
W I N D O W F U N C T I O N S

b y
D . M a i e r , D. R o z e n s h t e i n , & D. S . W a r r e n

O r e g o n G r a d u a t e C e n t e r

O G C T e c h n i c a l R e p o r t N o . C S / E 84-002

Daxld hfaier; *
Oregon Graduate Cen ter

Dabld Rozenshteinj
R u t g e r s , t h e S t a t e I 'n ivers i tg ci f .Ye= Jersey

David S. Karrent
S t a t e L h i v e r s i t y ~f h'ew York a t S t o n y Brook

S LJ!d!dAR Y
We discuss the philosophy, history and thecry of v;ir,2oi~ f u ~ c t i o n s . Win-
dow functions a re a means t o t r ea t a relational database as a semantic
whole, ra ther than as an arbitrary collection of relations. Simply stated,
a window function maps a database s ta te and a relation scheme to a rela-
tion over the scheme. Window functions are the ba-sis for all existing
universal scheme interfaces. We present an assumption inherent in such
interfaces, the u n i q u e ro le a ~ s u r n p t i 3 n .

Window functions have evolved along t ~ v o paths, giving rise to computa-
-.

tional definitions and weak instance definiti.or:s. i \ e eva;i-iine several ex-
amples of each type of window function, with special at tention to the
association-object windorv function of PIGL!:. Y;e then lvok a i properties
we feel a reasonable ~vindo~v function should satisfy, notab!y the c o n t a i n -
m e n t c o n d i t i o n and f a i t h f u l n g s s . \\-e also define ir,r+licit oI; jec ts , which
a re relation schemes tha t a window function t reats in a special manner,
and a r e useful for describing the behavior cf i+-i-lndoir fuiictiaris.

1. The Wny and What of Window Functions

A s Maier, Vardi and Lllrnan < M U > note, the relational d a t a model has gone

fa r towards phys ica l data independence, but has not achieved the goal of logical

da ta independence. That is, users of relational systems a r e relieved of specify-

ing access paths within the s t ructure of a single relation, but they stil! must

navigate between relations. Users and application programs are protected from

changes in the physical implenientation of reihti.orls, b ~ i t ilot l*l-i)ril changes in the

logical structiire of a databas?, sdch as decon~~,osit i~r;s mad? for normalization

or efficiency reasons.

Uniuersal s c h e m e i n t e r f a c e s are an a t tempt a t icgical da ta independence.

In a universal scheme interface, all the semantics of the databdse is loaded onto

Windows Functions Draft

the attr ibutes. Queries are phrased in terms of attributes; the user need not

knorv which attributes are in which relations. The hope is that the attr ibute

names correspond naturally to entities in the real worid, and that the users have

an intuitive semantics for these entities and their relationships that is close to

the actual semantics of the database. In a universal scheme interface, a data-

base is presented as a semantic whole, accessible through its at tr ibutes alone.

In the sequel, I.' tvill denote the universe of attributes in a database: the univer-

sal s c h e m o .

There are several universal scheme systems extant and under development.

The first were APPLE <CK> and that of Shenk and Plnkert <SP>. More recent

s;.sterns a r e q <AK>, SysternjL. <K, K K , KC, I111>, PIQUE <I,lRSSW, MW, Ro>,

Paz-efrase <KMRS, KS>, R D L <Ba>, DLRST <BB> and tha t of Arazi-Conczarowski

<.4-G>. hiany of the same issues a re addressed by Sort-a's uork on conceptual

graphs <So>, and by others' work on automatic: navagation in a database <Li,

Su, Za>.

Query processing ir? a universal scheme system can be cast a s a two-stage

procedure:

1. The s e t of attributes, call it X, appearing in the query is determined.
Then, on the basis of the state of the cl'atabase, a relation r over scheme
X is generated. (If the query contains severa! variables, the attr ibutes
assoziated with each variable arz used to compilLe ssgo: die relations.)

2. Fur ther operations specified by the query a1-2 ;p~;ie-I C - l r (X) to gen-
e ra te the answer.

These stages a re called binding and evaluation, respecti\-ely.

Example 1: Consider a simple database courses rrith the relations

taking(STUDENT COURSE) and teaching(FACULT7' COURSZ). In response to the

query

retrieve FACULTY where STLDEST = "Andretj-s"

the PIQUE system will construct a re!ation r on FACULTY STLDEYIT. Presumably,

Windows Functions Draft

~ ~ F ~ ~ L L - ~ - zixEIT(t aking W t s ac hing) .

In the evaluation stage of processing the query, PIQUE applies the selection

U s ' r ; o ~ \ y = k & . ~ ~ to r to get the final answer to the qQ?ry.

The generation of a relation r on scheme X in t h e binding s tep is done,

implicitly or explicitly, through the application of a u f n d ~ w function. A window

function f maps a relation scheme X L U and a dalabdse s i s t e d t o some rela-

tivn r \I-ith scheme X': f (X', d) = r(X'). In our de.~eloprilt.nl, vie will "curry" f

and t reat i t a s a functional that maps relation schemes t o functions from data-

bxce s tz tes to reletions:

f : r t lat ion schemes + (d a t a b ~ s s siiltes + r . ~ l ~ ~ i o i ; ~) .

The functional signature above doesn't tell the -rvhole story. First, we assume a

single, fixed database scheme for all the database skates. Second, f is

po!ymorphicaliy typed in that f (S) is a function with relations cver scheme X as

i t s range.

We use a n alternative notation for window functitins in the sequel. A window

function will be denoted by brackets, possibly subscripted: [,I, [. I r , [, I U . Appli-

c6tion of a windoil- function to a scheme X is denoted [A'] ar:6 called the u i n d o w

07: X fcr iha t window f ~ i l ~ t i 0 1 1 . The application of il-12 v-i~ido\\- on X to database

. r T r i stcite d is [X] (d) ; if d is uriderslooL, w e sori-~tlirnes uzt: siri;i;.~ L A ,.
1-hile the stages of binding and evaiuation do interact , they are loosely-

coupled. Changes to the window functions can be rnade i\-iitiout changing the

prueedures in the eva iu~ t ion step, althoush suck1 chhr~ges ~vl;i mean different

arisutrs for queries. Ail the universal scheme sj-stems nl~ritioried above seem to

conforx to the tva-ste;, paradigm. It is interesklng to note tha t they do not vary

widely in the expressive power for operations to be a?p!icd in the second step

(t h n l ~ ~ h their qilery languages do difier in synti:?:). Tie significant differences

Windows F'unc tions

between the systems a r e the window functions used.

Draft

A logical question a t this point is why the same effect e s .i:indow functions

cannot be captured with virtual relation or view mechanisms, 2s in conventional

relstiona! systems? The first a n s v r 1s that the use of virtual relations, while it

hides the computations needed to produce them, still requires the user to know

the names of all the virtual relations and their schemes. The second answer is

that window functions are a view definition mechanism. Fo~t-ever, defining a win-

dow function on a specific database need not require explicit definition of a

separate window for each set of attributes. Rather, in most universal scheme

systems the re is a uniform discipline for deriving a ~vinclews from. semantic infor-

mation abogt the database, such as the database scheme, and functional and

join dependencies. Unlike an arbitrary se t of virtual relations, the windows in a

universal scheme system are meant t o display some manner of semantic con-

sistency. The t e r m window conveys the image of a consonant set of views into a

single database world.

For a universal scheme interface t o a database to be practicable, t h e data-

base must a t least satisfy the universa l r e la t i on scheme assumption (URSA).

L'RSA s ta tes that any attribute in U corresponds to the same class of entities

wherever it appears. KUMBER cannot refer to serial numbers of equipment in

one place and social security numbers in another; otherit-ise, there is no way t o

distin,.;uish one class of entities from the other in the query language. URSA

requires that , a t a minimum, an attr ibute have the same domain wherever i t

appears. For relational systems in which the available domains a r e just integer,

real and string, this requirement does not mean much. I t is more a constraint

on the conceptual model, where each class of entities is represented by a

separate domain.

Windows Functions Draft

Positing the existence of window functions makes an assumption stronger

than URSA, which we call the unique role assumption (GR4). TlR4 requires that

an attr ibute not only always represent the same class of entities, but also always

represent the same role for that class. DATE may not represent dates both in

the role of birthdate and the role of hiring date. Put another way, URA means

"the scheme determines the connection": For any set of attributes, there is a t

most one connection among them. In particular, no two database relations have

the same scheme. Without UR4, a universal scheme system has no way to tell

w h c h relationship among a se t of entities is intended when those entities are

mentioned together. If DATE played two roles, a s above, there is no way to tell if

the window [Eh,iPLOYEE DL4TE] is asking for the connection between employees

and birthdates or between employees and hiring dates.

I t is unlikely that a relational database designed without LyR4 in mind would

satisfy that assumption. To get satisfaction, some attributes will probably have

to be renamed, in order to distinguish the roles portrayed. 'The two roles of

DATE above could be distinguished as BIRTI-IUATE and I-IIRING-DATE. Such

renaming can produce problems. It may not be apparent, after renaming, that

different attributes represent the same class of entities, and the proliferation of

attr ibute names can become unwieldy. we are currently considering ways to

handle such problems by explicitly incorporating a generalization hierarchy as

part of the database description <MRS, Ro>. Of course, many others have

looked a t generalization in relational databases <BK, Sc2, SS>.

