
 

 
 
 
 
 
 

Quantifying the single-cell spatial landscape of cancer 

 

By 

Katie E. Blise 

 

A DISSERTATION 

 

Presented to the Department of Biomedical Engineering 

and the Oregon Health & Science University School of Medicine 

 

in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy 

 

 

March 2024 

  



 
 

i 

Table of Contents 

Table of Contents ........................................................................................................................... i 

List of Figures ............................................................................................................................... iv 

List of Tables ................................................................................................................................. vi 

List of Abbreviations ................................................................................................................... vii 
Acknowledgements ...................................................................................................................... ix 

Abstract .......................................................................................................................................... x 

Chapter 1: Introduction ............................................................................................................... 1 

1.1 Tumor microenvironment ..................................................................................................... 1 
1.1.1 Brief overview ................................................................................................................ 1 
1.1.2 TME immune contexture ................................................................................................ 2 
1.1.3 Clinical relevance .......................................................................................................... 5 
1.1.4 Head and neck squamous cell carcinoma ...................................................................... 7 
1.1.5 Breast cancer ................................................................................................................. 8 
1.1.6 Pancreatic ductal adenocarcinoma ............................................................................... 9 

1.2 Multiplex immunohistochemistry ....................................................................................... 11 
1.2.1 Brief overview .............................................................................................................. 12 
1.2.2 Challenges to mIHC data interpretation ..................................................................... 13 

1.3 Quantitative analyses of the TME ....................................................................................... 15 
1.3.1 Algorithms to quantify TME single-cell spatial landscape .......................................... 15 
1.3.2 Machine learning to link TME biology to clinical parameters .................................... 18 

1.4 Contributions ...................................................................................................................... 23 

Chapter 2: Quantifying the single-cell spatial landscape of head and neck cancer .............. 25 

2.1 Abstract ............................................................................................................................... 25 

2.2 Introduction ......................................................................................................................... 26 

2.3 Results ................................................................................................................................. 28 
2.3.1 Single-cell proteomic analyses reveal varying degrees of tumor heterogeneity .......... 29 
2.3.2 TiME cellular composition altered by therapy ............................................................ 34 
2.3.3 Quantifying the spatial organization of neoplastic and immune cells ......................... 38 
2.3.4 Spatial compartmentalization associated with longer progression free survival ........ 40 
2.3.5 Spatial architecture associated with cellular composition .......................................... 40 
2.3.6 αSMA+ mesenchymal spatial cellular neighborhoods reveal spatial landscapes 
associated with progression free survival advantage ........................................................... 44 

2.4 Discussion ........................................................................................................................... 49 

2.5 Methods............................................................................................................................... 54 
2.5.1 Multiplex immunohistochemistry data generation ....................................................... 54 



 
 

ii 

2.5.2 Tumor heterogeneity analyses ...................................................................................... 55 
2.5.3 TiME compositional change clustering analysis ......................................................... 56 
2.5.4 Mixing score analysis ................................................................................................... 56 
2.5.5 Functional marker bootstrapping analyses ................................................................. 57 
2.5.6 Cellular neighborhood clustering analyses ................................................................. 57 
2.5.7 Statistics ....................................................................................................................... 58 
2.5.8 Survival analyses ......................................................................................................... 59 
2.5.9 Data availability .......................................................................................................... 59 
2.5.10 Code availability ........................................................................................................ 59 

2.6 Supplementary Data ............................................................................................................ 61 

Chapter 3: Comparing natural killer cell function and spatial organization across breast 
cancer subtypes ........................................................................................................................... 65 

3.1 Abstract ............................................................................................................................... 65 

3.2 Introduction ......................................................................................................................... 66 

3.3 Materials and methods ........................................................................................................ 68 
3.3.1 Clinical samples ........................................................................................................... 68 
3.3.2 Multiplex immunohistochemistry and image acquisition ............................................ 69 
3.3.3 ROI selection and image processing ............................................................................ 70 
3.3.4 Cellular neighborhood clustering analysis .................................................................. 71 
3.3.5 Statistical analysis ....................................................................................................... 71 
3.3.6 Data availability .......................................................................................................... 72 
3.3.7 Code availability .......................................................................................................... 72 

3.4 Results ................................................................................................................................. 72 
3.4.1 Immune cell context in HER2- and HER2+ human breast cancer ............................... 72 
3.4.2 Paucity of NK cells in breast cancer specimens independent of HER2 status ............ 75 
3.4.3 NK cells lack indicators of cytotoxicity ....................................................................... 76 
3.4.4 The majority of NK cells in tumor stroma were identified as CD56- NKp46+ NK cells
............................................................................................................................................... 77 
3.4.5 Single-cell spatial organization of NK cells revealed distinct NK cell phenotypes 
depending on their proximity to tumor cells and HER2 status ............................................. 79 
3.4.6 PanCK+ neoplastic cells exhibit extensive heterogeneity in both HER2- and HER2+ 
specimens and retain high HLA class I expression in close proximity to NK cells .............. 82 
3.4.7 Distinct spatial cellular neighborhoods surrounding NK cells are associated with 
HER2 biology ........................................................................................................................ 85 

3.5 Discussion ........................................................................................................................... 89 

3.6 Supplementary Data ............................................................................................................ 95 

Chapter 4: Interrogating the single-cell spatial landscape of T cells in pancreatic cancer 106 

4.1 Abstract ............................................................................................................................. 106 

4.2 Introduction ....................................................................................................................... 107 

4.3 Materials and methods ...................................................................................................... 110 
4.3.1 Tissue acquisition ........................................................................................................ 110 



 
 

iii 

4.3.2 Multiplex immunohistochemistry image acquisition and analysis ............................. 110 
4.3.3 T-cell phenotyping ....................................................................................................... 112 
4.3.4 TME feature quantifications ....................................................................................... 113 
4.3.5 Machine learning classifiers and feature importance analyses .................................. 114 
4.3.6 Recurrent cellular neighborhood analysis .................................................................. 116 
4.3.7 Statistics ...................................................................................................................... 116 
4.3.8 Data availability ......................................................................................................... 116 
4.3.9 Code availability ......................................................................................................... 116 

4.4 Results ............................................................................................................................... 117 
4.4.1 Deep phenotyping of T cells within the PDAC TME using mIHC .............................. 117 
4.4.2 Interrogating cell states and spatial interactions within the PDAC TME .................. 119 
4.4.3 ML  models classify αnti-CD40-treated TMEs as having reduced T-cell exhaustion 
phenotypes ........................................................................................................................... 122 
4.4.4 Long disease-free survivors have enhanced T-cell effector functionality following anti-
CD40 therapy ...................................................................................................................... 126 
4.4.5 T-cell spatial organization correlates with DFS after anti-CD40 therapy ................ 129 

4.5 Discussion ......................................................................................................................... 133 

4.6 Supplementary Data .......................................................................................................... 141 

Chapter 5: Discussion ............................................................................................................... 181 

5.1 Summary ........................................................................................................................... 181 

5.2 Common themes ............................................................................................................... 181 

5.3 Clinical significance .......................................................................................................... 185 

5.4 Limitations ........................................................................................................................ 187 

5.5 Future directions ............................................................................................................... 189 

5.6 Concluding remarks .......................................................................................................... 193 

References .................................................................................................................................. 195 
 
  
 
 
  



 
 

iv 

List of Figures 

Figure 1.1: TME overview. ............................................................................................................ 2 
Figure 1.2: mIHC proteomics platform and computational image processing pipeline yield 
spatially resolved maps of TMEs. ................................................................................................. 13 
Figure 1.3: Overview of TME spatial quantifications. ................................................................ 18 
Figure 1.4: Overview of ML approaches. .................................................................................... 22 
Figure 2.1: Heterogeneity across patients and tumor regions. ..................................................... 33 
Figure 2.2: Tumor cellular composition changes following therapy. .......................................... 37 
Figure 2.3: Mixing score quantifies the spatial organization of tumors. ..................................... 43 
Figure 2.4: αSMA+ mesenchymal cellular neighborhood clustering. .......................................... 48 
Figure 2.5: Proposed model of primary HPV(-) HNSCC tumor-immune microenvironments. .. 53 
Supplementary Figure 2.1: Tumor heterogeneity assessed by mIHC assay. ............................. 61 
Supplementary Figure 2.2: Leukocyte functionality compared to mixing score. ...................... 63 
Supplementary Figure 2.3: αSMA+ cellular neighborhood distributions. ................................. 64 
Figure 3.1: Overview of identified cell types and human breast cancer specimens. ................... 74 
Figure 3.2: Immune cell contexture in HER2- vs. HER2+ breast cancer specimens. .................. 79 
Figure 3.3: Single cell analysis of NK cells results in distinct phenotypes related to the 
proximity to tumor cells and HER2 status. ................................................................................... 81 
Figure 3.4: Single cell analysis of neoplastic PanCK+ epithelial cells illustrate heterogeneity and 
high HLA class I expression in close proximity to NK cells. ....................................................... 84 
Figure 3.5: Cellular neighborhood clustering of NK cells. ......................................................... 89 
Figure 3.6: Summary of the NK cells’ spatial organization in the tumor microenvironments of 
two breast cancer cohorts. ............................................................................................................. 90 
Supplementary Figure 3.1: Sequential staining with the mIHC panel. ..................................... 95 
Supplementary Figure 3.2: Multiparameter cytometric image analysis to quantify the multiplex 
IHC. ............................................................................................................................................... 96 
Supplementary Figure 3.3: Intra- and interpatient heterogeneity in cellular composition of 
HER2- and HER2+ in cohort 1 (n=26). .......................................................................................... 97 
Supplementary Figure 3.4: Intra- and interpatient heterogeneity in cellular composition of 
HER2+ specimens in cohort 2 (n=30). .......................................................................................... 98 
Supplementary Figure 3.5: Single cell distance analysis of NK cells depicted per tumor 
specimen. ...................................................................................................................................... 99 
Supplementary Figure 3.6: NK cell density did not strongly correlate with leukocyte density in 
HER2+ tumor specimens. ............................................................................................................ 100 
Supplementary Figure 3.7: Cellular neighborhood clustering of NK cells. ............................ 101 
Figure 4.1: Deep phenotyping of T cells within the PDAC TME using mIHC. ........................ 119 
Figure 4.2: Interrogating cell states and spatial interactions within the PDAC TME. .............. 121 
Figure 4.3: ML models classify anti-CD40-treated TMEs as having reduced T-cell exhaustion 
phenotypes. ................................................................................................................................. 125 
Figure 4.4: Long disease-free survivors have enhanced T-cell effector functionality following 
anti-CD40 therapy. ...................................................................................................................... 129 
Figure 4.5: T-cell spatial organization correlates with DFS after anti-CD40 therapy. .............. 132 
Figure 4.6: Spatial features of T cells associated with anti-CD40 therapy and prolonged DFS in 
the PDAC TME. .......................................................................................................................... 136 



 
 

v 

Supplementary Figure 4.1: mIHC antibody staining to single-cell phenotyping. ................... 141 
Supplementary Figure 4.2: Feature importance analyses for treatment classifier models. ..... 143 
Supplementary Figure 4.3: Feature importance analyses for DFS model derived from anti-
CD40-treated IA regions. ............................................................................................................ 145 
Supplementary Figure 4.4: RCN distributions. ....................................................................... 146 
Figure 5.1: Recurrent cellular neighborhood analysis accurately identifies TLS in the HNSCC 
TME. ........................................................................................................................................... 191 
Figure 5.2: Streamlit dashboard enables interactive visualization of TME single-cell spatial 
analyses. ...................................................................................................................................... 193 
 
  



 
 

vi 

List of Tables 

Table 2.1: Patient and tumor characteristics. ............................................................................... 28 
Table 2.2: mIHC cell phenotype classification. ........................................................................... 29 
Table 2.3: Coefficient of variation. .............................................................................................. 30 
Supplementary Table 3.1: Patient and tumor characteristics of the two cohorts. .................... 102 
Supplementary Table 3.2: mIHC antibody information. .......................................................... 103 
Supplementary Table 3.3: Overview of cell counts and cell densities analyzed per specimen.
..................................................................................................................................................... 104 
Supplementary Table 3.4: Immune cell densities in tumor specimens grouped by tumor 
characteristics in cohort 1 and cohort 2. ..................................................................................... 105 
Supplementary Table 4.1: Statistical comparison between the Liudahl et al. original PDAC 
cohort and the selected subset used as Cohort 1 in this study. .................................................... 148 
Supplementary Table 4.2: Tissue area sampled per patient out of total tissue area resected per 
patient (in mm2). ......................................................................................................................... 148 
Supplementary Table 4.3: Table of antibodies used in mIHC panel. ....................................... 149 
Supplementary Table 4.4: Raw counts of cell states defined by mIHC gating strategy present in 
the dataset. ................................................................................................................................... 149 
Supplementary Table 4.5: Raw counts of T cells expressing each functionality barcode present 
in the dataset. .............................................................................................................................. 150 
Supplementary Table 4.6: Raw counts of cell-cell spatial interactions present in the dataset. 174 
  



 
 
vii 

List of Abbreviations 

2D two-dimensional 
3D three-dimensional 
anti-CD40 agonistic CD40 
αSMA alpha smooth muscle actin 
ADCC antibody-dependent cellular cytotoxicity 
APC antigen presenting cell 
AUC area under the receiver operating characteristic curve 
CAF cancer-associated fibroblast 
CAIX carbonic anhydrase IX 
CODEX co-detection by indexing 
CTLA-4 cytotoxic T-lymphocyte-associated protein 4 
DC dendritic cell 
DFS disease-free survival 
EN elastic net 
ER estrogen receptor 
FFPE formalin-fixed paraffin-embedded 
FISH fluorescence in situ hybridization 
GrzB granzyme B 
GVAX granulocyte-macrophage colony-stimulating factor vaccine 
H&E hematoxylin and eosin 
HER2 human epidermal growth factor receptor 2 
HNSCC head and neck squamous cell carcinoma 
HPV human papillomavirus 
IA immune aggregate 
ICB immune checkpoint blockade 
IFN T-cell secreted interferon 
IHC immunohistochemistry 
ILC1 innate lymphoid cells type 1 
IQR interquartile range 
KIR killer-cell immunoglobulin-like receptor 
KL Kullback-Leibler 
mAb monoclonal antibodies 
MIBI-TOF multiplexed ion beam imaging by time-of-flight 
mIHC multiplex immunohistochemistry 
ML machine learning 
NAP normal-adjacent pancreas 
NK natural killer 



 
 
viii 

OHSU Oregon Health & Science University 
OS overall survival 
PanCK pan-cytokeratin 
PCA principal component analysis 
PD-1 programmed death protein 1 
PD-L1 programmed death-ligand 1 
PDAC pancreatic ductal adenocarcinoma 
PFS progression free survival 
PR progesterone receptor 
RCN recurrent cellular neighborhood 
ROC receiver operating curve 
ROI region of interest 
RT room temperature 
SEM standard error of the mean 
SHAP Shapley Additive exPlanations 
SMOTE Synthetic Minority Over-sampling Technique 
T tumor 
TAS tumor-adjacent stroma 
TiME tumor-immune microenvironment 
TLS tertiary lymphoid structures 
TME tumor microenvironment 
TNBC triple negative breast cancer 
Treg regulatory T cell 

  



 
 

ix 

Acknowledgements 

I am extremely grateful for everyone who supported me in the pursuit of my degree. 
 

First, thank you to my mentor, Dr. Jeremy Goecks, for providing me with outstanding 
training and mentorship throughout my degree. Your feedback, patience, and unwavering support 
allowed me to grow as a scientist over the past five years, and I am grateful for the time and 
energy you put into helping me learn. 
 

To Dr. Lisa Coussens, thank you for taking a chance on me and welcoming me into your 
lab. You always made time for me, even when there seemed to be no time in your schedule, and 
you have continually advocated for me and my work. Thank you for your support—you have 
made me a better scientist. 
 

Thank you to Dr. Katelyn Byrne for your selfless support and guidance over the past two 
years. This work would not have been possible without your investment. Thank you for being 
willing to dive head-first into the computational analyses and for teaching me more immunology 
than I could have ever imagined. 
 

I would also like to extend my gratitude to the additional members of my dissertation 
advisory committee, Dr. Laura Heiser and Dr. Reid Thompson. Your guidance and feedback have 
helped shape my research and training for the better. 
 

Thank you to the members of the Goecks and Coussens labs for providing me with ideas 
and feedback on my work. To Sam Sivagnanam, thank you for imparting so much of your 
wisdom on me. None of this work would have been possible without you. 
 

Finally, I would like to thank my community for your steady support throughout this 
journey. Thank you to my parents and the rest of my family for always believing in me. To 
Claire, Anna, and Annie, thank you, thank you, thank you. You encouraged me, fed me, and kept 
things fun. You all are my home. Thank you to Julia, Molly, Anna, and Leslie for countless video 
calls, phone calls, and trips to Oregon. You’ve been there for me since before the start, and I am 
so grateful for each of you. To Ian, thank you for your friendship throughout this wild ride. I’ve 
appreciated having someone to turn to who is right there with me in this thing. To Lisa, Leah, 
Emery, and Shea, thank you for the outdoor adventures, dinner parties, and friendships. You all 
provided me with fun escapes from work and helped keep me grounded in this experience. 
Finally, to Whitney, you are my biggest cheerleader. Thank you for your endless encouragement 
and for never giving up on me. I am so lucky.  



 
 

x 

Abstract 

Cancer is among the leading causes of death worldwide, and there is a critical need to 

improve treatment strategies and clinical outcomes for patients. In addition to neoplastic cells, 

tumors also consist of varying types and quantities of stromal, endothelial, and immune cells, 

making them highly heterogeneous entities. This diverse ecosystem of cells, termed the tumor 

microenvironment (TME), is now widely appreciated for its important role in shaping tumor 

progression, response to therapy, and clinical outcome. Propelled by recently developed 

multiplex tissue imaging assays, which generate massive datasets involving phenotypic and 

spatially resolved maps of cells residing in a tissue sample, research has demonstrated that both 

the cellular composition and spatial organization of the TME are important determinants of 

clinical outcome for cancer patients. However, given the sheer magnitude of these datasets and 

TME biological complexity, the exact relationships among TME phenotypic, functional, and 

spatial aspects and various clinical endpoints are still poorly understood. Thus, computational 

analyses that interrogate the single-cell spatial landscape of TMEs are desperately needed to 

improve the clinical care of cancer patients. This dissertation aims to address this need by (1) 

quantitatively assessing single-cell spatial proteomics datasets generated by multiplex 

immunohistochemistry for three tumor types and (2) applying statistical and machine learning 

approaches to identify potential candidate biomarkers of various clinical parameters. First, head 

and neck squamous cell carcinomas (HNSCCs) were analyzed for their cellular heterogeneity, 

longitudinal changes following therapy, and spatial architecture. Immune, neoplastic, and 

mesenchymal spatial organizations associated with progression-free survival; these TME spatial 

aspects may be used as potential candidate biomarkers for future HNSCC patient stratification. 

Breast TMEs were then assessed specifically for their natural killer (NK) cell function and 
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spatial organization in the context of human epidermal growth factor receptor 2 (HER2) disease. 

NK cell proximity with neoplastic cells correlated with the expression of various functionality 

biomarkers on NK and neoplastic cells, as well as HER2 status. These results reveal potential 

immunosuppressive mechanisms in HER2+ breast TMEs, which could be targeted by new 

therapeutic interventions to improve outcomes for these patients. Finally, pancreatic ductal 

adenocarcinomas (PDACs) were assessed for T cell phenotypes, functions, and spatial 

organizations within the TME in the context of neoadjuvant immunotherapy. T cell exhaustion 

was reduced following immunotherapy use, and the presence of spatial neighborhoods of effector 

T cells located specifically in immune aggregates was associated with improved disease-free 

survival following immunotherapy. These results reveal important immunological features of the 

TME that could be leveraged to improve treatment strategies and clinical outcome for PDAC 

patients. Collectively, the work presented in this dissertation provides a roadmap for future 

quantitative analyses of highly complex spatial proteomics datasets. Importantly, the 

computational algorithms used here are applicable across single-cell spatial proteomics datasets 

and can be used to quantify the single-cell spatial landscape of additional TMEs, as well as other 

diseased or healthy tissues. Finally, future studies may leverage the immunological results 

presented herein to design new therapeutic interventions and biomarkers for patient 

stratifications to improve clinical outcomes for cancer patients.  
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Chapter 1: Introduction 

1.1 Tumor microenvironment 

1.1.1 Brief overview 

Cancer is characterized by the dysregulated proliferation of genetically altered cells, 

leading to the growth of malignant—and often deadly—tumors [1]. In many ways, cancer can be 

thought of as an evolutionary process whereby genetic alterations in mutated cells provide a 

survival advantage to the mutated cells over normal cells. However, it has become increasingly 

clear that beyond the genetic changes within the cancerous cells, the environment in which these 

cells reside also plays a significant role in determining how the cancer will progress [2]. 

This environment, known as the tumor microenvironment (TME), comprises a diverse 

collection of cells [3, 4]. Beyond the malignant neoplastic cells, TMEs contain structure-related 

cells, including mesenchymal and vascular endothelial cells. These cells are the building blocks 

for the stromal tissues that hold tumors together and the blood vessels that contribute to 

angiogenesis and hypoxia. TMEs also contain a wide assortment of immune cells, which play 

varying pro- or anti-tumorigenic roles within the TME. Beyond these broad cell lineages, each 

cell may express an array of functional markers that further differentiates it from cells of the 

same canonical classification. Combined with its phenotypic lineage, these functional markers 

help determine the specific role or ability of the cell in the TME. Finally, the spatial location of 

each individual cell within the TME further dictates the function of the cell, as cells 

communicate and affect each other’s abilities through spatial proximity [5]. Overall, TMEs are 

heterogeneous and complex ecosystems composed of thousands to millions of cells [6]. Each cell 

descends from a specific phenotypic lineage, serves a particular function, and is located within a 

coordinated spatial network of neighboring cells within the TME (Figure 1.1). 
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Figure 1.1: TME overview. Many types of cells expressing various functional markers are located in distinct 
spatial arrangements throughout the TME. This figure was created using BioRender.com. 
 
 
1.1.2 TME immune contexture 

Understanding the types, functions, and locations of the leukocytes, or immune cells, 

residing in the TME is of particular interest to cancer researchers. This is because tumors form, 

progress, and metastasize throughout the body, in large part, due to a failure in 

immunosurveillance [7]. Under homeostatic conditions, a healthy immune system continually 

surveilles the body for abnormal cells, tissue damage, and pathogens. Upon detection of these 

aberrations, immune cells destroy and/or remove the unhealthy cells, thus preventing their 

continued presence in the body. In the context of cancer, genetically mutated cells avoid 

detection and/or destruction by the immune system, resulting in the progression of neoplastic 

tissues into malignant tumors. Although not always attributed to the same mechanism, the 

general skirting of neoplastic cells past immune detection and destruction is now considered a 

“hallmark” of cancer [2]. As TMEs contain numerous immune populations, understanding which 

of these immune cells are capable of mounting an anti-tumor response with or without 
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therapeutic priming, versus which immune cells are complicit in, or even enable, tumor 

progression, can help inform future targeted therapies that leverage the immune system of the 

body to eradicate the tumor [8, 9]. 

All types of leukocytes with varying functions have been found within the TME, 

including cells from both adaptive and innate lineages. T cells are a critical adaptive immune cell 

population present in the TME [10]. From a rudimentary perspective, canonical CD8+ T cells and 

the majority of CD4+ T helper cells predominately exert anti-tumor functions in the TME and 

help identify and kill neoplastic cells [11, 12], while regulatory T cells (Tregs)—which are 

characterized by the expression of both CD4 and FOXP3—contribute to an immunosuppressive 

TME [13, 14]. However, in reality, the T cell phenotypic landscape is much more heterogeneous 

than this [15-18]—many CD8+ T cells and CD4+ T helper cells in the TME are dysfunctional 

and/or exhausted due to chronic stimulation and signals from nearby cells [19-22], and certain 

subsets of Tregs counterintuitively possess anti-tumor functions [23]. Additionally, the degree of 

T cell infiltration into TMEs varies based on tumor type and signals from the collection of cells 

present in the TME, among other factors [24, 25]. Thus, deeper investigations into the amounts 

and phenotypes of T cells present, their spatial locations and cellular neighbors within the TME, 

and their associated functions are needed to better understand how to harness the full cytotoxic 

potential of T cells against tumors. 

B cells are another adaptive immune population present in TMEs [26]. While certain 

subsets of B cells may be pro-tumorigenic [27-29], B cells are often located in spatial clusters of 

immune cells, including tertiary lymphoid structures (TLS) [30], which are typically associated 

with anti-tumor functions [31-33]. Interrogation of the cells present in immune aggregates and 

TLS may enable improved understanding of how B cells contribute to anti-tumor immunity. 
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Bridging the adaptive and innate immune systems are natural killer (NK) cells [34]. NK cells are 

potent cytotoxic leukocytes, but they are often present in limited numbers within the TME [35, 

36]. Additional research into the types of TMEs NK cells infiltrate and how their surrounding 

cellular neighbors in the TME impact their function may reveal new mechanisms to further 

leverage the cytotoxic powers of NK cells within the TME. 

While sometimes overlooked given their lack of memory of and specificity for neoplastic 

cells, cells of the innate immune system play pivotal roles in tumor progression [37]. These 

myeloid cells include dendritic cells (DCs), macrophages/monocytes, and granulocytes 

(neutrophils, basophils, eosinophils, and mast cells). DCs typically contribute to anti-tumor 

immunity in the TME by aiding in the detection of neoplastic cells. DCs present neoplastic 

antigen to T cells to help activate an effector T cell response against the tumor, and they are 

considered a major antigen presenting cell (APC) in the TME [38, 39]. Macrophages are also 

capable of presenting antigen to T cells and contributing to anti-tumor immunity [40]. However, 

more often, and especially in late-stage tumors, macrophages polarize away from an anti-

tumorigenic “M1-like” phenotype toward an “M2-like” phenotype, which is characterized by 

many pro-tumorigenic functions [41]. Unlike their M1-like counterparts, M2-like macrophages 

create a highly immunosuppressive TME and contribute to neoplastic cell proliferation, 

angiogenesis within the TME, and tumor metastasis [42]. Finally, granulocytes also fulfill varied 

and often opposing roles in the TME depending on the phenotype of the granulocyte, tumor type, 

tumor stage, and spatial proximity to other cells within the TME [43-45]. Granulocytes are 

characterized by the presence of granules inside the cell, which are released into the surrounding 

tissue as a defense mechanism. Neutrophils, which comprise a major subtype of granulocytes, 

are typically found to contribute to an immunosuppressive TME through the promotion of tumor 
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metastasis, among other functions [46, 47]. Comprising a much smaller subset of granulocytes 

found in the TME, the roles of basophils and eosinophils in the context of cancer are poorly 

understood [44, 48, 49]. Prior studies on the functions of basophils and eosinophils report 

conflicting results [43, 50], again highlighting the complexity of immune cell function in the 

TME. Finally, mast cells, which are tissue-resident granulocytes, have been shown to recruit 

other immune cells, spanning immunoreactive and immunosuppressive cells, to the TME, and 

they can also contribute to increased angiogenesis in the TME [51]. Thus, similar to the 

lymphocytes of the adaptive immune system, myeloid cells have diverse functions in the TME 

and can exert both pro- and anti-tumorigenic functions depending on a variety of circumstances. 

In summary, control versus progression of a tumor is due, in part, to the immune cells 

present in the TME. However, immune cells are highly heterogeneous in both their phenotypes 

and functions, making it challenging to fully assess the concerted role of the immune system for 

a given TME. Further, the cells surrounding the immune cells have a profound impact on the 

abilities of the immune cells present in the TME. Analyses that are capable of isolating and 

identifying the phenotype of each immune cell present in a TME, deducing its associated 

function, and also contextualizing its spatial location among other cells in the TME are needed to 

gain clarity on how TME immune contexture works to slow or accelerate tumor growth. 

 
1.1.3 Clinical relevance 

Just as the phenotypic composition and spatial organization of cells in the TME play a 

critical role in impacting tumor progression, TME cellular contexture also contributes to patient 

survival and regulating response to therapy [6, 8, 52-55]. From a purely compositional 

perspective, increased densities of CD8+  T cells have been associated with improved survival 

across several tumor types, including breast [56], colorectal [57], clear cell ovarian [58], and 
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prostate [59]. Conversely, presence of M2-like macrophages has been implicated in shorter 

survival times for head and neck [60], bladder [61], and breast [62] cancer patients. 

Incorporating both cellular density and spatial localization, the Immunoscore has been used over 

the past decade to aid in colorectal tumor staging [63]. Higher Immunoscores, which reflect 

increased presence of specific CD8+ T cells in the tumor core and invasive margin are associated 

with reduced rates of recurrence, while lower Immunoscores are associated with reduced CD8+ T 

cell infiltration and increased rates of recurrence [64]. Finally, the spatial organization of the 

TME alone has been associated with response to therapy and patient survival in several tumor 

types. For example, increased spatial proximity between cells involved in the programmed cell 

death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immunoregulatory checkpoint has 

been correlated with improved response to therapies targeting this checkpoint in Merkel cell 

carcinoma [65] and metastatic melanoma [66, 67], and specific TME cellular architectures were 

found to associate with survival for breast cancer patients [68] and several cancer types [52]. 

Beyond derivation of potential molecular biomarkers, interrogation of TME cellular 

contexture has also helped identify new targets for therapeutic interventions for cancer patients. 

Immune checkpoint blockades (ICBs) leverage knowledge of basic T cell immunology and TME 

immune contexture specifically, as they target various T cell regulatory pathways, such as the 

PD-1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) pathways [69]. PD-1 and 

CTLA-4 are receptors expressed on the surface of T cells, and when bound to their 

corresponding ligands, the effector function of the T cell is inhibited [70, 71]. This 

immunoregulatory mechanism, which exists under homeostatic circumstances to prevent 

autoimmunity, is hijacked by the cancer to block T cells from killing its own neoplastic cells. 

ICBs disrupt these inhibitory receptor/ligand bindings and remove the “brake” from T cells, thus 
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reinvigorating their ability to detect and kill neoplastic cells in largely antigen-dependent 

manners [72, 73]. ICBs have demonstrated unparalleled success for some patients, highlighting 

the power of harnessing the natural immune system of the body to fight tumors [74-76]. 

However, ICB success stories are limited, and the vast majority of cancer patients do not respond 

to these therapies [77], underlining our still naive understanding of TME complexity. 

As cancer and subsequent metastases are oftentimes lethal, there is a critical need to 

identify superior treatment strategies, as well as identify improved molecular biomarkers of 

recurrence likelihood, therapeutic response, and patient survival. Studies that interrogate TME 

cellular composition and spatial architecture have already enabled more personalized treatment 

regimens and better patient stratification approaches for certain cancers [78]. However, many 

cancer patients still have poor clinical outcomes, highlighting the need for continued 

investigation of these TMEs. 

 
1.1.4 Head and neck squamous cell carcinoma 

Head and neck squamous cell carcinomas (HNSCCs) arise from the mucosal epithelium 

lining the oral cavity, pharynx, and larynx [79]. Risk factors for developing this cancer include 

alcohol and tobacco use, as well as infection with human papillomavirus (HPV) [80]. Roughly 

890,000 new HNSCC cases are diagnosed per year, and 450,000 people die from HNSCC per 

year [80]. Global incidence is continuing to rise, and there is an urgent need to identify new 

treatments and improved molecular biomarkers of survival, response to therapy, and tumor 

progression. Investigation of head and neck TME cellular landscapes presents an opportunity to 

elucidate new targeted therapies and clinical biomarkers for HNSCC patients. 

HNSCC TMEs are remarkably heterogeneous, and the immune contexture of HNSCCs 

varies greatly depending on the HPV status of the tumor [81]. HPV-positive [HPV(+)] tumors 
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tend to have more tumor infiltrating lymphocytes than HPV-negative [HPV(-)] tumors, which are 

instead characterized by highly immunosuppressive TMEs [81]. This difference in TME immune 

contexture is thought to contribute to the discrepancy in survival outlook for patients with 

HPV(+) versus HPV(-) tumors. Patients with HPV(+) HNSCC tend to have better clinical 

outcomes—although still poor—with a 3-year overall survival (OS) rate of 34%, as compared to 

HPV(-) HNSCC patients, whose 3-year OS rate is only 19% [82]. 

Current standard of care for primary HNSCC involves surgery and adjuvant radiotherapy 

and/or chemotherapy [83]. ICBs that target PD-1 have also been approved for treatment of 

recurrent or metastatic HNSCC [84-86], yet prognosis has hardly improved—especially for 

HPV(-) HNSCC patients [87]. Thus, there is an even a more critical need to develop improved 

therapies for HPV(-) HNSCC patients in particular. While infiltrating immune cells are often 

present in limited numbers in HPV(-) HNSCC TMEs, understanding which immune cells do 

exist and how they may be suppressed by neighboring cells could inform new therapies that can 

convert the traditionally immunosuppressive TME into an immunoreactive one. 

 
1.1.5 Breast cancer 

Although not always as lethal as HNSCC, breast cancer is the most commonly diagnosed 

cancer worldwide, with over 2.2 million new cases diagnosed per year [88]. Breast cancers are 

traditionally classified based upon their expression of estrogen receptor (ER), progesterone 

receptor (PR), and/or human epidermal growth factor receptor 2 (HER2) [89]. This molecular 

subtyping helps inform treatment regimens, such as hormone therapy to target ER+ and PR+ 

tumors and anti-HER2 antibodies for HER2+ tumors. However, nearly 700,000 people still die 

from breast cancer per year [88], and an improved understanding of breast TME heterogeneity 

within molecular subtypes is urgently needed to guide more personalized treatment strategies. 
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Breast TMEs are heterogeneous entities, and their immune contexture and its associated 

prognostic value varies depending on the molecular classification of the tumor. Lymphocytes 

infiltrating breast tumors tend to be CD8+ T cells, whose presence is associated with improved 

prognosis specifically for HER2+ disease and triple negative breast cancer (TNBC) [90], which is 

defined by the lack of ER, PR, and HER2 positivity. Immunosuppressive lymphocytes, including 

Tregs and CD4+ T helper type 2 (Th2) cells are also present in breast TMEs and associate with 

poor prognosis [90]. Finally, breast TMEs contain varying amounts of innate immune cells, 

including DCs, macrophages, and NK cells. 

Although less common than tumor infiltrating lymphocytes, NK cells are of particular 

importance in HER2+ breast tumors. This is because HER2-targeted therapies, such as the anti-

HER2 antibody Trastuzumab, have been shown to elicit an originally unintended NK cell-

mediated anti-tumor response in HER2+ breast cancers [91]. Trastuzumab has been reported to 

increase the number of tumor-infiltrating NK cells in HER2+ breast TMEs, as well as trigger NK 

cell cytotoxicity through an antibody-dependent cellular cytotoxicity (ADCC) mechanism [92, 

93]. However, despite this positive effect of Trastuzumab, inhibitory signals from neighboring 

cells in the TME often dampen NK cell cytotoxicity [94, 95]. Improving understanding of how to 

effectively harness the NK cell-mediated anti-tumor response following Trastuzumab use in 

HER2+ breast tumors could greatly improve clinical outcomes for these patients. This is 

especially important, as HER2+ breast cancer patients have a much higher risk of recurrence and 

metastasis than their ER+ or PR+ counterparts [96]. Thus, investigations into NK cell phenotype, 

function, and spatial organization within HER2+ breast TMEs specifically are critically needed. 

 
1.1.6 Pancreatic ductal adenocarcinoma 
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While not as common as HNSCC or breast cancer, pancreatic ductal adenocarcinoma 

(PDAC) is one of the deadliest cancers, with a 12% 5-year survival rate [97]. There are nearly 

500,000 new cases diagnosed per year, and there are an almost equivalent number of deaths per 

year (over 460,000) resulting from PDAC [98]. Current standard of care includes surgery and 

adjuvant chemotherapy. However, this line of treatment is largely ineffective, and the vast 

majority of patients experience recurrence in as few as 7 months [99]. Additionally, PDAC 

patients often present with late-stage disease and are ineligible for surgery due to the existence of 

distant metastases and/or due to the proximity of critical vasculature surrounding the pancreas 

[97]. The lack of feasibility and efficacy of existing treatments and the dismal survival outlook 

for PDAC patients highlight the desperate need to identify new therapeutic interventions for 

these patients. 

The PDAC TME presents several opportunities to target with new therapeutic strategies. 

The TME is characterized by a dense stroma and extracellular matrix which is thought to 

preclude effector lymphocytes from entering the tumor core. While intuitively, disruption of the 

stromal barrier could be hypothesized to enable the passage of lymphocytes into the TME, initial 

attempts to deplete stromal fibroblasts through therapeutic intervention instead contributed to 

increased tumor vascularization and metastasis [100-103]. Up until recently, therapies that 

targeted the immune system were also largely unsuccessful [104]. This is due in part to the large 

proportion of myeloid cells present, which promote a highly immunosuppressive TME [105-

107]. Additionally, PDAC is characterized by relatively few genetic mutations, thus limiting T 

cells’ natural ability to infiltrate and detect the cancer [108]. Altogether, these TME attributes are 

main contributors to the failure of ICB use in PDAC. 
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More recently, therapies that act on T cells through mechanisms differing from ICBs have 

shown the ability to promote T cell priming against PDAC. Two of these therapeutic 

interventions are peptide vaccination [109] and agonistic CD40 (anti-CD40) monoclonal 

antibodies [110]. Both strategies indirectly prime T cells through the direct stimulation of APCs. 

Peptide vaccination involves administration of a highly personalized vaccine that informs T cells 

of the neoantigens specific to the tumor cells from a patient, which APCs present to T cells [109]. 

