
A RlSC Architecture for Symbolic Computation 

Richard 8. Kieburtz 

Oregon Graduate Institute 
Department of Computer Science and Engineering 

20000 NW Walker Rd 
Beaverton, OR 97006-1 999 USA 

Technical Report No. CS/E 87-001 
February 1987 



A RlSC Architecture for Symbolic Computation 

Richard 6. Kieburtz 

Oregon Graduate Institute 
Department of Computer Science and Engineering 

20000 NW Walker Rd 
Beaverton, OR 97006-1999 USA 

Technical Report No. CSIE-87-001 
February 6, 1987 



A RISC ARCHITECTURE FOR 
SYMBOLIC COMPUTATION 

Richard B. Kieburtz 

Oregon Graduate Center 
Department of Computer Science 

and Engineering 
19600 N.W. von Neumann Drive 

Beaverton, OR 97006-1999 USA 

Technical Report No. CS/E 87-001 



Kieburta G-machine February 6,1987 

A RISC architecture for symbolic computation 

Richard B. Kieburtx  

Oregon Graduate Center 
19600 N.W. von Neumann Dr. 
Beaverton, OR 97006 

1. Introduction 

During the next five t o  ten years, we can expect t o  see symbolic computation 
experience the sort  of explosive growth t h a t  has occurred in numerical computation in 
the past ten years of the supercomputer revolution. Large-scale applications t h a t  we 
foresee for symbolic computation include the use of automated deduction for design 
verification in information systems and digital electronics, expert systems for business 
and industry and algebraic manipulation systems for science and engineering. Demands 
for cheap symbolic processing will drive the development of specialized architectures 
and of parallel computing solutions. 

This paper describes a particularly promising new architecture for symbolic com- 
putation. I t  is amenable t o  a variety of implementations. The one we describe here is 
a sequential processor with a RISC architecture [Pas821 and a tagged, dynamically allo- 
cated,  list-structure memory [Kie85]. Simulation of the implementation provides a 
preliminary evaluation of its performance [Kie87]. Parallel implementations are  also 
being studied. 

1.1. Why LISP isn't enough 
LISP is a mature  programming language and will continue t o  be important  

because of a large user base. But LISP's do  not incorporate several new advances in 
programming methodology t h a t  save programming effort, including: 

A polymorphic type system with automatic type inference 
Declarative programming with demand-driven scheduling 
Pattern-matching syntax for ease of data-structure access 
Algebraic d a t a  types 
A logic programming option 

Because LISP lacks a type system, LISP-oriented architectures typically use type tag- 
ging and support low-level type checking a t  runtime -- a n  expensive overhead. Newer 
and more powerful languages can be executed more efficiently than  compiled LISP. The 
newer languages, when coupled with modern, interactive programming environments 
provide a new programming methodology. 

1.2. Graph reduction -- a paradigm for symbolic computation 

Symbolic processing involves the manipulation of expressions, which includes 
specifically the operations of binding variables, applying substitutions t o  expressions, 
matching patterns,  regrouping and rewriting terms. The task of a symbolic processor is 
t o  evaluate expressions t o  new expressions, according t o  a prescribed set  of evaluation 

The  research reported here has been partially supported by the National Science Foundation under grant No.  
DCR-8405247. 
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rules. When expressions are represented by strings of ASCII characters, a symbol pro- 
cessor is a symbolic interpreter for expressions. This has been a traditional approach t o  
symbolic computation. O n  the other hand, expressions can be represented directly by 
d a t a  structures in a memory, with several significant performance advantages. 

(i) Subexpressions are  immediately accessible via pointers. 

(ii) Multiple copies of an  expression can be shared by copying a pointer, ra ther  than 
by copying i ts  entire representation. 

(iii) Potentially infinite expressions can be represented by cyclic d a t a  structures. 

(iv) With tagged memory, distinguished d a t a  structures representing particular expres- 
sion classes can be cheaply implemented. 

In general, the representation of a expression by a d a t a  structure is a rooted 
graph, whose nodes are  architecture-defined d a t a  structures (such as a cons cell) and 
whose arcs are pointers embedded in these d a t a  structures. When the rules for evaluat- 
ing expressions can be expressed a s  directed rewrites, we call them reduction rules. The 
evaluation of a n  expression represented a s  a graph by the repeated application of 
reduction rules is the process of graph reduction. I t  is a basic computational paradigm. 

A graph-reduction architecture must distinguish a n  unreduced graph from one 
t h a t  is reduced. This distinction must potentially be recognizable a t  every s tep  of a 
computation. I t  can be performed efficiently if the property (of being reduced) is desig- 
nated in memory by a t a g  on the root node of each graph. Analogously, a n  architec- 
ture t o  support logic programming must distinguish a n  unbound variable from any 
other kind of expression. This justifies another memory tag .  

1.3. Programmed graph reduction 

Graph reduction was first introduced in connection with combinator reduction for 
evaluating applicative language programs [Tur79]. In the past  eight years, combinator 
reduction has  been extensively studied and several implementations have been built in 
software and hardware [Sch86]. Direct reduction of combinator graphs is a n  at tractive 
computational paradigm because no separate program is required t o  provide control. 
Control is inferred directly from the graph undergoing reduction, by interpretation of 
the combinator in the applicative position in the graph identified for reduction (the 
redex). This is a n  elegant scheme for computation. 

Unfortunately, this scheme does not achieve very high performance with any 
hardware implementations known t o  us. S ,  K, I combinator reductions are  very small 
computational steps. (The I combinator, which optimizing compilation schemes seek t o  
eliminate, is effectively a NO-OP instruction.) Many times, a reduction s tep  serves 
merely t o  regroup local da ta .  Using a richer set  of combinators relieves this problem 
somewhat, but  does not solve i t  completely. 

Furthermore, the interpretation of a combinator is a n  inherently sequential 
activity. This is not t o  say t h a t  parallel computation is not possible by identifying mul- 
tiple redices for concurrent reduction. Rather,  a t  each redex, application of a combina- 
tor  requires fetching the da tum t h a t  represents the combinator, performing a case 
analysis of this da tum (this corresponds t o  instruction decoding in a programmed com- 
puter), and executing the consequent graph transformation. In a von Neumann com- 
puter, the analogous fetch, execute and write sequence could be overlapped in time with 
the preceding and following such sequences in a data-path  pipeline. But in a 
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combinator reduction machine, the control is not independently available t o  direct the 
pipeline as i t  is in a von Neumann computer. One of the principal schemes used t o  
make computers run faster, pipelining the d a t a  path,  is made unavailable by pure com- 
binator reduction. 

Graph reduction does, however, make possible one of the most important  para- 
digms of the new programming methodology: demand-driven scheduling. I t  is also 
strongly identified with a model for integrated logic and functional programming 
[Lin85]. Demand-driven scheduling allows the programmer t o  specify the simultaneous 
solution of a system of constraints without specifying in detail the order in which the 
interdependent components of a solution must be produced. I t  supports transparent  
backtracking control. I t  is a relatively expensive computational paradigm, but  one t h a t  
should be available for the power i t  provides. 

Compiled graph reduction provides a satisfactory resolution of the conflicting 
demands for flexibility (demand-driven scheduling, logic variables) and performance. 
Compiled graph reduction differs from combinator reduction in t h a t  control is directed 
by a n  instruction s t ream separate from the d a t a  graph. Pipelining is possible, and the 
pipeline is interrupted only when d a t a  dependent control decisions cannot be avoided. 
In the G-machine implementation, interruptions of the pipeline have been made 
extremely brief. 

