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Abstract 

We want t o  map shared-memory programs, such as Fortran programs (perhaps with paral- 
lel syntax), onto a distributed memory message passing multiprocessor (DMMP), such as a 
hypercube. Using a domain decomposition approach, two things need to  be specified: the parti- 
tioning of the data among the processors and the communication between the processors. We 
assume that  the user will partition the data using language extensions and the compiler will 
insert communication between processors. We show how parallel loops can be mapped into dis- 
tributed code by prefetching all required data before doing any computation, which can i n t r e  
duce broadcast operations for certain types of loops, which we call systolic loops. T o  remove the 
broadcast, we use variants of the wavefront method, a t  a loss of efficiency. We then introduce a 
new program transformation, called loop rotation, specifically targeted for mapping systolic 
loops onto DMMPs. When it applies, loop rotation produces an efficient program with uniform 
communication path utilization. We then discuss how to  apply loop rotation in a three- 
dimensional loop, where it improves efficiency but does not produce a perfectly parallel algo- 
rithm. Finally, we use loop rotation as a mechanism to  compile code for which the data was 
distributed in a block-diagonal or block-anti-diagonal manner. 
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1. Prologue 
We want t o  map shared-memory programs, such as Fortran programs (perhaps with paral- 

lel syntax), onto a distributed memory message passing multiprocessor ( D M ) ,  such as a 
hypercube. We distinguish automatic discovery of parallelism in sequential programs from map- 
ping parallel shared-memory programs onto DMMPs. This paper is concerned with the mapping 
phase. Thus a sequential program can be automatically (or semi-automatically) converted to  
parallel form and then mapped onto a DMMP, while a parallel program can proceed directly t o  
the mapping phase: 

Using a domain decomposition approach, two things need to  be specified: the partitioning 
of the data among the processors and the communication between the processors. Current 
research assigns the partitioning task to the user (via directives or additional statements 
[CaK88,KMV87,RoP89]; the task of identifying and inserting communication points is then left 
to the compiler. We make the same assumption and show how parallel loops can be mapped 
into distributed code by prefetching all required data before doing any computation. We show 
how prefetching can introduce broadcast operations for certain types of data accesses in loops 
(which we call spstolic loopa) which may not be desirable. T o  remove the broadcast, we use 
variants of the wavefront method, a t  a loss of efficiency. 

We then introduce a new program transformation specifically targeted for mapping sys- 
tolic loops onto D M s .  The new program transformation, called loop rotation, is described as 
another variant of the two-dimensional wavefront method, but designed to improve interproces- 
aor communication characteristics of the loop rather than to  uncover more parallelism. When it 
applies, loop rotation produces an  efficient program with uniform communication path utiliza- 
tion. We then discuss how to  apply loop rotation in a three-dimensional loop, where i t  improves 
efficiency but does not produce a perfectly parallel algorithm. Finally, we use loop rotation as a 
mechanism to compile code for which the data was distributed in a block-diagonal or block- 
anti-diagonal manner. 



2. Motivation 
This section considers how shared-memory parallel loops can be mapped onto DMh4Ps. 

Consider a ring-connected DMMP, with data distributed evenly among the processors, as below: 

If A  and B are matrices, we aasume that  only one of the dimensions will be distributed, so each 
processor will own [N/HUMP] columns (or rows). We emphasize that  the distribution is given to  
the system by the user. A simple parallel loop with no communication, such as: 

Program 1: 
doall I = 0:N-1 

A ( 1 )  = A ( 1 )  + B ( 1 )  
enddo 

could be compiled into the parallel code: 

Program 2: 
on each proceador P  = 0:NUMP-1 

NN = CEIL ( N V )  
PL = P*NN 
PU = MIN(N-1, ( P + l )  *NN-1) 
do I = PL,  PU 

A ( 1 )  = A ( 1 )  + B ( 1 )  
enddo 

where the P index specifies parallel execution on all processors. We assume tha t  the user does 
not specify or even know the actual number of processors on which his code will be running, so 
he will not know how much of each array will be stored on any processor. In cases where there 
is communication between iterations, the compiler must insert communication; several methods 
are shown below. 

