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Abstract 

This report is a companion report to CS/E88-020 and provides a detailed description of the 
Fltsim program. Detailed information is provided for operation of the fault simulator and for someone 
to modify the operation of the fault simulator. 
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1. FAULT SIMULATOR COMMAND LINE DESCRIPTION 

Fltsim reads and writes several files. Each input file contains information required by the 
simulator to build physical models of the architecture. The output files are used to determine the 
effects of the faults and as input files for the architecture simulators to simulate operation of the 
faulted network. The command line for the fault simulator includes several options for specifying 
source and destination file names. Listed below are the command line optional arguments with the 
default file names that are used if the option is not specified. All arguments in brackets are optional. 

f ltsim [-b BIF. in] [-s fstat.output1 [-TI 
[-t tech.in1 [-o fbif.output1 [-Nl 
[-f fault. in] [-d test. output ] [-hl 
[-p pad. in] 
[-S seed] 

Where -T is TEST mode 
-N is No faulted BIF output 
-S is the random # generator seed 
-h is help 

Calling Fltsim with the -h option returns the above text indicating all the options and default 
file names that can be specified. The -b option specifies the mapped BIF file input describ 
ing the n-graph, the -t is the technology file input information providing device size infor- 
mation, the -f is the input fault parameter file to characterize the fault distribution, and the 
-p option specifies the physical architecture data file describing the physical hardware. The 
-s specifies the fault statistics output file to  summarize the fault information, -0 the faulted 
BIF fields to be used by the architecture simulators, HAS and ANNE, and -d the test out- 
put file to  list intermediate Fltsim values. The default file names are listed inside the brack- 
ets. The format and content of these files are described in the Fault Simulator File Formats 
appendix. 

A TEST mode can be specified to write intermediate values of the simulation to a file. TEST 
mode can be used to troubleshoot problems that occur, or to obtain more statistics on the characteris- 
tics of the faults or hardware model. Information such as the calculated size of the PNs, internal 
block sizes in the PNs, bus sizes and fault locations are written to this file. Also included is the parsed 
fBIF output, listing information about what the fault simulator thought each line type was (e.g. iotype 
field or link information.). The test file output is helpful if fltsim returns an execution error. 

The TEST mode can be specified two ways. If the -T option is specified or if the -d 
option with a file name is specified, the TEST output will be written. If the -d option is 
listed in the command line, the -T is not required. The -T option writes the test informa- 
tion to  the file named test.output. T o  direct this test output to a different file name, the -d 
option with a file name is specified. 

Fltsim normally will produce a unique set of random numbers each time the procedure is 
invoked. Sometimes it is desirable to have repeatable faults to diagnose problems with input files or 
Fltsim routines. Repeatable random number generation is accomplished by specifying the -S option 
with the same seed value. The sequence of random numbers generated by the random 
number generator will be identical for each invocation of Fltsim with the same seed values. 
The seed value used is printed in the standard output of the fault simulator and is printed in 
the fault statistics file to allow repeating the execution of any Fltsim run. The seed is con- 
tained in the fault statistics file because this file is always generated with each fault 
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simulation. Given the same input file data, successive executions of Fltsim with identical 
seed values will produce output files with the same contents as prior executions. 

Very large networks can be run though the simulator without generating the fSIF file. The 
-N option is then used to  inhibit the writing of the faulted BIF output.  This  option does not 
effect the modeling of faults, and the fault statistics file, fstat, is still produced. 

2. FAULT SIMULATOR FILE FORMATS 

PAD File 
The PAD file describes the physical architecture of the neural network. It consists of sizes of 

the hardware blocks and the connectivity of the network. Comments are allowed to help describe the 
network information. Each comment section must be contained on a single line and start with a "/*" 
and end with a "*/". This is similar t o  comments in the C programming language, except 
for the fact that  comments cannot span multiple lines. The  PAD file has 4 major parts: 

The  CN/PN network descriptions 

a PTP Network description 

Local PAD region definitions 

PBH Network description 

The PAD file starts with a description of the PNs and CNs. The total number of PNs in the 
network and how many are in the x and y dimensions is listed first. Next is the number of CNs in 
each P N  of the network. Each CN has a number of inputs, which are values from other CNs. These 
other CN values are stored in a memory for later use. The number of bits in each CN value is 
identified by the CNDATA field. Correspondingly, each input has a weight. The number of weight 
bits in each value is identified by the WEIGHT field. The total number of other CN values stored in 
any one P N  is CNBNTRY. CN-GNTRY is the total number of input links to all the Sites on a CN 
as shown in the n-graph. The network uses an addressing scheme where the incoming message's 
address field is stripped off the message and sent to the address decoder. The address decoder uses a 
Content Addressable Memory (CAM) to determine the proper CN-MEMORY word to store the 
message's data field in. A reduction in transmission time and silicon area can be achieved if the 
number of address bits required is variable. The CN-ADDR field specifies the number of CN entries 
with the number of address bits used. The total number of CN-ADDR entries should add up to the 
total number of input links for the CN. An assumption that each CN within the P N  has the same 
address decoder structure was made, allowing the network to be scaled easier. If the number of CNs 
in a P N  is changed, the number of address entries changes by a corresponding amount. 

The next block describes the P T P  communication network. Each P N  is connected via the 
PTP communication network to all its immediate neighbors. Each message uses handshake lines to 
communicate, for example, Data Valid and Data Received lines. Message destinations will not have to 
be the neighboring PN. The message may have to hop several PNs before reaching its final destina- 
tion. Encoded in each message is the destination P N  number and CN address. The destination 
address and data is multiplexed over a set of data lines. The P T P  fields indicate the number of data 
lines and the number of control lines for each P T P  connection. PN connectivity is listed in the 
PN-CON fields. For the example shown, PN # 2 is connected to P N  # 1, 6 and 3. Fltsim requires 
knowledge of the x,y addresses of the PNs in the network, so the PNs listed in the PN-CON fields 
must be listed in physical order. That is, the PN at  x,y location 0,O is first, 1,O next and so on. 

The PAD file allows for shorthand notation for grouping regions. Grouping regions gives a 
specified number of PNs a given region number that can be referred to later. Larger numbers of PNs 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* PAD VERSION # 6 example file 7/16/87 * / 
/* This is an example PAD description file * / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Start with PN/CN descriptions */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PN: 16; /* total number of PNs in the network */  
PN-GEO: 4, 4; /* x,y dimension of PNs */ 
CN: 2; /* number of CNs in each PN */ 
CN-DATA: 8; /* represents current state of other CNs */ 
WEIGHT: 9; /* # of weight bits */ 
CN-ENTRY: 7; /*  # entries of other CN states (input links) */ 
CN-ADDR: 15: 4, 9: 2; /* t entries: # address lines */ 
LSM: 2; /* # of learning state machines in each PN */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Define Point-to-Point Communication Network * / 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PTP-DATA: 4; /* # of PTP data lines between each PN */ 
PTP-CNTL: 2; /* # of PTP control lines between each PN */ 
PN-CON: 0: 1,4; /* connections between PNs */ 
PN-CON: 1: O,2,5; /* this will be used to map external PN # * /  
PN-CON: 2: 1,6,3; /* number system to internal # system */ 
PN-CON: 3: 2,7; 
PN-CON: 4: 0,5,8; /* CONNECTIVITY FOR ALL PN'S */ 
PN-CON: 5: 1,4,6,9; 
PN-CON: 6: 2,5,7,10; 
PN-CON: 7: 3,6,11; 
PN-CON: 8: 4,9,12; 
PN-CON: 9: 5,8,10,13; 
PN-CON: 10: 6,9,11114; 
PN-CON: 11: 7,10,15; 
PN-CON: 12: 8,13; 
PN-CON: 13: 9,12,14; 
PN-CON: 14: 10,13,15; 
PN-CON: 15: 11,14; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* ~efine regions of PNs to be used in PBH definition * /  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
REGION: 2: 1, 2; /* list PNs in region 2 */ 
REGION: 1: 3, 6, 7; /* list PNs in region 1 */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* Describe Physical Broadcast Hierarchy Communication Network */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PBH-LEVELS: 2; /* 8 levels in PBH hierarchy * /  

PBH-N: 0: 1: 2; /* PBH PN netlist - includes Region 1 & PN 2 */ 
PBH-BDCAST: 7; 
PBH-DATA: 2,4; /* 2 data lines in lowest level, 4 in upper 2 */ 
PBH-CNTL: 3; /* 3 control lines in all levels */ 

PBH-N: 1: 2: 3,4; /* PBH PN net list - Regions 2 & PN 3 6 4 */ 
PBH-BDCAST: 12; 
PBH-DATA: 3,s; 
PBH-CNTL: 3,4 ; 

Figure B1 - PAD File. 

can be more easily developed using these regions. 

The last section describes the PBH communication structure. The number of levels in the 
PBH communication tree is listed first, indicating the number of concentrator and deconcentrator 
nodes. Next is the information for each PBH Region in the network. Note here that the PBH Region 
is different from the regions defined earlier in the PAD file. Each PBH Region number is specified in 
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the P B U  field, with all the PNs listed for that PBH Region. The P N  list starts with all the 
predefined regions from above listed first, separated by comas, followed by a colon, and then all the 
individual PNs listed. The number of broadcast data lines, PBH data lines, and control lines is simi- 
lar. The number of lines for each level of the PBH hierarchy can be specified, allowing differing 
number of signal lines for each level. All higher levels from the last number listed will have the same 
number of signal lines. For example, the PBH-DATA of 2,4 indicates that the lowest PBH level has 2 
data lines, the second and all higher levels have 4 data lines. 