This treatment demonstrated remarkable success in a small clinical trial [109] and deserves 

further attention in larger clinical trials. However, personalized vaccine development took over 

two months from time of surgery to time of vaccination, which is costly for most PDAC patients, 

whose recurrence timeline usually occurs on the scale of months. Anti-CD40 therapy also 

induces T cell responses by binding to the CD40 receptor expressed on the cell surface of APCs 

[111]. This mimics the binding of the CD40 receptor on the APC with its corresponding CD40 

ligand. When this binding occurs, the APC becomes licensed to activate T cells without 

additional signals needed. Anti-CD40 therapy with or without combination chemotherapy and/or 

ICB has shown promise in preclinical models and is now being tested in clinical trials [110, 112, 

113]. 

For one of the first times, peptide vaccination and anti-CD40 therapy demonstrate the 

feasibility of eliciting a T cell response against PDAC. However, optimization of these therapies 

to maximize clinical outcome still requires extensive investigation into the T cell response 

powered by these therapies. Thus, deep interrogations of T cell phenotype, function, and spatial 

localization within the PDAC TME with and without therapies that prime T cells are urgently 

needed to continue improving clinical outcome for patients with this devastating disease. 

 
1.2 Multiplex immunohistochemistry 
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1.2.1 Brief overview 

As discussed above, studies that investigate the composition and spatial organization of 

the cells in the TME have the potential to improve understanding for many cancer patients. 

However, most traditional assays fail to comprehensively evaluate both the composition and the 

spatial organization of the tissue concurrently. Common molecular assays, such as RNA-

sequencing [114] and flow cytometry [115], assess the molecular makeup of the tissue, but these 

assays disrupt the spatial context of the tissue sample. Immunohistochemistry (IHC), which 

involves the staining of antibodies on tissue sections on a slide, retains cellular locations, and it 

has been the gold standard of pathology over the last twenty years [116]. However, IHC can only 

stain up to a few antibodies per tissue slide, thus failing to capture the detailed cellular 

phenotypic information of the tissue. Until recently, the available methods for interrogating the 

TME required a tradeoff between knowing the phenotypic composition of the TME or the spatial 

landscape of the TME. Advances in single-cell spatial proteomic imaging technologies have 

resulted in several novel multiplex tissue imaging assays, including cyclic immunofluorescence 

[117], imaging mass cytometry [118], co-detection by indexing technology (CODEX) [119], 

multiplexed ion beam imaging [120], and multiplex immunohistochemistry (mIHC) [121], which 

overcome the aforementioned challenge and deeply phenotype cells while also preserving the 

cellular spatial arrangement of the tissue. 

Given the critical role that immune cells play in detecting and destroying neoplastic cells 

in the TME, mIHC was designed specifically to interrogate the immune contexture of solid 

tumors [121, 122]. mIHC builds on the foundation provided by standard IHC while employing a 

cyclical antibody staining protocol (Figure 1.2). It sequentially assays the same tissue slide 

many times and can stain for over 25 antibodies, all while maintaining the spatial context of the 
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tissue sample. The resulting imaging data is processed by a computational analysis pipeline to 

identify cellular locations in the form of Cartesian coordinates, and the resulting protein 

expression levels are hierarchically gated to classify each cell into neoplastic, mesenchymal or a 

specific leukocyte subtype of either lymphoid or myeloid lineage. Further, the expression of 

additional proteins is also used to determine cells that are positive or negative for various 

functional markers, such as the PD-1 immunoregulatory protein. Thus, the data produced from 

the mIHC assay and its downstream computational image processing pipeline provides an 

unrivaled picture of the TME that includes both cellular phenotypic and spatial information. 

Given the value of understanding the single-cell spatial landscape of the TME, analysis of this 

mIHC data has the potential to identify promising biomarker candidates and enable increased 

personalized treatment strategies for cancer patients. 

 
Figure 1.2: mIHC proteomics platform and computational image processing pipeline yield spatially 
resolved maps of TMEs. 

 
1.2.2 Challenges to mIHC data interpretation 

As mIHC provides single-cell resolution maps of the TME, resulting mIHC datasets are 

incredibly large. For example, a single tissue region sampled from the HNSCC TME with area 

2500 x 2500 µm2 contains on average 21,000 cells. Thus, on average, the processed mIHC data 

matrix corresponding to one tissue region has 21,000 rows in the table, with each row 

corresponding to data for one cell. Oftentimes in an mIHC experiment, several tissue regions per 

TME are assayed, resulting in hundreds of thousands of cells assayed for a single cancer patient. 
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When considering the resulting data from an entire cohort of cancer patients whose tissue 

samples are all assayed with mIHC, the dataset suddenly consists of phenotypic, functional, and 

spatial data for millions of cells. The incredible size of mIHC datasets alone presents a challenge 

for researchers attempting to evaluate the types and roles of cells present in the TME and how 

they are spatially organized. 

Beyond quantification and description of TME cellular contexture using mIHC datasets, 

incorporation of accompanying tissue and clinical metadata provides interesting, but challenging, 

opportunities to assess the clinical relevance of TME biological complexities. Examples of tissue 

metadata include anatomic site from which the tumor was collected, histopathologic information 

about the TME sample, and tumor stage, among others. Clinical metadata include parameters 

such as therapy administered, response to therapy, clinical subtype of the tumor, timeline to 

recurrence, and survival duration. Ultimately, linking TME biology to these various parameters 

has the potential—and is necessary—to improve treatment strategies and clinical outcomes for 

cancer patients. However, identifying clinically meaningful relationships in the data is 

particularly challenging when several tissue or clinical parameters are varied across the dataset. 

For example, some datasets encompass tumor specimens spanning each stage, collected from 

varying anatomic sites, at multiple timepoints, and following different therapeutic interventions. 

When considering a dataset like this—which also possesses data for millions of cells—it 

becomes increasingly challenging to interpret biological and clinical meaning. 

Finally, given the novelty of mIHC datasets—and multiplex tissue imaging datasets in 

general—methods for interpreting their biological meaning or clinical relevance remain to be 

standardized. While metrics derived from traditional IHC analyses to assess basic cellular 

phenotypes can be applied to mIHC data, no standard metrics exist for quantifying the spatial 
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layout of cells in the TME. Overall, analysis of the single-cell spatial landscape of the TME has 

great potential to revolutionize the treatment and care of cancer patients; however, it remains 

unclear how to best evaluate these types of datasets. 

 
1.3 Quantitative analyses of the TME 

1.3.1 Algorithms to quantify TME single-cell spatial landscape 

As biological datasets continue to grow in size and complexity, computational approaches 

are needed to effectively analyze them. This is particularly true for the single-cell spatial 

proteomics datasets of the TME resulting from multiplex tissue imaging assays, where the data 

includes phenotypic, functional, and spatial information for millions of cells, often in addition to 

various accompanying metadata.  

Assessment of the single-cell spatial landscape of the TME necessitates metrics that 

calculate the abundance of cells possessing distinct phenotypes and functions, as well as metrics 

that quantify the cells’ spatial organization in the TME. Quantification of the phenotypic and 

functional composition of the TME can often still be performed using simple metrics such as cell 

densities, ratios, or proportions present in the TME [121]. Demonstrating the clinical utility of 

these metrics, proportions of cells positive for various biomarkers are used to determine 

sensitivity to treatment with ICB. For example, the U.S. Food and Drug Administration approved 

the use of an ICB targeting the PD-1/PD-L1 checkpoint in patients with non-small cell lung 

cancer when at least 50% of the neoplastic cells present express PD-L1 [123-125]. While this 

biomarker is easy to calculate, it does not always accurately predict ICB response [125, 126], 

suggesting that additional TME factors, such as cellular spatial localization, must also be 

considered. 
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Quantifying the spatial arrangement of cells within the TME is more complex than 

assessing the composition of the TME. Dozens of methods have been used to quantify TME 

cellular spatial organization, and the choice of method is partially dependent upon the 

magnification level desired for the analysis [52]. Evaluation of full surgical resections enables 

detection of the broad histopathologic location each cell resides in, including the tumor core, 

invasive margin, and more distal stromal tissue surrounding the tumor (Figure 1.3A) [107]. 

More granular spatial analyses include metrics borrowed from ecology [127], which were 

designed to understand the overlap of different species within a given habitat. For example, 

metrics such as the Morisita-Horn index and the Getis-Ord geospatial hotspot statistic are 

ecological metrics that have been used to assess the spatial distribution of immune and neoplastic 

cells within various TMEs [128, 129]. Respectively, these metrics calculate the spatial 

colocalization and extent of spatial clustering versus dispersion of two populations within a 

given space; they do not account for the actual distances between single cells within the outlined 

space (Figure 1.3B). 

Highly granular distance-based metrics are particularly valuable in the context of 

studying TME biology, as cells require spatial proximity to communicate [5]. For example, 

immune cells secrete chemokines and cytokines, which are small proteins that diffuse through 

the TME and signal to other nearby cells, impacting their function [130]. While one study found 

T-cell-secreted interferon (IFN)-γ secreted by activated CD8+ T cells could travel over 800 µm in 

the TME [131], most studies report chemokine and cytokine signaling distances of 30 to 250 µm 

[132-136]. Direct signaling mechanisms, which involve the binding of receptor ligand pairs 

expressed on cell surfaces, require even more proximity between cells. These cells must be 

directly adjacent to one another to facilitate binding of their proteins, and thus assessing 
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distances in the 15 to 30 µm range is more appropriate to capture these types of interactions 

[137, 138], such as the binding of PD-1 with its corresponding PD-L1 ligand [65]. Thus, spatial 

metrics that integrate the distance between cells into the calculation are important for 

understanding how cells affect one another in the TME. 

Among the spatial analyses that involve a user-defined distance parameter are a recently 

developed “mixing score” metric [139], cell-cell interaction measures [65], and cellular 

neighborhood analyses [140] (Figure 1.3C). The mixing score was developed to specifically 

interrogate immune cell spatial mixing or compartmentalization with neoplastic cells within the 

TME, and it was found to associate with survival in TNBC [139]. Although the mixing score is a 

regional measure of spatial organization, it still incorporates knowledge of which types of cells 

are in contact with one another in the given region. Cell-cell interaction measures strip spatial 

analyses to their core, as they simply count the frequency of two cell types located within a 

specified distanced threshold from one another in the TME. Interactions can then be normalized 

to the densities of the cells present to avoid skewing the interaction counts by cells that are 

present in greater abundances. When interaction frequencies are calculated across all pairings of 

cell phenotypes present, it becomes easy to determine which cell types tend to be located most 

proximally to one another versus cell types that are rarely present in close proximity. Spatial 

interactions can also be calculated for cell phenotypes expressing specific functional markers. 

For example, studies interrogating the PD-1/PD-L1 immunoregulatory checkpoint found that 

tumors containing more spatial interactions involving PD-1+ cells and PD-L1+ cells were 

associated with improved response to ICBs targeting this checkpoint across multiple cancers [65, 

67, 141]. Finally, cellular neighborhood analyses comprise an emerging sophisticated technique 

used to quantify TME spatial organization. Neighborhoods are defined as spatial groupings of 
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cells surrounding a given “seed” cell within the TME. Neighborhoods can be calculated by either 

identifying a set number of nearest cells to the seed cell or by identifying all cells within a 

specified radius around the seed cell. Then, based upon the composition of cells residing in the 

neighborhood, neighborhoods can be clustered using statistical techniques to identify recurring 

spatial groupings of cells that are present across multiple TMEs. Recurrent cellular 

neighborhoods were originally used to quantify colorectal TMEs, and the frequency of PD-1+ 

CD4+ T cells in a specific cellular neighborhood were found to associate with survival in these 

patients [140]. Cellular neighborhoods can be used to characterize the spatial organization of 

larger tissue structures within the TME, such as TLS or tumor nests. 

 

Figure 1.3: Overview of TME spatial quantifications. TME spatial organization can be defined in terms of 
A) location in the broader TME context, B) ecological measures of colocalization within a defined space, and C) 
distance-based metrics requiring proximity between cells. This figure was created using BioRender.com. 
 
 

While each of the methods described above quantify various aspects of the TME single-

cell spatial landscape, it remains unclear which of these aspects are clinically meaningful, and 

thus, which of the methods should become standardized for future analyses. 

 
1.3.2 Machine learning to link TME biology to clinical parameters  
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Understanding the relationship between TME biology and clinical parameters is needed 

to ultimately improve treatment strategies and outcome for cancer patients. For example, analysis 

of longitudinal TME data, such as paired tissue biopsies collected at multiple time points from 

the same patient, may enable a deeper understanding of how a tumor progresses over time. 

Knowing the clinical subtypes of tumors facilitates deeper interrogation of TME cellular and 

spatial heterogeneity between, and within, subtypes, which may ultimately lead to increasingly 

personalized therapeutic approaches. Comparison of TMEs exposed to varying therapies may 

improve understanding of how and where specific therapies impact the TME, as well as how 

they may be combined with other therapies to improve response. Finally, linking clinical 

outcome data, such as progression- or disease-free survival and overall survival, to TME biology 

provides important insight into the types of TMEs associated with improved or worsened 

outcomes and identifies potential candidate biomarkers for future patient stratifications.  

For some of these analyses, simple statistical correlation and difference tests suffice. For 

example, comparison of the average density of a given cell phenotype present in samples 

collected in primary versus recurrent tumors can be performed using a traditional statistical 

difference test. This analysis would test the hypothesis that the samples collected at the two 

timepoints differed in their densities of the cell phenotype assessed, and this knowledge could aid 

in understanding tumor progression. While traditional statistical approaches work well in 

relatively simple circumstances, these approaches have several limitations, especially in the 

context of large and complex datasets [142]. 

First, traditional statistical approaches require prior knowledge about the data to generate 

a testable hypothesis. In the case of high-dimensional biological datasets, such as single-cell 

spatial proteomics datasets, it is not always clear which features should be tested for their 
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relationship to a given clinical parameter. Second, traditional statistical approaches are often 

parametric, meaning they assume the shape of the underlying distribution of the data. Complex 

biological datasets do not always contain features that follow a normal distribution, and thus 

parametric statistical methods may be inappropriate for use with these datasets. Finally, 

traditional statistical approaches fail to evaluate the downstream impact of the combination of 

many features, each potentially weighted with varying degrees of importance. In the context of 

single-cell spatial proteomics datasets and TME complexity, often several biological features 

contribute to a given clinical parameter. Therefore, it is necessary to consider the role of 

combinations of data features, which traditional statistical methods fail to do. Thus, more 

advanced calculations are needed when analyzing highly complex datasets, such as single-cell 

spatial proteomics datasets.  

Machine learning (ML), a form of artificial intelligence, offers a solution to the 

aforementioned data complexity challenges and is becoming increasingly used to analyze high-

dimensional biological datasets [143]. At its core, ML involves the use of statistical algorithms to 

learn patterns from data, and it excels at analyzing large and complex datasets for several 

reasons. First, unlike traditional statistical approaches, ML approaches are largely unbiased; the 

methods are data-driven and are able to detect previously unknown patterns, requiring little prior 

knowledge about the dataset. Second, ML approaches are flexible, as they are not limited to 

parametric models and do not always assume the shape of a distribution. Finally, ML methods 

are capable of weighing and combining data features, to identify which groupings of features 

most contribute to a given output. Thus, given the complexity of single-cell spatial proteomics 

datasets, where TME biology can be quantified in seemingly countless ways and the clinical 

relevance of the biological features is unclear, ML offers a promising approach for learning 
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which TME biological features are associated with clinical parameters for these datasets [144, 

145]. 

Several types of ML algorithms exist, including unsupervised and supervised algorithms, 

and the selection of the appropriate method depends upon the task in question. Unsupervised ML 

algorithms learn patterns in data without the help of labeled data. These types of algorithms are 

particularly useful in exploratory data analyses, where the goal is to identify similarities and 

differences among the data without requiring the algorithm to bin samples according to a label. 

Two types of unsupervised learning methods include dimensionality reduction techniques and 

clustering techniques. Dimensionality reduction techniques are particularly valuable when 

working with high-dimensional datasets, where the number of features is far more than the 

number of samples. Dimensionality reduction methods combine data features through linear or 

non-linear algorithms to reduce the overall number of features. The smaller number of resulting 

features can be more easily visualized in a two- or three-dimensional projection (Figure 1.4A), 

and various metadata or clinical annotations can be overlaid with the projection to identify 

patterns in the data. Clustering techniques are another form of unsupervised learning, which are 

used to bin data samples into distinct clusters, such that samples within the same cluster possess 

similar characteristics. In the context of single-cell spatial proteomics datasets, clustering 

methods are often used to group tumor samples based upon their phenotypic compositions [107]. 

This results in clusters that contain tumors composed of similar cell types, and clusters can also 

be manually labeled with various metadata or clinical annotations to determine if the clusters 

represent clinically meaningful differences (Figure 1.4B). 

In contrast to unsupervised learning algorithms, supervised ML leverages labeled data to 

train an ML model. Classification tasks encompass one main type of supervised learning. 
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Classification involves training models to learn which combinations and weights of inputted data 

features associate with each of the resulting labels (Figure 1.4C). Models can then be used to 

make predictions on new data without the need for labels. The predictive potential of supervised 

learning makes it an attractive technique for detecting clinical meaning, where models could be 

trained, for example, based upon single-cell spatial features of the TME to predict tumor 

progression, response to therapy, or survival [144, 145]. Additionally, quantitative analyses can 

be used to interpret how the model is making its predictions [146]. In the example where a model 

is trained to predict survival duration based upon compositional and spatial features of the TME, 

interpretation of the predictions of the model would provide researchers with an improved 

understanding of which combinations of TME features were related to either improved or 

worsened survival. These features may represent candidate biomarkers of survival, and they 

could be used to stratify future cancer patients. 

 

Figure 1.4: Overview of ML approaches. A) Dimensionality reduction techniques enable visualization of data 
in low-dimensional projections. B) Clustering methods group samples into distinct clusters based upon shared 
characteristics, which can be annotated by various metadata, such as tumor subtype. C) Classification tasks train a 
model to accurately predict data labels, such as response to therapy. This figure was created using BioRender.com. 
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Pursuit of computational analyses such as those described above—both to quantify the 

single-cell spatial landscape of the TME, as well as to link TME biology to clinical parameters—

has the potential to reveal important TME biology that could be leveraged to design novel 

therapeutic interventions and improve clinical outcomes for cancer patients. 

 
1.4 Contributions 

The work presented in this dissertation attempts to addresses the challenges and 

opportunities described above. TME cellular phenotypes, functions, and spatial organizations 

were quantified for three extremely common and/or aggressive tumor types from mIHC single-

cell spatial proteomics datasets, and clinically relevant TME biological features were then 

identified through various statistical techniques. Chapter 2 describes a detailed quantitative 

assessment of HPV(-) HNSCC tumor heterogeneity, progression over time, and spatial 

architecture. Immune cell and alpha smooth muscle actin (αSMA+) mesenchymal cell spatial 

organization were found to correlate with progression-free survival. These results provide novel 

insight into how the immune system and stromal cells contribute to clinical outcome for HPV(-) 

HNSCC patients and reveal potential candidate biomarkers for progression-free survival for 

future HPV(-) HNSCC patients. Chapter 3 presents a functional and spatial assessment of NK 

cells within the TMEs of HER2+ and HER2- breast cancer patients. This study identifies new 

relationships among NK cell functionality, NK cell spatial neighbors, and HER2 status, which 

may be leveraged to improve treatment for HER2+ breast cancer patients. Finally, Chapter 4 

builds upon the single-cell spatial algorithms utilized in Chapters 2 and 3 and leverages 

supervised ML approaches to perform a deep quantitative assessment of T cell phenotype, 

function, and spatial organization in the PDAC TME with and without treatment with anti-CD40 
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therapy. This study reveals important aspects of T cell biology impacted by anti-CD40 therapy in 

the PDAC TME, and it identifies novel TME immunological properties associated with 

improved disease-free survival following anti-CD40 therapy. Overall, the research in this 

dissertation provides a framework for quantitatively analyzing complex single-cell spatial 

proteomics datasets, and, importantly, the results highlight various immunological aspects of the 

TME which may be leveraged in future studies to improve clinical outcome for cancer patients.  
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Chapter 2: Quantifying the single-cell spatial 
landscape of head and neck cancer 
 
This chapter has been formatted for inclusion in this dissertation from the manuscript “Single-
cell spatial architectures associated with clinical outcome in head and neck squamous cell 
carcinoma” by Katie E. Blise, Shamilene Sivagnanam, Grace L. Banik, Lisa M. Coussens, and 
Jeremy Goecks, published in npj Precision Oncology (2022) [147]. The author of this 
dissertation is the primary author of this manuscript and used single-cell gated data generated by 
LMC’s laboratory to conduct computational experiments to generate all figures in this 
manuscript except Main Figures 2.1a, 2.3a, and 2.4e and Supplementary Figures 2.1a, 2.1b, and 
2.3a. 
 

2.1 Abstract 

There is increasing evidence that the spatial organization of cells within the tumor-

immune microenvironment (TiME) of solid tumors influences survival and response to therapy 

in numerous cancer types. Here, we report results and demonstrate the applicability of 

quantitative single-cell spatial proteomics analyses in the TiME of primary and recurrent human 

papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) tumors. 

Single-cell compositions of a nine patient, primary and recurrent (n=18), HNSCC cohort is 

presented, followed by deeper investigation into the spatial architecture of the TiME and its 

relationship with clinical variables and progression free survival (PFS). Multiple spatial 

algorithms were used to quantify the spatial landscapes of immune cells within TiMEs and 

demonstrate that neoplastic tumor-immune cell spatial compartmentalization, rather than mixing, 

is associated with longer PFS. Mesenchymal (αSMA+) cellular neighborhoods describe distinct 

immune landscapes associated with neoplastic tumor-immune compartmentalization and 

improved patient outcomes. Results from this investigation are concordant with studies in other 

tumor types, suggesting that trends in TiME cellular heterogeneity and spatial organization may 

be shared across cancers and may provide prognostic value in multiple cancer types. 
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2.2 Introduction 

Tumor microenvironments, comprising both neoplastic tumor cells and recruited stromal 

cells of various lineages, including a diverse assemblage of immune, mesenchymal, and vascular 

cells, play a key role in both de novo progression of tumors and regulating response to therapies 

[6, 8, 33]. Numerous studies have reported that, in addition to the types and quantities of cells 

present in the tumor immune-microenvironment (TiME), the spatial organization of the TiME is 

prognostic for survival and response to therapy in multiple cancer types [65-68, 139-141, 148-

150]. Metrics that quantify this spatial organization can range from simple density ratios within 

specific tumor regions [151], such as the Immunoscore [63], a now commonly used biomarker 

for colorectal tumor staging, to more complex measures that account for the precise locations of 

specific cells relative to other cells, such as mixing scores [139] and cellular neighborhood 

measures [140]. These more advanced spatial quantifications are a result of emerging single-cell 

multiplex tissue imaging modalities [68, 121, 122, 139, 140, 152], which provide detailed 

phenotypic and effector proteomic markers for each cell, while maintaining the spatial 

architecture of the tissue assayed. Knowing the precise locations of cells in the TiME enables a 

deeper understanding of how cells interact within the tumor, as both direct and indirect cell 

signaling mechanisms require cells to be near, if not directly adjacent to one another [5]. This 

understanding can aid treatment decisions, as many therapies require spatial proximity of 

specific cell types for efficacy [66]. Given that single-cell imaging technologies are still 

relatively new, there is much to be discovered regarding how the spatial organization of cells 

within the TiME relates to clinical outcome and may be used for patient stratification decisions 

for therapy. 
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Head and neck squamous cell carcinoma (HNSCC) is the sixth leading form of cancer 

worldwide [153], and it accounts for more than 10,000 deaths per year in the US alone [154]. 

While patients harboring human papillomavirus (HPV) within neoplastic cells tend to exhibit a 

better prognosis, their HPV-negative [HPV(-)] counterparts typically exhibit T cell suppressive 

TiMEs and have a significantly greater risk of recurrence and shorter 3-year survival [155-157]. 

There is a critical need to improve understanding of HNSCC TiMEs to enable better patient 

stratification for therapy, as well as identify new targets that could be leveraged for therapeutic 

intervention to improve outcome, particularly for patients with HPV(-) tumors who currently 

lack promising therapeutic options. We previously developed a multiplex immunohistochemistry 

(mIHC) imaging platform to aid studies investigating the immune contexture of solid tumors and 

their response to therapies at the single-cell level [121, 122]. Using a sequential antibody staining 

protocol, detection of 12-30 proteins can be enumerated at single-cell resolution across a single 

formalin-fixed paraffin-embedded (FFPE) tissue section. This enables single-cell phenotyping of 

discrete leukocyte lineages, and importantly, reveals their spatial relationships with other cells in 

the tissue section. Utilizing this mIHC approach on a small cohort of eighteen HPV(-) primary 

and matched recurrent HNSCC tumor samples collected from nine patients, we previously 

reported immune contextures associated with disease recurrence, most notably that myeloid 

inflamed profiles in primary tumors exhibited shorter progression free survival (PFS) compared 

to lymphoid inflamed profiles [121, 122]. 

In this study, we have significantly extended our prior analysis of this cohort, focusing on 

tumor heterogeneity and compositional changes from primary to recurrent tumors, in addition to 

using multiple spatial algorithms to quantify the spatial organization of the TiMEs. We then 

correlated these spatial features with PFS and identified TiME architectures that may be 
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important for therapeutic decision making. Overall, we found  increased neoplastic tumor-

immune cell spatial compartmentalization in primary tumors to be associated with longer PFS. 

These tumors also contained alpha smooth muscle actin (αSMA+) cells with more organized 

structure located near T and B cells, as well as near cells involved in antigen presentation. Our 

results are concordant with those from other studies, indicating that the features identified herein 

are likely shared and prognostic across cancer types. 

 
2.3 Results 

One to three regions of 25002 µm2 from each of the nine patients primary and matched 

recurrent tumor resections (n=18) were analyzed, for a total of 47 regions (Table 2.1, Figure 

2.1a). For this study, we utilized a gating strategy with thirteen lineage or functional protein 

biomarkers to classify cells as neoplastic tumor cells, stromal cells (mesenchymal), or one of 

seven different leukocyte subtypes spanning lymphoid and myeloid lineages (Table 2.2, 

Supplementary Figure 2.1a). We investigated tumor heterogeneity both within and across 

patient samples, quantified the cellular spatial relationships within the TiME using a mixing 

score and performed a neighborhood clustering method to describe the association between 

TiME spatial architecture, clinical features, and PFS. 

 
Table 2.1: Patient and tumor characteristics. 

Patient 
ID 

Anatomic 
Site of 
Resection 

Primary 
Tumor 
TNM 
Stage 

Therapy 
Following 
Primary 
Resection 

Gender Race Alcohol 
History 

Smoking 
History 

HPV 
Status 

Progression 
Free 
Survival 
(days) 

1 Oral 
Cavity 

2 Cisplatin + 
Radiation 

Male White Yes Yes Negative 804 

2 Oral 
Cavity 

4 Cetuximab + 
Radiation 

Male White Yes Yes Negative 123 

3 Oral 
Cavity 

1 Cisplatin + 
Radiation 

Female White Yes No Negative 1447 

4 Oral 
Cavity 

1 Cisplatin + 
Radiation 

Female White No No Negative 246 
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5 Oropharyn
x 

4 Cetuximab + 
Radiation 

Female White Yes No Negative 202 

6 Oropharyn
x 

4 Cisplatin + 
Radiation 

Female Asian No No Negative 188 

7 Larynx 4 Cisplatin + 
Cetuximab + 
Radiation 

Female White Yes Yes Negative 409 

8 Larynx 3 Cisplatin + 
Radiation 

Female White Yes Yes Negative 1033 

9 Larynx 4 Cisplatin + 
Radiation 

Female White Yes Yes Negative 83 

 
 
Table 2.2: mIHC cell phenotype classification. 

Cell Phenotype Antibody Markers 

CD8+ T Cell CD45+ CD20– CD3+ CD8+ 

CD4+ T Helper CD45+ CD20– CD3+ CD8– FOXP3– 

CD4+ Regulatory T Cell CD45+ CD20– CD3+ CD8– FOXP3+ 

B Cell CD45+ CD20+ 

Macrophage CD45+ CD20– CD3– CD66B– CD68+ 

Granulocyte CD45+ CD20– CD3– CD66B+ 

Antigen Presenting Cell CD45+ CD20– CD3– CD66B– CD68– MHCII+ 

Other Immune CD45+ CD20– CD3– CD66B– CD68– MHCII– CD8– FOXP3– 

αSMA+ Mesenchymal CD45– PANCK– αSMA+ 

Neoplastic Tumor CD45– PANCK+ 

Functional Markers PD-1, PD-L1, Ki-67 

 
 
 
2.3.1 Single-cell proteomic analyses reveal varying degrees of tumor heterogeneity 

To quantify how cellular composition varied across tumor regions, we assessed tumor 

heterogeneity at multiple levels, including intra-tumoral, intra-patient, and inter-patient cellular 

heterogeneity by calculating Kullback-Leibler (KL) divergences for each region, performing 

hierarchical clustering, and conducting a principal component analysis (PCA). The density of 
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each cell type per region was measured for all eighteen tumor specimens by taking the count of 

each cell type divided by the measured tissue area in mm2 (Figure 2.1b,c). We then calculated 

the coefficient of variation per cell type for each tumor, and averaged these values to 

quantitatively describe the cell types contributing most to intra-tumoral heterogeneity within the 

cohort. The coefficient of variation is defined as the standard deviation divided by the mean, and 

it provides a normalized measure of variability for comparison across cell types with large 

differences in densities. On average, B cells exhibited the greatest coefficient of variation across 

the cohort relative to other cell types (Table 2.3). This is likely due to the fact that B cells were 

frequently observed to be spatially clustered together, resulting in regions of either high B cell 

density or low B cell density despite being collected from the same tumor (Supplementary 

Figure 2.1b). 

 
Table 2.3: Coefficient of variation. 

Cell Phenotype Average Coefficient of Variation 

B Cell 0.658 

Macrophage 0.563 

αSMA+ Mesenchymal 0.545 

Neoplastic Tumor 0.541 

Granulocyte 0.523 

Antigen Presenting Cell 0.519 

Other Immune 0.402 

CD8+ T Cell 0.384 

CD4+ T Helper 0.376 

CD4+ Regulatory T Cell 0.311 

 

To further quantify and assess tumor heterogeneity both within and across patients, we 

calculated the KL divergence of each tumor region from five average cell type distributions. KL 
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divergence is a relative measure of how similar two distributions are, with larger values 

reflecting less similarity between the distributions and smaller values reflecting more similarity 

between the distributions. This measure has been used previously to quantify tumor 

heterogeneity [68]. By calculating and comparing the divergences of each tumor region from 

multiple average cell type distributions, we were able to assess heterogeneity within and across 

tumors and patients. Overall, we observed that heterogeneity was lower across regions from the 

same tumor and tumors from the same patient (primary or recurrent), while higher across tumors 

from different patients. This is evidenced by smaller intra-tumoral and intra-patient KL 

divergence values for the majority of tumor regions (Figure 2.1d).  

The cellular distributions used to calculate the five KL divergence values per tumor 

region were (1) the average cellular distribution across all regions sampled from the same tumor 

[“Intra-Tumor (P or R only)”]; (2) the average cellular distribution across the patient’s primary 

and recurrent tumors [“Intra-Patient (P and R)”]; (3) the average cellular distribution across all 

tumors in the cohort collected from the same timepoint [“Inter-Patient (P or R only)”]; (4) the 

average cellular distribution across all tumors in the cohort resected from the same anatomic site 

[“Inter-Patient (Same Anatomic Site)”], and; (5) the average cellular distribution across all 

tumors collected from all patients in the cohort, regardless of primary or recurrent status or 

anatomic site [“Inter-Patient (all)”]. By comparing the relative KL divergence values to each 

other, we found tumor regions to be more similar to regions sampled from the same tumor and 

patient than regions collected from tumors of other patients. Notably, we found no significant 

difference between “Inter-Patient (Same Anatomic Site)” and “Inter-Patient (all),” indicating that 

tumor regions diverged by the same degree from regions sampled at the same anatomic site as 

they did from regions sampled at all three anatomic sites (oral cavity, oropharynx, larynx) of the 
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head and neck region (Figure 2.1d). Finally, given the large proportion of neoplastic tumor cells 

comprising the TiME for many of the tumor regions, we assessed KL divergence using only the 

distribution of immune cells present and found similar results (Supplementary Figure 2.1c). 

This indicates that immune cell composition is more similar within regions from the same patient 

than across regions collected from different patients. 

To further investigate intra-patient heterogeneity, we performed unsupervised hierarchical 

clustering on the 47 tumor regions based on their normalized density composition (Figure 2.1e). 

We found that two patients (3, green; 7, pink) contained all tumor regions clustering together, 

independent of primary or recurrent state. These patients also had the smallest intra-patient KL 

divergence values (Figure 2.1d), indicating that the cell densities of these patients’ primary and 

recurrent tumors were similar to each other. Three patients (2, orange; 4, red; 9, yellow) 

contained nearly all regions clustered together. The remaining four patients’ tumors exhibited 

greater degrees of intra-patient heterogeneity, as demonstrated by the distance between primary 

and recurrent tumor regions on the clustered heatmap (Figure 2.1e). Overall, we found that 

regions evaluated from the same patient tended to cluster together more than regions evaluated 

from different patients (Figure 2.1e), indicating increased heterogeneity between patients as 

compared to between samples from the same patient. We also examined whether tumor regions 

clustered by the anatomic resection site and found that the clusters formed did not group by site. 

These results, in addition to those of our KL divergence analyses, indicate that anatomic site was 

likely not the main contributor of cellular heterogeneity in this cohort. PCA results also 

supported these observations (Figure 2.1f,g). 
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Figure 2.1: Heterogeneity across patients and tumor regions. a, Cohort and tissue region selection 
overview. One to three regions of 25002 µm2 were assayed with mIHC per eighteen tumor resections and are 
represented by the green boxes in the tissue images. Black scale bar = 2500 µm.  b, Density (cells/mm2) of each cell 
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type present per individual primary (P) and recurrent (R) tumor. Each dot represents a single tumor region (n=47). c, 
Density (cells/mm2) of each immune cell type present per individual primary (P) and recurrent (R) tumor. Each dot 
represents a single tumor region (n=47). d, Box plot of the Kullback-Leibler divergences from a single tumor 
region’s cellular distribution compared to: the tumor’s average cellular distribution [Intra-Tumor (P or R only)], the 
patient’s average cellular distribution [Intra-Patient (P and R)], the cohort’s average cellular distribution across 
tumors of the same timepoint [Inter-Patient (P or R only)], the cohort’s average cellular distribution across tumors of 
the same anatomic site [Inter-Patient (Same Anatomic Site)], the cohort’s average cellular distribution across all 
tumors from all patients [Inter-Patient (all)]. P-values calculated using a one-way ANOVA multi-group significance 
test followed by a Tukey honestly significant difference post-hoc test. e, Heatmap of cellular composition across 
tumor regions. Rows are individual tumor regions that are ordered by the hierarchical clustering of their cellular 
composition. Columns are the cell types used as clustering features. Composition was normalized using a log10+1 
transformation before clustering. Leftmost three columns are color coded by patient, tumor timepoint, and anatomic 
site. f, Principal component analysis on cellular density following a log10+1 transformation. Each point (n=47) 
represents one tumor region and is colored by patient. The shape of each point denotes primary or recurrent status. g, 
Principal component analysis on cellular density following a log10+1 transformation. Each dot (n=47) represents 
one tumor region and is colored by anatomic resection site. 
 
 
2.3.2 TiME cellular composition altered by therapy 
 

Multiple studies have reported differences in TiME cellular makeup [158, 159] and tumor 

clonal diversity [160] between primary and recurrent tumors. To assess whether any immune 

contexture changes occurred following post-operative therapy in our cohort, we analyzed the 

cellular composition of primary tumors as compared to their recurrent tumors. All patients 

received a combination therapy of cisplatin and/or cetuximab accompanied by radiation 

following surgical resections of their primary tumors. We used the average density of each cell 

type present across regions for a given tumor and compared primary tumor composition to their 

matched recurrent tumor composition. While we did not observe any significant differences in 

cell density between primary and recurrent tumors (p>0.112), we did find that all patients 

experienced a decrease in the density of B cells from their primary to recurrent tumors (Figure 

2.2a,b). This result is supported by a recent study that found that a large cohort of HNSCC 

patients experienced a decline in B cells from primary to recurrent tumors, and this reduction 

was dependent upon patients receiving adjuvant chemoradiotherapy [161]. We found no common 

differences across all patients for any other cell type, although eight of the nine patients saw a 
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decrease in the density of neoplastic tumor cells from their primary to recurrent tumors (Figure 

2.2b). 

We then assessed whether patients exhibited similar compositional differences in primary 

and recurrent TiMEs by performing unsupervised hierarchical clustering on the normalized 

average difference in cellular composition for each cell type. This resulted in two groups of 

patients (Figure 2.2c). Interestingly, the two patients that received cetuximab (2, orange; 5, 

purple), rather than cisplatin, clustered together within one of these groups and were the only two 

patients to experience a decrease in the density of every cell type following therapy. Across the 

cohort these patients had the greatest decrease in the density of macrophages, granulocytes, and 

other CD45+ immune cells present from their primary tumors to their recurrent tumors following 

therapy (Figure 2.2b,c). Interestingly, the one patient who received both cisplatin and cetuximab 

(7, pink) was present in the other cluster from the two patients who received only cetuximab. 

