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Abstract 
A prettyprinter interprets terms in the abstract syntax of a formal language a s  
text, formatted for visual display on a screen or  a printed page according t o  a 
set of rules for preferred layout and subject t o  constraints such as the dimen- 
sions of a page. Here we develop a generic, language independent, policy-driven 
specification for prettyprinters. I t  is actually a meta-specification, for we 
specify the interpretation, in the style of a denotational semantics, of a 
pattern-oriented, layout specification language. With this pattern language, a 
display designer can readily specify rules and policies by which t o  display the 
sentences of a particular term language. The paper concludes by validating a 
few important properties of our specification. 
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1. Generic specifications and software design 

This report illustrates a specification technique t ha t  emphasizes the separation of policy 
from mechanism-a well-known principle of design for systems software. The application is t o  
the specification of prettyprinters, which are formatting programs for term-structured data .  
This problem can be generalized along several dimensions. The particular abstract syntax t o  be 
printed can be made a parameter and the format for display another. However, the design of a 
function t o  effect a display from a term and a format specification can also be given as  a com- 
position of generic functions parameterized by specific policy functions. A generic specification 
is in par t ,  a meta-specification of such a composition. 

First, we shall specify t ha t  the language of t e r ~ r ~  t o  be displayed will be described by a 
context-free grammar for the term syntax. The tei-111 grammar becomes a parameter of a gen- 
eric prettyprinter. Second, the format in which terms are t o  be displayed will be specified in a 
layout language whose terms consist of multi-line patterns. We specify a syntax for these pat- 
terns. A layout specification, given in this layout language, becomes a second parameter for a 
prettyprinter. Our meta-specification consists in giving semantics t o  the pattern-oriented 
display language. We choose t o  give the semantics in a mathematical framework of categories 
whose objects can be interpreted as  datatypes and whose morphisms are functions. This kind of 
semantic specification can be directly realized as  a program. 

Even when specifying the semantics of display, there are  opportunities for generality in the 
specification. We employ a new technique of composing semantic domains, based upon the 
notion of monad composition in a suitable category. I t  allows us t o  structure a specification so 
tha t  its functionality can be developed incrementally. When state  is introduced, i t  is parti- 
tioned into distinct components, which aids reasoning about a stateful specification. 

A semantics specification can be sketched in outline form. Details are superimposed on the 
outline by particular policy functions tha t  are given as  its parameters. The outline determines 
the types of the semantic functions and also their control structure, which is induced by the 
types. The policy functions determine the detailed behavior. Policy functions are  often very 
simple, and are the focal points for modifying a generic specification t o  tailor i t  t o  a specific 
application. 

The abstract design of a software system is captured in a semantics specification, what- 
ever may be its ultimate implementation. We favor deriving tha t  implementation by automatic 
program generation and machine-supported transformation steps. It is because automatic gen- 
eration is feasible tha t  we consider the specification t o  be authentic design. A generated imple- 
mentation necessarily inherits the functional properties verified of the specification. 

There is a final point t o  keep in mind while studying the specification tha t  follows. There 
is enormous leverage for design reuse when a design (1) is generic and can be used t o  produce 
many differently specialized instances; (2) is modular, composed of simpler, less specialized parts; 
and (3) provides a template for automatic generation of multiple implementations t h n t  may 
differ individually as  t o  programming language, choices of da t a  representations or the pl;~tforms 
on which they run. 
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2. Prettyprinting 

Prettyprinting refers t o  the task of displaying the sentences of a formal language in an 
attractive format while respecting constraints on the layout, such as those imposed by the phy- 
sical dimensions of a page. The problem is open-ended with regard to generality, for one may 
envision two-dimensional displays such as are commonly used in mathematics, the inclusion of 
diagrams, enclosing boxes, etc. We have limited our goals t o  tabular displays, i.e. t o  line- 
oriented displays with whitespace indentations from a uniform left margin, because this form of 
display is most commonly used for programming languages and because i t  presents sufficient 
challenge for a first attempt. 

The inputs t o  a prettyprinter are: 

(1) a term t o  be printed, structured by the abstract syntax of a formal language, 

(2) a font mapping for operator symbols and identifiers occurring in the term (not all identifiers 
need to  be mapped t o  the same font) 

(3) the maximum scroll width for output pages. 

The primary input is taken to  be a term, rather than a list of print items, for several reasons: 
(i) layout policies will depend on the term structure, which must somehow be encoded if it is not 
manifest; (ii) a printer for a programming language should be capable of displaying synthesized 
terms a s  well as  terms gotten by parsing a sentence originally input in concrete syntax by an 
author; (iii) i t  is often desired to  have more than one display format for terms, and choices of 
concrete syntax, punctuation marks, keywords, bracketing, etc. may vary from one to  another. 

An advantage of a pattern-oriented specification language for layouts is t ha t  a display 
designer can more easily relate the formal specification, a pattern, t o  his/her intuition than is 
possible if the layout specification were procedural or utilized regular expressions. A disadvan- 
tage is that  i t  is often more verbose to  give explicit patterns for the display of each operator of 
the abstract syntax. We believe that  a specification language must first serve a s  a vehicle t o  
communicate concepts among humans, and have chosen a pattern-oriented language for its rea- 
dability. 

In formulating this specification, we have drawn on the experiences reported by others in 
specifying prettyprinters. The best-known, early attempt to give a systematic, language- 
independent specification was by Derek Oppen [4]. He defined a hierarchical organization of 
nested blocks of atomic print items. Each block is t o  be laid out a s  a unit. Blocks can be 
marked for display vertically, horizontally, or semi-horizontally, with line breaks inserted as  
needed to  meet page constraints. His prettyprinter accommodates indentation offsets and 
matching of bracket pairs. It is language independent, but the prettyprinter algorithm is pro- 
cedurally defined, rather than derived from a specification. Oppen's algorithm is optimized to 
produce the fewest number of line breaks, consistent with the page width and mandated inden- 
tation requirements. 

More recently, John Hughes [I] has given a functional specification of language indepen- 
dent prettyprinting in terms of a set of five combinators. These combinators act  upon the 
atomic print items or upon blocks of print items to produce vertical or horizontal layout with 
line breaks inserted to meet page width constraints. The separator combinator can introduce 
indentation following a line break. Indentation offsets are propagated by a combinator for nest- 
ing layouts. Text is defined in terms of a datatype Idoc (Intelligent document) which depends 
upon boolean-valued state variables tha t  indicate the current layout mode (horizontal or verti- 
cal) and whether layout of the current block is to be restricted to a single line. 

A layout specification, using Hughes' formalism, is procedural. For each form of term of 
the abstract syntax, the display designer gives a layout directive as  a combinator expression. 
The designer can exercise somewhat more control over layout policy than with Oppen's fixed 
algorithm, although some choices are still preempted by the particular choice of combinators. 
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Figure 1: Software Architecture of a Prettyprinter 
The formatting policy is presented a s  a sentence in a layout language, which is compiled 

to  produce a formatter for the specified abstract syntax. Translation to  a text font introduces 
attributes of width and height for each atomic text string. Page constraints may include field 
width and page height. The formatted text that  is output will include inserted whitespace, line 
breaks and page breaks. 

abs t r ac t  

syntax  trees' 

Both Oppen's and Hughes' prettyprinters employ backtracking. The backtracking in 
Oppen's is relatively restricted; each line of display is committed incrementally, thus mitigating 
the storage requirements for processed but uncommitted text. Hughes' algorithm permits a 
greater scope for backtracking in order t o  obtain the most desirable among feasible layouts. It  
probably minimizes the number of line breaks consistent with the specified layout policy, though 
this has not been proven. 

