A Recursive do for Haskell: Design and
Implementation

Levent Erkdk, John Launchbury

Oregon Graduate Institute
Department of Computer Science and Engineering
20000 NW Walker Rd
Beaverton, OR 97006-1998 USA

Technical Report No. CSE 00-014
August 24, 2000

A Recursive do for Haskell: Design and Implementation

Levent Erkok

John Launchbury

Oregon Graduate Institute of Science and Technology

Abstract

Certain programs making use of monads need to perform
recursion over the values of monadic actions. Although the
do-notation of Haskell provides a convenient framework for
monadic programming, it lacks the generality to support
such recursive bindings. To remedy this problem, we
propose an extension to Haskell’s do-notation and describe
its translation into the core language.

Computing Review Subject Categories: Formal
definitions and theory (D.3.1), Language constructs and
features (D.3.3).

Keywords: Haskell, monads, recursion, mfix, do-notation.

1 Introduction

Suppose you are designing an interpreter for a language that
has let expressions for introducing local bindings. Opera-
tionally, the expression let v = e in b denotes the same
value as b where e is substituted for all free occurrences of
the variable v. The abstract syntax of your language might
include:

data Exp = ...
| Let Var Exp Exp

Assuming the language is applicative, the natural choice for
implementation would be the environment monad. In this
setting, the section of the interpreter that handles let ex-
pressions might look like:

eval (Let v e b) =
do ev <~ eval e
inExtendedEnv (v, ev) (eval b)

where inExtendedEnv is a non-proper morphism of the envi-
ronment monad extending the environment with the binding
{v — ev} before passing it on. This approach yields a very
satisfactory implementation.

Notice that our let bindings are not recursive: The vari-
able v is not known in the expression e. Consider what hap-
pens if we lift this restriction. All we need is a way to extend
the environment with the value of v when we evaluate the
expression e. That is, we want to write:

eval (Let v e b) =
do ev <~ inExtendedEnv (v, ev) (eval e)
inExtendedEnv (v, ev) (eval b)

Unfortunately this is not valid Haskell: The variable ev is
undefined when it is referenced in the first generator. The
problem is that do-expressions of Haskell suffer from a simi-
lar problem that we are trying to solve in our toy language:
Just as our tiny language can not express recursive bindings
in let, the do-notation of Haskell can not express recur-
sion over the values of monadic actions. Here, the function
inExtendedEnv performs a monadic action (that of extend-
ing the environment and passing it on to its second argu-
ment), but in doing so it depends on a value that it defines,
i.e. the value of the variable ev.

Having failed in our naive approach, how can we imple-
ment the recursive let? Assuming Val represents the type
of values that our language can produce and the following
declaration for the environments:

data Env a = Env ([(Var, Val)] -> a)
we can write the Let case of our interpreter as:

eval (Let v e b) =
Env (\env ->

let Env £ = eval e
av =f ((v,ev):env)
Env g = eval b

in g ((v,ev):env))

Although it works, this solution is quite annoying. First of
all, we had to reveal how environments are actually imple-
mented. Worse, our code will only work with that partic-
ular implementation: any change in the representation of
environments will require change(s) in the interpreter. The
code is no longer easy to understand or maintain: Almost
all benefits of using a monad based implementation is lost.
The failed approach that used recursive bindings in the do-
notation had none of these problems.

Fortunately there is a way out. Recently, we have shown
that such recursive bindings make sense in a variety of mon-
ads satisfying certain requirements [2]. In particular, a cer-
tain fixed point operator, called mfix, must be available for
the monad in which we want to express recursion over the
results of monadic actions. The research reported in our ear-
lier work mainly concentrated on theoretical issues, such as
axiomatization of the required recursive behavior, and the
demonstration of satisfactory definitions for various mon-
ads. It also described a naive translation for a recursive
do-notation.

