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Abstract 
The REVELATION project aims at combining the conceptual power of encapsulated behavior in object- 

oriented database systems with query optimization and set-oriented processing. Volcano is an  extensible query 
processor developed for education and research. In this report, we describe evaluation of complex expressions 
over sets of complex objects, and selective and efficient retrieval of a set of complex objects and their com- 
ponents into memory. Assembling complex objects in buffer memory is widely regarded as  essential for increas- 
ing performance in object-oriented database systems. 

1. Introduction 

Object-oriented database systems have many advantages over traditional record-oriented database sys- 

tems, most notably modelling facilities for complex objects, object identity, and encapsulated behavior. In a 

previous report, we have described the goals of the REVELATION project and gave a high-level vision of how 

its query optimization scheme might work [I]. We believe tha t  four concepts are  crucial for the performance of 

object-oriented database. First, set-oriented processing allows leveraging expensive operations, e.g., disk seeks. 

Second, parallel processing techniques can be exploited much more easily if the underlying processing paradigm 

uses sets t ha t  can be partitioned, not instances. Third, query optimization and access planning, proven to be a 

cornerstone of relational systems performance, will gain even more importance for semantically richer queries 

and complex data .  Fourth, complex object retrieval and assembly in memory is a very frequently used opera- 

tion, therefore a determinant of performance. 

In this report, we focus on set processing and complex object retrieval, and detail their implementation in 

Volcano and the REVELATION project. Volcano is an extensible query processor developed for education and 

research. In the next section, we briefly survey related work. Sections 3 and 4 describe set processing in general 

and complex object retrieval in particular. Section 5 provides an  analytical performance evaluation for the 

assembly operator. A summary and our conclusions are given in Section 6. 



2. Previous Work 

The design of the Volcano query processing system was influenced by a number of systems, most notably 

WiSS [2] and GAMMA [3]. Other query processing systems tha t  use the iterator paradigm, though in somewhat 

different ways than Volcano, are System R [4], the RTI version of Ingres, EXODUS [5], and Starburst [6], where 

i t  is called "lazy evaluation." 

Our design of the assembly operator was influenced mainly by the way look-up routines work for 

unclustered index scans, for example the join called TID-scan in Kooi's thesis [7]. I t  is well known tha t  scanning 

a file using a n  unclustered index is much more expensive than using a clustered index. One could try t o  avoid 

the seek costs by sorting the pointers retrieved from the index and look them up in physical order. This pro- 

cedure, however, may require substantial sort space and loses one of the main advantages of using indices, 

namely tha t  the result is delivered in index order. We started out trying t o  find an  operator tha t  avoids the 

cost of completely sorting the pointer set, but retains the advantages using an  index. Once we had defined this 

operator, i t  was straightforward t o  extend the algorithm to  complex objects. In this report, we put this algo- 

rithm into a n  extensible context t o  make i t  usable in a n  object-oriented database system. 

3. Set Processor and File System 

The REVELATION project got its name from revealing encapsulated behavior t o  a central system com- 

ponent. The language in which revealed behavior is expressed is an  algebra, similar t o  relational algebra but 

suitably generalized for complex objects. This algebra can be optimized with an  algebraic optimizer like the 

EXODUS optimizer generator [8, 91. The optimization consists of two tasks, which are actually performed in an  

interleaved fashion. First, operators in a complex expresion or tree are  reorderd. Second, these operator are 

mapped t o  algorithms. We call the former the abstract or logical operators and the latter algorithms, set pro- 

cessing methods, or concrete or physical operators. As an  example from the relational world, join is a logical 

operator while merge join is a concrete operator. 

In the following, we assume tha t  the query has been optimized and is specified by a n  expression or tree of 

concrete operators. Such an  expression is executed by REVELATION'S set processor which is based on the Vol- 

cano query processing software [lo]. Volcano includes a file system with heap files, B-trees, and buffer 



management. Volcano's main query processing concepts are iterators, streams and support junctions. Iterators 

are generalizations of program loops; in Volcano, they are processing modules t ha t  both use and provide open, 

nezt, and close functions. Iterators can be combined into a tree, similar t o  algebra expressions. When opening 

the top iterator of a n  expression, i t  opens its input(s), etc. The nezt operation evaluates the expression until i t  

can return one da ta  item. Calling next repeatedly on the top iterator returns all da t a  items selected, created, 

or processed by the expression. 