One of our goals in proposing the specification given here has been t o  separate policy from 
mechanism insofar as  possible. Thus, the combinators we have defined are parameterized on 
policy functions tha t  may be predicates or state transformation functions. A layout designer 
who wishes to experiment with different policies than the ones we have proposed can see exactly 
where to make changes. Policy substitution will not invalidate the proofs of properties of our 
specification, so long a s  the stated constraints on policy functions are adhered to. 

3. A language for specifying layout for a prettyprinter 

The layout we envision is line-oriented. Each line may have a different height, calculated 
from the heights of its component icons. Lines do not overlap in a layout. Lines may be 
indented; control of indentation is one of the functions of the text formatter and must be 

printer format ter  
format ted  

B 
t ex t  
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specified in the layout language. The horizontal extent of a line may be constrained by a field 
width constraint, t o  be honored by the formatter. 

In the layout language, a prettyprinter specification associates a list of zero or more lay- 
out patterns with each operator of the abstract syntax. The patterns are listed in order of 
preference, on the assumption that horizontal linewidth constraints can be met. Thus, conse- 
quent patterns will ordinarily display more vertical structure than their predecessors. Indenta- 
tion given in the patterns is tabular, in case the print font has variable character widths. 

A layout specification for an operator of the abstract syntax may also include optional 
bracket symbols and a conflicts relation that  will be tested to  determine whether or not brack- 
eting is required. Normally, the conflicts relation will specify operator precedence conflicts in 
the concrete syntax. 

Each layout pattern can also be tagged with an integer 'stiffness' parameter that  will be 
used to  select among possible candidates for optional layout patterns, in case the horizontal 
linewidth constraint is not met by the default layout. 

Symbols: 
$<string> abstract operator ID 
a term variable 
a* term list variable 
<string> literal 

in which a designates a single alphabetic character. Leading whitespace and newlines are 
significant. 

Syntax of the layout language 
SPEC : : = LAYOUT-LIST 

LAYOUT : : = HEAD OPTIONS 

HEAD . . .= . OP-ID ( ARG-LIST ) [CONFLICTS] 

ARG . . .= . LETTER 
I LETTER * 

CONFLICTS : : = conflicts {( a-LIST ) ' [' OPERATOR-ID-LIST 'I ' STRING STRING) 

OPTIONS . . .= . ==> ( NUMERAL ) PATTERN OPTIONS 
==> PATTERN 

Syntax of the pattern language 

Productions 
PATTERN : : = PATTERN-ELEMENT 

I PATTERN-ELEMENT newline PATTERN 

PATTERN-ELEMENT : : = ATOM 
I ATOM SEPARATOR PATTERN-ELEMENT 
I a '{' SEPARATOR ')' * 
I a STRING '{' SEPARATOR '1' * 
I STRING a STRING 
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3.1. Examples 

$* (x#Y> 
conflicts (x,y) [$+ $-  $" $IF] ( ) 
==> (0) 

X\*Y 
==> 

$IF (x,  y. z) 
conflicts (x,y) [$IF] ( ) 
==> (0) 
if x then y else z 
==> (0) 
if x then y 
else z 
==> (0) 
if x 

then y 
else z 

==> 
if x 
then 

Y 
else 

z 

$BLOCK (s*) 
==> (0) 
begin sC: )* end 
==> 
begin 

SC : 
) * 

end 

$AP(f a*) 
conflicts (f) [$IF] ( ) 

(a) [$* $/$+ $-  $" $PR SAP $IF] ( ) 
==> 

f aC C 
)I* 
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4. Specification of formatting functions 

4.1. Naive formatting functions 

We shall propose a set of combinators with which to give semantics to  a layout language. 
The combinators are morphisms of a bi-cartesian, closed category which has strong monads of 
state transformers and exceptions. 

The basic idea is that  a pretty-printer should transform abstract syntax to text. We could also 
extend pretty-printing to  lists of AST's using the function mapList. 

display : AST--+Text 

mapL"' display : List (AST) + List (Text) 

However, a prettyprinter may also insert literal strings (keywords, brackets, punctuation) into 
the output text. Thus there should be a function 

literal : String +Text 

as well. A format pattern may specify an intermixture of term variables with literal strings. 
Thus we cannot simply map a single function over a list of AST's to  obtain properly formatted 
output. Nor can the naive functions display and literal be composed. The naive approach is 
not sufficient. 

4.2. Composable formatting functions 

Let's try to  invent formatting functions that take a list of AST's as an argument. First, 
however, let's review the mathematical structure called a monad. We are interested in the 
interpretation of monads as abstract datatypes. We characterize a monad by specifying a type 
mgpping, or datatype constructor T : Type + Type, its unit, a polymorphic function 
vx : X + T X  that  injects values from an argument type into values in the datatype, and the 
natural extension mapping for the monad, which 'lifts' a function j :X- -+TY to  a function 
f *T:TX-+TY.  These functions cannot be arbitrary; they are related by a set of equations 
(the so-called monad laws for the Kleisli-triple representation of a monad [2]): 

in which the equations must be well-typed, although we have omitted the typing annotations on 
all but the first equation. When it is clear from the context what type constructor is being dis- 
cussed, we also omit the subscript T from the star superscript. 

For any monad, one also has the polymorphic map function for that  monad, given in terms 
of the unit and the star-extension: 

One useful class of monads is called state-transformers [6]. The characterization of a 
state-transformer with state type S is: 
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Sts - Xx:X. Xs:S. 2,s rlx - 

j *  = Xt:StsX. Xs:S. letx,sl  = t s in j x st  
where j : X-+St Y 
and j * :  S t X - + S t Y  

We make use of the monad of state transformers with state type List(AST) to  extend the naive 
formatting functions proposed above, defining instead the composable formatting functions 

display1 : AST -+ StLi8t(AST) Text  
St 

display' = rlT,t{t'm display 

literal': String + StLi8r(AST)Te~t 

literal' = rltk{l'm 0 literal 

When either of these functions is applied to  an argument of the appropriate type, i t  yields a 
functional value of the common type StLi8t(ASTlTe~t = List(AST) -+Text x L~s~(AST) .  Such 
values can be composed. The composition is the symmetric tensorial strength for the monad 
of state transformers, 

ijt: S t s X x S t s Y  +St,(XxY) 

Pt( jJg)  = Xs:S. let z,st = j s in 
let y,s" = g sf in 

(x,Y)~s' '  

Define the infix composition operator ( j  ; g )  = (@ X idLi8i(AST)) St ( j  ,g), where 
@ :  Text  XText  +Text  is the catenation operator. This composition is an instance of a gen- 
eric function that  is defined for any monad T that has a symmetric tensorial strength rT. The 
generic function is: 

and (;) = cT(@). With the use of (;) we can form compositions such as: 

(display' x)  ; (literal'" joo") : StLi8t(AST)Text 

Although this composite has the desired type, it still contains a free variable of type AST. If 
the function display' is replaced by 

displayL"' : StLcl(AsT) Text 

displayLi8' [I = E, [I where E is the empty Text  value 

displayL"' (x::ss) = display'z xs 

then we can form the composition 
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d i ~ ~ l a y ~ " ~  ; (literal' "joo" ) : StL,,(,STl Tex t  

which could be used to  express the semantics of a format pattern X ,"~OO" ' .  