With all the information given in the PAD file, a block diagram of the physical hardware is 
possible. The block diagram will contain sizes of the hardware blocks internal to each P N  and all the 
connectivity between the PNs. 

Technology File 
The technology file describes the sizes of the individual elements, such as memory cells or 

buffer sizes. Each parameter is specified by a keyword followed by a numeric value indicating the size. 
Only one parameter is allowed per line and the text after the numeric value can be used as a com- 
ment. Entire lines may be used for comments and have to be preceded with a "I*". 

The values in the technology file are multiplied by the dimensions given in the PAD file to 
determine the silicon areas required to implement the functions. The sizes for the components must 
be given in microns and square microns. The memorysize indicates the size for a single bit memory 
to store data in the CN-MEMORY block containing other CN values. The adc-size and dacsize are 
for the analog arithmetic unit to calculate the CN output value. The buffersize is for the PTP and 
PBH data and control buffers to drive the bus to the concentrator nodes. The cntLsize indicates the 
amount of global control circuitry for a PN. The line-width is the line width for the P T P  and PBH 
bus lines only. Line width is used to determine the total amount of silicon area a bus line occupies. 
Address decoding within a P N  is done using a Content Addressable Memory cell. The size of the 
CAM cell is listed as the addr-decsize field. Lsmsize is a scale factor for the amount the LSM block 
increases for each independent learning algorithm used in each PN. Weightsize indicates the memory 
bit size to store each bit of the weight field. Each P N  has a P T P  and PBH demultiplexer and control 
section. This section determines if i t  is the final destination for the message by examining the P N  des- 
tination number. Once the message reaches the final P N  destination, this section separates the 
address field and the data field and sends them to their correct destination, the address decoder and 
CN MEMORY. The size of this section is shown in the ptp-demwrsize and pbhdemwrsize fields. 

/* file: technology file */ 
/* date: 27 Nov 87 */ 

memory-size 50 /* memory size */ 
adc-size 750 /* adc size */ 
buffer-size 100 /* buffer size */ 
cntl-size 800 /* size of control section */ 
line-width 2 /* line width */ 
dac-size 750 /* dac size */ 
addr-dec-size 75 /* address decode size */ 
Ism-size 960 /*  learning state machine size */ 
weight-size 50 /* memory cell size for weight storage */ 
ptp-demux-size 100 /* ptp control, addr compare, & demux size */ 
pbh demux size 100 /* pbh control and demultiplexer size */ 

Figure B2 - Technology File. 
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Fault Parameter File 

The fault parameter file includes all the parameters to be used in the fault generation routine. 
Each parameter is specified by a keyword followed by a numeric value indicating the size. Only one 
parameter is allowed per line and the text after the numeric value can be used as a comment. Entire 
lines may be used for comments and have to be preceded with a "/*". Fault parameters are used to 
generate the locations of the faults and the types of faults. 

/* file: fault file */ 
/* date: 27 Nov 87 */ 

defect-den 15 /* average defect density per sq inch */ 
s-a-0 0.30 /* fraction of open faults */ 
cluster 0.3 /* clustering coefficient between areas */ 
in out 0.40 /* inner/outer fault density ratio */ 

Figure B3 - Fault Parameter File. 
The average defect density for the simulation is shown by the field defectden. The defect density is 
multiplied by the area of the network to determine the average number of defects to place. The frac- 
tion of Stuck-at-0 faults is a parameter, which also determines the fraction of Stuck-atrl faults. Fault 
clustering can be varied by the cluster parameter. A typical value for the fault clustering coefficient 
for a wafer is around 0.3. The fault radial distribution is determined by the in-out parameter. The 
i u u t  parameter is the ratio of the defect density of the inner area divided by the defect density of 
the outside area. To  simulate a wafer, the ratio of the inner area defect density to the outer area 
defect density will be less than 1. To simulate faults on a die in a wafer, the ratio should be set to 1, 
as the radial distribution only applies to the wafer model. 

BIF File 
The BIF file describes the n-graph of a neural network, which is described in more detail in 

Casey Bahr's Thesis, "ANNE: Another Neural Network Emulator" (OGC). The BE' file required by 
the fault simulator must be mapped to the physical implementation of the network. The mapper rou- 
tine should be used to assign n-graph nodes the pgraph nodes needed by the fault simulator. BIF 
describes the n-graph Connection Node connectivity. The BIF lists Group information about the 
CNs, followed by a list of CNs, a list of Sites for each CN, and a list of links for each Site. Each l i t  
describes a different portion of the connections of the n-graph. 

Fault Statistics 
The fault statistics file contains the fault statistics of the faults in the network. The statistics 

show where faults occurred and what effects on the n-graph they had. When simulating the network 
using HAS or ANNE the statistics will provide information to aid in understanding the modified cir- 
cuit operation. Figures B4 and B5 shows a portion of the fstat file. 
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fault statistics 
run time - Mon Dec 21 11:42:37 1987 
fault R 0 
DATA S-A-0 in dac 
fault index - 1 
fault modifier - 0 
fault input site 
fault pn x,y = 0,O which is PN # 0 
fault offset = 182 

fault # 1 
ALL VALUES IN THIS PN,DO NOT CHANGE DATA ADDR S-A-0 in pncntl 

fault index - 195 
fault modifier = Oxffffffff 
fault output link 
fault pn x,y - 1,l which is PN # 3 
fault offset - 0 
***  END OF LIST FOR SINGLE FAULTS *** 
*** FAULT COMBINATIONS LIST *** 

(determined when reading BIF file) 
(fault #'s correspond to faults listed above 
and the fault order below is the order faults 
are placed in the fBIF file) 

CN index - 0 
Site index - 0 
Link offset - 0 
weight (link) offset - 0 
Site index = 1 
Link offset - 0 
weight (link) offset = 0 
Link offset - 1 

*** New worst fault tl 
weight (link) offset - 1 
Link offset = 2 

*** New worst fault tl 
weight (link) offset - 2 
Link offset - 3 
weight (link) offset - 3 
weight (link) offset - 0 
BIF file statistics 
section number faulted percent faulted 
CN 12 1 8.33 
SITES 2 4 0 0.00 
LINKS 7 2 18 25.00 
WF.IGHTS 72 8 11.11 

Figure I34 - Fault Statistics File. 

May 1988 
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BIF utilization of the Hardware defined in the PAD file 
PAD: 16CN's 

2 Sites (For now, max sites from BIF file) 
2048 Links 

PN(0,O): 
2 CNfs 12.50 percent utilization 
2 Sites's 100.00 percent utilization 
5 Input Links 0.24 percent utilization 

PN(0,l): 
2 CN's 12.50 percent utilization 
2 Sites's 100.00 percent utilization 
8 Input Links 0.39 percent utilization 

PN(O,2): 
2 CNfs 12.50 percent utilization 
2 Sites's 100.00 percent utilization 
5 Input Links 0.24 percent utilization 

PN(0'3): 
0 CN's 0.00 percent utilization 
0 Sites's 0.00 percent utilization 
0 Input Links 

PN(1,O) : 
2 CN'S 
2 Sites's 
8 Input Links 

PN(1 1) : 
2 CN's 
2 Sites's 
8 Input Links 

PN(l,2) : 
2 CN'S 
2 Sitesf s 
2 Input Links 

PN(1,3) : 
0 CNfs 
0 Sites's 
0 Input Links 

0.00 percent utilization 

12.50 percent utilization 
100.00 percent utilization 
0.39 percent utilization 

12.50 percent utilization 
100.00 percent utilization 
0.39 percent utilization 

12.50 percent utilization 
100.00 percent utilization 
0.10 percent utilization 

0.00 percent utilization 
0.00 percent utilization 
0.00 percent utilization 

Figure B5 - Fault Statistics File (con'd). 

The fault statistics are grouped into five sections: 

The header 

Hardware faults 

BIF faults 

BIF fault statistics 

a BIF utilization 

The fstat header consists of a description of what is contained in the file, "fault statistics", and the 
time the Fltsim program was executed. All the output files from Fltsim contain a time stamp, which 
will be identical for all files generated from a single execution of Fltsim. 

The next section lists each fault placed in the hardware circuitry with information describing 
the specific location and how it  will effect the operation of the circuit. For example, fault #1 is a fault 
in the PN control hardware block of PN #3 with a x,y location of (1,l). This fault will be modeled by 
not allowing the output data links to change value. The actual fault index and modifier to be put into 
the fl3F file is listed, which indicates to the fault routines, how to model the fault. The fault ofEset 
indicates an offset within the hardware block that the fault occurred in, and is specific to the hardware 
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block. See the Fault Effects appendix for more information of how to interpret the oftset value. 

The BIF faults list which hardware faults actually effect the operation of the n-graph. Two 
types of entries are used, "New worst fault" and "combine for new worst fault". "New worst fault" 
indicates the hardware fault listed has more impact on the operation of the network than the previous 
fault, or it is listed for the first fault to effect a BIF section. "Combine for new worst fault" indicates 
that the listed fault has been combined with the previous worst fault. 

The BIF fault statistics summarize the faults placed in the BIF file. The total units for each 
section and the number and percentage of faulted units are listed. 

The last section, BIF utilization, shows the utilization of the hardware circuitry by the BIF 
description. The number of sections available in the hardware (derived from the PAD file) is listed 
followed by the utilizations of the BIF sections for each PN. Extreme underutilization of the 
hardware by the BIF file may lead to invalid conclusions to be made. For example, two networks that 
use the same PAD file are simulated, but one has a 50% utilization of the hardware and the other has 
a 100% utilization. Both circuits use the same PAD file, so the size of the hardware will be the same, 
resulting in the same average number of physical faults. Since only 50% of the hardware is used in 
the first network, a higher portion of the faults will be in unused hardware, which will not affect the 
n-graph, leading to a false sense of fault tolerance. 

