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Abstract

Analysis of (Eomputer programs using a semantics that combines features of the operational

and denotational methods is described. The method is an explanatory, analytic tool, a

“program calculus” that allows program meaning to be obtained from program syntax,

then compared to a desired meaning by simple set-theoretic methods. Meanings are

iil]nctional, sets of ordered (input, output) pairs. A subset of Pascal is used to illustrate the
eory.
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1 Introduction

Three important theoretical underpinnings of computer programming are:

(1) Syntax. Phrase-structure grammars (usually context-free) are used to constrain the form
programs may take [1]. It is possible to give very precise descriptions using more complex
grammar mechanisms [2,3], but a collection of “static semantics” informally given is the rule
[4]. In any case, there is almost no disagreement about the appropriateness of defining
language syntax using grammars.

(2) Semantics. Meanings can be assigned to programs in ways ranging from clever use of natural
language (1| through semi-formal aids [5] to careful mathematical definitions (3,6,7]. Syntax
is exploited to break a program into units whose separate meanings are defined, then
combined to form the meaning of the whole. However, there is no consensus about the
“best” semantic definitional technique. Furthermore, it is easy to confuse definition with
specification (see (3) following) because each technique carries with it a natural method of
reasoning about the meanings it defines.

(3) Specification. The definition of programming-language semantics captures what a program
does mean; specification captures what one was intended to mean. It is natural to use a
technique for specification that is closely related to the definitional technique--then it is
possible to reason about programs, that is, prove things about them and their specifications.

This paper describes a functional approach to the study of programming following Mills [8, 9]. The

technique is both rigorous and practical, using methods and ideas from operational and
denotational semantics.

Our technique is an alternative to the Floyd /Hoare semantic theory, and it may help the
reader to explain how that theory would be presented if it were the subject of this paper. (The
discussion treats “truth” and “proof” informally, to make clear the computer-science issues at the
expense of the logical ones. For a complementary treatment, see Apt [10].)

We believe that the proper fundamental view of programming is the imperative, operational
one. People understand a program as a sequence of steps by which input is transformed to output.
Each step corresponds to some syntactic part of the program, which authorizes or effects that step.
In the case of looping and invoking procedures one part of the program may be used over and over;
without loops or procedures each part has at most one use. By defining an appropriate
intermediate “state” of a program’s computation, the action of each program statement can be
precisely described, as effecting the transformation of one intermediate state into the next. The
entire process begins with a special initial state containing the input, and ends with a special final
state containing the output. Definitions of this kind are natural, and have been given from the
beginning, notably by Turing [16]. The definition is so natural, and procedural languages on the

ALGOL 60 model are so well known, that operational definition may be tacitly assumed for such a
language.

The difficulty with an operational definition is that it is only easy to use in tracing a
particular computation with known input. Unless the input is given, the initial state is unknown,
and one cannot easily proceed. Perhaps this is the source of the well-known simplification of
reality that “computers can only process numbers.” In any case, to reason successfully about
programs requires a different technique. Floyd [19] was the first to devise one. He imagined first-
order logic assertions attached to a program, a preassertion before each statement, and a
postassertion after. For a particular statement with preassertion P and postassertion Q, the
verification condition V(P,Q) is a formula constructed from P and Q that attempts to capture the
statement’s meaning. V(P,Q) is successful in this attempt if it holds if and only if the truth of P,
followed by the execution of the statement, guarantees the truth of Q. A program may then be



proved as follows. Pre- and postassertions are devised for each statement such that each
verification condition holds, and each postassertion implies the preassertion of the following
statement. It can then be shown by induction that if the preassertion before the program’s first

- statement (the input assertion) is true, then following execution of the program, the postassertion
after the program’s last statement (the output assertion) must be true.

The definition obviously involves a tacit definition of the program meaning, since otherwise
the much-mentioned “execution of the program” makes no sense. Given the operational definition,
it is possible to prove that certain verification conditions are successful in capturing the meaning so
defined. This is what Floyd did, arguing informally that his verification conditions were the proper
ones according to the usual understanding of statement meanings. When a program has been
proved we can then be sure that should its input assertion be true, and should it execute and reach
the last statement, that the output assertion will be true, where execution agrees with the tacit
definition used to frame proper verification conditions.

But it is also possible to turn matters around and use Floyd’s idea as a semantic definition.
For each statement, we can define its meaning as that action which will make Floyd’s verification
condition hold. One attractive feature of this approach is that it eliminates both the messy
operational definition and the messy proofs that the verification conditions capture it. A program
proof then takes on an entirely different character. It is more a calculation of the program’s
meaning according to Floyd’s definition, in that it establishes the pair of input and output
assertions as a proper overall description. In some sense this pair is computed from the assumed
verification-condition meanings for individual statements, through the mechanism of other,
intermediate assertions necessary to complete the “proof.” As anyone who has ever done a Floyd
proof knows, this “calculation” is a tedious one, and unless it is guided by intuition about what the
program actually does (using the tacit operational definition) it is a hopeless task.

Hoare’s contribution [20] to the method was to recognize that Floyd’s verification conditions
provided strong constraints on the pre- and postassertions P and Q. Only for very peculiar pairs
P,Q will verification condition V(P,Q) hold, and by describing those peculiar pairs he eliminated
the necessity for establishing the truth of V(P,Q). When a pair P,Q satisfying the Hoare
constraints for some statement are used around that statement, V(P,Q) is forced to hold. Hoare’s
rules are usually given in the form of a “logic” whose statements have the form

P{s}Q

where P and Q are pre- and postassertions for statement S, and the axioms and rules of inference
of the logic determine which P and Q will make V(P,Q) hold, where V is the verification condition
for S. The interpretation taken for this statement is, “if P holds and S executes then Q holds.”
(Hoare did not give even an informal argument that his rules for pre- and postassertion choice will
force the truth of Floyd’s verification conditions, but he did state that the work is equivalent.) A
Hoare proof of a program then consists of choosing assertions that satisfy his rules. Some of the
rules mechanically generate the needed assertions, others only give properties that they must have.

The same definitional situation obtains for a Hoare proof as for a Floyd proof: if a tacit
operational definition is taken for the program it is necessary to prove that the Hoare rules agree
with that definition; then the proof is a proof that the program’s execution (so defined) must
behave as the assertions state. On the other hand, if the Hoare rules are taken as defining what
the program does, nothing need be proved about them, and the program proof becomes a
calculation of assertions. In the latter view, Hoare’s method is superior to Floyd’s, since some of its



rules (notably for assignment) are very easy to use.

The usual textbook treatment of the Floyd /Hoare method tacitly assumes the operational
definition of the programming language, does not prove that the Floyd /Hoare rules are in
agreement with that definition, yet then claims that the proofs have significance beyond calculation
from definitions. If conventional logic were presented in this way, it would define logical validity
using proof theory, then claim that the theorems proved were true without an independent
definition of truth. Indeed, logic presented for computer science students often does exactly that.

In this paper we hope to do better in three ways. First, since the intermediate states of the
operational definition are an important part of our formal treatment, it is easier to give the
operational definition, and to prove that our formalism agrees with it. Second, when the formalism
is viewed as a device for calculating meaning from definitions, the calculation is often easier, more
intuitive than with the Hoare method. Finally, many of the peculiar features of programming
languages on which Hoare logic founders, notably those involving procedures and their parameters,
our formalism handles without difficulty.

The rest of this paper is organized as follows:

Section Contents

2 Describes the programming language and outlines
its operational definition.

3 Gives the denotational character of the semantic
theory to be developed.

4 Develops the complete theory for linear
programs, the special case of no conditionals or
loops.

5 Defines the desired relation between specification

and program meaning, that of correctness.

6 Conditional statements
7 Iterative statements Completes the semantic theory.
8 Procedure statements

2 The Language and its Operational Semantics

In choosing a programming language to explain, when the subject is not that language but the
explanation, there is a fine line between the real and the abstract. On the side of abstraction, it
can be argued that the language should show off the features of the explanation to good advantage,
and the peculiarities of real languages should not be allowed to confuse a clear picture. But the



real-side argument is equally cogent: if the explanation does not show that it can handle practical
complications, it is a failure. We compromise on a subset of the Pascal language.

