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Chapter 1: Emergent psychopathology and the developing brain

The Burden of Mental Health in Childhood

Nearly one in five children (17%) aged 2-8 were diagnosed with either a mental,
emotional, developmental, or behavioral disorder in 2016 in the US. Furthermore, within those
aged 10-19, 15% possess a mental health disorder (MHD), making MHD nearly 13% of the
global burden of disease in this age bracket (“2022 National Healthcare Quality and Disparities
Report,” 2022). Most critically, suicidal thoughts and behaviors rose 40% from 2009-2019
among high school students. Recently, the AAP (American Academy of Pediatrics), AACAP
(American Academy of Child and Adolescent Psychiatry) and the Children’s Hospital
Association have declared “unmet youth mental health needs” a national emergency (Sorter et
al., 2023), leading to the Biden-Harris administration to pledge a 300-million dollar fund to
support mental health services in schools (Biden-Harris | SAMHSA, 2022.).

Early identification of MHD is crucial, as many mental health conditions first appear
during these formative years, offering a unique window for effective intervention and improving
healthy transition into adulthood (Scheiner et al., 2022). The impact of early MHD extends
beyond health, influencing education, future employment, and social relationships, with effects
not only on the individual but their families and communities (Ruggero et al., 2019). Thus,
prioritizing our understanding, characterization, and treatment of MHD in young populations
extends beyond individual well-being, becoming a top public health priority (Malla et al., 2018).
Additional research has the potential to inform public policy, influence resource allocation, and
improve both school-based and community health programs. Furthermore, continued research

and increased awareness is critical for reducing stigma associated with MHD, encouraging early



treatment seeking behavior, and ensuring the modification of age-appropriate therapeutic
approaches that are more effective for younger populations (Sheikhan et al., 2023; Villatoro et
al., 2022). Moreover, the comorbidity of, and heterogeneity within MHD in children and
adolescents presents additional challenges, necessitating a comprehensive approach to treatment

and care.

Dimensional models of psychopathology

The discretization of symptoms into binary diagnoses, i.e. presence or absence of major
depressive disorder, has led to considerable difficulties when attempting to model these disorders
(Caspi & Moffitt, 2018). For example, the presence of “difficulty concentrating” is a known
symptom of generalized anxiety disorder (GAD), major depressive disorder (MDD), and
attention deficit disorder (ADD)(Riglin et al., 2021). This discretization via symptom
thresholding creates substantial heterogeneity within these disorders. In a similar fashion,
research has clearly established that there is great utility in understanding variability between
individuals that endorse no symptoms of a disorder and those that fall just below this diagnostic
threshold referred to as sub-threshold diagnoses (Caspi et al., 2014; Caspi & Moffitt, 2018).
Adding to the complexity of characterizing these disorders, classic clinical nosology fails to
capture unique variability of individual disorders due to frequent comorbidity (possessing
multiple diagnoses), creating additional challenges for understanding the unique characteristics
and traits of individuals suffering from these disorders in both research and clinical settings. One
study found that, of individuals meeting criteria for one diagnosis, 66% met criteria for a second,
51% of those that have a second diagnosis met criteria for a third and so forth (McGrath et al.,

2020). These challenges have led researchers to examine potential factor structures of these



disorders and the subsequent creation of dimensional models of psychopathology, such as the
Hierarchical Taxonomy of Psychopathology (HiTOP) and P-factor of psychopathology (Caspi et
al., 2014; Ruggero et al., 2019).

Early factor models of psychopathology revealed symptom profiles, including
internalizing symptoms (disorders such as depression, anxiety, and phobias), externalizing
(disorders such as alcohol and substance use, conduct disorder, and attention deficit hyperactivity
disorder), and thought-disordered symptoms (schizophrenia, obsessive compulsive disorder, and
mania) (Magyar & Pandolfi 2018). However, recent factor models have created a general factor
of psychopathology, the p-factor, that accounts for much of the shared variance of all mental
health disorders (Caspi et al., 2014; Caspi & Moffitt, 2018). Akin to the g-factor of intelligence,
a latent variable capturing general intelligence and accounts for the fact that individuals that
score high on one intelligence test often score high on the others, the p-factor provides several
attractive elements as a measure of psychopathology. First, it is a continuous variable that has
been shown to be normally distributed in the general population (Caspi & Moffitt, 2018), it
accounts for a substantial portion of the variance between mental health disorders, and it has
been linked to genetics and neurobiology (Sprooten et al., 2021), treatment outcomes (Cervin et
al.,2021), and family history (Caspi et al., 2014; Caspi & Moffitt, 2018). However, while the p-
factor provides an appealing measure of psychopathology and removes issues related to
discretization and sub-threshold disease presentation, there remains unexplained variance within

these disorders that disease specific clinical symptoms alone cannot capture.



Executive Function and Mental Health

Strategies to expound upon or model aspects of remaining variability within these
disorders may be a critical prerequisite to comprehensive modeling of mental health disorders.
One example of such a strategy, from Marquand and colleagues (Marquand et al., 2019) found
that they were able to reveal variability within a sample of individuals with attention deficit
hyperactivity disorder (ADHD) by first modeling abnormal patterns of reward response. Yet
another promising opportunity, highlighted by Snyder et al., (2015), is the evaluation of
impairments and dysfunction within components of executive function and their role in
psychopathology. Aberrant components of executive function have been tied to essentially all
forms of psychopathology (Eisenberg et al., 2009; Espy et al., 2011a; Martel & Nigg, 2006;
Nigg, 2017a). Furthermore, executive function dysfunction has been implicated as a predictor for
other risk factors of psychopathology, including worrying, rumination, and issues with using
emotional regulation tactics (Andreotti et al., 2013; Crowe et al., 2007; De Lissnyder et al., 2012;
Whitmer & Banich, 2007; Zetsche et al., 2012). Further evidence from the Adolescent Brain and
Cognitive Development (ABCD) study found that dysfunctions within components of executive
function at baseline were prospective predictors of psychopathology two years later (Romer &
Pizzagalli, 2021). Additionally, researchers found evidence for leveraging transdiagnostic brain-
based measures of cognition that characterized variability in the development of MHD in early
adolescence within the ABCD sample (Xiao et al., 2023). Finally, a recent study by Cordova et
al, found that not only were features of executive function such as working memory, response
inhibition, and cognitive flexibility, predictive of autism spectrum disorder and ADHD, but these

features also revealed distinct subtypes within these disorders (Cordova et al., 2020). All together



these findings highlight the important role executive function plays within psychopathology and

the utility of examining distinct factors of executive function within these disorders.

Importance of Neurobiological Markers

The field of biological psychiatry asserts that disease manifestation does not solely
consist of clinical symptoms and highlights the importance of establishing biomarkers to better
understand and profile mental health disorders (Briickl et al., 2020). Important to clearly
describe, the Biomarkers Definitions Working Group define a biomarker as “a characteristic that
is objectively measured and evaluated as an indicator of normal biologic processes, pathologic
processes, or biological responses to a therapeutic intervention”. Furthermore, the period of
childhood and early adolescence is one of significant neurodevelopment, referred to as highly
neuroplastic, with the brain prioritizing the development of distal functional networks and an
increase in white-matter myelination. Neuroimaging derived biomarkers have been identified
across the range of MHD including emerging depression (Kliamovich et al., 2021), autism
spectrum disorder (Sen et al., 2018), attention deficit disorder (Albajara Séenz et al., 2019), and
many others.

Neuroimaging, specifically magnetic resonance imaging (MRI), provides a means to
evaluate brain structure and function, with current and potential utility to aid in differential
diagnosis, prognosis, clinical management, and targeted intervention development (Briickl et al.,
2020; Filippi et al., 2012; Malhi & Lagopoulos, 2008; Osuch & Williamson, 2006). As
mentioned previously, there is substantial heterogeneity within mental health diagnoses,
however, researchers have leveraged neuroimaging biomarkers to uncover putative subgroups

within disorders such as autism spectrum disorder (ASD) and ADD (Cordova et al., 2020), mood



and anxiety disorders (Trombello et al., 2018), MDD (Liu et al., 2021), and symptom trajectories
within schizophrenia (SCZ) (Jiang et al., 2023). Perhaps one of the most sought-after
applications for biomarker-to-clinical translation is to personalized treatment response prediction
for mental health disorders, and while there are promising avenues of on-going research, others
highlight current limitations of this application (Cohen et al., 2021). However, while there are
substantial challenges, most notably relating to computational demands and model training time,
remaining in the use of biomarker identification to clinical translation, understanding changes in

the brain are a piece of the puzzle of the aggregation that is our mental health.

Feature Extraction: Neuroimaging

Despite these promising biomarker applications, the low signal-to-noise ratio and high-
dimensionality of the neuroimaging data provides substantial challenges in elucidating these
clinically relevant MHD biomarkers. The 3- or 4-dimensional structure of neuroimaging data
provides a considerable input size with over 7 million 3D pixels (voxels) often fraught with
significant confounds, including motion, scanner artifacts, and unwanted biological signal such
as respiration (Kang et al., 2016). Additionally, these data provide substantial challenges for
traditional statistical approaches using hypothesis testing made even more difficult due to the
smaller sample sizes, further contributing to the “needle in a haystack” problem (Eklund et al.,

2016; Kang et al., 2016; Smith & Nichols, 2018).

Structural Features: T1 sMRI
With T1 structural MRI (sMRI) data, software allows us to evaluate aspects of both

morphology and pixel intensity (reflecting tissue type). Typically, an atlas is used to segment the



brain into distinct cortical and subcortical regions based on known neurobiological architecture.
For each of these regions we obtain high-level estimates of morphology such as volume, mean
thickness, surface area, and indices related to curvature (see Figure 1) using the FreeSurfer
software package (Dale et al., 1999). Additionally, we obtain measures of intensity, in which
fluid appears dark, regions with more fat appear bright white, gray matter appears as darker grey,

and white matter as lighter gray (Taylor et al., 2016).
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Figure 1: T1 Features

However, when reducing these cortical or subcortical structures, sometimes containing millions
of voxels, into only a few summary statistics to capture high level information of morphology
and intensity, we must ask the question; Is there pertinent information from the original image |
am failing to capture? In Figure 2 below, if we compute the relationship between the summary
statistics from the superior frontal cortex of two individuals, we obtain a nearly perfect
correlation. However, by simple visual inspection we can infer notable differences within the

intricate patterns of cortical folding and morphology of these two individuals. There is a trade-



off that we must make when running traditional analyses, often times with large sample sizes.
First, many traditional modeling strategies do not allow the use of input data that is not 1-
dimensional, and running models with millions of features becomes quickly intractable due to
the large amount of memory and computing power that would be required. While there are
methods that allow for the examination of more nuanced elements within the cortex, such as the
local gyrification index (LGI), these models are immensely difficult if not impossible to run

using large sample sizes and have shown limited utility in prediction of cognition (Mathias et al.,

2020).
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Figure 2: Cortical Similarity

Functional Features: rstMRI
There are many different methods to capture information related to functional aspects of

the brain. In this document we will be focusing on resting-state functional MRI (rsfMRI), a



modality in which we examine the organization and communication of regions of the brain at-
rest or in the absence of a specific task via coordinated blood oxygen level dependent (BOLD)
activity. Typically, the brain is segmented (also referred to as parcellated) into different similar
regions. The BOLD signal time-series of all voxels in each region (parcel) are extracted and
averaged. Additionally, we can infer information from the functional-connectome which is a
correlation matrix in which we compute the relationship of these averaged BOLD signals in the
brain by computing the Pearson correlation coefficient between parcel 1 and all other parcels

(see Figure 3, first row of the correlation matrix).

