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Abstract

Cancer is among the leading causes of death worldwide, and there is a critical need to
improve treatment strategies and clinical outcomes for patients. In addition to neoplastic cells,
tumors also consist of varying types and quantities of stromal, endothelial, and immune cells,
making them highly heterogeneous entities. This diverse ecosystem of cells, termed the tumor
microenvironment (TME), is now widely appreciated for its important role in shaping tumor
progression, response to therapy, and clinical outcome. Propelled by recently developed
multiplex tissue imaging assays, which generate massive datasets involving phenotypic and
spatially resolved maps of cells residing in a tissue sample, research has demonstrated that both
the cellular composition and spatial organization of the TME are important determinants of
clinical outcome for cancer patients. However, given the sheer magnitude of these datasets and
TME biological complexity, the exact relationships among TME phenotypic, functional, and
spatial aspects and various clinical endpoints are still poorly understood. Thus, computational
analyses that interrogate the single-cell spatial landscape of TMEs are desperately needed to
improve the clinical care of cancer patients. This dissertation aims to address this need by (1)
quantitatively assessing single-cell spatial proteomics datasets generated by multiplex
immunohistochemistry for three tumor types and (2) applying statistical and machine learning
approaches to identify potential candidate biomarkers of various clinical parameters. First, head
and neck squamous cell carcinomas (HNSCCs) were analyzed for their cellular heterogeneity,
longitudinal changes following therapy, and spatial architecture. Immune, neoplastic, and
mesenchymal spatial organizations associated with progression-free survival; these TME spatial
aspects may be used as potential candidate biomarkers for future HNSCC patient stratification.

Breast TMEs were then assessed specifically for their natural killer (NK) cell function and



spatial organization in the context of human epidermal growth factor receptor 2 (HER2) disease.
NK cell proximity with neoplastic cells correlated with the expression of various functionality
biomarkers on NK and neoplastic cells, as well as HER2 status. These results reveal potential
immunosuppressive mechanisms in HER2" breast TMEs, which could be targeted by new
therapeutic interventions to improve outcomes for these patients. Finally, pancreatic ductal
adenocarcinomas (PDACs) were assessed for T cell phenotypes, functions, and spatial
organizations within the TME in the context of neoadjuvant immunotherapy. T cell exhaustion
was reduced following immunotherapy use, and the presence of spatial neighborhoods of effector
T cells located specifically in immune aggregates was associated with improved disease-free
survival following immunotherapy. These results reveal important immunological features of the
TME that could be leveraged to improve treatment strategies and clinical outcome for PDAC
patients. Collectively, the work presented in this dissertation provides a roadmap for future
quantitative analyses of highly complex spatial proteomics datasets. Importantly, the
computational algorithms used here are applicable across single-cell spatial proteomics datasets
and can be used to quantify the single-cell spatial landscape of additional TMEs, as well as other
diseased or healthy tissues. Finally, future studies may leverage the immunological results
presented herein to design new therapeutic interventions and biomarkers for patient

stratifications to improve clinical outcomes for cancer patients.
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Chapter 1: Introduction

1.1 Tumor microenvironment
1.1.1 Brief overview

Cancer is characterized by the dysregulated proliferation of genetically altered cells,
leading to the growth of malignant—and often deadly—tumors [1]. In many ways, cancer can be
thought of as an evolutionary process whereby genetic alterations in mutated cells provide a
survival advantage to the mutated cells over normal cells. However, it has become increasingly
clear that beyond the genetic changes within the cancerous cells, the environment in which these
cells reside also plays a significant role in determining how the cancer will progress [2].

This environment, known as the tumor microenvironment (TME), comprises a diverse
collection of cells [3, 4]. Beyond the malignant neoplastic cells, TMEs contain structure-related
cells, including mesenchymal and vascular endothelial cells. These cells are the building blocks
for the stromal tissues that hold tumors together and the blood vessels that contribute to
angiogenesis and hypoxia. TMEs also contain a wide assortment of immune cells, which play
varying pro- or anti-tumorigenic roles within the TME. Beyond these broad cell lineages, each
cell may express an array of functional markers that further differentiates it from cells of the
same canonical classification. Combined with its phenotypic lineage, these functional markers
help determine the specific role or ability of the cell in the TME. Finally, the spatial location of
each individual cell within the TME further dictates the function of the cell, as cells
communicate and affect each other’s abilities through spatial proximity [5]. Overall, TMEs are
heterogeneous and complex ecosystems composed of thousands to millions of cells [6]. Each cell
descends from a specific phenotypic lineage, serves a particular function, and is located within a

coordinated spatial network of neighboring cells within the TME (Figure 1.1).



Neoplastic, mesenchymal, and immune cells reside in the TME

Cells communicate through
receptor/ligand binding

Cells are located in varying
spatial organizations

Figure 1.1: TME overview. Many types of cells expressing various functional markers are located in distinct
spatial arrangements throughout the TME. This figure was created using BioRender.com.

1.1.2 TME immune contexture

Understanding the types, functions, and locations of the leukocytes, or immune cells,
residing in the TME is of particular interest to cancer researchers. This is because tumors form,
progress, and metastasize throughout the body, in large part, due to a failure in
immunosurveillance [7]. Under homeostatic conditions, a healthy immune system continually
surveilles the body for abnormal cells, tissue damage, and pathogens. Upon detection of these
aberrations, immune cells destroy and/or remove the unhealthy cells, thus preventing their
continued presence in the body. In the context of cancer, genetically mutated cells avoid
detection and/or destruction by the immune system, resulting in the progression of neoplastic
tissues into malignant tumors. Although not always attributed to the same mechanism, the
general skirting of neoplastic cells past immune detection and destruction is now considered a
“hallmark” of cancer [2]. As TMEs contain numerous immune populations, understanding which

of these immune cells are capable of mounting an anti-tumor response with or without



therapeutic priming, versus which immune cells are complicit in, or even enable, tumor
progression, can help inform future targeted therapies that leverage the immune system of the
body to eradicate the tumor [8, 9].

All types of leukocytes with varying functions have been found within the TME,
including cells from both adaptive and innate lineages. T cells are a critical adaptive immune cell
population present in the TME [10]. From a rudimentary perspective, canonical CD8" T cells and
the majority of CD4" T helper cells predominately exert anti-tumor functions in the TME and
help identify and kill neoplastic cells [11, 12], while regulatory T cells (Tregs)—which are
characterized by the expression of both CD4 and FOXP3—contribute to an immunosuppressive
TME [13, 14]. However, in reality, the T cell phenotypic landscape is much more heterogeneous
than this [15-18]—many CD8" T cells and CD4" T helper cells in the TME are dysfunctional
and/or exhausted due to chronic stimulation and signals from nearby cells [19-22], and certain
subsets of Tregs counterintuitively possess anti-tumor functions [23]. Additionally, the degree of
T cell infiltration into TMEs varies based on tumor type and signals from the collection of cells
present in the TME, among other factors [24, 25]. Thus, deeper investigations into the amounts
and phenotypes of T cells present, their spatial locations and cellular neighbors within the TME,
and their associated functions are needed to better understand how to harness the full cytotoxic
potential of T cells against tumors.

B cells are another adaptive immune population present in TMEs [26]. While certain
subsets of B cells may be pro-tumorigenic [27-29], B cells are often located in spatial clusters of
immune cells, including tertiary lymphoid structures (TLS) [30], which are typically associated
with anti-tumor functions [31-33]. Interrogation of the cells present in immune aggregates and

TLS may enable improved understanding of how B cells contribute to anti-tumor immunity.



