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Abstract 
Volcano is a new dataflow query processing system we have developed for database systems research and 

education. A uniform interface between operators, e.g., scan, select, or join, makes Volcano extensible by new 
operators. It includes an  exchange operator tha t  allows intra-operator parallelism on partitioned datasets and 
both vertical and horizontal inter-operator parallelism. All other operators are programmed as  for single- 
process execution; the exchange operator encapsulates all parallelism issues, including the translation between 
demand-driven dataflow within processes and data-driven dataflow between processes, and therefore makes 
implementation of parallel database algorithms significantly easier and more robust. 

1. Introduction 

In order t o  provide a testbed for database systems education and research, we decided t o  implement a 

high-performance query processing system. Since we have only limited resources, we spent a fair amount of time 

thinking about how we can make our software very flexible without sacrificing efficiency. The result is a small 

system, consisting of less than two dozen core modules with a total of 10,000 lines of C code. These modules 

includes a file system, buffer management, sorting, B+-trees, and two algorithms each for natural join, semi-join, 

outer join, anti-join, aggregation, duplicate elimination, division, union, intersection, difference, anti-difference, 

and Cartesian product. Moreover, a single module allows parallel processing of all algorithms listed above. 

In the following section, we briefly review previous work tha t  influenced our design. In Section 3, we pro- 

vide a more detailed description of Volcano. Parallel processing is implemented in the exchange module 

described in Section 4. We present experimental performance measurements in Section 5 tha t  show the exchange 

operator's low overhead. Section 6 contains a summary and our conclusions from this effort. 

The art work on the cover was done by Kelly Atkinson from a photograph of Mt. Hood, Oregon 
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2. Previous Work 

Since so many different system have been developed t o  process large dataset efficiently, we only survey the 

systems tha t  have strongly influenced the design of Volcano. We admit tha t  the system grew in pieces, with 

first ideas developed a t  the University of Wisconsin without a clear design for Volcano. In particular, the ideas 

for dynamic query evaluation plans and for parallel execution were developed a t  the Oregon Graduate Center 

[I, 21. 

At  the s tar t  in the early summer of 1987, there was only a feeling tha t  some decisions in WiSS [3] and 

GAMMA [4] were not optimal for performance, generality, or both. For instance, the decisions t o  protect 

WiSS's buffer space by copying a da ta  record in or out for each request and t o  re-request a buffer page for every 

record during a scan seemed to  inflict too much overhead1. Nevertheless, there can be no doubt about the fact 

tha t  Volcano probably would not have been conceived without these two systems. 

During the design of the EXODUS storage manager [5], many of these issues were revisited. Lessons 

learned and tradeoffs explored in these discussions certainly helped form the ideas behind Volcano. The develop- 

ment of E [6] influenced the strong emphasis on iterators for query processing. 

Finally, a number of conventional (relational) and extensible systems have influenced our design. Without 

further discussion, we mention Ingres (71, System R [8], GENESIS [9], Starburst [lo], Postgres [Ill ,  and XPRS 

[12]. Furthermore, there has been a large amount of research and development in the database machine area, 

such tha t  there is an  annual international workshop on the topic. Almost all database machine proposals and 

implementations utilize parallelism in some form. We certainly have learned from this work, in particular from 

GAMMA, and tried t o  include these lessons in the design and implementation of Volcano. In particular, we 

have strived for simplicity and symmetry in the design, mechanisms for well-balanced parallelism, and efficiency 

in all details. 

' This statement only pertains to the original version of WiSS as described in [3]. Both decisions were reconsidered for 
the version of WiSS used in GAMMA. 



3. Volcano System Design 

In this section, we provide a n  overview of the modules in Volcano. Volcano's file system is rather conven- 

tional. It includes a modules for device, buffer, file, and B+-tree management. For a detailed discussion, we 

refer the reader t o  [13]. 

The file system routines are used by the query processing routines t o  evaluate complex query plans. 

Queries are expressed as  complex algebra expressions; the operators of this algebra are query processing algo- 

rithms. All algebra operators are implemented as iterators, i.e., they support a simple open-nezt-close protocol 

similar t o  conventional file scans. 

