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vessels between NPAs) that were not selected by the classifier were not highlighted by our BAMs. (A) 
Results based on a referable DR case without diabetic macular edema (DME). (B) Results based on a 
referable DR case with DME. Small fluids were sharply highlighted by the BAMs (marked by orange 
arrows). (C) Results based on a non-referable DR case. The BAM highlighted a sharp foveola because our 
BAM would always highlight the areas which were learned as referable DR biomarkers by the classifier. 
The gradient-based and CAM-based maps of the non-referable class highlighted similar areas compared 
to the maps of referable DR class, which means their highlighting was incorrect in non-referable DR class. 
The propagation-based method correctly highlighted the surrounding areas of foveola, but the highlighting 
was inaccurate since areas without highlighting were much larger than the foveola.  .............................  83 

6.9 BAMs generated for two DR classifiers trained based only on the OCTA and OCT scans, respectively. 
(A) Superficial vascular complex en face maximum projection of OCTA. (B) The forged main generator 
output. (C) Segmented non-perfusion area (NPA) based on a previously reported deep learning method 
[180]. (D) The 𝐵𝐴𝑀௦ is the absolute difference between (B) and (A) after Gaussian filtering (Eq. 17). 
The highlighted areas are similar to the segmented NPA in (C). (E) The 𝐵𝐴𝑀ା/ି is the (non-absolute) 
differences between (B) and (A) after Gaussian filtering (Eq. 18) Except to the NPAs highlighted by red 
(positive values), parts of the vessels of high intensities were highlighted by green (negative values). (F) 
En face mean projection over the inner retina of OCT. (G) The forged main generator output. Hypo-
reflective fluids and hyperreflective spots in (F) were both changed typical reflectivity values. (H) The 
inner mean projection of the segmented fluid based on a previously reported deep learning method [181]. 
(I) The 𝐵𝐴𝑀௦ is the absolute difference between (G) and (F) after Gaussian filtering (Eq. 17).  (J) The 
𝐵𝐴𝑀ା/ି is the difference between (G) and (F) after Gaussian filtering (Eq. 18). The red highlighted areas 
focus on fluids, and green areas focus on abnormal hyperreflective spots.  ............................................  85 
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6.10 BAMs generated in the ablation experiments. Large vessels highlighted by the three variations are marked 
by blue arrows. (A) Segmented non-perfusion areas and fluids. (B) The 𝐵𝐴𝑀ା/ି generated without non-
referable DR data and assistant generator (loss: 𝐻ି). (C) The 𝐵𝐴𝑀ା/ି generated without preserved output 
(loss: 𝐻ା/ି + 𝐿). (D) The 𝐵𝐴𝑀ା/ି generated without the assistant generator (loss: 𝐻ି + 𝑀ି). (E) The 
𝐵𝐴𝑀ା/ି generated based on proposed framework (loss: 𝐻ା/ି + 𝑀ା/ି + 𝐿).  ......................................  86 
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ABSTRACT 

Diabetic retinopathy (DR) is a leading cause of preventable blindness globally. Regular screening for DR is critical 

for timely management and treatment since fewer than half of DR patients are aware of their condition even when it 

has advanced to a referable stage. However, the current DR screening process, which is based on manual diagnosis 

using two different imaging modalities, is expensive and time-consuming for regular DR screening. Automated DR 

diagnosis is urgently needed. A clinically applicable DR diagnosis should incorporate several design features. Firstly, 

it should rely on a single imaging modality that can provide sufficient information for DR diagnosis. Secondly, it 

should be able to classify each input into multiple levels of DR severities. Thirdly, it should possess the capability to 

distinguish DR from both healthy control cases and other eye diseases. Finally, it should provide clinically meaningful 

interpretability for each diagnostic result. Therefore, five deep learning systems were developed for automated and 

interpretable DR diagnosis based on optical coherence tomography (OCT) and its angiography (OCTA). (1) A retinal 

layer segmentation system which operates volumetrically and uses a customized U-shaped convolutional neural 

network (CNN) for gross segmentation and a multi-weight graph search algorithm to refine the network output. (2) A 

two-dimensional multi-level DR classification system that only needs en face projections as inputs. A densely and 

continuously CNN with adaptive rate dropout was developed to classify each input into three clinically relevant 

severity levels of DR. (3) A three-dimensional (3D) multi-level DR classification system that uses the data volumes 

as inputs. A customized 3D CNN was developed to detect both referable and vision-threatening DR. (4) A multi-eye-

disease detection system that can diagnose DR in a clinical context, i.e., in a dataset that includes healthy eyes and 

eyes with DR and other diseases. Here, a semi-sequence classifier was used to detect healthy controls, DR, age-related 

macular degeneration, and glaucoma. (5) An interpretability system that can highlight the biomarkers utilized in the 

second, third, and fourth modules in a biomarker activation map (BAM). The BAM was generated based on the 

generative adversarial learning technique. The combination of these systems achieved specialist-level performance in 

multi-level DR diagnosis and could provide clinically meaningful interpretability for each diagnostic result. In real-

world practice, these deep learning systems could reduce vision loss and lower clinical burden by providing time-

effective, cost-efficient, and interpretable DR diagnosis. 
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1 Introduction 

Diabetic retinopathy (DR) is a major microvascular complication of both type 1 and type 2 diabetes, which affects 

the fine vessels in the eye and causes vision loss [1]. Currently, DR has become a leading cause of preventable 

blindness globally [1]. About 40% to 45% of diabetic patients are likely to have DR at some point in their life [2]. 

Treatment of the DR at an early stage can result in the best prognosis, and vision loss can be delayed or deferred [3-

5]. However, fewer than half of DR patients are aware of their condition because it may be asymptomatic even in the 

referable stages [2]. In addition, the prevalence of DR is also growing [6]. Therefore, regular screening for DR is 

critical for timely management and treatment. 

In current DR screening, trained specialists need to manually diagnose each patient based on two imaging 

modalities [3]. The first is fundus photography, which yields a two-dimensional (2D) retina image based on a fundus 

camera [7-10]. Fundus photography is used for DR staging based on the Early Treatment of Diabetic Retinopathy 

Study (ETDRS) scale [11, 12]. The second imaging modality is optical coherence tomography (OCT), which yields a 

three-dimensional (3D) micrometer-scale-resolution image of ocular fundus tissue based on reflectance signals 

obtained using interferometric analysis of low-coherence light [13]. OCT is used for the detection of diabetic macular 

edema (DME), which is a vision-threatening manifestation of DR and can be found at any DR stage [14, 15]. However, 

manual diagnosis by specialists is time-consuming due to a large number of diabetic patients globally [1]. In addition, 

current screening is also expensive since two diagnostic procedures are needed. Furthermore, regular screening of 

patients in underdeveloped areas is impossible due to a lack of specialists and infrastructure [16]. Therefore, an 

automated DR diagnostic system based on only one imaging modality is critical to prevent the blindness of millions 

of diabetic patients worldwide [1]. 

According to recent studies, compared to fundus photography, OCT has shown several advantages for DR 

diagnosis in the absence of allied imaging modalities [17-20]. Firstly, an imaging modality called OCT angiography 

(OCTA) can be acquired simultaneously with OCT by measuring the decorrelation values to differentiate vasculature 

from static tissues. OCTA can provide 3D high-resolution images of the microvasculature of the retina [21-23]. By 

combining OCT and OCTA together, images acquired from just a single procedure can show both static tissue and 

vascular structure. Recently, numerous investigators explored OCTA in the staging of DR and demonstrated 

competitive performances when compared to fundus photography [17-20]. Secondly, fundus photography has a low 
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sensitivity (60-73%) and specificity (67-79%) for detecting DME, which accounts for the majority of vision loss in 

DR [14, 15]. This means that even when an automated DR diagnostic system performs very well against a ground 

truth generated from fundus photographs, patients with DME may still frequently be misdiagnosed. Therefore, 

combined OCT and OCTA could instead be used as a single imaging modality for automated DR diagnostic systems 

since they can provide sufficient information for both DME detection and DR staging. 

In recent years, deep learning classifiers have achieved state-of-the-art performances in several disease diagnostic 

tasks [24-28]. The nonlinearity and complexity based on the hidden layers and activation functions allow deep learning 

classifiers the ability to fit much more complex models compared to conventional algorithms [24]. Therefore, deep 

learning classifier should be used as a core technique for automated DR diagnosis based on OCT and OCTA. However, 

the high performance of the current deep learning classifier often comes at the cost of inscrutable outputs [29-31]. The 

presence of hidden layers in classifier architectures renders a straightforward account of the classifier’s action on 

inputs inaccessible and makes deep learning classifier outputs difficult to verify. In the absence of heuristic devices, 

deep learning classifiers cannot be confirmed outside of manual grading, which largely defeats the purpose of 

automation. The poor interpretability can also obfuscate potential bias that could negatively affect performance in 

under-represented ethnic groups: a classifier trained only based on one ethnic group may be biased when evaluated on 

data from others. These issues present a major hurdle for translating deep learning classifiers into the clinic [29-31].  

By considering the current circumstances above, we developed 5 deep-learning-aided systems based on OCT and 

OCTA to achieve automated and clinically interpretable DR diagnosis. In the beginning, the en face OCT and OCTA 

scanned on the macular region was selected as the input for deep-learning-aided DR classifier based on current clinical 

studies [17-20]. Retinal layer segmentation was then needed for the generation of en face OCT and OCTA. However, 

the first system was mainly focused on the retinal layers segmentation for OCT volume scanned on the optic nerve 

head (ONH) region [32]. The reason we did not develop this system for the OCT volume scanned on the macula region 

was that such system has been previously developed by our groups. In addition, the retinal layer segmentation for 

OCT scanned on ONH region was much more challenging. The successful development of our first system could 

enable the generation of wide field en face OCT and OCTA, which included both macular and ONH regions, to 

improve the diagnosis performance in the future. The second system was developed as a multi-level DR classifier 

based on deep learning, which used the en face OCT and OCTA as inputs [33]. By combining the first two systems, 

the automated DR diagnosis has been initially achieved. However, one major concern of the DR diagnosis based on 
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en face OCT and OCTA was that the diagnostic performance was influenced by the accuracy of retinal layer 

segmentation which could be unreliable in severe cases. Therefore, we developed the third system as a deep learning 

DR classifier based on 3D OCT and OCTA [34]. After we developed automated DR classifiers based on both 2D and 

3D inputs, we decided to develop the fourth system as a multi-eye-disease classifier which focused on the 

identification of DR from healthy eyes and other eye diseases [35]. The successful development of this system enables 

our DR diagnosis to be more adaptable to real-world clinical settings. To achieve clinically interpretable DR diagnosis, 

the last system was developed for interpretability, which can highlight the biomarkers utilized in three classification 

systems on an attention map for each input [36]. In real-world practice, the 5 deep learning systems could reduce 

vision loss and lower clinical burden by providing time-efficient, cost-efficient, and clinically explainable DR 

diagnosis. The following sections of this dissertation are organized as follows: the 5 systems are presented in sections 

2 to 6, respectively. The discussion and conclusion of these systems are presented in section 7 and 8, respectively. 
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2 Automated Segmentation of Peripapillary Retinal Boundaries in Optical Coherence 

Tomography Combining Convolutional Neural Network and Multi-weights Graph Search 

2.1 Abstract 

Quantitative analysis of the peripapillary retinal layers and capillary plexuses from optical coherence tomography 

(OCT) and OCT angiography images depend on two segmentation tasks – delineating the boundary of the optic disc 

and delineating the boundaries between retinal layers. Here, we present a method combining a neural network and 

graph search to perform these two tasks. A comparison of this novel method’s segmentation of the disc boundary 

showed good agreement with the ground truth, achieving an overall Dice similarity coefficient of 0.91 ± 0.04 in healthy 

and glaucomatous eyes. The absolute error of retinal layer boundaries segmentation in the same cases was 4.10 ± 1.25 

µm. 

2.2 Introduction 

Optical coherence tomography (OCT) provides noninvasive, structural images of eye fundus tissue based on 

interferometric analysis of low-coherence light [13]. By considering blood flow induced temporal variation in the 

signal garnered from OCT, vasculature can be distinguished from static tissue. There are many versions of this 

technique; collectively they are termed OCT angiography (OCTA) [21-23]. Measurement of retinal layer thickness 

from structural OCT and analysis of capillary plexuses from OCTA can both help clinical diagnosis and early detection 

of glaucoma, which is the leading cause of irreversible blindness globally [37-41]. But the clinical utility of such 

measurements requires accuracy and precision, both of which depend critically on the segmentation of both the optic 

disc boundary and peripapillary retinal boundaries. Segmentation of these anatomical regions is, then, a critically 

important task. 

Since manual segmentation is time-consuming, several methods to segment the optic disc and peripapillary retinal 

boundaries have been proposed [42-50]. For peripapillary retinal boundaries segmentation graph search algorithms 

based on intensity differences between anatomical slabs from structural OCT have been used frequently and show 

good results. Antony et al. proposed a 3D graph search method for the segmentation of both the optic disc boundary 

and the peripapillary retinal boundaries [44]. Zang et al. proposed a method which detected the optic disc boundary 

and segmented peripapillary retinal boundaries separately using a dynamic-programming based graph search 
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algorithm [48]. Gao et al. proposed a method which combined the active appearance model and graph search to 

segment the peripapillary retinal boundaries [49]. Yu et al. proposed a shared-hole graph search method which first 

segments the optic disc boundary and then segments the peripapillary retinal boundaries [50]. However, speckle noise 

and vessel shadows both seriously detrimentally impact segmentation accuracy based just on graph search. 

Nowadays, deep learning plays an important role in medical image processing and several learning-based methods 

exist for segmentation of OCT data [51-56]. Devalla et al. proposed a dilated-residual U-Net to segment optic nerve 

head tissues such as the lamina cribrosa, choroid, sclera and so on [53]. But the peripapillary retinal boundaries were 

not segmented in this study. Kugelman proposed a retinal boundary segmentation method for macular OCT based on 

a combination of recurrent neural networks and graph search [54]. However, the anatomical disruption caused by the 

optic disc makes peripapillary retinal boundaries segmentation much more challenging than the macular region. 

Networks trained on macular OCT scans therefore may not generalize well to the peripapillary region. 

In this study, we propose an automated segmentation method for optic disc boundary detection and peripapillary 

retina layer segmentation. We designed two separate neural networks and trained one each to segment the optic disc 

boundary and peripapillary retinal layers. The final peripapillary retinal boundaries were calculated based on the 

prediction and gradient maps using a multi-weights graph search algorithm. 

2.3 Methods 

2.3.1 Patient recruitment and data acquisition 

In this study, 46 healthy and 63 participants with glaucoma were recruited and tested at the Casey Eye Institute, 

Oregon Health & Science University. The diagnoses of all the participants were made by an expert clinical 

examination. The participants were enrolled after informed consent in accordance with an Institutional Review Board 

approved protocol. The study was conducted in compliance with the Declaration of Helsinki. 

The peripapillary retinal area was scanned using a commercial 70-kHz spectral-domain OCT system (Avanti 

RTVue-XR, Optovue Inc) with 840-nm central wavelength. The scan regions were 4.5 × 4.5 mm and 1.6 mm in depth 

(304 × 304 × 640 pixels) centered on the optic disc. Two repeated B-frames were captured at each line-scan location. 

The blood flow of each line-scan location was detected using the split-spectrum amplitude-decorrelation angiography 

algorithm based on the speckle variation between two repeated B-frames [23, 57]. The OCT structural images were 
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obtained by averaging two repeated B-frames. For each data set, two volumetric raster scans (one x-fast scan and one 

y-fast scan) were registered and merged through an orthogonal registration algorithm to reduce motion artifacts [58]. 

In each OCT data set, the following layers or boundaries are anatomically important: inner limiting membrane 

(ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), 

outer plexiform layer (OPL), outer nuclear layer (ONL), ellipsoid zone (EZ), retinal pigment epithelium (RPE), and 

Bruch’s membrane (BM). In this study, seven boundaries (Vitreous/ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, 

ONL/EZ, and RPE/BM) were manually segmented by a human grader. 

2.3.2 Neural network designing 

The neural network used in this study was designed based on the architecture of the classic U-Net [59, 60] (Fig. 

2.1). Three max-pooling and (de)convolution layers were separately used in the down-sampling and up-sampling 

towers. Because each peripapillary retinal layer can not be identified based just on the upper and lower boundaries, 

the global position in the whole retina is also an important feature. In order to capture both the relative and absolute 

location of each peripapillary retinal layer, a 3×3 normal and atrous-convolution layer [61, 62] were cascaded together 

in each layer of the down-sampling and up-sampling towers. In addition, a global block was also designed to capture 

the local and global information before the final classification layer. The batch normalization [63] and exponential 

linear unit (ELU) function [64] were used after each convolution layer (except the output layer) to improve the stability 

of the final classification. 

The Dice similarity coefficient (DSC) for each channel of the output map was used in the loss function: 

c
n n

n 1c n n

1
Loss 1

N Out Lab eps

N Out Lab eps

 
 

 
                                                           (1) 

where Nc is the number of final classes, eps is set to 1×10-5 to keep the division workable, and Outn and Labn are the 

nth channels of the output map and corresponding label manually segmented by a certified grader. Stochastic gradient 

descent with Nesterov momentum (momentum = 0.9) was used to optimize the variables in the neural network to find 

the minimum value of the loss function [65]. The learning rate was halved if the value of the loss function kept 

increasing over three consecutive training steps (starting from an initial learning rate of 0.1). The same network 

architecture was used for the segmentation of both the optic disc and peripapillary retinal boundaries. 



7 
 

The designed neural network was trained and tested in Python 3.6, and other image processing was performed in 

MATLAB 2018b. The workstation used in this study has an Intel (R) Core (TM) i7-8700K CPU @ 3.70GHz, 64.0 

GB RAM and NVIDIA RTX 2080 GPU. 

 

Figure 2.1:  The architecture of the designed neural network. 

2.3.3 Optic disc boundary segmentation 

The major challenge of the peripapillary retinal boundaries segmentation is the special structure of the optic disc, 

which is totally different from the surrounding retina and varies significantly between eyes. Because the en face shape 

of optic disc is usually approximately circular 180 diametral B-frames were generated based on the detected disc 

center, thereby ensuring the images used to train the network in optic disc segmentation algorithm were similar.  

2.3.3.1 Optic disc center detection 

The optic disc center is needed for sampling of the 180 diametral B-frames. However, the optic disc is not always 

aligned at the exact center of the OCT data volume, and can be far away from the image center (Fig. 2.2(A)). Therefore, 

we designed an automated localization algorithm for the optic disc that leverages the lack of anatomical layers found 

in the disk region in order to determine its center. The internal, hierarchical structure of anatomic layers can manifest 

clearly in OCT images after proper image manipulation. To elucidate these features within our data volumes we 

designed a convolution kernel khie to generate a gradient map Ghie which demarcates the three strongest retinal layer 

gradients (Fig. 2.2(C) and 2.2(F)): 
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hie normal hieConv( , )G B k                                                                (2) 

where Conv(•) is the convolution, Bnormal is each normal B-frame and khie is a 5×5 kernel with −
ଵ

ଵ
 in the first two 

rows and 
ଵ

ଵହ
 in the last three rows. The binary image of each gradient map was then generated by extracting the layers 

with intensity above an empirically determined threshold (Fig. 2.2(D) and 2.2(G)). Because it lacks internal 

hierarchical structure, only one layer was detected inside the optic disc (Fig. 2.2(G)).  After all the volumetric binary 

images were generated, we construct an en face accumulation image by summing the separate binary images (Fig. 

2.2(H)). This leaves the region of the optic disc darker since it retains only one layer after binarization (instead of 

three), and so obtains lower values in the accumulation image. A binary en face image bI  was then generated based 

on the center region cI  (red box in Fig. 2.2(H)) of the accumulation image to improve the detection stability. This 

binarization process was defined as: 

     1 1 , 1.3 1
,

0
c c

b

I x y mean I
I x y

otherwise

   
 
                                                     (3) 

 The optic disc center was then calculated as the geometric center of the binary image just obtained. Though some 

large vessels might still be visible in the binary image due to the vessel shadows, the calculation of the optic disc 

center is unaffected due to the approximate rotational symmetry. 

 

Figure 2.2:  Diagram of the optic disc center detection. (A) En face average projection of the volumetric OCT. The 
detected optic disc region is covered by green. The red point is the detected disc center. (B) The normal B-frame 
corresponding to the position of the left blue line, which is outside of the disc. (C) The gradient map of the B-frame 
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in (B). (D) The binary image of the layers with highest gradient intensity in (C). (E) The normal B-frame corresponding 
to the position of the right blue line, which is inside the disc. (F) The gradient map of the B-frame in (E). (G) The 
binary image of the layers with highest gradient intensity in (F). Note the single band of pixels in the disc region. (H) 
En face accumulation projection based on the volumetric gradient map. The center region with two thirds of the image 
length is indicated by the red box. 

2.3.3.2 Diametral B-frames generation and disc boundary segmentation 

The 180 diametral B-frames and corresponding labels were then generated from 1° to 180° based on the detected 

optic disc center and resized to 416×416 (416 being the pixel length of the image diagonal). After this we cropped the 

images for network training (Fig. 2.3). Because the optic disc boundary is defined as the Bruch’s membrane opening 

[66], the area of EZ + RPE (cyan region in Fig. 2.3(C)) and the remaining B-frame area constituted the input labels 

for the disc boundary neural network. The initial en face optic disc binary image was then obtained based on the 180 

prediction maps from the trained network through a coordinate transformation. The output region so obtained is rough 

so we performed a multi-angle edge smoothing process on the initial boundary consisting of two steps. First, the 

bumpy artifacts were removed through a morphological opening process. After that, the convex hull of the disc region 

was calculated to make sure the final disc region was convex (Fig. 2.4). 

 

Figure 2.3:  Generation of diametral B-frames. (A) En face average projection of a volumetric OCT scan from a 
glaucoma patient. The green point is the automatically detected optic disc center. The two red lines with angle and 
arrows indicate planes along which the diametral B-frames are generated. (B) The diametral B-frame corresponding 
to the red line at 1°. The green line corresponds to the optic disc center (green point) in (A). The region between two 
blue lines is the optic disc. The peripapillary retina is to the left and right of the blue lines. (C) The generated diametral 
B-frame corresponding to the red line at 45° in (A). The manually segmented EZ + RPE are colored in cyan. 

 

Figure 2.4:  Smoothing process of the initial optic disc boundary. (A) Volumetric prediction maps of EZ + RPE. (B) 
Initial optic disc region based on the en face projection of (A). (C) The bump artifacts were removed using 
morphological opening. (D) The final optic disc region after the convex hull calculation. 
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2.3.4 Peripapillary retinal layer segmentation 

The training data set for the peripapillary retinal boundaries segmentation network was obtained based on the 

manually delineated internal boundaries between retinal layers. In order to provide extra features for learning and help 

to mitigate errors due to layer distortion and vessel shadows near the disc we organized the input data as the 

combination of several adjacent B-frames. Therefore, each input image in the training data set contained channels 

with size 416×304×5, from a combination of five adjacent B-frames (Fig. 2.5(A)). Each input label in the training data 

set was calculated based on the manually segmented retinal layers of the middle (i.e., third, marked by red arrow in 

Fig. 2.5(A)) B-frame of the corresponding image. The size of each input label was 416×304×7, with the first channel 

corresponding to the area outside the retina. The other channels are the regions of the six main retinal layers (Fig. 

2.5(C)). 

 

Figure 2.5:  The image and corresponding label in the training data set for the designed neural network for 
peripapillary retinal boundaries segmentation. (A) Image constructed from five adjacent B-frames. (B) Colormap of 
the peripapillary retinal layers based on the manually delineated boundaries of the B-frame marked by red arrow in 
(A). Six major layers are shown: NFL (red), IPL (green), INL (yellow), OPL (blue), ONL (purple), and EZ + RPE 
(cyan). (C) The seven channel labels based on the manual delineation of the third channel of (A). 

