measured in terms of the basis functions. Abstractly

speaking, at the correct alignment images share some information, and the remaining

information (residual) should be minimal. From this perspective, we can improve the

similarity measure in the following ways:

• Is there a better way to define residual image than a simple difference image? If one

can generalize the definition of the residual image so that it represents the remaining

information, then this new residual can be used instead.

• Can we generalize the measure of complexity of the residual image? In RC, we

measure the sparseness of the residual image it terms of global pre-defined basis

functions. One can make such basis functions image dependent or adaptive. Al-

ternatively one can try to use measures of local sparseness in terms of local basis

functions.

Another generalization of RC is possible by analyzing the roots of Mutual Information

(MI). MI is maximized when the joint entropy is low, whereas individual entropies are

high.

MI = H(I) + H(J) −H(I, J) (6.1)
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Entropy is often considered to be a measure of information content. Another way to

measure the information content would be the coding complexity, or sparseness in terms

of some basis functions. From this perspective, we can define a similarity measure that

is optimized when two images have low complexity jointly, whereas each of the image

complexities is high. For instance, the coding complexity of two 2D images assembled

as a 3D image should be small in terms of some 3D basis functions, whereas the coding

complexity of the individual images remains high.

Point Set Registration: Coherent Point Drift algorithm have a relatively high compu-

tational complexity. We have proposed several ways to improve the computational speed

including FGT and low-rank matrix approximations. Another way to speed up the per-

formance is to directly use parametric non-rigid transformation, e.g. B-splines over the

point set domain. By using locally supported B-splines one can improve the speed and

also allow local non-rigid deformations that do not influence the rest of the points, which

can be advantageous in some applications.

Another thing to consider is wheather only the point set locations should be used. If

point sets prepresent a shape, then other features, such as curvature or normal vector, can

be also used to improve the performance.

Motion Estimation from 3D+T echocardiography: Regional deformation analysis

of myocardium requires automated system for motion estimation from 3D+T echocardio-

graphy. Ideally such system should be accurate and nearly real-time. Here we discus

directions of future research to create such a state-of-the-art automated system. We

mostly concentrate on the accuracy of the system, which is crucial in clinical settings. As

the technology rapidly develops, real-time implementations of such system can be possible

in the nearest future. An accurate myocardium tracking system is not a single image

processing method, but rather a complex combination of multiple research fields includ-

ing ultrasound segmentation, speckle and boundary tracking, state estimation and atlas

construction.
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The key component of such tracking system is the myocardial motion estimation be-

tween two consecutive 3D volumes. We believe that the dense speckle tracking, in par-

ticular non-rigid image registration, is the most promissing approach to estimate such

motion. This way we track speckle, which follows the myocardium. In contrast, the

boundary based tracking methods provide only sparse motion estimates along the bound-

aries, which are prone to errors due to the aperture problem. To reliably track speckles

one needs to develop a better similarity measure that is robust to speckle decorrelations.

Here, we have proposed the MS2 similarity measure, which takes into account speckle

acquisition process. Nevertheless, we have made several simplifying assumptions, such as

strictly multiplicative noise and voxel-wise stationarity of conditional probabilities. A bet-

ter similarity measure should not assume voxel-wise independence and stationarity. On the

other hand, a better similarity measure should still have a reasonably low computational

complexity.

Traditionally, image registration operates over the whole image domain. To reduce

the computation load, one can define the registration only over the region of interest -

the myocardium. Thus, one has to segment the myocardium, e.g. endo- and epi-cardium

boundaries, in order to defined the myocardial region, which will be used during the

registration. Such segmentation should be done only for a single, e.g. the first, image

volume. Once the myocardial region is defined one can evaluate the similarity measure

only within such region. Another big advantage of segmenting the myocardial boundaries

is the ability to apply a heart-specific dynamic model.

Heart has distinct shape and motion cycles. In this thesis we have used a random walk

dynamic model on the B-spline control points to simply smooth the deformation through

time. Such model does not require any training sets and is fast to implement. As the

B-splines control points are on a regular grid in spatial domain without any knowledge of

the heart location, we cannot apply the heart-specific dynamic model to them. We can

apply the heart-specific dynamic model only to the heart position, which is another reason

to pre-segment the heart boundaries.

There are several approaches to build the heart dynamic models [24, 182, 194]. First,

one has to decide on what substitutes the so-called state of the system, which may include
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heart boundary positions, positions of all myocardial points and/or its intensity levels.

With the current computational capabilities it is feasible to use only the boundaries, e.g.

endo- and epi-cardium. Such boundaries will also define the region of the myocardium.

Second, one has to obtain a training set of the heart boundary positions over time from the

population. Such training set can be obtained from the MRIs of the heart, which itself

requires manual or automated algorithms for boundary tracking. As far as MRIs have

higher spatial resolution and less artifacts, the segmented boundaries will have a higher

accuracy compared to the ones obtained from echocardiography.