The current paper, on the other hand, concentrates on
the issues from a language design point of view. We describe
the translation for the new do-notation that might be em-
ployed in a real Haskell compiler. It turns out that there

mfix (return - k)
mfix (Az.a 3= [)
mfix (A™(z, J).mfix (A"(L,v).f (z,1)))

= return (fix k) (1)
= a 3= Ay.mfix (A\z.f T y) (2)
= mfix f (3)

Figure 1: Axioms for mfix. In axiom 2, z is not free in a.

When run, ¢ yields L, while ¢ computes to Just 4. The
reason is that the introduction of f before the recursive
binding provides additional information that is used in the
fixed-point computation. Abstractly, moving let-generators
around within a pdo-expression corresponds to the para-
metricity law from [2], namely:

mfix (Az.f x = return - h)
= mfix (Az.return (h z) 3= f) S=return-h

This law requires a strict h for equality. Notice that f is not
strict in our example.

Although moving let-generators to the top can be viewed
as an optimization increasing termination, we refrain from
doing so since we can not guarantee that we can do it all the
time: Consider a situation where we use recursive bindings
and moving let-generators to the top improves termination.
If we ever rearrange the expression so that we cannot move
the let-generators anymore, (by creating a nested pdo or
by just manually converting a let-generator to an equivalent
return form), the expression may no longer terminate as of-
ten as it did before. This is not a particularly desirable sit-
uation: A perfectly valid rearrangement of the code should
not fail to work just because an optimization no longer ap-
plies. For instance, consider t", defined as:

t?? :: Maybe Int

t?’? =mdo x <- f x
f <- return (\x =-> Just 4)
return x

Intuitively, both ¢ and ¢ should compute the same value.
If our translation optimizes ¢ to t', then ¢ would pro-
duce Just 4, but the computation of ¢ will not termi-
nate. Hence, an otherwise correct transformation might
cause non-termination.

The solution we adopt is to require let bindings to be
monomorphic in a pdo-expression. That is, let becomes
just a syntactic sugar within udo, translated as':

let p1 = ey (p1,...,pn) & return (let p; = e;
Pn = En Pn = En
in (p1, ... pa))

A function binding is translated similarly:

let f x y = x =% f + return (A = y. z)

This idea easily extends to more complicated forms of func-
tion definitions as well. For instance:

q :: Maybe (Int, Int)
q = mdo let len [] =0
len (x:x8) =1 + len xs
return (len [1,2,3], len [1,2])

Mrrefutable and lazy patterns will require special attention in
forming the final tuple, as the result will not be valid Haskell. We
ignore these issues as they are mere syntactic technicalities.

can be treated as:

q :: Maybe (Int, Int)

q = mdo len <- return (let len [] =0
len (x:xs) = 1 + len xs
in len)

return (len [1,2,3], len [1,2])

Notice that this translation guarantees monomorphic use
of let-generators. For instance, the translated code will be
rejected by the type-checker if the last statement of q is
changed to:

return (len [1,2,3], len "hi")

using the function len polymorphically.

This approach gives us a uniform and simple design.
If a polymorphic let-definition is required, one should use
the standard let-expressions of Haskell, rather than the let-
generator, which will create its own scope with polymorphic
names, as intended. For instance, our very first example
should be written as:

mdo let f x y = x
in mdo z <- return (f 2 z)
y <- return (f ’a’ y)
return ()

which makes the intended use of f much more clear. (The
only syntactic drawback is the need for an extra level of
indentation.)

We expect this restriction to be negligible in practice.
Such let-generators in do-expressions are generally used for
giving a name to a common pure expression in the code to
follow, and such expressions are rarely polymorphic.”? Given
that there is a way to create polymorphic pure values (by us-
ing a usual let-expression), we consider that the simplicity of
this design far outweighs the generality we might obtain by
a much more complicated translation scheme, as we briefly
explore in the next section.