After the trained neural network obtained initial boundaries Binitial based on the prediction maps of each B-frames 

in the volumetric OCT, the final eight boundaries were obtained by refining the initial boundaries using a multi-

weights graph search (Fig. 2.6). (The EZ/RPE boundary was not segmented by the neural network, but we added it at 

this step in order to obtain a complete segmentation.) To improve the accuracy and stability of this graph search, 

weights were calculated not just based on the search direction but also based on the vertical distance to initial 

boundaries. The multi-weights graph search was defined as 
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where P(x,z) is the cost of the shortest path from the first column to the coordinate (x,z) in xth column, G(x,z) is the 

pixel value in the corresponding gradient map (examples in Fig. 2.2(C) and 2.2(F)), z + d(i) is the row of one of the n 

neighboring pixels in (x-1)th column, and w(i) is the empirically determined weight assigned to each search direction.  

Near the optic disc, there is large variation in the vitreous/ILM boundary location. Furthermore, in this region we 

require the boundaries converge to the Bruch’s membrane opening. To achieve these goals, we modified the search 

weights in this region (between the orange and blue lines in Fig. 2.6(B)) according to Eq. 5 and 6: 

For Vitreous/ILM: 

                         21     [ 10,  9,  ...,  0,  ...,  9,  10]

[1.8,  1.8,  ...,  1.8,  1.4,  1.2,  1.0,  1.0,  1.0,  1.2,  1.4,  1.8,  ...,  1.8,  1.8]

n d

w

   
                    (5) 

For the NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, and ONL/EZ: 

                                  17     [ 8,  7,  ...,  0,  ...,  7,  8]

[1.4,  1.4,  1.2,  1.2,  1.1,  1.1,  1.0,  1.0,  1.2,  1.4,  1.6,  1.8,  2.0,  2.2,  2.4,  2.6,  2.8]

n d

w

   
                    (6) 

The searching order of the eight boundaries was RPE/BM → Vitreous/ILM → NFL/GCL → ONL/EZ → INL/IPL 

→ OPL/ONL → IPL/INL → EZ/RPE, and the search region included the initial estimate plus the six pixels above and 

below. For a boundary without an initial value, the search area was changed to [Bpre - 6, Bpre + 6], in which Bpre was 

the just segmented boundary of the last B-frame. In addition, the area of each boundary did not exceed the region 

based on the associated slab’s upper and lower limit. For the region inside the optic disc, just the top and bottom 

boundaries were segmented based on the binary image of the whole retina. These weights and parameters were 

empirically chosen just based on the training dataset and will be used in segmentation of future data. After the 

boundary segmentation, each boundary was smoothed by a mean filter with size 5×5. 
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Figure 2.6: The initial boundaries were refined by a multi-weights graph search. (A) The prediction map generated 
from the trained neural network. (B) The initial boundaries based on the prediction map in (A). The optic disc region, 
as automatically determined by the algorithm, is indicated by the solid light blue vertical lines. The region between 
these lines and the orange dotted lines is where refined weights in the graph search are used to ensure convergence to 
the Bruch’s membrane opening. This region covers one quarter of the distance between the edge of the image and the 
optic disc. (C) The final boundaries after the multi-weights graph search and smoothing. 

2.4 Results 

In this study, 78 eyes from 46 healthy individuals and 104 eyes from 63 glaucoma patients were scanned. Among 

the data set, 30 scan volumes each from different healthy participants and glaucoma patients were chosen for the 

training data set (10800 inputs for optic disc boundary segmentation and 18000 inputs for peripapillary retinal 

boundaries segmentation). The training batch size was set to 4. Among the 4 inputs, two of them were randomly 

chosen from the glaucoma training data and another two inputs were randomly chosen from the normal training data. 

The trained model was obtained after 18000 training steps. The rest of the data set was used to test the performance 

of this segmentation method. In addition, there was no overlap between the cases used in the training and testing 

dataset. 

2.4.1 Qualitative analysis 

In Fig. 2.7, the segmented optic disc is shown in green. The region corresponds to the area expected from visual 

inspection. 

 

Figure 2.7:  The segmentation results of the optic disc boundary. In each part, the optic disc or its boundary is shown 
in green. (A) The en face average projection of the volumetric OCT scanned from a healthy participant. (B) The 
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bottom-to-top 3D view of the volumetric OCT of (A). (C) The en face average projection of the volumetric OCT 
scanned from a glaucoma patient. (D) The bottom-to-top 3D view of the volumetric OCT of (C). 

The segmented boundaries of peripapillary retinal from a healthy participant is shown in Fig. 2.8. In addition, the 

anatomical structures outside and inside the optic disc are clearly shown in Fig. 2.8(B) and 2.8(C). The superficial 

vascular complex (SVC), defined as the inner 80% of ganglion cell complex (GCC), includes all structures between 

the ILM and IPL/INL border [67]. An en face SVC angiogram was generated by projecting the maximum decorrelation 

within the same slab [68-70]. In addition, the segmentation results based on the OCT data scanned from a glaucoma 

patient are shown in Fig. 2.9. The angiogram of the NFL slab, which is critically important to the detection and 

diagnosis of glaucoma, was defined as the radial peripapillary capillary plexus (RPCP). Notably, the glauomatous 

wedge shaped defect can be visualized on both RPCP angiogram (Fig. 2.9(B)) and NFL thickness map (Fig. 2.9(C)) 

[37-41]. The superotemporal area with capillary loss could also clearly be seen in the RPCP (marked by a green line 

in Fig. 2.9(B)). 

 

Figure 2.8:  Segmentation results of the left eye of a healthy participant. (A) The en face average projection, with the 
segmented optic disc region overlaid in green. (B) The 3D anatomical map of the entire volumetric OCT based on the 
segmented peripapillary retinal layers. (C) Cutaway from (B) at the blue line location in (A), clearly showing the 
anatomic structure inside the disc. (D) En face SVC angiogram based on the segmented boundaries. (E) B-frame 
corresponding to the red line in (A) with segmented peripapillary retinal boundaries. (F)  Corresponding image for the 
blue line in (A). The slab boundaries are, from top to bottom, the Vitreous/ILM (red), NFL/GCL (green), IPL/INL 
(yellow), INL/OPL (blue), OPL/ONL (magenta), ONL/EZ (cyan), EZ/RPE (red) and RPE/BM (blue). 
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Figure 2.9:  Segmentation results for the right eye of a glaucoma patient. (A) En face average projection image, with 
the segmented optic disc region overlaid in green. (B) En face RPCP angiogram based on the segmented boundaries. 
Capillary loss in the superotemporal area is marked with a green line. (C) NFL thickness map based on the segmented 
peripapillary retinal boundaries. (D) B-frame corresponding to the red line in (A) with segmented peripapillary retinal 
boundaries. (E) Corresponding image for the blue line in (A). (F) The 3D anatomical map of whole volumetric OCT 
based on the segmented peripapillary retinal layers. (G) Cutaway from (F) at the blue line location in (A), clearly 
showing anatomic structure inside the optic disc. The slab boundaries are, from top to bottom, the Vitreous/ILM (red), 
NFL/GCL (green), IPL/INL (yellow), INL/OPL (blue), OPL/ONL (magenta), ONL/EZ (cyan), EZ/RPE (red) and 
RPE/BM (blue). 

2.4.2 Quantitative analysis 

We tested 21960 diametral B-frames generated from 122 volumetric OCT scans to assess the performance of the 

neural network used in the optic disc boundary detection.  The mean ± standard deviation of the testing loss (Eq. 1) 

between the predication maps and ground truth labels was 0.033 ± 0.028. We also calculated the Dice similarity 

coefficient (DSC) between the predicted final disc boundaries and corresponding manual delineations. The DSC was 

0.92 ± 0.03 in normal and 0.91 ± 0.05 in glaucomatous eyes. 

For the performance of peripapillary retinal boundaries segmentation, we calculated the absolute errors (µm, based 

on 3.125 µm/pixel) of the peripapillary retinal boundaries between our method and manual delineation (Table 2.1). 

The overall absolute errors were similar for both healthy and glaucomatous eyes. Because the NFL thickness is a 

critical feature for the detection and diagnosis of glaucoma, the NFL thickness based on our method was calculated 

and compared with the gold standard based on the manual delineation. The mean ± standard deviation value of the 
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NFL thickness differences (manual minus automated) was 2.14 ± 1.45 µm in glaucomatous and 1.67 ± 1.83 µm in 

normal eyes. 

Table 2.1: Segmentation accuracy of our method 
Boundaries Healthy (Mean ± Std; µm) Glaucoma (Mean ± Std; µm) 
Vitreous/ILM 2.83 ± 1.12 3.25 ± 0.92 
NFL/GCL 6.42 ± 0.36 6.64 ± 0.27 
IPL/INL 5.59 ± 0.34 5.70 ± 0.23 
INL/OPL 4.93 ± 0.66 4.97 ± 0.47 
OPL/ONL 4.59 ± 0.90 5.37 ± 0.32 
ONL/EZ 3.90 ± 0.83 4.22 ± 0.67 
EZ/RPE 3.31 ± 0.77 3.74 ± 0.82 
RPE/BM 3.52 ± 1.00 3.46 ± 0.94 
Overall 4.09 ± 1.34 4.11 ± 1.16 

As another test of performance for the algorithm presented here, we also compared our results to those obtained 

with our previous method, which was based exclusively on the graph search algorithm [48]. The comparisons of the 

segmentation accuracy of peripapillary retinal boundaries is shown in Table 2.2. 

Table 2.2: Comparison of the peripapillary retinal boundaries segmentation 

 
Healthy Glaucoma 

NFL/GCL All layers NFL/GCL All layers 
Only graph search 9.34 ± 1.35 µm 4.78 ± 3.51 µm 14.26 ± 3.73 µm 11.45 ± 7.84 µm 
With neural network 6.42 ± 0.36 µm 4.09 ± 1.34 µm 6.64 ± 0.27 µm 4.11 ± 1.16 µm 
P-Value 0.006 0.09 0.004 0.002 

Through Table 2.2, it is clear that the segmentation accuracy and stability were both improved after combining the 

neural network with the classic graph search.  

2.4.3 Neural network analysis 

Inside the neural network, the addition of the atrous-convolution layer in each atrous-block and the global block 

greatly improved the performance of the neural networks. In order to further analyze the neural network design, we 

compared the validation accuracy (based on DSC) of the peripapillary retinal layers segmentation between the four 

architectures below: original U-Net, U-Net + global block, U-Net + cascaded atrous-block, and proposed architecture 

(Table 2.3). Clearly, adding the cascaded atrous-convolution layers in the down and up sampling towers and global 

block at the end of the network critically improved the convergence of the neural network. In addition, the validation 

accuracies of the healthy and glaucoma data based on the inputs using only one channel (the middle one) instead of 

the 5 used in our algorithm were 84.11% and 83.53% respectively. These accuracies were about 2% lower than the 

accuracies shown in the last column of Table 2.3 which proved the five channels input design was effective. 
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Table 2.3: Comparison of the validation accuracy between different architectures 

 Original U-Net U-Net + global block U-Net + cascaded atrous-block Proposed Architecture 

Healthy 23.14% 62.52% 81.79% 86.47% 
Glaucoma 21.87% 61.26% 79.92% 85.31% 

Fig. 2.10 shows example feature maps learned by the network in the normal convolution layers of the global block. 

It is clear that in each map the network is learning different retinal layers, as each map highlights specific layers or 

combinations thereof. The result of each map then yields a complete segmentation.  

 

Figure 2.10:  The sixteen feature maps of normal layers in the Global block. 

2.5 Discussion and conclusion 

The structure inside the optic disc, layer distortion near the optic disc, and vessel shadows constitute three major 

difficulties for peripapillary retinal boundaries segmentation. First, the optic disc needs to be segmented before the 

peripapillary retinal boundaries segmentation due to its unique anatomical structure. We solved this challenge by 

utilizing a geometric reorientation (diametral B-frames) and training a neural network on this more amenable geometry. 

The generated diametral B-frames have a high degree of structural consistency, which greatly increased the 

segmentation accuracy and stability of the optic disc boundary. In addition, the smoothing method that conformed to 

the anatomical features of optic disc also guaranteed the fidelity of the boundary. In the peripapillary retinal boundaries 

segmentation stage, the reason of not using diametral B-frames was that the diametral B-frames have the same 

directions with large vessels. The large vessel shadows could hardly influence the segmentation of single EZ + RPE 

layer but will influence the segmentation accuracy of six adjacent layers.  

For the network architecture, the atrous-convolution layers and global block in the neural network could capture 

both local and global information at each pixel. The combination of the input data and neural network used in the 

design guaranteed that the peripapillary retinal boundaries segmentation would not be influenced by either disc 

distortion or vessel shadows. 
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Though the segmentation accuracy was greatly improved by using the neural network, limitations were also 

obvious. The performance of this method was limited by the depth and breadth of the training data set. In order to use 

this method on other OCT devices with different scan patterns or data from patients with different eye diseases, the 

training data set would need to be expanded. However, the complexity of the network architecture should be sufficient 

to learn either new pathologies or instruments, since even in these situations the OCT scans have nearly the same 

overall structure. In a future study, this method will be used on an expanded training data set to broaden its capabilities. 

2.6 Conclusion 

We combined a neural network with the traditional graph search method to segment both the optic disc and 

paripalliary retina boundaries in an optic disc centered volumetric OCT scan. The addition of the neural network 

greatly improved both segmentation accuracy and stability. The quantified tissue information, especially the NFL 

thickness and analysis of capillary plexuses, have the potential to pose a significant improvement in the diagnosis and 

early detection of glaucoma. 
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3 Diabetic Retinopathy Classification at Multiple Levels Based on Structural and 

Angiographic Optical Coherence Tomography 

3.1 Abstract 

Optical coherence tomography (OCT) and its angiography (OCTA) have several advantages for the early detection 

and diagnosis of diabetic retinopathy (DR). However, automated, complete DR classification frameworks based on 

both OCT and OCTA data have not been proposed. In this study, a convolutional neural network (CNN) based method 

is proposed to fulfill a DR classification framework using en face OCT and OCTA. A densely and continuously 

connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification. In addition, 

adaptive label smoothing was proposed and used to suppress overfitting. Three separate classification levels are 

generated for each case based on the International Clinical Diabetic Retinopathy scale. At the highest level the network 

classifies scans as referable or non-referable for DR. The second level classifies the eye as non-DR, non-proliferative 

DR (NPDR), or proliferative DR (PDR). The last level classifies the case as no DR, mild and moderate NPDR, severe 

NPDR, and PDR. We used 10-fold cross-validation with 10% of the data to assess the network’s performance. The 

overall classification accuracies of the three levels were 95.7%, 85.0%, and 71.0% respectively. A reliable, sensitive 

and specific automated classification framework for referral to an ophthalmologist can be a key technology for 

reducing vision loss related to DR. 

3.2 Introduction 

Optical coherence tomography (OCT) can generate depth-resolved, micrometer-scale-resolution images of ocular 

fundus tissue based on reflectance signals obtained using interferometric analysis of low coherence light [13]. By 

scanning multiple B-frames at the same position, change in the OCT reflectance properties can be measured as, e.g., 

decorrelation values to differentiate vasculature from static tissues. This technique is called OCT angiography (OCTA), 

and it can provide high-resolution images of the microvasculature of retina [21-23]. Numerous investigators explored 

OCTA in the detection and diagnosis of various ocular diseases, and demonstrated many advantages when compared 

to traditional imaging modalities such as fundus photography or fluorescein angiography [17-20]. Among these is 

diabetic retinopathy (DR), which affects the retinal capillaries and is a leading cause of preventable blindness globally 

[1]. OCT-based biomarkers such as central macular thickness and OCTA-based biomarkers such as avascular areas 

have demonstrated superior potential for diagnosing and classifying DR compared to traditional imaging modalities 
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[17-20]. However, recently emerged automated deep-learning classification methods were largely based on color 

fundus photography (CFP) [7-10]. Therefore, taking advantages of both powerful deep learning tools and innovative 

structural and angiographic information, we developed an automated framework that can perform a full DR 

classification (across datasets including all DR grades) based on en face OCT and OCTA projected from the same 

volumetric scans. 

In order to improve classification accuracy and reliability, a new convolutional neural network architecture was 

designed based on dense and continuous connection with adaptive rate dropout (DcardNet). The system produces 

three classification levels to fulfill requests in clinical diagnosis. Non-referable and referable DR (nrDR and rDR) are 

classified in the first level. No DR, non-proliferative DR (NPDR), and proliferative DR (PDR) are in the second 

classification level. No DR, mild and moderate NPDR, severe NPDR, and PDR are in the third level. While training 

DcardNet, adaptive label smoothing was used to reduce overfitting. To improve interpretability and help understand 

which regions contribute to the diagnosis, class activation maps (CAM) were also generated for each DR class [71].  

3.3 Related works 

Several methods for the automated classification of DR severity have been proposed since the convolutional neural 

network (CNN) became the most widely used solution for image classification problems [7-10, 72-76]. Most of these 

methods are based on CFP, which is a traditional and commonly used technique capable of DR diagnosis. R. Gargeya 

et al. proposed a machine learning based method to classify CFP images as healthy (no retinopathy) or having DR [7]. 

They used a customized ResNet architecture [77] to extract features from the input CFPs. The final classification was 

performed on a decision tree classification model by using the combination of extracted features and three metadata 

variables. They achieved a 0.97 area under receiver operating curve (AUC) after 5-fold stratified cross-validation. In 

addition, a visualization heatmap was generated for each input CFP based on visualization layer in the end of their 

network [71]. V. Gulshan et al. used Inception-v3-based transfer learning to classify the CFP mainly as rDR and nrDR 

[9]. In the validation tests on two publicly available datasets (eyePACS-1 and Messidor-2), they achieved an AUC of 

0.991 and 0.990, respectively. M. D. Abramoff et al. also proposed a CNN-based method to classify CFP images as 

rDR and nrDR and achieved an AUC of 0.980 during validation [8]. For more detailed DR classification, R. Ghosh et 

al. proposed a CNN-based method to classify the CFP images into both two-class (no DR vs DR) and five severities: 



20 
 

no DR, mild NPDR, moderate NPDR, severe-NPDR, and PDR [10]. They achieved an overall accuracy of 85% for 

the classification into five severities. 

However, all of the above methods were based on the CFP. Compared to CFP, OCT and OCTA can provide more 

detailed information (i.e. 3D, high-resolution, vascular and structural imaging). An automated DR classification 

framework based on OCT/OCTA could reduce the number of procedures that must be performed in the clinic if 

OCT/OCTA can deliver the same diagnostic value as other modalities, which will ultimately reduce clinical burden 

and healthcare costs. Therefore, an automated framework for DR classification based on OCT and OCTA data is 

desirable. 

 H. S. Sandhu et al. proposed a computer-assisted diagnostic (CAD) system based on quantifying three OCT 

features: retinal reflectivity, curvature, and thickness [72]. A deep neural network was used to classify each case as no 

DR or NPDR based on those three retinal features and achieved an overall accuracy of 93.8%. The same group also 

proposed a CAD system for DR classification based on quantified features from OCTA [73]: blood vessel density, 

foveal avascular zone (FAZ) area, and blood vessel caliber and trained a support vector machine with a radial basis 

function kernel. They achieved an overall accuracy of 94.3%. However, these systems examined and classified only 

no DR and NPDR cases. M. Alam et al. proposed a support vector machine-based DR classification CAD system 

using six quantitative features generated from OCTA: blood vessel tortuosity, blood vascular caliber, vessel perimeter 

index, blood vessel density, foveal avascular zone area, and foveal avascular zone contour irregularity [74]. They 

achieved 94.41% and 92.96% accuracies for control versus disease (NPDR) and control versus mild NPDR. In addition, 

they achieved 83.94% accuracy for multiclass classification (control, mild NPDR, moderate NPDR, and severe 

NPDR). However, as only pre-determined features were incorporated into this model, it could not learn from the much 

richer feature space latent in the entire OCTA data. In addition, CAD systems based on only empirically selected 

biomarkers have limited potential for further improvements even as the number of available datasets grows. M. Heisler 

et al. proposed a DR classification method based on en face OCT and OCTA images using ensemble networks [75]. 

Each case was classified as nrDR or rDR and they achieved an overall accuracy of 92.0%. In addition, the CAM of 

each en face image was generated. However, only 2-class classification was performed in this study. Therefore, an 

OCT and OCTA based DR classification framework capable of fulfilling different clinical requests and generating 

CAMs is needed. 
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There are two major challenges for OCT and OCTA-based DR classification. First, OCTA generates a much 

greater detailed image of the vasculature than traditional CFP. Extracting classification related features from such 

detailed information is much more challenging compared with the CFP-based classification. The second challenge is 

the relatively small size of the available OCT and OCTA dataset, compared to the very large CFP dataset used in the 

previous CFP-based networks. This challenge can lead to a severe overfitting problem during the training of the 

network. Addressing these challenges requires a network architecture with not only efficient convergence but also low 

overfitting. We designed a densely and continuously connected neural network with adaptive rate dropout and used it 

to perform a DR classification in three levels. We also produced corresponding CAMs in this study. In addition, 

adaptive label smoothing was proposed to further reduce overfitting. The main contributions of the present work are 

as follows: 

 We present an automated framework for the DR classification and CAM generation based on both OCT and 

OCTA data. In this framework, three DR classification levels are performed for the first time. 

 We propose a new network architecture based on dense and continuous connections with adaptive rate 

dropout. 

 We propose an adaptive label smoothing to suppress overfitting and improve the performance generalization 

of the trained network. 

3.4 Materials 

In this study, 303 eyes from 250 participants, including healthy volunteers and patients with diabetes (with or 

without DR) were recruited and examined at the Casey Eye Institute, Oregon Health & Science University. Masked 

trained retina specialists graded the disease severity based on Early Treatment of Diabetic Retinopathy Study (ETDRS) 

scale [11] using corresponding 7-field fundus photography. Based on the recent studies on referable retinopathy level 

shown in the International Clinical Diabetic Retinopathy scale [12], we defined referable retinopathy as the equivalent 

ETDRS grade, which is grade 35 or worse. The participants were enrolled after informed consent in accordance with 

an Institutional Review Board (IRB # 16932) approved protocol. The study was conducted in compliance with the 

Declaration of Helsinki and Health Insurance Portability and Accountability Act. 

The macular region of each eye was scanned once or twice (after a one-year gap) using a commercial 70-kHz 

spectral-domain OCT system (Avanti RTVue-XR, Optovue Inc) with 840-nm central wavelength. The scan regions 



22 
 

were 3.0 × 3.0 mm and 1.6 mm in depth (304 × 304 × 640 pixels) centered on the fovea. Two repeated B-frames were 

captured at each line-scan location to calculate the OCTA decorrelation values. The blood flow of each line-scan 

location was detected using the split-spectrum amplitude-decorrelation angiography algorithm based on the speckle 

variation between two repeated B-frames [23, 57]. The OCT structural images were obtained by averaging two 

repeated B-frames. For each data set, two volumetric raster scans (one x-fast scan and one y-fast scan) were registered 

and merged through an orthogonal registration algorithm to reduce motion artifacts [58]. 

For each pair of OCT and OCTA data, the following retinal layers were automatically segmented (Fig. 3.1) based 

on the commercial software in the spectral-domain OCT system (Avanti RTVue-XR, Optovue Inc): inner limiting 

membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer 

(INL), outer plexiform layer (OPL), outer nuclear layer (ONL), ellipsoid zone (EZ), retinal pigment epithelium (RPE), 

and Bruch’s membrane (BM). In addition, for the cases with severe pathologies, the automated layer segmentation 

was manually corrected by graders using the customized COOL-ART software [78]. 