Lot all the universal scheme systems mentioned previously strictly enforce

LILA. Carlson and Kaplan, in their APPLE system <CK>, try to define window

functions upon databases that do not necessarily satisfy LK.1, or even URSA.

rn lhey search for a series of natural joins and equijoins tnat ~ - ; l l connect two sets

of at tr ibutes, guided by functional dependencies (Fa.). Tlieir rnethvd does not

cnrl i i -uc i M :ndo:is for arbitral--\; relabion sche~ne.;, R. .:L:r -! if roncentrates or,

Windom Functions Draft

connecting pairs of single attributes. Trying to impose a un!versal scheme view

af ter the fact upon a database that does not satisfy L*RA c a u s e several cornpli-

cations. They must maintain e-xplicit information on comparabil:ty of attributes.

Their method for computing expressions for viindoii-s can generate multiple con-

nections between a pair of attributes, actually gi~qng several uindows for the

same relation scheme. They &scuss several ways to ameliorate the problem,

but, ultimately, the user must select among connections when several exist.

Because of such ambiguities, U P L E is not quite a full-fledged universal scheme

interface.

The query system q <,4K> does not make any assumptions about the data-

base. There is a "relfile" containing a list of schemes for stored and virtual rela-

tions, and procedures for computing virtual relations. To generate [XI, q

sequentially scans the relfile for the first scheme of a stored or virtual relation

containing X. A computation is performed, if necessary, and the corresponding

relation is projected onto X. Nothing constrains the type of computations

allowed to generate virtual relations; they need not even use the stored relations

of the database. While q's mechanism produces a single %-indoll- for any relation

scheme, the views these windows present are not necessarily consistent with

each other or with the database. Thus, URA is satisfied for all ~vindows derived

from the same virtual relation, but not necessarily for the database as a whole.

In practice, the computations used to derive virtual relatio~ls usually consist

en t~ re ly of joins, and t he database does satisfy LRA. One other probiem with q is

that the expressions for virtual rel5tions must be given explicitiy. U'ork is

currently underway on methods to generatz those e x p r e ~ ~ i o ~ i ~ from dependency

information aSout the database <Ko3>.

R-e do not construe URA so strongly as to prohiblt multiple semantic con-

nections among a s e t of attributes. \Ye only ixtead that iiie system takes one of

t h r i q ~ c~nnec t i ons as tI,e n o s + ~ a t ~ ~ r ; : ! , H V ~ u ; 1 1 ri7:..hr t h a t co~nec t i on

Windows Functions

automatically. Other connections must be made explicitly by t h e user.

Draft

2. Types of Window Functions

Window functions a r e a particular approach t o the general problem of infer-

ence and deduction from a knoll-ledge base. Fere ice are working s\-it5 highiy-

s t ructured data, within a limited domain of discourse, and with certain simplify-

ing assumptions. We hope thereby t o get more determinism and efficiency than

from a more general knowledge-based deduction system.

The window functions used in the universal scheme systems mentioned, and

in various theoretical studies to be discussed, are not always errpressed in the

form given here. Often the definition of a 11-indow function is implicit within

some computational method. In particular, some systems compute [X] (d)

directly, never realizing an explicit expression for [XI. In other studies, the

t e r m connection is used variously for window function and I$-indoiv. The bracket

notation used here follows the "output functions" of Maier <31al>.

There a re two main concerns in defining a 11-indolt- function. One is tha t it

have a reasonable semantics, the other is tha t it be eificient t o compute. Most

1%-ind~w functions can be placed along one of two lines of deveiopment,

corresponding t o which concern is emphasized. There a re I\-indovi functions

based on straight computationai definitioas, where tile sen-iantic asstimptions

m a y be lairly rigid. Other zvindow functions are bared oil i \ e a k ills:hil~t9, and

. .
place rnore importance on the semantics. Xeak instances ;;-Ere or:,:^^.!!;. intro-

duced to study another aspzct of databases as semzntic nrh3!~s: g!cbal satisfac-

tion of dependencies. W e shall see in the next ~ e c t i o n how cornp:!tational

definitions evolved to have more semantic content. In the follort-ing section, we

shall see the development of more efficient computation methods for weak

instance windows.

Windows Functions Draft

In t h e res t of this paper, we shall let R be the database scheme IR1, R*,...,

R,], and let d = fr l(R,) , r2(R2) , ..., rp(Rp)f be a database over R. Thus, U is the

union of t h e schemes in R

2.1. Computational Window Function C&nitions

Most initial work on computational definitions for mindow functions made a n

assumption stronger t h m UR4. That assumption is the vniuersaL instance

assumpfion (UIA), which states that the database relations a re all projections of

a single relation I olrer C'. (I is called a universal imfance.) That is,

UIA is a requirement for "universal extension," where UR4 only requires

"universal intention."

Under UIA, the window [XI is defined as ~ ~ (1) . \Ye denote this window func-

tion as [I I . The presumption is tha t I can be recovered from d as r 1 W T Z W

... DQ T,. or a t least 1 iX(/) can be recovered, for certain X. A number of groups

iiave studied the question of %-hen all or pa r t of I can be recovered from its pro-

jections <XC, BMSU, MlfSU, Ri>. In short , the question they address is whether

the dependencies that I must satisfy imply that T I , r2, ..., rp have a lossless join.

The work on UIA-based window functions concentrates on findmg, for a given

X, an alternative expression E such that Q (E) = r A , (I) . The hope is tha t E can

be computed more efficiently than the join of all the relations. Shenk and Pink-

e r t <SP> were among the first t o look a t this question. They concentrated on

lassless subjoins: a subset i s l , s2, ..., s,{ of d such that

nx(s l M sz W . . . DQ s,) = r X (I) . In their study, the only dependencies con-

sidered a re FDs arising from keys, and the only joins are lossless joins of pairs of

relations. The join of r (R) and s(S) may only be taken %-hen R n S + R or

R n S + S . This restriction guarantees small intermediate results, a s \r DQ sj

Windows Functions Draft

will be no larger than max(:rl, is:). They attempt to find a lossless subjoin with

the fe~vest relations by a dynamic programmi:ng method. Their method permits

a given relation to appear more than once in a join exprezz: -.I on.

Jozinskii <Lo> also uses only key FDs and pairs~sisp 1os:less joins. However,

he is looking for lossless joins with a single s3zLrco relatign. The join expression

s tar ts ofi with the source relation, and all subsequent relztions are joined with

it, so there is only a single intermediate result,. That is, tbe expression t ree for

the join expression is actually a "vine." For a given S, he is interested in finding

all the lossless subjoins for computing [XI, so that he may pick the best accord-

ing to a given cost function. Foneyman <Eel:. is also looking for a sequence of

joins emanating from a single source, but he US?: an arbitrary se t of FDs (as

long as they a re embedded in the database scheme), and allo~<-s projections of

relations into the join expression. (Ee terms such joins extensio7z j o i n s .)

IJIA is well knorvn to have its shortcomings. It is a hard condtion to test in

general, and it is not realistic in many applications. The usefulness of VIA-based

window functions is probably limited to a database that xt7a originally a single

relation, but was la ter decomposed to remove I-edundancy. To avoid these com-

putational and semantic restrictions, several researchers have defined window

functions where UIA is used to determine the lossless subjoins, but it is not

expected to actually hold for an arbitrary database state.

Osborn <Os> defined [XI as the union of .X-projections of all lossless sub-

joins covering X. Eer join expressions also sta.rt xith a source relation that is

augmented through pairwise lossless joins. The semantic zssumption is that all

connections corresponding to lossless joins are equally meaningful. Her depen-

dency information is solely key FDs. We denote her 1vindo117 function by [.Iw.

The designers of Systern/U <K, KKU, KU, ul l>, and Fagin, Mendelzon and

Lllman <FMU> advocate a VIA approach, with [XI being

Windows Functions Draft

riX(rl w r2 DQ . . , w rp).

In Systern/U, to avoid problems 11-hen relations rnay not join corxpletely, the join

is minimized under weak equivalence. That is, relations a re pruned from the

espress;?n above undpr the assumptio? that the relati9ni: do join completely.

&le 2: Consider a database on attributes A (advissr), S (student) , C

(course) and I (instructor) , with relations r (A S), r(S C) , r(C I) . Minimization

under weak equix-alence prunes the expression

El = nsI(r (A S) W r (S C) [>a T (C I))

down t o

Ez = nSI(r (S C) 3a r (C 1)).

El and E2 are equivalent on databases where every student has an advisor, but

Ez can have more tuples when evaluated on a database u-here this is not the

case.