Parcellated Brain Time Series Extraction Correlation Matrix
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Figure 3: rsfMRI features

There is an inherent lack of granularity arising from examining the relationships of two
time courses over such a large temporal window, often 5-10+ minute segments with hundreds of
points that may fail to capture subtle localized relationships. Additional techniques attempt to
deal with this problem by leveraging a “sliding window” approach, examining smaller segments
of the time course. Nevertheless, this method seldom examines relationships between unique

windows and suffers from a higher computational demand and can greatly alter results when



using different window lengths (Shakil et al., 2016). Furthermore, despite the averaging of

temporal information from hundreds of thousands of voxels into a set of N predefined parcels,

2
when computing pairwise relationships, we yield N7 — N features. Thus, a set of 352 parcels

yields over 124,000 values, quickly making large sample analyses enormously challenging.

Exploring other avenues: Artificial Intelligence

Artificial Intelligence (Al) has gained a lot of attention in both research settings and the
general population, and for good reason. Large language models such as OpenAl’s generative
pretrained chatGPT are capable of impressive prompt-response generation, writing code with
better adherence to PEP8 (python style guide) standards than most programmers, and
formulating derivative, but passable poetry. Large vision models like Google’s DeepDream can
instantly generate stunning and unique visualizations of goats on a mountainside. It is important
to delineate Al; a broad field in computer science focused on leveraging computations to emulate
human intelligence, from machine learning (ML); a subcategory of Al, in which algorithms learn
and improve from experience (data) to complete tasks, and finally deep learning (DL); a branch
of ML, that utilizes neural networks comprised of many (typically more than four) layers that
learn from massive amounts of training data (Ray et al., 2022). Deep learning specifically, excels
at unearthing important signal from high-dimensional data without being explicitly told what to
extract. Both chatGPT and DeepDream are expressly able to achieve their impressive results by
leveraging exceedingly deep neural networks (DNN) with billions of trainable parameters trained

using immense amounts of data.



Theoretical Advantages

Complex Data Structures and Feature Extraction

Classical statistical methods have struggled significantly to handle input with complex
data structures (i.e. anything that isn’t 1D data). Data such as time series, graphs, or imaging data
previously required some type of reduction through feature extraction. Specifically, those in the
realm of neuroimaging are familiar with methods of feature extraction that we mentioned
previously, and the potential shortcomings of these methods of feature extraction in Figure 1.
Additionally problematic is the case of image flattening/reshaping. For smaller images such as
the handwritten digit prediction dataset MNIST, the 28x28 size images are often reshaped into
784 1D vectors for prediction. Not only intractable for models using larger imaging inputs, such
as the 182x212x182 sized T1 sMRI images, but this process results in the loss of contextual
information that is embedded in the native dimensionality of the original image. This importance
is illustrated clearly in

Figure 4 below. Handwritten digits from the MNIST dataset are used to predict which
number they represent. Again, a 2D image cannot be used natively through traditional statistical
methods such as linear regression, random forest, etc., thus our first option is to flatten this
image. However, when we do this, we can see that we lose information in this 2D structure,
visually we as humans can easily identify the number in 2D image but would not be able to

identify the flattened version of this image.
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Figure 4: Image Feature Extraction

Perhaps the neural network architecture most essential for the use of imaging data is that
of the convolutional neural network (CNN). These models are inherently designed to process
data with multiple levels of abstraction. In the image processing space, these models can extract
features from the native dimensionality of the image. This capability is critical for applications
like medical image analysis or autonomous driving, where understanding complex inputs is
essential. The foundation of the CNN architecture is the convolution operation. This operation is
simply the combination of two signals to make a third signal. In the example below in Figure 5,
the first signal is the T1 image and the second is a matrix (kernel) of weights. The two matrices
are multiplied, and the resulting outputs are displayed. This example highlights extraction of

fundamental “low-level” features from the original image such as vertical (top left) and



horizontal (top right) lines or outlines (lower right) and inverted outlines (lower left). This
operation allows these networks to hierarchically extract low-level information (in the early
layers) and then aggregate this information to unearth higher-level features (in the later layers of

the network).

Figure 5: The Convolution

Adaptability and Continuous Learning

Yet another substantial advantage is that DL models, once deployed, can be designed to
learn from new data continually (A. Li et al., 2024). This is particularly beneficial in dynamic
environments like clinical health systems where the model can adapt to changes over time. These
models can also automate or aid in complex decision-making tasks, such as diagnosing diseases
from medical scans, which traditionally require expert human analysis and suffer from poor

inter-grader reliability (Ulloa et al., 2015).



Computational Advantages

GPU Usage and Parallel Processing and Memory Efficiency

Perhaps the single most important trait of DL models is their ability to leverage graphics
processing units (GPUs) to train models using parallel computing. These models, especially
those involving large neural networks and/or large imaging data, are well suited for
parallelization, meaning they can process many computations concurrently. Continuous
advancements in GPU hardware and software utilizing parallel processing, are vital for handling
these large, often high-dimensional datasets, dramatically speeding up the learning process.

Furthermore, these networks are highly efficient with their memory usage. Neural
networks update the weights using highly optimized learning algorithms that provide avenues for
much faster convergence than traditional weight estimation or gradient descent methods.
Techniques like network pruning, where insignificant neural network weights are removed, and
weight sharing, where weights are reused, make deep learning models more memory-efficient.
This is crucial for deploying lightweight models in resource-limited environments (Narang et al.,
2017).

One of the more substantial limitations of traditional machine learning involves how
models are trained. To learn the weights of a standard regression model, all the data is loaded
into memory and coefficients are jointly estimated. Different subsets of data yield different
parameter estimates, thus, the addition of new data means entirely retraining the model and a
new set of parameter estimates. However, when working with large-scale neuroimaging data

(~10,000 subjects) it is intractable if not impossible to load the full dataset into memory. DL



circumvents this by updating the weights of the model in batches, with the number of
observations in a batch being a hyperparameter that is tuned, allowing the model to train using
the entire dataset by iterating through N/b times (where N = number of subjects and b = batch

size).

Deep Learning in Neuroimaging

Naturally, the computational advancements in DL have gained the interests of
neuroimaging researchers to evaluate their utility in numerous processing and prediction
domains, including biomarker-disease modeling. The ability of deep neural networks (DNN5) to
extract complex patterns and relationships from large-scale neuroimaging datasets and possibly
provide insights into brain structure and function that may have been previously inaccessible.
Advanced techniques could uncover novel biomarkers for early detection of disease.
Furthermore, these algorithms have the potential to automate labor-intensive tasks such as

segmentation and feature extraction.

Image Processing and Quality Control

Large-scale DL segmentation models for neuroimaging data have several advantages
over traditional non-DL segmentation strategies. First, these models are themselves incredibly
efficient. A DL T1 segmentation tool FastSurferCNN (Henschel et al., 2020), similar to that of
the MRI software package FreeSurfer, is capable of performing equally accurate semantic
segmentation in under one minute, a process that takes FreeSurfer roughly seven hours without
parallel CPU utilization (Dale et al., 1999). Additionally, DL models are well suited and efficient

at assessing image quality, a process that is enormously time-consuming, requires training, and



can suffer from poor inter-grader score reliability. These models have found success in assessing
quality control (QC) metrics for T1 sMRI, diffusion tensor imaging (DTI), as well as denoising

and image registration (Garcia et al., 2023; Keshavan et al., 2019; Samani et al., 2019, 2020).

Synthetic Data and Generative Networks

One of the more interesting applications of DNNSs is their ability to generate highly
plausible synthetic examples of new data given a training set of some existing data. Small sample
size is perhaps one of the largest current issues in the field of neuroimaging. The process of
obtaining structural and functional neuroimaging data is both time consuming and expensive.
The ability of DNNs to generate credible synthetic data has the potential to address issues of data
scarcity, augmenting training data to enhance the generalizability of DNNs, and enhanced
imputation. These architectures typically use generative adversarial networks (GANs),
variational autoencoders (VAEs), and other generative models to produce convincing data along
with known ground truth labels or characteristics. By synthesizing diverse and representative
neuroimaging data, researchers can mitigate challenges associated with limited sample sizes,
data heterogeneity, and privacy concerns, thereby enabling more effective model training and
validation (Goceri, 2023; Yin et al., 2019). Moreover, synthetic data augmentation techniques
have been shown to improve the generalization and transferability of deep learning models
across different imaging modalities and clinical populations (Zhao et al., 2020). Furthermore, the
creation of explicitly defined synthetic images enables researchers to explore hypothetical
scenarios, emulate disease progression, and examine the effects of interventions in a controlled

environment (Dimitriadis et al., 2022).



Prediction

Traditional modeling approaches typically rely on mass univariate hypothesis testing or
manual feature extraction. As mentioned previously, the manual extraction of features, such as
cortical thickness or volume, creates a more manageable feature space but discards a large
amount of the original spatial information which may contain important disease-specific nuances
in morphology (Abrol et al., 2021). Deep learning has found recent success in the neuroimaging
literature outperforming traditional modeling strategies using manual feature extraction, with
applications such as predicting age (Abrol et al., 2021; Lee et al., 2021; Peng et al., 2021) and
sex assigned at birth (Leming & Suckling, 2021), as well as the classification of Alzheimer’s
disease (Ayyar et al., 2021; Lian et al., 2020; Nanni et al., 2020) and Parkinson’s disease
(Huseyn, n.d.; Kaur et al., 2021; Mozhdehfarahbakhsh et al., 2021). However, the most common
applications of deep learning with neuroimaging data typically involves marked developmental
or disease-specific neuroanatomical changes. Therefore, the advantages of using deep learning to

model emerging mental health disorders remains to be further examined.