2.1 Features included tn CF Pascal

As primitive data types we include only characters and files of characters. The virtue in this
choice over numeric types is that it eliminates number theory--not the central language-theory
idea--from the example. The only operations on characters are comparisons and “next in
alphabetic sequence;” the latter is sometimes undefined.

Statements of our language present less difficult choices. There is an assignment, read /write,
a conditional, iteration, and procedure invocation. The most important decision here is to allow
the creation of intermediate results through assignment (and thus deal with “sequential” instead of
“functional” programming), making statement sequence the fundamental construction of the
language.

Declarations must be treated by any reasonable semantic theory, but block structure is not
central to our language. The idea of two identical identifiers with different meanings is retained by
allowing declared procedures to have local variables.

Of the many kinds of procedure call and parameter mechanisms, we have chosen strict call-
by-reference and recursive procedures as the ones to include.

The language that results from these choices is probably closer to IAL (of which MAD [11]
and JOVIAL [12] are common examples) than to Pascal, but since the latter is much better known,
we use its syntax, in what we call “CF Pascal” (for Character, File). Although for present
purposes it is irrelevant that this language is of practical use, we have found it so for text-
formatting problems, and for teaching introductory programming [13]. The exact scope of the CF
subset is best given by the denotational theory in Sections 3-8: CF Pascal includes what we define
and where the Pascal definition [14] is clear, we define it that way.

1

2.2 Operational Definition

Although the full details of an operational definition for CF Pascal will not be given, enough will
be presented to permit sample proofs that our analysis techniques are correct. In Sections 3-8,
however, the denotational theory will be viewed as defining CF Pascal, and the reader who wants

to show that these definitions are really theorems based on the operational definition will have to
supply the proofs.

The essential element in a languages’s operational definition is the instantaneous state
description of a program. This object is successively transformed as input is converted to output
by the program’s actions. For CF Pascal this description consists of a data state and a statement
pointer. The data state records the current association between program identifiers and their
values; the statement pointer tells which part of the program will be used next. The program part
indicated by the statement pointer authorizes a transition from the current instantaneous
description to a subsequent one, according to rules peculiar to itself. It is these rules, for how each



statement changes one description into the next, that constitute the operational definition.

With only characters and files of characters, the values associated with quantities internal to
CF Pascal programs come from an alphabet and strings over that alphabet, with the complication
that file values are separated into the part already processed and that yet to be processed. That
is, a file value is technically a pair consisting of a “past” string and a “future” string. Thus a data
state of a CF Pascal program includes values from the two sets: characters and string pairs. Each
value is connected with a program identifier, and represents its current “contents.” For example,
in a program where the identifier OUTPUT (of type TEXT) and XXX (of type CHAR) occur (note the
~ special type font employed for parts of programs), a data state T might be the set of ordered pairs:

T = {(OUTPUT, (Page 1, A)), (XXX, 2)}

where A is the empty string. However, when no confusion can arise, we will display data-states in
a simpler notation, using the type fonts to distinguish values from identifiers. For example, the
data state above will be written:

T = {OUTPUT=Page 1|, X0XX=2}

»

where the “=” separates identifier and value, and a vertical bar (“|”) separates the future from
past string in a file. In the example, OUTPUT’s future string is empty.

The statement pointer identifies the next part of the CF Pascal program to be used; in
examples the lines may be numbered and the pointer given by number, or if there is no confusion,
the statement may be named, e.g., “the IF statement.”

Each computation by a CF Pascal program begins with an initial instantaneous description in
which the statement pointer is to the program’s first statement and the future string of the
identifier INPUT is the contents of the standard input file, the INPUT past string is empty, and
both strings for identifier OUTPUT are empty. The computation may terminate successfully, in
which case the final instantaneous description has an undefined statement pointer, and a data state
in which the past string for OUTPUT is the contents of the standard output file. In between initial
and final instantaneous descriptions the computation comprises a sequence of instantaneous
descriptions which reflects the changing data state and the flow of control. Each member in this
sequence results from the previous member by the action of a part of the program, a statement.

Suppose that the current description is C, and its statement pointer indicates an assignment
statement. Then the description D to follow in sequence is the same as C except that D’s
statement pointer is to the statement following the assignment, and in the data state of D the
identifier on the left of the assignment may have a new value. This value is obtained by
evaluating the right-side expression of the assignment. Where identifiers appear in this expression,
their values are extracted from C. (This is the operational definition of the meaning of the
assignment statement.) To take a slightly more complex example, if the statment pointer indicates
an IF statement, the description D that must follow C in sequence may have a statement pointer
to either the THEN part or the ELSE part, depending on evaluation of the Boolean expression,
using identifier values from C. However, the data state of D is the same as the data state of C.
(Details of expression evaluation are omitted; a careful definition begins with identifier and
~ constant values, and follows the inductive definition that is implied by the language syntax. See



Section 3.2 for the careful denotational definition.)

When the statement pointer of current description C indicates a declaration of identifier X,
the subsequent description D indicates the statement following the declaration; and, the data state
of D is the same as that of C except that in it X is paired with all possible values of the appropriate
type. This is a way of capturing the sense that a newly declared variable has no value before it
acquires one from the action of a following statement.

When the statement pointer of current description C indicates a WHILE statement then the
statement pointer of the following description D is to either the statement following the WHILE (if
the Boolean condition evaluates to false in C), or the first statement of the WHILE body (it it
evaluates to true). The data state of D is the same as that of C.

Compound statements like IF and WHILE make it necessary to define “next statement” in a
somewhat peculiar way. In a WHILE statement, the next statement for the last part of the
WHILE body is the original WHILE statement itself. In an IF statement, the next statement after
the last part of the THEN is the one following the entire IF (that is, at the end of the ELSE).

The remainder of the operational definition of CF Pascal will not be given. Many of the
details are similar to the tricks used to make the careful denotational definition in Sections 3-8
(notably for procedure invocation, where the ALGOL 60 copy rule is used), and supplying them is
straightforward, if tedious. If full details were given, we would now have a complete definition of
the computations of CF Pascal programs, the sequences of instantaneous descriptions beginning
with an initial description and ending with a final one. This would allow us to make the following
definitions of meaning for programs.

It may happen that a computation never reaches a successful conclusion. The most common
reasons are (1) attempts to make use of variables that have not been given a single value, and (2)
loops that fail to terminate. In the former case, there is no description that legally follows in the
sequence, because in an expression that must be evaluated, an identifier is paired with all possible
values in the current description. In the latter case, the sequence of descriptions is unending,
because each description at the end of the loop body is followed by one at the beginning of the
loop. (Unending recursion is another similar source of failure.) Then consider the complete
collection of computations that are successful for a single program. These differ because the string
in the standard input may take on arbitrary values, thus starting each computation off in a
different way (and, typically, leading to a different sequence). This collection is a description of
everything that the program can do, and by omission of failure sequences beginning with some
strings in the standard input, also a description of what it does not do. But there is a more
restricted meaning to the program than its complete collection of computation sequences. Its
input-output behavior is described by examining only the initial and final descriptions in each
member of the successful-computation collection. The initial descriptions contain input strings; the
final descriptions contain output strings. As a string-to-string mapping, the meaning of the
program is the function whose domain is all the strings appearing as input for successful
computations, the function whose value on one of those strings is the output string in the
corresponding final instantaneous description.



8 Denotational Definition of CF Pascal

CF Pascal programs, viewed as “black box” objects, have two special files, INPUT and OUTPUT; a
program transforms the former into the latter. Because these files contain character sequences, the
meaning of a program is a string-to-string mapping. It is the “denotational” view of semantics
(usually credited to Scott [15]) to assign to a program text (itself of course a string) a meaning
from the string-to-string maps, and to construct this meaning by first assigning appropriate
mappings to program parts, then combining them into a meaning for the entire program.

3.1 Data-state Transformations

The denotational view of a data state is that it is a mapping from identifiers to values. For
example the state

T = {OUTPUT=Page 1|, XoxX=2}

given in the abbreviated notation of Section 2, has:

T(OUTPUT) = (Page 1, A), and T(XXX) = 2.