 

Figure 3.1:  The automated retinal layer segmentation from OCT structural image scanned from a healthy participant. 
(A) The en face average projection of the whole OCT structure. (B) The B-frame corresponding to the position of red 
line in (A). The eight boundaries of the seven main retinal layers were segmented. 

Based on the segmented boundaries, six en face projections from OCT reflectance signals and OCTA decorrelation 

values were obtained and used to build a six-channel input data (Fig. 3.2). The first three channels were the inner 

retinal thickness map (z-axis distance between the Vitreous/ILM and OPL/ONL), inner retinal en face average 

projection (Vitreous/ILM to OPL/ONL) and EZ en face average projection (ONL/EZ to EZ/RPE) based on the 

volumetric OCT (Fig. 3.2(A)-(C)). The last three channels were the en face maximum projections of the superficial 

vascular complex (SVC), intermediate capillary plexus (ICP), and deep capillary plexus (DCP) based on the 

volumetric OCTA. (Fig. 3.2(D)-(F)) [70]. The SVC was defined as the inner 80% of the ganglion cell complex (GCC), 

which included all structures between the ILM and IPL/INL border. The ICP was defined as the outer 20% of the 

GCC and the inner 50% of the INL. The DCP was defined as the remaining slab internal to the outer boundary of the 
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OPL [18, 41]. In addition, the projection-resolved OCTA algorithm was applied to all OCTA scans to remove flow 

projection artifacts in the deeper plexuses [68, 69]. 

 

Figure 3.2:  The six input channels based on the OCT and OCTA data scanned from a moderate NPDR participant. 
(A) Inner retinal thickness map. (B) Inner retinal en face average projection. (C) Ellipsoid zone (EZ) en face average 
projection. (D) Superficial vascular complex (SVC) en face maximum projection. (E) Intermediate capillary plexus 
(ICP) en face maximum projection. (F) Deep capillary plexus (DCP) en face maximum projection. 

Three classification levels of each input data were built based on the ETDRS grades as scored by three 

ophthalmologists (Fig. 3.3). The first label was for 2 classes: nrDR and rDR. The second label was for 3 classes: no 

DR, NPDR and PDR. The last label was for 4 classes: no DR, mild and moderate NPDR, severe NPDR and PDR. 

Mild and moderate NPDR were not separated due to a lack of measurements on eyes with NPDR from which to 

procure make a balanced dataset. For each level, follow up scans (scanned after a one-year gap) that did not have a 

class change were removed from the dataset for corresponding level to avoid correlation. Therefore, number of scans 

for each classification level was different (Table 3.1). 

 

Figure 3.3:  The relations between the ETDRS grades and three levels of DR classifications. 
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Table 3.1: Data distribution of three classification levels 
Classifications Number of scans Whole data size 

nrDR 95 
294 

rDR 199 
no DR 85 

298 NPDR 128 
PDR 85 

no DR 85 

302 
mild and moderate NPDR 82 

severe NPDR 50 
PDR 85 

3.5 Methods 

The architecture of the DcardNet is shown in Fig. 3.4. The main feature of this architecture is that the input tensor 

for each bottleneck block was the concatenation of the output tensors from at most the C previous bottleneck blocks 

with adaptive dropout rates. The dropout rate [79] of each bottleneck was adaptively adjusted based on the distance 

between the depths of this block and the block to be calculated next. In addition, the size (height and width) of the 

output tensor was halved M times through transfer blocks to perform down-sampling. Detailed information for this 

method is described below. 

 

Figure 3.4:  The network architecture of the proposed DcardNet. 
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3.5.1 Bottleneck block 

A 1×1 convolution is widely used as a bottleneck layer before 3×3 convolutions to improve the computational 

efficiency by reducing the number of input features [80]. Our network uses two convolutional layers in the bottleneck 

block. A 1×1 convolution layer with f×4 output features and 0.2 dropout rate [79] was used as the first convolutional 

layer. The second convolutional layer in the bottleneck block is a 3×3 convolution with f output features. In addition, 

a batch normalization [63] and rectified linear unit (ReLU) activation function [81, 82] were used before each 

convolutional layer. 

3.5.2 Transfer block 

Before the concatenation of the output tensors from at most the last C bottleneck blocks, a transfer block was used 

to perform the adaptive rate dropout. The dropout rate (dpr) of the output tensor from each bottleneck block was 

calculated as 

 
 int 0.1 1in outdpr dpr N N    

                                                      (7) 

where dprint is the initial dropout rate, Nout is the depth of each bottleneck block which is to be concatenated, and Nin 

is the depth of the bottleneck block that will use the concatenated tensor as input. In order to fulfill the down-sampling, 

the size of the tensor is halved before dropout using 2 × 2 average pooling if the integer part of the quotients between 

Nout / C and Nin / C were not equal. 

3.5.3 Dense and continuous connection with adaptive dropout 

Dense connectivity has been proposed by G. Huang et al. [80] and used in DenseNet to improve information flow. 

However, the dense connection was only used within each dense block, not the whole network. In the DcardNet, the 

dense connection was continuously used in the whole network to further improve the information flow. In addition, 

the size and weight of each concatenated bottleneck block was adaptively adjusted using the transfer block to fulfill 

down-sampling and differentiate the importance of the information in different bottleneck blocks. The input tensor to 

each bottleneck block was 

      1 2 max 0, concat ,  ,  ,  in out out out
n n n n Cx T x T x T x  

   
                                        (8) 
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where 𝑥
  and 𝑥

௨௧  are the input and output tensors of the nth bottleneck block, concat[●] is the concatenation 

operation, and  T(●) is the transfer block. 

3.5.4 Adaptive label smoothing and data augmentation 

The goal of training the network is high overall classification accuracy, defined as 
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                                                        (9) 

where gi and pi are the ith ground truth and predicted labels at a given classification level, respectively, and Num is the 

number of scans in the dataset. However, network parameters were optimized by minimizing the negative cross 

entropy loss 
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                                                                   (10) 

where K was the number of classes. According to (9), the prediction will always be right as long as the location of the 

largest value in the predicted label is the same as the ground truth label. Once this has been achieved, continuing to 

reduce the negative cross entropy loss only marginally improves the overall classification accuracy, and may lead to 

overfitting [83, 84]. Therefore, in this study, each ground truth label was gradually smoothed by an amount s based 

on the class differences between the true class and false classes. Since class labels were sorted along a scale of DR 

severity, the smoothed class labels respect the decreasing likelihood that the label was misidentified. The labels at all 

three levels were smoothed according to 
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                                                           (11) 

where si is the reduction in the value of true class, and tj and ti respectively were the indexes of each incorrect class 

and the true class in ith label. 
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Variation between different OCTA data sets is intrinsically high. Some inputs converge well in a short time, but 

the convergence of other inputs might change significantly and repeatedly. According to the gradient of the weight 

variables in the network (12), the weights w will converge to an input faster when the difference between the 

predication and corresponding ground truth label gets larger, and slower when the difference is smaller: 
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1 Num

i i i
i

loss
x p g

w Num 


 

 
                                                                (12) 

where xi is the ith input, pi and gi are the corresponding prediction and ground truth. In order to further increase the 

rate of convergence on the mispredicted inputs and decrease the rate of convergence on the correctly predicted inputs, 

the label smoothing value s for each label was adaptively adjusted based on the prediction results during each training 

step according to 

     
 

maxmin ,  arg max arg max

max ,  0.0 otherwise
i i i

i
i

s d s g p
s

s d

                                               (13) 

where si is the smoothing value for the ith label, and d is an adjustment for each si and smax was the upper limit of the 

smoothing value. Based on (13), the convergence rate of the inputs which were correctly predicted during each training 

iteration would be much lower than the other inputs. 

In addition, no class weight balancing was used in training because adaptive label smoothing can achieve the same 

effect. Class weight balancing can tell the model to pay more attention to samples from an under-represented class by 

appropriately weighting the loss function to compensate for data deficiencies during training. Alternatively, the same 

effect could be achieved by smoothing the ground truth labels while maintaining the loss function (since classes with 

small label differences will contribute less to the loss).  This is the approach taken in adaptive label smoothing, which 

has the additional advantage of allowing the smoothing function to updated during training to expedite balanced 

convergence. 

Data augmentation is another method used for improving the performance generalization of a trained network. In 

this study, the number of training datasets was increased by a factor of 8 by including combinations of 90° rotations 

and horizontal and vertical flips (there is a grand total of 7 unique combinations of these transformations available). 

In order to make sure the selected inputs in each training batch were based on different cases, only one of the data 
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augmented patterns (including the original inputs) was randomly chosen for each input during each training batch 

selection. 

3.5.5 Implementation details 

The maximum number of the concatenated bottleneck blocks C was set to 4. The number of output features f after 

each bottleneck block was set to 24. M was set to 3 which meant overall 16 bottleneck blocks were used in this 

architecture. This specific architecture is called DcardNet-36 which means overall 35 convolutional layers and 1 fully 

connected layer were used in the whole network, which yields 9264960 trainable parameters. In addition, for the 2-

class, 3-class and 4-class DR classifications, the initial label smoothing value si were set to 0.05, 0.005 and 0.005, 

adjusting steps d were empirically chosen as 0.001, 0.0001 and 0.0001, and upper limits smax were set to 0.1, 0.01 and 

0.01, respectively. 

In order to ensure the credibility of the overall accuracy, 10-fold cross-validation was used on the DR classification 

at each level. In each fold, 10% of the data (with the same class distribution as the overall data set) was split on a 

patient-wise basis (scans from same patient only included in one set) and used exclusively for testing. The parameters 

were optimized by a stochastic gradient descent optimizer with Nesterov momentum (momentum = 0.9). During the 

training process, a batch size of 10 was empirically chosen and the total training steps for the three-level DR 

classification were set to 8000. In addition, an initial learning rate lrinit = 0.01 with cosine decay was used in this study 

[85]: 

 

 
      0.97 0.03
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curr init
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                                                            (14) 

where lrcurr was the current learning rate, stepcurr was the current training step and stepstop was the step at which the 

learning rate ceased to decline. In this study, the stepstop was empirically chosen as 6000.  

Both training and testing were implemented in Tensorflow version 1.13 on Windows 10 (64 Bit) platform. The 

workstation used in this study has an Intel (R) Core (TM) i7-8700K CPU @ 3.70GHz, 64.0 GB RAM and NVIDIA 

RTX 2080 GPU. The training time was 7 minutes for each training process (70 minutes for 10-fold cross-validation) 

and the inference time for a new case was 8 seconds. 
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3.6 Experiments 

The overall prediction accuracy (the number of correctly predicted case divided by the number of whole data set) 

and corresponding 95% confidence interval (95% CI) varied across the three classification levels (Table 3.2). In 

addition, the 10 models trained during the 10-fold cross validation were also used to predict on a balanced external 

dataset with 30 scans to further demonstrate the generalization of our DR classification framework. The overall 

accuracies of 2-class, 3-class, and 4-calss DR classification on the external dataset are 93.3% ± 2.4%, 82.7% ± 2.8%, 

and 68.7% ± 3.8%, respectively. Though the accuracies on the external dataset are about 2% - 3% lower than the 

accuracies on our local testing dataset, the results still show that our DR classification framework has a strong 

generalization on external dataset. 

Table 3.2: DR classification accuracy at multiple levels 

 2-class 3-class 4-class 

10-fold Accuracy (mean ± std) 95.7% ± 3.9% 85.0% ± 3.6% 71.0% ± 4.8% 

95% CI 93.3% - 98.1% 82.8% - 87.2% 68.0% - 74.0% 

The sensitivity and specificity for each severity class in all three DR classification levels also varied and is shown 

in Table 3.3. The classification sensitivity of the severe NPDR was much lower than other classes. This is because the 

differences between adjacent levels of severity are much smaller than the variations between no DR, NPDR and PDR. 

In addition, the number of severe NPDR cases was also much smaller than other classes. 

Table 3.3: Sensitivity and specificity of each class in three classification levels 
Levels DR severities Sensitivities (mean, 95% CI) Specificities (mean, 95% CI) 

2-class 
nrDR 91.0%, 86.4% - 95.6% 98.0%, 96.4% - 99.6% 
rDR 98.0%, 96.4% - 99.6% 91.0%, 86.4% - 95.6% 

3-class 
no DR 86.7%, 81.3% - 92.1% 93.3%, 91.8% - 94.8% 
NPDR 85.4%, 83.9% - 86.9% 89.4%, 87.1% - 91.7% 
PDR 82.5%, 78.5% - 86.5% 93.7%, 91.7% - 95.7% 

4-class 

no DR 86.3%, 83.9% - 88.7% 87.8%, 85.9% - 89.7% 
mild and moderate NPDR 81.3%, 77.2% - 85.4% 84.6%, 82.6% - 86.6% 

severe NPDR 12.0%, 2.0% - 22.0% 100.0%, 100.0% - 100.0% 
PDR 87.8%, 85.6% - 90.0% 87.1%, 85.1% - 89.1% 

We also produced CAMs of inputs with different DR classes (Fig. 3.5), indicating the network’s attention within 

the different DR classes. The macular regions with high positive values in the CAMs indicate they have high positive 

influences on the classification for the true class. On the contrary, the regions with nearly zero values in the CAMs 

have no or negative influence on the classification. In CAMs of cases without DR and cases with PDR regions close 

to the fovea had the highest positive influences on the classification. However, the vasculature around the fovea had 
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the highest positive influences on the classification of NPDR cases. This difference may be caused by the appearance 

of features like fluids or non-perfusion areas. Overall, the areas with higher values (yellow to red) in the CAM were 

the regions the network used for decision making. By considering the CAMs, a doctor could judge the reasonableness 

of the automated DR classification and pay more attention on the high-value-areas during the diagnosis. 

 

Figure 3.5:  The CAMs of three correctly predicted cases with different DR classes. In each row, the inner retina 
thickness map, inner retinal en face OCT, EZ en face OCT, SVC en face OCTA, ICP en face OCTA, and DCP en face 
OCTA were overlaid by the corresponding CAMs. In addition, the color bar of each CAM was on the right side of 
each row. (A) CAMs of case without DR. (B) CAMs of a case with NPDR. (C) CAMs of a case with PDR. 

To further quantitatively analyze the proposed method, we performed five comparisons on our local dataset to 

investigate the accuracy and stability of the proposed DR classification framework. First, we compared the 

performance of the network trained on combined OCTA and OCT structural data inputs to the network trained on 

either structural OCT or OCTA data separately. Second, we compared the performances of our network with no 

dropout, standard dropout (0.2 dropout rate), and proposed adaptive dropout. Third, we compared the performances 

of our network with traditional class weight balancing and proposed adaptive label smoothing. Fourth, we compared 

the performances of different network architectures (ResNet [77], DenseNet [80], EfficientNet [86], VGG16 [87], 

VGG19 [87], ResNet-v2 [88], Inception-v4 [89] and the proposed DcardNet) with or without the adaptive label 

smoothing. Finally, we compared the performances of our method with a previously proposed ensemble network [75] 

on the 2-class DR classification. In addition, all the results (including ours) in the comparisons below (sections A, B, 

C, D and E) were based on 5-fold cross-validation with 20% exclusively reserved for testing.  
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3.6.1 Comparison between the three input patterns 

The inputs had six channels obtained from both OCT and OCTA data. In order to verify the necessity of this input 

design, comparison of classification accuracies between the OCT-based inputs, OCTA-based inputs, and 

OCT+OCTA-based inputs were performed. The network used a set of 6 enface images as input. From structural OCT-

based we included an inner retina thickness map, an inner retina average projection, and an EZ average projection. 

The OCTA-based inputs are enface maximum projection of the SVC, ICP, and DCP. Table 3.4 shows the overall 

accuracies of the three levels of DR classification based on three different input patterns. Compared to the OCT-based 

input, the proposed input design greatly increased (≈ 10%) the overall accuracies of 3 and 4-class DR classification. 

Compared to the OCTA-based input, the overall accuracies also increased for 3-class DR classification. For the 4-

class DR classification, though the overall accuracy of OCT+OCTA-based was the same as only OCTA-based, the 

sensitivities of OCT+OCTA-based shown in Table VI were more balanced than only OCTA-based. For the 2-class 

DR classification, which has the same accuracy based on three different input patterns, the CAMs only based on OCT 

and OCTA were both calculated to study the different influences from OCT and OCTA (Fig. 3.6). Through first row, 

we can see the CAMs only based on OCT were both convex polygons centered on the fovea of nrDR and rDR eyes. 

On the contrary, the two CAMs only based on OCTA were quite different and have more complicated shapes. This 

comparison shows that more detailed information was used in the DR classification only based on OCTA. 

Table 3.4: Comparison of the DR classification accuracies at multiple levels between three different 
input patterns 

Inputs patterns 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI) 

OCT-based 94.2%, 91.1% - 97.3% 63.7%, 60.4% - 67.0% 54.7%, 52.1% - 57.3% 

OCTA-based 94.2%, 90.5% - 97.9% 74.0%, 69.7% - 78.3% 64.7%, 61.5% - 67.9% 

OCT+OCTA-based 94.2%, 91.9% - 96.5% 76.7%, 73.4% - 80.0% 64.7%, 61.5% - 67.9% 
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Figure 3.6:  Comparison between CAMs generated from the two-class DR classification only based on OCT or OCTA. 
First row: CAMs from the OCT-only network overlaid on the three en face OCT layers scanned from nrDR and rDR 
eyes. Second row: CAMs from the OCTA-only network overlaid on the corresponding OCTA. 

Table 3.5 summarizes the comparison of the sensitivities and specificities between the three input patterns and 4 

different DR classes. The combined input design improved the sensitivities of two intermediate severity classes. While 

the overall accuracies of OCTA-based input and OCT+OCTA-based input were the same, using OCT+OCTA based 

input reduced the variation of sensitivities between different DR severities. 

Table 3.5: Comparison of the sensitivities and specificities of four DR severities between three different inputs patterns 

DR severities  OCT-based (mean, 95% CI) OCTA-based (mean, 95% CI) OCT+OCTA-based (mean, 95% CI) 

no DR 
Sensitivity 80.0%, 75.4% - 84.6% 84.7%, 80.1% - 89.3% 82.4%, 77.3% - 87.5% 
Specificity 77.2%, 75.5% - 78.9% 84.2%, 82.5% - 85.9% 85.1%, 82.8% - 87.4% 

mild and 
moderate NPDR 

Sensitivity 36.3%, 31.7% - 40.9% 63.8%, 59.2% - 68.4% 66.2%, 63.2% - 69.2% 
Specificity 80.5%, 78.2% - 82.8% 82.3%, 79.7% - 84.9% 81.8%, 78.6% - 85.0% 

severe NPDR 
Sensitivity 0.0%, 0.0% -0.0% 2.0%, 0.0% - 5.9% 4.0%, 0.0% - 8.8% 
Specificity 100.0%, 100.0% - 100.0% 100.0%, 100.0% - 100.0% 100.0%, 100.0% - 100.0% 

PDR 
Sensitivity 78.8%, 76.0% - 81.6% 82.4%, 77.3% - 87.5% 81.2%, 76.9% - 85.5% 
Specificity 81.4%, 80.0% - 82.8% 85.1%, 82.8% - 87.4% 85.6%, 83.9% - 87.3% 

3.6.2 Comparison between different dropout strategies 

The performances comparison between our network with three different dropout strategies were shown in Table 

3.6. Proposed network with adaptive dropout shown the highest accuracies in all three DR classification levels. The 

accuracy increasing based on adaptive dropout was most obvious in the 3-class DR classification. 

Table 3.6: Comparison of the overall accuracy between three different dropout strategies 
Dropout strategies 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI) 
 no dropout 93.6%, 91.7% - 95.5% 73.3%, 71.9% - 74.7% 64.3%, 62.6% - 66.0% 
Standard dropout (0.2) 94.2%, 90.5% - 97.9% 75.3%, 73.4% - 77.2% 64.3%, 62.6% - 66.0% 
Adaptive dropout 94.2%, 91.9% - 96.5% 76.7%, 73.4% - 80.0% 64.7%, 61.5% - 67.9% 
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3.6.3 Comparison between class weight balancing and adaptive label smoothing 

To gauge the ability of adaptive label smoothing to compensate for the unbalanced classes in our data set, we 

compared the performance of our network with class weight balancing, adaptive label smoothing, or both (Table 3.7). 

At each classification level, the network trained with adaptive label smoothing outperformed both class weight 

balancing and the network using both class weight and adaptive label smoothing. 

Table 3.7: Comparison of the overall accuracy between three different weight balancing strategies 
Weight balancing strategies 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI) 
 Class weight balancing 93.6%, 91.7% - 95.5% 75.3%, 72.7% - 77.9% 64.3%, 61.7% - 66.9% 
Adaptive label smoothing 94.2%, 91.9% - 96.5% 76.7%, 73.4% - 80.0% 64.7%, 61.5% - 67.9% 
Both strategies 94.2%, 1.9% - 96.5% 76.0%, 74.2% - 77.8% 63.9%, 61.3% - 66.5% 

3.6.4 Comparison between different network architectures 

We also compared the performances of ResNet-18, EfficientNet-B0, and DenseNet-53, VGG16, VGG19, ResNet-

v2-50, Inception-v4 and proposed DcardNet-36 with or without adaptive label smoothing for the DR classification at 

multiple levels on the same dataset. Among them, DenseNet-53 is a modified DenseNet architecture with 53 layers 

(52 convolution and 1 dense layers) which achieved the highest accuracy compared to other DenseNet architectures. 

In addition, no transfer learning was used in the training of all the networks above and all the final models were trained 

from scratch with empirically selected optimal hyper-parameters. Table 3.8 shows the overall accuracies of the three 

levels of DR classification based on all eight network architectures. Our network architecture with or without adaptive 

label smoothing achieved the highest accuracies on both 2-class and 3-class DR classifications. Only the 4-class DR 

classification accuracies of VGG16 and ResNet-v2-50 were about 1% higher than ours. In addition, the use of the 

proposed adaptive label smoothing improved the classification accuracies of all architectures. 
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Table 3.8: Comparison of the overall accuracies between different architectures with or without adaptive label smoothing 

Architectures Label pattern 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI) 

ResNet-18 [18] 
Normal label 92.9%, 91.7% - 94.1% 71.7%, 69.9% - 73.5% 64.0%, 61.3% - 66.7% 

Adaptive label 93.6%, 90.9% - 96.3% 75.3%, 73.4% - 77.2% 64.3%, 62.1% - 66.5% 

DenseNet-53 [29] 
Normal label 91.5%, 90.4% - 92.6% 72.0%, 70.8% - 73.2% 64.3%, 62.1% - 66.5% 

Adaptive label 91.9%, 90.7% - 93.1% 73.3%, 72.3% - 74.3% 64.3%, 62.6% - 66.0% 

EfficientNet-B0 [36] 
Normal label 91.9%, 90.0% - 93.8% 70.3%, 68.4% - 72.2% 60.7%, 59.0% - 62.4% 

Adaptive label 92.9%, 91.7% - 94.1% 73.7%, 72.5% - 74.9% 61.7%, 60.3% - 63.1% 

VGG16 [37] 
Normal label 87.1%, 86.7% - 88.9% 71.0%, 68.3% - 73.7% 64.4%, 62.4% - 66.2% 

Adaptive label 89.5%, 86.1% - 92.9% 71.7%, 67.9% - 75.5% 66.2%, 61.4% - 71.1%  

VGG19 [37] 
Normal label 89.8%, 88.2% - 91.5% 72.7%, 67.8% - 77.5% 61.6%, 59.0% - 64.3% 

Adaptive label 90.8%, 87.5% - 94.2% 74.7%, 69.3% - 80.0% 63.9%, 59.4% - 68.5% 

ResNet-v2-50 [38] 
Normal label 89.8%, 88.5% - 91.2% 74.0%, 71.6% - 76.4% 64.6%, 62.4% - 66.7% 

Adaptive label 90.5%, 89.0% - 92.0% 76.0%, 73.5% - 78.5% 65.9%, 63.0% - 68.8% 

Inception-v4 [39] 
Normal label 89.2%, 86.6% - 91.7% 68.7%, 64.3% - 73.0% 57.7%, 54.9% - 60.5% 

Adaptive label 90.2%, 86.5% - 93.9% 72.7%, 69.0% - 76.3% 62.0%, 60.1% - 63.9% 

DcardNet-36 
Normal label 93.6%, 91.7% - 95.5% 74.7%, 73.5% - 75.9% 64.3%, 62.6% - 66.0% 

Adaptive label 94.2%, 91.9% - 96.5% 76.7%, 73.4% - 80.0% 64.7%, 61.5% - 67.9% 

To further analyze the improvement in generalization by the adaptive label smoothing, we measured the losses 

and accuracies based on the proposed DcardNet-36 and ResNet-18 with or without adaptive label smoothing on the 

3-class dataset with 20% data exclusively used as testing dataset (Fig. 3.7). The testing losses and accuracies were 

obtained after each 10 training steps and both smoothed by an average filter with length 50. The training accuracies 

were smoothed by an average filter with length 100. In Fig. 3.7(A) and 3.7(C), we can see the testing losses with 

adaptive label smoothing were lower than the losses without adaptive label smoothing during the entire training 

process. Though the training accuracies with and without adaptive label smoothing were almost the same, the testing 

accuracies with adaptive label smoothing were always higher than the accuracies without adaptive label smoothing 

(Fig. 3.7(B) and 3.7(D)). In addition, the testing accuracy with adaptive label smoothing increased more smoothly and 

monotonically than the accuracy without adaptive label smoothing. By comparing two rows, we can also intuitively 

see that DcardNet-36 has better generalization performance and lower overfitting than the ResNet-18. And as noted, 

the adaptive label smoothing has higher improvement on ResNet-18 than DcardNet-36. 
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Figure 3.7:  Comparisons of the losses and accuracies based on proposed DcardNet-36 and ResNet-18 with or without 
adaptive label smoothing on the 3-class dataset with 20% of the data as the testing dataset. (A) Comparisons of the 
testing losses based on DcardNet-36. (B) Comparisons of the training (dotted lines) and testing (solid lines) accuracies 
based on DcardNet-36. (C) Comparisons of the testing losses based on ResNet-18. (D) Comparisons of the training 
(dotted lines) and testing (solid lines) accuracies based on ResNet-18. 