Bridging the adaptive and innate immune systems are natural killer (NK) cells [34]. NK cells are
potent cytotoxic leukocytes, but they are often present in limited numbers within the TME [35,
36]. Additional research into the types of TMEs NK cells infiltrate and how their surrounding
cellular neighbors in the TME impact their function may reveal new mechanisms to further
leverage the cytotoxic powers of NK cells within the TME.

While sometimes overlooked given their lack of memory of and specificity for neoplastic
cells, cells of the innate immune system play pivotal roles in tumor progression [37]. These
myeloid cells include dendritic cells (DCs), macrophages/monocytes, and granulocytes
(neutrophils, basophils, eosinophils, and mast cells). DCs typically contribute to anti-tumor
immunity in the TME by aiding in the detection of neoplastic cells. DCs present neoplastic
antigen to T cells to help activate an effector T cell response against the tumor, and they are
considered a major antigen presenting cell (APC) in the TME [38, 39]. Macrophages are also
capable of presenting antigen to T cells and contributing to anti-tumor immunity [40]. However,
more often, and especially in late-stage tumors, macrophages polarize away from an anti-
tumorigenic “M1-like” phenotype toward an “M2-like” phenotype, which is characterized by
many pro-tumorigenic functions [41]. Unlike their M1-like counterparts, M2-like macrophages
create a highly immunosuppressive TME and contribute to neoplastic cell proliferation,
angiogenesis within the TME, and tumor metastasis [42]. Finally, granulocytes also fulfill varied
and often opposing roles in the TME depending on the phenotype of the granulocyte, tumor type,
tumor stage, and spatial proximity to other cells within the TME [43-45]. Granulocytes are
characterized by the presence of granules inside the cell, which are released into the surrounding
tissue as a defense mechanism. Neutrophils, which comprise a major subtype of granulocytes,

are typically found to contribute to an immunosuppressive TME through the promotion of tumor



metastasis, among other functions [46, 47]. Comprising a much smaller subset of granulocytes
found in the TME, the roles of basophils and eosinophils in the context of cancer are poorly
understood [44, 48, 49]. Prior studies on the functions of basophils and eosinophils report
conflicting results [43, 50], again highlighting the complexity of immune cell function in the
TME. Finally, mast cells, which are tissue-resident granulocytes, have been shown to recruit
other immune cells, spanning immunoreactive and immunosuppressive cells, to the TME, and
they can also contribute to increased angiogenesis in the TME [51]. Thus, similar to the
lymphocytes of the adaptive immune system, myeloid cells have diverse functions in the TME
and can exert both pro- and anti-tumorigenic functions depending on a variety of circumstances.
In summary, control versus progression of a tumor is due, in part, to the immune cells
present in the TME. However, immune cells are highly heterogeneous in both their phenotypes
and functions, making it challenging to fully assess the concerted role of the immune system for
a given TME. Further, the cells surrounding the immune cells have a profound impact on the
abilities of the immune cells present in the TME. Analyses that are capable of isolating and
identifying the phenotype of each immune cell present in a TME, deducing its associated
function, and also contextualizing its spatial location among other cells in the TME are needed to

gain clarity on how TME immune contexture works to slow or accelerate tumor growth.

1.1.3 Clinical relevance

Just as the phenotypic composition and spatial organization of cells in the TME play a
critical role in impacting tumor progression, TME cellular contexture also contributes to patient
survival and regulating response to therapy [6, 8, 52-55]. From a purely compositional
perspective, increased densities of CD8" T cells have been associated with improved survival

across several tumor types, including breast [56], colorectal [57], clear cell ovarian [58], and



prostate [59]. Conversely, presence of M2-like macrophages has been implicated in shorter
survival times for head and neck [60], bladder [61], and breast [62] cancer patients.
Incorporating both cellular density and spatial localization, the Immunoscore has been used over
the past decade to aid in colorectal tumor staging [63]. Higher Immunoscores, which reflect
increased presence of specific CD8" T cells in the tumor core and invasive margin are associated
with reduced rates of recurrence, while lower Immunoscores are associated with reduced CD8" T
cell infiltration and increased rates of recurrence [64]. Finally, the spatial organization of the
TME alone has been associated with response to therapy and patient survival in several tumor
types. For example, increased spatial proximity between cells involved in the programmed cell
death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immunoregulatory checkpoint has
been correlated with improved response to therapies targeting this checkpoint in Merkel cell
carcinoma [65] and metastatic melanoma [66, 67], and specific TME cellular architectures were
found to associate with survival for breast cancer patients [68] and several cancer types [52].
Beyond derivation of potential molecular biomarkers, interrogation of TME cellular
contexture has also helped identify new targets for therapeutic interventions for cancer patients.
Immune checkpoint blockades (ICBs) leverage knowledge of basic T cell immunology and TME
immune contexture specifically, as they target various T cell regulatory pathways, such as the
PD-1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) pathways [69]. PD-1 and
CTLA-4 are receptors expressed on the surface of T cells, and when bound to their
corresponding ligands, the effector function of the T cell is inhibited [70, 71]. This
immunoregulatory mechanism, which exists under homeostatic circumstances to prevent
autoimmunity, is hijacked by the cancer to block T cells from killing its own neoplastic cells.

ICBs disrupt these inhibitory receptor/ligand bindings and remove the “brake” from T cells, thus



reinvigorating their ability to detect and kill neoplastic cells in largely antigen-dependent
manners [72, 73]. ICBs have demonstrated unparalleled success for some patients, highlighting
the power of harnessing the natural immune system of the body to fight tumors [74-76].
However, ICB success stories are limited, and the vast majority of cancer patients do not respond
to these therapies [77], underlining our still naive understanding of TME complexity.

As cancer and subsequent metastases are oftentimes lethal, there is a critical need to
identify superior treatment strategies, as well as identify improved molecular biomarkers of
recurrence likelihood, therapeutic response, and patient survival. Studies that interrogate TME
cellular composition and spatial architecture have already enabled more personalized treatment
regimens and better patient stratification approaches for certain cancers [78]. However, many
cancer patients still have poor clinical outcomes, highlighting the need for continued

investigation of these TMEs.

1.1.4 Head and neck squamous cell carcinoma

Head and neck squamous cell carcinomas (HNSCCs) arise from the mucosal epithelium
lining the oral cavity, pharynx, and larynx [79]. Risk factors for developing this cancer include
alcohol and tobacco use, as well as infection with human papillomavirus (HPV) [80]. Roughly
890,000 new HNSCC cases are diagnosed per year, and 450,000 people die from HNSCC per
year [80]. Global incidence is continuing to rise, and there is an urgent need to identify new
treatments and improved molecular biomarkers of survival, response to therapy, and tumor
progression. Investigation of head and neck TME cellular landscapes presents an opportunity to
elucidate new targeted therapies and clinical biomarkers for HNSCC patients.

HNSCC TMEs are remarkably heterogeneous, and the immune contexture of HNSCCs

varies greatly depending on the HPV status of the tumor [81]. HPV-positive [HPV(+)] tumors



tend to have more tumor infiltrating lymphocytes than HPV-negative [HPV(-)] tumors, which are
instead characterized by highly immunosuppressive TMEs [81]. This difference in TME immune
contexture is thought to contribute to the discrepancy in survival outlook for patients with
HPV(+) versus HPV(-) tumors. Patients with HPV(+) HNSCC tend to have better clinical
outcomes—although still poor—with a 3-year overall survival (OS) rate of 34%, as compared to
HPV(-) HNSCC patients, whose 3-year OS rate is only 19% [82].

Current standard of care for primary HNSCC involves surgery and adjuvant radiotherapy
and/or chemotherapy [83]. ICBs that target PD-1 have also been approved for treatment of
recurrent or metastatic HNSCC [84-86], yet prognosis has hardly improved—especially for
HPV(-) HNSCC patients [87]. Thus, there is an even a more critical need to develop improved
therapies for HPV(-) HNSCC patients in particular. While infiltrating immune cells are often
present in limited numbers in HPV(-) HNSCC TMEs, understanding which immune cells do
exist and how they may be suppressed by neighboring cells could inform new therapies that can

convert the traditionally immunosuppressive TME into an immunoreactive one.