Faulted BIF 
The faulted BIF file (m), contains the fault information to be included by the architecture 

simulator fault routines. Arrays of fault information will be initialized to be accessed by the fault rou- 
tines which are used to modify intermediate CN node calculations. An example if the fBIF file is 
shown in Figure B6. 

The beginning of the fBIF file contains a comment section providing information about the 
generation of the fBIF file. The source BIF file used to generate the fBIF file is listed to coordinate 
the proper use of the same BIF file and fBIF file by the architecture simulator. Using the fBIf file with 
a different BIF file other than the one used to generate the fBlF file will cause unpredictable results. 

Four arrays are initialized in fBIF, fltsn, fcn-ptrn, f~ite-~tr[][l ,  and flinknumi 0. Fltsn is an 
array of fault indexes and modifiers to be used to determine how to modify the interface CN value. 
The other three arrays are indexes into the fault array, used by the fault routine to access the 
appropriate fault index and modifier. Fcn-ptr[cnindex] points to the CN fault data in the fltsn array. 
Fsite-ptr[cn-index][siteindex] points to the site fault in the fltsn array. 
Flinknum[cn-index][siteindex] contains the number of links for each site and is used to ensure that 
the link offset is valid. The link fault index into the fltsn array is calculated as an offset from the site 
fault index. For example, the first link fault value for each site is the first number after the site fault 
value. The weight fault index is next followed by the link fault value for the second link. 

Test Output 

The test file output contains intermediate values used in the fault simulation process. Infor- 
mation about the sizes of the calculated physical network and its connectivity, parsed BIF output, 
fault location information and CN/PN mappings are included in the test file output. The test file can 
be used to verify operation of the simulator and to debug problems with parsing files, or other prob- 
lems. Due to the length and variety of information contained in the test file, it is not listed here. 
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* fbif file: FAULT INDEXES AND HODIFIERS 
* 
* source bif file - FF4.bif.Ohas.in 
* run time - Mon Dec 21 11:42:37 1987 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

static struct flts 
unsigned short index; 
unsigned int mod; 

I flt[l -( 

010, 
0101 
195,-1, 
o,o, 
195,-1, 
o,o, 
o,o, 
17,-513, 
0,Ol; 

static int fcn-ptr[] - [ 

0, 
13 1 
26 I 
39, 
59, 
71, 
109, 
128, 
1671; 

static int fsite_ptr[l28] [a] = [ 

[1,411 
I14,171, 
t271301, 
[40,431, 
(53,621, 
{72,8ll, 
(-1,-11, 
1-11-11, 
[-1,-111; 

static int flink_num[1281 [21 - I 
I1141, 
Ilt41, 
I41411 
(4,lIr 
{O,OI, 
[O,OI, 
[0,011; 

Figure B6 - Faulted BIF File. 



Flfsim Operation May 1988 

3. ARCHITECTURE SIMULATOR 

FAULT SIMULATOR INTERFACE 

The fault information that is to be modeled by the architecture simulators, HAS 
and ANNE, is conveyed though the fBIF file. Fault routines are called from the architecture 
simulator routines and user's routines to model the fault's operation. The process of calling 
these routines, and the information to be be conveyed to them will be described in this 
section. More detail about this interface is provided in the HAS and ANNE architecture 
simulator descriptions. 

Three files are used by Fltsim to model faults by the architecture simulator: fault.h, fau1t.c and 
fbif.output. Fau1t.h defines constants used by the fau1t.c routines and Fltsim. Fau1t.c contains the 
subroutines to model faults in different n-graph sections. And fbif.output sets an array of fault fields 
for each subsection of the BIF file. This array of fault fields consists of a fault index and modifier for 
each CN, each CN Site, and each Site Link and Weight. In order for the architecture simulators to 
call the fault routines and access the fault fields, certain requirements must be satisfied. An include 
statement in fau1t.c includes the fBIF fault fields, which must correspond to the fJ3IF file produced by 
Fltsim to model the faults. Also, the fI3IF file must have been generated from the same BIF file as 
being used in the architecture simulator. The fault routines need to be linked and loaded with the 
user's fault routines. Each time the fBIF output changes, the fau1t.c file must be recompiled. 

Each fault field in fJ3IF consists of two numbers, a fault index and a fault modifier. The fault 
index uses 8 bits to indicate the type of fault and where to model the fault. The file fau1t.h defines 
constants for the fault fields. Since the fault index value is also used internally to Fltsim, not all the 
bits will be used by the fault routines. All the bits will be defined here for completeness. Bits (l3 are 
the fault locations that indicate if the fault was a data word fault or an addressing fault. Data word 
faults either modify the targeted value using bit operations, or do not update the value a t  all. Address 
faults change the routing of the network, so that the address that the message is being sent from/to 
will be altered. Bit 4 is set if a range of target values are to be faulted. Bit 4 is not used by the fault 
routines. Bit 5 indicates if the fault is a Stuck-at-1 (bit 5 high) or a Stuck-at-0 (bit 5 low) fault. Bit 6 
if set high indicates that the target value should not be altered. That is, an old value and a new value 
are both passed to the fault routine, where if the NO CHANGE bit (bit 6) is asserted, the value 
returned is the old value. For example, the NO CHANGE fault is used when a handshake line is 
damaged and the destination node does not receive new values from the source node it  is supposed to 
be connected to. The input to the site would always stay a t  the same value. Bit 7 indicates that all 
the CNs in a given P N  are faulted when set high. Bit 7 is not used by the fault routines. 

Fault Index 
7 6 5 4 3 2 1 0  

I 1 bit 1 1 bit I 1 bit I 1 bit I 4 bits I 
ALL NO-CHG S-A-1 RANGE FaultFields 

The NO CHANGE bit has the highest precedence in the fault index, so if i t  is set, the old 
value is returned, and the fault modifier is not used. Otherwise, the Stuck-At bit is used to determine 
the operation of the routine. For a data word fault, the Stuck-At bit will determine if the new value 
passed should be AND'ed with the fault modifier (SA-0) or OR'ed with the fault modifier (%A-1). 
The new value is so modified, and the routine is finished. If the fault is an address fault, the address 
routing is modified. Note that both the address and data can be corrupted. In this case, the fault 
modifier will be used to modify both the address and data fields. 
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The general steps for calling the fault routines are as follows: 
1. For each input link: 

............... a. Fault the input link and corresponding weight. f l t - lkwt  ( ) 
2. Update old input link values. 
3. Calculate all the site functions for the CN. 

................................... 4. Fault all site function outputs. f lt-site( ) 
5. Calculate the C N  function. 
6. Fault the C N  function output. ................................... f l t - cn (  ) 

7. For each output link: 
............ a. Fault the data and the destination address. f l t - o l i n k  ( ) 

b. Send the output to the next C N  address 
8. Calculate the weight functions 

............................................. 9. Fault the weight values. f l t -wt  ( ) 
10. Update the old weight values. 

These steps are performed for each C N  calculation in the network. For step 1, faulting all 
the input links and weights to the CN, a link and weight fault routine, f l t - l k w t (  ), is 
called for each input link to the CN. The fault routine will return the value to use as the 
link input and weight depending on the fault fields listed in the fBIF file. Figure C 1  summar- 
izes the parameters for all the fault routine calls. Six arguments are pased to the 
link/weight fault routine, the current C N  index and site name that this link attaches to, the 
link index, the old (or previous) value of the link input, a pointer to the new link input and a 
pointer to the weight for the link input. After the subroutine returns, the contents of the 
pointer to  the new link input will contain the value to use as the link input and the contents 
of the pointer to the weight will contain the new weight. Both the old value of the previous 
link input and the current link input are passed to the fault routine to  model faults where 
the input link is defective, not allowing new inputs to  be transmitted. Faulty input links 
which do not allow transfers to  take place will set the new input equal to the old input value. 
The initial old value will need to  be determined for the first call for each link input. After 
the link fault routine completes, the old value can be set to the current value for the next 
P=. 

The site function for each site of the CN is calculated in step 3. The output of each site func- 
tion is faulted in step 4. The site output is faulted by calling the site fault routine, f l t-site( ), 
with the current C N  index and site name, and a pointer to  the site output value. The fault 
routine will calculate the new site value, using the fault fields, to be returned as the contents 
of the site output pointer. 

Faulting the CN function is done similarly. The CN function calculates a new value and calls 
the CN fault routine, f l t - c n (  ), passing it the C N  index and a pointer to the new C N  value. 
The fault fields are accessed to modify the C N  output. 

The output links are faulted by calling f l t - o l i n k (  ), which modifies the destination 
address and data value to  send. The C N  output would normally be sent to the destination 
CNs using the output links. Pointers to the destination C N  address and the C N  output are 
passed to a fault output link routine along with the current C N  index, site name and link 
index. The address and C N  output are modified using the fault fields in the fBIF file to 
change the routing and the C N  output. The modified C N  output is then sent to the destina- 
tion C N  using the modified routing. 