This was the only patient to experience an increase in the density of neoplastic tumor cells 

(Figure 2.2b,c). This patient also experienced the second largest increase in CD8+ T cells as well 

as the greatest decrease in CD4+ regulatory T cells, potentially indicating a pro-inflammatory 

response to—or despite—increased neoplastic tumor cell density. Altogether, these results 

indicate that shared trends in TiME composition changes from primary to recurrent tumors 

specific to therapy exist, and regardless of therapy, all patients exhibited a decrease in B cells 

from primary to recurrent tumors.  

Approximately half (n=4) of the patients in the cohort experienced an increase in CD8+ T 

cell density while the other half (n=5) experienced a decrease in CD8+ T cell density following 

therapy. This was the only cell type that increased in density for nearly half of the cohort and 

decreased for the other half. To determine if there was a survival advantage for patients that 
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experienced this increase, we split our cohort into short-term or long-term survivor groups using 

median PFS and observed that all patients who experienced an increase in CD8+ T cell density 

from their primary to recurrent tumors were long-term survivors (Figure 2.2d). Interestingly, the 

density of CD8+ T cells in the primary tumor alone did not associate with PFS (p=0.829). Prior 

research has revealed that increased CD8+ T cell abundance in the primary tumor is associated 

with better outcomes in HNSCC [162-166]. However, these studies largely included HPV-

positive HNSCCs, which is more often associated with greater densities of CD8+ T cells and 

improved survival [155-157], thus unsurprising that our results differ. However, our results are 

concordant with a recent study in HNSCC that reported longer survival was associated with 

patients who had experienced an increase in CD8+ tumor-infiltrating lymphocytes from their 

primary to recurrent tumor [167]. Another study in HNSCC found a similar trend between 

increased CD8+ T cell infiltration, longer survival, presence of specific neoantigens, and 

increased cytolytic activity in recurrent tumors [168]. Notably, the four patients in our cohort that 

experienced the greatest decrease in CD8+ T cell density in recurrence had TNM stage 4 primary 

tumors, while patients that experienced an increase in CD8+ T cell density in recurrence included 

TNM stages 1, 2, 3, and 4. 
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Figure 2.2: Tumor cellular composition changes following therapy. a, Box plot showing the average 
density of each cell type split by primary and recurrent status. Each dot represents the density of that cell type for 
one tumor, averaged across regions (n=9 primary tumors, n=9 recurrent tumors). Boxes = quartile 1 (Q1) to quartile 
3 (Q3); whiskers = smallest and largest datapoints within 1.5*interquartile range (IQR) +/- Q3/Q1; solid line = 
median. b, Line plots showing the change in cellular composition from primary to recurrent tumors for each cell 
type. Each dot represents the density of that cell type for one tumor, averaged across regions. Lines are colored by 
patient. c, Heatmap of average change in cellular composition from primary to recurrent tumors for each patient. 
Rows are individual patients that are ordered by the hierarchical clustering of their change in TiME cellular 
composition (averaged across regions). Columns are the cell types used as clustering features. Compositional change 
was normalized [-1,1] before clustering (see Methods). Leftmost two columns are color coded by patient followed 
by therapy administered. d, Box plot showing the average change in density of each cell type for each patient (n=9) 
colored by short-term or long-term progression free survival, splitting on median progression free survival. Boxes = 
Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR +/- Q3/Q1; solid line = median; dotted line = 
mean. 
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2.3.3 Quantifying the spatial organization of neoplastic and immune cells 

Prior studies reported the abundance of various cell types, including CD8+ T cells [166], 

CD4+ regulatory T cells [169], and macrophages [170] to be associated with survival in HNSCC. 

We analyzed the average density of each cell type across primary tumors for their correlations 

with PFS, but found no significant association with PFS for any single cell type (p>0.159). 

Given the prognostic potential of TiME cellular spatial organization as has been reported in other 

cancer types [65-68, 140, 141, 148-150], we quantified the spatial organization of cells within 

tumor regions and examined the association of the spatial features with clinical outcome. 

We first deployed a mixing score, used previously to analyze immune cell spatial 

compartmentalization in triple negative breast cancers [139]. The mixing score measures the 

enrichment of neoplastic tumor-immune cell proximity relative to immune-immune cell 

proximity within a set distance. We quantified the number of immune and neoplastic tumor cells 

within 15 µm of each other, divided by the number of immune cells within 15 µm from another 

immune cell. Each region was labeled as mixed or compartmentalized using the median mixing 

score value for all primary tumors as the threshold (Figure 2.3a,b; see Methods). This threshold 

classified tumor regions as mixed if at least one neoplastic tumor cell was within 15 µm from an 

immune cell for approximately every ten immune cells within 15 µm from another immune cell. 

Tumor regions were considered compartmentalized when this ratio was smaller. Regions with 

fewer than 250 CD45+ immune cells per 8002 µm2 present were labeled as cold, utilizing the 

same immune cell density threshold from the original study [139]. Of the 47 total tumor regions, 

25 were mixed, 20 were compartmentalized, and two were cold. 
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After calculating the mixing score for each region, we examined the spatial heterogeneity 

of our cohort. Our tumor compositional heterogeneity analyses revealed that intra-tumoral and 

intra-patient heterogeneity was less than inter-patient heterogeneity. To determine whether this 

observation held for spatial organization heterogeneity, we compared each region’s mixing score 

to five groups of average mixing scores, which were computed from the same five groups as the 

analysis in Figure 1d: Intra-Tumor (P or R only), Intra-Patient (P and R), Inter-Patient (P or R 

only), Inter-Patient (Same Anatomic Site), and Inter-Patient (all). Contrary to our analysis in 

Figure 1d, the mixing score is only one feature, not a distribution of features, thus we used the 

difference in mixing scores, rather than the KL divergence. In addition, we calculated the 

absolute values of these differences as a way to normalize the data in order to capture the degree 

of difference in spatial organization, allowing us to subsequently test for differences across the 

five levels of heterogeneity. We found there to be less intra-tumoral heterogeneity than inter-

patient heterogeneity (Supplementary Figure 2.2a). This result indicates that, in terms of 

neoplastic tumor-immune cell mixing, tumor regions resemble regions sampled from the same 

tumor more than regions sampled from tumors of other patients. 

We then considered whether tumor regions sampled from the same anatomic site differed 

in their spatial organization and found that of the three anatomic sites, tumor regions from the 

oral cavity contained significantly different average mixing scores than tumor regions from the 

larynx (p=0.016, Figure 2.3c). No significant differences were found in average mixing scores 

between the oral cavity and the oropharynx or the larynx and the oropharynx. Regions from 

larynx tumors did exhibit a greater range of mixing scores than oral cavity or oropharynx 

(Figure 2.3c) indicating that larynx tumors exhibit greater spatial heterogeneity in terms of 
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neoplastic tumor-immune cell proximity. We found no significant difference in the mixing scores 

of primary versus recurrent tumors (Wilcoxon signed rank test, p=0.441). 

 
2.3.4 Spatial compartmentalization associated with longer progression free survival 

To investigate how spatial mixing correlated with patient outcome, we averaged the 

mixing scores across regions and assigned a final mixing score and spatial label for each tumor. 

Patients with more compartmentalization between neoplastic cells and immune cells in their 

primary tumors exhibited significantly longer PFS than those with greater mixing between these 

cell types (p=0.032, Figure 2.3d). We then examined how the average mixing score of the 

tumors related to the TNM stage and anatomic site of each primary tumor. Four of the five mixed 

primary tumors were TNM stage 4, and one was TNM stage 1. The four compartmentalized 

primary tumors were TNM stages 1, 2, 3, and 4. All anatomic sites were present in both mixed 

and compartmentalized spatial architecture groups (mixed: 2 oral cavity, 1 oropharynx, 2 larynx; 

compartmentalized: 2 oral cavity, 1 oropharynx, 1 larynx), indicating no single anatomic site had 

predominantly mixed or compartmentalized spatial architecture. 

 
2.3.5 Spatial architecture associated with cellular composition 

We next explored how cellular composition related to spatial organization, in an effort to 

explain the association found between mixing score and PFS. By coloring the initial PCA on 

TiME composition by mixing score, we found that tumor regions from the same mixing group 

clustered together (Figure 2.3e). Due to this association between cellular composition and spatial 

organization, we wondered whether certain cell types would be more frequent in mixed or 

compartmentalized tumors. Given how the mixing score is calculated, we hypothesized that 

compartmentalized tumor regions would have greater densities of immune cells than mixed 
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regions, while mixed tumor regions would have greater densities of neoplastic tumor cells than 

compartmentalized regions, and found this to be the case (Figure 2.3f). Namely, 

compartmentalized tumor regions had greater densities of CD4+ T helper cells (p=0.016), B cells 

(p=0.048), antigen presenting cells (APCs) (p=0.037), and other CD45+ immune cells (p=0.048) 

than mixed tumor regions. Given the role of CD4+ T helper cells, B cells, and other MHCII+ 

immune cells in antigen presentation, these results could indicate enhanced antigen presentation 

in compartmentalized tumor regions as compared to mixed regions. Conversely, mixed tumor 

regions contained greater densities of neoplastic tumor cells than compartmentalized regions 

(p<0.001).  

We further examined associations between functional phenotypes of leukocytes and 

mixing scores for each tumor region. Mixed regions contained a greater proportion of 

lymphocytes, including CD8+ T cells (p=0.023), CD4+ T helper cells (p=0.017), and B cells 

(p=0.016), expressing the immunoregulatory protein programmed death ligand (PD)-1 than 

compartmentalized regions (Figure 2.3g). PD-1 is recognized as an indicator of T cell antigen 

experience, whereas its expression on B cells has been reported to suppress T cell effector 

function [171, 172], indicating a suppressive and potentially dysfunctional immune environment 

in mixed tumors. On the contrary, compartmentalized regions contained a greater proportion of 

APCs expressing the proliferation marker Ki-67 than mixed regions (p=0.032, Figure 2.3h), 

supporting the notion that antigen presentation is a key feature of compartmentalized regions. We 

performed a bootstrapping analysis to confirm the robustness of these results and demonstrate 

that no one tumor was biasing the functional marker results (Supplementary Figure 2.2b,c,d,e). 

In addition to identifying differences between spatial architectures and their respective 

immune and neoplastic tumor cell densities and functional marker expressions, we found that 
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tumor regions with more compartmentalization between neoplastic cells and immune cells also 

contained greater densities of αSMA+ mesenchymal cells, as compared to those with higher 

mixing (p=0.002, Figure 2.3f). This result was intriguing because these cells were not included 

when computing the mixing score, yet there is a clear association between αSMA+ cell density 

and the tumor’s spatial organization (Figure 2.3i). 
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Figure 2.3: Mixing score quantifies the spatial organization of tumors. a, mIHC images of a 
representative mixed tumor region (top) versus a compartmentalized tumor region (bottom). Leftmost panel shows 
tumor regions with neoplastic tumor cells (purple) and CD45+ immune cells (green); white scale bar = 200 µm. 
Remaining panels show zoomed in areas of mixing (top) and compartmentalization (bottom), first with both cell 
populations present and then separated; white scale bar = 100 µm. b, Box plot showing the mixing scores across all 
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primary and recurrent tumors (n=18). Each dot (n=47) represents the mixing score for one tumor region and is 
colored according to its spatial architecture. The average spatial architecture designation for the overall tumor is 
printed above each box. Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR +/- Q3/Q1; 
solid line = median; dotted line = mean. c, Box plot showing the mixing score of each tumor region split by the 
anatomic site of its resection. Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR +/- 
Q3/Q1; solid line = median. P-value calculated using a one-way ANOVA multi-group significance test followed by a 
Tukey honestly significant difference post-hoc test. d, Kaplan-Meier curve of progression free survival for patients 
split by the mixing score of their primary tumors. Patients were split on the median value. P-value calculated using 
the log-rank test. e, Principal component analysis on cellular density following a log10+1 transformation. Each dot 
(n=47) represents one tumor region and is colored according to the region’s spatial architecture. f, Box plot showing 
the density of each cell type split by the tumor region’s spatial architecture. Each dot represents the density of that 
cell type for one region (n=47 per cell type). Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 
1.5*IQR +/- Q3/Q1; solid line = median; dotted line = mean. Statistical significance calculated using independent 
one-tailed t-tests for cell types whose differences follow a normal distribution and non-parametric one-tailed t-tests 
(Mann-Whitney U Test) for cell types whose differences do not follow a normal distribution. P-values were 
corrected using the Benjamini-Hochberg procedure. g, PD-1 expression on CD8+ T cells, CD4+ T helper cells, and B 
cells by spatial architecture. Each dot represents the percentage of each cell type positive for PD-1 for a single tumor 
region (n=45, excluding cold regions). Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 
1.5*IQR +/- Q3/Q1; solid line = median. P-values calculated using a one-tailed Mann-Whitney U test and corrected 
using the Benjamini-Hochberg procedure. h, Ki-67 expression on APCs by spatial architecture. Each dot represents 
the percentage of cells positive for Ki-67 for a single tumor region (n=45, excluding cold regions). Boxes = Q1 to 
Q3; whiskers = smallest and largest datapoints within 1.5*IQR +/- Q3/Q1; solid line = median. P-value calculated 
using a Mann-Whitney U test and corrected across all cell types using the Benjamini-Hochberg procedure. i, Bar 
chart showing the density of ⍺SMA+ mesenchymal cells present per tumor region. Bars are ordered by ⍺SMA+ cell 
density and are colored according to the region’s spatial architecture. 
 
 
2.3.6 αSMA+ mesenchymal spatial cellular neighborhoods reveal spatial landscapes associated 

with progression free survival advantage 

Given the relationship between mixing score and αSMA+ mesenchymal cell density, we 

deployed a cellular neighborhood clustering analysis to identify which cell types were spatially 

proximal to αSMA+ cells across tumors in order to gain a better understanding of whether these 

cells were contributing to the neoplastic tumor-immune spatial compartmentalization observed. 

This analysis first involved calculating neighborhoods, which were defined as physical groupings 

of cells within a set distance threshold from a seed cell (Figure 2.4a). Each cell within the 

distance threshold was deemed a neighbor of the seed cell, contributing to that seed cell’s 

neighborhood’s composition. After identifying neighborhoods for each seed cell present across 

all tumor regions, neighborhoods were grouped with K-means clustering, using the fraction of 
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each cell type present in the neighborhoods as the clustering features. This revealed clusters of 

αSMA+ cell neighborhoods with similar cellular makeups across all tumor regions. 

We applied a neighborhood clustering analysis with αSMA+ cells as the seed cells with a 

distance threshold of 30 µm, as this produced neighborhoods with an average of approximately 

ten neighbor cells. A recent study involving cellular neighborhood analyses employed a method 

that selected the ten nearest spatial neighbors of the seed cell, regardless of the distance between 

the seed cell and its neighbors [140]. By setting a distance threshold of 30 µm, our method 

required the cells be close, if not directly touching, while still capturing enough neighbors to 

cluster on. Any αSMA+ cell that did not have any neighbors was removed from downstream 

clustering analyses. Clustering results yielded seven groups, each different in their average 

composition of αSMA+ neighborhoods (Figure 2.4b). Clusters 1 and 2 contained mostly other 

αSMA+ cells comprising the neighborhoods; in fact, cluster 1 was almost exclusively made up of 

αSMA+ cells. Cluster 3 contained the greatest proportion of neoplastic tumor cell neighbors. 

Clusters 4, 5, 6, and 7 were all comprised of roughly 75% immune cells as neighbors, although 

they differed in the types of immune cells present. Cluster 4 was defined by a majority of other 

CD45+ immune cells not explicitly defined within our gating strategy. To elucidate marker 

expression within these other CD45+ cells, we performed a post-hoc t-distributed stochastic 

neighbor embedding (t-SNE) analysis on cells classified as ‘other immune,’ and found them to 

contain a large population of CD163+ cells and a smaller population of mast cells (tryptase+) 

(Supplementary Figure 2.3a). Cluster 5 contained primarily CD8+ T cells as the dominant 

immune population. Cluster 6 consisted of CD4+ T helper cells, B cells, and the greatest 

proportion of APCs of any cluster. Finally, cluster 7 was defined by its large proportion of 

granulocytes. 
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We confirmed that no single tumor region, entire tumor, or patient dominated any of the 

αSMA+ neighborhood clusters by examining the percent contribution of each of the seven 

clusters per 47 tumor regions, eighteen tumors, and nine patients. While clusters were present in 

varying degrees across tumor regions, our results indicated that no region (Supplementary 

Figure 2.3b), tumor (Supplementary Figure 2.3c), or patient (Supplementary Figure 2.3d) 

was solely responsible for giving rise to any of the clusters. We also confirmed that all seven 

clusters were present in tumors collected from each of the three anatomic sites (Supplementary 

Figure 2.3e), as well as each of the four TNM stages (Supplementary Figure 2.3f). 

To identify groups of patients with primary tumors of similar αSMA+ cellular 

neighborhoods, we performed unsupervised hierarchical clustering on the normalized average 

αSMA+ cellular neighborhood composition across the nine primary tumors. This resulted in two 

groups of patients, differing in proportional compositions of αSMA+ cellular neighborhoods 

(Figure 2.4c). On average, both groups had roughly 20% of their αSMA+ cells assigned to 

cluster 2 and roughly 10% of their αSMA+ cells assigned to cluster 5 (Figure 2.4d). However, 

the two groups differed in that group 1 (blue) included patients with αSMA+ cells predominantly 

assigned to clusters 1 and 6, meaning their αSMA+ cells were primarily surrounded by CD4+ T 

helper cells, B cells, and other αSMA+ cells. On the contrary, group 2 (orange) included patients 

with more of their αSMA+ cells assigned to clusters 3, 4, and 7, meaning their αSMA+ cells were 

mostly surrounded by neoplastic tumor cells, other immune cells, and granulocytes. Consistent 

with our results, visualization of tissue regions illustrates primary tumors in group 1 containing 

more αSMA+ stromal cells overall, frequently neighboring CD4+ T helper cells and B cells, with 

greater MHCII positivity (Figure 2.4e). Primary tumors in group 2 contained less structured 

αSMA+ stromal cells, fewer neighboring immune cells, and less MHCII positivity, differences 
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that were strikingly apparent in the mIHC stained tissue images (Figure 2.4e). Despite both 

groups containing nearly equal proportions of CD8+ T cells neighboring αSMA+ cells, group 1 

contained higher densities of CD4+ T cells and increased MHCII positivity as compared to group 

2 (Figure 2.4e). 

To determine if the composition of αSMA+ cellular neighborhood groups was correlated 

with clinical outcome, we performed a survival analysis on the two groups of patients. We found 

that patients in group 1 had significantly longer PFS than patients in group 2 (p=0.047, Figure 

2.4f). Patients in group 1 had primary tumors annotated as TNM stages 1, 2, 3, and 4, while 

patients in group 2 had four primary tumors annotated as TNM stage 4 and one annotated as 

TNM stage 1. Tumors from all three anatomic sites were represented in both groups. An analysis 

of the proportions of αSMA+ neighborhood clusters present in each of the nine primary tumors 

revealed the varying degrees to which each of the seven clusters were present in each of the 

tumors (Figure 2.4g). Notably, we found there to be a positive correlation between the presence 

of clusters 1 and 6 (r = +0.69) as well as clusters 4 and 7 (r = +0.66). We found negative 

correlations between the presence of clusters 1 and 4 (r = -0.88), clusters 3 and 6 (r = -0.69), and 

clusters 6 and 7 (r = -0.65). Finally, we found the two groups resulting from hierarchical 

clustering to be associated with mixing status. Specifically, group 1 consisted of 75% 

compartmentalized tumors, and group 2 consisted of 80% mixed tumors. Overall, these results 

describe interesting spatial relationships between immune cells, mesenchymal stroma, and 

neoplastic tumor cells, indicating increased antigen presentation and immune activity associated 

with compartmentalization and progression free survival. 
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Figure 2.4: αSMA+ mesenchymal cellular neighborhood clustering. a, Cellular neighborhoods were 
defined by drawing a circle of a specified radius around each seed cell (green) of a designated phenotype. Cells 
whose centers were inside the circle were considered neighbors of that seed cell. This figure was created using 
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BioRender.com. b, Stacked bar chart showing the average cellular composition of each αSMA+ mesenchymal cell 
neighborhood cluster (n=7). Bars are colored by cell type and represent the average fraction (out of 1.0) of each cell 
type present in the neighborhoods belonging to each cluster. c, Heatmap of αSMA+ cell neighborhood clusters 
present averaged across primary tumors. Rows are primary tumors that are ordered by the hierarchical clustering of 
their average of αSMA+ neighborhood cluster presence. Columns are the αSMA+ cell neighborhood clusters used as 
clustering features. Percent (out of 100) of αSMA+ neighborhood clusters was normalized using a log10+1 
transformation before clustering. Leftmost column is color coded by patient. d, Stacked bar chart showing the 
average proportion (out of 1.0) of αSMA+ cell neighborhood clusters present in each of the two hierarchically 
clustered groups of primary tumors. e, Panel of mIHC images containing two merged pseudo-colored images of one 
region from four patients visually illustrates representative regions from patients in group 1 and group 2. The top 
panel of images are merged pseudo-colored stains containing CD3, CD8, CD20, αSMA, and PANCK. The bottom 
panel of images are the same regions as the top panel with merged pseudo-colored stains containing MHCII, 
CD66B, Ki-67, αSMA, and PANCK. White arrows point out representative αSMA+ cells. White scale bar = 200 µm. 
f, Kaplan-Meier curve of progression free survival for patients grouped together in the hierarchical clustering of 
their primary tumor αSMA+ mesenchymal cell neighborhood abundance. P-value calculated using the log-rank test. 
g, Stacked bar chart showing the average proportion (out of 1.0) of αSMA+ cell neighborhood clusters present in 
each of the primary tumors (n=9). Tumors are ordered by descending proportions of cluster 1. 
 
 
2.4 Discussion 

The significant role that TiME cellular composition plays in tumor progression and 

response to therapy has been accepted for over a decade [173]. However, recent findings 

powered by single-cell proteomics imaging technologies have found that the spatial organization 

of the cells present in the TiME also plays a critical role [65-68, 139-141, 148-150]. TiME spatial 

quantifications are just beginning to provide novel insights into tumor biology, and thus it is still 

unclear exactly which spatial features are important in dictating response to therapy or clinical 

outcome, as well as whether these features are shared across cancer types, and how they could be 

leveraged for therapeutic decisions and patient stratification. Here, we leveraged single-cell 

spatial proteomics data generated by our mIHC immunoassay-based imaging platform to 

quantitatively assess the TiME of nine matched primary and recurrent HPV(-) HNSCCs in order 

to demonstrate the use of spatial features in disease prognosis. Our results on this cohort of nine 

patients provide insight into the heterogeneity and spatial landscape of HPV(-) HNSCCs, and 

highlight possible TiME spatial landscapes that may impact clinical outcome across cancer types. 
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We found concordance between the results from our heterogeneity and composition 

analyses and those from several other studies. Our results are similar to a study that clustered 

HNSCC biopsies based on their neoplastic and immune gene signatures as determined by RNA-

sequencing, and reported that samples from the same patient were more similar to each other 

than samples from different patients [174]. This trend has also been observed across cancer 

types, including melanoma [175], hepatocellular carcinoma [176], pancreatic ductal 

adenocarcinoma [177], and breast cancer [178]. Moreover, we found that patients who 

experienced an increase in CD8+ T cell density from their primary to recurrent tumors were 

associated with improved PFS, which has previously been reported in head and neck cancer 

[167, 168]. Conversely, patients experiencing the greatest decrease in CD8+ T cell density in 

recurrence had TNM stage 4 primary tumors. This could indicate that later staged primary 

tumors are better equipped to evade immune attack in recurrence, and a therapy to elicit an anti-

tumor immune response may be beneficial. 

Despite the fact that HPV(-) HNSCCs often contain limited immune infiltrates [155], our 

analyses revealed significant differences in the immune cell spatial organization within these 

tumors that were associated with progression free survival, highlighting the importance of 

considering the spatial context of the TiME. Most strikingly, patients whose primary tumors 

contained more compartmentalization between their neoplastic tumor cell and immune cell 

populations demonstrated longer PFS. This correlation was also identified in a similar analysis of 

triple negative breast cancer patients [139], indicating that a compartmentalized spatial 

architecture may play a favorable role in survival across cancer types. Our analyses of TiME 

composition and functional marker expression indicate there is likely more antigen presentation 

and less immunoregulation in regions of compartmentalization rather than in regions of mixing. 
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This favorable immune landscape in compartmentalized tumors may contribute to improved 

survival. On the contrary, four of the five of the mixed primary tumors were classified as TNM 

stage 4, which may contribute to shortened survival for these patients. However, given that 

compartmentalized tumors were not all classified as an early TNM stage and instead ranged from 

TNM stage 1 to 4, it is difficult to determine the exact association between neoplastic tumor and 

immune cell mixing versus TNM stage, and further investigation is warranted to understand 

these correlations and impact on prognosis. 

Prior studies have identified a mesenchymal HNSCC subtype [179, 180]; our αSMA+ 

mesenchymal cellular neighborhood analyses highlight the importance of considering how these 

cells are organized within the TiME, beyond simply considering their presence in the tumor. This 

could reveal more precise mesenchymal subtypes for improved stratification for patient care. 

αSMA is a common marker for cancer-associated fibroblasts (CAFs) [153, 181], whose presence 

in tumors, including HNSCC, tends to be associated with tumor progression, metastasis, and 

resistance to therapy [182-187]. However, despite compartmentalized tumors having increased 

αSMA+ cell density, patients with compartmentalized primary tumors demonstrated longer PFS, 

which indicates that the spatial organization of αSMA+ cells may be related to their function.  

We found αSMA+ cells neighboring immune cells in both mixed and compartmentalized 

primary tumors, but the types of immune cells near αSMA+ cells differed. This is interesting, as 

emerging research has found that CAFs, which are often defined by their expression of αSMA, 

can modulate immune cell function within the TiME. With our mIHC platform we were able to 

identify the differences in the types of immune cells neighboring αSMA+ cells and relate these 

differences to survival, supporting recent research on the impact of CAFs on various immune cell 

populations. A recent study in melanoma found CAFs to be instrumental in aiding tertiary 
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lymphoid structure (TLS) development [188]; TLS are defined by their large concentration of B 

cells surrounded by T cells, and their presence in tumors is associated with improved patient 

outcome [31-33]. In compartmentalized tumors, we noticed the αSMA+ cells to be more 

structured and located neighboring dense pockets of T cells and B cells, perhaps indicating the 

formation of TLS. Although this antibody panels did not include a biomarker for high endothelial 

venules to confirm presence of TLS, our results support the notion that CAF-lymphocyte 

interactions can be clinically beneficial. 

Conversely, patients with predominantly mixed primary tumors and shorter PFS 

contained αSMA+ cells primarily located near granulocytes and other CD45+ immune cells, many 

of which were likely CD163+ myelomonocytic cells or mast cells. CD163 is a marker for 

scavenger receptor activity and is commonly used to demark pro-tumor type tumor-associated 

macrophages and monocytes. Supporting these findings, a study in oral squamous cell carcinoma 

found the presence of CAFs to be associated with increased presence of CD163+ macrophages 

and worse survival [189]. Another study reported CAFs to be correlated with an increase in 

monocyte expression of CD163, which in turn suppressed T cell proliferation and increased 

neoplastic cell proliferation in breast cancer [190]. Mast cells mediate innate and acquired 

immune response as a part of the myeloid lineage. They have been reported to facilitate neo-

vascularization and tumor dissemination in HNSCC, and found to be correlated with increased 

angiogenesis in advanced HNSCC [191]. However, interactions between mast cells and CAFs is 

largely unknown; our results indicate this interaction may be associated with increased neoplastic 

density and worse PFS. Of note, a recent study in melanoma and pancreatic adenocarcinoma 

found neutrophils, a subclass of granulocytes, to exert pro-tumor effects when in the presence of 



 
 
53 

CAFs [192], and another study found the combined presence of neutrophils and CAFs to be 

associated with shortened survival in gastric adenocarcinoma [193].  

Finally, patients with predominantly mixed primary tumors and shorter PFS were found 

to contain fewer overall stromal cells and greater proportions of those αSMA+ cells neighboring 

neoplastic tumor cells. It has been reported that neoplastic tumor cells in direct contact with 

CAFs move along tracks laid by the CAFs in the extracellular matrix, promoting tumor growth 

[194, 195]. It is possible that αSMA+ cells in mixed tumors may provide avenues for neoplastic 

tumor cells to transit, thus leading to more advanced tumor progression. Overall, spatial analyses 

herein deepened our understanding of neoplastic tumor and immune cell organization relative to 

each other, and how this organization is related to αSMA+ cells working in tandem with many 

cells, beyond single cell-cell interactions, to impact TiME organization, and ultimately, clinical 

outcome. The conclusions from our spatial analyses and their relationship to clinical variables 

are summarized in Figure 2.5.

 

Figure 2.5: Proposed model of primary HPV(-) HNSCC tumor-immune microenvironments. a, 
Depiction of a tumor with a compartmentalized spatial architecture. These tumors have decreased mixing between 
immune cells and neoplastic tumor cells and tend to contain greater immune cell density, specifically cells involved 
in antigen presentation, as well as increased density of αSMA+ mesenchymal cells. The αSMA+ cells present tend to 
be neighbored by CD4+ T helper cells and B cells, as well as other αSMA+ cells. Compartmentalized primary tumors 
were found to be associated with longer progression free survival. b, Depiction of a tumor with a mixed spatial 
architecture. These tumors contain increased mixing between immune cells and neoplastic tumor cells and tend to 
contain increased neoplastic tumor cells, as well as increased PD-1-positive lymphocytes. The αSMA+ cells present 
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tend to be neighbored by neoplastic tumor cells, other immune cells, many of which are CD163+ or are mast cells, 
and granulocytes. Mixed primary tumors were found to be associated with shorter progression free survival and later 
TNM stage. This figure was created using BioRender.com. 
 
  

The concordance found among results herein and those of the aforementioned studies 

provides orthogonal support for our conclusions and indicates that single-cell heterogeneity and 

spatial organization of tumors may share similarities across different types of cancer and across 

different molecular assays. Our spatial analyses demonstrate the use of various algorithms to 

quantify the spatial landscape of tumors using single-cell imaging data. Further, our 

computational methods provide a framework for future single-cell imaging analyses, as they are 

applicable to any multiplex imaging assay, including mIHC, co-detection by indexing technology 

(CODEX) [140], cyclic immunofluorescence [117, 152, 196], and imaging mass cytometry [68]. 

Our results highlight several spatial architectures that may help guide precision medicine 

approaches for HPV(-) HNSCC patients, including architectures that may help stratify patients 

who may have shorter PFS, and thus warrant more aggressive therapy or clinical follow-ups. 

While our results provide evidence that the spatial organization of HPV(-) HNSCC tumors 

correlates with clinical outcome, future studies with larger cohorts will be needed to evaluate the 

strength and validity of our observations. Studies with greater representation of anatomic site and 

stage are also needed to assess the prognostic value of the spatial features identified in this 

HNSCC cohort. Despite these limitations, this study demonstrates practical analysis strategies 

that elucidate spatial architecture features for potential use in precision medicine. 

 
2.5 Methods 

2.5.1 Multiplex immunohistochemistry data generation 

mIHC is an immunohistochemical-based imaging platform that evaluates sequentially 

stained immune lineage epitope-specific antibodies for immunodetection on FFPE tissue sections 
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[121, 122]. Images were stained and processed as described in our previous report [122]. A table 

of antibodies, species, vendor, and concentration used in staining are previously reported in Table 

1 of Banik et al [122]. Briefly, sequentially stained images were co-registered in MATLAB. AEC 

signal from each antibody stain was extracted and normalized, and the mean intensity of each 

single cell for each marker was quantified in Cell Profiler. Watershed based nuclei segmentation 

on hematoxylin staining was used to identify single cells in FIJI. Using a hierarchical gating 

strategy, single cells were phenotyped using image gating cytometry in FCS Express 7 Image 

Cytometry RUO (Supplementary Figure 2.1a). A threshold was set on the scatterplot of mean 

intensity for each marker within the gating strategy, validated by visual live rendering of masked 

cell objects within the selected gate on extracted marker signals. Cartesian coordinates of each 

phenotyped cell were maintained relative to the tissue region. 

We applied the mIHC pipeline to analyze matched primary and recurrent FFPE tissue 

specimens from nine HPV(-) HNSCC patients. Each patient underwent surgical resection of their 

primary tumor prior to beginning a regimen of chemotherapy and radiation therapy. Upon 

recurrence, the patient underwent another surgical resection of their recurrent tumor. Tissue 

specimens for each patient were obtained from the Oregon Health & Science University Knight 

Biolibrary and were deidentified and coded with a unique identifier prior to analysis. Patient 

demographic and clinical data including HPV status, tobacco and alcohol use, treatment 

regimens, and survival outcomes were collected. All HNSCC tumors were staged according to 

the 8th edition AJCC/UIC TNM classification and cohort characteristics are shown in Table 2.1 

as reported in Banik et al [122]. All studies involving human tissue were approved by 

institutional IRB (protocol #809 and #3609), and written informed consent was obtained. 

 
2.5.2 Tumor heterogeneity analyses 
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The Kullback-Leibler divergence was calculated using the entropy function from the 

Scipy Python package [197]. The distribution of each individual tumor region’s cellular 

composition was compared to the average of five different cellular composition distributions: the 

average distribution for the region’s tumor, the average distribution for the patient’s primary and 

recurrent tumors, the average distribution across all tumors of the same timepoint in the cohort 

(primary or recurrent), the average distribution across all tumors resected from the same 

anatomic site in the cohort, and the average distribution across all tumors from all patients in the 

cohort (primary and recurrent combined). Log base 2 was used for the calculation. Unsupervised 

hierarchical clustering of each tumor region was performed using the log10+1 normalized 

density of each cell type present as the features. Euclidean distance was used to determine 

distances between observations, and the Ward method was used for the linkage. 

 
2.5.3 TiME compositional change clustering analysis 

Unsupervised hierarchical clustering of each patient was performed using the normalized 

change in density of each cell type as the features. Euclidean distance was used to determine 

distances between observations, and the Ward method was used for the linkage. Normalization in 

the change in density was computing by first calculating the absolute value of the raw change in 

density for each cell type. These values were then normalized to a range of [0,1]. Finally, the 

values that were originally negative (decreasing change), were flipped to be negative values 

again, such that all values ranged from [-1,1] with zero representing no change. 

 
2.5.4 Mixing score analysis 

Keren et al. developed a mixing score to quantify the ratio of neoplastic and immune cell 

spatial interactions [139]. This score is defined as the number of interactions between neoplastic 
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tumor cells and immune cells divided by the number of interactions between immune cells and 

another immune cell within a tumor region. We defined there to be an interaction between two 

cells if their centers [the (x,y) coordinates provided by mIHC] were within 15 µm from one 

another. We used the median mixing score value (0.107) for all primary tumors as the threshold 

to distinguish between mixed and compartmentalized spatial organization groups. Tumor regions 

with a mixing score of greater than 0.107 were defined as mixed. Tumor regions with a mixing 

score of less than 0.107 were defined as compartmentalized. We used a density threshold of less 

than 250 immune cells per 8002 µm2 to define tumor regions as cold. We chose this threshold to 

match that used by Keren et al. 

 
2.5.5 Functional marker bootstrapping analyses 

Bootstrapping analyses involved the following steps. First, one tumor region per eighteen 

tumor samples was randomly selected. The regions were then split into two groups based on their 

mixed or compartmentalized spatial architecture designation, and the average proportion of the 

specified cell population expressing the specified functional marker was calculated for each 

group. Finally, this process was repeated 100 times, yielding 100 values representing the 

proportion of the specified cell population expressing the specified functional marker for mixed 

tumor regions and 100 values representing the proportion of the specified cell population 

expressing the specified functional marker for compartmentalized tumor regions. These values 

were then compared between the mixed and compartmentalized groups for differences. 

 
2.5.6 Cellular neighborhood clustering analyses 

Cellular neighborhoods were defined by drawing a circle of a specified radius around all 

seed cells of a given phenotype. Cells whose centers were inside the circle were considered 
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neighbors of that seed cell and contributed to that cell’s neighborhood. All neighborhoods across 

all tumor regions were then clustered using scikit-learn’s MiniBatchKMeans function [198] to 

perform K-means clustering according to their normalized cellular composition. The elbow 

method was used to determine the number of clusters to form. Each resulting cluster was 

comprised of neighborhoods with a similar cellular makeup. Unsupervised hierarchical 

clustering of each primary tumor was performed using the log10+1 normalized proportion (out 

of 100) of αSMA+ cell neighborhood clusters present in the tumor as the features. Euclidean 

distance was used to determine distances between observations, and the Ward method was used 

for the linkage. 

 
2.5.7 Statistics 

Independent t-tests were used to determine statistically significant differences for 

independent samples whose differences followed a normal distribution. Mann-Whitney U tests 

were used to determine statistically significant differences for independent samples whose 

differences did not follow a normal distribution. Paired t-tests were used to determine 

statistically significant differences for paired samples whose differences followed a normal 

distribution. Wilcoxon signed rank tests were used to determine statistically significant 

differences for paired samples whose differences did not follow a normal distribution. One-way 

ANOVA tests were used to determine statistically significant differences for multi-group 

comparisons. If the ANOVA result was significant, a Tukey honestly significant difference post-

hoc test was conducted to determine which groups were significantly different from one another. 

A Benjamini-Hochberg correction was used to account for multiple hypothesis testing in 

analyses that involved systematically testing multiple variables. P-values less than 0.05 were 
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considered statistically significant. All statistical calculations were performed with the Scipy and 

statsmodels packages using Python software [197, 199]. 

 
2.5.8 Survival analyses 

Kaplan-Meier curves were generated and a log-rank test was performed using the 

lifelines package with Python software [200]. P-values less than 0.05 were considered 

statistically significant. 