Multimodal Fusion Networks

An interesting aspect of deep neural networks is their ability to leverage data from
multiple sources in a single network architecture. In traditional analyses data from multiple
modalities are simply concatenated; however, this can be tricky in situations in which one
modality has many more or different types of features. For example, in a situation where we
want to include clinical data with T1 sMRI data in a linear model, several million features for
pixels from the T1 sMRI data would be concatenated with, often, small amounts of clinical

predictors. The other strategy would be to perform dimensionality reduction on the T1 sMRI data



before concatenating with the clinical features, however, with a multimodal neural network we
are able to extract imaging features in the context of the additional clinical features, this is
because all features are included within the same network. This is highlighted in toy example in
Figure 6 below. In this example, we have a large amount of data in our T1 sMRI image,
therefore we construct convolutional layers in the network with the sole purpose of “extracting”
information from this input directly and then create constrained sets of neurons in our hidden
layer that reflect distinct combinations of our input data (green: T1 sMRI only, purple: T1 sMRI
+ clinical data, red: clinical data only). Furthermore, we can leverage possible covariates by
concatenating them to neurons later in the network. This is only a toy example; we could include
covariates (gray) earlier in the network if we believe them to be directly related to low-level
features of the input and allow the model to integrate covariates with the raw input data from the
beginning. The purpose of this example is to highlight the enormous customizability and

flexibility of these networks.
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Figure 6.: Multimodal Networks

These multimodal neural networks have found novel application in the neuroimaging literature.
Leveraging sMRI, genotype, and clinical data in a single multimodal network best delineates
Alzheimer’s disease (AD), mild cognitive impairment (MCI), and healthy controls (HC) (Lu et
al., 2018). Researchers were also able to predict early AD diagnoses using fusion sMRI and
positron emission tomography (PET) networks (Venugopalan et al., 2021). One of the more
challenging facets of neuroimaging is the ability to find and use relationships between structure

and function to understand both normative functioning and disease states.



Challenges associated with DL

Infinite Architectures

However, these same properties that make these models appealing, specifically their vast
ability of customization, also make them inherently challenging to train and optimize. Networks
comprised of billions of trainable parameters can be structured using infinite manners.
Determining the number of layers and parameters in each layer, choosing the types of layers
(e.g., linear, convolutional, recurrent, or combinations of types), are all time-consuming stages of
model evaluation. Additional elements such as evaluating different optimizers to update model
weights, the rate at which weights are updated (learning rate), the number of samples in each
pass through the network (batch size), and number of times to pass the data through the network
(epochs) are just a few of the items in each network that must be finely tuned (Emmert-Streib et
al., 2020). While these elements are precisely what make these networks so flexible and able to
learn highly intricate patterns in complex data structures, thoughtful consideration is required to
avoid becoming stuck attempting to evaluate millions of architecture/hyperparameter

combinations.

Neuroimaging specific issues

While this dissertation focuses on the evaluation of deep neural networks under the of
assumption that there is information or relationships within these massive neuroimaging
modalities that we are not able to readily manually extract, identifying predictive features from

images containing millions of pixels can be compared to “finding a needle in a haystack™.



Models capable of loading these data require immense computational resources and large
amounts of memory.

Furthermore, neuroimaging data involves a substantial amount of preprocessing.
Variability in how researchers process data used as input for these models such as the amount of
registration to a standardized template, denoising strategies, motion correction, intensity
normalization, and artifact removal (some of which have poorly agreed upon strategies), all
effect model performance and reproducibility (Aurich et al., 2015; Dular et al., 2023a).
Substantial batch effects also exist within large multisite consortium studies such as different
brands of MRI scanner, a fact some researchers leverage to create specific architectures to
remove these confounding elements (Bento et al., 2022; Hu et al., 2023).

Furthermore, recent publications such as the landmark Marek et al., (2022) study have
highlighted the considerable sample size required to identify meaningful and replicable effects
within brain-wide association studies. This information calls into the question the large number
of studies that predict clinical outcomes using neuroimaging data with sample sizes fewer than
100 subjects - an effect that is potentiated by the complexity and size of the data being used.
However, there is still a robust body of literature examining the potential utility of these

emerging methodologies with neuroimaging datasets (Table 1).
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Rahman 2021(76)

He 2021(77)
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Kim 2021(79)

Lee 2021(15)
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Leming 2021(80)
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Kang 2020(82)
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Joo 2023
Qiu 2022
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AZD

Age
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336
429/239
24/24
491/279
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122/50
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186/186
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14,503
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2,349

58/48
14,683
30/33
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971/369
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sMRI

rs-fMRI

T1
T1
rs-fMRI
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T1
T1
rs + task fMRI
DTI
sMRI, DTI
rs-fMRI, DTI
T1
T1

Table 1: A Snapshot into the Deep Learning Literature
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Transfer Learning and Domain Adaptation

The overarching definition of transfer learning is simply re-using (i.e., transferring)
knowledge learned in one model to another. This “knowledge” is most commonly in the form of
learned representations, in the form of trainable parameters (weights). There are several
applications for this methodology. In domain adaption a model trained in one domain is adapted
to perform well in another, such as training a model to classify images containing cats or
Hyundai Elantra’s to the similar but different task of classifying bears from semi-trucks. The
benefits could arrive in multiple properties, if the primary goal is the classifier predicting bears
from semi-trucks, but we have a relatively small sample size for this task, we can leverage the,
hypothetically, larger dataset containing images of cats and Elantra’s. That is, we believe that
learned representations and relationships within the low-level features of each dataset may be
similar (i.e. both contain tires, animal fur, claws, door handles, etc.).

In a recent example of this application, researchers found that self-supervised pre-training
within different fMRI tasks both improved final model performance, and the pretrained models
managed to converge using roughly 10% of the data required to achieve convergence using
models without pretraining. In another example researchers found enhanced classification
accuracy of classifying patients with schizophrenia (SCZ) patients from healthy controls (HC)
using resting-state functional connectivity (rsfc) by initializing weights for the supervised model
using those from unsupervised stacked autoencoders (AE) (J. Kim et al., 2016).

Yet another theoretical opportunity of transferring knowledge is that of learning tasks of
iterative complexity, sometimes called curriculum learning or continued learning. In the seminal

work “Curriculum Learning” (Bengio et al., 2009) researchers highlight the ability to improve



generalization and speed of model convergence using deep deterministic and stochastic neural
networks in both language models and object recognition by learning gradually more complex
concepts in a manner emulating that of how humans learn. Furthermore, by using a top-down
design and decomposing a single complex problem into more granular tasks of lower
complexity, we reveal new opportunities for embedded interpretation. For an illustrative
example, if we have the task of assessing the longevity of a vehicle, we may benefit from having
individually trained specialist mechanics (models) assessing, in isolation, distinct subsystems
within our global system such as the suspension system, fuel delivery system, and engine.
Subsequently, we can aggregate the assessments (predictions) from each specialist to both
achieve the overall goal and determine the importance of each in arriving at that assessment. This
embedded interpretability can act as a sort of “consolation prize” in situations in which those
individual assessments are themselves not interpretable, as is the case of the “black box™, or lack
of inherent interpretability, nature of deep learning.

In summation, while there has been a lot of excitement surrounding DL and its potential
utility in these large-scale complex neuroimaging modeling problems, it is critical to evaluate the

positive aspects as well as the limitations of these emerging methodologies.



Chapter 2: Multimodal Analyses

Materials and Methods

The Adolescent Brain and Cognitive Development Study
The data used in these analyses comes from the landmark Adolescent Brain and Cognitive
Development Study (ABCD). The ABCD study comprises 11,872 children aged 9-11 at baseline,

enrolled in the 21-sites across the US (https://abcdstudy.org, Release 3.0). All caregivers and

children provided written informed consent/assent for participation. All study procedures were
approved by an Institutional Review Board. Sampling, recruitment, inclusionary/exclusionary
criteria, and assessment measures for the ABCD Study have been described in detail previously
(Auchter et al., 2018; Garavan et al., 2018; Volkow et al., 2018). This large multi-site study is
comprised of a sample that reflects the socioeconomic status, racial identity and ethnicity, and
sex assigned at birth of each study site city. Measures collected at baseline include structural and
functional neuroimaging scans, as well as a variety of demographic, neurocognitive, and
behavioral information. Participants without either structural or functional neuroimaging data
that passes quality control, measures from the Child Behavior Checklist (CBCL), and items for

the NIH toolbox were not included in these analyses.

Subject Demographics
N %
N 6037
Age 9.8 0.6 (SD)
Sex

Male 3032 50.2


https://abcdstudy.org/

Female 3005 498

Race/Ethnicity

Asian 108 18
Black 748 124
Hispanic 1123 18.6
White 3470 57.5
Other 588 9.7

Parents Married

Yes 4246 70.3
No 1752 29.0
Parent Highest Edu.
< Highschool 210 3.5
Highschool/ GED 483 8.0
Some College 1574 26.0
Bachelors 1634 27.1
Graduate 2132 35.3

Household Income

Income <= 50k 1884 31.2

50k < Income < 100k 1643 27.2

Income >= 100k 2457 40.7
MRI Manufacturer

Siemens 3952 654

GE 1440 23.9

Phillips 645 10.7

Table 2: Participant Demographics Chapter 2

The NIH-Toolbox and EF
Executive functioning, sometimes referred to as cognitive control, comprises a set of
processes that includes working memory (WM), set-shifting (SS), and inhibitory control (IC).

These processes work together to allow individuals to complete tasks, as well as set and achieve



goals. Additionally, dysfunction within components of executive function have been consistently
implicated in a variety of mental health disorders, including depression, bipolar disorder,
attention deficit disorder, conduct disorder, schizophrenia, autism, and obsessive-compulsive
disorder (Cordova et al., 2020; Espy et al., 2011b; Flores et al., 2022; Friedman & Robbins,
2021; Nigg, 2017b; Shahrokhi et al., 2017; Strauman, 2017). The NIH Toolbox for Assessment of
Neurological and Behavioral Function was created to provide a consistent and reliable way to
assess neurocognitive functioning (Achenbach & Ruffle, 2000; Magyar & Pandolfi, 2017). The
toolbox comprises the work of over 250 researchers from around the world to provide a critical
resource for neuroscience researchers. It seeks to establish large-scale standardized methods of
collecting measures of cognitive, emotional, sensory, and motor function. The NIH Toolbox
Flanker and Inhibitory Control Test®, a measurement of “visuospatial inhibitory attention”
represents inhibitory control, or the ability to suppress immediate desires or habitual responses in
favor of more appropriate or goal-oriented behaviors. Sometimes referred to as “switching”, set
shifting refers to an individual’s ability to alternate focus and attention between tasks and rule-
sets. This construct is being assessed by the NIH Toolbox Dimensional Change Card Sort Test®.
Weintraub et al., (2013) describe four components of working memory including, the ability to
aggregate and process information from a given set of tasks, subsequently retain this information
in a “short-term buffer”, maneuver and modify the information, and hold the said modified
information in the buffer. Working memory is assessed by the NIH Toolbox List Sorting

Working Memory Test®.