Associated with each algorithm is a state record. The arguments for the algorithms are kept in the state 

record. All functions on da t a  records, e.g., comparisons and hashing, called support functions in Volcano, are 

compiled prior t o  execution and passed t o  the processing algorithms by means of pointers t o  the function entry 

points. Each of these functions uses an argument allowing interpreted or compiled query evaluation. 

Arguments t o  support functions can be used in two ways. In compiled scans (or other operations), i.e., 

when the predicate evaluation function is available in machine code, i t  can be used t o  pass a constant or a 

pointer t o  several constants t o  the predicate function. For example, while the predicate consists of comparing a 

record field with a string, the comparison function is passed as predicate function while the search string is 

passed as  predicate argument. In interpreted scans, i.e., when a general interpreter is used t o  evaluate all predi- 

cates in a query, i t  can be used t o  pass appropriate code for interpretation t o  the interpreter. The interpreter is 

given as  predicate function. Thus, both interpreted and compiled query evaluation are supported with a single 

simple and efficient mechanism. 

In queries involving more than one operator (i.e., almost all queries), s ta te  records are linked together by 

means of input pointers. The input pointers are also kept in the s tate  records. They are pointers t o  a QEP 

structure which includes four pointers to  the entry points of the three procedures implementing the operator 

(open, nezt, and close) and a state record. All state information for an  iterator is kept in its state record; thus, 

an algorithm may be used multiple times in a query by including more than one state record in the query. An 

operator does not need t o  know what kind of operator produces its input, and whether its input comes from a 



complex query tree or from a simple file scan. We call this concept anonymous inputs or streams. Streams are a 

simple but powerful abstraction tha t  allows combining any number of operators t o  evaluate a complex query. 

Together with the iterator control paradigm, streams represent the most efficient execution model in terms of 

time (overhead for synchronizing operators) and space (number of records t ha t  must reside in memory con- 

currently) for single process query evaluation. 

Calling open for the top-most operator results in instantiations for the associated s tate  record, e.g., alloca- 

tion of a hash table, and in open calls for all inputs. In this way, all iterators in a query are  initiated recur- 

sively. In order t o  process the query, nezt for the top-most operator is called repeatedly until i t  fails with an  

end-of-stream indicator. Finally, the close call recursively "shuts down" all iterators in the query. This model of 

query execution matches very closely the one being included in the E programming language design [6] and the 

algebraic query evaluation system of the Starburst extensible relational database system 1141. 

The tree-structured query evaluation plan is used to  execute queries by demand-driven dataflow. The 

return value of nezt is, besides an status value, a structure called NEXT-RECORD tha t  consists of a record 

identifier and a record address in the buffer pool. This record is pinned (fixed) in the buffer. The protocol about 

fixing and unfixing records is as  follows. Each record pinned in the buffer is owned by exactly one operator a t  

any point in time. After receiving a record, the operator can hold on t o  i t  for a while, e.g., in a hash table, 

unfix it, e.g., when a predicate fails, or pass it on t o  the next operator. Complex operations like join tha t  create 

new records have t o  fix them in the buffer before passing them on, and have t o  unfix input records. 

All operations on records, e.g., comparisons and hashing, are performed by support junctions which are 

given in the state records as  arguments t o  the iterators. Thus, the query processing modules could be imple- 

mented without knowledge or constraint on the internal structure of da ta  objects. 

For intermediate results, Volcano uses virtual devices. Pages of such a device exist only in the buffer, and 

are discarded when unfixed. Using this mechanism allows assigning unique RID'S t o  intermediate result records, 

and allows managing such records in all operators as  if they resided on a real (disk) device. The operators are 

not affected by the use of virtual devices, and can be programmed as  if all input comes from a disk-resident file 

and output is written t o  a disk file. 



4. Multi-Processor Query Evaluation 

The multi-processor implementation grew out of a desire t o  leverage as  much of the effort as possible when 

the Oregon Graduate Center acquired an eight-processor shared-memory computer system. We decided tha t  i t  

would be desirable t o  use the query processing code described above without any change. The result is very 

clean, self-scheduling parallel processing. 

The module responsible for parallel execution and synchronization is the exchange iterator. Notice tha t  i t  

is an  iterator with open, next, and close procedures; therefore, i t  can be inserted a t  any one place or a t  multiple 

places in a complex query tree. 

