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FLUMSARYK

We discuss the philosophy, history and theory of window functions. Win-
dow functions are a means (o treat a relational dalabaze a2 a semantic
whole, rather than az an arbitrary collection of relztions. Simply stated,
a window function maps a database state and a relation scherne to a rela-
tion ever the zcheme. Window functions are the basis for all exizling
unlversal scheme interfaces. We present an assumption inherent in such
interfaces, Lhe unigque rale gssumplion

Window functiens have evalved along Lwo pathsz, glving riz= Lo compubs-
tional definilions and weak inslance defiutions, We examine several ex-
amples of epach tyvpe of window Ffunclion, with special atlention to the
associalion-object window funclion of FIGUE. We then leok &i properties
we [eel a reasonable windew function should satisfy, notably the condain-
men! condilion and faithfidness. We also define implicit objects, which
are relation schemes that a window funcltion treals in a special manner,
and are uszful for describing the behavier of window funclions,

1. The Wny and What of Window Functions

As Maier, Vardi and Uliman <MLUV?> note, the relational data model has gone

far Lowards physical data independence, but has oot achieved the goal of logicnl
data independence. That is, users of relationat systems are relieved of specify-
ing access paths within the structure of a single relaticn, bul they stil! must
navigate between relations. Usera and application programs are protected from
changes in the physical implementation of reiations, bul nol [rom changes in the

logicel structure of a database, such as decomiposilions mads for normalization

or efficiency reasons.

Universal scheme inlerfuces are an atiempt ot logleal dala independence,

In a universal scheme intecface, all the semantics of the database i= loaded onto

{Work suppasted by NEF great [ST 81-04834,
"Work gappeoriod by KET gran MCE B3-07216



Windows Functions Draflt

the attributes. Queries are phrased in terms of attributes; the user need not
know which attributes are in which relstions. The hope i= that the attribute
names correspond naturally to entities in Lthe real world, and that the users have
en intuitive semankics for thes2 enlitiez and their relationships that is close to
the actual semantics of the database, In a universa! schems interface, 8 data-
baze is presented as a semantic whols, aeceszible through iz stiributes alone.
In the sequel, L' will denote the universe of attrbutes in & dalsbase: the univer-

gsal schems

There are several universal scheme systems extant and under development.
The first were APPLE <CK> and that of Shenk and Pinkert <3F>. More recent
syztems are g <AK>, System/U <K, KEL, KU, Uli>, PIQUE <VASSW, MW, Ro>,
Parefraze <KMRS, K5»>, FIDL <Ha>, DURST <BB> and Lhal of Arss-Gonezarowski
CA-U>. Many of the same issues are addressed by Sowa's work on conceptual
graphs <20, and by others’ work on aulomalic pavagalion in a dalabase <Li,

Su, Za>.
Query processing in a universal scheme system can be cost as a two-stage

procedura:

1. The set of attributes, call it X, appearing in the query is determined.
Then, on the basis of the state of the databaze, a relation ¥ over scheme
X is generated. (If the query contains several variables, the atiributes
aszociated with each variable are used Lo compale separale relations. )

2. Further cperations specified by the gquery are cppiied Lo riX) Lo gen-
erate the answer.

These stages are called binding and evaluation, respeciively,

Example 1: Consider a simple databaze coursez with the relations
taking(STUDENT COURSE) and feaching{FACULTY COURZE). In response to the
query

retrieve FACULTY where STUDEANT = "Andrews”

the PIQUE system will conatroct a relation r on FACULTY ETUDEMNT. Presumably,

-2



Windows Funetions Draft

T will be

In the evaluation stage of processing the query, FIQUE applizs the selection

O DB =Ardraws L0 T L0 got the final answer Lo the guary.

The generaticn of a relation ¥ on scheme X in the binding step 15 done,
implicitly or explicitly, through the application of a window funcfion. A window
fupction J meaps a relation scheme X £ [ and a delabase siate & to some rela-
tion v with scheme A f{X, d) = r{X). In our developrenl. we will “curry' f
and treat it az a functicnal that maps relation schemas to functions from data-
bace states to relztions:

Jirelation schemes =+ {dalabese slates = relations).

The functional signature above doesn't tell the whole story. Firsl, we azsume a
gingle, fxed databazse scheme for all the dalabase states. Second, f 13
polymorphically Lyped in that f (X} is a function with relations over scheme X as
ilz range,

We use an alternative notation for window funclicns io thz sequel. A window
function will be dencled by brackets, possibly subscripted: [ 1. [ 1r. [ Jw. Appli-
cation of 8 window function o a scheme X is denoted [ V] and called the windaw
gn X for Lhat window function. The applicalion of the wihdow en X Lo dalabsse
slate o (s [X](2); if 4 |5 underslood, we soraslimes use sinply (A7)

¥iule the slages of binding and evalualion do interacl, they are loosely-
coupled. Changes bo the window [unclions can be made without changing the
precedures in Lhe evalualion slep, allhough such changes will mean difTerent
answers for queries. All Lbe univerzal scheme sysiems menliconed above zeem to
coalorm ko the two-step paradigm. 1L is interesting to oobe Lhel they da nol vary
widaly in the exprezsive power for operations bo be epplied in the second step

{thrugh their cuery languages do differ in synta<), The =significant differences
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between the systems are the window functions used.

A logical question at this point is why the same effect as window functions‘
cannot be captured with virtual relation or view mechanisms, as in conventional
relational systems? The first answer (s that the use of virtual relations, while it
hides the computations needed toc produce them, still requires the user to know
the names of all the virtual relations and their schemes. The second answer is
that window functions are a view definition mechanism. However, defining a win-
dow function on a specific database need not require explicit definition of a
separate window for each set of attributes. Rather, in most universal scheme
systems there is a uniform discipline for deriving a windows from semantic infor-
mation about the database, such as the database scheme, and functional and
join dependencies. Unlike an arbitrary set of virtual relations, the windows in a
universal scheme system are meant to display some manner of semantic con-
sistency. The term window conveys the image of a consonant set of views into a

single database world.

For a universal scheme interface to a database to be practicable, the data-
base must at least satisfy the universal relation scheme assumption (URSA).
URSA states that any attribute in UV corresponds to the same class of entities
wherever it appears. NUMBER cannot refer to serial numbers of equipment in
one place and social security numbers in another; otherwise, there is no way to
distinguish one class of entities from the other in the query language. URSA
requires that, at a minimum, an attribute have the same domain wherever it
appears. For relational systems in which the available domains are just integer,
real and string, this requirement does not mean much. It is more a constraint
on the conceptual model, where each class of entities is represented by a

separate domain.
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Positing the existence of window functions makes an assumption stronger
than URSA. which we call the unigue role assumplion {URA). URa requires that
&n attribule not ocnly always represent the same class of entities, but also always
represent the same role for that class. DATE may not represent dates both in
the role of birthdate and the role of hiring date. Pul another way, URA means
"Lhe scheme deiermines the connection™: For any sel of atiributes, there is at
rmast one conneclion among them. In particular, oo two database relations have
the same scheme. Without URA, a universzal scheme syshem haz no way Lo tell
which relationship among a set of entities is intended when those entilies are
mentioned together, If DATE played two roles, as above, Lthere is no way to Lell if
the window [EMFLOYEE DATE] i= asking for the connection between employees

and birthdates or belween employees and hiring dates.