3.6.5 Comparison with ensemble networks based on enface OCT and OCTA 

We also compared the performances on 2-class DR classification between our method and a previously proposed 

ensemble network [75] which also uses enface OCT and OCTA as inputs. The ensemble network consisted of four 

VGG19 [87] with pre-trained ImageNet parameters. The inputs of the ensemble network were SVC and DCP enface 

images respectively generated from OCT and OCTA. Based on the same implementation details, the results of the 

ensemble network were shown in Table 3.9. The overall accuracy, sensitivities and specificities of our method are all 

better than the ensemble network.  

Table 3.9: Comparison of the 2-class DR classification performance between our method and the ensemble 
network 

Methods Accuracy (mean, 95% CI) Sensitivity (mean, 95% CI) Specificity (mean, 95% CI) 
Ensemble network 86.8%, 85.3% - 88.2% 90.5%, 84.8% - 92.6% 78.9%, 73.1% - 88.4% 

Our method 94.2%, 91.9% - 96.5% 96.0%, 94.2% - 97.8% 90.5%, 87.1% - 94.0% 
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3.7 Discussion 

We proposed a new convolutional neural network architecture based on dense and continuous connection with 

adaptive rate dropout (DcardNet) for automated DR classification based on OCT and OCTA data. To our knowledge 

this is the first study to report DR classification across multiple levels based on OCT and OCTA data. A classification 

scheme like this is desirable for several reasons. OCT and OCTA are already an extremely common procedures in 

ophthalmology [90]. An automated DR classification framework could further extend the applications of these 

technologies. If OCT/OCTA can deliver the same diagnostic value as other modalities, the number of procedures an 

individual would require for accurate diagnosis would be reduced, which will ultimately lower clinical burden and 

healthcare costs. Furthermore, OCT/OCTA provide a unique set of features (three-dimensionality combined with 

high-resolutions) that may prove to have complimentary or superior diagnostic value for some diseases; however, the 

sheer size of OCT/OCTA data sets inhibits detailed analysis. By providing tools for automation, we can begin to 

acquire data that can help identify new biomarkers or other features useful for DR staging. 

Our network design incorporated several ideas that enabled rapid training and accurate results. We found that, 

compared to the residual structure, the dense connected structure was much more resistant to overfitting. However, 

the dense connection also had a lower convergence rate than the residual structure (ResNet). In order to increase the 

convergence rate and keep overfitting low, the dense and continuous connection was proposed and used in this study. 

In the new architecture, a dense connection was continuously used within a sliding window from the first bottleneck 

block to the last one. Compared to use of dense connections within each block (DenseNet), the new structure was able 

to deliver useful features with lower losses. In addition, the use of dropout with adaptive rate kept overfitting low. 

Sixteen bottleneck blocks with 24 output features were finally chosen in this study based on the classification 

complexity and size of the dataset. For more classes and larger datasets (like those seen in ImageNet), more bottleneck 

blocks with more output features may be needed. 

Adaptive label smoothing was proposed and used to reduce overfitting in this study. The labels of each of the 

training steps were adaptively smoothed based on their prediction histories. Because of the adaptively smoothed labels, 

the convergence of the network could be more focused on the mispredicted data, rather than the data that was already 

correctly predicted. The only concern for this technique is the inaccuracy introduced from data which have an 

ambiguous ground truth. Therefore, this technique is more suitable to well-labeled datasets. Another technique we 
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used to reduce the overfitting was data augmentation, which has been widely used in medical image classification. In 

addition to improving data diversity, the data augmentation we used in this study also fits with practical diagnosis, 

where the doctors’ diagnosis is not influenced by the angle of the en face vasculature. 

For practical and historical reasons, layer segmentation has become a necessary step for most analytic pipelines 

using OCT and OCTA. The enface images based on segmented layers are not only used to automated DR classification 

but also necessary for OCT-based routine diagnosis. From a machine learning perspective, this is a mixed blessing. 

Dimensionality reduction enables swifter training (since 3D data sets are much sparser), but simultaneously suppresses 

otherwise learnable information. Our network was trained on datasets segmented using manually corrected software 

[78, 91-94], which introduces both a manual step into our data pipeline and some idiosyncrasy into ground truth. State 

of the art layer segmentation now requires less manual correction [32, 54, 95, 96], and we believe will continue to do 

so. However, the accuracy of our results is, unfortunately, probably negatively impacted by these limitations in the 

ground truth used for training. OCTA networks are also unfortunately limited by a relative paucity of data compared 

to other medical imaging datasets. As more OCTA data is acquired, training on 3D data volumes may become 

practicable, mitigating this concern. 

The overall accuracies based on OCT-based inputs, OCTA-based inputs, and OCT+OCTA-based were the same 

of 2-class and 4-class DR classification. However, we still think the OCT+OCTA-based input is a better option. First, 

this input strategy still improved the overall accuracy of 3-class DR classification and also balanced the sensitivities 

of 4-class DR classification. Second, some DR or DME related biomarkers such as fluid could be easier detected in 

OCT. At last, the OCT enface generation is not time-consuming after the retinal layers are segmented, and this 

segmentation is also needed for OCTA enface generation. Therefore, the designed OCT+OCTA-based input pattern 

is still preferable for the DR classification. 

The overall accuracy of the 4-class DR classification was much lower than other two classification levels. In 

addition, the sensitivity of severe NPDR classification was much lower than the other classes. These two issues are 

caused by the small differences between the two NPDR classes, which are much smaller than the differences between 

no DR, NPDR and PDR. Another reason for this relatively low performance is that the number of severe NPDR cases 

was much smaller than other classes. Therefore, the network could hardly identify the differences between two NPDR 

severities before overfitting sets in. In future work, we will focus on overcoming these problems by using a larger and 
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more balanced dataset and adding some extra manually selected biomarkers to the inputs. In addition, according to 

the difference between accuracies based on 5-fold and 10-fold cross-validations, using “leave-one-subject-out” 

experiments could also help increase the final accuracy and sensitivity. 

Compared to CFP-based DR classifications [7-10], the overall accuracy of our 2-class DR classification was 

slightly lower. One reason was that the CFP-based DR classifications had about 100 times as much data as we did. 

Though we have satisfied accuracies on 2-class and 3-class DR classifications based on our relatively small dataset, a 

huge dataset like those available from CFP could further improve our DR classification to state-of-art performance. 

Furthermore, the current classification used for training our algorithm, which is based on grading from color fundus 

photography, may not be optimal for OCTA classification. The current gold standard for DR diagnosis is based on 

color fundus photograph which is a considerably different modality from OCT/OCTA. Features used to distinguish 

some DR classifications using the ETDRS scheme may be missing from OCT/OCTA datasets, which could hurt the 

accuracy of our algorithm. 

Furthermore, there are currently trade-offs between CFP and OCTA. CFP provides a larger field of view, but at 

lower resolution and the cost of a dimension of information when compared to OCTA. Both provide visualization of 

a unique set of pathological features. Currently, CFP can provide some information that is inaccessible to OCTA, 

though complimentary features of the same pathology may be visible to OCTA [97, 98]. However, we do not conceive 

of this work solely as a means to automatize through OCTA grading what can already also be automatized through 

CFP. Instead, we believe that this work demonstrates that the feature set that can be extracted through OCTA images 

of the macular region is sufficient to diagnose DR at a level similar to CFP, without relying on the specific features 

(microaneurysms, bleeding) provided by CFP. We think this is innovative of its own accord because it adds value to 

an existing technology. 

We note additionally that the amount of data procured from structural OCT in conjunction with OCTA is much 

larger than that from CFP, by virtue of being high-resolution and three-dimensional. Features like microaneurysms 

that are currently used to stage DR may not end up being essential to DR staging, as our work shows. Close parity 

with ETDRS grading of CFP data indicates significant potential for OCTA staging as OCTA hardware continues to 

improve. 
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3.8 Conclusion 

In conclusion, we proposed a densely and continuously connected convolutional neural network with adaptive rate 

dropout to perform a DR classification based on OCT and OCTA data. Among our architecture designs, the dense and 

continuous connections improved the convergence speed and adaptive rate dropout reduced overfitting. Three 

classification levels were finally performed to fulfill requests from clinical diagnosis. In addition, adaptive label 

smoothing was proposed and used in this study. With the addition of adaptive label smoothing, the convergence of 

the network could be more focused on the mispredicted data, rather than the data that was already be correctly 

predicted. In the end, the trained model focused more on the common features of the whole dataset, which also reduced 

overfitting. Classifying DR at three levels and generating CAMs could both help clinicians improve diagnosis and 

treatment. 
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4 A Diabetic Retinopathy Classification Framework based on Deep-learning Analysis of 

Angiographic Optical Coherence Tomography 

4.1 Abstract 

Reliable classification of referable and vision threatening diabetic retinopathy (DR) is essential for diabetic patients 

to prevent blindness. Optical coherence tomography (OCT) and its angiography (OCTA) have several advantages 

over fundus photographs. We evaluated a deep-learning-aided DR classification framework using volumetric OCT 

and OCTA. 456 OCT and OCTA volumes were scanned from eyes of 50 healthy participants and 305 patients with 

diabetes. Retina specialists labeled the eyes as non-referable (nrDR), referable (rDR) or vision threatening DR (vtDR). 

Each eye underwent a 3x3-mm scan using a commercial 70-kHz spectral-domain OCT system. We developed a DR 

classification framework and trained it using volumetric OCT and OCTA to classify eyes into rDR and vtDR. For the 

scans identified as rDR or vtDR, 3D class activation maps were generated to highlight the subregions which were 

considered important by the framework for DR classification. For rDR classification, the framework achieved a 0.96 

± 0.01 area under the receiver operating characteristic curve (AUC) and 0.83 ± 0.04 quadratic-weighted kappa. For 

vtDR classification, the framework achieved a 0.92 ± 0.02 AUC and 0.73 ± 0.04 quadratic-weighted kappa. In addition, 

the multiple DR classification (non-rDR, rDR but non-vtDR, or vtDR) achieved a 0.83 ± 0.03 quadratic-weighted 

kappa. A deep learning framework only based on OCT and OCTA can provide specialist-level DR classification using 

only a single imaging modality. The proposed framework can be used to develop clinically valuable automated DR 

diagnosis system because of the specialist-level performance showed in this study. 

4.2 Introduction 

Diabetic retinopathy (DR) is a leading cause of preventable blindness globally [1]. Currently, DR classification 

uses fundus photographs or clinical examination to identify referable DR (rDR) and vision-threatening DR (vtDR). 

Eyes with worse than mild nonproliferative DR (NPDR) on the International Diabetic Retinopathy Severity Scale are 

considered rDR, and eyes with severe NPDR, proliferative DR (PDR), or those with diabetic macular edema (DME) 

are considered vtDR [3]. An efficient and reliable classification system is essential in identifying patients who can 

benefit from treatment without an undue burden to the clinic. Eyes with rDR but without vtDR can be observed closely 

without referral to an ophthalmologist, helping preserve scarce resources for patients that require treatment. To do this 

safely requires an accurate stratification of patients into these categories [4, 5]. 
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Deep learning has enabled multiple reliable automated systems that classify DR from fundus photographs [7-10]. 

However, fundus photographs have a low sensitivity (60-73%) and specificity (67-79%) for detecting diabetic macular 

edema (DME), which accounts for the majority of vision loss in DR [14, 15]. This means that even when a network 

performs very well against a ground truth generated from fundus photographs, patients with DME may still frequently 

be misdiagnosed. Supplementing fundus photography with OCT, which is the current gold standard for diagnosing 

macular edema, can avoid this problem [13, 99-107]. However, reliance on multiple imaging modalities is undesirable 

as it increases logistic challenges and cost.  

Our group and others have demonstrated that OCT angiography (OCTA) can be used to stage DR according to 

fundus photography-derived DR severity scales using various biomarkers linked to capillary changes in DR [17-23, 

108]. Because OCTA can be simultaneously acquired with structural OCT scans used for DME diagnosis, an 

automated system based on OCTA volume scans can potentially use a single imaging modality to accurately classify 

DR while avoiding low DME detection sensitivities and associated misdiagnoses that occur in systems based on just 

fundus photographs. 

Despite this advantage, OCTA-based analyses require improvements. Previous methods for classifying DR using 

OCTA relied on accurate retinal layer segmentation and en face visualization of the 3-D volume to visualize or 

measure biomarkers [33, 72-76]. However, with advanced pathology, retinal layer segmentation can become 

unreliable. This lowers OCTA yield rate, and may also lead to misclassification through segmentation errors. In 

addition, quantifying only specific biomarkers fails to make use of the information in the latent feature space of the 

OCT/OCTA volumes, which may be helpful for DR classification [109]. 

In this study, we propose an automated convolutional neural network (CNN) [24] that uses the volume-rendered 

OCT/OCTA to directly classify eyes as either non-rDR (nrDR) or rDR, and as vtDR or non-vtDR (nvtDR). We also 

include a multiclass classification that classifies eyes as nrDR, rDR/nvtDR, (eyes with referable but not vision-

threatening DR) or vtDR. To demonstrate which features the framework relies on to make the classification, the 

network also generates 3D class activation maps (CAMs) [71]. Visualizations such as these are essential features of 

direct classification systems, since they allow graders to verify algorithm outputs. To the best of our knowledge, this 

is the first study to propose an automated multiclass DR severity-level classification framework based directly on 

OCT and OCTA volumes. 
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4.3 Methods 

4.3.1 Data acquisition 

We recruited and examined 50 healthy participants and 305 patients with diabetes at the Casey Eye Institute, 

Oregon Health & Science University in the United States (50 healthy participants and 234 patients); Shanxi Eye 

Hospital in China (60 patients); and the Department of Ophthalmology, Aichi Medical University in Japan (11 

patients). We included diabetic patients with the full spectrum of disease from no clinically evident retinopathy to 

proliferative diabetic retinopathy. One or both eyes of each participant underwent 7-field color fundus photography 

and an OCTA scan using a commercial 70-kHz spectral-domain OCT system (RTVue-XR Avanti, Visionix Inc) with 

840-nm central wavelength. The scan depth was 1.6 mm in a 3.0 × 3.0 mm region (640 × 304 × 304 pixels) centered 

on the fovea. Two repeated B-frames were captured at each line-scan location. The structural images were obtained 

by averaging the two repeated and registered B-frames. Blood flow was detected using the split-spectrum amplitude-

decorrelation angiography algorithm [23, 57]. For each volumetric OCT/OCTA, two continuously acquired 

volumetric raster scans (one x-fast scan and one y-fast scan) were registered and merged through an orthogonal 

registration algorithm to reduce motion artifacts [58]. In addition, the projection-resolved OCTA algorithm was 

applied to all OCTA scans to remove flow projection artifacts in the deeper layers [68, 69]. Scans with a signal strength 

index (SSI) lower than 50 were excluded. The data characteristics are shown below (Table 4.1). When the classes in 

our data set weren’t balanced class weights were adjusted to prevent performance loss. Based on the data distribution 

showed in Table 4.1, the class weights for nrDR, r/nvtDR and vtDR were 0.76, 1.87 and 0.87 respectively. 

Table 4.1: Data for DR classification 
Characteristics rDR classification vtDR classification Multiclass DR classification 
Severity nrDR rDR nvtDR vtDR nrDR r/nvtDR vtDR 
Number of eyes/scans 199 257 280 176 199 81 176 
Age, mean (SD), y 48.8 (14.6) 58.4 (12.1) 52.2 (14.7) 57.5 (12.3) 48.8 (14.6) 60.4 (14.7) 57.5 (12.3) 
Female, % 50.8% 49.0% 50.0% 49.4% 50.8% 48.2% 49.4% 
No DR, % 83.4% 1.6% 59.3% 2.2% 83.4% 0.0% 2.2% 
Mild NPDR, % 16.6% 0.0% 11.8% 0.0% 16.6% 0.0% 0.0% 
Moderate NPDR, % 0.0% 44.4% 28.9% 18.8% 0.0% 100.0% 18.8% 
Severe NPDR, % 0.0% 19.8% 0.0% 29.0% 0.0% 0.0% 29.0% 
PDR, % 0.0% 34.2% 0.0% 50.0% 0.0% 0.0% 50.0% 
DME, % 0.0% 32.3% 0.0% 47.2% 0.0% 0.0% 47.2% 
 
DR = diabetic retinopathy; rDR = referable DR; vtDR = vision threatening DR; r/nvtDR = referable but not vision 
threatening DR; NPDR = nonproliferative DR; PDR = proliferative DR; DME = diabetic macular edema 
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A masked trained retina specialist (TSH) graded 7-field color fundus photographs based on Early Treatment of 

Diabetic Retinopathy Study (ETDRS) scale [11, 12]. The presence of DME was determined using the central subfield 

thickness from structural OCT based on the Diabetic Retinopathy Clinical Research Network (DRCR.net) standard 

[4]. We defined nrDR as ETDRS level better than 35 and without DME (also included healthy eyes); referrable DR 

as ETDRS level 35 or worse, or any DR with DME; r/nvtDR as ETDRS levels 35-47 without DME; and vtDR as 

ETDRS level 53 or worse or any stage of DR with DME [3]. The participants were enrolled after an informed consent 

in accordance with an Institutional Review Board approved protocol. The study complied with the Declaration of 

Helsinki and the Health Insurance Portability and Accountability Act. 

4.3.2 Data inputs 

Optical coherence tomography and OCTA generate detailed depth-resolved structural and microvascular 

information from the fundus (Fig. 4.1). Extracting DR-related features using neural networks can, however, be more 

challenging and time consuming from 3D volumes such as those produced by OCTA than from 2D sources like fundus 

photography. To improve the computational and space efficiency of the framework, each volumetric OCT and OCTA 

were resized to 160 × 224 × 224 voxels and normalized to voxel values between 0 and 1. The input was the 

combination of each pair of resized-volumes, giving final input dimensions of 160 × 224 × 224 × 2 pixels (Fig. 4.1). 

4.3.3 DR classification framework 

 

Figure 4.1: Automated DR classification framework using volumetric OCT and OCTA data as inputs. Inputs are first 
resized to 160 × 224 × 224 × 2 pixels (two channels 3D input with a 160 × 224 × 224 structural and a 160 × 224 × 
224 angiographic volume). These inputs are fed into a DR screening framework based on a 3D CNN architecture. The 
network produces two outputs: a non-referable (nrDR) or referable (rDR) DR classification, and a non-vision-
threatening (nvtDR) or vision threatening (vtDR) DR classification. The multiclass DR classification result is defined 
based on the rDR and vtDR classification results. Class activation maps (CAMs) are also output for each classification 
result. 
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A novel 3D CNN architecture (Fig. 4.1) with 16 convolutional layers was designed and used as the core classifier 

in the DR classification framework (Fig. 4.2). Five convolutional layers with stride 2 were used to downsample the 

input data. To avoid losing small but important DR-related features, diminishing convolutional kernel sizes were used 

in the five downsampling layers. We used batch normalization [63] after each 3D convolutional layer to increase 

convergence speed. In order to improve the computational efficiency while ensuring the resolution of the features, 

most of the 3D convolutional layers were used with the middle size inputs (after the first downsampling, but before 

the last).  A global average pooling layer was used after the last 3D convolutional layer to generate the 1D input for 

the output layers. 

 

Figure 4.2: Detailed architecture of the novel 3D convolutional neural network (CNN). Sixteen convolutional blocks 
were used in this 3D CNN. Each convolutional block was constructed as 3D convolutional layer with batch 
normalization and ReLU activation. Five convolutional blocks with diminishing kernel size (5 to 3) were used to 
downsample the inputs. 

One subtlety in our approach for multiclass classification is the need to correctly identify rDR/nvtDR eyes. 

Familiar frameworks for image classification like those used to diagnose medical conditions rely on the positive 

identification features associated with the malady. In our framework, rDR and vtDR classification works similarly by 

using ReLU activations in the last convolutional layer and weight parameters of all the fully connected layers to 

guarantee positive-definite prediction values (Fig. 4.3) [81, 82]. However, the identification of r/nvtDR does not 

depend on just the presence of rDR associated features, but also the absence of vtDR-associated features. To solve 

this issue, two parallel output layers were respectively used to detect rDR and vtDR at the same time (Fig. 4.1). Each 

output layer was constructed by a fully connected layer with a softmax function (Fig. 4.3). The inputs data can be then 

classified as nrDR, r/nvtDR, or vtDR based on rDR and vtDR classification outputs. 
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Figure 4.3: Detailed design of the output layer. Two paratactic layers were used to detect referable DR (rDR) and 
vision threatening DR (vtDR), respectively. The class activation maps (CAMs) for rDR and vtDR were generated 
according to the weighted sum of the last feature map. 

4.3.4 Evaluation and statistical analysis 

Overall accuracy, quadratic-weighted Cohen’s kappa [110], and area under the receiver operating characteristic 

curve (AUC) were used to evaluate the DR classification performance of our framework. Among these evaluation 

metrics, the AUCs were used as the primary metrics for rDR and vtDR classifications. For the multiclass DR 

classification, the quadratic-weighted kappa was used as the primary metric. Five-fold cross-validation was used in 

each case to explore robustness. From the whole data set, 60%, 20%, and 20% of the data were split for training, 

validation, and testing, respectively. Care was taken to ensure data from the same patients were only included in one 

of either the training, validation, or testing data sets. The parameters and hyperparameters in our framework were 

trained and optimized only using the training and validation data set. In addition, adaptive label smoothing was used 

during training to reduce the overfitting [33].  