The training set should be large enough to explain all the possible heart shape varia-

tions. The dynamic model learned from an insufficient training set can bias the result, e.g.

in some abnormal heart cases. Finally, once the training set is available, one can build the

probability distribution of the boundary position during the cardiac cycle [194], or build a

transition probability that provides the next time step prediction of the boundaries given

one or several previous positions [24, 182]. It is not only the dynamic, but also the shape

model that is learned from the training set. We can integrate the learned dynamic and

shape model within the recursive Bayesian estimation to predict the boundary position in

the next 3D volume. The predicted boundary position can be used to initialize the dense

speckle tracking in the next volume and/or to constain the dense speckle tracking from

deviating from the predicted position.

Finally, to reduce the computational complexity one should consider fast GPU and

parallel implementations. For instance, motion estimation between each pair of 3D vol-

umes can be calculated on a separate CPU. The computational time will be reduced

proportional to the number of CPUs used. Such approach, however, will not allow im-

plementation of dynamic constraints, because all 3D volumes are processed in parallel.

Alternatively and can parallelize the motion estimation between a pair of 3D volumes.

Specifically, GPU implementation provides highly parallel evaluation of simple and some

complex image processing methods, including image interpolation and linear transforms,

which will significantly improve the processing speed.
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6.3 Conclusion

Non-rigid image registration is the key part of medical image analysis and computer vi-

sion. As the technology progressively improves, so does the field of image registration.

Many successful new algorithms have been proposed recently, but many challenges still

remain. This thesis overviews common strategies in non-rigid image registration as well

as contributes several new methods and algorithms to the field of non-rigid image and

point set registration. The algorithms described in this thesis are of general interest and

can be applied to many computer vision problems. This thesis aims to contribute its part

to the growing body of knowledge in non-rigid image registration. Some of the methods

described in this work, including CPD and RC similarity measure, have already become

popular among many researchers in image analysis.
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Appendix A

Upper Bound of the GMM

Log-likelihood Function

Here, we briefly show the derivation of the upper bound of the negative log-likelihood

function of the Gaussian mixture model [14], which is used on the M-step of the EM

algorithm. We can write the change of the negative log-likelihood function for the new

and old parameter values as

Enew −Eold = −
N
∑

n=1

log
pnew(xn)

pold(xn)
= −

N
∑

n=1

log

∑M
m=1 P

new(m)pnew(xn|m)

pold(xn)

P old(m|xn)

P old(m|xn)

(A.1)

where p(xn) is a pdf of GMM in Eq. 4.1, P (m|xn) denotes the posterior probabilities of

the mixture components: P (m|xn) = P (m)p(xn|m)/p(xn) and P (m) is a membership

probability of the mixture component. The last factor inside the brackets is simply the

identity. We now use the Jensen’s inequality, which says that, given a set of numbers

λj ≥ 0 such that
∑

j λj = 1,

log(
∑

j

λjxj) ≥
∑

j

λj log(xj) (A.2)

The probabilities P old(m|xn) in the numerator of Equation A.1 play the role of the λj ,

which gives

Enew −Eold ≤ −
N
∑

n=1

M
∑

m=1

P old(m|xn) log
P new(m)pnew(xn|m)

pold(xn)P old(m|xn)
(A.3)

We want to minimize Enew with respect to the “new” parameters. If we let Q be the right-

hand side in Equation A.3, then we have Enew ≤ Eold +Q and so Eold +Q represents an

148



149

upper bound on the value of Enew. We can therefore seek to minimize this bound with

respect to the “new” values of the parameters, which necessarily leads to a decrease in the

value of the Enew unless it is already a local minimum. Ignoring he terms that depends

on the “old” parameters, we can rewrite the right-hand side of Equation A.3 as

Q = −
N
∑

n=1

M
∑

m=1

P old(m|xn) log(P new(m)pnew(xn|m)). (A.4)



Appendix B

Optimal Rotation Matrix

Lemma 4. Let RD×D be an unknown rotation matrix and AD×D be a known real square

matrix. Let USVT be a Singular Value Decomposition (SVD) of A, where UUT =

VVT = I,S = d(si), s1 ≥ s2 ≥, . . . ,≥ sD,≥ 0. Then the optimal rotation matrix R

that maximizes tr (ATR) is

R = UCVT , where C = d(1, 1, . . . , 1,det(UVT )). (B.1)

We convert the constrained optimization problem into unconstrained using Lagrange

multipliers. Define an objective function f to be minimized as

f(R) = − tr(ATR) + tr
(

(RTR − I)Λ
)

+ λ(det(R) − 1), (B.2)

where Λ is a symmetric matrix of unknown Lagrange multipliers and λ is another unknown

