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Introduction

Cancer is now the biggest single cause of mortality worldwide, incidence has increased
by 11% in four years and cases are forecast to rise by 75% over the next 20 years [1].
Despite the huge amount of resources devoted to combating this terrible disease, progress
has been slow. Most patients are still treated with painful blunt instruments like radiation
and chemotherapy while new targeted treatments addressing specific genetic causes often
only help a small portion of the population. Why haven’t scientists and doctors been
able to do more? Because each patient is different, each cancer is unique and we lack the
framework for collecting, processing and understanding the mountain of information that
we can generate on cancers, treatments and responses.

Since the discovery of the first proto-onco gene by Varmus and Bishop in 1975, [2] our
knowledge of the genetic underpinnings of oncogenesis has expanded at a phenomenal rate.
We now know of thousands of genetic mutations that can play a role in cancer formation
and have hundreds of drugs targeting specific proteins or cellular processes. In addition,
we’ve discovered that every cancer has a distinct complement of mutations, arises from
a unique genetic background and exists in its own personalized environment. As this
has become clear, the focus in oncology research has largely moved from searching for a
panacea cure toward personalized or precision therapies. Precision oncology is based on
the idea that the optimal treatment for any patient is one that is custom tailored to his/her
genetic background and the cancer’s unique complement of mutations. But how can such
a treatment regimen be decided when the number of possible interactions between genetics
and pharmacology is easily in the millions?

The answer may lie in machine learning, an emerging field of computer science where



machines use carefully constructed algorithms and data to build representations of prob-
lems that allow them to identify patterns and make predictions. These models can synthe-
size of millions of responses influenced by tens of thousands of factors to predict outcomes
for a wide variety of possible conditions. Often beginning with random guesses, such al-
gorithms ‘learn’ to improve predictions by adjusting internal parameters to match desired
outputs. Once trained with sufficient data, predictions for new examples can be made and
the learned weights between the variables in these models can reveal underlying biological
relationships that govern the response of the system. Training such models requires an
explicitly defined problem with a set of inputs and outputs. For the problem of predicting
treatment response in cancer, large-scale cancer cell line screening panels provide exactly
this type of combinatorial information and the resulting data have yet to be fully exploited.

Cancer cell line drug screen panels consist of a large number of patient-derived cancer
cell lines which can be simultaneously treated by broad range of compounds at varying
doses, grown for several days and imaged to assess the effect of the drug treatment. The
resulting data is inherently multi-dimensional with one measurement for each combination
of cell line, compound and dose. Until now, studies that have attempted to synthesize the
information produced by these experiments have largely ignored one of these dimensions
by reducing the dose response data to summary measures such as the dose required to
effect 50% growth inhibition (Glsg) or the area under a fitted dose-response curve (AUC).
These studies have shown poor reproducibility with respect to predicted responses and
the mechanisms identified, which is perhaps not surprising since they often follow different
experimental procedures and compute summary measures differently [3].

The work presented here avoids some of these issues by developing the first model
to predict the full dose-response curves for cell line/drug combinations using genomic
measurements of cell lines and structural features of drugs as inputs. The traditional
measures of response (e.g. Glsg, AUC, etc.) can then be calculated from these curves
to compare with current methods. By incorporating all of the available data, we hope to
improve predictive performance of traditional response outcomes, elucidate mechanisms
underlying response, and reconcile findings across studies. Moreover, the model developed

here is applicable to any situation where prediction of responses that vary along three



independent dimensions is desired. For example, the responses may be measurements of
cell lines treated with combinations of drugs, or grown in different micro-environments
during treatment.

The model utilizes recently developed Bayesian statistical methods to perform a tensor
factorization coupled with matrix projections. An n-dimensional tensor is simply a set of
values organized into rectangular array where each entry can be specified by n indices. An
ordered list of numbers (a vector) is a one-dimensional tensor, a matrix is a two-dimensional
tensor and a three-dimensional tensor can be imagined as a box with numbers spaced evenly
throughout. Decomposing a tensor into factor matrices gives a representation of each value
in the tensor as a linear combination of latent factors along each dimension. In our model,
these factors capture salient differences between drugs, cell-lines and dosage.