To express the transformation of one data state to another, our notational device is to employ the
program fragment that effects the transformation, but to distinguish that fragment from a string
(the program syntax) by surrounding it with a box. (The idea is due to Kleene [17].) Thus the
denotational view that the meaning of a fragment is a mapping, and assigning meaning is
associating a program string with its data-state map, is expressed by boxing the string. For
example, in the state T above, the transformation effected by

WRITE(’3°)

would be shown as

[ WRITE(’3") | (T) = {OUTPUT=Page 13|, X0X=2}.

The notation is excellent for expressing examples; when we try to give the general case (for example
if T were not a particular data state, but any state), a functional notation using ordered pairs is an
improvement. For this example,

[WRITE(’3*) | = {(T, U): T = U except that the past string of U(OUTPUT) is the past
string of T(OUTPUT) with 3 appended}.




8.2 Meaning of Ezpressions

The meanings of CF Pascal statements and programs can be constructed from the meanings of CF
Pascal expressions. Because the language is severely restricted, there are very few of these. The
meaning of an expression is a mapping from data states to the appropriate value range (characters

for CHAR expressions, string pairs for files, and { true, false } for Boolean expressions). If X is a
variable (necessarily of type CHAR or TEXT). then

[X] (T) = T(x).
For example, if
T = {OUTPUT=Page 1|, J0X=2}

then

(T) = Page 1

and

[0x] (T) = 2.

The constants in CF Pascal are of type CHAR, and their meanings are the obvious ones:

CAm =2
(T)=B
etc.

for all data states T.

The only other CHAR expression uses the built-in function SUCC, and its meaning is defined
inductively. As a first attempt, we might try:

(T) = the character following [ ¢] (T) in sequence,

where e is any CHAR expression, and “in sequence” is the lexicographic character ordering defined
for Pascal. Because the character ordering may differ from machine to machine, and to illustrate
the treatment of routine errors, we here take SUCC to be defined on A through Y in the obvious
way, but make [ SUCC(*Z") | undefined for all data states. Similarly, the digits O through 8 have
the obvious successors, but] SUCC(’9*) | is undefined. We say (for example) that “G follows F in
sequence,” but that nothing follows 9. Except for A-Y and 0-8, SUCC is undefined. Instead of
adding an “undefined” clause to the definition above, the data state can be eliminated and the
definition given as a collection of ordered pairs:

succle) | = T, c) El (T) is the character b, and ¢ follows b in sequence}.



In this definition, | SUCC (e) | can fail to be defined at a particular input state T for two reasons.
It may happen that | e] is not defined at T (and hence IE] (T) is no character b as required), or

that b has no following character c. In either case, this T never appears paired with any c in the
defining set.

Finally, Boolean expressions can be given meaning. Only single comparisons between
character expressions are part of CF Pascal, and the definitions all have the form:

(T) = true ifE] (T) precedes [ /] (T) in sequence; false otherwise

for all expressions e and f(and similarly for the operators other than < ). In contrast to the
treatment of SUCC, we here assume that each pair of characters can be meaningfully compared,
but only obvious situations like B < X will occur in examples. Care is required here because of the
occurrence of the box functions on the right side of the definition. Should one of them be
undefined, then the meaning function of the Boolean expression is also undefined. This
corresponds to complete evaluation (as opposed to short-circuit, McCarthy evaluation) of Boolean
expressions, and to the arbitrary choice that once a runtime error occurs, the failure of meaning
propagates. Failure to be careful about such definitional matters has long been a source of trouble
in program proving [18].

3.8 External Strings and Data States

The meaning of a program must be a string-to-string function; the meaning of a program fragment
is a data-state-to-data-state function. To bring these into line requires associating a string that is
presumed to constitute the input file with an appropriate internal data-state string pair attached
to INPUT, and similarly associating the internal OUTPUT pair (initially empty in both past and
future parts) with the program output. The necessary actions can be imagined to be the meaning
- functions of the program header and terminating period, program parts whose denotational
meanings therefore transform strings to states, and states to strings, respectively.

| PROGRAM P (INPUT, OUTPUT) ; T .|
= [ PROGRAM P (INPUT, OUTPUT) | o[ 7] o[ ]

where T represents the bulk of the program, and o is functional composition, written with the
first-applied function at the left. Continuing the definition, for any strings D and E,

| PROGRAM P (INPUT, OUTPUT) | (D) = {INPUT=|D, OUTPUT=|}

[](., ouTPUT=E], ..) = E.



8.4 Calculating Program Meaning

The semantics to be presented below is a functional “calculus” that allows step-by-step

computation of a program’s meaning. By anticipating a definition to be subsequently presented,
we can now illustrate this calculus:

[ BEGIN IF e THEN END| = {(T,T): [¢] is defined at T}.

This function is defined, and identity, just where E] is defined. A program’s meaning is defined to
be the (functional) composition of the meanings of its fragments, taken in order. Then we can
calculate the meaning of

PROGRAM P1 (INPUT, OUTPUT) ;
BEGIN
IF SUCC("Z') > 'A’ THEN
END.

applied to the string D:

[] ([BEGIN IF sUCC("Z’) > *A’ END] ({INPUT=|D, OUTPUT=|})).

The function

[ BEGIN IF SUCC(’Z') > 'A’ THEN END|

is by definition either the identity function or undefined, depending on the evaluation of the two
CHAR expressions. Both have (or fail to have) values independent of the state, namely

(T) = character following [ *Z*] (T) (if any)

= character following Z (if any)

but in fact there is none. It is therefore irrelevant that

CA](T)=aA

because the innermost function is undefined, and the result is that the program P1 means a
function that is everywhere undefined, that is, the empty function.

- 4 Statement Sequences and Linear Programs
The fundamental rule of the program calculus is functional composition. To calculate the meaning

of a sequence of CF Pascal statements, first obtain the functional meaning for each one, then
compose those functions. Statements are separated by semicolons within BEGIN - END brackets,

10



SO:

[BEGIN S1; 82; ... ; snEND|(T)=[5sn] (... ([s2] ([51] (T)))-),

or in the purely functional notation,

[BEGIN S1; 82; ... ; Sn END| =[S1] o[S2] 0 .. o[Sn].

There is here (and throughout this presentation) a lack of precision caused by omitting
detailed syntactic analysis. Presented with a program text in a box, how is the text to be broken
up into units to which the definitions are applied? We have used words like “statement” as if they
had precise meaning in any such text. And of course, if care were used, they do have precise
meaning, given by the derivation tree for the program. In that tree at any level there is precisely
one “statement,” indicated by the nonterminal of that name in an appropriate CF Pascal grammer.
This use of grammar as a basis for the semantics goes back to ALGOL 60 [1], and may be the most
important feature of grammar-based syntax. Here we do not make the correspondence precise, but
in examples we order the compositions as they appear in the derivation tree.

- 4.1 Null Statement

Although the null statement often only enters programs by accident, it is a legitimate part of CF
Pascal. Thus define:

=1

4.2 Variable Declarations

The declarations within a program have a role in the program calculus similar to that of the
program header: they modify the data state so that it contains the proper identifier names for the
remainder of the program to process. Each VAR declaration has a functional meaning that
transforms a data state in which its identifier does not appear, to one in which it does appear.
The definition must make clear what happens in the anomalous situation that a variable is used
before it is assigned a value. To reflect the possibility that any value might be subsequently
acquired, we define the meaning of the declaration to be a relation including all values of the
appropriate kind. That is, for example

[ VAR V: CHAR| = {(T, W): W = T U {(V, x): x is a value of type CHAR}.

This relation in which all possible values are paired with V is awkward to write, so we introduce a
shorthand of “?” for the multiple values. Then for example the program part

11



VAR Fresh: CHAR

transforms execution state
{INPUT=|ABC, OUTPUT=|}
to execution state
{INPUT=|ABC, DUTPUT=|, Fresh="}.

In the box notation:

| VAR Fresh: CHAR| ({INPUT=|ABC, OUTPUT=|})
= {INPUT=|ABC, OUTPUT=|, Fresh="}.

