
High-Level Parallel Debugging with LGDF2

David C. DiNucci

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 88-007

December, 1988

High-Level Parallel Debugging with LGDF2

David C. DiNucci

Department of Computer Science and Engineering
Oregon Graduate Center

19600 NW Von Neumann Drive
Beaverton, OR 97006 USA

(503) 645-1 121

Abstract - Most approaches t o parallel debugging have assumed the
worst: t ha t the program t o be debugged must be viewed as a black box,
with no internal structure useful t o the debugger. This document
assumes the opposite-that the program was written using Large-Grain
Data Flow 2 (LGDF2). Using this as a basis, we explore some high-level
debugging techniques tha t become available, including da ta flow debug-
ging and instant replay techniques with a minimum of intrusion by the
debugger.

Index Terms - Parallel Debugging, Instant Replay, Non-determinism,
Large-Grain Data Flow, Data Flow Debugging, Program Visualization,
High-level Debugging, Parallel Monitoring.

1. INTRODUCTION
Most approaches t o parallel debugging t o date have assumed the worst: tha t the

program t o be debugged has no structure useful during debugging. Some advocate
tha t (at least) the first step in debugging should be to statically analyze the program
t o find some inner structure[l] [2]. Simply making this hidden structure visible often
brings problems t o light, by revealing whether the computer is working with the same
structure tha t the programmer had intended t o build. This paper describes the p r a
posed design for a debugger which relies on a programming technique (LGDF2) in
which the high-level structure is designed explicitly by the programmer and used as a
semantic basis for inter-process communication and control during execution[3]. In
addition t o having a valuable role in the efficient design and implementation of paral-
lel programs, this intentional and obvious structure is used as a high-level graphic
basis for debugging. The user can identify with this structure and use the same rea-
soning process for debugging as was used in the original design, unlike other parallel
programming techniques where a "sequential" program is automatically pre-processed
t o create a parallel program. The rigid semantics and the simplicity of parallel
interactions in the model give the debugger the power t o efficiently record, replay, and
display execution.

2. The LGDF2 Parallel Processing Model
The program structure, called an LGDF2 dataflow network, is similar t o a Petri

net, but each transition (called a process) can be a sequential program and each place
(called a datapath) can contain da ta as well as a token-like state. An extra inter-
mediate token s ta te is added t o datapaths t o account for non-atomic firing of
processes. Although the firing condition is very similar t o tha t for Petri nets, a process
can selectively remove tokens from inputs and create them on outputs as part of its
execution. Extra network notation indicates whether data values can flow to/frorn a
process along an edge, since this data flow is not necessarily in the same direction as
11 token flow".

A process is typically implemented in a standard sequential language. I t cannot
maintain any local (hidden) state between executions, and does not use any low-level
synchronization or message sending primitives. Instead, only a high-level primitive is
required which sets the token s ta te of a datapath and relinquishes the process's access
t o the datapath 's data state. Because the inter-process communication structure is
shown declaratively by the network, it can be efficiently implemented on both shared
and distributed memory architectures, unifying the way programming and debugging is
approached across these architectures.

The model has several properties tha t aid parallel debugging. While a process is
executing, its entire da ta s ta te is guaranteed t o remain unaltered by other concurrent
processes. Since a process has a limited amount of input and output during any one
execution, its history typically consists of many relatively short executions. Because
these processes are deterministic, each execution can be completely described by its
input da ta (i.e., the data present on the datapaths t ha t it can read) and the process

code.

The entire scope of effect of any process action is clearly specified in the dataflow
network. As a consequence of this and the deterministic nature of the individual
processes, the execution of a network can be completely represented by a partial ord-
ering (pomset[4]) of its firing and datapath events. Such a pomset, called a n execution
graph, efficiently expresses only the essential t imeldata dependencies of a n execution.
Equivalent executions, where the same transformations occurred t o all input da ta t o
create the output data, produce equivalent execution graphs, even though the order of
unrelated events may have differed greatly.

3. Non-determinism and Execution Replay

Non-determinism, in the sense tha t two different execution graphs can result from
the same dataflow network and input, can occur only when the network has multiple
processes connected t o a common datapath in such a way tha t more than one could
fire on a given token state. Though the reachability of a such a conflict token state
(in Petri terms) cannot always be ascertained, the connection structure, called a
shared datapath, is easily recognized syntactically by either a human or a mechanical
debugger. If a network contains no shared datapaths, it is deterministic[5] and the
execution graph can be constructed (or equivalently, the execution replayed[6]) given
only the dataflow network, the input data t o the network, and the process code. If
the network does contain shared datapaths, an execution graph representing a n execu-
tion can still be constructed given the above information plus the order in which the
processes a t shared datapaths fired. This information is easily recorded with a
minimum of overhead by a n execution scheduler, making possible the replay of any
execution during debugging. In fact, this recording can possibly be made efficient
enough tha t it can be always left on, allowing us to bid good riddance t o "Heisenbug"
parallel debugging effects.