By combining this type of factorization with a Bayesian approach to dimensionality
reduction we can link the latent factors to predictive features for each of the dimensions
(i.e. genomic characteristics of the cell lines and structural features of the compounds)
while controlling for model complexity. Specifically, we model the latent factors matrices
as products of feature matrices and projection matrices with priors encouraging sparsity in
the projection. Thus these latent matrices serve a dual purpose acting as both a reduced
representations of the genomic data and factors of the response tensor. The proposed model
can use genomic profiling data from cell lines such as genetic mutations, gene expression
and copy number variation as well as structural and target information on the compounds
to simultaneously predict the growth of each cell line when treated with each drug at each
dose. By holding all of the data together in one model, similarities among cell lines and
among drugs can inform predictions across all conditions, effectively leveraging all available
data for the prediction of each response.

Framing the model as in a probabilistic Bayesian way allows it to handle missing re-
sponse data and to encourage parsimony in the use of input features while maintaining
measures of uncertainty. Predictions for new cell lines and drugs can be obtained by mul-
tiplying vectors of input data through the learned projection and latent matrices. Perhaps
most impressively, a prediction can be made for both a new cell line and new drug si-

multaneously, pointing the way toward true precision medicine where we hope to predict



responses for patients to a suite of drugs when none of them have yet been prescribed.

This novel approach we call BaTFLED (Bayesian Tensor Factorization Linked to Ex-
ternal Data) enables the structured synthesis of large dose-response datasets produced by
cell line drug screen experiments in order to make predictions and identify mechanisms of
response.

In the following chapter we review background material on the problem domain, theo-
retical underpinnings of the model and discuss similar approaches. In chapter 2 we intro-
duce our model, giving full details on the mathematical derivations and implementation.
Chapter 3 shows results on simulated data that highlight the strengths of the method.
Chapter 4 shows results on three real dose-response datasets compared with other state-
of-the-art methods. Chapter 5 shows results predicting cellular counts of cancer cell lines
grown in varying micro-environments and chapter 6 summarizes the work and discusses

extensions and future directions.



Chapter 1

Background

Recent years have seen many studies using screening panels to predict the response of cell
lines to drug treatment and a renewed interest both in tensor factorization methods and
Bayesian modeling. We highlight some of this work to motivate this project and to place

it in context.

1.1 Tumor derived cell lines

Though early cancer researchers sought a single cure, it has become increasingly clear that
successful treatment of this incredibly heterogeneous the disease will require many cures
each tailored to the individual patient. Both broadly cytotoxic compounds and carefully
tailored therapies show a wide range of efficacy across patients. To understand the factors
that lead to this heterogeneity of response it is essential to have a method by which a
range of therapeutics can be systematically tested in diverse set of genomic backgrounds
and outcomes can be assessed quantitatively. Tumor-derived cell lines have provided the
opportunity to quickly test drugs in human cells and directly quantify their effects. These
cells are taken directly from the patient and transformed via viral infection to prevent the
cells from becoming quiescent. Thus the genome of these cells is initially almost identical
to the patient’s cancer and although mutations can occur over time, genetic profiling has
shown that they recapitulate the genetics of patients very closely [4]. Perhaps surprisingly,
despite the transformation process, the artificial growth conditions and the isolation of
these cells from the in vivo signaling environment, many genomic indications of response

found using these systems have been shown to be relevant in patients |5, 6].



