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A STUDY OF THE FUNCTIONAL PROGRAMMING LANGUAGE FP 

Beverly P. Rollins, M.S. 

Oregon Graduate Center, 1983 

Supervising Professor: Richard B.Keburtz 

FP has been proposed as an  alternative to Von Neurnann and applica- 

tive languages, in which word-at-a-time thinking, and abstraction on vari- 

ables obscure the  problem that the programmer is attempting to solve. 

Lazy, or delayed evaluation, allows the evaluator to avoid unneces- 

sary evaluation, and allows the programmer to work with infinite objects. 

The benefits and detriments of lazy evaluation are discussed. 

FP is also extended with a fixpoint functional and an apply function, 

and the affects of these additions to the language are discussed. 



1. INTRODUCTION 

John Backus f 1] stated that conventional programming languages 

have become "fat and flabby", and that the many new features added to 

the languages add little to their power and obscure their semantics. For- 

mal descriptions of these languages tend to be too bulky to be 

comprehensible, and hence are of little use. Since the languages are 

modelled after the von Neumann machine, they encourage the program- 

mer to "word-at-a-time" thinking, instead of thinking in large conceptual 

units. 

Backus' suggested solution to these problems is the concept of a 

f inct ional  Programming System (FP System). A function-level pro- 

gram is a constructive presentation of a mathematical function. One 

builds new programs by combining existing programs, using functional 

forms such as composition and construction. A program is more easily 

understood if it is built from parts that are easily understood. Such a 

program is also more easily modified and verified. 

Von Neurnann and applicative programming, on the other hand, 

involve the programmer in lower-level details that can obscure the prob- 

lem. In von Neurnann-style programming one builds programs with 

assignments and control flow constructs, that operate on objects closely 

resembling the computer's storage cells. In applicative programming 

one builds a function by first building an expression that denotes an 



object, and then abstracting on one or more variables within that expres- 

sion. Both applicative and Von Neumann programming involve more com- 

plicated naming systems and substitution rules than does function-level 

programming. 

Each of the following three examples is a program that takes as 

input two integer lists of equal length, and returns a list of integers, each 

member of which is the product of the corresponding members of the 

input lists. One can see in the Pascal program that the programmer had 

to deal with a counter variable and explicit iteration through arrays, 

details which have little to  do with the basic solution to the problem. The 

Lisp example illustrates the kind of recursive program structure typical 

of Lisp programs. The FP program exhibits the use of composition to link 

two independent programs to create a new program. This method of con- 

structing programs allows the programmer to think on' a very high level, 

and also allows him to reason about and prove things about his programs. 

Backus [1] presents an algebra of programs that allows one to algebrai- 

cally manipulate FP programs and prove theorems about them. 



m p l e  1.1: A Pascal program that multiplies the members of two lists 

type list = array[l..MAX] of integer; 
function listrnul(L1,U : list) : list; 
var temp : list; 

i : integer; 
begin 
for i := 1 to MAX do 

temp[i] := Ll[i] ?& L2[i]; 
listmd : = temp 
end; 

Jkample 1.2: A LISP program that multiplies the members of two lists 

(def listmul 
(lambda (Ll L2) 

(cond ((null L1) nil) 
(t (cons (times (car L1) (car L2)) (Iistmul (cdr L1) (cdr h2))))))) 

Egamp1e 1.3: An FP program that multiplies the members of two lists 

def listrnul = amul 0 trans 

FP systems are still a t  the experimental stage, and much 

to be done before they are useful for substantial programming I 

The intent of this thesis is to study the FP language first prop 

Backus [ I ]  as an example of programming a t  the function level 

interpreter was implemented with two major changes made 

language: 

emains 

rojects. 

)sed by 

An FP 

to the 



1) The interpreter follows a lazy (i.e., delayed) evaluation strategy. 

Lazy evaluation allows one to avoid unnecessary evaluation and to 

model infinite objects, but an efficiency penalty is paid. 

2) The language is extended with a fixpoint operator and an apply 

function. 

Running times of the lazy interpreter are compared with those of a 

strict interpreter, and a rationale for the results is given. 

We show that the addition of apply makes FP significantly more 

expressive, but  that, even with apply added, FP is still not as expressive 

as the lambda calculus. 

Notation 

There is some FP terminology which is used a great deal in exam- 

ples, and also in expressions which do not belong to FP: 

< ... > - sequence brackets 

1 ... 1 - construction brackets (e.g.  [f,g]:x = <f:x,g:x>) 

O - function composition (e.g. f 0 g:x = f:(g:x)) 

- application 



el + ez ; e3 - if el then e2 else e3 (conditional) 

- the empty sequence (<>) 

- the function that always returns a 

other notation: 

J - evaluates to, in one step 

% - evaluates to, in one or more steps 

The FP functions and functionals that are used in this paper are 

defined in Appendix B. A good overview of FP can be found in [I]. 



The FP that we are studying is actually a member of the set of FP 
\ 

languages, or FP systems. An FP language consists of a set of objects, a 

' set  of functions, and a fixed set of functionals (or functional forms). Each 

version of FP is identifled by the contents of the above domains. We have 

chosen to use the FP that Backus describes [I]  with several 

modifications. Whenever we refer to "FP" we will be referring to our ver- 

sion of FP. 

FP differs from Backus' system in the following points: 

1) Real numbers are not included in the domain of atoms. 

2) The empty sequence is not an atom. 

3) Evaluation of some functions is lazy, allowing for 

infinite objects to have meaning. This means that 

"lazy" functions are not bottom-preserving. 

The syntax of our FP is the same as Backus', except that the selec- 

tors 1,2,. . .,n are 1 & , 2 ~ ~ , . .  . ,nth, and literals (i.e., character strings) are sur- 

rounded by single quotes. The purpose of these changes is to eliminate 

tiny confusion that might exist between function names and literals (f  vs. 

'f'). These changes in syntax become necessary later on when we make 

extensions to FP that allow us to treat functions as objects, requiring that 

functions and objects be syntactically distinct. A concrete grammar for 



FP is given in Appendix G. 

2 1. The Difference between Functionals, Functions, and Objects 

There are two algebras in FP: the algebra of objects, whose opera- 

tors are functions that take objects to objects, and the algebra of func- 

tions whose operators are functional forms that take functions to func- 

tions. Unless otherwise specified, "function" will refer to an entity of type 

"object -+ object", and "functional" will refer to  an entity of type 

"(object -B object) -, (object -+ object)", or "function -, function". 

An FP program is a function. In order to construct a program one 

either gives a primitive FP function, or one builds a new function by 

applying a predefined functional to already existing functions. The pro- 

grammer is then working in the algebra of functions and functionals. I t  is 

important to note that 

1) The only available functionals are those that are predefined 

in FP. There is no way to create new functionals, i.e., a func- 

tion can not be construed as a functional. 

2) A functional can not stand by itself as an FP program. 

In order to obtain the result of executing a program p, one applies 

it to an object as follows: p :  x , where x is an FP object. The application 

operator (:) appears only once in the applicative expression. Functions 

can occur only on the left side of the colon, and an expression denoting 

an object occurs on the right side. This convention is different from the 



lambda calculus where any number of applications can occur within an 

applicative expression and in which functions and primitive objects are 

not distinguished. 

We must note here that in the evaluation sequence 

[fl,. . . ,f,]:x * <fl:x, . . . ,fn:x> 
. 

the application fi: x actually means "the result of computing fi: x", for 

each 1s;iln. The evaluation of the same expression when performed by 

the lazy interpreter would be: 

[fl,. . . ,fn]:x * Uf1:x,. . . ,fn:xP 

4 f l  : x, . . . , f, : xP denotes a suspension in which fi:  x for lc i sn  is left 

unevaluated. (Suspensions will be discussed in chapter 6, however we 

bring this up now to hopefully dispel1 some confusion that could arise 

concerning the placement of the application operator.) The suspension 

seems to contradict the rule of (:) placement because the application 

operator occurs more than once, however i t  is a result given only by the 

lazy interpreter, and can not be input legally by the user. Although the 

suspension contains functions and applications, it still denotes an object, 

and may occur on the right side of an application. 

A clarification should also be made concerning the number of argu- 

ments given to a function. All FP functions (programs) have the type 

"object -, object". When a function conceptually takes more than one 

argument as its input, we put all of its arguments into a sequence, and so 

it will  map a single object argument (i.e., the sequence) into its result. 



Sometimes for convenience it is implied that a function takes more than 

one argument, or its nth argument is referred to. For example, when one 

states that add takes two numbers as its arguments, one actually means 

that add takes a single argument that is a sequence of two numbers. 

2.2. The Domains of FP 

A n  FP object is either a primitive object, i.e., an integer, character 

string (e-g., 'a','OX+'), or Boolean (T or I?), or it is a sequence of objects 

(e.g., <I>,  <<'a','b'>,'c'>). The empty sequence is denoted by <> or $. 

There is one more object, 1 (read as "bottom"), which denotes 

"undefined". 

L e t  a p a i r  be a sequence of two objects that are of the same type. 

The predefined functions of FP can be roughly divided into two groups: 

the arithmetic-logical functions and the functions that operate on 

sequences. The arithmetic-logical functions include such functions as 

add, sub,  m d ,  which operate on integer pairs, and the logical functions 

a d ,  o r ,  not, which operate on Booleans and Boolean pairs. The sequence 

functions can be divided into those that build sequences (apncU (append 

on the left), q n d r  (append on the right)), and those that manipulate 

them (e-g.,  distl (distribute left); trans (transpose); the selectors ld, 2nd 

,...; tl (tail) ). There remain polymorphic functions such as id (the iden- 

tity function) that operate on  arbitrary argument types. 



The user can define new functions by combining previously defined 

functions using the functionals (or combining forms) that are provided by 

FP. The set  of functionals is fixed; no new functionals may be defined by 

the user. The most cornrnonly used functionals are: 

construction - [f 1 ,..., fn]:x 3 <f l:x, ..., fn:x> 

conditional - (f -, g ; h):x if f:x = T then g:x 
else if f:x = F then h:x 
else 1 

composition - f 0 g : x f : (g : x) 

The only structured object in FP is the sequence. Therefore the 

functions that would usually operate only on tuples (e.g., the selectors) 

and the functions that would usually operate only on lists (e.g., t l )  all 

operate on the same type of object: sequences. This loose typing allows 

such expressions to  occur: 

3rd 0 apndl : < 1,<2,3>> 

tl o [f,g,h] : x 

This freedom makes static type checking in FP extremely difficult. For 

example, in order to  compute the type of 3rd 0 apndl o f 0 g : x one must 

a t  least partially evaluate f g : x to obtain the type of the third element 



When FP is extended by adding the function apply (see section 6.1) 

it becomes necessary to include functions in the domain of objects. Here 

is an example evaluation sequence: 

We see that a function has occurred on the right side of the application, 

and so the syntactic distinction between functions and objects has 

become blurred. Apply violates the premise that all FP functions have 

the type "object + object", and thus FP with apply added no longer 

belongs to the set of FP languages. We will call our extended language 

AFP, a member of the set of AFP languages. Later on we will show that, 

although apply is a higher-order function, it is neither an FP function nor 

an FP functional, but lies somewhere between the two. 

' A solution to  the  problem of typing FP is proposed by Guttag, Horning, and Willi- 
ams [5j. Another solution which has been proposed is simply to modify FP so that  it is 
strongly typed. 



3. THE INlXRPRE;TER 

The principle function of the interpreter, Inteqoret, is written in 

Franz Lisp. It takes as input a list of Abstract Syntax Trees (ASTs) and a 

state, and outputs a list of reduced ASTs, an environment, and a state: 

The List of ASTs is the output of submitting the user's FP expres- 

sions to a syntax analyzer. The environment used by Interpret is only 

needed to map user-defined function names to their definitions, and is 

therefore static. In order to avoid evaluating the same expression more 

than once, Interpret replaces an expression with the result of its evalua- 

tion. The state, which maps locations to AST's, is needed in order to 

express that  replacement. The formal definition of the interpreter is in 

Appendix A. 

The meaning of a list of FP ASTs is given by the function Meaning. 

Meaning maps a list of ASTs into a list of s-objects (semantic-objects) and 

s-functions (semantic-functions). The domains s-object and s-function 

are basically the objects and functions denoted by FP objects and func- 

tions. They are defined formally in Appendix B, along with the definition 

of Meaning. 

The input that  the user gives to the interpreter is a list of FP 

expressions, each of which is either a definition or an application. The 

Syntax Analyzer outputs a list of ASTs that denote the FP expressions. 

Interpret  will take that list and return a list of reduced ASTs and an 



environment. To obtain the meaning of a list of ASTs and their environ- 

ment one binds all user-defined identifiers to their definitions and passes 

the resulting list to Meaning.  (This is done so that Meaning will not have 

to use the environment that is defined within In t e rpre t . )  Meaning then 

returns a list of s-objects and s-functions. It.is claimed that if one were 

to  by-pass In t e rpre t  and send the AST-list directly t o  Meaning,  the result 

would be the same as if Meaning 3 input was first sent through I n t e r p r e t  

and bind, providing that the input is well-typed. In other words, I n t e v r e  t 

preserves the meaning of its input. Figure 3.1 gives an over-all picture of 

the operation of the interpreter. 