3.1 An excursion into types

The problem we have faced with let-generators is hardly
new. The main issue boils down to the fact that the usual
Hindley-Milner type system is not expressive enough for our
purposes. Although all values are first class and we have
a notion of parametric polymorphism, the combination of
these two ideas is not available: polymorphic values are not
first class [3].

2To see how important polymorphic let-bindings within the do-
notation, we have recently polled the Haskell mailing list, the pri-
mary discussion medium for discussing Haskell-related issues on the
Internet. The consensus was that such polymorphic let-generators
are hardly ever used in practice and even if needed, there is always
an obvious way to rewrite the expression without using them. We
consider this as an indication that the monomorphism restriction is
hardly an issue for let-generators. Also, a quick look at the Nofib
benchmark suite reveals that polymorphism in let-generators is not
an essential tool in practice.

A7 (a, v). do

return (a, v)

(Notice that we can’t leave the variable v out: its value will
be projected out after the application of mfix.)

This observation yields the first refinement: The k-tuple
BV should only contain those variables that are referenced
before defined in a pdo-expression.

4.2 Segmentation

Consider the following pdo-expression, which creates two
infinite lists (consisting of 1's and 2’s respectively), and an-
nounces their creation:

pdo putStr "forming a list of 1s"
ones + return (1l:ones)
putStr "forming a list of 2s"
twos ¢ return (2:twos)
return (ones, twos)

Our translation would produce:

mfix (A~ (ones, twos, v).
do putStr "forming a list of 1s"

ones + return (1:ones)
putStr "forming a list of 2s"
twos 4 return (2:twos)
v + return (ones, twos)
return (ones, twos, v))

3=)\ (ones, twos, v). return v

But this translation is quite unsatisfactory: The only recur-
sion we need is in independently computing the lists ones
and twos. From an intuitive point of view, recursion needs
only be performed over sections of the code that actually
need it. This suggests the following translation:

do putStr "forming a list of 1s"
ones ¢ pdo ones + return (1:ones)
return ones
putStr "forming a list of 2s"
twos + pdo twos + return (2:twos)
return twos
return (ones, twos)

where the inner pdo-expressions will further be translated
accordingly. This is analogous to an optimization performed
by Haskell compilers for compiling ordinary let expressions,
where the bindings that are mutually dependent are grouped
together. In the case of let, this brings efficiency (no unnec-
essary knots need to be tied) and it enhances the polymor-
phic types of bound variables [5]. In our case, we increase
the number of calls to mfix, but each mfix has a smaller
piece of code to work on, hence, we might expect a gain in
efficiency.

However, there is a deeper reason why we favor this
translation. There are cases when the segmentation based
translation will produce values while the naive version fails
to terminate. As we explained in [2], the segmentation idea
corresponds to the right shrinking law, which tells us when
we are allowed to shrink the scope of an udo-expression from
the bottom:

mfix (A" (z,y).f £ 3= Az.g z 3= Aw.return (2, w))
C mfix f 3= Az.g z 3= Aw.return (z, w)

While some monads satisfy right shrinking as an equality,
(identity, state, reader, output, etc.), some monads don’t
(maybe, lists, trees). Hence, performing segmentation will
limit the scope of mfix calls to minimal segments, possibly
improving the termination behavior. As a concrete example,
consider the function:

g :: [Int] -> Maybe Int
g [x] = Hothing
o Nothing

This function will return Nothing if its input can success-
fully be pattern matched against [x]. In particular, it will
produce L for the input 1: L. Now consider:

mdo xs <- Just (1:xs)
g xs

We would expect the value of this expression to be
Nothing. Unfortunately, if we do not perform segmentation,
the translation will be:

mfix (\"(xs, v) => do xs <- Just (1:xs)
v <= g xs
return (xs, v))
>>= \(xs, v) => return v

which will evaluate to L. As we have discussed in [2], when
the list zs is computed we expect to get the chain {1, 1:
L, 1:1: 1, ...}, but applying g to these values before
feeding them back to the list producer will produce L for
the second element, hence short-circuiting the evaluation to
L. If, on the other hand, we perform segmentation, we will
get:

do xs <~ mfix (\"(xs, v) -> do xs <- Just (1:xs)
v <- return xs
return (xs, v))
»>= \(xs, v) -> return v
g xs

which will be evaluated to Nothing as expected.