2.1. Prefetching 
In a simple loop, such as: 

Program 3: 
doall I = l :N-2  

A ( 1 )  = O.S*(B( I -1 )  + B ( I + l ) )  
enddo 

the compiler would realize that  some of the B ( I  -1) and B (I + 1 )  references would be to  ele- 
ments stored in neighboring processors, and could prefetch those elements before executing the 
body of the loop: 



Program 4: 
on each proeeasor P = 0:NUMP-1 

NN = CEIL(N/NUMP) 
P L  = MAX(1, P*NN) 
PU = MIN (N-1, ( P + l )  *NN-1) 
if( P > 0 ) mend( B(PL) ,  P - 1  ) 
i f (  P < NUMP-1 ) s e n d (  B(PU) ,  P + 1  ) 
if( P < NUMP-1 ) r e c v (  B ( P U + l ) ,  P + 1  ) 
i f (  P > 0 ) r e c v (  B ( P L - 1 ) .  P - 1  ) 
do I = PL,  PU 

A ( 1 )  = O . S * ( B ( I - 1 )  + B ( I + l ) )  
enddo 

The more complicated example below requires a more sophisticated approach: 

Program 6: 
d o d l  I = 0:N-1 

do J = 0, N-1 
A ( 1 )  = A ( 1 )  + B ( J )  

enddo 
enddo 

We can apply the "prefetch" technique described above; since each processor needs the whole 
vector B, each processor would prefetch the whole vector B into local memory before entering 
the parallel loop. On a DMMP, this requires the "owner" of each segment of B to  execute an  
explicit broadcast: 

Program 6: 
on each processor P = 0:NUMP-1 

NN = CEIL(N/NUMP) 
P L  = P*NN 
PU = MIN (N-1, ( P + l )  *NN-1) 
do JP = 0, NUMP-1 

J L  = JP*NN 
JU = M I N  (N-1, ( J P + l )  *NN-1) 
i f (  JP = P ) then 

broadcast ( B (JL:  J U )  ) 
e l se  

r e c v (  B ( J L : J U ) ,  .TP ) 
endif 

enddo 
do I = PL,  PU 

do J = 0, N-1 
A ( 1 )  = A ( 1 )  + B ( J )  

enddo 
enddo 

Now all references to B in the computation loop are t o  local memory; however, in addition t o  
the overhead of the broadcasts, each processor must have enough memory to hold the entire 
vector B. This may seem a trivial concern, but one of the common design characteristics of dis- 
tributed memory systems is t o  attach each processor t o  a relatively small local memory. Also, 
as mentioned, each element of B shown above may actually be a column of a matrix. 

2.2. I n t e r l e a v i n g  

T o  get around this problem, the compiler may instead try to  interleave the broadcasts 
with the computation: 



Program 7: 
on each proceesor P = 0: NUMP-1 
NN = CEIL(N/NUMP) 
PL = P*NN 
PU = MIN (N-1, (P+l) *NN-1) 
do JP = 0, NUMP-1 
JL = JF'*NN 
JU = MIN (N-1, (JP+l) *NN-1) 
if( JP = P ) then 

broadcast ( B (JL: JU) ) 
else 

recv( B(JL:JU), JP ) 
endif 
do I = PL, PU 

do J = JL, JU 
A(1) = A(1) + B(J) 

enddo 
enddo 

enddo 

Now each processor only needs enough local memory to  store one extra "block" of B in addition 
to its own; for simplicity, this program does not show the extra storage that  would be required 
for the extra block of B. The broadcasts constitute overhead that  can be overlapped with the 
computation if asynchronous communication is allowed. Each iteration through the loop can 
initiate the broadcast and receive that  will be needed in the subsequent iteration of the loop; 
the communication can take place while the computation for this iteration is going on. The 
generated code is messy, so a simplified version is shown below: 

Program 8: 
on each processor P = 0:NUMP-1 
NN = CEIL(N/NUMP) 
PL = P'NN 
PU = MIN(N-1, (P+l) *NN-1) 
if( P = 0 ) then 

abroadcast ( B (PL : PU) ) 
else 

arecv( B(PL:PU), 0 ) 
endif 
do JP = 0, NUMP-1 
JL = JP*NN 
JU = MIN(N-1, (JP+l)*NN-1) 
NJL = (JP+l) *NN + 1 
NJU = MIN(N, (JP+2) *NN) 
if( JP+1 = P ) then 

abroadcast ( B (NJL : NJU) ) 
else if ( JP < NPROC ) 

arecv( B(NJL:NJU), JF+1 ) 
endif 
do I = PL, PU 

d o J = J L ,  JU 
A(1) = A(1) + B(J) 

enddo 
enddo 

enddo 

where abroadcast and meev refer t o  asynchronous communication; we have not shown the 
code tha t  would be required to  check that  the data was actually received before i t  was used, or 
the double buffering that  would be used to prevent an arecv from overwriting the da ta  buffer 
too early. This method would be satisfactory except for the broadcasts; broadcasts may be too 
expensive t o  amortize efficiently over the computation. 