 
2.5.9 Data availability 

All of the data produced by our mIHC computational image processing pipeline, 

including protein abundance, cell phenotype, and cell location information saved in the form of a 

matrix, in addition to survival data, is available for download on Zenodo at 

https://doi.org/10.5281/zenodo.5540356. 

 
2.5.10 Code availability 

All computational analyses in this study were performed using Python software, version 

3.6.5. The code created to produce the results of this study is available at 

https://github.com/kblise/HNSCC_mIHC_paper. 
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2.6 Supplementary Data 
 

 
 

Supplementary Figure 2.1: Tumor heterogeneity assessed by mIHC assay. a, Gating template used to 
determine cell phenotypes and classification of ten populations using image gating cytometry in FCS Image 
Cytometry 7 RUO. Scatter plots show single cell mean intensity distributions rescaled from 0-1 on a log10 scale 
with gated populations in colored boxes. Image plot shows a semi-transparent pseudo-colored mask of each cell 
object colored by the classified population overlaid on signal extracted nuclei image. The markers used for 
identification of cell phenotypes are shown in Table 1. 
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Supplementary Figure 2.1 (continued): b, mIHC images of six tumor regions selected from two different 
tumor resections (patient 9 primary and patient 8 recurrent). Blue pseudo-color indicates all cell nuclei present in the 
region (Hematoxylin+) and yellow indicates B cells. In both tumors, two regions have low densities of B cells, 
whereas one region has a high density and spatial concentration of B cells, despite the three regions being sampled 
from the same tumor. c, Box plot of the Kullback-Leibler divergences from a single tumor region’s immune cell 
distribution compared to: the tumor’s average immune cell distribution [Intra-Tumor (P or R only)], the patient’s 
average immune cell distribution [Intra-Patient (P and R)], the cohort’s average immune cell distribution across 
tumors of the same timepoint [Inter-Patient (P or R only)], the cohort’s average immune cell distribution across 
tumors of the same anatomic site [Inter-Patient (Same Anatomic Site)], the cohort’s average immune cell 
distribution across all tumors from all patients [Inter-Patient (all)]. P-values calculated using a one-way ANOVA 
multi-group significance test followed by a Tukey honestly significant difference post-hoc test. 
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Supplementary Figure 2.2: Leukocyte functionality compared to mixing score. a, Box plot of the 
absolute difference from a single tumor region’s mixing score compared to: the tumor’s average mixing score [Intra-
Tumor (P or R only)], the patient’s average mixing score [Intra-Patient (P and R)], the cohort’s average mixing score 
across tumors of the same timepoint [Inter-Patient (P or R only)], the cohort’s average mixing score across tumors of 
the same anatomic site [Inter-Patient (Same Anatomic Site)], the cohort’s average mixing score across all tumors 
from all patients [Inter-Patient (all)]. P-value calculated using a one-way ANOVA multi-group significance test 
followed by a Tukey honestly significant difference post-hoc test. b, Histogram showing the results of a 
bootstrapping analysis on the percentage of CD8+ T cells expressing PD-1. Bars are colored by spatial architecture. 
c, Histogram showing the results of a bootstrapping analysis on the percentage of CD4+ T helper cells expressing 
PD-1. Bars are colored by spatial architecture. d, Histogram showing the results of a bootstrapping analysis on the 
percentage of B cells expressing PD-1. Bars are colored by spatial architecture. e, Histogram showing the results of 
a bootstrapping analysis on the percentage of APCs expressing Ki-67. Bars are colored by spatial architecture. 
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Supplementary Figure 2.3: αSMA+ cellular neighborhood distributions. a, t-SNE representation of single 
cells from the ‘Other Immune’ class colored by heatmap of mean intensity for CD163 and tryptase (mast cells) show 
distinct populations of cells expressing high levels of CD163 and tryptase, indicating these cell types are likely 
present in the ‘Other Immune’ class. b, Stacked bar chart showing the proportion (out of 1.0) of αSMA+ cell 
neighborhood clusters present in each tumor region (n=47). c, Stacked bar chart showing the average proportion (out 
of 1.0) of αSMA+ cell neighborhood clusters present in each tumor (n=18). d, Stacked bar chart showing the 
proportion (out of 1.0) of αSMA+ cell neighborhood clusters present in each patient’s primary and recurrent tumors 
averaged (n=9). e, Stacked bar chart showing the average proportion (out of 1.0) of αSMA+ cell neighborhood 
clusters present in tumors collected from the three anatomic sites. f, Stacked bar chart showing the average 
proportion (out of 1.0) of αSMA+ cell neighborhood clusters present in the primary tumors by their TNM stage. 
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Chapter 3: Comparing natural killer cell function and 
spatial organization across breast cancer subtypes 
 
This chapter has been formatted for inclusion in this dissertation from the manuscript “Natural 
Killer cells occupy unique spatial neighborhoods in human HER2- and HER2+ breast cancers” by 
Femke, A. I. Ehlers, Katie E. Blise, Courtney B. Betts, Shamilene Sivagnanam, Loes F. S. 
Kooreman, E. Shelley Hwang, Gerard M. J. Bos, Lotte Wieten, and Lisa M. Coussens, 
manuscript submitted (2024) [201]. The author of this dissertation is the secondary author of this 
manuscript and used single-cell gated data generated by LMC’s laboratory to conduct the 
computational spatial experiments, the results of which were used to generate Main Figures 3.3, 
3.4C-E, and 3.5 and Supplementary Figures 3.5 and 3.7. 
 

3.1 Abstract 

Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but 

the significance of natural killer (NK) cells is less well characterized. As increasing evidence 

demonstrates that the spatial organization of immune cells in tumor microenvironments is a 

significant parameter for impacting disease progression as well as therapeutic responses, 

improved understanding of tumor-infiltrating NK cells and their location within tumor 

contextures is required in order to better design effective NK cell-based therapies. In this study, 

we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to 

quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes in 

human breast cancer. Due to the clinical evidence supporting a significant role for NK cells in 

HER2+ breast cancer in mediating responses to Trastuzumab, we evaluated HER2- and HER2+ 

specimens in two independent patient cohorts (n=26 and n=30, respectively). Consistent with 

literature, we found CD3+ T cells to be the dominant leukocyte subset across breast cancer 

specimens. In comparison, NK cells, identified by CD56 or NKp46, were scarce in all specimens 

with low granzyme B expression indicating reduced cytotoxic functionality. Whereas the 

immune cell context including NK cell density and phenotype did not appear influenced by 
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HER2 status, spatial analysis of NK cells revealed distinct phenotype profiles with regards to 

proximity to neoplastic tumor cells that associated with HER2 status.  Spatial cellular 

neighborhood analysis demonstrated existence of multiple unique neighborhood compositions 

surrounding NK cells, where NK cells from HER2- tumors were found more frequently proximal 

to neoplastic tumor cells, whereas NK cells from HER2+ tumors located more frequently 

proximal to CD3+ T cells. This study establishes the utility of quantitative mIHC to evaluate NK 

cells on a single-cell spatial proteomics level and illustrates how spatial characteristics of NK 

cell neighborhoods varies within the context of HER2- and HER2+ breast cancers. 

 
3.2 Introduction 

Breast cancer is the most common cancer in women, and although survival rates have 

improved, it remains a leading cause of death [98]. Based on their molecular classification, 

breast cancer subtypes are largely segregated into basal-like, luminal A, luminal B, normal-like, 

and HER2+ breast cancer and guide therapeutic decisions [202]; however, even within subtypes, 

high heterogeneity is recognized. Tumor-infiltrating lymphocytes are generally accepted to be 

important for favorable therapeutic responses, but the significance of natural killer (NK) cells in 

breast cancer is less well characterized [203]. NK cells are cytotoxic leukocytes that can impact 

neoplastic cells through an extensive array of cell surface receptors, with one of the most potent 

activating receptors being CD16A (FcγRIIIA) that binds immunoglobulins and immune 

complexes, as well as tumor-targeting antibodies that induce tumor cell killing through antibody-

dependent cellular cytotoxicity (ADCC) [204, 205]. Next to their cytotoxic capabilities, NK cells 

release proinflammatory cytokines and chemokines to activate and recruit other immune cell 

type including dendritic cells and macrophages [206, 207].  
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NK cell abundance and functional status are positively correlated with improved clinical 

outcome in several solid tumors, supporting the tenet that NK cells are critical for tumor control 

despite being present in rather low frequency (reviewed in [35, 208]. In experimental mouse 

models of HER2+ breast cancer, NK cells were reported to significantly contribute to efficacy of 

the anti-HER2 antibody Trastuzumab by mediating ADCC [92, 209]. Indirect evidence further 

supports that NK cells also contribute to efficacy of Trastuzumab in patients with HER2+ breast 

cancer, as demonstrated by increased tumor-infiltrating NK cells following Trastuzumab therapy 

[93, 210, 211].  

Due to their cytotoxic potential and high safety profile, NK cells are promising 

candidates for adoptive cell therapy [212]. However, tumor-infiltrating NK cells are frequently 

described as dysfunctional, which might underlie limited success thus far with adoptive NK cell 

therapy in breast cancer [213]. NK cell effector functions could be inhibited by neoplastic tumor 

cells through downregulation of activating ligands and expression of inhibitory ligands such as 

HLA class I [94]. Moreover, immunosuppressive tumor microenvironments (TME) are known to 

negatively affect NK cells via various mechanisms, including immunosuppressive cytokines and 

hypoxic conditions [95]. Hypoxia is frequently present in solid tumors and has been reportedly 

identified in 50% of breast cancer patients [214]. Compared to blood, tumor-infiltrating NK cells 

express low levels of activating receptors and have a low cytotoxic potential, indicating that 

these alterations could be TME-mediated [215, 216].    

To enhance NK cell anti-tumor responses, strategies have emerged, such as cytokine-

activation and monoclonal antibodies (mAb), designed to be directed against inhibitory 

checkpoint molecules to prevent NK cell inactivation or ADCC-mediating mAb for stimulating 

NK cell activation [212]. Combination of anti-HER2 targeting therapy e.g., Trastuzumab, with 
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NK cell-based therapy could be an approach to boost NK cell activity against HER2+ breast 

cancer [217]. In addition to enhancing NK cell potency, it will be crucial to understand the 

cellular spatial organizations in TMEs, including the distribution of endogenous NK cells and 

their interactions with neoplastic tumor cells, as well as other tumor-infiltrating leukocytes. 

Cellular and spatial heterogeneity has been linked to clinical outcomes; for example, spatial 

organization of immune cells within TMEs of triple-negative breast cancer patients, assessed by 

multiplexed ion beam imaging by time-of-flight (MIBI-TOF), was linked to overall patient 

survival [139, 218]. However, little is known regarding infiltration and distribution of NK cells 

within heterogeneous breast cancer TMEs. Common to the above-described studies evaluating 

NK cells in human breast cancer, was the use of flow cytometry or standard single-color 

immunohistochemistry (IHC) for quantitation, thus negating information on spatial distributions 

of cells or identification of cell populations being restricted. More recently, multiplexed imaging 

methods, such as multiplex IHC (mIHC), have become available and overcome some of these 

limitations, as these methods allow in situ phenotyping and evaluation of spatial architectures of 

diverse cell populations on one tissue section [219]. In this study, we developed an mIHC 

antibody panel designed to quantify leukocyte lineages, including deep-auditing of NK cells and 

their phenotypes, as well as their spatial architecture in human breast cancer. Specifically, we 

compared HER2- versus HER2+ disease due to the clinical relevance of NK cells in combination 

with Trastuzumab. 

 
3.3 Materials and methods 

3.3.1 Clinical samples 

Cohort 1: Breast cancer tissue was obtained by Duke University, Durham, USA, and 

shipped to Oregon Health & Science University (OHSU), Portland OR, USA. The study protocol 
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was approved by the IRB of Duke University (Durham, NC USA) ethics committee as 

appropriate. Informed consent was obtained from all human subjects included in this study. 

Cohort 2: Breast cancer tissue was obtained by Maastricht University Medical Center+, 

Maastricht, The Netherlands. Collection, storage, and use of tissue and patient data were 

performed in agreement with the “Code for Proper Secondary Use of Human Tissue in the 

Netherlands” and approved by the local ethics committee (METC 2019-1154). Clinical 

characteristics for both cohorts are shown in Supplementary Table 3.1.  

 
3.3.2 Multiplex immunohistochemistry and image acquisition 

Multiplex immunohistochemistry (mIHC) was performed as previously described [121, 

122]. Briefly, formalin-fixed, paraffin-embedded (FFPE) tissue sections (5 µm) were baked in a 

60°C heat chamber for 30 minutes, deparaffinized in xylene and rehydrated in serially graded 

ethanols and placed in water. After deparaffinization, the slides were fixed in 10% neutral 

buffered formalin for 30 minutes and subsequently washed twice in PBS to prevent tissue from 

falling of the slides [220].Tissue slides were counterstained with hematoxylin (Dako, S3301) for 

1.0 minute at room temperature (RT), washed in water, and mounted with 1X TBST buffer 

(Boston Bioproducts, IBB-181R) before coverslips (Thermo Scientific, 12460S) were placed on 

the slides. Slides were scanned using the whole slide digital scanner Aperio ImageScope AT 

(Leica Biosystems) at 20X magnification. Coverslips were removed by placing slides in TBST 

for a few minutes with agitation. For heat-mediated antigen retrieval, slides were placed in 1X 

EDTA Decloaker (Biocare Medical, CB917) in a pressure cooker for 15 or 20 minutes at 115°C 

for staining cycle 1 and 3, and slides were placed in 1X citrate buffer, pH 6.0 (Biogenex 

Laboratories, HK080) for 20 minutes at 95°C for the other staining cycles (Supplementary 

Table 3.2). After antigen retrieval and washing in water and TBST, slides were incubated with 
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dual endogenous peroxidase block (Dako, S2003) for 10 minutes at RT. Protein blocking was 

performed with 5% normal goat serum and 2.5% BSA in PBS for 10 minutes at RT. Slides were 

incubated with the primary antibody for 30 or 60 minutes at RT or overnight at 4°C. After slides 

were washed, they were incubated with the secondary antibody Histofine Simple Stain MAX PO 

horseradish peroxidase-conjugated polymer (Nichirei Biosciences, 414134F or 414144F) for 30 

minutes at RT in all staining rounds, except cycle 3 round 2 where slides were incubated for 60 

minutes at RT with histofine. Information on antibodies and staining conditions are listed in 

Supplementary Table 3.2. Chromogenic signal detection was performed with AEC substrate kit, 

Peroxidase (Vector Laboratories, SK-4200) for all antibodies, except the anti-PD-1 antibody that 

was detected with AMEC Red Substrate, Peroxidase (Vector Laboratories, SK-4285). Slides 

were scanned using the whole slide digital scanner and coverslips were removed, as described 

above. AEC or AMEC were removed by placing the slides in serially graded ethanols. For cycles 

with two rounds of antibody development, horseradish peroxidase was inactivated by incubation 

with dual endogenous peroxidase block (Dako, S2003) for 10 minutes at RT. Protein blocking 

was repeated before each following antibody. For the following cycles, the same steps from 

antigen retrieval to slide scanning were performed as described above. Heat-mediated antigen 

retrieval stripped antibodies from the previous staining cycle. Human tonsil and spleen were used 

as a control in all staining cycles and a representative visualization of each antibody is shown in 

Supplementary Figure 3.1.  

  
3.3.3 ROI selection and image processing 

In cohort 1, tissue area was limited and all intact regions were captured in 1-6 regions of 

interest (ROIs). In cohort 2, 4-13 ROIs with lymphoid aggregates, tumor-sparse areas and tumor-

dense areas were selected. When tissue size allowed, several ROIs with a minimum of 0.8 mm2 
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were selected to reflect tissue heterogeneity. For each specimen, the sum of the ROIs was used 

for subsequent calculations. Image co-registration and processing were performed as previously 

described [107, 121]. Cell percentages of immune cell lineages, presented in Figure 3.1, were 

quantified by image cytometry gating strategies (Supplementary Figure 3.2).   

 
3.3.4 Cellular neighborhood clustering analysis 

A cellular neighborhood clustering analysis was performed, following similar steps to 

those as previously described [147]. Briefly, we identified all cells, excluding “other nucleated 

cells”, within a given distance threshold for every given seed cell phenotype across the dataset. 

In this study, we set the distance threshold to 60 µm and the seed cell phenotype to be all NK 

cells. After computing the neighboring cells for each NK cell in the dataset, we then performed 

K-means clustering on the neighborhoods, using the normalized composition of cells comprising 

the neighborhoods as the features on which to cluster. The elbow method was used to determine 

the optimal number of clusters to generate resulting in clusters of neighborhoods, all possessing 

similar cellular compositions surrounding NK cells. 

 
3.3.5 Statistical analysis 

Mann-Whitney-U tests were used to determine statistically significant differences for 

comparisons between two groups and a Benjamini-Hochberg correction was used to account for 

multiple hypothesis testing. Kruskal-Wallis tests were used to determine statistically significant 

differences for comparisons between multiple groups and p-values were adjusted for multiple 

comparisons using Dunn’s adjustments. p-values < 0.05 were considered statistically significant 

and reported as * p < 0.05 and ** p < 0.01. Spearman correlation coefficient was used to 
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determine correlations of cell densities. Statistical analysis was performed using GraphPad 

software (version 9.2.0). 

 
3.3.6 Data availability 

The mIHC data used for this study is available for download on Zenodo at 

https://doi.org/10.5281/zenodo.10632694. 

 
3.3.7 Code availability 

The code used to generate the spatial results of this study was created using Python 

version 3.9.4 and is available on Github at https://github.com/kblise/NKcell_mIHC_paper.  

 
3.4 Results 

3.4.1 Immune cell context in HER2- and HER2+ human breast cancer 

To identify NK cells and their phenotypes in human breast cancer, we used a previously 

validated mIHC platform and antibody panels designed to elaborate leukocyte lineages, where 

antibodies focusing on NK cell presence and effector status were included. A single FFPE tumor 

section per patient was sequentially stained with the mIHC panel, consisting of 20 well validated 

antibodies (Supplementary Table 3.1). Chromogenic detection of antibodies in their respective 

cycle in the mIHC panel is shown in Supplementary Figure 3.1. Scanned images were 

quantitatively analyzed by image cytometry and identified cell types, alongside their functional 

biomarkers, were depicted (Figure 3.1A, Supplementary Figure 3.2) [121, 122]. 

Based on the evidence for NK cells in HER2+ breast cancer [92, 93, 209-211], we 

profiled NK cells in HER2- and HER2+ tumor specimens from two independent patient cohorts, 

presented as cohort 1 consisting of both HER2- and HER2+ specimens classified by standard 

IHC, and cohort 2 comprising solely HER2+ therapy-naive breast cancer specimens, classified as 

https://doi.org/10.5281/zenodo.10632694
https://github.com/kblise/NKcell_mIHC_paper
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HER2-amplified by FISH (Figure 3.1B). Patient characteristics of both cohorts are provided in 

Supplementary Table 3.2. We analyzed regions of interest (ROI) on tumor tissue areas that 

remained after all staining cycles were completed, and due to tissue availability, more ROIs were 

analyzed in cohort 2 (Figure 3.1C, Supplementary Table 3.3). On average 12.5 mm2 per tumor 

specimens were available for analysis in cohort 1, whereas 38.7 mm2 per tumor specimens were 

available for analysis in cohort 2, including areas with high leukocyte density potentially 

reflecting lymphoid aggregates (Figure 3.1B-C). 

We first evaluated CD45+ leukocytes, pan-cytokeratin (PanCK)+ epithelial cells and other 

nucleated cell densities. In cohort 1, the most abundant cells in HER2- specimens reflected 

PanCK+ epithelial cells, as compared to the median of HER2+ specimens, where PanCK+ 

epithelial cells represented comparable density to other nucleated cells (Figure 3.2A). Variability 

in cell densities was observed between specimens and ROIs, and no significant difference was 

found between HER2- and HER2+ specimens of cohort 1 (Figure 3.2A, Supplementary Figure 

3.3A-B). In cohort 2, comprising HER2+ specimens, CD45+ leukocytes were abundantly present, 

with a median cell density comparable to PanCK+ epithelial cells (Figure 3.2A, Supplementary 

Figure 3.4A-B). Higher leukocyte density was observed in cohort 2 compared to both groups in 

cohort 1 likely due to differences in tissue areas available for analysis (Figure 3.1C, 3.2A) or 

due to variation in specimen acquisition at different collection sites. 
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Figure 3.1: Overview of identified cell types and human breast cancer specimens. A) Cell types and 
corresponding markers that were used to identify the cell types. B) Breast cancer cohorts evaluated in this study. 
HER2 status was assessed by IHC (cohort 1) or FISH (cohort 2). C) Example images of H&E sections, CD45, and 
PanCK staining with the selected ROIs represented by the green boxes. Depending on tissue size, 1-6 ROI per 
specimen were analyzed in cohort 1 and 1-11 ROI per specimen were analyzed in cohort 2. In all images, scale bar = 
1.0 mm. H&E = hematoxylin and eosin, ROI = region of interest. 
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3.4.2 Paucity of NK cells in breast cancer specimens independent of HER2 status 

We next investigated general leukocyte subset heterogeneity by quantifying densities of T 

cells (CD45+ CD3+ cells), myeloid cells (CD45+ CD3- CD56- NKp46- cells, identified by CD11b, 

CD68 or CD11c), other CD45+ cells, as well as total NK cells (CD3- CD56+ NKp46- cells, CD3- 

CD56+ NKp46+ cells, and CD3- CD56- NKp46+ cells). Intra- and inter-tumoral heterogeneity was 

observed, and NK cells were present in low abundance (Figure 3.2B, Supplementary Figure 

3.3C-D). CD3+ T cells represented the most abundant immune subset in both in HER2- and 

HER2+ specimens in cohort 1, followed by other CD45+ cells and myeloid cells without 

significant differences between HER2- and HER2+ disease in any of the evaluated cell 

populations (Figure 3.2B, Supplementary Figure 3.3C-D). In cohort 2, CD3+ T cells remained 

the densest immune cell population (Figure 3.2B, Supplementary Figure 3.4C-D), consistent 

with previously published immune cell compositions in breast cancer cohorts [221, 222]. Further 

subset analysis within CD3+ T cells revealed that CD4+ and CD8+ T cells were found at 

comparable cell densities within both the HER2- and HER2+ specimens in cohort 1 (Figure 

3.2C). As for CD3+ T cells, cell densities of CD4+ and CD8+ T cells were higher in cohort 2 

compared to cohort 1, but CD4+ and CD8+ T cell densities were found at comparable ratios, 

showing consistency with specimens in cohort 1 (Figure 3.2C). Within the myeloid cell fraction, 

the antibody panel allowed identification of CD11b- CD11c+ and CD11b+ CD11b- dendritic cells, 

CD11b+ CD68+ or CD11b- CD68+ myelomonocytic cells, and other CD11b+ cells, such as 

granulocytes; the myeloid subsets revealed neither significant differences between HER2- and 

HER2+ specimens in cohort 1, nor between cohorts (Figure 3.2D). 

NK cell density in comparison to CD3+ T cells and CD11b+ myeloid cells is illustrated in 

Figure 3.2E. NK cell densities ranged between 0 - 16 NK cells/mm2 in HER2- specimens and 0 - 
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53 NK cells/mm2 in HER2+ specimens of cohort 1 (median of 8 NK cells/mm2 in both groups, 

Figure 3.2F, Supplementary Figure 3.3C-D). Cell densities of NK cells in HER2+ specimens 

were comparable in cohort 2, where we detected between 0 – 68 NK cells/mm2 (median of 6.6 

NK cells/mm2, Figure 2F, Supplementary Figure 3.4C-D). NK cell presence was thus not 

associated with HER2 status, nor with other known tumor characteristics (tumor grade, lymph 

node status, hormone receptors ER and PR) or neoadjuvant treatment status, as well as CD3+ or 

myeloid cell densities (Supplementary Table 3.4).  

 
3.4.3 NK cells lack indicators of cytotoxicity 

We next evaluated NK cell phenotype and functional status in HER2- versus HER2+ 

specimens. Of note, the NK cell events were extremely low in some specimens, where the sum 

of total NK cell events from the three NK cell subsets and from all ROIs per specimen was 

below 20 events in seven of the 18 specimens in cohort 1, and in three of the 30 specimens in 

cohort 2 (Figure 3.2G). Thus, specimens with fewer than 20 events are indicated with a different 

color, demonstrating that they did not skew the NK cell phenotype data (Figure 3.2H).  

Of the assessed activating receptors and functional markers, CD16 (FcγRIIIA) was 

prominently expressed, although a wide spread of CD16 expression was found (2-88 % of NK 

cells). The activating receptor NKG2D, the maturation marker CD57, as well as the functional 

markers Granzyme B (GRZB) and Ki67 were expressed but in a lower frequency of NK cells 

(average of 0-14%), thus indicating that tumor-infiltrating NK cells were not highly cytotoxic 

nor strongly proliferating. To test whether the low GRZB levels could be a consequence of 

functional exhaustion, we examined NK cell positivity for TIM-3 and PD-1. Few NK cells 

expressed either TIM-3 (14-20%), or PD-1 (0- 23% PD-1+ NK cells), independently of HER2 

status in the two cohorts (Figure 3.2H). Overall, these results indicate that NK cells in breast 
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cancer display a rather mature (CD16+), but not terminally-differentiated nor exhausted 

phenotype combined with low GRZB and Ki67 expression, indicating a non-

cytotoxic/proliferative profile. Of note, we observed no distinction between HER2- and HER2+ 

specimens for any of the evaluated biomarkers.  

 
3.4.4 The majority of NK cells in tumor stroma were identified as CD56- NKp46+ NK cells 

NK cells are frequently identified as CD3- CD56+ or as NKp46+ cells because the 

majority of NK cells in the periphery express both CD56 (NCAM1) and the activating receptor 

NKp46. However, neither is sufficient alone to identify NK cells as CD56- and NKp46- NK cell 

subsets have been reported [223-227]. To capture the majority of NK cells, we used both CD56 

and NKp46 and identified CD56+ NKp46-, CD56- NKp46+, and CD56+ NKP46+ NK cells. All 

three NK cell populations were found in the three specimen groups with CD56- NKp46+ NK 

cells being the most abundant population (Figure 3.2I). Interestingly, highly similar distributions 

of NK cell fractions were detected in both HER2+ specimen groups: A trend towards a larger 

fraction of CD56+ NKp46- NK cells were observed in HER2+ specimens of both cohorts 

compared to HER2- specimens of cohort 1, indicating that the CD56+ NKp46- NK cell subset 

tended to correlate with HER2 status rather than with the cohorts. Further analysis for the three 

NK cell subsets was not performed due to low NK cell counts (Figure 3.2G).  
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Figure 3.2: Immune cell contexture in HER2- vs. HER2+ breast cancer specimens. A) Cell densities 
(cells/mm2) of CD45+ leukocytes, PanCK+ epithelial cells, and other nucleated cells in cohort 1 (HER2- & HER2+) 
and in cohort 2 (HER2+). B) Leukocyte densities of CD3+ T cells, NK cells (CD3- CD56+ NKp46- cells, CD3- 
CD56+ NKp46+ cells, and CD3- CD56- NKp46+ cells), myeloid cells (comprising the five cell types detailed in D) 
and other CD45+ leukocytes. C) CD8+ and CD4+ T cell densities (left) and their ratio (right). D) Dendritic cells 
(CD11b+ CD11c+ cells, CD11b- CD11c+ cells), myelomonocytic cells (CD11b+ CD68+ cells, CD11b- CD68+ cells), 
and other CD11b+ myeloid cells. Kruskal-Wallis test with Dunn correction was used to determine differences in cell 
population densities in the three specimen groups. Bars indicate the mean ± SEM per cell population. E) 
Pseudocolored image of one HER2+ specimen (cohort 2) with a comparatively high density of NK cells, identified 
by either NKp46 or CD56 (upper panels). Density of CD3+ T cells and CD11b+ myeloid cells of the same region in 
lower panels, together with PanCK+ epithelial cells and nuclear stain (Hematoxylin) in both images. Scale bars are 
50 µm. F) NK cell densities with one dot representing one tumor specimen. Per specimen, the sum of 1-11 ROIs per 
mm2 was calculated. G-H) One dot represents one tumor specimen. Those with <20 events are indicated by cyan 
color. In one specimen (open circle), no NK cells were detected. Sum of NK cell events from all analyzed ROIs (G). 
Expression of NK cell markers as % of total NK cells (H). I) Image with a CD56+ NKp46- NK cell, CD56- NKp46+ 
NK cells, and CD56+ NKp46+ double-positive NK cells, scale bar = 50 µm (left). The three identified NK cell 
subpopulations are depicted as % of total NK cells (right).  
 
 
3.4.5 Single-cell spatial organization of NK cells revealed distinct NK cell phenotypes depending 

on their proximity to tumor cells and HER2 status 

Although NK cells were found in low numbers in most tumor specimens, we observed 

that some NK cells infiltrated tumor nests, whereas other NK cells were found more distal to 

neoplastic tumor cells, surrounded by other cells in the TME. An example of a tumor specimen 

with high NK cell counts illustrates that NK cells are distributed throughout the depicted ROI 

(Figure 3.3A).  

Since NK cells were found within PanCK+ tumor nests, as well as distal to PanCK+ cells, 

we further examined their spatial distribution and asked how NK cells inside or outside tumor 

nests differed. For this spatial analysis, total NK cells (CD3- CD56+ NKp46- cells, CD3- CD56+ 

NKp46+ cells, and CD3- CD56- NKp46+ cells) from all patients, and of both cohorts were 

analyzed on a single cell level. As PanCK+ neoplastic epithelial cells can negatively affect NK 

cells, we first investigated whether proximity of the PanCK+ cells to NK cells affected NK cell 

phenotypes. Given that NK cells are 5-10 µm and breast cancer cells can reach ~ 30 µm, we 

considered a 20 µm distance for PanCK+ cells to interact with NK cells and grouped them based 
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on presence or absence of PanCK+ cells within the set distance of 20 µm. Thus, NK cells were 

placed into the “proximal” (<20 µm) group when at least one PanCK+ cell was located within a 

radius of 20 µm from its cell nucleus. NK cells were placed into the “distal” (>20 µm) group 

when no PanCK+ cell was present within the 20 µm radius.  

Both NK cell spatial groups (proximal and distal) were represented in the majority of 

specimens, further illustrating that not all NK cells were located outside neoplastic tumor nests 

but that a proportion of NK cells were located in close proximity to PanCK+ neoplastic epithelial 

cells (Supplementary Fig. 3.5A-C). We found that NK cells close to PanCK+ cells tended to be 

Ki67+, reflecting proliferative status, and expressed the checkpoint molecule PD-1, but fewer 

expressed TIM-3 (Figure 3.3B).  

We next examined whether differences in expression on NK cells related to HER2 status. 

Interestingly, increased presence of NK cells expressing both Ki67 and PD-1 proximal to 

PanCK+ cells was observed in HER2+ specimens (Figure 3.3C-D). Moreover, increased density 

of NK cells expressing TIM-3 was observed in cells distal to PanCK+ cells in HER2- specimens, 

while the difference trended in HER2+ specimens (Figure 3.3C-D). Although the modest sample 

size for the HER2- group limited conclusions, these findings indicate that NK cells localizing 

inside and outside tumor nests are phenotypically distinct in HER2- and HER2+ disease, 

potentially as a result of their spatial location relative to neoplastic tumor cells and/or other cells 

in the TME. Subsequently, we further interrogated neoplastic tumor cell phenotype and 

leukocyte composition as a result of spatial proximity to NK cells. 
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Figure 3.3: Single cell analysis of NK cells results in distinct phenotypes related to the proximity to 
tumor cells and HER2 status. A) Scatterplot of a specimen with, compared to other analyzed specimens, high 
density of NK cells, identified by either NKp46 or CD56 (left). Pseudocolored image in higher magnification with 
NK cells, PanCK+ cells and nuclei (Hematoxylin) with yellow arrows highlighting NK cells in tumor nests; scale bar 
= 50 µm (right). B-D) Single cell distance analysis: Each NK cell from all specimens was placed into either of the 
two distance groups, based on the distance threshold (20 µm) of each NK cell from PanCK+ cells. Expression of 
phenotypic and functional markers of all NK cells, grouped as close (< 20 µm) and far (> 20 µm) from PanCK+ cells 
(B). Those markers that were significantly different in (B) were split into HER2- specimens (C) and HER2+ 
specimens (D). One dot represents one specimen and the % is calculated of the sum of ROIs per specimen. Boxes 
represent Q1-Q3 with the line showing the mean and whiskers the smallest and largest data point within the quartile 
range. 
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3.4.6 PanCK+ neoplastic cells exhibit extensive heterogeneity in both HER2- and HER2+ 

specimens and retain high HLA class I expression in close proximity to NK cells  

Because the phenotype of PanCK+ neoplastic cells may influence susceptibility to NK 

cell-mediated killing, we evaluated HLA class I as a major inhibitory ligand for NK cells, cell 

proliferation (Ki67), the immune checkpoint ligand PD-L1 and hypoxia (carbonic anhydrase IX, 

CAIX) on PanCK+ neoplastic cells (Figure 3.4A). We observed large variation in HLA-I 

expression between the individual tumor specimens in all three specimen groups, with slightly 

increased HLA class I-positive PanCK+ cells in HER2+ specimens (Figure 3.4A-B). Proliferation 

of PanCK+ neoplastic cells was observed in a small fraction of cells in HER2- specimens 

(average of 6%). In comparison, higher densities of Ki67+ neoplastic cells were observed in both 

HER2+ groups (average of 14% cohort 1 and 25% cohort 2), but without significant differences 

between HER2- and HER2+ specimens in cohort 1. The percentage of CAIX+ neoplastic cells 

varied between specimens, and hypoxic areas were detected in a majority of specimens, 

independent of HER2 status. PD-L1 expression was not observed on the PanCK+ cells in any of 

the conditions, indicating that the PD-1+ NK cells are likely not inhibited through PD-L1 (Figure 

3.4A).  

Since close contact of NK cells and their target cells is crucial for NK cell-mediated 

killing, we subsequently asked how tumor cell phenotypes differed with regards to NK cell 

proximity (Figure 3.4C). Using the same distance threshold of 20 µm, PanCK+ tumor cells were 

placed either in the “proximal” (<20 µm) group when at least one NK cell was located within a 

20 µm radius, or they were placed in the “distal” (>20 µm) group when no NK cells were within 

20 µm. Although HLA-I expression was highly heterogenous in both groups, the analysis 

revealed a significantly higher percentage of HLA-I expressing PanCK+ cells proximal to NK 
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cells (Figure 3.4C). The expression of Ki67, PD-L1, and CAIX-positive cells was not 

significantly different between neoplastic tumor cells proximal or distal to NK cells.  

Based on the observations of increased presence of HLA class I-expressing cells in 

HER2+ specimens, and that these tended to be proximally located to NK cells, we evaluated the 

difference in HLA-I+ cells to NK cells based on HER2 status directly. HLA-I+ neoplastic cells 

proximal to NK cells trended in HER2- specimens (Figure 3.4D) but was significantly higher in 

HER2+ specimens (Figure 3.4E). Although a larger fraction of PanCK+ neoplastic cells 

expressed HLA-I within the HER2+ cohort, neoplastic cells close to NK cells expressed HLA-I 

in higher fractions in both cohorts. These results indicate that HLA-I expression on neoplastic 

tumor cells is related to spatial proximity to NK cells as well as to HER2 status. As HLA-I 

molecules are major inhibitory ligands for NK cells, our finding of HLA-I+ tumor cells close to 

NK cells supports that HLA-I expression may be a mechanism of breast cancer escape from NK 

cell-mediated killing. 
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Figure 3.4: Single cell analysis of neoplastic PanCK+ epithelial cells illustrate heterogeneity and 
high HLA class I expression in close proximity to NK cells. A) Expression of phenotypic markers on 
PanCK+ cells. B) Pseudocolored images showing two examples with heterogeneous staining patterns of HLA class I, 
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Ki67, and CAIX in combination with nuclear staining (Hematoxylin). Higher magnification is displayed on the right 
without PanCK. Scale bars = 100 µm. C-E) Distance analysis: PanCK+ cells were placed into either of the two 
groups based on the distance threshold (20 µm) of each PanCK+ cells from NK cells. Expression of phenotypic 
markers of all PanCK+ cells, grouped as proximal (< 20 µm) or distal (> 20 µm) from NK cells (C). Significantly 
different HLA-I expression was split into HER2- specimens (D) and HER2+ specimens (E). One dot represents one 
specimen and the % is calculated as sum of ROIs per specimen. Boxes represent Q1-Q3 with the line showing the 
mean and whiskers the smallest and largest data point. 
 
 
3.4.7 Distinct spatial cellular neighborhoods surrounding NK cells are associated with HER2 

biology 

Having analyzed the pairwise interactions between NK cells and neoplastic epithelial 

cells, we sought to identify cells surrounding NK cells beyond 20 µm, to include neoplastic cells 

as well as other leukocyte subsets. Thus, we performed a cellular neighborhood analysis and set 

the distance threshold to 60 µm allowing for inclusion of cells close enough to directly touch NK 

cells, and also accounting for neighboring cells interacting with NK cells through cytokine 

signaling (Figure 3.5A) [133, 135]. All NK cells, identified by either CD56 or NKp46, were 

considered for this analysis. Any NK cell that did not have a neighbor within the distance 

threshold was removed from downstream analyses. After calculating the cellular neighborhoods, 

k-means clustering was used to group the neighborhoods into five clusters, each with unique 

cellular compositions (Figure 3.5B). On average, neighborhoods assigned to cluster 1 and cluster 

2 consisted mainly of T cells; cluster 1 neighborhoods were dominated by CD8+ T cells 

(representing ~ 50% of the cellular makeup), while cluster 2 neighborhoods were characterized 

by a majority of CD4+ T cells as neighboring cells. Cluster 3 neighborhoods were mainly defined 

by other CD45+ leukocytes, not further characterized in this study. Neighborhoods in clusters 4 

and 5 were predominantly PanCK+ neoplastic cells, although differing in proportion. Cluster 4 

neighborhoods represented a mixture of neoplastic tumor cells and immune cell subsets, whereas 

cluster 5 neighborhoods contained the largest proportion of neoplastic tumor cells (>80% of 

neighbors). No cluster was dominated by NK cells, and NK cells were rarely found neighboring 
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each other, but instead distributed across tissue regions. Despite this broad spatial localization of 

NK cells across a given region, NK cells localized in the T cell dominant neighborhood clusters 

1 and 2 were often found outside of tumor nests, whereas NK cells in the tumor-immune cluster 

4 were predominantly observed at the tumor-stroma border (Figure 3.5C). 