1.1.5 Breast cancer

Although not always as lethal as HNSCC, breast cancer is the most commonly diagnosed
cancer worldwide, with over 2.2 million new cases diagnosed per year [88]. Breast cancers are
traditionally classified based upon their expression of estrogen receptor (ER), progesterone
receptor (PR), and/or human epidermal growth factor receptor 2 (HER2) [89]. This molecular
subtyping helps inform treatment regimens, such as hormone therapy to target ER* and PR*
tumors and anti-HER2 antibodies for HER2* tumors. However, nearly 700,000 people still die
from breast cancer per year [88], and an improved understanding of breast TME heterogeneity

within molecular subtypes is urgently needed to guide more personalized treatment strategies.



Breast TMEs are heterogeneous entities, and their immune contexture and its associated
prognostic value varies depending on the molecular classification of the tumor. Lymphocytes
infiltrating breast tumors tend to be CD8" T cells, whose presence is associated with improved
prognosis specifically for HER2" disease and triple negative breast cancer (TNBC) [90], which is
defined by the lack of ER, PR, and HER2 positivity. Immunosuppressive lymphocytes, including
Tregs and CD4" T helper type 2 (Th2) cells are also present in breast TMEs and associate with
poor prognosis [90]. Finally, breast TMEs contain varying amounts of innate immune cells,
including DCs, macrophages, and NK cells.

Although less common than tumor infiltrating lymphocytes, NK cells are of particular
importance in HER2" breast tumors. This is because HER2-targeted therapies, such as the anti-
HER2 antibody Trastuzumab, have been shown to elicit an originally unintended NK cell-
mediated anti-tumor response in HER2" breast cancers [91]. Trastuzumab has been reported to
increase the number of tumor-infiltrating NK cells in HER2* breast TMEs, as well as trigger NK
cell cytotoxicity through an antibody-dependent cellular cytotoxicity (ADCC) mechanism [92,
93]. However, despite this positive effect of Trastuzumab, inhibitory signals from neighboring
cells in the TME often dampen NK cell cytotoxicity [94, 95]. Improving understanding of how to
effectively harness the NK cell-mediated anti-tumor response following Trastuzumab use in
HER2" breast tumors could greatly improve clinical outcomes for these patients. This is
especially important, as HER2" breast cancer patients have a much higher risk of recurrence and
metastasis than their ER" or PR counterparts [96]. Thus, investigations into NK cell phenotype,

function, and spatial organization within HER2" breast TMEs specifically are critically needed.

1.1.6 Pancreatic ductal adenocarcinoma



While not as common as HNSCC or breast cancer, pancreatic ductal adenocarcinoma
(PDAC) is one of the deadliest cancers, with a 12% 5-year survival rate [97]. There are nearly
500,000 new cases diagnosed per year, and there are an almost equivalent number of deaths per
year (over 460,000) resulting from PDAC [98]. Current standard of care includes surgery and
adjuvant chemotherapy. However, this line of treatment is largely ineffective, and the vast
majority of patients experience recurrence in as few as 7 months [99]. Additionally, PDAC
patients often present with late-stage disease and are ineligible for surgery due to the existence of
distant metastases and/or due to the proximity of critical vasculature surrounding the pancreas
[97]. The lack of feasibility and efficacy of existing treatments and the dismal survival outlook
for PDAC patients highlight the desperate need to identify new therapeutic interventions for
these patients.

The PDAC TME presents several opportunities to target with new therapeutic strategies.
The TME is characterized by a dense stroma and extracellular matrix which is thought to
preclude effector lymphocytes from entering the tumor core. While intuitively, disruption of the
stromal barrier could be hypothesized to enable the passage of lymphocytes into the TME, initial
attempts to deplete stromal fibroblasts through therapeutic intervention instead contributed to
increased tumor vascularization and metastasis [ 100-103]. Up until recently, therapies that
targeted the immune system were also largely unsuccessful [104]. This is due in part to the large
proportion of myeloid cells present, which promote a highly immunosuppressive TME [105-
107]. Additionally, PDAC is characterized by relatively few genetic mutations, thus limiting T
cells’ natural ability to infiltrate and detect the cancer [108]. Altogether, these TME attributes are

main contributors to the failure of ICB use in PDAC.
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More recently, therapies that act on T cells through mechanisms differing from ICBs have
shown the ability to promote T cell priming against PDAC. Two of these therapeutic
interventions are peptide vaccination [109] and agonistic CD40 (anti-CD40) monoclonal
antibodies [110]. Both strategies indirectly prime T cells through the direct stimulation of APCs.
Peptide vaccination involves administration of a highly personalized vaccine that informs T cells
of the neoantigens specific to the tumor cells from a patient, which APCs present to T cells [109].
This treatment demonstrated remarkable success in a small clinical trial [109] and deserves
further attention in larger clinical trials. However, personalized vaccine development took over
two months from time of surgery to time of vaccination, which is costly for most PDAC patients,
whose recurrence timeline usually occurs on the scale of months. Anti-CD40 therapy also
induces T cell responses by binding to the CD40 receptor expressed on the cell surface of APCs
[111]. This mimics the binding of the CD40 receptor on the APC with its corresponding CD40
ligand. When this binding occurs, the APC becomes licensed to activate T cells without
additional signals needed. Anti-CD40 therapy with or without combination chemotherapy and/or
ICB has shown promise in preclinical models and is now being tested in clinical trials [110, 112,
113].

For one of the first times, peptide vaccination and anti-CD40 therapy demonstrate the
feasibility of eliciting a T cell response against PDAC. However, optimization of these therapies
to maximize clinical outcome still requires extensive investigation into the T cell response
powered by these therapies. Thus, deep interrogations of T cell phenotype, function, and spatial
localization within the PDAC TME with and without therapies that prime T cells are urgently

needed to continue improving clinical outcome for patients with this devastating disease.

1.2 Multiplex immunohistochemistry
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1.2.1 Brief overview

As discussed above, studies that investigate the composition and spatial organization of
the cells in the TME have the potential to improve understanding for many cancer patients.
However, most traditional assays fail to comprehensively evaluate both the composition and the
spatial organization of the tissue concurrently. Common molecular assays, such as RNA-
sequencing [114] and flow cytometry [115], assess the molecular makeup of the tissue, but these
assays disrupt the spatial context of the tissue sample. Immunohistochemistry (IHC), which
involves the staining of antibodies on tissue sections on a slide, retains cellular locations, and it
has been the gold standard of pathology over the last twenty years [116]. However, IHC can only
stain up to a few antibodies per tissue slide, thus failing to capture the detailed cellular
phenotypic information of the tissue. Until recently, the available methods for interrogating the
TME required a tradeoff between knowing the phenotypic composition of the TME or the spatial
landscape of the TME. Advances in single-cell spatial proteomic imaging technologies have
resulted in several novel multiplex tissue imaging assays, including cyclic immunofluorescence
[117], imaging mass cytometry [118], co-detection by indexing technology (CODEX) [119],
multiplexed ion beam imaging [120], and multiplex immunohistochemistry (mIHC) [121], which
overcome the aforementioned challenge and deeply phenotype cells while also preserving the
cellular spatial arrangement of the tissue.