This section describes vertical and horizontal parallelism followed by an  example, a discussion of varia- 

tions and variants of the exchange operator, an  overview of modifications t o  the file system required for parallel 

processing, and a comparison of Volcano's exchange operator with GAMMA'S mechanisms for parallelism. 

4.1. Vertical Parallelism 

The first function of exchange is t o  provide vertical parallelism or pipelining between processes. The open 

procedure creates a new process after creating a data  structure in shared memory called a port for synchroniza- 

tion and da t a  exchange. The child process, created using the UNM fork system call, is an  exact duplicate of the 

parent process. The exchange operator then takes different paths in the parent and child processes. 

The parent process serves as  the consumer and the child process as  the producer in Volcano. The 

exchange operator in the consumer process acts as  a normal iterator, the only difference from other iterators is 

that  i t  receives its input via inter-process communication. After creating the child process, open-exchange in the 

consumer is done. Next-ezchange waits for da ta  t o  arrive via the port and returns them a record a t  a time. 

Close-ezchange informs the producer tha t  i t  can close, waits for an  acknowledgement, and returns. 

The exchange operator in the producer process becomes the driver for the query tree below the exchange 

operator using open, nezt, and close on its input. The output of next is collected in packets, da t a  structures of 1 

KB which contain 83 NEXTRECORD structures. When a packet is filled, i t  is inserted into the port and a 



semaphore is used t o  inform the consumer about the new packet2. Records in packets a re  fixed in the shared 

buffer and must be unfixed by a consuming operator. 

When its input is exhausted, the exchange operator in the producer process marks the last packet with an 

end-of-stream tag, passes it  t o  the consumer, and waits until the consumer allows closing all open files. This 

delay is necessary because files on virtual devices must not be closed before all i ts records are unpinned in the 

buffer. 

The alert reader has noticed tha t  the exchange module uses a different dataflow paradigm than all other 

operators. While all other modules are based on demand-driven dataflow (iterators, lazy evaluation), the 

producer-consumer relationship of exchange uses data-driven dataflow (eager evaluation). There are two very 

simple reasons for this change in paradigms. First, we intend t o  use the exchange operator also for horizontal 

parallelism, t o  be described below. Second, this scheme removes the need for request messages. Even though a 

scheme with request messages, e.g., using a semaphore, would probably perform acceptably on a shared-memory 

machine, we felt tha t  i t  creates unnecessary control overhead and delays. Since we believe tha t  very high 

degrees of parallelism and true high-performance query evaluation requires a closely tied network, e.g., a hyper- 

cube, of shared-memory machines, we decided t o  use a paradigm for da ta  exchange tha t  has has been proven t o  

perform well in a shared-nothing database machine [4]. 

A run-time switch of exchange enables flow control or back pressure using an  additional semaphore. If the 

producer is significantly faster than the consumer, the producer may pin a significant portion of the buffer, thus 

impeding overall system performance. If flow control is enabled, after a producer has inserted a new packet into 

the port, i t  must request the flow control semaphore. After a consumer has removed a packet from the port, i t  

releases the flow control semaphore. The initial value of the flow control semaphore, e.g., 4, determines how 

many packets the producers may get ahead of the consumers. 

Notice tha t  flow control and demand-driven dataflow are not the same. One significant difference is tha t  

flow control allows some "slack" in the synchronization of producer and consumer and therefore truly overlapped 

83 records is the standard packet size. The actual packet size is an argument in the state record, and can be set 
between 1 and 255 records. 



execution, while demand-driven dataflow is a rather rigid structure of request and delivery in which the consu- 

mer waits while the producer works on its next output. The second significant difference is tha t  data-driven 

dataflow is easier t o  combine efficiently with horizontal parallelism and partitioning. 

4.2. Horizontal Parallelism 

There are two forms of horizontal parallelism which we call bushy parallelism and intra-operator parallel- 

ism. In bushy parallelism, different CPU's execute different subtrees of a complex query tree. Bushy parallelism 

and vertical parallelism are forms of inter-operator parallelism. Intra-operator parallelism means tha t  several 

CPU's perform the same operator on different subsets of a stored dataset or a n  intermediate result3. 

Bushy parallelism can easily be implemented by inserting one or two exchange operators into a query tree. 