Minimization under weak equivalence is not done just as a computational

optimization, but also for i ts semantic overtones. In the last example, the con-

nection of a student t o an instructor via a course shouldn't be influenced by the

presence or absence of an advisor for the student. The technique used for this

transformation is tableau minimization <PISUl, ASU2>, which has the advantage

tha t d e - ~ e n d e n c y information can be brought in to help reduce the number of

joins. 7n7e shall let TJI (E) denote the tableau minimization of a n expression E,

and let :.Isy represent the System,& window function, so

[XIsy = T1A(zx(r, W r2 [>a . . . W rp) .

One problem with this approach is that there can be several alternatives for

ThI(E) . Those alternatives a re equivalent if UIA holds, but not for arbitrary

s t a tes of the database. In cases where Tld yields multiple expressions

equivalent to the original, the union of these expressions is used.

Windows Functions Draft

Exampl.e 3: Consider a database with relations r (4 C D), r (B C D), and T(D E) .

(Since schemes are unique in a ERA database, we may call all relations r .) For

the wjndow [C E l s Y , the expression can be minimized to

7 icE(r (~ C D) W T(D E)) or liCE(r(B C D) W r (D E)). The union of these two

expressions is used to compute [C E l s y

The Cystem,/U approach gives a semantically reascnable window function

when the the database scheme R is acyclic (See Beeri, e t al. tBFMMUY, BFMY>

for material on acyclic database schemes.)

and Uilman <%K> note that in the presence of cycles, the definition above for

[.Is;, maj- not represent a natural connection, or is likely not to be the particu-

lar conneztion a user had in mind.

Exmple 4: Consider a database on attributes El (bank), L (loan), A (account),

and C (cilstomer), with relations r(B L), r (L C), r (B A), and r(A C). Notice the

cycle the relation schemes form. The database contains information about loans

a;ld accoznts at banks, and about which customers took out the loans and own

the accounts. In System/U, [B CIsy will be computed as

T ~ ~ C (T (B L) W r (L C) W r (B A) W r (A C)).

This expression gives all customers who have both a loan ar,d an account a t a

bank, 13->;ah is not a very natural meaning for the bank-customer connection.

Irs ing the ideas of Fciore <Scl>, and Uilrrian define m.&mal o b j e c t s to

break up cycles in the database scheme. A maximal object is a subset of U . Let

M be a set of maximal objects. To compute [XI, for each W E M such that

X L W , they form the join of all relations whose schemes are contained in W .

The join for each applicable maximal object is projected onto X and then pruned

by tableau minimization. The window [XI is finally obtained as the union of all

these expressions. We denote this window function by [Inr, for a set M of maui-

ma1 objects.

Windows Fbnc tions

&le 5: Returning t o the last example, let M = {I3 L C, B A Cj . This s e t of

maximum objects says there a re two ways to connect bank and customers,

through loans and through accounts, where, without maximal objects, the re was

only a single connection, through loans and accounts simultaneously. Here, [B

CIM =

rig C(~ (I3 L) W T (L C)) U rig C ~ (T (B A) DQ T (.4 C)).

Maximal objects augment a database scherl-ie 1%-ith semantic information

about wtlich connections are most meaningfui.

and Ullman also present several methods of autornatic6lly generating a s e t of

maximal objects for a given datebase s c h c n e , using f ~ c c t i c r , e l and join depen-

dezcies. They allorv that a set cf maximal object.? s3 g r - r e r a t z ? might b e further

tai!ortJ by tLe dcltdtds -' dei.igner. They also permit different users to employ

different se ts of maximal objects, reflecting different cie~%-s on what the impor-

tant connections are. Another capability of maximal objects is that they allow

the database designer to indicate that certain at tr ibutes are so semantically

distant tha t no connection among them should be derived automatically. The

windov; on Y can be identically t h e empty relation, if no rnavimal object in M

contains Y, such as [L AIM in the last example.

Our view in developing window functions for the PIQCE query language is

that data dependencies by themselves a re not sufilcieni for inferring t h e desired

connections among attributes. Also, minimization under weak equivalence is

complex process, and I+-e doubt many database designers %$-ill understand its

exact effect on the meaning of a windorv. There may be several connection

semantics tha t agree with a given se t of data dependencies. lye have defined

window functions based on a se t A of associat ions and a s e t 0 of objects <MW>.

Associations a re se ts of at tr ibutes that represent permissible units of

update. An association is a possible scheme for a tuple entered into the data-

Windows F'unc tions Draft

base. We let r (R) denote all the tuples in the dataSase whose scheme is the

association R. The reader will not be far from right to assume that the se t A of

associations is the database scheme, although, in practice, heterogeneous

tuples may be stored in a single relation through the use of placeholders. We

depar t from usual pract.ice in that we allow subassociations of associations. We

adopted the t e rm association in place of relation scheme to ern?hasize this

departure. We permit tuples over both associations R and S , where R is a

proper subset of S . Under L-JA, there is not much sense in haling relations over

both R and S , as r (R) will be r R (r (S)) . M7ithout UIA, relations over both

schemes do make sense, although L*R4 does dictate certain restrictions, as we

shall see in Section 3.

Example 6: In an association-object database, w-e could have both an association

C I, meaning a course is taught by an instructor, and a containing association C I

S, meaning a course is taught by and instructor to a student.

Objects are also sets of attributes, and represent units of retrieval. Objects

dictate which joins will be used to construct I+-indou7 func t ion . For each object

W E 0, we assume that W is the union of associations in and define a relation

on W , denoted rl(FV), by joining on all associations contained in TY:

r ' (W) = W r (R) .
R E A R L Y

\\-e then define window f u n c t i ~ n [IAo from these object relations by- projecting

the appropriate object relations.

[XI,, = w;oy+) I T ~ X (T (V).

Example 7: Consider a database m-here A = [S C, C I j , meaning ti student takes a

course and a instructor t,eaches a course. Let 0 = fS C I j . For this choice of A

and 0, the connection between student and instructor is by joining on course. If

we add S C 1 a s an association, then tve explicitly store from vihich instructor a

student is taking a course. Not$-, the connection bet%$-een student and instructor

Windows F'unctions Draft

will ->e the projection of r(S C I), rather than students taking a course and a

in?' .uctor teaching some section of that course.

We shall argue in Section 3 for the desirability of the set 0 being closed

under nonempty intersection.

2.2. Weak Instance Window b c t i o n s

The second main path along which window functions have evolved is weak

instance definitions. Weak instances, and their cousins, representative

instances, were first introduced as a means for discussing global satisfaction of a

set of dependencies by a database CEO, Gr, Va>, and for inferring missing infor-

mation in a database state <Mal, Wa>. They have also been used recently to

study the equivalence of database schemes <Me>. We show now how weak

i ~ s t a n c e s are used to define windolt- functions.

A relation I (U) is a c~ntaining instance for database d if

7iRi(I) 2 Ti, 1 s i l p .

For a s e , of dependencies C, I (U) is a we& instance undzr C for d if I E SAT(C)

and I is a containing instance of d . (I satisfies all the constraints in C.) We

abbreviate "weak instance under C' to C-\%I. -4 database state need not always

have a weak instance.

Example 8: The database

has weak instances under C = lB+C$. One is

A B C
1 2 3
4 5 6

If <4 5> in r (A C) is changed to <1 5>, then the databass has no weak instances

Windows Functions Draft

The philosophy of the weak instance approach is tha t a database s ta te

represents partial information about some universal i n s t a ~ c e . However, since

the information is incomplete, i t does not completely determine whlch universal

instance a database s ta te d represents. The weak instances of the s ta te are the

possible universal instances. We can use weak instances to b e h e a nindow func-

tion. The windon- on X will be all those X-components of tuples that appear in

every weak instance of d :

[XI@> = n 7;x.U)
I a C-W1

Since different choices for C give different tvindoia:s, we distinguish the window

function for C as [.Ic.

Of cours?, this defir~ltion for [X I c does ne t gil-e e r effsr_:l~-:: method of com-

putation. If the dependencies in C can be used in a chase romputation <ABU,

MILIS>, then r e p r e s e n t a t i v e i n s t a n c e s can be used to compute [XIc.

Defiaitioz: An e z t e n d c d instznce (El) T over s c h e x e Li i= a re!ction over U that

conteins both vz!ues and rnark2d nulls.

We slssunz nulls a re marked w<th numbzrs tu distirlgulsi~ them, and v:e will

ref€:- t o t h e tuples of an EI a s roij-s to avoid c ~ r ~ f d s i o n . Oi>e particular EI of

i n t e r e s is dzrived from a database s ta te d . First, pad out each relation in d to

have scheme /7 usir,g distinct marked nulls. Next, take thz cnion of the padded

relations. We denote the result by T d . In parts of the seql-le!, we will need to

keep t rack of the relation from which each r o w in Td was generated.

A re;jresentative icstance for a datahese d is formed in tr:o stages. First,

form T d . Second, the chase procedure for depen?er,cies in C is applied to Td to

equate nulls and generate new rows. The result of the s?cond stage is the

representative instance for d under C, 1%-hich we denote i?Ic(d). To summarize:

R i c (d) = c h ~ ~ o ~ (7 ~ ~

It is possible tha t a contradiction t o an equality-generating dependency is

Windows Functions Draft

encountered during the chase, in which case we define the representative

instance to be the empty relation on U .