4.3.5 Comparison with a two-dimensional input approach 

In contrast to the method proposed in this work, most OCT/OCTA-based DR classification algorithms operate on 

2D en face images [33, 75, 76, 48]. En face projections are popular input choices because (1) they correspond to data 
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the representation most familiar to graders and (2) they typically reduce the size of the input data set relative to the 

full OCT/OCTA data volume by more than an order of magnitude, which simplifies network training. The trade-off 

with this data reduction is that networks analyzing en face images cannot learn all of the features latent in the full data 

volume, since many of these features will be removed during projection. Furthermore, en face images are vulnerable 

to segmentation artifacts, which require time consuming review to correct [111].  For these reasons models capable of 

analyzing OCT/OCTA volumes are desirable, but to be useful such models should reach performance parity with 

approaches using 2D inputs. To investigate, we compared our model with our previous approach, which was a CNN 

designed around dense and continuous connection with adaptive rate dropout (DcardNet) [33]. This 2D model was 

trained, validated, and evaluated based on the same data sets of our 3D model. 

4.3.6 Three-dimensional class activation maps and evaluation 

For the detected rDR and vtDR cases, the 3D CAMs were generated by projecting the weight parameters from 

corresponding output layer back to the feature maps of the last 3D convolutional layer before global average pooling 

(Fig. 4.3). To assess whether or not the framework can correctly identify pathological regions, 3D CAMs were overlaid 

on en face or cross-sectional OCT and OCTA images. In order to generate the en face projections, an automated 

algorithm (commercial software provided by Visionix Inc) segmented the following retinal layers (Fig. 3.2): inner 

limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner 

nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), ellipsoid zone (EZ), retinal pigment 

epithelium (RPE), and Bruch’s membrane (BM). For the cases with severe pathologies, trained graders manually 

corrected the layer segmentation when necessary, using our custom designed COOL-ART grading software [78]. 

From OCT volumes, we generated the inner retinal (the slab between the Vitreous/ILM and OPL/ONL) thickness map, 

en face mean projection of OCT reflectance, and EZ en face mean projection (ONL/EZ to EZ/RPE). From OCTA 

volumes, we generated the superficial vascular complex (SVC), intermediate capillary plexus (ICP), and deep 

capillary plexus (DCP) angiograms [18, 41, 70]. The SVC was defined as the inner 80% of the ganglion cell complex 

(GCC), which included all structures between the ILM and IPL/INL border. The ICP was defined as the outer 20% of 

the GCC and the inner 50% of the INL. The DCP was defined as the remaining slab internal to the outer boundary of 

the OPL. The segmentation step and projection maps were just for evaluating the usefulness of 3D CAMs, not as input 

to the classification framework.  
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4.4 Results 

Model performance was the best for rDR classification, followed by vtDR, then multi-level DR classification 

(Table 4.2, Fig. 4.4). For the multiclass DR classification, which classifies each case as nrDR, r/nvtDR, or vtDR, we 

achieved a quadratic-weighted kappa 0.83, which is on par with the performance of ophthalmologists and retinal 

specialists (0.80 to 0.91) [112]. The network was notably better at classifying rDR and vtDR compared to r/nvtDR 

(Table 4.2). Most false positive r/nvtDR eyes were classified as vtDR (66.67%) instead of nrDR (33.33%).  

Table 4.2: Automated DR classification performances 
Metric rDR classification vtDR classification Multiclass DR classification 
Overall accuracy 91.52% ± 1.87% 87.39% ± 2.02% 81.52% ± 1.19% 
Sensitivity 90.77% ± 4.28% 82.22% ± 2.83%  
Specificity 92.50% ± 3.16% 90.71% ± 3.46%  
AUC (mean ± std) 0.96 ± 0.01 0.92 ± 0.02  
Quadratic-Weighted Kappa 0.83 ± 0.04 0.73 ± 0.04 0.83 ± 0.03 

DR = diabetic retinopathy; rDR = referable diabetic retinopathy; vtDR = vision threatening diabetic 
retinopathy; AUC = area under the receiver operating characteristic curve. 

 

Figure 4.4: The mean receiver operating characteristic (ROC) curve derived from the 5-fold cross-validation for rDR 
(right) and vtDR (left) classifications based on our DR classification framework. The models achieve an AUC of 0.96 
± 0.01 on rDR classification and AUC of 0.92 ± 0.02 on vtDR classification. 

The 3D model performed slightly better for rDR classification, and slightly worse for vtDR classification, than our 

previous 2D model (Table 4.3). These mixed results indicate that our current model using volumetric data as input 

was able to train successfully enough to achieve parity with a 2D-image-based approach. 

Table 4.3: Comparison between our 3D model and previous 2D model 

Models 
rDR classification vtDR classification 

Overall accuracy AUC Overall accuracy AUC 
2D model 89.67% ± 2.50% 0.95 ± 0.02 88.99% ± 0.84% 0.94 ± 0.02 
3D model 91.52% ± 1.87% 0.96 ± 0.01 87.39% ± 2.02% 0.92 ± 0.02 
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Figure 4.5: Three confusion matrices for referable DR (rDR) classification, vision threatening DR (vtDR) 
classification, and multiclass DR classification based on the overall 5-fold cross-validation results. The vtDR was split 
as non-DME (nDME) and DME in the matrices. The correctly and incorrectly classified cases are shaded blue and 
orange, respectively. 

To demonstrate the deep-learning performance more explicitly, we compared the stratified ground truth with the 

network prediction with confusion matrices using the overall values from 5-fold cross-validation (Fig. 4.5). In the 

three confusion matrices, the vtDR cases were separated into non-DME (nDME) and DME to investigate whether the 

presence of DME can affect rDR and vtDR classification accuracy. In the rDR classification task, we found the 

classification accuracies of vtDR/nDME and vtDR/DME to be similar (87/95 and 81/85). For vtDR classification, the 

network identified cases with DME (77/85) with a greater accuracy than nDME cases (71/95), which may imply DME 

features were likely influential for decision making. In the multi-level classification, the network misclassified 16/95 

vtDR/nDME cases as r/nvtDR. In addition, most of the r/nvtDR cases with false-positive results were classified as 

vtDR. Only 2 nrDR cases were misidentified as vtDR. 
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Figure 4.6: Class activation maps (CAMs) based on the referable DR (rDR) output layer of our framework for data 
from an eye with rDR without vision threatening DR (vtDR). Six en face projections covered with the corresponding 
projections of the 3D CAMs are shown. Extracted CAMs for an OCT and OCTA B-scans (red line in the inner retina 
en face projection) are also shown. The deep capillary plexus (DCP) angiogram without a CAM is shown so that the 
pathology highlighted by the corresponding CAM can be more easily identified. The green arrows indicate an 
abnormal vessel in the DCP. For descriptions of the regions projected over to produce the en face images, see the 
caption to Fig. 3.2. 
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Figure 4.7: Class activation maps (CAMs) based on the vision threatening DR (vtDR) output layer of our framework 
for data from an eye with vtDR but without DME. Six en face projections covered with corresponding projections of 
the 3D CAMs are shown. Extracted CAMs for an OCT and OCTA B-scan (red line in the inner retina en face projection) 
are also shown. A SVC angiogram without a CAM is also shown to help identify pathological features for comparison. 
The SVC CAM indicates that the framework learned to identify non-perfusion areas, which are known biomarkers for 
DR diagnosis. For descriptions of the regions projected over to produce the en face images, see the caption to Fig. 3.2. 

To better understand network decision making we produced CAMs for some example cases. The CAM output of 

a r/nvtDR case points to dilated vessels in the DCP and a perifoveal area of decreased vessel density (Fig. 4.6). 

Meanwhile, in a vtDR case without DME, the CAMs have a larger area of high attention (Fig. 4.7), indicating that the 

DR pathology is more pervasive throughout the volume. In addition to pointing to areas of decreased vessel density, 

the CAM overlaid on a structural OCT B-scan points to an area with abnormal curvature of the retinal layers. Finally, 

for a vtDR case with DME, the CAM pointed to areas with intraretinal cysts and abnormal curvature of the retinal 

layers on structural OCT, as well as decreased vessel density and abnormally dilated vessels on OCTA (Fig. 4.8). This 

is clearly an improvement over our previous 2D CAM output (Fig. 4.9) [33], which identified changes in the perifoveal 

region, but missed other pathologies, such as intraretinal cysts and abnormally dilated vessels. Based on the 

distribution of the highlighted regions from all the 3D CAMs, we found the non-perfusion areas near fovea and most 

fluids were preferentially selected by our framework for decision making. In addition, the non-perfusion areas at the 

boundary of the inputs were barely selected by our framework. 
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Figure 4.8: Class activation maps (CAMs) based on vision threatening DR (vtDR) output layer of our framework for 
data from an eye with vtDR and DME. Six en face projections covered with the corresponding projections of 3D 
CAMs are shown. Extracted CAMs for an OCT and OCTA B-scan (red line in the inner retina en face projection) are 
also shown. The SVC angiogram without a CAM is shown to more readily observe pathology. The green arrow in the 
SVC CAM shows an abnormal vessel, which can also be seen in the angiogram. Central macular fluid is marked by 
green circle on the OCT B-scan. The CAM allocated high weights to both of these regions. For descriptions of the 
regions projected over to produce the en face images, see the caption to Fig. 3.2. 

 

Figure 4.9: Two-dimensional class activation maps (CAMs) generated by our previous study for data from an eye 
with vtDR and DME. Six en face projections (see Fig. 3.2 for details) covered with the same 2D CAMs are shown. 
The abnormal vessels and central macular fluid, which were highlighted regions in the 3D CAMs in Fig. 4.8, were not 
weighted highly by the 2D CAM algorithm (red circles in the inner and EZ CAMs). 

4.5 Discussion 

In this study, we proposed a CNN-based automated DR classification framework that operates directly on 

volumetric OCT/OCTA data without requiring retinal layer segmentation. This framework classified cases into 

clinically actionable categories (nrDR, r/nvtDR, and vtDR) using a single imaging modality. For multiclass DR 

classification, the framework achieved a quadratic-weighted kappa of 0.83 ± 0.03, which is on par with the 

performance of human ophthalmologists and retinal specialists (0.80 to 0.91) [112]. The network also demonstrated 

robust performance on both rDR and vtDR classification (AUC = 0.96 ± 0.01; 0.92 ± 0.02, respectively). 

The framework used feature-rich structural OCT and OCTA volumes as inputs and a deep-learning model as the 

core classifier to achieve a high level of performance. The majority of DR classification algorithms to date have been 
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based on fundus photographs [7-10]. However, fundus photographs detect DME with only about a 70% accuracy 

relative to structural OCT, while DME accounts for the majority of vision loss in DR [14, 15]. Our method, on the 

other hand, actually performs better in the presence of DME (Fig. 4.5).  

Our image labels appealed to structural OCT to detect DME, and so did not adhere exactly to the ETDRS scale 

(the current gold standard for DR grading), which uses only seven field fundus photographs. This prevented our model 

from learning to misdiagnose eyes based on the presence of DME not detected by fundus photography. However, at 

the same time OCTA may not recapitulate every feature in fundus photography used for staging DR on the ETDRS 

scale. For example, OCTA does not detect intraretinal hemorrhages and may not detect all microaneurysms [23]. 

Achieving comparable performance to fundus photographs-based automated classification frameworks indicates that 

these disadvantages were surmounted by our approach. 

Another important feature in our framework design is the use of a deep-learning model for the classifier. Compared 

to previously published OCT/OCTA-based DR classification algorithms, the proposed framework has several 

innovations. One advantage is the use of the volume-rendered OCT/OCTA, instead of pre-selected features from 

segmented en face images. This means that correlations or structures within the data volume that may be difficult for 

a human to identify can still be incorporated into the decision making in our framework. Two dimensional approaches 

may miss important features without access to cross-sectional information, as happens with color fundus photography 

and DME [76]. As a corollary, our framework may then also have a greater capacity to improve with more training 

data since no data is removed by projection. Moreover, accurate retinal layer segmentation is required to generate the 

en face images. In severely diseased eyes, automated layer segmentations often fail. Mis-segmented layers can 

introduce artifacts into en face images unless they are manually corrected, a labor-intensive task that may not be 

clinically practical. By using volumetric data, our framework avoids this issue entirely. Another advantage built into 

our framework is the ability to detect both rDR and vtDR. This higher level of granularity makes a more efficient use 

of resources possible compared to solutions that only identify rDR [7, 9, 72-76]. 

A final significant advantage in our framework is the inclusion of 3D CAMs. While independent of model 

performance, generating CAMs allow clinicians to interpret the classification results and ensure model outputs are 

correct. This is important since, outside of visualizations such as CAMs, users cannot in general ascertain how deep 

learning algorithms arrive at a classification decision. However, in medical imaging it is essential to be able to verify 
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and understand these classification decisions since doing so could prevent misdiagnosis. Black-box algorithms such 

as deep learning algorithms may hide important biases that could prove to be disadvantageous for certain groups. This 

risk can be lowered when the results are interpretable. With our framework this is possible. The CAMs in this work 

were generated volumetrically. Compared to 2D CAMs, the current framework using 3D OCT/OCTA as inputs can 

identify and learn relevant features (Fig. 4.8 and 4.9). The resulting CAMs consistently highlighted macular fluid (Fig. 

4.8), demonstrating that the model did indeed learn relevant features since central macular fluid is the most important 

biomarker for detecting DME [109]. We also found our 3D CAMs pointed to other key features such as lower vessel 

density and dilated capillaries (Fig. 4.6 and 4.7). Although the 3D CAM did not identify all DR features (e.g. certain 

regions with lower vessel density were ignored), it found many key features, indicating that our framework has 

successfully learned relevant features and that 3D CAMs could be useful in clinical review. In addition, the purpose 

of generating 3D CAMs is not necessarily to find all DR biomarkers, but simply to highlight the features used by the 

network to make decisions. That the network ignored some known DR-associated features is interesting, since it 

implies that these features were not critical for diagnosing DR at a given severity.  

There are aspects of our framework that could be improved in future work. The sensitivity for r/nvtDR 

classification (55.00% ± 15.51%) was lower than the other two grades (92.50% ± 3.16% for nrDR and 81.11% ± 2.08% 

for vtDR). Larger data sets with more r/nvtDR cases could help mitigate this performance gap, and it is worth noting 

that most r/nvtDR misclassifications resulted in vtDR classifications. While this is obviously not optimal, this outcome 

at least spares patients with referable DR from failing to receive needed clinical attention. In addition, the r/nvtDR is 

a middle DR severity which also makes the classification more challenge than other two grades. The classification 

performance for rDR (AUC = 0.96 ± 0.01) also outperforms vtDR (AUC = 0.92 ± 0.02). Our model relied on a small 

scan region (3.0 × 3.0 mm) at the central macula [17, 19, 113]. However, a larger scan area with appropriate sampling 

density (e.g. not lower than 10 um/pixel) could still improve the DR classification performance, as there are key DR 

features such as neovascularization and venous beading that are typically outside the 3x3mm region. Since these 

features are associated with more advanced stages of DR, exploring models that use larger fields of view may 

preferentially improve vtDR diagnosis. Therefore, in the future, we hope to improve DR classification performance 

with larger datasets and scans with larger field of view. In addition, to improve the reliability of our evaluation results, 

we also hope to test our framework on external data set based on federated learning. 
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4.6 Conclusion 

We proposed a fully automated DR classification framework using 3D OCT and OCTA as inputs. Our framework 

achieved reliable performance on multiclass DR classification (nrDR, rDR/nvtDR, and vtDR), and produces 3D 

CAMs that can be used to interpret the model’s decision making. By using our framework, the number of imaging 

modalities required for DR classification was reduced from fundus photographs and OCT to an OCTA procedure 

alone. This accuracy of the model output in this study also suggests the combination of OCT/OCTA and deep learning 

could perform well in a clinical setting. 
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5 Deep-Learning-Aided Diagnosis of Diabetic Retinopathy, Age-Related Macular 

Degeneration, and Glaucoma based on Structural and Angiographic Optical Coherence 

Tomography 

5.1 Abstract 

Timely diagnosis of eye disease is paramount to obtaining the best treatment outcomes. Optical coherence 

tomography (OCT) and its angiography (OCTA) have several advantages that lend themselves to the early detection 

of ocular pathology, including that the techniques produce large, feature-rich data volumes. However, the full clinical 

potential of both OCT and OCTA is stymied when the complex data they acquire must be manually processed. Here 

we propose an automated diagnostic framework based on structural OCT and OCTA data volumes that could 

substantially support the clinical application of these technologies. Five hundred and twenty-six OCT and OCTA 

volumes were scanned from the eyes of 91 healthy participants, 161 patients with diabetic retinopathy (DR), 95 

patients with age-related macular degeneration (AMD), and 108 patients with glaucoma. The diagnosis framework 

was constructed based on semi-sequential 3D convolutional neural networks. The trained framework classifies a 

combined structural OCT and OCTA scan as normal, DR, AMD, or glaucoma. Five-fold cross-validation was 

performed, with 60% of the data reserved for training, 20% for validation, and 20% for testing. Training, validation, 

and testing data sets were independent, with no shared patients. For the scans diagnosed as DR, AMD, or glaucoma, 

3D class activation maps were generated to highlight the subregions which were considered important by the 

framework for the automated diagnosis. Area under the curve (AUC) of the receiver operating characteristic curve 

and quadratic-weighted kappa were used to quantify the diagnostic performance of the framework. For the diagnosis 

of DR, the framework achieved a 0.95 ± 0.01 AUC. For the diagnosis of AMD, the framework achieved a 0.98 ± 0.01 

AUC. For the diagnosis of glaucoma, the framework achieved a 0.91 ± 0.02 AUC. A deep learning framework can 

provide reliable, sensitive, interpretable, and fully automated eye disease diagnosis. 

5.2 Introduction 

Diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma each represent a leading cause 

of blindness [114-118]. While the pathophysiologic processes behind vision loss in each of these diseases are unique, 

they share qualities that make early diagnosis essential. Each is usually asymptomatic during early development [115, 

118, 119]. In the case of DR and glaucoma, treatment during the early stages is effective for slowing disease 
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progression and preventing otherwise incurable vision loss [3, 120]. In AMD, conversion to the exudative form of the 

disease can also lead to rapid, catastrophic vision loss; diagnosis of wet AMD is consequently a major treatment 

indicator [119]. For DR, AMD, and glaucoma, then, effective screening and early diagnosis are key to preventing poor 

visual outcomes. However, current diagnostic protocols face important challenges. Among these is a reliance on 

qualitative traits that may instill subjectivity into diagnoses. Also problematic are protocols that recommend multiple 

imaging modalities (for example, fundus photography supplemented with optical coherence tomography (OCT) to 

confirm the presence of edema or exudation) [3], which increases screening cost, requires more training for instrument 

technicians and can encourage patient non-compliance with clinician recommendations [108]. 

These issues can be alleviated through the use of OCT and OCT angiography (OCTA), which together provide 

depth-resolved (3D), micrometer-scale-resolution structural and vascular images of the retina [13, 21-23]. Numerous 

studies from multiple investigators have confirmed the ability of combined OCT and OCTA imaging to diagnose and 

detect pathology related to DR, AMD, and glaucoma using quantitative measurements [20, 121-127]. Additionally, 

combined structural OCT and OCTA have several advantages as a screening technology. Since 2014 OCT has been 

the most common procedure in ophthalmic practice and is cost-effective relative to allied modalities such as color 

fundus photography or dye-based angiography [128]. Furthermore, since OCTA can be acquired from structural OCT 

through alternative data processing, only one procedure is required to obtain both structural and vascular information 

[129]. And finally, since procedures are non-invasive, combined OCT and OCTA imaging can be performed at will. 

Despite these advantages for diagnosing DR, AMD, and glaucoma, a diagnostic platform based on combined 

structural OCT and OCTA imaging will still require innovation before it can be translated into the clinic. Combined 

structural OCT and OCTA datasets are large, and manual review of these datasets can be prohibitively time-consuming. 

Manual review is nonetheless often required, particularly in analytic frameworks that rely on en face images since 

retinal slab segmentation errors (which are common in more pathologic retinas) can introduce artifacts [111]. In 

underserved areas, the clinical infrastructure to meet these image analysis demands may not be available [130]. To 

resolve these issues automated image analysis is required. Deep learning is a data-driven technique that is currently 

the most powerful tool for medical image classification tasks [24]. Previously, diagnostic deep learning networks have 

been proposed for DR [33, 34, 72-76], AMD [131, 132], and glaucoma [133-136]. However, none of these methods 

can be used for the automated diagnosis of all three of these diseases simultaneously, which means each must be 

applied sequentially. This has the net effect of undermining generality and will require technicians to be familiar with 
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several algorithms. Here, we instead present a deep-learning-based platform using combined structural OCT and 

OCTA data volumes as inputs capable of simultaneously diagnosing DR, AMD, and glaucoma. By relying on data 

volumes this platform avoids mis-segmentation artifacts in en face images (which are difficult to correct). Providing 

a unified diagnostic framework also ensures that each of these important diseases will be screened for, and also saves 

computational resources by checking for each disease type simultaneously. In addition, the network outputs 3D class 

activation maps (CAMs) to highlight the disease-related biomarkers which are helpful for treatment decisions and 

management, as well as for verifying the algorithm’s predictions. 

5.3 Methods 

5.3.1 Data acquisition 

In this study, 102 eyes of 91 healthy participants, 161 eyes of 161 DR patients, 142 eyes of 95 AMD patients and 

121 eyes of 108 glaucoma patients were examined at the Casey Eye Institute, Oregon Health & Science University, 

USA. Each patient had one or both eyes scanned; the entire data set used in this study included 526 volumetric scans. 

For each eye, the macular region was scanned using a commercial 70-kHz spectral-domain OCT system (Avanti 

RTVue-XR, Optovue Inc) with an 840-nm central wavelength. The scan depth was 1.6 mm in a 6.0 × 6.0 mm region 

(640 × 400 × 400 pixels) centered on the fovea. Blood flow was detected using the split-spectrum amplitude-

decorrelation angiography algorithm based on the speckle variation between two repeated B-frames [23]. The OCT 

structural images were obtained by averaging two repeated B-frames. For each data set, two volumetric raster scans 

(one x-fast scan and one y-fast scan) were registered and merged through an orthogonal registration algorithm to 

reduce motion artifacts [58]. In addition, the projection-resolved OCTA algorithm was applied to all OCTA scans to 

remove flow projection artifacts in the deeper plexuses [68, 69]. According to manufacturer recommendations and our 

experience, OCT/OCTA scans with a signal strength index lower than 50 are generally low quality and were excluded. 

A masked trained retina specialist (TSH) graded 7-field color fundus photographs based on the Early Treatment 

of Diabetic Retinopathy Study (ETDRS) scale [11, 12] to generate the positive ground truth labels for the DR data 

volumes. Diabetic macular edema (DME) was identified using the central subfield thickness from structural OCT 

based on the Diabetic Retinopathy Clinical Research Network standard [4]. The eyes with an ETDRS score of 14 or 

worse or any stage with DME were graded as DR cases. Another masked trained retina specialist (STB) generated the 

positive AMD ground truth labels by grading 7-field color fundus photographs based on the Age-Related Eye Disease 
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Study (AREDS) scale [137]. The eyes with AREDS simplified score of 1 or worse were graded as AMD cases. 

Glaucomatous eyes were determined through clinical diagnosis, and the inclusion criteria for this study were an optic 

disc rim defect (thinning or notching) or nerve fiber layer defect visible on slit-lamp biomicroscopy (DH). Participants 

were enrolled after informed consent in accordance with an Institutional Review Board approved protocol, and this 

study was conducted in compliance with the Declaration of Helsinki and Health Insurance Portability and 

Accountability Act. 