Measures of Psychopathology

The instrument used to measure psychopathology for this study is the 119-item parent
reported Child Behavior Checklist (CBCL). Designed to measure behavioral and emotional
problems in youth (Achenbach & Ruffle, 2000), it contains questions about the child’s mental
and physical health over the past 6 months using a rating of 0: Not True, 1: Somewhat True, or 2:
Very/Often True. From these questions composite scales are created for withdrawn, somatic
complaints, anxious/depressed, delinquent behavior, aggressive behavior, social problems,
thought problems, and attention problems. To calculate the composite dimensional p-factor score
we used existing structural models validated within the ABCD Study sample. Specifically, we
used a bifactor CFA p-factor model identified within the literature (Clark et al., 2021; Sripada et
al., 2021). In this factor structure, a broader internalizing factor loads onto withdrawn, somatic
complains, and anxious/depressed subscales, and an externalizing factor onto delinquent
behavior and aggressive behavior. The P-factor loads onto each of the eight CBCL subscales (see

Figure 7 below).
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Figure 7: Structure of the P-factor

It is important to note that in both our analyses and the literature, the relationship between
the constructed p-factor and a measure of “total problems” (sum of all item level responses from
the CBCL) is strong. To approach a more normally distributed distribution of generated p-factor
scores, we log normalized the p-factor. Important to note (Figure 8 below) is the large portion of
zeroes from the CBCL responses. Puzzling, this large (~500) sample of participants endorsing
not a single item from the entire 119-item CBCL questionnaire creates problems both for any
non-zero inflated modeling strategies and conceptually, as it is unlikely an individual is entirely
free from all mental, behavioral, or physical disorder symptoms. Thus, we evaluate both models

in which we include and exclude this large portion of zero response subjects.
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Figure 8: P-factor and CBCL Total Problems



Top left shows the distribution of the CFA p-factor loading both before and after log
normalization (bottom left). Additionally, we see that the relationship between the P factor

loadings and total CBCL problems is exceedingly high.

One of the primary underlying assertations in these analyses is that measures of executive
function (EF) are correlated with psychopathology. While heavily supported by the literature
(see Executive Function and Mental Health: Chapter 1), it is important to evaluate this
hypothesis early in our sample. Figure 9 below portrays that there are weak (p < .001), but
statistically significant negative relationships between the p-factor and set-shifting (SS), working
memory (WM), and inhibitory control (IC) indicating that greater scores from these EF measures
are associated with lower p-factor scores, supporting findings from the literature. Furthermore,
distributions for SS and IC are relatively normal, with SS having slight skew for larger values,
whereas WM is almost bi-modal in nature. In addition to examining the predictive performance
of a single composite measure psychopathology, we will also be examining our ability to predict
the broader internalizing (INT) and externalizing (EXT) dimensions using the CBCL derived t-

scores to determine if a specific subset of symptom categories yields higher predictive accuracy.
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Figure 9: Relationship between EF and P-factor



Image Acquisition

Three different scanner platforms (3T Siemens Prisma, General Electric MR750, and
Philips instrument) were used across the 21 sites within the ABCD study. Parameters for each
scan protocol were harmonized across platforms (Casey et al., 2018). Individual scan sessions
included a localizer, 3D T1-weighted MRI, 3-4 five minute runs of resting-state fMRI (rs-fMRI),
diffusion weighted imaging (DWI), 3D T2-weighted MRI, and three task-fMRI scans. For rs-
fMRI scans individuals fixated on a single focal target, and head motion was assessed in real-
time using Framewise Integrated Real-time Motion Monitoring (FIRMM) (Dosenbach et al.,
2017). Depending, on the amount of motion during the rs-fMRI scans, participants completed
either three or four scans.

The data release used in these analyses came from the ABCD-BIDS Community
Collection (ABCC; NDA Collection 3165). To promote accessibility in accordance with FAIR
(findability, accessibility, interoperability, and reusability) data principles and support
reproducibility, both raw and processed imaging data, adhering to the Brain Imaging Data
Structure (BIDS), were provided (Feczko et al., 2021). Processing of fMRI data was
accomplished using a modified version of the widely available and utilized Human Connectome
Project (HCP) pipeline (Glasser et al., 2013). Modifications include the use of Advanced
Normalization Tools (ANTSs) for denoising and N4 bias field correction, the removal of
artifactual motion from respiration, and adaptation of scanners unique to the ABCD study. The

code and details are publicly available at https://collection3165.readthedocs.io/en/stable/.



https://collection3165.readthedocs.io/en/stable/

Figure 10: ABCD-BIDS Processing Pipeline (Adapted From: Feczko et al., 2021):

Overview of the Adolescent Brain and Cognitive Development — Brain Imaging Data Structure
(ABCD-BIDS) processing pipeline. 1) Images undergo typical normalization processes including
masking, denoising, bias correction, and registration. 2) FreeSurfer, a set of neuroimaging
utilities, segments both the cortical and subcortical anatomical data. 3) Conversion to the
alternate surface-based cifti file format. 4) Functional data is registered to the standard MNI
atlas and (5) subsequently converted into surface files. 6) Finally, the functional data are filtered

for standard motion and respiration related motion artifact.



T1 Structural MRI

For the evaluation of structural data, T1 sMRI was utilized in two ways. First, imaging
data were used directly in DNNs and only underwent normalization, skull-stripping, and linear
registration to the MNI152 template (Fonov et al., 2011). Additionally, data were downsampled
(nearest neighbors’ algorithm) using the python package SciPy (Virtanen et al., 2020) to evaluate
aspects of lower dimensionality and model performance. Moreover, we compare the
performance of models using imaging data directly against the more traditional strategy of
FreeSurfer derived summary statistics (volume, surface area, mean intensity, etc.). The atlas used
to obtain the summary statistics was the widely adopted Desikan-Killiany atlas (see Figure 11)
which separates the cortex into 34 distinct regions in each hemisphere with highly accurate
segmentation (Desikan et al., 2006). In addition to the cortical segmentations provided by
FreeSurfer’s primary processing pipeline are several subcortical structures including the
hippocampus, caudate, putamen, pallidum, thalamus, and amygdala for each hemisphere.
Furthermore, the morphological measurements (volume, surface area, thickness) were
standardized using total intra-cranial volume (ICV) of the individual. While researchers have
made arguments both for and against the correction of ICV, with what seems the majority
correcting for ICV, recent analyses within the ABCD sample found no significant differences in
performance predicting cognition, including WM, when correcting and not correcting for ICV
within measures of surface area, gray matter volume, and cortical thickness (Dhamala et al.,
2022). Thus, while a potentially unnecessary correction, in keeping with the majority of

literature, we used ICV-corrected measures of morphology.



paracentral

superior
parietal

Y,
- ,%
2
isthmus chuidal

anterior
cingulate cingulate

marginal
inferior

Ml'@ﬂl cuneus

ane rostral
e\
lateral ‘,en"‘ anterior
occipital cingulate
lingual
" X &

%, > irofro®

fu B medial orb!

$iforpy 00y,

Loy

Figure 11: Desikan-Killiany Structural Atlas (Figure Credit: Klein & Tourville 2012)
Sometimes referred to as the Desikan-Killiany-Tourville (DKT) atlas, the Desikan-Killiany atlas
partitions the cerebral cortex into 34 unique regions per hemisphere, a total of 68 regions across
the entire brain. Segmentation is based on the cortical topography defined by gyral and sulcal
patterns via a combination of structural MRI data, anatomical landmarks, and expert

neuroanatomical insights.

Resting-State fMRI

As mentioned previously, three to four five-minute runs of resting state are acquired.
Initial standard processing of the rs-fMRI runs includes temporal de-meaning and de-trending,
the use of a general linear model (GLM) for the denoising of white matter, cerebrospinal fluid

(CSF), global signal, and movement regressors. Finally, ACPC-alignment is applied to the



subject’s native space data. The respiration motion filter is applied after standard processing
(Fair et al., 2020).

A substantial component of rs-fMRI data filtering involves frame censoring. This process
involves setting a minimum movement threshold of framewise displacement (FD) for each full
volume (time to repetition: TR), we use the traditional .2 mm FD (Feczko et al., 2021). If a given
TR exceeds this movement threshold that entire TR is removed (censored) from the resulting rs-
fMRI time series. Finally, the remaining time from the multiple rs-fMRI runs are concatenated.
Furthermore, we included only subjects that had at least five minutes of rs-fMRI data after the
application of frame censoring. The choice to use five minutes as the minimum threshold was
selected in accordance with general guidelines of required resting state time necessary to unearth
meaningful effects and minimize the number of subjects lost to exclusion based on this

requirement (see Figure 12) (Van Dijk et al., 2010).
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Figure 12: Frame censoring of rs-fMRI



Left displays the distribution of subject rs-fMRI “good-time”, time left after frame censoring at a
[framewise-displacement (FD) threshold of .2mm. Black, green, and blue lines indicate the
number of subjects left at 5, 10, and 15 minute thresholds respectively. Right also highlights the

relationship between the number of subjects remaining after different time thresholds.

The final aspect of the rs-fMRI processing pipeline is the generation of parcellated
timeseries (PT-series). This involves the use of an atlas to parcellate or split the brain into
distinct regions and averages the signal of voxels within each region at each TR. The atlas
selected for use in this project is the Gordon-Subcortical atlas (Gordon et al., 2016). The Gordon
atlas organizes the distinct cortical ROIs into functional networks. Representing large-scale
patterns of connectivity and brain activity, these networks are comprised of structures involved
in distinct cognitive and functional process. Specifically relevant to our analyses is that of the
prefrontal cortex and structures within networks involved in higher-order cognitive functioning
and attention, such as the frontoparietal as well as ventral and dorsal attention networks. The
atlas we chose to use combines the 333 ROI Gordon cortical atlas in addition to several
subcortical regions such as the thalamus, ventral striatum, putamen, and caudate as well the

cerebellum (Seitzman et al., 2020).
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Figure 13: Gordon Resting State Atlas

Feature Selection

Due to the large number of features obtained through the processing of the neuroimaging
data, we elect to evaluate three different strategies for reducing the number of features fed into
each model. With the high multicollinearity (features being highly correlated themselves such as
surface area and volume) and enormous computational demand required to train these large
datasets, we believe it is prudent to evaluate and justify inclusion of the full feature set. Given n
observations and p features yields a training time in the order of O(np) or O(np?), depending on
hyperparameters for the linear models and larger for the DNNs. Furthermore, rs-fMRI has an
inherently low temporal signal-to-noise ratio (tSNR) and could, if not cautious, obfuscate models

with unwanted noise.