It is unlikely thal a relational database designed without URA in mind would
saficfy that assumption. To get satisfaction, some attributes will probably have
to be renamed, in order to distinguish the roles portrayed. The two roles of
DATE above could be distinguished ps BIRTEDATE and EIRING_DATE, Such
renaming can produce problems. [t may not be apparent, after renaming, that
different atiributes represent Lhe same ¢lass of enlities, and the proliferation of
agtlribute pames can become unwieldy. We are currently considering ways to
handle such problems by explicilly incorporaling a generalizalion hierarchy as
matt of the dalabase description <MES, Ho>. 0§ course, many olhers have

looiked at generalization in relational databases <3K, 2c2, 535,

hot all the universal scheme systems mentioned previously striclly enforce
URA, Carlzon and Kaplan, in thelr APPLE system <CK>», try to define window
functions upon databases that do not necessarily satisfy URA, or even URSA
They search for a2 series of natural joins and equijoins tnat will conneek bwo sote
of attributes, guided by functional dependencies (FJz). Their method does nol

corsirysl i ndows for arbitre=y relalion schemes. Rl it concentrales on

-
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connecting pairs of single attributes. Trying to impose a universal scheme view
after the fact upon a database that does not satisfy URA causes several compli-
cations. They must maintain explicit information on comparability of attributes.
Their method for computing expressions for windows can generate multiple con-
nections between a pair of attributes, actually giving several windows for the
same relation scheme. They discuss several ways to ameliorate the problem,
but, ultimately, the user must sslect among connections when several exist.
Because of such ambiguities, APPLE is not quite a full-fledged universal scheme

interface.

The query system g <AK> does not make any assumptions about the data-
base. Thereis a “'relfile” containing a list of schemes for stored and virtual rela-
tions, and procedures for computing virtual relations. To generate [X], q
sequentially scans the relfile for the first scheme of a stored or virtual relation
containing X. A computation is performed, if necessary, and the corresponding
relation is projected onto X. Nothing constrains the type of computations
allowed to generate virtual relations; they need not even use the stored relations
of the database. While g's mechanism produces a single window for any relation
scheme, the views these windows present are not necessarily consistent with
each other or with the database. Thus, URA is satisfied for all windows derived
from the same virtual relation, but not necessarily for the database as a whole.
In practice, the computations used to derive virtual relations usually consist
entirely of joins, and the database does satisfy URA. One other probiem with q is
that the expressions for virtual relations must be given explicitiy. Work is
currently underway on methods to generate those expressions from dependency

information about the database <Fo3>.

We do not construe URA so strongly as to prohibit multipie semantic con-
nections among a set of attributes. We only intend that the sysiem takes one of

thrnse connections as the most patural, and will ps=ke that connection
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automatically. Other connections must be made explicitly by the user.

2. Types of Window Functions

Window functions are a particular approach to the general problem of infer-
ence and deduction from a knowledge base. Fere we are working with highly-
structured data, within a limited domain of discourse, and with certain simplify-
ing assumptions. We hope thereby to get more determinism and effliciency than

from a more general knowledge-based deduction system.

The window functions used in the universal scheme systems mentioned, and
in various theoretical studies to be discussed, are not always expressed in the
form given here. Often the definition of a window function is implicit within
some computational method. In particular, some systems compute [X(a)
directly, never realizing an explicit expression for [X]. In other studies, the
term connection is used variously for window function and window. The bracket

notation used here follows the “output functions” of Maier <Mal>.

There are two main concerns in defining a window function. One is that it
have a reasonable semantics, the other is that it be efficient to compute. Most
window functions can be placed along one of two lines of development,
corresponding to which concern is emphasized. There are window functions
based on straight computational definitions, where the semantic assumptions
may be fairly rigid. Other window functions are based on weak inslances, and
place more importance on the semantics. Weak instances were ori inally intro-
duced to study another aspect of databases as semantic wholes:
tion of dependencies. We shall see in the next section how computational
definitions evolved to have more semantic content. In the following section, we

shall see the development of more efficient computation methods for weak

instance windows.
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In the rest of this paper, we shall let R be the database scheme {R,, Rs...,
Fpi, and let d = {r(R)), m2(Ry),..., T5(Fp )} be a database over R Thus, U is the

union of the schemesin R

2.1. Computational Window Function Dafinitions

Most initial work on computational definitions for window functions made an
assumption stronger than URA. That assumption is the wuniversal instance
assumption (UIA), which states that the database relations are all projections of

a single relation / over U. (/ is called a universal instance.) That is,
r=np(l),1<i<p.

UIA is a requirement for ‘‘universal extension,” where URA only requires

‘‘universal intention.”

Under UIA, the window [X] is defined as my(/). We denote this window func-

tion as ['];. The presumption is that / can be recovered from d as T, DA Ty DA
. DA 7p, or at least my(/) can be recovered, for certain X. A number of groups
have studied the question of when all or part of / can be recovered from its pro-
jections <AC, BMSU, MMSU, Ri>. In short, the question they address is whether

the dependencies that / must satisfy imply that 7y, 75,..., 7p have a lossless join.

The work on UlA-based window functions concentrates on finding, for a given
X, an alternative expression £ such that ny(£) = 7y(/). The hope is that E can
be computed more efficiently than the join of all the relations. Shenk and Pink-
ert <SP> were among the first to look at this question. They concentrated on
lossless  subjoins:  a subset {s;, sa.., sp! of d such that
Tix(s) P< sz DA - DA sy) = my(/). In their study, the only dependencies con-
sidered are FDs arising from keys, and the only joins are lossless joins of pairs of
relations. The join of 7(R) and s(S) may only be taken when R n S = R or

k£ n S = 5. This restriction guarantees small intermediate results, as 7 bg s |
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will be no larger than max(/r}, |s!). They attempt to find a lossless subjoin with
the fewest relations by a dynamic programming method. Their method permits

a given relation to appear more than once in a join expression.

he is looking for lossless joins with a single source relation. The join expression
starts off with the source relation, and all subsequent relations are joined with
It, so there is only a single intermediate result. That is, the expression tree for
the join expression is actually a ‘“vine.” For a given X, he is interested in finding
all the lossless subjoins for computing [X], so that he may pick the best accord-
ing to a given cost function. Foneyman <Hol1> is also looking for a sequence of
Joins emanating from a single source, but he uses an arbitrary set of FDs (as
long as they are embedded in the database scheme), and allows projections of

relations into the join expression. (Ke terms such joins extension joins.)

UlA is well known to have its shortcomings. It is a hard condition to test in
general, and it is not realistic in many applications. The usefulness of UlA-based
window functions is probably limited to a database that was originally a single
relation, but was later decomposed to remove redundancy. To avoid these com-
putational and semantic restrictions, several researchers have defined window
functions where UIA is used to determine the lossless subjoins, but it is not

expected to actually hold for an arbitrary database state.