Given the critical role that immune cells play in detecting and destroying neoplastic cells
in the TME, mIHC was designed specifically to interrogate the immune contexture of solid
tumors [121, 122]. mIHC builds on the foundation provided by standard IHC while employing a
cyclical antibody staining protocol (Figure 1.2). It sequentially assays the same tissue slide

many times and can stain for over 25 antibodies, all while maintaining the spatial context of the
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tissue sample. The resulting imaging data is processed by a computational analysis pipeline to
identify cellular locations in the form of Cartesian coordinates, and the resulting protein
expression levels are hierarchically gated to classify each cell into neoplastic, mesenchymal or a
specific leukocyte subtype of either lymphoid or myeloid lineage. Further, the expression of
additional proteins is also used to determine cells that are positive or negative for various
functional markers, such as the PD-1 immunoregulatory protein. Thus, the data produced from
the mIHC assay and its downstream computational image processing pipeline provides an
unrivaled picture of the TME that includes both cellular phenotypic and spatial information.
Given the value of understanding the single-cell spatial landscape of the TME, analysis of this
mIHC data has the potential to identify promising biomarker candidates and enable increased

personalized treatment strategies for cancer patients.
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Figure 1.2: mIHC proteomics platform and computational image processing pipeline yield spatially
resolved maps of TMEs.

1.2.2 Challenges to mIHC data interpretation

As mIHC provides single-cell resolution maps of the TME, resulting mIHC datasets are
incredibly large. For example, a single tissue region sampled from the HNSCC TME with area
2500 x 2500 pm? contains on average 21,000 cells. Thus, on average, the processed mIHC data
matrix corresponding to one tissue region has 21,000 rows in the table, with each row
corresponding to data for one cell. Oftentimes in an mIHC experiment, several tissue regions per

TME are assayed, resulting in hundreds of thousands of cells assayed for a single cancer patient.
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When considering the resulting data from an entire cohort of cancer patients whose tissue
samples are all assayed with mIHC, the dataset suddenly consists of phenotypic, functional, and
spatial data for millions of cells. The incredible size of mIHC datasets alone presents a challenge
for researchers attempting to evaluate the types and roles of cells present in the TME and how
they are spatially organized.

Beyond quantification and description of TME cellular contexture using mIHC datasets,
incorporation of accompanying tissue and clinical metadata provides interesting, but challenging,
opportunities to assess the clinical relevance of TME biological complexities. Examples of tissue
metadata include anatomic site from which the tumor was collected, histopathologic information
about the TME sample, and tumor stage, among others. Clinical metadata include parameters
such as therapy administered, response to therapy, clinical subtype of the tumor, timeline to
recurrence, and survival duration. Ultimately, linking TME biology to these various parameters
has the potential—and is necessary—to improve treatment strategies and clinical outcomes for
cancer patients. However, identifying clinically meaningful relationships in the data is
particularly challenging when several tissue or clinical parameters are varied across the dataset.
For example, some datasets encompass tumor specimens spanning each stage, collected from
varying anatomic sites, at multiple timepoints, and following different therapeutic interventions.
When considering a dataset like this—which also possesses data for millions of cells—it
becomes increasingly challenging to interpret biological and clinical meaning.

Finally, given the novelty of mIHC datasets—and multiplex tissue imaging datasets in
general—methods for interpreting their biological meaning or clinical relevance remain to be
standardized. While metrics derived from traditional IHC analyses to assess basic cellular

phenotypes can be applied to mIHC data, no standard metrics exist for quantifying the spatial
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layout of cells in the TME. Overall, analysis of the single-cell spatial landscape of the TME has
great potential to revolutionize the treatment and care of cancer patients; however, it remains

unclear how to best evaluate these types of datasets.

1.3 Quantitative analyses of the TME
1.3.1 Algorithms to quantify TME single-cell spatial landscape

As biological datasets continue to grow in size and complexity, computational approaches
are needed to effectively analyze them. This is particularly true for the single-cell spatial
proteomics datasets of the TME resulting from multiplex tissue imaging assays, where the data
includes phenotypic, functional, and spatial information for millions of cells, often in addition to
various accompanying metadata.

Assessment of the single-cell spatial landscape of the TME necessitates metrics that
calculate the abundance of cells possessing distinct phenotypes and functions, as well as metrics
that quantify the cells’ spatial organization in the TME. Quantification of the phenotypic and
functional composition of the TME can often still be performed using simple metrics such as cell
densities, ratios, or proportions present in the TME [121]. Demonstrating the clinical utility of
these metrics, proportions of cells positive for various biomarkers are used to determine
sensitivity to treatment with ICB. For example, the U.S. Food and Drug Administration approved
the use of an ICB targeting the PD-1/PD-L1 checkpoint in patients with non-small cell lung
cancer when at least 50% of the neoplastic cells present express PD-L1 [123-125]. While this
biomarker is easy to calculate, it does not always accurately predict ICB response [125, 126],
suggesting that additional TME factors, such as cellular spatial localization, must also be

considered.
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Quantifying the spatial arrangement of cells within the TME is more complex than
assessing the composition of the TME. Dozens of methods have been used to quantify TME
cellular spatial organization, and the choice of method is partially dependent upon the
magnification level desired for the analysis [52]. Evaluation of full surgical resections enables
detection of the broad histopathologic location each cell resides in, including the tumor core,
invasive margin, and more distal stromal tissue surrounding the tumor (Figure 1.3A) [107].
More granular spatial analyses include metrics borrowed from ecology [127], which were
designed to understand the overlap of different species within a given habitat. For example,
metrics such as the Morisita-Horn index and the Getis-Ord geospatial hotspot statistic are
ecological metrics that have been used to assess the spatial distribution of immune and neoplastic
cells within various TMEs [128, 129]. Respectively, these metrics calculate the spatial
colocalization and extent of spatial clustering versus dispersion of two populations within a
given space; they do not account for the actual distances between single cells within the outlined
space (Figure 1.3B).

Highly granular distance-based metrics are particularly valuable in the context of
studying TME biology, as cells require spatial proximity to communicate [5]. For example,
immune cells secrete chemokines and cytokines, which are small proteins that diffuse through
the TME and signal to other nearby cells, impacting their function [130]. While one study found
T-cell-secreted interferon (IFN)-y secreted by activated CD8" T cells could travel over 800 um in
the TME [131], most studies report chemokine and cytokine signaling distances of 30 to 250 um
[132-136]. Direct signaling mechanisms, which involve the binding of receptor ligand pairs
expressed on cell surfaces, require even more proximity between cells. These cells must be

directly adjacent to one another to facilitate binding of their proteins, and thus assessing
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distances in the 15 to 30 pm range is more appropriate to capture these types of interactions
[137, 138], such as the binding of PD-1 with its corresponding PD-L1 ligand [65]. Thus, spatial
metrics that integrate the distance between cells into the calculation are important for
understanding how cells affect one another in the TME.