Meta-Analytic Prioritization

The first method of feature selection involves selecting only regions identified by a meta-
analytic prioritization strategy. Our method of meta-analytic prioritization is captured in
Figure 14 below. A search term (or query) is entered for both NeuroQuery and NeuroSynth
meta-analytic databases. We chose to leverage both platforms and their regional agreement due
to the different strategies when used to associate queries with brain regions, ideally returning
higher confidence regions. In NeuroSynth, each voxel (3D pixel) in the brain map represents the
likelihood of activation associated with a query. The values are z-scores or probabilities that
indicate how likely it is to observe activation at that voxel for studies associated with the queried

term (Yarkoni et al., 2011). In contrast, NeuroQuery uses a predictive model to generate brain



activation predictions. The values in a NeuroQuery brain map represent the predicted level of
activation for a specific term or concept based on trained models (Dockes et al., 2021). These
values are often normalized and can be interpreted as the model's confidence in the predicted
activation.

Once the raw query maps are obtained from each platform, we applied a threshold to
retain the upper half of the NeuroQuery activation map, and binarized each query map before
combining the two. The resulting parcellation schema, Gordon + Subcortical for rsfMRI and
Desikan-Killiany, was leveraged to identify parcels, in this illustration, those with at least 50%

overlap between a parcel and the query map yields a meta-analytic parcel.
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Figure 14: Meta-analytic Prioritization



In Figure 15 below we illustrate the effect of the selection of overlap thresholding
between the query map and selected parcels, we evaluate several thresholds within the range
displayed by the red rectangular box (dashed red line indicating the “elbow” of the plot). Only
data from these meta-analytically prioritized structural parcels and functional regions are used in

the “meta-analytic prioritization” set of selected features.
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Figure 15: Refining the Meta-Filter

The number of cortical and subcortical regions remaining for each of the components of
executive function (EF), working-memory (WM, green), inhibitory control (IC, yellow), and set-
shifting (SS, blue). The light red patch indicates a range of values we evaluated for the overlap

threshold centered around a roughly visualized “elbow” (red vertical dashed line).



Emerging Meta-Analytic Regions

Figure 16: Meta-Analytic Regions of EF

Top row: Emerging regions from set-shifting are the superior frontal gyrus, inferior parietal
lobule, and lateral occipital regions. Middle row: Inhibitory control includes regions of the
basal ganglia including the nucleus accumbens, global pallidus and ventral caudate in addition
to the thalamus, and precentral gyrus. Bottom row: WM regions include the middle frontal

gyrus, inferior parietal lobule, and inferior frontal regions.



Variance and Random Filter

In addition to the meta-analytic prioritization feature selection method, we used both a
variance filter and a random filter (arbitrarily selecting features) to select the same number of
features identified by the meta-analytic prioritization feature selection method, assuring all
feature selection subsets had the same number of features. While the meta-analytic feature
selection method is sample agnostic (not informed by a given subset of the data), the variance-

and random-filters were obtained at each split of the training data.

Data Partitioning and Normalization

The train, validation, and test sets were created using a 4:1:1 ratio (n’s = 4003, 1017,
1017) for model training, hyperparameter tuning, and evaluation respectively. The test set
contains a group of subjects that is consistent throughout the entire analyses (global test), but the
train and validation were created by randomly sampling from the dataset ten-times to obtain
different splits of train and validation sets. All splits were created and verified to have no
significant differences between sex assigned at birth, race/ethnicity, MRI scanner manufacturer,
the NIHTbx EF measures, and the established p-factor. Additionally, all data were z-scored
(removing the mean and scaling by the unit variance). This data partitioning schema was chosen
to allow for the evaluation of final model performance using a distribution of test performances.
The ten models trained on unique samples of training data result in ten global test performance
metrics, allowing to statistically (through ANOVA’s) evaluate significant differences in
performance from different methods of both feature selection and model type (see Figure 17

below).
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Figure 17: Data Partitioning

Modeling Strategies

Traditional Statistical Methods

Evaluation
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In the context of these analyses, standard machine learning (SML) refers to anything that

is not a DNN trained with backpropagation (the method used to update weights in DNNs). All

standard methods used are linear (no non-linear functions or kernel basis functions). Each

selected method accomplishes a different modeling strategy and objective. All SML models were

created using the scikit-learn (sklearn) python software (Pedregosa et al., 2012) . Standard linear

regression (LR) was the first method to evaluate, and subsequently penalized Lasso (LSS)

regression. Additionally, we used both principal components analysis (PCA) and partial least

squares regression (PLSR) as methods to achieve unsupervised (PCA) and supervised



projections into a reduced dimensionality before prediction. In the case of PCA the resulting
components were then fed into linear regression, evaluated with and without regularization, after
transformation, each of these methods are summarized below. Each method used accomplishes a
slightly different goal in model prediction. LR is the fundamental model minimizing loss via

mean squared error (MSE, Equation 1) with no constraints.

N
1
MSE == (i = 2 f)?
i=1

Equation 1: Mean Squared Error

Additionally, Lasso includes a regularization parameter on the L.1 norm of the regression
coefficients (Equation 2) encouraging “sparsity”” within the coefficients, acting as a sort of
feature selection and penalizes models with many predictors, pushing some of the coefficients
toward zero. The objective is to minimize loss (MSE) with an additional error term, controlled

by parameter A, that penalizes the absolute sum of coefficients in the model.

1 N M
= i =Ip? +2 ) 1B
i=1 j=1

Equation 2: Lasso Penalty
The tunable parameter A penalizes the absolute sum of the coefficients ; and is added on to the

standard MSE loss term.



Both PCA and PLS project the original feature space into a lower dimensionality of N
components (selected hyperparameter) using a linear combination of the original feature space.
PCA seeks to identify latent projections that both maximize the variance within said components
while also being uncorrelated. For our purposes we will be evaluating two methods of selecting
the number of latent components, Ny, first by selecting \/nreqrures and also Neomy, such that

we retain ~50% of the variance within the data.

max(WIXTXW)),
w1

s.t:WIw, =0
Equation 3: PCA Objective
The goal is to maximize the variance explained by the first principal component using the vector
of weights W, of the dataset X, subject to the constraint of maintaining orthogonality between
components. This forces the latent components themselves to be uncorrelated and helps to

remove multicollinearity within a dataset.

In the supervised PLS, the objective is to instead maximize the covariance between the
latent projections of the data, X, and target Y, under the constraint that each latent variable (LV)

is unit-normalized and orthogonal to all other LVs.

Deep Multimodal Neural Networks
Yet another capability we will be evaluating is the capacity of neural networks to handle
data from multiple sources in a joint manner. Described previously in this document, Transfer

Learning and Domain Adaptation: Chapter 1, data from both T1 sMRI and the rs-fMRI



parcellated timeseries are used in a single multimodal network. Each modality passes through a
series of either 2- or 3D convolutional layers before being flattened and passed into the
subsequent linear layers and target prediction (see Figure 18). Additionally, we place constraints
on the connections between the layers immediately after flattening such that activations from
delineated sets of neurons represent T1 data embeddings only, rsfMRI embeddings only, and a
combined structure-function set of embeddings. This constraint reduces the number of trainable
parameters, constricts the flow of information in a modality-informed manner, and allows for
modality specific latent representations (embeddings). This methodology is similar to that of the
visible neural network (VNN) DCell from (Ma et al., 2018), placing constraints on the traditional
fully connected neural network (FCNN) using prior knowledge. Ma and colleagues found that
these constrained networks achieved nearly equivalent performance using a fraction of trainable
parameters, while also allowing for inherent aspects of interpretability by creating biologically

constrained latent representations of the input data.
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Figure 18: Architecture of the Multimodal Fusion Network
F represents the number of filters (sometimes called channels) being used, and K refers to the
kernel size. In the 3D encoder kernels of size K, in the 2D encoder K is 2D with the size x by N

(number of parcels in the resting-state fMRI parcellation atlas).

For the rs-fMRI data, time series from each parcel, undergoes “network-only”

convolutions, meaning we extract the lowest level features from within each function resting



state network (i.e., default mode, frontoparietal, or salience networks). Constrained networks
include the 1-dimensional time series of each of the N parcels included in that network. Thus, the
size of the weight matrix 1S Nzg X Npucs- The activation matrices from these operations are
reduced using MaxPooling, and finally these network specific activations are concatenated, and
joint convolutions are applied across these abstracted representations of all rs-fMRI networks,
with the objective of identifying relationships among the abstracted representations of features
between the networks. We chose to use convolutions for the timeseries data instead of recurrent
neural networks (RNN) and long-term short-term memory networks (LSTM), because they are
typically more computationally efficient than LSTMs, in most architectures requiring less
memory and faster training times. Furthermore, the translational invariant nature of CNNs allows

for the learning of common sets of local patterns and dependencies within the timeseries data.
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Figure 19: rs-fMRI Network Convolutions

A more detailed visual representation of the rs-fMRI network specific convolutions. The second
dimension of the filter applied to each resting-state functional network is equal to the number of
parcels in that established functional network only (“intra-network convolutions). After initial
convolutional layers and MaxPooling the reduced set of embeddings is concatenated and
undergoes joint or “inter-network” convolutions. This allows restricts the extraction of

information by leveraging prior established knowledge from the field.

Statistic Derived Fully Connected Neural Networks

In addition to evaluating neural networks utilizing multidimensional convolutions on
either the 2- or 3D imaging data, we also examine fully connected neural networks created to use
the processed set of the neuroimaging features via either the FreeSurfer statistics of morphology

and intensity or rsfc matrices. This strategy is an evaluation seeking to answer the questions of,

“Can DL better identify complex layered nonlinear relationships among extracted features?”
and

“Can DL identify features in data that we are unaware of or unable to manually extract?”.

To further evaluate knowledge informed, i.e., constraining connections of layers based on
a prior knowledge, we include an architecture in which the early layers of the network are
connected only to other regions within each resting-state brain network, for rs-fMRI, and another

set of layers contain connections only for the FreeSurfer derived summary statistics of T1 sMRI.



Activations from the constrained operations are concatenated later in the network into two fully

connected layers before the prediction of the outcome (see Figure 20).
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Figure 20: Statistic Derived Neural Network

Transfer Learning

Additionally, we evaluate the ability of transfer learning with DNNs. This evaluation
strategy is captured in Figure 21 below. Individual models are trained to predict each of the
components of executive function WM, IC, and SS. The primary assumption relies on the extant
body of research highlighting the associations between each of these elements of EF and both
structural and functional neuroimaging data (highlighted previously in Chapter 1). The aspect we
are utilizing is again that of curriculum learning, the idea that we provide problems of increasing
complexity and transfer that information learned from models predicting less heterogeneous
outcomes and use them to try and improve prediction in a more challenging task. In this

situation, aspects of EF have more replicable and reliable neuroimaging correlates, whereas



findings related to psychopathology are less consistent. Furthermore, EF targets lower level
aspects of cognitive processes, unlike psychopathology which, despite evaluating via the
dimensional p-factor, has enduring heterogeneity and variable presentation of symptoms. Thus,
we seek to evaluate the ability to improve performance in predicting the p-factor of
psychopathology by leveraging information from the models trained to predict EF.