4. THE INTEZW-R-LEVEL SOURCE LANGUAGE 

The actual input given to the interpreter is in the form of abstract 

syntax trees. This representation is convenient to use as an intermediate 

language because it includes only semantically significant details. The 

translation from parse trees to abstract syntax trees has been formalized 

[9] , where the abstract syntax grammar is developed as a way of for- 

mally defining the structure of an abstract syntax tree language. A brief 

description of abstract syntax trees (ASTs) and abstract grammars fol- 

low. For a formal description see [9]. 

4.1. Abstract Syntax Trees 

The abstract syntax of a program gives the operators and operands 

necessary to express its semantics. A convenient way to represent the 

abstract syntax is through abstract syntax trees (ASTs). The root of an 

AST represents an operator, and the subtrees represent its operands. 

Example FP ASTs and the FP programs from which they are derived are 

provided in Figures 4.1 and 4.2. 

4.2. Abstract Syntax Grammar 

An abstract syntax grammar is very similar to a context-free gram- 

mar, and gives us a way to formally define an abstract (AST) language. It 

consists of a set  of equations and a set of productions. 



Each equation defines a class of ASTs. Given equation 

S = al, . . . ,an, S is the name of a class of ASTs, and a,, . . . , a, are names 

of terminal or non-terminal nodes. Class S contains all ASTs whose root 

belongs to  fa l  ,..., anf . 

Each production defines the structure of all ASTs whose root name . 

is the name on the left side of the production. The production 

X -+ S1, . . . , S, tells us that an AST whose root node is X must have sub- 

trees that  belong to the classes S1, . . . , s,, in that order. The right-hand 

side of a production may be a r e g u l a r  e x p r e s s i o n  over class names. The 

regular expression is a shorthand for a (possibly infinite) series of pro- 

due tions. 

L e t  a,@, and y be regular expressions over class names in: 

• "A + a(/??)*7" represents the infinite number of produc- 

tions: "A -, ay", "A -+ apy", "A -, apPy" ... (a and y may 

be empty) 

• "A -, a I@" represents the two productions "A -, a" and 

+ @ I r  

The abstract syntax grammar for FP follows, after which follow two 

examples of FP ASTs. 



Abstract Syntax Grammar 

Syntactic Domain Equations: 

atom =aNurneral,Literalj 

definition = ldeff 

application = lapply] 

object =latom,sequence,l f 

f-expr = !condition, compose, select, Rselec t ,  construct, constant, 
insertl, applyAll, bu, while, tl, id, atom, eq, gt, ge, It, le, ne, 
null, reverse, distl, distr, length, add, sub, mul, div, trans, and, 
or, not, apndl, apndr, Identifier1 

Productions : 

program -9 (definition + application) * 
def -, Identifier f-expr 

apply -, %-expr (object + suspension + apply) 

condition -, f-expr f-expr f-expr 

compose -, f-expr f-expr 

select -+ Numeral 

Rselect -, Numeral 

construct -, f-expr * 
constant -, object 

insertL -, f-expr 

applyAll --, f-expr 

bu -, f-expr object 

while -, f-expr f-expr 

sequence -+ object * 



apply 
/ \ 

add sequence 

/ \ 
1 2 

Figure 4.1 AST representation of add:< 1,2> 

apply 
/ \ 

compose 'a* 

/ \ 
add construct 

/ \ 
constant constant 

I I 
1 2 

Fjgure 4.2 AST representation of add 0 [i,Z]:'at 



5. LAZY ENALUATION 

Lazy evaluation, or delayed evaluation, has been compared to the 

call-by-name parameter passing of Algol [6] in that an expression is 

evaluated only when its value is needed. It differs from call-by-name in 

that once an expression has been evaluated it will never be re-evaluated 

(unless the same expression appears in two, unrelated places). Peter 

Henderson and James Morris [6,7] have presented lazy evaluation stra- 

tegies for pure LISP in which arguments to functions are not evaluated 

until needed, and in which cons expressions are suspended until the parts 

of the expressions are demanded by another evaluation, or until the 

entire cons expression is explicitly forced. Arguments of a function are 

referenced by pointers so that any evaluation of the arguments is easily 

preserved. Because of the dynamic environments and bound variables of 

LISP, each suspension of an expression must preserve the environment in 

which the expression is to be evaluated. 

Lazy evaluation in FP is like that of LISP with two exceptions: 

1) Since there is only a single, static environment in FP, the environ- 

ment does not need to be saved along with every suspension. 

2) Since FP is not applicative, arguments to functions do not need to 

be suspended. 

Lazy evaluation in FP requires that all list constructors be 

suspended. This allows the use of infinite lists, as in the following 



example: 

def integers = apndl 0 [id,integers 0 succ] 

It also allows unnecessary evaluation to be avoided; the reduction 

l"o[f,g,h]:x % f:x 

does not require evaluation of g : x or h: x. Suspensions will be discussed 

later. 

5.1. Lazy Interpretation of FP 

5.1.1. Paradigm 

Evaluation occurs on two levels: the functional level and the appli- 

cative level. All FP applications consist of one or more functions that are 

composed with each other and then applied to an object. Evaluation at 

the applicative level is carried out in strict, applicative (right-to-left) 

order, and occurs when a simple application, f : x, is being evaluated. (In 

a simple application the function contains no func tionals .) The functional 

level refers to  evaluation that does not need to know about the object at  

the end of an applicative expression, but instead manipulates the expres- 

sion on the basis of the functions in that expression. Consider the appli- 

cation f l  0 fz 0 . . . 0 fn: x . The interpreter first operates on the functional 



2 1 

level. Evaluation on this level occurs left-to-right. Function f l  is con- 

sidered first. According to the value of f l ,  one of six things can happen: 

1) A value may be returned and further evaluation of the application 

will terminate. This only happens when f l  is a constant function. 

Example: loadd:  'a' * 1 

2) Evaluation of the rest of the application will be forced and evalua- 

tion will proceed at the applicative level. This happens when f ,  is 

an arithmetic-logic function which demands that its argument be 

completely evaluated (i.e. forced) to an object (i.e. when f is st r ic t ) .  

Example: add 0 [i,2] : 'a' * add : < 1,2> 

3) The rest of the application ( f z o  . . . of,:x) will be evaluated (evalua- 

tion always returns an object or a suspension) and evaluation will 

proceed on cases of that result. This occurs when f l  is not a strict 

function, but needs to know something about its argument in order 

to proceed. 

Example : 

reverse 0 2ndo [lSt,apndlo [ 1 ~ , 2 ~ ~ ] ]  : <1,<2>> 
3 reverse 0 2 " ~ :  ~lst:<1,<2>>,a~ndl~[1~,2~~]:<1,<2>>~ (3,6) * rever~e~a~ndl~[1~,2~~]:<1,<2>> (4) 
* apndru[reverseo tl,ld] 0 : < 1,<2>> ( 5 )  

In the above example, reverse requires that the rest of the expression be 

evaluated, which it eventually is, to apndl 0 [ 1 ~ , 2 ~ ~ ]  : < 1 ,<2>> . Then 

reverse 0 apndl is transformed into apndr 0 [reverse 0 tl,ld] according 



to the definition of reverse in Appendix A. 

4) Part of the rest of the application will be requested and evaluation 

will proceed at either level. This happens when f l  is a selector, tl 

(tail), or tlr (right tail). 

Example: znd0 [T,Z] : 'a' % 2 : 'a' 

5)  The composition f l  0 . . - 0 fi, i 5 n, is transformed into a new func- 

tional expression, and evaluation will proceed a t  the functional 

level. This happens for many of the non-strict functions. In Sec- 

tion 5.2 we show that the transformations employed by the inter- 

preter preserve the meanings of the programs they operate on. 

Example: lSt0apndl0[i,(2>]:'a: lSto[T,<2>]:'a' 

6) The entire expression is suspended. Ths  happens when f l  is one of 

the list constructors: apnd,  apndr, or [...I . 

Example: apndl 0 g : x 3 apndl g : x 

Example: apndr 0 g : x 3 apndr 0 g : x 

Example: [g,, . . . , g,] : x =3 4 g l : x ,  . . . , g,:xb (The applications 

withn the suspended construction are unevaluated.) 

Evaluation of expressions containing functionals such as condi- 

tional, depend on the evaluation strategy for that functional. For exam- 

ple: 



(null + id ; tl) 0 apndl 0 [ lSt,id] : < 1,2,3> 
null0 apndlo [lSt,id] : < 1,2,3> 
3 F 

(eval. of condition) 

(eval. of "false arm") 

( 5 )  
(6) 
(4) 

5.1.2 Suspensions 

There are three kinds of suspensions, one for each of the sequence 

constructors: apncU, a p n d ~ ,  and [...] . Applications whose leftmost func- 

tions are  apndl or apndr evaluate to  themselves. This allows us to use 

infinite objects. For example, we can talk about the infinite list of 

integers and can extract part of that  list without having to evaluate it 

completely: 

def integers = apndlo [id,integers 0 succ] 

lgt 0 integers : 1 
=3 l S t 0  apndlo [id,integers 0 succj : 1 
3 l & o  [id,integers 0 succ] : 1 

3 id :  1 

(integers) 
(Theorem TI 2') 

([...I) 
(1st: 4 . . - b) 

* The transformation lSt apndl = 19' is proven correct in Appendix C. 



A construction such as [fl, . . . , f,] o g : x evaluates to  

6fl  o g:  x, . . . , fn 0 g:  xb .  This is done in order to implement value shar- 

ing. Each member of the construction is made to  point to  the expression 

to the  right of the  construction, so we actually have: 

which is written as 

4fl 0 g : x , .  . . , f n  0 g:x> .  

We suspend constructions so that  unnecessary work may be avoided. 

Each application within the suspended construction is unevaluated until 

its value is requested. For example: 

The function force  will evaluate its argument to an object, but will 

first evaluate' its argument so that  a n  expression such as 

force 0 l S t o  [ i , ~ ]  : 'a' will be  defined. 

force 0 ldo [TIT] : 'a' 
force 0 ld : 47 : 'a',i : 'a'P 
force 0 T : 'a' 

-4 force: 1 
* 1 

* Evaluation always results in an object or a suspension. 



Note that the function I , the function that returns bottom for every 

argument, is not a legal input by the user (neither is 1, the object bot- 

tom). It was used in this example to give an obvious instance of a 

bottom-producing function, and might have been realized a t  the source 

level by a user-defined function whose evaluation would fail to terminate 

if it were applied to any argument. 

5-1.3. Value Sharing and the l?P Application Data Structure 

In order to avoid re-evaluating an expression once it  has been 

evaluated we employ the  following procedure: whenever an expression e is 

evaluated to e ', replace e with e " This can be done very easily in LISP 

using a simple list and the LISP replace function. The FP expression 

f l  0 . . - 0 f, : x is represented in LISP as ( f l  - . . f, x) , the LISP implementa- 

tion of which actually looks like: 



The LISP list structure lends itself well to the strategy of looking a t  

the  first i tem and replacing a rightmost section of the list with the result 

of its evaluation. Suppose that we are evaluating the expression f 0 g : x. 

Suppose that function f demands that the rest of the expression, i.e., g : x, 

be evaluated. The LISP representation of f o g : x is: 

If g : x evaluates to h, then g : x will be replaced by h and we will have 

In order to implement value sharing in constructions we make each 

member of the suspended construction point to the part of the expres- 

sion that follows the construction. Then when one member of the con- 

struction causes complete or partial evaluation of the rest  of the expres- 

sion, the result of the evaluation is reflected in all of the members of the 

suspension. W e  use the special brackets 4 and P to surround a 

suspended construction. The suspended construction has the type of a 

sequence object, however it still contains unevaluated applications. 

Therefore we have chosen the special brackets to distinguish it from both 

objects and functions. When the application of a construction is 



evaluated, the resulting suspension will be the object of a further applica- 

tion in the consequent expression. For example: 

5.2- Correctness of Transformations 

The principal evaluator function of the interpreter is: 

eval : (object+application) -+ state -+ env -+ (object+application) x state. 

If, in  the definition of the interpreter, eval ie ]qcr = eval [e' ]qa, we say that 

e i s  transformed into e'. Lazy evaluation is only permitted under a 

scheme where e' has the same meaning as e wherever e is defined. e' 

may be defined on arguments where e is not defined. Therefore, when we 

are performing lazy evaluation, we only need to show that the meaning of 

e alcrproximates the meaning of e'. The function 

M : (object+application+definition+f-expr) -, s-env -, 

(s-functioni-s-object) x s-env 

gives the meaning of FP expressions, and is defined in Appendix B. We 

will ignore the environment (s-env), since it will not affect our discussion. 

For each transformation made by the interpreter we would like to show 

that 

eval lfe jqu = eval [e' jqa implies M(e) E M(el). 



Definition of E : 

M(f) E M(g) M(f:x) = M(g:x) V x such tha t  M(f:x) # J. 

Theorem 5.1: if M(f)  E M(g), then M(h 0 f 0 j) C_ M(h 0 g 0 j) 

Proof: 

Assumption: M(f) E M(g) 

Show: M(h0f.j) rT M(h0g.j) 

1) M(f 0 j:x) = M(f):(M(j):M(x)) 
2) if M(f):(M(j):M(x)) ;.f 1 

then M(b):(M(j):M(x)) = M(g): (M(j) :M(x)) 

3) and M ( f  0 j:x) = M(g0 j:x) 
4) M(f 0 j) L M(gaj)  

5) if f:x # I then M(f:x) = M(g:x) 

6) and M(h):M(f:x) = M(h):M(g:x) 
7) and M(h 0 f:x) = M(h0g:x) 
8) :. M(h0f) c M(h0g) 

(composition) 

( 9  
(composition) 

( 1,2,3) 

(9 
(application) 

(composition) 

( 9  

(assumption, 4 & 8) 
(associativity of 0) 

Corollary: if M(f) E M(g) , and the FP function 

e = hl 0 0 h , ~  f 0 h,. . . . o h p  is transformed into 



According to  the above corollary, we can make such transforma- 

tionsin any order and be assured that the resulting expression preserves 

the meaning of the expression we started with. 