Among the spatial analyses that involve a user-defined distance parameter are a recently
developed “mixing score” metric [139], cell-cell interaction measures [65], and cellular
neighborhood analyses [140] (Figure 1.3C). The mixing score was developed to specifically
interrogate immune cell spatial mixing or compartmentalization with neoplastic cells within the
TME, and it was found to associate with survival in TNBC [139]. Although the mixing score is a
regional measure of spatial organization, it still incorporates knowledge of which types of cells
are in contact with one another in the given region. Cell-cell interaction measures strip spatial
analyses to their core, as they simply count the frequency of two cell types located within a
specified distanced threshold from one another in the TME. Interactions can then be normalized
to the densities of the cells present to avoid skewing the interaction counts by cells that are
present in greater abundances. When interaction frequencies are calculated across all pairings of
cell phenotypes present, it becomes easy to determine which cell types tend to be located most
proximally to one another versus cell types that are rarely present in close proximity. Spatial
interactions can also be calculated for cell phenotypes expressing specific functional markers.
For example, studies interrogating the PD-1/PD-L1 immunoregulatory checkpoint found that
tumors containing more spatial interactions involving PD-1" cells and PD-L1" cells were
associated with improved response to ICBs targeting this checkpoint across multiple cancers [65,
67, 141]. Finally, cellular neighborhood analyses comprise an emerging sophisticated technique

used to quantify TME spatial organization. Neighborhoods are defined as spatial groupings of

17



cells surrounding a given “seed” cell within the TME. Neighborhoods can be calculated by either
identifying a set number of nearest cells to the seed cell or by identifying all cells within a
specified radius around the seed cell. Then, based upon the composition of cells residing in the
neighborhood, neighborhoods can be clustered using statistical techniques to identify recurring
spatial groupings of cells that are present across multiple TMEs. Recurrent cellular
neighborhoods were originally used to quantify colorectal TMEs, and the frequency of PD-1*
CD4" T cells in a specific cellular neighborhood were found to associate with survival in these
patients [140]. Cellular neighborhoods can be used to characterize the spatial organization of
larger tissue structures within the TME, such as TLS or tumor nests.
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Figure 1.3: Overview of TME spatial quantifications. TME spatial organization can be defined in terms of
A) location in the broader TME context, B) ecological measures of colocalization within a defined space, and C)
distance-based metrics requiring proximity between cells. This figure was created using BioRender.com.

While each of the methods described above quantify various aspects of the TME single-
cell spatial landscape, it remains unclear which of these aspects are clinically meaningful, and

thus, which of the methods should become standardized for future analyses.

1.3.2 Machine learning to link TME biology to clinical parameters
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Understanding the relationship between TME biology and clinical parameters is needed
to ultimately improve treatment strategies and outcome for cancer patients. For example, analysis
of longitudinal TME data, such as paired tissue biopsies collected at multiple time points from
the same patient, may enable a deeper understanding of how a tumor progresses over time.
Knowing the clinical subtypes of tumors facilitates deeper interrogation of TME cellular and
spatial heterogeneity between, and within, subtypes, which may ultimately lead to increasingly
personalized therapeutic approaches. Comparison of TMEs exposed to varying therapies may
improve understanding of how and where specific therapies impact the TME, as well as how
they may be combined with other therapies to improve response. Finally, linking clinical
outcome data, such as progression- or disease-free survival and overall survival, to TME biology
provides important insight into the types of TMEs associated with improved or worsened
outcomes and identifies potential candidate biomarkers for future patient stratifications.

For some of these analyses, simple statistical correlation and difference tests suffice. For
example, comparison of the average density of a given cell phenotype present in samples
collected in primary versus recurrent tumors can be performed using a traditional statistical
difference test. This analysis would test the hypothesis that the samples collected at the two
timepoints differed in their densities of the cell phenotype assessed, and this knowledge could aid
in understanding tumor progression. While traditional statistical approaches work well in
relatively simple circumstances, these approaches have several limitations, especially in the
context of large and complex datasets [142].

First, traditional statistical approaches require prior knowledge about the data to generate
a testable hypothesis. In the case of high-dimensional biological datasets, such as single-cell

spatial proteomics datasets, it is not always clear which features should be tested for their
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relationship to a given clinical parameter. Second, traditional statistical approaches are often
parametric, meaning they assume the shape of the underlying distribution of the data. Complex
biological datasets do not always contain features that follow a normal distribution, and thus
parametric statistical methods may be inappropriate for use with these datasets. Finally,
traditional statistical approaches fail to evaluate the downstream impact of the combination of
many features, each potentially weighted with varying degrees of importance. In the context of
single-cell spatial proteomics datasets and TME complexity, often several biological features
contribute to a given clinical parameter. Therefore, it is necessary to consider the role of
combinations of data features, which traditional statistical methods fail to do. Thus, more
advanced calculations are needed when analyzing highly complex datasets, such as single-cell
spatial proteomics datasets.

Machine learning (ML), a form of artificial intelligence, offers a solution to the
aforementioned data complexity challenges and is becoming increasingly used to analyze high-
dimensional biological datasets [143]. At its core, ML involves the use of statistical algorithms to
learn patterns from data, and it excels at analyzing large and complex datasets for several
reasons. First, unlike traditional statistical approaches, ML approaches are largely unbiased; the
methods are data-driven and are able to detect previously unknown patterns, requiring little prior
knowledge about the dataset. Second, ML approaches are flexible, as they are not limited to
parametric models and do not always assume the shape of a distribution. Finally, ML methods
are capable of weighing and combining data features, to identify which groupings of features
most contribute to a given output. Thus, given the complexity of single-cell spatial proteomics
datasets, where TME biology can be quantified in seemingly countless ways and the clinical

relevance of the biological features is unclear, ML offers a promising approach for learning
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which TME biological features are associated with clinical parameters for these datasets [144,
145].

Several types of ML algorithms exist, including unsupervised and supervised algorithms,
and the selection of the appropriate method depends upon the task in question. Unsupervised ML
algorithms learn patterns in data without the help of labeled data. These types of algorithms are
particularly useful in exploratory data analyses, where the goal is to identify similarities and
differences among the data without requiring the algorithm to bin samples according to a label.
Two types of unsupervised learning methods include dimensionality reduction techniques and
clustering techniques. Dimensionality reduction techniques are particularly valuable when
working with high-dimensional datasets, where the number of features is far more than the
number of samples. Dimensionality reduction methods combine data features through linear or
non-linear algorithms to reduce the overall number of features. The smaller number of resulting
features can be more easily visualized in a two- or three-dimensional projection (Figure 1.4A),
and various metadata or clinical annotations can be overlaid with the projection to identify
patterns in the data. Clustering techniques are another form of unsupervised learning, which are
used to bin data samples into distinct clusters, such that samples within the same cluster possess
similar characteristics. In the context of single-cell spatial proteomics datasets, clustering
methods are often used to group tumor samples based upon their phenotypic compositions [107].
This results in clusters that contain tumors composed of similar cell types, and clusters can also
be manually labeled with various metadata or clinical annotations to determine if the clusters
represent clinically meaningful differences (Figure 1.4B).

In contrast to unsupervised learning algorithms, supervised ML leverages labeled data to

train an ML model. Classification tasks encompass one main type of supervised learning.
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Classification involves training models to learn which combinations and weights of inputted data
features associate with each of the resulting labels (Figure 1.4C). Models can then be used to
make predictions on new data without the need for labels. The predictive potential of supervised
learning makes it an attractive technique for detecting clinical meaning, where models could be
trained, for example, based upon single-cell spatial features of the TME to predict tumor
progression, response to therapy, or survival [144, 145]. Additionally, quantitative analyses can
be used to interpret how the model is making its predictions [146]. In the example where a model
is trained to predict survival duration based upon compositional and spatial features of the TME,
interpretation of the predictions of the model would provide researchers with an improved
understanding of which combinations of TME features were related to either improved or
worsened survival. These features may represent candidate biomarkers of survival, and they

could be used to stratify future cancer patients.
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Figure 1.4: Overview of ML approaches. A) Dimensionality reduction techniques enable visualization of data
in low-dimensional projections. B) Clustering methods group samples into distinct clusters based upon shared
characteristics, which can be annotated by various metadata, such as tumor subtype. C) Classification tasks train a
model to accurately predict data labels, such as response to therapy. This figure was created using BioRender.com.
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Pursuit of computational analyses such as those described above—both to quantify the
single-cell spatial landscape of the TME, as well as to link TME biology to clinical parameters—
has the potential to reveal important TME biology that could be leveraged to design novel

therapeutic interventions and improve clinical outcomes for cancer patients.