Streams are  the sets of objects tha t  are passed between iterators. Thus, we can say tha t  a n  iterator con- 

sumes zero or  more streams and produces a stream. The item passed between operators is a pair of record 

identifier and main memory address. The da ta  item is pinned in the buffer pool at the address given, and can 

be unpinned using the record identifier. Each record pinned in the buffer pool is "owned" by exactly as  many 

iterators as  i t  is pinned. When passing a record between iterators, the "ownership" is transferred. Thus, the 

producing iterator may not unpin this record in the future, and the consuming iterator must either pass i t  on or 

unpin it. 

Support functions are functions invoked by iterators t o  perform operations specific t o  the request or query 

and t o  the type of da ta  item being processed, e.g., evaluation of a selection predicate. When called, a support 

function is provided the object or objects t o  be manipulated and a n  argument. The argument is fixed for all 

items processed by the iterator, but i t  may be a pointer t o  a da ta  structure tha t  the support function modifies 

or uses for its state.  It can be a constant, e.g., for comparison predicates, or code interpreted by the support 

function. The latter alternative allows using one general interpreter for all object manipulations by providing 

the interpreter's entry point whereever a support function is required, and specifying the required object mani- 

pulation code in the argument. 

Since iterators use the same interface for input and output, namely streams and the open-next-close proto- 

col, they can be nested into complex expressions. A complex query can be expressed using a multi-level tree. 

Query evaluation is entirely self-scheduling, since the top operator "knows" when it  needs t o  request another 

data  item from its inputs, and similarly, recursively down the expression tree. Using this demand-driven 

dataflow paradigm in which records are  only pinned in the buffer as  long as they are needed by some iterator 



ensures t ha t  the time-space product for intermediate results is minimal. Scheduling and synchronization of two 

iterators costs as  little as  one procedure call, truly a very small overhead. 

Volcano's query processing is based on dataflow and sets. Both concepts are well suited t o  parallel execu- 

tion. Consequently, we implemented both vertical parallelism and horizontal parallelism in Volcano. Vertical 

parallelism is implemented in form of multiprocess pipelines. Horizontal parallelism is available as inter- 

operator and intra-operator parallelism. The former means tha t  multiple operators in a bushy expression are 

evaluated in parallel. The latter means tha t  multiple processes participate in a n  iterator, preferably on dis- 

junct subsets or  partitions. In Volcano, both vertical and horizontal parallelism are encapsulated in a single 

module called exchange tha t  uses the demand-driven stream interface for input and output, but uses data-driven 

dataflow with flow control between processes [ll]. 

Volcano already includes a large number of iterators, e.g., file and index scan, filter, sort, join, set opera- 

tions like intersection, difference, and union, duplicate elimination, and aggregate functions. For efficient 

retrieval of complex objects we plan t o  extend i t  with a special iterator called the asaembly operator. 

4. The Assembly Operator 

The aaaembly operator is used t o  materialize complex objects in buffer memory. I t  is a n  iterator like all 

other operators; i t  consumes a stream of OID's or incomplete object fragments containing O D ' s  and produces 

complete or more complete objects. In this regard, i t  resembles resolving index entries, e.g., the TID scan in 

Kooi's thesis and RTI  Ingres [7, 121, or the functional join proposed or implemented in other database systems, 

e.g., for GEM [13, 141. However, i t  is much more general and powerful. 

First, in order t o  be effective in a n  OODBMS, i t  must be able t o  perform more than one functional join. It 

must be able t o  resolve multiple OD ' s  from a single object fragment, and it  must be able t o  retrieve multiple 

levels of subcomponents. Second, i t  must be able t o  retrieve components selectively. For example, if objects are 

t o  be selected depending on the properties on component A ,  subcomponent retrieval should be abandoned 

immediately for a n  object after component A is retrieved and found not t o  qualify. Third, in order t o  achieve 

high performance, i t  is necessary t o  schedule component retrievals intelligently, in particular with regard t o  

shared subcomponents and t o  location of components on secondary storage. 



Currently, we are designing and implementing such a n  operator. Our design includes the concepts of a n  

annotated structure ezpression and a component iterator.  The structure expression captures the object structure 

and relates the form of original and resulting fragments. In this respect, i t  is a tree similar t o  the syntax tree of 

a nested structure or record definition. 