We demonstrate the correctness of the transformation 

tloajmdr 3 pd below. The remainder of the transformations are pro- 

ven mrrect in Appendix C. The environment and state arguments to e v d  

and II have no effect on the proof, so we have taken the liberty of ornit- 

ting them. For the sake of clarity we have also omitted some steps which 

shouEd be obvious to the reader. For example: 

M ( t l : < ~ )  = M(tl):M(<a>) = (A<O1, . . . , On> .<02, . . . , O,>):<a> = 

has been abbreviated t o  M(tl.<a>) = <>. All FP objects are allowed to 

denoYe their meaning. 

Theapesll5.2: M(tl0 apndl) L ~ ( 2 ~ ~ )  

M(tl0 apnd1:x) # 1 V x suchthat apnd1:x # 1 and tl: (apnd1:x) f 1 . It 

suffices for us to  show that V x such that apnd1:x # 1 , 

M(tl0apndl:x) = ~ ( 2 ~ ~ : x ) .  

F ' r e  

Case 1: x = <a,<>> 

(composition) 
(M(apnd1)) 

(M(t1)) 
(M( 2nd 1) 



Case 2: x = <a,<bl, . . . , bn>> 

(composition) 

(Mbpndl)) 
(M(t1)) 

( ~ ( 2 " ~ ) )  

5.3. Process Networks 

FP programs can model networks of communicating processes. In 

order to show this we use data-flow graphs to describe the programs. 

Data flow primitives are described in Table 5.1, and some examples of 

correlations between FP programs arid data-flow diagrams are given in 

Table 5.2. 



Table 5.1 Data Flow Primitives 

A A is appended 
onto stream B. 

f : A,x . . .  X A ,  

+ B , X . . - X B ,  

If p then q 
else r. 



Table 5.2 Data Flow Modelling of FP Programs 

FP PROGRAM DATA FLOW DIAGR-4x3 



The composition j 0 g describes a function which first sends its 

input t o  g, and then sends the output of g to f .  It is very natural to model 

that function as: 

If g sends a (possibly infinite) list, or stream, to  f ,  then it is conceivable 

that g and f could operate in parallel. The transfer of information from g 

to f could operate in one of two ways: 

1) Function g sends its output (or pieces of it) to f whenever g is 

ready, and J processes its input as soon as it is available from g .  

This is a data dr iven  operation and corresponds to standard appli- 

cative evaluation. When f and g work in data driven mode, they can 

each operate in parallel, depending only on the availability of their 

inputs. 

2) Function g sends its output to f only when f makes a request for it. 

This is a d e m a n d  driven operation, and corresponds to lazy evalua- 

tion. The overhead involved in this communication can be quite 

costly, as is demonstrated later in section 5.4. 

A commonly used example of an infinite object defined in FP is the 

definition of the function in tegers .  

def integers = apndlo [id,integers 0 succ] 



When we try to describe in t egers  using a data flow graph, we 

encounter the problem of showing recursion in the graph. Henderson 

expresses recursion in a graph by using a special box to indicate the 

recursive call: 

There is another definition of in t egers ,  however, in which the recur- 

sion can be diagrammed as iteration: 

integers 

int- 
stream 

int 

- - - - - - - - - 
int succ integers 

- - - - - - - - - 

y 
A . - w 



def integers = apndl 0 [id,asucc 0 integers] 

int-stream int-stream 

The latter example demonstrates a style of constructing programs 

in which the recursive call occurs as the right-most te rm in the composi- 

tion. The applyall functional (a) tends to be very useful in this style. 

Notice the difference between the types of the arcs in each graph. 

The arcs in the first graph hold single integers, and the recursive call 

causes the graph to iterate continually, thus producing an integer 

stream. The arcs in the second graph however hold streams of integers. 

Research is currently being done on this topic by Richard Kieburtz [8j. 

A data flow graph of a more complicated program follows. Rotr is 

the primitive FP function "rotate-right". a is the FP functional "apply- 

to-all", which is similar to  the LISP mapcar function. 



def revstream = arotr 0 apndlo [id~evstream] 

def revers = a lSt 0 revstream 

revers 

revs t ream 

finite stream of /stream I 

i ten- item-sequence item-seque nce 
sequence 

The function revers takes as input a finite sequence of items and 

returns as output an infinite stream of the same items in reverse order, 

repeating cyclically. For example, revers : <1,2,3> =3 

<3,2,1,3,2,1,3,2 ,... >. 

5.4. Lazy Evaluation vs. Strict Evaluation 

One of the "benefits" of lazy evaluation is that unnecessary work is 

avoided. Therefore it would be reasonable to assume that a lazy evalua- 

tor can perform calculations in less time than its strict counterpart 

takes to do the same calculations. This is not necessarily the case, 



however, because the lazy evaluator may have to work very hard at being 

lazy. 

We have run programs with both a lazy FP interpreter and a strict 

FP interpreter in order to  compare running times. Both interpreters use 

the same data types, and have similar program structures, so that a rea- 

sonable comparison may be made. 

The lazy interpreter evaluates the functions dist l ,  distr ,  and t rans ,  

by doing source language substitution. (See Appendix A.) This is done so 

that expressions containing these functions may be transformed into 

expressions containing FP sequence constructors, and thus may be 

suspended. In the strict evaluator, however, these functions are primi- 

t ives ,  i.e ; they are directly interpreted in the host language, LISP. This 

makes a significant difference between the running times of the two 

interpreters. Therefore when we run programs using distl,  distr ,  and 

t rans ,  we also examine programs in which these functions are defined by 

the user. The first set of timings will show us what the strict evaluator 

can do when it can take advantage of the fact that d l  FP functions may 

be primitive because all arguments to the functions are objects and not 

suspensions. The second set of timings will give us a more equitable com- 

parison. 



5.4.1. Matrix Multiply 

Matrix Multiply with System-Defined dis tl, dis tr, and trans 

def IP = /add 0 amul 0 trans 
def MM = aaIP 0 adistl 0 distr 0 [ lst,trans 0 pd] 

Table 5.3 Running Times of Matrix Multiply (MM) with Strict and Lazy 
Evaluation 

* 
where x = <<<1,0,1>,<1,2,3>,<1,0,1>>, 

<<1,1,1>,<0,1,1>,<1,0,1>>> 
1 unit is s e c .  
6 0 



Matrix Multiply with User-Defined newdistl, n e  wdistr, and newtrans 

def newdistl = (null 0 znd -, $ 
; apndl 0 [[I", ld 0 2nd],newdistl 0 [lst , tl 0 2ndj]) 

def newdistr = (null 0 lst -, $ 
; apndl 0 [[ lSt 0 1 ~ ~ , 2 ~ ~ ] , n e w d i s t r  0 [tl 0 1 ~ , 2 ~ ~ ] ] )  

def newtrans = (/and 0 anull + @ ; apndl 0 [alst,newtrans atl]) 
def newIP -= / add 0 amul 0 newtrans 
def newMM - aanewIP 0 anewdistl 0 newdistr 0 [lst,newtrans 0 2nd] 

Table 5.4 Running Times of Modified Matrix Multiply (newMM) with 
Strict and Lazy Evaluation 

* 
where x = <<<1,0,1>,<1,2,3>,<1,0,1>>, 

<<1,1,1>,<0,1,1>,<1,0,1>>> 
1 unit is s e c .  

60 



We see that the strict interpreter runs much faster than the lazy 

interpreter, except when part of MM:< ... > is requested. When 

lSt 0 MM: < - - . > is requested, the lazy evaluator "beats" the strict evalua- 

tor. When I& 0 MM:< - . - > is forced,  however, the lazy evaluator takes 

longer. In evaluating lat 0 lSt 0 MM : .< . . . >, however, the lazy evaluator's 

times dramatically improve, and are even less than those of the strict 

evaluator when using newdistl,  etc. This is because the lazy interpreter 

has limited itself to evaluating only lSt 0 ld 0 MM: < - . . >, a single inner 

product calculation, which requires very little work to evaluate. The 

strict interpreter fist completely evaluates M M :  < , . . > before taking 

lgt 0 ld of it. 



5.4.2. A Straight-Selection Sort 

Straight-Selection Sort with System-Defined distl 

def 1s = null 0 2nd -, T ; / and 0 alt a distl 
def least = null -, 8 ; Is 0 [lSt,tl] -+ lSt ; least tl 
def delete = eq 0 [le11" 0 2"] -+ t l  0 2nd 

; apndl 0 [I" 0 2nd,delete 0 [le,tl 0 2nd]] 
def sort = (null 0 2nd + $ 

; apndl 0 [lstlsort 0 delete 0 [ld,2nd]]) 0 [leastbid] 

Table 5.5 Running Times of Straight-Selection Sort Using System- 
Defined distl, with Strict and Lazy Evaluation 

Input to Evaluator 

' unit is L s e c ,  
60 



42 

Strai~ht-Selection Sort with User-Defined distl  

def newls = null 0 2nd -, T ; /and 0 al t  0 newdistl 
def newleast - null + 0 ; newls 0 [lSt1tl] + lSt ; newleast t l  
def newsort = (nu11 0 2nd -, iJj 

; spndl 0 [ld,newsort 0 delete 0 [ 1d12nd]]) 0 [newleastlid] 

Table 5.6 Running Times of Modifled Straight-Selection Sort Using User- 
Defined newdistl, with Strict and Lazy Evaluation 

' unit is L s e c  
60 

Input to ealuator 

When using dist l ,  and forcing the whole sorted list, the strict inter- 

preter takes roughly '/a as long as the lazy interpreter. When evaluating 

the same programs using newdistl in place of rtistl, the strict evaluator 

takes roughly l/2 as long. When evaluating lSt 0 sort :  < . . . > or 

lSt 0 newsort: <39,38, ..., 1,0> 

5* 0 newsort : <39,38,.. ., 1,0> 

loth 0 newsort : <39,38 ,... ,1,0> 

18,928 

18,869 

19,248 

2,625 

13,359 

23,216 



dst 0 newsort: < . . . > the lazy interpreter always takes less time than the 

strict interpreter, and displays the most dramatic speed-up for 

lst 0 newsort: < - . . >. When asked to return an item farther to the right 

in the sorted list, the lazy evaluator slows dowm. From evaluating 

sth 0 sor t .  . - and loth 0 sor t .  - . i t  is evident that a great deal more 

work is required for the lazy interpreter to extract more deeply nested 

items (i.e., items farther to the right) of the list. We propose an explana- 

tion for this in the next section. 

5-5. Lazy FP vs. Lazy LISP 

Friedman and Wise present a lazy implementation of LISP [4] in 

which evaluation of every cons  expression is suspended as follows: (We 

will ignore the environment since it does not directly affect this discus- 

sion.) 

A "suspension node" is created whose fields each point to the 

(unevaluated) arguments of cons .  Extracting part of a suspended c o n s  is 

iairly straightforward. 

FP suspensions are more complicated because there are three 

sequence constructors instead of one, and thus there must be three 



kinds of suspensions. The major problem, however, with FP suspensions, 

is that arguments are not readily available to the sequence constructors. 

This is because FP programs are built by composing functions, not by 

applying functions to their arguments. In order to suspend the expres- 

sion apndl 0 f : x in the same way that cons  is suspended in LISP, we 

rnus t evaluate f : x until we obtain a pair. 

One solution, which we have used in our interpreter, is to suspend 

all sequence constructor expressions, and to use transformations to 

extract parts of the suspensions. For example: 

Another solution could be to transform an FP expression into an 

equivalent applicative expression, in which suspensions could be imple- 

mented as they are for LISP. We will present a technique for transforrn- 

ing a small subset of FP into an applicative form, and then will give an 

example evaluation sequence. 

5.5.1. The Applicative Apndl Suspension 

We will only consider a single sequence constructor, apndl. When 

we evaluate apndl 0 f :  x we want to return a suspension which we will 

We  will need functions to return the quantities pointed to by each of the 

fields of the suspension. We will call them LEFT and RIGHT. Finally, the 



selector functions (we will only need lSt for our example) will need to test 

their argument to see if it is a s u s p e n s i o n  or a sequence .  If it is a 

sequence, a primitive selector function is called to operate on the 

sequence. If it is a suspension, LEFT and RIGHT and other selectors are 

used to delve into the suspension. For example: 

znd: 7% J ld: (RIGHT: 47% ) 

a P cx P 

5.5.2. The Transformations 

(11) Let LEFT be a function that takes a suspension and returns what is 

pointed to by its first field. 

(fl) Let FUN be a function that t a k a  an FP functional expression and 

returns an equivalent function. 