1.4 Contributions

The work presented in this dissertation attempts to addresses the challenges and
opportunities described above. TME cellular phenotypes, functions, and spatial organizations
were quantified for three extremely common and/or aggressive tumor types from mIHC single-
cell spatial proteomics datasets, and clinically relevant TME biological features were then
identified through various statistical techniques. Chapter 2 describes a detailed quantitative
assessment of HPV(-) HNSCC tumor heterogeneity, progression over time, and spatial
architecture. Immune cell and alpha smooth muscle actin (aSMA*) mesenchymal cell spatial
organization were found to correlate with progression-free survival. These results provide novel
insight into how the immune system and stromal cells contribute to clinical outcome for HPV(-)
HNSCC patients and reveal potential candidate biomarkers for progression-free survival for
future HPV(-) HNSCC patients. Chapter 3 presents a functional and spatial assessment of NK
cells within the TMEs of HER2" and HER2" breast cancer patients. This study identifies new
relationships among NK cell functionality, NK cell spatial neighbors, and HER2 status, which
may be leveraged to improve treatment for HER2" breast cancer patients. Finally, Chapter 4
builds upon the single-cell spatial algorithms utilized in Chapters 2 and 3 and leverages
supervised ML approaches to perform a deep quantitative assessment of T cell phenotype,

function, and spatial organization in the PDAC TME with and without treatment with anti-CD40
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therapy. This study reveals important aspects of T cell biology impacted by anti-CD40 therapy in
the PDAC TME, and it identifies novel TME immunological properties associated with
improved disease-free survival following anti-CD40 therapy. Overall, the research in this
dissertation provides a framework for quantitatively analyzing complex single-cell spatial
proteomics datasets, and, importantly, the results highlight various immunological aspects of the

TME which may be leveraged in future studies to improve clinical outcome for cancer patients.
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Chapter 2: Quantifying the single-cell spatial
landscape of head and neck cancer

This chapter has been formatted for inclusion in this dissertation from the manuscript “Single-
cell spatial architectures associated with clinical outcome in head and neck squamous cell
carcinoma” by Katie E. Blise, Shamilene Sivagnanam, Grace L. Banik, Lisa M. Coussens, and
Jeremy Goecks, published in npj Precision Oncology (2022) [147]. The author of this
dissertation is the primary author of this manuscript and used single-cell gated data generated by
LMC’s laboratory to conduct computational experiments to generate all figures in this
manuscript except Main Figures 2.1a, 2.3a, and 2.4e and Supplementary Figures 2.1a, 2.1b, and
2.3a.
2.1 Abstract

There is increasing evidence that the spatial organization of cells within the tumor-
immune microenvironment (TiME) of solid tumors influences survival and response to therapy
in numerous cancer types. Here, we report results and demonstrate the applicability of
quantitative single-cell spatial proteomics analyses in the TIME of primary and recurrent human
papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) tumors.
Single-cell compositions of a nine patient, primary and recurrent (n=18), HNSCC cohort is
presented, followed by deeper investigation into the spatial architecture of the TIME and its
relationship with clinical variables and progression free survival (PFS). Multiple spatial
algorithms were used to quantify the spatial landscapes of immune cells within TiMEs and
demonstrate that neoplastic tumor-immune cell spatial compartmentalization, rather than mixing,
is associated with longer PFS. Mesenchymal (aSMA™) cellular neighborhoods describe distinct
immune landscapes associated with neoplastic tumor-immune compartmentalization and
improved patient outcomes. Results from this investigation are concordant with studies in other

tumor types, suggesting that trends in TIME cellular heterogeneity and spatial organization may

be shared across cancers and may provide prognostic value in multiple cancer types.
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2.2 Introduction

Tumor microenvironments, comprising both neoplastic tumor cells and recruited stromal
cells of various lineages, including a diverse assemblage of immune, mesenchymal, and vascular
cells, play a key role in both de novo progression of tumors and regulating response to therapies
[6, 8, 33]. Numerous studies have reported that, in addition to the types and quantities of cells
present in the tumor immune-microenvironment (TiME), the spatial organization of the TIME is
prognostic for survival and response to therapy in multiple cancer types [65-68, 139-141, 148-
150]. Metrics that quantify this spatial organization can range from simple density ratios within
specific tumor regions [151], such as the Immunoscore [63], a now commonly used biomarker
for colorectal tumor staging, to more complex measures that account for the precise locations of
specific cells relative to other cells, such as mixing scores [139] and cellular neighborhood
measures [ 140]. These more advanced spatial quantifications are a result of emerging single-cell
multiplex tissue imaging modalities [68, 121, 122, 139, 140, 152], which provide detailed
phenotypic and effector proteomic markers for each cell, while maintaining the spatial
architecture of the tissue assayed. Knowing the precise locations of cells in the TIME enables a
deeper understanding of how cells interact within the tumor, as both direct and indirect cell
signaling mechanisms require cells to be near, if not directly adjacent to one another [5]. This
understanding can aid treatment decisions, as many therapies require spatial proximity of
specific cell types for efficacy [66]. Given that single-cell imaging technologies are still
relatively new, there is much to be discovered regarding how the spatial organization of cells
within the TIME relates to clinical outcome and may be used for patient stratification decisions

for therapy.
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Head and neck squamous cell carcinoma (HNSCC) is the sixth leading form of cancer
worldwide [153], and it accounts for more than 10,000 deaths per year in the US alone [154].
While patients harboring human papillomavirus (HPV) within neoplastic cells tend to exhibit a
better prognosis, their HPV-negative [HPV(-)] counterparts typically exhibit T cell suppressive
TiMEs and have a significantly greater risk of recurrence and shorter 3-year survival [155-157].
There is a critical need to improve understanding of HNSCC TiMEs to enable better patient
stratification for therapy, as well as identify new targets that could be leveraged for therapeutic
intervention to improve outcome, particularly for patients with HPV(-) tumors who currently
lack promising therapeutic options. We previously developed a multiplex immunohistochemistry
(mIHC) imaging platform to aid studies investigating the immune contexture of solid tumors and
their response to therapies at the single-cell level [121, 122]. Using a sequential antibody staining
protocol, detection of 12-30 proteins can be enumerated at single-cell resolution across a single
formalin-fixed paraffin-embedded (FFPE) tissue section. This enables single-cell phenotyping of
discrete leukocyte lineages, and importantly, reveals their spatial relationships with other cells in
the tissue section. Utilizing this mIHC approach on a small cohort of eighteen HPV(-) primary
and matched recurrent HNSCC tumor samples collected from nine patients, we previously
reported immune contextures associated with disease recurrence, most notably that myeloid
inflamed profiles in primary tumors exhibited shorter progression free survival (PFS) compared
to lymphoid inflamed profiles [121, 122].

In this study, we have significantly extended our prior analysis of this cohort, focusing on
tumor heterogeneity and compositional changes from primary to recurrent tumors, in addition to
using multiple spatial algorithms to quantify the spatial organization of the TIMEs. We then

correlated these spatial features with PFS and identified TIME architectures that may be
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important for therapeutic decision making. Overall, we found increased neoplastic tumor-
immune cell spatial compartmentalization in primary tumors to be associated with longer PFS.
These tumors also contained alpha smooth muscle actin (aSMA™) cells with more organized
structure located near T and B cells, as well as near cells involved in antigen presentation. Our
results are concordant with those from other studies, indicating that the features identified herein

are likely shared and prognostic across cancer types.

2.3 Results

One to three regions of 25002 pm? from each of the nine patients primary and matched
recurrent tumor resections (n=18) were analyzed, for a total of 47 regions (Table 2.1, Figure
2.1a). For this study, we utilized a gating strategy with thirteen lineage or functional protein
biomarkers to classify cells as neoplastic tumor cells, stromal cells (mesenchymal), or one of
seven different leukocyte subtypes spanning lymphoid and myeloid lineages (Table 2.2,
Supplementary Figure 2.1a). We investigated tumor heterogeneity both within and across
patient samples, quantified the cellular spatial relationships within the TiIME using a mixing
score and performed a neighborhood clustering method to describe the association between

TiME spatial architecture, clinical features, and PFS.