Distribution of neighborhood clusters revealed that no single cluster was dominant, and 

that all five clusters were represented in comparable proportions (Supplementary Figure 3.7A). 

Moreover, most clusters were present in every section (Figure 3.5D) and in every ROI 

(Supplementary Figure 3.7B), thus indicating that no cluster was driven by the spatial 

organization of a single tumor or region. Interestingly, we observed a negative correlation 

between the presence of the neoplastic tumor dominant neighborhood cluster 5 and the T cell 

dominant neighborhood clusters 1 and 2 (Figure 3.5D-E). This finding indicates that NK cells 

are unlikely to have both neoplastic tumor cells and T cells as neighbors. Other cluster 

combinations did not correlate (data not shown). The cellular densities of NK cells were not 

strongly correlated with densities of other identified immune cell types (Supplementary Fig. 

3.6), supporting the notion that the described neighborhood clusters are a result of the cellular 

spatial organization and that the neighborhood clusters are not driven by just the mere presence 

of the identified immune cell types. 

Next, we determined if the proportion of NK cells assigned to each of the neighborhood 

clusters varied between HER2- and HER2+ patients. Significant differences were observed for 

the CD8+ T cell dominant cluster 1, the CD4+ T cell dominant cluster 2, and the PanCK+ tumor 

cell-dominant cluster 5 (Figure 3.5F). A larger fraction of NK cells was attributed to 

neighborhood cluster 5 in HER2- patients as compared to HER2+ patients, indicating that NK 

cells in HER2- patients were more frequently near neoplastic tumor cells. In HER2+ patients, we 
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observed a higher fraction of NK cells within the two T cell-dominant clusters 1 and 2, implying 

that NK cells in HER2+ patients were more often surrounded by CD8+ and CD4+ T cells than NK 

cells in HER2- patients. As we detected a higher density of CD3+ T cells in cohort 2 as compared 

to cohort 1, we repeated the comparison of HER2 status using only cohort 1 patients and found 

the same trends (Supplementary Figure 3.7C), supporting that the finding is related to HER2 

biology.  

Overall, we revealed that distinct cellular neighborhoods surrounding NK cells exist in 

human breast cancer. Each neighborhood contained unique compositions, with NK cells 

localizing more frequently in the tumor-dominant neighborhood cluster in the HER2- specimens, 

whereas NK cells localized in the two T cell-dominant neighborhood clusters more often in the 

HER2+ specimens. These results highlight the importance for considering spatial architecture of 

cells surrounding NK cells when planning treatments of HER2- and HER2+ breast cancer 

patients. Specifically, immunotherapies that leverage the coordinated anti-tumor function of both 

NK cells and T cells may be beneficial for HER2+ patients especially, given the spatial proximity 

of T cells to NK cells in these patients. 
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Figure 3.5: Cellular neighborhood clustering of NK cells. A) Cellular neighborhood definition. A circle of 
60 µm radius was drawn around each NK cell, identified by either NKp46 or CD56. The cells inside the circle were 
counted as neighbors of NK cells. B) All specimens were pooled and analyzed for NK cell neighborhood clusters. 
The average cellular composition of each of the five NK cell neighborhood clusters is shown. C) Left: Scatterplots 
of two specimens with comparatively high NK cell counts to illustrate the distribution of the NK cell neighborhoods 
clusters. PanCK+ cells are shown in grey together with all NK cells, which are colored by the cluster they were 
assigned to. Right: Corresponding pseudocolored mIHC images of each NK cell neighborhood cluster. Scale bars = 
60 µm. D) The average proportion of each NK cell neighborhood cluster is shown for each patient, except for one 
patient of cohort 1, in which no NK cells were detected. Specimens are sorted by proportions of cluster 5 and color 
of specimen ID represents HER2 status (HER2- in blue, HER2+ in red). E) Negative correlation of the T cell 
dominant clusters 1 and 2 and the tumor dominant cluster 5. F) Cellular composition of the NK cell neighborhood 
clusters for HER2- and HER2+ specimens of both cohorts. 
 
 
3.5 Discussion 

Improved understanding of NK cells and their spatial distribution in the TME of breast 

cancer can guide future design of successful NK cell-based immunotherapies. In this study, we 

developed an mIHC panel to analyze NK cells on a single-cell spatial proteomics level and to 

evaluate NK cell density, phenotype and spatial architecture in relation to tumor and tumor-

infiltrating leukocytes; a summary of the key findings of this study are depicted in Figure 3.6. 

The mIHC methodology is a powerful platform, as we were able to quantify immune cell 

populations and phenotypes on a single cell level, while maintaining the tissue’s spatial 

architecture. Previously, our group demonstrated that comparable results were achieved with 

quantitative image cytometry and quantification by flow cytometry [121]. In this study, CD3+ T 

cells were by far the most dominant immune cells present in all analyzed groups and the 

identified immune cell contexture was largely comparable with the immune cell compositions 

reported previously in breast cancer by flow cytometry analysis [221, 222]. 
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Figure 3.6: Summary of the NK cells’ spatial organization in the tumor microenvironments of two 
breast cancer cohorts. Depicted are the significantly different findings between HER2- and HER2+ specimens 
reported in this study. 
 
 

We revealed NK cells in low frequency and without consistent differences in NK cell 

densities in HER2- versus HER2+ specimens. Although the HER2- group contained only eight 

specimens, our findings indicate that the overall NK cell density is likely not influenced by 

HER2 status. While we focused on the role of HER2 in this study, other factors such as various 

molecular subtypes in cohort 1 could play a role in cellular densities of evaluated leukocytes 

subtypes including NK cells. Although the number of specimens per molecular subtype was low 

(n = 1-10 per subtype), cellular densities did not seem to differ between groups of molecular 

subtypes (data not shown). Moreover, the NK cell densities did not appear associated with other 

known tumor characteristics in the evaluated cohorts. In previous reports, higher NK cell 

densities were detected in ER- as compared to ER+ tumors, and in lymph node-negative 

compared to lymph node-positive tumors [228, 229]. The differences between our study and 

previous reports illustrate the heterogeneity between breast cancer cohorts and could depend on 
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the single timepoint analyzed in each study, which does not comprehensively reflect the 

dynamics of the TME. 

To detect NK cells, we evaluated expression of CD56 and NKp46, and found the majority 

of NK cells expressed the activating receptor NKp46, consistent with a report describing that 

NKp46 was largely retained on several solid tumors [36]. The activating receptor CD16, 

generally expressed on mature CD56dim NK cells, was expressed on all specimens except two, 

but with rather low frequency in some specimens. Identification of both CD16+ and CD16- NK 

cells inside tumors has been reported previously [36, 230]. Preferred recruitment of CD16- 

CD56bright NK cells to breast tissues might be one possibility for the observed heterogeneous 

CD16 expression on tumor-infiltrating NK cells [35]. Alternatively, the receptor can be cleaved 

by metalloproteases following NK cell activation [231]. The heterogeneous expression of CD16 

could have consequences for effectiveness of ADCC-mediating antibodies since CD16 levels 

were reported to positively correlate with the potency of ADCC [232]; and for therapeutic 

purposes, the underlying mechanism of heterogeneous CD16 expression should be unraveled. 

Further, NK cells were not terminally differentiated in this study based on low detection of 

CD57. One study reported that CD57+ NK cells were reduced in breast cancer tissue compared to 

peripheral blood, indicating limited homing to tumor or decreased survival of CD57+ tumor-

infiltrating NK cells [233]. Moreover, NK cells in the cohorts evaluated herein did not 

abundantly express GRZB and Ki67, indicating a lack of cytotoxicity and proliferative capacity. 

Our image analysis approach detected GRZB expression when the signal was associated with the 

cell; GRZB could therefore have been released into the TME before tumor tissue was resected. 

While NK cells are mostly known for their anti-tumor properties, the NKp46+ NK cells may also 

belong to the group of non-cytotoxic innate lymphoid cells type 1 (ILC1) [234]. The conversion 
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of NK cells to ILC1 has been suggested as a tumor immunoevasion strategy, although functions 

of ILC1 are highly variable, depending on the cytokines present in the TME [234, 235]. 

Additional makers would be required to distinguish NK cells from ILCs in our study.  

Previous studies reported that NK cells can be confined to tumor stroma rather than 

infiltrating neoplastic cell nests [236, 237]. We observed both NK cells “proximal” (<20 µm) and 

“distal” to neoplastic tumor cells (>20 µm). Higher densities of proliferating and PD-1+ NK 

cells, and fewer expressing TIM-3 “proximal” to PanCK+ cells as compared to NK cells “distal” 

to PanCK+ neoplastic cells indicate the likelihood that the TME shapes NK cell phenotype and 

spatial organization. On PanCK+ neoplastic cells, we found not only HLA class I expression with 

large intertumoral heterogeneity, in line with previous publications [238, 239], but also increased 

presence of HLA class I-expressing cells in close proximity to NK cells. This finding indicates 

that neoplastic tumor cells may retain HLA class I expression in areas where NK cells are 

localized, potentially as a tumor escape mechanism. Independent of this, our observation 

provides a rationale for interfering with HLA class I-mediated inhibition e.g., by selecting donor 

NK cells lacking the corresponding KIR receptor for the HLA type expressed by breast tumors 

(KIR-HLA ligand mismatched NK cells). Alternatively, sufficient NK cell activating signals 

must be provided to overcome HLA-mediated inhibition. Similar to the heterogeneous HLA-I 

expression, heterogeneous CAIX expression indicated that hypoxia occurred in local areas of 

tumor tissues. The result that NK cells close to neoplastic tumor cells were not associated with 

higher CAIX expression indicates that NK cells can infiltrate independent of hypoxia. However, 

NK cell functions are known to be influenced negatively by the presence of hypoxia and should 

therefore be considered for NK cell-targeting therapies [240]. PD-L1 expression was not detected 
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on PanCK+ cells, in agreement with published data showing that PD-L1 expression on tumor 

cells was uncommon in breast cancer [241, 242].  

We further set out to understand the cellular spatial organization surrounding NK cells, 

beyond directly adjacent neoplastic tumor cells, and identified five distinct NK cell 

neighborhood clusters. Most strikingly was the observed negative correlation between NK cell 

neighborhoods consisting of predominately CD3+ T cells (cluster 1 and 2) and the neoplastic 

tumor neighborhood (cluster 5) indicating that NK cells are predominantly surrounded by 

neoplastic tumor cells or T cells but not both. Our findings are consistent with a study by Namara 

et al., that reported NK cells mostly in tumor areas, while T cells were predominantly found in 

the surrounding TME of treatment-naive breast cancer [243]. As we observed NK cells near T 

cells, a potential therapeutic approach could aim to stimulate NK cells to orchestrate an adaptive 

T cell-mediated immune response through cytokine secretion. A study with HER2+ patients 

receiving Trastuzumab supports the finding that both NK cells and T cells are major contributors 

to observed anti-tumor responses [228]. Since NK cells and T cells are both cytotoxic effector 

cells, future studies may aim to interrogate the spatial distribution from the perspective of T cells, 

however, this is beyond of the scope of this study.  

Together, this study provides detailed spatial analysis of NK cells in relation to neoplastic 

tumor cells as well as surrounding leukocyte subsets and describes unique NK cell 

neighborhoods. The fact that cellular neighborhoods of NK cells were found to be associated 

with HER2 biology highlights the importance of considering the spatial organization of the TME 

and may provide a basis to guide the design of more potent NK cell-targeted therapeutic 

approaches for breast cancer.  
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3.6 Supplementary Data 
 

 
 

Supplementary Figure 3.1: Sequential staining with the mIHC panel. Visualization of every 
antibody in its respective position in the mIHC panel with AEC chromogen on human tonsil. The 
same ROI is shown for all antibodies. Insets with higher magnification are shown for antibodies 
with low expressed targets. Scale bar = 200 µm. 
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Supplementary Figure 3.2: Multiparameter cytometric image analysis to quantify the multiplex 
IHC. A) Image cytometry-based gating strategy in FCS Express to quantify the cell types shown in Figure 3.1A. 
Biomarker combination to identify the indicated cell types are listed in the figure with the functional biomarkers 
indicated below each cell type. B) Gating thresholds for the functional biomarkers were set on all cells and 
subsequently applied to the respective cell types in A. 
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Supplementary Figure 3.3: Intra- and interpatient heterogeneity in cellular composition of HER2- 

and HER2+ in cohort 1 (n=26). A) Cell densities (cells/mm2) per tumor specimen. One bar depicts the sum of 
ROIs per specimen. Within the HER2- and HER2+ group, specimens were sorted by CD45+ leukocyte density. B) 
Cell densities (cells/mm2) of individual ROIs are depicted per tumor specimen. ROIs within one specimen are sorted 
by CD45+ cell density. C-D) Cell populations depicted as percentage of total leukocytes per tumor specimen (C) and 
per ROI (D) in the same order as in A) and B). 
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Supplementary Figure 3.4: Intra- and interpatient heterogeneity in cellular composition of HER2+ 

specimens in cohort 2 (n=30). A) Cell densities (cells/mm2) per tumor specimen. One bar depicts the sum of 
ROIs per specimen and specimens were sorted from low to high CD45+ leukocyte density. B) Cell densities 
(cells/mm2) of individual ROIs are depicted per tumor specimen. ROIs within one specimen are sorted by CD45+ 

cell density. C-D) Cell populations depicted as percentage of total leukocytes per tumor specimen (C) and per ROI 
(D) in the same order as in A) and B). Legend for D is the same as in C. 
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Supplementary Figure 3.5: Single cell distance analysis of NK cells depicted per tumor specimen. 
Single cell distance analysis: Each NK cell from all specimens was placed into either of the two distance groups, 
based on the distance threshold (20 µm) of each NK cell from PanCK+ cells. Number of NK cells grouped as 
proximal (< 20 µm) and distal (> 20 µm) from PanCK+ cells are depicted for HER2- specimens in cohort 1 (A), 
HER2+ specimens in cohort 1 (B), and specimens in cohort 2 (HER2+, C). 
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Supplementary Figure 3.6: NK cell density did not strongly correlate with leukocyte density in 
HER2+ tumor specimens. A-E) Spearman correlations of NK cell densities versus CD8 + T cell densities (A), 
CD4 + T cell densities (B), total CD11c+ cell densities (CD11b+ CD11c+, CD11b- CD11c+) (C), total CD68+ cell 
densities (CD11b+ CD68+, CD11b- CD68+) (D), and total CD45+ leukocytes (E) are shown with estimated regression 
lines in black in the HER2- specimens of cohort 1 (n = 8, left graphs), the HER2+ specimens of cohort 1 (n = 18, 
middle graphs), and the HER2+ specimens of cohort 2 (n = 30, right graphs). 
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Supplementary Figure 3.7: Cellular neighborhood clustering of NK cells. NK cells of all specimens in 
both cohorts were pooled and each NK cell that had at least one neighbor within 60 µm was analyzed, resulting in 
13,329 NK cells analyzed. A) Distribution of NK cells assigned to each of the 5 clusters. B) The average proportion 
of each NK cell neighborhood cluster is shown for each ROI. Samples are sorted by proportions of cluster 5. C) The 
cellular composition of the NK cell neighborhood clusters is shown for the HER2- and HER2+ specimens of cohort 
1. 
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Supplementary Table 3.1: Patient and tumor characteristics of the two cohorts. 
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Supplementary Table 3.2: mIHC antibody information. 
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Supplementary Table 3.1: Overview of cell counts and cell densities analyzed per specimen. 
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Supplementary Table 3.2: Immune cell densities in tumor specimens grouped by tumor 
characteristics in cohort 1 and cohort 2. 
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Chapter 4: Interrogating the single-cell spatial 
landscape of T cells in pancreatic cancer 
 
This chapter has been formatted for inclusion in this dissertation from the manuscript “Machine 
learning links T-cell function and spatial localization to neoadjuvant immunotherapy and clinical 
outcome in pancreatic cancer” by Katie E. Blise, Shamilene Sivagnanam, Courtney B. Betts, 
Konjit Betre, Nell Kirchberger, Benjamin J. Tate, Emma E. Furth, Andressa Dias Costa, Jonathan 
A. Nowak, Brian M. Wolpin, Robert H. Vonderheide, Jeremy Goecks, Lisa M. Coussens, and 
Katelyn T. Byrne, published in Cancer Immunology Research  (2024) [244]. The author of this 
dissertation is the primary author of this manuscript and used single-cell gated data generated by 
LMC’s laboratory to conduct computational experiments to generate all figures in this 
manuscript except Main Figures 4.1B and 4.1E and Supplementary Figures 4.1B, 4.1C, and 
4.1D. 
 

4.1 Abstract 

Tumor molecular datasets are becoming increasingly complex, making it nearly 

impossible for humans alone to effectively analyze them. Here, we demonstrate the power of 

using machine learning (ML) to analyze a single-cell, spatial, and highly multiplexed proteomic 

dataset from human pancreatic cancer and reveal underlying biological mechanisms that may 

contribute to clinical outcome. We designed a multiplex immunohistochemistry antibody panel 

to compare T-cell functionality and spatial localization in resected tumors from treatment-naive 

patients with localized pancreatic ductal adenocarcinoma (PDAC) with resected tumors from a 

second cohort of patients treated with neoadjuvant agonistic CD40 (anti-CD40) monoclonal 

antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 

patients across both cohorts were assayed, and over 1,000 tumor microenvironment (TME) 

features were quantified. We then trained ML models to accurately predict anti-CD40 treatment 

status and disease-free survival (DFS) following anti-CD40 therapy based upon TME features. 

Through downstream interpretation of the ML models’ predictions, we found anti-CD40 therapy 

reduced canonical aspects of T-cell exhaustion within the TME, as compared to treatment-naive 
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TMEs. Using automated clustering approaches, we found improved DFS following anti-CD40 

therapy correlated with an increased presence of CD44+CD4+ Th1 cells located specifically 

within cellular neighborhoods characterized by increased T-cell proliferation, antigen-experience, 

and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of ML in 

molecular cancer immunology applications, highlight the impact of anti-CD40 therapy on T cells 

within the TME, and identify potential candidate biomarkers of DFS for anti-CD40–treated 

patients with PDAC. 

 
4.2 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive treatment-

refractory cancers with a median overall survival rate of just months [245]. Thus, there is a 

critical need for improved understanding of the immunobiology of PDAC to inform future 

treatment strategies for this disease. Recent reports reveal immunological responses in PDAC are 

induced via approaches that promote priming of T-cell responses against PDAC, such as occurs 

following agonistic CD40 monoclonal antibodies (anti-CD40) [110] and mRNA vaccination 

[109] strategies. We and others have previously reported that anti-CD40 binds to CD40 on 

dendritic cells (DCs), thereby licensing DCs to subsequently enhance T-cell activation and 

bolster antitumor immunity [111]. In addition, we previously described global immune 

contexture of the PDAC tumor microenvironment (TME) at baseline and after anti-CD40 therapy 

and found anti-CD40–treated TMEs contained reduced densities of M2-like tumor-associated 

macrophages, increased DC maturation, and increased T-cell enrichment [107, 110]. However, 

little is known regarding selective impact of anti-CD40 therapy on granular T-cell states within 

the TME, and studies interrogating how anti-CD40 stimulation sculpts the T-cell response 

specifically [112, 246] are needed to optimize anti-CD40 use in the clinical setting. 
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Upon antigen stimulation, T cells exist along a spectrum of diverse differentiation states 

with varying functionalities [247]. On one end, T cells possess stem-cell-like plasticity, 

accompanied by memory, proliferative, and cytotoxic capabilities, and are identified by 

expression of T-BET, and/or TCF-1 [248, 249]. On the other end, T cells are exhausted and/or 

dysfunctional and express TOX1 and/or EOMES [250]. Along the spectrum, expressed in 

varying combinations, T cells express immune checkpoint molecules such as PD-1, LAG-3, and 

TIM3, with increased expression of immune checkpoint molecules correlating with more 

exhausted T cells [22]. These partially exhausted T cells are susceptible to reinvigoration by 

immune checkpoint blockade (ICB) and regain the ability to proliferate and produce effector 

cytokines [74]. However, terminally differentiated T cells expressing TOX1 or EOMES are 

resistant to rescue by ICB and fail to proliferate or exert cytotoxic activity [21]. Flow cytometric 

analyses of T cells in preclinical tumor models or tissues following viral infection have 

elucidated notable T-cell states; however, characterizations of effector versus exhausted T-cell 

phenotypes from tumors in patients are scant. Moreover, with the advent of single-cell 

sequencing approaches, the diversity of T-cell subsets within tumors is seemingly endless [17, 

18]. We sought to clarify T-cell characteristics within the PDAC TME and identify subsets 

associated with therapeutic anti-CD40 responses. Recognizing that both the cellular composition 

and spatial organization of cells is a critical metric associated with therapeutic response and 

clinical outcome [68, 140, 144, 147, 251, 252], we investigated the impact of anti-CD40 therapy 

on the complex spatial contexture of T cells within the PDAC TME and associated survival. 

We previously developed a multiplex immunohistochemistry (mIHC) single-cell spatial 

proteomics imaging platform to interrogate leukocyte heterogeneity and spatial landscape within 

various TMEs [107, 121, 122]. Following a cyclical staining protocol, the mIHC platform 
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iteratively deploys up to 30 antibodies on a single tissue specimen, thus preserving TME spatial 

context. Resulting data provide single-cell resolution maps quantifiable by a number of metrics 

that can be correlated with therapeutic response or clinical outcome. However, this reductionist 

approach does not combine or weight TME features together to capture biological complexities 

of the TME. Machine learning (ML), a form of artificial intelligence, can address TME 

complexity by creating computational models that weigh and combine data features to predict a 

given output. ML models can be used to make accurate predictions for new data and analyzed to 

identify the feature combinations most important in the predictions. As a result of this capability, 

ML is becoming widely utilized in precision oncology to decipher patterns in large datasets 

resulting from deep interrogations [144, 146, 253, 254]. 

Here, we leveraged ML to elucidate the frequency of various T-cell states in PDAC and 

investigated the impact of anti-CD40 therapy on those states. We first designed an mIHC 

antibody panel to deeply audit T-cell functionality and spatial organization in patients from either 

treatment-naive or neoadjuvant anti-CD40–treated PDAC cohorts. Using this mIHC panel, we 

generated a dataset of nearly 2.5 million cells with spatially-resolved single-cell phenotypic and 

functional measurements. Interrogation of this dataset presented a unique opportunity to 

elucidate: first, the types of T cells present at baseline in a treatment-refractory disease, and 

second, to what degree anti-CD40 therapy sustains T-cell functionality in situ, or instead 

promotes T-cell dysfunction that may limit potential use of anti-CD40 or other T-cell priming 

therapies in the clinical setting. Given the vast amount of spatially-resolved data and complexity 

of T-cell function in the TME, we leveraged ML approaches to discern new biological insights 

regarding T cells in the pancreatic TME and their association with clinical outcome for 

pancreatic cancer patients. 



 
 
110 

 
4.3 Materials and methods 

4.3.1 Tissue acquisition 

Human PDAC tissue specimens from cohort 1 were obtained from patients with approval 

from the Oregon Pancreas Tissue Registry under Oregon Health & Science University (OHSU) 

IRB protocol #3609 and Dana Farber Harvard Cancer Center protocols #03-189 and #12-013. 

Cohort 1 consisted of 18 treatment-naive tumors, selected as a representative subset of a larger 

PDAC cohort (n=104 tumors) from a prior study evaluating global immune contexture [107]. 

These 18 samples were selected based on cellular subsets not statistically differing from the full 

cohort in terms of leukocyte densities or patient survival durations (Supplementary Table 4.1). 

Specimens from cohort 2 were obtained from patients treated with neoadjuvant selicrelumab 

with approval under the IRBs of four sites across the United States involved in an open-label 

phase I clinical trial (Cancer Immunotherapy Trials Network CITN11-01; NCT02588443), 

including 8 patients with neoadjuvant selicrelumab alone and 3 patients with neoadjuvant 

selicrelumab combined with gemcitabine and nab-paclitaxel. Patients from this trial were 

combined into a single cohort for the present study, as the anti-CD40–treated cohort was 

previously analyzed in two separate cohorts for total immune contexture [110]. Additionally, 

healthy tonsil and spleen samples were from the Knight Tissue Bank, collected under the OHSU 

IRB protocol #4918. All studies were conducted in accordance with the Declaration of Helsinki 

and written informed consent was obtained. 

 
4.3.2 Multiplex immunohistochemistry image acquisition and analysis 

Formalin-fixed, paraffin-embedded (FFPE) surgical tissue samples were sectioned and 

assessed using hematoxylin and eosin (H&E), as well as chromogen-based mIHC. Briefly, slides 
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with 5 µm tissue sections were rehydrated as described (5), followed by 2 minutes in 

hematoxylin, 2 minutes in tap water, 10 seconds in eosin, and 2 minutes in tap water. Slides were 

then dehydrated and coverslipped prior to scanning and annotation by a pathologist. Next, using 

the pathologist annotations overlaid from the H&E-stained slides, sections were assessed with 

regard to histopathologic regions of interest annotated as tumor (T), immune aggregate (IA), 

tumor-adjacent stroma (TAS), or normal-adjacent pancreas (NAP), as defined by the pathologist 

[107]. Regions were selected with the aim of maximizing both diversity of regions selected from 

each patient and the tissue area captured for each histopathologic region. Across all patients, a 

mean of 15.2% of tissue was analyzed per entire resection, ranging from 4.4% to 35.6%, and 

across the entire dataset, 14.6% of available tissue was analyzed (Supplementary Fig. 4.1A, 

Supplementary Table 4.2). Of note, our prior investigation of PDAC immune contexture found 

NAP regions to contain increased leukocyte density as compared to true healthy normal pancreas 

tissue collected from organ donors [107]. Multiplex staining was performed on 5 µm sections, as 

previously described, and each stained image was scanned at 20x magnification on an Aperio 

AT2 scanner (Leica Biosystems) [107]. The antibody panel used in the present study delineated 

18 T-cell subpopulations and contained 10 functionality biomarkers to assess 

differentiation/exhaustion status on all T cells (TOX1, TIM3, TCF-1, CD38, PD-1, EOMES, 

CD39, CD44, LAG-3, and T-BET), as well as antibodies for proliferation (Ki-67) and 

cytotoxicity (granzyme B, GrzB) (Supplementary Fig. 4.1B, Supplementary Table 4.3). 

Additionally, the panel only broadly delineated epithelial cells, mesenchymal cells, B cells, and 

myeloid cells, given our previous efforts at describing those subsets in these same patient cohorts  

[107, 110, 251]. Human tonsil and spleen were included in all rounds of mIHC as staining 

controls. Image processing was performed using previously described methods [107]. Each 
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region was registered to the final hematoxylin using Matlab Computer Vision Toolbox (The 

Mathworks, Inc., Natick, MA), color deconvolution and watershed-based nuclei segmentation 

was performed using ImageJ, and single cell mean intensity for each stain was quantified using 

Cell Profiler [255]. Single biomarker positivity thresholds were set using FCS Express Image 

Cytometry RUO (De Novo Software, Glendale, CA) to visually validate protein biomarker 

expression overlaid on signal extracted images. Single cell classification was performed using R 

Statistical Software based on filtering exclusive populations in a defined hierarchy. 

 
4.3.3 T-cell phenotyping 

423,317 T cells were identified by CD3 expression and then subsequently stratified by 

CD8α expression. CD8+ T cells were further classified as one of six cell states (TNAIVE, TEFF, 

TEM, TEMRA, TEX, or TTEX). Due to biomarker selection and positional restrictions within the 

cyclic multiplex panel, a CD4 antibody was not included. However, the majority (72%) of 

CD3+CD8– T cells were CD4+ as determined in a testing panel using a subset of the data 

(Supplementary Fig. 4.1C); therefore CD3+CD8– T cells are referred to as CD4+ T cells herein, 

although it is possible other minor lineages may be represented [17]. Based on this schema, 

CD3+CD8– T cells were further evaluated; CD4+ Th1 cells were defined by T-BET+ expression, 

and further classified as one of three cell states (TEFF, TEM, or TEMRA). Only 6% of CD8+ T or 

CD4+ Th1 cells were phenotyped as one of these six T-cell states (TNAIVE, TEFF, TEM, TEMRA, TEX, 

or TTEX) (Supplementary Table 4.4). The other 94% of the T cells were labeled as TOTHER and 

were stratified based on expression of CD44, a canonical biomarker of prior cognate antigen 

experience [256]. A population of T-BET–CD4+ Th cells (non-Th1-specific T helper cells) were 

also stratified into two cell states based upon CD44 expression. The remaining CD3+CD8– T 

cells were FOXP3+ regulatory T (TREG) cells and classified into three cell states (Naive TREG, 
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mTREG, and T-BET+ TREG). All 18 T-cell states were included in downstream analyses given 

calculations from previous single-cell studies [257], and the fact that these populations were 

manually gated and thus represent real phenotypes of T cells present in the PDAC TME despite 

low numbers of certain T-cell states (Supplementary Table 4.4). 

 
4.3.4 TME feature quantifications 

Three approaches were used to quantify treatment-naive and anti-CD40–treated PDAC 

TMEs, resulting in a total of 1,252 TME features quantified per tissue region: 

(1) Cell State Densities: To identify the types and amounts of cell states present in the PDAC 

TME, densities of each of the 23 cell states for each tissue region assayed were quantified 

by dividing raw counts of cells (Supplementary Table 4.4) by tissue area of the region. 

(2) T-cell Functionality Barcodes: To investigate T-cell functionality, we assigned all T-cell 

states a “Functionality Barcode,” as defined by binary positive or negative expression of 

unique combinations of 10 T-cell functionality biomarkers (TOX1, TIM3, TCF-1, CD38, 

PD-1, EOMES, CD39, CD44, LAG-3, and T-BET). Among the 423,317 T cells present in 

the dataset, we identified expression of 961 unique barcodes (Supplementary Table 4.5). 

(3) Cell–Cell Spatial Interactions: To address spatial organization of cells in the PDAC 

TME, we leveraged the fact that mIHC preserves spatial context and quantified frequency 

of two cell states interacting, based on their cell centers being within 20 µm from each 

other, as previously reported [137]. Total cell–cell interactions were normalized by 

dividing summed densities of cell states involved in the interactions to avoid skewing by 

cell states present in high abundances. We identified 268 unique pairs of cell–cell 

interactions present in the dataset (Supplementary Table 4.6). 
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4.3.5 Machine learning classifiers and feature importance analyses 

Elastic net (EN) classifier models were built using scikit-learn’s [198] LogisticRegression 

function to predict: 1) treatment status and 2) disease-free survival (DFS), from 1,252 TME 

features calculated herein. EN models perform well on datasets as generated in this present study 

where there are more data features than examples for learning [258]. EN models use 

mathematical regularization approaches to identify and upweight the most informative subset of 

features to make model predictions while accounting for feature collinearity [259]. Using 

regularization reduces model overfitting, which is important when there are a large number of 

data features and a limited number of examples. Further, this approach is unbiased, as no prior 

feature selection is performed. Instead, all 1,252 TME features were provided to the models, 

leveraging the EN algorithm’s ability to perform aggressive feature selection within model 

training. 

Predictions were made on an individual region basis, rather than a patient basis, to 

maximize sample size and model robustness, as well as to mitigate tissue region selection biases. 

As such, tissue regions were not averaged across patients and were instead evaluated 

independently, thus: 1) reducing the impact of each region on overall model performance and 2) 

providing the models with more examples to extract biologically-meaningful information from 

the dataset. Separate models were created for regions of each histopathologic site to: 1) compare 

performance of models derived from different histopathologic sites; 2) identify where therapy 

was exerting greatest impact; and 3) mitigate broad variation in average tissue area from each 

histopathologic site. A leave-one-patient-out cross-validation approach was used to split the train 

and test sets. Thus, within each cross-validation loop, a new EN model was created and trained 

on all regions except those from one patient, and testing was then performed on regions from the 
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patient withheld from training. This process was repeated until all patients were cycled through 

the test set. This approach prevents data leakage by ensuring regions from the same patient were 

not in both the train and test sets for one model, thus preventing the EN models from learning 

patient-specific features, which often artificially increases model accuracy. 

Test set predictions were aggregated across all cross-validation loops to construct one 

final confusion matrix, from which performance of the models was assessed by calculating 

accuracy, F1 score, and area under the receiver operating characteristic curve (AUC). These 

metrics address both precision and recall (F1 score), in addition to the true positive rate and false 

positive rate (AUC) – these are often used to assess performance of classifier models. Model 

overfitting was mitigated by using the same model hyperparameters across cross-validation 

loops. The penalty term was set to “elasticnet,” and the “l1_ratio” hyperparameter was set to 0.5, 

representing an equal balance of the lasso model and ridge model effects. All features were 

log10+1 normalized and scaled using a minmax [0,1] scaler to equally compare features 

spanning different orders of magnitude and improve model interpretability. To further prevent 

data leakage, in each cross-validation loop, the scaler was fit to the train set and then applied to 

the train set and subsequently the test set. Test feature outliers were clipped to [0,1] following 

this normalization. The train set was balanced within each cross-validation loop using Synthetic 

Minority Over-sampling Technique (SMOTE) to up-sample the minority class to equal the 

majority class [260]. Feature importance analyses were conducted by computing Shapley 

Additive exPlanations (SHAP) values for each model [261]. SHAP values enable the 

interpretation of which combinations of features contribute to the overall model predictions, as 

SHAP values denote the relative importance of a given feature in driving a model’s prediction. 

SHAP values have been used to explain ML predictions in prior cancer studies [146, 253]. 
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4.3.6 Recurrent cellular neighborhood analysis 

Recurrent cellular neighborhoods were quantified to assess spatial organization of tissues. 

A neighborhood was created for every cell by counting all cells within a 60 µm radius of each 

seed cell’s center, as inferred from previous studies [132, 133]. Using proportions of cells 

comprising the neighborhoods as features, neighborhoods were grouped using K-means 

clustering. The elbow method was used to determine the number of clusters, resulting in 

groupings of spatial neighborhoods that were similar in cellular composition that could be found 

across all regions of interest in the analysis. 

 
4.3.7 Statistics 

Mann-Whitney U tests were used to determine statistically significant differences in top 

TME features between treatment cohorts or DFS groups. The Benjamini-Hochberg correction 

was used to account for multiple hypothesis testing for each analysis. P-values less than 0.05 

were considered statistically significant. Statistical calculations were performed with the Scipy 

and statsmodels packages using Python software [197, 199]. 

 
4.3.8 Data availability 

mIHC data used for this study is available for download on Zenodo at 

https://zenodo.org/records/10476868. All other data are available in the article and its 

supplementary files or from the corresponding author upon reasonable request. 

 
4.3.9 Code availability 

The code used to generate all computational results of this research was created using 

Python version 3.9.4 and is available at https://github.com/kblise/PDAC_mIHC_paper. 

https://zenodo.org/records/10476868
https://github.com/kblise/PDAC_mIHC_paper
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4.4 Results 

4.4.1 Deep phenotyping of T cells within the PDAC TME using mIHC 

29 PDAC tumors were surgically resected from patients across two treatment cohorts 

(Fig. 4.1A). Tumors from 18 treatment-naive patients comprised cohort 1 and were previously 

evaluated for immune contexture in a larger study [107]. Specimens from cohort 1 served as a 

representative baseline comparison to the 11 specimens from cohort 2, which reflected patients 

who had received neoadjuvant anti-CD40 therapy alone (n=8) or in combination with 

gemcitabine and nab-paclitaxel (n=3) prior to resection [110], and were combined here to a 

single cohort to evaluate impact of CD40 stimulation on T cells given our prior study using this 

cohort [110]. Three to 26 tissue regions per PDAC resection were selected by a pathologist and 

quantitatively assayed by mIHC, with each region annotated as one of four histopathologic sites 

within the resected samples: tumor (T), immune aggregate (IA), tumor-adjacent stroma (TAS), or 

normal-adjacent pancreas (NAP) (Fig. 4.1B) [107]. Breakdown of region types assayed per 

patient are shown (Fig. 4.1C). 

In total, nearly 2.5 million cells were assayed across 306 tissue regions by our 21-

antibody mIHC panel (Fig. 4.1D and E, Supplementary Table 4.3, Supplementary Fig. 4.1B). 

423,317 T cells were identified by CD3 and CD8 expression (Supplementary Fig. 4.1C) and 

subsequently classified into 18 distinct T-cell states (Fig. 4.1F), including eight CD8+ T-cell 

states, five CD4+ Th1-cell states, two CD4+ Th-cell states (non-Th1-specific T helper cells), and 

three TREG states. In addition, T-cell functionality was further assessed by 10 biomarkers 

characterizing differentiation/exhaustion, and by biomarkers of proliferation and cytotoxicity 

(Fig. 4.1D, E). The remaining CD3– (non-T) cells were defined by a hierarchical gating strategy 

and classified as B cells, myeloid cells, mesenchymal fibroblast-like cells (also referred to as 
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mesenchymal cells), or neoplastic epithelial cells (Fig. 4.1F, Supplementary Fig. 4.1D). 