Compilation can detect the majority of subexpressions for which demand-driven 
scheduling (or provision for the occurrence of logic variables) is not called for. The 
compiler produces code directing call-by-value computation for such expressions. When 
the compiler detects a n  occurrence of a variable whose value may not have been pro- 
vided (a  call-by-need variable) and a value is required, i t  inserts a n  EVAL instruction 
into the compiled instruction stream. EVAL is essentially a combinator. The G- 
machine executes call-by-value code like a RISC, and executes the EVAL combinator by 
expanding i t  into a stat ic code sequence, just a s  would be done in a microcoded imple- 
mentation. The result is a high performance architecture for the new programming 
methodology . 

2. Architecture of the G-machine 
The  G-machine is a n  abstract ,  s tack machine architecture for computing by pro- 

grammed graph reduction. The  architecture was originally defined by Thomas Johnsson 
(Gothenburg) a s  the evaluation model for a compiler for LML, a purely functional 
dialect of the programming language ML with lazy evaluation rules. This compiler 
translates a source-language program into G-code, the instructions of the abstract  
machine. I t  further translates the G-code representation of a program into target  code 
for a conventional architecture, using attribute-driven code generation. 

An initial design of a hardware G-machine [Kie85] executes G-code by expanding it 
into microcode t o  be executed by a n  internal execution unit. The  internal execution 
unit is RISC-like, in t h a t  most of i ts  instructions execute synchronously, and in a single 
cycle of the internal clock. I t  had been hoped t h a t  the bandwidth required of a control 
memory would be significantly less than t h a t  needed a t  the input t o  the execution unit 
because each G-code instruction expands into a sequence of RISC-like microinstructions. 

Traces  of the dynamic instruction sequences executed (in simulation) by this imple- 
mentation showed t h a t  the expansion of G-code into microcode did not significantly 
reduce the  bandwidth required of the control memory. Although the ra t io  of executed 
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microinstructions t o  G-code was as high a s  5.5:l for many example programs, there 
occur sequences of G-code t h a t  translate almost 1:l into microcode. During these 
bursts, the control memory must furnish G-code a t  virtually the same ra te  a s  the exe- 
cution unit consumes microcode. The permissible bandwidth reduction is mostly at tr i-  
butable t o  more compact coding of the G-code, relative t o  the microcode. This obser- 
vation has  led us t o  a second-round design of the G-machine a s  a true RISC, without 
microcode. 

2.1. Performance enhancement opportunities 

A hardware implementation of the G-machine has  significant performance advan- 
tages over a software implementation for a conventional microprocessor because: 

(a) I t  provides hardware support for stack operations in processor registers, thereby 
avoiding a level of indirect access through memory t o  access stack-addressed da ta .  

(b) I t  is inherently a tagged architecture. Tags  are  aggregated with d a t a  so t h a t  
they a re  available in a single memory fetch. 

(c) A dynamic, list-structure memory architecture is directly implemented, and per- 
forms garbage collection concurrently with processing activity. 

(d) The RISC internal architecture executes most instructions in a single clock cycle, 
with relatively high instruction dispatch efficiency. 

(e) A novel design for a n  instruction fetch pipeline produces very high instruction 
throughput even in the presence of control jumps and literal d a t a  in the instruc- 
tion stream. 

processor 
memory 

I '-1 I /O bus 

- 
Figure 1 -- The G-machine embedded in a host computer system 

These are  optimizations of a n  architectural implementation t h a t  has  been designed for 
fast evaluation of languages intended for symbolic processing. Not all of these optimiza- 
tions are  feasible for a general-purpose architecture t h a t  must execute a n  operating sys- 
tem. The G-machine processor is a slave t h a t  operates under the control of general- 
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purpose host, and requests any O/S services it needs from t h a t  host. In particular, the 
current design of the G-processor has no special hardware t o  support process manage- 
ment, interrupts or virtual memory. I t  could be operated in a multi-processing mode, 
could interact with external device processes, and could execute from virtual memory 
by extending the simple interface provided between the G-processor and i ts  host. In the 
present design, however, the interface allows the G-processor only t o  signal (interrupt) 
the host after having deposited in a n  agreed-upon location in G-memory the d a t a  
describing a service request. The G-processor then enters a wait s t a t e  from which the 
host reawakens i t  after having provided the requested service, using shared access t o  
the G-memory. 

2.2. The abstract architecture 

Components of the abstract  architecture of the G-machine are: 

(P) a traversal  stack t h a t  holds pointers into the expression graph; 

(V) a stack of registers for algebraic expression evaluation; 

(ALU) a mechanism implementing a set of primitive algebraic operators; 

(C) a sequential controller; 

(G)a  dynamically allocated store for nodes of the expression graph; 

(E) a n  environment memory containing control sequences compiled from function 
definitions; 

(D) a dump stack which contains the context of nested function calls. 

The abs t rac t  architecture defines a set  of operators (the G-code instructions) in terms 
of register transfers among these components. 

2.3. Architectural implementation -- the G-processor 

The  hardware implementation of the G-machine reflects the abstract  architecture, 
but  is not merely a hardware interpreter. The P-stack is implemented a s  a virtually 
unbounded stack by providing an automatic overflow mechanism from a n  initial seg- 
ment implemented a s  a register file within the G-processor. Dump contexts are  also 
saved in this stack,  making it unnecessary t o  explicitly save or restore processor context 
a t  a function call or return. The V-stack is a bounded-length stack coupled closely with 
the ALU. The V-stack is implemented separately from the P-stack in order t o  allow 
overlapped execution of ALU operations with non-ALU operations t h a t  may use only 
the P-stack. 

There is no explicit hardware representation of the environment, El of the abstract  
architecture. I t  corresponds t o  the use of function descriptor words in the G-memory, 
and the (separate) G-code program store. The control mechanism, C,  of the abstract  
machine is represented in the hardware processor by the instruction fetch unit (IFU) 
and the processor controller. 
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Figure 2 -- Internal organization of the G-processor 
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2.4. G-machine data types 
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P-stack ALU and 

V-stack 

The d a t a  types discriminated by the G-machine are various forms of nodes of a n  
expression graph. The  basic node form is a pair of cells, but  a node may designate (a)  
a n  application node not yet reduced, (b) a basic value (a  fixed-format number, a charac- 
ter  or  a boolean), (c) a structured value. A fourth form, (d) a vector node, provides 
contiguous storage cells for structured values. A fifth type, whose format is similar t o  
(a) except for the use of a n  additional tag ,  represents an  unbound variable and will be 
used in executing procedures compiled from first-order Horn-clause logic. 

instruction 
fetch 
unit 

application 
101 1 pointer LO11 pointer I 

vector node 
100 1 length count 1 11- I da tum 1 m--- 

boxed pair 
I I- ( datum 1111 pointer 

unboxed pair 
( 10 1 basic value 1 110 1 basic value I 

word 0 word 1 

Figure 3 -- formats of the G-machine d a t a  types 

The  term "boxed value" has  been adopted from Luca Cardelli [Car841 t o  refer t o  a 
structured value, a s  distinguished from a basic value (number, character  or boolean) 
which is "unboxed". 
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2.5. Vector nodes 
Vector nodes were added t o  the abstract  G-machine by Lennart Augustsson 

[Aug86]. Vectors can provide constant-time access to storage for tuples of values, func- 
tion applications with multiple arguments, or functional ar rays  [Hug85]. The represen- 
tat ion is not entirely straightforward. 