1.1.1 Cancer cell line screening panels

The first large-scale cancer cell line screening panel was designed by the National Cancer
Institute in 1986 and contains 60 cell lines from blood, skin, lung, colon, brain, ovary,
breast, prostate, and kidney cancers |7]. To date, the so-called NCI60 have been tested
with thousands of compounds and profiled genetically, epigenetically and transcriptionally
by dozens of platforms. However, this panel was developed at a time when the majority
of cancer therapeutics were nonspecific cytotoxic agents to which most cell lines would
respond, so a complement of 6-9 cell lines per tissue type seemed sufficient to determine
efficacy [4]. The broad overview provided by the NCI60 is insufficient, however, when
testing targeted therapies where responses can be dramatic but rare. For example, the
EGFR inhibitors getfitinib and erlotinib are effective in only about 10% of patients with
non-small-cell lung cancer [8, 9]. While targeted drugs generally have many fewer side
effects and good efficacy in patients that do respond, identifying factors that determine
response requires that the set of cell lines being tested cover a larger segment of the possible
genetic search space. Hence more recent studies have moved toward either larger screening
panels or panels specific to one tissue type.

The large screening studies include the Cancer Cell Line Encyclopedia (CCLE) [10],
the Genomics of Drug sensitivity in Cancer (GDSC) [11] and the Cancer Target Discovery
and Development (CTD?) effort [12]. Each of these projects contains hundreds of cell lines
and compounds treated at a number of doses in replicates. While these studies share some
cell lines and drugs, they are each conducted in a unique manner and have discovered
different relationships between genomics and drug response.

There are many smaller tissue-specific studies studying drug response in the most
common cancer types. One notable study that will be used for this work is a breast
cancer panel containing 70 cell lines, 90 drugs, responses replicated in triplicate and the
full datasets have been made public (Heiser et al., 2012). Other similar studies include a
panel of 500 epithelial cell lines [13] and a panel of 84 non-small cell lung cancer cell lines
[14].

While there is some overlap in cell lines and drugs between these studies and the



genomic profiling is largely consistent between studies, the drug response findings do not
easily fit into a unified framework. An analysis of the concordance between the CCLE and
CGP data finds very poor correlation of summary response measures for the 471 cell lines
and 15 drugs shared by both studies [3]. This discrepancy may be due to differences in
the growth media, cell count measurements or the ways in which the summary response

measures were calculated.

1.1.2 Response measures

Analysis of these data begins with cellular abundance measurements from each well in
which cells are grown, typically at different doses and with replicates. Readouts used
include the optical density of Cell Titer-Glo (the most common output measuring ATP),
Syto60 stain measuring nucleic acids or resazurin dye measuring oxidation-reduction. Mea-
surements at each dose are often normalized by subtracting readings taken simultaneously
on background wells with no cells. This accounts for the variation due to illumination and
other technical aspects of the measurement process. A second normalization to account
for variations in the number of cells initially loaded into the well can also be done if optical
density readings are taken at time zero. Some studies also attempt to normalize by the
growth rate of the cell line. In this case the measurements at each dose are divided by the
optical density with no drug treatment. Thus a value of one shows no effect of the drug
and a value of zero indicates total cell killing.

Additionally, differences between studies in how the data is cleaned and pre-processed
can be difficult to understand and reproduce. For example, the methods for obtaining drug
response measures in Daemen et al. [15] cites Heiser et al. [16], which in turn cites Kuo et
al. [17]. Here 20% of the drug-response data is filtered out requiring that “(i) the median
SD across the nine triplicate-treated data points was <0.20; (ii) the DT [doubling time|
was within 2 SD of the median DT for each cell line; (iii) the slope of the fitted curve was
>0.25; (iv) we identified assays with no response by requiring inhibition at the maximum
concentration <50%”.

The most commonly used response metric is the half maximal growth inhibition or Glsg.

This is often used interchangeably with the half maximal inhibitory concentration (ICsq)



assuming that the response that is being inhibited is cell growth. This is the dosage at
which a drug inhibits the response of the abundance measure (and presumably the viability
of the cell line) by 50%. GI50 is typically calculated by first fitting a curve to the normalized
dose-response data and then finding the dose at which this curve crosses the mid-line
between the maximal and minimal possible effect (0.5 if the data have been normalized
to growth with no drug treatment). There are many variations on this calculation as the
curve used for the fit can be a simple line, a symmetric logistic curve or a non-symmetric
Gompertz curve. Moreover the minimal effect can be determined by measurements of cell
counts in controls with no drug treatment or with the minimal dose. The maximal effect
can be determined by the maximal amount of growth inhibition observed at tested doses (in
this case the Gljp should be referred to as EC5p, the half-maximal effective concentration)
or by measurements of cell counts at time zero. To complicate this further some studies
choose among curves for each cell line-drug pair based on the fit to raw data and use
different conventions to decide when the Gls¢ is uninformative. Finally, when training
predictive models, the Glsg for cell lines that are unresponsive may be missing, set to the
maximal dose (as in CCLE data) or inferred by extending the curve beyond measured data
(as in the CGP data).