Maier, Ullman and Vardi <MEV> show that for a largo class of dependencies

[XIc = r;wx(RIc(d j),
where is X-total pro jec t ion: the X-component of all tuple3 that have no nulls

in the X-columns.

Sagiv <Sal> considered [XIr, %%-here F is a set cf FDs expressed by keys.

He gave a condition on database states, the modi f i ed foreign key cons t~ain t ,

that, together with local satisfaction of F, guarantees that a database s ta te will

have a t least one F-%-I. Sagiv later defined the u n i g u e n o s s c ~ n 2 1 t i o n on FDs and

database schemes, which ensures that any locally satisfying database state has

a weak instance <Sa2>. Pis uniqueness condition is a characterization of

independence1 for database schemes under key FDs. We shall denote a window

function based on representative instances under FDs that satisfy Sagiv's

uniqueness condition by [.IK, where K is the set of key FDs.

Yannakakis <Ya> looked at [XIc where C is a sing!e join dependency (JD)

correspondmg to the database scheme, R. That is, C = t*[R,, Rz , . . . , R,]j. We

denote such a window function by [. I R.

Although representative instances give a means to compute [XIc , the

method is not very manageable, especially when the database is large and C con-

tains tuple-generating dependencies. Sagiv <Sa?> showed that [XIK can be com-

puted as the union of projections of e x t e n s i o n jo ins , a parkicuLarly efficient type

of join <Ho>. Yannakakis <Ya> showed that [XI* R can be computed efficiently

when R is acyclic. Maier, Ullman and Vardi <MUV> give conditions for [XIc t o be

first-order (computable with algebraic operations), although they are not partic-

ularly concerned with the efficiency of computation. Ne give here a

'A data3ase schexe R:s zndependent relatve to a set C oi de~endenc~es :f any database d on R
thzt loce:ly set,sfies C elso gloS-l!y setlsfies C (::let IS, 3es e GW:)

-1 6-

Windows Functions Draft

generalization of Sagiv's result, where the FDs need not be keys, but can be any

independent se t of FDs embedded in R Our result uses a slightly modified

variety of extension joins.

Definition: Let r (R) and s (S) be relations. The join r DC T , ~ (S) is an Fmoin o f

r with s o n X+Y if

1. s satisfies X+ Y , and
2. X c R.

Observations: Sote that X must be in R n S . In an extension join, X must equal

R n S . On databases that satisfy CIA, T W 7iXy(s) = T W l iZy(s), where Z =

R n S . In fact, these joins give the projection of the universal instance onto

R Y. Alsg notice that the FD-join of r with s on ,Y+Y satisfies a!l the FDs that r

satisfies, plus any FD W+Z that s satisfies, where W Z 2 X Y. We still have the

efficiency of extension joins for FD-joins, a s a n FD-join of r with s will have no

more tuples than r does.

Definition: For database d (R) = tr ,(R,) , r2 (RS) ,..., rp)] and a se t of FDs F, we

say E is an Fmoin expression o n d under F if

1. E is r, for some r, E d , or
2. E is (E' DQ T ~ ~ ? . (T ,)) , where

X-,Y E F f ,
scheme(E8) 1 X ,
X Y 2 R,, and
E' is an FD-join expression of d under F.

That is, E represents a sequence of FD-joins involving relations in d . Note that

we only nesded the r i ' s as placeholders, so we sj-ill usudly %+-rite of an FD-join

expression on R.

Theorem 1: Let F be an independent se t of Fgs, embedded in database scheme

R For any X subset U , there is an expression E that is the union of projections

of FD-join expressions on R under F such that [l i ' l F (d j = E (d) for every data-

Windows Functions Draft

base d (R) satisfying F 2

Proof: This proof will have several definitions and propositions interpolated in it.

W e intend that the objects mentioned in the theorem statsrnent and this proof

carry over into those definitions and propositions.

We first note that [XI,- = [XIG for any set of FDs G e q u ~ v d e n t to F and that

the de fk t i on of FG-join expression depends only on tile closore of F, so we can

make some assumptions on the form of F. I\-z can rn~dif j - F to an equivalent set

of FDs as long as the r,ew set can still be ernbedded R. First, assume that

every FD in F is canonical. . a single attr ibute on the right side and no extraneous

attr ibutes in the left side. Second, we assume the FDs in F are l oca l l y c losed

under implication: For each R,, all the canonical FD% in Ff that apply to R, are

in F. Note tha t we can modify F to satisfy these two assumptions without

affectin,: embeddability, that there is exactly one se t of FDs equivalent t o F that

sat.isfies both conditions, and tha t this se t contains no trivial F'Ds. Finally, we

note tha t since R is independent under F, no FD of F can apply to two schemes

in F. We ail1 say that FD X + A in F is f r o m R, when I?, is the relation scheme in

R such that X A 5 R,.

Next, we introduce some variations on the rules for chasing with FDs. The

normal F-rule for chasing an El T under an FD X+A E F takes two rows v and

u; in T with v(X) = u(X) and tr ies t o equate v(A) v-ith u(-4). In equating

entries, we allow nulls to be replaced by values and lo\\-er-numbered nulls. If

v(A) and w (A) are distinct values, and FD violation has occured, and we se t T to

9. Also, in applying an F-rule, or its variants below, only nulls in v and u; may be

changed. We shall use two restricted forms of the F-rule in this proof. The NF-

rule (nu1'-preserving F-rule) will only equate v (A) and u ; (A) if one is a value and

the other a null. I t will not equate two nulls. The BF-rule (baslc F-rule) is more

2E. Chm hes ide~endently shown a s i ~ d e r resxlt <Chi, Ch2>.

Windows Functions Draft

restrictive than the KF-rule. The BF-rule is used when T is T d , or derived f rom

Td by chasing. Let X+A be from R,. The BF-rule requires that one of v and w

come from r,(R,) originally. Note that the row, say v , that came from T, will

have a value a t v (A) , and that for some tuple t in r, , t (X -4) = v (X A) .

We now use the SF-rule and the BF-rule to deAne ttt-o restricted types of

chase.

Dekition: If T is an El, then the n u l l p r e s z r v i n g chrz.se of T under FDs F ,

denoted n c h m e r (T) , is one in which only the NFiule for m)s in F is used

Definition: If T is an EI that is derived from T d , then the bzsi~r: chase of T under

F.Ds F, d e ~ o t e d bch=scF(T) , is one in rvhich only the BF-rule fcr FDs in F is used.

W e s ta te x-ithout proof that n c h a s z F (T) and bchme, - (T) represent finite

Chili.ch-Rosser processes, hence their results are unique. Using a se t of FDs G

equivalent to F could give ditrerent results, but 11-5 noted that F is uniquely

determined by our zssumptions. Als:, note t h s t if either restieted chase uncov-

ers an FD violation, so M-ill c h ~ ? , - (T) . Note thet in both ~ c h a s e ~ (T ~) and

bc :hmeF(Td) , when a rule for X + A is applied to rows z. a n d T I : , both v (X) and

u; (X) >+-ill contain no nulls, since neither chase equates nulls.

Ucfition: The res t ra ined represt intat ive i n s tance for dat3base d under F ,

denoted R171F(d), is bchas?,-(Td).

Tlie foliowing proposition shoit-s that n c h a z car, LE. used in place of bchase

in cor~put ing RRIF(D).

Proposition 1: If d is a locally (hence globaliy) satisfj-ing database s ta te on R

theri

Proof of Proposition 1: We can certainly compute nchme , - (Td j by first comput-

ing T = b c h m e F (T d) and then computing n c h a s e F (T j . The proposition will be

proved if 11-e can show that n c h a s e F (T) = T. Suppose some KF-ruie for X + A in

Windows Functions Draft

F applies to T, where X + A is from Ri. Say the rule applies to rows w , and w2

to change w z (A) to w , (A) (hence w l (A) is a value and w 2 (A) a null). There can-

not be a tuple u in ri(Rr) with u (X) = w I (X) (= u 2 (X)) , or else the BF-rule could

have been used to fill in w 2 (A) , as w , (A) would have to equal u (A) .

We construct a new database s ta te d ' from d by adding a tuple u' to ri,

where u ' (X) = w1(X) . Here is hoiv we form u' . Let u be a tuple over Ri such

that u (X) = w , (X) and u is distinct marked nulls on Ri - X . Chase ri(Ri) u {u j

under the FDs in F tha t apply to Ri. (Any variety of chase will yleld the same

results here.) No FD violation arises, or else one would arise in c h a s e F (T d) , show-

ing that d is not globally satisfying. If this "mini-chase" does not fill in all the

nulls in u, change the remaining nulls to new values tha t do not appear else-

where in d . The resulting tuple is u'. Note that u ' (- 4) must be one of the new

values. If u (A) had been filled in with a value, it would have been filled in during

b c h a s e F (T d) .

We have been careful to construct u ' S O that d ' is locally satisfying. All the

relations except ri are the same as in d , and ri has only had u' added, which

violates no FDs. Let w ' be the row for u' in Td. . Consider computing

bchasep(Td .) by intially ignoring w' . We eventually obtain an EI T ' = T U Iw'j.