The scope of an identifier introduced by a VAR declaration is the BEGIN ... END that follows
it. Outside this scope the variable ceases to exist, hence the definition must arrange to remove the
new identifier as well. The inverse of the VAR function does just the right thing, no matter
whether the “? value” has been overlaid, or not. Thus the definition is

| VAR v: CHAR; BEGIN ... END]
— [VAR v: CHAR] o[BEGIN ... END| o[ VAR v: CHAR| L.

The extension of the definition to a TEXT variable, and to several variables, is straightforward.

When a data state T is not a function because in it some identifier V is associated with all
potential values (in the shorthand, V=? appears in T), then is undefined on T.

4.8 Assignment Statements

- The intuitive meaning of the assignment statement as a data-state transformation is that the
identifier on the left side ceases to be associated with its old value, and instead becomes associated
with a value obtained from the right side. In CF Pascal, assignment statements are of the
restricted form:

where v is a variable declared as CHAR and e is either a variable declared as CHAR or a literal
character enclosed in single quotation marks, or a nest of SUCC function calls founded on such a
variable or literal. Section 3.2 has formally defined the box function for such expressions as a
mapping from data states to character values (which may be undefined for some uses of SUCC).

The investment in notation now pays off in a concise definition of the meaning of an assignment
statement:

12



v :=e] = {(T, U): U is the same data state as T except that U(v) = [¢] (T)}.

As usual, the definition includes the implicit case that should [E] be undefined, then so is the
assignment-statement function undefined.

Here are four examples:

({vi=A, V2=B}) = {V1=C, v2=B},
({Vvi=A, v2=B}) = {V1=A, V2=A},
[ V1 :=8SUCC (V1) | is undefined on the state {Vi=Z},

is undefined on the state {V2=?}.

4.4 WRITE Statements

Whatever a program may do internally to its execution state, the result cannot be observed by a
person unless WRITE statements are included to communicate the internal state to the outside
world. In CF Pascal, a WRITE statement may include only a sequence of expression arguments (of
the kind defined in Section 3.2). Let there be one argument, e.

= {(T, U): U =T except that the past string of U(QUTPUT) is T(OUTPUT) with
[e] (T) appended}.

The generalization to a sequence of expressions is that their values are appended in the order
written.

Enough of the program calculus has now been presented to handle a simple real program.
For example, if P is:

PROGRAM WriteHello (INPUT, OUTPUT) ;
VAR
LetterlL: CHAR;
BEGIN
LetterL :=°L’;
WRITE('H', 'E’, LetterlL, LetterlL, '0’")
END.

then if the input string is x the program header and VAR declaration establish the state

{INPUT=|x, OUTPUT=|, LetterL="}

on which the program works as follows:

13



[(WRITE('H', 'E’, LetterL, LetterL, '0')] ([LetterL .= 'L’|
({INPUT=|x, OUTPUT=|, LetterL="}))

= |WRITE('H’, 'E’, LetterL, LetterL, '0’) |
({INPUT=|x, OUTPUT=|, LetterL—=L})

by the action of the assignment statement and statement composition. The values of the
arguments in the WRITE statement are:

["H'] ({INPUT=|x, OUTPUT=|, LetterL—L}) = H
LE 1 (

INPUT=|x, OUTPUT=|, LetterL=L}) = E

({INPUT=|x, OUTPUT=|, LetterL=L}) =L
({INPUT=|x, OUTPUT=|, LetterL=L}) = O.

The WRITE statement thus changes the execution state to:

{INPUT=|x, OUTPUT=HELLO|, LetterL=L}.

The calculation of requires only the application of | VAR LetterL: CHAR| '1, which removes
LetterL from the state, and I:I , which extracts the past string of OUTPUT, with the result:

(y) = HELLO for any y.

45 READ Statements
The list of arguments in a CF Pascal READ statement can consist only of identifiers declared as
CHAR variables. READ statement meaning is easy to give if enough characters are available in

the data state (i.e., attached to INPUT as future string). The case of multiple variables in a READ
statement is a straightforward extension of the single-variable case.

Suppose then that a data-state value for INPUT contains at least one character in its future
string, say c¢. In the abbreviated form of a data state, write such a value as

INPUT=Xx|cy

where x and y represent the string parts of the value not of interest. Then the meaning of
READ (Cv1)

where the variable is suitable declared CHAR is
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({INPUT==x]cy, ..., CVi==¥, . }) = {INPUT=xc]y, ..., C¥1==¢, ...}.

As an example, consider the program P:

PROGRAM Change2 (INPUT, OUTPUT) ;
VAR
C2: CHAR;
BEGIN
READ(C2) ;
WRITE(C2) ;
READ (C2) ;
WRITE('2")
END.

We work out:
(ABC)
The program-header function and the VAR-declaration function establish the execution state:

{INPUT=|ABC, OUTPUT—|, C2=?}.

- Then the successive statements yield:

| READ (C2) ; WRITE(C2) ; READ(C2) ; WRITE(’2") |
({INPUT=|ABC, OUTPUT=|, C2="})

= | WRITE(C2) ; READ(C2) ; WRITE(’2’) | ({INPUT=A|BC, OUTPUT=|, C2=A})

= |[READ(C2) ; WRITE(’2") | ({INPUT=A|BC, OUTPUT=A|, C2=A})

= [WRITE(’2") | ({INPUT=AB|C, OUTPUT=A|, C2=B})

= {INPUT=ABI|C, OUTPUT=A2|, €2=B}.

Finally applying | VAR C2: CHAR| -1 o[ ] yields

(ABC) = A2.

Reading past end of file is a runtime error in CF Pascal, so in the definition we must exclude
those data states in which there are insufficient characters on the future string attached to INPUT.

Define:
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= {(T, U): the first character of the future string in T(INPUT)isc,and U= T
except that (i) c is transferred from the past to the future string in U(INPUT) and (ii)
v(c) = c}.

As usual, note that when there is no first character in T as required, there is no ordered pair in the
function with first member T.

4.6 Analysis of Linear Programs

The analysis of a linear program is a straightforward, mechanical process. Each part function can
be computed, and their composition found. In practice it is not easy to compose these functions,
because the notation soon becomes unwieldy. The trace table [9] is a technique for organizing the
computation for a series of assignments, which can be used for READ statements which “assign” as
well. It amounts to a symbolic execution of the code in terms of initial values for the variables,
leading to a set of equations which can be solved for their final values.

5 Proving Programs Correct

Before we complete the denotational definition of CF Pascal, two fundamental questions about
program P should be raised:

(I) does agree with the intuitive meaning of P?

(II) Does P in fact do what it is intended to do?

5.1 Proving Denotational Meanings

A program’s meaning defined operationally (Section 2) and denotationally (Sections 3-4, and
continued in the sequel) are the same kind of objects: maps from strings to strings. The
denotational definitions have of course been chosen to agree with intuition about what programs

~ do, and perhaps it is obvious that those definitions are consistent with the operational ones. But a
formal proof of this fact is possible.

Consider program P. The operational definition assigns a meaning to P: that string-to-
string mapping M whose (input, output) pairs are the appropriate parts of the initial and final
instantaneous descriptions of the successful computations of P. From the denotational definition
can be calculated. We would like to prove that M = .

Theorem (Denotational Consistency, linear case). For any linear program P, is the same as the
meaning function M of the operational definition.
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Proof. In fact, much more is true: in any computation with input z and output y:

The initial instantaneous description has state
B = [ PROGRAM P (INPUT, OUTPUT) | (2);

Let the next statements of the computation be S1, S2, ..., Sk in order. Then the final
instantaneous description has state D =| Sk| (...(| 82| (| 1] (B)))...).

o) =vw

The first and last of these statements are proved by combining the definition of the box functions
with the definition of initial and final states of a computation. If we take the middle statement as
part of the theorem, the whole can be proved by induction on the number of statements in the

BEGIN block of P.

Base case. If the program has no statements, i.e., P is

PROGRAM P (INPUT, OUTPUT) ;
BEGIN
END.

then the only computations are those whose initial and final instantaneous descriptions are the
same, containing an empty OUTPUT (past) string, and an arbitrary INPUT (future) string. That is,
for all inputs z, the output is A; or, M is the constant function with the empty string as value.

From Section 4, | BEGIN END| is the identity function, so (B) = B = D as required.