We can look a t  the iteration space of Program 5 a s  partitioned by the methods above; 
both the I and J dimensions of the iteration space are partitioned due t o  the accesses of A 
(aligned with the I dimension) and B (aligned with J). 

We consider execution of each partition (or tile) t o  be atomic, so a time step is the time to  exe- 
cute a whole partition. The methods of programs 6-8 assign processors along the I axis with 
time flowing along the J axis. The problem is that  vertically aligned blocks of the iteration 
space, which will be executed in parallel, use the same partitions of B, requiring broadcasts. 

2.3. Wavefronta 
We can instead "wavefront" the loop to remove the broadcasts. The wavefront method 

can be implemented by skewing the iteration space, as  shown below, while still assigning proces- 
sors along the I axis with time flowing to the right: 

--+ 

At any time step, each processor uses distinct blocks of the B matrix. In fact, each block of the 
B matrix is first processed by processor 1, then can be shifted down to processor 2, and so on. 
This is essentially a "systolic" formulation of the algorithm, with the computation scheduled on 
the processors when the data arrives. A systolic array, however, would have the A and B vec- 
tors arriving from some external environment: 

In our system model the data is already distributed among the processors. We can still use a 
systolic formulation of the algorithm by having the processors 2 through MlMP shift their data 
up towards processor 1 for the first NUMP-1 time steps. This requires that  during some time 
steps, some processors are shifting data and performing computation during some time steps; the 
lower case letters in the figure below correspond to  blocks of data being shifted without partici- 
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pating in computation: 

--+ 

The wavefront formulation sohes the problem of broadcasts, but with a loss of efficiency; 
for large numbers of processors, the efficiency for doubly-nested loops such as this is close to  
50%. In addition, da ta  must flow up towards processor 1 (priming the pump), then back down 
the processor ring, essentially bouncing off processor 1. Some processors have an unbalanced 
load, having to pass along data from lower processors and compute with and pass along da ta  
from upper processors. Some communication paths have twice the usage of others during cer- 
tain time periods. 

The wavefront method is usually used to uncover parallelism in a loop where da ta  depen- 
dence constraints prevent parallel execution of either loop [Lam74,Wo186]. In our example this 
is not the case; in fact, the outer loop of the algorithm is explicitly parallel. However, t o  map 
the parallel loop onto the processor ring, we are required to introduce some sequentiality in 
order t o  allow the da ta  t o  reach the processor a t  the time a t  which i t  is needed. 

2.4. Reverse Wavefront 
To remove the bidirectional data movement problem as well a s  the unbalanced communi- 

cation link problem, we can skew the iteration space the other way, letting processor NUMP lead 
the way. The data flows upward along the processor array: 

We still have a "pumppriming" phase, except now i t  sends data around the ring connection. 
All data communication flows in the same direction around the ring (uniform data flow) and no 
communication path or  processor has an  unbalanced load. The only unsolved problem is the 
50% efficiency. 

8. Rotation 
Using Program 5 as our example, we want t o  generate a distributed parallel loop with 

several characteristics: 

1) Uniform data  communication (as in the reverse wavefront). 

2) Balanced communication and computation across processors. 



3) High efficiency. 

IT we again study the iteration space of the loop as partitioned along the I and J axes, we see 
tha t  each processor has the data necessary to  s tar t  executing the diagonal blocks. The reverse 
wavefront formulation aligns these blocks of the iteration space; what we wish to do next is to  
reorder the execution in each row of the iteration space so each processor starts executing at 
the diagonal elements: 

me --+ 

This is essentially taking the reverse wavefro11L iteration space and moving the priming phase to  
fit in with the flushing phase; we call this loop rotation. 