Kow consider: w l (X) = w l (X) , but w , (A) # w l (A) , since w ' (A) = u ' (A) is a new

value. Thus we have a violation of X+A, and d ' is not globally satisfying--a con-

tradiction t o the independence of R under F.

We conclude tha t no KF-rules can be applied t o T, so b c h a s e F (T) =

nchar;ep(T) .

Corollary: If in computing R R I ~ (~) for some d , we generate a row w where w is

has no nulls on X A , and X + A is an FD in F from Ri, then there is a tuple

t E r,(R,) with t (X A) = w (X A) .

Windows Functions Draft

Definition: For a row t in a RI or RR/, let u;dou;n -arrgu; be the non-null portion

o f w .

Proposition 2: Let d(R) be database satisfying F and let T be RRJF(Td)

1. For any row u; in T , wdoun-crraw is in E (d) for some F3-join
expression E on R

2. For any tuple t (S) 5 E (d) on R there is a rot\-
w in T w i t h u (S) = t .

Proof of Proposition 2: (Part 1.) The s ta tement is true for T d . We shou- it

remains t rue after application of a BF-rule t o change a null to a value. ,bsdme

u1dou-n-arrow is in E (d) , for some FD-join expression E. Suppose X+A from

R, is used with row w ' to change w(A) to w8(A). We noted in the last corollary

that r,(R,) must contain a tuple t with t (X A) = w'(X A) . Therefore, E ' (d) con-

tains zudown-arrow after w(A) is fi!led in, where E' = E W rm(r,).

(Part 2.) The statement is clearly t rue if E is just r,. Suppose that

t € E (d) where E = E' DQ T X . ~ (T ,) and X+A E F . Thus, t (S - A) E E1(d) . We

inductively assume that there is a row u;, in T with w l (S - A) = t (S - A) . We

also know that ri must have a tuple u with u (X A) = t (X i4). Let w2 be the row

in Td coming from U . \Ye can apply t he BF-rule for X+A t o w , and w 2 t o se t

W1(A) = w2(A). Thus, in T, w l (S) must equal t (S) , or else we can get and FD

viclation, and d is not globally satifying.

From Proposition 2 we can conclude that for any X 2 CT, there is some

expression E tha t is the union of projections of FD-joins on R such that E (d) =

r,(RRIF(d)) for every satisfying state d . In particular, we can form E by taking

every FD-join expression D (that doesn't repeat terms) 11-here scheme (D) 2 X,

projecting each onto X, and taking the union.

The strategy for the rest of the proof is as follows. Given a database d(R)

satisfying F, we want to show tha t RRIF(d) contains all the combinations of

values that RIr(d) does. (RRIr(d) and RI,-(d) could differ in that RIF(d) could

Windows Functions Draft

have equated nulls.) To do so, we exhibit a database d* satisfying F that con-

tains d (relation by relation) such that RRIF(d*) = R/,-(d*). Furthermore, there

will be a mapping $ from rows of RRIF(d*) to rosvs of R-J?IF(d) such that w and

+(w) agree everjwhere w has a value that appears in R R I F (d) . We will con-

s t ruct d* a s tep a t a time, where a s tep adds one tuple to one relation in d . The

addition will have the effect of "promoting" a null to a value in IZLPIF(d).

Let d (R) satisfy F'. Let T = RRIF(d). We knors from Proposition 1 that no

KF-rule can be applied to T. Suppose some F-rule for X+A can be applied to

make changes in T. The F-rule must equate two nulls, since if it equates a null

and a value, so could an KF-rule. Eence suppose the F-rule for X+A can be

applied on rows v and w of T to equate nulls v (A) and u. (A). IVe must have v (X)

and w(X) free of nulls, since T has no repeated nulls. Let X+A be from R,.

There cannot be a tuple t E r, with t (X) = v(X), or else % (A) and w(A) would

ahve been given the value t (A) in computing T.

We shall use the same construction we used to form database d ' in the proof

of Proposition 1. We can add a tuple u ' to ri such that u ' (X) = v(X), U 1 (A) is a

ne-ttr value found nowhere else in d , and Ti U tu'j satisfies F. If X' is the set of

at tr ibutes where u ' has original (to d) values, then v (A") = ~L'(~Y'), as any values

filled into u' during the "mini-chase" will also have been added to v during the

computation of T.

Let us compare T = RRIF(d) to T ' = RRIF(d '). \Ye can compute RRIF(dl) by

f i s t computing T I = RRIF(d) u f y j , where y is the padded version of u'. (That

is, do nothing with the row for u' initially.) lye know that v(X) = w(X) = y(X), so

we may continue by setting v(A) and u;(-4) to y(A) (= u'(A)). I'e have, in effect,

promoted the nulls in v(A) and % (A) in 7' to the value y(A) in T'. We may also

be able to use y to fill in new values for other nulls in T I . Kotice, however, that

in computing T', we can ensure that v always s u p e r s e d e s y , in the sense that if

Windows Functions Draft

y 1 : 5) = x (B) for som-e row x # y in T, , then v (B) = y (9) . Call the s e t of all

such attr ibutes match (y) . Initially, m a t c h (y) = X', and v(X') = y (X ') , so

u (m a f c h (y)) = ~ (m a t c h (y)) . If y is used t o fill in a value for null x (B) in any

roix- x of T , , 'L' (B) can be filled in with y (5) f i s t . If any row x is used t o fill in a

nu!! y(L?j, then either ' ~ ' (9) can be filled in with x (B) kst , or v (B) already

eqtials z (B) . Thus, in T', v (m a t c h (y)) = y (m a t c h (y)) .

Yu'hat can happen to the rest of the rows in T in going from T1 to T'? We will

argue tha t no row other than y %ill have a null replaced by an original value,

hence T and T' will have exactly the same combinations of original values in

their rows. Consider continuing with bchase,- from T 1 . If a null x(B) gets

chzngel to a new value by a BF-rule for Z*B, that value have come from y (B) ,

so Z+B is from R,. This restriction follows from the corollary t o Proposition 1

and the observation that u ' is the only possible tuple in d ' that contains new

values.

Now consider some null in T1 tha t gets filled in viith an original value. We

want to shot\- that only y gets nulls replaced by original values. Suppose we use

the BF-ru!e for Z + B on a row w1 t o fill in w2(B) . If W1(Z 8) is all original

values, then w 2 (B) would have been filled in in T , unless w l or u ; z is y . If u1 is

y , then 2 B 2 Ri, so v could have been used in its place with an KF-rule, as v

has all the original values tha t y does. Since bchasep(Td) = nchmep(Td) by Pro-

poiition 1, there is some way that ~ ~ (6 ') would have been filled in with a value in

T . If w 2 is y, we don't care.

I f , on the other hand, w,(Z B) contains some new values, then, following

previous arguments, Z + B is from R, and u;, is y . If 3 f (4) is a newr value, we

don' t care. If y (B) is an original value, consider the follo~j-ing. Assume w 2 (B) is

the f i s t null to be filled in with an original value from y . Let Q be the maximal

set of at tr ibutes such that y (Q) = w 2 (Q) in T1. Observe tha t y (Q) is all original

Windows Functions Draft

values. Before applying the BF-rule for Z+B to u ; ~ , if any of i ts nulls were filled

in, they must have been replaced by new values from y . I t follows that Q 3 Z .

Therefore Q+B must be in F. Row y (Q B) is all original va!ues and Q B E Ri,

so v could be used to fill in w2(B) using the NF-rule for Q+B. As argued before,

u 2 (B) must have been filled in with a value in T.

So, the only nulls changed to original values in going from T to T' a re in row

y . and y is superseded by v . \Ye can easily construct a mapping I) from TI to T

as described before: For a row w E T' , everyrj-here w has an original symbol,

$(w) has the same symbol. Mapping $ takes every row in T' other than y to the

corresponding row in T, and takes y to v .

A11 this I+-orks has been but one s tep in con;-erting d to d * . Suppose in

RRIF(dt) an F-rule can be used to equate nulls. We can then form d " by adding a

row- to some relation in d ' to promote those nulls to values, with a mapping y7'

from RRIF(cZM) to RR/,-(dl) that preserves combinations of original values. Kote

tha t $' 2 + gives such a mzpping directly from Rli1,-(d ") to RR/,-(d). We can con-

tinue to add rows to relations in d to promote nulls that can be equated by F-

rules. We obtain a sequence of database states d , d ' , d " , d:'!, d:"), Do we ever

reach a database state d:') in this sequence where R R I ~ (~ (~)) = R I = (~ [~)) ? (State

dci) is the desired s ta te d * .) The answer is yes. Kotice a newly added row in

R R I ~ (~ : ~)) is superseded by some row in R R I ~ P (~ { ~ - ')) . By induction, the new row

is superseded by some row in RRIF(d). Therefore, the number of new rows

added to d is bounded by the number of nulls in RRIF(d) , and d * will be

reached eventually.