Table 2.1: Patient and tumor characteristics.

Patient = Anatomic | Primary | Therapy Gender | Race Alcohol = Smoking @ HPV Progression

ID Site of Tumor Following History | History Status Free
Resection TNM Primary Survival

Stage Resection (days)

1 Oral 2 Cisplatin + Male White = Yes Yes Negative = 804
Cavity Radiation

2 Oral 4 Cetuximab + Male White | Yes Yes Negative | 123
Cavity Radiation

3 Oral 1 Cisplatin + Female = White & Yes No Negative = 1447
Cavity Radiation

4 Oral 1 Cisplatin + Female =~ White = No No Negative | 246
Cavity Radiation
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5 Oropharyn = 4 Cetuximab + = Female White = Yes No Negative 202

X Radiation
6 Oropharyn @ 4 Cisplatin + Female @ Asian = No No Negative | 188
X Radiation
7 Larynx 4 Cisplatin + Female White = Yes Yes Negative 409
Cetuximab +
Radiation
8 Larynx 3 Cisplatin + Female =~ White | Yes Yes Negative | 1033
Radiation
9 Larynx 4 Cisplatin + Female = White = Yes Yes Negative | 83
Radiation

Table 2.2: mIHC cell phenotype classification.

Cell Phenotype Antibody Markers
CD8" T Cell CD45" CD20 CD3" CD8"
CD4" T Helper CD45" CD20- CD3" CD8 FOXP3~

CD4" Regulatory T Cell = CD45" CD20 CD3* CD8 FOXP3*

B Cell CD45" CD20"
Macrophage CD45* CD20- CD3~ CD66B- CD68"
Granulocyte CD45" CD20~ CD3~ CD66B*

Antigen Presenting Cell CD45* CD20- CD3~ CD66B- CD68~ MHCIIT*

Other Immune CD45* CD20- CD3~ CD66B~ CD68~ MHCII- CD8 FOXP3~
aSMA™* Mesenchymal CD45 PANCK aSMA*

Neoplastic Tumor CD45 PANCK"*

Functional Markers PD-1, PD-L1, Ki-67

2.3.1 Single-cell proteomic analyses reveal varying degrees of tumor heterogeneity

To quantify how cellular composition varied across tumor regions, we assessed tumor
heterogeneity at multiple levels, including intra-tumoral, intra-patient, and inter-patient cellular
heterogeneity by calculating Kullback-Leibler (KL) divergences for each region, performing

hierarchical clustering, and conducting a principal component analysis (PCA). The density of
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each cell type per region was measured for all eighteen tumor specimens by taking the count of

each cell type divided by the measured tissue area in mm? (Figure 2.1b,¢). We then calculated

the coefficient of variation per cell type for each tumor, and averaged these values to

quantitatively describe the cell types contributing most to intra-tumoral heterogeneity within the

cohort. The coefficient of variation is defined as the standard deviation divided by the mean, and

it provides a normalized measure of variability for comparison across cell types with large

differences in densities. On average, B cells exhibited the greatest coefficient of variation across

the cohort relative to other cell types (Table 2.3). This is likely due to the fact that B cells were

frequently observed to be spatially clustered together, resulting in regions of either high B cell

density or low B cell density despite being collected from the same tumor (Supplementary

Figure 2.1b).

Table 2.3: Coefficient of variation.

Cell Phenotype

B Cell

Macrophage

aSMA™* Mesenchymal
Neoplastic Tumor
Granulocyte

Antigen Presenting Cell
Other Immune

CD8" T Cell

CD4" T Helper

CD4" Regulatory T Cell

Average Coefficient of Variation
0.658
0.563
0.545
0.541
0.523
0.519
0.402
0.384
0.376

0.311

To further quantify and assess tumor heterogeneity both within and across patients, we

calculated the KL divergence of each tumor region from five average cell type distributions. KL

30



divergence is a relative measure of how similar two distributions are, with larger values
reflecting less similarity between the distributions and smaller values reflecting more similarity
between the distributions. This measure has been used previously to quantify tumor
heterogeneity [68]. By calculating and comparing the divergences of each tumor region from
multiple average cell type distributions, we were able to assess heterogeneity within and across
tumors and patients. Overall, we observed that heterogeneity was lower across regions from the
same tumor and tumors from the same patient (primary or recurrent), while higher across tumors
from different patients. This is evidenced by smaller intra-tumoral and intra-patient KL
divergence values for the majority of tumor regions (Figure 2.1d).

The cellular distributions used to calculate the five KL divergence values per tumor
region were (1) the average cellular distribution across all regions sampled from the same tumor
[“Intra-Tumor (P or R only)”]; (2) the average cellular distribution across the patient’s primary
and recurrent tumors [“Intra-Patient (P and R)”]; (3) the average cellular distribution across all
tumors in the cohort collected from the same timepoint [“Inter-Patient (P or R only)”]; (4) the
average cellular distribution across all tumors in the cohort resected from the same anatomic site
[“Inter-Patient (Same Anatomic Site)”], and; (5) the average cellular distribution across all
tumors collected from all patients in the cohort, regardless of primary or recurrent status or
anatomic site [“Inter-Patient (all)”’]. By comparing the relative KL divergence values to each
other, we found tumor regions to be more similar to regions sampled from the same tumor and
patient than regions collected from tumors of other patients. Notably, we found no significant
difference between “Inter-Patient (Same Anatomic Site)” and “Inter-Patient (all),” indicating that
tumor regions diverged by the same degree from regions sampled at the same anatomic site as

they did from regions sampled at all three anatomic sites (oral cavity, oropharynx, larynx) of the
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head and neck region (Figure 2.1d). Finally, given the large proportion of neoplastic tumor cells
comprising the TIME for many of the tumor regions, we assessed KL divergence using only the
distribution of immune cells present and found similar results (Supplementary Figure 2.1c¢).
This indicates that immune cell composition is more similar within regions from the same patient
than across regions collected from different patients.

To further investigate intra-patient heterogeneity, we performed unsupervised hierarchical
clustering on the 47 tumor regions based on their normalized density composition (Figure 2.1e).
We found that two patients (3, green; 7, pink) contained all tumor regions clustering together,
independent of primary or recurrent state. These patients also had the smallest intra-patient KL
divergence values (Figure 2.1d), indicating that the cell densities of these patients’ primary and
recurrent tumors were similar to each other. Three patients (2, orange; 4, red; 9, yellow)
contained nearly all regions clustered together. The remaining four patients’ tumors exhibited
greater degrees of intra-patient heterogeneity, as demonstrated by the distance between primary
and recurrent tumor regions on the clustered heatmap (Figure 2.1e). Overall, we found that
regions evaluated from the same patient tended to cluster together more than regions evaluated
from different patients (Figure 2.1e), indicating increased heterogeneity between patients as
compared to between samples from the same patient. We also examined whether tumor regions
clustered by the anatomic resection site and found that the clusters formed did not group by site.
These results, in addition to those of our KL divergence analyses, indicate that anatomic site was
likely not the main contributor of cellular heterogeneity in this cohort. PCA results also