Osborn <Os> defined [X] as the union of X-projections of all lossless sub-
joins covering X. Eer join expressions also start with a source relation that is
augmented through pairwise lossless joins. The semantic assumption is that all
connections corresponding to lossless joins are equally meaningful. Her depen-

dency information is solely key FDs. We denote her window function by [ 1.

The designers of System/U <K, KKU, KU, Ul1>, and Fagin, Mendelzon and

Ullman <FMU> advocate a UIA approach, with [X] being
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mx(r, DQA7r, DA - - D 7,).

In System /U, to avoid problems when relations may not join completely, the join
is minimized under weak equivalence. That is, relations are pruned from the

expression above under the assumption that the relations do join completely.

Example 2: Consider a database on attributes A (advisor), S (student), C
(course) and 1 (instructor), with relations r(A S), 7(S C), 7(C I). Minimization

under weak equivalence prunes the expression
Ey=ng(r(AS) par(SC) par(Cl))

down to
Ep = rg(r(SC) par(CI)).

E) and E; are equivalent on databases where every student has an advisor, but
E5 can have more tuples when evaluated on a database where this is not the

case.

Minimization under weak equivalence is not done just as a computational
optimization, but also for its semantic overtones. In the last example, the con-
nection of a student to an instructor via a course shouldn’t be influenced by the
presence or absence of an advisor for the student. The technique used for this
transformation is tableau minimization <ASU1, ASU2>, which has the advantage
that dependency information can be brought in to help reduce the number of
joins. We shall let TH(E) denote the tableau minimization of an expression £,
and let [']sy represent the System,/U window function, so

[X]sy = TH(rx(r, DA, Da- - DA Ty).
One problem with this approach is that there can be several alternatives for
TH(E). Those alternatives are equivalent if UIA holds, but not for arbitrary
states of the database. In cases where THM yields multiple expressions

equivalent to the original, the union of these expressions is used.



¥Windows Functions Draft

Example 3: Consider a database with relations 7 (4 C D), r(B C D), and r(D E).
(Since schemes are unique in a URA database, we may call all relations 7.} For
the window  [C E]sy, the expression can be minimized to
mep(T(A C D) p (D E)) or mee(r{B C D) p< (D E)). The union of these two

expressions is used to compute [C E]sy

The System/U approach gives a semantically reascnable window function
when the the database scheme Ris acyclic. (See Beeri, et al. <BFMMUY, BFMY>
for material on acyclic database schemes.)
and Ullman <MU> note that in the presence of cycles, the definition above for
[']s7 may not represent a natural connection, or is likely not to be the particu-

lar conneztion a user had in mind.

Example 4: Consider a database on attributes B (bank), L (loan), A (account),
and C (customer), with relations 7(B L), 7(L C), 7(B A), and (A C). Notice the
cycle the relation schemes form. The database contains information about loans
and accounts at banks, and about which customers took out the loans and own

the accounts. In System/U, [B C]sy will be computed as
mpc(r(BL) b 7(LC) bt (B A) b4 (A C)).

This expression gives all customers who have both a loan and an account at a

bank, which is not a very natural meaning for the bank-customer connection.

Using the ideas of Sciore <Sc1>, and Ullman define marimal objects to
break up cycles in the database scheme. A maximal object is a subset of V. Let
M be a set of maximal objects. To compute [X], for each # € M such that
X & W, they form the join of all relations whose schemes are contained in W.
The join for each applicable maximal object is projected onto X and then pruned
by tableau minimization. The window [X] is finally obtained as the union of all
these expressions. We denote this window function by [']y for a set M of maxi-

mal objects.

_1 1-
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Example 5: Returning to the last example, let M = {B L C, B A C}. This set of
maximum objects says there are two ways to connect bank and customers,
through loans and through accounts, where, without maximal objects, there was
only a single connection, through loans and accounts simultaneously. Here, [B
Clu =

7B c(T(B L) [Pa T(L C)) U ng CD(T(B A) > T(A C))

Maximal objects augment a database scheme with semantic information
about which connections are most meaningful.
and Ullman also present several methods of automatically generating a set of
maximal objects for a given database scheme, using functicrel and join depen-
dencies. They allow that a set of maximal objects so generat=d might be further
tailored by the database designer. They also permit different users to employ
different sets of maximal objects, reflecting different views on what the impor-
tant connections are. Another capability of maximal objects is that they allow
the database designer to indicate that certain attributes are so semantically
distant that no connection among them should be derived automatically. The
window on Y can be identically the empty relation, if no maximal object in M

contains Y, such as [L Alg in the last example.

Our view in developing window functions for the PIQUE query language is
that data dependencies by themselves are not sufficient for inferring the desired
connections among attributes. Also, minimization under weak equivalence is
complex process, and we doubt many database designers will understand its
exact effect on the meaning of a window. There may be several connection
semantics that agree with a given set of data dependencies. We have defined

window functions based on a set A of associations and a set C of objects <KMW>.

Associations are sets of attributes that represent permissible units of

update. An association is a possible scheme for a tuple entered into the data-

-12-
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base. We let 7(R) denote all the tuples in the database whose scheme is the
association K. The reader will not be far from right to assume that the set A of
associations is the database scheme, although, in practice, heterogeneous
tuples may be stored in a single relation through the use of placeholders. We
depart from usual practice in that we allow subassociations of associations. We
adopted the term association in place of relation scheme to emphasize this
departure. We permit tuples over both associations K and S, where R is a
proper subset of §. Under UIA, there is not much sense in having relations over
both X and S, as 7(R) will be rip(r(S)). Without UIA, relations over both
schemes do make sense, although URA does dictate certain restrictions, as we

shall see in Section 3.

Example 6: In an association-object database, we could have both an association
C I, meaning a course is taught by an instructor, and a containing association C ]

S, meaning a course is taught by and instructor to a student.

Objects are also sets of attributes, and represent units of retrieval. Objects
dictate which joins will be used to construct window functions. For each object
W € O, we assume that # is the union of associations in A, and define a relation

on W, denoted r'(#), by joining on all associations contained in W:

(W) = R).
T ( ) REA?’?QQ WT( )
We then define window function []po from these object relations by projecting

the appropriate object relations.

[X]ao= yeo 2X7TX(T4(W))~
Example 7: Consider a database where A= {3 C, C1j, meaning a student takes a
course and a instructor teaches a course. Let O = {S C I§. For this choice of A
and O, the connection between student and instructor is by joining on course. If
we add S C I as an association, then we explicitly store from which instructor a

student is taking a course. Now, the connection between student and instructor

13-
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will se the projection of r(S C I), rather than students taking a course and a

ins*' ‘uctor teaching some section of that course.
We shall argue in Section 3 for the desirability of the set O being closed

under nonempty intersection.

2.2. Weak Instance Window Functions

The second main path along which window functions have evolved is weak
instance definitions. Weak instances, and their cousins, representative
instances, were first introduced as a means for discussing global satisfaction of a
set of dependencies by a database <Ho, Gr, Va>, and for inferring missing infor-
mation in a database state <Mal, Wa>. They have also been used recently to
study the equivalence of database schemes <Me>. We show now how weak

instances are used to define window functions.