5.3.2 Data inputs 

While 3D OCT and OCTA scans can provide much more detailed information than 2D data projections, it is also 

much more challenging to train a network to extract the relevant information from data volumes than images. This 

difficulty is compounded in our work by the need to extract relevant features for three different diseases. In order to 

improve the computational and space efficiency of the framework, each volumetric OCT and OCTA is resized to 160 

× 224 × 224 voxels and normalized to voxel values between 0 and 1. Combining the structural OCT and OCTA 

volumes, the final input dimensions were 160 × 224 × 224 × 2 pixels (Fig. 5.1). 

 

Figure 5.1: Automated combined DR, AMD, and glaucoma diagnostic framework using volumetric OCT and OCTA 
data as inputs. Structural OCT and OCTA data volumes are resampled and combined to form the input to a semi-
sequential classifier. The first part of the classifier then diagnoses DR and AMD. Data not diagnosed as DR and AMD 
by the first part is fed to the second part for glaucoma. Eyes not diagnosed with DR, AMD or glaucoma can be 
considered normal or other diseases. For any disease diagnosis, the network also outputs 3D CAMs. 

5.3.3 Diagnostic framework for the three eye diseases  

The proposed automated DR, AMD, and glaucoma diagnostic framework use a semi-sequential classifier which 

includes two parts (Fig. 5.1). The first part is a classifier used to diagnose DR and AMD in parallel. This part was 

trained based on the whole data set with a ground truth label of three classes (DR, AMD, and neither). The second 
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part diagnoses glaucoma from data that was not diagnosed as DR or AMD by the first part, which means the glaucoma 

was sequentially diagnosed after the DR and AMD diagnosis. Therefore, the combination of these two parts was 

named as semi-sequential classifier since it contained both parallel and sequential diagnoses. The reason for using a 

semi-sequential structure to diagnose glaucoma is that the difference between normal and glaucoma in macular 

OCT/OCTA is much smaller than the difference between normal and DR or AMD. Glaucoma cannot be accurately 

detected if only one part is used for the diagnosis of DR, AMD, and glaucoma at the same time (see results). To ensure 

the second part only focused on the difference between normal and glaucoma, it was trained only based on the normal 

and glaucoma data with two-class labels. Therefore, the two parts were trained separately. Data not diagnosed as DR, 

AMD, or glaucoma could be considered as normal during our training framework, which relied on healthy eyes being 

distinguished from these three diseases. However, we note that other eye diseases could still be present in a clinical 

context. The classifier of each part uses a customized 3D convolutional neural network architecture with 16 

convolutional layers (Fig. 5.2). For the first part, two output layers were designed for DR and AMD diagnosis, 

respectively. For the second part, only one output layer was used to classify each input as normal or glaucoma. Each 

output layer is a fully-connected layer with a softmax function. For the scans diagnosed as DR, AMD, or glaucoma 

by the full semi-sequential classifier, 3D CAMs are generated by projecting the weight parameters from the 

corresponding output layer back to the feature maps of the last convolutional layer before global average pooling. 

 

Figure 5.2: The detailed architecture of the three-dimensional (3D) convolutional neural network (CNN) used in this 
study. Each part of the classifier was established based on this architecture. 
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5.3.4 Evaluation and statistical analysis 

The area under the curve (AUC) for receiver operating characteristic (ROC) and precision-recall curves were used 

as the primary evaluation metrics to quantify diagnostic accuracy for each disease. Quadratic-weighted Cohen’s kappa 

[110] was used as the metric to evaluate multiple disease diagnostic performance. In addition, the overall accuracy, 

sensitivity, and specificity were also calculated. Five-fold cross-validation with a 60/20/20 training/validation/testing 

data distribution was used to assess performance reliability. Data from a single participant was included in only one 

of either the training, validation or testing data sets. The parameters and hyperparameters in our framework were 

trained and optimized only using the training and validation data set. The test data set was used exclusively for 

evaluation to guarantee performance was not biased. In addition, adaptive label smoothing was used during training 

to reduce overfitting [33]. 

To evaluate the performance improvement brought by the semi-sequential structure, a parallel classifier with three 

output layers was constructed to classify each input as normal, DR, AMD, or glaucoma. The parallel classifier was 

trained, validated, and evaluated based on the same data set as the semi-sequential classifier. But unlike the semi-

sequential classifier, glaucoma would be parallelly classified with DR and AMD by the parallel classifier. 

5.4 Results 

The framework achieved reliable performance as indicated by the AUCs of ROC curves on the test data set, which 

exceeded 0.9 for each disease in this study (Table 5.1, Fig. 5.3). For the precision-recall curves, both DR and AMD 

diagnoses achieved high AUCs (above 0.9). Though a separate part in the semi-sequential classifier was used to 

diagnose glaucoma, the AUCs of both ROC and precision-recall curves for glaucoma diagnosis were still lower than 

the other two eye diseases (Fig. 5.3). The overall accuracy of the multiple eye disease diagnosis (normal, DR, AMD, 

and glaucoma) was about 80%. 

Table 5.1: Automated disease diagnosis performance 
Metric DR diagnosis AMD diagnosis Glaucoma diagnosis Eye diseases diagnosis 

Overall accuracy 90.19% ± 2.03% 94.53% ± 0.71% 89.25% ± 1.75% 79.43% ± 2.01% 
Sensitivity 90.00% ± 2.34% 88.28% ± 5.60% 71.67% ± 4.08%  
Specificity 90.27% ± 1.99% 96.88% ± 1.76% 94.39% ± 1.98%  

AUC of ROC 0.95 ± 0.01 0.98 ± 0.01 0.91 ± 0.02  
AUC of precision-recall 0.91 0.95 0.71  

Quadratic-Weighted Kappa 0.78 ± 0.05 0.86 ± 0.02 0.68 ± 0.05 0.57 ± 0.05 
  

AMD = age-related macular degeneration; AUC = area under the curve; DR = diabetic retinopathy; ROC = receiver 
operating characteristic. 
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Figure 5.3: Receiver operating characteristic (ROC) and precision-recall curves derived from 5-fold cross-validation 
for the diagnosis of DR, AMD, and glaucoma based on the full framework. The area under the curve (AUC) was 
calculate for both curves. The models achieve AUCs of 0.95 ± 0.01 and 0.91 for ROC and precision-recall on DR 
diagnosis, AUCs of 0.98 ± 0.01 and 0.95 for ROC and precision-recall on AMD diagnosis, and AUCs of 0.91 ± 0.02 
and 0.71 for ROC and precision-recall on glaucoma diagnosis. In addition, the glaucoma precision-recall curve look 
different from the other two curves since the glaucoma prediction was the combination of two parts in the semi-
sequential classifier. 

We also constructed two confusion matrices (for the first part of the semi-sequential classifier and the full semi-

sequential classifier) using the overall results from a 5-fold cross-validation (Fig. 5.4). In the first part that only 

diagnosis DR and AMD, most misdiagnoses were between normal/glaucoma and DR. In the full semi-sequential 

classifier (which also includes glaucoma and normal diagnoses), normal eyes were most often misdiagnosed, and 

when diseased eyes were misdiagnosed, it was most often as normal eyes. 
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Figure 5.4: Confusion matrices for the first part of the semi-sequential classifier (left) and the full semi-sequential 
classifier (right) based on the overall results of 5-fold cross-validation. 

To quantify the performance improvement brought by the semi-sequential structure, a comparison between the 

glaucoma classification performances of semi-sequential and parallel classifiers was performed (Table 5.2). The 

comparison was performed only based on the normal and glaucoma testing data. With the semi-sequential classifier, 

the sensitivity, specificity, and AUC of the ROC curve were respectively improved by 12.00%, 6%, and 0.1. This 

improvement was because the semi-sequential diagnosis makes more sense than the parallel diagnosis of multiple 

diseases in this context, given the fact that the difference between normal and glaucoma data is much smaller than the 

differences between normal and AMD or DR data. In the training, the parallel classifier mostly focused on the learning 

of unique features of DR and AMD and ignored the glaucoma features. The improvement brought by the semi-

sequential structure was critical for the glaucoma diagnosis performance of the proposed diagnosis framework. 

Table 5.2: Comparison between the glaucoma classification performances of the semi-sequential and 
parallel classifiers 

 Overall accuracy Sensitivity Specificity AUC of ROC 
Semi-sequential classifier 77.33% ± 3.82% 78.33% ± 5.53% 76.19% ± 6.73% 0.78 ± 0.03 
Parallel classifier 63.11% ± 4.35% 56.67% ± 6.24% 70.48% ± 3.56% 0.68 ± 0.03 

     

AUC = area under the curve; ROC = receiver operating characteristic. 
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Figure 5.5: Class activation map (CAM) based on the DR output layer of the semi-sequential classifier for a correctly 
classified DR eye. (A) OCTA en face projection of the superficial vascular complex (SVC; inner 80% of the ganglion 
cell complex). The non-perfusion and low-perfusion areas were highlighted by the CAM. (B) Corresponding B-scan 
at the position of the red line in (A). (C) Structural OCT en face image of the ellipsoid zone (EZ; outer nuclear layer 
/ ellipsoid zone boundary to ellipsoid zone / retinal pigment epithelium boundary). (D) Corresponding B-scan at the 
location of the red line in (C). 

In order to aid confirmation of the model’s outputs and interpret its decision-making, our framework also produces 

3D class activation maps (CAM) (Fig. 5.5 and 5.6). We found that the CAMs frequently highlight pathology that is 

known to be associated with the diseases in this study, for example, non-perfusion and low-perfusion areas around the 

fovea were highly weighted for decision making of DR (highlighted regions in Fig. 5.5(A)). In AMD data, the CAMs 

highlighted most of the drusen areas (Fig. 5.6(C) and (D)). 

 

Figure 5.6: Class activation map (CAM) based on the AMD output layer of the semi-sequential classifier for a 
correctly classified AMD eye. (A) OCTA en face projection of the superficial vascular complex (SVC; inner 80% of 
the ganglion cell complex). (B) Corresponding B-scan at the position of the red line in (A). (C) Structural OCT en 
face image of the ellipsoid zone (Outer nuclear layer / ellipsoid zone boundary to ellipsoid zone / retinal pigment 
epithelium boundary). (D) Corresponding B-scan at the location of the red line in (C). The drusen area was highlighted 
by the CAM. 

From glaucoma classification (Fig. 5.7), we can see that the semi-sequential classifier was mostly focused on the 

vanished nerve fiber layer, which is consistent with known glaucoma pathophysiology [138, 139] (Fig. 5.7(D)). In 

addition, the low perfusion area was also highlighted by the CAM (Fig. 5.7(A)). These attention maps offer many 
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opportunities for us to validate the performance of deep learning frameworks and discover new potential biomarkers 

for disease understanding and diagnosis. 

 

Figure 5.7: Class activation map (CAM) based on the glaucoma output layer of the semi-sequential classifier for a 
correctly classified glaucoma eye. (A) OCTA en face projection of the superficial vascular complex (SVC; inner 80% 
of the ganglion cell complex). The low perfusion area was highlighted (B) Corresponding B-scan at the position of 
the red line in (A). (C) Structural OCT en face image of the inner retina (Vitreous / inner limiting membrane boundary 
to outer plexiform layer / outer nuclear layer boundary). (D) Corresponding B-scan at the location of the red line in 
(C). The region of the vanished nerve fiber layer was highlighted. 

5.5 Discussion 

In this study, we proposed an automated diagnostic framework based on volumetric OCT/OCTA data that 

diagnoses DR, AMD, and glaucoma. The framework uses a semi-sequential classier which consists of two parts with 

identical architecture, one of which diagnoses DR and AMD, and the other of which diagnoses glaucoma. We found 

that this semi-sequential structure, which uses separate parts (classifiers) for AMD/DR and glaucoma, outperformed 

a single parallel classifier that learns to diagnose all three diseases. The framework achieved an AUC of ROC curve 

over 0.9 for the diagnosis of each disease. These results indicate that our automated framework achieved reliable DR, 

AMD, and glaucoma diagnosis performance using only a single ophthalmic imaging modality.  

Compared to current deep-learning-aided eye disease diagnosis methods based on OCT/OCTA, our framework 

also includes several advantages. The first advantage is our framework can be used to diagnose DR, AMD, and 

glaucoma simultaneously, which could reduce the time and financial costs of screening. In addition, ophthalmologists 

could have a more comprehensive understanding of the eye condition of the referred patients based on our diagnosis 

results. The second advantage is the use of the whole 3D volume. Other approaches which rely on en face images are 

prone to segmentation errors and may miss important features without access to cross-sectional information (such as 

small drusen or retinal fluid). And traditional frameworks that perform diagnosis based on the presence or absence of 

known pathologic features may not account for undiscovered relevant features or information, and fail to utilize all of 
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the information available in combined structural OCT and OCTA data volumes. In the contrast, our approach is 

biomarker/feature-agnostic, which means that correlations or structures within the data volume that may be difficult 

for a human to identify can still be incorporated into decision-making. As a corollary, our framework may also have 

a greater capacity to improve with more training data since a full data volume contains far more information than an 

image formed by projection.  

Another significant advantage of our framework is the inclusion of 3D CAMs. Deep learning algorithms are often 

likened to “black-box”, since their decision-making is difficult to interpret. This is problematic, since opaque decision-

making may hide important biases that could prove to be disadvantageous for certain groups. The interpretability 

provided by the 3D CAMs would allow clinicians to verify and understand the diagnosis decisions and ensure they 

are correct, an essential requirement in any diagnostic framework. Compared to 2D CAMs, 3D CAMs indicate which 

retinal layer in each B-scan is relevant for each diagnosis. We verified that the CAM output by our model highlighted 

features known to be associated with each of the diseases examined in this study: non-perfusion areas in DR (Fig. 

5.5(A)), drusen in AMD (Fig. 5.6(D)), and nerve fiber layers with abnormal structure in glaucoma diagnosis (Fig. 

5.7(D)). Although the 3D CAMs did not demonstrate all features used for diagnosing eye diseases, they found many 

key features, indicating that our framework has successfully learned relevant features and that 3D CAMs could be 

useful in clinical review and sanity checks. In addition, the 3D CAMs were used to highlight the biomarkers which 

were selected by our framework, but not all the biomarkers were selected. That only some of the biomarkers were 

highlighted means, these biomarkers were already sufficient for our framework to make the diagnosis decision. 

There are three aspects of the diagnosis performance of our framework that could be improved in future work. 

Firstly, our data set only contained healthy eyes or eyes that had one of the three diseases (DR, AMD, or glaucoma), 

whereas in clinical practice an eye may suffer from different condition (e.g., branch retinal vein occlusion) or even 

multiple diseases simultaneously (e.g., AMD with DR or AMD with retinitis pigmentosa). This limitation may lead 

to performance loss in our model if it were attempted on an eye with conditions that were not included in our data set. 

Secondly, the use of a semi-sequential structure increased the glaucoma diagnosis accuracy but also limited the 

framework for diagnosing eyes with both glaucoma and DR or glaucoma and AMD. This framework solved the 

multiple classification problem for a single diagnosis among three eye diseases, but future work will need to generalize 

our strategy in order to make multiple simultaneous diagnoses for more diseases or eyes with multiple diseases. Finally, 

some of the design choices that led to the second limitation were to improve glaucoma diagnostic performance (Table 
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5.2), but even so, the sensitivity for glaucoma diagnosis (71.67% ± 4.08%) was lower than the other two grades (90.00% 

± 2.34% for DR and 88.28% ± 5.60% for AMD). Because only scans on macula were used in this study information 

from the optic disc, where glaucoma pathology is more prominent [140], was unavailable for decision making. 

Training on a larger dataset with cases of multiple diseases would likely improve performance for not only glaucoma 

but the other diseases in this study as well. In particular, the accuracy of the parallel classifier could probably be 

similar to the semi-sequential classifier in the main module if more glaucoma data for training was available. The 

framework limitation could therefore be solved by using a better-trained parallel classifier. 

In addition to diagnosis performance, there are also limitations if we use our framework in real-world clinical 

applications right now. Our framework can only be used in clinics with both OCT and OCTA available. But this 

limitation will gradually disappear as OCTA applications become more widespread. In addition, the data set used in 

this study were all scanned by Avanti RTVue-XR in Casey Eye Institute, Oregon Health & Science University, and 

only scans with signal strength index above 50 were preserved. The diagnosis performance may be lower on external 

or lower quality data, or data scanned on other OCT devices. Therefore, to improve the clinical utility of our framework, 

data without these limitations will also be included in the future. 

5.6 Conclusion 

We proposed a deep-learning-aided DR, AMD, and glaucoma diagnostic framework that takes combined 3D 

structural OCT and OCTA data as inputs. Our framework achieved reliable performance on the diagnosis of each 

disease for which it was designed, and produces 3D CAMs that can be used to interpret the model’s decision-making. 

By using our framework, the number of scanning procedures and eye exams required for the diagnosis of the three 

different eye diseases was reduced to just a single OCT/OCTA procedure. In addition, by using 3D data as inputs, our 

framework can totally avoid the influences from unstable retinal layer segmentation. At last, our results show that the 

biomarker-agnostic framework based on 3D OCT and OCTA could be beneficial for clinical practice. 
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6 Interpretable Diabetic Retinopathy Diagnosis based on Biomarker Activation Map 

6.1 Abstract 

Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) 

based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable 

in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, 

hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map 

(BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers’ 

decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on 

current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. 

The BAM generation framework was designed by combing two U-shaped generators to provide meaningful 

interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output 

that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image 

between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized 

biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable 

by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including 

nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians 

better utilize and verify automated DR diagnosis. 

6.2 Introduction 

Deep learning classifiers have achieved excellent performance in several automated eye disease diagnosis tasks 

[24-28]. Among these tasks, diabetic retinopathy (DR) diagnosis based on optical coherence tomography (OCT) and 

its angiography (OCTA) play an important role in ophthalmology since DR is a leading cause of preventable blindness 

globally and may be asymptomatic even in the referable stages [1-5]. Therefore, an efficient and reliable diagnosis 

system is essential in identifying DR patients at an early stage, when the disease has the best prognosis and visual loss 

can be delayed or deferred [4, 5]. In addition, OCT and OCTA (which can be acquired by the same device at the same 

time) can provide accurate DR diagnosis based on both the standard fundus photography-derived DR severity scales 

[13, 21-23] and the detection of diabetic macular edema (DME, an important DR pathology that cannot be accurately 

detected by fundus photography [14, 15]). 
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However, the high performance of current OCT/OCTA-based DR diagnosis often comes at the cost of inscrutable 

outputs [33, 34, 75, 76, 141]. The presence of hidden layers in classifier architectures renders a straightforward account 

of the classifier’s action on inputs inaccessible and makes deep learning classifier outputs difficult to verify. In the 

absence of heuristic devices, deep-learning-aided DR diagnosis cannot be confirmed outside of manual grading, which 

largely defeats the purpose of automation. The poor interpretability can also obfuscate potential bias that could 

negatively affect performance in external data sets: a classifier trained only based on one data set may be biased when 

evaluated on the data from others if non-clinical biomarkers were utilized. These issues present a major hurdle for 

translating deep-learning-aided DR classifiers into the clinic [29-31].  

Contemporary interpretability methods that have been used for deep-learning-aided DR diagnosis can be 

summarized in two categories. The first is methods which mainly focus on correlations between manually selected 

biomarkers and DR diagnostics [72-74, 142]. The selected biomarkers are first segmented from OCT and OCTA and 

then used to train the DR classifier. However, these methods have limited DR diagnosis performance since the 

classifiers could not learn from the much richer feature space latent in the entire OCT/OCTA data. The second and 

more common interpretability methods are attention maps. They indicate the relative importance of regions of an 

image for classifier decision making and indicate which features were useful for the DR diagnosis. However, these 

methods are originally developed for non-medical image recognition tasks (e.g., dog vs. cat classification, Fig. 6.1) 

[143-145], which is distinct from DR diagnosis in several regards and consequently poses many challenges in 

presenting clinically meaningful attention maps. In particular, unlike non-medical image classification where classes 

are typically identified by unique features not shared between the separate classes, in DR diagnosis different classes 

actually share most features (Fig. 6.1). Instead of containing unique identifying features, OCT/OCTA scans of non-

referable DR lack features of referable cases. The identification of a non-referable DR case is therefore based on the 

absence, rather than presence, of specific pathologies. 
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Figure 6.1: Comparison between non-medical and optical coherence tomography angiography (OCTA) images. Top 
row: the background in dog and cat pictures can be totally different because a classifier can learn to classify each by 
appealing to obvious, unique features (for example, the pets’ faces). This contrasts with OCTA (bottom row) of 
diabetic retinopathy (DR), where features are largely shared between classes (here, a non-referable and referable DR 
case, respectively). Additionally, only the referable DR case has unique features (DR-related biomarkers). Features 
found in the healthy image, for example the large vessels with surrounding small capillary are also present in the 
referable DR image (green rectangles). The healthy image must therefore be identified based on a lack of features 
associated with the referable DR image (non-perfusion area and abnormal vessels marked by blue line and arrow, 
respectively). 

To provide sufficient clinically meaningful interpretability for an OCT/OCTA-based DR classifier we propose a 

novel biomarker activation map (BAM) generation framework. The BAM generation framework is trained based on 

generative adversarial learning [146-149] to highlight the unique classifier-utilized biomarkers that only present in 

OCT/OCTA scans of referable DR. The main contributions of the present work are: 

 We proposed the first interpretability method which was specifically designed for DR diagnosis based on 

both OCT and OCTA. 

 Our design recognizes that a DR classifier should be highlight the unique biomarkers which only belong to 

the referable DR cases. 

 We used generative adversarial learning to interpret a DR classifier instead of generating the pseudo-healthy 

or feature attribution maps based on the ground truth classes. 

 We demonstrate that a generative adversarial learning approach can be used to provide interpretability to a 

DR classifier that achieved state-of-the-art performance.  
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6.3 Related work 

To achieve interpretable DR diagnosis based on OCT and OCTA, several methods were proposed to illustrate 

which biomarkers were utilized in the decision-making of the classifier. Most of these methods belong to one of two 

categories: biomarker preselection methods and attention map methods.  

6.3.1 Biomarker preselection methods 

Biomarker preselection methods achieved interpretable DR diagnosis by using preselected and segmented 

biomarkers to train the classifier [72-74, 142]. Examples include H. S. Sandhu et al. and M. Alam et al. which proposed 

two computer-assisted diagnostic systems for DR diagnosis based on quantified features from OCTA [73, 74]. Several 

DR-related biomarkers, such as foveal avascular zone size and blood vessel tortuosity and density were extracted from 

OCTA images to train a DR classifier. In addition, Deep Mind proposed a retinal disease (including DR) diagnostic 

system based on several pre-segmented biomarkers from OCT [142]. The interpretability issue was well addressed in 

these DR diagnostic tasks since clinicians can clearly know which biomarkers were used to train the classifier. 

However, only some biomarkers were used in these methods, which means the classifiers could not learn from the 

much richer feature space latent in the full OCT/OCTA data volumes. 

6.3.2 Attention map methods 

Attention heatmaps are frequently used approaches for interpreting deep-learning-aided DR classifiers. Within this 

category, the gradient-based, class activation map (CAM)-based, and propagation-based methods are the most 

important techniques. 

Gradient-based methods generate heatmaps based on the gradients of different convolutional layers with respect 

to the input [150-153]. Among these methods, Integrated Gradients which are based on multiplication between the 

average gradient and a linear interpolation of the input were evaluated on a DR classifier based on fundus photography 

[150]. To consider a more complete gradient, the FullGrad method also includes the gradient with respect to the bias 

term [153]. In practice, the outputs from these gradient-based methods are class-agnostic, resulting in heatmaps that 

are similar between different classes [154]. However, in DR diagnosis, non-referable and referable images share 

features, making it difficult for a gradient-based method to meaningfully distinguish pathologies from healthy tissues. 
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CAM-based methods are class-specific and are widely used in studies of deep learning DR diagnosis [71, 155-

157]. The basic CAM method combines the class-specific weight and the output of the last convolutional layer before 

global average pooling to produce the attention map [71]. Grad-CAM introduces the gradients of target convolutional 

layers to the basic CAM [155]. Grad-CAMs have been widely used in deep-learning-aided DR diagnostic studies to 

provide interpretability to classifiers because it is easy to implement [33, 34, 75, 141]. However, most CAM-based 

methods only use the top convolutional layer, which generates low-resolution heatmaps [153]. In addition, the CAMs 

generated on lower convolutional layers are hard to interpret due to scattered features. Clinicians still need to manually 

discern the biomarkers inside the coarsely highlighted regions, which is time consuming and not clinically practical.  