Hence, the segmentation idea serves two purposes. First,
if we have a huge pdo-expression where only small parts of it
have recursive dependencies, the recursive computation will
take place only over those parts, rather than over the entire
body. Secondly, and somewhat unexpectedly, monadic ac-
tions might interfere with values of bindings in unexpected
ways, and segmentation will prevent such problems when
the interference is not intended.

4.3 Exported variables

The final refinement to the translation is about an optimiza-
tion based on the observation that not all variables need to
be known in an enclosing environment when a segment is
formed. For instance, consider:

mdo x <- f x y
y<-gxy
h x

When segments are formed, we get:

do (x, y) <~ mdo x <- f x y
y<-gxy
return (x, y)
h x

Obviously, the variable y is not needed to form the result,
i.e. the following would suffice:

Notice that the number of segments are bound by the num-
ber of statements in a pudo-expression.

Definition 6.7 Ezported variables of a segment. The ex-
ported variables from a segment are those variables that are
defined in the segment and used in any of the textually fol-
lowing segments.

6.2 Translation algorithm

We describe the algorithm step by step using the following
schematic running example:

pdo <a b> « <c d> S0
<e> — <f> 81
<g> +« <h> 82
<f> — <a> 83
<i j> « <i e> 84
<5 g 5

where <v;...v,> stands for any pattern binding variables
vy ...un on the left hand side of a generator and for any
expression freely referencing variables v ... v, on the right
hand side. Notice that the actual patterns/expressions are
not important for our purposes.

Segmentation Step: Starting with the first statement,
form the segments as described in Definition 6.6.

To perform this step, we will need the defined and
used variables of each statement. Luckily, for our running
example, these sets are obvious:

Do = {a, b} Uo = {c, d}
D, = A{e} Ut = {f}
D, = {g} Uz = {h}
Ds = {f} Us = {a}
0, =" {5 Uy = {;', e}
Dy = 0 Us = {jg}

Applying the computation given in Definition 6.6, we get
four segments: So = {so}, S1 = {s1,52,83}, S2 = {s4} and
83 = {85}.

Analysis step: For each segment do the following: Com-
pute recursive variables of the segment (definition 6.4), call
this set R. If R is empty, then this segment does not need
fixed-point computation, leave it untouched. If R is not
empty, then we will replace this segment with a single udo
expression as follows: First determine the exported variables
of this segment (definition 6.7). Let this set be E. Then cre-
ate the expression

return (v1, ..., V&)

where vy ...vx’s are the elements of E. (If E is empty, we’ll
have the expression return ().) Attach this expression to
the end of the segment. Mark this segment as RECURSIVE
for future processing,.

Returning to our example, here are the sets R and F
for each segment, notice that we need E only when R is

non-empty:
L
R, = {f} Er = {eg}
R = {s Bz "= {5}
Ra = 0

Since only R; and R; are non-empty, we need to add a
return statement to them for their exported variables, and

mark them as RECURSIVE. That is, we add the statement
return (e,g) to S; and return j to Ss.