For example, in order t o  sort two inputs into a merge-join in parallel, the first or both inputs are separated from 

the merge-join by an  exchange operation. The parent process turns t o  the second sort immediately after forking 

the child process tha t  will produce the first input in sorted order. Thus, the two sort operations are working in 

parallel. 

Intra-operator parallelism requires da ta  partitioning. Partitioning of stored datasets is achieved by using 

multiple files, preferably on different devices. Partitioning of intermediate results is implemented by including 

multiple queues in a port. If there are multiple consumer processes, each uses its own input queue. The produc- 

ers use a support function t o  decide into which of the queues (or actually, into which of the packets being filled 

by the producer) a n  output record must go. Using a support function allows implementing round-robin-, key- 

range-, or hash-partitioning. 

If an  operator or a n  operator subtree is executed in parallel by a group of processes, one of them is desig- 

nated the master. When a query tree is opened, only one process is running, which is naturally the master. 

When a master forks a child process in a producer-consumer relationship, the child process becomes the master 

' A  fourth form of parallelism is inter-query parallelism, i.e., the ability of a database management system to work on 
several queries concurrently. In the current version, Volcano does not support inter-query parallelism. A fifth and sixth form 
of parallelism that can be used for database operations involve hardware vector processing 1151 and pipelining in the instruc- 
tion execution. Since Volcano is a software architecture and following the analysis in [16], we do not consider hardware 
parallelism further. 



within its group. The first action of the master producer is t o  determine how many slaves are  needed by calling 

an appropriate support function. If the producer operation is t o  run in parallel, the master producer forks the 

other producer processes. 

Gerber pointed out tha t  such a centralized scheme is suboptimal for high degrees of parallelism [17]. 

When we changed our initial implementation from forking all producer processes by the master t o  using a propa- 

gation tree scheme, we observed significant performance improvements. In such a scheme, the master forks one 

slave, then both fork a new slave each, then all four fork a new slave each, etc. This scheme has been used very 

effectively for broadcast communication and synchronization in binary hypercubes. 

Even after optimizing the forking scheme, its overhead is not negligible. We are considering using primed 

processes, i.e., processes tha t  are always present and wait for work packets. Primed processes are used in 

GAMMA [4] and in many commercial database systems. Since the distribution of compiled code for support 

functions is not trivial in our environment (Sequent Dynix), we delayed this change and plan on using primed 

processes only when we move t o  a n  environment with multiple shared-memory machines4 

After all producer processes are forked, they run without further synchronization among themselves, with 

two exceptions. First, when accessing a shared data  structure, e.g., the port t o  the consumers, short-term locks 

must be acquired for the duration of one linked-list insertion. Concurrent invocation of routines of the file sys- 

tem, in particular the buffer manager, is described later in this section. Second, when a producer group is also a 

consumer group, i.e., there are a t  least two exchange operators and three process groups involved in a vertical 

pipeline, the processes tha t  are both consumers and producers synchronize twice. During the (very short) inter- 

val between synchronizations, the master of this group creates a port which serves all processes in its group. 

When a close request is propagated down the tree and reaches the first exchange operator, the master 

consumer's close-ezchange procedure informs all producer processes tha t  they are allowed to  close down using 

the semaphore mentioned above in the discussion on vertical parallelism. If the producer processes are also con- 

sumers, the master of the process group informs its producers, etc. In this way, all operators are shut down in 

*In fact, this work is currently under way. 



an orderly fashion, and the entire query evaluation is self-scheduling. 

4.3. An Example 

Let us consider a n  example. Assume a query with four operators, A ,  B ,  C, and D such tha t  A calls B's, 

B calls C's, and C calls D's open, close, and next procedures. Now assume tha t  this query plan is t o  be run in 

three process groups, called A ,  BC, and D.  This requires an  exchange operator between operators A and B, 

say X ,  and one between C and D l  say Y. I3 and C continue t o  pass records via a simple procedure call t o  the 

C's next procedure without crossing process boundaries. Assume further tha t  A runs as  a single process, Ao, 

while B C  and D run in parallel in processes BC, t o  BC, and Do to  D3, for a total of eight processes. 

A calls X's open, close, and next procedures instead of B's (Figure la ) ,  without knowledge tha t  a process 

boundary will be crossed, a consequence of anonymous inputs in Volcano. When X is opened, i t  creates a port 

Figure la-c. Creating the B C  processes. 