The actuality of this strategy is the concatenation of each of the trained EF models and
subsequent retraining to predict the p-factor. The hypothesis being this transfer of knowledge, via
the initialization of weights, in the p-factor model performs better than that of a model in which
we randomly initialize the weights. Additionally, we will evaluate the strategy of both freezing
the weights in the early layers, meaning the weights are not updated and act as a sort of
predefined feature extraction, in addition to initializing but allowing the weights in the early
layers to be updated with the new objective of predicting the p-factor. Finally, we will also

evaluate models using no transfer learning and architectures equivalent to that of the EF DNNs.
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Figure 21: Transfer Learning
Individual models trained to predict each of the components of executive function (EF) are
concatenated into a single network of these individual networks and two additionally fully

connected linear layers are appended prior to the prediction of the p-factor.

Evaluation

To evaluate the performance and compare different modeling strategies, feature selection
methods, and transfer learning tactics we, evaluate the performance of the global test set from the
10-splits of training data. Furthermore, we present both the Pearson correlation coefficient (r),

and mean squared error (MSE), to keep consistent with previous research (Abrol et al., 2021;



Chen et al., 2022). We use both, as each method describes performance from a different
perspective, and each has unique assumptions and benefits. MSE displays how close on average,
the predicted values are to the actual values; it makes no assumptions about linearity between
actual and predicted values but is not a standardized metric which can make it difficult to readily
interpret. In contrast, r, which describes the linear relationship between the predicted and actual
values and is scaled between -1 and 1. Furthermore, as we are particularly interested in
comparing the performance of multiple model strategies, it is important to understand the
strength and direction of relationship between actual outcomes and predicted outcomes.
Additionally, we found MSE a more reliable cost function for model convergence within the
DNNs over MAE or RMSE. Furthermore, to evaluate if a model’s MSE and observed r is
significantly better than what would be observed by chance, we compare the test MSE and r of
the actual models against 1000 models trained using permuted data (shuffling the labels of the
training outcome). A summary of both the null (H,) and alternative (H,) hypotheses for these
methods is reported in Table 3 below. The H, for r states that the slope of our coefficient is non-
zero and positive, i.e., as our actual values increase so do our predicted values. The H, for MSE
relies on the permutation testing and states that our actual test MSE should be lower than some

predefined percentage () of permuted test MSE’s.

Pearson Correlation Coefficient (r) MSE
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Table 3: Performance Metrics

Results

Predicting EF

The models predicting EF (WM, IC, SS) with the lowest MSE consistently came from
using the FreeSurfer extracted features of the T1 sMRI data and were SML models (MSE’s .90,
94, 74 respectively), see Table 4 below. However, for IC and SS when looking at r as our
performance metric, PCA with both T1 sMRI and rsfc performed best. Additionally, only MSE
of WM with the T1 was significantly (p < .001, actual test performance vs 1000 permuted
models) lower than rsfc or both modalities combined. Conflictingly, we found that multimodal
models (T1 sMRI + rsfc) had the best performance between actual and predicted, but not
significantly better than rsfc alone, we explore these variable findings more in the discussion.

Interestingly, when predicting WM, all model/modality combinations performed
significantly better (p’s < .001) better than the distribution of permutation MSE’s. However, in
the case of predicting IC, only PCA + LR was significant (p’s <. 0001) for each modality, and
DNNs with rs-fMRI and both modalities were also significant. The same was true for SS with
the addition of PLS with the T1 data being also significantly better than the distribution of

permuted performances.



MSE Model/Modality r Model/Modality

WM 90 + 01 PLS/T1* 28 £ .02 PLS*/T1*
IC 94 + 01 PCA*/T1* 12+ 01 PCA*/Both
SS 74+ .01 PCA/Both 22+ 01 PCA*/Both

Table 4: Top EF Prediction Performance

Top predictive performance (mean and standard deviation) via MSE and r for each of the
components of executive function within the global test set. Asterisks after model or modality
indicate that either that modeling strategy or modality had significantly (ANOVA p < .001)

better performance than the other modeling or modalities being evaluated.
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Figure 22: Multimodal WM Prediction

Global test performance of predicting working memory (WM) over the 10-folds of training data
using unimodal (T1 or rs-fMRI) and multimodal (T1 + rsfMRI) data. Bottom axis indicates the
various modeling strategies of LR (linear regression), LSS (lasso regression), PLS (partial least
squares regression), PCA (principal components analysis followed by linear regression), and
DNN (deep neural network). Y-axis represents model performance via the Pearson Correlation
Coefficient (r) of predicted vs actual outcome. Green colored boxes represent actual test
performance and peach colored boxes represent test performance from 1000 permuted models
created using a training set after shuffling the outcome. All modeling strategies and modalities

achieved lower MSE and higher r (p’s < .001) than the permuted distributions (indicated by



**%). Note that subsequent boxplots with olive and peach colored boxes all represent actual and

permuted test performance.

EF and Feature Selection

Despite several methods of evaluated feature selection, we found the best predictive
performance when using the entire feature space, often most significantly when coupled with
dimensionality reduction. Moreover, the variance filter obtained the best performance of the
feature selection methods evaluated, and we saw no significant differences between the meta-
analytic filter and randomly selected feature sets of the same size. Furthermore, among the
models trained with feature selection, the DNN’s performed significantly (p’s < .0001) better
than the SML models, but DNN’s were not significantly better in predicting any component of

EF when using the full feature set.
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Figure 23: Feature Selection Type Predicting WM

Evaluation of SML (Lasso) and deep neural networks (DNN's) with different methods of feature
selection (variance-, random-, and meta-analytic filters) in the prediction of working memory
(WM). Axis ranges are shared across plots in each row. Top row: Mean global test MSE (red
dashed line) and the distribution of 1000 permuted test MSE’s, models in which the labels of the
training data were shuffled. All feature selection methods in predicting WM using Lasso and
DNNs were better than the permuted distribution (p’s < .001). Bottom row: Actual (x-axis) vs

predicted (y-axis) WM.

It is important to note the range of predicted values differed substantially between the

SML and DNN models. While both Lasso and the DNNs utilize MSE as the loss function in



learning model weights, it is possible that the different optimizer algorithms, coordinate descent
(Equation 4) used in Lasso and a modified form of gradient descent (Equation 5) (Adaptive
Moment Estimation: ADAM) in the DNNs create these disparities. While this may seem a trivial
distinction, these underlying elements of operation and algorithmic objectives are important in
understanding variability in the performance of different modeling strategies.

A critical finding captured from these results is the utility provided by unsupervised
dimensionality reduction. Figure 24 below displays MSE for each of the components of
executive function (WM, IC, and SS) using both rsfc matrices and T1 sMRI FreeSurfer metrics.
Of the modeling strategies, PCA followed by linear regression achieved performance

significantly lower than any other modeling strategy. There was no difference in using N,

retaining ~50% of the variance or ,/Nseq; components, thus we used the smaller method of

Nfeqr Which was ~10 for T1 and ~250 for rsfc data. Interestingly, even the distribution of

permuted performance measures (peach colored box in Figure 24) is significantly lower than the
second best actual (olive green) modeling strategy. These results indicate a possible benefit and
further exploration of unsupervised methods of dimensionality reduction in high-dimensional

spaces (possibly the multidimensional imaging data directly) before targeted prediction.
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Figure 24: The case for dimensionality reduction
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Mean squared error (MSE) of models predicting EF using the multimodal dataset. In these

models using the largest set of features, PCA followed by regression achieved significantly lower

MSE than any other method. Additionally, the distribution of permuted MSE’s (peach) was also

lower than any actual MSE from the other modeling strategies.

Psychopathology

The best performing model in predicting the p-factor of psychopathology was Lasso with

the T1 data (MSE: .98, r: .08). Lasso was not significantly better than other modeling strategies,

namely linear regression, but the T1 sMRI data only models significantly performed better than



models using either rsfc matrices or both modalities. Similar to EF prediction results, we did not
achieve improved performance from utilizing the various feature selection methods when
predicting psychopathology.

To try and further elucidate variability within the prediction of a single measure of
psychopathology, we also examined the ability to predict the uniquely presenting internalizing
(INT) and externalizing (EXT) disorders. As in the case of the p-factor, Lasso best predicted INT

(MSE: 1.11,r: .06) and EXT (MSE: .92, r: .13) with the T1 sMRI data only.

MSE Model/Modality r Model/Modality
p 98+ 01 Lasso/T1* 08 + .01 Lasso*/T1%*
INT 1.11+£ .02 Lasso/T1* 06+ .02 Lasso*/T1*
EXT 92 + 01 Lasso*/T1* A3+ .02 Lasso*/T1*

Table 5: Top Psychopathology Prediction

Top predictive performance as mean and standard deviation (MSE and r) for each of the
components of executive function. Asterisks after model or modality indicate that modeling
strategy or modality was significantly (ANOVA p < .001) better than the other modeling or

modalities being evaluated.
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Figure 25: T1 Predicting Psychopathology

As mentioned in the methods section, the targeted outcome (p-factor CFA scores) had a
large sample of zeros, that is, individuals endorsing no symptom item from the CBCL checklist.
As we discussed previously, this creates issues both logistically (when evaluating traditional
linear models) and conceptually, as the likelihood/validity of not a single mental or physical
health symptom is low. Figure 26 below displays the performance via the distribution of actual
and permuted MSEs, and actual vs predicted regression of both the inclusion of zero
endorsement and when removing them from the dataset. Using only the T1 sMRI structural

metrics and linear regression, we obtain a test MSE lower than that of the permutation



distribution only in the situation in which we remove the zeroes from the analyses. Furthermore,
the same is true for producing a positive non-zero coefficient (p < .0001) in the actual vs
predicted performance. It is interesting to note that the inclusion of zeros significantly shifts the
entire distribution of predicted p-factor down, this is illustrated in the bottom row of Figure 26.
While there are arguments for both the inclusion or removal of these individuals, it is important

to note results from both situations and the effect this has on modeling and performance.
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Figure 26: Effect of Non-zero Endorsement

Linear regression of the T1 sMRI data predicting the p-factor of psychopathology and the effect
of the inclusion or exclusion of the large sample (~500) of participants endorsing no item from
the Child Behavior Checklist (CBCL). Top row: actual test statistic (MSE, red dashed line) and
the distribution of 1000 permuted test statistics. Bottom row: predicted vs actual and the

regression line (black dashed line).