In the rotated iteration space, each processor can star t  computing immediately, since i t  
already has all the data for its first block; thus, the efficiency requirement is satisfied. Between 
blocks (along the horizontal axis), all data communication moves upward and around the ring; 
this produces uniform and balanced communication. Again, we emphasize that  loop rotation 
does not add parallelism t o  an algorithm; the parallelism was already there. The problem was 
the communication constraints, and the desire to remove the broadcasts. 
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Under what conditions is loop rotation legal? If we consider only the case where the outer 
loop is already parallel, then the only dependence relations allowed in the iteration space are 
along the inner axis. If there are no such dependence relations (no dependences carried by the 
inner loop [AlK87]), then rotation is clearly legal. Program 5 does not satisfy this condition, 
since it accumulates a sum in the inner loop. Reordering the summation will produce the same 
answer, except for the difference in roundoff error accumulation. Vectorizing compilers typically 
have a switch which a user can toggle telling the compiler whether the roundoff error differences 
are acceptable t o  the user or not; some reduction operations can be reordered without fear of 
roundoff error accumulation [Wo189]. Usually, for well-conditioned problems, the difference is 
roundofl error accumulation is acceptable, especially with the gain in performance. We use the 
same idea here, allowing reordering of associative reductions. 
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Loop rotation really only applies for nested loops with two characteristics: 

1) the loop nesting is greater than the dimensionality of the processor topology; 

2) some distributed dimension is accessed by more than one parallel loop. 

In Program 5, we have a one-dimension processor ring with a loop nest depth of two, and the 
distributed dimension of A is accessed by the I loop while the corresponding distributed dimen- 
sion of B is accessed by the J loop. Another example of this would be a matrix multiply; s u p  
pose we have the same one-dimensional ring of processors, and three matrices, A, B and C, all 
distributed by columns (second dimension): 



Program 9: 
doall I = 0, N - 1  

doall J = 0, N - 1  
do K = 0 ,  N - 1  

A ( 1 , J )  = A ( 1 , J )  + B(I ,K)*C(K,J)  
enddo 

enddo 
enddo 

In this case, we ignore the I loop, since i t  indexes row number, and all rows of a particular 
column will be stored on a single processor. The pertinent loops are J and K; we then have two 
nested loops on a one-dimensional ring of processors, with the columns of A and C accessed by J ,  
and columns of B accessed by K. This leads us t o  believe that  loop rotation may be of some 
value here. In fact, if we ignore the first dimension and the I loop, we have a program very like 
Program 5, and i t  would be handled the same way. 

8.2. Rotation vs. Wavefronts 
The wavefront method of executing a loop can be described as moving a slanted line 

through the iteration space, and executing in parallel all iterations which simultaneously inter- 
sect with the slanted line. With a classical wavefront, the slanted line will first intersect with 
the upper left corner of the iteration space, then move down and to the right: 

In the reverse wavefront we used to derive loop rotation, the slanted line first intersects the 
lower left corner of the iteration space, then moves up and to the right: 

Loop rotation can be described as treating the iteration space as  a cylinder (instead of a flat 
rectangle), moving a slanted line through the iteration space (wrapping around the cylinder), 
and executing in parallel all iterations which simultaneously intersect with the line. The 
slanted line starts out going through the diagonal elements, then moves to the right and around 



the iteration space: 

At this point we note tha t  the wavefront method of executed a nested loop involves skew- 
ing the iteration space, then ordering the skewed loops such that  sequential execution of the 
outermost loop will satisfy all dependence relations and allow parallel execution of all inner 
loops Po1861. In the two dimensional version, the sequential wavefront loop surrounds a single 
parallel inner loop; in a three dimensional wavefront, the sequential wavefront loop surrounds 
two nested parallel inner loops; the one-dimensional analog of a wavefront is just a single 
sequential loop. Loop rotation corresponds to converting a two dimensional wavefront t o  a vec- 
tor of one-dimensional wavefronts in the rotated iteration space. We will see why this view is so 
interesting in three dimensional loop rotation. 

Loop skewing is simply defined a s  changing the shape of the iteration space by adding the 
outer loop index to  the lower and upper limits of the inner loop; this requires tha t  the subt rac t  
ing the outer loop index from the inner loop index within the body of the loop. Thus program 5, 
after skewing the inner loop, becomes: 

Program 10: 
doall I = 0:N-1 

do J = I+O, I+N-1 
A(1) = A(1) + B(J-I) 

enddo 
enddo 

A classical wavefront is derived by interchanging these two loops [Wo186]. A reverse wavefront 
will subtract the outer loop index from the inner loop limits: 

Program 11: 
doall I = 0: N-1 

do J = 0-1, N-1-1 
A(1) = A(1) + B(J+I) 

enddo 
enddo 

A loop rotation optimization is defined simply when the loop lower limits are zero; the inner 
loop is 'rotated' by adding the outer loop index to  the inner loop index within the body of the 
loop, modulo the trip count of the loop: 

Program 12: 
doall I = 0:N-1 

do J = 0, N-1 
A(1) = A(1) + B((J+I) mod N) 

enddo 
enddo 

The way we have defined the optimizations, we would first partition (or tile) the iteration space 
according t o  the da ta  distribution, and we would skew or rotate only the tile loops. 