Other measures of response derived from fitted curves include Emax (the dose at which
maximal effect is observed), Einf (the theoretical lower asymptote deduced from a fitted
logistic curve), total growth inhibition (TGI), the hill slope coefficient (HS: a measure of the
steepness of response in a logistic curve) and AUC (area under the calculated dose response
curve or under the median observed response values), figure 1.1. Each of these measures
has a different interpretation with respect to the expected behavior of drug treatments
in patients. Gl50/IC50 is used as a general measure of potency, Einf, Emax and TGI are
measures of efficacy and AUC combines aspects of both [18].

A recent study comparing several of these measures on the same raw dataset found
a worrisome lack of correlation between them across cell lines and drugs [18]. This indi-
cates that by relying on only one measure, studies are oversimplifying the true response
mechanics and possibly missing important elements regulating response. For example, the

slope of the response curve is not captured by the ICsg or AUC value. This information
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Figure 1.1: Common measures of drug response. The red dotted line shows the case where
the drug is completely effective at maximal dose. Here Emax=Einf=0 and IC50=EC50.
The pink area represents the AUC. [18]

may be valuable for patient responses where giving the minimal effective dose while avoid-
ing toxicity is important. Moreover, certain sub-populations may not exhibit the typical
logistic response curves at all. By routinely fitting the same class of curves to the data
and extrapolating measures, the variation in response across replicates is often ignored and
unexpected types of responses are missed. If genetic factors influence whether a given cell
line responds to varying doses of a drug according to a logistic curve, relationships with
these confounding predictive factors are also missed.

The trouble with these summary response measures becomes even more apparent when
comparing results across studies. Two papers by Dr. John Quackenbush’s group finds very
little correlation in predicted responses for cell line-drug pairs profiled in both the CCLE
and CGP projects and subsequently different genomic predictors of response |3, 19]. Specif-
ically, Spearman rank correlation of drug-sensitivity measurements for 13 out of 15 shared
drugs was less than 0.5 across the 471 shared cell lines. They suggest that the discrepancies
may be due to differences in the experimental setup, normalization procedures or calcula-
tion of the outcome measures, but were unable to dig deeper because the raw response data
for the CGP study was not available at the time. The groups involved in the initial studies

attempt to address these issues in [20] and find better agreement when taking into account
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more biological knowledge of the drugs and cell lines, but this issue is still contentious [21]
and clearly there is room for improvement.

One large confounding factor may be the differing growth rates of cell lines given the
cell culture conditions. Hafner et al. [22] normalize responses for growth rate at each dose
in a new way introducing a new set of response measures. The normalized growth rate at

time t in the presence of drug at concentration c is taken to be
GR(c,t) = 2MeD/k0O) _ (1.1)

where k(c,t) is the growth rate of the treated cells and k(0) the growth rate of untreated
cells. In this paper, switching to these GR measures (GRj5p, GRinf, etc.) reduces correla-
tion with the number of cells seeded and dependencies on growth media.

The work presented here aims to avoid the inconsistencies caused by different curve-
fitting procedures and methods of summarizing response by directly predicting the optical
density or normalized growth measures at each dose. With these predictions in hand the
summary response measures detailed above can be calculated and compared to current
studies to assess performance. This will eliminate any bias introduced by using specific
measures and allow systematic comparisons between studies. This is the first model to
attempt prediction at each dose, and can be seen as an extension of previous work into a

higher dimensional setting.