4.3. Attribute-controlled formatting 

Formats may be governed by attributes, such as the indentation offset, that  specify the 
placement of a text item in a line. Attributes can usefully be grouped into two classes: Inherited 
attributes may provide parameters to layout policy but are not necessarily cumulative with lay- 
out; Synthetic attributes are cumulative. When layout policy does not depend upon a synthetic 
attribute, it  can appear solely as a component of the result of the layout function. More com- 
plicated is the case of an attribute that  is both inherited and synthetic, such as the horizontal 
location of a text item in a line. For such an attribute we need a new state component, which 
can be introduced with an additional use of the state-transformer monad. The composition of 
two state-transformer monads yields another monad, 

= Ax. Xxs. Xy. x,xs,y 

f *  = Xt. Xxs. Xy. let x,xs',y' = t xs y 
in j x xsl y1 

where f : X +  st2y 

Attributes tha t  are only inherited can be introduced by a state reader monad, which also 
has a symmetric strength, 

RdX = S + X  

gd = Xx. Xp. x 

j *  = At. Xx. Xp. let x' = t x p in j x 'p  
where j : X - + R d Y  

rRd(f ,g)  = X(~,Y) .XP. ( I  x p , g  Y P) 
A composition of state transformer monads can also be composed with the state reader monad. 

The attribute-controlled formatting functions will have the types 

display '"I: L~s~(AsT) + Loc + A t  t r  -+Text x List(AST) X Loc 

literalst2: String-+List(AST) +Lot + A t t r  -+Text x L i s t ( ~ s T )  XLoc 

where Loc is a type of numbers and Attr is a collection of inherited attributes. 

The inherited attributes that we consider necessary are: 

p l :  Number indentation 
p2: Number stiffness 
P3: List(Token)x(StringxString) conflicts set-brackets 

By convention, a pattern with a stiffness level of zero is intended to  fail unless it can be printed 
on a single line. 

The most basic layout function positions a literal string given as its first argument, and 
does not depend on the purely inherited attributes. We indicate by subscripts that  this function 
is parameterized with respect to a type font, f, and two policy functions, 4 and U. We also 
determine a t  this point that  Text is a list type. The definition of literalst2 is: 
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 literal^^^ s t r  xs y p = [q5t(str)], zs, ul(y,str) 

where &: String +String1 is a font mapping function for font f. The purpose of 
u:LocXString+Loc is to  update the position attribute that  marks the right end of the 
displayed text. We require of u that i t  have an additive property: 

Choosing Loc to  be a numeric type, let 

where lengthr measures the length of a string as rendered in font f. 

4.4. Optimal layout control under constraints 

Prettyprinting may be subject to layout constraints such as that  the length of a line must 
not exceed the field width between margins on a page. Additionally, there is usually some 
optimality criterion for printing. We want to  produce the layout nearest to optimal which also 
meets the constraints. We shall provide for backtracking, as a simple control mechanism that 
enables a prettyprinter to realize optimal or nearly optimal layouts. This will allow a format 
specification to  be given as a sequence of patterns, monotonically decreasing in optimality but 
increasing in complexity so as to  satisfy ever more stringent constraint parameters. When an 
attempt to  lay out a text according to an earlier pattern fails to  meet the constraint, the next 
pattern in sequence will automatically be tried. This strategy is often adequate to  satisfy linear 
constraints. 

For this purpose we further enrich our layout functions with exceptions. The monad of 
exceptions is ExX = X+E, where E represents a set of exceptions, here taken to  be a singleton 
set. Let 

T X  = List(~sT)-+Lot + A t t r  + ( X X L ~ S ~ ( A S T ) X L O C ) + E .  

The enriched formatting functions are typed as: 

d i s p l a ~ E o ~ , t , + , ~  : T(Text)  

literal~OK,f,+,u : String + T(Text)  

literal~oK,t,4,, s tr  xs y p = if i sOK s t r  y p 
then Cdt(str)l , xs, u d y  , s t r )  
else FAIL 

When we omit the subscript on the functions literalE and layoutE, we mean the functions that 
use the definitions of isOK, 4 and u given above. 

In the definition above, the policy predicate isOK, given a string and current state, deter- 
mines whether or not the line width constraint is satisfied. We require of this test that  it  satisfy 
a monotonicity condition, with respect to substrings, namely that 

(**I GsOK (sl@s2) y p = true 
+ i sOK sl y p = true andalso isOK s2 y p = true 

A useful choice for this policy function is 

(2) isOK s y p = uI(y,s) 5 scroll-width orelse p2 =m 

where y is the current horizontal position and the test P2=m checks the stiffness parameter to  
see whether the policy forbids backtracking to  an alternative layout. 
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4.5. Alternative layouts 

When an  at tempt  t o  display a term fails t o  meet a layout constraint, an  alternative lay- 
out scheme may be available in the list of layout options specified for a production of the 
abstract syntax. We specify the composition of alternatives by an  infix operator '2'. 

The operator fEX : EX X X EX X +EX X designates an  expression with an  exception handler. I t  
generalizes under compositions of the monad of exceptions with s tate  transformer and s tate  
reader monads. For instance, in the composite monad St*Ex we have 

When there is no ambiguity about the monad in which the exception handler is defined, we shall 
omit the superscript from the operator symbol '2'. 

We are interested in the case in which the arguments each have the type T(Text). The 
handler satisfies the equation: 

f ? g = Xxs. Xy. Xp. case f xs y p is 
Just ( Just ( 

I Nothing + g xs y p 

in which the type ExX has been specialized t o  the datatype introduced by Mike Spivey 151, 

Maybe(X)  = Just ( X )  I Nothing 

Here, the set E of exception names is the singleton, {Nothing).  (The name Nothing replaces 
what we formerly called FAIL.) 

In selecting one of its two arguments, the composition '2 '  favors one whose application 
produces a n  unexceptional result. Selection is sequential, trying the arguments in order from 
left t o  right. However, we may wish t o  describe a more complex composition not so strongly 
biased toward an  unexceptional result. The choice among alternatives may depend upon the 
current attribute values through a policy predicate, k : A t t r  -+Bool. T o  express this, we intro- 
duce the combinator ?k which has the same type as  '2 '  but which takes the policy predicate as 
a (free variable) parameter. Zk is no longer polymorphic with respect t o  the variable p. 

f fk g = AXS. Xy. Ap.case f xs y p  is 
Just J + Just J 

I Nothing =e=+ if k  p then  g xs y p 
else Nothing 

Obviously, ' 2 '  is equivalent t o  '?k,'l where k t t  = Ap. tt. 

4.5.1. Separators 

A separator is a literal string tha t  may conclude in a line break and indentation. We 
choose t o  represent a separator as  a value of type 

SEP = S t r i n g ~ N u m b e r  

where the String component represents the separator string up t o  the line break (possibly 
empty) and the Number is the length of the whitespace following the line break, as  specified in 
the pattern. If the Number component is negative, there is no line break in the separator. We 
shall express this by a parameter of the composition operator, (;). Following the functional 
template defining the strength, 7, we define a parameterized, symmetric tensorial strength for 
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the composite monad constructor T: 

rhl: T X X T Y  + T ( X x Y )  

rh' = X ( f  ,g) .  X X S .  Xy. Xp. 

case j xs y p is 

Just( tl ,xs' ,y') 

let y", pt = h y t p  
in case g xsly"p' is 

Just(t2,xs",y'") + Just ( ( t l , t2) ,  xs", y"') 

I Nothing + Nothing 
( Nothing + Nothing 

which is no longer polymorphic in the state variables y and P Note tha t  the le t  expressions 
manifest the natural extensions of functions in a composite monad of s tate  transformers and 
state  readers. For instance, the intermediate let  expression 

let yl',p' = h y 'p  in g xs'yl'p' 

is equivalent to: 

where the natural extension is taken in the monad St*RdX = Loc +At t r  +XXLoc .  
In terms of the parameterized strength, T~', we define a parameterized composition combi- 

nator 

( ; h  = X ( f  , ~ ) . T ( @ ) o  ~ h ' ( f  1 g )  

which uses h : Loc -+Attr +Lot X A t t r  as its policy function. Obviously, ( ; ) = (;?st). We 
require tha t  a policy function, h ,  must satisfy the following admissibility constraint: 

(3) i f  y', p' = h y p then y' >_ ptl 2 pl 

This constraint ensures tha t  an  indentation specification (the value of pl) is always honored and 
tha t  indentations are accumulated. 