Figure Id-e. Creating the D processes. 



Figure If-h. Closing all processes down. 

with one input queue for A. and forks BC, (Figure lb),  which in turn forks BC1 and BC, (Figure lc). When the 

BC group opens Y, BC, t o  BC2 synchronize, and wait until the Y operator in process BC, has initialized a port 

with three input queues. BCo creates the port and stores its location a t  an  address known only t o  the BC 

processes. Then BC, t o  BC2 synchronize again, and BC, and BC, get the port information from its location. 

Next, BC, forks Do (Figure Id)  which in turn forks D, t o  D3 (Figure le).  

When the D operators have exhausted their inputs in Do t o  D,, they return a n  end-of-stream indicator t o  

the driver parts of Y. In each D process, Y flags its last packets t o  each of the BC processes (i.e., a total of 

3><4=12 flagged ~ a c k e t s )  with an end-of-stream tag and then waits on a semaphore for permission t o  close. The 

copies of the Y operator in the BC processes count the number of tagged packets; after four tags (the number 

of producers or D processes), they have exhausted their inputs, and a call t o  Y's next procedure will return an  

end-of-stream indicator. In effect, the end-or-stream indicator has been propagated from the D operators t o  the 

C operators. In due turn, C, B ,  and then the driver part of X will receive an  end-of-stream indicator. After 

receiving three tagged packets, X's next procedure in A,  will indicate end-of-stream to  A 

When end-of-stream reaches the root operator of the query, A ,  the query tree is closed. Closing the 

exchange operator X includes releasing the semaphore tha t  allows the BC processes t o  shut down (Figure If). 

The X driver in each BC process closes its input, operator B. B closes C ,  and C closes Y. Closing Y in BCI 

and BC2 is an  empty operation. When the process BC, closes the exchange operator Y, Y permits the D 



processes t o  shut down by releasing a semaphore. After the processes of the D group have closed all files and 

deallocated all temporary da t a  structures, e.g., hash tables, they indicate the fact t o  Y in BC, using another 

semaphore, and Y's close procedure returns t o  its caller, C's close procedure, while the D processes terminate 

(Figure lg).  When all BC processes have closed down, X's close procedure indicates the fact t o  A. and query 

evaluation terminates (Figure lh ) .  

4.4. Variants of the Exchange Operator 

For some operations, i t  is desirable t o  replicate or broadcast a stream t o  all consumers. For example, one 

of the two partitioning methods for hash-division (181 requires tha t  the divisor be replicated and used with each 

partition of the dividend. Another example is Baru's parallel join algorithm in which one of the two input rela- 

tions is not moved a t  all while the other relation is sent through all processors 1191. To support these algo- 

rithms, the exchange operator can be directed (by setting a switch in the state record) t o  send all records t o  all 

consumers, after pinning them appropriately multiple times in the buffer pool. Notice tha t  i t  is not necessary t o  

copy the records since they reside in a shared buffer pool; i t  is sufficient t o  pin them such tha t  each consumer 

can unpin them as  if i t  were the only process using them. After we implemented this feature, parallelizing our 

hash-division programs using both divisor partitioning and quotient partitioning [18] took only about three hours 

and yielded not insignificant speedups. 

When we implemented and benchmarked parallel sorting [20], we added two more features t o  exchange. 

First, we wanted t o  implement a merge network in which some processors produce sorted streams merge con- 

currently by other processors. Volcano's sort  iterator can be used t o  generate a sorted stream. A merge iterator 

was easily derived from the sort module. It uses a single level merge, instead of the cascaded merge of runs used 

in sort. The input of a merge iterator is an  exchange. Differently from other operators, the merge iterator 

requires t o  distinguish the input records by their producer. As an example, for a join operation it  does not 

matter where the input records were created, and all inputs can be accumulated in a single input stream. For a 

merge operation, i t  is crucial t o  distinguish the input records by their producer in order t o  merge multiple sorted 

streams correctly. 



We modified the ezchange module such tha t  i t  can keep the input records separated according t o  their pro- 

ducers, switched by setting an  argument field in the state record. A third argument t o  next-exchange is used t o  

communicate the required producer from the merge t o  the ezchange iterator. Further modifications included 

increasing the number of input buffers used by ezchange, the number of semaphores (including for flow control) 

used between producer and consumer part  of ezchange, and the logic for end-of-stream. 