Finally, from Section 3.3,

= [[PROGRAM P (INPUT, OUTPUT) | o[ BEGIN END] o[ ]

(z) =[] ({INPUT=|z, OUTPUT=|}) = A = y.

(A second base case, in which there are declarations and hence three instantaneous descriptions, is
similar.)

Induction step. Now suppose that for all programs of less than m > 1 statements, the
augmented theorem holds. Consider a program P of m statements. By stripping off the last
statement Sm, a program P’ is created to which the inductive hypothesis applies; let its last
statement be Sm’. The additional condition (for P”) tells us that the penultimate data state of
the original computation, say D’, is obtained from the initial state by

D’ =[sm’] (... [81] (B)..)

In the computation by P, the statement Sm operates on D’ to produce the final description D; in
, the last state is (D). It therefore remains only to show that the action of Sm is the
same operationally and denotationally. The proof is by cases, one for each kind of final statement.
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Suppose the statement removed from P to form P’ is an assignment
X:=E

Then from the operational definition, in D, X has a value calculated from E’s value in D*. This is

exactly the transformation defined for . The other cases for linear statements are
similarly transparent. QED

In the sequel additional statements of CF Pascal will be denotationally defined, and for each
the Theorem could be extended, by proving additional cases for the final statement. However, the
technical complications are considerable, particularly for the iteration and procedure-call
statements, and the additions to the proof will not be given.

5.2 Proving Programs Meet Specifications

Any program has a purpose, but that purpose may not require results in some exact form. For
example, a program may be required to print the members of a set, without their order or the page
layout being specified. These variations can be described by providing, for each instance of input
data, all acceptable instances of output data, that is, a relation consisting of all such pairs.
Therefore, a CF Pascal program specification is defined as any relation whose domain and range
are the set of character strings.

Just as a program function may be difficult to describe in a well-known mathematical form,
but nevertheless exists for every program; so a program specification may be difficult to set down,
but is a mathematical relation nevertheless.

An important special case of a specification occurs when the acceptable pairs of input data
and output data form a function; that is, for each instance of input data exactly one instance of
output data is acceptable. This special case of a specification relation is therefore a specification
function.

The specification (relation or function) for a program is a mathematical form of what the
program is supposed to do, a description of desired results. This form is entirely independent of
any program to realize it, and in fact is the starting point for writing a program. It is important
to recognize that a specification gives no information about how some program might perform to
meet it. Since it is simply a collection of input-output pairs, it states what is to be done, without a
hint of a method for doing it. On the other hand, once a particular program exists, its program
function (which is the same kind of mathematical object as a specification function) defines what
the program does do, without regard for any intentions the programmer may have had.
Furthermore, using the program calculus, this meaning can be calculated step-by-step from the
program text itself. The program function itself does not express how the program accomplishes
what it does, but to calculate the program function requires full details of the program’s inner
workings. A central question of programming can be simply stated in these terms:

Given a specification and a program, does the program fulfill that specification?
The technical definitions necessary to state this question are already available. Given a program
specification relation r and a program P, we say that P is correct with respect to r if and only if,

for every member x of the domain of r (an instance of input data), P produces some member of the
range of r which is paired with x in r. That is, for each input x, (x, [P] (x)) € r.
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Theorem (Program Correctness): Program P is correct with respect to specification relation r if
and only if:

domain(r o ) = domain(r)

Proof. The expression r 0 identifies all acceptable pairs of r computed by P. Therefore
domain(r o ) identifies the set of input data for which P produces acceptable output data.
- Since domain(r) is the set of input data for which r specifies acceptable output data, the condition

domain(r o ) = domain(r)
ensures that P produces acceptable output data for every instance of input data defined by r.
QED

Note that P may execute successfully for input data not identified by r, but such pairs of
are screened out of (r o ) by r. Note also that if P produces an unacceptable instance of
output data, no member of r with that input data can be in r o , and therefore domain(r o
) cannot coincide with domain(r).

In case the program specification is a function, the condition for program correctness can be
simplied as follows:

Corollary (Program Correctness): Program P is correct with respect to specification function f if
and only if

e 11

Proof. The expression f o identifies all acceptable pairs of f computed by P, which must be f,
itself. That is, P is correct with respect to f if and only if

fo[P]=T{.

and thus if and only if f C[P]. QED

6 Conditional Statements

Much of the power (and complication) in programs comes from their conditional statements, which
provide the means of making decisions based not only on program input, but on intermediate
values internal to the program. However, the meaning of a single conditional in isolation is easy to
define.
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6.1 Meaning of Conditionals
Let the program S be:

IF B
"THEN
5
ELSE
E

where B is Boolean expression and T, E are statements. Then

(U)if [B] ()
[S] (v) =} [E] () if =[B] (V)
otherwise is not defined at U.

For example if the program were:

IF V1 < V2
THEN

Vi :=V2
ELSE

V2 :=V1

Then

({Vi=A, v2=B}) = {Vi=B, v2=B}

because

({Vi=A, V2=B}) = true,
({vi=A, v2=B}) = {V1=B, v2=B},

and the value of for this data state is given by the value of :

In order to give a definition by cases without explicitly naming the data state, it is necessary
to select one of two sets of ordered pairs according to the Boolean expression. The following
standard trick accomplishes this:

= {(U,[T] (U):[B] (U)} U {(U, [E] (U)): - [B] (V)}.

The first set contains all state pairs in which the condition holds, and the second set those pairs in
which it does not hold. It is important to note the way that failure of definition can occur here.
There is no “evaluation” of these sets in any order. They simply contain or fail to contain certain
pairs. For example, should fail to be defined for some U, that U will not occur in the second
set, independent of . Such a failure has no influence whatsoever on pairs in the first set.
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However, failure of in another matter. If this function fails to be defined for some U, neither

condition holds, and U is not paired with anything in either set; that is, is undefined for such a
Lk

The IF statement

IF B
THEN
T

could be given a similar definition, but it can also be agreed to mean the same as:

IF B
THEN
T
ELSE
{null statement}

so that its definition can be derived as follows:
(V) if [B] (V)
LIF BTHEN T]| (U)=! Uif -[B] (V)

otherwise undefined

or, in the functional notation:

LIF B THEN T| = {(U, [T] (U)): [B] (U)} U {(U,U): ~[B] (U)}.

In the second case, the identity function is applied to the state, since that is the meaning of the
null statement.

6.2 Analysis of Conditional Statements

Composing the functions that result from IF statements is no more difficult in principle than
composing imperative-statement functions, but the notational complication is even more severe.
The trace table can be extended to help in practical cases. A conditional trace table [9] is a
symbolic execution which includes calculation of the path predicates. For each path the values of
variables can be computed symbolically, and thus the path function determined. The function of
the whole is then a union of these path functions, each including its defining path condition.
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7 Iteratlion Statements

With iteration-free programs, we have seen how to derive program meaning as a composition of the
meaning of program parts, in which the number of parts is determined by the static program text.
However, with iteration, program parts can be executed repeatedly. If the number of iterations
were fixed, the part functions would be fixed compositions of simpler part functions. But the great
power of iteration statements arises from a variable number of iterations, so we need not be
surprised that the difficulty of dealing with iteration statements increases accordingly.

Although in a long iteration-free program there could be notational difficulty in calculating
the program’s meaning function, there is no difficulty in principle: each statement has its
functional meaning, and the meaning of the whole is simply their composition. There is no
mechanical way to deal similarly with iteration statements, but this section presents a definition of
meaning, and a technique for proving that a function (nonmechanically obtained) is or is not the
- meaning function for a given loop.

7.1 Meaning of Iteration Statements

The power of iteration exacts a high price when it comes to calculating the meaning of WHILE
statements. The pattern of our definitions has been to give the function of each statement-type in
terms of its parts. The parts of a WHILE statement are evidently the condition (determining if
the iteration should continue) and the loop body (what to do if it should continue). The difficulty
is that the action of the loop body is repeated in forming the meaning of the loop as a whole, and
this repetition occurs a number of times that is not explicit in the text. If the number of times k
the iteration occurs were known, there would be a way out of the difficulty, for then the function
of the entire WHILE statement would be a composition of its body’s function exactly k times. For
example, if it were magically given that

WHILE BDO D
“went around” exactly twice, then we could consider it equivalent to
BEGIN D; D END

and the result would be

[ WHILE BDO D| = D; D]

There is yet a further complication in the WHILE statement. It may happen that a loop never
terminates. In that case the “number of iterations” makes no sense, and the function of the loop is
undefined for the state that began the repetition. Thus the number of iterations to completion is
in all cases the key to the WHILE statement. If this number is k, then the function of the loop is
k-fold composition of the function for the loop body; if the iteration continues without end, the
function is undefined.