A relation /{U) is a containing instance for database d if

ng(l) 2, 1=si=<p

For a sel of dependencies C, /{U) is a weak instance under Cfor d if ] € SAT(C)
and [ is a containing instance of d. (/ satisfles all the constraints in C.) We
abbreviate ‘‘weak instance under C' to C-WI. A database state need not always

have a weak instance.

Example B: The database

r( A B ) r( B C ) r{ A C )
1 2 2 3 4 5

has weak instances under C={B—>(}. One is

e
(93¢ ] Hus]
[N} @]

If <4 5> in7(A C) is changed to <1 5>, then the database has no weak instances

unler B2,

_14_
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The philosophy of the weak instance approach is that a database state
represents partial information about some universal instance. However, since
the information is incomplete, it does not, completely determine which universal
instance a database state d represents. The weak instances of the state are the
possible universal instances. We can use weak instances ‘o define a window func-
tion. The window on X will be all those X-components of tuples that appear in

every weak instance of 4

[XK2)= N nx(l)
I aC-W1
Since different choices for C give different windows, we distinguish the window

function for Cas [‘]e.

Of course, this definition for [X]c does not give an effective method of com-
putation. If the dependencies in C can be used in a chase computation <ABU,

MMS>, then representative instances can be used to compute [ X]e.

Definition: An extended instance (El) T over scheme [ is a relation over U that
contains both values and marked nulls.

We assume nulls are marked with numbers to distinguish them, and we will
refer to the tuples of an El as rows to avoid corfusion. One particular El of
interes! is derived from a database state d. First, pad out each relation in d to
have scheme U using distinct marked nulls. Next, take the vnion of the padded
relations. We denote the result by 7,. In parts of the sequel, we will need to
keep track of the relation from which each row in Ty was generated.

A representative instance for a databese d is formed in two stages. First,
form 7;. Second, the chase procedure for dependencies in C is applied to Ty to
equate nulls and generate new rows. The result of the second stage is the

representative instance for d under C, which we denote Rle(d). To summarize:

RIg(d) = chase ¢( Tg).

It is possible that a contradiction to an equality-generating dependency is

-15-
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encountered during the chase, in which case we define the representative

instance Lo be the empty relation on U

Maier, Ullman and Vardi <MUV> show that for a large clsss of dependencies
[X]e= mex(Ricld)),
where miy |5 X-talal projeciion: the X-component of all tuples that have no nulls

in the X-ealumns.

Sagiv <3al> considered [X]p, where F is 2 ==t of FD= expres=sed by keys.
He gave a condition on database states, Lhe madified foreign key constraint,
Lhat, together with local satisfaction of F, guarantees that a databage state will
have at least one F-WI Sagiv laler deflned the unigueness condition on FDs and
database schermnes, which ensures that any locally satisfying database state has

a weak instance £3a2>. Hiz uniguenezs condition iz a characterization of

independence! for dalabase schemes under key FDz. We shall dencte a window
furction based on representative instances under FDs thatl satisfy Sagiv's

uniqueness condition by [ ]g where Kis the set of key FDs.

Yannakakis <Ya> looked at [X)e where C iz a single join dependency (JD)
eorresponding to the database scheme, R That is, C= PR, Fa. . B ]l- We

denote such a window function by [ ]+ p

Although representative instances give a means to compute [Xle the
metheod is not very manageable, ezpecially when the database i# large and C con-
tains tuple-generating dependencies. Sagiv <%aZ> showed thal [X]gcan be com-
puted as the union of projections of extension joine, a particularly efficient type
of join €He> Yannakakis <Ya> showed that [X]- g can be computed efliciently
when R is acyelle, Maier, Ullman and Yardi <MUV> give conditions for [X]ctobe
first-order {computable with algebeaic operations), although Lhey are not partic-

ularly conecerned with the efliciency of computation. We give here a

14 dazabase schere Ris indepanding relazve 1o 2 set Cof dependsncies [ any datsbase d on R
thes leca’ly satletes © also glonzlly setisfies © (thet s, has s GW0)
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generalization of Sagiv’'s result, where the FDs need not be keys, but can be any
independent set of FDs embedded in R Our result uses a slightly modified
variety of extension joins.

Definition: Let 7(&) and s(S) be relations. The join r pg mxy(s) is an FD4oin of

rwithsonX—=Y if

Observations: Note that X must be in # n S. In an extension join, X must equal
E n S. On databases that satisfy UIA, 7 ba Tixy(s) = T DA 1zy(s), where Z =
E n S. In fact, these joins give the projection of the universal instance onto
R Y. Also notice that the FD-join of 7 with s on X~ ¥ satisfies all the FDs that r
satisfles, plus any FD W—Z that s satisfies, where W 7 € X Y. We still have the
efficiency of extension joins for FD-joins, as an F'D-join of r with s will have no

moere tuples than r does.

Definition: For database d(R) = {r (R, rz(Rz)...., 75 (Ry)} and a set of FDs F, we

say £ is an F[Hoin expression on d under F if

1. £is 7, for somer, € d, or
2. E is (£' b4 miyy(ry)), where
X-Y € F*,
scheme{(E') 2 X,
XY C R, and
£" is an FD-join expression of d under F.

That is, £ represents a sequence of FD-joins involving relations in d. Note that
we only needed the 7;'s as placeholders, so we will usually write of an FD-join
expression on R

Theorem 1: Let £ be an independent set of FDs, embedded in database scheme
R For any X subset U, there is an expression £ that is the union of projections

of FD-join expressions on R under F such that [X]z(d) = £(<) for every data-

-17-
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base d(R) satisfying F2.

Proof: This proof will have several definitions and propositions interpolated in it.
We intend that the objects mentioned in the theorem statement and this proof

carry over into those definitions and propositions.

We first note that [X]z = [X], for any set of FDs G equivalent to F and that
the definition of FD-join expression depends only on the closure of ¥, so we can
make some assumptions on the form of F. We can modify F to an equivalent set
of FDs as long as the new set can still be embedded in R First, assume that
every FD in F is canonical: a single attribute on the right side and no extraneous
attributes in the left side. Second, we assume the FDs in F are locally closed
under implication: For each &, all the canonical FDs in F™* that apply to FR; are
in F. Note that we can modify F to satisfy these two assumptions without
affecting embeddability, that there is exactly one set of FDs equivalent to F that
satisfles both conditions, and that this set contains no trivial FDs. Finally, we
note that since R is independent under F, no FD of F can apply to two schemes
in F. We will say that FD X-4 in F is Srom K; when B, is the relation scheme in

Rsuchthat X4 <€ R,.

Next, we introduce some variations on the rules for chasing with FDs. The
normal F-rule for chasing an EI 7 under an FD X =4 ¢ F takes two rows v and
w in T with v(X) = w(X) and tries to equate v(4) with w(4). In equating
entries, we allow nulls to be replaced by values and lower-numbered nulls. If
v{A) and w(A) are distinct values, and FD violation has occured, and we set T to
¢. Also, in applying an F-rule, or its variants below, only nulls in v and w may be
changed. We shall use two restricted forms of the F-rule in this proof. The NF-
rule (null-preserving F-rule) will only equate v(4) and w{4) if one is a value and

the other a null. It will not equate two nulls. The BF-rule (basic F-rule) is more

2E. Chan has idependently shown & similar resu’t <Chi, Ch2>.