Second, we implemented a sort algorithm tha t  sorts da t a  randomly partitioned over multiple disks into a 

range-partitioned file with sorted partitions, i.e., a sorted file distributed over multiple disks. Using the same 

number of processors and disks, we used two processes per CPU, one t o  perform the file scan and partition the 

records and another one t o  sort them. We realized tha t  creating more processes than processors inflicted a 

significant cost, since these processes competed for the CPU's and therefore required operating system schedul- 

ing. While the scheduling overhead may not be too significant, in our environment with a central run queue 

processes can migrate. Considering tha t  there is a large cache associated with each CPU, the cache migration 

adds a significant cost. 

In order t o  make better use of the available processing power, we decided t o  reduce the number of 

processes by half, effectively moving t o  one process per disk. This required modifications t o  the exchange opera- 

tor. Until then, the exchange operator could "live" only a t  the top or the bottom of the operator tree in a pro- 

cess. Since the modification, the exchange operator can also be in the middle of a process' operator tree. When 

the exchange operator is opened, i t  does not fork any processes but establishes a communication port for data  

exchange. The next operation requests records from its input tree, possibly sending them off t o  other processes 

in the group, until a record for its own partition is found. 

This mode of operation5 also makes flow control obsolete. A process runs a producer (and produces input 

for the other processes) only if i t  does not have input for the consumer. Therefore, if the producers are in 

danger of overrunning the consumers, none of the producer operators gets scheduled, and the consumers consume 

the available records. 

'Whether exchange forks new producer processes (the original exchange design describe in Section 4) or uses the exist- 
ing process group to execute the producer operations is a run-time switch. 



4.5. File System Modifications 

Clearly, the file system required some modifications t o  serve several processes concurrently. In order t o  

restrict the extent of such modifications, Volcano currently does not include protection of files and records other 

than the volume table of contents (VTOC). Furthermore, typically non-repetitive actions like mounting a dev- 

ice must be invoked by the query root process before or after a query is evaluated by multiple processes. The 

following few paragraphs list the changes tha t  were required in the file system to  allow parallel execution. 

The memory module allocates space in a shared segment rather than a private segment, thus buffer space 

is also shared among all processes. In order t o  protect the memory allocation map, a single exclusive lock is 

held during the short periods of time while the allocation map is searched or updated. 

The physical I10 module uses two exclusive locks per device. First, device busy lock is held while calling 

UNIX's lseek, read, and write system calls. This is necessary because otherwise two processes could get into a 

race-condition in which one process's seek operation determines the location of the other process's write. 

Second, the map busy lock protects the free space bit map. 

Changes t o  the device module were restricted t o  protecting the volume table of contents. An exclusive 

lock is held while a n  entry is inserted or deleted or while the VTOC is scanned for the descriptor for an  external 

file. 

The most difficult changes were required for the bufler module. While we could have used one exclusive 

lock as  in the memory module, decreased concurrency would have removed most or all advantages of parallel 

query processing. Therefore, the buffer uses a two-level scheme. There is a lock for each buffer pool and one for 

each descriptor (cluster in the buffer). The buffer pool lock must be held while searching or updating the hash 

tables and bucket chains. It is never held while doing 110; thus, i t  is never held for a long period of time. A 

descriptors or cluster lock must be held while updating a descriptor in the buffer, e.g., t o  decrease its fix count, 

or while doing 110. 

Other buffer managers do not use a pool lock but lock each search bucket and the free chain individually, 

e.g., the buffer manager of Starburst 1211. The advantage is increased concurrency, while the disadvantage is 

increased number of locks and lock operations. We are currently working on quantifying this tradeoff for our 



environment. 

If a process finds a requested cluster in the buffer, i t  uses an  atomic test-and-lock operation t o  lock the 

descriptor. If this operation fails, the pool lock is released, the operation delayed and restarted. It is necessary 

t o  restart the buffer operation including the hash table lookup because the process which holds the lock might 

be reading or replacing the requested cluster. Therefore, the requesting process must wait t o  determine the out- 

come of the prior operation. 