Beyond the purely structural information, the annotated structure expression also contains conditions and 

statistical information with each of its structure-substructure links. The conditions or  condition functions are 

tested by the component iterator before the substructure is retrieved. The statistical information includes the 

degree of sharing of substructures by structures and the probability tha t  a predicate is true, and is used in 

scheduling heuristics. 

The structure expression captures two essential properties of complex objects pointed out by Batory [15]. 

The structure expression allows recursive definitions and it  indicates borders of shared components. Such bord- 

ers of sharing are very important for three reasons. First, i t  will be necessary t o  ensure tha t  such components 

are  not loaded twice for two different objects into two different memory locations. Thus, some mechanism is 

required t o  determine whether shared components already reside in buffer memory. Second, a mechanism must 

be used t o  ensure tha t  the shared component remains in memory a t  least as  long as there is a valid reference t o  

it  from another object in memory, e.g., reference counting. After a component (or its page in the buffer) is not 

referenced any longer, i t  is subject t o  replacement using standard buffer replacement policies such as  LRU or 

MRU. Third, when the assembly operator runs in parallel, i.e., the original OID or fragment set i t  partitioned 

into disjoint subsets, shared components might be shared by objects in different partitions, and therefore intro- 

duce synchronization requirements between partitions tha t  does not exists for any of the existing operators. 

The statistical information contained in the structure expression will be used t o  decide the order in which 

component retrievals are scheduled. In particular, if the costs for retrieving two components are the same, i t  

makes sense t o  retrieve first the component tha t  decides whether or not the other one is necessary. For exam- 

ple, if predicates are  associated with both components, and the failure of either predicate allows t o  abandon 

assembly of the entire complex object, the component with the higher rejection probability should be retrieved 

first [16]. 



The component iterator is different than the other iterators in Volcano. I t  does not consume a stream or 

read a file; instead, in produces a stream of OID's from the structure expression and an  object fragment in buffer 

memory. It is not clear whether or not we need functions corresponding t o  open and cloae. Probably, the imple- 

mentation of the assembly iterator will be easier without them. The n e z t  function of the component iterator 

produces component OID's and places where such components are integrated into the buffer representation of 

the complex object. 

The component iterator has four possible outcomes. First, i t  can return a new OID t o  be retrieved t o  

assemble the complex object (return OKAY). Second, i t  can signal tha t  the complex object is assembled as  

much as  required (return DONE). Third, i t  can flag tha t  more subcomponents will be needed, but their OID's 

cannot be determined until other components have been materialized in the buffer (return SUSPEND). Finally, 

the component iterator can determine tha t  the entire object currently being assembled does not satisfy a predi- 

cate because of a component value, and instruct the operator t o  release all components (return ABANDON). 

We will say more on disassembly later. 

For example, consider an  original fragment A with components B and C ,  where B has a component D .  A 

is passed t o  the assembly operator when it  calls the nez t  function on its input operator. Assembly repeatedly 

calls the nez t  function of its component iterator for A ,  which produces B and C and returns SUSPEND for the 

third call. The assembly operator now retrieves the known components, namely B and C.  Afterwards, i t  tries 

the component iterator again, which first produces the reference t o  D and then returns DONE. The assembly 

operator retrieves D l  links i t  into the complex object, and passes the entire object t o  the next operator in the 

query tree. If there were a predicate on D l  the component iterator must return SUSPEND to  ensure tha t  i t  is 

called again after D has been retrieved. At  this point, the component iterator can return DONE or ABAN- 

DON. 

A t  any point of time, there are (hopefully) several open references t o  be resolved. The order in which they 

are resolved has a significant impact on the performance of the assembly operator for a number of reasons. 

First, consider the effect of locality. If requested components reside on a shared page, i t  clearly is advantageous 



t o  retrieve them together by requesting this page only once from the buffer manager1. 

Second, consider seeking on a moving-head disk. If disk requests can be serviced in a free order, rather 

than in one particular sequence, the number of tracks covered and the total seek time decrease. For this reason, 

we are interested in knowing as many unresolved references as  possible a t  any point of time. 

Third, consider the effect of predicates. Clearly, i t  is desirable t o  abort complex object assembly as early 

as possible if an  object does not qualify under some selection predicate. Therefore, i t  is necessary t o  retrieve 

those components early tha t  have a high probability of aborting the assembly before much time and effort has 

been spent on i t  [16]. 