(f4) FUN(lSt) = Ax. x is a suspension + LEFT:x 

; x is a sequence -+ FIRST:x 

; 1 



(el)  Let EVRL be a function that takes an FP application and returns 

either a suspension or an FP object. EVAL(f:x) = FIJN(f):x 

5.5.3. An Example 

EVAL(~~' 0 apndl: <1,<2>>) 

=  FUN(^& 0 apndl) : < 1,<2>> 

= LEFT: f i  
15': <1,<2>> 2nd: <1,<2>:: 

= 1% <1,<2>> 

= FIRST: <1,<2>> 

= 1 

(e 1) 

(f2, beta red) 

(f3, beta red) 

(f4, beta red) 

(11) 

(f4, beta red) 

If it turns out that lazy evaluation is more efficient on applicative 

languages, then this solution would allow one to program on the function 

level of FP, and then the implementation would be carried out on the 

applicative level. Note that the strict FP interpreter is implicitly applica- 

tive, since composition is defined in terms of application: 

f 0 g :x  =3 f:(g:x) 



6- AF'P AND YFP, EXTENSIONS OF FP 

FP programs denote mathematical objects. They obey a set  of laws 

that allow one to manipulate them and to reason about them in the very 

language that  they are written in. These laws have a simple algebraic . 

interpretation that  allows them to be modelled easily, without recourse 

to a complicated denotational semantics. Ordinary reasoning by substi- 

tution of equals for equals provides a satisfactory logical framework for 

deducing properties of FP programs, without knowledge of sophisticated 

topics such as denotational semantics, logic, or axiomatic semantics. 

One of the inadequacies of FP is that recursive functions can not be 

expressed without the aid of an environment. Therefore we propose the 

addition of a least fixpoint functional, Y. The functional )' expects its 

argument to  be a function that takes a function and an object to an 

object. We will call this type of function a scheme. A scheme, written in 

FP, must denote the application of its first argument to its second. 

Therefore we will need to add an explicit apply function to FP when we 

add Y. Let AFP be FP with the addition of apply, and let YFP be AFP with 

the addition of Y. The definitions of apply and Y are included below. In 

the sections that follow we will compare FP to AFP, and in so doing will 

dermnstrate the expressive power that is added to FP by apply. Then we 

will compare AFP to the lambda calculus, in order to show that, even with 

the proposed extensions, FP-languages are still less expressive than the 



lambda calculus. Before we do that, however, we need to clarify the 

notion of e q r e s s i v e n e s s .  

FP can clearly simulate a Turing machine, and so FP has the com- 

puting power of a Universal Machine. There are, however, some expres- 

sions that are directly representable in other Universal Languages that 

can not be d i rec t l y  represented  in F P ,  but must be simulated. In t h s  

sense, F'P is not as equressive as a language in which such expressions 

can be directly represented. 

An expression direc t ly  represen t s  another expression if their 

meanings are equivalent when computed in the same "computation 

environment", and when the in terpre ta t ion,  or decoding, of each object is 

always the same for the same object. The "computation environment" 

refers to all of the domains, such as environments or states, that are 

needed by the function that computes the meaning of an expression. 

Now we give a definition of direct representation that is specific to 

the languages with which we are concerned. W e  use the function Mu to 

give meaning to expressions in AFP and APP. 

Mu : AFP u APP u A + A 

Mu(e) = if e E A then e 
else if  e E AFP u APP then u(e) 
else 1 

The domains AFP and APP are defined later. A is the domain of lambda 

calculus expressions. The function p is a (meaning) function that maps 



AFP u APP into A, and is also defined below. We will assume that the 

interpretation of an object never changes. 

Definition: Let el be an expression of language Ll and let e2 be an 

expression of language Lz in 

e directly represents ez iff Mu(el) AMu(e2). 

We have used the function Mu in order to show that an expression 

in the lambda calculus denotes its own meaning. Later on we will simply 

employ p to show a direct relationship between languages when we know 

we will never have to compute the meaning of an expression in the 

lambda calculus, but are only interested in mapping AFP or APP to the 

lambda calculus. Similarly, on domains for which p will only apply the 

function F, we will rely on F to give us the mapping. 

6.1. Apply 

apply = A < f , O > .  f :  0 

The function a . l y  takes a vector of two objects and returns the result of 

applying the first object to the second. Thus the first object is expected 

to be a function. 

In order to add apply to FP then, we must include functions in the 

domain of objects. Formally, in the definition of the FP semantic func- 

tion, we must include "s-function" in the domain of "s-object", i.e., 



s-object = s-atom + s-sequence + 1 + s-function 

In the Abstract Grammar definition of the input to the interpreter, we 

must change the definition of "object" to: 

object = [atom,sequence,l,f-expr j 

The apply function allows us to write the sort of function schemes 

that,  when given to Y, can be used t o  express a recursive function without 

explicit recursion. 

6.1.1. The Amly Function and the Algebra of Programs 

When apply is added to FP, the axioms for the algebra of FP pro- 

grams remain consistent. This is demonstrated by substituting apply for 

function variables in the important distributive laws and showing that 

those laws are still consistent. We have included one example of this 

below, and the remainder of the proofs are in Appendix D. 



Theorem 6.1: [f,g] o apply = [f 0 apply,g 0 apply] 

Proof: 

[f apply,g 0 apply] : <hay> 
3 <f 0 apply:<h,y>,g 0 apply:<h,y>> 
3 <f:(apply:<h,y>),g:(apply:<h,y>)> 

. 3 <f:(h:y),g:(h:y)> 

(camp)' 
(apply) 

(constr) 

(constr) 
(camp) 
(apply) 

6.1.2. The Power of apply 

For a n  applicative expression such as f(g(h(x))) there exists an  FP 

function whose meaning is equivalent, namely f 0 g 0 h : x. A series of appli- 

cations tha t  associate t o  the right can be expressed in FP by a series of 

compositions terminating with an application. There is, however, no way 

in FP to  directly represent an applicative expression tha t  associates to  

the left. In AFP, however, there exist expressions tha t  can directly 

represent applicative expressions tha t  associate to  the left. For example: 

apply [f ,xl:g * apply: <f:g,X:g> 
* apply:<f:g,x> 
3 (f:g):x 

(comp & constr) 
(constant) 

(apply) 



W e  will define a set of languages, called APP-languages. Besides all 

of the objects, functional expressions, and single, well-typed applications 

of an FP-language (without apply), an APP-language contains all well- 

typed multiple applications of its members. (f:x) is well-typed if the type 

of f is tl + t2, the type of x is t3, and t3 is a sub-type of t l .  We will show 

that, given an APP-language, there exists an AFP-language that will 

directly describe it, whereas it cannot be directly described by an FP- 

language. 

k t  an AFP-language be an FP-language that includes apply, and in 

which functions are included in the domain of objects. Given an AFP- 

language LAFP, let LAPP be the iaiiguage of expressions "e" such that 

1) e E LAFP 

2) e = ( c  : d) and c E LAPP and d E LAPP 

3) Nothing else is in LAPP. 

There exist two identity mappings Tdf and Ida such that Idf takes all 

expressions of LAFP into their syntactically identical counterparts in LAPP, 

and Ida = Idf-' . 

p is a semantic function that maps all elements of LAFP and LAPP 

into expressions of the lambda calculus. p is defined in terms of the FP 

semantic function 

F : f-expr -, s-env -, (s-object -, s-object) 

which is defined in Appendix B and gives the meanings of FP functions. 



definition of p :  

(ml) p(0) = 0, (0, is the object denoted by 0) 

(m2) p(a:b) = ~ ( a ) : ~ ( b )  
(m3) p(f O g) = - p(f):  ( ~ ( g ) : o )  
(m4) p([f . . . , fz]) = A 0  . <p(f 1):0, . . . , p(f,): O> 
(m5) p(app1y) = h<f,x> . f:x 
(m6) p(f) = F(f)$ (f  is a functional expression) 

Let L F p  be the F P  language that is identical to Lm, except that the 

extensions needed for apply are missing. LFp is a proper subset of LmP. 

Claim: There exists a mapping, 7, that takes all of LAPP into LAFP such 

that  for all "a" in LAPP, p(a) = p(7ja)j.  (proof is in Appendix E) 



7 uses the function: Const : LAFP + LAFP . Intuitively, Const takes as input 

an object and returns a function that will return that object on any input. 

In other words, Const behaves like the " K  combinator. For simplicity, let 

0 be the set of all members of LAPP U LAFP that are objects or functional 

expressions, and therefore contain no applications. 



definition of 7: 

(bl) ~ ( a )  = a (a E 0) 
(b2) 7(a: b) = a:b (a,b E @ 
(b3) T(a:(b:c)) = ~ ( a o  b:c) (a,b E 0) 
(b4) ~ (a : (b : c ) )  = ~ ( a : ~ ( b : c ) )  (a E 0, b st 0) 
(b5) ~ ( ( a :  b) : c) =  apply 0 [a, Const ( ~ ( c ) ) ]  : b) (a E 0) 
(b6) ~((a :b) :c)  = T(T(a:b):c) (a BI 0) 

(c 1) Const(a) = B (a E 0) 
(c2) Cons t (a: b) = a 0 Cons t(b) (a E 0) 

Example: evaluation of ~((a : (b:c)) :  (d:e)) (a,b,c,d,e are functional expres- 
sions) 

~ ( ( a :  (b: c)): (d:e)) 
=  apply 0 [a,Const(T(d:e))]: (b:c)) 
= ~(app lyo  [a,Const(d:e>]:(b:c)) 
=  apply 0 [a,d 021 : (b:c)) 
= 7(applyo [a,d o E ]  0 b:c) 
= apply 0 [ a , d o ~ ]  0 b:c 



Claim: 7 preserves the meaning of (a:(b:c)): (d:e). 

Proof: 

p( (a: (b : c)) : (d:e)) 
=jx(a:(b:c)):y(d:e) ( m a  

= (P(a):PCb:c)):P(d):~(e) (m2) 
= ( P ( a ) : ( ~ ( b ) : ~ ( c ) ) ) : P ( d ) : ~ ( e )  ( m a  

p(amly0 [ a , d o ~ ]  0 b:c) 
=@(apply 0 [a,d 0 E] b):p(c) 
= P ( ~ P P ~ Y ) : ( P ( [ ~ > ~  o~l):(p(b):P(c))) (m2) 
=@(apply): (AO. <p(a) :O,p(d 0 E):O>): (p(b):p(c)) (m4) 
=P(~PP~Y):<P(~:(P(~):P(~))),P(~ e):(@(b):P(c))> (beta red) 
=p(apply): <p(a): (P(b):P(c)), ( A 0  4 - 0 :  (p(c):O)):(p(b):p(c))> (m3) 
=P(~PP~Y):  < ~ ( a ) : ( ~ ( b ) : p ( c ) ) ,  ( ~ 0  op(d):((AO op(e)):O)):(p(b):p(c))>(m6) 
=P(~PP~Y) :<P(~) :  (~(b):P(c)),P(d):p(e)> (beta red) 
= ( ~ < f , x >  . f:x): <p(a): (p(b) :p(c)) ,p(d) :p(e)> (m5) 
=(P(~):P(~):P(c))):(P(~):u(~~) (beta red) 
=p((a:(b:c)): (d:e)) 

Function T is a correspondence between LAPP and LAFP, such that T 

takes any member of LAPP to LUP. However, there exist elements of LAPP 

that can not be mapped to LFP by 7. In other words, for any applicative 

expression that is built from FP functions, objects, and any number of 

nested and iterated applications, there exists an equivalent expression in 

an FP-language when it is extended by apply. (Recall that applicative 

expressions in an FP-language have only a single occurrence of the appli- 

cation operator (:).) Therefore apply enables FP (i.e., AFP) t o  directly 

express multiple applications of arbitrary nesting using a single applica- 

tion. 



6.1.3. Is apply a Functional? 

Recall that an FP functional maps FP functions to FP functions. 

&ply operates on functions, but can not be classified as a functional for 

the following reasons: 

1) Apply can stand by itself as an FP program. 

2) Apply maps function and object pairs to objects as well as 

functions. Functionals only map functions to functions. 

3) Apply conforms to the syntax of FP functions. 

&ply is not a functional, but is nevertheless significantly more 

powerful than ordinary FP functions. We can almost build new function- 

als with apply. &ply gives us the power to model arbitrarily nested 

applications, and allows us to build hgher  order functions, but does not 

allow us to build curried functions. For example, let us define the func- 

tion compose-apply. Compose-aply is similar to the functional " 0  ", 

except that  it takes three arguments instead of two. 

def compose-apply = apply 0  [lst,apply 0  [2nd,3rd]] 

compose : <f,g,x> 
3 apply o [lst,apply o [2nd,3rd]] : <f,g,x> (compose-apply) 
3 apply : <lSt:<f,g,x>,apply 0 [2nd,3rd]:<f,g,x>> ([I, O )  

3 apply : <f,apply:<2nd:<f,g,x>,3rd:<f,g,~>> (lst,[l, 
3 apply : <f,apply:<g,x>> ( ~ ~ ~ 3 ~ ~ )  
=3 f : ( g : x )  (apply) 



Apply gives us the ability to create functions such as compose-apply, but 

does not add to the program-building power of FP systems in the same 

way that  the ability to create new functionals would. However, we must 

recognize that while apply is neither a functional nor an ordinary FP 

function, its addition to an FP language increases its expressiveness in a 

significant way. Such an extended FP language no longer falls into the 

category of "FP languages", and we have invented the category of "AFP 

languages" in which to place our "orphan" FP. Questions that should be 

answered concerning AFP languages are: 

1) Are AFP languages significantly more u s e f d  than FP 

languages? 

2) Are programs written in AFP languages easy to understand 

and manipulate? 