Using this restart-scheme for descriptor locks has the additional benefit of avoiding deadlocks. The four 

conditions for deadlock are mutual exclusion, hold-and-wait, no preemption, and circular wait [22, 231. Volcano's 

restart-scheme does not satisfy the second condition. 

While the locking scheme avoids deadlocks, i t  does not avoid convoys [24]. If a process exhausts its CPU 

time-slice while holding a "popular" exclusive lock, e.g., on a buffer pool, probably all other processes will block 

in a convoy until the lock-holding process is re-scheduled and releases the lock. However, since we do not use a 

"fair" scheduling policy tha t  does not allow reacquiring a lock before all waiting processes held and released the 

lock, we expect tha t  convoys will quickly evaporate 1241. We intend t o  investigate the special problem of con- 

voys in shared-memory multi-processors further. 

It is interesting t o  note tha t  spin-locks are quite effective in a multi-processor environment. For instance, 

the pool is locked typically for about 100 instructions. If a process finds the pool locked, i t  is cheaper t o  waste 

100 instructions spinning than i t  is t o  reschedule the CPU and t o  perform a context switch. 

After the buffer manager and the other file system modules were modified t o  serve multiple processes, i t  

was straightforward t o  include a read-aheadlwrite-behind daemon. One or more copies of this daemon process 

are forked when the buffer manager is initialized, and accept work requests on a queue and semaphore similar to  

the one used within the exchange module. There are  three kinds of work requests, the first two are  accompanied 

by a cluster identifier. First, FLUSH writes a cluster if i t  is in the buffer and dirty. Second, READAHEAD 

reads a cluster and inserts it a t  the top of the LRU chain. The cluster remains in the buffer using the normal 

aging process. If i t  is not fixed and removed from the free list before it  reaches the bottom of the free list, i t  is 

replaced. Third, a QUIT request terminates the daemon. 



4.6. Review and Comparison with GAMMA 

In summary, the exchange module encapsulates parallel processing in Volcano. Only very few changes had 

t o  be made t o  the buffer manager and the other modules of the file system in order t o  accommodate parallel 

execution. The most important properties of the exchange module are tha t  i t  implements three forms of parallel 

processing within a single module, tha t  i t  makes parallel query processing entirely self-scheduling, and tha t  i t  

did not require any changes in the existing query processing modules, thus leveraging significantly the time and 

effort spent on them and allowing easy parallel implementation of new algorithms. 

It might be interesting t o  compare Volcano and GAMMA [4] query processing in some detail. We only 

want t o  point out differences; we do not claim tha t  the design decisions in Volcano are  superior t o  those in 

GAMMA. First, Volcano runs on a shared-memory multi-processor, whereas GAMMA runs on a shared-nothing 

architecture. This difference made Volcano easier t o  implement but will prevent very large configurations due 

to  bus contention. We are currently investigating where the limit is for our software and hardware architec- 

ture, and how we can push it  as  far as possible. Second, GAMMA is a complete system, with query language, 

system catalogs, query optimization, concurrent transactions, etc., whereas Volcano in its current form only pro- 

vides mechanisms for single-user query evaluation. Third, Volcano schedules complex queries without the help of 

a scheduler process. Operators are scheduled and activated top-down using a tree of iterators. In GAMMA, on 

the other hand, operators are  activated bottom-up by a scheduler process associated with the query. Fourth, 

GAMMA uses only left-deep query trees, i.e., the probing relation in a hash join 125, 26) must be a stored rela- 

tion or the result of a selection. In Volcano, both join inputs can be intermediate results. In fact, since Volcano 

uses anonymous inputs, a join operator has no way of knowing how the inputs were generated. Clearly, the 

decision whether t o  use bushy query trees or only left-deep trees has t o  be made very carefully since the compo- 

site resource consumption may lead t o  thrashing. Fifth, Volcano can execute two or more operators within the 

same process. In other words, vertical parallelism is optional. In the GAMMA design it  is assumed tha t  data  

have t o  be repartitioned between operators. 