18-
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restrictive than the NF-rule. The BF-rule is used when T is T4, or derived from
74 by chasing. Let X4 be from #;. The BF-rule reguires that one of v and w
come from 7;(/;) originally. Note that the row, say v, that came from 7; will

have a value at v(4), and that for some tuple ¢ inr;, £(X A) =v(X A).

We now use the NF-rule and the BF-rule to define two restricted types of

chase.

Defipition: If T is an El, then the null-preserving chase of 7 under FDs F,

denoted nchaser(T), is one in which only the NF-rule for FDs in F is used.

Definition: If T is an EI that is derived from T4, then the basic chase of T under
FDs F, dencted bchasez(T), is one in which only the BF-rule for FDs in F is used.
We stale without proof that nchasep(T) and bchaser{T) represent finite
Chuirch-Rosser processes, hence their results are unigue. Using a set of FDs G
equivalent to F' could give different results, but we noted that F is uniquely
determined by our assumptions. Also note that if either resticted chase uncov-
ers an FD violation, so will chaser(T). Note that in both nchasep(T;) and
bechasep(Ty), when a rule for XA is applied to rows v and w, both v(X) and
w (X) will contain no nulls, since neither chase equates nulls.
Definition: The restrained representative instance for database d under F,
denoted RRIp(d), is bohasep(Ty).
The foliowing proposition shows that nchase can be used in place of bchase
in computing RRI=(D).
Proposition 1: If d is a locally (hence globaliy) satisfying database state on R,
then
Proof of Proposition 1: We can certainly compute nchasez(7,) by first comput-
ing T = bchasep(Ty) and then computing nchasep(T). Thé proposition will be

proved if we can show that nchasez(7) = T. Suppose some NF-rule for X4 in
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F applies to T, where X4 is from K,. Say the rule applies to rows w, and w,
to change we{d) to w{A) (hence w (A} is a value and wa{d) a null). There can-
nok be a tuple u in r( A ) with w{X) = w,(X) (= wz(X)), or elze the BF-rule could

have been used to fll in wa{d), as w (4} would have to equal u(4).

Ve construcl & new delabaze stale 4' from d by adding a tuple ¥' to 7y,
where w'(X) = w,(X). Here i3z how we form u', Let u be e tuple over By such
thet w(X) = uw(X) and © i3 distincl marked nulls on B, = X, Chase v (/) v jui
under the FDs in F that apply ta R, (Any variety of chaze will yield the same
results here.) Ko FD violation arises, or else one would arise in chaseg{ Ty ). show-
ing that 2 is not globally satisfving. If this "mini-chase" dees not fll in all the
nulle in w, change the remaiping nulls to new velues that do neol appear else-
where in €. The resulting tuple is #'. Note that ©'{4) musl be one of the new
valees, If ©(A) had been filled in with a value, it would have been filled in during

bohosepd Tgh

¥We have been careful to construct &' so that 2° is lecally satislying. All the
relations excepl vy are the same as in d, and vy has only had %' added, which
violates no FDe, Lebl w be the row for w' in Ty, Consider computing
behasep{ Ty ) by intially ignoring w'. We eventually obtain an E1 T'= T v fw'.
Now consider: w,{X) = w'(X), but w;(4) # w{4), since w'(4) = u'{d) is a new
valee. Thus we have a violation of X-*4, end 4’ is not globally satisfying--a con-

tradiction to the independence of B under F.

¥e conclude that no NF-rules can be applied to T, so bchasep(T) =
nohasep{ 7).
Corollary: If in computling £R/e{d) for some d, we generate a row w where w is

has no nulls on X 4, and X*4 is an FI} in F from f;. then there iz a tuple

i € (R)with E(X A) = wlX A).
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Definition: For a row ¢ in a £ or £FS, let wdoun —arrsw be the non-nutl portion

of wi.
Proposition 2; Let d{R) be datebaze satizlying F and let T be BRI T )

1. For any row w in T, wdsun —grrow i3 ln F{d) for some FD-join
expression K on R

2 For any tuple t{F) € E{4) on R there is a row
w in T withw(S)=1{.

Proof of Proposition 2: (Part 1.} The statement is true for Ty. We show it
remaing true after application of a BF-rule to change a null to & velue. Aszume
wdoumn —arrow is in E{d}, for some FD-join expression £, Suppese X=4 from
K, is used with row w' to change w4} to w'{4). We noted in the last corollary
that m (R} must contain a tuple ¢ with (X A) = w(X A). Therefore, £{d) con-

Lains wdsun —arrow after 1w (4) is filled in, where E" = E a4 myylr).

{Part 2.} The statement is clearly true if E is just 7. Suppose that
t € E(d) where E = £ b myln) and X4 & F. Thus, ¢S - A) € E{d). We
inductively assume that there is a row w, in T with w (5 = A) = {{5 = A). We
al=zo know that 7y must have a tuple w with u (X A} = t{X 4). Let w; be the row
in Ty coming from w, We can apply the BF-rule for X=+A to w, and w; Lo sel
Wi(A) = wald). Thus, in T, w,(F) must equal £{5F), or else we can get and FD
viclation, and & is not globally satifyving.

From Proposition 2 we can conclude that for any X & [, thers is =ome
exprezsion E that is the union of projections of F-joins on R such thal £{d) =
el BRSp(d)} for every satisfying state d. In particular, we can form £ by taking
every FD-join expression £ (that doesn’t repeat terms) where schema{7) 2 X,

projecting each onto X, and taking the union.

The strategy for the rest of the proof is as follows. Given & database (R)
salisfying F, we wani to show Lhat RREfr(d)} conlain= all 1the combinations of

values that Rip(d) does. (FRr(d) and f£f-(d)} could differ in that Rfe(4) could

%1-
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have equated nulls.) To do so, we exhibit a databese d* satisfying F that con-
talns 4 (relation by relation) such that RRIe{d*} = F/-{4*), Furthermore, there
will be a mapping ¥ from rows of £Rfp(d*) to rows of RRJ#(d) such that w and
¥(w) agree everywhere w has a value that epprars in RRIF{4). We will con-
siruct d* & step atl a lime, where a step adds one tuple to on= relation in €, The

addition will have the effect of “promoting" a null to a value in FRp(d).

Let 2{R} satisfy F. Let T = BRIp{d). We know from Proposition 1 that no
hWF-rule can be applied to T. Suppose some F-rule for X¥=*4 can be applied to
make changes in T. The F-rule must equate two nulls, since if it equates a null
and a value, so could an KF-rule. Hence suppose the Ferule for X—*4 can be
applied on rows v and w of T to equate nulls v{d) and w{4). We must have v{X)
and w{X) free of nulls, since T has no repeated nullz, Let X4 be from K.
There cannot be a tuple £ € ry with £{X} = v(X), or else {4} and w{4) would

ahve been given the value t{.ﬂ.} in computing T,

We shall use the same construction we used to form database d° in the proof
of Proposttion 1. We can add a tuple @' Lo ) such that wyX) = v{X), (Al iz a
new value found nowhere else in &, and ; @ ju'| satisfies F. If X' is the sat of
attributes where u* has original {(to d) values, then v[X') = u'(X"), as any values
filied into u' during the “mini-chase” will alsa have been added Lo v during the
computation of T.