Multimodal Fusion Imaging Performance

Despite numerous attempts at exhaustive hyperparameter tuning, layer and weight
pruning, and evaluating both unimodal and multimodal-fusion networks, the supervised DNN
models with 3D T1 sMRI images and 2D rs-fMRI timeseries data never converged, meaning the
error never stabilized. Additionally, predictions for each component of executive function (EF),
as well as the p-factor were never better than that of random chance, understandable given the
non-convergence. We evaluated models ranging from ~50,000 to billions of trainable parameters
with no success in either case. The smaller networks never fit the training data, and the larger
networks perfectly overfit the training data despite inclusion of methods to combat this including
regularization, dropout, and batch-normalization. It was only when using the extracted imaging
statistics, FreeSurfer for T1 sMRI and rsfc matrices for rs-fMRI, did we see convergence with

the fully-connected DNNSs.

Transfer Learning
Unfortunately, this pattern extends to the evaluation of transfer learning with the raw

imaging data. Because the individual networks of EF never converged, there was no knowledge



to transfer. Despite non-convergence, we attempted to use weights from the EF DNNs as the
initialized weights in the p-factor networks but saw no improvement in prediction performance.
Furthermore, when evaluating the potential use of transfer learning for the DNNs trained using
the extracted imaging statistics, we saw no improvements in predictive performance when
initializing the weights of the networks predicting psychopathology using the EF networks or
when concatenating the multiple EF networks and freezing the early (first two) layers of said

networks.

Discussion

Altogether these results underline the performance in predicting measures of EF and
psychopathology under various feature selection methods, unimodal and multimodal
neuroimaging data, standard machine learning (SML) and deep neural networks (DNNs), and
aspects of transfer learning. In this section will we expand upon the interpretation of these results
in detail.

This study’s performance in predicting executive function (EF) matches or surpasses
existing research using neuroimaging data for EF prediction. While primarily evaluating aspects
of ICV correction in T1 sMRI, Dhamala et al., (2022) predicted several components of EF and
cognition using measures of surface area, GM volume, and cortical thickness in both the ABCD
and Human Connectome Project (HCP) studies. They reported Pearson correlation coefficients
(r) of ~.20, .05, and .05 for WM, IC, and SS respectively. Similar findings from Chen et al.,
(2022) used rs-fMRI from the ABCD study to predict multiple measure of cognition (averaged
cognition r = .21). Additionally, their multimodal analyses comprised of rs-fMRI and multiple

task-fMRI scans returned improved performance (r ~ .29) when predicting cognition.



Interestingly this multimodal performance closely aligns with our use of T1 sMRI alone. In the
same study, the authors also predict aspects of mental health via the Child Behavior Checklist
(CBCL) subscales. Using rs-fMRI only resulted in an averaged MHD prediction of » ~ .05.
Leveraging the same multimodal prediction as noted above, the authors report performance from
each of the CBCL subscales comparable to the performance presented in this analysis. Subscales
associated with the internalizing (INT) disorders, namely anxious/depressed, somatic complaints,
and withdrawn depressed were the most challenging to predict (r’s ~ .05), supporting our
findings that these disorders are immensely difficult to predict using the neuroimaging data.
Predicting social and thought problem subscales yielded slightly higher performance (’s ~ .10)
and attention problems the highest performance (r ~ .17). Therefore, while our analyses sought
to evaluate discrete aspects of DNNs vs SML methods in predictive tasks, the final performance

we obtained aligns and in some cases improves upon that of the existing literature.

Performance Evaluation

As mentioned previously in Chapter 2: Evaluation, it is critical to contextualize the
limitations and assumptions of the performance metrics being evaluated. We found that MSE,
possibly the most favored metric of reporting performance of DNN regression tasks, varied as a
function of the number of parameters in the model. While it is undisputed that the more
parameters in a model the more complicated the loss surface becomes, it is interesting that the
mean permutation MSE of the DNNs with T1 data only were significantly lower (p < .001) than
the actual mean MSE of the models using rs-fMRI or both modalities, despite each DNN
distribution of actual MSE being significantly lower than its own respective distribution of

permutation MSE (see Figure 27). This phenomenon was seen across every component of EF



and psychopathology. However, the other metric of evaluation, the Pearson Correlation
Coefficient (r), normalized between -1 and 1, reflects more stability in the permuted test metrics
despite the substantially different number of parameters in each model for the different

modalities evaluated.
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Figure 27: Interpretation of Performance Metrics

In speaking further to the reporting of multiple performance metrics in regression
problems, it is important to note that lower MSE may arise from a model prioritizing predictions
closer to the mean of the outcome i.e., playing it safe, a situation illustrated clearly in Figure 23.

Interestingly, this situation occurred most notably in the DNNs, despite the sklearn Lasso



implementation using MSE, the same as our DNN objective function. Furthermore, the most

extreme side of this occurrence results in a model in which only the mean of the outcome is

predicted, a situation that occurred frequently and one we discuss later in detail. There are

several possible causes including the generation of the loss surface in addition to the different

methods of gradient descent being employed to update the model weights (discussed briefly in

the results section). Most likely, is that the greater the number of trainable parameters in the

DNN, the more complex the loss surface and task of traversing this surface for weight updating.
witt = argmin, f(Wi, Wi, wq ..., Wg)

Equation 4: Coordinate Descent

In coordinate gradient descent the weights in the model are learned one at a time while holding

all other weights fixed. th denotes the parameter j at iteration t. argminwj is the parameter w;

that minimizes the objective function while holding all other parameters fixed.

wttl = wt — n Vf (wh)
Equation 5: Gradient Descent
In traditional gradient descent the weights in the model wt are iteratively updated at time (t) by

the learning rate n and the gradient of the objective function w.r.t the weights at iteration t,

nvf wh.

Altogether this scenario portrays challenges with reporting model performance and highlights the

importance and utility of including multiple performance metrics.



No improvement with DL

Ultimately, we saw no improvements using any of the DNN configurations we evaluated
in predicting either components of EF or psychopathology. However, it is critical to note that DL
did not outperform SML in the specific context of DNN model architectures and hyperparameter
combinations that we evaluated in this analysis. This is not to say that there are not untested
combinations of model architectures, hyperparameters, and alternate forms of image
preprocessing that would not outperform SML methods. As noted earlier, the infinite
configuration possibilities of DNNs, while attractive, makes it impossible to evaluate all, and
intractable to evaluate many, of the countless architectures, optimizers, and embellishments
available to DNNs. We leveraged existing literature to make appropriate generalities and
hypotheses to evaluate several different DNN modeling strategies, hyperparameter

configurations, and forms of image processing within the scope of this project.

Issues with Input

Perhaps most critical to discuss in relation to the observed model performance are the
issues related to the enormously complex data being used as input for each of these analytic
strategies. Below we discuss several possible sources of difficulty associated with the use of

multi-modal neuroimaging data.

Direct Imaging Models
The primary motivation for using 2- or 3D imaging data relies on the hypothesis that

there is signal or information within the data that we are unaware of or unable to manually



extract ourselves. While it is certain that information is lost when reducing this data into coarse
summary statistics, such as surface area or thickness for T1 sMRI or a single Pearson Correlation
Coefficient to relate parcels within an entire five-minute rs-fMRI run, it may be that the low
tSNR and high-dimensionality of the imaging data simply yields too arduous a task. As
mentioned in previous sections, while DL has found success in neuroimaging applications, it is
most successful when predicting diseases with marked neurodegeneration (e.g., pronounced
cortical thinning), such as Alzheimer’s Disease and Schizophrenia or in characterizing discrete
demographic or developmental changes, such as age and sex at-birth prediction.

In the 2019 Neurocognitive Prediction Challenge (ABCD-NP-Challenge), researchers at
SRI International tasked individuals to predict fluid intelligence using T1 sMRI data from the
ABCD study. While many groups evaluated various forms of DNNss, the top performing models
were comprised of SML methods, including various forms of kernel-based and penalized
regression models (Mihalik et al., 2019). This is not to say that other DL architectures would
never outperform SML models, but this was not the case in both this highly publicized prediction
challenge and within our analyses predicting measures of EF and psychopathology.
Despite having a large sample (+6000 study participants) for neuroimaging standards,
researchers posit the incredibly high-dimensionality and low tSNR of neuroimaging data may
require tens of thousands of observations to predict complex outcomes such as cognition, EF,
and psychopathology. Although some evidence supports DL methods significantly
outperforming SML with as few as 1000 participants, the majority of these tasks are again in the
realm of age and sex prediction or predicting diseases with low heterogeneity and more marked
patterns of neurodegeneration or neuroanatomical patterns. Moreover, top performing computer

vision models for object class prediction, such as the groundbreaking AlexNet (Krizhevsky et al.,



n.d.), are trained using over 14-million examples. And while, the images within the ImageNet
dataset are also 3D (third channel being RGB), each image in this task contains a total of ~150k
pixels, a far cry from the over 7-million pixels in the T1 sMRI data. Ultimately, the
underwhelming performance of the models leveraging the multidimensional neuroimaging data,

while disappointing, is not entirely unfounded.

On Preprocessing and Noise

Additionally, a particularly difficult factor to consider includes the amount of pre-
processing that occurs within each imaging modality going into the DNNs. There is currently
minimal consensus on what and how-much, if any, preprocessing should be performed. For
example, the translational invariant nature of feature extraction in DNNSs, i.e., the capability of
convolutions to extract patterns in different spatial locations within the image, could theoretically
allow for less rigorous, i.e., fewer degree of freedom (DOF), registration. If too much registration
(non-linear transformations) is applied to the T1 sMRI, we may remove the nuanced
morphological aspects we are attempting to evaluate. However, our early attempts replicating
sex-prediction performance revealed that linear (affine, 6-DOF) registration was the minimum
registration requirement for prediction better than chance. Conceptually this makes sense when
considering how convolutions are applied to the image. Traditional CNNs are not rotationally or
shear invariant, thus requiring a pre-model registration method that accounts for these
orientational elements within the images. There are, as always, additional modifications to
traditional CNNs that seek to tackle this specific issue, capsule networks, data augmentation,

such as introducing random rotation or shear to images. However, additional evaluation and



added complexity increases both computational demands and training time, making the
evaluation of all of these additional methods intractable.

The crux of the previous argument remains the same for almost every other pre-
processing procedure, including noise-reduction, artifact removal, frame censoring, and nuisance
regression Each of these processes involves a series of decisions, hyperparameter selection,
motion cutoff, etc., all of which have been thoroughly evaluated in traditional statistical analyses.
However, current research is sparse and at times contradictory as to how preprocessing the
neuroimaging data changes prediction outcomes in DL applications. For example, some argue
for the use of “minimally-processed” T1 sMRI data for brain age prediction (Dartora et al.,
2023), the task of predicting age of an individual using only neuroimaging data, while others
argue that “extensive preprocessing” improves model generalizability within the exact same

application (Dular et al., 2023b).