Steps 8 through 10 are used for networks with dynamic weights that are calculated during 
execution of the network. Step 8 calculates the new weights for all the input links using a selected 
learning algorithm. Step 9 is to fault the weights by calling a fault weight routine, f l t -wt  ( ), paso 
ing the C N  index, site name, link index, the old weight value, and a pointer to the new 
weight value. The fault fields in the fBIF file are used to potentially modify the contents of 
the new weight value. Some faults may cause the new weight not to be calculated or saved 
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flt~lkwt(cnindex,siteI1inkfold~link,new~linklweight) 
int cnindex; /* current cn index */ 
short site; /* current site name */ 
short link; /* current link index * /  
shortold-link; /* previous link value */ 
short *new-link; /* new link value */ 
short *weight; /* weight for link */ 

flt-site(cnindex,site,new-site) 
int cnindex; /* current cn index */ 
short site; /* current site name */ 
short *new-site; /* pointer to the new site value */ 

flt~wt(cnindex,site,link,old~weight,new~weight) 
int cnindex; /* current cn index */ 
short site; /* current site name */ 
short link; /* current link index */ 
short old-weight; /* previous weight value */ 
short*new-weight; /* new weight value */ 

flt-cn(cnindex,new-cn) 
int cnindex; /* current cn index */ 
short*new-cn; /* new cn value */ 

flt~olink(cnindexfsite,link,new~addrlnew~data) 
int cnindex; /* current cn index */ 
short site; /* current site name */ 
short link; /* current link index */ 
short*new-addr; /* new address */ 
short *new-data; /* new output link value */ 

Figure C1- Fault routine parameters. 

in memory, resulting in the weight never being updated. The old weight is used in this case, 
where the new value is set to the old value. After the fault weight routine completes, the old 
value is saved for the next pass. The weights are faulted twice, once with the input links and 
once when the weight values are updated. There are two reasons for doing the weight fault 
twice. First, steps 8-10 are optional for networks that do not calculate new weight values. 
Second, the weight values are accessed by the C N  a t  two different times so the faulted value 
is required twice. So for consistency between dynamic weight networks and static weight 
networks, the weights are faulted twice. Faulting a value twice has no adverse effects, since 
the same fault index and modifier are accessed both times. And faulting a faulted value does 
not change the value. For example, AND'ing the fault modifier with a value a second time 
does not alter the number. 

The actual code to implement the fault routines will depend upon the simulator used and the 
site/CN functions and data structures used. Some of the fault routines may be called from the archi- 
tecture simulator, and hence should not be called by the user's routines. With the general guidelines 
presented here, the interface of the fault routines to the architecture simulator routines and the user's 
routines can be implemented. The specific architecture simulator description should describe which 
fault routines are to be called by the user's routines. 
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Shown below is a simplified section of the user's routine for HAS with the fault 
routine calls shown in bold print: 

if(userfx-mode == 1) 
{ /* receive link input messages */ 
L->old-inval = L->inval; /* save old value for fault routine */ 
L->inval = mes-value; /* receive message input to node */ 
I 

else if(userfx-mode == 2) 
[ /* Site function - Sum of Products (called once per site input) */ 
siteval = S->siteval; 
wt = L->inval; 

flf_lkwt(C- > enindex,& > sitename,E > linkindex, 
L >old-inval,&(L > inval),&wt); 

/* fault input link and weight */ 
inval = inval * wt; 
siteval += inval; 
S->siteval = siteval; 
3 

else if(userfx-mode == 3) 
[ /* CN function - Sigmoid function */ 
siteval = S->siteval; 

flt-site(C- > enindex,% > sitename,&siteval); /* fault site output */ 
C->output = (1/(1 + exp(-1.0 * siteval))); 
3 

else if(userfx-mode == 4) 
[ /* send outputs to next CN1s */ 

fltslink(C-> cnindex,S >sitename,L > linkindex, 
&(C- > index),&(C- > output)); 

/* fault destination address and CN output */ 
sprintf(buf,"%d %d %dW,C->index,C->output,time); 
send-output(C->index); 
3 

Since the example shown does not use dynamic weights, step 8-10 are omitted; the 
f lt-weight ( ) routine is not called. 

4. FAULT EFFECTS 

The induced faults reflect the actual physical faults that will occur in the system. Some 
approximations were used in the fault model to simplify the design of the fault simulation and because 
the CAP network architecture is still in the design phase. This section will cover each section of the 
hardware block diagram, describing the general function of the block, what types of faults can occur 
in the block, how the faults effect the function, and how the faults will be modeled in the n-graph. 
The n-graph is used by the architecture simulators to simulate the operation of the network. The 
fault fields written in the fl3IF file by Fltsim modify the n-graph operation. The hardware blocks 
described here, except for the bus structures, are replicated for each P N  in the network. Potentially 
several CNs will be in each P N  as described earlier in the paper. Some faults effect only one CN in 
the PN, whereas other faults will effect all the CNs in the PN. 

There are three basic types of faults modeled here, Stuck-Abl, Stuck-AtrO, and NO 
CHANGE. The S-A-1 and S-A-0 faults OR or AND a fault modifier with the value, forcing bits in 
the word to be always high or low. The NO CHANGE fault forces the value not to be updated, that 
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is, i t  retains its previous value. 

CN MEMORY 
The CN MEMORY section is a RAM that stores values of other CN's function outputs or 

states. The CN MEMORY words stored here will be inputs that the CN function will use to calculate 
its output. There is one word for each input link to the CN. Each input link gets another CN's out- 
put to write a unique word in the CN MEMORY. Only those CNs connected to this CN store their 
values in this CN's memory. 

The most common defect in RAM structures is to lose single bits in the stored data words. 
When a value is read from the RAM, a bit in the stored value will be always have a high or low value, 
regardless of what value was written. Defective bits could be caused in the physical hardware by 
shorts, opens or leakage current between cells. Faults not modeled by Fltsim are RAM control struc- 
ture faults. Control structure faults will cause multiple faults in the RAM with only one fault in the 
device. Row or address decoding faults for the RAM are examples of control structures that could be 
defective. 

Defective bits in the memory will change the input link value for a specific link. A random 
bit in the memory is chosen to be stuck high or low. The defective bit is mapped to the word the 
fault occurred in. The defective word corresponds to a specific input link. This input link in the n- 
graph will be faulted. The corresponding link will be determined by the listed order of the links in the 
BE' file. The first link listed in the BE' file for a particular P N  will be the first word in the memory, 
the second link in the P N  will be the second word in the memory, etc. 

ADDRESS DECODER 

The address decoder uses a Content Addressable Memory (CAM) structure to match the 
incoming CN address with the corresponding CN value in the CN MEMORY. The incoming CN 
value is stored in the CN memory word that has a matching address. If no address match is found, 
the value is not accepted by any of the CNs in the PN. The connectivity of the network is stored in 
the CAM that is described by the link section in the BIF file. T o  save silicon area, the addresses can 
be of variable length. The more common local addresses can be encoded with fewer address bits. 

Faults in the address decoder will cause improper decoding of the CN address, resulting in 
CN data values being written to wrong memory words (incorrect links), no value being written, or 
multiple CN values being written at once. Faults in the global control of the CAM may cause entire 
rows or columns to malfunction. Single bit faults are the only faults currently considered by Fltsim. 

T o  fault the address decoder, a random bit within the address decoder is chosen to be stuck 
high or low. The bad bit is located within the addresses stored in the CAM. Since variable length 
addresses are allowed, each different address length section has a different probability of a faulty 
address bit. The faulty address word and faulty bit position are identified. The address word is an 
offset within the address words for a PN. There is one address word per input link for each CN in the 
PN. The order of the CN address words (for each input link) corresponds to the order listed in the 
BIF' file. The link address for the faulty address order is listed in the BIF file. The link address for 
the faulty address word is modified to have either a stuck high or stuck low bit. In the architecture 
simulators, the destination address will be modified so that if the new address matches some PN/CN 
in the network, the message will be routed to it. In most cases, the new address will not match a 
PN/CN, and the message will be lost. 

WEIGHTS 
The WEIGHTS section stores all the current weights for each CN input link to be used in the 

site function. One weight word is used for each input link. The Weights section is a RAM that is 
addressed either when the site function is to calculated, or when the Learning State Machine is to read 
or update the value. Typically the weight is multiplied by the input link value in the site function. 
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Since the weights section is a RAM, faults here are similar to the faults in the CN MEMORY 
section. Any weight bit could be stuck, and would always read a 1 or a 0. Stuck bits will effect the 
site calculation and the weight update or learning algorithm. T o  model weight faults in the site calcu- 
lation, the weight value is modified with either stuck high or stuck low bits before using the value in 
the site function. To  model faults while calculating the new weight using the learning algorithm, the 
new weight value is faulted with the stuck bit after the new weight is calculated. That is, the weight 
was modified and stored as the current weight when the site function was called. The LSM used this 
faulted value to calculate the new weight, and that weight was faulted again, since it  was stored in the 
same RAM word with the same fault. The second time the weight is modified, faults in the LSM are 
also taken into account. 

LEARNING STATE MACHINE 
The Learning State Machine (LSM) is a PLA running as a background task that samples and 

updates all the weights for the site function according to a predefined learning algorithm. Various 
inputs are used to calculate a new weight value, and may include the current weight, the CN function 
output, and the CN link input. If any of the inputs to the LSM are faulted, the new weight value will 
be faulted. All the LSM input faults are modeled by the other sections in the PN. Only internal 
faults to the LSM are considered in this block. LSM faults could cause the LSM not to work at all or 
to update the weights with incorrect values. If the LSM does not work at all, none of the weights for 
the P N  will be updated with the new weight value, otherwise the fault will cause the new weight 
values to have a stuck bit. A predetermined fraction of faults will cause the LSM not to function a t  
all. If a fault occurs in one of the LSMs, all the CNs updated by that LSM will have the same fault in 
all the weight values. When a fault occurs in one of multiple LSMs in a PN, I/(# LSMs) of the 
weights are faulted. See the WEIGHT section for more details of how LSM faults are modeled. 

DAC 
The Digital to Analog converter (DAC) will calculate the site functions for the CNs in the 

process of converting the digital words to analog signals. Corresponding words from the CN 
MEMORY and the WEIGHTS sections are input to the DAC, converting the digital signals to analog 
signals while performing the site function simultaneously. The analog output represents the output of 
the site function. 