supported these observations (Figure 2.1f,g).
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Figure 2.1: Heterogeneity across patients and tumor regions. a, Cohort and tissue region selection
overview. One to three regions of 25002 pm? were assayed with mIHC per eighteen tumor resections and are
represented by the green boxes in the tissue images. Black scale bar = 2500 um. b, Density (cells/mm?) of each cell
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type present per individual primary (P) and recurrent (R) tumor. Each dot represents a single tumor region (n=47). ¢,
Density (cells/mm?) of each immune cell type present per individual primary (P) and recurrent (R) tumor. Each dot
represents a single tumor region (n=47). d, Box plot of the Kullback-Leibler divergences from a single tumor
region’s cellular distribution compared to: the tumor’s average cellular distribution [Intra-Tumor (P or R only)], the
patient’s average cellular distribution [Intra-Patient (P and R)], the cohort’s average cellular distribution across
tumors of the same timepoint [Inter-Patient (P or R only)], the cohort’s average cellular distribution across tumors of
the same anatomic site [Inter-Patient (Same Anatomic Site)], the cohort’s average cellular distribution across all
tumors from all patients [Inter-Patient (all)]. P-values calculated using a one-way ANOVA multi-group significance
test followed by a Tukey honestly significant difference post-hoc test. e, Heatmap of cellular composition across
tumor regions. Rows are individual tumor regions that are ordered by the hierarchical clustering of their cellular
composition. Columns are the cell types used as clustering features. Composition was normalized using a log10+1
transformation before clustering. Leftmost three columns are color coded by patient, tumor timepoint, and anatomic
site. f, Principal component analysis on cellular density following a logl10+1 transformation. Each point (n=47)
represents one tumor region and is colored by patient. The shape of each point denotes primary or recurrent status. g,
Principal component analysis on cellular density following a log10+1 transformation. Each dot (n=47) represents
one tumor region and is colored by anatomic resection site.

2.3.2 TiME cellular composition altered by therapy

Multiple studies have reported differences in TIME cellular makeup [158, 159] and tumor
clonal diversity [160] between primary and recurrent tumors. To assess whether any immune
contexture changes occurred following post-operative therapy in our cohort, we analyzed the
cellular composition of primary tumors as compared to their recurrent tumors. All patients
received a combination therapy of cisplatin and/or cetuximab accompanied by radiation
following surgical resections of their primary tumors. We used the average density of each cell
type present across regions for a given tumor and compared primary tumor composition to their
matched recurrent tumor composition. While we did not observe any significant differences in
cell density between primary and recurrent tumors (p>0.112), we did find that all patients
experienced a decrease in the density of B cells from their primary to recurrent tumors (Figure
2.2a,b). This result is supported by a recent study that found that a large cohort of HNSCC
patients experienced a decline in B cells from primary to recurrent tumors, and this reduction
was dependent upon patients receiving adjuvant chemoradiotherapy [161]. We found no common

differences across all patients for any other cell type, although eight of the nine patients saw a
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decrease in the density of neoplastic tumor cells from their primary to recurrent tumors (Figure
2.2b).

We then assessed whether patients exhibited similar compositional differences in primary
and recurrent TIMEs by performing unsupervised hierarchical clustering on the normalized
average difference in cellular composition for each cell type. This resulted in two groups of
patients (Figure 2.2¢). Interestingly, the two patients that received cetuximab (2, orange; 5,
purple), rather than cisplatin, clustered together within one of these groups and were the only two
patients to experience a decrease in the density of every cell type following therapy. Across the
cohort these patients had the greatest decrease in the density of macrophages, granulocytes, and
other CD45" immune cells present from their primary tumors to their recurrent tumors following
therapy (Figure 2.2b,c). Interestingly, the one patient who received both cisplatin and cetuximab
(7, pink) was present in the other cluster from the two patients who received only cetuximab.
This was the only patient to experience an increase in the density of neoplastic tumor cells
(Figure 2.2b,c). This patient also experienced the second largest increase in CD8" T cells as well
as the greatest decrease in CD4" regulatory T cells, potentially indicating a pro-inflammatory
response to—or despite—increased neoplastic tumor cell density. Altogether, these results
indicate that shared trends in TIME composition changes from primary to recurrent tumors
specific to therapy exist, and regardless of therapy, all patients exhibited a decrease in B cells
from primary to recurrent tumors.

Approximately half (n=4) of the patients in the cohort experienced an increase in CD8* T
cell density while the other half (n=5) experienced a decrease in CD8" T cell density following
therapy. This was the only cell type that increased in density for nearly half of the cohort and

decreased for the other half. To determine if there was a survival advantage for patients that
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experienced this increase, we split our cohort into short-term or long-term survivor groups using
median PFS and observed that all patients who experienced an increase in CD8" T cell density
from their primary to recurrent tumors were long-term survivors (Figure 2.2d). Interestingly, the
density of CD8" T cells in the primary tumor alone did not associate with PFS (p=0.829). Prior
research has revealed that increased CD8" T cell abundance in the primary tumor is associated
with better outcomes in HNSCC [162-166]. However, these studies largely included HP V-
positive HNSCCs, which is more often associated with greater densities of CD8" T cells and
improved survival [155-157], thus unsurprising that our results differ. However, our results are
concordant with a recent study in HNSCC that reported longer survival was associated with
patients who had experienced an increase in CD8" tumor-infiltrating lymphocytes from their
primary to recurrent tumor [167]. Another study in HNSCC found a similar trend between
increased CD8" T cell infiltration, longer survival, presence of specific neoantigens, and
increased cytolytic activity in recurrent tumors [168]. Notably, the four patients in our cohort that
experienced the greatest decrease in CD8" T cell density in recurrence had TNM stage 4 primary
tumors, while patients that experienced an increase in CD8" T cell density in recurrence included

TNM stages 1, 2, 3, and 4.
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Figure 2.2: Tumor cellular composition changes following therapy. a, Box plot showing the average
density of each cell type split by primary and recurrent status. Each dot represents the density of that cell type for
one tumor, averaged across regions (n=9 primary tumors, n=9 recurrent tumors). Boxes = quartile 1 (Q1) to quartile
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median. b, Line plots showing the change in cellular composition from primary to recurrent tumors for each cell
type. Each dot represents the density of that cell type for one tumor, averaged across regions. Lines are colored by
patient. ¢, Heatmap of average change in cellular composition from primary to recurrent tumors for each patient.
Rows are individual patients that are ordered by the hierarchical clustering of their change in TIME cellular
composition (averaged across regions). Columns are the cell types used as clustering features. Compositional change
was normalized [-1,1] before clustering (see Methods). Leftmost two columns are color coded by patient followed
by therapy administered. d, Box plot showing the average change in density of each cell type for each patient (n=9)
colored by short-term or long-term progression free survival, splitting on median progression free survival. Boxes =
QI to Q3; whiskers = smallest and largest datapoints within 1.5*IQR +/- Q3/Q1; solid line = median; dotted line =

mecean.
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2.3.3 Quantifying the spatial organization of neoplastic and immune cells

Prior studies reported the abundance of various cell types, including CD8" T cells [166],
CD4" regulatory T cells [169], and macrophages [170] to be associated with survival in HNSCC.
We analyzed the average density of each cell type across primary tumors for their correlations
with PFS, but found no significant association with PFS for any single cell type (p>0.159).
Given the prognostic potential of TIME cellular spatial organization as has been reported in other
cancer types [65-68, 140, 141, 148-150], we quantified the spatial organization of cells within
tumor regions and examined the association of the spatial features with clinical outcome.

We first deployed a mixing score, used previously to analyze immune cell spatial
compartmentalization in triple negative breast cancers [139]. The mixing score measures the
enrichment of neoplastic tumor-immune cell proximity relative to immune-immune cell
proximity within a set distance. We quantified the number of immune and neoplastic tumor cells
within 15 pm of each other, divided by the number of immune cells within 15 pm from another
immune cell. Each region was labeled as mixed or compartmentalized using the median mixing
score value for all primary tumors as the threshold (Figure 2.3a,b; see Methods). This threshold
classi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>