Altogether, cells were phenotyped as one of 23 different cell lineages and states (Fig. 4.1F).
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Figure 4.1: Deep phenotyping of T cells within the PDAC TME using mIHC. A) Overview of two 
PDAC cohorts assayed via mIHC. B) Representative PDAC tissue resection stained with H&E (middle) showing 
four histopathologic sites annotated. Total number of regions assayed per histopathologic site are listed. Scale bars = 
100 µm. C) Number of regions assayed per patient. Each box represents one tissue region and is colored according 
to its histopathologic site. D) 21-antibody mIHC panel used to assay tissue regions. E) Representative pseudo-
colored mIHC images showing T cell functionality biomarkers with CD3 expression. Scale bars = 50 µm. F) Cell 
phenotyping strategy by hierarchical gating of lineage and functional biomarkers. Circles indicate colors associated 
with each cell state in the following figures. 
 
 
4.4.2 Interrogating cell states and spatial interactions within the PDAC TME 

Using single-cell spatial data collected from the mIHC assay, we calculated three types of 

TME features to create a granular map of leukocyte infiltration, T-cell functionality status, and 

cellular spatial orientation in the PDAC TME. 

Varying densities of leukocytes, mesenchymal fibroblast-like cells, and neoplastic 

epithelial cells were present in annotated histopathologic regions across treatment cohorts (Fig. 

4.2A, top). T regions were dominated by neoplastic epithelial cells; IA regions were dominated 

by T and B cells, and distal NAP regions were dominated by myeloid cells. TAS regions, which 

encompassed tumor borders, comprised a mix of neoplastic cells, T cells, myeloid cells, and 

mesenchymal cells. On average, CD4+ T cells were present at a density that was nearly two-fold 

than that of CD8+ T cells (Fig. 4.2A, middle, bottom rows) across regions and cohorts. 

However, average densities of the CD8+ and CD4+ T-cell states often differed by histopathologic 

site and treatment cohort, demonstrating the importance of identifying spatial and 

histopathological information for interpreting how—and where—anti-CD40 therapy alters T 

cells in the PDAC TME, important information that could not be captured by flow cytometric 

methodologies. 

T-cell functionality was then assessed through quantification of a T cell “Functionality 

Barcode,” for each T cell present in the dataset. The top 15 most common barcodes by average 

density are shown for each histopathologic type and treatment cohort (Fig. 4.2B). Over half of 
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the most common barcoded T cells were present in both treatment cohorts, regardless of 

histopathologic site, as indicated by brown bars (Fig. 4.2B). The majority of barcodes present in 

the treatment-naive cohort (orange bars) contained two functionality biomarkers while the most 

abundant barcodes present in the anti-CD40 cohort only (blue bars, Fig. 4.2B) contained three 

or more functionality biomarkers. This result supports the hypothesis that anti-CD40 therapy 

shifts T-cell differentiation/functionality within the PDAC TME, as represented by an increase in 

the number of functionality biomarkers expressed.  

Finally, cellular spatial organization was assessed by calculating cell–cell spatial 

interactions. On average, there were increased interactions between CD4+ T cells with other 

CD4+ T cells in the anti-CD40 cohort, regardless of histopathologic site (Fig. 4.2C, white 

boxes). Altogether, these results support the hypothesis that anti-CD40 drives an increase in 

CD4+ T-cell density, functional capacity, and spatial proximity in the PDAC TME, as compared 

to treatment-naive PDAC TMEs. 

Following these single-cell quantifications, all 2,428,274 cells present were phenotyped 

as one of 23 cell states; all 423,317 T cells were assigned one of 961 T-cell functionality 

barcodes, and the immediate spatial neighbors of each cell were computed and binned into one of 

268 types of pairwise cell-cell interactions. This quantification resulted in 1,252 TME features 

computed for each of the 306 regions, each annotated as one of four histopathologic sites. Given 

the complexity and large amount of data, we leveraged ML and feature importance analyses to 

identify: 1) impact of anti-CD40 therapy on these TME metrics, and 2) the likely mechanism(s) 

we hypothesized underlying improved clinical outcome following anti-CD40 therapy. To do this, 

we trained EN classifier models to predict treatment status and DFS within the anti-CD40–

treated cohort from the 1,252 TME features quantified above (Fig. 4.2D). Finally, SHAP values 
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were used to identify which combinations of TME features drove model predictions and thus 

interpret the cellular biology underpinning model predictions [261]. 

 
 
Figure 4.2: Interrogating cell states and spatial interactions within the PDAC TME. A) Stacked bar 
charts showing the average cell state densities for each treatment cohort and histopathologic site. Top row: lineage 
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defining cells including neoplastic epithelial cells, mesenchymal fibroblast-like cells, myeloid cells, B cells, and 
CD3+ T cells; Middle row: CD8+ T cell states; Bottom row: CD4+ T cell states. Columns denote histopathologic site, 
and each plot is further broken into treatment cohort. B) Bar charts showing average densities of barcoded T cells for 
each treatment cohort and histopathologic site. Only the 15 most abundant barcodes are shown as measured by 
average density. Rows denote histopathologic site, and columns denote treatment cohort. Brown bars denote 
barcoded T cells that are in the top 15 most abundant barcodes in both cohorts. Orange bars denote barcoded T cells 
that are in the top 15 most abundant barcodes in the treatment-naive cohort only. Blue bars denote barcoded T cells 
that are in the top 15 most abundant barcodes in the anti-CD40-treated cohort only. C) Heatmaps showing average 
number of spatial interactions between two cell states for each treatment cohort and histopathologic site. Cell states 
are denoted by colors shown in Figure 4.1F. Interactions were normalized first by density of cells participating in 
the interaction and were then log10+1 transformed. Rows denote treatment cohort and columns denote 
histopathologic site. D) Overview schematic of analyses performed in this study. TME features were calculated for 
each tissue region. Two ML classifier models were built for each histopathologic site to predict treatment status and 
DFS. Feature importance analyses were performed to interpret biological meaning. 
 
 
4.4.3 ML  models classify αnti-CD40-treated TMEs as having reduced T-cell exhaustion 

phenotypes 

To reveal the impact of anti-CD40 therapy on T cell–exhaustion phenotype, we trained 

four EN classifier models—one per histopathologic annotation—to predict the treatment status 

of the tissue. All models performed well, as measured by the accuracy, F1 score, and AUC for 

test sets of each of the models (Fig. 4.3A and B). Across the four models, accuracy ranged from 

0.83 to 0.85, F1 score ranged from 0.73 to 0.89, and AUC ranged from 0.87 to 0.90. As models 

were trained to differentiate treatment-naive from anti-CD40–treated PDAC, high performance 

of all four models indicates that anti-CD40 modulates all types of histopathologic regions across 

the TME evaluated herein. 

To identify the features driving model predictions, and thus reveal how anti-CD40 

therapy impacted T cells in the PDAC TME, we calculated SHAP feature importance values for 

each of the four models (Supplementary Fig. 4.2A). The top 30 most important features out of 

1,252 total features accounted for the majority of importance according to SHAP values (T 

model: 84%; IA model: 74%; TAS model: 87%; NAP model: 92%). Comparison of the top 15 

features driving model predictions for each of the four histopathologic models revealed 13 of the 

same features were top contributors across multiple models (Fig. 4.3C), indicating shared T-cell 
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densities, differentiation states, and spatial organizations across histopathologic sites within a 

given treatment cohort. We then compared the normalized values for each of the top features 

quantified by SHAP analysis between treatment-naive samples versus anti-CD40–treated 

samples within each histopathologic site (Supplementary Fig. 4.2B, C, D, and E). All 15 

features derived from the T model were significantly different between treatment cohorts, 14 of 

15 features derived from the IA and TAS models were significantly different between treatment 

cohorts, and 9 of 15 features derived from the NAP models were significantly different between 

treatment cohorts, likely because NAP had the fewest number of regions present in the data. 

Overall, the models identified anti-CD40–treated TMEs as containing increased densities 

of mesenchymal fibroblast–like cells and several T-cell states, including three CD4+ T helper 

populations and two antigen-experienced CD8+ T-cell populations (TEX and CD44+ TOTHER) (Fig. 

4.3C, Supplementary Fig. 4.2B, C, D, and E), as compared to treatment-naive TMEs, which 

contained increased densities of naive CD8+ T cells and B cells. In addition to cell-state 

densities, analysis of T-cell functionality barcodes revealed that anti-CD40–treated TMEs 

contained increased densities of T cells expressing combinations of T-BET, CD44, CD39, TIM3, 

and TCF-1 (Fig. 4.3C, Supplementary Fig. 4.2B, C, D, and E). On the other hand, treatment-

naive TMEs contained increased densities of T cells expressing combinations of TOX1 and 

EOMES, concordant with mIHC stained tissue images (Fig. 4.3D). Finally, spatial interactions 

involving CD4+ Th1 cells were associated with the anti-CD40-treated cohort, whereas 

interactions involving myeloid cells, naive TREGs, and Ki-67+ neoplastic epithelial cells were 

associated with treatment-naive tissue (Fig. 4.3C, Supplementary Fig. 4.2B, C, D, and E). 

Altogether, these results indicate anti-CD40 TMEs contained increased presence of T cells in 
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close spatial proximity to one another—in particular, CD4+ T helper cells—with reduced 

exhaustion profiles, as compared to treatment-naive TMEs. 

Of the top features across all four models, the majority of features were densities of T 

cell–functionality barcodes. As all barcodes present on any T cell were provided to the ML 

models, we sought to determine whether the top barcodes identified by the models were 

expressed by similar or different T-cell states. Thus, barcodes were correlated based on the types 

and proportions of T-cell states expressing each barcode (Fig. 4.3E). This analysis resulted in 

four clusters (i. – iv.) of barcodes, each with distinct compositions of T cells and not influenced 

by histopathologic site. Barcodes belonging to cluster (i) were expressed by antigen-

inexperienced (as defined by lack of CD44 expression) CD8+ and CD4+ T helper cells, naive 

TREGs, and mTREGs. However, barcodes containing TOX1+ and EOMES+ dominated these cluster 

(i) T cells when predictive of treatment-naive samples, while T cells predictive of anti-CD40–

treated samples expressed barcodes containing CD39+ TIM3+, and TCF-1+. This result supports 

the notion that, while the same T-cell types were present regardless of therapy exposure, their 

functional capacity differed following anti-CD40 treatment. Higher densities of barcodes on 

multiple antigen-experienced CD4+ Th1 cell states and T-BET+ TREGs—reported to be similar to 

CD4+ Th1 cells in their function [23]—in clusters (ii), (iii), and (iv) included combinations of T-

BET+, TIM3+, TCF-1+, and CD44+ and were predictive of tissue samples from patients treated 

with anti-CD40 therapy. 
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Figure 4.3: ML models classify anti-CD40-treated TMEs as having reduced T-cell exhaustion 
phenotypes. A) Bar chart showing accuracy and F1 score for each histopathologic model that 
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predicts treatment status. B) ROC curve with corresponding AUC for each histopathologic 
model. C) Bubble chart showing top 15 features whose increased presence drove each 
histopathologic model to predict treatment-naive (orange) or anti-CD40-treated (blue). Features 
are grouped by TME feature type (density, barcode, interaction). Bubble size denotes relative 
importance of the feature for a given histopathologic model. Bubbles appearing multiple times in 
the same row indicate TME feature is a top feature across histopathologic models. D) 
Representative pseudo-colored mIHC images showing TOX1+ and/or EOMES+ CD3+ T cells in 
treatment-naive tissue (left) and CD44+ and/or T-BET+ CD3+ T cells in anti-CD40-treated tissue 
(right). E) Matrix showing correlations between top barcodes from the models with each other 
based on types and proportions of T cell states expressing the barcodes. Stacked bars at the top of 
correlation matrixes show proportions of T cell states expressing barcodes, with T cells color 
coded and listed for each group to the right of the heatmap, along with corresponding barcodes in 
each group. Leftmost columns are color coded according to which treatment group the presence 
of the barcode was predicted by the model, followed by the histopathologic site the model was 
derived from. 
 
 
4.4.4 Long disease-free survivors have enhanced T-cell effector functionality following anti-

CD40 therapy 

The clinical trial from which the anti-CD40–treated specimens were derived was not 

designed to assess correlates with survival. However, despite the small size of our cohort, we 

hypothesized that we could train ML models to accurately predict DFS for these patients, with 

the goal of identifying the combinations of TME features associated with long versus short DFS 

within the anti-CD40–treated cohort. The median DFS timepoint (9.8 months) across all patients 

in the anti-CD40–treated cohort was used to segregate long and short disease-free survivors. 

Separate models were built for each histopathologic site, although NAP region presence was 

insufficient to build a model. Only the model trained from IA regions performed well in 

predicting both long and short DFS, with an accuracy of 0.81, F1 score of 0.88, and AUC of 0.77 

(Fig. 4.4A and B).  

To identify TME features driving predictions for the IA-derived model, we followed a 

similar model interpretation analysis using SHAP values (Supplementary Fig. 4.3A, Fig. 4.4C). 

The top 30 features out of 1,252 features available to the model accounted for 78% of feature 
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importance. All of the top 15 ranked features identified by the SHAP analysis were significantly 

different between DFS groups (Supplementary Fig. 4.3B), demonstrating how ML can be used 

to reveal potential combinations of candidate biomarkers of DFS in the PDAC TME. 

Of note, we observed an increased density of CD44+CD4+ Th1 cells and increased spatial 

interactions between CD4+ Th1 TEM or CD8+ TEMRA cells and T-BET+ TREGs in IA regions from 

patients with long versus short DFS (Fig. 4.4C, Supplementary Fig. 4.3B). However, increased 

densities of T cell–functionality barcodes were the most common feature predictive of DFS, 

accounting for 12 of the top 15 features. Of these, eight barcode densities were associated with 

short DFS and four were associated with long DFS (Fig. 4.4C, Supplementary Fig. 4.3B). 

TOX1 was expressed on all eight barcodes associated with short DFS, while PD-1 expression 

was found exclusively in five of the eight barcodes associated with short DFS. In contrast, 

expression of CD44, CD38, CD39, TIM3, and LAG-3 were unique to the four barcodes 

associated with long DFS (Fig. 4.4C, D). 

To determine if the T-cell states expressing each of the predictive barcodes were similar, 

we again correlated the barcodes by T cell–state expression (Fig. 4.4E). We found four distinct 

clusters of barcodes, and within each cluster, the barcodes were expressed by similar types of T-

cell states and in similar proportions. All but one of the barcodes in clusters (i) and (ii) were 

among the features whose increased densities were associated with short DFS and were 

expressed by antigen-inexperienced CD8+ and CD4+ T helper cells and TREGs subsets. In contrast, 

increased densities of all barcodes in clusters (iii) and (iv) were associated with long DFS. 

Cluster (iii) consisted of one barcode that was uniquely expressed by CD8+ TEM and TEMRA cells, 

CD44+CD4+ T helper cells, as well as naive TREG cells. Finally, cluster (iv) barcodes were 

expressed by CD44+CD8+ T cells, CD4+ Th1 TEM and TEMRA cells, CD44+CD4+ Th1 cells, and T-
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BET+ TREGs. In summary, these findings indicate the following TME changes in IAs – an 

antitumor T-cell response, characterized by presence of CD44+ T cells and in particular CD4+ 

Th1 cells – are associated with prolonged DFS in our patient cohort. 
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Figure 4.4: Long disease-free survivors have enhanced T-cell effector functionality following anti-
CD40 therapy. A) Bar chart showing accuracy and F1 score for each histopathologic model predicting anti-CD40 
DFS. B) ROC curve with corresponding AUC for the IA histopathologic model. C) Bubble chart showing the top 15 
features whose increased presence drove the IA model to predict short DFS (purple) or long DFS (green). Features 
are grouped by TME feature type (density, barcode, interaction). Bubble size denotes relative importance of the 
feature. D) Representative pseudo-colored mIHC images showing TOX1+ and/or PD-1+ CD3+ T cells in short DFS 
tissue (left) and CD44+ and/or CD39+ CD3+ T cells in long DFS tissue (right). Scale bars = 100 µm. E) Matrix 
showing correlations between the top barcodes from the IA model with each other based on types and proportions of 
T cell states expressing the barcodes. Stacked bars at the top of the correlation matrix show proportions of T cell 
states expressing the barcodes, and T cells are color coded and listed for each group to the right of the heatmap, 
along with the corresponding barcodes in each group. Leftmost column is color coded according to which DFS 
group the presence of the barcode predicted by the model. 
 
 
4.4.5 T-cell spatial organization correlates with DFS after anti-CD40 therapy 

The majority of top TME feature types driving the anti-CD40 DFS IA model predictions 

were densities of specifically barcoded T cells. However, the spatial organization of these cells 

was not clear from our model predictions. TME spatial architecture is associated with clinical 

outcomes across cancer types [68, 140, 144, 147, 251, 252]; thus, we aimed to identify the spatial 

neighbors of the top barcoded T cells whose densities were associated with DFS following anti-

CD40 therapy within IA regions. 

To quantify the spatial organization of the tissue, we performed a recurrent cellular 

neighborhood (RCN) analysis across all IA regions within the anti-CD40–treated cohort [140, 

147] (Fig. 4.5A). This resulted in seven RCNs (Supplementary Fig. 4.4A) – each representing 

spatial neighborhood of cells present across multiple IAs that were distinct in proportions and 

types of cell states located within the neighborhood. The average cellular composition of each 

RCN is shown (Fig. 4.5B). We confirmed that no single RCN dominated the IA regions analyzed 

(Supplementary Fig. 4.4B and C) and that no RCN was exclusively derived from any single IA 

region or patient (Supplementary Fig. 4.4D and E). Upon viewing the scatterplot 

reconstructions of regions, clearly defined spatial patterns within IAs were revealed (Fig. 4.5C, 

Supplementary Fig. 4.4F). For example, cells in RCN1, whose neighborhood consisted mostly 
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of B cells, were often found to be spatially clustered together, potentially representing “germinal 

center”-like pockets within IA regions.  

Given our goal of identifying neighbors surrounding the top barcoded T cells from the 

anti-CD40 DFS model, we first identified which of the seven RCNs the barcoded T cells were 

assigned to. We then performed unsupervised clustering of barcoded T cells from long and short 

DFS patients together based on proportions of the seven RCNs the barcoded T cells resided in 

(Fig. 4.5D). This resulted in two distinct clusters of barcoded T cells, which also segregated 

according to DFS. Cluster 1 (C1) included all barcoded T cells from patients with long DFS, as 

well as CD44+T-BET+ barcoded T cells from patients with short DFS. Cluster 2 (C2) consisted of 

all remaining barcoded T cells from patients with short DFS.  

The most striking difference between the two clusters was proportions of barcoded T 

cells residing in RCN5 (Fig. 4.5E). Of all RCNs, RCN5 contained the greatest proportion of 

CD44+ T cells, spanning both CD8+ T cells and CD4+ T helper lineages, and with only 28% of 

cells representing non-T cell lineages, including mesenchymal cells, myeloid cells, a small subset 

of neoplastic cells, and B cells (Fig. 4.5B). 45% of T cells in C1 (long DFS) resided in RCN5, 

whereas only 3% of T cells from C2 (short DFS) resided in RCN5 (Fig. 4.5E). Thus, T cells 

correlated with long DFS were frequently found to be surrounded by CD44+ T cells, supporting 

the hypothesis that anti-CD40 therapy prolongs survival through the promotion of T-cell priming 

and/or recruitment of primed T cells to PDAC TMEs. 

Finally, to further elucidate potential cellular mechanisms active within various RCNs, 

we calculated proportions of T cells expressing Ki-67 or GrzB in each RCN and compared 

values to the overall proportion of Ki-67+ or GrzB+ T cells across all anti-CD40 IA regions. 

Given our prior findings that the majority of T-cell barcodes whose increased density correlated 
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with long DFS were assigned to RCN5 (Fig. 4.5E), we hypothesized that T cells assigned to 

RCN5 would possess increased proliferative and/or cytotoxic capabilities. We found a larger 

proportion of T cells expressing Ki-67 residing in RCN1 and RCN5 as compared to the overall 

T-cell population (dashed line) (Fig. 4.5F). In addition, we found a larger proportion of T cells 

(excluding TREGs) expressing GrzB residing in RCN5, RCN6, and RCN7, as compared to the 

overall non-TREG T-cell population (dashed line) (Fig. 4.5G). However, raw counts of GrzB+ T 

cells in RCN6 and RCN7 were low (RCN6: n=8 cells; RCN7: n=11 cells), whereas RCN5 

contained the highest level of GrzB+ T cells across all RCNs (n=168). Visualization of a 

representative mIHC image depicts presence of GrzB+ T cells localized to RCN5 in an IA region 

from a patient with long DFS (Fig. 4.5H). Collectively, these results provide further support that 

T cells within RCN5 are likely activated and possess an effector phenotype capable of an 

antitumor cytotoxic response.  
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Figure 4.5: T-cell spatial organization correlates with DFS after anti-CD40 therapy. A) Schematic 
depicting RCN analysis. Cellular neighborhoods were defined by identifying all cells within a 60 µm radius of a 
given cell. Neighborhoods were calculated for all cells in anti-CD40-treated IA regions. Neighborhoods were then 
grouped using K-means clustering to identify RCNs. Created with BioRender.com. B) Stacked bar chart showing 
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average cellular composition of each of seven RCNs from the anti-CD40-treated IA regions. Bars are colored by cell 
state and represent average proportions (out of 1.0) of each cell state present in neighborhoods assigned to each 
RCN. C) Representative IA tissue region as depicted by scatterplot reconstructions. Each dot represents a cell 
present in the IA, and each cell is colored by its original cell state phenotype (left scatterplot) or RCN assignment 
(right scatterplot). D) Heatmap showing top T cell barcodes from the anti-CD40 IA DFS model clustered by 
proportion of RCNs the T cell barcodes were assigned to. Rows are barcoded T cells from IA regions from patients 
associated with short DFS or long DFS ordered by hierarchical clustering of their RCN assignment. Columns are 
RCNs used as clustering features. Proportion of RCNs was normalized using a log10+1 transformation prior to 
clustering. Leftmost columns are color coded by DFS group followed by barcode. E) Stacked bar chart showing 
average fraction of RCNs barcoded T cells were assigned to for each of two hierarchically clustered groups (C1 or 
C2). F) Bar chart showing percentage of T cells expressing Ki-67 residing in each of seven RCNs for anti-CD40 IA 
regions. Horizontal dashed line represents percentage of Ki-67+ T cells across all anti-CD40 IA regions, regardless 
of RCN assignment. G) Bar chart showing percentage of T cells expressing GrzB residing in each of seven RCNs 
for anti-CD40 IA regions. Horizontal dashed line represents percentage of GrzB+ T cells across all anti-CD40 IA 
regions, regardless of RCN assignment. TREG populations were excluded from this analysis. H) Representative IA 
region from a patient with long DFS with cells colored by RCN assignment in the upper left scatterplot. Remaining 
images show mIHC staining of GrzB+ CD44+ CD3+ T cells localized within RCN5. Scale bars = 100 µm. 
 
 
4.5 Discussion 

In this study, we integrated spatial proteomic imaging technology with ML approaches to 

understand the role of T-cell phenotypes and spatial organization in the complex TME of human 

pancreatic cancer. In contrast to previous single-cell spatial proteomic studies, which often group 

T cells together as CD8+ T cells, CD4+ T cells, or TREGs [68, 144, 147, 251], our mIHC panel was 

curated to phenotype T cells as one of 18 distinct states along with functionality status from 10 

different biomarkers, all while preserving the spatial orientation of each cell in the TME. In 

considering the full spectrum of T-cell states in addition to their spatial organization, ML 

approaches were necessary due to the complexity of data. ML was used to identify combinations 

of TME features most associated with anti-CD40 therapy exposure or prolonged DFS (Fig. 4.6). 

This study demonstrates the value of merging single-cell spatial proteomic assays with ML 

analyses to interrogate how immunotherapy modulates the PDAC TME and potentially drives 

improved survival. 

Despite the multitude of unique T-cell states identified herein, our ML models identified 

T-cell subsets associated with antitumor characteristics and prolonged DFS. Consistent with our 

preclinical studies revealing that CD4+ T cells are a major contributor to PDAC immunity 
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following anti-CD40 therapy [113], our ML models revealed that anti-CD40–treated patient 

tumors contain increased densities of effector memory cells specifically within the CD4+ Th1 

lineage, while no increase was observed in CD8+ memory T-cell populations. Our models also 

identified antigen-experienced CD4+ Th1 cells as the main cell type whose density associated 

with prolonged DFS following anti-CD40 therapy. This result is concordant with two 

independent studies, including characterization of immune cells in biopsied PDAC liver 

metastases following CD40 agonism [246], and the second investigating primary resected PDAC 

TMEs after treatment with a granulocyte-macrophage colony-stimulating factor-secreting 

allogenic PDAC vaccine (GVAX) [262]. Both studies reported that presence of CD4+ T helper 

cells contribute to improved survival following immunotherapy in PDAC [246, 262]. Here, we 

further characterized expression features of the CD4+ T helper cells as CD44+ Th1 cells, which 

correlated with improved outcomes. Reports have also highlighted the direct role of CD4+ T cells 

in mediating antitumor immunity, including via cytotoxicity [263] and production of effector 

cytokines [264]. As such, we hypothesize that future therapies designed to harness effector and 

memory functions of CD4+ T helper cells following administration of anti-CD40 therapy may be 

clinically beneficial. 

In addition to investigating presence of various T-cell states, our ML analyses show that 

localization and spatial organization of T cells within PDAC TMEs are associated with 

prolonged survival following anti-CD40 treatment. High performance of the IA-derived DFS 

prediction model indicates that IAs are a major site of anti-CD40–induced immune response 

contributing to prolonged DFS. We previously reported increased IAs following anti-CD40 

treatment in PDAC-bearing mice [112], and in the aforementioned GVAX study, survival was 

linked to increased CD4+ T helper pathway genes specifically within IAs (and not tumor regions) 
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[262]. Moreover, a recent study found enrichment of gene signatures representing mature tertiary 

lymphoid structures in pre-treatment PDACs associated with improved survival in patients 

following treatment with varying chemoimmunotherapies [265]. Our RCN analyses further 

revealed that the key T cells associated with prolonged DFS were often surrounded by antigen-

experienced CD8+ and CD4+ T helper cells, as well as a higher proportion of proliferating and 

cytotoxic T cells, as compared to all T cells regardless of spatial neighborhood. While our mIHC 

panel in this study focused on T cells, we observed a minor presence of B cells (compared to 

other RCNs) as well as a subset of myeloid cells and mesenchymal cells in RCN5 that could also 

contribute locally to T-cell activation or function. Collectively, the results indicate IAs may 

function as sites of T-cell priming or second signal, promoting T-cell activation and function in 

PDAC TMEs, contributing to prolonged DFS following multiple types of immunotherapies. 

Our interrogation of IAs revealed T-cell states concordant with dysfunctional tumor-

infiltrating T-cell phenotypes correlated with short DFS following anti-CD40 therapy. TOX1+ T 

cells are at the far end of the exhausted T–cell spectrum [250], and TOX1 expression correlates 

with PD-1 on T cells and impaired immunotherapy response in hepatocellular carcinoma [266]. 

Correspondingly, we observed expression of TOX1 and/or PD-1 on CD8+ and CD4+ T helper 

cells associated with shorter DFS following anti-CD40 therapy. T cells linked to short DFS 

expressing TOX1 and/or PD-1 were largely CD44–, which may represent a population of 

antigen-naive T cells that aberrantly upregulated these proteins, or T cells that are terminally 

exhausted due to repeated T cell–receptor stimulation [267]. We also found an increased 

presence of TOX1+ T cells within treatment-naive TMEs, indicating a baseline terminally 

exhausted T–cell phenotype in the PDAC TME. Despite this, and in agreement with our prior 

study [107], we did not identify PD-1+ T cells as a major subset, in contrast to tumors such as 
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melanoma [268], where PD-1+ T cells are abundant. The paucity of PD-1+ T cells may contribute 

to the failure of ICBs targeting PD-1 or PD-L1 in the majority of patients with PDAC [269]. 

Together, our data support the conclusion that TOX1, but not PD-1, is a dominant feature of 

exhausted T cells in PDAC. Thus, therapies that modulate TOX1+ T cells in the TME—such as 

anti-CD40 agonism—may improve clinical outcomes for patients with PDAC. 

 

 

Figure 4.6: Spatial features of T cells associated with anti-CD40 therapy and prolonged DFS in the 
PDAC TME. A) T cell subsets that best define resected tumor samples from treatment-naïve (left) or anti-CD40-
treated (right) patients. In the absence of therapy, T cells appear in an exhausted state, while T cells present with 
activated and effector phenotypes after CD40 agonism. Created with BioRender.com. B) T cell phenotypes in IAs 
from anti-CD40-treated patients associated with long (top) or short (bottom) DFS. IAs from patients with long DFS 
are characterized by the presence of spatial neighborhoods of effector T cells capable of proliferating and 
cytotoxicity, while IAs from patients with short DFS have a preponderance of exhausted T cell states. Created with 
BioRender.com. 
 
 

Notably, the dataset we used to conduct this study was unique in several aspects—

including therapy administered, mIHC panel deployed, and histopathologic sites assayed—

making validation of our results challenging, highlighting the need for additional studies on 

larger cohorts to build models capable of more generalized predictions, and cautioning 
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integration of our results in a clinical setting prior to additional validation. Patient samples were 

collected from multiple institutions per treatment cohort, yet our ML models still accurately 

classified samples according to therapy. This indicates that any institutional or technical 

differences in tissue processing were not driving features in model predictions. Importantly, the 

ML models we trained performed comparably to or better than models derived from similar 

studies [144, 146, 253, 254]. Additionally, our biological conclusions on impacts of anti-CD40 

are concordant with several prior studies  [112, 113, 246, 250, 262, 266, 269], providing further 

support for methods herein and findings despite small sample sizes. Future antibody panels may 

incorporate additional biomarkers, such as chemokine receptors, to further characterize key T-

cell subsets, or additional lineage biomarkers that denote myeloid or B-cell subsets [252], to 

further phenotype cell–cell interactions. It should be noted that in the present study, treatment 

with anti-CD40 did not prolong DFS as compared to the treatment-naive cohort, and future data 

analyses from clinical trials with larger cohorts powered for survival analyses will be useful to 

validate our findings that associate TME features with longer DFS. Finally, tumors were resected 

12 days after anti-CD40 administration; thus, it is possible that T cells involved in prolonged 

DFS had insufficient time to transit beyond IAs and into surrounding TMEs following priming. 

Further analyses investigating timing of T-cell trafficking throughout PDAC TMEs are necessary 

to determine if analysis of T or TAS regions sampled at later timepoints following treatment 

could be used to assess clinical outcome for these patients. 

In addition to the aforementioned caveats, this study also has several other limitations. 

Importantly, PDAC was the only tumor type analyzed in this study; thus, it is unclear which 

results may also be relevant to other cancers, or whether they are specific to PDAC. Additionally, 

all samples were collected from primary tumors, so the results cannot be generalized to recurrent 
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tumors in the pancreas or metastases to other organs. Further, due to small sample sizes, all 

patients treated with anti-CD40 therapy were grouped together into a single cohort despite the 

fact that three of the eleven patients treated with neoadjuvant anti-CD40 also received 

combination neoadjuvant treatment with gemcitabine and nab-paclitaxel. Thus, the biological 

effects of gemcitabine and nab-paclitaxel were not evaluated specifically, and the differences 

detected between treatment-naive tissue and anti-CD40-treated tissue may also be due to 

exposure to the additional therapies for the three patients treated with combination therapy. 

Additionally, from a data perspective, while samples were collected from multiple institutions, 

all data underwent mIHC imaging and processing at one institution. Therefore, it is possible the 

results described herein may be challenging to replicate with data assayed and processed at a 

different institution. Finally, while the ML models trained in this study used an unbiased 

approach to select for the most important TME features potentially driving biological 

differences, a finite number of pre-defined features were inputted into the models. Although the 

models performed well and top features were identified using our strategy, it is possible that 

additional features not computed, such as ratios of cell states and additional spatial metrics, may 

be relevant. 

This study provides proof-of-principle for leveraging ML approaches to evaluate highly 

multiplexed cancer datasets and supports the use of similar analytics in future studies to identify 

important, and otherwise inconspicuous alterations in TMEs correlating with patient treatment or 

response. Future studies could utilize these findings to target pathways identified via this 

approach to improve treatment strategies for cancer patients. 
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4.6 Supplementary Data 
 

 
Supplementary Figure 4.1: mIHC antibody staining to single-cell phenotyping. A) Stacked bar chart 
showing percent tissue area (out of 100) sampled per resection from each patient. Bars are colored by 
histopathologic site of the regions sampled. B) Representative IHC staining of each antibody used in sequence in the 
panel. Scale bar = 50 µm. C) Two representative regions stained with CD3, CD8, and CD4 antibodies. For each 
region, top images show gates for CD8 on CD3+ population (left) and CD4 on CD3+ CD8- population (right), and 
bottom row shows pseudo-colored mIHC images. 
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Supplementary Figure 4.1 (continued): D) Hierarchical gating template used to phenotype cells using image 
gating cytometry in FCS Image Cytometry RUO. 
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Supplementary Figure 4.2: Feature importance analyses for treatment classifier models. A) SHAP 
plots showing the top 30 features driving each histopathologic model. Features are ordered on the y-axis such that 
those with a larger impact on model’s predictions appear at the top of the SHAP plots. SHAP values are shown on 
the x-axis, with a value of zero (center) indicating no impact on the model, and negative or positive SHAP values 
predicting treatment-naive or anti-CD40-treated tissues, respectively. Red or blue dots indicate presence or absence, 
respectively, of the corresponding feature in the tissue. 
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Supplementary Figure 4.2 (continued): B-E) Box plots showing feature values for each of the top 15 features 
for models derived from T, IA, TAS, or NAP sites, respectively, split by treatment cohort. Each dot represents the 
log10+1 normalized feature value for one tissue region, inputted into the classifier model. Boxes = quartile 1 (Q1) to 
quartile 3 (Q3); whiskers = smallest and largest datapoints within 1.5*interquartile range (IQR) +/- Q3/Q1; solid line 
= median. Mann–Whitney U-test used to determine statistical significance. P-values corrected using the Benjamini–
Hochberg procedure. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. B) T site, n= 55 treatment-naive and n = 48 anti-
CD40-treated regions per feature. C) IA site, n= 89 treatment-naive and n = 43 anti-CD40-treated regions per 
feature. D) TAS site, n = 25 treatment-naive and n = 27 anti-CD40-treated regions per feature. E) NAP site, n = 6 
treatment-naive and n = 13 anti-CD40-treated regions per feature. 
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Supplementary Figure 4.3: Feature importance analyses for DFS model derived from anti-CD40-
treated IA regions. A) SHAP plot showing the top 30 features driving the IA model. Features are ordered on the 
y-axis such that those with a larger impact on the model’s predictions appear at the top of the SHAP plot. SHAP 
values are shown on the x-axis, with a value of zero (center) indicating no impact on the model, and negative or 
positive SHAP values predicting long DFS or short DFS, respectively. Red or blue dots indicate presence or 
absence, respectively, of the corresponding feature in tissues. B) Box plot showing feature values for each of the top 
15 features for the model derived from IA regions of the anti-CD40 cohort split by DFS group (n = 30 regions from 
short DFS patients per feature; n = 13 regions from long DFS patients per feature). Each dot represents the log10+1 
normalized feature value for one tissue region, which was inputted into the classifier model. Boxes = Q1 to Q3; 
whiskers = smallest and largest datapoints within 1.5*IQR +/- Q3/Q1; solid line = median. Mann–Whitney U-test 
used to determine statistical significance. P-values corrected using the Benjamini–Hochberg procedure. *, P ≤ 0.05; 
**, P ≤ 0.01; ***, P ≤ 0.001. 
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Supplementary Figure 4.4: RCN distributions. A) Elbow plot showing optimal number of RCNs (k=7) for 
grouping cellular neighborhoods. B) Bar chart showing the number of cells assigned to each of the seven RCNs 
across all anti-CD40 IA regions. C) Bar chart showing the percentage (out of 100) of cells assigned to each of the 
seven RCNs across all anti-CD40 IA regions. D) Stacked bar chart showing fraction (out of 1.0) of RCNs present 
per anti-CD40 IA region. E) Stacked bar chart showing average proportion (out of 1.0) of RCNs present in IA 
regions for each anti-CD40-treated patient. 
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Supplementary Figure 4.4 (continued): F) Scatterplot reconstructions for each anti-CD40 IA region. Each dot 
represents a cell present in the IA, and each cell is colored by its original cell state phenotype (top scatterplot) or 
RCN assignment (bottom scatterplot). 
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Supplementary Table 4.1: Statistical comparison between the Liudahl et al. original PDAC cohort 
and the selected subset used as Cohort 1 in this study. 