The  basic operation in graph reduction is t o  replace a n  unevaluated expression 
graph by the graph of i ts  value. These graphs are  represented a s  linked d a t a  structures 
in the list-structured, heap memory. Graph replacement is accomplished in the G- 
machine by overwriting the storage cell a t  the root of the expression graph with the 
root of the result graph. The G-code UPDATE performs this  operation. 

I t  is straightforward t o  implement an  UPDATE if each graph node is represented 
by a fixed-size storage cell. However, if vector nodes of various sizes are  introduced, 
then the value t h a t  is t o  replace the root of a n  expression graph might be represented 
a s  a vector tha t  requires more storage than has  been allocated for the root node. 

T o  avoid this problem, a vector value is not represented by a single vector node, 
but by a pair of nodes, the first of which is a boxed pair and the second of which is a 
vector node. Figure 4 illustrates the update of the root of a n  application graph by a 
vector value. 
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UPDATE 1 

Figure 4 -- Storage representation for vector values 
The diagram illustrates update by a vector value 

The  first element of a vector is present in the first graph node, which is always a stan- 
dard  pair of cells, tagged a s  a boxed value. The second cell of the pair points t o  a vec- 
tor  node, whose first cell contains a count of how many vector elements follow. 

2.6. Evaluating applicative expressions 

T o  better understand the computational requirements of graph reduction, i t  is 
helpful t o  consider ways t o  evaluate applicative expressions. There are  several ways 
t h a t  the reduction of a function application can be initiated. If the compiler deter- 
mines t h a t  the value of a n  expression will be needed when the expression is first formed, 
then it can be evaluated directly by a function call. The argument expressions (or their 
values, in a call-by-value computation) are stacked, building a local environment for 
evaluation of the function body. Then the function is invoked by a CALL instruction. 

An applicative expression t h a t  designates the value t o  be returned in a function 
body is called a tail-call. Tail-calls can be further optimized, because the call t o  the 
function can be implemented simply by a control jump t o  the entry point of the func- 
tion code, without saving a return address. When a recursively-defined function 
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contains recursive tail-calls, these are  automatically transformed into iterative control 
loops by the  tail-call optimization. 

When lazy evaluation is the rule, a n  applicative expression is not t o  be evaluated 
when first encountered. Instead, a n  expression graph (called a suspension) is con- 
structed. This graph has  the form of a vine, with application nodes along i ts  spine, and 
a function descriptor a t  i ts  left corner, a s  shown in Figure 5(a). When the value of a n  
expression t h a t  may be a suspension is needed, a n  EVAL combinator is applied t o  the 
expression. EVAL tests  the evaluation t a g  on a cell of graph memory. If the t a g  is set, 
indicating t h a t  the cell has  already been evaluated, then the EVAL completes without 
further action. 

On  the other hand, if the cell is the root of a n  application graph, then EVAL 
traverses the graph, pushing pointers to the arguments into the P-stack, and inspects 
the node t h a t  i t  finds a t  the end of the normal-order spine of the graph (Figure 5(b)). A 
function descriptor consists of the number of arguments expected by the function, 
paired with the initial address of the code sequence compiled for the function body. 

(4 
Figure 5 -- snapshots of the EVAL sequence 
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EVAL determines whether the P-stack contains sufficiently many arguments t o  proceed 
with reduction of the application, and if so, reconfigures the P-stack t o  contain pointers 
t o  the root of the redex and to each of the arguments of the application (Figure 5(c)). 
Underneath the redex root pointer in the stack are stored (i) the return address, and (ii) 
the excess argument count, which is the difference between the number of arguments 
stacked for this application and the number expected by the function. EVAL then 
invokes the function body referred t o  by the descriptor. In case insufficient arguments 
have been stacked, the expression represents a part ial  application and is not evaluated 
further. EVAL is the most complex instruction of the abstract  G-machine, and dynami- 
cally expands into 65 hardware instructions t o  evaluate a function application t o  a sin- 
gle argument, plus 18 instructions per additional argument. 

The RETURN operation is complicated by the need t o  determine whether the 
returned value represents a function whose arguments are  present in the P-stack. This 
requires checking the excess argument count t h a t  was saved in the P-stack a t  the point 
of call. If this count is zero, which is the most common case, the return address is sim- 
ply retrieved from the P-stack and loaded into the program counter. When the excess 
argument count is non-zero, the returned value represents a function t h a t  must be 
applied t o  the arguments stacked in the environment of the previous call, so RETURN 
reenters the EVAL sequence. 

3. G-memory architecture 

The  G-machine imposes particularly stringent requirements upon the graph 
memory. Our  simulations have shown allocation ra tes  to be a s  high a s  267,000 
nodeslsec. Rates  in the neighborhood of 100,000 nodeslsec. a re  typical for symbolic 
processing applications. Any of the stop-and-collect memory reclamation schemes 
would add significant overhead t o  a computation by graph reduction. T o  minimize 
overhead, and t o  avoid interruptions of service during garbage collection intervals, the 
G-memory has  been designed t o  use concurrent memory reclamation based upon refer- 
ence counting. 

Concurrent mark-sweep collection is possible [DLM78] but analyses and simulation 
have shown t h a t  i t  does not perform well under conditions of heavy memory utilization 
[HiC84]. 

Copying collectors can incur even greater overhead under heavy memory load. 
Furthermore, concurrent copying would require t h a t  the G-processor have the capabil- 
ity t o  fault upon executing a memory reference t h a t  reads a forwarded pointer, then 
reissue the memory reference instruction on the location referred t o  by the forwarding 
pointer. Synchronization would also be needed t o  enforce mutual  exclusion between the 
G-processor and a concurrent, copying collector when both a t t empt  t o  access the same 
node. This seems unattractive. 

Ideally, the G-memory should manage i t s  own reclamation without help from or 
interference with the G-processor. Dynamically allocated, list-structure memory should 
be a n  architectural primitive of symbolic processing systems. In the design of the G- 
memory subsystem, we have tried t o  come a s  close a s  possible t o  this ideal. The 
memory architecture defines a "smart" controller t h a t  automatically maintains refer- 
ence counts and logs memory allocation instructions. The  reference counts and alloca- 
tion log are  used by a concurrent housekeeping processor t h a t  performs the actual  res- 
tructuring of reclaimed memory nodes. 
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3.1. Memory reclamation by reference counting 

Maintaining a dynamic count of references to each allocated node of a changing 
d a t a  structure is a n  old idea for determining when nodes are  no longer needed. I t  has  
never been made practical for use a t  the level of individual graph nodes because of the 
performance required. If reference-count management were a t tempted by in-line 
instruction execution by the G-processor, the cost of reference counting would dominate 
all other aspects of computation. Not only must reference-count management not be a 
programmed task of the G-processor, i t  cannot even be a programmed task of a co- 
processor of comparable speed without degrading G-memory performance intolerably. 
Managing reference counts a t  the level of granularity of individual graph nodes requires 
specialized hardware in order t o  achieve acceptable performance. 

With hardware support, reference counting is quite feasible, however. Reference 
count fields are  maintained in a bank of G-memory t h a t  is physically separate from the 
d a t a  accessed by the G-processor. Thus, reference counting produces almost no 
memory access contention with the ~ - ~ r o c e s s o r ' .  Reference count management is the 
responsibility of a hardware component t h a t  monitors requests t o  the G-memory from 
the G-processor. This is the only custom hardware component used in the design of the 
G-memory. All other components are off-the-shelf. 