With the functions literalE and displayE, we can now create a composite combinator for 
the display of separated text terms. Define 

(4) separate : SEP + T ( T e x t )  x T ( T e x t )  + T ( T e x t )  

separate (s tr , indent) ( f  , g )  = let h = Xy. Xp.if indent <O then y , p  
else let p =pl +indent 

in p 1 ( P 1 ~ 2 1 ~ 3 )  

in f ; literalE(conapress s t r )  ;h  g 

where conapress str = i f  is  -whitespace str 
then i f  newline Estr  then  newline 

else one - blank 
else str 

Nota t ion:  pi is shorthand for xi P. 
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By defining multiple policy functions, the combinator separate can be enriched to  account 
for optional line breaks that  may be inserted in order to satisfy a line width constraint on the 
output text. In the function separate1, the strategy is first to try the pair of layout functions 
with layout restricted to a single line. Thus they are tried a t  a stiffness level of zero. If either 
layout fails a t  this level, the next option is to retry the two layouts a t  the stiffness level given 
by the current attribute parameter, but with a line break appended to the separator string. 

(5) separatel(str,  indent) ( j  ,g) = 

let h l  = Xy. XP. y l ( ~ l l O 1  f3) 
and h2 = Xy. Xp. indent +pl, (indent +pl, pzl p3) 
and k = Xp. p2>0 
in literalE r ; f ; (literalE (compress s t r  ) ;h, g 

Ik ( j  ; l i t e ra~(compress  (str @ newline)) ;h2g)  

in which the policy predicate p2>0 tests that the stiffness parameter is non-zero, for otherwise, 
the exception should be propagated so that a line break will be made a t  a point less deeply 
nested in the term structure. 

4.5.2. The display function 

The function display-item analyzes a single abstract syntax term, discriminating on the 
principal constructor to display the argument list. Without the specification of optional brack- 
ets around a term variable in a pattern, the function would be simply 

display -item = redAST (display -argsl, . . . , display-argslv) 
mapAST ((As. literalE s [I ) ident -to-str) 

where redAST is the reduction function for the sum-of-products datatype constructor, AST, N is 
the number of distinct constructors in the abstract syntax, and displa argsi is the particular 
display function compiled from the sequence of patterns given for the ittionstruetor. 

When a display header specifies optional brackets, b l  and b2 around a term variable v, a 
customized version of display-item must be used. If the actual term represented by V belongs 
to  the current conflicts set, then it must enclose the text image of this term in the required 
brackets. To express this, we define the customized display function by the same recursion 
scheme satisfied by the unfolding of redAST, but which incorporates policy functions q and r .  

(6) display-item,,, (op(args)) y p = 

case op is 

$IDi e=- if q $IDi p then r display -argsi args y p 
else display - argsi args y p 

. . . 

To make this function function parametric on a variable letter V and a pair of bracket strings, 
(bl ,  b2) define: 
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rb ,,b,f xs y p = let ( b l ,  b2) = snd(1ookup Vp3) in 
(literalE b I  ; f ; literalE b2) xs y p 

where lookup v =snd hd 0 filterLisf (X(x ,y) .  x = v )  

The abstract syntax will have a unit constructor, which will be the unit of the monad of 
the AST datatype constructor. We assume the typing to be 

qAST : Identifier +AST 

For the unit constructor of the datatype AST we have tha t  

(8) display -args, = (As. literalE s [I ) ident -to-string 

The display of a list of terms is accomplished by displayE, whose definition is: 

displayE [I Y p = Just( [ I ,  [ I  , Y )  

displayE ( x : : x s )  = (T: q&t(ast) display - i tem)  x xs 

where r? : U X X Y  + U(X X Y )  is the asymmetric tensorial strength for U. 

W h e n  U X  = L o c - + A t t r + ( X ~ L o c ) + E  

then 7: = X ( t , s ) : T X x X .  Xy :Loc. X p : ~ t t r .  case t y p is 
Jus t (v ,  y') =+ Just(v ,x ,y l )  

I Nothing Nothing 

Thus the composition 7: qlt  is the curried version of the strength, 

7: qlt = Xt : U X .  h s  : X .  h y  :Loc. Xp :Attr.  case t y p is 
Just(v,yl)  =e=- Just (v ,x ,y l )  

I Nothing + Nothing 

5. Semantic translation of the layout language 

We now shall give a denotational style semantics t o  the layout language. We assume as 
given a binary relation, R C OP-IDxOP-ID, which corresponds to  the operator precedence 
conflicts relation for the concrete syntax in which we are printing. If this relation is empty, the 
conflicts relation can be specified incrementally. 

We also assume that  patterns have been pre-processed to  analyze each separator string 
into a prefix string that  extends up to  (and includes) any newline character, followed by any 
whitespace tha t  follows a newline. The following whitespace is assumed to be represented by a 
numeric index, the relative indentation. Indentation is specified as tabular, with respect t o  
characters in preceding or following lines of the same pattern. We do no specify how the inden- 
tation is t o  be computed. In case printing is to be done in a fixed-width font, the indentation 
would be simply the number of character spaces from the left margin of a pattern up to  the first 
printing character in a line. 

T o  translate the head specification and form a conflicts set, 
define H : HEAD -+List (VAR X (OP-ID-LIST X (String x string))) in two steps. Let 
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H 1 OP-ID (ARG-LIST) CONFLICT* [ R = 

ll@(mapL"t C 1 CONFLICT 1 (projo,,, R ) I  CONFLICT*^ ) 
in which CONFLICT -+ VAR* OP-ID-LIST BKTS, and 

C 1 VAR* OPID-LIST BKTS 1 R = mapLiSt (Xu. v , (OP-ID-LISTUR , BI<TS)) 

The semantics of an individual operator of the abstract syntax defines a function display-argsi, 
where i is the index of HEAD.OP-ID. For its definition we require a combinator the same in type 
as redLiSt (Xxs. Xy. Xp.Nothing, ( 2 ) ) .  We cannot use tha t  function, however, as the combinator 
for alternative layouts, '?', does not incorporate a policy function, and we require a policy that 
depends on the stiffness parameter of each optional pattern in turn. We define a variant of this 
list reduction: 

red? [I = Xxs. Xy. Xp. Nothing (this case should never be encountered) 
red? ( ( f  ,n)::others) = let k, = Xp. p2> n 

in f Vk (red? others) 

We also require a function stifl  : S t r i n g d I n t e g e r  that extracts the numeral represent- 
ing the stiffness parameter from an OPTION and converts it  to  an integer. 