4. Loop Rotation in 3D 
Now consider a twedimensional mesh (torus, actually) of processors, with matrices diitri- 

buted evenly across the ensemble: 

Simple twenested loops could be handled by prefetching data into the processors before per- 
forming computation (as with the single-nested loops on a one-dimensional ring of processors). 
Here we concentrate on loops nested three deep, where some distributed dimension of the 
matrices is indexed by more than one loop variable. One example would be where a single 
dimension is indexed by two loop variables: 

Program 13: 
doall I = 0, N - 1  

doall J = 0, N-1 
do K = 0, N - 1  

A ( 1 . J )  = A ( 1 , J )  + B(I ,K)  
enddo 

enddo 
enddo 

I t  is easy to  see tha t  this case can be handled the same way as the two dimensional case in the 
previous section. The original iteration space (for N=4) is shown in figure 1; assigning processors 
t o  the I X J  axes (with time flowing along the K axis) requires tha t  all processors with the same 
I address need the same block of B a t  the same time. Using a reverse wavefront in J and K 
gives the modified iteration space in figure 2. Assigning processors to the I X J  axes has the pro- 
perties we want; again, time flows to  the right, so vertically aligned blocks in the iteration space 
are executing in parallel. No two vertically aligned blocks require the same data;  moreover, 
only nearest neighbor connections are required. The A matrix stays in the same processor, while 
B moves around the processors backwards (upwards) in the J dimension. Figure 3 shows the 
rotated iteration space (K rotated around J), which has the property tha t  all processors can 
simultaneously with all local data, and the only data motion is blocks of B moving around the J 
dimension. This program essentially a vector of twedimensional rotated loops, and so is noth- 
ing new. 

A more interesting problem arises in a triply nested loop where both dimensions are 
indexed by more than one loop variable. Our old friend matrix multiply (program 9) is a per- 
fect such example. We want t o  derive a formulation for the program on a toroid DMMP with 
high efficiency, uniform communication and no broadcasts. 

The original partitioned iteration space is shown in figure 4. Simply skewing the iteration 
space analogous to the 2D case gives the iteration space in figure 5; processors are assigned 
down the columns (IXJ axes) and time runs to the right (K axis). Note tha t  each processor 
always refers to the same block of the A matrix, the B matrix moves across processors down the 
J axis and the C matrix moves across processors down the I axis. As in the 2D case, this 
corresponds to a systolic algorithm. This wavefront formulation requires the blocks of B data  t o  
be moved up to the (*, 0) processors and the blocks of C to  be moved up to the (0, *) proces- 
sors; while no broadcasts are required, data is moving in two directions (upwards to prime the 



pump, and downwards for the systolic computation). Again, as in the 2D case, we aolve the 
nonuniform communication problems by using a reverse wavefront; the iteration space for the 
3D reverse wavefront is shown in figure 6. Here data moves uniformly up each dimension all the 
time, though i t  is not involved in any computation until it reaches the last processor in tha t  
dimension. We still have low efficiency, however. 

We are tempted to attack the low efficiency by finding a 3D loop rotation transformation, 
since the 2D loop rotation generated perfect efficiency. What would be the characteristics of a 
perfectly efficient rotation transformation? We need to  find GxG blocks in the 
iteration space where, for each block, all the data needed to star t  that  block is initially resident 
in a single processor; this allows us to  s tar t  all these processors all a t  once (assuming they are 
distinct). Then we need to  order the rest of the iterations in such a fashion tha t  da ta  flows 
naturally between nearest neighbor processors in uniform directions. 

The news on these points is not good. Let us first examine the efliciency question, since 
the reverse wavefront already has uniform communication. We derived 2D loop rotation from 
2D reverse wavefront by noticing that  halfway through, all the diagonal blocks were aligned 
and all were using data that  was initially stored on those processors; by starting the processors 
at the diagonal, loop rotation fell out. In 3D, again only the diagonal blocks use data which is 
initially stored on the processor executing those blocks; unfortunately, there are only 
diagonal blocks. Moreover, when we look a t  the reverse wavefront iteration space (figure 6), 
those diagonal blocks don't even line up; (0,O. 0 )  is executed before (1.1.  I ) ,  and so on. 