End of Proof of Theorem 1

Maier, Ullrnan and Vardi <MUV> suggest a departure from the two-step

paradigm for universal scheme query processing that can be used with

representative instances. Rather than apply a query to the intersection of pro-

Windows Functions Draft

jections of weak instances, apply i t t o the p r o j e c t i o ~ s individually, and then

intersect the results. For the alternative model to be attractive, there mus t be

an effective method for computing the intersection of query results, of course.

3. Pru?erties and Theory of W:ndow Functions

EIere we look a t several properties of window functions, and see which win-

dow functions defined so far have those properties. We feel tha t the first two

properties given, the containment condition and faithfulness, a re minimum con-

ditions for a reasonable window function.

3.1. The Containment Condition

Bj - LR.A-, a se t of attributes uniquely determines a connection among the

a t t r i b ~ t e s themselves, which connection a window is supposed to transmit. If a

see of at tr ibutes A' is a subset of Y, whatever the connection among the attri-

butes of X, i t mus t be an aspect of the connection among the attr ibutes of Y.

Example 9: Under LPA, it is pernlissible for [S C I] t o mean a student takes a

course from an instructor and for [S C] t o mean a student takes a course. URA

would not be satisfied if the meaning of [S C I] were changed to a student is a TA

for a course under an instructor.

For a window function t o be consistent with UPLA, whenever S L Y and t is

a tcple in [Y], t (Xj should be in [XI. Stated another 11-ay, [XI 2 I ;~([Y]). This

inequality is the c o n t a i n m s n t c o n d i t i o n . I t is similar to Sciore's notion of doum-

u n r d c l o s u r e <Scl>.

In the two systems tha t do not require a UR4 ddatabase, APPLE and q, the

windon- functions cannot be shown t o necessarily satisfy the containment condi-

tion for all database states. Even if virtual relations in q a re defined solely by

joins, i t is not sufficient t o guarantee t h e containment condition is satisfied.

Windows Functions Draft

Lemma 1: [. I I satisfies the containment condition.

Proof: For the universal instance window function, we have a stronger condition,

namely [X I I = lix([Y]r) for X L Y.

Lemma 2: Let fsl(S1),s2(S2), ..., sm(Sm)] be a set of relations where

S1S2 . . , Sm 2 X. Let { g , , g2, . . . , q, j be a s:et of relations that includes

Is1 ,s2, . . . , sm j. Then

rx(sl DQS2 W . . . DQs,) 2 7iX(gl DQ q , M . . . D Q q ,) .

Corollary: [,Iu, [.] ~ ; r , [la, and ['IAo satisfy t h l containment condition.

Corollary: [W I A o = T I (W), for W E 0.

h m m a 3: Any weak instance window function satisfies the containment condi-

tion.

Proof: Let X L Y and let C be the se t of dependencies for the w-indo~v function.

3.2. Faithfulness

The principle for the next condition is "What you see is what you've got."

The containment condition requires that the set of views given by a windoe func-

tion be consistent with each other. The views given by a 11-indov; function should

also be consistent with the contents of the database. A v.-indou- function is faith-

ful if for any relation scheme R E R, the relation on R in the database agrees

with the window on R , for all s ta tes of the database: r (K) = [R].

This definition assumes that the database has no two relations with the

same scheme, which will be t rue if the database satisfies URA. Since a database

in APPLE could have two relations on the same scheme, the definition does not

apply there. A window function for q %ill be faithful if the c o ~ v e n t i o n is followed

Windows Functions Draft

that the re is only one relation per scheme, and stored r J a t i o n s come before vir-

t u d relations in the relfile.

The universal instance I$-indow function is clearlj- faithful. The window func-

tion [l I W 7 is not neceszarily faithful. Consider tht: database scheme R = { A B ,

5 C, i', Cj, rj-ith 9 a key of 3 C. The TI-indoll- [A C] rril! not nec'essarily agree with

r(,l C): since [A C] contains tuples from T . ~ ~ (A B W B C).

The follo~ving lemma assumes that there are not t~?-:, distinct relations

S C ! I P ; ~ : ; - S R and S in R such that R L S. If R contains such schemes, the

lemrxc: holds if the database relations satisfy the containment condition.

h-r--=- 8 : [and [In :re faithful

Pr+>ci. Liider tabieau niinim;zation, >Q r 2 P i ... P(;; ~ p) \\-ill always be

redu- 2 i~ ri, \$-here r, is the reihiicn with scheme R.

Thee. .:in 2: [. I A o is faithful if only if A G 0 and the relations on associations

in A :, lisfy the containrilent condition.

Prc;:. In the proof, [I,] xvill mean [.IAo

(only if) Ye S ~ O T L - t he contrapositive. Let R be an association of A tha t is not

in 9. Consider a s ta te of the database where r (R) # $5 and r (S) = $, S # R . If 0

has r i 3 gbject containing R, then [R] = $, and the window fucntion is not faithful

to ~ (1 .) . If W E 0 and 2 R, the join used to form r'(FV) must include a t least

on- 1.t ~ C L L G ~ apar t from r (R) . Eence r'(iFj = $5. This equality holds for any

obie:' containing R , so [R] = $ # r (R) .

Kovc suppose A L 0, but the database relations do not satisfy the contain-

mc;n: coridition. Let R and S be associations in A such tha t R 2 S , but r (R) LJ

riR(r(,C)j. It follows that r (R j W r (S) is not a proper subset of r (S) . For any

ob;ei.!- R', W 2 S , r (R) and r (S) will enter the join for rf(iY'), so r s (r ' (W)) G

r (R j ;.a r (S) . Eence, [S] is properly contained in r (R j ><i r (S j , and is not

Windows Functions Draft

faithful t o r (S) .

(i:] If A L 0, and the containment condition holds for the database rela-

tions, it is not hard to show tha t r (R) = r l (R) for any R E A I t follows that

[R] 2 r (R) . By Lemma 2, for any object W containing R , .rr2?(r1(W)) G r 1 (R) ,

so [R] C r (R) , and we have the desired equality.

Henceforth, when dealing with association-object window functions, we shall

assume A 2 0 and tha t the relations on azsoc ia t io~s in A sztisfy the contain-

ment condition.

Weak instance window functions a re not necessarily faithful. For FDs, Men-

de!zon <Me> shoves that for a database s ta te d , therc is z ca= .p l~ te state d ' with

the same se t of weak instances. A complete s ta te essentially is one that is the

projection of its representative inztance. Weak instance v-indow functions are

faithful on complete database states. Ve also have the follo~+-ing two theorems

about particular weak instance window functions.

Theorem 3: [.IKis faithful if every relation scheme in R has a no?trivial key.

Sketch of Proof: Consider a locally satisfying (hence gicjbally satisfying) data-

base s t a te d . Let R € R be a relation scf;s;ne such that nQd3un-

arrou;Gx(RI~d)) contains a tuple t not in r (R) . Let K be a nontrivial key for R .

Modify d t o d ' by adding t ' to r (R) , where t l (K) = t (K) , but t t (R -K) + t (R-K).

Since r(R) does not already have a tuple that agrees with t on K , d ' is locally

satisfying. However, d ' is not globally satisfying, since t will still show up as par t

of a row of RIK(d8) and contradict t '.

The windows in [.IK cen be unfaithful if R has r e l a t i o ~ s with only trivial keys.

Let R = fA B , A C, B D, C Dl, with key FDs A + C and B+D. Then the expres-

sion 1iCD(r(A B) PO r (A C) W r (B D)) can add tuples t o [C D l K that a re not in

r (C D). Kote tha t a relation scheme formed by synthesis <Be> will have no

trivial keys. Theorem 3 also holds if the only scheme wit5 a trivial key is a

Windovii Functions Draft

universal key <BDB>.

Theorem 4: [.] is faithful.

Sketch of Proof: Look at R E R and consider the computation of RI* dd). The

JD *I': is the only dependency used in chssing Td ,;hen fNs~r;liil< the representa-

tive instance for d . We can show by indilction that at each stage of the computa-

tion of the repesen ta t ive instance, if ar,y rov: w is no?_-null on R , then

u (R) E r (R) . Also, for spy tuple t E r (R) , t h e r ~ will a!u:?.j-: be a row u: with

w (R) = t . W e conclude that [R]. R = r (R) .

3.3. Integrity of Objects

The purpose of t h e next condition is to prevent a little knowledge from

being a dangerous thing. The conchtion is s ta ted in t e rms of objects, so i t

applies to only association-object window functions. In this subsection, [.] will

mean [Ibo In Section 3.4, we show how objects can be defined on any window

function, so we shall be able to apply the condition more generally.

The idea behind integrity of objects is tha t if someone knoll-s the semantics

of all the associations within a n object W , then he should be able t o deduce the

rnean:ng of t h e connection on any subsst of W . Formally, for Fv E 0, let

a(') = iR E A'R G W j .

Object W is integrczl relative to [1, if for any subset A' of W, [XI can be com-

puted from fr(R)jR € a (R) j .

