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Figure 6.3

from circular to elliptical form on the pupil plane, causing variations in the Airy disk
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ABSTRACT OF THE DISSERTATION

Optical coherence tomography (OCT) is a crucial tool for ophthalmic diagnosis due to its
non-invasive, high-resolution, cross-sectional, and three-dimensional imaging capabilities.
Traditional desktop OCT systems, though effective for adults, are unsuitable for infant imaging
because of their size, immobility, and difficulty of keeping infants still. Commercially available
portable devices for young children also struggle to capture the peripheral retina (70°) and perform
OCT angiography (OCTA) due to insufficient speed (32 kHz). Comprehensive visualization of the
retina morphology is vital for diagnosing and managing pediatric retinal diseases. This dissertation
addresses these challenges by developing and applying advanced handheld OCT and OCTA
systems specifically designed for pediatric use. The initial prototype achieved a 400 kHz imaging
speed and a 55° field of view but needed improvements for comprehensive peripheral retinal
visualization. Subsequent iterations expanded the field of view to 105° and 140°, introduced
custom optics for enhanced performance, and adopted a contact approach to solve alignment
issues. The approach provided superior image quality, reduced alignment time, and increased
success rates, especially suitable for infant imaging. The latest prototype features a custom-
designed lens group and two aspherical lenses, delivering superior image quality and enabling
implement panretinal OCTA in pediatric retinal imaging. These prototypes have proven effective
in diagnosing and monitoring pediatric retinal diseases such as retinopathy of prematurity,
retinoblastoma, Coats disease, retinal detachment, etc. This work underscores the potential of these

systems to advance pediatric ophthalmology and expand the capabilities of retinal imaging.
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CHAPTER 1. INTRODUCTION

1.1 Overview

Childhood blindness remains a significant global health issue, with retinopathy of

prematurity (ROP) being one of the leading causes. Despite the severe consequences, nearly all

cases of ROP-related blindness can be prevented with timely diagnosis and treatment [1-4].

Traditionally, the ophthalmoscopic exam has been the gold standard for diagnosing ROP.

However, this method is highly challenging and subjective, leading to inconsistent and sometimes

adverse outcomes. Figure 1.1 illustrates the method of clinical documentation and the range of

pathology observed in ROP. The subjective nature of ophthalmoscopic exams can result in two

main issues: premature treatment, which exposes infants to the risks and morbidity associated with

interventions such as laser therapy (which can cause high myopia, late retinal detachment,

amblyopia, and anesthetic complications), and delayed treatment, which can lead to retinal

detachment and blindness.
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Figure 1.1 Clinical documentation (fundus drawing) derived from indirect ophthalmoscopy.




Early detection and intervention are critical in preserving vision and preventing blindness
in ROP patients. Current imaging techniques, such as indirect ophthalmoscopy and fundus
cameras, have limitations including prolonged imaging times, low resolution, and restricted field
of view. In contrast, optical coherence tomography (OCT), a non-invasive, high-speed, and
micrometer-scale imaging technique, offers significant promise in addressing these challenges [5].
Several important lessons from adopting OCT in adult retinal diseases suggest that ultra-widefield
OCT/OCT angiography (OCTA) may become essential not only for ROP but for all pediatric
retinal diseases in the future. (1) OCT surpasses ophthalmoscopic exams in diagnosing macular
disease and has refined the classification of diseases such as age-related macular degeneration
(AMD) and diabetic retinopathy (DR), the two leading causes of vision loss in adults. (2) OCT has
demonstrated the ability to detect subclinical disease (not visible on ophthalmoscopy), enabling
earlier treatment in both conditions. (3) Quantitative OCT metrics have enabled objective disease
monitoring. (4) The development of OCT coincided with a therapeutic shift towards using anti-
vascular endothelial growth factor (anti-VEGF) drugs, with OCT being indispensable for
monitoring response to treatment and determining retreatment frequency. A similar transition is
gradually occurring in ROP, yet monitoring treatment response and disease recurrence remains a
pivotal unsolved problem due to the lack of objective disease metrics. Traditional OCT devices
are typically bucky, desktop-based systems requiring patients to be positioned in front of the device

(Figure 1.2), posing significant challenges when examining young children and infants [6].
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Figure 1.2 “Flying baby” position using Heidelberg Spectralis Spectral Domain OCT. Images were

obtained with the infant in the “flying baby” position. From reference [6].

To address this issue, several groups have developed handheld OCT prototypes for imaging
patients in the supine position [7-16]. The introduction of handheld OCT devices provides a
potential solution, enabling clinicians to diagnose pediatric diseases without causing additional
discomfort or pain to the patients. However, most of these portable prototypes still have limitations
in imaging speed, axial imaging range, and field of view. These limitations restrict their
effectiveness in diagnosing ROP.

My PhD research focuses on developing and validating handheld OCT/OCTA imaging
systems to enhance the diagnosis of pediatric diseases, particularly ROP. Developing handheld
OCT systems with ultrahigh-speed and ultra-widefield capabilities would represent a significant
advancement in pediatric ophthalmology. Such a device would enable clinicians to capture larger
retinal areas faster, facilitating real-time monitoring of retinal pathologies and enhancing the
ability to detect potential issues in difficult-to-reach regions. These innovations could significantly
improve the early diagnosis and management of ROP, ultimately reducing the incidence of

childhood blindness. This dissertation begins with an introduction to the fundamentals of OCT and



OCTA, establishing the foundation for understanding the significance and potential impact of these

advanced imaging technologies in pediatric ophthalmology.
1.2 Optical Coherence Tomography

OCT is a non-invasive imaging technology that utilizes light waves to produce high-
resolution, cross-sectional images of biological tissues [5]. Since its inception in the early 1990s,
OCT has become an essential diagnostic tool, especially in ophthalmology. This introduction
outlines the principles of OCT, its technological advancements, and its ophthalmic applications.

OCT operates on the principle of low-coherence interferometry, which uses light wave
interference to create detailed images of tissue structures. The main components of an OCT system
are a broadband light source, an interferometer, a detector, and a scanning system. Broadband light
sources, like super luminescent diodes (SLDs) or vertical cavity surface emitting laser (VCSEL),
provide the coherence length n