Batch Effects and Correction

The point of removing nuisance variables such as motion, extends further into known
sources of batch within the neuroimaging data within the ABCD study, most notably the effect
of scanner manufacturer. Initial models replicating sex at birth prediction using ComBat
corrected imaging data, found no improvement in downstream model performance, a finding not
uncommon in neuroimaging based disease modeling (Kushol et al., 2023). While it is critical to
acknowledge and understand that batch effects of scanner are present in this sample, arguments
can and have been made both for (Eshaghzadeh Torbati et al., 2021) and against (Nygaard et al.,
2016; Zindler et al., 2020) the use of batch effect correction. Additional research from Dufumier

et al 2024, discusses harmonization techniques (including ComBat) in DNNs and how these



methods may “fail to preserve possible non-linear relationships leveraged by DL”. Ultimately,
when analyzing the potential for variable performance across scanners, we found no significant
disparities in performance by scanner (see Figure 29, left), and thus did not include the added

computational complexity of correcting for scanner manufacturer.

Yijp =ty + XijBr +vip + Sigeijp
Equation 6: ComBat
The ComBat method of batch effect correction in the predicted features X;; [y, are adjusted by
applying both additive and multiplicative scaling (6;, + vip) to account for sources of batch

within a dataset X;; .
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Figure 28: rsfc Scanner and ComBat
Effect of multidimensional scaling (MDS) on the resting state functional connectivity matrices
both pre- and post-ComBat application. Aligning with the literature there are notable effects of

scanner manufacturer present within the rs-fMRI data.



Altogether, results obtained from the models leveraging neuroimaging data as direct input
failed to produce results better than random chance. As noted above, there are numerous
possibilities for this outcome, and we contend that additional research is critical to fully
understand the challenges associated with high-dimensional low-tSNR imaging data in DL.
Subsequent discussion focuses on the evaluation of models using features obtained from
additional processing, including the FreeSurfer T1 pipeline for structural features, and the

generation of resting state functional connectivity matrices for functional data.

Feature Selection

While the manually created features substantially reduced the dimensionality of the data
being used for each model, we also sought to evaluate potential benefits, through reduced model
complexity and training time, of various feature selection methods. However, feature selection
methods did not yield improvements in model performance. There are several reasons this may
have occurred. The variance filter, the method producing the most favorable results of the
evaluated feature selection methods, only considers variance of each feature independently, that
is in a univariate sense. This is in contrast to the higher performing PCA, which also reduces the
number of features, but can robustly capture nuanced variability within the underlying structure
of the data by transforming the original features into new, uncorrelated, components. PCA
identifies these components using linear combinations of all features to maximize these latent
representations of variability within the data. As noted, these latent representations are also
themselves uncorrelated, thus removing sources of multicollinearity among features in the data

that would not be resolved by a variance filter alone.



Additionally, the meta-analytic feature selection method, while well intended, also has
several limitations. Most notably, the neuroimaging modality used in the meta-analytic
platforms. These platforms exclusively use results from literature of task-based fMRI studies. In
task-fMRI, individuals complete specific activities within the scanner to evoke explicit responses
tied to said task. While rs-fMRI does capture brain function, it does so at rest, or in the absence
of a task, thus, it may stand that functional processes present differently at rest from signatures
evoked during the performance of a task. Furthermore, in relation to T1 sMRI, which was also
used to prioritize specific brain regions, the relationship between structure and function within
the brain is poorly understood. Some studies have identified underlying relationships between
structural connectivity, via DWI, and functional connectivity (Babaeeghazvini et al., 2021;
Bennett & Rypma, 2013; Honey et al., 2010), but this modality does not have the same high
spatial resolution, and thus, subsequent morphological representation, as the T1 sMRI. This,
however, is an inevitable limitation of all current meta-analytic platforms.

In summary, while we maintain the likelihood that signal exists within structural and
functional neuroimaging data, it is critical to consider the complexity of the data being used as
input for these predictive applications using high-dimensional data to predict complex
heterogeneous outcomes. The complexity of this task may require an amount of data that is
currently unavailable to researchers in the realm of neuroimaging. Additionally, there are
numerous remaining elements within neuroimaging that warrant further research under the

context of DL application.



Issues with Outcome

As mentioned previously, the targeted mental health outcomes in this project are
inherently difficult to predict using the structural and/or functional neuroimaging measures.
While our obtained performance is better than, or equivalent to findings within the existing
literature, it is important to highlight exactly what makes this task of modeling components of EF

and psychopathology so difficult.

Covariates and Corrections

One of the first steps in the creation of these models is the decision to include covariates.
An open question in the field, the decision to correct for aspects of gender, sex-assigned at birth,
race, ethnicity, socioeconomic status (SES), and income can further marginalize already
vulnerable groups if not examined within the context of larger systems of inequality (Saragosa-
Harris et al., 2022). Furthermore, researchers using the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data found no differences in model accuracy when correcting or covarying for
age or gender in the prediction of AD using multiple modalities of neuroimaging data (Rao et al.,
2017). However, we found substantial variability in predictions by sex in some models, but not
all. Interestingly, during certain instances of model training the models strongly relied on the
aspect of sex as a function of outcome. This effect is illustrated clearly in Figure 29, right. The
inclusion of sex in the later layers of the DNNs, and as a feature in the SML models reduces this

potential for substantial effects of sex by outcome.
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Figure 29: Set-Shifting and Covariates

Predicted vs actual values of set-shifting (SS) using the deep neural networks. Left displays
potential effects of scanner indicated by the different colors of observations, we found no effect
of scanner in this evaluation (ANOVA, p > .01). On the right, however, we can see an instance of
model training in which we do not include the binary variable of sex-assigned at birth during
model training. Because there are effects of sex within the SS variable, in certain cases of model
training, the neural network heavily relied on this single variable which created a large effect of
sex present in the predictions and resulted in a model that performed worse than random chance.
The right-most plot shows the same model trained including the sex-at-birth variable, removing
the highly significant sex effect in the predictions and results in significantly better model

performance.



Yet another method some use is “residualization” or the possibility to model and remove
unwanted signal from an outcome and predict not the original outcome, but the residual from the
linear model after this initial regression. In the previously mentioned ABCD T1 Cognition
Prediction Challenge, researchers were predicting not raw fluid intelligence, but a residual of
this metric after removing effects of total brain volume, data collection site, age at baseline, sex
at birth, race/ethnicity, highest parental education, parental income, and parental marital status.
This instance of residualization was inherently stringent and left some researchers arguing that
the use of a residualized outcome may remove sources of actual biological signal related to the
outcome (Oxtoby et al., 2019). Furthermore, researchers in psycholinguistics thoroughly analyze
and discuss why residualizing does “not create an improved, purified, or corrected version of the
original predictor” (Wurm & Fisicaro, 2014). This is all to say that while there are certainly
unmodeled demographic effects within our outcomes, it is critical to ensure that analyses do not
further marginalize individuals, and that performance under constraint and consideration of
specific covariates are examined with and without methods of correction. This aligns with
recommendations from emergent literature discussing that individuals including substantial

covariates include results both with and without correction (Hyatt et al., 2020).

Subthreshold disease and Normative Modeling

Despite the provided benefits of evaluating psychopathology via the p-factor, which
counters some issues related to heterogeneity and comorbidity present in binary mental health
disease prediction, there remain inherent challenges in this strategy as well. This methodology

makes the inherent assumption that there is a linear relationship between aspects of either



structural or functional neuroimaging data and cognition/psychopathology. However, this aspect
is difficult to verify and poorly validated within the field (Greene et al., 2022). Some researchers
posit that potential brain-behavior relationships could vary non-linearly across either aspects of
neurobiology or psychopathology (Faghiri et al., 2019). Evidence suggests the utility of
examining abnormal variation (deviations) from normative neurodevelopmental trajectories of
individuals over time in relation to psychopathology (Parkes et al., 2021). This framework,
dubbed normative modeling, while promising, adds substantial complexity, often requiring
multi-timepoint longitudinal data and relies on the confidence of the established trajectories.
However, researchers have discovered associations between negative deviations from normative
cortical thickness and higher general psychopathology in 21 year-olds (Kjelkenes et al., 2022).
Further along this line, some believe that the tendency of most models to identify robust
relationships centered around the mean of a distribution, fails to capture the most interesting
relationships between highly atypical brain-behavior relationships. Proposed multivariate
extreme value statistics, in combination with normative modeling highlight robust relationships
between extreme brain deviations and behavior within the UK Biobank sample (Fraza et al.,
2022). While normative modeling provides an interesting aspect of disease modeling, it is crucial
in the context of these analyses, specifically the evaluation of the utility deep learning, to
consider and reduce additional factors that may add to the complexity and scope in which we are

examining.

Issues Specific to Deep Learning
Apart from difficulties encountered with model input and outcomes, there were specific

problems inherent to deep learning that warrant discussion. The high complexity and size of



some of the DNNs evaluated led to issues of non- or inconsistent convergence, substantial
training time, and enormously high demand of computational resources, all of which are sources
that make the evaluation and analyses of different architectures and models distinctly

demanding.

Computational Demands

While recent computational advances, namely advances in GPU hardware, have sped up
model training time in the field of computer vision, large-scale problems, such as the immense
size of the neuroimaging data, still take a considerable amount of both time and computational
resources. The multi-modal imaging models we evaluated, even after reducing the number of
hidden layers from eight or more to only four and reducing the number of neurons in each fully
connected layer, took an exorbitant amount of time to train. Furthermore, while initial attempts
downsampling the imaging data did speed up model training time substantially, these models
also never converged. Some of the larger networks took several hours for a single epoch (one full
pass through the training data) of training. While a notable limitation of DL, it is precisely this
property that makes it so difficult to train and evaluate many different types of architectures and
hyperparameters within the neural network. As mentioned previously, we made hypotheses and
leaned on existing literature to evaluate several potentially successful architectures.

Models were trained using a single NVIDIA RTX 3060. This GPU is not part of the
newer released GPUs from NVIDIA, and we would have likely seen faster training times with
the latest hardware. It is also worth mentioning that the large size of the neuroimaging data
requires that models be trained using exceedingly small batch sizes (5-10 observations per batch)

due to the limited memory of this and other similar GPUs. Smaller batches are theorized to



create “noisier” gradients and while some research highlights the utility of deliberately adding
noise to the gradient to improve model performance (Neelakantan et al., 2015), this is typically
in cases of overfitting. However, in the context of neuroimaging data, where high dimensionality
and complex structures are prevalent, the balance between batch size and gradient stability
becomes a critical factor in model optimization. Thus, while it is possible that larger batches may
yield more stable gradients a