What might happen if we did initiate those blocks? Not surprisingly, the 3D analog of 
loop rotation is a vector of 2D wavefronts; the 3D rotated iteration space is shown in figure 7. 
Figure 8 shows the original iteration space with the time steps a t  which each block in the itera- 
tion space would be executed; each 2D wavefront starts a t  a diagonal iteration and spreads out 
t o  the right and down within a plane of the 3D iteration space. There are three possible orien- 
tations of the vector of wavefronts, so we choose the one that  allows the result matrix (A) t o  
reside on the same processor throughout the loop. Thus, loop rotation in general seems t o  
replace a d dimensional wavefront by a vector of (d-1) dimensional wavefronts. In the 2D case, 
the result is perfect efficiency; for higher dimensionality, the savings is not so great and may not 
be worth the trouble if i t  brings added complexity. 

Now for the added complexity. Looking carefully a t  figure 7, we see the data blocks 
required by each processor a t  each time step. The orientation of the rotation was chosen t o  
hold the A matrix blocks fixed within processors, while the communication pattern for the B 
matrix blocks is very regular. The pattern for C is very irregular. Notice that  in the third time 
step, C ( 2 . 0 )  and C (O,2)  are each used by two different processors simultaneously; the next 
time step uses each C ( 2 , l )  and C (1,2) simultaneously in two processors. While duplication is 
not necessarily infeasible, the communication pattern is very irregular. Transposing the matrix 
or other simple fixes will not help matters. It  seems tha t  the complexity required by 3D loop 
rotation may well prevent its use in the only programs that  could benefit from it. 

6. Diagonal Di ibut ions  
Given a ring of processors, there are distribution mechanisms other than by rows or by 

columns; the one shown here was first described to  the author by Martin Shultz of Yale Univ. 
Suppose we divide each matrix into NUMPXNUMP square blocks, and assign block ( I ,  J )  t o  pro- 
cessor I -J mod NUMP (to get diagonal distribution, shown in figure 9) or I + J mod NUMP (to 
get anti-diagonal distribution, shown in figure 10). These distributions have the advantage that  
both array access by row and by column can be done in parallel. 

With parallel loops using this distribution mechanism, we want a method t o  identify the 
proper iterations to execute on each processor. Loop rotation will adjust the iteration space to 
align either the diagonal or anti-diagonal down one dimension of the iteration space, allowing 
parallel execution across the other dimension. 



6. Epilogue 
To map parallel loops in shared-memory programs onto distributed memory message pass- 

ing multiprocessors with predefined data partitioning, we must identify the data tha t  needs to  
be communicated between processors. In what we call systolic loops, prefetching all the data 
wil l  be too expensive, in time and local storage. The best loop schedule would have several key 
characteristics: 

1) good processor efficiency (all processors busy doing useful work) 

2) uniform communication patterns 

3) no broadcasts 

We showed how loop skewing or wavefronting can remove broadcasts, and how reverse skewing 
or reverse wavefronts can provide uniform communication patterns. T o  address processor 
efficiency we introduce a new program transformation, called loop rotation, which changes the 
order of execution of the iterations in the loop. This may not always be feasible, but i t  has cer- 
tain advantages when i t  is. In the 2D case (two dimensional loops on a one dimensional ring of 
processors), loop rotation (when i t  applies) can generate perfect efficiency while still satisfying 
the other desires. In the 3D case, however, loop rotation falls apart;  the 3D rotation 
corresponds to  changing from a 3D wavefront to a vector of 2D wavefronts. The efficiency of a 
3D wavefront is (roughly) 33%, while the efficiency of a 2D wavefront is 50%; thus, rotation will 
not even double the efficiency. The 3D rotation does not have uniform communication patterns 
for all data,  and some data is even required in multiple places a t  the same time. 

While i t  is not clear that  loop rotation scales beyond the 2D case a t  all, i t  is nonetheless 
interesting within its limited field of application. We plan to continue study of rotation and 
other such program transformations for distributed memory computers. I t  is worthwhile t o  
emphasize that  loop rotation was not used to  uncover any latent parallelism in the algorithm; 
in fact, our examples all used explicit parallelism. Rotation (and other transformations) will be 
used to  efficiently map parallel algorithms onto distributed machines. This problem has some 
relation t o  the systolic algorithm mapping problem, but has the additional constraints of a fixed 
data partition among the processors. 
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