6.2. The bast  Fixpoint Functional 

In an  applicative language in which functions can be curried, a 

definition of the fixpoint function x p p  could be: 

Intuitively, (yppf):~ , for a scheme f and an object 0 ,  is equivalent to 

(fn: (1)):O for the least integral value of n for which (fn:(l)):O is defined. 



Since we cannot curry FP functions however (see section 6.3), f 

must take its arguments as a pair. 

YQ is a functional in YFP, and therefore does not by itself denote a 

program. But coupled with a function f i t  has the following meaning: 

We will call the applicative fixpoint operator )"app, arid the YFP 

fixpoint operator v p .  Note that the type of Y* is different from the type of 

Y.PP : 

y ~ p  : schemeapp + functionapp 

where schemeapp = functionapp + functionapp 

and functionapp = object -, object 

ym : schemef, -, functionfp 

where schemefp = (functionfp x object) 4 object 

and functionfp = object + object 

About Yapp we can say: 

f (Yn~pf) = Yappf 

A law that we can state about Yb is not as intuitive: 
- 

\pf = f 0 [Y@f,?ld] 

When we apply each side of the law to an object we get: 

\pf:x = f:<Yipf,x> 

which reflects the meaning of the fixpoint perhaps a little more clearly. 



Yp is used to define recursive functions without having to explicitly 

use recursion. The function (scheme) f is expected to take a vector con- 

sisting of a function and an object, to an object. When ypf is applied to an 

object 0, f is applied just as many times as is necessary to return an 

answer. The evaluation of factorial:3 (see below) requires that 

factscheme be called 4 times. The evaluation of factoriak4 would require 

5 calls to f actscheme, etc. Let 'f = '& in the following example. 

def pred = sub [id,i] 

def factscheme = eqO 2nd 

; ~ . u l  0 [2nd,applyo[1St,predo2nd]] 

def factorial = Y factscheme 

An example evaluation sequence: 

factorial : 3 
)' factscherne : 3 
factscheme : <Y factscheme, 3> 
mu1 : <3, 'f factscheme : 2> 

factscheme : <)" factscheme, 2> 
mul: <2, Y factscheme : 1> 

factscheme : <)' factscheme, 1> 
mu1 : <1, Y factscherne : 0> 

factscheme : < T , O> 
1 



Given a function that never terminates, or a particular input for which it  

does not terminate, )'f : 0 computes forever. That would be the case in 

the example below if succ (the successor function) were substituted for 

p r e d  in the definition of factscheme, or if factorial were applied to a nega- 

tive number. 

6.2.1. Domain. Structure 

Note that adding xp as we have done requires that the Cartesian 

product domains of YFP be separated  rather than coalesced,  as is usually 

the case. - 
I T 

i.e., given domains A: I 8: . I  

a 
I 

b 
I 

I I 

separated product A B : (T,T) = T A B B  

/ \  

(a 4 (1 ,  b) 

\ / 
(J-  ,l) = J - * B B  



coalesced product A x B : 
T I r s  

?''he choice' of separated product implies that construction is non- 

strict. Our definition of Yb requires that f : < i  ,a> not always result 

in 1 , and this would not be possible in a semantics in which the 

product is strict, i.e., where <I ,a> = I. 

6.2.2. Y and the Algebra of Programs 

As in section 6.1.1 it is easy to show that the addition of )/rp 

does not disrupt the algebra of programs. The proof of this is in 

appendix D. 

6-3. A comparison of AFP and the Lambda Calculus 

In the following discussion A will refer to the domain of all 

lambda expressions. Let the set of AFP languages contain the set 

of FP languages plus apply. 

There is a mapping from AFP programs to A. That mapping is 

the semantic function 

F : f-expr -, environment + lambda-expression 

that  is defined in the appendix. We will show that the range of F is 

a proper subset of A, and we will prove two properties that 



characterize this subset. From this we will be able to conclude 

that  any larnbda expression that does not possess these properties 

is outside of this subset, and therefore can not be derived from an 

AFP program by F i.e., there exist some functions in the lambda 

calculus that cannot be directly represented in AFP. 

The intent of this discussion is to demonstrate in a t  least one 

way how AFP is less expressive than the lambda calculus, and 

specifically to show that the higher order functions "K" and "Curry" 

are undefineable in AFP. 

Definition: s is an absh-acted sub-ezpression of e if s = hx.i and 

either 

4) s is an abstracted sub-expression of r, and Xy.r is 

an abstracted sub-expression of e 

Theorem 6.2: Every AFP program f is mapped by F to 1 in A such 

that 1 = Ax.e and: 

1) x does not occur free in any abstracted sub- 

expression of e 



2) no variable occurs free in 1 

Proof: This can be shown by induction on the structure of AFP 

functions. By the definition of F i n  the appendix B and by 

the definition of apply, all predefined AFP functions satisfy 

the above properties. If the functions f l ,  . . . , f ,  satisfy the 

properties, then any function built from an FP combining 

form and any of the  functions f . . . , f, also satisfies the 

properties because no combining form introduces any free 

variables. 

Corollary: AFP is :ess expressive than the lambda calculus, and all 

of AFP can be directly described by a proper subset of 

the lambda calculus. In particular, it is impossible to 

express in AFP' the equivalent of Ax. ... Ay.e(x) ... , 

where Ax. ... Ay.e(x) ... is a lambda expression that con- 

tains abstracted sub-expression Ay.e(x). 

What if we wish to define the K combinator in AFP? In the 

semantic definition for M: K = Ax.Ay.x, x occurs free in the 

abstracted sub-expression Ay.x, so K does not satisfy the conditions 

stated above, and therefore cannot be directly defined within AFP. 

The same is true of the definition Curry f = Ax.Ay, f:<x,yt, . . . ,y,> 

where y = <yl, . . . , y,>. This is not to deny the possibility of 

"hardwiring" Curry and K into AFP. In fact it  might be very desir- 

able to  increase the expressiveness of AFP by adding; these 



functions. But it would then become necessary to insure that such 

an expansion of the language does not change the properties that 

make it  so useful to program and reason in. 



7. CONCLUSION 

We have defined and implemented a version of FP very similar to 

that given by Backus [I]. We have extended FP with )' and apply, and 

have shown that  these extensions make FP significantly more powerful, 

kt still less powerful than the lambda calculus. 

We studied lazy evaluation of FP, and showed that  while lazy evalua- 

bn can take less time than strict evaluation in certain circumstances, 

the overhead involved often increases running time greatly. Lazy evalua- 

tion of FP is complicated by the existence of tr~ree sequence construc- 

tars, and by the fact that  composition and not application is the principal 

operator of FP. 

FP's functional structure allows one t o  program a t  a higher level 

than one would using an  applicative language. FP can also model data 

fbws and networks very nicely. It's algebraic properties allow the pro- 

g a m m e r  to  manipulate and reason about his programs in a straightfor- 

awtrd way. 

It is the opinion of the author t h a t  FP has some serious problems. 

An IT that could be easily statically typed would be easier to program in. 

Although not a topic of this thesis, i t  is likely that  it would be easier to 

perform lazy evaluation on a statically typeable FP. Lazy evaluation, 

&haugh i t  shows promise, can be extremely costly. The addition of 

w l y  is necessary for a fixpoint functional, but adds just enough 



applicative power to make one desire the ability to define curried func- 

tions. FP lacks the variety of data types needed for a comprehensive pro- 

gramming environment. But its clear, algebraic structure is nonetheless 

a very attractive medium in which to build programs. 
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APPENDIX A 

FORMAL, DEFINITION OF TEE INTERPRJ3'KR 

The Domains af Interpret 

notation: a.1 means "item a appended onto list 1" 

ele'j means "environment e updated by environment e "' 

env = Identifier -, f-expr 

state = AST -+ AST 

The domains application, definition, f-expr, object and identifier, are sub- 

sets of the domain of AST's as defined by the  Abstract Grammar. 

The Interpretation Functions 

Interpret : (application + definition)* -, state -, env -, (AST* x env) 

I : (application + definition) -, state -, env -, (AST x state x env) 

eval : (object + application) -, state -, env 

-9 ((object + application) x state) 

defineable : (Identifier X f-expr X env) -, boolean 

predefined : Identifier -, boolean 



Fn : Identifier -+ (object -r object) 

FORCE : (object + application) -+ state -+ env -+ (object x state) 

Interpret(tl, . . . , k)wq = let (r,ul,ql) = I [tl ]uq in 
l e t ( L , ~ ~ )  = Interpretn(t2, . . . , tn) ]ulql in 

n = 0 -) (0177) ; (r.L1771 t772j) 

defineable(i,f,q) = ~ ( i )  = I -) (Vxjdentifier in f ) ,  ~ ( x )  # 1 or x = j 
+ true ;false 

; false 

Fn(1d) = cases Id is 
add 3 ADD 
and AND 
apndl 2 APNDL 
apndr -T. APNDR 
atom 3 ATOM 
distl ". DISTL 
distr 3 DISTR 
div DIV 
eq * EQ 
ge 3 GE 
g t  GT 
id ". ID 
le LE 
It -5 LT 
length LENGTH 
It -". LT 
mu1 MUL 
ne -". NE 
not 3 NOT 
null -3 NULL 
or ". OR 
reverse REVERSE 
rot1 3 ROTL 



rotr ROTR 
sub 3 SUB 
t l  TL 
tlr TLR 
trans ". TRANS 

eval(t)oq = cases t is 

"an object" + (t,v) 

force:x 3 (x,cr[x/ t]) 

1d:x + ~redefined(1d) -+ (r,o[r/ t]) where r = (Fn 1d)x 
; let (rl,ol) = eval[(q Id):xI]q in 

(rl*al[rl/ t l )  

(p -+ f ; g):x + let (rl,o,) = eval[p:xT]oq in 
rl = T -+ let (r2,02) = eval [f:x i]alq in (r2,02[r2/ t]) 
; rl = F -, let (r2,%) = eval[g:x]olq in ( r2 ,~z[ r2 /  t]) 
; (1 ,QI[l/ tl) 

af:x 3 (r,a[r/ t]) 
where r = cases x is 

"an atom" 3 1 

<01, . . . , On> 3 "f is predefined" 
-+ <(Fn f)O1, . . . , (Fn f)On> 
; [f0lSt, . . . ,f0nth]:x 

/ f:x =3 cases x is 
"an atom" 3 (1 ,v[i  / t]) 
# * ( l , o [ l / t I )  
<01> * (O~,o[O~/ t l )  
<o,, . . . ,on> * 

predehed(f)  
-+ let  (rz,uz) = eval[/f:<02, . . . , O,>I]alq in 

let (r3,a3) = eval[f:<Ol,r2> 00277 in 
(r3103[r3/ tl)  

; l e t  (r2,02) = eval [f 0 [lSi,/ f 0 [Znd1 . . . , n ~ ] ] : x  0 0117 
in (rz1v2[r2/ tl) 

[ f  . . . f ] :  5 let t' = Ufl:x, . . . , fn:xD in (t',o[tf/ t]) 



a:x (alw[a/ t]) 

(bu f a):x 5 let (rl.ol) = eval[f:<a,x> lo7 in (rl,ul[rl/ t]) 

(while p f):x 3 let (rl ,ol)  = eval[p:x]oq in 
rl = T -+ le t  (r2.02) = eval [ (while p f) 0 f :x ]olq in 

(r21oz[rd t l)  
; rl = F -+ (x,wI[x/ t]) 
; (1 1wJ1 / tl) 

S ~ : X  (r.w[r/ t]) where r = cases x is 
"an atom" 3 1 
$ * I  
(0 l l . . . , O n >  3 s S n - , O s ; l  

r s ~ : x  (r.w[r/ t]) where r = cases x is 
"an atom" =3 1 
$ 3 1  
<01, . . . On) * s 5 n -r On_,+, 

force0f:x let (rl,ol) = eval Ef:xl/q in 
let (r2,02) = FORCE(rl)ulv in 

(rz,ffz[rz/ t l)  

[f,. . . . , f,] 0 g:x => le t  tf = [f, 0 g:x, . . . , I, og:x] in (tf,o[t '/  t]) 

a0 f:x * (a,a[a/ t]) 

atom. f:x => let (rl.ol) = eval [ f : x l q  in (rz,ul[rz/ t])  
where rz = cases rl is 

"an atom" =3 T 
"a sequence" 3 F 
[ g l : ~ ,  . . . , g,:~] * F 
apndl0g:y J ' F 
apndr0g:y 3 F 



dist10f:x * let (rl,crl) = eval I ( n u l l 0 2 ~ ~  + @ 
; apndlo [[lgt, lgt 0 Znd], 

distlo [ln.tlo 2nd]]) 0f:xjoq in 
( r l l~ l [ r l /  t l)  

distr 0f:x ". 
let (rl ,al) = eval[(nullo lSt -, p 

; apndl 0 [[ 1 st 0 ld, 2nd], 
di~tr~[tl~1~,2~~]])of:x]o~in 

(rlJul[rl/ t l)  

id0f:x * let (rl,ol) = evalIf:xloq in (rl,al[rl/ t]) 