1.2 Current models in response prediction

While many different computational approaches have been used to predict the responses
of cell lines to drug treatments with some success, recent large-scale review efforts have
shown that the most successful approaches follow several clear principals.

Jang et al. [23] performed a systematic assessment of over 11,000 different models
predicting responses in both CCLE and CGP datasets. Each of these models predict
responses to a single drug for 20% of the cell lines after training the models with known
responses for 80% of cell lines. The researchers varied the type of input molecular feature
data, the prediction algorithm, the compound being predicted, the outcome being predicted

and whether the outcome data was discretized or continuous. The first principal that they
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discovered is that using more input molecular profiling data improved performance more
than any of the other factors, including which algorithm was used. Among input data types,
expression profiles had the largest effect. Second, they found that dimension reduction
algorithms favoring regularized solutions like elastic net or ridge regression performed best.
Third, they found that predictions of AUC were generally more accurate than ICsq or ECsg
and hypothesize that this is because the AUC measure captures more of the information
contained in response curves.

Another approach attempting to find the best computational methods to solve this
problem was implemented by a collaboration between the National Cancer Institute (NCI)
and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project
[24]. This DREAM challenge released data publicly so that teams from around the world
could compete in the task of predicting responses in a panel of 53 cell lines treated with
28 compounds. The best performing algorithm out of the 44 submissions used a Bayesian
multitask multiple kernel learning (MKL) approach. This method combines genetic pro-
filing data for all cell lines through kernels which measure similarities between cell lines
and reduce the dimensionality of the genetic input data. The kernels are combined using
weights shared across drugs and these linear combinations of kernels are given weights for
each cell line that are specific to each compound. In this way, predictions for all drugs
are made simultaneously so information about a cell line’s response to one drug can be
leveraged in the prediction of other drugs. This study supported the findings of Jang et
al. [23], in that incorporation of more data and dimension reduction methods both im-
proved prediction. Additionally it showed the benefit of combining the tasks of predicting
outcomes for each drug into one model.

An extension from the same group that won the DREAM challenge expands the MKL
idea to incorporate known structures and targets of drugs to improve prediction [25]. This
Kernelized Bayesian Matrix Factorization (KBMF) method marries the field of Quantita-
tive Structure-Activity Relationship (QSAR) discovery to drug response prediction. The
goal of QSAR studies is to use the structural features of drugs to predict their chemical
activity. By extending this to predicting the result of that activity (namely inhibiting cell

growth) across cell lines, this approach moves toward true precision medicine. The central
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idea of this method is to factor the matrix of response values (with rows corresponding to
cell lines and columns to drugs) into latent factors encoding information about similarities
between cell lines or drugs respectively. These factor matrices are constrained by kernel
representations of the input data (now both drug and cell line features) and the opti-
mal factorization is learned through an efficient search of parameter space using Bayesian

methods (Figure 1.2).
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Figure 1.2: Kernelized Bayesian matrix factorization model. Input data are in shaded
boxes, learned parameters are in green and latent representations in blue. The central
matrix of ICsg response values is denoted by Y. Input kernels for cell lines are on the left
and input kernels for drugs are on the right. Each side is multiplied by a shared projection
matrix to form the latent kernel-specific components. These are then combined via the
kernel weights to form composite components which multiply to form the central response
matrix [25]

The method presented here is an extension of the above work into higher dimensional
spaces. We expand the central matrix object into a tensor of three dimensions to capture
the response of each cell line when treated with each drug at each dose. This removes
the reliance on any one measure of response (ICs9, EC59, Emax, TGI or AUC) avoid-
ing issues due to curve fitting and choice of summary measure and will incorporate all of
the available response information. Also, our method does not project the feature data
through kernels feeding cell line and drug characterization data directly to the projection
matrices (although we do experiment some with using kernels). This will allow for greater
interpretability of both the values in the model and the learned weights placed on cell line
and drug features. Additionally, as the above studies show that incorporating more pre-

dictive data sets improves model performance we incorporate extensive genomic profiling
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data on cell lines and structural and target data on drugs as predictors. Lastly, the use
of Bayesian methods will allow for sparsity inducing priors analogous to the elastic net
regression method suggested by Jang et al. [23].