Only ALLOC and WRITE requests from the G-processor affect reference counts. 
The reference count manager interprets the tags of the da tum in a WRITE. If the tags 
indicate t h a t  the value being written is a pointer, then the reference count indexed by 
t h a t  pointer is incremented. 

Since a WRITE request also destroys the previous contents of the addressed cell, i t  
is necessary t o  determine whether the previous content represents a pointer, and if so, 
t o  decrement the reference count indexed by t h a t  pointer. This is a complex require- 
ment. In fact ,  most of the WRITE operations requested by the G-processor a re  for the 
purpose of initializing the values of G-memory cells, not for changing them. Changes 
only occur when the WRITE occurs a s  pa r t  of a n  UPDATE operation. The overhead of 
handling reference count decrements can be mitigated by identifying exactly those 
WRITE operations t h a t  cause decrements. 

For this purpose, we have mandated some cooperation between the G-processor 
and the reference count manager. The instruction sequence implementing a n  UPDATE 
operation includes a special pseudo instruction t h a t  precedes the WRITE t o  each cell of 
the graph node t h a t  is t o  be overwritten. This pseudo instruction is called TRASH. I t  
has no  effect, insofar as the s t a t e  of the G-processor is concerned, but  it is interpreted 
by the reference count manager of the G-memory a s  a n  order for a n  indirect reference 
count decrement operation. T h a t  is, the reference count indexed by the contents of the 
node addressed by the TRASH instruction is t o  be decremented. TRASH is followed in 
the code sequence for UPDATE by a WRITE t o  the same address. To guard against 
the possibility t h a t  a reference count decrement occurs before a n  increment of the same 
count during an UPDATE operation, the reference count manager delays the decrement 
operation until after  processing a following WRITE. 

' The only source of contention t h a t  might be at tr ibuted t o  reference count maintenance occurs during t h e  actu- 
al  collection phase. When a node being collected contains pointer fields, the reference counts of the  nodes pointed t o  
must in t u r n  be decremented. The collecting processor must read the  fields of a node being collected in order t o  find 
any pointer values contained there. This results in some read activity t o  the  G-memory. 

11 
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reference count 
module - 
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reference count 
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Figure 6 -- Block diagram of the G-memory architecture 
The host processor performs actual  collection 
and node allocation transactions on the memory. 

3.2. Stack allocation with persistence 

Hardware supported reference counts can account for references t h a t  a re  explicitly - - 

manifested a s  pointers in the expression graph. The processor s t a t e  may hold addi- 
tional references, however. Internal references can be created or deleted in the P-stack 
of the G-processor by operations t h a t  execute in a single clock cycle. Since these opera- 
tions require only 115 t o  113 the time needed t o  complete a memory operation, it is 
unreasonable t o  expect t h a t  reference count management implemented in conjunction 
with the G-memory could keep pace. Furthermore, t o  count stack references would 
require additional memory operations t o  signal each COPY, P O P  or MOVE operation 
on the  P-stack. This seems impractical. 

Under certain assumptions, however, i t  is unnecessary to account for references 
from the P-stack. The contents of the P-stack are logically segmented into stack 
frames. These correspond t o  the outstanding function body activations a t  any point in 
a computation, analogous t o  nested procedure calls in an  imperative language imple- 
mentation. Suppose a node n has  been allocated during the execution of a function 
call, then the stack frame corresponding t o  tha t  node must be presumed t o  contain an  
unknown number of references t o  n .  Stack frames more deeply nested cannot contain 
any reference t o  n ,  since only the topmost stack frame can be actively modified. Thus, 
if any reference t o  n persists a t  the time t h a t  the function call returns, i t  is either 



Kieburts G-machine February 6,1987 

(A) a reference t h a t  was explicitly written into G-memory in constructing or  updating 
a n  expression graph, or 

(B) a reference contained in a residual pa r t  of the stack frame t h a t  was catenated 
onto  the surrounding stack frame during the function return sequence. 

Any reference satisfying condition (A) will be counted by the reference count manager 
of the G-memory. References occurring only by condition (B) must be prevented. We 
require of compilers for the G-machine tha t  they must ensure t h a t  the following 
reference-count safety condition holds: 

No reference t o  any node allocated during execution of a function call is ever 
included in the residual stack frame upon return from t h a t  call. 

The  reference count safety condition can be satisfied by observing a computation rule: 

RS: The  value returned by a function call must either be a basic value returned in the 
P-stack, or must be represented a s  a n  update of the root of the redex graph 
evaluated by the function call. 

Since there must exist a reference t o  the root of the redex graph a t  the point of the 
function call, the compilation rule RS ensures the reference count safety condition. 
Rule RS  can be considered a s  a functional programming analog of the familiar rule of 
"call-by-reference" t h a t  allows a procedure t o  return i t s  results in storage locations 
passed a t  the point of the call. Enforcing rule R S i s  neither difficult nor does it prevent 
the use of optimized compilation strategies. I t  embodies the paradigm of graph reduc- 
tion. 

When the reference count safety condition is observed, the references contained in 
the P-stack a t  the point of return from a function call a re  never more than  those t h a t  
existed in the P-stack a t  the point of call. If collection of nodes allocated during a 
function call were deferred until the call has  returned, then intermediate (and possibly 
uncounted) references t h a t  may exist during execution of the function call would be of 
no consequence. Based upon this observation, we implement a n  allocation and collec- 
tion strategy called stack aNocation with persistence. 

During execution of a function call, the nodes allocated by t h a t  call a re  not col- 
lected, but  their addresses must be kept track of. Following return from a function 
call, the reference counts of all nodes t h a t  were allocated during execution of the call 
a re  examined. Those whose reference counts are  zero are  collected. The reference 
count of any node pointed to  by a collected node is also decremented and t h a t  node is 
examined for collectability in the usual manner. Any node not collected during this 
sweep is marked a s  persistent. A persistent node whose reference count is la ter  found t o  
be zero may be immediately collected. 

The  only price to be paid for this strategy of deferring collection until after a func- 
tion call has  returned is t h a t  some nodes allocated a s  temporary storage cells will not 
be collected a s  soon a s  they might have been. Thus, the overall use of a n  address space 
will not be a s  efficient a s  i t  might have been if immediate collection were practiced. 

In the G-machine implementation, actual  collection is performed by the host pro- 
cessor, using dual-port access t o  the G-memory. The deferred collection scheme has 
been shown t o  perform well in simulation studies. Assuming a 16 Mhz, M68000-family 
processor a s  the host, the collector has no difficulty in keeping up with the demands of 
the G-processor [Ran86]. 
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3.3. Allocation 
ALLOC is a primitive instruction of the G-processor. I t  is expected t o  complete in 

a single cycle most of the time, although it cannot be assumed t o  be a synchronous 
instruction. T o  support allocation, the G-memory includes a hardware FIFO queue 
holding node pointers pre-allocated from the free storage pool by the host processor. 
Unless this queue is empty, the ALLOC instruction completes execution immediately, 
returning the node pointer from the front of the queue. Each issue of an  ALLOC 
instruction t o  the G-memory is logged in the memory-ops log queue. The  value of the 
pointer returned in response t o  a n  ALLOC is not logged, however. 

In order to base a collection strategy on the reference count safety condition, i t  is 
necessary t o  be able t o  identify those nodes t h a t  were allocated during execution of 
each function call. In principle, this could be done by logging the addresses t h a t  were 
returned in response t o  ALLOC requests by the processor, but  this is unattractive 
because of the storage required t o  maintain a n  explicit address log. 