The compilation function that  acts on layout specifications to produce display functions is 
C : SPEC -+ T(Text): 

C 0 HEAD OPTIONS 0 R = let Cset -list = H 0 HEAD 1 R 
and stiflness -list = mapLiSt st;$ OPTIONS 
in red? (zip ( D  1 OPTIONS! Cset -list,  stiflness - l is t))  

For the ith operator of the abstract syntax, the function display-args; is gotten from analysis 
of its patterns: 

display -argsi = Xxs. Xy. Xp. 
case C 0 HEAD; OPTIONSi 1 R xs y p is 

Just(txt ,xs',yl) a Just ( txt  ,y') 
( Nothing Nothing 

A list of pattern options is denoted as a list of display functions. The semantic function is 

D : OPTIONS + List (VAR X List (OP-ID) X String X String) -+ 

L ~ S ~ ( A S T  -+ Loc -+ A t t r  -+ (Text x List (AST) x Loc) + E) 

D 1 ==>(n) PATTERN OPTIONS 0 Csets = (P (PATTERN I n Csets)  :: P 1 OPTIONS Csets 

D 1 ==> PATTERN 1 Cset = [P (PATTERN 1 co Cset 1 
In which the pattern interpretation function (defined below) has the typing 

P : PATTERN-SPEC --+Number --c List (OP-ID) -+ AST --c Loc -+ Attr -+ (Text X List (AST) X Loc) + E 

Separators are given semantics by the function 

S : SEPARATOR + T(Text) X T(Text) -+ T(Text) 

whose definition is 

S 1 string 1 = separate (string,  -1) 
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S ( <space> 1 = separate (<space> .str  , <space>. indent) 

S (I string <space> 1 = separate (string@<space>.str, <space>.indent) 

S I sep string 1 = S ( sep 1 (idT(Text) x postseparate (string, -1)) 

S (I sep string <space> 1 = 

S 0 sep 1 (idT(Text) Xpostseparate (string@<space>.str , <space>.indent) 

where postseparate (str  , indent) g = separate (str , indent) (literalE E ,  g) 

Notation: (;*;) is an infix operator denoting S 1 S 1 and ( ; F ; )  is an infix operator denoting 
S'I) { S )  1, where S' is defined analogously to S except in terms of separate'. 

In the following, V stands for a variable letter, L for a literal string, S for a separator and E 

for the empty string. Recall that  an inherited attribute parameter has three components, the 
current indentation (designated by i), the stiffness level of the environment (designated by s), 
and mapping that associates variable names with operator conflicts sets and optional bracket 
pairs (designated by Cset). 

A pattern consists of pattern elements, or a sequence of pattern elements set apart by 
separators. The semantics of pattern elements are: 

A ( L 1 = literalEL (Lit) 

( Var) 

(Terminated) 

(Bracketed) 

The semantic equations for patterns are: 

P l e r n n C s e t  = q  s ~ * R ~ * E  

P UPAT-ELT 1 n Cset = 

XXS:L~S~(AST). Xy:Loc. X(i,s,- ) : A ~ ~ ~ , A ~ P A T - E L T  1 xs y ( i ,min(n,s) ,Cset)  

l? n PAT-ELT S PATTERN I n Cset = (Separated) 
Xxs:List(AST). Xy:Loc. X(e',s,, ):Attr. 

(A~PAT-ELT( ; s ; ~  ( I P A T T E R N ~  n Cset)xs y ((i,min(n,s),Cset) 

P 1 PAT-ELT {S)* 1 n Cset = (Iterated) 
hxs:List(AST). Xy:Loc. X(i,s,, ):Attr. 

let nil = hy:Loc. X(i,s,- ):Attr. [ I ,  [ I ,  y 
in (redList (nil,  ;s ; )  0 mapList ( A  1 PAT-ELT I) )) xs y ( i ,min(n  ,s),Cset) 

In (Separated) and (Iterated), when the separator indicates an optional line break, replace the 
separator combinator, ( ;s; ), by ( ;;; ). 
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8. Properties of the specification 

There are several properties that  can be verified by means of evidence taken directly from 
the specification. Here we give three of the more important ones. 

Proposition 1: 

All tokens of the abstract syntax are displayed exactly once. 

v x : A s T . ~  y : L o c . v  p:Attr. 
display -item x y p = Just(txt , yl) and y 2 pl + 

rnapRRLiat display -atom (flatten - to-list x )  pl p C LYQxt 

where display -atom x y p = case literalE (ident -to-str x)  y p is 
Just(txt , - ) txt 

I Nothing ["ERROR"] 

Here flatten -to-list : AST +List (AST) takes the singleton nodes of an abstract syntax tree 
into a list of (singleton) AST's and literal -item : AST + Loc -+ A t t r  -+Text X Loc is the 
display function for atomic AST's whose form is IDENT(S~P.). r n a p ~ R L i a t  is a map function 
with two state readers, specialized to  List types. A definition is given in Appendix 1. 

AST List flatten-to-list = redAST (f . . . , f N )  m a p  77 

where f ,  = id and f i  : ASTX - . XAST+L~S~(AST)  = redm'-tUp'e (@) 
m, 

(In fact, the representation chosen for an mi-tuple of AST's is a list. In both the operational 
semantics and in proofs of properties, it is most convenient to access the elements of such a 
tuple sequentially, from left to  right.) 

Pro of: 

Let flatten -to-text = (mapRRLGt display -atom) flatten -to-list 

A parametricity theorem for lists will give a proof that 

flatten-to-text x y p = redAST (f , . . , fN)(mapRRAST display-atom x y p) 

We need to  show that  

fj X : A S T . ~ /  y : L o c . v  p : A t t r .  
display-item s y p = Just(txt,yl) + flatten-to-text x y p C F  txt 

This will be proved by induction on the structure of the type AST, since flatten-to-text is an 
instance of redAST. 

The basis case is that the tree is IDENT(str) and 

display-item x y p = literalE [x] y p 

which either evaluates to  Just([&(str)] , []  ,yl) or to  Nothing. When it yields 
Jus t (  [q!~~(str)] , [I ,yl), then display-atom x y p = [&-(str)],  which validates the conclusion 
for the basis case. 

Proof of the induction step is necessarily relative to  the patterns given. The patterns 
must embed the abstract syntax, as a condition for well-formedness. The ith case in a struc- 
tural induction relies upon properties of the function, display-argsi, compiled from the patterns 
for display of terms whose top level operator is $IDi Let ( . ) be a postfix operator defined as: 
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( . ) = X f .  Xxs. Xy. Xp. case f xs y p is 
J u ~ t ( t x t , x s ' , ~ ' )  + Jus t ( t x t , y l )  

1 Nothing e=- Nothing 

We can use the representation display-argsi = ( d l ; l  . . ;n,-l d,, .) in which each of the 

display functions di is either l i teralE(str)  or displayE. Each of the connective combinators 
( ;i ) is one of ( ; ), ( ;h  ) ( ; s ;  ) or ), where h is an  admissible policy function. The two latter 
forms of combinators are composites of (;), ( l i t era lEs)  and ( ; h ) ,  so that  we need only consider 
the first two forms. The first form can be considered to  be a special case of the second, with 
h =qst, so we need only consider ( ; h )  as the general form of the connective cornbinator. 
Remember tha t  the admissible policy functions are constrained by the relation 
Y ' , P ~  = h Y P * ~ ' 2  P1 and pll> ~ 1 .  

The composition ( d l  ;l . . . . d,, . )  can be analyzed a s  a sequence. We need the fol- 

lowing lemma. Notation: let @/ = redLiSt ( [ I  , (@)). 
Lemma 1.1: 

~ 2 ~ 1 -  

( d l  ;h l  - - . ;hnl-ldnl ) [ X I ,  . . . , xm,I Y P = Jus t ( tx t ly l )  

r n a p ~ ~ ~ ~ "  display -atom (@I/ (mapLi" flatten -to-list [ x l ,  . . . , x,,] )) p1 p C_ f?.txt 

We prove the lemma by induction on ni .  ni >mi so that  if ni =O, then t x t  = [ I  and the 
result is trivial. 

Suppose ni = n + 1 for some n 2 0 .  If dl  =literalE s tr l  then the initial element of txt  is not an  
image of x l  and the conclusion of the lemma would be established if 

( d 2 ; k 2  ' ' ;hn .) Cxl, - . . , xm,] Y I P '  = J u s t ( t x t ' l ~ ' )  
I 

r n a p ~ ~ ~ " ~  display -atom (@//(mapL" flatten -to-list [x, ,  . . . , x,,] )) p1 p C f?itxt' 

E where yl ,  p' = le t  Ju s t ( -  , [ x l ,  . . . , x,,] , Y ' )  = display s tr l  [ x l ,  . . . , x,,] y p 

in h l  y ' p  

The above implication holds by the induction hypothesis of the lemma, with y 1 2 p t 1  and 
E ptl > p1 as  consequences of the monotonicity of literal s in its Loc-typed argument, and the 

policy function constraint. 