There is a direct way to capture the function of a loop, by asserting that the state resulting
from the loop’s execution is the result of the loop body executing k times, for some unspecified k.
To be consistent with the intuitive meaning of the loop, this k (if it exists) has the property that
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the loop condition is true before the 1st, 2nd, ... kth iteration, then is false. That is, after k
iterations the condition fails for the first time. The WHILE statement meaning therefore consists
of exactly those ordered pairs for which there is the appropriate k, with the output state being a
k-fold action of the loop body on the input state.

The definition of meaning along these lines will now be given. Let WHILE statement W be
WHILE BDO D

where B is a Boolean expression and D is a statement. Then define

= 'h i b2 U)‘:ak > 0, such that Y0 < i < k
(Bl (@ 't) A -3 (3] 1) A[D] ¥(1) = U)}.

For example, consider the loop U:

WHILE V1 > 1’ DO
IF V1 = '8’ THEN

Vi = "D*
ELSE

IF V1 = '9’ THEN

L

ELSE

V1 := SUCC(SUCC(V1))

Suppose that the character value attached to V1 in the input state for Uis x. If x <., then k =
0. If x is a digit, then k = (10 - x)/2 rounded up to the nearest integer. (For example, if x = 9,

_ then (10 - 9)/2 = 1/2 or rounded up, k = 1.) It is clear without determining k that V1 will end up
lor 0. If x > 9, the SUCC expression will necessarily go undefined, which in turn causes the
assignment statement to mean the undefined function, and this means that in the definition of the
WHILE statement there is no k for the case x > 9. Thus the meaning of the loop U is:

= {(T, T): T(V1) < 1} U {(T, A): 1 < T(V1) < 9 and A = T except that A(V1)is 1 or
0 as T(V1) is an odd or even digit}.

7.2 Analysis of Iteration Statements

When the number of iterations cannot be easily determined, the loop controlled by the WHILE
statement cannot be easily unwound as its loop body acting over and over. But it can always be
unwound into the first time the body acts, and then the rest of the times, if that first execution is
guarded by a test to cover the case that the loop doesn’t execute at all. That is, the action of

WHILE BDO D

is equivalent to that of
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BEGIN IF B THEN D; WHILE BDO D END.

The equivalence can be seen operationally by examining cases. First, suppose the original loop
body D is never executed (because condition B fails immediately). Then in the expanded version
the IF condition similarly fails, so the broken-out body is not executed, then in the repetition of

. the loop itself the condition B fails again, so the body is again not done. Thus the two programs
agree in this case. Second, suppose the original loop in fact executed its body exactly once. Then
the condition initially succeeds, but something in the body causes it to fail when tried a second
time. In the expanded version exactly the same behavior is observed, with the IF condition
succeeding, the broken-out body executing and the repeated WHILE condition then failing. The
remaining cases in which the original loop executed more than once are similar; the broken-out
body takes the first execution, and the repeated loop picks up the remainder.

The discussion in the preceding paragraph can be mirrored exactly in the formal meanings we
have defined, where the functional meaning for each of the code fragments can be determined, and
“equivalence” means that the functions are the same. The analysis by cases becomes a formal
induction on the number of iterations required for the loop to terminate.

It may seem surprising that this simple device can help with the analysis of loops, but it
does. The reason is that the repeated loop is exactly the same loop as the original, and this allows
us to write an equation in which the loop function occurs twice. Equating the meaning functions
for the two loops:

| WHILE BDO D| = |BEGIN IF B THEN D; WHILE BDO D END| .

In the compound statement of the second line the first part is a conditional, and the meaning of
that can be worked out separately:

| WHILE BDO D| =| IF B THEN D| o| WHILE B DO D] .

The function of the loop has explicitly reentered the equation. It will be clearer if we name this
function so it can be easily recognized. Let

{f = | WHILE BDO D|

Then the equation above is

f=|1IF BTHEN D| of,

or

f(T) = f(| IF B THEN D| (T)).

This recurrence equation in function f is useful because very often we can guess (or believe a
comment to discover) what a program is supposed to do. Then to prove that it does indeed do so,
the guessed function can be substituted into the equation for f. Care is required in this operation,
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however. The recurrence equation is one that the function f for the loop must satisfy; but it does
not follow that any function satisfying the equation is in fact the function of the loop. A simple
example will show the pitfall. Consider a loop that never terminates:

WHILE A’ = 'A’ DO {nothing}.

It is clear that this WHILE statement has a function that is empty--it contains no ordered pairs
because the loop does not terminate on any input. But the recurrence reduces to

f=1f

for this loop, since

[IF A’ = *A’ THEN {nothing}]

is the identity function. Any function f satisfies f = f, yet all save the empty function are wrong
for the loop.

The remedy for this problem is to add conditions which rule out extraneous solutions to the
- recurrence equation. One obvious condition, in view of the pitfall above, is to ensure that the
function is not defined when the loop fails to terminate. That is, for f to be the loop function
requires that

domain(f) C domain( | WHILE B DO D]).

Another pitfall is shown by the loop:
WHILE A’ <> "A’ DO {nothing}.

In this case the WHILE statement has a function that is the identity function; it acts as a null
statement. But, again, since

[ IF *A’ <> ’A’ THEN {nothing}]

is the identity function, the recurrence equation reduces to

and any function satisfies the equation. All but the identity function are wrong for the loop,
however. Many functions satisfy the domain constraint developed above as well; but, all except
the identity function violate another easily checked condition when B does not hold:

f(T) = T whenever - ().
Happily, just these two additional conditions are sufficient to ensure that an f satisfying the
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recurrence equation is the function of the WHILE statement.
Theorem (WHILE statement Verification): Let W be the program fragment
WHILE BDO D.

Then

[

if and only if:

1. domain(f) C domain([ W] )
2. {(T) = T whenever —: (T)
3. f(T) = f(|[ IF B THEN D] (T)).

Proof. First, suppose f = . Then conditions 1.-3. must be established.
1. domain(f) C domain( ) because f and are the same function.

2. Suppose — (T) for some T. Then (T) = T by definition, and hence since f =
, we have {(T) = T as required.

3. It has been argued above that

| WHILE BDO D] =[IF BTHEN D; WHILE B DO D]

and by definition of composition and W this is

[W] (T) =[W] ([3F_BTHEN D] (T),

so the same equation follows for f, since f = :

Conversely, suppose

1. domain(f) C domain( )
2. {(T) = T whenever = [ B] (T)
3. f(T) = f(| IF B THEN D] (T)).

Then, we will show that f =[ W] .

Let T be any member of domain( ). That is, | WHILE B DO D] is defined for input state
T. Therefore, by definition there exists a k (depending on T) such that:

(@ lE(T)) is false, but for each 0 < i1 < k-1, (@ i(T)) y—
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Then in hypothesis 3, substitute k-1 times for f:

f(T) = {(| IF B THEN D| (T))
= (| IF B THEN D] ([ IF B THEN D] (T))).

= f(| IF B THEN D| l‘(T))

using the associativity of composition. From the definition of the conditional, this is

1(T) = £([D] ¥(1))

since each of the evaluations is at a state where is true. On the right side of this equation, the
state is one in which is false, so by hypothesis 2, f does not alter this state. Thus

k
f(T) =[D] %(T).
On the other hand, by definition of the loop terminating after k iterations, s @ k, sof =
.

We have shown that f and agree on domain( ). They could only then disagree if f
were defined somewhere that were not. But condition 1. forbids this. QED

For example, consider the WHILE statement U of the last section:

WHILE V1 > "1’ DO
IF Vi = '8" THEN

Vi :="'0°

ELSE

IF V1 ="9" THEN
vi:="1°
ELSE

V1 := Succ(succ(vi))

whose function was claimed to be:

f={(T, T):T(V1) <1} U {(T, A): 1 < T(V1) < 9 and A = T except that A(V1)islor0
as T(V1) is an odd or even digit}.