Since, only a small number of studies use factorization methods for drug-response
prediction, a broader view of these techniques can help to elucidate their usefulness. In
the following sections we explore the use of matrix and tensor factorization techniques in

fields tangentially related to the prediction task presented above.

1.3 Matrix factorization

The motivation to use tensor factorization methods stems from their capacity to organize
large datasets with several independent axes of variation and from the great utility that
matrix factorization methods have shown in somewhat simpler problems. For example
principal component analysis (PCA) [26, 27| is often the first tool used to gain insight into
relationships in data with a large number of variables. This method is based on the singular
value decomposition (SVD, a type of matrix factorization) of a data matrix with rows
representing each repetition of an experiment and columns each measurement. Although
SVD dates to the late 19th century, it is still bearing fruit in algorithm development
for data analysis as evidenced by the surrogate variable analysis (SVA) [28] which secks
to eliminate unwanted aAlJsurrogate variablesaAl in gene expression data or other large
matrices.

Many matrix factorization problems can be thought of in the framework of factor
analysis which seeks to find a set of latent factors that explain observed relationships in
data. For example a study with I individuals responding to J survey questions may seek
a set of underlying factors and weights for these factors specific to each individual so that
each answer can be expressed as a linear combination of the factors. Mathematically, this
amounts to finding a matrix of factors F' (with N rows and J columns) and a matrix of
weights A (with I rows and N columns) so that the observed response matrix Y (with

rows of individuals and J columns of questions) is a product of A and F' plus some minimal
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error matrix F.

Y=AXF+F

component wise

Yij = ai1 f1j + a2 foj + + ainfrnj + €

In the above example the responses of an individual to a survey about their job may
be decomposable into factors that capture elements of age, general happiness, etc. and
each person would have a different weight on how these factors affect their answer to each
question. Finding this decomposition requires specifying how many factors should exist
(N) as well as identifying each of the elements in A and F.

Since there are a large number of parameters in these model, a unique solution typically
does not exist and there are various assumptions made to find the ‘best’ solution. We may
prefer a solution with the smallest number of factors, least error, or one with factors that
best correlate with known properties of the individuals (e.g. age, sex, etc.). Mathemat-
ically, this can be interpreted as a change of basis vectors for the space of observations
(encoded by F') and is often referred to as a ‘rotation’. Machine learning algorithms that
employ matrix factorization (sometimes implicitly) essentially search the space of possi-
ble rotations looking for one that optimizes an objective function formulated to satisfy
requirements set by the problem.

Since matrices hold values for relationships between pairs of variables and we are inter-
ested in outcomes that result from the interaction of three or more dimensions of variation,
it is natural to look for higher order analogs of matrix factorization. Tensor factorization
methods provide this generalization and when combined with probabilistic Bayesian esti-
mation allow for the flexibility necessary to handle missing data and make predictions for
situations that were not encountered in training data. Finding an optimal tensor factor-
ization for a given problem similarly amounts to searching the space of possible rotations
in order to optimize an objective function.

Although these approaches are young, successes in other fields combined with a good
performance of probabilistic Bayesian matrix factorization methods on problems similar

to the one presented here |25, 29, 30, 31| indicate that this line of research is likely to be
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very productive.

1.4 Tensor factorization

A tensor in this setting is simply a multidimensional array or matrix. These are not to be
confused with tensors or tensor fields used in physics (such as stress tensor) which have
more structure. The order (or mode) of a tensor is the number of dimensions of data. A
first-order tensor is just a vector, a second-order tensor is a matrix and a third-order tensor
is a rectangular prism of values. Although higher order tensors can be difficult to picture,
much of the math used in third-order tensors extends naturally to any N-order tensor.