Even when using the component iterator for complex object assembly, only a small number of references 

may be unresolved a t  a time. Therefore, the performance gain by intelligent scheduling may be rather limited. 

However, we intend t o  introduce a delayed or sliding assembly  operator .  Instead of requesting one OID or frag- 

ment, assembling the complex object, and passing i t  on, the sliding assembly iterator first consumes a number of 

objects, say W, and keeps resolving references in them until one of them is completely assembled. This one is 

passed on, and a new OID or fragment is requested from the input. In this fashion, W objects are assembled in 

parallel, and W times as  many unresolved references are available for the scheduler t o  choose from. The disad- 

vantage of sliding assembly is tha t  i t  requires more buffer memory for partially assembled objects. In order t o  

make best use of the sliding assembly operator, the parameter W must be tuned carefully. We intend t o  con- 

duct both analytical and experimental studies with this operator. 

Since parallelism is encapsulated in Volcano [ll], i t  could be used for all existing iterators without chang- 

ing their code; we anticipate tha t  i t  will also allow parallelizing the assembly operator t o  provide further 

speedup. We realize, however, tha t  multiple processes requesting pages from one disk may cause interference 

and decreased performance. However, in the case of assembly, parallelism cannot be entirely encapsulated 

because the hash table used t o  find objects already in memory must be protected against concurrent update. 

' It can be argued that a second request is bound to be a buffer hit, therefore very inexpensive. Our experience shows, 
however, that even buffer hits can be expensive, since a table must be searched while protected against concurrent update, 
etc. While it is reasonable to expect that a buffer request can be serviced in less than 200 instructions if i t  does not result in 
a buffer fault, very frequent buffer hits can add significantly to overall query processing cost. 



Management and protection of this hash table will be implemented in the same way using the same mechanisms 

already used for the tables in Volcano's buffer manager. 

In the algorithm description so far, we have not considered how complex objects are  represented on disk 

and in the buffer. For the representation on disk, we intend t o  use object identifiers (OD's). We anticipate 

tha t  OD ' s  will be 8- t o  16-byte numbers tha t  may or may not include hints t o  the physical location of the 

underlying object. The advantage of location hints in OD's  is faster access; the disadvantage is tha t  objects 

cannot be moved, the database may be cluttered with forwarding hints, or the OD's  grow fairly large t o  include 

both a globally unique identifier plus a location hint. 

Our goal was t o  design the assembly operator such tha t  i t  can function properly with any of the possible 

representations. Other goals include a compact representation of objects on disk and efficient traversal of com- 

plex objects in main memory. Our current thoughts call for intermediate structures between object components 

in buffer, which we call bridges. The intention is t o  replace the OID in an  object's root with a pointer t o  the 

bridge (sometimes called pointer swizzling), and t o  store a pointer t o  the component in the bridge. Further 

fields in the bridge structure include the OID (which was replaced in the root and must be restored before the 

object is written back t o  disk), the component's record identifier (which is the physical location tha t  the file sys- 

tem understands), and a reference counter. 

When following a n  OID reference t o  a component, we first determine whether the the component is already 

fixed in the buffer and pointed t o  by a bridge. In order t o  do tha t  efficiently, we build a hash table with 

doubly-linked bucket chains of bridges. For this purpose, we also include two pointer fields in each bridge. If 

the OID could be found, we replace the O D  with a pointer t o  the bridge and increment the bridge's reference 

count. Otherwise, we allocate a new bridge structure, translate the OID into a RID, i.e., a physical location, 

and load the appropriate cluster into the buffer. We deliberately left the translation mechanism from OD's  t o  

RID'S unspecified; as pointed out above, we hope tha t  our algorithm works with various object and OID 

schemes. 

In order t o  ensure safe decisions whether an  OID within an  object in memory has or has not been replaced 

by a pointer t o  a bridge, there must be a distinctive characteristic between OD's  and pointers. Our current 



thought is tha t  we will reserve one or two bits within OID's and require them to  be different than they are in 

main memory pointers. 