4. A Characterization of Parallel Bugs

Each process in a n LGDF2 network, like those in other parallel programs,
obtains INPUT da ta and produces OUTPUT data. The process's computation (COM-
PUTE) can be thought of both as mapping the INPUT to OUTPUT and as enforcing
an ordering on events (dependent on INPUT) by waiting on external events (INEVNT)
and posting new events (OUTEVNT). Communication and control paths (datapaths)
between processes impose a mapping between OUTPUT/OUTEVNTs of one process
and INPUT/INEVNTs of another.

The source of a parallel bug can only be an incorrect COMPUTE or incorrect
design of the inter-process communication and control structure, but a process may
also malfunction due t o incorrect INPUT or a missing, extra, or badly timed INEVNT.
The effect of any of these malfunctions can be a n incorrect OUTPUT and/or
OUTEVNT. These may, in turn be INPUT and/or INEVNT to other processes,
thereby propagating, amplifying, and/or masking the error.

5. Proposed Debugging Environment
Because of the amplification effect, it is important t o find the error early in the

program's execution. Single-stepping and studying each operation until the fault is
found is clearly not an efficient method. Our debugger offers a multi-level (hierarchi-
cal) approach, where the program is first monitored a t the event
(INEVNT/OUTEVNT) level, then a t the INPUT/OUTPUT level, and finally a t the
COMPUTE level. When an error appears a t any level, the user can descend t o the
next level and replay the same action there. The program can be viewed from any or
all of these levels simultaneously.

Event-level monitoring can locate extra or missing synchronization events in the
program. The debugger displays events by showing the high-level dataflow network,
animating each firing and change in the datapath "token" s ta te as the execution
unfolds. The user has the ability t o optionally freeze (i.e., block from performing
dataflow events) or release selected processes. With these functions, he/she can coerce
the order in which processes will fire or effectively breakpoint and single-step their exe-
cution a t the event level. If the debugger is in REPLAY mode, it bases the firing order
a t shared datapaths on the record obtained from the a prior (non-debugged) execution,
regardless of the user's use of the freeze/release mechanism.

1/O-level monitoring is used t o determine when the data communicated between
processes is incorrect. When the user selects datapaths in the above-mentioned net-
work for I/O monitoring, the da ta therein is displayed in a special window whenever a
process capable of modifying its da ta state finishes with it.

COMPUTE-level monitoring is used t o determine where within a process's compu-
tation an error occurred. When the user selects a process in the dataflow network, a
standard sequential debugger is invoked in a special window when the process fires or
attempts t o change the token state of a datapath. The user can then set breakpoints,
display local values, single-step, etc. One benefit of this approach is tha t the coupling
between this sequential debugger and the parallel debugger is loose enough tha t any
available sequential debugger can be used. The sequential debugger needs no special
facilities for debugging non-sequential constructs, since these are taken care of a t the
higher levels.

Another form of debugging, dataflow debugging, fits logically between the event
and 1/0 levels. I t takes two forms - da ta flagging and data history. Data flagging is
for determining the effect of data currently present on a datapath. The da ta on one
or more datapaths can be flagged by selecting them with the debugger. From that
point, whenever a process fires which can read the datapath, all datapaths which that
process can write also become flagged. A datapath becomes unflagged only when it is
overwritten with unflagged data. This type of tracing allows the user t o find out why
the effects of certain da ta are/aren't being felt far away in another process. Data his-
tory is similar, but in reverse. Here, the user can select a single process and ask where
the da ta for this execution of the process originated from. The debugger ascertains
the answer by inspecting the execution graph.

These levels of monitoring and debugging are made more useful by allowing the
user t o back up and re-execute certain processes while watching from a different
*I anglem (level). The debugger can accomplish this efficiently by keeping a partial
reconstruction of the execution graph. This is then consulted by the debugger t o
determine when datapath contents need t o be recorded t o allow the user t o re-execute
the last N process firings. If the user does indeed re-execute, the reconstructed execu-
tion graph is used t o simulate a consistent global network state while preventing
unneeded re-execution of dependent processes.

6. References

111
I I R. N. Taylor, A General-Purpose Algorithm for Analyzing Con-

current Programsw, CACM, vol. 26, no 5., pp. 362-376, May 1983.

121 W. F. Appelbe, C.E. McDowell, "Anomaly Reporting - A tool for De-
bugging and Developing Parallel Numerical Algorithms", Proc. First
Int'l Conj. on Supercomputing Systems, pp. 386-391, December 1985.

131 D. C. DiNucci, R. G. Babb 11, "Practical Support for Parallel Pro-
gramming", t o appear in Proc. 1988 Hawaii Int'l Conf. for System Sci-
ences.

[dl V. Pra t t , "Modeling Concurrency with Partial Orders", Int 'I Journal of
Parallel Programming, vol. 15, no. 1, pp. 33-71, Feb. 1986.

[51 G. Kahn, "The Semantics of a Simple Language for Parallel Program-
ming", Inj. Proc. 74, pp 471-475, North-Holland, 1974.

161 T. J. LeBlanc, J. M. Mellor-Crummey, "Debugging Parallel Programs
with Instant Replayw, IEEE Transactions on Computers, vol. c-36, no.
4, pp. 471-482, Apr. 1987.