Translation step: At this step, we are left with a number
of segments, some of which are marked RECURSIVE by the
previous step. For each marked segment, do the following:

e Create a brand new variable v,

e Modify the final expression (created by the previous
step), so that its value will be bound to v,

e Create a tuple corresponding to the R set for this seg-
ment, add v to this tuple as well. Call this tuple RT.
Also create the tuple corresponding to the set E, call
it ET.

e Form the expression:
BT & mfix (A RT. do ...

v{—~ return ET
return RT)
3= A RT. return v

Notice that every segment that was marked RECURSIVE
becomes a single generator. Returning to our example, we
create the following generator for segment Si:

(e,g) + mfix (A™(f, v). do <e> & <f>
<g> « <h>
<f> — <a>
v & return (e, g) °
return (f, v))
>= A(f, v). return v

And for Sz, we create:

j + mfix (A7(i, v). do <i, j> « <i, e>
v ¢ return j
return (i, v))

>= A1, v). return v

Notice that, if there are no recursive bindings, each
segment will contain a single statement, and no segment
will be marked RECURSIVE. Furthermore, since every
pdo-expression is required to have a final expression (which
does not bind any variables), the last segment will always
be a singleton non-recursive segment containing this final
expression. In our example, Ss is this final segment.

Finalization step: Now, concatenate all segments and
form a single do-expression out of them. For our example,
we obtain:

do <a b> + <c d>
(e,g) + mfix (A"(f, v). do <e> & <f>
<g> +— <>
<f> +— <a>
v ¢ return (e, g)
return (f, v))
>= A(f, v). return v
j +~ mfix (A7(f, v). do <i, j> « <i, e>
v + return j
return (i, v))
>= A(i, v). return v
<j g>

We have a prototype implementation of the full trans-
lation described in this paper, working on a simple subset
Haskell. We plan to integrate the translation into a future
version of Hugs.

9 Related Work

As far as the implementation is concerned, the only directly
related work we know of took place within the context of
the O’Haskell programming language. O’Haskell is a con-
current, object oriented extension of Haskell designed for
addressing issues in reactive functional programming [4].
One application of O’Haskell is in programming layered net-
work protocols. Each layer interacts with its predecessor
and successor by receiving and passing information in both
directions. In order to connect two protocols that have mu-
tual dependencies, one needs a recursive knot-tying opera-
tion. Since O’Haskell objects are monadic, recursive mon-
ads are employed in establishing connections between ob-
jects. To facilitate for this operation, O’Haskell extends the
do-notation with a keyword fix, whose translation is a sim-
plified version of ours. This extension arose from a practical
need in the O’Haskell work and it was not particularly de-
signed to meet a general need.

10 Conclusions

In this paper, we have described how to extend the do-
notation of Haskell to allow for recursive bindings using the
ideas given in [2]. We have started with a naive translation
and refined it using various ideas to obtain a final translation
strategy. It is our hope that the udo-notation will replace
the do-notation of Haskell in the future and this work will
serve as a guide for Haskell implementors in integrating the
new translation into their compilers and interpreters.

11 Acknowledgements

We are thankful to Ross Paterson and Mark P Jones for
pointing out the first-class polymorphism idea for handling
let-generators and clarifying the issues involved. We are also
grateful to the members of the OGI PacSoft Research Group
for valuable discussions.

The research reported in this paper is supported by the
National Science Foundation (CCR-9970980).

References

[1] ErkOK, L., AND LAUNCHBURY, J. Recursive monadic
bindings: Technical development and details. Tech. Rep.
CSE-00-011, Department of Computer Science and Engi-
neering, Oregon Graduate Institute of Science and Tech-
nology, June 2000.

[2] ErkOK, L., AND LAUNCHBURY, J. Recursive monadic
bindings. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP
'00) (2000, to appear.).

[3] Jones, M. P. First-class polymorphism with type in-
ference. In Proceedings of the Twenty Fourth ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’97) (1997).

[4] NoRDLANDER, J. Reactive Objects and Functional Pro-
gramming. PhD thesis, Chalmers University of Technol-
ogy, Goteborg, Sweden, 1999.

[5] PEYTON JONES, S. L., AND HUGHES, J. (Editors.) Re-
port on the programming language Haskell 98, a non-
strict purely-functional programming language. Avail-
able at: http://www.haskell.org/onlinereport, Feb.
1999.