Clearly, a number of details are not worked out yet. First, we have not decided how exactly t o  schedule 

component retrieval, in particular how to  optimize disk accesses using the statistical information on sharing 

mentioned above. Second, we have not defined yet how a n  object and its components are released in the buffer 

when an  object assembly is abandoned because a condition failed. We anticipate tha t  we need a disassembly 

operator tha t  consumes a stream of root components of complex objects and either releases all components or 

extracts some components selectively, releasing all other components in the buffer. Third, we have not finalized 

persistent, disk-based and temporary, buffer resident object representations. Nevertheless, we believe tha t  the 

above scheme can be much more efficient than naive, component-at-a-time object retrieval. While we do not 

have any "hard" experimental da t a  t o  support this hypothesis, we have performed a preliminary, analytical 

study of the disk I/O's by our assembly operator. 

5. An Analytical Performance Evaluation 

The efficiency of the Volcano query processing software has been demonstrated in earlier reports, both for 

single-process and for multiprocess query evaluation [lo, 171. Since the implementation of the assembly operator 

is not completed yet, we give only a n  analytical analysis of its performance. 

We restrict our analysis t o  the index look-up problem because it  is a relevant special form of the general 

problem. The general problem can be modelled as multiple look-ups; we believe t ha t  the general problem gives 

more degrees freedom, and therefore more opportunities for optimization. Consider a stream of N references 

which refer t o  pages distributed over C adjacent cylinders. Furthermore, consider a sliding window of W refer- 

ences, i.e., instead of looking up one reference a t  a time, we always keep W references and look up the one tha t  

is most conveniently located. Notice tha t  references are resolved in a different order than entered into the win- 

dow; this does not preclude tha t  the looked up objects be produced in the same order as  their references. Buffer 

space for W objects on the average will be needed, but more at peaks. However, in the general case of complex 

objects, this will not be an  issue because it  does not matter in which order components are retrieved. 



If each reference is looked up immediately without use of a window, each look-up requires seeking of 1/3 of 

the cylinders on the average plus the average disk rotational latency, which is the time for 1/2 disk rotation. If 

a window is used, however, organizing it  as a heap as used t o  create sorted runs twice the size of memory [18], 

and the references are ordered by their physical location, 2 W references are resolved with each sweep over all 

cylinders. The average seek is less than C/(2 W). If 2 W>C, we expect more than one reference per cylinder, 

and can optimize accesses within each cylinder t o  reduce rotational latencies. In fact, let us assume tha t  

2 W>C, then we expect t o  seek C times t o  the next cylinder for each sweep and resolve 2 W / C  references on 

each cylinder. Thus, we can optimize latencies t o  resolve all references within one disk rotation, and reduce the 

average latency from 1 reference per 1/2 rotation t o  about 2 W/C references per rotation. 

Let us consider a concrete example. Assume there are N=1000 references t o  objects on pages distributed 

over C=10 cylinders. Since all seeks will cover a fairly short distance, let us use a constant seek time of S=2ms 

for our analysis. Let us assume an  average disk latency of L=8.333ms. With the naive strategy, we will per- 

form 900 seeks ( l / C  of the references will be t o  the same cylinder as the last reference). Each of the references 

will be delayed by the average disk latency. Thus, the total cost is 

S + N L = 1000 2ms + 1000 X 8.333ms = 10133ms. 

If we used a window of W=25 references, we would expect N/(2W) sweeps with C seeks each. The 

latency would be one rotation, equal t o  2L,  per 2 W/C references. Thus, the total cost when using a window of 

size W=25 is 

When compared t o  the naive strategy, this is a speedup of almost 3. Notice tha t  the speedup is linear with the 

window size, such tha t  a window of W=100 would result in a speedup of about 112. 

The alert reader may have noticed that a window of W=l does not provide a speedup of 1, as should be expected! 
The reason is that our analysis used the most conservative measure for how many cylinders actually participate in a sweep 
and for the latency within each cylinder. 



6. Summary and Conclusions 

In this report on the REVELATION project, we have outlined techniques for set processing and complex 

object retrieval. The set processor is based on iteration over sets, using the iterator or demand-driven dataflow 

paradigm as implemented in Volcano. 

The assembly operator uses structure expressions and component iterators to selectively and intelligently 

assemble complex objects. A very preliminary analytical performance evaluation demonstrated that significant 

speedup can be achieved using a sliding window to schedule object retrievals from secondary storage. If this 

technique is combined with parallelism through partitioning and asynchronous I/O, both provided as standard 

services in Volcano, we expect that the assembly operator will retrieve large sets of complex objects with accept- 

able and scalable performance. 
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