To prove this using the WHILE statement verification theorem we must show:

1. domain(f) C domain( )
2. f(T) = T whenever — (T)

3. f(T) =f(|_IF V1 > *1° THEN D|(T)),

where D is:
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IF Vi = '8’ THEN

Vi :="'0"’

ELSE

IF Vi = "9" THEN
vVi:="*1"
ELSE

V1 := 8UCC(SuUCC (V1))

1. The domain of f is evidently {c: ¢ < 9}. The program evidently terminates on V1i-values
of 9 and 8, and for values of V1 less than 1. On the remaining digits the program advances along
the sequence toward 9 or 8 by two steps, and so must halt.

2. Immediate from the definition of f.

3. Consider two cases for the data state T: If T(V1) < 1, then the box function of the
conditional is the identity, and 3. holds. If T(V1) > 1, then the conditional box function is just

[D] , so we require f(T) = f( [D] (T)), and this is evidently so by an analysis of the cases 8, 9, and
1-7, since the double SUCC preserves even- and oddness.

8 Procedures

The meaning of CF Pascal procedure-call statements should be easy to define, since a procedure
body consists of statements whose meaning has already been given. (If the body contains
procedure calls, the definition should close at this point.) Three ideas complicate the picture:

(1) Procedures have local variables, whose names may conflict with other variables in the program.
Procedures use global variables from an environment different than the one at the point of
call. In technical terms, the data state for a procedure’s body may be quite different from
the data state existing before and after its call.

(2) Procedures have parameters (called by strict reference in CF Pascal), which link the calling
and called environments. There is the problem of aliasing: apparently distinct identifiers can
refer to a single object.

(3) Procedures may be called recursively, introducing repeated instances of problems of (1) and (2)
above, and the further difficulty that the meaning of a call may be defined in terms of
another call on the same procedure.

These complications can be handled by a device based on the ALGOL 60 “copy rule” [1].

In substance, the meaning of a procedure-call statement is the meaning of the procedure
declaration’s body. Technical adjustments are needed to account for parameter names and
local/global identifier conflicts, but once these are made, the body meaning can be largely obtained
from the definitions in Section 4, 6, and 7. When a procedure call occurs within a procedure body
there is no difficulty--the definition is simply applied again and eventually a lowest level is reached
in which there are no more calls--unless the call is recursive.
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8.1 Procedures and Parameters

A procedure statement must be associated with a declaration that supplies the procedure body, for
example:

PROCEDURE HereAndThere;
1;

X;

HereAndThere

has a declared body T, and the text X separates the declaration from the call. The meaning of the
procedure statement is:

| PROCEDURE HereAndThere; T; X; HereAndThere| —[X] o[ 7],

but it is more convenient to write just

| HereAndThere| =

and thus hide the process of identifying the body that goes with the call.

When there are VAR parameters, the situation is only a little more complicated. Given a
declaration like:

PROCEDURE PwithP (VAR X: CHAR) ;
T

with body T{X) written to emphasize that it contains the parameter X, a call passing parameter A
means:

[PwithP(A) | = [ T(X—A)], where T(X«A) means the body T(X) with each occurrence of X
replaced by A.

The generalization of this definition to multiple parameters, and to TEXT parameters instead of
CHAR parameters, is straightforward. (Students of ALGOL 60 will recognize the copy-rule
semantics of call by name, which in the absence of arrays is the same as Pascal’s strict call by
reference.)

As an example of a procedure call, consider the program:
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PROGRAM Call (INPUT, DUTPUT) :
VAR
Next: CHAR;
PROCEDURE CallMe (Flag: CHAR) ;
VAR
First: CHAR;
BEGIN
First .= 'B’;
Flag :='T’
END;
BEGIN
Next := 'A’;
CallMe (Next)
END.

{INPUT=|x, OUTPUT=|, Next=A}.

The call on CallMe has the meaning:

| CallMe (Next) | ({Next=A})

When the procedure call that ends the program occurs, the data state (for input string x) is:

Since this example is not concerned with INPUT and OUTPUT, in the sequel they will be omitted to
simplify the state.

= [ VAR First: CHAR; BEGIN First := 'B’; Next := T END| ({Next=A})

= | VAR First: CHAR| '1(| BEGIN First :

... ENDJ (

[VAR First: CHAR] (({Next=A})))

= [VAR First: CHAR| \([BEGIN First .

... END|

({Next=A, First="?})).

Working out the meaning of the body itself is straightforward:

[ BEGIN First := ... END| ({Next=A, First="?})

= {Next=T, First=B},

so the result is

[VAR First: CHAR| ' ({Next=T, First=B}), — {Next=T)}.
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In most cases, the calculation of a procedure’s meaning can be done in terms of the formal
parameter identifier, then actual parameter identifiers substituted into this meaning as needed.
That is, to calculate , calculate (X—A). Since there may be a number of calls
with parameters A, B, C, etc., this is superior to calculating | T(X«<A) | ,[T&X—B) | ,[ T(X—C) |,
etc. each time from scratch. In the example above we would have

[ CallMe (Flag) | = {(U, V): V = U except that the value of [Flag] (V) = T}

so
| CallMe (Next) | ({Next=A}) =[CallMe (Flag) | (Flag—Next)({Next=A})
= {(U, V): V = U except that the value of Next is T}({Next=A})
= {Next=T}

as before.

Unfortunately, this shortcut calculation of a procedure’s meaning does not always agree with
the definition, so care must be taken in using it. When parameters are “aliased,” that is, different
identifiers in the declaration become one and the same in the call, the shortcut can go wrong. For
example,

PROGRAM Alias (INPUT, OUTPUT) ;
PROCEDURE MessUp (F11V: TEXT) ;
BEGIN
WRITE('A’) ;
WRITE(Filv, 'B’)
END;
BEGIN
MessUp (OUTPUT) ;
END.

has (from the declaration)

[ MessUp (F11V) | =[WRITEL("A’); WRITEL(FilV, 'B’) |
= {(U, V): V = U except that OUTPUT in V has one additional character A appended to
its past string; also, Fi1V, if it is open for writing, has B similarly appended}.

That is, the “parametrized” meaning is that two files each get one character appended. If the
formal parameter is replaced by the actual one in this meaning, the result is
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| MessUp (OUTPUT) | = | MessUp (F11V) | (F11V«—DUTPUT)

= {(U, V): V = U except that OUTPUT in V has one additional character A appended;
also, OUTPUT has B similarly appended},

which specifies two contradictory characters as the one to be added to OUTPUT, instead of the
meaning from the definition

[ MessUp (OUTPUT) | = [WRITEL ("A’) ; WRITEL (OUTPUT, 'B’)]

that both characters are added to OUTPUT. This difficulty with the wrong names for parameters is
called aliasing, because one identifier has two names; in the example, OUTPUT has its own name,
but also the name F11V.

It is easy to identify situations in which aliasing might be a problem, and there to use the
definition rather than the shortcut. This treatment of aliasing is a strength of the Mills theory
compared to the Hoare theory. In the latter the proof rules do not work for aliased parameters, so
programs with aliasing cannot be proved; in the former we must only be careful not to take
shortcuts in the calculation.

8.2 Identifier Confusion

In pathological cases, the actual parameter identifiers that replace formal identifiers for the
meaning of a call may conflict with local identifiers of the called procedure. The ALGOL 60 “copy
rule” handles this case by requiring a systematic change of local identifiers that duplicate actual-
parameter identifiers.

Another source of potential confusion is Pascal’s use of static scope rules: a global identifier
copied as part of a procedure declaration can be confused with the same identifier which is part of
the calling state, having previously entered as a local. Again the copy rule states that such
offending local identifiers must be systematically replaced.