Suppose i t  were possible t o  allocate addresses sequentially from a free storage 
pool. Then i t  would only be necessary to log the first and the last node address t h a t  
was allocated during each call. If the G-processor were induced to cooperate by issuing 
memory signal instructions START and FINISH a s  pa r t  of the code sequence t o  imple- 
ment EVAL or  CALL, and RETurn operations, respectively, then the G-memory con- 
troller could log the requisite node addresses automatically. 

The  more difficult problem is how t o  ensure sequential issue of addresses in alloca- 
tion. If a linked list were used t o  represent the free storage pool, then this list would 
have t o  be maintained in address-sorted order. The algorithmic complexity of inserting 
the addresses of reclaimed nodes in order t o  maintain a sorted list precludes the use of 
this technique. 

3.3.1. Modified buddy-system allocation 
The  buddy-system strategy [Knu68] was  developed t o  allow easy allocation and 

aggregation of variably sized blocks of storage. In buddy system allocation, the avail- 
able address space is logically partitioned into blocks, each of a size t h a t  is a power of 
two times the size of the smallest allocatable unit, and each block is aligned on a n  
address t h a t  is a multiple of the block size. A block of size ZN, N>1, contains nested 
within i t  a pair  of blocks of size 2N-1. This is a pair of "buddies". Because blocks are 
aligned on addresses t h a t  are multiples of the block size, i t  is easy t o  identify the buddy 
of any block. The  address of the buddy of a block with address A and size Z N  is 
[ A + z ~ J ~ ~ + ~ .  We use the notation [xlp t o  denote the greatest multiple of y t h a t  is less 
than  or  equal t o  x ,  and [%Iy t o  denote x modulo y .  

Associated with each block, although not necessarily in contiguous storage, is a 
t a g  bit t h a t  indicates whether or not t h a t  block is free. Assume the t a g  value is 0 if 
the block is free, and 1 if it is not. A block is free only if every block nested within i t  is 
free. T o  allocate a free block of size 2N, the tags  corresponding t o  size ZN are searched 
in order for the first t h a t  is zero-valued. When a block is selected for allocation, i t s  t ag  
is set ,  and so also are the tags of each of i ts  ancestor blocks, since each of them now 
contains a nested block t h a t  is allocated. 

When a block of storage is reclaimed, i t s  t a g  bit is cleared, and the  t a g  of i ts  
ancestor is set  t o  equal the t a g  of i ts  buddy. This is the boolean disjunct of the tags  of 
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(1) Blocks allocated 

(2) Blocks fully occupied 

Figure 7 -- buddy system allocation 

the (now free) block and i ts  buddy. If this marking changes the value of the ancestor's 
tag,  then the ancestor has  just been freed, and the t a g  of i t s  ancestor must be reset, 
etc., etc. Buddy system allocation allows sequential allocation of free blocks, and cheap 
re-aggregation of buddy pairs. 

Our  need is a little different, however. Suppose for the time being t h a t  we are  
interested only in the sequential allocation of free blocks of unit size. Let  us place a 
different interpretation upon the t a g  bits. A block of unit size will be tagged a s  free or 
allocated a s  before, but  a block of size 2 N ,  N>1, will be tagged a s  allocated only if i t  
contains no free unit block. Thus  a block remains marked a s  free until all of i ts  unit 
blocks a re  allocated. Now, when a block is freed, instead of marking i ts  ancestor with 
the t a g  of i t s  buddy, i t s  ancestor's t a g  is zeroed since the ancestor now contains a free 
block. Zeroing of tags  propagates upward in the ancestor tree until i t  reaches a level 
a t  which i t  produces no change. 

I t  might appear a s  if sequential allocation in the modified buddy system should 
proceed from the top of the ancestor tree, always selecting the leftmost subordinate 
block whose t a g  shows i t  to be free. This strategy would indeed select the lowest 
addressed unit block t h a t  is free, but  would require a number of t a g  inspections equal t o  
logz N,,, which is undesirable and usually unnecessary. 

A more efficient way t o  secure sequential allocation of unit blocks is t o  begin the 
search from the last  address previously allocated. If is a n  even address, then try 
i ts  buddy. If this fails, or if is odd, then move up a level in the ancestor tree. In 
general, if a t  level N and [Alast/NI2~+'  = 0, then t ry  the level N buddy. If this test  
fails, o r  the buddy is not free, then move up t o  level N+l and t ry  again. This will 
locate the lowest addressed block t h a t  contains a free unit block with address greater 
than  AlaSt, if such exists. 
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When such a block is found then the search proceeds downward, selecting the left- 
most buddy t h a t  is marked as  free, just a s  does the search from the top level. However, 
the upward search doesn't very often reach the top level, and so the average number of 
comparisons is greatly reduced. If the address space were randomly occupied with a 
uniform distribution of allocated blocks, and the occupancy ra t io  were 50 per cent, then 
the average number of levels searched would be slightly less than  1.5. The search is 
economical enough t o  be practical for real-time allocation by a host processor. 

This describes in outline the strategy used to  allocate and reclaim storage for the 
G-machine. When the G-processor signals the memory t h a t  a new function call is 
beginning by issuing a START pseudo instruction, the reference count manager enters 
the START into the memory-ops log queue. The host, upon interpreting the sequence 
found in this queue, will note the beginning of a new address allocation interval to  be 
associated with the newly active function call. All ALLOC's t h a t  are  issued are  also 
logged. When the function returns, a FINISH pseudo instruction is logged and the host 
processor can terminate the allocation interval for the call. Note t h a t  the host need 
not analyze the pseudo-ops in real time, insofar a s  the G-processor is concerned. I t  
must only keep up with the average ra te  of issue of the pseudo-ops. 

An allocation interval t h a t  has  been FINISHed can be collected. The host sweeps 
the addresses of the unit blocks, inspecting the allocation tag ,  the reference count and 
the persistence t a g  of each node. Any node with zero reference count can safely be 
reclaimed. Any node not reclaimed is marked a s  persistent a t  this point. When recla- 
mation of a n  interval has  completed, t h a t  interval can be reused a s  a n  allocation inter- 
val for a later  function call. As time progresses, allocation intervals tend t o  become 
fragmented. However, these intervals are  themselves allocated by the buddy system 
and re-aggregation is relatively cheap. 

The  buddy system also allows for allocation of non-unit blocks t o  provide storage 
for vector nodes. This requires keeping a n  extra se t  of allocation tags  for blocks of size 
greater than  one. These tags  are  managed according t o  the original buddy system t a g  
discipline. 

One drawback of reference counting a s  a basis for memory recycling is t h a t  a 
cyclic graph will never be collected, even if i t  becomes unreachable from the roots of the 
active expression graph. No satisfactory, practical algorithm for concurrent collection 
of general cyclic graphs is known. Algorithms t h a t  will allow collection of restricted 
cyclic graphs concurrently and in real time are  possible. Another practical possibility is 
t o  invoke a s top and collect garbage collector a t  infrequent intervals. 

3.4. How to  fetch tagged data from an untagged memory 

One problem t h a t  tagged architectures have is t h a t  the memory structure is 
incompatible with t h a t  of standard systems architectures a t  the word level. General- 
purpose architectures have become standardized on 32-bit words. Backplane busses are 
often built t o  accommodate this word size. General purpose microprocessors are  stand- 
ardized on 32-bit d a t a  paths. A tagged architecture clashes with standardization. 