Propagation-based methods [154, 158-165] mostly rely on the deep Taylor decomposition (DTD) framework [158]. 

In these methods, the attention map is generated by tracing the contribution of the output back to the input using back 

propagation through the classifier based on the DTD principle. S. Bach et al. proposed the Layer-wise Relevance 

Propagation (LRP) method, which calculates the contribution of each element in the input back propagated from the 

output using the DTD principle [159]. However, some of these methods are class-agnostic in practical applications 

[154]. To solve this issue, class-specific propagation-based methods were proposed [164, 165]. J. Gu et al. proposed 

the contrastive-LRP method in which the contributions based on non-target classes are removed on average from the 

heatmap [164]. B. K. Iwana et al. proposed the softmax-gradient-LRP in which the contribution of each non-target 

class is removed based on their own probability value after softmax [165]. Compared to CAMs, these class-specific 

LRP methods can generate higher resolution attention maps but have many fewer applications in DR diagnosis due to 

accuracy concerns and implementation difficulties. 

Several methods which do not belong to these three attention map categories have also been proposed to interpret 

deep learning classifiers. These include input-modification-based methods [166-171], saliency-based methods [172-

175], an activation maximization method [176], an excitation backprop method [177], and perturbation methods [178, 

179]. However, these methods do not in general achieve the accuracy of gradient-, CAM-, or propagation-based 

methods [154]. 

6.4 Materials 

In this study, we included healthy and diabetic participants representing the full spectrum of diseases, from no 

clinically evident retinopathy to proliferative diabetic retinopathy. One or both eyes of each participant underwent 7-
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field color fundus photography and an OCTA scan using a commercial 70-kHz spectral-domain OCT system (RTVue-

XR Avanti, Optovue Inc) with 840-nm central wavelength. The scan depth was 1.6 mm in a 3.0 × 3.0 mm region (640 

× 304 × 304 pixels) centered on the fovea. Two repeated B-frames were captured at each line-scan location. Blood 

flow was detected using the split-spectrum amplitude-decorrelation angiography algorithm [23, 57]. The OCT 

structural images were obtained by averaging two repeated and registered B-frames. Two continuously acquired 

volumetric raster scans (one x-fast scan and one y-fast scan) were registered and merged through an orthogonal 

registration algorithm to reduce motion artifacts [58]. In addition, the projection-resolved algorithm was applied to all 

data volumes to remove flow projection artifacts in posterior layers [68, 69]. Scans with a signal strength index (SSI) 

lower than 50 were excluded. 

A masked trained retina specialist (Thomas S. Hwang) graded the photographs based on the Early Treatment of 

Diabetic Retinopathy Study (ETDRS) scale [11, 12] using 7-field color fundus photographs. The presence of diabetic 

macular edema (DME) was determined using the central subfield thickness from structural OCT based on the 

DRCR.net standard [4]. We defined non-referrable DR as ETDRS level better than 35 and without DME, and 

referrable DR as ETDRS level 35 or worse, or any ETDRS score with DME [5]. The participants were enrolled after 

informed consent in accordance with an Institutional Review Board (IRB # 16932) approved protocol. The study 

complied with the Declaration of Helsinki and the Health Insurance Portability and Accountability Act. 

To generate the input data set for the referable DR classifier, the following retinal layer boundaries were 

automatically segmented using commercial software in the spectral-domain OCT system (Avanti RTVue-XR, 

Optovue Inc): the vitreous / inner limiting membrane (ILM), inner plexiform layer (IPL) / inner nuclear layer (INL), 

and the outer plexiform layer (OPL) / outer nuclear layer (ONL) (Fig. 6.2). In addition, the automated layer 

segmentation was manually corrected by graders using custom COOL-ART software in cases where pathology caused 

segmentation errors in the commercial software [78]. 

For each case, a two-channel input was generated based on the segmented boundaries (Fig. 6.2). The first input 

consists of the en face OCTA image was generated using maximum projection of the superficial vascular complex 

(SVC), defined as the inner 80% of the ganglion cell complex (GCC), which included all structures between the ILM 

and IPL/INL border [18, 41] (Fig. 6.2) [70]. En face structural OCT images were generated through average projection 

(Vitreous/ILM to OPL/ONL) and used as the 2nd channel of each input (Fig. 6.2). 
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Figure 6.2: Input generation. Superficial vascular complex (inner 80% from vitreous to inner plexiform layer) en face 
maximum projections were generated from the volumetric OCTA and used as the 1st channel of the input [18, 41]. An 
en face mean projection of the inner retina (vitreous through the outer plexiform layer) was generated from volumetric 
OCT data and used as the 2nd channel of the input. Three boundaries- vitreous / inner limiting membrane (red), inner 
plexiform / inner nuclear layers (green), and outer plexiform / outer nuclear layers (blue)- were segmented for the 
generation process in both the first and second channels. 

6.5 Methods 

To provide meaningful interpretability to a DR classifier, our BAM generation framework was trained to learn 

which biomarkers were important for classifier decision making. In training, we combined two generators (a main and 

assistant) to learn the necessary changes (classifier-utilized biomarkers) which would change classifier decision 

making. In this study, the positive and negative decision making of the classifier corresponded to referable and non-

referable DR, respectively. The main generator was trained to forge a negative output by adding changes to a positive 

input. To reduce unnecessary changes made by the main generator, inspired by cycle-consistency generative 

adversarial learning [149], the assistant generator was trained to do the opposite. However, the BAM was generated 

as the difference image between the output and input of the main generator, only. All the biomarkers highlighted in 

the BAM were the classifier-utilized biomarkers, which could be textures, artifacts, shadows, etc. that were learned 

and utilized by the classifier in the decision making. To be clear, the classifier-utilized biomarkers could be different 

from the clinical biomarkers which mainly were the pathologies correlated to the selected disease (referable DR in 

this study). 
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Figure 6.3: BAM generation framework architecture and training process. Two generators were trained to produce 
the biomarker activation maps (BAMs). (A) Positive class inputs are acted on by the main and assistant generators 
(blue and green arrows, respectively). The main generator was trained to produce output images that would be 
classified as the negative class by the classifier. The assistant generator performs the inverse task, producing outputs 
that the classifier would diagnose as the positive class. (B) Training from negative inputs is symmetric, with the labels 
switching roles. (C) Training of the main and assistant generators occurred simultaneously. This scheme prevents the 
main generator from overfitting the negative class inputs by producing unnecessary changes to the inputs. 

6.5.1 Training 

We consider a DR classifier 𝐹 trained to predict positive and negative class labels 𝑦ො from input data 𝐱 according 

to 𝑦ො = 𝐹(𝐱). The positive and negative class 𝑦ା and 𝑦ି indicated referable and non-referable DR, respectively. We 

note that, in general, the predicted class label 𝑦ො is not identical to the true class labels, 𝑦, since most classifiers are not 

perfect; however, in this work we are primarily concerned with classifier outputs, not the ground truth classifications. 

Accordingly, we define two input classes 𝐱ାand 𝐱ି according to 𝐹(𝐱ା/ି) = 𝑦ොା/ି, i.e. 𝐱ା corresponds to data that 

was predicted by the classifier to belong to the positive class (i.e. referable DR), and 𝐱ି to the negative class. In the 

BAM framework we seek to train a main generator to transform data so that it is always classified as negative by the 

classifier (Fig. 6.3(A)); that is, we seek a generator 𝐺ି such that 𝐹൫𝐺ି(𝐱)൯ =  𝑦ොି. In the case that the input data was 

originally classified as positive, i.e. 𝐱 = 𝐱ା, this creates “forged data”, in which the target output classification 𝑦ොି 

differs from the classification of the input for which 𝐹(𝐱ା) = 𝑦ොା. If, alternatively, 𝐺ି operates on data 𝐱ି already 
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predicted to belong to the negative class, the desired output classification matches the input, i.e. 𝐹(𝐺_(𝒙ି)) =  𝑦ොି, 

creating “preserved data.” Both forged and preserved data were used during the training process to calculate loss by 

comparing to their corresponding ground truths. Specifically, the cross-entropy loss 𝐻ି  between the classifier 

prediction on the forged data 𝐹൫𝐺ି(𝐱ା)൯ and the desired prediction 𝑦ො_ was used to train the generator to produce data 

resembling the desired class. In addition, to prevent large changes to the main generator output, the mean absolute 

error loss 𝑀ି between the raw input 𝐱ିand the preserved data 𝐺ି(𝐱ି) was included in the loss.  

However, simply optimizing over forged and preserved data can lead to overfitting, in which the main generator 

learns to modify features that were not utilized by the classifier 𝐹 (e.g., shared features between 𝐱ାand 𝐱ି) in order 

to achieve the desired output label 𝑦ොି. To ensure that the main generator only learns to remove relevant features we 

also simultaneously trained an assistant generator 𝐺ା that performs the inverse task; that is, we desire the trained 

assistant generator to produce 𝐹൫𝐺ା(𝐱)൯ =  𝑦ොା (Fig. 6.3(B)). Note that, like the main generator, this produces both 

preserved and forged data, since the assistant generator also acts on both 𝐱ା and 𝐱ି. The assistant generator is used in 

conjunction with the main generator to produce “cycled data” 𝐺ି(𝐺ା(𝐱ି)) and 𝐺ା൫𝐺ି(𝐱ା)൯ created by allowing the 

main and assistant generator to operate on data forged by the other. The cycled loss, defined as the mean absolute 

errors between the original and cycled data 

𝐿 =
ଵ

ேష
∑ ቚ𝐱ି,𝒊 − 𝐺ି ቀ𝐺ା൫𝐱ି,𝒊൯ቁቚ +

      
ଵ

ேశ
∑ ቚ𝐱ା,𝒋 − 𝐺ା ቀ𝐺ି൫𝐱ା,𝒋൯ቁቚ

,                                                       (15) 

where 𝑁ାand  𝑁ି are the pixel number of positively and negatively classified images, respectively, can then be 

included in the overall loss function in order to ensure that only features utilized by the classifier 𝐹 are modified. The 

overall loss for each generator is then given by the sum of the cross-entropy loss between forged labels and predicted 

labels, the mean absolute error loss between preserved data and input data, and the cycled loss:  

𝐿ି = 𝐻ି൫𝐹൫𝐺ି(𝑥ା)൯, 𝒚ෝି൯ + 𝑀ି(𝐺ି(𝑥ି),  𝑥ି) + 𝐿

𝐿ା = 𝐻ା൫𝐹൫𝐺ା(𝑥ି)൯, 𝒚ෝା൯ + 𝑀ା(𝐺ା(𝑥ା),  𝑥ା) + 𝐿

                                            (16)  

6.5.2 Generator architecture 

Both the main and assistant generators were constructed based on a customized U-shape residual convolutional 

neural network [60] (Fig. 6.4). The output is calculated as the sum of input and Tanh output since both generators are 
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trained to only change necessary biomarkers that are utilized by the classifier. To ensure the generator output has the 

same value range as the input, clipping was used after the summation (the values higher or lower than the original 

maximum or minimum of the input will be set to the maximum or minimum values, respectively). In addition, zero 

initialization is used for the last convolutional layer to ensure the initial BAM was a zero matrix before the training. 

This initialization strategy could avoid changes to biomarkers which were not utilized by the classifier in the beginning 

of the training. 

 

Figure 6.4: Detailed architecture of the main generator. The dark green patches and pale green arrows represent the 
residual and deconvolutional block, respectively. The number in the dark green patch is the stride size. The number 
of blocks can be adjusted based on the input. The architecture of the assistant generator is identical. 

6.5.3 Model selection and biomarker activation map generation 

After the training, the final model (including both trainable parameters and hyper-parameters) for BAM generation 

was selected based on the validation loss 𝐿ି  of the main generator. Loss from the assistant generator was not 

considered because, unlike the main generator which only needs to remove the unique biomarkers (pathologies) at 

specific locations, there is no a priori reason for the assistant generator to add pathology-like features at a particular 

location. This resulted in high variability in assistant generator output, which would make model selection based on 

assistant generator loss unreliable. 

The initial BAM is calculated between the output and input of the main generator. Since this is a difference image 

it can have both positive and negative pixel values. The absolute difference between these values represents the overall 

contribution each biomarker made to the classification. Alternatively, positive/negative values indicate regions in 

which pixel values in the output were increased/reduced relative to the input in order for the classifier to produce a 
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negative (non-referable DR) classification. By keeping track of these sign differences, we can understand more about 

how a DR classifier understands different biomarkers. Accordingly, the output of our framework is two processed 

BAMs, with the first obtained by measuring the absolute value of all differences  

𝐵𝐴𝑀௦ = 𝑓(|𝐺ି(𝐱ା) − 𝐱ା|),                                                     (17) 

while the second is generated by separating positive and negative values  

𝐵𝐴𝑀ା/ି = 𝑓൫ReLU(𝐺ି(𝐱ା) − 𝐱ା)൯ −

              𝑓൫ReLU(𝐱ା − 𝐺ି(𝐱ା))൯
,                                                 (18) 

where 𝑓 is a Gaussian filter and ReLU is the activation function which only preserves positive values [81, 82]. The 

𝐵𝐴𝑀௦ then indicates the overall contribution of each biomarker to classifier decision making, while the 𝐵𝐴𝑀ା/ି 

indicates how different biomarkers were learned by the classifier.  

6.5.4 Implementation details 

To evaluate our BAM generation framework, a classifier that took en face OCT and OCTA data as inputs to 

diagnose referable DR was constructed based on a VGG19 architecture [87] with batch normalization and only one 

fully connected layer. Two classifier-utilized DR biomarkers- non-perfusion area (NPA) and fluids- were used to 

evaluate the OCTA and OCT channels of the generated BAMs, respectively. The DR classifier was only used to 

evaluate our BAMs. The development of this classifier was not a part of our BAM generation framework.  

Before the evaluations, 60%, 20%, and 20% of the data were split for training, validation, and testing, respectively. 

Care was taken to ensure data from the same subjects are only included in one of either the training, validation, or 

testing data sets. The BAM framework was trained, validated, and evaluated respectively based on the same data set 

of the DR classifier. Two stochastic gradient descent optimizers with Nesterov momentum (momentum = 0.9) were 

used simultaneously to train the generators. Hyperparameters during training included a batch size of 3, 500 training 

epochs, and a learning rate of 0.0005 used for all the training steps. The trained main generator with lowest validation 

loss was selected for the final evaluation. In the evaluation, the binary maps for NPA and fluids were generated by 

two deep-learning-aided segmentation methods previously designed by our group, respectively [180, 181]. For 

qualitative analysis, we used perceptually uniform color maps to illustrate the BAMs [182]; compared to the traditional 

Jet colormap, perceptually uniform color maps have even color gradients that can reduce visual distortions causing 
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feature loss or the appearance of false features [183]. For quantitative analysis, the F1-socre, intersection over union 

(IoU), precision, and recall were calculated between each channel of the generated BAMs and segmented DR 

biomarkers (NPA and fluid). 

This study was implemented in TensorFlow version 2.6.0 on Ubuntu 20.04 server. The server has an Intel(R) 

Xeon(R) Gold 6254 CPU @ 3.10GHz ×2, 512.0 GB RAM and four NVIDIA RTX 3090 GPUs. But only one GPU 

was used in this study. The average training time for each epoch was 15 seconds. 

6.5.5 Sanity checks 

To assess if our BAM was correlated with the interpreted DR classifier two sanity checks were performed [184]. 

First, we performed model parameter and data randomization tests. In the model parameter randomization test DR 

classifier parameters were divided into six parts based on the five max pooling layers. The parameters in each of the 

six parts were randomized in two ways. In cascading randomization we randomized the parameters from the top part 

of the trained DR classifier (after last max pooling) successively all the way to the bottom part (before first max 

pooling). In the independent randomization, the parameters in each part were randomized independently. All the 

parameter randomizations created 11 different models. In the data randomization test, a model with the same 

architecture of the DR classifier was trained based on randomized labels. The model training was stopped after the 

training accuracy reached 95%. The generated BAMs of these 12 models were compared with the BAMs generated 

based on the original DR classifier. For quantitative comparison, we calculated the spearman rank correlation, the 

structural similarity index (SSIM), and the Pearson correlation of the histogram of gradients (HOGs) between the 

𝐵𝐴𝑀ା/ି generated on these models and the original classifier. 

6.6 Results 

We recruited and examined 50 healthy participants and 305 patients with diabetes. After the DR severity grading, 

199 non-referable and 257 referable DR inputs were used to train, validate, and evaluate the DR classifier and our 

framework (Table 6.1). In the evaluation, the classifier achieved an area under the receiver operating characteristic 

curve (AUC) of 0.97 and a quadratic-weighted kappa of 0.85, which is on par with the performance of 

ophthalmologists and therefore adequate to evaluate our BAM framework [112]. 
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Table 6.1: Data distribution 
Severity Number Age, mean (SD), years Female, % 

Non-referable DR 199 48.8 (14.6) 50.8% 
Referable DR 257 58.4 (12.1) 49.0% 

6.6.1 Sanity checks 

To firstly demonstrate that our BAM could correctly learn the interpretability of the DR classifier, two tests were 

performed based on randomized parameters and labels, respectively [184]. Most models in the parameter 

randomization test predicted all the data as the same class (either non-referable or referable DR), which means no 

BAMs were generated for these models since the training of our framework needed data predicted as both classes. In 

the cascading randomization, only the model with randomized parameters after the 4th max pooling layer had 

predictions for both classes. In the independent randomization, only the model with randomized parameters before the 

first max pooling layer had predictions for both classes. Therefore, these two models were used to represent the 

cascading and independent parameter randomizations, respectively. The three BAMs generated in both parameter and 

label randomization tests showed large differences compared to the original BAMs (Fig. 6.5 and Table 6.2), which 

shows our BAMs are sensitive to potential interpretability changes of the classifier. The two models based on 

randomized labels and cascading parameter randomization highlighted totally different regions compared to the 

original BAMs. The highlighted regions in the model based on independent randomization had some overlaps with 

the original BAMs. But the differences between these two BAMs were still large and clear. 

 

Figure 6.5: BAMs generated in the sanity checks which showed our BAM was sensitive to the interpretability changes 
between different randomized models. (A) Segmented non-perfusion areas and fluids. (B) The 𝐵𝐴𝑀ା/ି of the model 
based on randomized labels. (C) The 𝐵𝐴𝑀ା/ି of the model based on cascading parameter randomization. (D) The 
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𝐵𝐴𝑀ା/ି  of the model based on independent parameter randomization. (E) The 𝐵𝐴𝑀ା/ି  generated based on the 
original DR classifier. 

Table 6.2: Quantitative sanity checks 
Models Spearman rank correlation SSIM HOGs 

 OCTA OCT OCTA OCT OCTA OCT 
Random labels -0.11 ± 0.17 0.22 ± 0.22 0.13 ± 0.07 0.75 ± 0.11 0.07 ± 0.06 0.01 ± 0.09 
Cascading random -0.21 ± 0.06 0.11 ± 0.03 0.18 ± 0.10 0.24 ± 0.11 0.00 ± 0.06 -0.09 ± 0.06 
Independent random 0.45 ± 0.14 0.82 ± 0.11 0.30 ± 0.12 0.91 ± 0.12 0.05 ± 0.05 0.54 ± 0.15 

 

6.6.2 Qualitative analysis 

To demonstrate the utility of the proposed BAM framework we consider an eye correctly classified as referable 

DR by the DR classifier (Fig. 6.6). Compared to the clinical DR biomarkers (Fig. 6.6(C) and 6.6(H)), our BAMs 

highlighted similar regions (Fig. 6.6(D) and 6.6(I)), demonstrating that BAMs can improve interpretation of the DR 

classifier result. Specifically, the 𝐵𝐴𝑀௦ output indicates that the classifier focused on important pathologic features 

which (NPA and retinal fluid) [180, 181] in decision making. Additionally, the 𝐵𝐴𝑀ା/ି indicates that the pathological 

NPA was correctly differentiated from the foveal avascular zone, which is avascular but not pathological. In non-

referable eyes, the pixel values near fovea should span a wide range corresponding to- from highest to lowest- larger 

vessels around fovea, small capillary structure, and the foveal avascular zone. These pixel populations are compressed 

in an en face OCTA angiograms of a referable DR eye (Fig. 6.6(A)). By adding positive values (white dots) around 

fovea and negative values in the fovea, the main generator expanded the range of pixel values to craft an image that 

looked like a non-referable eye to the classifier (Fig. 6.6(B)). The structure of the generated image shows that the 

classifier learned the anatomical structure near fovea in a normal eye. We also noticed that, with the exception of NPA 

and fluid, other DR-related biomarkers (such as microaneurysms, Fig. 6.6(I)) were ignored by the BAMs, which means 

these biomarkers were not utilized by the classifier in decision making. 
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Figure 6.6: BAMs for a correctly predicted referable DR scan. (A) Superficial vascular complex en face maximum 
projection, which is the first input channel for the BAM framework. (B) The forged main generator output image for 
this channel, which should be classified as non-referable DR by the classifier. Compared to (A), positive white dots 
and negative dark regions were added by the main generator. (C) Segmented non-perfusion area (NPA), which is an 
important DR-related biomarker (marked by cyan), based on a previously reported deep learning method [180]. (D) 
The 𝐵𝐴𝑀௦ is the absolute difference between (B) and (A) after Gaussian filtering (Eq. 17). The highlighted areas 
are similar to the segmented NPA in (C). (E) The 𝐵𝐴𝑀ା/ି is the (non-absolute) differences between (B) and (A) after 
Gaussian filtering (Eq. 18). Red highlights pathological non-perfusion area while the foveal avascular zone 
(highlighted by green), which is not pathological, was identified as a separate feature by the classifier network. (F) En 
face mean projection over the inner retina, which is the second input channel to the classifier. (G) Main generator 
output for this channel which should be classified as non-referable DR by the classifier. Compared to (F), positive 
white dots were added by the main generator. (H) The inner mean projection of the segmented fluid (an important 
DR-related biomarker, marked by magenta) based on a previously reported deep learning method [181]. (I) The 
𝐵𝐴𝑀௦  is the absolute difference between (G) and (F) after Gaussian filtering (Eq. 17). The highlighted areas 
resemble the fluid regions in (H). However, the microaneurysms (hyperreflective spots marked by orange arrows) 
were not highlighted, which means this biomarker was not utilized by the classifier.  (J) The 𝐵𝐴𝑀ା/ି is the difference 
between (G) and (F) after Gaussian filtering (Eq. 18). The red highlighted areas also focus on fluids, and no green 
highlighted area is shown, indicating that the network did not learn separate fluid features. This is anatomically 
accurate, since unlike NPA (which is non-pathologic in the foveal avascular zone) all retinal fluid is pathologic. 