 
Original 
Cohort 

Selected Subset P 

OS (months) (mean ± SEM) 27.34 ± 2.25 27.27 ± 4.75 0.90 

# cases OHSU/DFCI 45/59 6/12 0.61 

CD8+ T cell density (mean ± SEM) 144.57 ± 11.49 152.51 ± 26.35 0.63 

CD4+ T cell density (mean ± SEM) 185.95 ± 12.45 215.15 ± 30.41 0.33 

CD20+ B cell density (mean ± SEM) 98.01 ± 10.68 97.73 ± 21.11 0.85 

Plasmablast density (mean ± SEM) 12.13 ± 2.13 10.78 ± 2.86 0.89 

Plasma cell density (mean ± SEM) 3.31 ± 0.69 2.51 ± 1.57 0.67 

Mast cell density (mean ± SEM) 30.00 ± 2.51 21.25 ± 3.32 0.34 

Neutrophil/Eosinophil density (mean ± SEM) 155.74 ± 29.28 220.87 ± 94.11 0.39 

Mature Dendritic cell density (mean ± SEM) 3.32 ± 0.32 3.46 ± 0.67 0.59 

Immature Dendritic cell density (mean ± SEM) 118.52 ± 11.86 108.79 ± 19.72 0.89 

CD163- Monocyte -Macrophage density (mean ± SEM) 51.68 ± 4.17 37.79 ± 5.50 0.30 

CD163+ Monocyte -Macrophage density (mean ± SEM) 73.94 ± 7.16 62.31 ± 14.26 0.59 

CD8+/CD68+ Ratio (mean ± SEM) 1.86 ± 0.24 2.41 ± 0.89 0.21 

Total CD68+ cell density (mean ± SEM) 125.61 ± 9.84 100.09 ± 17.97 0.35 

 
Mean value and standard error of the mean (SEM) shown for each variable. P-values computed 
using Fisher’s exact test for categorical variables, Wilcoxon rank-sum test for continuous 
variables, and log rank test for overall survival. 
 
 
Supplementary Table 4.2: Tissue area sampled per patient out of total tissue area resected per 
patient (in mm2). 

Tx Cohort Total Area Sampled Total Area Resected % Area Sampled 
Naive 21.14 237.82 8.89 
Naive 37.55 448.71 8.37 
Naive 39.6 359.52 11.02 
Naive 26.96 287.51 9.38 
Naive 25.32 321.44 7.88 
Naive 26.79 184.38 14.53 
Naive 15.5 147.66 10.5 
Naive 33.32 258.02 12.92 
Naive 41.26 301.59 13.68 
Naive 52.43 312.98 16.75 
Naive 12.06 94.23 12.8 
Naive 24.74 286.47 8.64 
Naive 40.69 191.3 21.27 
Naive 16.96 308.5 5.5 
Naive 18.95 89.66 21.14 
Naive 24.95 230.26 10.83 
Naive 31.28 249.46 12.54 
Naive 31.79 215.06 14.78 

αCD40 3.46 77.77 4.44 
αCD40 23.87 130.7 18.27 
αCD40 87.28 328.62 26.56 
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αCD40 50.65 204.14 24.81 
αCD40 43.87 158.12 27.75 
αCD40 62.69 175.92 35.63 
αCD40 55 223.84 24.57 
αCD40 31.69 202.15 15.68 
αCD40 47.53 239.02 19.89 
αCD40 20.96 143.39 14.62 
αCD40 13.08 182.58 7.16 

 
 
Supplementary Table 4.3: Table of antibodies used in mIHC panel. 

Primary Antibody  Clone Species Supplier  Catalog number 

TOX1 (Tox) NAN488B Rat Abcam ab237009 

PD-1 (PD1) NAT105 Mouse Abcam ab52597 

T-BET (TBET) D6N8B Rabbit Cell Signaling Technologies 13232S 

CD39 A1 Mouse Biolegend  328202 

TIM3 D5D5R Rabbit Cell Signaling Technologies 45208S 

LAG-3 (Lag3) 17B4 Mouse Novus Biologicals NBP1-97657 

TCF-1 (TCF1/7) C6D39 Rabbit Cell Signaling Technologies 2203 

CD44 156-3C11 Mouse Cell Signaling Technologies 3570 

CD38 38C03 Mouse Thermofisher Scientific MA5-14413 

CD3 SP7 Rabbit Thermofisher Scientific RM-9107-S 

CD45RO UCHL-1 Mouse Thermofisher Scientific MA5-11532 

GrzB (Granzyme B) Polyclonal Rabbit Abcam  ab4059 

CD8 C8/144B Mouse Thermofisher Scientific MA5-13473 

CD11b (CD11B) EPR1344 Rabbit Abcam ab133357 

CD45RA F8-11-13 Mouse Abcam ab59168 

FOXP3 (Foxp3) 236A/E7 Mouse eBioscience 14-4777-82 

EOMES Polyclonal  Rabbit EMD Millipore AB2283 

CD20 L26 Mouse Abcam ab9475 

Ki-67 (KI67) SP6 Rabbit Sigma/Cell Marque 275R-14 

αSMA (Alpha-SMA) Polyclonal  Rabbit Abcam ab5694 

PanCK (Pan-
Cytokeratin) 

AE1/AE3 Mouse Abcam ab27988 

 
 
Supplementary Table 4.4: Raw counts of cell states defined by mIHC gating strategy present in the 
dataset. 

Cell State Cell Markers Count 

Ki-67- Neoplastic CD3-CD20-CD11b-⍺SMA-PanCK+Ki-67- 915586 

Myeloid cells CD3-CD20-CD11b+ 593571 

Mesenchymal CD3-CD20-CD11b-⍺SMA+ 247778 

CD44- CD4 Th CD3+CD8-FOXP3-T-BET-CD44- & CD45RA+ and/or CD45RO+ 163809 

CD44- CD8 TOTHER CD3+CD8+CD44- 136543 
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B cells CD3-CD20+ 132728 

Ki-67+ Neoplastic CD3-CD20-CD11b-⍺SMA-PanCK+Ki-67+ 115294 

mTREG CD3+CD8-FOXP3+T-BET-CD45RA- 30836 

CD44+ CD4 Th CD3+CD8-FOXP3-T-BET-CD44+ & CD45RA+ and/or CD45RO+ 24232 

CD44+ CD8 TOTHER CD3+CD8+CD44+ 21711 

CD44- CD4 Th1OTHER CD3+CD8-FOXP3-T-BET+CD44- 21157 

Naive TREG CD3+CD8-FOXP3+T-BET-CD45RA+ 10075 

TBET+ TREG CD3+CD8-FOXP3+T-BET+ 3674 

CD8 TEMRA CD3+CD8+CD44+TCF-1+CD45RO+CD45RA+EOMES+ 3550 

CD8 TNAIVE CD3+CD8+CD44-TCF-1+CD45RO-CD45RA+ 2328 

CD4 Th1EM CD3+CD8-FOXP3-T-BET+CD44+CD45RA-CD45RO+ 2038 

CD4 Th1EMRA CD3+CD8-FOXP3-T-BET+CD44+CD45RA+CD45RO+ 1165 

CD8 TEM CD3+CD8+CD44+TCF-1+CD45RO+CD45RA-EOMES+ 940 

CD8 TEX CD3+CD8+CD44+TCF-1+CD45RO+CD45RA-PD-1+ 525 

CD44+ CD4 Th1OTHER CD3+CD8-FOXP3-T-BET+CD44+ 449 

CD8 TTEX CD3+CD8+CD44+TCF-1-CD45RO+CD45RA-PD-1+ 200 

CD8 TEFF CD3+CD8+CD44+T-BET+CD45RO-CD45RA+PD-1+ 64 

CD4 Th1EFF CD3+CD8-CD44+CD45RO-CD45RA+PD-1+ 21 

 
 
Supplementary Table 4.5: Raw counts of T cells expressing each functionality barcode present in 
the dataset. 

T cell Functionality Barcode Count 

Negative for all 144053 

 TOX1+ 51606 

 TCF-1+ 50915 

 CD44+ 19724 

 T-BET+ 15539 

 EOMES+ 15405 

 TCF-1+ T-BET+ 12775 

 TOX1+ TCF-1+ 10565 

 CD44+ TCF-1+ 7742 

 EOMES+ TCF-1+ 6118 

 TOX1+ T-BET+ 5000 

 TOX1+ EOMES+ 4876 

 TOX1+ TCF-1+ T-BET+ 4403 

 EOMES+ CD44+ 3505 

 EOMES+ CD44+ TCF-1+ 3318 

 TOX1+ CD44+ 3002 

 PD-1+ TOX1+ TCF-1+ 2684 

 PD-1+ TOX1+ 2669 
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 CD44+ T-BET+ 2174 

 CD44+ TCF-1+ T-BET+ 2103 

 EOMES+ TCF-1+ T-BET+ 1862 

 CD39+ 1804 

 TOX1+ EOMES+ TCF-1+ 1629 

 TOX1+ CD44+ TCF-1+ 1591 

 TOX1+ TIM3+ 1574 

 TOX1+ CD39+ 1472 

 CD38+ CD44+ 1356 

 PD-1+ TOX1+ TCF-1+ T-BET+ 1262 
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 TIM3+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ 12 
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 PD-1+ CD39+ T-BET+ 12 

 PD-1+ TOX1+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ 12 

 PD-1+ TOX1+ EOMES+ CD38+ TCF-1+ T-BET+ 11 

 PD-1+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 11 

 PD-1+ LAG-3+ EOMES+ TCF-1+ T-BET+ 11 

 LAG-3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 11 

 TOX1+ LAG-3+ CD39+ TCF-1+ T-BET+ 11 

 TOX1+ CD39+ EOMES+ CD44+ T-BET+ 11 

 PD-1+ LAG-3+ CD44+ TCF-1+ 11 

 CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 11 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ TCF-1+ T-BET+ 11 

 TIM3+ CD38+ T-BET+ 11 

 TOX1+ TIM3+ EOMES+ CD38+ CD44+ 11 

 TIM3+ LAG-3+ EOMES+ 11 

 TOX1+ TIM3+ EOMES+ CD44+ T-BET+ 11 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 11 

 PD-1+ TOX1+ LAG-3+ CD39+ CD44+ TCF-1+ 11 

 TIM3+ LAG-3+ CD44+ 11 

 LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ 11 

 LAG-3+ CD39+ EOMES+ CD44+ 11 

 PD-1+ TOX1+ TIM3+ CD38+ 11 

 TOX1+ TIM3+ CD38+ T-BET+ 11 

 PD-1+ TOX1+ LAG-3+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 11 

 PD-1+ CD38+ 11 

 TOX1+ TIM3+ CD38+ TCF-1+ 11 

 TIM3+ CD38+ TCF-1+ T-BET+ 10 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 10 

 PD-1+ TOX1+ LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 10 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 10 

 TIM3+ CD38+ CD44+ T-BET+ 10 

 TIM3+ LAG-3+ CD38+ CD44+ T-BET+ 10 

 PD-1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ T-BET+ 10 

 TIM3+ LAG-3+ EOMES+ TCF-1+ T-BET+ 10 

 PD-1+ TOX1+ CD39+ CD38+ CD44+ 10 

 PD-1+ LAG-3+ EOMES+ T-BET+ 10 

 PD-1+ TOX1+ CD39+ EOMES+ CD44+ T-BET+ 10 

 PD-1+ TOX1+ TIM3+ CD39+ 10 

 PD-1+ TOX1+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 10 

 PD-1+ TOX1+ TIM3+ LAG-3+ 10 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ CD44+ T-BET+ 10 

 TOX1+ LAG-3+ CD39+ EOMES+ T-BET+ 10 
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 LAG-3+ CD39+ CD44+ 10 

 TIM3+ CD39+ CD44+ TCF-1+ 10 

 TOX1+ TIM3+ LAG-3+ EOMES+ TCF-1+ 10 

 TIM3+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 9 

 PD-1+ TIM3+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 9 

 TIM3+ CD39+ CD38+ TCF-1+ 9 

 PD-1+ CD39+ CD44+ TCF-1+ 9 

 PD-1+ CD38+ TCF-1+ 9 

 PD-1+ LAG-3+ CD38+ CD44+ TCF-1+ T-BET+ 9 

 PD-1+ TIM3+ CD44+ TCF-1+ T-BET+ 9 

 TOX1+ EOMES+ CD38+ CD44+ T-BET+ 9 

 PD-1+ TOX1+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 9 

 PD-1+ TOX1+ TIM3+ CD39+ TCF-1+ T-BET+ 9 

 LAG-3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 9 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ TCF-1+ 9 

 TOX1+ TIM3+ CD39+ EOMES+ TCF-1+ 9 

 TOX1+ LAG-3+ CD38+ T-BET+ 9 

 PD-1+ TOX1+ LAG-3+ CD38+ 9 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ 9 

 TOX1+ TIM3+ CD39+ CD38+ TCF-1+ T-BET+ 9 

 TOX1+ TIM3+ CD38+ CD44+ TCF-1+ 9 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ 9 

 TOX1+ LAG-3+ CD39+ CD44+ TCF-1+ 9 

 TIM3+ CD38+ CD44+ TCF-1+ 9 

 PD-1+ LAG-3+ EOMES+ CD38+ CD44+ 8 

 TOX1+ LAG-3+ EOMES+ CD44+ 8 

 PD-1+ TOX1+ TIM3+ CD39+ CD44+ TCF-1+ T-BET+ 8 

 PD-1+ TOX1+ TIM3+ EOMES+ CD44+ TCF-1+ 8 

 PD-1+ LAG-3+ CD39+ EOMES+ TCF-1+ T-BET+ 8 

 PD-1+ TOX1+ TIM3+ EOMES+ CD44+ 8 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ 8 

 PD-1+ LAG-3+ CD39+ CD38+ TCF-1+ T-BET+ 8 

 PD-1+ TOX1+ TIM3+ CD44+ T-BET+ 8 

 LAG-3+ EOMES+ CD38+ T-BET+ 8 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ CD44+ 8 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD44+ TCF-1+ 8 

 CD39+ EOMES+ CD38+ CD44+ T-BET+ 8 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ 8 

 CD39+ EOMES+ CD38+ T-BET+ 8 

 CD39+ EOMES+ CD44+ T-BET+ 8 

 PD-1+ CD39+ EOMES+ CD44+ TCF-1+ 8 
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 TOX1+ CD39+ CD38+ TCF-1+ 8 

 PD-1+ CD39+ EOMES+ CD44+ 8 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ 8 

 TOX1+ LAG-3+ CD39+ CD44+ TCF-1+ T-BET+ 8 

 PD-1+ CD39+ EOMES+ TCF-1+ 8 

 TOX1+ TIM3+ LAG-3+ TCF-1+ 8 

 PD-1+ TOX1+ CD39+ CD44+ T-BET+ 8 

 PD-1+ TOX1+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 8 

 TOX1+ LAG-3+ CD39+ EOMES+ CD44+ 8 

 PD-1+ TOX1+ LAG-3+ EOMES+ CD44+ T-BET+ 8 

 PD-1+ TOX1+ CD39+ CD44+ TCF-1+ T-BET+ 8 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 8 

 PD-1+ TOX1+ CD38+ CD44+ TCF-1+ T-BET+ 8 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 8 

 TIM3+ EOMES+ CD38+ CD44+ 8 

 TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 8 

 PD-1+ TIM3+ EOMES+ 8 

 TOX1+ TIM3+ LAG-3+ CD39+ 8 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ T-BET+ 8 

 PD-1+ TOX1+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 8 

 PD-1+ LAG-3+ CD38+ 7 

 TIM3+ EOMES+ CD38+ 7 

 PD-1+ TOX1+ CD38+ CD44+ T-BET+ 7 

 PD-1+ TOX1+ TIM3+ CD38+ T-BET+ 7 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ CD44+ 7 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ TCF-1+ 7 

 PD-1+ TOX1+ LAG-3+ CD44+ T-BET+ 7 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 7 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ 7 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 7 

 LAG-3+ CD39+ CD38+ TCF-1+ 7 

 PD-1+ TOX1+ LAG-3+ CD39+ EOMES+ CD44+ 7 

 PD-1+ TOX1+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 7 

 PD-1+ TOX1+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 7 

 PD-1+ TOX1+ EOMES+ CD38+ T-BET+ 7 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ T-BET+ 7 

 TOX1+ LAG-3+ CD39+ CD38+ T-BET+ 7 

 TIM3+ LAG-3+ CD38+ CD44+ TCF-1+ 7 

 TOX1+ LAG-3+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 7 

 TOX1+ LAG-3+ CD39+ CD44+ 7 

 TIM3+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 7 
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 TOX1+ TIM3+ LAG-3+ CD38+ TCF-1+ T-BET+ 7 

 TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ 7 

 TOX1+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 7 

 PD-1+ CD38+ CD44+ TCF-1+ 7 

 PD-1+ CD38+ CD44+ 7 

 TOX1+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 7 

 TOX1+ TIM3+ LAG-3+ EOMES+ TCF-1+ T-BET+ 7 

 TOX1+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 7 

 TIM3+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 7 

 TIM3+ LAG-3+ TCF-1+ T-BET+ 7 

 TOX1+ TIM3+ CD39+ TCF-1+ T-BET+ 7 

 TOX1+ TIM3+ CD39+ T-BET+ 7 

 TIM3+ LAG-3+ EOMES+ CD38+ TCF-1+ 7 

 LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 6 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ T-BET+ 6 

 PD-1+ TOX1+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 6 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 6 

 LAG-3+ CD39+ EOMES+ T-BET+ 6 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ TCF-1+ T-BET+ 6 

 TIM3+ LAG-3+ CD39+ EOMES+ 6 

 PD-1+ TOX1+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 6 

 PD-1+ LAG-3+ EOMES+ CD38+ TCF-1+ T-BET+ 6 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ T-BET+ 6 

 TOX1+ TIM3+ LAG-3+ CD44+ TCF-1+ T-BET+ 6 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ 6 

 TOX1+ LAG-3+ CD44+ TCF-1+ T-BET+ 6 

 LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 6 

 PD-1+ TOX1+ TIM3+ LAG-3+ TCF-1+ T-BET+ 6 

 TIM3+ LAG-3+ CD39+ CD38+ 6 

 TOX1+ TIM3+ CD39+ CD38+ CD44+ 6 

 PD-1+ TIM3+ CD44+ TCF-1+ 6 

 TOX1+ LAG-3+ CD39+ CD44+ T-BET+ 6 

 PD-1+ CD39+ CD38+ T-BET+ 6 

 TOX1+ CD39+ CD38+ CD44+ TCF-1+ 6 

 TIM3+ CD39+ CD44+ TCF-1+ T-BET+ 6 

 TIM3+ EOMES+ CD38+ TCF-1+ T-BET+ 6 

 PD-1+ TOX1+ TIM3+ CD39+ T-BET+ 6 

 TOX1+ LAG-3+ EOMES+ CD38+ T-BET+ 6 

 PD-1+ TOX1+ TIM3+ CD39+ TCF-1+ 6 

 PD-1+ LAG-3+ CD44+ 6 

 PD-1+ LAG-3+ CD44+ T-BET+ 6 
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 LAG-3+ CD39+ CD44+ TCF-1+ T-BET+ 6 

 PD-1+ TIM3+ EOMES+ CD44+ TCF-1+ 6 

 TOX1+ TIM3+ CD39+ CD44+ 6 

 TIM3+ CD39+ CD38+ T-BET+ 6 

 TOX1+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 6 

 PD-1+ TOX1+ LAG-3+ CD38+ TCF-1+ T-BET+ 6 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ TCF-1+ T-BET+ 6 

 TIM3+ CD39+ CD38+ TCF-1+ T-BET+ 6 

 PD-1+ CD38+ TCF-1+ T-BET+ 6 

 TOX1+ CD39+ EOMES+ CD38+ T-BET+ 6 

 PD-1+ LAG-3+ CD39+ EOMES+ T-BET+ 6 

 TIM3+ LAG-3+ CD39+ CD38+ T-BET+ 6 

 PD-1+ TOX1+ LAG-3+ EOMES+ CD38+ T-BET+ 5 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD38+ TCF-1+ 5 

 TOX1+ TIM3+ CD39+ CD38+ CD44+ T-BET+ 5 

 TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ T-BET+ 5 

 PD-1+ TOX1+ LAG-3+ EOMES+ CD38+ TCF-1+ T-BET+ 5 

 TOX1+ TIM3+ CD39+ CD38+ T-BET+ 5 

 TOX1+ TIM3+ CD39+ CD38+ 5 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ 5 

 PD-1+ TIM3+ EOMES+ TCF-1+ T-BET+ 5 

 PD-1+ TIM3+ EOMES+ CD44+ TCF-1+ T-BET+ 5 

 PD-1+ TOX1+ TIM3+ CD38+ CD44+ TCF-1+ 5 

 TOX1+ LAG-3+ CD39+ CD38+ TCF-1+ 5 

 TOX1+ LAG-3+ CD39+ EOMES+ TCF-1+ 5 

 PD-1+ TOX1+ LAG-3+ CD39+ CD44+ 5 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ T-BET+ 5 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ TCF-1+ T-BET+ 5 

 TOX1+ TIM3+ CD39+ CD44+ TCF-1+ 5 

 TOX1+ LAG-3+ CD38+ CD44+ 5 

 TOX1+ TIM3+ LAG-3+ CD38+ TCF-1+ 5 

 PD-1+ LAG-3+ CD39+ TCF-1+ T-BET+ 5 

 TOX1+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 5 

 PD-1+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ 5 

 PD-1+ LAG-3+ EOMES+ CD44+ 5 

 PD-1+ EOMES+ CD38+ TCF-1+ 5 

 TIM3+ LAG-3+ CD38+ TCF-1+ 5 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD44+ 5 

 TOX1+ TIM3+ LAG-3+ CD38+ CD44+ TCF-1+ 5 

 TOX1+ TIM3+ LAG-3+ EOMES+ 5 

 TIM3+ CD39+ EOMES+ TCF-1+ T-BET+ 5 
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 TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 5 

 TIM3+ EOMES+ CD38+ CD44+ T-BET+ 5 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ 5 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ T-BET+ 5 

 PD-1+ CD39+ CD38+ TCF-1+ 5 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 5 

 PD-1+ LAG-3+ CD39+ TCF-1+ 5 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ CD44+ T-BET+ 5 

 PD-1+ LAG-3+ CD39+ EOMES+ 5 

 PD-1+ TOX1+ LAG-3+ CD38+ CD44+ 5 

 TOX1+ TIM3+ CD39+ EOMES+ CD44+ TCF-1+ 5 

 TOX1+ TIM3+ LAG-3+ TCF-1+ T-BET+ 5 

 PD-1+ TOX1+ LAG-3+ CD38+ CD44+ TCF-1+ T-BET+ 5 

 PD-1+ TIM3+ LAG-3+ CD39+ CD38+ T-BET+ 5 

 PD-1+ TOX1+ LAG-3+ CD38+ T-BET+ 5 

 TIM3+ LAG-3+ CD38+ 5 

 PD-1+ LAG-3+ CD39+ CD44+ TCF-1+ 5 

 TOX1+ LAG-3+ CD38+ TCF-1+ 5 

 TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ T-BET+ 5 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD38+ CD44+ TCF-1+ 4 

 PD-1+ TIM3+ LAG-3+ T-BET+ 4 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ 4 

 TIM3+ EOMES+ CD38+ TCF-1+ 4 

 TOX1+ TIM3+ CD39+ EOMES+ TCF-1+ T-BET+ 4 

 TIM3+ EOMES+ CD38+ T-BET+ 4 

 TOX1+ TIM3+ CD39+ CD38+ CD44+ TCF-1+ 4 

 PD-1+ TIM3+ LAG-3+ CD38+ CD44+ TCF-1+ T-BET+ 4 

 TOX1+ TIM3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 4 

 PD-1+ TOX1+ CD39+ CD38+ T-BET+ 4 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ 4 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 4 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 4 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 4 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD38+ TCF-1+ T-BET+ 4 

 PD-1+ TIM3+ EOMES+ TCF-1+ 4 

 TIM3+ LAG-3+ EOMES+ CD44+ T-BET+ 4 

 PD-1+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ CD39+ CD38+ CD44+ 4 

 TOX1+ LAG-3+ CD38+ CD44+ TCF-1+ 4 

 TOX1+ LAG-3+ CD38+ CD44+ T-BET+ 4 
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 PD-1+ CD39+ CD44+ 4 

 PD-1+ LAG-3+ CD39+ CD44+ TCF-1+ T-BET+ 4 

 TIM3+ CD39+ EOMES+ CD44+ TCF-1+ 4 

 PD-1+ LAG-3+ CD44+ TCF-1+ T-BET+ 4 

 PD-1+ TIM3+ TCF-1+ T-BET+ 4 

 PD-1+ EOMES+ CD38+ CD44+ TCF-1+ 4 

 TIM3+ LAG-3+ CD39+ CD38+ CD44+ T-BET+ 4 

 PD-1+ LAG-3+ CD38+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD44+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ CD44+ TCF-1+ 4 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ TCF-1+ 4 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ TCF-1+ T-BET+ 4 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 4 

 PD-1+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ EOMES+ T-BET+ 4 

 TOX1+ LAG-3+ CD39+ CD38+ CD44+ 4 

 PD-1+ TIM3+ CD44+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ EOMES+ CD44+ TCF-1+ T-BET+ 4 

 TOX1+ TIM3+ CD38+ CD44+ T-BET+ 4 

 TOX1+ LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ T-BET+ 4 

 PD-1+ TOX1+ TIM3+ EOMES+ CD44+ T-BET+ 4 

 PD-1+ TIM3+ CD39+ TCF-1+ 4 

 PD-1+ TOX1+ TIM3+ EOMES+ CD38+ CD44+ TCF-1+ 4 

 PD-1+ TIM3+ EOMES+ CD44+ T-BET+ 4 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ 3 

 TOX1+ CD39+ CD38+ TCF-1+ T-BET+ 3 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ 3 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 3 

 TOX1+ TIM3+ LAG-3+ CD38+ CD44+ T-BET+ 3 

 TOX1+ TIM3+ LAG-3+ CD39+ TCF-1+ T-BET+ 3 

 PD-1+ TOX1+ EOMES+ CD38+ CD44+ T-BET+ 3 

 TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ 3 

 TIM3+ CD38+ TCF-1+ 3 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ 3 

 TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ 3 

 TIM3+ LAG-3+ CD39+ EOMES+ CD44+ T-BET+ 3 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD38+ T-BET+ 3 

 TOX1+ TIM3+ LAG-3+ CD38+ CD44+ 3 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ 3 

 TOX1+ TIM3+ LAG-3+ T-BET+ 3 
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 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 3 

 TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ T-BET+ 3 

 TIM3+ LAG-3+ EOMES+ CD38+ T-BET+ 3 

 TIM3+ LAG-3+ CD39+ T-BET+ 3 

 TIM3+ LAG-3+ EOMES+ CD44+ 3 

 TIM3+ LAG-3+ CD39+ TCF-1+ 3 

 TIM3+ LAG-3+ CD39+ TCF-1+ T-BET+ 3 

 TOX1+ TIM3+ CD39+ CD44+ T-BET+ 3 

 TIM3+ LAG-3+ CD39+ CD44+ TCF-1+ T-BET+ 3 

 TOX1+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TOX1+ TIM3+ CD39+ CD44+ TCF-1+ 3 

 TIM3+ LAG-3+ CD39+ CD38+ CD44+ 3 

 TOX1+ LAG-3+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TOX1+ LAG-3+ CD38+ CD44+ TCF-1+ 3 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 3 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ CD38+ CD44+ 3 

 LAG-3+ CD38+ CD44+ T-BET+ 3 

 TOX1+ TIM3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 3 

 TOX1+ TIM3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 3 

 TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ 3 

 PD-1+ TOX1+ TIM3+ LAG-3+ T-BET+ 3 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD44+ TCF-1+ 3 

 LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 3 

 TIM3+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 3 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ T-BET+ 3 

 TOX1+ TIM3+ LAG-3+ CD39+ CD44+ T-BET+ 3 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 3 

 TIM3+ LAG-3+ CD44+ TCF-1+ 3 

 PD-1+ TIM3+ EOMES+ CD38+ TCF-1+ 3 

 TIM3+ CD39+ CD44+ T-BET+ 3 

 PD-1+ LAG-3+ CD39+ EOMES+ CD44+ 3 

 TIM3+ LAG-3+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ EOMES+ CD38+ 3 

 PD-1+ TIM3+ EOMES+ CD44+ 3 

 TIM3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ LAG-3+ EOMES+ CD38+ 3 

 PD-1+ LAG-3+ EOMES+ CD38+ TCF-1+ 3 

 PD-1+ TIM3+ EOMES+ T-BET+ 3 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ 3 

 PD-1+ LAG-3+ EOMES+ CD38+ CD44+ TCF-1+ 3 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ 3 
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 PD-1+ LAG-3+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ CD38+ T-BET+ 3 

 TIM3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TIM3+ LAG-3+ EOMES+ TCF-1+ T-BET+ 3 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ 3 

 PD-1+ TIM3+ LAG-3+ CD39+ CD44+ TCF-1+ T-BET+ 3 

 TIM3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 3 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ T-BET+ 3 

 TIM3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TIM3+ LAG-3+ CD38+ TCF-1+ 3 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ 3 

 PD-1+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TIM3+ CD39+ EOMES+ CD44+ TCF-1+ 3 

 PD-1+ CD39+ CD38+ 3 

 PD-1+ CD39+ EOMES+ T-BET+ 3 

 PD-1+ CD39+ EOMES+ CD38+ TCF-1+ 3 

 PD-1+ CD39+ CD38+ TCF-1+ T-BET+ 3 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ T-BET+ 3 

 PD-1+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 3 

 PD-1+ TIM3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TIM3+ CD39+ 3 

 PD-1+ TIM3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 3 

 PD-1+ TIM3+ EOMES+ CD38+ CD44+ TCF-1+ 3 

 PD-1+ CD39+ CD44+ T-BET+ 3 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ 2 

 PD-1+ TOX1+ TIM3+ CD39+ CD38+ CD44+ TCF-1+ 2 

 TOX1+ LAG-3+ EOMES+ CD44+ T-BET+ 2 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ EOMES+ CD38+ CD44+ 2 

 PD-1+ TIM3+ CD39+ CD38+ T-BET+ 2 

 TIM3+ LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ EOMES+ CD38+ CD44+ 2 

 PD-1+ TIM3+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ CD39+ CD44+ T-BET+ 2 

 TOX1+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 2 

 TIM3+ LAG-3+ CD44+ T-BET+ 2 

 TIM3+ LAG-3+ CD39+ CD44+ TCF-1+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ CD44+ TCF-1+ 2 

 TOX1+ LAG-3+ CD39+ CD38+ CD44+ T-BET+ 2 
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 PD-1+ TIM3+ CD38+ CD44+ TCF-1+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD44+ 2 

 PD-1+ LAG-3+ CD39+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ CD38+ TCF-1+ 2 

 PD-1+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 2 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ T-BET+ 2 

 PD-1+ CD39+ EOMES+ CD38+ T-BET+ 2 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ 2 

 PD-1+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD38+ 2 

 TIM3+ CD39+ EOMES+ CD44+ 2 

 TIM3+ CD39+ EOMES+ TCF-1+ 2 

 PD-1+ LAG-3+ CD38+ CD44+ TCF-1+ 2 

 TIM3+ LAG-3+ CD39+ EOMES+ CD44+ 2 

 TIM3+ CD39+ EOMES+ T-BET+ 2 

 PD-1+ EOMES+ CD38+ TCF-1+ T-BET+ 2 

 TOX1+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ 2 

 TIM3+ LAG-3+ CD39+ EOMES+ T-BET+ 2 

 TIM3+ CD39+ EOMES+ CD38+ T-BET+ 2 

 PD-1+ LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ CD39+ EOMES+ TCF-1+ T-BET+ 2 

 TIM3+ CD39+ EOMES+ CD38+ CD44+ 2 

 PD-1+ TOX1+ TIM3+ LAG-3+ TCF-1+ 2 

 PD-1+ LAG-3+ CD39+ CD38+ 2 

 PD-1+ LAG-3+ CD39+ CD38+ T-BET+ 2 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ LAG-3+ CD39+ EOMES+ CD44+ T-BET+ 2 

 PD-1+ CD39+ CD38+ CD44+ 2 

 TIM3+ LAG-3+ EOMES+ CD38+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ 2 

 PD-1+ CD39+ CD38+ CD44+ T-BET+ 2 

 TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ TCF-1+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ 2 
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 PD-1+ TOX1+ CD39+ CD38+ TCF-1+ 2 

 PD-1+ TOX1+ CD39+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD44+ TCF-1+ 2 

 TOX1+ TIM3+ CD39+ EOMES+ T-BET+ 2 

 PD-1+ TOX1+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ CD39+ T-BET+ 2 

 TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ CD44+ 2 

 TOX1+ TIM3+ LAG-3+ EOMES+ T-BET+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 2 

 TIM3+ CD39+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ CD39+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ LAG-3+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ LAG-3+ CD38+ TCF-1+ 2 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 2 

 TOX1+ TIM3+ LAG-3+ CD44+ TCF-1+ 2 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ EOMES+ 2 

 PD-1+ TIM3+ LAG-3+ EOMES+ T-BET+ 2 

 LAG-3+ CD39+ CD38+ CD44+ T-BET+ 2 

 TOX1+ TIM3+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ CD39+ EOMES+ CD44+ 2 

 TOX1+ TIM3+ EOMES+ CD38+ 2 

 TOX1+ TIM3+ EOMES+ CD38+ T-BET+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ 2 

 PD-1+ TIM3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 2 

 TIM3+ LAG-3+ CD38+ CD44+ 2 

 PD-1+ TIM3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 2 

 PD-1+ TOX1+ LAG-3+ CD39+ CD38+ CD44+ 2 

 TOX1+ TIM3+ LAG-3+ CD44+ 2 

 PD-1+ TIM3+ LAG-3+ TCF-1+ T-BET+ 2 

 PD-1+ TOX1+ LAG-3+ CD39+ CD44+ T-BET+ 2 

 PD-1+ TIM3+ LAG-3+ CD38+ T-BET+ 2 

 TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ CD44+ T-BET+ 2 

 TOX1+ TIM3+ LAG-3+ CD39+ CD44+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ 1 

 PD-1+ CD39+ EOMES+ CD38+ CD44+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ 1 

 PD-1+ CD39+ EOMES+ CD38+ 1 
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 TOX1+ TIM3+ LAG-3+ EOMES+ CD44+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ 1 

 PD-1+ LAG-3+ EOMES+ CD38+ T-BET+ 1 

 TIM3+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 1 

 TOX1+ TIM3+ LAG-3+ CD38+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ TCF-1+ T-BET+ 1 

 PD-1+ CD39+ CD38+ CD44+ TCF-1+ 1 

 TOX1+ TIM3+ LAG-3+ CD44+ T-BET+ 1 

 TOX1+ TIM3+ LAG-3+ CD38+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ LAG-3+ EOMES+ CD38+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD38+ TCF-1+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ T-BET+ 1 

 PD-1+ TOX1+ CD39+ CD38+ TCF-1+ T-BET+ 1 

 PD-1+ EOMES+ CD38+ CD44+ T-BET+ 1 

 PD-1+ TOX1+ CD39+ CD38+ CD44+ TCF-1+ 1 

 PD-1+ LAG-3+ CD38+ CD44+ 1 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ 1 

 PD-1+ LAG-3+ CD38+ CD44+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ T-BET+ 1 

 PD-1+ CD39+ EOMES+ CD44+ T-BET+ 1 

 PD-1+ LAG-3+ EOMES+ CD44+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD44+ T-BET+ 1 

 PD-1+ EOMES+ CD38+ CD44+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ T-BET+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ EOMES+ CD38+ 1 

 PD-1+ EOMES+ CD38+ T-BET+ 1 

 TOX1+ CD39+ CD38+ CD44+ T-BET+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ TCF-1+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ EOMES+ 1 

 TIM3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 1 

 TOX1+ TIM3+ CD39+ CD38+ TCF-1+ 1 

 PD-1+ TOX1+ TIM3+ EOMES+ CD38+ TCF-1+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ EOMES+ CD38+ TCF-1+ 1 

 PD-1+ TIM3+ CD38+ 1 

 PD-1+ TIM3+ CD38+ T-BET+ 1 

 PD-1+ TIM3+ CD38+ TCF-1+ 1 

 PD-1+ TIM3+ CD38+ TCF-1+ T-BET+ 1 

 PD-1+ TIM3+ CD38+ CD44+ 1 

 PD-1+ TIM3+ LAG-3+ CD38+ CD44+ TCF-1+ 1 
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 PD-1+ TIM3+ LAG-3+ CD38+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ LAG-3+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ LAG-3+ CD44+ 1 

 PD-1+ TIM3+ LAG-3+ TCF-1+ 1 

 PD-1+ TIM3+ CD39+ T-BET+ 1 

 TIM3+ LAG-3+ CD39+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ CD39+ TCF-1+ T-BET+ 1 

 TIM3+ LAG-3+ CD39+ CD44+ 1 

 TOX1+ LAG-3+ CD39+ EOMES+ CD38+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ CD39+ CD44+ 1 

 LAG-3+ CD39+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ CD39+ CD38+ 1 

 PD-1+ TIM3+ CD39+ CD38+ CD44+ T-BET+ 1 

 TIM3+ LAG-3+ EOMES+ CD38+ CD44+ 1 

 PD-1+ TOX1+ TIM3+ EOMES+ CD38+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ LAG-3+ EOMES+ TCF-1+ 1 

 PD-1+ CD38+ CD44+ T-BET+ 1 

 TOX1+ TIM3+ CD39+ EOMES+ CD38+ 1 

 TOX1+ TIM3+ CD39+ EOMES+ CD38+ CD44+ TCF-1+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ T-BET+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ T-BET+ 1 

 PD-1+ LAG-3+ CD39+ CD44+ 1 

 PD-1+ LAG-3+ CD39+ CD44+ T-BET+ 1 

 PD-1+ TIM3+ CD39+ EOMES+ TCF-1+ 1 

 PD-1+ LAG-3+ CD39+ CD38+ TCF-1+ 1 

 PD-1+ TIM3+ LAG-3+ CD39+ TCF-1+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ CD39+ EOMES+ CD38+ 1 

 PD-1+ LAG-3+ CD39+ CD38+ CD44+ 1 

 PD-1+ LAG-3+ CD39+ CD38+ CD44+ TCF-1+ 1 

 PD-1+ TIM3+ LAG-3+ EOMES+ CD44+ 1 

 LAG-3+ CD39+ EOMES+ CD44+ T-BET+ 1 

 TIM3+ CD39+ CD38+ CD44+ TCF-1+ 1 

 TOX1+ TIM3+ CD39+ EOMES+ CD44+ T-BET+ 1 

 TIM3+ LAG-3+ CD39+ CD38+ TCF-1+ 1 

 PD-1+ LAG-3+ CD39+ EOMES+ CD44+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ CD39+ CD38+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ CD39+ CD38+ 1 

 PD-1+ TOX1+ TIM3+ CD39+ CD44+ T-BET+ 1 

 PD-1+ TOX1+ TIM3+ CD39+ CD44+ 1 

 PD-1+ LAG-3+ CD39+ EOMES+ CD38+ TCF-1+ T-BET+ 1 

 TOX1+ TIM3+ LAG-3+ CD39+ CD44+ TCF-1+ T-BET+ 1 
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Supplementary Table 4.6: Raw counts of cell-cell spatial interactions present in the dataset. 