Faults in the DAC section will cause the DAC output to be at an incorrect level, resulting in 
an incorrect site function output. Incorrect output levels can be caused by any one of the input bits 
being stuck, which causes a fault identical to a bad bit in the CN MEMORY. Since the faults to the 
inputs are the same, input bit faults are modeled in the CN MEMORY and WEIGHTS sections. 
Also, the output of the DAC could be stuck, causing its output to be always stuck a t  one of the supply 
rails, which is modeled as the output of the site function to always being all ones or all zeros. 

ADC and MUX 
The Analog to Digital Converter (ADC) will perform the CN function calculation with analog 

signals. The ADC will combine all the analog signals from the outputs of the DACs into one analog 
signal to be converted back to a digital word that represents the CN function output to be sent to 
other CNs. There is one ADC section for each CN in the PN. 

Faults in the ADC section will cause the CN output value to be corrupted. Faults in the 
inputs to the ADC will be modeled in the DAC hardware block by changing the output of the site 
function. The analog CN function output signal could be faulty, resulting in the digital CN function 
output being all ones or all zeros. The faulted CN output is sent via the output link to other CNs in 
the network. 
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CONTROL 
The Control section groups together the global control circuitry for the PN. This section will 

not necessarily be in one physical location in the PN, but will be spread over the entire P N  circuit. 
Clock signals that pace the P N  circuitry and enable and disable various functions will be the type of 
control signals that will be included in this section. Any faults on these control lines will have a major 
impact on the operation of all the CNs in the PN. So faults here simply disable the whole PN. None 
of the output links from the P N  change state, resulting in a static P N  state. 

PTP BUS 
The PTP communication bus lines transfer messages between PNsICNs. The bus lines are 

driven by the P T P  DATA/ADDRESS/CONTROL buffers. Four sets of bus lines are present for each 
P N  to connect to each neighboring PN. Messages may travel through several PNs before reaching 
their destination. 

Faults may occur in the bus in the form of opens or shorts. Shorts will likely connect two 
adjacent runs by excess material in fabrication. Opens will occur if a defect causes a discontinuity in 
the signal path. Shorts are modeled as stuck high and opens as stuck low signals in Fltsim. The con- 
trol lines that handshake the data transfers may be faulted causing no data transfers to occur. As 
with the P T P  Buffers, the entire message path is checked for faults. Any faults found in the message 
path will be modeled in the output link of the source CN. If any of the data/address lines are stuck, 
the output of the CN function will be altered by modifying bits in the message. If the control lines are 
stuck, the transfer will be completely disconnected. 

PTP DATA/ADDR/CNTL BUFFERS 
The P T P  DATA/ADDR/CNTL BUFFERS are the interface for the P T P  communication 

network. This section includes bidirectional buffers for each dataladdress line to send and receive the 
messages, and buffers to control the handshake of the data. The size of these buffers will be larger to 
drive the capacitance in the data bus, which will make them more prone to faults. Four sets of P T P  
buffers are used for each P N  to send/receive messages from/to any neighboring PN. 

Faults may occur in any of the four sets of buffers. Faults in the buffers will effect all the 
CNs communicating through this set of buffers. The CN does not have to be local to the PN. Mes- 
sages may travel through several PNs before reaching the destination PN(CN). If any of the inter- 
mediate PTP buffers are faulty, the message will be corrupted. The message path is determined by 
traveling in the x direction first, then in the y direction. For the source and destination PNs, only one 
side is checked for faults. Intermediate PNs have two sides checked, as the message enters one side 
and exits on another. Any faults in the message path are modeled a t  the output link of the source 
CN. If the output buffer for any of the data/address signals is faulted, the output of the CN function 
will be modified. If the input buffer for any dataladdress signals is faulted, the output of the sending 
CN will be faulted. For data/address faults, bits are either stuck high or low. Since the data is multi- 
plexed, several bits will be stuck. Fltsim does not distinguish between faults on input buffers or out- 
put buffers. If any of the control buffers for the handshake are faulted, all transfers of data using these 
buffers will be impaired. P T P  control signal faults are modeled by not updating the input link values. 

PTP CONTROL/DEMUX 
The P T P  Control/Demux hardware block controls the input/output operations of the P T P  

interface for the PN. Messages are received from the four sets of P T P  buffers. The messages are mul- 
tiplexed, so this unit reassembles the subwords into a message unit. The P N  destination portion of the 
address field is checked to see if this P N  is the destination. If this P N  is not the destination, one of 
the four PTP buffers is selected to forward the message, and the message is broken into subwords to 
be multiplexed over the data lines. If the PN is the destination, the address field is sent to the address 
decoder and the data field to the CN MEMORY. For output operations, the CN function output 
from the ADC is sent to the PTP control section. The destination address is added to the message 
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and the message is multiplexed over one of the four PTP communication buses. 

Faults in the PTP control will corrupt the P T P  message. Potentially, faults in the PTP Con- 
trol could cause either single bit faults in the message, or all the bits in the message to be faulted. 
More commonly, faults in this section will cause the whole section to malfunction, inhibiting all P T P  
communication for the PN. The individual stuck bits are accounted for in other hardware sections. 
Faults in the P T P  Control will disable all the P T P  transfers for this PN. All P T P  messages routed 
through this P N  will be disabled, and the fault modeled a t  the source P N  P T P  output link. 

PBH TRANSMITTER BUS 
Several separate PBH regions may exist in the network. Each operates and is modeled as a 

separate autonomous bus structure. Each PBH region has a binary tree structure to send messages to 
a top concentrator node via the PBH TRANSMITTER BUS. Then the message is sent over to a 
separate binary structured RECEIVER BUS to broadcast the message to all the PNs in the region. 
The PBH TRANSMITTER BUS contains the multiplexed dataladdress lines, and some handshake 
control lines to send the message to the top concentrator node. 

Faults in the bus, as with the P T P  BUS, can cause opens or shorts in these signals. The 
shorts and opens are modeled by assigning a stuck high or stuck low fault to one of the data signal 
lines in a particular level of the PBH tree. This will cause several faults in the address and data fields 
due to the multiplexed transmission of the data. The fault is modeled in the output links of all the 
CNs that use this faulted portion of the PBH bus. For example, if a PBH region has 4 levels, there 
would be 16 PNs in the PBH region. If a fault occurs on level 2, 4 of the PNs use the faulted portion 
of the bus and have their output links faulted. 

PBH RECEIVER BUS 
The deconcentrator network or RECENER BUS, sends a message to all the PNs in the PBH 

region using a binary tree structure. The dataladdress is multiplexed as in the PBH 
DATAIADDRESS BUS. Control lines handshake the data between the nodes. 

Faults, as with the other bus structures discussed here, can be opens or shorts which are 
modeled as stuck high or low values. Both the address and data fields will be modified by the fault. 
The level in the broadcast bus tree will determine how many PNs are effected by the fault, as in the 
PBH TRANSMITTER BUS. The faults will be modeled in the input links for the receiving PNs. 

PBH DATA/ADDR/CNTL BUFFERS 
The PBH Buffers drive the signals from the P N  onto the PBH communication network. 

Bidirectional buffers are used for the dataladdress interface, and control signals handshake the 
dataladdress transfers. The output buffers drive the signal onto the PBH Transmitter Bus and the 
input buffers receive signals from the PBH Receiver Bus. 

Any of the PBH buffers may be defective, but Fltsim only models faults in the output buffers 
for simplicity. Faults in the buffers are modeled as stuck high or stuck low faults. The message is 
multiplexed for the PBH network, so a message is transmitted in several subwords. A faulty buffer 
would cause several bits in the message to be faulty, so that both the address and data fields are 
modified by a faulty buffer. Since all the CNs in the P N  that use the PBH network use a common set 
of buffers, if any of the buffers are faulty, all the CNs in the P N  will be faulted. If an output buffer 
for any of the dataladdress signals is faulted, the output of the CN function and the message address 
will be modified. Thus, the faulted data will be sent using a faulty address. If any of the control lines 
are faulted, all transfers of data will be impaired. 
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PBH DEMULTIPLEXER 
The PBH DEMLTLTIPLEXER controls the interface to the PBH bus. It controls both the 

sending and receiving of messages on the PBH bus. The PBH DEMUX sends the incoming message's 
address information to the ADDRESS DECODER and the data information to the CN MEMORY 
section. It will also combine the address and data information from the ADC section in order to 
broadcast to other CNs over the PBH network. 

Faults in the PBH DEMUX will corrupt the PBH messages. Potentially, faults in the PBH 
DEMUX could cause single bits faults in the messages, or all the bits in the message may be faulted. 
Faults can also cause the whole section to malfunction, inhibiting all PBH communication for the PN. 
The individual stuck bits are accounted for in other hardware sections. Therefore, faults in the PBH 
DEMUX will disable all the PBH transfers for the entire PN. All PBH messages, both inputs and outr 
puts, will be disabled. 

Figure D l  shows how defects in the various hardware blocks are represented. A defect will 
occur a t  a location within the hardware block, as shown by the first two columns. From the area and 
location, specific n-graph areas and fields are identified to model the fault. If the target value to fault 
is not to be updated with new values, the NO-CHG column contains a Y. If updating the value is 
dependent on other factors, a P is indicated for a Potential NO CHANGE. Otherwise, the N indi- 
cates the value will be updated. Values that are updated will use the Stuck-At model to model the 
defects. The N/Y/P is similar for the ALL column. If all the CNs in a PN are to be faulted, a Y is 
shown. If faulting all CNs depends on other factors, a P is indicated. And if only the one CN is to be 
faulted, an N is indicated. The Field column indicates the target message field to fault. Either the 
address or data fields of the target value can be faulted. 