Let us compare T = Fifp(d) to T = RRfp(d’). We can compute RRM{d") by
first computing Ty = FRRfp{d} v ly|, where ¥ is the padded version of &', {That
1%, da nothing with the row for u' initially.) We know that v{X} = w(X} = y(X). 50
we may coentinue by setting v{A) and w(4) to y{4) {= w'{4}). We have, in effect,
promoted the nulls in v{A) and w{d) in T to the value (A} in T". We may also
be able to use ¥ to fll in new values for obther nulls in Ty, Melice, however, that

in computing T, we can ensure that v alweys supersedes ¢, in the sense that if
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Yi B} = z{F) for some row £ 2y in Ty, then v(8) = y{F). Call the set of all
such attributes match{y). Initially, mateh(y) = X, and v({X'} = ¥{X), =0
vimatch(y)) = ylmalch(y)). If v is used to fill in a velue for null z{B) in any
row T of T, v(8) can be filled in with ¥ (F) firat, If any row = is used tofill ina
aull (&), Lthen either v (8) can be fllled in with (&) firzt, or #{5&) already

equals (8}, Thus, in T°, v{mateh({y)) = y(match{y)).

What can happen to the rest of the rows in T in going from Ty to "7 We will
argue Lhat oo row other than y will have a null replared by an original value,
hence T and 7' will bave exactly the same combinations of original values in
their rowz, Consider continuing with bohosep from Tp. If a null z{F) gets
changed to a new valus by a BF-rule for Z= 5, that value have come from y (#),
sz Z—*H iz from K. This restriction follows from the corollary to Proposition 1
and the observation that @' is the only possible tuple in &' that contains new

walues,

Bow consider some null in Ty that gets filled in with an criginal value. We
want Lo show that enly ¥ gets nulls replaced by originel values., Suppose we use
the BF-rule for £=+8 on a row wy to fill in wa{F). If ¥ {Z B} is all original
values, then welF) would have been filled inin T, unless w, or weis y. If w, is
Y. then £ B £ K, sov could have been used in ils place with an NF-rule, as v
ha= all the original values that ¥ does. Since bohases(Ty) = nohasep{ Ty ) by Pro-
potilion I, there is some way that w{ F} would have been filled in with a value ln

F. Hwzisy, we den't eare,

If, on the othar hand, w,{& B} contains some new values, then, following
previcus argurments, Z—+F is from f; and 2, is . If ¥{&) is a new value, we
don't care. If w(F) is an original value, consider the following. Assume wg(8) is
the first null to be filled in with an original value from ¥, Lel & be the maximal

eet of attributes such that (@) = w{@} in T, Observe thal ¥(@) is all original
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values, Before applying the BF-rule for £+ 5 to w,. if any of its nulls were filled
in, they must have been replaced by new values frem . Ik follows that @3 2.
Therefore §-*H must be in F. Now y(@ H) i3 all original values and @ B € A,
so v could be used to fill in w{ ) using Lhe NF-rule for §+5. As argued before,

wal B must have been filled in with a value in T,

5o, the only nulls changed to original values in going from T o T are in row
%, and ¥ is superseded by v. We can easily construct a mapping ¥ from T ta T
as described before: For a row w € T, everywhere @ has an original symbol,
¥iw) has the same symbol. Mapping ¥ takes every row in 7' other than y to the

corresponding row in T, and takes v to v,

AlL this works has been but one step in converting 4 to 4% . Suppose in
RRlp(d') an P-rule can be used to equate nulls. We can then form 4 by adding a
row to some relation in 2' Lo promole thoze nulls ko values, with a mapping ¥
from RR{p{d") to RRIp(4') thal preserves combinations of original values. Note
that ¥ =9 gives such a mapping directly from RREM:(d7) to R&J:(d). We can con-
tinue to add rows to relations in  to promote nulls that can be equated by F-
rules. We obtain a sequence of database states d, d', &, &%, ¥ . Do we ever
reach a database state 4% in this sequence whore 88/ (d%)) = (257 (State
d#! iz the desired state 4® ) The enswer is veg, Notice a newly added row ln
REIp{dYY i3 superseded by some row in BRIE(4Y 7). By induction, the new row
is superzeded by some row in ARM-(d). Therefors, the number of new rows

added to 4 is bounded by the number of nulls in RR/F{d), and d* will be

roachaed eventually,
End of Prool of Theorem 1

Maier, Ullman and Vardi <MUV> suggest a departure from the iwo-step
paradigrm for universal scheme query procesging that can be used with

réeprosentative instances, Rather than apply a gquery Lo the intersection of pro-
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jections of weak instances, apply it to the projections individually, and then
interzect the rezulls. For the alternative model to be attractive, there must be

an effective method for computing the intersection of query results, of course.

4. Properties and Theory of Window Functions

Fere we look at several properties af window functions, and see which win-
dow funclions defined so far have those properties. We fes| that the first two
properies given, Lhe conlainment condition and faithfulness, are minimum con-

dilions for & reasonable window function.

3.1. The Conlainment Condilion

By URA, a =et of attributes uniguely determines a connection among the
allributes themselves, which connection a window iz supposed Lo bransmit. If &
s=t of attributes X is a subset of ¥, whatever the connection among the attri-

butes of X, it must be an agpect of the connection among the attributes of ¥.

Examapde 8: Under URA, it is permissible for [3 C 1] lo mean a student takes a
eoures from an instrueter and for [3 C] Lo mean & student lakes a course. URA
would nol be gatizfed If Lhe meaning of [S C 1] were changed to a student is a TA

for 2 course under an inskructor.

For a window function to be conststent with URA, whenever X' € Y and t is
a teple in [¥), ${X) shou'd be in [X]. Stated another way, [X] 2 sp{[¥]}). This
inequality is the contfoinment condifion. It is similar to Sciore’s notion of doumn-
ward clasure <3¢l >,

In the two systerns that do nol reguire a UKA database, APPLE and gq. the
window functions cannet be shown Lo necessarily satisfy the containment condi-

tion far all database stales. Even if virtual relations in g are defined solely by

Joinsg, itis pot suflicient Lo guarantee the conlainment condition 1& saligfled.
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Lemma 1: []; satisfies the containment condition.

Proof: For the universal instance window function, we have a stronger condition,

namely [X]; = ny([Y];) for X € 7.

Lemma 2: Let £51(51), 52(S2)r, (S} be a set of relations where

S1Sg Sp 2 X Let (91,92 ..., g.) be a set of relations that includes
{s,.82 ..., S {. Then
Tx(s) DAS; DA DA sy,) 2 Tx{g1 DA g DA D gy).

Corollary: [-]1s, [']sv. [ Ju and []p0 satisfy the containment condition.
Corollary: [Wlao=7'(W), for W < 0.

