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Abstract - Most approaches t o  parallel debugging have assumed the 
worst: t ha t  the program t o  be debugged must be viewed as a black box, 
with no internal structure useful t o  the debugger. This document 
assumes the opposite-that the program was written using Large-Grain 
Data Flow 2 (LGDF2). Using this as a basis, we explore some high-level 
debugging techniques tha t  become available, including da ta  flow debug- 
ging and instant replay techniques with a minimum of intrusion by the 
debugger. 

Index Terms - Parallel Debugging, Instant Replay, Non-determinism, 
Large-Grain Data Flow, Data Flow Debugging, Program Visualization, 
High-level Debugging, Parallel Monitoring. 



1. INTRODUCTION 
Most approaches t o  parallel debugging t o  date have assumed the worst: tha t  the 

program t o  be debugged has no structure useful during debugging. Some advocate 
tha t  (at least) the first step in debugging should be to  statically analyze the program 
t o  find some inner structure[l] [2]. Simply making this hidden structure visible often 
brings problems t o  light, by revealing whether the computer is working with the same 
structure tha t  the programmer had intended t o  build. This paper describes the p r a  
posed design for a debugger which relies on a programming technique (LGDF2) in 
which the high-level structure is designed explicitly by the programmer and used as a 
semantic basis for inter-process communication and control during execution[3]. In 
addition t o  having a valuable role in the efficient design and implementation of paral- 
lel programs, this intentional and obvious structure is used as a high-level graphic 
basis for debugging. The user can identify with this structure and use the same rea- 
soning process for debugging as was used in the original design, unlike other parallel 
programming techniques where a "sequential" program is automatically pre-processed 
t o  create a parallel program. The rigid semantics and the simplicity of parallel 
interactions in the model give the debugger the power t o  efficiently record, replay, and 
display execution. 

2. The LGDF2 Parallel Processing Model 
The program structure, called an  LGDF2 dataflow network, is similar t o  a Petri 

net, but each transition (called a process) can be a sequential program and each place 
(called a datapath) can contain da ta  as  well as a token-like state. An extra inter- 
mediate token s ta te  is added t o  datapaths t o  account for non-atomic firing of 
processes. Although the firing condition is very similar t o  tha t  for Petri nets, a process 
can selectively remove tokens from inputs and create them on outputs as part  of its 
execution. Extra network notation indicates whether data  values can flow to/frorn a 
process along an  edge, since this data  flow is not necessarily in the same direction as 
11 token flow". 

A process is typically implemented in a standard sequential language. I t  cannot 
maintain any local (hidden) state between executions, and does not use any low-level 
synchronization or message sending primitives. Instead, only a high-level primitive is 
required which sets the token s ta te  of a datapath and relinquishes the process's access 
t o  the datapath 's  data  state. Because the inter-process communication structure is 
shown declaratively by the network, it can be efficiently implemented on both shared 
and distributed memory architectures, unifying the way programming and debugging is 
approached across these architectures. 

The model has several properties tha t  aid parallel debugging. While a process is 
executing, its entire da ta  s ta te  is guaranteed t o  remain unaltered by other concurrent 
processes. Since a process has a limited amount of input and output during any one 
execution, its history typically consists of many relatively short executions. Because 
these processes are deterministic, each execution can be completely described by its 
input da ta  (i.e., the data  present on the datapaths t ha t  it can read) and the process 



code. 

The entire scope of effect of any process action is clearly specified in the dataflow 
network. As a consequence of this and the deterministic nature of the individual 
processes, the execution of a network can be completely represented by a partial ord- 
ering (pomset[4]) of its firing and datapath events. Such a pomset, called a n  execution 
graph, efficiently expresses only the essential t imeldata dependencies of a n  execution. 
Equivalent executions, where the same transformations occurred t o  all input da ta  t o  
create the output data,  produce equivalent execution graphs, even though the order of 
unrelated events may have differed greatly. 

3. Non-determinism and Execution Replay 

Non-determinism, in the sense tha t  two different execution graphs can result from 
the same dataflow network and input, can occur only when the network has multiple 
processes connected t o  a common datapath in such a way tha t  more than  one could 
fire on a given token state. Though the reachability of a such a conflict token state 
(in Petri terms) cannot always be ascertained, the connection structure, called a 
shared datapath,  is easily recognized syntactically by either a human or a mechanical 
debugger. If a network contains no shared datapaths, it is deterministic[5] and the 
execution graph can be constructed (or equivalently, the execution replayed[6]) given 
only the dataflow network, the input data  t o  the network, and the process code. If 
the network does contain shared datapaths, an  execution graph representing a n  execu- 
tion can still be constructed given the above information plus the order in which the 
processes a t  shared datapaths fired. This information is easily recorded with a 
minimum of overhead by a n  execution scheduler, making possible the replay of any 
execution during debugging. In fact, this recording can possibly be made efficient 
enough tha t  it can be always left on, allowing us to  bid good riddance t o  "Heisenbug" 
parallel debugging effects. 