Two approaches t o  resolve the clash between the tagged architecture of the G- 
machine and the untagged 32-bit d a t a  paths  of general purpose computer systems come 
t o  mind. 
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(1) Accommodate the tags within a 32-bit word by making the internal d a t a  path of the 
G-machine equal t o  32-t, where t is the number of t ag  bits required. Memory fetches by 
the G-processor would conform t o  the standard word size, and the tags and d a t a  would 
be separated internally. This is the tack taken by the designers of the Xenologic X-1 
processor [DDP85], an  application accelerator for Prolog. This scheme has the disad- 
vantage tha t  other standard par ts  tha t  might someday be used in the d a t a  pa th  of the 
G-machine, such as  a floating-point coprocessor, may require a 32-bit d a t a  path,  result- 
ing in a n  internal d a t a  path  width incompatibility. 

(2) Let the internal d a t a  path  of the G-machine be 32 bits and accommodate the tags 
in memory with an  auxiliary byte not necessarily contiguous with the d a t a  word with 
which the tags are associated. This solution might appear t o  require multiple d a t a  
fetches by the G-machine in order t o  aggregate tags and d a t a  into a tagged word. 
Note, however, t h a t  aggregation could be done by a d a t a  cache. Upon a cache miss, 
fetches of both the d a t a  word and the correspondingly addressed tags byte are initiated 
by the cache controller. When both arrive, they are assembled into a single tagged 
d a t a  word of width 32+t bits within the cache. The d a t a  path  width between the cache 
and the G-processor is the full 32+t bits. 

to processor 

Figure 8 -- D a t a  aggregating cache for tagged memories 
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Because i t  allows standard d a t a  path widths to  be maintained both within and 
without the G-processor, we favor the lat ter  solution. 

4. A RISC G-machine 
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As a n  alternative t o  the instruction fetch and translation mechanism originally 
designed for the G-processor, the design is simplified by making i t  a true RISC, dispens- 
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ing with the instruction translation phase entirely2. One difficulty with abandoning the 
design of a microcoded machine is t h a t  there can be a n  impressive give-away in code 
volume if every complex instruction of the abstract  G-machine is replaced in-line by i ts  
s ta t ic  expansion sequence. Take  the EVAL combinator, for instance. The stat ic 
sequence is implementing EVAL is 58 instructions long. When compilation follows a 
lazy evaluation rule, EVAL occurs frequently, and in-line expansion of the stat ic 
sequence of this  instruction alone could multiply the code volume by several times. An 
alternative is t o  realize the few complex instructions whose s ta t ic  expansions are  large 
by subroutines. The subroutine call is a relatively short instruction sequence. I t  does 
represent introduced overhead, however. 

There is a better  alternative than t o  use a conventional implementation of subrou- 
tines. Expansion of the complex operations of a n  abstract  machine into RISC code 
sequences is a rather specialized activity. Complex operations are  never nested within 
RISC sequences, so  the subroutine mechanism does not have t o  be recursive. There are  
no parameters. (Actually, some G-code operations do take  a single parameter,  but 
these operations translate into very short instruction sequences, typically one or  two 
RISC instructions). The IFU can easily be designed t o  perform such simple subroutine 
calls itself, with no introduced overhead. 

4.1.1. Fetch-time macro expansion 

The 32-bit RISC instruction format of the G-machine has  a seven-bit opcode field 
accompanied by a single t a g  bit, called the macro tag. When a n  instruction has  the 
macro t a g  bit set ,  i t  is either the first instruction of a subroutine sequence, or is a n  
instruction in the sequence from which a return must be made. The low-order 10 bits of 
a macro-tagged instruction are  preempted for a subroutine continuation address. 
(Except for jump and conditional jump instructions, and literal d a t a ,  the low-order 10 
bits of the instruction format are unused.) In compiled code, only the first instruction 
of the subroutine sequence representing a complex G-code operation is emitted in line. 
The  remainder of the sequence is loaded with a subroutine library into the  lowest 
addressed page of control memory. 

The  IFU of the RISC G-machine will respond t o  the macro t a g  bit by making a 
transition between two states,  a s  indicated in Figure 9. When the IFU in i ts  normal 
s t a t e  encounters a n  instruction with the macro t a g  set ,  i t  saves the  active program 
counter value in a register and loads the 10-bit address field from the instruction, pad- 
ding the high order bits with zeros. Fetching continues from the addressed subroutine 
sequence until another instruction is encountered whose macro bit is set .  T h a t  causes 
the IFU to return from the subroutine call, reloading the return address from the save 
register. Neither saving nor restoring the program counter inhibits issue of the selected 
address for the  next instruction fetch, and so no delay is incurred. This mechanism has  
the effect of removing the microprogram store t o  the regular control memory, and 
makes the IFU perform the function of a simple microsequence controller. We can 
enjoy the code space economy of complex instructions, but without surrendering the 
performance advantages of a RISC! 

Furthermore, the strategy works well with a n  instruction cache. Since the subrou- 
tines t h a t  implement G-code operations a re  small, they exhibit very good locality and 

2This  idea has been promoted by Bill Hostmann, who not only suggested i t ,  but  argues i t  strongly. 
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On a macro tag, 
perform: 

return 

Normal s t a t e  Subroutine s t a t e  

Figure 9 -- States  of the instruction fetch unit. 
Transitions occur whenever a fetched 
instruction has  the macro t a g  bit set .  

cache misses should not occur once the cache is loaded with the subroutine code. Non- 
locality is induced by switching back and forth between the normal control sequence 
and the subroutine sequences. A two-way, set  associative cache would accommodate 
this  addressing pat tern  very nicely. With subroutines effectively locked into a n  instruc- 
tion cache, i ts  performance should approximate t h a t  of a microstore. 

5. Performance Estimation 

Performance of the G-machine implementation has  been evaluated by executing 
code compiled from a number of functional language (LML) source programs. 

5.1. Macroaimulation 

The macrosimulator (Macrosim) is a n  instrumented interpreter for G-code, the 
instructions of the abs t rac t  architecture. Macrosim is coded in Modula-11, and runs 
approximately as fast  a s  a Lisp interpreter, exclusive of the extra code inserted for 
instrumentation purposes. It includes a garbage collector, and is therefore quite satis- 
factory for simulating the execution of good-sized test programs. 

Even though i t  does not simulate execution of each RISC instruction individually, 
Macrosim can provide d a t a  on RISC instruction execution. I t  uses a table t h a t  sum- 
marizes the number of instructions tha t  would be executed by the G-processor in the 
expansion of each G-code operation. When the RISC sequence is d a t a  dependent, a s  is 
the case for the G-codes EVAL and RETURN, Macrosim's table gives the number of 
microinstructions t h a t  would be executed and the average execution time corresponding 
t o  each data-dependent option. Thus  Macrosim furnishes not only accurate counts of 
G-code operations by species, but also the time attr ibuted t o  them and the total  
number of RISC instructions t h a t  would be executed by the ac tual  G-processor. 

Since the garbage collection implemented in Macrosim does not simulate the refer- 
ence counted garbage collection of the G-machine design, no time has been at tr ibuted 
t o  garbage collection in the statistics reported here. 
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5.2. G-code translation 
In order t o  obtain a comparison with the performance of an  implementation on a 

conventional computer, the G-code output by our compiler has  been expanded into 
native machine code for a DEC VAX-11, a n  architecture with which there is wide fami- 
liarity. Furthermore, the code generator has been instrumented so  t h a t  in the VAX 
code sequence emitted for each G-code instruction, there is included code t o  increment 
two counters. One counts the number of executions of t h a t  G-code instruction species, 
and another counts the number of VAX instructions executed in i ts  expansion (exclusive 
of instrumentation instructions). We thus obtain the number of VAX instructions exe- 
cuted when the abs t rac t  G-machine architecture is implemented by compiling G-code 
into VAX code. 