Lemma 3: Any weak instance window function satisfies the containment condi-

tion.

Proof: Let X € Y and let Cbe the set of dependencies for the window function.

[(Xle= N mxl)= N mxlme(D)) 2
[ a C-¥I I aco¥l
mx{ N wy(l) = my([Y]e).
I aC-Wwl

3.2. Faithfulness

The principle for the next condition is “What you see is what you've got.”
The containment condition requires that the set of views given by a windoe func-
tion be consistent with each other. The views given by a window function should
also be consistent with the contents of the database. A window function is Sfaith-
Jul if for any relation scheme K € R, the relation on R in the database agrees

with the window on R, for all states of the database: r(R) = [R].

This definition assumes that the database has no two relations with the
same scheme, which will be true if the database satisfies URA. Since a database
in APPLE could have two relations on the same scheme, the definition does not

apply there. A window function for g will be faithful if the convention is followed
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thal there iz only one relation per echeme, and slored rulations come before vir-

tus! relations in the relflle,

The universal instance window function is clearly Faithful. The window fupe-
tion [ ]o; is not necessarily faithful. Consider the datzbase scheme R = |4 B,
B O, AL with B akey of B C. The window [4 €] will not necessarily agree with

r{A O, sinee [A £] contains tuples frommy~{4 F 24 B )
The following lemma azzumes Lhal there are pob two distinct relations
gelwoce B oand 8 in R =uch that # € 5, i K contains such schemes, the

lernre holds if Lhe database relations satisfy the conlainment condition.

Lemrea &: [ ]gy and [ |g 2re faithful.

Proo® Vider lableau minimization, sglry bAre < ..o B rp) will always be
redu. Jtorg, where 15 the rejalion with scheme A.

Thec wm 2: [ Jppis faithiul if and only if A & O and the relations on associations

in As lisTy the containment condition,
Prez’ Inthe proof, [ ] will mean [ Jao

(only i) We show the contrapositive, Let A be an association of A that is nat
in 0. Conzider a state of the dakabase where r(F) ¥ ¢andr{S)=¢. S« R. IO
has 1 object containing B, then [R] = ¢, and the window fucntion is not Faithful
tor(f . i W € Dand ® 2 X, the join used to form r'{#) must include at least
onz riielion epart from 7{&). Eence r' (¥} = ¢ This equality holds for any
ob e« conlalning R, so [R]=¢ # 7 (&)

Mow suppose A & 0, but the databgse relalions do nol salisfy the containe
ment condilion. Let £ and § be associations in Asuchthat # € 5, butr(&K) 2
me(r{S)). It follows that v{f} < r{S) is not a proper subszet of T(5). For any
obec! W, ¥ 2 5, v{R) and v(5} will enter the join for r'{I¥), so nz{r'{W)} <

r(&) »ar{F). Eence, [5] is properly contained in r{f} >ar(5), and is not
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faithful to r(S).

(i) If A € 0O, and the containment condition holds for the database rela-
tions, it is not hard to show that r(R) = 7'(R) for any R € A It follows that
[R] 2 r(R). By Lemma 2, for any object W containing R, re(r'(W)) € r(R),

so[R] € r(R), and we have the desired equality.

Henceforth, when dealing with association-object window functions, we shall
assume A £ O and that the relations on associations in A satisfy the contain-

ment condition.

Weak instance window functions are not necessarily faithful. For FDs, Men-
delzon <Me> shows that for a database state 4, thercis a complete state d' with
the same set of weak instances. A complete state essentially is one that is the
projection of its representative instance. Weak instance window functions are
faithful on complete database states. We also have the following two theorems
about particular weak instance window functions.

Theorem 3: [ ]xis faithful if every relation scheme in R hes a nontrivial key.
Sketch of Proof: Consider a locally satisfying (hence globally satisfying) data-
base state d. Let R € R be a relation scheme such that n@down-
arrou@y(RIg(d)) contains a tuple ¢ not in 7(&). Let K be a nontrivial key for .
Modify 4 to d' by adding ¢' to 7(R), where t'(K) = t(K), but t'(R—-K) # t(R-K).
Since r(R) does not already have a tuple that agrees with ¢ on K, d' is locally
satisfying. However, d' is not globally satisfying, since ¢ will still show up as part
of a row of R/g(d") and contradict ¢'.

The windows in [ Jx can be unfaithful if R has relations with only trivial keys.
let R = {AB,AC, B D, C D, with key FDs A>C and B>D. Then the expres-
sion 7ep(r (A B) 0 7(4 C) b (B D)) can add tuples to [ C D]k that are not in
7{C D). Note that a relation scheme formed by synthesis <Be> will have no

trivial keys. Theorem 3 also holds if the only scheme with a trivial key is a

<8-
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universal key <BDH>.
Theorem 4: [ ]« gis faithful.

Skelch of Prool: Look at £ € R and consider Lhe computation of £« g{d). The
ID *K is the only dependency vsed in chazing Ty when farming the representa-
tive instance for d. We can show by induction that at each stage of the computa-
lion of the representative instance, if any row w iz pnon-null on R, then
wi{f) € v{R). Also, for any tuple ¢t = r{R), there will slwsrs be 8 row w with

wif)=1t. We conclude thet [R]- g=r(R).

3.3 Inteprity of Objecls

The purpose of the next condition i to prevent a little lmowledge from
being a dangerouz thing. The condition is stated in terms of objects, so it
applies to only astociation-object window functions. In this subsection, {-] will
mean [ Jap In Section 3.4, we show how objects can be deflned on any window

funclion, so we sha!l be able to apoly the condition more generally.

The idea behind integrily of objects iz that if someone knows the semantics
of all the associations within an object ¥, then be should be gble to deduce the
meaning of the conneclion on eny subzst of . Formally, for ® € 0, let

alW)=1R e AR £ F{.

Object ¥ is dmtegral relative to [1], if for any subset X of ¥, [X] can be com-
puted from Ir{A}F € a(® )}

Example 10: To se how integrity of objects can fail, conzider 7 = {P (painting). O
(owner), R (artist), D (addresz)l, A= PO PR OD EDLandO= AV {POD PR
Dj. We are storing infermation on owners and artists of paintingz, and eddresses
of owners and artists, and making connections on owners and arlists, In the

object P O [, the connection from painting to address is via owner. However, the

object P B D can also add tuples to [P D). so [P D} cannot be computed from
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relations in a(P O D) alone. The danger here is that if a user knows that the
database has information about paintings, owners and addresses, but does not
know about artists, his assumption as to the meaning of [P D] will be incorrect.

The window [P D] is really the combination of two different connections.

The next theorem shows that integrity of objects is equivalent to the objects
being closed under nonempty intersection. This closure property has a compu-
tational advantage. It implies that for any X, there is a unigue minimal object W
containing X. That is, for any other cbject V that contains X, V 2 W. Thus, [ X]

can be computed as mx(r'(#)), since for any object V 2 X,

mix(r'(V) € my(r (W)
No unions need be taken to compute [ X].
Theaorem 4: All objects in O are integral if and only if O is closed under nonermipty
intersection.
Proof: (if) By the remarks above, if ¥ is an object and ¥ 2 X, there is a
minimal object W', # 2 " 2 X, such that [X] = ng{(r{(}")). The object rela-
tion 7'(W') depends on only relations for a{i), which is a subset of a(W).
Hence, ¥ is integral.