Example 10: To se how integrity of oblects can fail, c o n s ~ d e r lJ = IP (painting), 0

(owner), R (art ist) , D (address){, A = tP 0, P R, 0 D, R D{, and 0 = A U tP 0 D, P R

Dl. lye are storing information on owners and art ists of paintings, and addresses

of owners and artists, and rnahng connections on ON-ners and artists. In the

object P 0 D, the connection from painting t o address is via owner. Fowever, the

object P F. D can also add tuples to [P D l , so [P D] cannot be computed from

Windows F'unctions Draft

relations in a (P 0 D) alone. The danger here is tha t if a user knows tha t the

database has information about paintings, on-ners and addresses, but does not

know about art ists , his assumption as t o the meaning of [P Dl ?$-ill be incorrect.

The u-indour [P D] is really the combination of tivo different connection?.

The next theorem shows that integrity of objects is equlvzlent t o t h e objects

being closed under nonempty intersection. This closure property has a cornpu-

tational advantage. I t implies that for any X, there is a urique minimal object W

cor,taining X. That is, for any other cbject 1' that contains X, V 2 W . Thus, [XI

can be computed as r x (r l (W)) , since for any object V 2 X,

r x (~ ' (v >) -C T ~ ~ (T ' (W)) .

KD u ~ i o n s need be taken to compute [A'].

Thsorem 4: All objects in 0 are integral if and onlp if O is closed under nonempty

intersection.

Proof: (if) By the remarks above, if FV is an object an6 i? 2 X, t h e r e is a

nlirlirnal object W', FY 2 G" 2 S, such tha t [X] = .iix(i.'jil-')). The object reia-

tion r'(FV') depends on 01114. relations for a(i : ") , c - i l t h is a subset of a (W) .

Eecce, PI is integral.

(only if) Let X be t h e intersection of objects Ir and ilr, vinere X is not itself

an object. Assume no objects smaller than 1' and i Y have intersection X. There

rliust be some association R in ~ (i v) such that R is 1iot a sclb:ek ~f 1.: SO R is not

in ~ (l ') . By considei-ing states of the database that dS.-r Sji r (R) being e m ~ t y

or nonempty, i t is possible t o induce changes i:: [XI thz t do n-t. depend on rela-

t i o ~ s for a (V) . Therefore, ITis not integral.

There a re direct arguments that the closiire of O ~ J ~ C L S ~ i l 2 - f intersection is

desirable. Kith closure under intersection, azj- ~cindo~*c takes its value f rom a

s i n g l ~ object. There a re no unions needed to c ~ m p u t e v-indo~i-s. When unions

a re used, the re is a!1~3;;s the denqer tha t t h s u s ? r i c ~:?VSI-E: of on!y one or some

Windows Functions Draft

of the connections used to compute a window.

Multiple connections in a w~indo~v may not be a big problem if the various

connections a r e of the same "flavor," as in the [B C] ~ r i n d o ~ v in the banks exam-

ple. There is a common generalization of the t ~ v o connections involved, namely

"customer does business wlth the bank." In the paintings example, there is no

natural generalization of the tm70 connections between paintings and addresses

via oTmer and art ist , since the association between paintings and owners has

quite a different flavor from the association between artists mc! paintings.

Even if object.: a re not closed under intersection, i t seems tha t associations

should be. Consider associations R1 and R2 whose intersection is S . I t makes

sense to have an S-value 1%-ithout any values from R 1 - (in an Rz-tuple). Like-

wise, we can have an S-value without values from Rz - S. I t seems tha t we

should be able t o s tore S-values with neither values from R1 - S nor R2 - S , so S

should be an association.

There a re a t least two ways to modify a set of objects to gpt closure under

intersection. One method is adding more objects and the other method is

renaming attr ibutes. The first method is probably better for t h e banks example:

add a n association B C, meaning the customer deals with the bank. In the paint-

ings example, the second method is preferable: rename D (address) t o ObYER-D

and ArlRTIST-D.

3.4. Implicit Objects

While objects were used In the definition of only one of the F+-indow functions,

we can pick out seis of attributes that behave as objects relalive t o other win-

dow functions. 11 is an implicit o b j z c t for a winiow function [] if the re is some

s ta te of t h e database xhere the inclusion

Windows Functions Draft

is strict. (The inclusion always holds if the window function satisfies the contain-

ment condition.) That is, [V] can contain a tuple that is not in the projection of

any rt7indow on a scheme larger than V.

It is not harc! to h o w for [that the implicit objorts a re precisely 0. For

other ~vindoit* functions, especially weak instance window functions, i t is useful to

discriminate objects f r o m non-objects. We need only s tore expressions for the

windoirs on implicit objects in order to have a simple means to compute all the

windov~s. For the two specfic weak instance ~ i n d o w functions we covered, we

can characterize the implicit objects.

Theo~ern 5: i' is an implicit object for [' I K if V is the union of relation schemes

that ha\-e a lossless extension join under K

Theorem 6: I r is an implicit object for [, I * R if 17 is the scheme of a n embedded

join dependency *S implied by *R, where S L R.

Prmf: Th:: result folloivs from ttvo facts.

1. I i Ri* R(dj contains a rorv that is non-null exactiy on v, then there is an

er~~Zje J l d d J 3 in-cplled by *R with scheme T'. (Lernr~ia 5.1 GI 'ianri3kakis <Ya>.)

2. 11 Y is the scheme of and embedded JD implied by *R, then i t is possible to

L i d a database s ta te d such that Ri* R (d) contains a r o w defined exactly on V,

ant2 no rox-s tha t are rlon-nul! on more than I f .

Both theorems imply that all relation schemes are irnplicit objects. Using

hypergraph notation <BFMY>, we can describe the implicit objects for [. I * R.

The JD *R implies the embedded JD *S, S c R, if and on!y if S is closed, con-

nected, and whenever i t contains two edges of a block of R, it contains all the

ed-r- ,cz - in the block.

The definition of a n object being integral can be extended to any window

functino by pnrasing i t in terms of implicit objects and defining a(W) in t e rms of

Windows F'unc tions Draft

hInIXa 5: ['IK does not guzrantee integrity of objects.

Proof: Let R = fA B C, B C D, A D El and keys A B, B C and A D. (This esarn-

pie is d t i l t o Sagiv <Sal>.) The expression for [.4 -1IK-s

1iAD(r(A D E)) U T ~ ~ (T (A B C) Da T(B C D)).
A D E is an implicit object containing A D, but [.A DlK depeads on more than

r (A D E) .

Leama 6: 1.1, R guarantees integrity of objects.

Proof: I f V and W a r e schemes of embedded JDs imp1.ied by *K, then there is a n

ernbedded JD on scheme F n V i . Thus, implicit objects for 1.1. R are closed

under intersection, and Tneorem 4 applies.

4. Further Work

One objection to UF-4 is that come connections may be lost if at tr ibutes are

renamed in order t o satisfy it. Suppose we have two FACULTY-STUDENT relation-

ships: FACULTY has a STUDEXT in a COERSE, and a FACULTY adlises a STUDENT.

We can rename F-4CULTY t o INSTRUCTOR and ADVISOR to distinguish the two

roles. Po~vever, we lose the connection between INSTRUCTOR and ADVISOR, and

with properties of FACULTY, such as OFFICE. To address this loss, an explicit

hierarchy of roles can be introduced <Sc2, SS>. \Ye have been looking a t exten-

sions t o the association-object window function tha t allow equijoins on attr ibutes

related by the role hierarchy <MRS>. For example, we can use the equijoin on

ADViSOR = FACULTY of the relations r(STVDEZT ,4DVISOF.) and r(FiICUL'lY

OFFICE) t o connect a STUDEST t o his or he r ADVISOR'S OFFICE. Beeri and Korth

<BK> describe a similar approach tha t involves FD information as well. Sciore

and Warren <Sc3> have been experimenting with "file grammars," whicn allow

windoll-s t o include multiple instances of the same attr ibute, as might arise in

Windows Functions Draft

computing an EMPLOYEE'S UYiAGER's M.iL?l'rZGER from the relation r(EMPL0YEE

liKY,AGER).

We consider the question of 11-hen a weak instance window function had an

equivalent computational definition. The dual questio? is st-hether every compu-

tational 11-indowr function has an equivalent st-eak instance definition. An

association-object tvindow function need not have a v - ~ a k instance d e h t i o n .

The problem comes in that weak instance definitions assume every tuple in the

database is pa -t of some universal tuple over U , ~vhere in the association-object

model, LJ might not be an object. That is, some attr ibutes can be too semanti-

cally distant to be connected automatically. Recent work on extending weak

instances t o have "placeholder" nulls <La, St, U12> shou!d allov: a weak instance

definition for association-object window functions. The affect on a representa-

tive instance is t o have "non-chaseable" nulls initially and use ex is tence con-

s t ra in t s <Ma2> to indicate where "chaseable" nulls may be inserted.

Finally, u7e note tha t we been considering windo~vs as purely a mechanism

for database query. P-hat about update? The does cot seem to be the flexibility

t.o upc-ate over arbitrary schemes that there is to query over arbitrary schemes.

The work tha t has been done on universal scheme update <St> indicates that

either a user must be prompted to supply values on additional attributes, or

that the database must store "missing value" nulls.

5. Bibliography

This paper is a revised and expanded version of ar, e ~ r l i c r c ~ n f e r e n c e abstract

k V . Aho, B.W. Kernighan. research!user/a\ra/q/REE4DME, 1980.