Cell-Cell Spatial Interaction Count 

Ki-67- Neoplastic & Ki-67- Neoplastic 2876770 

Myeloid cells & Myeloid cells 1480053 

Myeloid cells & Ki-67- Neoplastic 465886 

B cells & B cells 450530 

Ki-67- Neoplastic & Ki-67+ Neoplastic 437638 

CD44- CD4 Th & CD44- CD4 Th 226250 

Mesenchymal & Mesenchymal 220227 

CD44- CD4 Th & B cells 219910 

CD44- CD8 T Other & CD44- CD4 Th 206383 

Mesenchymal & Ki-67- Neoplastic 202107 

Ki-67+ Neoplastic & Ki-67+ Neoplastic 165702 

CD44- CD8 T Other & CD44- CD8 T Other 158210 

CD44- CD8 T Other & B cells 111164 

CD44- CD4 Th & Myeloid cells 107677 

Myeloid cells & Mesenchymal 90234 

CD44- CD8 T Other & Myeloid cells 89976 

B cells & Myeloid cells 62552 

Myeloid cells & Ki-67+ Neoplastic 58793 

CD44- CD8 T Other & Ki-67- Neoplastic 49618 

B cells & Ki-67- Neoplastic 49336 

CD44- CD4 Th & Ki-67- Neoplastic 48406 

CD44- CD4 Th1 Other & CD44- CD4 Th 42570 

CD44- CD8 T Other & CD44- CD4 Th1 Other 34844 

CD44- CD4 Th & mTREG 32692 

CD44- CD4 Th & CD44+ CD4 Th 31233 

CD44- CD4 Th & Mesenchymal 29024 

CD44- CD8 T Other & mTREG 27872 

CD44+ CD4 Th & B cells 27606 

CD44- CD8 T Other & Mesenchymal 26494 

CD44+ CD4 Th & CD44+ CD4 Th 24718 

CD44+ CD4 Th & Myeloid cells 24454 

CD44- CD4 Th1 Other & B cells 24437 

CD44+ CD8 T Other & Myeloid cells 23784 

mTREG & Myeloid cells 23570 

CD44- CD8 T Other & CD44+ CD8 T Other 23249 

Naive TREG & B cells 23177 

CD44- CD4 Th & Naive TREG 22405 
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CD44+ CD8 T Other & CD44+ CD8 T Other 22351 

Mesenchymal & Ki-67+ Neoplastic 20910 

CD44+ CD8 T Other & CD44+ CD4 Th 20823 

CD44+ CD8 T Other & CD44- CD4 Th 20030 

CD44+ CD8 T Other & B cells 19305 

CD44- CD8 T Other & Naive TREG 16461 

B cells & Mesenchymal 15010 

mTREG & B cells 14656 

mTREG & Ki-67- Neoplastic 14362 

CD44- CD8 T Other & CD44+ CD4 Th 12734 

CD44- CD4 Th1 Other & CD44- CD4 Th1 Other 11730 

mTREG & Mesenchymal 10419 

CD44- CD4 Th1 Other & Myeloid cells 9616 

mTREG & mTREG 9087 

CD8 T NAIVE & CD44- CD8 T Other 8303 

Naive TREG & Naive TREG 7839 

CD8 T NAIVE & CD44- CD4 Th 7103 

B cells & Ki-67+ Neoplastic 6512 

CD44- CD4 Th & Ki-67+ Neoplastic 6452 

CD44- CD8 T Other & Ki-67+ Neoplastic 6392 

CD44- CD4 Th & T-BET+ TREG 6102 

Naive TREG & Myeloid cells 6035 

CD44+ CD4 Th & mTREG 5918 

CD44- CD4 Th1 Other & Mesenchymal 5711 

CD44- CD4 Th1 Other & Ki-67- Neoplastic 5640 

CD8 TEMRA & CD44+ CD4 Th 5367 

CD44- CD8 T Other & T-BET+ TREG 5300 

CD44+ CD8 T Other & mTREG 5186 

Naive TREG & Ki-67- Neoplastic 5185 

CD8 T NAIVE & B cells 5149 

T-BET+ TREG & B cells 5086 

Naive TREG & mTREG 4921 

CD44+ CD8 T Other & Ki-67- Neoplastic 4863 

CD8 TEMRA & CD44+ CD8 T Other 4772 

CD44+ CD4 Th & Mesenchymal 4593 

CD44- CD4 Th1 Other & mTREG 4305 

CD44+ CD4 Th & Naive TREG 4166 

CD8 TEMRA & B cells 3878 

CD44+ CD8 T Other & Mesenchymal 3536 

CD44+ CD4 Th & Ki-67- Neoplastic 3476 

CD8 TEMRA & CD44- CD8 T Other 3454 
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CD8 TEMRA & CD44- CD4 Th 3399 

CD44- CD4 Th1 Other & T-BET+ TREG 3382 

CD8 TEMRA & CD8 TEMRA 3337 

CD8 TEMRA & Myeloid cells 3226 

CD44- CD4 Th1 Other & CD44+ CD4 Th 3112 

CD44- CD4 Th1 Other & Naive TREG 3052 

CD44+ CD8 T Other & CD44- CD4 Th1 Other 2766 

CD44+ CD8 T Other & Naive TREG 2300 

CD4 Th1EMRA & CD44- CD4 Th 1997 

CD4 Th1EM & CD44- CD4 Th 1949 

mTREG & Ki-67+ Neoplastic 1924 

T-BET+ TREG & Myeloid cells 1857 

Naive TREG & Mesenchymal 1852 

CD4 Th1EMRA & B cells 1839 

Naive TREG & T-BET+ TREG 1681 

CD4 Th1EM & Myeloid cells 1667 

CD4 Th1EMRA & CD44+ CD4 Th 1607 

CD4 Th1EM & CD44+ CD4 Th 1542 

CD44- CD8 T Other & CD4 Th1EM 1486 

mTREG & T-BET+ TREG 1458 

CD8 TEM & CD44- CD8 T Other 1322 

CD44+ CD8 T Other & CD4 Th1EM 1311 

CD8 TEM & CD44+ CD8 T Other 1285 

CD8 TEM & CD44+ CD4 Th 1283 

CD8 T NAIVE & CD44- CD4 Th1 Other 1238 

CD44- CD8 T Other & CD4 Th1EMRA 1162 

CD8 TEM & CD44- CD4 Th 1140 

T-BET+ TREG & T-BET+ TREG 1119 

CD4 Th1EM & CD44- CD4 Th1 Other 1112 

CD44+ CD4 Th & T-BET+ TREG 1092 

CD8 TEX & CD44+ CD8 T Other 1071 

CD44+ CD8 T Other & T-BET+ TREG 1020 

T-BET+ TREG & Ki-67- Neoplastic 1013 

T-BET+ TREG & Mesenchymal 969 

CD44+ CD8 T Other & CD4 Th1EMRA 969 

CD4 Th1EMRA & CD44- CD4 Th1 Other 934 

CD4 Th1EMRA & Myeloid cells 932 

CD8 TEMRA & Ki-67- Neoplastic 878 

CD8 TEM & Myeloid cells 847 

CD8 T NAIVE & CD44+ CD8 T Other 837 

CD8 TEM & B cells 808 
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CD4 Th1EM & Mesenchymal 790 

CD8 TEMRA & Naive TREG 769 

CD8 TEX & CD44- CD8 T Other 754 

CD8 T NAIVE & Myeloid cells 740 

CD4 Th1EMRA & CD4 Th1EMRA 739 

CD44- CD4 Th1 Other & Ki-67+ Neoplastic 727 

CD44+ CD8 T Other & Ki-67+ Neoplastic 710 

CD4 Th1EM & mTREG 685 

CD8 T NAIVE & CD8 T NAIVE 678 

CD8 TEM & CD8 TEM 628 

CD8 T NAIVE & Naive TREG 618 

CD4 Th1EM & B cells 609 

CD44+ CD4 Th1 Other & Ki-67- Neoplastic 580 

CD8 TEMRA & CD4 Th1EMRA 576 

CD8 T NAIVE & mTREG 574 

CD44+ CD4 Th1 Other & Myeloid cells 550 

CD8 TEX & CD44+ CD4 Th 522 

CD8 TEX & CD44- CD4 Th 514 

CD4 Th1EM & Ki-67- Neoplastic 510 

CD4 Th1EMRA & Naive TREG 507 

CD44+ CD4 Th & Ki-67+ Neoplastic 495 

CD8 TEM & CD8 TEMRA 478 

CD44- CD4 Th1 Other & CD44+ CD4 Th1 Other 477 

CD4 Th1EMRA & T-BET+ TREG 476 

CD8 TEMRA & CD44- CD4 Th1 Other 467 

CD8 TEMRA & mTREG 459 

CD8 T NAIVE & CD44+ CD4 Th 457 

Naive TREG & Ki-67+ Neoplastic 451 

CD8 TEX & B cells 442 

CD4 Th1EM & CD4 Th1EM 431 

CD8 TEMRA & Mesenchymal 383 

CD8 TEX & CD8 TEX 368 

CD44+ CD4 Th1 Other & B cells 353 

CD8 TEMRA & T-BET+ TREG 350 

CD8 TEM & CD4 Th1EM 340 

CD44+ CD4 Th1 Other & CD44+ CD4 Th1 Other 338 

CD8 TEX & mTREG 316 

CD8 TEX & Myeloid cells 316 

CD8 TEM & mTREG 309 

CD44+ CD4 Th1 Other & CD44- CD4 Th 303 

CD4 Th1EMRA & CD44+ CD4 Th1 Other 290 
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CD8 TTEX & CD44+ CD8 T Other 285 

CD4 Th1EM & T-BET+ TREG 281 

CD44+ CD4 Th1 Other & Mesenchymal 278 

CD8 TEMRA & CD8 TEX 250 

CD4 Th1EMRA & Ki-67- Neoplastic 247 

CD4 Th1EMRA & mTREG 239 

CD8 TTEX & Myeloid cells 221 

CD44- CD8 T Other & CD44+ CD4 Th1 Other 215 

CD8 T NAIVE & T-BET+ TREG 213 

CD44+ CD4 Th1 Other & CD44+ CD4 Th 206 

CD8 TEM & CD44- CD4 Th1 Other 199 

CD8 TEX & Ki-67- Neoplastic 199 

CD8 TTEX & CD44- CD8 T Other 194 

CD8 T NAIVE & Mesenchymal 193 

CD44+ CD8 T Other & CD44+ CD4 Th1 Other 186 

CD8 TTEX & CD44+ CD4 Th 176 

CD8 TEMRA & CD4 Th1EM 174 

CD4 Th1EMRA & Mesenchymal 172 

CD8 TTEX & CD44- CD4 Th 168 

CD8 TEM & T-BET+ TREG 159 

T-BET+ TREG & Ki-67+ Neoplastic 150 

CD8 T NAIVE & CD8 TEMRA 150 

CD4 Th1EM & CD4 Th1EMRA 146 

CD4 Th1EM & Naive TREG 137 

CD8 TEM & CD4 Th1EMRA 131 

CD8 T NAIVE & Ki-67- Neoplastic 116 

CD8 TTEX & B cells 111 

CD8 TEFF & CD44+ CD8 T Other 108 

CD8 TEX & Naive TREG 101 

CD8 TEX & CD44- CD4 Th1 Other 96 

CD8 TEM & CD8 TEX 91 

CD8 TEFF & B cells 88 

CD8 TEM & Mesenchymal 85 

CD8 TEX & T-BET+ TREG 83 

CD8 TEX & CD8 TTEX 83 

CD8 TEM & Naive TREG 82 

CD8 TEMRA & Ki-67+ Neoplastic 81 

CD8 TTEX & mTREG 80 

CD8 TTEX & Ki-67- Neoplastic 77 

CD8 TEX & Mesenchymal 75 

CD8 TEX & CD4 Th1EM 72 
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CD8 TEM & Ki-67- Neoplastic 68 

CD44+ CD4 Th1 Other & Ki-67+ Neoplastic 65 

CD8 TEFF & CD44- CD8 T Other 64 

CD44+ CD4 Th1 Other & T-BET+ TREG 61 

CD8 TEFF & CD8 TEMRA 56 

CD4 Th1EFF & B cells 56 

CD44+ CD4 Th1 Other & mTREG 54 

CD8 TEFF & Myeloid cells 50 

CD8 TEFF & CD44- CD4 Th 49 

CD4 Th1EFF & Myeloid cells 47 

CD4 Th1EM & Ki-67+ Neoplastic 45 

CD8 TEFF & CD8 TEFF 42 

CD4 Th1EM & CD44+ CD4 Th1 Other 41 

CD8 T NAIVE & CD4 Th1EMRA 35 

CD8 TEMRA & CD8 TTEX 34 

CD44+ CD4 Th1 Other & Naive TREG 34 

CD8 TEMRA & CD44+ CD4 Th1 Other 31 

CD8 TTEX & Mesenchymal 30 

CD8 TEX & CD4 Th1EMRA 29 

CD8 T NAIVE & CD4 Th1EM 28 

CD4 Th1EFF & CD44+ CD4 Th 28 

CD8 TEFF & CD44- CD4 Th1 Other 26 

CD8 TEFF & Mesenchymal 25 

CD8 TTEX & Naive TREG 25 

CD8 TEFF & Ki-67- Neoplastic 24 

CD4 Th1EMRA & Ki-67+ Neoplastic 23 

CD8 T NAIVE & CD8 TEM 22 

CD8 TEX & Ki-67+ Neoplastic 22 

CD4 Th1EFF & CD44+ CD4 Th1 Other 21 

CD8 TTEX & CD44- CD4 Th1 Other 21 

CD8 T NAIVE & CD8 TEX 20 

CD8 T NAIVE & CD44+ CD4 Th1 Other 20 

CD4 Th1EFF & Ki-67- Neoplastic 19 

CD4 Th1EFF & CD44- CD4 Th1 Other 18 

CD8 TTEX & CD4 Th1EM 18 

CD8 TTEX & CD8 TTEX 17 

CD8 TTEX & Ki-67+ Neoplastic 15 

CD4 Th1EFF & CD4 Th1EMRA 15 

CD8 TEFF & CD44+ CD4 Th 13 

CD8 TEM & CD8 TTEX 11 

CD8 TEMRA & CD4 Th1EFF 11 
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CD8 TEX & CD44+ CD4 Th1 Other 10 

CD44- CD8 T Other & CD4 Th1EFF 8 

CD8 T NAIVE & Ki-67+ Neoplastic 8 

CD4 Th1EFF & Ki-67+ Neoplastic 8 

CD44+ CD8 T Other & CD4 Th1EFF 7 

CD4 Th1EFF & CD44- CD4 Th 7 

CD8 TTEX & CD4 Th1EMRA 7 

CD8 TTEX & T-BET+ TREG 7 

CD8 TEM & Ki-67+ Neoplastic 5 

CD4 Th1EFF & Naive TREG 5 

CD8 TEFF & CD8 TTEX 5 

CD8 TEFF & T-BET+ TREG 4 

CD8 TEFF & CD44+ CD4 Th1 Other 4 

CD8 TEM & CD44+ CD4 Th1 Other 4 

CD4 Th1EFF & CD4 Th1EM 4 

CD8 TEX & CD4 Th1EFF 4 

CD4 Th1EFF & Mesenchymal 4 

CD8 TEFF & Naive TREG 4 

CD8 T NAIVE & CD8 TEFF 3 

CD4 Th1EFF & CD4 Th1EFF 3 

CD4 Th1EFF & T-BET+ TREG 3 

CD4 Th1EFF & mTREG 2 

CD8 T NAIVE & CD8 TTEX 2 

CD8 TEM & CD4 Th1EFF 2 

CD8 TEFF & mTREG 1 

CD8 TEFF & CD8 TEM 1 
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Chapter 5: Discussion 

5.1 Summary 

A better understanding of the complex cellular dynamics at play in the TME has the 

potential to improve treatment strategies and clinical outcome for cancer patients [8]. This 

dissertation aimed to: (1) quantitatively characterize the single-cell spatial landscape of the TME 

and (2) identify novel relationships between immunological features of the TME and clinical 

parameters for three tumor types. Chapter 2 involved a comprehensive evaluation of HNSCC 

TMEs—cellular composition, heterogeneity, longitudinal changes, and spatial organization were 

all quantified, and multiple TME spatial features associated with clinical outcome. Chapter 3 

involved a targeted analysis of NK cell spatial organization in breast cancer TMEs, which 

resulted in an improved understanding of the differences in NK cell localization with neoplastic 

cells and T cells in HER2- versus HER2+ breast cancer subtypes. Finally, Chapter 4 involved a 

deep interrogation of the complexities of T cell phenotype, function, and spatial localization in 

PDAC TMEs in the context of neoadjuvant immunotherapy; ML approaches were used to 

holistically evaluate these aspects of T cells in PDAC and detect combinations of clinically 

relevant T cell features in the TME. 

 
5.2 Common themes 

While the three studies presented in this dissertation analyzed different tumor types, 

common themes emerge across the chapters. From a computational perspective, similar methods 

were used to analyze the complex datasets and successfully interpret biological meaning. While 

cell densities sometimes correlated with various clinical parameters across the three chapters, 

spatial metrics were able to consistently stratify patients according to the desired clinical 
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parameter regardless of tumor type. These results point to the conclusion that TME spatial 

organization is biologically and clinically meaningful, and methods that quantify the cellular 

spatial landscape of the TME are valuable. 

The spatial metrics utilized across chapters were selected based upon the biological 

hypothesis to be tested, as well as based upon the utility of the spatial metrics in prior research—

including research reported in the literature, as well as research conducted as part of earlier 

chapters in this dissertation. Given its novelty in the single-cell spatial cancer research field at 

the time [139], the mixing score was adapted for use with mIHC datasets in Chapter 2 to 

determine whether the metric was clinically relevant beyond TNBC tumors. As it was capable of 

stratifying long versus short progression-free survivors in HNSCC as shown in Chapter 2, the 

mixing score may be a valuable method for quantifying broad neoplastic-immune cell 

organization in other solid tumors. While the mixing score can be adapted to study cellular 

organization between cells other than neoplastic and immune populations, it is limited in that it 

can only measure the regional mixing between two populations. On the other hand, cellular 

neighborhoods and cell-cell interactions can account for all cellular phenotypes present in the 

data, making these spatial metrics more appealing when three or more cell phenotypes must be 

evaluated and increased spatial resolution is needed. Cellular neighborhoods were first utilized in 

Chapter 2 to assess the cells surrounding αSMA cells in HNSCCs. This method enabled further 

understanding of the many types of cells αSMA cells were likely communicating with, as well as 

which neighborhoods were linked to improved clinical outcomes. 

In Chapter 3, the study sought to assess how the function of NK cells was impacted by 

spatially proximal cells, including neoplastic cells, as well as how the function and spatial 

organization of NK cells differed depending on the HER2 status of the breast tumor. Because of 
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these goals, a highly targeted cell-cell interaction analysis was first performed to assess how NK 

cells and neoplastic cells were potentially communicating through close spatial proximity and 

impacting cell function in the context of HER2 disease. Varying functional biomarker expression 

was found on both NK cells and neoplastic cells depending on the spatial proximity of the cells, 

which also often differed depending on the HER2 status of the tumor. To further identify the 

differences in the types of cells NK cells were likely communicating with in HER2- versus 

HER2+ disease, a cellular neighborhood analysis was then performed. Cellular neighborhoods 

were calculated for each NK cell present and differences were also identified based upon the 

HER2 status of the tumor. 

Given the focus on T cells in the PDAC TME in Chapter 4, 18 T cell states were 

phenotyped by the mIHC gating strategy. To assess the spatial organization of each of these 

states, with every other cell state phenotyped—T cell or not—cell-cell interactions and cellular 

neighborhoods were utilized to quantify the spatial organization of the PDAC TME. Thus, in 

contrast to the use of cell-cell interaction and cellular neighborhood metrics in Chapters 2 and 3, 

these metrics were not limited to study specific cell phenotypes, but rather all phenotypes 

identified by the mIHC phenotypic gating strategy were evaluated. This meant that the number of 

spatial interactions were calculated for 268 phenotypically-unique pairs of proximal cells, and 

cellular neighborhoods were defined for every cell present, rather than just for cells of one 

specific phenotype—as was the case for the αSMA cells in Chapter 2 and the NK cells in 

Chapter 3. This unbiased approach to quantifying the spatial landscape enabled the identification 

of specific and clinically meaningful spatial organizations that would likely have gone 

undetected, if a more targeted approach, similar to that of Chapters 2 and 3, was used. 
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As the methods in Chapter 4 built significantly off the methods used in the prior chapters, 

the number of data features being evaluated for clinical relevance was also much larger. Because 

of this, more sophisticated statistical techniques were needed to evaluate all data features in 

combination with each other in this chapter. Thus, ML models were used to predict and interpret 

the clinical relevance of combinations of TME features, demonstrating the value of using ML 

approaches to interpret complex biological datasets. 

In total, a common computational theme emerges from these studies: it is apparent that 

quantitative approaches are needed to analyze and interpret the complexities of the TME. In an 

ideal world, a single and simple biomarker could be used to determine treatment response and/or 

clinical outcome for cancer patients. However, the field is far from distilling TME biology into a 

single value or number that can inform medical providers of the disease trajectory of the patient, 

and it is quite possible that no single biomarker will ever fulfill this need. Tumors are composed 

of millions of cells, and each patient’s tumor is unique. Additionally, single-cell spatial 

proteomics imaging assays are relatively new, and no algorithms have been standardized to 

quantify the single-cell spatial landscape of the TME from the datasets emerging from these 

technologies. Continuing to assess TME cellular composition, function, and, in particular, spatial 

organization through multiple computational algorithms will: (1) enable researchers to identify 

biological trends across tumors and (2) identify which computational approaches consistently 

detect clinically relevant TME features that may become standard clinical biomarkers in the 

future. This dissertation provides a quantitative framework for characterizing the single-cell 

spatial landscape of TMEs and interpreting their downstream clinical significance, as the 

computational approaches used here are appliable across tumor types and single-cell spatial 

proteomics datasets. 
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From a biological perspective, similar anti-tumor immunological features were identified 

across the three TMEs and tended to associate with improved outcomes. Specifically, spatial 

groupings of immune cells involved in antigen presentation and/or cytotoxicity were present 

across HNSCC, breast, and PDAC TMEs. Further, these immunoreactive cellular spatial hubs 

were associated with improved clinical outcome for HNSCC and PDAC patients (limited clinical 

outcome data prevented this type of analysis in Chapter 3). Collectively, these results support the 

notions that: (1) spatial proximity of immune cells contributes to increased antigen presentation 

and T cell activation in the TME and (2) spatial groupings of immunoreactive cells may play an 

important role in combating malignant cells in the TME and ultimately prolonging survival. 

 
5.3 Clinical significance 

The biological findings of this dissertation can be leveraged to generate hypotheses 

regarding improved treatment approaches for cancer patients. Based upon the analyses 

performed in Chapter 2, therapies that elicit an immune response may be valuable for patients 

presenting with late-stage HPV(-) HNSCC. This hypothesis is supported by the finding that later 

staged primary tumors tended to possess a mixed immune-neoplastic spatial organization with 

increased PD-1 expression on lymphocytes, which was associated with reduced PFS. Upon 

recurrence, these patients also experienced the greatest reduction in their CD8+ T cell population. 

Therefore, it is plausible that treating late-staged spatially mixed primary tumors with an ICB 

that targets the PD-1/PD-L1 checkpoint may convert the T cells present in these TMEs into 

functional effector T cells capable of cytotoxicity against the neoplastic cells. In turn, a reduction 

in the CD8+ T cell lineage may be mitigated for these patients, thus prolonging PFS. ICBs 

targeting the PD-1/PD-L1 checkpoint have been used with some success to treat recurrent and 

metastatic HNSCC [84-86]; the results from Chapter 2 indicate patients with certain primary 
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HPV(-) HNSCCs characterized by the single-cell spatial landscape described above may also 

benefit from these therapies. 

The spatial results described in Chapter 3 also reveal potential opportunities to improve 

the treatment of breast cancer patients. The results indicate that combination therapy approaches 

that target both HER2 and HLA-1 expression on neoplastic cells may be beneficial for treating 

HER2+ breast cancer patients. Anti-HER2 antibodies (e.g. Trastuzumab) are currently used to 

treat HER2+ breast cancer patients, and NK cells have been shown to play a critical role in 

contributing to the efficacy of the treatment [91-93]. However, the results presented in Chapter 3 

indicate that further efficacy may be reached through the disruption of HLA-1-mediated 

inhibition of NK cells. Despite NK cells being found in tumor nests, the spatial analyses 

performed in Chapter 3 indicate that effector functions of NK cells may be inhibited by nearby 

neoplastic cells expressing the inhibitory ligand HLA-1, which binds to killer-cell 

immunoglobulin-like receptors (KIRs) on NK cells. This binding suppresses NK cell activation, 

thus diminishing NK cell cytotoxic function [270]. Therefore, suppression of HLA-1-mediated 

inhibition of NK cells, in addition to treatment with anti-HER2 antibodies, may further enable 

NK-driven cytotoxicity in the TME and improve responses for HER2+ breast cancer patients. 

Indeed, a recent study investigated the relationship between KIRs and their corresponding HLA 

ligands in breast tumors treated with Trastuzumab and found the presence of various KIR/HLA 

combinations to be associated with varying degrees of drug efficacy [271], highlighting the 

importance of also considering this inhibitory mechanism when treating breast cancer patients 

with Trastuzumab. 

Finally, the results from Chapter 4 support several hypotheses for improving the 

personalized treatment of PDAC patients. First, the lack of PD-1+ T cells found in treatment-
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naive TMEs supports the increasing evidence that ICBs targeting the PD-1/PD-L1 checkpoint do 

not work as first-line treatment for PDAC patients [269]. Instead, the findings presented in 

Chapter 4 indicate therapies that modulate TOX1 expression may reduce T cell dysfunction 

and/or exhaustion in the PDAC TME and thus contribute to improved outcomes for these 

patients [272-274]. Additionally, the results from Chapter 4 support the development of a smaller 

antibody panel consisting of CD3, CD4, T-BET, CD44, TOX1, and PD-1, which could help 

determine how a PDAC patient is responding to their given immunotherapy. Following treatment 

with an immunotherapy, the tumor could be biopsied and assayed with the panel to determine 

whether the T cells present were activated or exhausted and additional combination therapies that 

either leverage the presence of effector CD4+ Th1 cells or reinvigorate exhausted T cells could be 

administered. Unfortunately, as the collective results from Chapter 4 and the literature indicate 

immune aggregates are the key sites of T cell response [112, 262, 265], this approach is limited 

by the fact that biopsies sample the TME at random and are unable to target immune aggregates 

specifically. However, the use of this smaller antibody panel could be currently employed to 

assay any immune aggregates present in a full surgical resection to aid in determining therapeutic 

response and additional therapeutic interventions for PDAC patients. 

 
5.4 Limitations 

This dissertation provides a reliable framework for quantitatively analyzing single-cell 

spatial proteomics datasets. However, the resulting biological conclusions require validation 

through additional studies. This is due, in part, to several limitations of this work. First, the 

research presented herein was limited by the small sample size used in each study. Although 

millions of cells were analyzed in this dissertation, the number of patients from which the tissue 

samples were collected remained small and lacked diversity. Further, lack of knowledge of and 
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control over external factors, such as diet, sleep, exercise, and environment, made it challenging 

to identify predictive associations between TME biology and clinical outcome. Additional 

studies on larger cohorts that control for external variables and expand patient diversity are 

needed to validate the biological conclusions of this dissertation. 

This research is also limited by the assumption that a two-dimensional (2D) portrayal of 

the TME is representative of its actual three-dimensional (3D) nature. The mIHC imaging 

platform assays a thin section of the 3D tissue mass, and the resulting data is a 2D image of the 

tissue. As TMEs are highly heterogenous ecosystems, it is possible that a 2D slice of the TME is 

unable to accurately portray the full heterogeneity of the ecosystem. Therefore, potentially 

clinically relevant TME features are lost when analyzing data generated by 2D imaging assays. 

Additional studies that interrogate the 3D landscape of tumors will help inform whether 2D 

analyses are truly representative of the entire TME [275]. 

Additionally, the research presented herein is limited by the antibody panels used to 

generate the mIHC datasets. As mIHC enables the staining of ~30 antibodies per tissue slide, a 

finite number of cellular phenotypes and functions were enumerated for each study. This resulted 

in certain studies having specific immune lineages deeply phenotyped while other lineages were 

lumped together into broad populations. While this was done to address biological questions 

specific to each chapter, an ideal study would be capable of phenotyping all immune cells deeply, 

while also characterizing the functional status of each lineage. Additionally, research has 

demonstrated that neoplastic cells also possess incredible heterogeneity [68]; thus, incorporating 

antibodies that interrogate this neoplastic heterogeneity in addition to leukocyte heterogeneity 

would further inform new candidate biomarkers of various clinical parameters. 
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Finally, the computational algorithms deployed in this dissertation oftentimes involved 

setting fixed parameters to perform the analyses. However, it was not always clear what the 

parameters should be set to. For example, each spatial analysis required setting a specific 

distance threshold. As the spatial biology field is relatively new, there is no standard distance 

threshold accepted by the field, in part because there are no standardized spatial metrics, and the 

existing metrics often assess tissues at varying spatial resolutions. For the spatial analyses 

performed in this dissertation, distances were chosen based upon (1) distances reported in prior 

literature assessing how far small molecules can travel through tissues and (2) the stability of the 

results when slightly adjusting the distance parameter. These rationales were also the foundation 

for determining the optimal parameter values for the other quantitative analyses performed in 

this dissertation: parameter values were selected based on prior knowledge of the algorithm, as 

well as for maximum stability of the results when toggling the value of the parameter. Despite 

these rationales, it is possible that better values could have been selected for each parameter, and 

future studies that report on the impact on the results of changing certain parameters, such as 

distance thresholds for spatial metrics, will be valuable for discerning the optimal value for 

various parameters moving forward. 

As public data repositories are used more widely to share patient datasets and multiplex 

tissue imaging technologies become cheaper to use, the aforementioned limitations may be 

mitigated through: (1) improved access to larger patient datasets; (2) increased analysis of serial 

tissue sections and/or potential 3D imaging datasets; (3) deployment of bigger antibody panels 

capable of more deeply characterizing the phenotypes and functions of cells of all lineages in the 

TME; and (4) increased access to datasets to conduct parameter optimization testing. 

 
5.5 Future directions 
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There are several opportunities to extend upon the work presented in this dissertation. 

First, studies that test new therapeutic interventions, such as those discussed above, may result in 

improved therapeutic responses and prolonged survival for patients with HPV(-) HNSCC, 

HER2+ breast cancer, or PDAC. 

Second, as the quantitative algorithms used in this dissertation are applicable across 

tissue types and single-cell spatial proteomics datasets, there are seemingly endless opportunities 

to leverage the computational methods used here to interrogate the types and locations of cells 

present in a diseased tissue and determine how these features contribute to clinical outcome. In 

the context of cancer, specific cellular structures exist within TMEs that are still poorly 

understood. Quantitative analysis of the single-cell spatial landscapes of these TME structures—

for example, TLS—has the potential to illuminate how these structures form and contribute to 

tumor progression or reduction. 

TLS are ectopic lymphoid organs whose presence in the TME generally associate with 

improved clinical outcome [276]. They are known to possess distinct cellular organizations 

similar to lymph nodes, however, how TLS form, the various stages of TLS maturation, and their 

role in anti-tumor immunity are not fully understood [276, 277]. Thus, an interesting opportunity 

exists to (1) assay TLS with a curated mIHC antibody panel capable of deeply phenotyping the 

cells known to exist within TLS (T cells, B cells, DCs, high endothelial venules) and (2) conduct 

a detailed quantitative analysis of the mIHC dataset to evaluate TLS cellular phenotype, function, 

and spatial organization by applying many of the same algorithms presented herein. Following 

these quantifications, downstream analyses could be performed to identify stages of TLS 

maturation and correlations to various clinical parameters. 
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As proof-of-principle for using quantitative spatial approaches to characterize TLS, a 

targeted cellular neighborhood analysis surrounding B cells was performed on the HNSCC 

mIHC dataset presented in Chapter 2. One of the resulting recurrent cellular neighborhoods was 

found to correspond to B cells residing specifically in the centers of the TLS present. The results 

were evaluated for accuracy by comparing the computationally detected TLS with the hand-

annotated TLS as identified by an expert histologist on adjacent H&E tissue slides. A 

representative tissue region is shown (Figure 5.1), with the hand-annotations of the TLS overlaid 

to illustrate the high accuracy of the cellular neighborhood approach. Overall, these results 

demonstrate that single-cell spatial analyses can identify and characterize TLS. A deeper 

interrogation into the heterogeneity in TLS spatial neighborhoods could enable improved 

understanding of their role in the TME and potentially reveal new therapeutic approaches to 

leverage the anti-tumor effects of TLS. While TLS are one specific feature of TMEs that could 

be quantified through the algorithms described in this dissertation, the methods used here are 

applicable across cellular structures and tissues. 

 

Figure 5.1: Recurrent cellular neighborhood analysis accurately identifies TLS in the HNSCC 
TME. A) mIHC image of all cells in TME tissue region. Yellow corresponds to B cells. B) Scatterplot 
reconstruction showing B cells only with TLS hand annotated in black. C) Scatterplot reconstruction showing B 
cells only. B cells are colored according to their neighborhood assignment. Cells belonging to the yellow 
neighborhood aligns with B cells participating in TLS per hand annotation. 
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A third extension of this work involves applying similar ML approaches to those 

described in Chapter 4 to answer new biological questions. For example, given the clinical 

importance of TLS but lack of knowledge of where they are located within the TME, it would be 

useful to know if TLS are present in the TME even if the tissue specimen did not contain a TLS. 

This is especially relevant in the case of a biopsy, where a needle randomly samples a small 

portion of the tumor mass, and a TLS could be easily missed in the biopsied tissue sample. In 

this use case, ML classifier models could be trained to predict whether or not a TLS is present in 

the broader TME from inputted TME features of the tissue actually sampled. As full surgical 

resections of tumors are not always clinically feasible, a model capable of making this prediction 

would enable researchers and clinicians to know if a TLS was present in a given TME without 

the need for a full resection. Additionally, downstream feature importance analyses could then 

identify which combinations of TME features were associated with presence versus absence of 

TLS in the surrounding tissue. This would help researchers better understand how and why a 

TLS forms in a tumor. 

A final extension of this work involves developing an interactive visualization tool for 

future researchers tasked with analyzing single-cell spatial proteomics datasets. All of the 

quantitative analyses used in this dissertation were performed using Python software, and all of 

the analyses are applicable across single-cell spatial proteomics datasets. Thus, generation of a 

user-friendly dashboard for researchers with no programming experience would enable greater 

use of these quantitative methods. Streamlit is an open-source web application for running 

Python-based data analytics, and it is an appealing option for building an interactive dashboard. 

Upon creation of the dashboard, an end-user would simply upload their dataset to the dashboard, 

specify various metadata, and select which single-cell spatial algorithms to run. The results 
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would appear in interactive figures with adjustable parameters, such as distance thresholds or 

desired cell phenotypes to analyze. As proof-of-principle, a Streamlit dashboard was created to 

calculate various TME single-cell spatial metrics, including the immune-neoplastic mixing score 

described in Chapter 2, for a given tissue region (Figure 5.2). Expanding access to sophisticated 

computational methods through the design and publication of an interactive visualization tool, 

such as a Streamlit dashboard, would enable more researchers to easily conduct single-cell 

spatial analyses of tissues. 

 
Figure 5.2: Streamlit dashboard enables interactive visualization of TME single-cell spatial 
analyses. The mixing score is calculated for a specified HNSCC tissue region, and the results are shown in the 
dashboard. Desired cell phenotypes for the calculation and a distance threshold are adjustable by the user. The 
analysis requires no programming experience. 
 
 
5.6 Concluding remarks 

It is clear that the cellular composition and spatial architecture of the TME play a 

significant role in tumor progression, response to therapy, and clinical outcome. Improving our 

understanding of the TME through quantitative analysis of single-cell spatial proteomics datasets 
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has the potential to improve patient stratification and identify increasingly personalized 

therapeutic interventions for cancer patients. The work in this dissertation advances cancer 

research by: (1) laying a foundation for future quantitative assessments of TME cellular 

composition, heterogeneity, and spatial organization, and (2) identifying potential candidate 

biomarkers of various clinical parameters, which may result in improved treatment strategies for 

future cancer patients. More broadly, this work can be used to guide the quantitative analysis of 

any single-cell spatial proteomics dataset, as the computational methods used here are applicable 

across diseases and data resulting from any multiplex tissue imaging assay.  
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