Lagrange multiplier. Equating to zero the partial derivatives of f with respect to R, we

obtain the following system of equations:

∂f

∂R
= −A + RΛ + λR = RB −A = 0. (B.3)

where B is symmetric by construction: B = Λ+λI. Thus we need to solve a linear system

of equations:

A = RB, s.t. RTR = I, det(R) = 1. (B.4)

Transposing Eq. B.4 and multiplying from both sides we obtain ATA = B2, where

ATA is guaranteed to be symmetric and positive definite (or semi-definite if A is singular),

and we can decompose it using the spectral decomposition:

B2 = ATA = VS2VT , (B.5)
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where S2 is real non-negative diagonal matrix of eigenvalues of ATA as well as B2, so that

s21 ≥ s22 ≥, . . . ,≥ s2D,≥ 0. Also, note that matrix S is real non-negative diagonal matrix of

singular values of A. Clearly, matrices B and B2 are both symmetric with commutative

property: BB2 = B2B, hence both share the same eigenvectors, only when B2 is not

degenerative1. Thus matrix B is in the form:

B = VMVT (B.6)

where M is real diagonal matrix with eigenvalues of B, which must be in the form:

M = d(±s1,±s2, . . . ,±sD). Substituting M into equation Eq. B.4 and then into the

objective function, we obtain:

tr(ATR) = tr(BT RTR) = tr(B) = tr(VMVT ) = tr(M) (B.7)

Taking into account that det(R) = 1, from Eq. B.4 we see that

det(A) = det(R) det(B) = det(B) = det(V) det(M) det(VT ) = det(M), (B.8)

hence det(M) must have at least the same sign as det(A). Clearly, matrix M that maxi-

mizes its trace is

M = d(s1, s2, . . . , sD), if det(A) > 0, (B.9)

M = d(s1, s2, . . . ,−sD), if det(A) < 0. (B.10)

and the objective function value at the optimum is

tr(ATR) = tr(M) = s1 + s2+, . . . ,+sD−1 ± sD (B.11)

where the last sign depends on the determinant of A. Now, we can find the optimal

rotation matrix R, from the Eq. B.4:

A = RB, (B.12)

USVT = RVMVT , (B.13)

US = RVM. (B.14)

1Here, by degenerative matrix we mean a matrix with not distinct (repeated) singular values. Note,
that a matrix can be non-singular, but still degenerative.
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If A is non-singular (rank(A) = D), then M is invertable, and the optimal R is

R = USM−1VT = UCVT , where C = d(1, 1, . . . , 1,det(UVT )). (B.15)

where det(UVT ) = det(U) det(VT ) = sign(det(A)) = ±1 depending on a sign of det(A).

For some singular and degenerative cases of A the solution is still optimal, but not unique.

We refere to [112] for the detailed discussion.



Appendix C

Green’s function corresponding to φRT (v)

Here, we show that the Green’s function corresponding to the regularization term

φRT (v) =

∫ |ṽ(s)|2
G̃(s)

ds (C.1)

has a form of the low-pass filter function G. Here ṽ indicates the Fourier transform

of the velocity function v and G̃ is a strictly positive definite function that approaches

zero as ‖s‖ → ∞. Here G̃ represents a symmetric low-pass filter, so that its inverse

Fourier transform G is real and symmetric. Such regularization term has been used in the

Regularization Theory (RT) [55] to penalize high frequency function content.

Such regularization represents a norm of the function v after applying an operator P :

φ(v) =

∫

‖Pv‖2 dx (C.2)

We shall find the functional derivative of φRT (v). First, assume the function v̂ to be the

minimizer of the functional φRT (v). Then, we can define v(x) = v̂(x) + εg(x), where g

is an arbitrary infinitely differentiable function and ε is a small number. Second, we take

the derivative of φRT (v) with respect to ε at zero:

dφRT (v(ε))

dε

∣

∣

∣

∣

ε=0

=
d

dε

∫ 1
(2π)D/2 (

∫

(v̂(x) + εg(x))e−isT xdx)2

G̃(s)
ds

∣

∣

∣

∣

ε=0

=

2

(2π)D/2

∫ ∫ ˜̂v(s)g(x)e−isT x

G̃(s)
dxds =

∫

(

2

(2π)D/2

∫ ˜̂v(s)e−isT x

G̃(s)
ds

)

g(x)dx. (C.3)

Thus, the functional derivative of φRT (v) is

δφRT (v)

δv
=

2

(2π)D/2

∫ ˜̂v(s)e−isT x

G̃(s)
ds = 2P̂ Pv(x) (C.4)
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where P̂ is the adjoint differential operator to P . The Green’s function of the self-adjoint

operator P̂P is a function K(x,x′) that satisfies

P̂PK(x,x′) = δ(x − x′) (C.5)

where δ is the Dirac delta function. Substituting K(x,x′) in Equation C.4, we achieve

1

(2π)D/2

∫

K̃(s)e−isT x

G̃(s)
ds = δ(x) (C.6)

The equality holds for K̃(s) = G̃(s), thus the low-pass filter function G is itself the Green’s

function of the self-adjoint operator P̂P . In general the solution in Eq. 4.19 would also

include the null space terms of φRT (v). However for the positive definite function G (e.g.