Both kinds of confusion could be eliminated by adjusting the definition of section 8.2 to
include a systematic replacement of the offending identifiers in the procedure body. For the
nonrecursive case it is easier to just assume that CF Pascal programs do not reuse identifiers. But
with recursion, the first pathology is unavoidable, as illustrated by

PROCEDURE Self (P: CHAR) ;
VAR L: CHAR;
BEGIN
Self (L)
END

in which L is necessarily confused. The case of recursion treated below indicates how such
substitutions can be made in the definition.
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8.3 Recursion

When a procedure call occurs within a procedure there are just two possibilities: either this call and
others that it may lead to eventually come down to a procedure body in which no calls occur; or,
one of the procedures in the potential chain of calls has occurred previously in the chain, and the
call is recursive. These alternatives are a consequence of the finite nature of programs: unless one
of the procedures is recalled, all possible procedures will eventually be exhausted.

The consequence of blindly applying the definition of Section 8.1, without confusion of
identifiers as described in 8.2, is happy: a definition of the meaning of the whole program results
without difficulty. Similar application to a recursive sequence is less satisfactory: it results in a
recurrence relation in which the function computed by the recursive procedure is defined in terms
of itself. This section is devoted to the solution of such recurrence relations. Let us begin by
eliminating the intrinsic identifier-confusion introduced by a recursive call.

Suppose a procedure has been declared, e.g.,

PROCEDURE Revise (P: CHAR) ;
VAR L: CHAR;
T,n

where T(P L) represents the remainder of the body that follows the local declaration, which may
use both identifiers P and L. If Revise is called within 7(P,L) with actual parameter L, then
define

[Revise(L)| =[VAR nL: CHAR; T(P—L,L<nL) ]

where nL is an identifier distinct from all others in the program, and the substitutions are made
simultaneously so as not to interact. Thus the potential confusion of the parameter that must be

inserted to obtain the meaning of the call, with the local that must be present, is avoided. At the
next recursion, the call

Revise (L)
is copied into a procedure body with local declaration
VAR nL: CHAR

so there is no confusion at this level; at the next level the confusion is again eliminated by
introducing nL, and so on.

For a recursive procedure call the meaning cannot usually be obtained by applying the
definition to the body, since this would lead to an infinite regress trying to expand the recursive
call. The situation is rather like the one for WHILE statements, and some of the same ideas can
be used. We define the meaning of a procedure statement involving recursion, to be those pairs of
states (T, U) such that U results from T by application of a finite number of calls, after which T is
so transformed that the recursive call does not occur, so the definition closes. When there is no
such finite sequence of calls for an input state T, then the box function of the procedure statement
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. is undefined at T.

Just as it is not always possible in practice to expand WHILE statements until they
terminate, or to see the general case so that the number of iterations can be calculated, so it is not
always practical to unwind recursions. It can happen that the values of the expressions controlling
the recursion are too complex for analysis, and another technique is needed. For WHILE
statements it was enough to unwind the loop once to obtain a recurrence equation; for recursive
procedure statements such an equation can be obtained directly. There are already at least two
procedure statements in the program: the original invocation, and the recursive call.

As an illustration, the program below “counts” all input files as of zero or nonzero length:

PROGRAM LenOIn (INPUT, OUTPUT) ;
{Counts the number of characters on INPUT before the
first #, using the numbers 0, 1, 1, 1, ...}
VAR
Nc, Number: CHAR;
PROCEDURE Count;
BEGIN
READ (Nc) ;
IF Nc= "#°
THEN
Number := '0’
ELSE
BEGIN
Count;
Number := *1°
END
END;
BEGIN
Count;
WRITELN (Number)
END.

The box function for the outer procedure statement involves the box function for a copy of
Count’s body, including a procedure statement for Count itself. Making the expansion just once,
and thus leaving when it occurs, gives the recurrence equation:

| Count| = [READ(Nc) ; IF ... Count; Number := '1’ END]

= |[READ(Nc) | o[ IF ... Count; Number := "1’ END|

The IF statement meaning is

[ IF Nc = *#°' THEN ... Number := 1 END]

= {(U, V): U(Nc) = # and V = U except that V(Number) = 0}
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U {(U, V): U(Nc) % # and V =[Number :="1"] ([Count] (U))}.

Substituting in the original equation gives a formula for in terms of . "The
solution of such equations is in general difficult, but as for the WHILE statement it is often

possible to guess a solution. Here the meaning of a Count procedure statement is evidently the
function f:

f={(U, V): V=1U except that V(Nc) = #, V(INPUT) = s#|, and V(Number) = 0 if
U(INPUT) = s|#; but V(Number) = 1 if U(INPUT) = s|r# , where s is any string and r

any nonempty string}.

Substituting f into the equation for it can be seen that f is a solution.

Care is required, as it was with the WHILE statement, however, since the recurrence equation
is only a necessary condition. The crucial example is the procedure

PROCEDURE Forever;
BEGIN
Forever
END

whose recurrence equation is

| Forever| =[Forever],

and any function whatsoever is a solution. The meaning should be the empty function that is
everywhere undefined, since this recursion never terminates. This gives us a guess for a
verification theorem: the part function of a procedure statement involving a recursive call, is a
solution to the recurrence equation whose domain agrees with the one for the code. A slightly
stronger statement can be proved.

Theorem (Recursive Verification): Let Pr be a procedure statement for a procedure without
parameters and including one recursive call, having the recurrence equation

[Pr] = M([Pr]).

M( ) represents the result of calculating the part function of the procedure body, which will
contain a single occurrence of Pr, which calculation must be carried out until stands by itself.

A function f = iff:

1) domain(f) € domain( ), and

2) f is a solution to the recurrence equation in .

Proof. The only-if direction is trivial, since satisfies both conditions, and hence so does [ =
. For the other direction, assume 1) and 2). Let T be any element of domain( )-
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Hence there is a copying sequence for the body of the procedure (say of length k) such that the
recursive call occurs in each copy, then does not occur. That is, M ( ) can be evaluated at T
because it does not contain --all the procedure statements Pr have been eliminated in favor of
the other statements in the procedure body. But since f also solves the equation by 2), we have

#(T) = M*([Bz] XT) = [B] (7).

Thus f and agree on domain( ). They could only then disagree if f were defined
somewhere that were not. But condition 1 forbids this. QED

Corollary (Recursive Verification): The meaning of a procedure statement Pr for a recursive
procedure is the least-defined solution to the recurrence equation.

Proof. The least-defined solution must have a domain that is a subset of | Pr| , because | Pr]| is
itself a solution, hence it satisfies the conditions of the theorem. QED

In a practical verification, the theorem is more useful than the corollary, because it is easier
to identify the domain of the actual procedure-statement function than to show that a guessed
solution to the recurrence equation is the least-defined one. In the example above, it is easy to
show that the guess f has the same domain as the procedure-statement function . Thus
the meaning of a recursive procedure statement can be obtained by guessing, then verifying the
guess, in a way similar to that used for WHILE-statements in Section 7.

The Theorem has treated only a very special case of recursion in which only a single
procedure with no parameters and a single recursion is involved. The technical details of the
general case are considerable, since it involves several simultaneous recurrence equations for a
multiple recursion, and procedure functions with different parameters in its several occurrences in
the equations. For example, consider the case in which procedure P calls procedure Q and vice
versa, and P does not call itself, but Q does call itself. Then in working out the meaning of a call
on P the meaning of Q will appear, and working this out in turn will yield a recurrence relation
defining Q’s meaning in terms of itself and P’s meaning. This illustrates the general situation: the
result of analysis will be a system of m simultaneous equations in m functions, one for each
. procedure involved in a recursive chain of calls. Substitution may simplify this system (for
example, substituting the P equation into the Q equation will eliminate P), but cannot solve it. It
is evident that the case of recursion is far more complex than the case of WHILE statements, and a
result entirely parallel to the WHILE verification theorem more difficult to obtain.

9 Summary and Conclusions

Using a subset of Pascal, a “program calculus” has been described that assigns functional meaning
to programs. For programs containing no loops or recursive procedure calls, the application of this
calculus is mechanical; in the more complicated cases, the meanings must be guessed and then
checked. To prove a program correct for a specification in the form of acceptable input-output
pairs then becomes an elementary set-theoretic problem. The specification is a set of pairs as is the
program meaning; the program is correct just in case its meaning is a subset of the specification.
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