Figure Dl  - Faulted Hardware to  Fault Representation. 
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Figure D2 - Fault  Representation to Faul t  Action. 

Figure D2 lists the faults represented in the fault simulator and which n-graph area will 
model the fault. For example, a data word fault in the n-graph WEIGHT section not having the ALL 
bit set will be modeled in all weights specified by the link offset or a range of faults specified by the 
LSM. Jf the ALL bit is set, all the weights for the P N  will be modified. Figure D2 also points out 
whether the input link to a CN or the output link from a CN will model fault associated in the CN 
links. 

5. FAULT SIMULATOR DETAILED DESCRIPTION 

This section will describe the detailed operation of the fault simulator program, Fltsim, used 
to determine the fault tolerance of the neural network emulation architecture developed at OGC. 
The purpose of this section is for someone maintaining or modifying Fltsim. First, a discussion of the 
environment that the program is run in and how to compile the program will be addressed, followed 
by the file naming convention used, data structures used and then a description of each routine. In 
this section, italicized words represent variables used in the program and capitalized words represent 
constants or enumerated data values. The names of subroutines used in Fltsim is shown by the rou- 
tine name followed with "()". Single dimensional data arrays are shown with a "[I" following the array 
name, and "U[]" is used for two dimensional arrays" 

Fltsim is written in C and uses the standard C libraries, which is portable to computers with 
the C language facilities. A make file is used to compile and link all the source code files in the sys- 
tem. The file, makefile, lists the dependencies between the files and the actions to be executed if the 
dependent files are altered. One routine uses the Unix utility Lex, which automatically is executed if 
the lex source file or include files have changed. 

Standard file name extensions are used to describe the contents of the files. The declarations 
of all the structures and constants are in the fi1e.h files, all the extern declares are in file.ext files, and 
all the code is in fi1e.c files. The files pad.c and pn.c declare all the global structures uses by the fault 
simulator. The pad.lex file contains the source for the Unix lex routine. The lex output should be 
placed in the file 1ex.yy.c to be called by Fltsim. 

Fau1t.h contains the definitions for the fault index bits written to the fbif.output (faulted BIF) 
output file. Each defined bit in the fault index indicates to the fault routine how to model the fault, 
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fau1Lgen.c rd3ault.c parameters 

prdefects() 
prdefects .~  

Figure El - Fltsim flow chart 



Fltsim Operation 

- 

May 1988 

Figure E2 - Fltsirn flow chart (cont) 

that is, how to modify the intermediate values in the CN calculation. Fau1t.h will also be an include 
fde for the user's fault routine in the architectural simulator, as discussed in the network interface 
appendix. 

General.h contains constants non-specific to any one file or routine. The maximum number of 
elements for several arrays are declared here. For example, the maximum number of PNs in the 
simulation, the maximum number of CNs, the maximum number of faults to model, etc. These con- 
stants are later used in the structure declaration files, pad.c and pn.c, to declare array sizes containing 
data about each PN, CN, fault, etc. 

Pn.h declares general structures and enumerated types. Pn.c references the structures defined 
in pn.h to declare global variables using these structures. The data structure pn-stmct is referenced 
via the global variable array ppl-loc[/[/ using an x,y PN physical coordinate. Information about each 
P N  is stored in this structure. Pn-areas defines the data structure describing the physical sizes of all 
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the P N  internal and overall dimensions, and the overall area required to implement each PN. The 
data structure map is referenced by the global variable pn-map[] using a P N  index read from the BIF 
file to look up the PN1s x,y coordinate. The enumerated data type, f-types, defines the types of faults 
in the fault model, namely, stuck-at1 ( S - k l  ) and stuck-at-0 ( S L O  ). The enumerated data type 
areas defines the hardware blocks in each PN. The n-graph is composed of several components which 
are listed in the enumerated type blocks. The data structure faultstruct is referenced via the global 
variable fault[] via a fault number. The fault1 variable contains information about each fault to be 
modeled, including the index and modifier fields to write to the fbif file, the hardware block the fault 
occurred in, and where the fault is modeled in the n-graph or BIF file. For some hardware blocks, 
such as the CN-MEMORY or WEIGHTS, the offset within the block is indicated using one of 
coz-oflset, isit~oflset,  or ilinkoflset. 

When the fault parameter input file is read, the f-params structure is filled in by referencing 
fltparms. The t ech t ruc t  data structure referenced via techptr  is filled in similarly when reading 
the technology file input. The data structure bif-atats referenced by bif-atat keeps track of the BIF 
statistics, including the number of good units (CNs, sites, links and weights) and faulted units. Addi- 
tional fields will describe other pertinent statistics to be written to the statistics file. 

In pn.c, there are two variables to map CN values, either from the CN index to the P N  or 
visa versa. Cn-map1 uses the CN index to determine the P N  number it  belongs to. Given a PN 
number and a CN offset in the PN, the corresponding CN index can be determined using 
pn-loc[x][Y].cnnum[cn-oflset]. CN offsets within the hardware can be mapped to CNs and PNs in 
the BIF file using these data structures. 

The pad.c declares global variables to describe the physical architecture. The pad variables 
are set when reading the pad input file. As the PAD input file is read, out of range errors are checked 
for, ensuring that the input data is consistent and within the ranges set in the genera1.h file. 

The main routine contained in fltsim.~ calls all the subroutines to do the various subblocks of 
the program. The first step is to parse the command line. The number of arguments and the charac- 
ter string containing the arguments are passed to parsein(). Parsein() opens all the specified input 
and output files for later reading and writing and assigns all the file pointers for each file. If no test 
file and/or faulted BIF file is specified, their file pointers will point to /dev/NULL to discard the data. 
The current date and time of execution is written to the fault statistics and test output files. All the 
input/output file names used by the fault simulator are written to the test output file. Parsein(), if 
the -S is not specified, will generate a random seed for the random number generator is derived form 
the current time. Otherwise, the random number generator seed is read from the command line and 
will generate the same random numbers each time the program is run with the same seed value. The 
value of the seed is printed on the standard output and to the fault statistics file to allow any execu- 
tion of Fltsim to be repeated by specifying the same seed value. 

The Init() routine is next called to initialize any global arrays or variables. This routine ini- 
tializes any values to their default values. CN and P N  node values are set to an invalid number, -1, 
and the number of units in the various blocks is initialized to 0. 

The physical architecture description (PAD) file is read by calling yylex(). Yylex() is the out- 
put from the lex (UNIX) lexical analysis routine and is generated from calling 'lex pad.lexN. The 
pad.lex file contains fields to search for in the PAD input file and the corresponding C code to execute 
for the matched fields. (Please refer to a Unix manual for details on lex.) The information in the 
PAD file is then read into the pad data structure (in pad.ext and pad.c). The PAD data contains the 
actual information required to describe the physical architecture. It includes fields such as the number 
of Processor Nodes (PNs), the number of Connection Nodes (CNs), how the PNs are arrayed, the con- 
nectivity of the nodes, and the number of signal lines between the nodes. See the pad description file 
for more details. The input values are checked for valid ranges as to not exceed array sizes declared 
in the constant files. If an ouhf-bounds error does occur, a message is printed via stderr and program 
execution terminates. 
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Several times throughout the simulator, a test routine is called (if in TEST mode) to write 
intermediate Fltsim values. A pointer to the test file and a section number are passed to the test rou- 
tine to determine which variables to write to the test file. For example, the test routine called with 
section 1 as the passed parameter will print all the parsed values produced by the lex routine. The 
contents of several data structures and parsed input files are included in the test output. The Test 
output file can be used for diagnostics or for simply keeping a complete record of the programs inpufs 
and outputs. 

With physical architecture information from the PAD file, a model of the physical structure 
can be built with enough detail to make the simulation accurate, but not too much detail to make it 
cumbersome and slow. Also, all the information to create a detailed simulation is not available. The 
create-pns() routine builds the model of the structure. Before the physical structure can be built, 
something must be known about the sizes of the devices. A technology file is read by the ~reate-~ns() 
routine to determine the sizes of the blocks in the architecture. Rd-tech() is passed a pointer to a 
technology data structure that is assigned values read from the technology file. Some of the fields in 
the technology file are the size of a memory cells, size of a analog-to-digital converters, size of a line 
buffers, line widths, digital-to-analog converter sizes, etc. 

The create-pns() routine calls calc-pnsize() to calculate the size required for each P N  with the 
technology file data. The overall P N  size is the cumulation of the sizes of all the individual hardware 
blocks. A P N  aspect ratio is specified in general.h to allow the relationship of the x,y dimensions of 
the P N  to be specified. The sizes of these blocks are shown in figure 11. Relative locations of the 
individual blocks within a P N  are not needed to do the simulation as the faults are placed statistically 
within a PN. The probability of a P N  fault being assigned to a specific block is based on the relative 
P N  block size and not the location within the block. The relative sizes of the blocks will be all that is 
required to place faults inside a PN. Since the relative size of the P N  is small, the faults will be ran- 
domly located in the PN, and the chances of the fault being in a particular block is related to the size 
of the block. The fault distribution will be discussed more in the fault section. 

Create-pns() calls a routine, calc-pnsep(), to calculate the distance between the PNs. The 
P N  separation is mainly dependent on the number of signal lines between the PNs and the size of the 
buffers used. The spacing between PNs is the number of data bus lines multiplied by the line width. 

Creatapns() can finish creating the model since the size of PNs is known and the distance 
between the PNs is also known. The routine loops for each P N  in the x and y dimension and assigns 
boundary coordinates for each PN. These boundary coordinates are used later to map faults from a 
physical coordinate to a specific PN. 