4. A Characterization of Parallel Bugs 

Each process in a n  LGDF2 network, like those in other parallel programs, 
obtains INPUT da ta  and produces OUTPUT data. The process's computation (COM- 
PUTE) can be thought of both as mapping the INPUT to  OUTPUT and as enforcing 
an ordering on events (dependent on INPUT) by waiting on external events (INEVNT) 
and posting new events (OUTEVNT). Communication and control paths (datapaths) 
between processes impose a mapping between OUTPUT/OUTEVNTs of one process 
and INPUT/INEVNTs of another. 

The source of a parallel bug can only be an  incorrect COMPUTE or incorrect 
design of the inter-process communication and control structure, but a process may 
also malfunction due t o  incorrect INPUT or a missing, extra, or badly timed INEVNT. 
The effect of any of these malfunctions can be a n  incorrect OUTPUT and/or 
OUTEVNT. These may, in turn be INPUT and/or INEVNT to  other processes, 
thereby propagating, amplifying, and/or masking the error. 



5. Proposed Debugging Environment 
Because of the amplification effect, it is important t o  find the error early in the 

program's execution. Single-stepping and studying each operation until the fault is 
found is clearly not an  efficient method. Our debugger offers a multi-level (hierarchi- 
cal) approach, where the program is first monitored a t  the event 
(INEVNT/OUTEVNT) level, then a t  the INPUT/OUTPUT level, and finally a t  the 
COMPUTE level. When an  error appears a t  any level, the user can descend t o  the 
next level and replay the same action there. The program can be viewed from any or 
all of these levels simultaneously. 

Event-level monitoring can locate extra or  missing synchronization events in the 
program. The debugger displays events by showing the high-level dataflow network, 
animating each firing and change in the datapath  "token" s ta te  as the execution 
unfolds. The user has the ability t o  optionally freeze (i.e., block from performing 
dataflow events) or release selected processes. With these functions, he/she can coerce 
the order in which processes will fire or effectively breakpoint and single-step their exe- 
cution a t  the event level. If the debugger is in REPLAY mode, it bases the firing order 
a t  shared datapaths on the record obtained from the a prior (non-debugged) execution, 
regardless of the user's use of the freeze/release mechanism. 

1/O-level monitoring is used t o  determine when the data  communicated between 
processes is incorrect. When the user selects datapaths in the above-mentioned net- 
work for I/O monitoring, the da ta  therein is displayed in a special window whenever a 
process capable of modifying its da ta  state finishes with it. 

COMPUTE-level monitoring is used t o  determine where within a process's compu- 
tation an  error occurred. When the user selects a process in the dataflow network, a 
standard sequential debugger is invoked in a special window when the process fires or 
attempts t o  change the token state of a datapath. The user can then set breakpoints, 
display local values, single-step, etc. One benefit of this approach is tha t  the coupling 
between this sequential debugger and the parallel debugger is loose enough tha t  any 
available sequential debugger can be used. The sequential debugger needs no special 
facilities for debugging non-sequential constructs, since these are taken care of a t  the 
higher levels. 

Another form of debugging, dataflow debugging, fits logically between the event 
and 1/0 levels. I t  takes two forms - da ta  flagging and data  history. Data  flagging is 
for determining the effect of data  currently present on a datapath. The da ta  on one 
or more datapaths can be flagged by selecting them with the debugger. From that  
point, whenever a process fires which can read the datapath,  all datapaths which that  
process can write also become flagged. A datapath  becomes unflagged only when it is 
overwritten with unflagged data. This type of tracing allows the user t o  find out why 
the effects of certain da ta  are/aren't being felt far away in another process. Data  his- 
tory is similar, but in reverse. Here, the user can select a single process and ask where 
the da ta  for this execution of the process originated from. The debugger ascertains 
the answer by inspecting the execution graph. 



These levels of monitoring and debugging are made more useful by allowing the 
user t o  back up and re-execute certain processes while watching from a different 
*I  anglem (level). The debugger can accomplish this efficiently by keeping a partial 
reconstruction of the execution graph. This is then consulted by the debugger t o  
determine when datapath  contents need t o  be recorded t o  allow the user t o  re-execute 
the last N process firings. If the user does indeed re-execute, the reconstructed execu- 
tion graph is used t o  simulate a consistent global network state while preventing 
unneeded re-execution of dependent processes. 
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