Of course, there are  some basic differences between the VAX implementation and 
the G-machine design. Since the VAX is not a tagged-memory architecture, The tags  
required by the G-machine are implemented with a n  ext ra  16-bit word extending the 
storage allocated for each graph node. Also, the EVAL instruction is implemented a s  a 
parameterless, assembler-coded procedure. However, the G-code sequences interpreted 
by Macrosim and those translated into VAX code are  identical. 

VAX code generation is attribute-driven and reasonably sophisticated. I t  takes 
advantage of opportunities t o  use auto-increment addressing modes. Operands are  held 
in registers when possible. In the examples we have run, the contents of the G-machine 
V-stack are  always held in registers, never in memory. 

5.2.1. A Comparative Architecture Measure 
Since we can measure the simulated time require for the  G-machine implementa- 

tion t o  execute test  programs and measure the number of VAX instructions executed to 
run the same test programs, we have a way to directly compare the designed G- 
machine implementation t o  t h a t  of a VAX. The measure is 

number of VAX instructions executed equivalent VAX Mips = 
time for G-processor execution (microseconds) 

This measure is more meaningful than raw benchmark timings because i t  is not con- 
taminated by variables t h a t  a re  uncontrollable or hard t o  predict, such a s  time spent in 
performing operating system services, cache performance, or different garbage collection 
algorithms. I t  could be made more universal if the technology-dependent performance 
assumptions made in the design of the G-processor could be factored out.  Primarily 
this means the designed clock frequency. Unfortunately, not all of the technology 
assumptions can be expected t o  scale uniformly. A faster processor does not necessarily 
mean t h a t  a faster G-memory will be available t o  accompany i t .  

Nevertheless, this relative architectural performance figure is more meaningful 
than  figures such a s  the number of function evaluations per second, which is wildly 
unstable across a mix of different test  programs, or the number of graph reductions per 
second, which depends upon compilation strategy a t  least a s  much as upon machine 
architecture and implementation. 

6. Simulation results 
The  G-machine design has been evaluated by simulated execution of a variety of 

test  programs, using several different computation rules realized by variants of a 
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functional language compiler. 

As a technology assumption, the simulator assumes the clock cycle time of the 
implementation to be 100 nanoseconds. When times are  quoted, they are  derived from 
the number of cycles executed. Average execution times for the RISC sequences of each 
G-code species were obtained by a detailed microsimulation of the G-processor design. 
The microsimulation is not described here, but it accurately accounts for the internal 
concurrency of the d a t a  path  pipeline. 

The G-memory is also assumed t o  be synchronous (not essential t o  the design but 
convenient for simulation) and t o  require three cycles t o  complete a read operation. 
The processor does not wait for write operations t o  complete, unless followed closely by 
another memory operation. Caching of the G-memory was not assumed for these simu- 
lations. 

Caching of the control memory was assumed, but  no allowance is made for cache 
misses. Nor was allowance made for virtual memory paging time in either the G- 
memory or the control memory. 

6.1. C o m p u t a t i o n  r u l e s  

Several different computation rules have been followed in compiling code from 
functional language source programs. The source language is LML [Joh84], a purely 
functional language with lazy evaluation rules. However, i t  is obviously not necessary 
t o  adhere t o  a lazy evaluation rule in compiling programs, and we have created several 
versions of our compiler in order t o  compare the performance of different computation 
rules. 

L a z y  e v a l u a t i o n ,  is the rule of the original source language. I t  means t h a t  functions 
evaluate their arguments only by need, and t h a t  the constructors of all compound d a t a  
types are  lazy a s  well. N-tuples are  compiled a s  pairs, nested t o  the right, and each 
pair construction is lazy. Values of defined constants (the definitions appearing in let 
expressions) are  also evaluated only by need. Nested abstractions are  transformed into 
global function declarations by lambda-lifting [Joh85] rather than  by m.f.e. abstraction 
[Hug821 and so  do not achieve "full-laziness". No a t t empt  is made by the compiler t o  
identify textually separate occurrences of equivalent subexpressions. 

S t r i c t  e v a l u a t i o n  means t h a t  both functions and d a t a  type constructors evaluate 
their arguments. Strict evaluation still fails t o  achieve the full economy of call-by- 
value, however. Values are uniformly represented by nodes in the d a t a  graph, and 
when arguments are bound in a function call, they are  communicated by passing 
pointers t o  the graph nodes t h a t  represent their values, even if these values are 
l t ~ n b o ~ e d l ' .  

In call-by-value computation, basic values are  passed directly ra ther  than  indirectly. 
In the G-machine, this means t h a t  basic values are  passed in the P-stack. In the 
presently operational version of our compiler, only arithmetic and conditional expres- 
sions occurring a s  operands are actually passed by value. Applicative expressions are  
passed by reference, because the result of a function application produces a pointer t o  a 
graph node t h a t  represents the value. The G-machine distinguishes between basic 
values and pointers in the P-stack by testing the "is-pointer" t a g  t h a t  accompanies each 
element of the  stack.  
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6.2. Statistics 
Statistics are  given for each program executed by Macrosim, subject t o  the 

assumed invariants s ta ted  above. The statistics presented are: 
a to ta l  execution time, in seconds (cycles X lo-') 
a RISC instruction dispatch ra te ,  (instructions/cycle) 
a microcode expansion rat io (RISC instructions/G-code executed) 

r a te  of G-memory allocations, ( X 

a relative performance, in equivalent VAX Mips 
a to ta l  number of EVAL's executed 
a G-code execution profile, by instruction group 

The RISC instruction dispatch ra te  is a measure of the internal efficiency of the proces- 
sor. A t  a r a t e  of 1.0 the processor would execute one instruction per clock cycle. I t  is 
less than  one because some instructions, such a s  READ from G-memory or  a n  ALU 
operation, do  not execute in a single cycle. When the instruction following one of these 
multi-cycle operations requires a resource in use by the multi-cycle instruction, dispatch 
of the following instruction is inhibited until the needed resource is free. 

The  G-memory allocation ra te  has  been presented t o  quantify the requirement 
imposed upon the G-memory controller. The to ta l  number of EVAL instructions exe- 
cuted has  been included in the statistics t o  help compare al ternate computation rules. 

The  G-code execution profile indicates how the processor is spending i ts  time, and 
in particular, helps t o  determine where effort should be directed t o  obtain further per- 
formance improvements. The G-code groupings used in the profile are: 

Group Activity 
CALL function call and return 
ALLOC graph node creation 
UPDATE node update 
ALU arithmetic operations 
READ read G-memory 
STACK pure stack operations 
J M P  control jumps 
LIT literal d a t a  

G-codes 
EVAL, CALL, RET,  R E T l N T  
ALLOC, MKJ'R, M K M P ,  M K J N T  
UPDATE, U P D A T E P R ,  UPDATE-V 
ADD, SUB, MUL, shifts, etc. 
FST,  SND, GETJ'ST, G E T S N D  
COPY, MOVE, P O P ,  R O T ,  N R O T  
JMP, J Z E R O ,  J J O T Z E R O ,  J J F P T R ,  etc. 
PUSH-CONST, PUSHGLOBAL, G E T B Y T E  

6.3. Test results 

The  first example is a strange function (the Takeuchi function) concocted to pro- 
duce a n  extremely high incidence of recursive function calls. Source code for each of the 
example programs is given in the Appendix. 