Bussize() is called from create-pns() to calculate the silicon area required to implement the 
PTP and PBH sub structures. The total area between all the PNs is calculated to provide some 
statistics on the fraction of area actually used for the bus signals versus free area. The number of 
P T P  data bus lines and control lines are calculated for the entire network. Also the PBH data and 
control lines are calculated for the entire network. Defects in different levels of the PBH communica- 
tion network will effect the operation of the network differently. So the amount of area for each level 
of the PBH network is calculated. The probability of a defect in a specific level is related to the 
amount of area required to implement that level. The bus sizes are later used by the findfault rou- 
tine to determine where the defects are located. 

The next step is to determine the number of faults and the location of these faults. The fault 
locations are normalized, that is, they range from 0,O to 1,l .  Therefore the fault generator does not 
depend on the overall size of the network. 

Fault parameters are read from a fault parameter file to determine the characteristics of the 
fault model. Rdfault() is called to read the fault parameters into the fault data structure. The fault 
parameters include the defect density per square inch, the fraction of S-A-O faults, the clustering 
coefficient and the ratio of the inner fault density to the outer fault density. The fault model uses a 
quadrat method for modeling fault clustering and a two zone radial distribution to model higher fault 
densities towards the wafer's edge. For the quadrat method, the wafer is divided into quadrats or 
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grids. The number of the inner and outer grids used by the defect generator are specified in the file 
general.h. The average number of defects per grid area is used to calculate the actual number of 
defects per grid area, as discussed in the Defect Fault Models chapter. The average number of defects 
per grid is the total number of defects divided by the number of grids. The overall size of the network 
was calculated earlier, and the average defect density is one of the fault parameters read from the 
fault parameter input file. Multiplying these two numbers results in the average overall number of 
defects. The average number of defects is divided by the number of grids to determine the average 
number of defects per grid area. The average defects per grid area is modified by the radial distribu- 
tion factor. The two zone radial distribution allows for two zones, an inner zone and an outer zone. 
The ratio of the fault density for the inner and outer zones is specified in the fault parameter file, 
which determines the radial distribution factor. The fault density ratio will generally be less than or 
equal to 1. With a fault ratio of 1, the inner fault density will be identical to the outer fault density, 
which should be used for fault simulations of a die within a wafer. A fault ratio less than 1 indicates 
that the outer fault density is greater than the inner fault density, which is the normal case for a 
wafer. The equations below step through the calculations needed to determine the average number of 
faults for each grid area. 

Let: 

gs;de = # grids on a side of the outer zone 

g; = # grids on a side of the inner zone, where Saide > g; 

fwi = total # of inner zone faults 

fwo = total # of outer zone faults 

f w  = average # of faults for a wafer 

a; r = - = inner outer fault density ratio 
a0 

Therefore: 

f w  ad = 7 = average # faults per grid area 
gsid e 

fwi  a; = - = average # faults per inner grid area 
gi2 

a ,  = fwo = average # faults per outer grid area 
gside 

Since, 

Then, 

fw  = aigi2+ao (gside 2 - ~ i 2 )  
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With the average defect density for each grid area known, the number of faults for each grid 
area is calculated. The number of defects in the area is determined in the pr-defects() routine, which 
is passed the fault parameters and the average number of faults for this area. The faults are located 
randomly within each quadrat using a random number generator. The type of fault (S-k l  or S-kO) 
is assigned using a random number and the ratio of S - k l  faults to S-kO faults. The fault type ratio 
is listed in the fault parameters. A running total number of faults is used to check for overrunning 
any declared array sizes. 

Pr-defects() uses a negative binomial distribution to determine the number of faults in qua- 
drat. A random number with uniform distribution is mapped to the fault probability distribution. 
The random number is compared to the probability of 0 fault, 1 fault, 2 faults, etc. This comparison 
is repeated until the random number is less than the cumulative sum of the probability of x faults. 
The value x is returned as the number of faults. As mentioned in the Defects Fault Models chapter, 
the probability of x faults is: 

where A is the expected number of defects in an area and a is the clustering coefficient between area 
on the wafers. The average number of defects in an area is A and is read in the fault parameters He. 

To  calculate the gamma function, a simplification can be made shown below: 

The gammacalc() routine calculates the value of this function given a! and x . 
The next portion of Fltsim maps the x,y defect locations generated by fault-gen to hardware 

blocks in the physical architecture. Fault-pnsO loops on each physical fault to map its location to a 
hardware block in the network. The defective operation of the hardware in the network is determined 
and is stored in the fault[] data structure defined in pn.c. A single physical fault can cause multiple 
faults in the n-graph. So two variables are used for the number of faults, ph-faultnum indicates the 
current physical fault number being processed and bq-faultnum is the current BE' or n-graph fault 
number which is generated from the physical faults. 

FindAaultO is called to determine the faulted P N  number, the faulty hardware block or area 
and the communication area in formation, if required, from the defect x,y coordinate. The defect x,y 
coordinates are normalized, so the overall die dimensions for the entire network are calculated and 
multiplied by the normalized x,y defect coordinate to determine the actual x,y physical fault location. 
The physical x,y location is used to calculate the P N  x,y coordinate that is nearest to the fault. If the 
fault location is outside the P N  boundary, then the fault is in the bus communication area and the 
f-loc variable is set to the side of the PN that the fault is located in, to be used later if the fault is in 
the P T P  communication bus. A random number is generated to statistically derive in which bus area 
the fault is located. The areas for each section of bus was calculated earlier and the probability of the 
fault in an area is related to the size of that area. Each level of the PBH communication structure is 
checked for faults. If a fault is in the PBH network, the level is indicated in f-loc. If the fault does 
not occur in any of the bus signal lines, the faulted area is set to FREE which does not effect the n- 
graph. 



Fl t s im  Opera t ion  M a y  1988 

If the fault is located within a P N  boundary, the hardware block to be faulted is determined 
statistically based on the areas for each block. The f area variable is set to the defective block. 

The findfault() routine returns the closest P N  x,y location to the fault, the area or block the 
fault occurred in, and the location in the P T P  or PBH communication region if required. The faulted 
area and P N  number are stored in the fault[, data structure. A case statement is used to determine 
the effects of the fault depending on the hardware block the fault occurred in. One case statement is 
used for each hardware block. The case statement routines calculate the fault index, modifier, block, 
and any offsets (CN, site, or link) needed to model the fault in the n-graph or BIT' structure. The 
details of each case statement are in Appendi  D, Fault Effects. Fault-pns() completes the informa- 
tion stored in the fault1 data structure. 

A few of the case routines place faults in multiplexed data bus lines. Multiplexing a message 
entails breaking it  into several portions or subwords and transmitting these words serially over the 
data bus. The subwords are reassembled a t  the receiving node. A defective data bus line will cause 
the same bit position in each subword to be faulty. To model multiplexed data line faults, the 
busmod() routine is called, passing it  the number of physical signal lines are available to transfer the 
data. One of the bus signal lines is chosen at random to be defective. The bit corresponding to the 
defective bit in the signal lines is set high in a fault modifier. The fault modifier is then shifted by the 
number of physical signal lines, and the defective bit position is set high again. The procedure is 
repeated for the entire number bits in the message, resulting in a value with high bits for all the defec- 
tive bits in the transmitted message. 

Faultstat() is called by Fltsim to start writing the fault statistics to the fault statistics output 
file. The information contained in the fault// data structure is listed in readable format. The fault 
index, type of fault, fault location, etc. are listed. Faultstat() only lists information about single 
faults that are modeled in the hardware. In actual operation of the network, faults interact with one 
another. For example, a message sent between P N  may have several defects along the message path, 
causing multiple defective bits. Fault interaction is determined when the BIF file is read, and the 
faults are mapped onto the n-graph. The fault interaction statistics are appended to the file in the 
rd-bif() routine. 

Rd-bif() is next called to read the BE' input file and generate the faults in the n-graph. To  
place some faults a t  the current n-graph node being described in the BIF file, information about 
related nodes required to place the fault may not have been read yet. To  alleviate this problem, the 
BIF file is read twice, the first time to enter BIF parameters into certain data structures for later use, 
and a second time to generate the fault indexes and modifiers for the architectural simulators, that are 
written into the fbif file. Different routines are called on each pass through the BIF file. 

The routines ge t in to ,  ge~uin t ( ) ,  get-ushort(), getshort() and getstring() read and return a 
value from a file pointed to by the passed file pointer. The data type for the value depends on which 
routine is called, i.e., getuint() reads and returns an unsigned integer. If the read fails for any reason 
(although it  is usually due to an invalid data type) the error message string passed to the routine is 
printed to stderr and execution of the program stops. 

Each value that is read from the BIF file can be written to the test output file with the field 
name or section name associated with it. If any inconsistencies or parsing errors occur, the field names 
aid in pinpointing the problem. Currently the BIF file contents are not written to the test file due to 
the potentially large size of the BIF file. In the beginning of rd_bif(), the test file pointer, testfp, is set 
to /dev/null, discarding the BIF information. Towards the end of rd-bif(), the testfp is set back to 
its original value. A flag can be added if needed to conditionally redirect the rd-bif() test file output. 

In the beginning of each pass of reading the BIF file, several variables are initialized. The 
number of CNs, sites, and links in each P N  are reset to 0. All the BIF fields are read from the BIF 
file and written to the test file on both passes. Rd-bif() reads the first line from the BIF file into a 
string. The string is compared to the section headings for the BIF type section and the CN section. If 
neither of these two sections headings are matched, an error occurs. On a match, the variable 
bif_section is set to the current BIF section being read. An entry from that BIF section is read each 
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time rd-type() or rd-cn() is called. When the end of the section is reached, that is, the end group or 
end C N  keyword is read, the baj-section is set to NONE, and the routine returns. Rd-bif() reads 
another line from the BIF file for another start type or start CN keyword section header. Rd-bif() 
looks for section headers until the EOF, end of file, is reached. On the end of the first pass, the file 
pointer is rewound back to the start of the file for the next pass, where the reading procedure is exe- 
cuted the same as before. 