To demonstrate how our BAM could help detect biased classifiers 5 rectangular artifacts were added to both the 

OCTA and OCT channels of all the referable DR scans. In the training, the classifier was forced to utilize the artifacts 

to make predictions, thereby introducing bias into the classifier output. Our BAM network trained on this biased 

classifier was able to successfully highlight the artifactual features (Fig. 6.7). The highlighted artifacts (Fig. 6.7(B) 

and 6.7(E)) show that the clinical biomarkers were not utilized by the biased classifier, despite it reaching 100% 

accuracy. The 𝐵𝐴𝑀ା/ି (Fig. 6.7(C) and 6.7(F)) reveals how the biased classifier utilized the artifacts. In addition, 

these artifacts could be much less obvious in a real-world application (such as Fig. 6.7(D)). 
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Figure 6.7: BAMs for a correctly predicted referable DR scan based on a biased classifier. (A) Superficial vascular 
complex en face maximum projection with added artifacts. (B) OCTA channel of the 𝐵𝐴𝑀௦ which only highlighted 
the classifier-utilized artifacts. (C) OCTA channel of the 𝐵𝐴𝑀ା/ି  without coverage of input. (D) En face mean 
projection over the inner retina with added artifacts. (E) The OCT channel of 𝐵𝐴𝑀௦ which only highlighted the 
classifier-utilized artifacts. (F) OCT channel of the 𝐵𝐴𝑀ା/ି without coverage of input. 

To demonstrate the advantages of the BAM generation framework, we compared its output to gradient-based [112], 

propagation-based [165], and CAM-based methods [71] (Fig. 6.8). Compared to the attention maps generated by these 

methods in referable DR scans, the BAMs showed sharper distinctions between significant and insignificant regions 

for decision making, highlighted features at a higher resolution, and indicated that the classifier could distinguish 

different features. In addition, the BAM framework could separately highlight the important features in en face OCTA 

and structural OCT rather than blending them together. This improves interpretability since the features the network 

is trying to learn do not necessarily overlap in the separate channels. For example, NPA does not always overlap with 

diabetic macular edema. Especially for graders reviewing the images, if structural OCT and OCTA features are not 

separated it may be unclear if healthy regions in one channel are being misinterpreted as pathologic, or if the pathology 

is in the other channel. However, gradient-based, CAM-based, and propagation-based methods all highlighted similar 

regions between two different channels (Fig. 6.8). Several NPAs were ignored in the OCTA channel. In addition, 

small retinal fluids, which were highlighted by our BAMs, were also ignored by these three attention maps (marked 

by orange arrows in Fig. 6.8(B)). 

In non-referable DR scans our BAM still highlighted a sharp foveola because due to the classifier needing to 

segment non-pathological NPA in the foveal avascular zone. Since this feature exists in both referable and non-

referable classes, it is also highlighted in the non-referable case by the BAM (Fig. 6.8(C)). The gradient-based and 

CAM-based maps of the non-referable class highlighted similar areas compared to the maps for the referable DR class, 
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which means their highlighting was incorrect in non-referable DR class. The propagation-based method correctly 

highlighted the surrounding areas of foveola, but the highlighting was inaccurate since areas without highlighting were 

much larger than the foveola. 

 

Figure 6.8: Comparison between the BAM generation framework and three other prominent attention maps (gradient, 
propagation, and class activation) [71, 112, 165]. The biomarkers column shows non-perfusion area (NPA, marked 
by cyan) in OCTA channel and retinal fluid (marked by magenta) in the structural OCT channel, respectively, both 
segmented using previously reported deep learning methods [180, 181]. Compared to the other three attention maps, 
our BAMs accurately highlight each classifier-selected biomarker at higher resolution and highlighted just the 
classifier-selected biomarkers. In addition, the normal tissues (such as vessels between NPAs) that were not selected 
by the classifier were not highlighted by our BAMs. (A) Results based on a referable DR case without diabetic macular 
edema (DME). (B) Results based on a referable DR case with DME. Small fluids were sharply highlighted by the 
BAMs (marked by orange arrows). (C) Results based on a non-referable DR case. The BAM highlighted a sharp 
foveola because our BAM would always highlight the areas which were learned as referable DR biomarkers by the 
classifier. The gradient-based and CAM-based maps of the non-referable class highlighted similar areas compared to 
the maps of referable DR class, which means their highlighting was incorrect in non-referable DR class. The 
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propagation-based method correctly highlighted the surrounding areas of foveola, but the highlighting was inaccurate 
since areas without highlighting were much larger than the foveola. 

6.6.3 Quantitative analysis 

To compare our BAM with the other three attention maps quantitatively, the F1-score, IoU, precision and recall 

were calculated between the segmented biomarkers and binary masks of each attention map (Table 6.3). The binary 

mask of each map was generated using threshold mean + std × h on all positive values. For each attention method, 

the threshold h was selected based on the highest average F1-score. The OCTA channels of each attention map were 

compared with segmented NPAs. On this channel, our BAM achieved significantly higher performance than the other 

three attention maps (Table 6.3). On the OCT channels, which were compared with segmented fluids, our BAM still 

achieved higher performance based on most measurements. Only recall for fluids was lower than the other methods. 

But the higher precision and lower recall of the BAM actually demonstrate that our method mostly focused on the part 

of the DR biomarkers which were utilized by the classifier while ignored the healthy tissues. The lower precision and 

higher recall of these established attention maps can be attributed to the fact that they highlighted a large area which 

included more healthy tissues than DR biomarkers, which is not clinically meaningful. In addition, all four attention 

maps achieved higher performance on the OCTA channel than the OCT channel, which means the classifier was more 

focused on the NPAs rather than fluids. 

Table 6.3: Quantitative comparison 
Methods Gradient Propagation CAM BAM 
Inference time (s/scan) 0.10 0.07 0.05 0.07 

F1-score 
NPAs 0.39 ± 0.07 0.42 ± 0.08 0.44 ± 0.09 0.63 ± 0.09 
Fluids 0.10 ± 0.15 0.11 ± 0.17 0.11 ± 0.17 0.13 ± 0.20 

IoU 
NPAs 0.24 ± 0.05 0.27 ± 0.06 0.29 ± 0.07 0.47 ± 0.09 
Fluids 0.06 ± 0.10 0.07 ± 0.12 0.07 ± 0.12 0.09 ± 0.14 

Precision 
NPAs 0.40 ± 0.08 0.40 ± 0.11 0.46 ± 0.10 0.58 ± 0.15 
Fluids 0.07 ± 0.11 0.08 ± 0.15 0.08 ± 0.13 0.20 ± 0.31 

Recall 
NPAs 0.41 ± 0.14 0.48 ± 0.12 0.46 ± 0.15 0.72 ± 0.07 
Fluids 0.54 ± 0.34 0.62 ± 0.35 0.54 ± 0.36 0.21 ± 0.29 

Based on the generated BAMs (Fig. 6.6 and 6.8, Table 6.3), the interpretability of the DR classifier can be 

summarized as follows. First, only parts of the NPA and fluid regions were utilized by the classifier (Fig. 6.6 and 6.8). 

Other DR-related biomarkers (such as microaneurysms, Fig. 6.6(I)) were not utilized by the classifier. Second, 

pathological NPAs were correctly differentiated from the foveal avascular zone by the classifier (Fig. 6.6(E)). Third, 

the classifier utilized the foveola in OCT channel even though this dark region was not caused by fluids (BAMs in 
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Fig. 6.8(A)). Lastly, more NPAs were utilized than fluid areas in the decision making of the classifier (Fig. 6.6 and 

6.8, Table 6.3). 

6.6.4 Biomarkers analysis 

As sanity checks, qualitative and quantitative analyses above demonstrated that our BAM could provide sufficient 

interpretability to a DR classifier based on OCT/OCTA. To find all the biomarkers which could contribute to referable 

DR diagnosis, the BAMs were also generated for two classifiers (0.75 and 0.71 kappas) trained based only on the 

OCTA and OCT scans, respectively (Fig. 6.9). In the OCTA scans, compared to the DR classifier trained with two 

channel inputs, the BAMs also highlighted most of the NPAs but with basically equal intensity (Fig. 6.9(D)), which 

means prediction contributions from the NPAs outside the foveola were improved when OCTA was the only input. In 

addition, small parts of the vessels with higher intensities were also highlighted (Fig. 6.9(E)). In the OCT scans, 

compared to the OCT channel of Fig. 6.7(B), all the fluid and other hyperreflective regions were highlighted by the 

BAMs (Fig. 6.9(I)). In addition, hyperreflective spots which were not highlighted before were also highlighted this 

time (Fig. 6.9(J)) because referable DR could not be detected only based on fluid. In summary, the NPAs, fluid, and 

abnormal hyperreflective spots (could be exudation, calcification, and microaneurysm) could all contribute to the 

deep-learning-aided DR diagnosis, which is consistent with clinical findings. In addition, some vessel parts with high 

intensity, hypo-reflective areas without fluids, and hyperreflective spots without pathologies were also highlighted by 

the BAMs. The highlighting of these non-clinical biomarkers may be caused by the imperfect classifiers or potential 

correlations that have not been found. 
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Figure 6.9: BAMs generated for two DR classifiers trained based only on the OCTA and OCT scans, respectively. 
(A) Superficial vascular complex en face maximum projection of OCTA. (B) The forged main generator output. (C) 
Segmented non-perfusion area (NPA) based on a previously reported deep learning method [180]. (D) The 𝐵𝐴𝑀௦ 
is the absolute difference between (B) and (A) after Gaussian filtering (Eq. 17). The highlighted areas are similar to 
the segmented NPA in (C). (E) The 𝐵𝐴𝑀ା/ି is the (non-absolute) differences between (B) and (A) after Gaussian 
filtering (Eq. 18) Except to the NPAs highlighted by red (positive values), parts of the vessels of high intensities were 
highlighted by green (negative values). (F) En face mean projection over the inner retina of OCT. (G) The forged main 
generator output. Hypo-reflective fluids and hyperreflective spots in (F) were both changed typical reflectivity values. 
(H) The inner mean projection of the segmented fluid based on a previously reported deep learning method [181]. (I) 
The 𝐵𝐴𝑀௦ is the absolute difference between (G) and (F) after Gaussian filtering (Eq. 17).  (J) The 𝐵𝐴𝑀ା/ି is the 
difference between (G) and (F) after Gaussian filtering (Eq. 18). The red highlighted areas focus on fluids, and green 
areas focus on abnormal hyperreflective spots. 

6.6.5 Ablation experiments 

In the proposed framework, both 𝑀ା/ି  and 𝐿  losses were used to ensure that the BAM framework only 

highlighted the classifier-utilized biomarkers. But the use of these two losses also reduced the computational efficiency. 

To explore its merit, we compared BAMs generated from our proposed framework and its three variations. The first 

variation was trained only based on 𝐻ି, which means no non-referable DR data or the assistant generator were used. 

The second variation was trained based on 𝐻ି and 𝐿, which means no preserved output was generated. The third 

variation was trained based on 𝐻ି and 𝑀ି, which means no assistant generator was used. Except for the BAMs 

generated from our proposed framework, the BAMs of the three variations all highlighted features not related to DR 

pathology such as normal microvasculature and large vessels (marked by blue arrows in Fig. 6.10). In addition, the 

foveal avascular zone could not be distinguished from the pathological NPAs in the 𝐵𝐴𝑀ା/ି generated with these 

three training variations (Fig. 6.10). 

 

Figure 6.10: BAMs generated in the ablation experiments. Large vessels highlighted by the three variations are 
marked by blue arrows. (A) Segmented non-perfusion areas and fluids. (B) The 𝐵𝐴𝑀ା/ି generated without non-
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referable DR data and assistant generator (loss: 𝐻ି). (C) The 𝐵𝐴𝑀ା/ି  generated without preserved output (loss: 
𝐻ା/ି + 𝐿). (D) The 𝐵𝐴𝑀ା/ି generated without the assistant generator (loss: 𝐻ି + 𝑀ି). (E) The 𝐵𝐴𝑀ା/ି generated 
based on proposed framework (loss: 𝐻ା/ି + 𝑀ା/ି + 𝐿). 

6.7 Discussion 

We proposed a BAM generation framework to aid in the interpretation of deep-learning-aided DR diagnosis. The 

core design concept of our framework is based on the recognition of unique requirements of DR diagnosis compared 

to non-medical image classification. By designing around this principle, we implemented a framework that enables 

visualization of specific biomarkers, rather than highlighting shared features between non-referable and referable 

OCT/OCTA images, which are irrelevant for verifying DR classifier outputs. The framework consists of two U-shaped 

generators (a main and an assistant generator), and was trained using generative adversarial learning. The BAMs 

clearly highlight biomarkers utilized by the classifier, which facilitate identification of clinically recognized pathology. 

The 𝐵𝐴𝑀ା/ି can also distinguish multiple features in the same image. To the best of our knowledge, the proposed 

BAM generation framework is the first interpretability method specifically designed for deep-learning-aided DR 

classifiers based on both OCT and OCTA. Based on both qualitative and quantitative comparisons between the BAM 

and attention maps generated by other methods our framework achieved state-of-the-art performance in providing 

interpretability to a DR classifier based on OCT and OCTA.  

Existing interpretability methods were designed for non-medical image classification and produce attention maps 

that are not necessarily useful for validating classifier decision making in a medical context like DR diagnosis (Fig. 

6.6). A lack of interpretability in medical deep-learning classifiers could lead to ethical and legal challenges, and as 

such a heuristic method that can provide sufficient interpretability for deep-learning classifiers is now recognized as 

an urgent need [29-31]. It is difficult to investigate bias if the reasons for the classifier’s decisions are unclear [29, 30]. 

In part to address these concerns, the European Union’s General Data Protection Regulation law requires that 

algorithm decision-making be transparent before it can be utilized for patient care [31, 185]. 

To evaluate the performance of our BAM, the DR classifier was forced to learn and utilize NPA and fluids which 

were two important pathologies (clinical biomarkers) for DR diagnosis. Among them, NPA is a biomarker closely 

correlated to ischemia which is a critical consequence that can be found in the early stage of DR [3, 18, 180]. Fluid is 

a biomarker closely correlated to DME which is the most common cause of vision loss in DR [3, 181]. In this study, 

the ground truth NPA and fluid were segmented by previously proposed deep learning methods, respectively [180, 
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181]. However, these two segmentation methods have no correlation with the interpretability; they were designed to 

segment all the areas with NPA/fluids no matter whether these clinical biomarkers areas were utilized by the classifier 

or not. (For example, the fluid segmentation method would identify fluid outside of the macula even though this is 

subclinical feature for DME.) Only our BAM could provide sufficient interpretability to a DR classifier by accurately 

highlight the classifier-utilized biomarkers. Clinicians could then verify whether these classifier-utilized biomarkers 

are clinical biomarkers or not. 

In addition to the commonly used attention maps with only positive values (𝐵𝐴𝑀௦), we also generated 𝐵𝐴𝑀ା/ି 

which separating the positive and negative highlighted biomarkers. There are two major significances of generating 

𝐵𝐴𝑀ା/ି. Firstly, we could separate the biomarkers that were differently understood by the classifier. Especially the 

adjacent biomarkers like foveal avascular zone (marked by green in Fig. 6.6(E)) and surrounded pathological NPAs 

(marked by red in Fig. 6.6(E)), and hypo- and hyper- reflective spots (marked by red and green in Fig. 6.9(J), 

respectively). Secondly, with 𝐵𝐴𝑀ା/ି, we could better understand how a biomarker was learned and utilized by the 

classifier. The highlighted areas in Fig. 6.6(E) shown the classifier has learned what the anatomical structure near 

fovea in a normal eye should be. The highlighted areas shown in Fig. 6.7(C) and 6.7(F) told us the classifier not only 

learned the intensity of these areas in a negative case (without rectangle artifacts) should be lower (much more green 

than red), but also learned the intensity in these areas of a negative case should not be even (have both green and red). 

Generative adversarial learning has been used in several methods to generate pseudo-healthy (corresponding to 

forged negative in our study) images [186-189]. However, compared to our BAM framework, the different maps 

generated by these methods cannot be used to provide interpretability to a DR classifier. Firstly, because these methods 

were trained based on the ground truth labels using several discriminators, which means their generation results only 

correlated to the data set and could have no correlation with the classifier. Secondly, they only focused on the detection 

of each pathology. But a DR classifier may not utilize all the pathologies if only a subset of was sufficient for the 

diagnostic task. This appears to be the case with our classifier, which largely ignored pathology like hyper-reflective 

foci or microaneurysms. On the contrary, our framework was trained to only remove the classifier-utilized biomarkers 

from input positive images by using predicted labels without any discriminator. Therefore, compared to previously 

proposed pseudo-healthy image generation methods, only our framework could be used to provide adequate 

interpretability to a DR classifier. 



89 
 

Technically, the cycle-consistency generative adversarial learning strategy was used to train our framework [149]. 

However, compared to the original architecture and training protocol, our framework had several innovations. Firstly, 

the two discriminators were replaced by a DR classifier that will be interpreted. This design means the framework had 

the ability to learn provide a heuristic for interpreting the DR classifier. Secondly, the model selection was based on 

the loss function of only one generator (the main) since our goal was to highlight all the classifier-utilized biomarkers 

that only belong to referable DR. This design allowed us to select the main generator with highest performance. 

Thirdly, the generator output was calculated as the sum of input and Tanh output with zero initialization. This design 

avoided changes of the biomarkers which were not utilized by the classifier in the beginning of the training. 

Though our BAM generation framework was only evaluated on an OCT/OCTA-based DR classifier, it can be 

easily transferred to interpretability tasks for other disease classifiers. For a binary disease classifier, the main 

generator always carries inputs to forged negative outputs, and vice versa for the assistant generator. For a single 

disease classifier which classifies each input to 𝑆 (𝑆 ≥ 3) severities, overall 𝑆 − 1 BAMs are needed to provide 

sufficient interpretability to the whole classifier (not just the diagnosis of one severity). Each BAM is generated 

between two adjacent severities by respectively combing all lower and higher severities as one class. Alternatively, 

for a multiple disease classifier (e.g. a system that diagnoses DR and age-related macular degeneration) a BAM for 

each disease can be generated between the selected disease and normal class. 

In addition to providing interpretability to disease classifiers, our BAM could also facilitate identification of new 

biomarkers and assessment of pharmacological impact via medical imaging. For example, if a disease classifier were 

trained on an imaging modality in which the disease is not well characterized the generated BAM could indicate 

features that should be explored. In drug development, for a classifier trained to classify the cases before and after the 

treatment, the generated BAM could highlight all the changes caused by the new drug. 

Unlike other interpretability methods, our BAM generation framework uses deep learning networks to interpret 

another deep learning network, which leads to its own questions about interpretability. For networks designed for 

classification or segmentation, the interpretability issue can be described as how the classification or segmentation 

results are acquired. In medical image analysis, the concern for interpretability can be further described as whether 

the clinically meaningful biomarkers are used by the network to make decisions. However, the training target of our 

framework is generating an output which can be classified as negative by the trained classifier from a positive input. 
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The interpretability issue in this context can be described as asking how the output is generated to achieve the desired 

classification, and asking which biomarkers correlate with classifier decision making. The BAM apparently improved 

interpretability by highlighting the biomarkers that were involved in changing the output of the trained classifier. 

Therefore, our BAM generation framework is self-interpreted and can be used to provide interpretability to deep-

learning-aided disease classifiers. 

Though our BAM could accurately highlight the classifier-utilized biomarkers and was sensitive to the potential 

interpretability changes, the anatomical structures of the forged outputs still look different from real data. In a future 

study, we will modify our BAM to not only highlight the classifier-utilized biomarkers but also generate the forged 

output with similar anatomical structure of the real data. 

6.8 Conclusion 

We proposed a BAM generation framework which can be used to provide interpretation of deep-learning-aided 

DR classifier. The BAMs demonstrated here accurately highlighted different classifier-utilized biomarkers at high 

resolution, which enable quick review by image graders to verify whether clinically meaningful biomarkers were used 

by the classifier. Our BAM generation framework can improve the clinical acceptability and real-world applications 

for deep-learning-aided DR classifiers. 
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7 Future Studies 

In this dissertation, we proposed 5 systems for automated DR diagnosis based on OCT and OCTA using deep 

learning techniques. The first system achieved competitive performance for retinal layer segmentation at the ONH 

using a customized U-Net and a multi-weight graph search algorithm [32]. The second 2D multi-level DR 

classification system, compared with current deep learning architecture, achieved the highest DR classification 

performances by using the proposed DcardNet architecture [33]. The third 3D multi-level DR classification system 

achieved specialist-level performance in the detection of both referable and vision threatening DR [34]. The fourth 

multi-eye-disease detection system was the first deep learning classifier which could diagnose DR, AMD and 

glaucoma at the same time [35]. The final interpretability system was the first interpretability method specifically 

designed for DR classifiers and provided clinically meaningful interpretability to DR classifiers [36].  

To improve the performance of our deep-learning-aided DR diagnostic system, future studies will be done mainly 

on the data set and network architecture aspects. 

Data set. Each neural network in the DR diagnostic system will be redeveloped on larger data sets to improve 

generalization. The current performance of this system was limited by the depth and breadth of the development data 

set. To enhance the applicability of the system for complex real-world clinical scenarios, the new data set should be 

improved in three ways. Firstly, to generalize the system to inputs scanned on different OCT devices, the data set 

should include the OCT volumes scanned on other devices with different scanning protocol. Secondly, to empower 

the system to differentiate DR from eye diseases not currently included, the data set should include OCT volumes 

scanned from patients with other eye diseases. Finally, to enrich the DR-related information that can be learned by the 

system, the data set should include OCT volumes scanned on wider field of view which includes other regions of the 

retina. One of the big challenges with contemporary AI approaches lies in bridging the gap between working with 

small, curated datasets and functioning effectively in real-world clinical practice. Improving the performance of each 

neural network based on deeper and wider data sets could enable the DR diagnostic system to work on different clinical 

settings around the world. 

Network architecture. Given the rapid evolution of AI, keeping the proposed system up to date with the latest 

techniques is crucial for preserving its relevance. The core network of each module will be refined with state-of-the-

art AI-techniques, respectively. First, the customized U-Net in the preprocessing module will be modified based on 
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attention mechanism which is widely used in transformer networks [190]. The convolutional layer can only capture 

the local information of the input and may ignore some global correlations. By using the attention mechanism, the 

modified U-Net can encode and decode the inputs based on both local features and global correlations between 

different regions (e.g., some pathologies like edema are critical at the macula but could be ignored elsewhere). Second, 

in addition to the attention mechanism, the classifiers in the modules (ii), (iii), and (iv) will be modified based on both 

Bayesian deep learning and position embedding [190, 191]. By using Bayesian deep learning techniques, a confidence 

score can be generated for each diagnostic result. This confidence score can improve the applicability of the DR 

diagnostic system in the clinics. The human verification can mainly focus on the diagnostic results with low confidence 

scores, which can improve both time and cost efficiencies for the whole DR screening process. By using position 

embedding, the classifiers can be sensitive to the location of similar features. In a pure CNN, similar features in 

different positions are encoded in the same way, which may negatively impact both performance and interpretability. 

With the position embedding used in the transformer, features from different positions can be differentiated based on 

weights added on different positions of the inputs. Third, the BAM generation framework in the last module will be 

modified to generate the forged output with similar anatomical structure as the real data (rather than the artificial 

disruptions such as dots that are produced by the current iteration). Except for the transformer, state-of-the-art 

generative AI techniques like variational autoencoder and stable diffusion will be used in the modified BAM 

generation framework [192-194]. 
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8. Conclusion 

This dissertation presented 5 deep learning systems to achieve automated and interpretable DR diagnosis based on 

OCT and OCTA. The combination of the proposed systems achieved state-of-the-art performance in multi-level DR 

diagnosis and provide clinical interpretability. The 5 systems respectively are: (i) a retinal layer segmentation system 

based on U-Net and multi-weight graph search [32], (ii) a 2D multi-level DR classification system which only needs 

en face projections of OCT and OCTA as inputs, (iii) a 3D multi-level DR classification system which can use the 

original OCT and OCTA volumes as inputs (iv) a multi-eye-disease detection system focused on the identification of 

DR from healthy eyes and other eye diseases, , and (v) an interpretability system which can highlight the biomarkers 

utilized in the systems (ii), (iii), and (iv) on an attention map for each input. In real-world practice, the proposed deep 

learning systems could reduce vision loss and lower clinical burden by providing time-efficient, cost-efficient, and 

clinically explainable DR diagnosis. 
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