(only if) Let X be the intersection of objects ¥V and ¥, where X is not itself
an object. Assume no objects smaller than V and # have intersection X. There
must be some association K in a{(J¥) such that 7 is nol a subsel of V., so i is not
in e(V). By considering states of the datzbase that differ by 7(R) being empty
or nonempty, it is possible to induce changes in [X] that do not depend on rela-
tions for a(V). Therefore, Vis not integral.

There are direct arguments that the closure of objects under intersection is
desirable. With closure under intersection, any window takes its value from a
single object. There are no unions needed to compute windows. When unicns

are used, there is always the dancer that the user is zware of only one or some

-30-
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of the connections uszed to compute & window.,

Multiple connections in a windaw may not be a big problem if the various
connections are of the seme "favor,” as in the [B €] window in the banks exam-
ple. There |s 2 common generalization of the two connections involved, namely
“customer does business with the bank.” In the paintings exampie, there is no
nalural generalization of the two connections between paintings and addresses
via owner and artist, since the association between paintings and owners has

gquite a different flavor from the association between artisis and paintings.

Even if objects are not closed under intersection, it seems that associations
should ke, Conzider asscciations & and &y whose intersection is 5. It makes
sense to have an S-value without any values from #, - £ {in an Rg-tuple). Like-
wise, we can have an S-value without values [rom R; - 5. 1L geems that we
should be able to store S-values with neither valoes from & - 5 nor #3- 5,0 8

shiould be an association,

There are at least two wavs to modify a sel of abjects Lo get closure under
intersection. One method is adding more ohjects end the other method is
renaming atiributes, The first methed iz probably betier for the banks example:
pdd an azzoclation B C, meaning the suzlomer deals with the bank, In the paint-
ings cxample, the eecond methed is preferable: rename D (address) to OWNER_D
and ARTIST_D.

3.4, lmplicit Objects

While pbjects were used in bhe definition of oniy ane of the window functions,
wi can pick out sels of atiribules Lhal behave az objecls relalive Lo other win-
dow funclions. Vis an implicid pfjzct for a window [unclion [ ]if there is some

stabe of the database where the inclugion

[V] 2 md w I¥])

a1-



Windows Funclions Diraft

iz strict. {The Inelusion always holds if Lhe window function satisfies the contain-
ment condition.) That is, [¥] can contain a tuple that is not in the projection of
any window on a scheme larger than V.

It is mot hard ko show for [ ]y that the implicit objeots are precisely O For
plher window funclions, especially weak instance window functions, it is usefui to
discriminate objects from non-objects. We need only store expressions for the
windows on Implicit objects in order to have a simple means to compute all the
windews, FPor the two specific weak instance window functions we covered, we

can characterize the implicit objects.

Theorem & 7 iz an Implicit objeet for [ Jgif ¥ is the union of relation schemes

that have a loszless extension join under K

Theorem B: ¥ iz an implicit object for [ ]+ gif V iz the echeme of an embedded

join dependeney *Simplhed by *F where 5 & R
Proal: The Fesall follows from Lwo facts,

1. li Rl- gd) containz a row Lhel is non-null exaclily on ¥V, then there is an

emnbelded 10 implied by *Ewith scheme ¥, (Lemma 5.1 of Yannakakis <Ya>».)

2. 1i ¥ 15 the scheme of and embedded JD implied by *K then it is possible to
find a database state d such that K/. gld) contains a row defined exactly on V,
and na raws Lhal are pon-null oh mare Lthan ¥

Both theorems imply thet all relation schemes are implicit objects. Using
hypergraph notation <BFMY >, we can describe the implicit objects for [} g
The J2 *R implies the embedded JD *5, 8 £ R U and only if S iz ciosed, con-
necied; and whenever it contains bwo edges of & block of K 1L containg all the
edges in Lhe block.

The definition of an object being integral can be extended to any window

funcline by phrasing it in terms of impiicit objects and defining a(®) in terms of
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R
Lemma & [ ]g does not guerantee integrity of objects

Frool: let R= A FC.BECPD ADE|endkeyz A5, F Cand A D. (This exam-
pie i3 dus Lo Sagiv £€8al1>.) The exprazsionfor [4 Bg iz

Tanl(r(d D EY v nplr(d B C) par(8 C D).
A D E iz an implicit object containing 4 D, but [4 8¢ depends on mere than
rid P E).

Lemma B: [ ]+ g guarantees integrity of objects,

Proofl: If V and W are schemes of embedded IDs implied by "R then there is an
embedded J0 on scheme ¥ n #. Thus, impheit ebjecls for [']+ g are closed

under intersection, and Theorem 4 applies.

4. Further Work

One objection Lo URA Is that some conneclions may be lost If attributes are
renamed in order Lo satisfy it. Supposs we have two FACULTY-STUDENT relation-
ships: FACULTY bas a STUDENT in a COURZE, and a FACULTY adviscs a STUDENT.
We can repame FACULTY to INSTRUCTOR and ADVIZOR to distinguish the two
roles. FHowever, we lose the connection between INETEUCTOR and ADVISOR, and
with properties of FACULTY, such as OFFICE. To address thiz loss, an explicit
hierarchy of roles can be introduced <Se2, 55>, We have been looking at exten-
sions to the associalion-chject window function that allow equijsins on attributes
related by the role hisrarchy <MEZ>. For example, we can use the equijcin on
ADVIZOR = FACLULTY of the relations r{STUDENT ADVISOR) and r{FACULTY
CEFICE) to connect a STUDEAT to his or her ADVIS0ORs OFFICE. Beeri and Korth
<B¥> deseribe a similar approach that invelves FD information as well. Sciore
and Warren <3c3> heave beon experimenting wilh "“file grammers,”” which allow

windlows to include multipts instances of the same aliribule, a3 might arise in
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computing an EMPLOYEE's MANAGER's MANAGER from the relation r(EMPLOYEE
MANAGER).

We consider the question of when a weak instance window function had an
equivalent computational definition. The dual question is whether every compu-
tational window function has an equivalent weak instance definition. An
association-object window function need not have a weak instance definition.
The problem comes in that weak instance definitions assume every tuple in the
database is part of some universal tuple over U, where in the association-object
model, U might not be an object. That is, some attributes can be too semanti-
cally distant to be connected automatically. Recent work on extending weak
instances to have “placeholder’” nulls <la, St, U12> should allow a weak instance
definition for association-object window functions. The affect on a representa-
tive instance is to have “non-chaseable” nulls initially and use existence con-

straints <Ma2> to indicate where *‘chaseable’ nulls may be inserted.

Finally, we note that we been consldering windows as purely a mechanism
for database query. What about update? The does not seem to be the flexibility
to upcdate over arbitrary schemes that there is to query over arbitrary schemes.
The work that has been done on universal scheme update <St> indicates that
either a user must be prompted to supply values on additional attributes, or

that the database must store “missing value’ nulls.
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