The group information in the BIF file is not effected by the defects modeled in the fault simu- 
lator. Rd-type() therefore just passes information from the BIF file to the test file on each pass. 

The rd-cn() routine reads the CN section in the BIF file. The BIF yields are read into local 
variables using one of the get,num() routines. The procid BIF field is used to look up the P N  x,y 
location in the network originally specified in the PAD file. The cn-ofset is set to the current number 
of CNs in this PN, which is kept track of in the pdoc[x][y].numcns data structure entry. The 
numcns  entry is incremented to indicate the current number of CNs in this PN. Note that the order 
of the CNs in the hardware is indicated by cn-ofset and is determined by the order listed in the BIF 
file. At  the level of this simulation, the ordering of CN entries within a P N  does not effect the results 
of the simulation, although it will aid in understanding how the CN offset in the hardware is mapped 
to the cn-oflset in the BIF file or n-graph. The same offset scheme is used for the sites and links. The 
order of the sites and links is determined by the order listed in the BIF file. 

On the first pass through the BIF file, enter-map() is called to make reference tables for the 
second pass. Two data structures contain the reference information, cn-map[] and 
pla-loc[z][y].cnz[ildnk-ofset]. The cn-mapi array maps the CN index number to a P N  number. The 
CN index read from the BIF file can be used to index the P N  that contains this CN. An example of 
its use can be found in the BIF link section destination CN index (cnx) field. To  determine the desti- 
nation P N  number and x,y location in the network, the cn-mapi array is used. Pn-loc[fly].cnxi 
contains all the CN indexes found in the P N  with x,y location in the network and the input link offset 
in the hardware. The array contents are printed in the test output file. 

During the second reading of the BIF file, the fault indexes and modifier values are written to 
the fbif file. The fbif file is a section of C code that initializes one array of structures, fits[] and three 
arrays of integers, fcn-ptrl], fsite-ptr[]iand fiinlcnum[][]. The fbif file is included with the architec- 
ture fault routines, as discussed in Appendix C. The fault indexes and modifier values in the fits[] 
array is written on the second pass through the BIF file by the fault routines fault-cn(), faultsite(), 
faultlink() and faulkweighto. These fault routines are described later. 

Rdsites() is called to read the site sections in the BE' file. Each site for a CN is read until 
the LAST bit is set in the iotype field. The variable, isite-ofset, as discussed before, is the current 
input site offset for the current PN. Only input sites are considered because they have entries in the 
CN-MEMORY and WEIGHT hardware sections for incoming messages. The output sites send mes  
sages using the PTP and PBH hardware blocks, and these are not considered here. If reading the BIF 
the second time, faultsite() is called to calculate and write the site fault fields to the fbif file. 
Faultsite() is described later. 

Rd-links() is called next to read the link section of the BIF file. The links section lists all the 
links for the site. Each link is read until the LAST bit is set in the lnkvec field. Again, only the input 
links are considered for the linkoffset. Only the input link has entries in the CN-MEMORY and 
WEIGHTS sections. On the first pass, another reference table is set up, pn-loc[x][yj.cn-numi. Using 
the input link offset, linloflset, pn-loc/x~[y/.cn-nuna[ir;nlcoflset] will contain the source CN index to 
be used in the fault-link() routine. On the second pass, fault-link() and fault-weight() are called to 
determine and write the fault fields for the link and weights respectively. 

The routines fault-cn(), faultsite(), faultlink() and fault-weight() each search the array phy- 
sical faults for any faults that will effect their corresponding BIF n-graph section. If no faults are 
found, a NO FAULT index and modifier consisting of zeros is written. For example, fault-cn() 
searches the fault array for a physical defect that will effect the current CN being processed in the BIF 
file. The fault array contains fields set by the fault-pns() routine, which map each defect location to 
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an n-graph block. Each faulted n-graph block is examined for its effect on the current BIF block. For 
each fault found to effect the current BIF block, a comparison is performed by the worst() routine 
between the previous worst case fault and the current fault. The current worst fault is initialized to a 
NO FAULT condition. If the two faults can be combined, the new worst fault is the combination of 
the two faults. Otherwise, one of the two faults is chosen as the new worst case fault. 

Any two faults with stuck data bits can be combined. If both the faults have stuck-atrO 
(stuck-at-1) faults, the fault modifiers are AND'ed (OR'ed) together to fault all the bits from each 
modifier. If one modifier has S - k l  and the S - 4 0  bits, the S-kO fault is arbitrarily chosen to be 
the dominant fault type. The modifier bits of the nondominant fault are complemented and AND'ed 
with the first fault's modifier bits. The rest of the worst fault cases require choosing one of the two 
faults as worst. If either fault is a "NO FAULT", then the other fault is chosen. If either of the two 
faults is a 'NO CHANGE fault, where the n-graph node of function does not get updated with new 
values, it is selected as the worst case fault. The worst fault is returned in the outputftt variable. 

The fault index and modifier is written to the test file and to the faulted BIF file. The BIF 
statistics are updated a t  the end of the routine. The total number of CNs is incremented and if the 
fault index indicated a fault, the number of faulted CNs is incremented. 

Faultsite() examines the fault array for faults effecting the current CN site. The sites are 
broken down into input sites and output sites. All faults are combined into a worst case fault as 
before. The site fault index and modifier is output to the test file and to the faulted BIF output file. 
The BIF statistics are updated at the end. 

Fault-link() checks for faults in the message transfer between CNs. If the link is an output 
link, a check for address faults in the destination P N  is done by fltaddr(). This routine does not 
check the message routing from the source P N  to the destination PN, as this routing is done later. 
The destination P N  x,y coordinate is calculated from the pn-mapi and cnrnapJ arrays set on the 
first reading of the BIF file. Cn-mapi determines the destination P N  number and pn-map deter- 
mines the x and y coordinate from the P N  number. The worst fault is returned in outputftt. 

If an address fault was detected in fltaddr(), no more fault checking occurs since an address 
fault is the worst case fault. If no address faults were detected in the destination PN, the communica- 
tion buses are checked for faults. The type of communication bus used for this link is indicated in the 
BIF file. If the link uses the PTP bus, the message path is determined from the source and destination 
P N  locations and the entire route is checked for faults. The ptp-path() routine determines the route 
and does the fault checking. The route was arbitrarily chosen and is: move in the x dimension until 
the proper column is found, then move in the y dimension until the destination P N  is reached. For all 
the PNs in the route, except for the first and last, the message enters one side and exits on another. 
The side is checked for faults by the ckptp( )  routine by searching through all the faults for any 
located in the PTP links for that side. The resultant fault fields are the worst case fault condition of 
the entire route. 

Once the message reaches it  final destination PN/CN, it  is stored in the MEMORY section 
for the corresponding link. Any faults in the MEMORY will act identically as bus faults. So faults in 
the MEMORY section are searched for and combined with the PTP bus faults. 

If the link uses the PBH communication bus, either flLpbLbdc() or flt-pbbdatd) is called to 
calculate the link fault fields. Flt-pbhbdc() is called for input links and f l tpbhdata( )  is called for 
output links. Faults in the PBH bus act differently depending on if they are in the signal lines in the 
transmitter or receiver buses, as described in the paper. These two fault routines take this difference 
into account. 

FltcpbLbdc() first gets the PBH region in which the current CN is located. R e g ~ u m ( )  
returns the PBH region that the P N  is listed in and where it is located within the PBH tree. The 
location is indicated by an offset in the list of PNs in the region. Then all the faults are searched for 
any in the PBH input links. The region that have PBH input link faults is determined and compared 
to the region that the current CN is in. If they are in the same PBH region, they are checked to see if 
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the fault location in the PBH communication tree effects both CNs. The level in the PBH tree that 
the fault occurs is indicated by the j l t p t r - > l o c  variable. All nodes that are descendents of this 
faulted node will be faulty. The routine pbhsubreg() returns TRUE if the two CNs are in the same 
subregion or subtree. The worst fault is determined as before. Flt-pbhdatq) works similarly as 
flt-pbhbdc() except the PBH output link fault are searched for. T o  reiterate the reason for modeling 
the PBH receiver and transmitter buses separately is due to the differing actions of the faults in these 
two buses. A fault in the receiver bus will effect all input messages to  PNs in that PBH subregion. A 
fault in the transmitter bus will effect all messages coming from the PNs in the faulted PBH subtree. 
Receiver faults effect messages to PNs and transmitter faults effect messages from PNs. 

The fault-link() routine completes by writing the fault fields to the test routine and faulted 
BE' file and updating the BIF link statistics. 

The fault-weight() routine is called next to check for any faults effecting the weights for the 
input links. The fault array is searched for faults effecting the current link read from the BIF file. 
The resultant worst case fault is written to the test file and to the faulted BIF output files. The BIF 
statistics for the weights are updated. 

After reading the BIF file the second time and generating all the BIF fault fields, the rd-bif() 
routine writes index routines to access the fault fields by the fault routines. These are described in 
more detail in the fault simulation interface appendix. 

The next step in the rd-bif() routine is to write the results of the BE' statistics to the fstat 
output file. The fields written here quickly summarize the effects of faults on the network. Percen- 
tages of faulted CNs, sites, links, and weights are shown, with the addition of more fields as required 
later. 

Fltsim completes its operation by closing all the opened files. The Fault Simulator execution 
is completed. 