A.V. Aho, C. Beeri, J.D. Ullrnan. The theory of joins in relational
databases, ACM TODS 4(3), September 1979, 297-314.

A.V. Aho, Y. Sagiv, J.D. Ullrnan. Equivalence of relational expres-
sions, SIAV J. o n Computing 8(2), May 1979, 213-245.

A.V. Aho, Y. Sagiv, J.D. Ullrnan. Efficient optimization of a class of
relational expressions, AC,:! TODS 4(3). Derember 1979, 435-454.

Windows Functions Draft

Z. Arazi-Gonczarowski. A high-level interface for users in a rela-
tional database, manuscript, Dept. of Computer Science, Hebrew
University, 1933.

-4.K. Arora, C.R. Carlson. The information preserving properties of
relational database transformations, VLDB IV, October 1978, 352-
359.

E. BabS. Joined normal form: A s to i -2~3 t.n?;~oliilg for relational
databases, ACZ TODS 7(4), December 1952, 535-514.

C. Beeri, R. Fagin, A.O. Mendelzon, D. hlaier, J.D. Lllman, M. Yan-
nakakis. Properties of acyclic database schemes, Thirteenth ACM
Symp. on Theory of Computing, May 1931, 355-3Z2.

C. Beeri, R. Fagin, D. hfaier, M. Yannakakis. On the desirable pro-
perties of acyclic database schemes, JA2i:I. 3i)(3), July 1993, 479-
513.

C. Beeri, H.F. Korth. Compatible attr ibutes in a universal relation,
ACM Symp. on Principles of Database Systems, March 1982, 55-62.

C. Beeri, A.O. Mendelzon, Y. Sagiv, J.D. Ullman. Equivalence of rela-
tional database schemes, SIA3 J . o r , C'sxpufin,- 10(2), Mcy 1991,
332-370.

P.A. Bernstein. Synthesizing third normzil form relations from
functional dependencies, ACM TODS 1(3), December 1976, 277-298.

J. Biskup, E.P. Bruggeman. Universal relation views: a pragmatic
approach, VLDB IX, October-November 1933, 172-183.

J. Biskup, U. Dayal, P.,4. Bernstein. Synthesizing independent data-
base schemas, 1979 ACM SIGMOD Conf., May-June 1979, 143-152.

C.R. Carlson, R.S. Kaplan. A generalized access path model and its
application to a reletional dztabzse systs-, 1976 ACM SIGXLOD
Conf., June 1976, 143-154.

E.P.F. Chan. Optimal computat:on ct; I<-tu:ai projeztions for
independent schemes, manuscript, CSRG, 1Jniv. of Toronta, March
1983.

E.P.F. Chan. Efficient optimization of unions of simple chase join
expressions, to be presented a t 1954 ACJ.1 iG1103 Conf., June 1984.

R. Fagin, A.O. Mendelzon, J.D. Ullrnan. A simplifi5d universal rela-
tion assumption and i ts properties, A C J TOL!S 7 (3) , September
1932, 343-360.

M.E. Graham. On the universal relation, CSRG Report, Univ. of
Toronto, December 1979.

P. Roneqman. Extension Joins, VLEB YI, October 1990, 239-244.

P. Eoneyman. Testing satisfaction of functional dependencies,
JACM 29(3), July 1982, 668-677.

P. Eoneyman. Finding lossless joins, manuscript, December 1982.

a progress report, XP2 l\r~rkst ' .3p ~n Relational Database
Theory, June 1991.

S.F. Korth, G.M. Kuper, J.D. Ullman. Sy~ieri1:'U: k database system
based on the universal relation assumption, Stanford Computer
Science technical report 82-944, Janudry 1933.

Windows Functions Draft

H.F. Korth, J.D. Ullman. System/U: A database sys tem based on
the universal relation assumption, XP1 Workshop on Relational
Database Theory, June-July 1950.

S.M. Kuck, D.A. McKabb, S.V. Rice, Y. Sagiv. The Parafrase database
user's manual, Computer Science Technical Report 80-1046, Univ.
of Illinois, December 1990.

S.U. Kuck, Y. Sagiv. A universal relation database sys tem imple-
mented via the network model, ACSZ Symp. on Principles of Data-
base Systems, March 1982, 147-157.

K. Laver. KO-information nulls and. regions of the universe,
manuscript, January 1994.

Y.E. Lien. On the equivalence of database models, JACU 29(2),
April 1952, 333-362.

E.L. Lozinskii. Construction of relations in relational databases,
ACH TODS 5(2), June 1960, 209-224.

D. Maier. Discarding the universal instarice assamption: prelim-
inary results, XP1 Workshop on Relational Database Theory, June-
Ju!y 1990.

D. hfaier. The 7hew-y of Relational Databmes , Computer Science
Press, 1953.

D. Maier, A.O. Mendelzon, F. Sadri, J.D. Lllman. Adequacy of
decompositions of relational databases, J. of Cornputor and S y s -
t e m S A e n c e s 17(2), December 1980, 365-379.

D. Maier, k O . Mendelzon, Y. Sagiv. Testing imp!ications of data
dependencies, ACM TODS 4(4), December 1979, 455-469.

D. Maier, D. Rozenshtein, S.C. Salveter, J.Stein, D.S. Warren.
Tov:ard logical data independonce: .4 relstic::~! query l a ~ g u a g e
without relations, 1982 ACM SIGMOD Conf,, June 1952, 51-60.

D. Maier, D. Rozenshtein, J. Stein. Eeprest~i:i;ig rroles in universal
scheme interfaces. Proceedings of the 1934 IEEE International
Confe~.enet: on Data Engineering, April 1951, i33-i42.

D. Maier, D. Rozenshtein, D.S. Karren. Kindo~vs on the World, 1983
ACM SiGhlOD Conf., May 1983, 63-75.
D. Maier, J.D. Ullman. Maximal objects ar?d the semantics of
universal relation databases, ACM TODS 8(1), March 1993, 1-14.

D. hfaier, J.D. LTllrnan, M.Y. Vardi. The equivalence of universal rela-
tion definitions, to appear ACJ! TODS.

D. Slaier, D.S. Karren. Specifying c;.orinecti~;l- for a universal rela-
tion scheme database, 1982 ACM SIGSLOD Conf., June 1962, 1-7.

RO. Mendelzon. Database s ta tes and their tableaus, P 2 Workshop
on Relational Database Theory, June 1991. To appear ACM TODS.
S.L. Osborn. Towards a universal relation interface, VLDB V,
October 1979, 52-60.

J. Rissanen. Independent components of relations, ACM TODS 2(4),
December 1977, 317-325.

D. Rozenshtein. Query and Role-Playing in the Association-Object
Database :vIodel, Ph.D. Thesis, S 2 K Y a t Sioriy Erc;ok, June 1983.

Windows Functions Draft

Y. Sagiv. Can we use the universal instance assumption T\-i-itkout
using nulls?, 1981 ACM SIGMOD Conf., April-May 1981, 105-120.

Y. SagiTk7. A ch3racterizzticn of globelly cor,s:stenk d;ke5clez znd
their correct access paths, XC!d TODS 5(2), June 1953, 266-236.

E. Sciore. The universal inskan ce and dztabase deslzn, Doc;ural
dissertation, Princeton Univ., October 1950.

Improving serriant~c s?zcificatlcx in a rt!ational daizbzse, 1979
ACV S i G k O D Conf., Xay-dune 1979, 170-173.

E. Sciore. File grammars, XP4.5 Korkshop, Stanford, C.4, August
1993.

K.L. Schenk, J.R. Pinkert. An algorithm for servicing multi-
r e l a t i o ~ a l queries, 1979 AChI SlG?.!Og C3?f . , 4uf'-lt- 1977, 10-20.

J.M. Smith, D.C.P. Smith. Database abstractions: Aggregation and
generalization, AGY TO2S 2(2), June 1377, 1G5-133.

J.F. Sows. Conceptual graphs and da ta base interface, lBhl Journal
of Research and De~elgpment 20(4/, July 1976, 335-357.

J. Stein. Data Definition and Update in t h e Ass3ciati3n-OSjezt gats
Model. Ph.D. Thesis in preparation.

K. Eubleta. Nz:-igztimal facilities for rc!zticnz! dztst;sscl, lzfcirms-
t i o n Sys tems 8(1), 1983, 29-36.

J.D. Ulirnan. The U.R. slri2;es back. AC;! Syrnp. on Frirluiplcs of
Database Systems, March 1952, 10-22.

J.D. Ullman. Universal relation interfaces for database systems.
IFIP 83, September 1983.

Y. Vassiliou. Functional dependencies and incornplzte information,
VLDB YI, O c t c S ~ r 1930, 250-269.

A. A universal table relational da ta base model v-ith blank
entries, unpzb'iizh~r! rE?nuscript, 197P.

hi. Yannakakis. Algorithms for acyclic database schemes, VLD3 VII,
September 13X, 62-34.

C. Zaniolo. The database language GEM, 1953 ACV SIGMOD Conf.,
May 1993, 207-218.