5. Performance and Overhead 

From the beginning of the Volcano project, we were very concerned about high performance and low over- 

head. In this section, we report on experimental measurements of the overhead induced by the exchange opera- 

tor. We measured elapsed times of the program tha t  creates records, fills them with 4 integers, passes the 

records over three process boundaries, and then unfixes the records in the buffer. The measurement represent 

elapsed times on a Sequent Symmetry with twelve Intel 16 MHz 80386 CPU1s with 64 KB cache each. Each 

CPU delivers about 4 MIPS in this machine. The times were measured using the hardware microsecond clock 

available on such machines. 

First, we measured the program without any exchange operator. Creating 100,000 records and releasing 

them in the buffer took 20.28 seconds. Next, we measured the program with the exchange operator switched t o  

the mode in which it  does not create new processes. In other words, compared t o  the last experiment, we added 

the overhead of three procedure calls for each record. For this run, we measured 28.00 seconds. Thus, the three 

exchange operators in this mode added (28.00sec - 20.28sec) / 3 / 100,000 = 25.73psec overhead per record and 

exchange operator. 

When we switched the exchange operator t o  create new processes, thus creating a pipeline of four 

processes, we observed an  elapsed time of 16.21 seconds with flow control enabled, or 16.16 seconds with flow 

control disabled. The fact tha t  these times ars less than the time for single-process program execution indicates 

tha t  da ta  transfer using the exchange operator is very fast, and tha t  pipelined multi-process execution is war- 

ranted. 

We were particularly concerned about the granularity of da ta  exchange between processes and its impact 

on Volcano's performance. We reran the program multiple times varying the number of records per exchange 

packet. Figure 2a shows the performance for transferring 100,000 records from a producer process group 

through two intermediate process groups t o  a single consumer process. Each of these groups included three 

processes. Each of the producer processes created 33,333 records. All these experiments were conducted with 

flow control enabled with three "slack" packets per exchange. The bottom axis shows the number of records per 

packet, increasing from 1 to  the default size of 83. The vertical axis shows the elapsed time in seconds. 
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Figure 2a. Exchange Performance. 

As can be seen in Figure 2aJ the performance penalty for very small packets was significant. The elapsed 

time was almost cut in half when the packet size was increased from 1 t o  2 records, from 171 seconds t o  94 

seconds. As the packet size was increased further, the elapsed time shrank accordingly, t o  15.0 seconds for 50 

records per packet and 13.7 seconds for 83 records per packet. 
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Figure 2b. Exchange Performance (doubly logarithmic scale). 



I t  seems reasonable t o  speculate tha t  for small packets, most of the elapsed time is spent on data  

exchange. To verify this hypothesis, we plotted the same da t a  on a doubly logarithmic scale. If the hypothesis 

is correct, we should see a straight line in this scale for our data .  In Figure 2b, we find the hypothesis affirmed 

for truly small packets, less than 10 records per packet. For larger packets, we notice tha t  the packet size had 

less impact on the performance. The reason is tha t  the cost of processing the records had become significant, 

even though hardly any processing was done. In fact, for packets of the standard size, the performance is lim- 

ited by the consumer process which must invoke the buffer manager once for each record t o  unfix the record in 

the buffer. 

6. Summary and Conclusions 

We have described Volcano, a new query evaluation system, and how parallel query evaluation is encapsu- 

lated in a single module or operator. The system is operational on both single- and multi-processor systems, and 

has been used for a number in database query processing studies [I, 18, 20, 27, 281. 

Volcano utilizes dataflow techniques within processes as well as between processes. Within a process, 

demand-driven dataflow is implemented by means of iterators. Between processes, data-driven dataflow is used 

t o  exchange da t a  between producers and consumers efficiently. If necessary, Volcano's data-driven dataflow can 

be augmented with flow control or back pressure. Horizontal partitioning is used both on stored and intermedi- 

a te  datasets t o  allow intra-operator parallelism. The design of the exchange operator embodies the parallel exe- 

cution mechanism for vertical, bushy, and intra-operator parallelism, and it performs the transitions from 

demand-driven t o  data-driven dataflow and back. 

Volcano is the first implemented query evaluation system tha t  combines extensibility and parallelism. We 

believe tha t  in Volcano we have a powerful tool for database systems research and education. The encapsula- 

tion of parallelism in Volcano allows for new query processing algorithms t o  be coded for single-process execu- 

tion but run in a highly parallel environment without modifications. We expect tha t  this will speed parallel 

algorithm development and evaluation significantly. 
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