1ength.f:~ * let (rl,ol) = eval[f:xlaq in 
cases r l  is 

"an atom" * (L , D ~ [ L  / t]) 
$ -. (Olol[O/tl) 
<01, . . . ,On> * (n,ol[n/t]) 
[gl:yI - - . 8 g,:yl J (n,a,[n/ t]) 
apnd12g:y .J 

let (rZ,az) = evalllengtho Znd og :Y]o l~  in 
( r 3 0 z b d  tl) 

where r3 = r2 + 1 
apndr 0g:y 3 

let (r2]oz) = evalilength 0 lS t0  g : y ] u l ~  
( r sJO~[rd  tl) 

where rs = r~ + 1 

null. f:x 3 let (rl,al) = evalif:x]aq in (r2,al[r2/ t]) 
where r2 = cases rl is 

"an atom" ". F 
9 = 3 T  
<0,, . . . ,on> * F 
[ g ~ : y ,  . . . ,gn:y] -3 F 
apndl0g:y + F 
apndr0g:y 3 F 



reverse 0 f:x let  (rl,ol) = eval [f:x]07) in (r2,~1[rZ/ t]) 
where r2 = cases rl is 

"an atom" 1 

<ol, . . . ,on> 3 <on, . . . ,o l> 
[ g l : ~ ,  - . - 1gn:yl [gn :~ ,  - . . g1:yl 
apndl 0 g:y 5 apndr 0 [reverse 0 pd, lst] 0 g:y 
apndr 0 g:y apndlo [rl",reverse 0 l&] 0 g:y 

let (rl,ol) = eval [(null + g ; apndr 0 [tl, ld]) 0 f : x J q  in 
( r l l ~ l [ r l / t l )  

r o t r o f : ~  
let (rl,ol) = eval [(null -. 56 ; apndlo [rln,tlr]) 0 f : x ] q  in 

(rl?ol trl/ tl> 

tl0f:x let (rl,al) = eval[f:x]oq in 
cases rl is 

"an atom" 3 (I , ol [L / t]) 
9 -. (1 I@I[l/ t l )  
(01, . . . , On> * (r2,01[r2/ t]) 

where rz = <02, . . . ,On> 
[BI:Y. . . - , g,:~] 3 (rz.ul[rz/ t]) 

where r2 = [gz:y, . . . , g,:y] 
apndlog:y 3 let (rz,02) = eval [znd og:y]lolq in 

(r2, ff2[r2/ tl 
apndr0g:y 

let (r2, 02) = eval l[ (null 0 lSt + ?g 
; apndro[tlo 1st,2nd]) og:y]o,q 
in (r292[ r2/ t l )  



tlr0f:x let  (rl,al) = eval[f:x]oq in 
cases rl is 

"an atom" 3 ( I ,u~[L/  t]) 
# * ( l S c J I [ ~ / t l )  
<01, . . . , On> (r2,al[rz/ t]) where r2 = <01, . . . , On_,> 
[gl:yI . . . * g,:yl 3 (r,to,Crz/tl) 

where rz = [gl:y, . . . , gn-l:y] 
apndl0g:y l e t  (r2,0z) = 

eval [(null 0 -+ @ 
; apndl~[1St , t l r~2nd])  0g:yIJ 

in (rz,cJz[rz/ tl) 
apndr o g:y 3 l e t  ( r z , ~ 2 )  = eval[ lSt o g:y nolq in (r2,02[rz/ t]) 

trans0f:x 3 l e t  (rl,ol) = eval[(/andoanull -+ ip 

; apndlo [alSt,transo atl]) of:x] (rq 
in ( r l > q [ r l /  t]) 

lStaf:x 3 le t  (rl,al) = eval[f:x]o77 in 
cases rl is 

"an atom1' 3 (I , ol [l / t]) 
# * (1 J J l [ l / t l )  
to , ,  . . - , on> * (O,,o,[O,/ t]) 
[g,:y, . . . ,gn:y] 3 let (r2,02) = evallgl:y]olq in 

(rz,%[r2/ t l)  
apndl0g:y le t  (rZ,az) = eval[l"og:y] olT in 

(rz1@2Crz/ tl) 
apndr 0g:y + let(r2,0z) = 

eval1 (null 0 lSt -, 2nd 
; l S t 0  lS') o g : y ] ~ ~ 7 )  

in (rz,oz[rz/ t l)  

@ o f  3 let  (rl,ol) = evall (s-l)tho t10 f :x~oq  in (rl.ol[rl/ t]) 



rld0f:x let (rl,al) = eval[f:x]oq in 
cases rl is 

"an atom" * (I ,a l [ i  / t]) 
Q, * ( l ro , t l / t l )  
<01, - . - ,on> 3 (O,,a,[O,/t]) 
[gl:y> . . . ,g,:yl -c. 

let (r2,o~) = evalkn:yllolq in (rz,uz[rz/ t]) 
apndl 0 g:y 

let ( r z , ~ ~ )  = eva l [ (nu l l02~~  -r lSt + 

; r lSt 0 2nd) 0 g:y ]olq in 
(r2,0z[r2/ tl)  

apndr0g:y * 
let(r,v2) '= eval [2nd 0 g :y ]olq in (r2, 02[rz/ t J )  

r ~ ~ 0 f : x  * let (rl,o,) = e ~ a l ~ r ( s - l ) ~ ~ t l r o f : x ] o ~  in 
( ~ l l ~ l r ~ l ~ t l )  

/fog:x * let (rl,vl) = eval[g:xauq in 
cases r l  is 

"an atom" (1 ,al[l / t]) 
$ * ( 1  P d J -  / ill 
<01> (01,q[01/ tl)  
<o,, . . . ,on> =3 

predefined(f) -+ let (r2,02) = eval[/ f :  <02, . . . , On> ]olq in 
let (r3,u3) = 

eval [f:<Ol,r2> ]0277 in 
(r3103[r3/ tl) 

; let (r2,0Z) = 
evallf [lSt,/ f 0 [2nd, . . . , nth]]:rl j olq 

in (rzla2[rz/ t]) 
[h:y] =j let (rZ,02) = eval [h:y]olq in (rz,02[rz/ t]) 
[hl:y, . . 9 , hn:y] 

let (rz,uz) = eval[f [hl:y,/ f 0 [h2:y , . . . , h,:y]] ]alq in 
(r21~~2[r2/ tl) 

apnd10h:y 
let (r2,u2) = 

e ~ a l ~ ( n u l l ~ 2 ~ ~  -, lSt ; fo [ lS t , / f~2nd] )~h :y ]  u1q 
in (rz,az[rz/ tl)  

apndr Q h: y 3 
let(r2,u2) = 

eval [(null 0 tl -+ 15' ; f 0 [I&,/ f 0 tl]) 0 apndr 0 h:y ]ulq 
in (rz,az[rz/ t]) 



(af)og:x 3 
let  (rl,al) = eval [g:x j q  in (rz, al[rz/ t j)  

where r2 = cases r l  is 
"an atom" 3 i 
9 * #  
<01, . . . ,On> 3 predefined(f) 

-+ <(Fn f)Ol ,  . . . , (Fn f)O,> 
; [ f o  I&, . . . , f onth]:rl 

[hl:y, . . . ,hh:y] 3 [fohl:y, . . . , f  oh,:yj 
apndl 0 h:y * apndl 0 [f 0 l",af 0 2nd] 0 h: y 
apndr 0 h: y apndr 0 [af 0 1&,f 0 2nd] 0 h:y 

(buf a)og:x 3 le t  (rl,a,) = eval[fo[~,g]:xoq in (rl,o,[rl/t]) 

(while p f) 0 g:x 5 
let  (rl,wl) = eval[pog:x]aq in 

rl = T + let (r2,a2) = evaln(whi1e p f) ~fog:x~a177 in 
(r2,02Cr2/ tl) 

; rl = F -+ let (r2,0z) = eval[g:x]a,q in (r2,a2[rz/t]) 
; (1 .o1[1/ L]) 

( p - , f ; g )oh :x  
let (rl,ol) = eva![poh:x]oq in 

rl = T let  (rz,a2) = eval If 0 h:x 1 olq in (rz, a2[rz/ t]) 
; rl = F -+ let  (rz, az) = eval [g 0 h:x ]alq in (rz,02[rz/ t]) 
; (1 , a l r l /  tl) 

f 0 g:x + let (rl,ul) = eval[g:x]q in 
l e t  (r2,az) = FORCE(rI)ulq in 

(r3,a2[r3/ t]) where r3 = (Fn f)r2 
where f E tadd, and, div, eq, ge,  g t ,  le, I t ,  mul, ne, not, or, sub! 



FORCE(t)av = cases t is 
an object 3 (t,s) 
[fl:x, . . . ,f,:x] 5 

let  (I,a,) = <FORCE(fl:x)aq, . . . ,FORCE (f,:x)aq> 
in (<L>,al[<l>/ t]) 

apndl0g:x 2 
let (rl,al) = eval[g:x]luq in 

Irrl is an object" -+ (r2,~1[r2/  t]) where rz = APNDL(rl) 
; le t  (rz,a2) = FORCE(r,)o,q in 

(r3,az[r3/ t]) where r3 = APNDL(r2) 
apndr0g:x 3 

let  (rl,al) = eval[g:xl)aq in 
"rl is an object" -, (r2,a1[r2/ t]) where rz = APNDR(rl) 

; le t  (r2,wz) = FORCE(rl)alq in 
(r3,02[r3/ t]) where r3 = APNDR(r2) 



APPENDIX B 

SEXANTIC DEFINITION OF FT 

The Domains of Meaning 

s-env = identifier -, s-function 
s-function = s-object -, s-object 
s-object = s-atom + s-sequence + 1 
s-sequence = s-object* 
s-atom = integer + literal + boolean 

(Where identifier is the primitive domain of identifiers, integer is the 
primitive domain of integers, literal is the primitive domain of characters 
and character strings, boolean is {true,falsej, and I is "bottom" or 
"undefined".) 

The Functions of Meaning 

Meaning : (object + f-expr + application + definition) * + 

(s-function + s-object) * x s-env 

Meaning' : (object + f-expr + application + definition)* -, s-env + 

(s-function + s-object)* x s-env 

M : (object + application + definition + f-expr) -+ s-env -+ 

(s-function + s-object) x s-env 

F : f-expr -+ s-env -+ (s-object -, s-object) + 1 

notation: a.1 means "item a appended onto list 1" 
e[eWj means "environment e updated by environment e "  



Meaning [(t . . . , b) Meaning' (tl, . . . , k) ]I# 

where q5 is an empty s-env 

Meaning' I ( t l .  . . . , &) let (~,.TJIJ = E i t ,  in 
let (L,.72) = Meaning' [(t,, . . . . t,jq I,, in 

n = 0 -. (017,) ; (0.Lo17?2J 

M (0 ]qu=<OU,qu> (0, is the semantic object represented-by AST 0) 

M if  ]qu=<F [f l/qu,7u> (where f is an f-expr) 

F [atornjq, = AO. 0 "is an atom" -, true 
;O # 1 -3 false 
; 1 

Fl[eqiv, = AO. 0 = <Ol,O2> 
-, O1 = O2 -, true 

;false 

F [null]qo = AO. 0 = <> -+ true 
;O # 1 -+ false 
; 1 



Fjadd 17, = hO.0 = <01,02> & 0,,02 are numbers + 0, + O2 
; 1 

F[sub]qu = hO.0 = <Ol,O2> & 01,02 are nurnbers * 0, - O2 
; 1 

F~mul]q, = hO.0 = <01,02> & Ol1O2 are numbers + 0, % O2 
; 1 

Fldivjq, = AO.0 = <01,02> & 0,,02 are numbers -+ 0,/02 
; 1 

FIgtlqu = A O . 0  = <01,02> & 0,,02 are numbers + 0,>02 
; 1 

Flgejq, = AO.0 = <01,02> & 01,02 are numbers -, O1 2 O2 
; 1 

F[lt]qD = AO.0 = <01,02> & 01,02 are numbers + 0,<02 
;I 

F[le]qg = AO.0  = <01,02> & 01,02 are numbers + 0, 5 O2 
; 1 

F[ne]lqO AO.0 = <01,02> & 01,02 are numbers -+ O1 # O2 



F I a n d ] ~ ,  = XO.0 = <true,true> -, true 
;O = <true,false> or 0 = <false,true> or 0 = <false,false> 

-, false 
; 1 

F[or]q, = hO.0 = <true,true> or 0 = <true,false> or 0 = <false,true> 
-, true 

;O = <false,false> -, false 
; 1 

FInotjq, = AO.0 = true -, false 
;O = false -, true 
; 1 



F gp -+ f ig  17, - ~ 0 . F l p  nqU:0 = true -+ F U f  II.rl,:o 
;F[p 1]q0:0 = false -, F [g I]vo:O 
; 1 

Flbu f a ] ~ ,  = AO. F[fnq,:ta,O> 

F !while p f lqa = YAW.AO.F [p l ~ , :  0 = true 
-, w: (F !f 077,: 0) 

;FIp ]q,:0 = false + 0 



APPENDIX C 

CORRECTNESS OF TRANSFORMATIONS 

For each transformation eval [ e  = eval je' 1 performed by the interpreter, 
we will show that e is less defined than or equal to e ' ,  
i.e. M(e) G M(el). The function 

is a semantic function defined in Appendix B. 

The following liberties will be taken: 

1) Objects will denote their meanings. For example: M(I ) = I., 
M(<1,2>) = <1,2>. 

2) The environment and state arguments to eval and M have no effect 
on the proofs, and ~vill therefore be omitted. 

3) I f e v a l ~ [ e ~ f ~ = e v a l [ e ~ ~ f ~ , t h e n b y t h e t h e o r e m o n p . 2 6 i t w i l l b e  
sufficient to show that M(e) L M(el). 