If dl  = displayE then display-item x y p = Jus t ( tx t  ,y') if and only if both 

(A) display - i tem x l  y p = Just ( t x t  l ,y ')  

and y l ,  p' = h y ' p  in 

(B) ( d ,  ;h2 - . . ;hsl-ldnl . ) . . - 7 xmII yl P' = J u ~ t ( t ~ t ' 1 ~ ' )  * 
r n a p ~ ~ L " t  display -a tom (@,!/(mapL" flatten-to-list [ x 2 ,  . . . , x,,] )) pl p C s t x t '  

with txt  = txtl@txt1. Condition (A) holds by invoking the induction hypothesis of the proposi- 
tion and (B) holds by the induction hypothesis of the lemma, with the observation that  yl 2 ptl 
is assured by the admissibility constraint for h .  The assertion that  txt = tx t l@txt l  follows 
from the definition of the composition combinator ( ; h ) .  This completes the proof of the lemma, 
from which the conclusion of the proposition follows immediately. 
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This completes the induction step and hence the proof of Proposition 1 

It  would be interesting if we could prove tha t  the prettyprinted image of an  abstract syn- 
tax tree could be parsed, and tha t  the composition of parsing with prettyprinting is the identity 
on abstract syntax trees. In order t o  do this, one would need to  show tha t  in addition to 
embedding the abstract syntax, the concrete syntax has an unambiguous context-free grammar. 
Unfortunately, there is no fully general method to  do this. 

The display respects layout constraints. To prove this pro erty we shall use a modification E of the predicate isOK that  is an implicit parameter of display . Let 

(9) isOK' 1 y p = 1 + y 5 scroll -width 

This test ignores maximum stiffness and fails a t  every detected occurrence of text overflow. 
Then we can state  the following 

Proposition 2: 

v x :AST. v y : l o c . v  p:Attr. 
d i ~ p l a y - i t e m ~ , , ~ , ~ ~ ~ ~ ~  x' y p = Just  (txt , yl) 

v t x t l C ~ f , ,  txt. Max (Lengths (@/I txt') y ) 5 scroll -width 

where Lengths s t r  y = js t  (mapsLiat addlength (derList (isempty, (splitat newline)) s t r )  y )  

and  addlength s t r  y = y +lengthf s t r  , 0  = ur(y ,str ), 0. 

rnap~Lia t  and derLiSt are defined in Appendix 1. 

Comment: The function splitat : C h a r  +Str ing +Str ing X Str ing  divides its String-typed 
argument into the prefix and suffix, respectively, of the first occurrence of the character given as 
its first argument. If the string contains no occurrence of the specified character, then i t  pairs 
the original string argument with the empty string. 

Thus derLiat (isempty, (splitat newline)) divides a string into a list of lines, each of which is a 
string tha t  does not contain an occurrence of the newline character. 

The function Max = redList (0, max). 
End of comment. 

Proof: By induction on the structure of the AST. 

Base step: let x = DENT(s t r ) ,  where s t r  contains no occurrence of the character newline. 
Then 

(10) 
E d i ~ p l a y - i t e m ~ , , ~ , ~ ~ o ~ ~ x  Y p = literalf,,,9,iso~t s t r  y p 

= if ui(y , s t r )  5 scroll -width 

then Jus t (  [4f(str)] ,  uXy,str))  
else Nothing 

Furthermore, derList (isempty, (splitat newline)) s t r  = [str] , and 

~ a x ( r n a p ~ ~ ~ "  Lengths [4f(str)]  y)  = uXy,s t r )  

which relies upon the additive property (*) of u .  But ur(y,s tr)  5 scroll-width is exactly the 
condition tha t  

d i ~ p l a y - i t e r n ~ , , , ~ , ~ ~ ~ ~ ~ ~  y p = Jus t (  [q!+(str)] , ur(y,str)).  

Induction step: let x = $IDi(xl, . . . , x,,) and assume the hypothesis for each of xl, . . . , x,,. 

Then display-itemf,u,~,iaOKtx y p = display-argsi [x,, . . . , xmI] y p. Suppose this evaluates 

t o  Just(txt,yt).  Then no display of a component term XI, . . . , x,, can evaluate t o  Nothing, 
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as the connective combinators ';' or ' ; h '  would have preserved Nothing as the ultimate result. 
As in the proof of preceding proposition, we formulate a lemma. 

Lemma 2.1: 

(11) Y > P ~  - 
;h  ' . ' ;h.,-l dn, ) f , u , O , i s O ~ l  - . . xm,] y p = J ~ ~ t ( t ~ t ~ ~ ' )  

e tj txt1Ck;fOl txt. Max (Lengths (@// txt') y )  < scroll -width 

As in the proof of Proposition 1, the lemma is proved by induction on ni .  The basis case, for 
E ni =0, is trivial. Suppose ni = n + 1. If dl = literalf,u,~,isoKt strl then 

( d l  . 4, ) r , u , d , ~ ~ ~ l  [ x i ,  - . . , xm,l Y P = Just ( tx f  ,Y') 

if and only if both 
E literalf,u,g,i,oKr strl = Just( txt l ,  yl)  

in which txtl  = ~ 4 ~ ( s t r ~ ) ]  , and letting ytl,  p' = h l  yl p, 

( d 2 ; h 2  ' ' ' ;h,-, dn, . )f,u,+,iso~' [ X I ,  . - . x,,] ~ ' 1  P' = J u s ~ ( ~ x ~ ' ,  Y') 
I 

where txt = txtl  @ txt'. There are two cases to  consider. If strl contains no occurrence of the 
newline character, then txtl  does not end a line, and so the additive property of u f  assures 
that  

Max (Lengths (@/I txt )) = Max (Lengths (@/I txt')). 

By the list-induction hypothesis of the lemma, the conclusion holds. 

If on the other hand, strl does contain an occurrence of newline, it must be the final character, 
and Lengths txtl = lengthf(strl /newline),  where the notation s t r / c  denotes the string str 
less its terminal substring c .  Also, 

Max (Lengths (@/I t x t ) )  = max ( lengthf(strl /newline),  Lengths (@/I txt')). 

But y f ( y ,  strl/newlkne) 5 scroll -width is exactly the condition tha t  

In conjunction with the list induction hypothesis, this entails the conclusion of the lemma. 
E The case remaining to  be considered is tha t  in which dl = d i ~ p l a y ~ ~ , ~ , ~ ~ ~ ~ ~ .  The argument in 

this case is similar t o  that  given above, but makes use of the induction hypothesis of the main 
proposition as well as  tha t  of the lemma, and is omitted. 

Thus we conclude the lemma by list induction, and from the lemma, the proposition follows by 
induction on the structure of abstract syntax trees. 

Proposition 3: The display respects indentation specifications. 

(a) Indentation is unchanged by display of a term or a literal string. 

(b) A PATTERN following a PATTERN-ELEMENT is vertically aligned. 

(c) Indentation accumulates when PATTERN-ELEMENTS are nested or iterated. 

(d) Indentation whitespace occurs only after a newline character. 
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Pro of: 

(a) is a consequence of the fact tha t  the indentation parameter is a component of read-only 
state  for the functions literalE and displayE. 