The notation throughout this paper mostly follows the conventions of the excellent
review by Kolda and Bader [32]. I will use boldface capital letters to refer to tensors
(e.g. X) , capital letters (e.g. X) to refer to matrices (and index upper limits), boldface
lower case letters to refer to vectors (e.g. x) and normal letters to refer to scalars (e.g.
x). Indices will typically range from 1 to their capital version so that the three modes
of the third-order tensor X might have indices 7,7 and k where ¢ = 1...1, j = 1...J
and kK = 1... K. A particular element of the tensor X will be represented by the lower
case version of the tensor name subscripted by 7,j and k (e.g. x;jx). A one dimensional
subset of a tensor obtained by fixing all other dimensions will be referred to as a fiber and
represented as a vector replacing the non-fixed index with a colon (e.g. X.jk, Xk OF Xjj:).
Similarly a two dimensional slice is a matrix and is represented with a capital letter with
two dimensions replaced with colons (e.g. Xj.., X.;; and X.;) Examples of these subsets
for a three mode-tensor are pictured in (Figure 1.3) [32].

In order to talk about tensor factorization we must first define tensor multiplication.
Beginning with first-order tensors (vectors) we can construct a higher-order tensor with
the outer product (denoted by @)). The outer product is obtained by multiplying every
element of each of the N vectors by every element of the other vectors. The order of the
operation determines where the products get placed in the resulting tensor. For example
the product of the third element of the first vector, the second element of the second vector

and the first element of the third vector will be in the third row, second column, first frontal
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Mode-1 (column) fibers: X.x Mode-2 (row) fibers: Xi.. Mode-3 (tube) fibers: X;;.

Horizontal slices: X;.. Lateral slices: X, Frontal slices: X.p.

Figure 1.3: Lower dimensional subsets of a third-order tensor (Kolda and Bader, 2007)
[32]

slice of the resulting tensor (examples below).

1 4
2®5®;:x

3 6

4 5 6 g8 10 12

where X..p = | 8 10 12| and X.p = |16 20 24
12 15 18 24 30 36
The n-mode product (denoted by x,) of a tensor X with a matrix U is defined for

matrices with the same number of columns as the n'* mode of X and is obtained by

multiplying each n-mode fiber with the matrix U. For example, given the above tensor X
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and the matrix

1 3 5
2 46

X x1 U =Y where

88 110 132 176 220 264
Y= and Y.o =

112 140 168 224 280 336

A tensor with n modes that can be constructed from an outer product of n vectors is, in
a sense, simple and is known as a rank-one tensor. The above, X is an example of a third
order rank-one tensor. Any N-order tensor can be constructed from a sum of rank-one
N-order tensors and finding this set of rank-one tensors is equivalent to the simplest type

of tensor factorization.

1.4.1 CANDECOMP/PARAFAC decomposition

The CANDECOMP /PARAFAC (CP) tensor decomposition was first proposed by Hitch-
cock in 1927 [33], but the idea didn’t gain popularity in data analysis until the early 1970s
when it was used in the field of psychometrics [34] and phonetics [35]. This method breaks
a given N-order tensor into a finite sum of R rank-one N-order tensors whose vector com-
ponents can be rearranged to form N factor matrices (Figure 1.4). For example, given a
three-mode tensor Y indexed by ¢,7 and k, the CP decomposition gives R rank-one three-
mode tensors. Each of these can be represented as a product of three vectors a,, b, and
¢, of lengths I, J and K respectively. By assembling the vectors for each dimension into
matrices with R columns, the original tensor can be represented as an n-mode product of
a core tensor D and three factor matrices A, B and C with dimensions I x R, J x R and
K X R respectively.
Y=Dx; Ax9Bx3C
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In this case the core tensor D is a cube with dimensions R x R x R with ones along the

diagonal (i.e. d;jr = 1if i = j = k and 0 otherwise). Component-wise we have

R
Yijk = > QirbjrChy (1.2)
r=1

Often an exact factorization isn’t needed (or desired), so less rank-one components are used,
the factor matrices contain less columns, and an error tensor (E) accounts for differences

between the initial tensor and the reconstruction.

b
= | 1 Cy I C, Cr

Figure 1.4: CANDECOMP/PARAFAC decomposition of a third-order tensor (adapted
from http://www.bsp.brain