4) Obvious steps are left out of the proofs. For example: 
M(t1) : M(<a,, . . . ,a,>) 

= (A<O1, . . . ,On> . <Oz, . . . ,On>) : <al, . . . ,a,> 
= <az, . . . , a,> 

will be reduced to a single step. 

5) If the proofs of two transformations are very similar, then only one 
of the proofs is given. 

6) For the transformation evallf 0 g ] = eval [h], we want to show that if 
M(i0g:x) # 1 then M(f0g:x) = M(h:x). The set of all x s.t. 
M(f 0 g:x) # 1 is a subset of the se t  of all x s.t .  M(g:x) # I. For most 
proofs we will show that M(f0g:x) = M(h:x) wherever M(g:x) # 1 , 
which will clearly cover all cases where M(f 0g:x) # I. 



7 )  Some of the proofs will take  advantage of the algebra of programs 
[ 11. 

Theorem TI: M(disU) II: M(nu31 2nd + ip 

; apndlo [[lB', 1". 2nd]ldistlo [lSt,t10 znd]]) 

Proof: 

case 1: x = <a,<>> 

M(distl:<a,<>>) = <> 
~ ~ ( ( n u l l o  2nd + $ ;...):<a,<>>) = $ 

case 2: x = <a,<bl, . . . , bn>> 

M(distl:<a,<b,, . . . , bn>>) = <<a,bl>,. ..,<a,b,>> (M(dist1)) 
~ ( ( n u l l o  2nd -, i#i ;...):<a,<b,, . . . , bn>>) 

= ~ ( a ~ n d l o  [[l~,l*~2nd],distl~~l".tl~2nd]]:<a.<bl. . . . . b,>> (cond) 
= M(apndl:<<a,bl>,distl:<a,<bz, . . . , bn>>>) (constr,selec tors) 
= M(apndl:<<a,bl>,<<a,bz> ,..., <a,b,>>>) (M(dist1) 
= <<a,bl> ,..., <ants,>> (M(a~ndl)) 

Theorem T2: M(distr) E M(null0 lSt -, 
; apndr 0 [[lSt0 1St,2nd],distr 0 [tlo 1 ~ , 2 ~ ~ ] ] )  

Proof: similar to proof of T1 

Theorem T3: M(id 0 f)  C M( f )  

Proof: 111.2 in [ I ]  

Theorem T4: M(reverse 0 apndl) II M(apndr 0 [reverse 0 2nd, 1st J) 

Proof: 

case 1: x = <a,<>> 

M(reverse 0 apndl:<a,< >>) 
= M(reverse):M(apndl: <a, <> >) 
= M(reverse): <a> 
= <a> 

M(apndr 0 [reverse 0 pd, lst] :<a,<> >) 
= M(apndr):M([reverse 0 2nd11St]: <a,<>>) 
= ~(a~nd r ) :M(<reve r se :  <>,a>) 
= M(apndr): <<>,a> 

(camp) 
(constr) 

(M(reverse)) 



case 2: x = <a,<bl, . . . , bn>> 

M(reverse o apndf: <a,<bl, . . . , bn>>) 
= M(reverse):M(apndl):<a,<bl, . . . , bn>>) ( C O ~ P )  
= M(reverse):<a,bl, . . . , bn> (M(a~nd1)) 
= <b,, . . . , bl,a> (M(reverse)) 

d st  M(apndrO [reverse D2n , I  ]:<a,<bl, . . . , b,>>) 
= M(apndr):w[reverse 0 2 ~ ~ , 1 s t ] : < a , < b ~ ,  . . . , bn>>) ( C O ~ P )  
= M(apndr):M(<reverse:<bl, . . . , bn>,a>) (selectors,constr) 
= M(apndr):<<bl, . . . , bn>,a> (M(reverse)) 
= <bl, . . . , b a a >  

Theorem T5: M(reverse 0 apndr) c M(apndl0 [r lA,reverse 0 lSt]) 

Proof: similar to proof of T4 

Theorem T6: M(rot1) C M(nul1 + ijS ; apndr 0 [tl, lSt]) 

Proof: I 

case 1: x =$ 

M(rotl:$) = $ 
M((nul1 -+ ?j ; apndr 0 [tl, lSt]):$) = q5 
case 2: x = <al,.. .,an> 

M(rot1: <al, . . . , an>) = <X6,a,> 
M((nul1 -+ g;apndr 0 [tl, lSt]):<al, . . . , an>) 

= M(apndr0 [tl, lSt]:<al, . . . , an>) 
= M(apndr: < <a2, . . . , a,>, a]>) 

Theorem T7: M(rotr) E M(nul1 -, @ ; apndl [r lA, tlr]) 

Proof: similar to proof of T6 

(cond) 
(comp,tl,selectors) 

(apndr) 

Theorem TO: M(tl0 apndr) E M(null0 lSt -, @ ; apndr 0 [tl 0 1A,2nd]) 

Proof: 



(c ond) 
(constr,selectors) 

Illemem T9: M(t1r o apndl) E M(null0 2nd -t $ ; apndl 0 [ lst, tlr 0 2nd]) 

b f :  similar to proof of T8 

lkeorem TlO: M(t1r 0 apndr) E M( lSt) 

Pboof: sirnilar to proof on page 29 

Tkeiorem T11: Mftrans) 5 M(/ and o anull -, $ ; apndl 0 [ a  lSt, trans 0 d l ] )  

(trans) 
(cond) 

~ a n s : < < a l l ,  . . . , aIn>, . . ., <a,,, . . . . amn>>) 
= <<al1, . . . ,a,,> ,..., tala,  . . . ,ank>> (trans) 

M/and 0 anull ...) :<<al1, . . . , alll>, . . .,<a,,, . . . , amn>>) 
= M(apndl 0 [a ld,trans oatl]:<<all, . . . , aIn>, ..., <aml, . . . , amn>>) (cond) 
= M(apndl:<<al,. . . . . a,,>,trans:<<al,. . . . , aln>, .... <amz, . . . .anh>>>) 

(constr,sel, t1,a) 
=Jd(apndl:<<a,,, . . . , a,,>,<<a,,, . . . , am> . . . ,  <aln, . . . . a,>>>) (trans) 
= <<al1, . . , ,a,,> ,..., <aln, . . . ,arrh>> ( a ~ n d l )  



Proof: 

case 9: x = <a,$> 

M(1*0 apndl: <a,$>) 
= M( lSt):M(apndl:<a,Q>) 
= Id(lSt):<a> 
= a 

M(ld:<a,Q> = a 

case 2: x = <a,<bl, . . . , bn>> 

M(l*o apndl: <a,<bl, . . . , b,>>) 
= lH(lSt):M(apndl: <a,<bl, . . . , bn>>) 
= ad(lSt):<a,bl, . . . , b,> 

Theorem T13: M(lst oapndr) E M(null0 lSt -, 2nd ; lSt 0 lSt) 

Proof: 

case 1: x = <$,b> 

~ ( 1 ~ ~ 0  apndr: <<al, . . . , a,>,b>) 
= B4(lSt):~(apndr:<<al, . . . , an>,b>) 
= %4(lst):<a1, . . . , an,b> 
= al 

M((null0 1" -+ 2nd ; l S t o  lst):<<al, . . . ,a,>,b>) 
= ~ ( 1 ~ 0  lSt:<<a1, . . . , a,>,b>) 
= &l(lSt:<al, . . . ,a,>) 
= a1 

(c ond) 
( znd> 

(cond) 
(comp , lSt) 

( 1") 



Theorem T 14: M (sth) C_ M ((s - i)th 0 tl) 

Proof: 

Theorem T15: M ( r  lSt 0 apndl) E  null 0 Znd + lSt ; rid 0 Znd) 

Proof: 

case 1: x = <a,$> 

case 2: x = <a,<bl, . . . , bn>> 

(cond) 
( lSt) 

(c ond) 
(camp) 

(pd> 
(r 1 st) 



Theorem T16: M(rlS"oapndr) E ~ ( 2 ~ ~ )  

Proof: similar to proof of TI2 

Theorem T17: ~ ( r s ~ ~ )  L ~ ( r ( s - l ) ~ ~ o t l r )  

Proof: similar to proof of TI4 

Theorem TlB: M(/f) E M(f 0 [lSt,/ f 0 [2nd, . . . , nth]]) where n = length of x 
and n > 1 

Proof: 

Theorem Tl9: M ( / f  0 apndl) E hl(nul1 o znd + 1" ; f [I" ,/ f 0  2ndl) 

Proof: 

case 1: x = <a,#> 

M(/ f 0 apndl: <a,$ >) 
= M(/f):M(apndl: <a,$>) 
= M(/f):<a> 
= a 

~ ( ( n u l 1 . 2 ~ ~  + ld  ; f 0 [ ld, / f  02"~]):<a,$>) 
= ~ ( 1 ' ~ :  <a,$>) 
= a 

(cond) 
( lSt) 

case 2: x = <a,$> 

M(/f 0 apndl:<a,<b,, . . . , b,>>) 
= M(/f):M(apndl: <a,<bl ,  . . . , b,>>) ( c o m ~ )  
= M(/f): <a,b,, . . . , bn> (apndl) 
= M(f):<a,M(/f):<b,, . . . , b,>> ( 4  

~ ( ( n u l l 0 2 " ~  + 1" ; f o [ l " , / f 0 2 ~ ~ ] ) : < a , < b ~ ,  . . . , bn>> 
= M(f 0 [lSt,/ f 0 2nd]:<a,<bl, . . . , b,>>) (cond) 
= ~ ( f ) : ~ ( [ l ' ~ , / f  0 2nd]:<a,<bl, . . . , bn>>) ( c o m ~ )  
= M(f):<a,M(/f):<bl, . . . , b,>> (constr,comp,selectors) 



Theorem T20: M(af 0 apndl) E M(apndl0 [f 0 lst,af 0 Pd])  

Proof: 

case 1: x = <a,$> 

M(af 0 apndl: <a,$>) 
.= M(af):M(apndl: <a,$>) (camp) 
= M(af):<a> ( a ~ n d l )  
= <M(f):a> (a)  

M(apndl0 [ f 0 lSt, af 0 2nd] : < a, q5 >) 
= M(apndl):M([f 0 ld,af 0 2nd]: <al$>) ( C O ~ P )  
= M(apndl):<M(f):a,M(af):$> (constr,selectors,comp) 
= M(apnd1): <M(f):a,$> (a)  
= <M(f):a> ( a ~ n d l )  

case 2: x = <a,<bl, . . . , bn>> 

M ( a f  0 apndl: <a,<b,, . . . , b,>>) 
= M(af):M(apndl:<a,<b,, . . . , bn>>) (camp) 
= M(af):<a,b,, . . . , b,> ( a ~ n d l )  
= <M(f):a,M(f):bl, . . . ,M(f):b,> (a)  

M(apndl0 [ f o  ld1af 02*~]:<a,<b,, . . . , bn>>) 
= ~(a~nd l ) :M( [ f  0 lst,af 0 2nd]: <a, <bl,  . . . , bn>>) ( c o m ~ )  
= M(apndl):<M(f):a,M(af):<b,, . . . , bn>> (constr,selectors,comp) 
= M(apndl):<M(f):a,<M(f):b,, . . . , M(f):b,>> ' (a)  
= <M(f):a,M(f):bl, . . . , M(f):b,> ( a ~ n d l )  

Theorem T21: M(af 0 apndr) C M(apndr [af 0 lSt,f 0 pd]) 

Proof: similar t o  proof of T19 

Theorem T22: M((bu f a) o g )  L M(f 0 [a,g]) where a is a n  object 

Proof: 



case 1: x = <a> 

case 2: x = <al, . . . ,a,> 

(cond) 

(c ond) 
(camp) 

(constr, lSt, tl,comp) 



Proofs tha t  the important laws of the  Algebra of FP Programs still hold 
when apply is added to FP: 

apply O (P -+ f ; g):x 
--' apply:((p -+ f ; g):x) 
* apply:(p:x) -+ (f:x) ; (g:x) 

case (p:x) = T 
* apply: (f : x) 

case (p:x) = F 
-.' apply: (g : x) 

otherwise 
-c. 1 

(p + apply 0 f ; apply 0 g):x 
--/ (p:x) -+ (apply o f:x) ; (apply 0 g:x) 
* (p:x) -+ (apply:(f:x)) ; (apply:(g:x)) 

case (p:x) = T . 