(b) follows directly from the definition of D [PAT-ELT PAT 0 and of the separator connective 

( ;s; 1. 
(c) Nested and iterated PATTERN-ELEMENTS are defined by semantic equations (Separated) and 
(Iterated), which use either the separator combinator ( ; , ; )  or (;;;). Equation (3) assures that  
the policy function h in the definition of separate' increments the indentation parameter by the 
indentation specified in the separator, and (i) ( ; h )  sets the current horizontal position equal t o  
the new indentation; (ii) ( ; h )  propagates the new indentation to  the layout of a following 
PATTERN-ELEMENT. 

(d) The horizontal position is reset to the value of the indentation parameter only by the 
separator combinator. We rely upon the translation of the layout language to correctly set the 
indentation value corresponding to each separator string found in a pattern. 

7. Extending the Specification 

As a non-trivial illustration of design maintenance, we consider an  extension of the origi- 
nal specification tha t  allows indentations t o  be computed, rather than directly interpreted as 
the number of initial blank spaces on a line in a layout pattern. The modification involves 
changing the type of a s tate  component, and requires change to  every policy function whose 
type depends upon the modified type. We shall reap a big benefit by having identified all policy 
parameters of the combinators, even though that  may seem to  have added complex notation in 
the initial design. 

In the specification a s  given to  this point, the indentation to  be inserted following a line 
break is computed directly from a pattern. It is simply the number initial blank characters on 
a pattern line, following a line break. This is adequate when printing in a fixed character-width 
font such a s  the t t - font  in which the patterns are specified, and with the added constraint tha t  
no text variable occurs in the prefix of the line tha t  lies directly above the indentation. If a 
variable does occur in the prefix over which the indentation is measured, as  in the pattern 

if x then y 
else z 

then the printed image may not look as intended, even if the font is fixed-width, as  in 

if null xs then u 
else rev (x :  : u) xs 

In case the font is not fixed-width, the appearance will be even less predictable. 

if null xs then u 
else rev (x::u) xs 

To overcome this difficulty, we propose a further extension of the specification. The idea 
is simple. Character positions in a pattern should be treated as tabs. An indentation tha t  is 
specified in a pattern as, for instance, three blank characters will indicate an  advance by three 
t ab  stops. The actual t ab  settings to be used cannot be calculated from a pattern, but must be 
calculated dynamically. In order to accommodate this calculation, it will no longer be sufficient 
t o  let Loc, the position attribute type, be a single number; it must be a list of numbers 
corresponding t o  the t ab  positions calculated in a line. We redefine 

Loc = List(Num) 

and the first component of inherited attributes now assumes the type 
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pl : In t  

and represents an index for a value of type Loc, rather than the value of an indentation offset. 
Each time a new item is printed in a line, this state component of type Loc will be modified by 
extending the list of defined tab positions. The most recent tab  position added to the list will 
be the offset of the current location. 

This extension to  the definition is a major one. Nevertheless, it is easy to  see which func- 
tions must be modified. They will be the policy functions whose types include Loc. The 

E definition of literali,0K,f,4,u uses the policy function u to update the current location, 
u : StringXLoc+Loc. Since a literal string occurs fully elaborated in a pattern, a tab setting 
must be calculated for each character. We replace the old policy function with a new one, 
which calculates a list of tab settings, analyzing an argument string character by character: 

(1 'I U I ( E ,  Y S )  = Y S  

I U ~ ( C . C ~  J [I ) = ut (cs ,  VengthXc)l) 
I uf (c .cs ,  ( y : : y s ) )  = u f ( c s ,  (y+lengthXc)::y::ys)) 

The policy predicate i s O K  must also be redefined to take account of the revised type Loc by 
extracting a numeric value from a list with hd. 

(2') isOK s y p = hd(ul(y ,s) ,  0 )  5 scrollLwidth orelse p2 = oo 

where hd( [I , i )  = i 
hd(x::xs, i) = x 

The admissibility constraint on the policy function h that occurs in the definition of the sequen- 
tial pattern composition operator, ; h ,  is 

(3') if y', p' = h y p then hd(yl,O) > pll 2 pl 

The definition of h tha t  appears in s e p a r a t e  becomes 

(4 '1 h y p =if indent <O then y,p 
else let ptl = pl+indent 

in suf ix  Y ~ ' 1 ,  ( ~ ' 1 ,  Pz ,  PSI 
in which suf ix  ys n = let m = length ys 

in if m > n then tls ( m  -n) ys else ys 

where tls 0 ys = ys 

I t b  m C1 = [ I  
1 tls m ( y  ::ys) = tls ( m  -1) ys 

The definition of hl in separate '  (equation 5) is unchanged from the original version, as it does 
not analyze or modify its argument of type Loc, but h2 in separate '  becomes the function h 
defined above. 

The function display-item displays a term that  is represented in a pattern by a single 
variable letter. Thus the analysis of a pattern will only have allocated a single tab  stop to be 
set with the length added to a display by this term. However, the definition of display-item 
uses literalE, which allocates a number of tab stops equal to  the length of its string argument. 
To reduce the number of added tab stops to  one, we need to replace all uses of display-item by 
uses of display -item1, whose definition is 

(6 ') display -itemlx y p = (f y)*E(display-item x y p )  

where 
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f : Loc + (Text ~ L o c )  -+ E(Text ~ L o c )  

f y ( t  ,yl) = Just( t  , hd(y',O)::y) 

The structure of our specification has allowed us to  undertake a significant modification 
with some degree of confidence. Isolation of policy decisions taken in the design, by specifying 
policy functions as parameters of otherwise generic combinators, has allowed us to  locate those 
parameters that  may be affected by a proposed modification. The type signatures of policy 
functions provides a search key to  use in locating the affected ones. The only exception to  this 
rule was the implicit dependence display-item on the assumed structure of the type Loc. This 
was not an explicit dependence because it only showed up because the original definition 
violated an expected invariant of the modified specification, an invariant that was not needed 
to  verify the original specification. This invariant is that  the length of a list of location 
numbers (a value of type Loc) computed for display of any item corresponds to  the count of 
symbols in an initial sequence of a line of a pattern, including the symbol representing the item. 

7.1. Re-verification of properties 

Having extended the specification to  accommodate more sophisticated calculation of 
indentation offsets, we must reestablish that key properties of the original specification still 
hold. 

Every term of abstract syntax is displayed exactly once. The proof given for Proposition 
1 does not depend upon the policy functions u or isOK. Its only explicit dependence on the 
structure of the type Loc comes in the 'guard' condition in the hypothesis of Proposition 1 and 
again in Lemma 1.1, namely that  y > pl, where y : Loc. Wherever this condition is referred to  
in Proposition 1 and its proof, it  should be replaced by h d ( ~ , O )  2 pl. 

The display respects layout constraints. Proposition 2 does use properties of the policy 
functions modified in extending the specification and thus must be reviewed. We see that the 
proof uses only the additive property of u , namely that  u d y ,  sl@sz) = u XuI(y, s s2). This 
property is easily proved of the redefined function u by induction on the number of characters 
in the string s 2 .  

There is also a comparison of the horizontal position parameter with the scroll width in 
equation (10) in the proof of Lemma 2.1. This equation is modified to: 

(10') 
E d i ~ p l a y - i t e r r a ~ , , , ~ ~ , ~ ~ ~ ~  y p = literalf,,,4,i,oKr s t r  y p 

= if hd(uXy ,str),  0) 5 scroll -width 
then Jus t (  [df(str)]  , uXy,str)) 

else No thing 

In the proof of Proposition 2, Lemma 2.1 also refers to  pl, the first component of the inher- 
ited attribute. In the original design, this is of type Num and represents the current indentation 
offset. In the modified design, its type is Int and it represents an index into the list of tab stops, 
of type Loc. The condition in the first line of the statement of Lemma 2.1 becomes 

(11') hd(y 10) 2 hd(sufix Y p1,O) ==+ 
and equation (12) becomes 

(12 '1 l i teral~u,4, isoK~ s t r l  ss y p = Just(  ~ q 5 ~ ( s t r  , xs, suflx y pl). 

which also entails the conclusion of the lemma. Thus we have checked that  the proof of Propo- 
sition 2, as modified, still holds. 