Gaussian) the regularization term φRT (v) defines a norm [3], and thus the null space of

φRT (v) contains only zero element (see [55] for details).



Appendix D

Green’s function corresponding to

φMCT (v)

Here, we show that the Green’s function corresponding to the regularization term

φMCT (v) =

∫

Ω

∞
∑

l=0

β2l

l!2l

∥

∥

∥Dlv(x)
∥

∥

∥

2
dx, (D.1)

has a Gaussian form. Here D is a derivative operator so that D2lv = ∇2lv and D2l+1v =

∇(∇2lv), where ∇ is the gradient operator,∇2 is the Laplacian operator and Ω is an open

boundary subset on R
N with a piecewise smooth boundary ∂Ω. Such regularization term

has been proposed in the Motion Coherence Theory (MCT) [188]. It penalizes all order

derivatives of the function.

Equation D.1 is a norm of the function v after applying an operator P (Equation C.2).

We shall find the functional derivative of φMCT (v). First, we denote by v̂ a minimizer of

the functional φMCT (v). We can write that v(x) = v̂(x) + εg(x), where g is an arbitrary

infinitely differentiable function and ε is a small number. The function g and all its

derivative have a zero boundary condition. Second, we take the derivative of φMCT (v)

with respect to ε at zero:

dφMCT (v(ε))

dε

∣

∣

∣

∣

ε=0

=

d

dε

∞
∑

l=0

β2l

l!2l

∫

Ω

∥

∥

∥
Dl(v̂(x) + εg(x))

∥

∥

∥

2
dx

∣

∣

∣

∣

ε=0

= 2

∞
∑

l=0

β2l

l!2l

∫

Ω
(Dlv̂(x))(Dl(g(x)))dx =

2

∞
∑

l=0

β2l

l!2l

∫

Ω
(−1)l(D2lv̂(x))g(x)dx =

∫

Ω
2

∞
∑

l=0

β2l

l!2l
(−1)l(D2lv̂(x))g(x)dx (D.2)
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To see that the last simplification is true, consider a few differentiation for l = 0, 1, 2 and

use the integration by parts. Thus, the functional derivative of φMCT (v) is

δφ(v)

δv
= 2

∞
∑

l=0

β2l

l!2l
(−1)l(D2lv) = 2P̂ Pv (D.3)

We can find the Green’s function, G(x,x′), of the selfadjoint operator P̂P using the

property of the Green’s function (see Equation C.5):

∞
∑

l=0

β2l

l!2l
(−1)lD2lG(x,x′) = δ(x − x′) (D.4)

We use the multidimensional Fourier transforms of G(x,x′) and δ(x − x′)

G(x,x′) =
1

(2π)D/2

∫

G̃(s)e−isT (x−x′)ds (D.5)

δ(x − x′) =
1

(2π)D/2

∫

e−isT (x−x′)ds (D.6)

and substitute them into Equation D.4:

∞
∑

l=0

β2l

l!2l
(−1)lD2l 1

(2π)D/2

∫

G̃(s)e−isT (x−x′)ds =
1

(2π)D/2

∫

e−isT (x−x′)ds,

∫ ∞
∑

l=0

β2l

l!2l
(−1)lD2l(G̃(s)e−isT (x−x′)) − e−isT (x−x′)ds = 0,

∫ ∞
∑

l=0

β2l

l!2l
(−1)l(i)2l ‖s‖2l G̃(s)e−isT (x−x′) − e−isT (x−x′)ds = 0,

∫

(G̃(s)

∞
∑

l=0

β2l ‖s‖2l

l!2l
− 1)e−isT (x−x′)ds = 0.

∫

(G̃(s)e
β2‖s‖2

2 − 1)e−isT (x−x′)ds = 0.

where we used the Taylor series expansion of the exponential function (ez =
∑∞

l=0
zl

l! with

z = β2‖s‖2

2 ). Thus G̃(s) that satisfies the Green’s function property is G̃(s) = e−
β2‖s‖2

2 .

Substituting G̃(s) back into the Eq. D.5, we find that the Green’s function, G(x,x′), is a

Gaussian:

G(x,x′) =
1

(2πβ2)D/2
e
−‖x−x′‖2

2β2 (D.7)

For more details and we refer the reader to [187, 188, 14].
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