* apply: (f :x) 
case (p:x) = F 
* apply:(g:x) 

otherwise 
J 1 

(p -' f ; g) apply:<h,y> 
(P -+ f ; g):(apply:<h,y>) 

* (P -+ f ; g):(h:y) 
3 (p:(h:y)) + (f:(h:y)) ; (g:(h:y)) 

case p:(h:y) = T 
f:(h:y) 

case p:(h:y) = F 

( C Q ~ P )  
(cond) 

(cond) 

(cond) 

(c ond) 

(c ond) 
(camp) 

(cond) 

(cond) 

(c ond) 

(camp) 
(apply) 
(cond) 

(cond) 



3 g:(h:y) 
otherwise 

3 1 

(p  apply -+ f apply ; g o apply):<h,y> 
case p apply: <h,y> = p: (h:y) = T 
3 f 0 apply:<h,y> 
3 f: (apply: <h, y>) 
3 f:(h:y) 

case p 0 apply:<h,y> = p:(h: y) = F 
3 g 0 apply:<h,y> 
* g: (apply:<h,y>) 
3 g:(h:y) 

otherwise 
1 

95 

( c  ond) 

(cond) 

(cond) 
(camp) 
(apply) 

(cond) 
(camp) 
(apply) 

(cond) 



Proofs that  the important laws of the Algebra of FP Programs hold when 
Y is added t o  FP: 

(p + f  ; g )  0 h z  (p h) -+ (f h ) ;  (g h) 

(p -+ f ; g) Ye:x 
3 (p -+ f ; g):(Ye:x) 
3 (p:(Ye:x)) -, (f:(Ye:x)) ; (g:(Ye:x)) 

casep:fle:x) = T 
3 f:()'e:x) 

case p:(Ye:x) = F 
3 g:()'e:x) 

otherwise 

(p 0 Ye -, f Ye ; g 0 Ye):x * (p o Ye:x) -+ (f Ye:x) ; (g 0 Ye:x) 
case (p 0 Ye:x) = (p:(Ye:x)) = T 
* f 0 Ye:x 
3 f:('fe:x) 

case (p 0 Ye:x) = (p:()'e:x)) = F 
3 g Ye:x 
5 g:(Ye:x) 

otherwise 
3 1 

h o  ( p + f ; g ) b p - + ( h  f ) ;  (h 0 g) 

(camp) 
(constr) 

(constr) 
(camp) 

(camp) 
(cond) 

(cond) 

(cond) 

(c ond) 

(cond) 
(camp) 

(cond) 
(camp) 

(cond) 



2 + f ; g):x) 
+ Ye:((~:x) -, (f:x) ; (g:x)) 

casep:x = T 
3 Ye:(f:x) 

casep:x = F 
3 Ye:(g:x) 

otherwise 
3 Ye:l 
3 1 

p + y e  0 f ; y e  0 g:x * (p:x) + (Ye 0 f:x) ; (Ye 0 g:x) 
case (p:x) = T 

5 Ye 0 f:x 
5 Ye:(f:x) 

case (p:x) = F 
3 Ye 0 g:x 
5 Ye:(g:x) 

otherwise 
3 1 

(camp) 
(cond) 

(cond) 

(cond) 

(cond) . 

(c ond) 

(cond) 
(camp) 

(cond) 
(camp) 

(cond) 



APPENDIX E 

Proof that 7, a function that maps LAPP, a lanaguage of applications, into 

LAFP, an AFP language, preserves the meaning of its domain. 

Definition: LAPP is the language of expressions e such that 

1) e ELAFP 

2) e = ( c : d ) a n d c  € L A p p a n d d € L A P P  

3) Nothing else is in LApp 

Definition: p : (LmP + LAPP) -+ A 

(rnl) p(0) = Oo (0, is the object denoted by 0) 
(m2) p(a:b) = p(a):p(b). 

(m3) ~ ( f  O g) = hO . P(f) : : 0) 
(m4) p([f,, . . . , fz]) = A 0  . t p ( f , ) :O ,  . . . ,p(f,):O> 
(m5)  apply) = A<f,x> . f:x 

(me) p(f) = F(f)$ 

f is a functional expression (i.e. an AFP expression that denotes a func- 
tion). F is a semantic function that maps functional expressions into 
lambda expressions (Appendix B). 

Definition: 7 : LAPP + LAFP 

(bl) ~ ( a )  = a (a E 0) 
(b2) ~ ( a : b )  = a:b (a,b E 0) 
(b3) 7(a:(b:c)) = ~ ( a  0 b:c) (a,b E 0) 
(b4) 7(a:(b:c)) = 7(a :~ (b : c ) )  (a E 0, b not E 0) 
(b5) ~ ( ( a :  b):c) =  apply [a,Const(~(c))]: b) (a E 0) 



(cl) Const(a) = B (a E 0) 
(c2) Const(a:b) = a 0 Const(b) (a E 0) 

Definition: N : LAFP + LAPP -, integer 

(nl) N(a) = 0 (a E (objects + functional expressions)) 
(n2) N(a:b) = N(a) + N(b) + 1 

Proof: byInduction onN(x) 

Bases: I) N(x) = 0 

Hypothesis: V x in LAP? s.t .  N(x) < n, p(x) = ~ ( T ( x ) )  

Induction: V x in LATT S. t. N(x) = n, p(x) = p ( ~ ( x ) )  

Case 1: x = a:(b:c) a,b E objects + functional expressions 

(m2) 
(b3) 

( m a  
(m3) 

(beta red) 

(2) 



Case 2: x = a:(b:c) a E (objects + functional expressions), b @ (objects 
+ functional expressions) 

1) , u (7 (x ) )  = p(~(a:(b:c))) = p(T(a:7(b:c))) 
2) N(b:c) = N(6) + N(c) + 1 
3) N(T(~:c))  c: 1 
4) N(7(b:c)) < N(b:c) 
5) N(ar~(b:c)) < N(a:(b:c)) = n 
6) p ( a : ~ ( b :  c)) = p(T(a:T(b:c))) 
7) p(b:c) = p ( ~ ( b : c ) )  
8) p (a :~(b :c ) )  = p(a ) :p (~(b :c ) )  

9) = p(a):p(b:c) 
10) P(a):~(b:c)  = p ( ~ ( a : ~ ( b : c ) ) )  
11) p(x) = p(a:(b:c)) = p(a):p(b:c) 

12) p(x) = P(T(X)) 

(b4) 
(N) 

(Lemma 1) 

(2 & 3) 
(4) 

( ~ Y P )  
( ~ Y P )  

(7) 
(6,8,9) 

(11,lO) 

Case 3: x = (a:b):c a E (objects + functional expressions) 

1) p(x) = p((a:b):c) = p(a:b):p(c) 

2) = (@(a ) :~ (b l l :~ ( c )  
3) ~ ( x )  = ~((a:b):c) =  apply 0 [a,Const(T(c))]: b) (b 5) 
4) N(T(c)) 5 1 (Lemma 1) 
5) ~ o n s t ( ~ ( c ) )  is a n  FP function (Const) 
6) apply 0 [a ,Const(~(c))]  E (objects+f-exprs) ( 5  & def of FP function) 
7) n = N(x) = K(a) + N(b) + N(c) + 2 = N(b) + N(c) + 2 (XI 
8) ~(applyo[a,Const(7(c))]:b) = N(b) + 1 < n (N) 
9) @(apply 0 [a,Const(T(c))]:b) = mu(7(apply o [a, Const (~(c)) ]  : b)) (hyp) 
10) p(app1y 0 [a,Const(~(c))]:b = ,u(apply 0 [a,Const(T(c)) 1) :p(b) (m2) 
11) = (hO.p(apply):(p([a,Const(~(c))]) :O)): p(b) 
12) = p(a~~lY):(p([a,Const(~(c))l):u(b)) (beta red) 
13) = p(apply):((AO.<p(a):O,p(Const(~(c))):O>):p(b)) (m4) 
14) = p(app1y) :((AO.<p(a):O,(XO.p(7(c)).O>):p(b)) (Lemma 2) 

15) = @ ( ~ P P ~ Y )  : ( < ~ ( a ) : ~ ( b )  , ( A ~ . P ( ~ ( c ) ) : P ( ~ )  >) (beta red) 
16) = P(~PP~Y):(<P(~):P(~),P(T(C)) >) (beta red) 
17) = p(appIy):(</J(a) :p(b),p(c)>) ( ~ Y P )  
18) = (X<f,x> 0 f:x):(<p(a):p(b),p(c)>) (m5) 

19) = (~ ( a ) :~c . (b ) ) :~ ( c )  (beta red) 
20) @(XI = P(T(x)) (2,3,9,19) 



Case 4: x = (a:b):c a 6t' (objects + functional expressions) 

1) p(a: b) = ,u(T(a: b)) 
2) N(a:b) = N(a) + N(b) + 1 
3) N(~(a:b)) 5 1 

4) N(a) 2 1 
5) N(a:b) 2 N(b) + 2 
6) N(a(a:b)) < N(a: b) 
7) N(~(a:b):c) < N((a:b):c) = n 
8) d ~ j a :  b) : c) = p(7(7(a: b) :c)) 
9) p ( ~ ( x ) )  = p ( ~ ( T ( a :  b) : c)) = p(T(a: b) : c) 

10) = p(T(a:b)):p(c) 
11) = p(a: b) :p(c) 
12) ~ ( x )  = p((a:b):c) = p(a:b) :p(c) 

13) = P(T(x)) 

( ~ Y P )  
(N) 

(Lemma 1) 
(a not in (objects + f-exprs) 

(N4) 
(3,5) . 

(6) 
( ~ Y P )  

(be) 
(m2) 

(1) 
(m2) 
(10) 

Proof: by Induction on N(a) 

Bases: I) a E (objects + functional expressions) 

N(~(a1)  = N(a) (b 1) 
N(a) = O (K) 

11) a = p:q p,q E (objects + functional expressions) 

N ( ~ ( a 1 1  = N(p:q) = N(P) + N(q) + 1 (N) 
= O + O + l  (N) 
= 1 

Case I: a = p:(q:r) p,q E (objects + functional expressions) 



Case 2: a = p:(q:r) p E (objects + functional expressions), q @ 

(objects + functional expressions) 

Case 3: a = ((p:q):r p E (objects + functional expressions) 

1) N(7(a)) = N(~((p:q):r)) = N(~(apply0 [p,Const(~(r))]:q)) (b5) 
2) N(T(r)) s 1 ( ~ Y P )  
3) Const(~(r) )  is an  FP function (Cons t) 
4) apply [p,Const(~(r)) l  E j (def of FP function) 
5) n = N((p:q):r) = N(q) + N(r) + 2 (N) 
6) N(app1y 0 [p,Const('T(r))]:q = N(q) + 1 < n (K) 
7) N(T(apply0 [p,Const(~(r))]:q)) I ( ~ Y P )  
8) N(7(a)) r 1 (L7) 

Case 4: a = (p:q):r p tit (objects + functional expressions) 

Case 1: a E (objects + functional expressions) 

Case 2: a = p:q p,q E (objects + functional expressions) 

(Cons t) 

(m3) 



(m6,F) 
(beta red) 

(m2) 



APPENDIX F 

THE SYNTAX OF FP 

"fie syntax of the user-level source language is defined by a 

context-free grammar. Annotations have been added to this grammar to 

describe the translation of the source language to AST's. The Syntax 

Analyzer, which performs the translation, was automatically produced by 

sac, a syntax analyzer constructer. [ I ]  

Concrete Grammar 

progam :: = statement-list 30pr program 
statement-list ::= statement statement-list 

I E 
statement :: = definition $Opr def 

I application 
defilEition ::= def Identifier = functional-form 
functional-form ::= term ff-tail 
f f - td  ::= + functional-form ; functional-form $Opr condition (1) 

I & 

term ::= factor term-tail 
termtail ::= 0 term SOpr compose (1) 

I c 
f a c b  ::= insert-L 

I apply-to-all 
l ff 

ff ::= construction 
I constant 
1 binary-to-unary 
I while 
1 (func tional-form) 



I function-name 
function-name :: = selector 

I tl 
I id 
I atom 

I eq 
I null 
I reverse 
I distl 
I distr 
I length 
I add 
/ sub 
I mu1 
I div 
I trans 
1 and 

I or 
1 not 
I apndl 
I apndr 
I right-selector 
I tlr 
I rot1 

105 

$Opr select 

$0pr Rselect 

I rotr 
I Identifier 
I gt  
I ge 
I I t  
I le 
I ne 

selector :: = lSt ] 2nd I 3'd / . . . 
right-selector ::= r ld / pd I 3'd I . - . 
construction ::= [functional-list] $0pr construct 
func tional-list : : = func tional-f orm furac tional-lis t-tail 

I & 

functional-list-tail : : = ,functional-form functional-list-tail 
I E 

constant ::= object 
insertL ::= /factor 
apply-to-all : := af actor 

$Opr constant 
$Opr insertL 

$Opr applyAll 



binary-to-unary ::= bu functional-form object 
while  :: = while f unc tional-f orm func tional-f orm 
application ::= functional-form : fp-object 
fp-object ::= object 

I application 
object ::= <sequence> 

I atom 
I bottom 

sequence ::= object s-tail 

I & 

s-tail ::= ,object s-tail 
I & 

atom ::= literal 
I number 
I boolean 

bottom ::= 1 
literal ::= Literal 
number ::= Numeric 
boolean ::= T 

I F 

$0pr bu 
$Opr while 
If60pr apply 

$Opr sequence 



Concessions to the ASCII Character Set 

In order to make it possible to input FP expressions using the ASCII 

character set, the following substitutions are made: 

FP symbol ASCII equivalent 



APPENDIX G 

ABSIXACT SYNTAX GRAMMAR FOR FP 

Syntactic Domains: 

atom =lNumeral,Literalj 

definition = {def j 

application ={apply] 

object =~a tom,sequence , l~  

f-expr = !condition, compose, select, Rselect, construct, constant, 
insertR, insertl, applyA11, bu, while, tl, id, atom, eq, null, 
reverse, distl, distr, length, add, sub, mul, div, trans, and, or, 
not, apndl, apndr, Identifier j 

Productions: 

program -, (definition + application) * 
def -, Identifier f-expr 

apply -, f-expr (object + suspension + apply) 

condition -, f-expr f-expr f-expr 

compose + f-expr f-expr 

select -, Numeral 

Rselect -, Numeral 

construct -, f-expr * 
constant -, object 

insertL -, f-expr 

applyAll + f -expr 

bu -) f-expr object 



while -, f-expr f-expr 

sequence + object * 
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