The display respects indentation specifications. In the informal proof given for Proposition 
3, clause (c) refers to  the update of the indentation parameter and calculation of a new 
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indentation offset by the combinator separate'. Recall that  the the calculation of the offset was 
modified to use a redefined policy function here. 

8. Conclusions and Further Work 

When giving a specification of a complex system, i t  is of crucial importance to  have in 
mind a structure tha t  underlies the system. If specification is a t  an  abstract level, this is likely 
to  be a mathematical structure that  does not necessarily conform to  the decomposition by func- 
tion customarily sought by a software engineer. For the example reported here, we have made 
use of a mathematical structure that  enabled us to  build up the required state  and control in a 
systematic, clear and rigorous way. This mathematical structure is a composition of monads, 
an  idea suggested by E. Moggi [3] but not previously applied to the specification of software, 
insofar a s  the author is aware. 

This specification makes extensive use of an exception mechanism to  specify backtracking 
control. Using the structure imposed by monads has been enormously helpful t o  reason about a 
semantic structure tha t  is, superficially a t  least, quite complex, utilizing mutable state (the 
current location), inherited but locally immutable state, and exceptions. Yet the monad struc- 
ture has enabled us to define simple and regular composition operators and to  reason confidently 
about composite computations. 

Experience with this example supports our cautious optimism tha t  design changes can be 
made safely within the design framework illustrated here. In our actual experience, the original 
design document was altered in two respects in order to make these changes feasible. 

(i) The policy function u f  was introduced explicitly; in an  original version of the document, 
this policy for updating horizontal position was left implicit, in the form of in-line expres- 
sions appearing in the definition of the combinator l i teralE and in the proof of Proposition 
2. Implicit policy functions are incompatible with our design methodology, however. Edit- 
ing the original document t o  make this parameter explicit corrected an inconsistency in 
applying the methodology. 

(ii) The equations in which policy parameters were used or defined had not been numbered in 
the original document. They were numbered before attempting the revision, t o  make i t  
easier t o  refer t o  the original design. 

The specification has been developed without a prototype implementation. For this prob- 
lem, early functional prototyping did not seem necessary, since i t  would be used principally to 
gain confidence in layout policy decisions that  we have incorporated as parameters. However, 
the specification has undergone refinement during the process of developing proofs of its most 
important properties. This has allowed us to  find sometimes subtle errors in the original 
specification and forced us to  refine details. Verification of properties is the most effective and 
rigorous method available for refining and validating a specification. 

The next step in this project will be to  construct a prototype implementation. It will be 
composed of the generic (i.e. polymorphic) functions defined in the specification, tha t  is, the 
maps, units, reductions and strengths of the constituent monads tha t  structure the computa- 
tional domain. These functions will be generated automatically by meta-programs tha t  inter- 
pret the monad definitions and compositions. Other functions tha t  are not generic, those tha t  
incorporate policy functions, may also be generated by specifying the point a t  which policy is to 
be applied, but we are as  yet unsure to  what degree these can be automated. Our goal is to 
generate nearly all of the operational semantics of the layout 1a.nguage interpreter without hand 
coding. 
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Appendix 1: An inventory of functions needed t o  implement a prettyprinter 

Generic function constructors 

For each monad object mapping, T ,  

unitT,$: X + T X  

strength, rT : T X X T Y -+ T ( X  X Y) where 
T X  = S+XXS 
T X  = X+E 

' ? ' : (TOE) X X (T*E) X --t (T*E) X-left-biased selection composition, 
where E is the monad of exceptions, 

and for the monad of an additive datatype constructor, T, 

redT(f . . . , f N ) :  T X + X  

where N is the number of constructors of the sum-of- roducts datatype T,  and if the ith 
constructor has type T I X  . . . X T m i + T X ,  then the ia element of the argument tuple has 

the typing f i  : T I X  . - . X T m i + X .  

The combinators ' 8 '  and ';' and the reduction functions must be modified to produce 
policy-driven variants, ' a r  ', ' ;) ' red? and displayg,,). These are no longer generic functions, 
however they follow the same recursion schemes as do the unfoldings of the generic functions 
' 9 ,  . >  ';', redLlst and redAST. 
Other generic functions tha t  can be produced with compositions of the primitive ones include: 

List-strength: 
.+T/List - - FedLirt 

((qT [I 1, rT) 
T where .+ is the symmetric tensorial strength for T.  

Some useful polymorphic functions for lists 

List map with state transformer: 

m a p s :  ( X + S - + Y X S ) - + L ~ S ~ ( X ) + S - + L ~ ~ ~ ( Y ) X S  
f = 3'1''' 0 f 

which satisfies the recursion equations: 

m a p s f  [I s = C l , s  

mapS f (x::xs) s = let y ,  sf = j x s in 
let ys, s" = mapS j xs s' in 
(y::ys), s" 

List map with two state  readers: 

mapRR:  ( X + R + S + Y x S ) - + L i s t ( X ) + R  - + S + L ~ S ~ ( Y ) X R X S  
RddList RddList  

mapRR j = m a p R d ~ ( r  l o r  o rnapList j 

which can also be expressed with lambda-abstraction as: 

mapRR f r s = mapList (AX. f x r s )  

The list maps can be extended to  arbitrary sum-of-products types. 
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The List-anamorphisna constructor is 

derbiSt . . ( ( X - + B ~ O ~ ) X ( X - + Y X X ) ) - + X + L ~ ~ ~ ( Y )  
derbist (p ,  j ) x  = i f  p x  then [I 

else (cons (idList(y) x derLkt ( p  , f )) f ) x 

(In the LML library, there is a function called choplist which is related to  the List- 
anarnorphism by choplist j = derList ((isempty, f ).) 

To complete the inventory of meta-programming functions it  is also necessary to have a 
parser for the layout specifications language and a variety of functions that  interpret the 
abstract syntax of the layout language to generate a prettyprinter. 



Kieburtz Specifying Prettyprinting February 14, 1992 

Appendix 2: Abstract Syntax of the Layout Language 

Sorts: {SPEC,LAYOUT,HEAD,OPT,OPTS~G,CONF,OPS,OP-ID,PAT,PAT-ELT,SEP,LETTER,STRING) 

Subsorts: OP-IDc OPS 
LETTER C ARG, PAT-ELT 
STRING C PAT-ELT, SEP 
PAT-EL T C PAT 

Signatures: 

SPEC 
Spec: LAYOUT* 

LAYOUT 
Layout: HEADXOPT 

HEAD 
Head: OP-ID xARG xCONF* 

ARG 
Args: ARG* 
List-arg: LETTER 

O P T  
Option: NUMBER XPAT 

OPTS 
Options: OPT* 

CONF 
Conjlic t : ARGXOPSXSTRINGXSTRING 

OPS 
Op-ids: OP-ID* 

P A T  
Separated: PATXSEPXPAT accounts for line breaks and other separators 
Iterated: PATXSEP display of term lists 

SEP 
White: STRING may contain line break & indentation 
Postwhitesep: STRINGXSTRING whitespace follows a visible string 
Wide : SEPXSTRING allows whitespace prefixed to  visible string 
Postwhitewide: SEPxSTRINGxSTRING allows postfixed whitespace as  well 

PAT-ELT 
Terminated: PAT-ELTXSTRING when a literal follows a term 
Bracketed: STRINGXPAT-ELTXSTRING no separator between brackets and term 