The  profile shows t h a t  the time attr ibuted t o  G-code operations in the CALL 
group is affected drastically by the computation model. Under lazy evaluation, the 
EVAL operation is used t o  invoke all function calls. This dominates all other computa- 
tional operations, in terms of to ta l  time consumed. I t  is because EVAL represents 
data-dependent control; i t  must interpret a graph by reading and testing every node on 
i ts  spine. Under a strict evaluation rule, EVAL is replaced by a n  explicit CALL which 
takes little time. RETurns are  actually more costly than CALLS under this rule. 
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. Tak 
Lazy Strict by- Value 

time 1.691 0.542 0.491 
dispatch ra te  0.76 0.67 0.65 
expansion rat io 7.23 2.98 2.62 
allocation ra te  1.13 1.76 0.97 
equivalent VAX Mips 3.23 3.43 
number of EVAL's 190828 1 1 
G-code profile: 

CALL .643 .264 .29 1 
ALLOC .I55 .I30 .030 
UPDATE .053 .I66 .I84 
ALU .039 .I23 .I36 
READ .053 .I65 .I82 
STACK .043 .094 .I13 
JMP .008 .026 .029 
LIT .010 .019 .021 

Note also t h a t  the dynamic instruction expansion rat io (RISCIG-code) is also 
dominated by the expansion of EVAL operations in lazy evaluation. The expansion 
ra t io  is much more modest when EVAL is removed. 

The  RISC dispatch ra te  is adversely affected by removing the EVAL operations. 
The  EVAL sequence of RISC instructions has  been tightly hand coded to allow time- 
overlapped execution of asynchronous instructions (reading G-memory and ALU opera- 
tions) with synchronous instructions t h a t  do  not contend for the same resources. I t  
makes better  use of opportunities t o  use the RISC delayed jump than  do  the sequences 
generated by our compiler. I t  also involves more d a t a  traffic internal to the G- 
processor than  do  typical compiled code sequences. For all of these reasons, the EVAL 
sequence achieves better  instruction dispatch efficiency than is typical for compiler- 
generated code sequences. 

Call by value made only a little difference in the preceding example, in which most 
argument expressions were function applications rather than  explicit arithmetic expres- 
sions. Functions return their values in the expression graph. In the next example, call 
by value effects a substantial improvement. The program is a linear-time Fibonacci 
sequence algorithm t h a t  uses a pair of accumulator arguments t o  hold the two previous 
values in the sequence, and a third argument t o  count down the number of sequence ele- 
ments left t o  be generated. The function is tail recursive. 

Linfib shows the most dramatic speedup from lazy t o  str ict  evaluation, nearly four 
times. This is entirely at tr ibutable t o  having suspended the arguments in repeated 
calls t o  the function under the lazy evaluation rule, even though these are  tai l  calls. 
Notice t h a t  when the the computation rule is strict evaluation, the G-memory alloca- 
tion ra te  has  become 267,000 nodes/second. These allocations are  all for graph nodes in 
which t o  pass a n  integer-valued argument (by reference) in a tail-recursive function call. 
The  call-by-value model eliminates all graph node allocations in this example. 
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Linfib 
Lazy  Strict by- Value 

time .00292 .00074 .00069 
dispatch ra te  0.79 0.66 0.58 
expansion ra t io  5.93 2.23 1.43 
allocation ra te  1.01 2.67 0.0 
equivalent VAX Mips 3.61 4.43 
number of EVAL'S 300 1 1 
G-code profile: 

CALL .649 .018 .019 
ALLOC .I39 .313 .OOO 
UPDATE .001 .003 .003 
ALU .051 .202 .303 
READ .069 .274 .367 
STACK .061 .lo8 .I59 
JMP .010 .040 .072 
LIT .016 .030 .048 

The  last example is one t h a t  requires lazy evaluation, or a t  least lazy evaluation 
of the list constructor. I t  uses Peter  Quarendon's algorithm [Hen801 t o  computing 
prime numbers by the sieve of Erastothenes. This algorithm is formulated in terms of 
streams, or  infinite lists, which are evaluated incrementally by lazy evaluation. The 
computation is cut  off by a result counting function a t  250 primes. 

Primes 
Lazy  

time 0.798 
dispatch ra te  0.72 
expansion rat io 4.84 
allocation ra te  0.88 
equivalent VAX Mips 3.86 
number of EVAL's 104984 
G-code profile: 

CALL .537 
ALLOC .I20 
UPDATE .052 
ALU .086 
READ .lo0 
STACK .077 
JMP .013 
LIT .011 

7. Conclusions 
Simulation of the hardware G-machine demonstrates the performance improve- 

ment achievable through architecture. The relative performance, of the G-processor, 
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expressed in terms of a well-known architecture for general-purpose computation, is 
roughly t h a t  of a 3.6 Mips VAX. The design of the G-processor does not rely on any 
particular device technology, although there are  a few components t h a t  may be difficult 
t o  realize without a custom VLSI implementation. The technology assumptions made 
in the design have been conservative. Commercial, silicon VLSI processors of much 
greater  design complexity have achieved basic clock ra tes  well in excess of twice t h a t  
for which we have designed. Further improvement in performance might also be 
obtained by caching G-memory accesses. 

The G-processor achieves i ts  performance through a few basic mechanisms and 
design strategies: 

a)  A RISC architecture, most of whose instructions execute synchronously and can be 
dispatched on nearly every clock cycle. The measured instruction dispatch 
efficiency (0.58 t o  0.79) indicates the effectiveness of the pipelined d a t a  path.  

b) The context for a function call is maintained by the processor in the top segment 
of the P-stack, which is held in a register file within the processor. The overhead 
of a context switch is minimal, and consists of saving (or restoring) a return 
address and a n  excess argument count in the P-stack. 

c) D a t a  are  tagged t o  distinguish pointers from basic values and applications from 
reduced d a t a  structures. Tags  are  fetched from memory along with d a t a  and can 
be tested in the following cycle. Pointer tags  are  saved in the  P-stack. This 
allows basic values a s  well a s  pointers t o  reside in the P-stack and supports true 
call-by-value optimizations, superimposed upon a graph-reduction model of compu- 
tation. The addition of another t a g  will also support efficient computation of pro- 
cedures compiled from logic programs. 

d) Concurrent management of the G-memory supports a high ra te  of graph node allo- 
cations without interrupting the activity of the G-processor. 

The  design is notable for i ts  versatility. I t  supports several models of computa- 
tion, ranging from lazy evaluation of recursive functions through iteration with call-by- 
value. Several mechanisms are available t o  invoke function calls, providing efficient 
evaluation of function applications whether suspended or not, and whether or not the 
compiler can identify the function being applied. 
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Appendix -- Test Programs 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tak 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
letrec 

tak x y z = 
if "(y < x) then z 
else tak (tak (x-1) y z) 

(tak (y-1) z x) 
(tak (2-1) x y) 

in 
tak 18 12 6 

letrec 
fib x y n = 

if n=O then y 
else fib y ( x + y )  (n-1) 

in fib 0 1 100 

Primes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

letrec 
from x = x . from (x+l) 

and 
counthd lis n = 

if n = 0 then [I 
else hd 1. counthd (tl 1) (n-1) 

and 
filter p seq = 

case seq in 
(a.rest) : 

if aya "= 0 then a.filter p rest 
else filter p rest 

end 
in 

sieve seq = 
case seq in 

(p.rest) : 
p.sieve (filter p rest) 

end 
in counthd (sieve (from 2) ) 250 




